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Foreword

“The fear of error is the error itself.” Famous philosopher G.F.W. Hegel, whose
250th birthday we currently commemorate, underlined the very necessity of inno-
vation and thinking out of the box. Innovation needs guidance but must not be
overconstrained. As engineers, we should follow critical rules but also allow error
and learn from it—in order to move forward and not administrate the past. This book
will provide guidance toward innovative automotive architectures and services—
along the lines of Hegel.

Software and IT are the major drivers of modern cars—both literally and from
a marketing perspective. Modern vehicles have more than 70 electronic control
units (ECUs), with premium cars having more than 100 such embedded computer
systems. Some functions, such as engine control or dynamics, are hard real-time
functions, with reaction times going down to a few milliseconds. Practically all
other functions, such as infotainment, demand at least soft real-time behaviors.

The complexity of automotive systems and services is growing fast. Each auto-
motive area has its own requirements for computation speed, reliability, security,
safety, flexibility, and extensibility. Automotive electronic systems map functions
such as braking, powertrain, or lighting controls to individual software systems
and physical hardware. The resulting complexity has reached a limit that demands
an architectural restart (Fig. 1). At the same time, innovative functions such as
connectivity with external infrastructures and vehicle-to-vehicle communication
demand IT backbone and cloud solutions with service-oriented architectures (SOA).

Software and IT in vehicles and their environments are evolving at a fast
pace. Multimodal mobility will connect previously separated domains like cars
and public transportation. Mobility-oriented services such as car sharing create
completely new ecosystems and business models far away from the classic “buy-
your-own-car” approach. Autonomous driving demands highly interactive services
with multisensor fusion, vastly different from the currently deployed functionally
isolated control units. Connectivity and infotainment have transformed the car into a
distributed IT system with cloud access, over-the-air functional upgrades, and high-
bandwidth access to map services, media content, other vehicles, and surrounding

vii
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Fig. 1 The convergence of IT and EE fuels automotive technology

infrastructure. Energy efficiency evolves the classic powertrain toward high-voltage
hybrid and electric engines.

The major driver in the 2020s is convergence. We face a fast integration of the
previously separated concepts of IT and E/E. Software engineering for automotive
systems encompasses modern embedded and cloud technologies, distributed com-
puting, real-time systems, mixed safety and security systems, and, not least, the
connection of all that to long-term sustainable business models.

Automotive engineers must master both domains, paired with functional safety
and cybersecurity. Today automotive software is spearheading IT innovation. The
everyday relevance of automotive software to today’s software engineers is high,
and it is the focus of this book to bring this message to practitioners.

Technology trends are converging across industries (Fig. 2). What used to be
a clear-cut differentiation can be summarized today by the quest for ACES, i.e.,
autonomous systems, convergence, ecology, and services. Business trends are
similar in developed and emerging economies. Ten years ago, only 2 out of 10
most valuable public companies by market capitalization were tech companies.
Today, almost all are highly driving, and driven by, software technology. Failures
to recognize future trends and challenges would be like entering the next decade
with all senses closed.

While converging to the new normal, priorities are shifting heavily. Autonomy,
until recently still a number one shooting star, has started its slowdown along the
hype cycle. At the same time, ecology gets to speed with a high focus especially of
the young generation on our future and the sustainability of our earth. Convergence
levers the two forces of competitiveness and innovation toward a sustainable
business prospective for technology companies. Services are the major driver.
Services are very appealing and we have been talking about them for many years.
It follows the Kano model at its best because a good service for a mediocre product
can create real excitement. Provide 24/7 online support and you earn a big “wow” if
you deliver.
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Fig. 2 Prepare for the future: ACES makes digital winners

To master this fast-growing complexity, automotive software needs a clear
architecture. Architecture evolution today is the major focus across companies,
and thus the book arrives just at the right time. The impacts of architecture are
manifold, such as systems modeling, testing, and simulation with models in the
loop; the combination of several quality requirements such as safety; service-
oriented advanced operating systems with secure communication platforms, such
as adaptive AUTOSAR (Automotive Open System Architecture); multisensor
fusion and picture recognition for ADAS (advanced driver-assistance systems) and
autonomous driving; distributed end-to-end security for flexible remote software
updates directly into the car’s firmware; and connectivity of cloud technologies and
IT backbones with billions of cars and their onboard devices for infotainment, online
apps, remote diagnosis, and emergency call processing.

This second edition of the already classic primer on Automotive Software
comprehensively introduces to automotive software architecture. Authored by
renowned expert Miroslaw Staron, this book provides a guided tour through
the methodology and usage of automotive software architecture. Starting with a
brief introduction to software architecture paradigms, it quickly moves to current
application domains, such as AUTOSAR. Architecture analysis with methods such
as ATAM (Architecture Trade-off Analysis Method) of the Software Engineering
Institute provides hands-on guidance, keeping in mind the current paradigm shift
from classic networking controllers toward the three-tier model of future automotive
IT.

Miroslaw Staron with his coauthors target with this book both engineers and
decision-makers in the automotive electronics and IT domain. They guide engineers,
developers, and managers along the convergence of the two worlds of IT and
embedded systems. Education however has only in rare cases dedicated programs
for engineering these converging IT and embedded systems. Business models will
evolve toward flexible service-oriented architectures and ecosystems. Reference
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points based on industry standards such as three-tier cloud architectures, adaptive
AUTOSAR, and Ethernet connectivity facilitate reuse across companies and indus-
tries. The classic functional split is replaced by a more service-oriented architecture
and delivery model. Development in the future will be a continuous process that will
fully decouple the rather stable hardware of the car from its functionality driven
by software upgrades. Hierarchic modeling of business processes, functionality,
and architecture from a systems perspective allows early simulation while ensuring
robustness and security. Agile service delivery models combining DevOps, micro-
services, and cloud solutions will allow functional changes far beyond the traditional
V approach.

The techniques presented in this book are not supposed to be the ultimate truth.
Yet they provide direction in this fast-evolving field. It will help you as well as your
organization to grow your maturity. Our society and each of us depend on seamless
mobility, and so we need to also trust these underlying systems of infrastructure
and vehicles. Let us evolve the necessary technology, methods, and competencies
in a positive direction to stay in control of automotive software and avoid the many
pitfalls of classic IT systems. For this matter, I wish you all the best and success.

As with all architecture independent of application domain, do not forget
to deliver value and results to your markets. Your future is based on your
competitiveness—both corporate and personal. It is not those to succeed who now
shrink engineering and IT innovation, but those who navigate well in the magic
triangle of quality, competitiveness, and innovation. Thinker, politician, and novelist
Goethe got it straight: “Knowing is not enough; we must apply. Willing is not
enough; we must do.” This is the wake-up call to use innovation and guts to stay
competitive amidst a meager economic outlook. Business history is littered with the
skeletons of those who take neither ownership nor risks.

Stuttgart, Germany Christof Ebert
October 2020 Managing Director, Vector Consulting Services



Preface

Software is omnipresent in our society. It controls everything from the backbone
of electrical infrastructure, to telecommunication equipment to our watches. Cars
are no exception, and the amount of software in modern cars is more than in any
other consumer product. I was once asked by a colleague at a conference whether
the car would still run if we kill the electronic components. The answer was “no” as
basically all elements of modern cars are controlled by software—engine, brakes,
windshield wipers, blinkers, radio, you name it.

In the last few years, the amount of software in cars has increased as electrifi-
cation, connectivity, and autonomous drive became more prevalent in all segments.
The complexity of scenarios for autonomous driving is so large that cars cannot
drive autonomously all the time. Yet, they can drive in various scenarios without
changing lanes, and they can change lanes in certain scenarios or even park
themselves without anyone in the driver’s seat.

When this complexity grows, we face new challenges in the design of automotive
software—more functions become safety critical, more functions interact and
communication busses get overcrowded. We need to design the software with that
in mind and we need to do it in a new way.

In 2017, we published the first edition of this book, which became popular among
students and practitioners alike. Many readers connected with me and asked for
certain elements, pointed out to important new developments, and asked questions.
I’ve taken these suggestions into consideration and I, once again, managed to
convince my colleagues—Dr. Darko Durisic and Dr. Per Johannessen—to help in
revising the book.

The purpose of the book is to introduce the concept of software architecture as
one of the cornerstones of software in modern cars. The book is a result of my
work in the area of software engineering, with a particular focus on safety systems
and software measurement. Throughout my research, I have worked with multiple
companies in the automotive and telecom domains and I have noticed that over time
these domains became increasingly similar. The processes and tools for developing
software in modern cars became very similar to those used in the development
of telecommunication systems. The same is true about software architectures—

xi
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initially very different, today they are increasingly similar in terms of architectural
styles, programming paradigms, and architectural patterns.

The book starts with a historical overview of the evolution of software in modern
cars and the description of the main challenges which drive the evolution. Chapter 2
describes the main architectural styles of automotive software and their use in cars’
software. Chapter 3 is a new addition, where we learn about the modern software
architectures—federated and centralized ones. In Chap. 4, the reader can find a
description of software development processes used to develop software on the
car manufacturer’s side. Chapter 5 introduces AUTOSAR—an important standard
in automotive software. In this edition, this chapter discusses both the classic and
adaptive AUTOSAR. Chapter 6 goes beyond simple architecture and describes the
process of detailed design of automotive software with the use of Simulink, which
helps us understand how the detailed design links to the high-level design. Chapter 7
is a new one and focuses on machine learning in automotive software development.
Chapter 8 presents a method for assessing the quality of the architecture—ATAM
(Architecture Trade-off Analysis Method)—and provides an example assessment.
Chapter 9 presents an alternative way of assessing the architecture, namely, by
using quantitative measures and indicators. In Chap. 10, we dive deeper into one
of the specific properties discussed in Chap. 11—safety—and can read about the
important standard in that area—ISO/IEC 26262. This time, this chapter contains
more information about the hardware than in the first edition of the book. Finally,
Chap. 12 presents a set of future trends that seem to emerge today that have the
potential to shape automotive software engineering in the coming years.

Gothenburg, Sweden Miroslaw Staron
October 2020
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Chapter 1
Introduction

Abstract Modern cars have evolved from mechanical devices into distributed
cyber-physical systems which rely on software to function correctly. Starting from
the 1970s the amount of electronics and software used has gradually increased from
as little as one computer (Electronic Control Unit, ECU) to as much as 150 ECUs
in 2015. The trend in the architecture, however, changes as companies look for
ways to decrease the number of central computing nodes and connect them with
the increased number of I/O nodes. In this chapter we provide an overview of the
book and the conventions used in it and introduce the examples which we will
use throughout. We describe the history of the automotive software anchoring the
events in the evolution of the market of the electronics and software in modern cars.
Towards the end of the chapter we also describe which directions can be pursued to
deepen the knowledge of automotive software.

1.1 Software and Modern Cars

The introduction of software to cars opened up plenty of opportunities—from the
optimization of cars’ performance and to exciting infotainment features. Modern
cars are full of electronics and the consumers are looking for car platforms which
fully resemble software products. A good example of this kind of car is Tesla,
which is known for innovations driven by software. The manufacturer is known
for constantly pushing new versions of software to customers, providing them with
new, exciting features almost every day.

The software intensive systems in modern cars provide plenty of new oppor-
tunities, but they also require more careful design, implementation, verification
and validation before they can be released to users. And although the practices of
software engineering include methods and tools able to fulfill the needs for safety
and reliability of the automotive software, they must be applied in an automotive-
specific manner to address these needs.

We could see the clear development of the automotive industry into a field less
dominated by mechanical engineering but with a growing component of electronic
and software engineering. We have seen the evolution of software from simple
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2 1 Introduction

engine control algorithms of the 1970s to the advanced safety systems of the 2000s
and the advanced connectivity of the 2010s. We can observe that the trends of using
the software is not going to decrease, but will increase and the amount of software
used will continue to increase.

With the growing amount and importance of software in modern cars we
can observe the increased need for professional software engineering. Rigorous
processes of software engineering lead to higher quality software with complexity
not higher than necessary and assuring that the software does not contribute to
fatalities in the traffic conditions.

One of the practices of software engineering is the high-level design of software
systems, also referred to as software architecture. The architecture of the software
provides the designers with the possibility to prescribe how the software functions
are distributed to software components and how the components are to interact with
each other. Software architecting is usually done at the early stages of software
development and serves as the basis for the allocation of software modules to
components and the distribution (called systemization) of the functions to software
components.

1.2 History of Software in the Automotive Industry

Although today it is a given that there is a lot of software in our cars, it was not
like that at the beginning of the automotive industry. The first cars did not contain
any electronics, which only entered the automotive market during the 1970s with
the introduction of electronic fuel injection as a response to the demand for fuel
efficiency [CC11].

In the 1970s the software in the cars was usually embedded deeply in the
electronics in functions related to single domains—e.g., electronic fuel injection
in the powertrain, electronic ignition in the electrical system or central locking.
Since the use of electronics was scarce in that decade, the notion of functional
safety did not relate to software and it was relatively easy to embedded mechanisms
for controlling the safety of the functions. The architectures of the software were
usually monoliths which were not communicating with other parts of the software.

It was the 1980s that brought in such innovations as the central computers which
could display basic telemetry of the vehicles—such as current fuel consumption,
average fuel consumption and distance travelled. The ability to display the infor-
mation to the drivers opened up new possibilities. On the embedded software front,
software algorithms controlled new functions such as anti-lock brakes (ABS) and
even electronic gearboxes.

The 1990s introduced even more consumer-visible electronics. The most notable
innovation was in the infotainment domain and was the navigation system—or
as it is commonly called, the GPS. Visualizing the information online required
integration of important electronic components such as powertrain control com-
puter, the dedicated GPS receiver and the infotainment display. The same decade
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introduced also more electronics and software in safety-critical areas such as ACC
(Adaptive Cruise Control) which controlled the speed of a vehicle based on the
speed of the vehicles in front. The introduction of this kind of functionality raised the
important questions of liability for accidents caused by malfunctioning of software.
The automotive software architecture used in the 1990s was more distributed and
software became often recognized as important factor in innovation in the car
industry. An example computer system is presented in Fig. 1.1.1

Fig. 1.1 Late 1990s JECS LH-Jetronic ECU for engine control

This kind of development continued into the 2000s, when software started to
dominate innovation in the car industry. It was also during the 2000s that the
notion of advanced driver support systems was coined. The “advanced” referred to
functions which integrated multiple computers in the car and made more “difficult”
decisions for the driver. One of the most notable systems in this area was the City
Safety system introduced by Volvo in its XC60 model [Ern13]. The system could
stop the car from of speed under 50 kph when an obstacle appeared in front of
it and the driver had no time to react. It was these kinds of systems that required
more control over the complex interactions and prioritizations and therefore led to
more advanced software architectures. The AUTOSAR standard was introduced to
provide the possibility to communize solutions (where possible) and make it easy
to change hardware platform with limited effort to adopt the software, and to enable
easier sharing of the components between manufacturers and introduce a common
“operating system” for the car’s computers [Dur15, DSTH14].

1Author: RB30DE via Wikipedia https://en.wikipedia.org/wiki/JECS, under the Creative Com-
mons License: http://creativecommons.org/licenses/by-sa/3.0/.

https://en.wikipedia.org/wiki/JECS
http://creativecommons.org/licenses/by-sa/3.0/
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Finally, the 2010s introduced a completely new way of designing the electronics
in cars [SLO10, RSB+13]. Departing from the distributed network of computers
in a single car, this decade introduced the concepts of wireless cars, car-2-
car communication, car-2-infrastructure communication and autonomous driving
concepts. Many new actors appeared on the market where the car was no longer
a final product, but a platform where new functions could be deployed even post-
production. Examples of such cars are Tesla cars or Google’s self-driving vehicle
[Mar10]. It was also this decade that required more advanced control over the
execution of software coming from different vendors for the possibility of adding
new functionality to cars without the need for physically modifying the cars. An
example of a focus area—infotainment—is presented in Fig. 1.2.2

Fig. 1.2 2014 Audi TT infotainment unit

Another example is the infotainment unit of Volvo XC90 as presented in Fig. 1.3.
In today’s cars the size of the software grows to over 100 million lines of code

according to Viswanathan [Vis15].

2Author: Audi, available at https://en.wikipedia.org/wiki/JECS, under the Creative Commons
License: http://creativecommons.org/licenses/by-sa/2.0/.

https://en.wikipedia.org/wiki/JECS
http://creativecommons.org/licenses/by-sa/2.0/
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Fig. 1.3 2016 Volvo XC90 infotainment unit

1.3 Trends Shaping Automotive Software Development

In 2007, Pretschner et al. [PBKS07] outlined the major trends in software develop-
ment in automotive systems. This work has been a trendsetter since then and has
foreshadowed the large increase in the amount of automotive software—in 2007
measured in megabytes and in 2016 measured in gigabytes. The five trends of
automotive software systems presented by Pretschner et al. are:

• Heterogeneity of software—the software in modern cars realizes different func-
tions in different domains. These domains range from highly safety-critical (e.g.
active safety) to user experience-centered (e.g. infotainment). This means that
the ways of specifying, designing, implementing and verifying the software vary
among domains.

• Distribution of labor—the development of the software systems is often dis-
tributed between automotive OEMs (Original Equipment Manufacturers, like
Volvo, BMW, and Audi) and suppliers. Suppliers are also often given an option
to define their own way of working as long as they comply with the requirements
of and contracts with the OEMs.

• Distribution of software—the automotive software system comprises a number
of ECUs, and each of the computers has its own software which needs to
cooperate with other ECUs to fulfill its functions. This entails more difficulty
in coordination of the software and introduces more complexity.
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• Variants and configurations—the globalized and highly competitive automotive
market requires customizations of the same car based on the requirements of the
country and the user. This means that the software in modern cars need to be able
to work in different countries without the need for recertification and, therefore
the software needs to handle variants in multiple ways—both in the source code
and also at runtime.

• Unit-based cost models—the competitive market means that the unit price of the
car cannot be too high compared to the competition and therefore it is often the
case that automotive OEMs optimize the hardware and software in such a way
that unit costs remains low while the development costs can be higher.

A lot has happened since 2007 and the major trends in the automotive market
today can be complemented with such trends as:3

• Connectivity and cooperation [BWKC16]—the ability to use internet functions
through mobile networks enabled cars to connect to each other and/or to use
information from the infrastructure to make decisions. Research projects in
the area of intelligent transport systems explore such ideas as planning of the
speed of a bus to minimize the need for braking for “red” when approaching
intersections. The modern cars are expected to be able to connect to smartphones
via Bluetooth and to use internet features such as web browsers or music services.

• Autonomous functions [LKM13]—the ability of the car to brake, steer and
autonomously take over from drivers entails a large amount of complexity in
safety-critical systems, but is seen as “the next big thing” in the automotive sector.
This also means that the verification and validation methods for software in cars
will become even more stringent and even more advanced.

Autonomous driving scenarios are challenging because of the need to have an
accurate and exact model of the physical surroundings of the car. This demand
for the accuracy requires more sophisticated measurement equipment and therefore
more data to process, more decision points, and in turn more complex algorithms.
One piece of such measurement equipment which is used in autonomous driving is
LIDAR, shown in Fig. 1.4.4

Figure 1.4 shows a LIDAR mounted on the roof of an autonomous car. The
device provides a 360◦ view of the surroundings and allows the car’s software to
find objects in the vicinity of the car. A LIDAR is often a complement to a RADAR,
which is usually placed in the front of the vehicle. Figure 1.5 shows the picture of
the radar ECU of a Volvo FH16 truck.

The production cars, however, do not have LIDARs yet, but take advantage of
cameras placed in covered places. In Fig. 1.6 we can see the front camera of a Volvo
XC90.

3Based on author’s own observations.
4Author: Steve Jurvetson; available at flickr.com, under the Creative Commons License: http://
creativecommons.org/licenses/by/2.0/.

http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
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Fig. 1.4 Velodyne High-Def LIDAR

Fig. 1.5 Radar ECU in Volvo FH16 truck

It is interesting to observe the automotive software market today, and therefore
we believe that this book will be of use to anyone who is interested in starting to get
into automotive software engineering.
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Fig. 1.6 Front camera in Volvo XC90

1.4 Organization of Automotive Software Systems

Over the years each car manufacturer (often referred to as an OEM, Original
Equipment Manufacturer) developed its own way of organizing software systems
with the diversity in pair of the diversity of car brands today. However, many of the
car manufacturers design the software in a similar way—they use the V development
model and a similar organization of the electrical (and software) systems into
domains and subsystems. We can depict it in the model presented in Fig. 1.7.

In this view we can see that the electrical system is organized into domains,
such as infotainment and powertrain. Each of these domains has a specific set of
properties—some are safety-critical and some not, some are very user oriented and
some are realtime and embedded. Each of these domains, however, is organized into
subsystems which group a specific functionality (some OEMs call these subsystems
simply “systems”) such as active safety, and advanced driver support and similar.
These systems group a number of logical elements and realize the functionality,
which is often grouped into functions. The functions are often called end-to-end
functions, as they realize user functionality such as Adaptive Cruise Control, Line
Departure Warning and Navigation from A to B.

The functions are realized by subsystems of the electrical system and they are
orthogonal to the organization of subsystems, components and modules. Therefore
we often see the concept of “functional architecture (view)”—describing the
dependencies among functions.
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Fig. 1.7 Conceptual view of the organization of the software system

Each subsystem contains a number of components which include smaller parts
of software elements that realize parts of the functionality (e.g. such a part
could be a message broker for an infotainment system). These components are
organized into software modules, which are often source code files with a set of
classes, methods and programming language functions. The groupings of these
programming language functions or software classes are referred to as logical
software components.

The term software architecture can be used in almost all levels of this hierarchy
(except for the lowest one). We can talk about the EE architecture (Electrical
System architecture) which describes the organization of software and hardware
for the entire car. We can talk about an ECU architecture which describes the
logical organization of software subsystems, components and modules in the ECU.
Depending on the size and role of the ECU we could have modules, components or
subsystems in the ECU [DNSH13].

The methods and techniques presented in this book can be applied at any of these
levels.

1.5 Architecting as a Discipline

Software architecture is a kind of artifact in software development, but architecting
is a full-fledged discipline with its own activities and tasks. It is quite often the case
that software architects are perceived as more experienced than senior designers and
are given a larger mandate to make decisions than software designers. In order to
prevent confusion, let us briefly discuss the role of software architects in contrast to
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the designers and project managers. These two roles can be perceived as overlapping
to some extent and therefore this comparison gets interesting.

1.5.1 Architecting vs. Project Management

Being a software architect means being in a role of a kind of technology leadership.
The architects are the persons who lay the ground for the development of the entire
system—in terms of general architectural styles, but also in terms of principles
which guide the development of the system. Those principles form the boundaries
within which the designers can make their choices. It is the role of the architect to
ensure that these principles are followed during the entire lifecycle of the software
system.

In some sense, setting the frames for the system design is a technical corre-
spondent to setting the frames for the cost and scope of the project that develops
the system. However, it is the responsibility of the project manager to set and
monitor this project scope, schedule and cost. Therefore we contrast architecting
as a technical correspondent to project management in Table 1.1.

Table 1.1 Architecting vs. project management

Architecting Project management

Done by technical experts Done by management experts

Technology in focus Scope in focus

Focus on quality Focus on cost

Focus on requirements Focus on work products

Focus on solution Focus on resources

Maximize functionality Minimize cost

Since the discipline of architecting is practices by technical experts, it is technical
principles that are applied—how to create objects, send messages, deploy compo-
nents onto ECUs. This means that the technologies and their characteristics are in
focus. For example, the architects need to balance different quality characteristics
with each other—performance vs. safety, maintainability vs. portability and others.
Therefore the architects also focus on the quality and functionality—addressing
such challenges as “how to enable video feeds over the Flexray network without
adding new cables”. Finally the architects focus on the functionality and make sure
that the electrical system of the car can realize the functionality given the constraints
(e.g. weight of the cables, number of ECUs). All of these aspects make software
architecting seem as technical product management.

In contrast to the technical management, we have project management, where the
project leaders apply organizational theories to determine whether to work Agile
or waterfall, or how to negotiate contracts, or how to measure the progress of
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the project. When applying the managerial and organizational theories the project
leaders focus on the scope of the project—addressing the questions of whether a
given functionality can be developed given the budget constraints of the project.
The focus of the project leaders is on resources, on balancing cost and resources
with the schedule of the project. All of these aspects can be seen as management of
the project rather than management of the product.

Both technical and project management need to work with one another as they
develop the one and the same product! Humphrey [Hum96] in his book “Managing
Technical People: Innovation, Teamwork and the Technical process” provides a
number of useful guidelines on how to combine these two.

1.5.2 Architecting vs. Design

Similarly to contrasting the discipline of architecting to the discipline of project
management, we can also contrast architecting to designing. We could observe from
the previous contrast that technical product management is about setting principles
for the work. The discipline of designing is all about following these principles
in order to arrive at final software product. We present some of the differences in
Table 1.2.

Table 1.2 Architecting vs. designing

Architecting Designing

Making rules and decisions Following rules and decisions

High level structures Low-level structures

Holistic understanding Specialistic understanding

Systems thinking Software thinking

Documentation-oriented Code and executable/detailed model-oriented

Modelling and analysis Execution and testing

Software architecting, being the technical management of the system, sets
the boundaries for the design in terms of principles, rules and decisions about
how to design the system. An example of such a decision is the choice of the
communication protocol between the ECUs and the number of ECUs in the system.
It’s also about which standards to follow and why. Architecting, as we will see in this
book, is a discipline operating at a high abstraction level—considering components
(e.g. groups of software classes) and execution nodes. This requires a holistic
understanding of the system—both the software and the underlying hardware used
to execute the software or provide the software with data. This kind of a “systems
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thinking” makes the architects the core part of any software team because they
understand the background of “why” things happen rather than just do things.5

The discipline of architecting is also very documentation-oriented—as the
decisions, rules and principles need to be communicated, they also need to be
explained and documented to lead to consistency and enforcement of rules. This
happens often as a process of analysis and modelling of the system.

In contrast, the discipline of designing is focused on realizing the principles,
decisions and rules of the architecture in software code or an executable model. The
high-level structure discussed in the architecture is now developed using lower-level
structures—components using classes and blocks, ECUs using execution processes.
This requires specialized knowledge and competence in the particular domain in
question (e.g. the infotainment or powertrain). The design is focused on the software
entities and their interaction with the underlying hardware, where the hardware
is often given (or at least the specification of the hardware is given during the
design of the software). This means that designing is focused on the code and
executable/detailed models rather than on abstract analysis and modelling. It is also
therefore the design that is the first activity where we discuss testing and execution,
whereas in the architecture we talk about assessments and evaluations (a topic which
we will return to in Chap. 6).

Similarly to the collaboration between the architects and the project managers,
the architects need to collaborate closely with the designers in order to develop and
deliver a software system which fulfills all the requirements and quality constraints.

1.6 Content of This Book

This book addresses one of the most fundamental aspects of engineering of
software systems—software architectures. The architecture is a high-level design of
a software system which enables the architects to distribute the functionality of the
software system to multiple interacting components. The components are usually
grouped into subsystems and domains which address a set of functional and non-
functional requirements of the software system.

In this book we explore the concept of software architecture for modern cars
which is intended for both novice and advanced software designers. This book
is intended for two groups of audience—professionals working with automotive
software who need to understand concepts related to automotive architectures, and
students of software engineering or related programs who need to understand the
specifics of automotive software to be able to construct cars or their components.

The idea to support the professionals came from the author’s observations that
the automotive industry requires an individual software engineer to be able to

5Sinek in his book “Starting with Why: How Great Leaders Inspire Everyone to Action” [Sin11]
presents a set of examples of how this works in practice.
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understand a variety of disciplines. Individuals working with the construction of
car software or hardware need to understand their counterparts in order to be able to
design safe, reliable and long-term solutions for the car industry. Software engineers
need to understand how their software is to be integrated with other software from
other vendors in order to be able to develop user functions, e.g. collision avoidance
by braking.

The idea to support the students came from the observation that many of the
graduates from software engineering programs require further education in order
to understand such advanced concepts as software and systems safety, working
with suppliers and distribution of software. During the author’s years of working
with students it became evident that it is difficult to provide education in software
engineering in general and also focus on specific aspects such as automotive
software. This book addresses this challenge and is aimed at being both a reference
book and a potential course book for software engineering programs.

This book is structured into independent chapters which can be read separately,
although we recommend reading them in sequence. Reading the chapters in
sequence allows us to follow the motivating example throughout the book and to
gradually build up knowledge about automotive software architectures.

1.6.1 Chapter 2: Software Architectures

In this chapter we present the basics of software architecture in general as a recap
for readers who are not familiar with architecting as a discipline, and towards the
end of the chapter we describe the specificity of automotive software architectures.

In the beginning of the chapter we review the definitions of software architec-
tures, define the types of view used in automotive software design and relate them
to the architectural views in software engineering in general—the 4+1 architecture
view model.

We gradually progress in the chapter to introduce elements important for auto-
motive architectures, e.g., ECUs (Electronic Control Units), logical and physical
components, functional architectures, and topologies for automotive architectures
(physical and logical). We delve into the peculiarities of automotive software—
embedded systems with large focus on safety and dependability.

1.6.2 Chapter 3: Modern Software Architectures: Federated
and Centralized

Once we get familiar with different architectural styles, we study how modern
software systems are designed. We study federated software architectures, where
the software is organized into domains, with domain controllers that coordinate and
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manage the software within the domains. Federated architectures are very popular
at the moment, but they have limitations that prevent them from growing further, for
example, the lack of redundancy or one central computer for computation-intensive
tasks for machine learning.

Therefore, we also explore the centralized software architectures of the future.
Automotive software designed around these architectural styles can use the power
of high capacity processing units, which can provide more functions to the end
users. However, these systems are also more complex as they require redundancy
and virtualization to enable safety mechanisms required by modern standards.

1.6.3 Chapter 4: Automotive Software Development

In this chapter we describe and elaborate on software development processes in the
automotive industry. We introduce the V-model for the entire vehicle development
and we continue to introduce modern agile software development methods for
describing the ways of working of software development teams. We also provide an
overview of a tool which is used to keep the design data consistent—SystemWeaver
by SystemIte.

In this chapter we discuss the specifics of automotive software development
such as variant management, different integration stages, testing strategies and the
methods used for these. We review methods used in practice and explain how they
should be used.

1.6.4 Chapter 5: AUTOSAR Reference Model

In this chapter we continue on the topic of standardization and we discuss the current
standardization efforts. We describe and discuss the AUTOSAR standard, which
gets the most attention today in Europe and worldwide. In the AUTOSAR standard
we describe the main building blocks like software components and communication
buses.

1.6.5 Chapter 6: Detailed Design of Automotive Software

In this chapter we continue to delve into the technical aspects of automotive
software architectures and we describe ways of working when designing software
within particular software components. We present the methods for modelling the
functions using Simulink modelling and we show how these methods are used in
the automotive industry.
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Towards the end of the chapter we introduce the need for quality assessment
of software architectures and the challenges related to assessment of the sub-
characteristics of quality (the so-called -ilities).

1.6.6 Chapter 7: Machine Learning in Automotive Software

In the first edition of this book, machine learning was mentioned as the emerging
technology. Since then, the technology has matured and found its way into vehicle’s
software. Therefore, this edition of the book contains a chapter where we learn about
this technology and how it is used.

We explore two types of machine learning—supervised learning in image
recognition and reinforcement learning for optimizations. In addition to explaining
how these algorithms work, we look into the ways on how to prepare the data. We
also go into the ways in which the machine learning can be done with on-board and
off-board training.

1.6.7 Chapter 8: Evaluation of Automotive Software
Architectures

In this chapter we introduce methods for assessing the quality of software architec-
tures and we discuss ATAM. We discuss the non-functional properties of automotive
software and we review the methods used to assess such properties as dependability,
robustness and reliability. We follow the ISO/IEC 25000 series of standards when
discussing these properties.

In this chapter we also address the challenges related to the integration of
hardware and software and the impact of this integration. We review the differences
with stand-alone desktop applications and discuss examples of these differences.

Towards the end of the chapter we discuss the need to measure these properties
and introduce the need for software measurement.

1.6.8 Chapter 9: Metrics for Software Design
and Architectures

In this chapter we describe the most commonly used metrics in software engineering
in general and in automotive software engineering, e.g. lines of code, model size,
complexity, and architectural stability or coupling [6]. In particular we present
these metrics and their interpretation (what should be done, and why, based on the
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values of metrics). We discuss the use of metrics based on the international standard
ISO/IEC 15939.

1.6.9 Chapter 10: Functional Safety of Automotive Software

In this chapter we elaborate on one of the most important issues related to software
in modern cars—functional safety. We explore the safety-related concepts described
in the international standard ISO/IEC 26262 and we describe how this standard is
used in modern software development processes.

We explore such elements as verification and validation techniques mentioned in
the standard and link them to the ASIL levels and efficiency of their applications.

In the chapter we describe how the standard is to be applied on the examples of
the simple function.

1.6.10 Chapter 11: Current Trends in Automotive Software
Development

We conclude the book with the outlook on the current trends in automotive software
development and we introduce the emerging, disruptive technologies on the market
that have the potential to change the automotive industry to become more software-
oriented than it traditionally has been.

1.6.11 Motivating Examples in the Book

In this book we illustrate the concepts introduced in each chapter with a set of
examples. Each chapter has its own examples which are dedicated to extrapolating
the concepts described, and therefore:

• Chapter 2 contains a set of examples from different domains, e.g. infotainment,
powertrain and active safety.

• Chapter 3 contains examples which are based on real systems but largely
simplified to illustrate the most important points.

• Chapter 4 includes examples of requirements from AUTOSAR and requirements
for opening the car from the chassi domain.

• Chapter 5 contains examples of the AUTOSAR models and their realization for
communication between two ECUs.

• Chapter 6 includes examples of digitalization of an analog signal and the
designing of the heating of a car’s chassi from the Chassi domain.
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• Chapter 7 contains examples of neural networks and examples of images used
for training.

• Chapter 8 contains examples of the parking assistance camera from the active
safety domain.

• Chapter 9 contains examples of a real software (obfuscated) published as open
source.

• Chapter 10 includes the example of a simple microcontroller demonstrating the
different ASIL levels and architectural choices used to achieve these levels.

These examples do not constitute an entire software system of a car, as these
systems are huge. As a reference, BMW in its talks at conferences showed the size
of the electrical system to be about 200 ECUs, which includes all variants of its
electrical system (meaning that there is no car with all 200 ECUs.6 )

The example are also prepared in a way that easies the understanding, without
the focus on the completeness of these examples. The vehicle’s software evolves
rapidly and therefore keeping examples complete is not prioritized in this book.

1.7 Knowledge Prerequisites

In order to understand the book one needs to understand how programming works.
We do not require any specific programming skills, but it is good to know the basics
of programming in C/C++ or Java/C#. It is also good to have the basic knowledge
of the UML notation, especially the class diagrams.

We introduce topics from the automotive domain and we require no prior
understanding of the domain nor any knowledge of software architecture.

For each chapter we provide pointers where the interested reader can find more
information or where the necessary prerequisites can be obtained.

1.8 Where to Go Next

After reading this book you will be able to understand how to architect a software
system for a modern car. You will also be prepared to understand the design
principles guiding the development of software in modern cars and be able to
understand the non-functional principles behind the design.

The next natural step is to follow your interest in the design of software
systems. We recommend focusing on the principles of continuous integration and
deployment, virtual verification and validation as well as advanced functional safety.

6Presentation from BMW at Elektronik i Fordon, Gothenburg, May 2016.
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Chapter 2
Software Architectures—Views and
Documentation

Abstract Software architecture is the foundation for automotive software design.
Being a high-level design view of the system it combines multiple views on the
software system, and provides the project teams with the possibility to communicate
and make technical decisions about the organization of the functionality of the entire
software system. It allows also us to understand and to predict the performance of
the system before it is even designed. In this chapter we introduce the definitions
related to software architectures which we will use in the remainder of the book. We
discuss the views used during the process of architectural design and discuss their
practical implications.

2.1 Introduction

As the amount of software in modern cars grows we observe the need to use more
advanced software engineering methods and tools to handle the complexity, size and
criticality of the software [Sta16, Für10]. We increase the level of automation and
increase the speed of delivery of software components. We also constantly evolve
software systems and their design in order to be able to keep up with the speed of
the changes in requirements in automotive software projects.

Software architecture is one of the cornerstones of successful products in
general, and in particular in the automotive industry. In general, the larger the
system, the more difficult it is to obtain a good quality overview of its functions,
subsystems, components and modules—simply because of the limitations of our
human perception. In automotive software design we have more specific challenge,
related to the safety of the software embedded in the car and the distribution of the
software—both distribution in terms of the physical distribution of the computing
nodes and distribution of the development among the car manufacturers and their
suppliers.

In this chapter we discuss the concept of software architecture and explain
it with the examples of building architectures. Once we know more about what
constitutes software architecture, we go into the details of different views of
software architecture and how they come together. We then move on to describing
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the most common architectural styles and explain where they can be seen in
automotive software. Finally we present the ways of describing architectures—the
architecture modelling languages. We end the chapter with references to further
readings for readers interested in more details.

2.2 Common View on Architecture in General
and in the Automotive Industry in Particular

The concept of architecture is well rooted in our society and its natural association
is to the styles of buildings. When thinking about architecture we often recall large
cathedrals, the gothic and modern styles of churches, or other large structures. One
of the examples of such a cathedral is the “Sagrada Familia” cathedral in Barcelona
with its very characteristic style.

However, let us discuss the concept of the architecture with a considerable
smaller example—let us take the example of a pyramid. Figure 2.11 presents a
picture of the pyramids in Gizah.

Fig. 2.1 All Gizah pyramids: a picture represents an external view of the product

The form of the pyramid is naturally based on a triangle. The fact that it is based
on a triangle is one of the architectural choices. Another choice is the type of the

1Author: Ricardo Liberato, available at Wikipedia, under the Creative Commons License: https://
creativecommons.org/licenses/by-sa/2.0/.

https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
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triangle (e.g. using the golden number 1.619 as the ratio between the slant height to
half the base length). The decision is naturally based on mathematics and illustrated
using one of the views of the pyramid—call it an early design blueprint as presented
in Fig. 2.2.

Fig. 2.2 Internal view of the
architecture of a pyramid

b

a
h

Figure 2.2 shows the first design principles later on used to detail the design
of the pyramid. Instead of delving deeper into the pyramid construction, let us
now consider the notion of architecture and software architecture in the automotive
industry.

One obvious view of the architecture of the car is the external view of the product,
as with the view of the pyramid (Fig. 2.32 )

We can observe the general architectural characteristics of a car—the placement
of the lights, the shape of the lights, the shape of the front grill, the length of the car,
etc. This view has to be complemented with a view of the internal design of the car.
An example of such a blueprint is presented in Fig. 2.4.

This blueprint shows the dimensions of the car, hiding other kinds of details.
In the mechanical domain, when designing the chassis of the car, the engineers
visualize the use of materials in the car, as shown in Fig. 2.5.

The body structure can be complemented with the architecture of the powertrain,
as shown in Fig. 2.6.

In the next section, we explore how the architects present software and the
principles behind the design of the software.

2.3 Definitions

Software architecting starts with the very first requirement and ends with the last
defect fix in the product, although its most intensive period is in the early design
stage where the architects decide upon the high-level principles of the system

2Author: Albin Olsson, available at Wikipedia, under the Creative Commons License: https://
creativecommons.org/licenses/by-sa/4.0/deed.en.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Fig. 2.3 Volvo XC 90, another example of the external view of the product

design. These high-level principles are documented in the form of a software
architecture document with several views included. We could therefore define the
software architecture as the high-level design, but this definition would not be just.
The definition which we use in this book is:

Software architecture refers to the high-level structures of a software system, the discipline
of creating such structures, and the documentation of these structures. These structures are
needed to reason about the software system

The definition is not the only one, but it reflects the right scope of the
architecture. The definition comes from Wikipedia (https://en.wikipedia.org/wiki/
Software_architecture).

2.4 High-Level Structures

The definition presented in this chapter (“Software architecture refers to the high-
level structures of a software system. . . ”) talks about “high-level structures” as a
means to generalize a number of different entities used in the architectural design.

https://en.wikipedia.org/wiki/Software_architecture
https://en.wikipedia.org/wiki/Software_architecture
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Fig. 2.4 A blueprint of the design principles of a car. Volvo XC70, ©2020, Volvo Car Corporation.
Used under permission from Volvo Car Corporation

In this chapter we go into details about these structures, which are:

1. Software components/Blocks—pieces of software packaged into subsystems and
components based on their logical structure. Examples of such components could
be UML/C++ classes, C code modules, and XML configuration files.

2. Hardware components/Electronic Control Units—elements of design of the
computer system (or platform) on which the software is executed. Examples of
such elements include ECUs, communication buses, sensors and actuators.

3. Functions—elements of the logical design of the software described in terms
of functionality, which is then distributed over the software components/blocks.
Examples of such elements are software functions, properties and requirements.

All of these elements together form the electrical system of the car and its
software system. Even though the hardware components do not “belong” to the
software world, it is the often the job of the architect to make sure that they are
visible and linked to the software components. This linking is important from the
process perspective—it must be know which supplier should design the software
for the hardware. We talk more about the concept of the supplier and the process in
Chap. 3.
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Fig. 2.5 Volvo XC90 body structure. ©2020, Volvo Car Corporation. Used under permission from
Volvo Car Corporation

In the list of high-level structures, when introducing functions, we indicated
the interrelation between these entities—“functions distributed over the software
components”. This interrelation leads us to an important principle of architecting—
the use of views. An architectural view is a representation of one or more structural
aspects of an architecture that illustrates how the architecture addresses one or
more concerns held by one or more of its stakeholders [RW12].

One could see the process of architecting as a prescriptive design, the process
continuous as the design evolves. Certain aspects of design decisions influence
the architecture and are impossible to know a priori—increased processing power
required to fulfill late function requirements or safety-criticality of the designed
system. If not managed correctly the architecture has a tendency to evolve into a
descriptive documentation that needs to be kept consistent with the software itself
[EHPL15, SGSP16].

2.5 Architectural Principles

The second part of the definition of the software architecture (“. . . the discipline of
creating such structures. . . ”) refers to the decisions which the software architects
make in order to set the scene for the development. The software architects create
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Fig. 2.6 Volvo T8 Twin Engine on SPA (Scalable Platform Architecture). ©2020, Volvo Car
Corporation. Used under permission from Volvo Car Corporation

the principles by defining such things as what components should be included in
the system, which functionality each component should have (but not how it should
be implemented—this is the role of the design discipline, which we describe in
Chap. 5) and how the components should communicate with each other.

Let us consider the coupling as an example of setting the principles. We can
consider an example of a communication between the component representing the
controller of the windshield wipers and the component representing the hardware
interface to the small engine controlling the actual windshield wiper arm. We could
have a coupling in one way, as presented in Fig. 2.7.

«Block»
WindshieldWiper

properties

operations

constraints

«Block»
WndEngHW

properties

operations

constraints

Fig. 2.7 An example principle—unidirectional coupling between two blocks
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In the figure we can see that the line (association) between the blocks is directed
from WindshieldWiper to WndEngHW. This means that the communication can
only happen in one way—the controller can send signals to the hardware interface.
This seems logical, but it raises challenges when the controller wants to know the
status of the hardware interface without pulling the interface—it is not possible as
the hardware interface cannot communicate with the controller. If an architect sets
this principle then this has the consequences on the later design, such as the need
for extra signals on the communication bus (pulling the hardware for the status).

However, the software architect might make another decision—to allow commu-
nication both ways, which is shown in Fig. 2.8.

«Block»
WindshieldWiper

properties

operations

constraints

«Block»
WndEngHW
properties

operations

constraints

Fig. 2.8 An example principle—bidirectional coupling between two blocks

The second architectural alternative allows the communication in both ways,
which solves the challenges related to pulling the hardware interface component
for the status. However, it also brings in another challenge—tight coupling between
the controller and the hardware interface. This tight coupling means that when one
of these two component changes, the other should be changed (or at least reviewed)
as the two are dependent on one another.

In the remainder of this chapter we discuss several of such principles when
discussing architectural styles.

2.6 Architecture in the Development Process

In order to put the process of architecting in context and describe the current
architectural views in automotive software architectures, let us first discuss the
V-model as shown in Fig. 2.9. The V-model represents a high-level view of a
software development process for a car from the perspective of OEMs. In the most
common scenario, where there is no OEM in-house development, component design
and verification is usually entirely done by the suppliers (i.e., OEMs send empty
software compositions to the suppliers, who populate them with the actual software
components).

The first level is the functional development level, where we encounter the first
two types of the architectural views—the functional view and the logical system
view. Now, let us look into the different architectural views, their purpose and the
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Function design

System design

Component design

Implementation

OEMs

Suppliers

Functional
architecture

System
architecture

Component
architecture

Detailed
design

Fig. 2.9 V-model with focus on architectural views and evolution

principles of using them. When discussing the views we also discuss the elements
of these views.

2.7 Architectural Views

As we show in the process when starting with the development from scratch,
the requirements of or ideas for functions in the car come first—the product
management has the ideas about what kind of functionality the car should have.
Therefore we start with this type of the view first and gradually move on to more
detailed views on the design of the system.

2.7.1 Functional View

The functional view, often abbreviated to functional architecture, is the view where
the focus is on the functions of the vehicle and their dependencies on one another
[VF13]. An example of such a view is shown in Fig. 2.10.

As we can see from the example, there are three elements in this diagram—the
functions (plotted as rounded-edge rectangles), the domains (plotted as sharp-edged
rectangles) and the dependency relations (plotted as dashed lines), as the functions
can depend on each other and they can easily be grouped into “domains” such as
Powertrain and Active Safety. The usual domains are:

1. Powertrain—grouping the elements related to the powertrain of the car—engine,
engine ECU, gearbox and exhaust.

2. Active Safety—grouping the elements related to safety of the car—ADAS
(Advanced Driver Assistance Systems), ABS (Anti-lock Braking System) and
similar.
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Fig. 2.10 Example of a functional architecture—or a functional view

3. Chassi and body—grouping the elements related to the interior of the car—
seats, windows and other (which also contain electronics and software actua-
tors/sensors).

4. Electronic systems—grouping the elements related to the functioning of the car’s
electronic system—main ECU, communication buses and related.

In modern cars the number of functions can reach more than 1000 and is
constantly growing. The largest growth in the number of functions is related to new
types of functionality in the cars—autonomous driving and electrification. Examples
of functions from the autonomous driving area are:

1. Adaptive Cruise Control—basic function to automatically keep a distance from
the preceding vehicle while maintaining a constant maximum velocity.

2. Lane Keeping Assistance—basic function to warn the driver when the vehicle is
crossing the parallel line on the road without the turn indicator.

3. Active Traffic Light Assistance—medium advanced function to warn the driver
of a red light ahead.

4. Traffic Jam Chauffeur—medium/advanced function to autonomously drive dur-
ing traffic jam conditions.

5. Highway Chauffeur/pilot—medium/advanced function to autonomously drive
during high-speed driving.

6. Platooning—advanced function to align a number of vehicles to drive
autonomously in a so-called platoon.

7. Overtaking Pilot—advanced function to autonomously drive during an overtake
situation.
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These advanced functions build on top of the more basic functionality of the car,
such as the ABS (Anti-lock Braking System), warning lights and blinkers. The basic
functions that are used by the above functions can be exemplified by:

1. Anti-lock Braking System (ABS)—preventing the car from locking the brakes
on slippery roads

2. Engine cut-off—shutting down the engine in situations such as after crash
3. Distance warning—warning the driver about too little distance from the vehicle

in front.

The functional view provides the architects with the possibility to cluster
functions, and distribute them to the right department to develop and to reason about
these kinds of functionality. An example of such reasoning is the use of methods
such as the Pareto front [DST15].

2.7.1.1 How-To

The process of functional architecture design starts with the development of the
list of functions of the vehicle and their dependencies, which can be documented
in block diagrams, use case diagrams or SysML requirements diagrams [JT13,
SSBH14].

Once the list and dependencies are found, we move to organizing the functions
to the domains. In the normal case these domains are known and given. The
organization of the functions is based on how they are dependent on each other with
the principle that the number of dependencies that cross-cut the domains should be
minimized. The result of this process is the development of the diagram as shown
in Fig. 2.10.

2.7.2 Physical System View

Another view is the system view on the architecture, usually portrayed as a view of
the entire electrical system at the top level with accompanying lower-level diagrams
(e.g. class diagrams in UML). Such an overview level is presented in Fig. 2.11. In
this view we could see the ECUs (rounded rectangles) of different sizes placed on
two physical buses (lines). This view of the architecture provides the possibility to
present the topology of the electrical system of the car and provides the architects
with a way to reason about the placement of the computers on the communication
buses.

In the early days of automotive software engineering (up until the late 1990s)
this view was quite simple and static as there were only a few ECUs and a
few communication buses. However, in the modern software design, this view
gets increased importance as the number of ECUs grows and the ability to
give an overview becomes more important. The number of communication buses
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Fig. 2.11 Example of a
system architecture—or a
system view

Main
ECU

ABS ADAS

HMI

Steering

Display

Keypad

also increases and therefore the topologies of the components in the physical
architectures have evolved from the typical star topologies (as in Fig. 2.11) to more
linked architectures with over 100 active nodes. The modern view on the topology
also includes information about the processing power and the operating system (and
its version) of each ECU.

2.7.2.1 How-To

Designing this view is usually straightforward as it is dictated by the physical
architecture of the car, where the set of ECUs is often given. The most important
ECUs are often predetermined from the previous projects—usually the main
computer, the active safety node, the engine node, and similar. A list of the most
common ECUs present in almost all modern cars is (https://en.wikipedia.org/wiki/
Electronic_control_unit):

• Engine control unit (EnCU)
• Electric power steering control unit (PSCU)
• Human-machine interface (HMI)
• Powertrain control module (PCM)
• Telematic control unit (TCU)
• Transmission control unit (TCU)
• Brake control module (BCM; ABS or ESC)
• Battery management system

Depending on the car manufacturer, the other control modules can differ
significantly. It is also the case that many of the additional control units are part

https://en.wikipedia.org/wiki/Electronic_control_unit
https://en.wikipedia.org/wiki/Electronic_control_unit
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of the electrical system, meaning that they are included only in certain car models
or instances, depending on the customer order.

2.7.3 Logical View

The focus of the view is on the topology of the system. This view is often
accompanied by the logical component architecture as presented in Fig. 2.12. The
rationale behind the logical view of the system is to focus solely on the software of
the car. In the logical view we show which classes, modules, and components are
used in the car’s software and how they are related to each other. The notation used
for this model is often UML (Unified Modelling Language) and its subling SysML
(Systems Modelling Language).

For the logical view, the architects often use a variety of diagrams (e.g. commu-
nication diagrams, class diagrams, component diagrams) to show various levels of
abstraction of the software of the car—usually in its context. For the detailed design,
these architectural models are complemented with low-level executable models such
as Matlab/Simulink defining the behaviour of the software [Fri06].

2.7.3.1 How-To

The first step in describing the logical view of the software is to identify the
components—these are modelled as UML classes. Once they are identified we
should add the relationships between these components in the form of associations.
It is important to keep the directionality of the associations correct as these will
determine the communication between the components added during the detailed
design.

The logical architecture should be refined and evolved during the entire project
of the automotive software development.

2.7.4 Relation to the 4+1 View Model

The above-mentioned three views, presently used in automotive software engineer-
ing, evolved from the widely known principles of 4+1 view architecture model
presented in 1995 by Kruchten [Kru95]. The 4+1 view model postulates describing
software architectures from the following perspectives:

• logical view—describing the design model of the system, including entities such
as components and connectors
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• process view—describing the execution process view of the architecture, thus
allowing us to reason about non-functional properties of the software under
construction

• physical view—describing the hardware architecture of the system and the
mapping of the software components on the hardware platform (deployment)

• development view—describing the organization of software modules within the
software components

• scenario view—describing the interactions of the system with the external actors
and internal interactions between components.

These views are perceived as connected with the scenario view overlapping the
other four, as presented in Fig. 2.13, adapted from [Kru95].

Development viewLogical view

Process view Physical view

Scenario view

Fig. 2.13 4+1 view model of architecture

The 4+1 view model has been used in the telecommunication domain, the
aviation domain and almost all other domains. Its close relation to the early
version of UML (1.1–1.4) and other software development notations of the 1990s
contributed to its wide spread and success.

In the automotive domain, however, the use of UML is rather limited to
class/object diagrams and therefore this view model is not as common as in the
telecommunication domain.

2.8 Architectural Styles

As the architecture describes the high-level design principles of the system, we can
often observe how these design decisions shape the system. In this case we can
talk about the so-called architectural styles. The architectural styles form principles
of software design in the same way as building architecture shapes the style of a
building (e.g. thick walls in gothic style).
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In software design we distinguish between a number of styles in general, but
in the automotive systems we can only see a number of those, as the automotive
software has harder requirements on reliability and robustness than, for example,
web servers. Therefore some of the styles are not applicable.

In this section, let us dive deeper into architectural styles and their examples.

2.8.1 Layered Architecture

This architectural style postulates that components of the system are placed in a
hierarchy on top of each other and function calls (API usage) are made only from
higher to lower levels, as shown in Fig. 2.14.

Abstract 
representation of 

the system

Component A

Component B

Component C1 Component C2

Component D2Component D1

Fig. 2.14 Layered architectural style—boxes symbolize components and lines symbolize API
usage/method calls
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We can often see this type of layered architecture in the design of microcon-
trollers and in the upcoming AUTOSAR standard where the software components
are given specific functions such as communication. An example of this kind of
architecture is presented in Fig. 2.15.

ABS ECU

CAN Bus MAU Controller

CAN Bus PHY Controller

Brake controller Diagnostics

ODBC interfaceABS controller

Fig. 2.15 An example of a layered architecture

A special variant of this kind of style is the two-tier style as presented by Steppe
et al. [SBG+04], with one layer for the abstract components and the other one for
the middleware details. One example of middleware can be found in Chap. 4 in the
description of the AUTOSAR standard. Examples of the functionality implemented
by the middleware are logging diagnostic events, handling communication on the
buses, securing data and data encryption.

An example of such an architecture can be seen in the area of autonomous driving
when dividing decisions into a number of layers, as shown in Fig. 2.16 extended
from [BCLS16].
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Execution layer

Autonomous
driving reference

architecture

Hardware interface

Reaction layer

Drive planning layer

High-leveevel goals

Mission planning

Fig. 2.16 Layered architecture example—decision layers in autonomous driving

In this figure we can see that the functionality is distributed in different layers and
the higher layers are responsible for mission/route planning while the lower levels
are responsible for steering the car. This kind of modular layered architecture allows
the architects to distribute competence into the vertical domains. The wide arrows
indicate that this architecture is abstract and that these layers can be connected either
directly or indirectly (i.e. there may be other layers in-between).

We quickly realize that this kind of architectural style has limitations caused by
the fact that the layers can communicate only in one way. The components within
the same layer are often not supposed to communicate. Therefore, there is another
style which is often used—component-based.
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2.8.2 Component-Based

This architectural style is more flexible than the layered architecture style and
postulates the principle that all components can be interchangeable and independent
of each other. All communication should go through well-defined public interfaces
and each component should implement a simple interface, allowing for queries
about which interfaces are implemented by the component. In the non-automotive
domain this kind of architecture has been populated by Microsoft in its Windows OS
through the usage of DLLs (Dynamic Linked Libraries) and the IUnknown interface.

An abstract view of this kind of style is presented in Fig. 2.17.

Abstract 
representation of 

the system

Component A

Component B

Component C1

Component C2

Component D2Component D1

Fig. 2.17 Component-based architectural style

The component-based style is often used together with the design-by-contract
principle, which postulates that the components should have contracts for their
interfaces—what the API functions can and cannot do. This component-based
style is often well suited when describing the functional architecture of the car’s
functionality.

In contemporary cars we can see this architectural style in the Infotainment
domain, where the system is divided into the platform and the application layer
(thus having layered architecture), and for the application layer all the apps which
can be downloaded onto the system are designed according to component-based
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principles. These principles mean that each app can use another one as long as the
apps have the right interface. For example a GPS app can use the app for music to
play sound in the background without leaving the GPS. As long as the music app
exposes the right interface, it makes no difference to the GPS app which music app
is used.

2.8.3 Monolithic

This style is the opposite of that of component-based architecture as it postulates
that the entire system is one large component and that all modules within the system
can use each other. This style is often used in low-maturity systems as it leads to high
coupling and high complexity of the system. An abstract representation in shown in
Fig. 2.18.

Abstract 
representation of 

the system

Component A

Fig. 2.18 Monolithic architectural style

The monolithic architecture is often used for implementing parts of the safety-
critical system, where the communication between components needs to be done in
real time with as little communication overhead as possible. Typical mechanisms in
the monolithic architectures are the “safe” mechanisms of programming languages
such as use of static variables, no memory management and no dynamic structures.
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2.8.4 Microkernel

Starting in the late 1980s, software engineers started to use microkernel architecture
when designing operating systems. Many of the modern operating systems are built
in this architectural style. In short, this architectural style can be seen as a special
case of the layered architecture with two layers:

• Kernel—a limited set of components with the higher execution privileges, such
as task scheduler, memory manager, and basic interprocess communication
manager. These components have the precedence over the application layer
components.

• Application—components such as user application processes, device drivers, or
file servers. These components can have different privilege levels, but always
lower than that of the kernel processes.

The graphical overview of such an architectural style is show in Fig. 2.19.

Abstract 
representation of 

the system

Kernel – interprocess communication, memory management, 
task scheduling

Device driver 1 Device driver 2
Application

interprocess 
communication

Application 1 Application 2

Fig. 2.19 Microkernel architectural style

In this architectural style it is quite common that applications (or components)
communicate with each other over interprocess communications. This type of
communication allows the operating system (or the platform) to maintain control
over the communications.

In the automotive domain, the microkernel architecture is used in certain
components which require high security. It is argued that the minimality of the
kernel allows us to apply the principles of least privilege, and therefore remain
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in control of the security of the system at all times. It is also sometimes argued
that hypervisors of the virtualized operating systems are developed according to
this principle. In the automotive domain the use of virtualization is currently in the
research stage, but seems to be very promising as it would allow us to minimize
the costs of hardware while at the same time retain the flexibility of the electrical
system (imagine all cars had the same hardware and one could only use different
virtual OSs and applications for each brand or type of car!).

2.8.5 Pipes and Filters

Pipes and filters is another well-known architectural style which fits well for
systems that operate based on data processing (thus making its “comeback” as
Big Data enters the automotive market). This architectural style postulates that
the components are connected along the flow of the data processing, which is
conceptually shown in Fig. 2.20.

Abstract 
representation of 

the system

Shape
recognitionEdge recognitionCamera 

component Black-white filter

type: car
position: back
…

Fig. 2.20 Pipes and filters architectural style

In contemporary automotive software, this architectural style is visible in such
areas as image recognition in active safety, where large quantities of video data
need to be processed in multiple stages and each component has to be independent
of the other (as shown in Fig. 2.20) [San96].
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2.8.6 Client–Server

In client–server architectural style the principles of the design of such systems
prescribe the decoupling between components with designated roles—servers which
provide resources upon the request of the clients, as shown in Fig. 2.21. These
requests can be done in either the pull or the push manner. Pulled requests mean that
the responsibility for querying the server lies with the client, which means that the
clients need to monitor changes in resources provided by the server. Pushed requests
mean that the server notifies the relevant clients about changes in the resources (as
in the event–driven architectural style and the published subscriber style).

Abstract 
representation of 

the system

Fleet manager

Telematics ECU

Request:
speed value

Response:
speed = 10 kmph

Fig. 2.21 Client–server architectural style

In the automotive domain, this style is seen in specific forms like publisher–
subscriber style or event–driven style. We can see the client–server style in such
components as telemetry, where the telematics components provide the information
to the external and internal servers [Nat01, VS02].
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2.8.7 Publisher–Subscriber

The publisher–subscriber architectural style can be seen as a special case of the
client–server style, although it is often perceived as a different style. This style
postulates the principle of loose coupling between providers (publishers) of the
information and users (subscribers) of the information. Subscribers subscribe to
a central storage of information in order to get notifications about changes in the
information. The publisher does not know the subscribers and the responsibility of
the publisher is only to update the information. This is in clear contrast to the client–
server architecture, where the server sends the information directly to a known client
(known as it is the client that sends the request). The publisher–subscriber style is
illustrated in Fig. 2.22.
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Fig. 2.22 Publisher–subscriber architectural style

In automotive software, this kind of architectural style is used when distributing
information about changes in the status of the vehicle, e.g. the speed status or the
tire pressure status [KM99, KB02]. The advantage of this style is the decoupling
of information providers from information subscribers so that the information
providers do not get overloaded as the number of subscribers increases. However,
the disadvantage is the fact that the information providers do not have control of
which components use the information and what information they possess at any
given time (as the components do not have to receive updates synchronously).
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2.8.8 Event–Driven

The event–driven architectural style has been popularized in software engineering
together with graphical user interfaces and the use of buttons, text fields, labels and
other graphical elements. This architectural style postulates that the components
listen for (hook into) the events that are sent from the component to the operating
system. The listener components react upon receipt of the event and process the data
which has been sent together with the event (e.g. position of the mouse pointer on
the screen when clicked). This is conceptually presented in Fig. 2.23.
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Fig. 2.23 Event-driven architectural style

The event driven architectural style is present in a number of parts of the
automotive software system. Its natural placement with the user interface of the
infotainment or the driver assist systems (e.g. voice control), which is also present
in the aviation industry [Sar00] is obvious. Another use is diagnostics and storage
of the error codes [SKM+10]. Using Simulink to design software systems and using
stimuli and responses, or sensors and actuators, shows that event–driven style has
been incorporated.

2.8.9 Middleware

The middleware architectural style postulates the existence of a common request
broker which mediates the usage of resources between different components. The
concept has been introduced into software engineering together with the initiative
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of CORBA (Common Object Request Broker Architecture) by Object Management
Group [OPR96, Cor95]. Although the CORBA standard itself is not relevant for
the automotive domain, its principles are present in the design of the AUTOSAR
standard with its meta-model to describe the common elements of automotive
software. The conceptual view of middleware style is shown in Fig. 2.24.

Middleware broker
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Infotainment Driver support

Fig. 2.24 Middleware architectural style

In automotive software, the middleware architecture is visible in the design of the
AUTOSAR standard, which is discussed in detail later on in this book. The usage of
middleware becomes increasingly important in automotive software’s mechanisms
of adaptation [ARC+07] and fault tolerance [JPR08, PKYH06].

2.8.10 Service-Oriented

Service-oriented architectural style postulates loose coupling between component
using internet-based protocols. The architectural style puts emphasis on interfaces
which can be accessed as web services and is often depicted as in Fig. 2.25.

Here the services can be added and changed on-demand during the runtime of
the system.

In automotive software, this kind of architecture style is not widely used, but
there are areas where the on-demand or ad hoc services are needed. One examples
is vehicle platooning which has such an architecture [FA16], and is presented in
Fig. 2.26.
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Fig. 2.26 An example of a service-oriented architecture—vehicle platooning

Since vehicle platooning is done “spontaneously” during driving, the architecture
needs to be flexible and needs to allow vehicles to link to and unlink from each
other without the need to recompile or restart the system. The lack of available
interfaces can lead to change in the vehicle operation mode, but not to disturbance
in the software operation. The architecture is flexible and when one interface is not
available (suddenly), due to reconfiguration, this does not lead to any disturbances
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in the operation of the entire system. In other words, the system is robust to changes
in the availability of interfaces during runtime.

Now that we have introduced the most popular architectural styles, let us discuss
the languages used to describe software architectures.

2.9 Describing the Architectures

In this book we have seen multiple ways of drawing architectural diagrams
depending on the purpose of the diagram. We used the formal UML notation in
Fig. 2.12 when describing the logical components of the software. In Fig. 2.10 we
used boxes and lines, which are different from the boxes and lines used in Figs. 2.14,
2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22, 2.23, and 2.24. It all has a purpose.

By using different notations we could see that there is no unified formalism
describing a software architecture and that software architecture is a means of
communication. It allows architects to describe the principles guiding the design
of their system and discuss the implications of the principles on the components.
Each of these notations could be called ADL—Architecture Description Language.
In this section we introduce the most relevant ADLs which are available for soft-
ware architects, with the focus on two formalisms—SySML (Systems Modelling
Language, [HRM07, HP08]) and EAST-ADL [CCG+07, LSNT04].

2.9.1 SysML

SySML is a general-purpose language based on Unified Modelling Language
(UML). It is built as an extension of a subset of UML to include more diagrams
(e.g. Requirements Diagram) and reuse a number of UML symbols with the profile
mechanism. The diagrams (views) included in SySML are:

• Block definition diagram—an extended class diagram from UML 2.0 using
stereotyped classes to model blocks, activities, their attributes and similar. As the
“block” is the main building block in SySML, it is reused quite often to represent
both software and hardware blocks, components and modules.

• Internal block diagram—similar to the block definition diagram, but used to
define the elements of a block itself

• Package diagram—the same as the package diagram from UML 2.0, used to
group model elements into packages and namespaces

• Parametric diagram—diagram which is a special case of the internal block
diagram and allows us to add constraints to the elements of the internal block
diagram (e.g. logical constraints on the values of data processed).

• Requirement diagram—contains user requirements for the system and allows us
to model and link them to the other model elements (e.g. blocks). It is one of the
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diagrams that adds a lot of expressiveness to SySML models, compared to the
standard Use Case diagrams of UML.

• Activity diagram—describes the behaviour of the system as an activity flow.
• Sequence diagram—describes the interaction between block instances in a nota-

tion based on MSC (Message Sequence Charts) from the telecommunications
domain.

• State machine diagram—describes the state machines of the system or its
components.

• Use case diagram—describes the interaction of the system with its external actors
(users and other systems).

An example of a requirement diagram is presented in Fig. 2.27 from [SSBH14].

Fig. 2.27 Example requirements diagram

The diagram presents two requirements related to each other (Maximum Accel-
eration and Engine Power) with the dependency between them. Blocks like the
“Provide Power” are linked to these requirements with the dependency “satisfy”
to show where these requirements are implemented.

As we can quickly see from this example, the requirements diagram can be used
very effectively to model the functional architecture of the electrical system of a car.

The block diagram was presented when discussing the logical view of the
architecture (Fig. 2.12) and it can be further refined into a detailed diagram for a
particular block, as shown in Fig. 2.28.
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Fig. 2.28 Internal block diagram

The diagram fulfills a similar purpose as the detailed design of the block, which
is often done using the Simulink modelling language. In this book we look into the
details of Simulink design in Chap. 6.

The behavioral diagrams of SySML are important for the detailed design of
automotive systems, but they are out of the scope of this chapter as the architecture
model is supposed to focus on the structure of the system and therefore kept on a
high abstraction level.

2.9.2 EAST ADL

EAST ADL is another modelling language based on UML which is intended
to model automotive software architectures [CCG+07, LSNT04]. In contrast to
SySML, which was designed by an industrial consortium, EAST ADL is the result
of a number of European Union-financed projects which included both research and
development components.

The principles of EAST ADL are similar to those of SySML in the sense that
it also allows us to model automotive software architecture in different abstraction
levels. The abstraction levels of EAST ADL are:

• Vehicle level—architectural model describing the vehicle functionality from an
external perspective. It is the highest abstraction level in EAST ADL, which is
then refined in the Analysis model.

• Analysis level—architectural model describing the functionality of the vehicle
in an abstract model, including dependencies between the functions. It is an
example of a functional architecture, as discussed in Sect. 2.7.1.
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• Design level—architectural model describing the logical architecture of the
software, including its mapping to hardware. It is similar to the logical view from
Fig. 2.12.

• Implementation level—detailed design of the automotive software; here EAST
ADL reuses the concepts from the AUTOSAR standard.

The vehicle level can be seen as a use case level of the specification where the
functionality is designed from a high abstraction level and then gradually refined
into the implementation.

Since EAST ADL is based on UML, the visual representation of models in EAST
ADL is very similar to the models already presented in this chapter. However, there
are some differences in the structure of the models and therefore the concepts used
in SySML and EAST ADL may differ. Let us illustrate one of the differences with
the requirements model in Fig. 2.29.

«Feature»

«Realiza�on» «Realiza�on»

«Requirement» «Requirement»

VehiclePerformance

MaximumAcceleratoin EnginePower

Fig. 2.29 Feature (requirements) diagram in EAST ADL

The important difference here is the link of the requirement—in EAST ADL the
requirements can be linked to Features, a concept which does not exist in SySML.

In general, EAST ADL is a modelling notation more aligned with the characteris-
tics of the automotive domain and makes it easier to structure models for a software
engineer. However, EAST ADL is not as widely spread as SySML and therefore not
as widely adopted in industry.
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2.10 Next Steps

After the architecture is designed in the different diagrams, it should be transferred
to the product development database and linked to all the other elements of
the electrical system of the car. The product development database contains the
design details of all software and hardware components, the relationships between
them and the deployment of the logical software components onto the physical
components of the electrical system.

2.11 Further Reading

The architectural views, styles and modelling languages, discussed in this section,
are the most popular one used in the software industry today. However, there are
also others, which we encourage the interested reader to explore.

Alternative modelling languages which are used in industry are the UML
MARTE profile [OMG05, DTA+08]. The MARTE profile has been designed to
support modelling of real-time systems in all domains where they are applicable.
Therefore there is a significant body of knowledge from using this profile, including
executable variants of it [MAD09].

Readers interested in extending modelling languages can find more information
in our previous work on language customization [SW06, SKT05, KS02, SKW04]
and the way in which these extension can be taught [KS05].

An interesting review of future directions of architectures in general has been
conducted by Kruchten et al. [KOS06]. Although the review was conducted over a
decade ago, most of its results are valid today.

2.12 Summary

In this chapter we presented the concept of software architecture, its different
viewpoints, and its architectural styles and introduced two notations used in
automotive software engineering—SySML and EAST ADL.

An interesting aspect of automotive software architectures is that they usually
mix a number of styles. The overall style of the architecture can be layered
architecture within an ECU, but the architecture of each of the components in the
ECU can be service-oriented, pipes and filters or layered. A concrete example is the
AUTOSAR architecture. AUTOSAR provides a reference three layer architecture
where the first “application” layer can implement service-oriented architecture, the
second layer can implement a monolithic architecture (just RTE) and the third,
“middleware”, layer can implement component-based architecture.
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The reasons for mixing these styles is that the software within a modern car
has to fulfill many functions and each function has its own characteristics. For the
telematics it is the connectivity which is important and therefore client–server style
is the most appropriate. Now that we have discussed the basics of architectures,
let us dive deeper into other activities in automotive software development, to
understand why architecture is so important and what comes before and next.
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Chapter 3
Contemporary Software Architectures:
Federated and Centralized

Abstract Automotive software architectures evolve together with the evolution of
the electronics in vehicles. The distributed electronics of the cars of the 2000s
and 2010s have started to reach the limit of their potential, and new electronic
architectures are being introduced. In this chapter, we explore and discuss two of
such new developments – federated architectures and centralized ones. These two
architectural styles are a response to the challenges of distributed architectures with
over 100 ECUs. Signaling, coordination, and integration drive the development
of vehicles’ electronics to use fewer, more powerful ECUs with redundancy and
virtualization. In this chapter, we explore these techniques and show how they are,
and can be, used in vehicles’ software.

3.1 Introduction

Automotive software architectures can follow a number of architectural styles.
As Chap. 2 shows, there are a number of these. Although it seems that software
architects can choose whichever style they want, each style has its particular pros
and cons. It is also the case that the hardware architecture of the vehicles dictates
certain principles [Sta16, Für10]. For example, a distributed electronic system with
over 100 ECUs must be supported by component-based architectural style and
cannot be designed as one, large, monolithic application.

In the recent decade, vehicle manufacturers found that their software cannot be
based on the principle of distribution any more. Distribution works well until the
communication overhead becomes a problem. In safety critical systems, where we
need to validate that the software is safe, highly distributed systems can be hard to
validate because of the emergent properties of the systems (e.g., high variability
of communication latency over time, over traffic situations) and because of the
need for coordination. One of the ways to address these challenges is to construct
software according to the principles of federated software architectures, where
highly dependent components are grouped into moderately dependent subsystems,
connected by the federal information highways [FZW03].
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Federated architectures served their purpose, but over time, they also evolved
towards centralized architectures [OESHK09]. These centralized architectures use
a redundant pair of large computing nodes with virtualization to execute as many
processes as possible. This reduces the need for communication overhead over
networks and the low-level coordination but also increases challenges in terms
of connecting boundary nodes (e.g., sensors and actuators) as well as brings in
challenges of combining components of different criticality. In this chapter, we
explore examples of federated and centralized software architectures. The examples
are based on real vehicle architectures, largely simplified for the purpose of this
book. In these examples, we explore how different architectural styles can be
combined and make educated guesses or speculations about how the future of
architecture may look like.

3.2 Federated Software Architectures

The concept of federated software comes essentially from the field of enterprise
computing, where the enterprise system architecture reflects the organization’s
structure. In the automotive field, the federation reflects the domains of the vehicle’s
system rather than the organization. The most common domains are:

• Active safety – responsible for such functions as collision avoidance or emer-
gency braking

• Infotainment – responsible for displays or connections to mobile phones
• Powertrain – responsible for the engine and gearbox’s software

The ECUs and thus the software components are tightly connected to each other
within the domain, and the domains are connected to each other by high-speed
connection busses. Figure 3.1 shows an example of such an architecture.

Figure 3.1 contains three domains, with one domain controller each. One of the
domains is sparse, with five ECUs. These ECUs are connected to each other via
a dedicated intra-domain bus. There is a lot of communication and coordination
between these ECUs. In such domains, the ECUs are often larger in terms of
computational power and the size of the software. An example could be a domain
of infotainment which contains a few nodes (e.g., GPS, display) that require a lot of
coordination and dedicated bandwidth to communicate with low latency.

The second domain, in the middle, has nine ECUs. This domain coordinates more
nodes, which means that the domain controller is larger in terms of computational
power and bandwidth than in the first domain. The size of the ECUs is most probably
smaller than in the first domain, but the communication and coordination are higher.
An example of such a domain can be the active safety domain where there are a lot
of actuators and sensors.

The last domain contains five ECUs and two ECUs connected to other ECUs,
and not directly to the intra-domain bus. The ECUs that are connected directly are
often the ones that need to communicate with each other, but only one of them
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Fig. 3.1 Federated software architecture

communicates with the domain controllers. These sub-ECUs are often actuators and
sensors that include computational resources/processors.

This figure illustrates that each domain is independent from others in terms of
how it is organized. The software components that are executed on the domain
controllers are mostly responsible for coordination, bus governance, and commu-
nication between the domains. The software components executed on the ECUs
provide the functionality that is related to the ECUs’ purpose and that is needed by
specific functions. The specific functions are processes that are controlled either by
the domain controllers or by dedicated, larger ECUs within the domain.

Figure 3.21 presents how one function, in this case the automated parking, is
distributed over different domains. The boxes represent the software components,
the connections between them abstract the communication channels, and the colored
backgrounds show the different domains.

The algorithm for automated parking needs to control the vehicle’s speed and
position by interacting with the brakes, engine, gearbox, and steering wheel. This
means that the algorithm sends signals to the domain controller of the powertrain
domain and the ECUs in that domain. The algorithm also needs to interact with
the driver by displaying messages and potentially receive a cancellation command.
This is done by communicating with the infotainment domain. Finally, the algorithm
itself is executed on one of the ECUs in the active safety domain – the Driver
Support Manager. It interacts with the components responsible for the camera (for
image recognition) and the parking sensors/radars.

1Brake, steering wheel icons: Freepik, camera: Kirahshastry, engine: monkik, display: phatplus on
flaticon.com.
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Fig. 3.2 Example of a software function with components distributed over different domains
(colored background)

The algorithm also delegates certain calculations to the supporting components
– signal processing. These supporting components off-load the main computer by
calculating information about the vehicle speed, position, and obstacle detection.

This diagram illustrates two important aspects. The first is the separation of
concerns – algorithms, controllers, and handlers are grouped into domains based
on the combination of logical and physical allocation. The second is the principle
of communication – the components that communicate with each other heavily are
grouped together in the same domain.

The separation of concerns is important as all software components related to
a specific hardware component (e.g., engine) often realize functions related to
these components. An engine controller increases/decreases throttle, shifts gear,
etc. Therefore, it is important that these software functions are located close to the
hardware and that these are not distributed – for example, one engine controller can
ensure that none of the sequences of function invocations can damage the engine.
The separation of concerns also means that realizing one function does not affect
other, unrelated functions. When using the parking assistance function, we can still
control the radio and open windows. When we, however, intervene with one of
the components used in the function, the main algorithm is notified, and it reacts
accordingly. For example, when we press a button to cancel the parking assistance,
the algorithm suspends that function.

The communication within the same domain is more intensive than within
different domains. For example, the supporting components for calculating the
distance or detecting objects communicate very often with the main algorithm.
They need to process live feed from cameras and radars and therefore need to send
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signals very often. However, the components that steer the engine and gearbox
have latencies related to the physical processes in the engine and the gearbox
– increasing the throttle does not happen as fast as capturing the frame of the
video feed. Therefore, the communication overhead introduced by the inter-domain
communication does not influence the parking assistance function noticeably. The
above-mentioned advantages of the federated software architectures made them very
popular in the automotive industry. They also resulted in the design principles which
we see in modern cars – separation of concerns, reuse, and carry-overs between
car generations. One of the notable examples of this is the GENIVI framework
for passenger cars’ infotainment. It is a generic framework, which is developed in
collaboration with several companies, and it is used by several car manufacturers. It
can be extended with brand-specific extensions without jeopardizing the intellectual
property rights of other brands, similar to the Android operating system.

However, there are certain limitations to federated architectures. The main
limitation becomes evident in the cars that use machine learning or many advanced
functions. As a rule of thumb, the more advanced the function, the more commu-
nication it needs. The increased communication means increased speed or even
additional communication busses. These extra busses and increased speed both have
limitations and require more calculations, redundancy, coordination, and security.
Increased number of hardware components decreases reliability as more elements
can break and thus affect the overall performance of the entire system. This is where
centralized software architectures enter the picture – with reduced number of ECUs
but with larger computational power.

3.3 Centralized Software Architectures

The concept of centralized software architectures is well known and has been used in
different domains before – it is also known as the “star architecture” as the topology
is often drawn as a star.

In automotive electronics, this architecture has been developed further. The
central node has been designed so that it can be redundant. As this is the node which
makes almost all calculations, it needs to be secure from hardware and software
problems. Hardware redundancy helps to keep the hardware reliability high.

Figure 3.3 shows the schematic of a centralized architecture. It illustrates the core
concepts of a central computing unit, which is redundant. There is also an edge node,
which is often a coordination unit to help reduce the number of busses in the system.
These edge units have limited computing power and perform no calculations and
control no algorithms, but they provide relaying functions between multiple sensors
and the central unit.

In the centralized architecture, software is often executed in a redundant way –
using the mechanism of virtualization and containerization [SKF+13, NDB+10].
Virtualization is a mechanism that allows to divide physical computing resources
into several virtual machines. These virtual machines are seen by the software
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Fig. 3.3 Centralized software architecture

Fig. 3.4 Centralized software architecture with a hypervisor

components as physical machines. The software that controls and governs this
virtualization process is called a hypervisor. This model of sharing resources and
separating processes from each other is the foundation of cloud computing [PJZ18].

Figure 3.4 shows virtual machines running in a central computer node. A central
computing node has hardware resource and an operating system that executes the
hypervisor. The hypervisor virtualizes the resources and ensures that both virtual
machines have access to the resources that they need for the processes they execute.

The dotted lines in Fig. 3.4 show that the virtual machines can access/
communicate with different sensors. However, the sensors are all connected to
the central computing node’s hardware resources. It is the hypervisor that manages
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the physical connections of sensors and their logical connections to the virtual
machines.

When distributing software components to virtual machines, we can use similar
design principles as for the separation of domains. Those components that commu-
nicate often with each other, or need a higher bandwidth, should be placed in the
same virtual machine. There, they can share memory or disk space and therefore
communicate without the use of network resources.

Since virtual machines are seen by the components as separate computers/ECUs,
the components from different virtual machines communicate with each other using
network mechanisms or by using shared directories (mounting shared directories).

This centralized architecture with hypervisors is more flexible than the federated
architecture. The number of virtual machines is limited only by the hardware
resources. The hypervisor can also start/stop/restart virtual machines, which allows
to save or prioritize resources. Virtual machines can be frozen, serialized, and started
on the redundancy node if needed.

There are, however, some disadvantages in this architecture. The software
components need to be provided for a specific operating system and setup of the
virtual machine, which makes the reuse different. Instead of reusing an entire ECU,
we only reuse parts of the software, which need to be tested on new types of virtual
machines. The virtual machines, and thus the software components executed on
them, do not have all the rights to hardware resources as an ECU has. Therefore,
testing for non-functional properties needs to be done when all virtual machines are
in place.

Naturally, when drawing these diagrams, I use only a few components. The
reality is, however, very different. There can be hundreds of components running
in parallel in a vehicle’s software system – at least one process per ECU. So,
when changing the architecture from federated or distributed to centralized, these
processes need to be moved to the few virtual machines that exist. From the perspec-
tive of vehicle manufacturers, the number of virtual machines should be as small
as possible to reduce hardware costs and complexity in the coordination between
processes – both within each virtual machine and between virtual machines.

The deployment of software components can be visualized in the same way as
in federated architectures (3.2), but we can use colors to show the distribution of
processes/components on virtual machines.

3.4 Examples

So far we looked at the architectural styles and explained their principles. Now,
let us explore examples of how this is realized in practice. Here, we discuss two
examples – a federated architecture and its domain controllers and pipes and filters
in autonomous drive.
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3.4.1 Federated Architecture of a Car

In this chapter, I mentioned that most cars are moving towards centralized architec-
ture. This is mostly driven by the fact that software gets so complex that it cannot
be developed in the same way anymore. In the preface to the first edition of this
book, Christof Ebert provided a diagram showing that the size of the software in a
car grows and is expected to grow further [Sta17].

However, discussing this development in software engineering conferences often
leads to the conclusion that this development is still a few years away. The limiting
factors are the computing power of today and the need to change the programming
paradigms to overcome it. We also need to focus on new aspects, which are
increasingly difficult in a distributed environment, e.g., security [Ebe17]. With
the first example, I want to illustrate two aspects: (1) how automotive software
architectures are presented at a high level and (2) how different views on the same
architecture help us communicate and understand the architectural design of the
system.

Figure 3.5 presents an example of the nodes in a modern car. It presents software
subsystems drawn according to their physical location in the car or to emphasize
their role.

Fig. 3.5 Example of a car’s architecture from [Eea21], used with permission from the author

The example shows two central nodes (Central Gateway and Connectivity
Gateway) as well as a number of domain controllers – e.g., Powertrain DC (Domain
Controller) and Body DC. It also contains a number of nodes connected directly to
the central nodes – Instrument Cluster or Head Unit.

Figure 3.6 shows the same architecture as layered architectural style. This shows
that the architectural style, to some degree, depends on how we visualize the
architecture.

The figure is structured differently, but it emphasizes the important aspects of the
design, which are less evident in Fig. 3.5. The Connectivity Gateway is not really a
central node, but it is a gateway which is used for high-speed communication with
certain components (e.g., Infotainment Cluster). The distinction between these two
nodes is clear when we name the layers – high-performance layer vs. connectivity
layer.
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Fig. 3.6 Layered view of the software architecture in Fig. 3.5, from [Eea21], used with permission
from the author

3.4.2 Pipes and Filters in Autonomous Drive

One of the interesting new developments in automotive software is the introduction
of functions in the area of autonomous drive. This is a function that allows drivers
to release their hands from the steering wheel and let the car’s software drive
autonomously.

The real architectures are proprietary, but the work of Serban et al. [SPV18]
presents an example of how this architecture can be realized. The software compo-
nents are organized into a pipe-and-filter architecture (as discussed in Chap. 2).

The advantage of this type of architectural style is the ability to process data
continuously and take over the control of the car without the need to coordinate
many software components outside of the pipe. However, the challenge is that this
becomes a single point of failure and therefore needs to be software redundant.
An example of how this can be realized can be found in the work of Luo et al.
[LSB+17]. Figure 3.7 shows a simplified version of the redundant channel.

The figure contains two separate channels of communication, with the redun-
dancy channel monitoring all components in the main channel. When an error is
detected, the redundant channel has components that execute algorithms for safe
stop of the vehicle.

The redundancy channel seems to be straightforward, but it cannot address all
reliability challenges. For example, the actuator and the sensors are not redundant in
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Fig. 3.7 Channel redundancy in pipes and filters for autonomous drive

this example. Neither are they in real life – the cost of introducing redundant sensors
for all safety-critical functions is not justifiable from the customer perspective.
Therefore, instead of redundancy, we often use sensor fusion and two different
sensors that provide similar data, e.g., video feed and radar/lidar feed.

3.4.3 Infotainment Systems

In the book, we focus mostly on the design of the overall system, but I recommend
to explore some of the open-source components a bit further. These are especially
important for understanding how we construct software systems for modern cars.

One of these open-source systems is the GENIVI platform for the infotainment
system https://genivi.github.io/. This is a repository of all source codes for the
GENIVI platform, including both architectural and detailed design diagrams of the
source code.

3.5 On Truck Architectures

In this book, I discuss mostly passenger cars. This is mainly because the automotive
market develops very rapidly in that context. The market is very dynamic, and
customers are drawn to cars that have increasingly advanced features. This is also
the market where the requirements for using the software are relatively lower than
for other types of vehicles. Truck drivers, construction machine operators, or special
vehicle operators receive additional training. The training is often specific for the
types of machinery that they operate.

Autonomous trucks or construction vehicles have been demonstrated and used
in designated areas, where the traffic is controlled and the operating conditions
are monitored. Therefore, the architectures of modern trucks and other heavy
vehicles differ from passenger cars to a certain degree, just as the requirements on

https://genivi.github.io/
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these vehicles differ. Modern cars are supposed to be feature-rich, whereas heavy
machines are supposed to be reliable and robust.

3.6 Summary

Software is increasingly prevalent in modern cars. It is almost impossible to use any
function of a car without software being involved in it. The principles of designing
software evolve slowly; the architectural styles and patterns evolve slowly too.

However, as automotive software gets increasingly complex and is required to be
increasingly safe, the ways in which the components are integrated and organized
change. In new cars, and in the cars of the future, the software gets more centralized
and/or organized in domains. This enables machine learning, faster communication
between components, and redundant hardware.

In this chapter, we explored two architectural styles – federated and centralized.
We learned the principles guiding the organization of the software components in
these architectures. We also learned about modern architectures by studying two
examples.

In the next chapter, we dive deeper into the standard that governs a lot of
automotive software design today – AUTOSAR. We focus mostly on the new
adaptive AUTOSAR platform, which is believed will change the face of automotive
software architectures in the next decade.
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Chapter 4
Automotive Software Development

Abstract In this chapter we describe and elaborate on software development pro-
cesses in the automotive industry. We introduce the V-model for the entire vehicle
development and we continue to introduce modern, agile software development
methods for describing the ways of working of software development teams.
We start by describing the beginning of all software development—requirements
engineering—and we describe how requirements are perceived in automotive
software development using text and different types of models. We discuss the
specifics of automotive software development such as variant management, different
integration stages of software development, testing strategies and the methods used
for these. We review methods used in practice and explain how they should be used.
We conclude the chapter with discussion on the need for standardization as the
automotive software development is based on client-supplier relationships between
the OEMs and the suppliers developing components of vehicles.

4.1 Introduction

Software development processes are at the heart of software engineering as they
provide structure and rigor to the practices of developing software [C+90]. Soft-
ware development processes consist of phases, activities and tasks which prescribe
what actors should do. The actors can have different roles in software development
such as software construction designers, software architects, project managers and
quality managers.

The software development processes are organized in phases where the focus is
on a specific part of software development. Historically these phases include:

1. requirements engineering—the phase where ideas about the functions of the
software are created and broken down into requirements (atomic pieces of
information about what should be implemented)

2. software analysis—the phase where the system analysis is conducted and high-
level decisions about the allocation of functionality to the logical part of the
system are made
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Fig. 4.1 V-shaped model of software development process in automotive software development

3. software architecting—the phase where the software architects describe the high-
level design of the software including its components and allocate them to
computational nodes (ECUs)

4. software design—the phase where each of the components is designed in detail
5. implementation—the phase where the design for each component is imple-

mented in programming languages relevant for the design.
6. testing—the phase where the software is tested in a number of different ways, for

example through unit and component tests.

These phases are often done in parallel as modern software development
paradigms postulate that it is best to design, implement and test software iteratively.
However, the prevalent software development model in the automotive industry is
the so-called V-model where these phases are aligned to a V-shaped curve, where
the design phases are on the left-hand side of the V and the testing phases are on the
right-hand side of the V.

4.1.1 V-Model of Automotive Software Development

The V-model is illustrated in Fig. 4.1. This model is prescribed by international
industry standards for development of safety-critical systems, like the ISO/IEC
26262 [Org11].

In the figure, we also make a distinction between the responsibilities of OEMs
(vehicle manufactures) and those of their suppliers. This distinction is important as
it is often the phase where the handshaking between the suppliers and OEMs takes
place, and therefore the requirements are used during the contract negotiations. In
this context a detailed, unambiguous and correct requirements specification prevents
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potentially unnecessary costs related to the changes in requirements caused by
misunderstandings between the OEMs and suppliers.

In the remainder of this chapter we go through the requirements engineering
phase and the testing phase. The analysis and architecture phase are included in the
next chapter while the detailed design phase is included in the latter part of the book.

4.2 Requirements

Requirements engineering is a discipline of vehicle development on the one hand
and on the other hand a subdomain of software engineering and an initial phase of
the software development lifecycle. It deals with the methods, tools and techniques
for eliciting, specifying, documenting, prioritizing and quality assuring the require-
ments. The requirements themselves are very important for the quality of software
in multiple senses as the quality is defined as “The degree to which software fulfills
the user requirements, implicit expectations and professional standards.” [C+90].

Requirements engineering in the automotive sector is increasingly about the
software since the software is the source of the innovations. According to Houdek
[Hou13] and a report about the innovation in the car industry [DB15], the number of
functions in an average car grows much faster than the number of devices, with the
number of systematic innovations growing faster than the individual innovations.
The systematic innovations are systems of software functions rather than individual
functions.

Therefore the discipline of requirements engineering is more about engineering
than it is about innovation.

The length of an automotive requirements specification is in the range of 100,000
pages for a new car model according to Houdek, based on his study at Mercedes-
Benz [Hou13], with ca. 400 documents of 250 pages each at the lowest specification
level (component specifications), which are sent over to a large number of suppliers
(usually over 100 suppliers, one for each ECU in the car).

Weber and Weisbrod [WW02] showed the complexity and size of requirements
specifications in the automotive domain based on their experiences at Daimler-
Chrysler. Their large software development projects can have as many as 160
engineers working on a single requirement specification and producing over 3 GB
of requirements data. Weber and Weisbrod describe the process of requirements
engineering in the following way: “Textual requirements are only part of the game—
automotive development is too complex for text alone to manage.” This quote
reflects the state-of-the-practice of requirements engineering—that the requirements
form only one part of the construction database. However, let’s look at how the
requirements are specified in the automotive domain. Similar challenges of linking
requirements to other parts of the construction database can be also found in our
previous studies in [MS08].

The requirements are often defined as (1) A condition or capability needed by a
user to solve a problem or achieve an objective. (2) A condition or capability that
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must be met or possessed by a system or system component to satisfy a contract,
standard, specification, or other formally imposed documents. (3) A documented
representation of a condition or capability as in (1) or (2) [C+90]. This definition
stresses the link between the user of the system and the system itself, which is
important for a number of reasons:

• Testability of the system—it should be clear how a requirement should be tested,
e.g. what is the usage scenario realized by the requirement?

• Traceability of the functionality to design—it should be possible to trace
which parts of the software realize the requirement in order to provide safety
argumentation and enable impact/change management

• Traceability of the project progress—it should be possible to get an overview
of which requirements have already been implemented and which are still to be
implemented in the project

It is a very technical definition for something that is intuitively well known—
a requirement is a way of communicating what we, the users, want in our dream
car. In this sense it seems that the discipline of requirements engineering is simple.
In practice, working with requirements is very complex as the ideas which we,
users, have need to be translated to one of the millions of components of the car
and its software. So, let’s look at how the automotive companies work with our
requirements or dreams.

We talk about software requirements engineering because the automotive indus-
try has recognized the need to move innovation from the mechanical parts of the
car to the electronics and software. The majority of us, the customers, buy cars
today because they are fast (sporty), safe or comfortable. In many cases these
properties are realized by adjusting the software that steers the parts of modern
cars. For example we can have the same car with a software package that makes it
extremely sporty—look at Tesla’s “Insane” acceleration package or Volvo’s Polestar
performance package. These represent just two challenges which lead to two very
important trends in automotive software requirements engineering:

1. Growing amount of software in contemporary cars—as the innovation is driven
by software, the amount of software and its complexity grow exponentially. For
example the amount of software in the 1990s was a few megabytes of binary
code (e.g. Volvo S80) and today reaches over one gigabyte, excluding maps and
other user data (e.g. Volvo XC90 of 2016).

2. Safety requirements posed by such standards as ISO 26262—as software steers
more parts of the car, there is a larger probability that it can interfere with our
driving and cause accidents and therefore it has to be safety-assured just like
the software in airplanes and trains. The contemporary standard for functional
safety (ISO/IEC 26262, Road vehicles—Functional safety) prescribes methods
and processes to specify, design and verify/validate the software.

Automotive software requirements engineering therefore requires rigid processes
for handling the construction of software for a car and therefore is very different
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from other types of software requirements engineering, such as for telecom or web
design.

This chapter takes us through the theory of requirements engineering in automo-
tive development by looking into two types of requirements—textual specifications
and models used as requirements. It also helps us to explore the evolution of
requirements engineering in automotive software development to finally draw on
current trends and challenges for the future.

4.2.1 Types of Requirements in Automotive Software
Development

When designing software for a car, the designers (who are often referred to as
constructors) gradually break down the requirements from car level to component
level. They also gradually refine them from textual requirements to models of
behaviour of the software. This gradual refinement is due to the fact that the
requirements have to be sent to Tier 1 suppliers for development and therefore
should be as detailed as possible to enable their validation. In the automotive domain
we have a number of tiers of suppliers:

• Tier 1—suppliers working directly with OEMs, usually delivering complete
software and hardware subsystems and ECUs to the OEMs

• Tier 2—suppliers working with Tier 1 suppliers, delivering parts of the sub-
products which are then delivered by Tier 1 suppliers to the OEMs; Tier 2
suppliers usually do not work directly with OEMs, which makes it even more
important for the requirements to be detailed so that they can be correctly broken
down by Tier 1 suppliers for Tier 2.

• Tier 3—suppliers working with Tier 2 suppliers, similarly to Tier 2 suppliers
working with Tier 1 suppliers. Usually silicon vendors who deliver the hardware
together with the drivers.

In this section we describe these different types of requirements, which can be
found in these phases.

4.2.1.1 Textual Requirements

AUTOSAR is a great source of inspiration for research in automotive software
development, and therefore let us look at the requirements in this standard—they are
mostly textual. We use the same template as AUTOSAR for specifying requirements
to provide an example of a requirement for keyless entry to the vehicle, as presented
in Fig. 4.2.

The structure of the requirement is quite typical for requirements in general—
it contains the description, the rationale and the use cases. So far we do not see
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Type Valid

Descrip�on It should be possible to open the car with an RFID key

Ra�onale The cars of our brand should all have the possibility to be  
opened using keyless solu�on. The majority of our compe�tors 
have an RFID sensors in the car that opens and starts the car 
based on the proximity of the designated driver who has the  
RFID sender (e.g. a card).

Use case Keyless start-up

Dependencies REQ-11: RFID implementa�on

Suppor�ng material ---

REQ-1: Keyless vehicle entry

Fig. 4.2 An example AUTOSAR requirement

anything specific. Nevertheless, if we look at the sheer size of such a specification—
over 1000 pages—we can see that we might confront issues; so let’s discuss the kind
of issues we can discover.

Rationale The textual requirements are used when describing high-level prop-
erties of cars. These types of requirements are mostly used in two phases—the
requirements phase, when the specification of the car’s functionality at a high level
takes place, and at the component design phase, where large software requirements
specification documents are sent to suppliers for development (although the textual
requirements are often complemented by model-based requirements).

Method Specifying this kind of requirement rarely happens from scratch. Textual
requirements are often specified based on models (e.g. UML domain models) and
are intended to describe details of the inner workings of software systems. They
are often linked to verification methods describing how the requirements should be
verified—e.g. describing the test procedure for validating that the requirement is
implemented correctly. Quite often it is the suppliers who do the verification, as
many requirements demand specific test equipment to test their implementation. If
this is the case, the OEMs choose a subset of requirements and verify them to check
the correctness of the verification procedure on their side.

Format The text for the requirement is specified in the format which we can see
in Fig. 4.2—tables with text. This format is very good if we can specify the details,
but they are not very good when we want to communicate overviews and provide
the context for the requirements. For that we need other types of requirements—use
cases or models.
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Keyless start-up

Fig. 4.3 An example use case specification with one use case

driver:Actor

MyCar:System

approach()

isValidDriver = checkValidity()

[isValidDriver] openDoors()

[isValidDriver] startEngine()

Fig. 4.4 An example specification of a use case using the message sequence charts/sequence
diagrams

4.2.1.2 Use Cases

In software engineering the golden standard for specifying requirements is using
use cases as defined by Jacobson, together with his Objectory methodology, in the
1990s [JBR97]. The use cases describe a course of interaction between an actor and
the system under specification, for example as shown in Fig. 4.3, where the actor
interacts with the car in the use case “Keyless start-up”. The corresponding diagram
(called the use case diagram in UML) is used to present which interactions (use
cases) exist and how many actors are included in these interactions.

In the automotive industry this kind of requirements specification is the most
common when describing the functions of the vehicles and their dependencies. It
is used to describe how the actors (drivers or other cars) interact with the designed
vehicle (the system) in order to realize a specific use case. This kind of specification
is often described using the sequence diagrams of UML and we can see an example
of such a specification in Fig. 4.4.
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Fig. 4.5 An example Simulink model which can be used as a requirement to describe how to
implement the ABS system

Rationale The use case specifications provide a high-level overview of the func-
tionality of the designed system, such as a car, and therefore are very useful in the
early phases of vehicle development. Usually these early phases are the functional
design (use case diagrams) and the beginning of the system design (use case
specifications).

Method Using the high-level descriptions of product properties, the functional
designers break down these properties into usage scenarios. These usage scenarios
provide a way to identify which of the functions (use cases) are of value to the
customers and which are too cumbersome.

Format These kinds of specifications consist of three parts—(1) the use case
diagram, (2) the use case specification using a sequence diagram, and (3) the textual
specification of a use case detailing the steps of the interaction using somewhat
structured natural language.

4.2.1.3 Model-Based Requirements

One method to provide more context to the requirements is to express them as
models. This kind of representation can be done in two types of formalisms—UML-
like models and Simulink models. In Fig. 4.5 we present an excerpt of a Simulink
model for an ABS system from [Dem12] and [RSB+13b].

The model shows how to implement the ABS system, but the most important
property is that the model shows how the algorithm should behave and therefore
how it should be verified.
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Rationale Using models as requirements has been recognized by practitioners, and
in an automotive software project up to 23% of models are used as requirements
according to our previous studies [MS10b] and [MS10a]. According to the same
studies, up to 13% of effort is spent in the software project to design these kinds of
requirements.

Method The simulation models used for requirements engineering are often used
as part of the process of system design and function design, where the software and
system designers develop algorithms that describe how functions in modern cars are
to be realized. These models can be automatically translated to C/C++ code using
code generation, but it is rather uncommon. The reason is that these models describe
entire functions which are often partitioned into different domains and spread over
multiple components. Quite often these kinds of requirements are translated into
textual specifications, shown in the previous subsection.

Format The models are expressed using Simulink or a variation of statechart such
as Statemate or Petri nets. These simulation models detail the functions described in
the use cases by adding the system view of the interaction—the blocks and signals.
The blocks and signals represent the realization of the functionality in the car and
are focused on one function only. These models are often used as specifications
which are then detailed and often used to generate the source code automatically.

4.3 Variant Management

Having a good database of requirements and construction elements is key to success
in automotive software engineering. This is dictated by the fact that the automotive
market is based on variability—i.e. the locations in the product (software) where it
can be configured. As customers we expect the ability to configure our car with the
latest and greatest features of hardware, electronics and software.

There are two basic kinds of variability mechanisms in automotive software:

• Configuration—when we configure parameters of the software without modify-
ing its internal structure. This kind of variability is often seen in the non-safety
critical functions such as engine calibration or in configuring the availability of
functions (e.g. rain sensors).

• Compilation—when we change the internal structure of the software, compile
it and then deploy on the target ECU. This kind of variability is used when we
need to ensure that the software always behaves in the same way, for example the
availability of the function for collision avoidance by breaking.

In this section we explain the basics of these two mechanisms.
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Fig. 4.6 Variability through configuration

4.3.1 Configuration

Configuration is often referred to as runtime variability as changing the software
can be done after the software is compiled. Figure 4.6 presents the conceptual view
of this kind of variability.

In Fig. 4.6 we can see that we have one variant of the software component
(rectangle) with one variability point (the dotted line triangle) which can be
configured using two different configurations—without the rain sensor and with the
rain sensor. This means that we compile the code for the software component once
and then use two different configuration files when deploying the software.

The configuration as a variability mechanism has important implications for the
designers of the software. The main implication is that the software has to be tested
using multiple scenarios—i.e. the software designers need to be able to prevent use
of the software component with invalid configurations.

4.3.2 Compilation

The compilation as a variability mechanism is fundamentally different as it results in
a software component which cannot be modified (configured) after its compilation,
during runtime. Therefore it is an example of so-called design time variability as
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Fig. 4.7 Variability through
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the designers must decide during design which variant is being developed. This is
conceptually shown in Fig. 4.7 where we can see two different versions of the same
component—with and without the rain sensor.

As Fig. 4.7 suggests, there are two different code bases for the software
component—one with and one without the rain sensor. This means that the
development of these two variants can be decoupled from each other, but that
also means that the designers have to maintain two different code bases at the same
time. This parallel maintenance means that if there are defects in the common code
then both code bases need to be updated and tested.

The main advantage of this kind of variability mechanism is the assurance that the
code is not tampered with in any way after the compilation. The code can be tested,
and once deployed there is no way that an incorrect configuration can break the
quality of the component. However, the main disadvantage of this type of variability
management mechanism is the high cost of maintenance of the code base—parallel
maintenance.
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4.3.3 Practical Variability Management

Both of the above variability management mechanisms are used in practice.
Compile time variability is used when the software is an integral part of an ECU
whereas configuration is used when the software can be calibrated to different
types of configurations during deployment (e.g. configuration on the assembly line,
calibration of the engine and gearbox depending on the powertrain performance
settings).

4.4 Integration Stages of Software Development

On the left-hand side of the V-model the main type of activity is refinement of
requirements in multiple ways. On the right-hand side of the model the main activity
type is integration followed by testing.

In short, integration is the activity where software construction engineers inte-
grate their code with the code of other components and with the hardware. In the first
integration stages the hardware is usually simulated hardware in order to allow for
unit and component testing (described in Sect. 4.5). In the later integration phases
the software code is integrated together with the target hardware, which is then
integrated into a complete electrical/electronic system of the car (Table 4.1).

Figure 4.8 shows an example software integration of software modules and
components into an electrical system. What is important to notice is the fact that the
integration steps (vertical solid black lines) are not synchronized as the development
of different software modules is done at different pace.

Table 4.1 Types of integration

Type Description

Software integration This type of integration means that two (or more) software components
are put together and their joint functionality is tested. The usual means
of integration depend on the what is integrated—it can be merging of
the source code if the integration is on the source code level; it can be
linking of two binary code bases together; or it can be parallel
execution to test interoperability. The main testing techniques are unit
and component testing, described in Sect. 4.5

Software-hardware
integration

This type of integration means that the software is integrated
(deployed) to the target hardware platform. In this type of integration,
the focus is on the ability of the complete ECU to be executed and the
main testing type is component testing, described in Sect. 4.5

Hardware integration This type of integration means that the focus is on the integration of the
ECUs with the electrical system. In this type of integration the focus is
on the interoperability of the nodes and basic functionality, such as
communication. The testing related to this type of integration is system
testing
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Fig. 4.8 Software integration with integration steps

In practice this figure is even more complicated, as the integration plan is often
a document with several dimensions. Each integration cycle (which is what we
show in Fig. 4.8) is done several times during the project. First, the so-called basic
software is integrated (functionality like the boot code, and communication) and
then higher level functionality is added, according to the functional architecture as
described in Chap. 2.

4.5 Testing Strategies

Requirements engineering progresses from higher abstraction levels towards more
detailed, lower abstraction levels. Testing is the opposite. When the testers test the
software they start from the most atomic type of testing—unit testing—where they
test each function and each line of code. Then they gradually progress by testing
entire components (i.e. multiple units linked together), then the entire system and
finally each function. Figure 4.9 shows the right-hand side of the V-model with a
focus on the testing phases.

In the coming subsections we look deeper into the testing phases of the
automotive software.

4.5.1 Unit Testing

Unit test is the basic test, which is performed on individual entities of software such
as classes, source code modules and functions. The goal of unit testing is to find
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Fig. 4.9 Testing phases in automotive software development

defects related to the implementation of atomic functions/methods in the source
code.

The basic scheme of unit testing is the creation of automated test cases which
combine individual methods with the data that is needed to achieve the needed
quality. The result is then compared to the expected result, usually with the help
of assertions. An example of a unit test is presented in Fig. 4.10.

The unit test presented in Fig. 4.10 is a test for correctness of the creation of
object “WindshieldWiper”—a unit under test (UUT). This particular test code is
written in C# and in practice the test code can be written in almost any programming
language. The principles, however, are the same for all unit tests.

Of interest for our chapter are lines 14–23, as they contain the actual test code.
Line 15 is the arrangement line which prepares (sets up) the test case—in our
example it declares a variable which will be assigned to the object of the class
WindshieldWiper. Line 18 is the actuation line which executes the actual test code—
in our example creates the object of the WindshieldWiper class.

The most interesting are lines 21–23 since they contain the so-called assertion.
The assertion is a condition which should be fulfilled after the execution of the test
code. In our example the assertion is that the status of the newly created object (line
21) is “closed” (line 22). If it is not the case, then the error message is logged in the
testing environment (line 32) and the execution of the new test cases continues.

Unit testing is often perceived as the simplest type of testing and is most
often automated. Frameworks like CppUnit, JUnit or Google test framework can
orchestrate the execution of unit tests, allowing us to quickly execute the entire set
of tests (called test suites) without the need for manual intervention.

Automated unit tests are also reused in several ways, for example to create
nightly regression test suites or to create the so-called “smoke testing” where testers
randomly execute test cases to check whether the system exposes random behavior.
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Fig. 4.10 Example unit test for testing the status of windshield wiper module

It is also important to notice that reuse of test cases needs to be accompanied by
the methods to prioritize test cases, e.g. by identifying risky areas in source code
[ASM+14] or focusing on code that was changed since the last test run [KSM+15,
SHF+13]. It is also important to trace the test process in the context of software
reliability growth [RSM+13, RSB+13a].

We can also see that if the test case finds a problem (fails), then troubleshooting is
relatively simple—we know which code was executed and under which conditions.
This knowledge allows the testers to quickly describe where the defect is or even
suggest how to fix it.

4.5.2 Component Testing

This is sometimes also called integration testing, as the goal of this type of testing
is to test the integrations, i.e. links, between units of code within one of many
components. The main characteristic which differentiates component tests from unit
tests is that in component testing we use stubs to simulate the environment of the
tested component or the group of the components. This is illustrated in Fig. 4.11.
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Fig. 4.11 Component under test with the simulated environment

In contrast to unit tests, component tests focus on the interaction between the
stubs and the component under test. The goal of this type of testing is to verify that
the structure and behavior of the interfaces is implemented correctly.

We should also mention that the number of stubs in the system decreases as
the development project progresses. With the progress of the development, new
components are designed and they replace the stubs. Hence the nickname of this
type of testing—“integration testing”.

In automotive systems this type of testing is often done by simulating the
environment using either models (the so-called Model-In-the-Loop or MIL testing)
or hardware simulators (the so-called Hardware-In-the-Loop or HIL testing). An
example of equipment for HIL testing is presented in Fig. 4.12.

Fig. 4.12 HIL testing
rig—Image source: dSPACE
GmbH. Copyright 2015
dSPACE GmbH—reprinted
with permission

Figure 4.12 shows a testing rig from dSpace, which is widely used in the
automotive industry to test components by simulating the external environment.



4.5 Testing Strategies 83

Since the environment of the components is simulated, the non-functional prop-
erties of the components are often hard to test or require very detailed simulations.
The very detailed simulations, however, also tend to be very costly.

4.5.3 System Testing

System testing is the phase of testing when the entire system is assembled and tested
as a whole. The focus of system testing is on checking whether the system fulfills
its specifications in a number of ways. The system testing focuses on verifying the
following aspects:

1. functionality—testing whether the system has the functionality as specified in
the requirements specification

2. interoperability—testing whether the system can connect to the other systems
which are designed to interact with the system under test

3. performance—testing whether the system under test performs within the speci-
fied limits (e.g. timing limits, capacity limits)

4. scalability—testing whether the system’s operation scales up and down (e.g.
whether the communication buses operate with 80 and 120 ECUs connected)

5. stress—testing whether the system operates correctly under high load (e.g. when
the maximum capacity of the communication buses is reached)

6. reliability—testing whether the system operates correctly during a specific period
of time

7. regulatory and compliance—testing whether the system fulfills legal and regula-
tory requirements (e.g. carbon dioxide emissions)

System testing is usually the first testing phase when the above aspects can be
tested and therefore it is usually the most effective way of testing. However, it is
also very costly way of testing and very inefficient, as fixing the defects found in
this phase requires frequent changes in multiple components.

In the automotive software this type of testing is often done using the so-called
“box cars”—the entire electrical system being set up on tables without the chassi
and the hardware components.

4.5.4 Functional Testing

The functional testing phase focuses on verifying that the functions of the system
work according to their specification. They correspond to the functional require-
ments in the form of use cases and are quite often specified according to the use
cases. Figure 4.13 presents an example of a functional test—specified as a table.

What is important in this example is the specification, which is similar to the
specification of a use case—the description of the action (step) on the left-hand side
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Fig. 4.13 Example of a functional test

together with the expected outcome on the right-hand side. We can also observe that
the functional test does not require the knowledge of the actual construction of the
system under test (SUT), which led to the nickname of these tests as “black-box
testing”.

We should not focus on the simplicity of the example because functional testing
is often the most effort-intensive type of testing. It is often done in a manual manner
and requires sophisticated equipment to conduct.

Examples of sophisticated functional test cases are safety test cases where OEMs
test their safety systems. To be able to test such a function, car manufacturers need to
recreate the situation where the system could be activated and check whether it was
activated. They also need to recreate the situation when it should not be activated
and test that it was not activated.

When the functional test fails, it is rather difficult to find the defect, as the
number of construction elements which take part in the interaction can be quite
large—in our example the failure of the functional test case could be caused by
anything from mechanical failure of the battery to design defect in the software.
Therefore functional testing is often used after the other tests are conducted to
validate functionality rather than to verify the design.

4.5.5 Pragmatics of Testing Large Software Systems: Iterative
Testing

As the electrical system of contemporary cars is very complex, OEMs often apply
concepts of iterative testing to their development. Concept of iterative testing means
that the functionality of the software is divided into levels (as prescribed by the
functional architecture described in Chap. 2) and the functions are tested using
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unit, component, system and functional testing per layer. This means that the basic
functionality such as booting up of the electronics, starting up of the communication
protocols, running diagnostics, etc. are tested first and the more advanced functions
such as lighting, steering, and braking are tested later, followed by more advanced
functions such as driver alerts.

4.6 Construction Database and Its Role in Automotive
Software Engineering

All these types of requirements need to come together somehow and that’s why we
have the process and the infrastructure for requirements engineering. Let us start
with the infrastructure—usually named the design or construction database. In the
light of work of Weber and Weisbrod [WW02] it is called the common information
model. Figure 4.14 shows how this design database is used. The construction
database contains all elements of the design of the electrical system of the vehicle—
components, electronic control units, systems, controllers, etc. The structure of such
a database is hierarchical and reflects the structure of the vehicle. Each of the
elements in the database has a set of requirements linked to it. The requirements are
also linked to one another to show how they are broken down. Such a database grows
over time and is version-controlled as different versions of the same elements can
be used in different vehicles (e.g. different year models of the same car or different
cars).

An example of such a system is described by Chen et al. [CTS+06] and has been
developed by the company Systemite, which specializes in databases for vehicle
construction. Such a database structures all the elements of the construction of the
electronics of the vehicle and links all artifacts to the construction elements. An
example of a construction element is the engine’s electronic control unit, and all the
functions that use this control unit are linked to it.

Such a database usually has a number of views which show the required
set of details—functional view, architectural view, topological view and software
components’ view. Each view provides the corresponding entry point and shows the
relevant elements, but the database is always in a consistent state where all the links
are valid.

The database is used to generate construction specifications for different actors.
For each supplier that delivers an ECU, the database generate the set of all
requirements which are linked to the ECU and all models which describe the
behaviour of the ECU. Sometimes, depending on the situation, the documentation
contains even the simulation models for the functions which are to be included in
the ECU.

One of the commercial tools available on the market which is used as a
construction database is the tool SystemWeaver provided by Systemite. The main
strength of such a tool is the ability to link all elements together. In Fig. 4.15 we
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Fig. 4.14 Design database

can see how the requirements are linked to the software architecture model. On the
left-hand side we can see that the requirements are part of an element (e.g. “Adjust
speed” as part of the “Adaptive cruise control”), and on the right-hand side another
requirement visualized as a diagram.

Such tools provide specific views, for example listing all requirements linked to a
specific function as shown in Fig. 4.16. As part of that view we can see that the text
is complemented with figures which allow the analysts to be more specific when
specifying requirements and allow the designers to understand the requirements
better.

The ability to link the elements from different views (e.g. requirements and
components) and provide a graphical overview of these elements allows the
architects to quickly perform change impact analyses and reason about their
architectural choices. Such a dynamic creation of views is very important when
assessing architectures (e.g. during ATAM assessments). An example of such a view
is one showing a set of architectural components used in realization of a specific user
function, as shown in Fig. 4.17.

The system construction database can also help us in linking requirements to test
cases during the test planning phase—as shown in Fig. 4.18.

It can also assist us in tracking the progress of testing—Fig. 4.19. Since the
number of requirements is so large in automotive systems, tracking the progress of
whether they are tested is also not trivial. Therefore a unified view is needed where
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Fig. 4.15 Design database linking requirements to architectural elements. Copyright 2016,
Systemite—reprinted with permission

Fig. 4.16 Design database listing requirements for a specific function. Copyright 2016,
Systemite—reprinted with permission
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Fig. 4.17 Design database showing architectural components used when designing a specific
function. Copyright 2016, Systemite—reprinted with permission

Fig. 4.18 Linking test cases to requirements. Copyright 2016, Systemite—reprinted with permis-
sion
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Fig. 4.19 Tracking test progress. Copyright 2016, Systemite—reprinted with permission

the project can track the test cases that are planned to cover certain requirements, as
well as those that they were executed and what the result of the execution was.

The construction database and modelling tool provide the project teams with a
consistent view on their software system. In the case of software architectures this
tool allows us to link together all the views presented in Chap. 2 (such as physical,
logical, and deployment) and therefore avoid unnecessary work to keep documents
in a steady and consistent state. Most of the tools available for this purpose provide
the possibility to handle multiple parallel versions and baselines, which is essential
in the development of automotive software.

4.7 Further Reading

In this chapter we outlined the practical aspects of automotive software development
from a bird’s eye perspective. Interested readers can turn to more literature in the
area to dive deeper into details.

For the automotive software processes we recommend the book by Schäuffele
and Zurawka [SZ05], which presents a classical view on automotive software
development, starting from low-level processor programming and moving on to
advanced functionality development.

The classical paper by Broy [Bro06] describing the challenges in automotive
software engineering is the next step to understanding the dynamics of automotive
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software engineering in general. This reading can be complemented by the paper by
Pretschner et al. [PBKS07], where the focus is on the future of automotive software
development.

Readers interested in the management of variability in general should explore
the work of Bosch et al. [VGBS01, SVGB05] or [BFG+01]. The work is based on
software product lines, but applies very well to the automotive sector. This can be
complemented with more recent developments in this area—software ecosystems
and their realization in the automotive sector [EG13, EB14].

Otto et al. [Ott12] and [Ott13] presents a study on requirements engineering
at Mercedes-Benz, where they classified over 5800 requirement review protocols
to their quality model. Their results showed that textual requirements (or natural
language requirements as they are called in the publication) are prone to such
problems as inconsistency, incompleteness and ambiguity—with about 70% of
defects in requirements falling into these categories. In the light of this article we
can see the need for complementing the textual requirements with more context,
provided by use case models, user stories and use cases.

Törner et al. [TIPÖ06] presented a similar study but of the requirements at Volvo
Car Group. In contrast to the study of Otto et al. [Ott12], these authors studied the
use case specifications and not the textual requirements. The results, however, are
similar, as the main types of defects are missing elements (correctness in Otto et
al.’s model) and incorrect linguistics (ambiguity in Otto et al.’s model).

Eliasson et al. [EHKP15] described further experiences from Volvo Car Group
where they explored challenges with requirements engineering at large in a mecha-
tronics development organization. Their findings showed that there is a lot of
communication in parallel to the requirements specification. The stakeholders in the
requirements specification frequently mentioned the need to have a good network in
order to specify the requirements correctly. This indicates the challenges described
previously in this chapter that the requirements need more context than is usually
provided in just the specification (especially the textual specification).

Mahally et al. [MMSB15] identified requirements to be the main barriers and
enablers in moving towards Agile mechatronics organizations. Although today
OEMs try to move towards fast development of mechatronics and reduce the cycle
time by using Agile software development approaches, the challenges are that we
do not know upfront whether a requirement requires the development of electronics
or is only a software requirement. According to Mahally et al. that kind of problem
needs to be solved, and based on the prediction of Houdek [Hou13] this kind of
issue might be coming to an end as device development flattens out and most of
the requirements become software requirements. Similar challenges were presented
by Pernstål et al. [PGFF13] who found that requirements engineering is one of
the top improvement areas for automotive OEMs. The ability to communicate via
requirements was also an important part.

At Audi, Allmann et al. [AWK+06] presented the challenges in the requirements
communication on the boundary between the OEMs and their suppliers. They
identified the need for better communication and the challenges of communicating
through textual representations. They recognized the need for tighter partnerships
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as there is an inherent deficiency in communicating through requirements—
transferring knowledge through an intermediate medium. Therefore they recom-
mended integrating systems to minimize knowledge loss via transfer of documents.

Siegl et al. [SRH15] presented a method for formalizing requirements specifica-
tions using the Time Usage Model and applied it successfully to a requirements
specification from one of the German OEMs. The evaluation study showed an
increase in test coverage and increased quality of the requirements specification.

At BMW, Hardt et al. [HMB02] demonstrated the use of formalized domain
engineering models in order to reason about the dependencies between requirements
in the presence of variants. Their approach provided a simplistic, yet powerful,
formalism and its strength was industrial applicability.

A study of the functional architecture of a car project at BMW and the
requirements linked to the functions by Vogelsang and Fuhrmann [VF13] showed
that 85% of functions are dependent on one another and that these dependencies
cause a significant number of problems in software projects. This study shows
the complexity of the functional decomposition of the vehicle’s design and the
complexity of its description.

At Bosch, the longitudinal study of a 5-year project by Langenfeld et al. [LPP16]
showed that 61% of defects in requirements come from the incompleteness or
incorrectness of the requirements specifications.

One of interesting trends in requirements engineering is the automatization of
tasks of requirements engineers. One of such tasks is the discovery of non-functional
requirements. This task is based on reading the specifications of functional require-
ments and identifying phrases which should transform into non-functional require-
ments. A study on the automation of this task has been conducted by Cleland-
Huang et al. [CHSZS07]. The study showed that the automated classification of
requirements could be as good as 90%, but at this stage cannot replace the manual
classifiers.

4.7.1 Requirements Specification Languages

A model for requirements traceability [DPFL10] DARWIN4Req has been proposed
to address the challenges related to the ability to follow the requirements’ lifecycle.
The model allows us to link requirements expressed in different formalities (e.g.
UML, SySML) and connect them to one another. However, to the best of our
knowledge, the model and the tool have not been adopted on a wider scale yet.

EAST-ADL [DSLT05] is an architecture specification language which contains
elements to capture requirements and link them to the architectural design. The
approach is similar to that of SySML but with the difference that there is no
dedicated requirements specification diagram. EAST-ADL has been demonstrated
to work in industry; however, it is not a standard for automotive OEMs yet.
Mahmud [MSL15] presented a language ReSA that complements the EAST-ADL
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modelling language with the possibility to analyze and validate requirements (e.g.
basic consistency checks).

For non-functional requirements in the domain of safety, Peraldi [PFA10] has
proposed another extension of the EAST-ADL language which allows for increased
traceability of requirements and their linking to non-functional properties of the
designed embedded software (e.g. Safety).

Mellegård and Staron [MS09] and [MS10c] conducted an empirical study on
the impact of using hierarchical graphical requirements specification on the quality
of change impact assessment. For this purpose they designed a requirements’
specification language based on the existing formalism—Requirements Abstraction
Model. The results showed that the graphical overview of the dependencies between
requirements introduces significant improvement [KS02].

Finally, the use of models as core artifacts in software development in the
automotive domain has been studied in the context of MDA (Model-Driven
Architecture) [SKW04a, SKW04b, SKW04c]. The important aspect is the evolution
of models throughout the lifecycle.

4.8 Summary

Correct, unambiguous and consistent requirements specifications are foundations
for high-quality software in general and in the automotive embedded systems in
particular. In this chapter we introduced the most common types of requirements
used in this domain and provided their main strengths.

Based on the current state of evolution of automotive software we could observe
three trends in requirements engineering for automotive embedded systems—
(1) agility in requirements specification, (2) increased focus on non-functional
requirements and (3) increased focus on security as a domain for requirements.
Towards the end of the chapter we also provided an overview of the requirements
practices at some of the vehicle manufacturers (Mercedes Benz, Audi, BMW and
Volvo) based on documented experiences at these companies. We have also pointed
out a number of directions for further reading for the interested.

In our future work we plan to review the requirements engineering practices in
the main automotive OEMs and identify their differences and commonalities.
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Chapter 5
AUTOSAR (AUTomotive Open System
ARchitecture)

Darko Durisic, Volvo Car Group

Abstract In this chapter, we describe the role of the AUTOSAR standard in the
development of automotive software/system architectures. AUTOSAR defines the
reference architecture and the methodology for the development of automotive
software systems built on top of the AUTOSAR platform (middleware). It also
provides the language (meta-model) for their architectural models. The AUTOSAR
platform comes in two flavors – the AUTOSAR Classic Platform designed for the
development of traditional mechatronics systems such as climate control and doors
and the AUTOSAR Adaptive Platform designed for the development of modern
automotive software systems in the area of, e.g., autonomous drive and connectivity.
For both of these platforms, we show the AUTOSAR’s reference architecture
and describe the proposed development methodology. We also explain the role of
the AUTOSAR meta-model in the development process of both the AUTOSAR
Classic and Adaptive Platforms and show examples of the architectural models that
instantiate this meta-model. Finally, we explain the use of the AUTOSAR meta-
model for configuring the AUTOSAR platform modules in the middleware layer.

5.1 Introduction

Traditionally, the most valued engineering skills in the automotive domain were
the skills of mechanical engineers, with their passion for “gasoline” as the main
motivating factor. Nowadays, this is taken over by the skills of electrical/software
engineers whose passion for “code” is the main motivating factor [Mer20]. The
main reason for this shift is the need of the majority of car functionalities today
to be controlled by software, aiming to transform the mechanical nature of cars to
“computers on wheels” [Hil17]. Software is also already today representing a key
innovation factor in the automotive domain and gives competitive advantage to one
car manufacturer (original equipment manufacturer (OEM)) over another.

The gap caused by the inferiority of the software engineering skills at OEMs in
favor of mechanical engineering skills was quickly filled by a number of software
and hardware electronics suppliers delivering complete solutions to OEMs for the
majority of traditional car functionalities. Some examples of these functionalities
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are engine control and transmission, door locking/unlocking, and digitalization of
the driver head display. This raised the need for standardization in the development
of automotive software systems in the following two major areas:

1. Methodology – a standardized methodology for designing and verifying the
complete automotive software system was needed since the responsibility for
system design and verification lies with OEMs and its implementation is
distributed among usually many different suppliers.

2. Architecture – a standardized reference architecture was needed to increase the
reusability of the architectural components developed by the software suppliers
between different OEMs, thereby reducing their cost.

These needs were successfully addressed in 2003 by the introduction of the
AUTOSAR (AUTomotive Open System ARchitecture) standard, today known as
the AUTOSAR Classic Platform [AUT19b], as a joint partnership of automotive
OEMs and their software and hardware electronics suppliers. Today, AUTOSAR
consists of more than 200 global partners [AUT20] and is therefore considered the
de facto standard in the development of automotive software systems.

During the first decade of AUTOSAR’s development, electrical engineering and
more precisely software engineering competencies in the automotive domain were
rising rapidly. This resulted in completely new expectations from future cars. Firstly,
they are expected to contribute to the sustainability of our environment both in terms
of carbon and nitrogen footprint during the exploitation of the vehicles (the goal of
the EU is to have zero emission by 2035 for all newly produced vehicles [Tra20])
and in terms of low/zero emissions in the car development process including the
development of their parts (e.g., batteries). Many believe that electric cars are the
solution for meeting this goal.

Secondly, future cars are expected to contribute to the goals of safe transportation
systems which will not be satisfied until we achieve zero dead or severely injured
people in all means of transport. It is becoming more apparent today that passive
safety systems in cars such as belts and airbags and in general the construction of
the vehicles are slowly hitting their limits in terms of safety improvement. This
means that major improvements can be achieved only with active safety systems
that rely on software with the ultimate goal of software being to be able to perform
the entire journey fully autonomously without human intervention.

The third expectation from future cars is tightly related to the second one
(autonomous vehicles), and it reads “connectivity.” The part of connectivity relevant
to autonomous vehicles is related to car-to-car communication or the communica-
tion between cars and the road infrastructure (e.g., traffic signs) including people’s
“smart” devices in order for cars to gather relevant data about their environment
in real time. But there is also another expectation related to connectivity coming
directly from car users, and that is intuitive and fully integrable car infotainment
system with other smart electronic devices such as mobile phones.

In order to meet these expectations with software, the automotive software
development process needs to gain speed and flexibility (adaptability). This means
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that it needs to follow one of the well-known Agile development methodologies,
such as Scrum or Lean, to assure fast and seamless deployment of new software
functionalities to cars that are already on the road using over-the-air (OTA) software
update. This includes safety-critical software for autonomous vehicles.

This new future of the automotive domain required drastic changes in the
AUTOSAR’s architecture and its development methodology. These changes were
hard to be accommodated by the evolution of the AUTOSAR Classic Platform,
so AUTOSAR decided in 2016 to introduce a new AUTOSAR Adaptive Platform
[AUT19a] which is more revolution than evolution of the Classic Platform. Since
traditional car functionalities that worked well on the AUTOSAR Classic Platform
also need to be present in future cars, the goal of AUTOSAR’s Adaptive Platform
was not to replace the Classic Platform but coexist with it and potentially other
platforms (e.g., GENIVI [GEN20] and Android) in one software system.

For this reason, we describe in this chapter both the AUTOSAR Classic Platform
in Sect. 5.2 and the AUTOSAR Adaptive Platform in Sect. 5.3 and the common
parts shared between the two platforms in Sect. 5.4. After the detailed description of
these two platforms with examples, we also provide guidelines for further reading
on AUTOSAR in Sect. 5.5 and conclude with a brief summary in Sect. 5.6.

5.2 AUTOSAR Classic Platform

Traditionally, the architecture of the automotive software systems, as software-
intensive systems, was seen from a set of views described by Kruchten in his 4+1
architectural view model [Kru95]. Two of these architectural views deserve special
attention in this chapter, namely, the logical and the physical views.

The logical architecture of the automotive software systems is responsible for
defining and structuring high-level vehicle functionalities, such as auto-braking,
when a pedestrian is detected on the vehicle’s trajectory. These functionalities are
usually realized by a number of logical software components, e.g., the Pedestri-
anSensor component detects a pedestrian and requests full auto-brake from the
BrakeControl component. These components communicate by exchanging data,
e.g., about the pedestrian detected in front of the vehicle. Based on the type of
functionalities they realize, logical software components are usually grouped into
logical subsystems that in turn are grouped into logical domains, e.g., active safety
and powertrain.

The physical architecture of the automotive software systems is usually dis-
tributed over a number of computers (today usually more than 200 in premium cars)
referred to as electronic control units (ECUs). ECUs are connected via electronic
buses of different kinds (e.g., CAN, FlexRay, and Ethernet) and are responsible
for executing one or several high-level vehicle functionalities defined in the logical
architecture. This is done by deploying logical software components responsible for
realizing these functionalities to ECUs, thereby transforming them into runnable
ECU application software components. Each logical software component is allo-
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cated to at least one ECU, but the mapping between logical and runnable software
components is usually not one-to-one.

Each ECU has its own physical architecture (often also referred to as the ECU
architecture) which consists of the following main parts:

• Application software that consists of a number of runnable software components
and is responsible for executing vehicle functionalities realized by this ECU, e.g.,
detecting pedestrians on the vehicle’s trajectory

• Middleware software responsible for providing services to the application soft-
ware, e.g., transmission/reception of data on the electronic buses and tracking
diagnostic events

• Hardware that includes a number of drivers responsible for controlling different
hardware units, e.g., electronic buses and CPU of the ECU

The development of the logical and physical architectural views of the auto-
motive software systems and their ECUs is mostly done following the MDA
(model-driven architecture) approach [Obj14]. This means that the logical and the
physical system architecture and the physical ECU architecture are described by
means of architectural models. Looking into the traditional automotive architectural
design from the process point of view, on the one hand, OEMs are commonly
responsible for the logical and physical design of the system. On the other hand, a
hierarchy of suppliers are responsible for the physical design of specific ECUs, for
the implementation of their application and middleware software, and for providing
the necessary hardware [BKPS07].

In order to facilitate this distributed design and development of the automotive
software systems and their architectural components, the AUTOSAR standard was
introduced with the following major objectives:

1. Standardization of the reference ECU architecture and its layers. This increases
the reusability of the application software components in different car projects
(within one or multiple OEMs) developed by the same software suppliers.

2. Standardization of the development methodology. This enables collaboration
between a number of different parties (OEMs and a hierarchy of suppliers) in
the software development process for all ECUs in the system.

3. Standardization of the language (meta-model) for the architectural models of the
system/ECUs. This enables a smooth exchange of architectural models between
different modeling and code generation tools used by different parties in the
development process.

4. Standardization of the ECU middleware (basic software, BSW) architecture and
functionality. This allows engineers from OEMs to focus on the design and
implementation of high-level vehicle functionalities that can, in contrast to ECU
middleware, create competitive advantage.

After AUTOSAR Adaptive Platform was introduced in 2017, this part of
AUTOSAR is referred to as the AUTOSAR Classic Platform. In the next four
subsections (5.2.1–5.2.4), we show how this platform achieves each one of these
four objectives.
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5.2.1 Reference Architecture

The architectural design of ECU software based on the AUTOSAR Classic Platform
is done according to the three-layer architecture which runs on a microcontroller, as
presented in Fig. 5.1.

Fig. 5.1 Layered software architecture: AUTOSAR Classic Platform [AUT19j]

The first layer, Application software, consists of a number of software compo-
nents that realize certain vehicle functionalities by exchanging data using interfaces
defined on these components (referred to as ports). This layer is based on the
logical architectural design of the system. The second layer, Runtime environment
(RTE), controls the communication between software components abstracting the
fact that they may be deployed to different ECUs. This layer is usually generated
automatically based on the interfaces on the software components. If two software
components are deployed to different ECUs, transmission of the respective signals
on the electronic buses is needed, which is handled by the third layer (basic
software).

The Basic software layer consists of a number of BSW modules, and it is
responsible for the non-application-related ECU functionalities. One of the most
important basic software functionalities is the Communication between ECUs,
i.e., signal exchange. It consists of BSW modules such as COM (Communication
Manager) that is responsible for signal transmission and reception. However, the
AUTOSAR basic software also provides a number of Services to the Application
software layer, e.g., diagnostics realized by DEM (Diagnostic Event Manager) and
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DCM (Diagnostic Communication Manager) BSW modules responsible for logging
errors and transmitting diagnostic messages, respectively, and the Operating System
for scheduling ECU runnables. The majority of BSW modules are configured
automatically based on the architectural models of the physical system [LH09], e.g.,
periodic transmission of a set of signals packed into frames on a specific bus.

Communication between higher-level functionalities of the ECU Basic software
and drivers controlling the ECU hardware realized by the BSW modules of the
Microcontroller Abstraction layer is done by the BSW modules of the ECU
Abstraction layer, e.g., bus interface modules such as CanIf that is responsible for
the transmission of frames containing signals on the CAN bus. Finally, AUTOSAR
provides the possibility for the application software components to communicate
directly with hardware, thus bypassing the layers of the AUTOSAR software
architecture, by means of custom implementations of Complex Drivers. This
approach is, however, not considered as standardized.

Apart from the Complex Drivers, the RTE and other BSW modules are com-
pletely standardized by AUTOSAR, i.e., AUTOSAR provides a detailed functional
specifications and configuration parameters for each module. This standardization,
together with a clear distinction between the Application software, RTE, and Basic
software layers, allows ECU designers and developers to focus on the realization of
high-level vehicle functionalities, i.e., without the need to think about the underlying
middleware and hardware. The application software components and BSW modules
are often developed by different suppliers who specialize in either one of these areas,
as explained in more details in the following section.

5.2.2 Development Methodology

On the highest level of abstraction, automotive vendors developing architectural
components following the methodology of the AUTOSAR Classic Platform can be
classified into one of the following four major roles in the development process:

• OEM: responsible for the logical and physical system design
• Tier1: responsible for the physical ECU design and implementation of the

software components allocated onto this ECU
• Tier2: responsible for the implementation of the ECU basic software
• Tier3: responsible for supplying ECU hardware, hardware drivers, and the

corresponding compilers for building the ECU software

In most cases, different roles represent different organizations/companies
involved in the development process. For example, one car manufacturer plays the
role of OEM; two software vendors play the roles of Tier1 and Tier2, respectively;
and one “silicon” vendor plays the role of Tier3. However, these roles can also
be played by the same company, e.g., a car manufacturer plays the role of OEM
and Tier1 by doing the logical and physical system design, physical ECU design,
and implementation of the allocated software components (in-house development).



5.2 AUTOSAR Classic Platform 103

Another example is a software vendor playing the role of Tier1 and Tier2 by
doing the implementation of both the software components and BSW modules. The
development process involving all roles and their tasks is presented in Fig. 5.2.

Fig. 5.2 AUTOSAR development process

OEMs start with the logical system design (1) by modeling a number of
composite logical software components and their port interfaces representing data
exchange points. These components are usually grouped into logical subsystems
that are in turn grouped into logical domains. In the later stages of the development
process, usually in the physical ECU design (3), the composite software components
are broken down into a number of atomic software components, but this could be
done already in the logical system design phase by OEMs. An example of the logical
system design of the minimalistic system created for the purpose of this chapter
that calculates the vehicle speed and presents its value to the driver is presented in
Fig. 5.3.

The example contains two subsystems, Brake and Info, that each consist of
one composite software component, SpeedCalc and Odometer, respectively. The
SpeedCalc component is responsible for calculating the vehicle speed and provides
this information via the VehicleSpeed sender port. The Odometer component is
responsible for presenting the vehicle speed information to the driver and requires
this information via the VehicleSpeed receiver port.

As soon as a certain number of subsystems and software components have been
defined in the logical system design phase (1), OEMs can start with the physical
system design (2) that involves modeling a number of ECUs connected using
different electronic buses and deployment of the software components to these
ECUs. In case two communicating software components (with connected ports)
are allocated to different ECUs, this phase also involves the creation of the system
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Fig. 5.3 Example of the logical system design done by OEMs (1)

signals that will be transmitted over the electronic bus connecting these two ECUs.
An example of the physical system design of our minimalistic system is presented
in Fig. 5.4.

Fig. 5.4 Example of the physical system design done by OEMs (2)

The example contains two ECUs, BrakeControl and DriverInfo, connected using
Can1 bus. The SpeedCalc component is deployed to the BrakeControl ECU,
while the Odometer component is deployed to the DriverInfo ECU. As these two
components are deployed to different ECUs, information about the vehicle speed is
exchanged between them in a form of system signal named VehicleSpeed.

After the physical system design phase (2) is finished, a detailed design of the car
functionalities allocated to composite software components deployed to different
ECUs (physical ECU design) can be performed by Tier1s (3). As different ECUs
are usually developed by different Tier1s, OEMs are responsible for extracting the
relevant information about the deployed software components from the generated
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SWC system model (A) into the SWC ECU model (B), known as the ECU extract.
The main goal of the physical ECU design phase is to break down the composite
software components into a number of atomic software components that will in the
end represent runnable entities at ECU runtime. An example of the physical ECU
design of our minimalistic system is presented in Fig. 5.5.

ECU: BrakeControl

Port: VehicleSpeed

Composite SWC: SpeedCalc

Atomic SWC:
RpmSensor

 Atomic SWC:
RpmValue

 Atomic SWC:
BrakeControl

RTE (Run‐Time Environment)

Basic Software

ECU Hardware

ECU: DriverInfo

Port: VehicleSpeed

Composite SWC: Odometer

Atomic SWC: 
Odometer

 Atomic SWC:
InfoCtrl

RTE (Run‐Time Environment)

Basic Software

ECU Hardware

(a) (b)

Fig. 5.5 Example of the physical ECU design done by Tier1s (3). (a) BrakeControl ECU. (b)
DriverInfo ECU

The example shows detailing of the SpeedCalc and Odometer composite soft-
ware components into a number of atomic software components that will represent
runnables in the final ECU software. SpeedCalc consists of the RpmSensor sensor
component that measures the speed of axis rotation, the RpmValue atomic software
component that calculates the value of the rotation, and the BrakeControl atomic
software component that calculates the actual vehicle speed based on the value of the
axis rotation. Odometer consists of the InfoControl atomic software component that
receives the information about the vehicle speed and the Odometer atomic software
component that presents the vehicle speed value to the driver.

The ECU design phase is also used to decide upon the concrete implementation
of data types used in the code for the data exchanged between software components
based on the choice of the concrete ECU hardware (C) delivered by the Tier3s. For
example, data can be stored as floats if the chosen CPU has a support for working
with the floating points.

Based on the detailed SWC ECU model containing the atomic software com-
ponents (D), Tier1s can continue with the functional development of the car
functionalities (4) allocated onto these components. This is usually done with the



106 5 AUTOSAR (AUTomotive Open System ARchitecture)

help of behavioral modeling in the modeling tools such as MATLAB Simulink, as
explained in Sect. 5.2, that are able to generate the source SWC code for the atomic
software components (E) automatically from the Simulink models [LLZ13]. This
part is outside of the AUTOSAR scope.

During the physical ECU design and functional development phases performed
by Tier1s, OEMs can work on the physical COM design (5) that aims to complete
the system model with packing of signals into frames that are transmitted on the
electronic buses. This phase is necessary for configuring the communication (COM)
part of the AUTOSAR basic software configuration (6). An example of the physical
COM design of our minimalistic system is presented in Fig. 5.6.

Fig. 5.6 Example of the physical COM design done by OEMs (5)

The example shows one frame of eight bytes named CanFrm01 that is transmitted
by the BrakeControl ECU on the Can1 bus and received by the DriverInfo ECU. It
transports the VehicleSpeed signal into its first two bytes.

After the physical COM design phase has been completed for the entire system,
OEMs are responsible for creating COM ECU model extracts (G) from the generated
COM system model (F) for each ECU that contains only ECU-relevant information
about the COM design. This step is similar to the step done after the logical and
physical system design related to the extraction of the ECU-relevant information
about the application software components. These ECU extracts are then sent to
Tier1s who use them as input for configuring the COM part of the ECU basic soft-
ware configuration (6) and, together with configuring the rest of BSW (diagnostics
services, operating system, etc.), generate the complete BSW configuration code
(H) for the developed ECU. An example of the BSW configuration design of our
minimalistic system is presented in Fig. 5.7.

The example shows different groups of BSW modules, i.e., Operating System,
Services including modules such as DEM and DCM, Communication including
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Fig. 5.7 Example of the BSW configuration design done by Tier1s (6). (a) BrakeControl ECU.
(b) DriverInfo ECU

modules such as COM, and ECU Abstraction including modules such as CanIf
needed for the transmission of frames on the CAN bus in our example.

The actual ECU basic software development (7) is done by Tier2s based on the
detailed specifications of each BSW module provided by the AUTOSAR standard,
e.g., COM, CanIf, or DEM modules. The outcome of this phase is a complete BSW
code (I) for the entire basic software that is usually delivered by Tier2s in a form
of libraries. The hardware drivers for the chosen hardware (J), in our example CAN
driver, are delivered by Tier3s.

The last stage in the ECU software creation (8) is to compile and link the
functional SWC code (E), BSW configuration code (H), functional BSW code (I),
and the hardware drivers (J). This is usually done using the compiler and linker (K)
delivered by Tier3s.

Despite the fact that the described methodology of AUTOSAR is reminiscent
of the traditional waterfall development approach, except from the decoupled
development of the ECU functional code and the ECU BSW code, in practice,
it just represents one cycle of the entire development process. In other words,
steps (1), (2), (3), (4), (5), and (6) are usually repeated a number of times, adding
new functionalities to the system and its ECUs. For example, the new composite
software components are introduced first in the logical system design (1) requiring
new signals in the physical system design (2). Then, the new atomic software
components are introduced as part of the new composite software components in
the physical ECU design (3) and implemented in the functional development (4).
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Finally, new frames to transport the new signals are introduced in the physical
COM design (5) and configured in the BSW configuration design (6) phase.
Sometimes even the ECU hardware (C) and its compiler/linker (K) and drivers
(J) can be changed between different cycles, in case it cannot withstand the added
functionality.

Despite being able to support iterative development as explained above, the
development methodology of the AUTOSAR Classic Platform is not really able
to support Agile development approaches [Agi01]. This is mainly due to the
involvement of several actors/companies in the development and top-down design
approach which requires relatively long development cycles (months rather than
days).

Examples of the logical system design (1), physical system design (2), physical
ECU design (3), and physical COM design (5) based on the AUTOSAR Classic
Platform are presented in Sect. 5.2.3. Examples of the basic software development
(7) and basic software configuration (6) based on the AUTOSAR Classic Platform
are presented in Sect. 5.2.4. As already stated, the functional development of the
software components (4) is outside of the scope of AUTOSAR.

5.2.3 AUTOSAR Meta-Model

As we have seen in the previous section, a number of architectural models, as
outcomes of different phases in the development methodology, are exchanged
between different roles in the development process. In order to assure that the
modeling tools used by OEMs in the logical (1), physical (2), and communication
system design (5) phases are able to create models that could be read by the
modeling tools used by Tier1s in the physical ECU design (3) and BSW config-
uration phases (6), AUTOSAR defines a meta-model that specifies the language
for these exchanged models [NDWK99]. Therefore, models (A), (B), (D), (F), and
(G) represent instances of the AUTOSAR meta-model that specifies their abstract
syntax in the UML language. The models itself are serialized into XML (referred
to as ARXML, AUTOSAR XML), which represents their concrete syntax, and are
validated by the AUTOSAR XML schema that is generated from the AUTOSAR
meta-model [PB06].

In this section, we first describe the AUTOSAR meta-modeling environment
in Sect. 5.2.3.1. We then show an example use of the AUTOSAR meta-model in
the logical system design (1), physical system design (2), physical ECU design
(3), and physical COM design (5) phases in Sect. 5.2.3.2 using our minimalistic
system presented in the previous section and show examples of these models in
the ARXML syntax. Finally, we show in Sect. 5.2.3.3 examples of the AUTOSAR
model semantics described in the AUTOSAR template specifications.
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5.2.3.1 AUTOSAR Meta-Modeling Environment

As opposed to the commonly accepted meta-modeling hierarchy of MOF [Obj04]
that defines four layers [BG01], the AUTOSAR modeling environment is described
as a five-layer hierarchy, as presented below (the names of the layers are taken from
the AUTOSAR Generic Structure specification [AUT19i]):

1. The ARM4: MOF 2.0, e.g., the MOF Class
2. The ARM3: UML and AUTOSAR UML profile, e.g., the UML Class
3. The ARM2: Meta-model, e.g., the SoftwareComponent
4. The ARM1: Models, e.g., the WindShieldWiper
5. The ARM0: Objects, e.g., the WindShieldWiper in the ECU memory

The mismatch between the number of layers defined by MOF and AUTOSAR
lies in the fact that MOF considers only layers connected by the linguistic
instantiation (e.g., SystemSignal is an instance of UML Class), while AUTOSAR
considers both linguistic and ontological layers (e.g., VehicleSpeed is an instance
of SystemSignal) [Küh06]. To link these two interpretations of the meta-
modeling hierarchy, we can visualize the AUTOSAR meta-modeling hierarchy
using two-dimensional representation (known as OCA, orthogonal classification
architecture [AK03]), as shown in Fig. 5.8. The linguistic instantiations (“L” layers
corresponding to MOF layers) are represented vertically and the ontological layers
(“O” layers) horizontally.

Fig. 5.8 AUTOSAR meta-model layers [DSTH16]
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The ARM2 layer is commonly referred to as the “AUTOSAR meta-model,” and
it ontologically defines, using UML syntax (i.e., AUTOSAR meta-model is defined
as an instance of UML), the AUTOSAR models residing on the M1 layer (both the
AUTOSAR meta-model and AUTOSAR models are located on the L1 layer). The
AUTOSAR meta-model also uses a UML profile that extends the UML meta-model
on the ARM3 layer, which specifies the used stereotypes and tagged values.

Structurally, the AUTOSAR meta-model is divided into a number of top-level
packages referred to as “templates.” Each template defines how to model one part of
the automotive system. The modeling semantics, referred to as design requirements
and constraints, are described in the AUTOSAR template specifications [Gou10].

Probably the most important templates for the design of automotive software
systems are the SWComponentTemplate, which defines how to model the software
components and their interaction; SystemTemplate, which defines how to model
the ECUs and their communication; and ECUCParameterDefTemplate and
ECUCDescriptionTemplate, which define how to configure the ECU basic software.
In addition to these templates, the AUTOSAR GenericStructure template is used to
define the general concepts (meta-classes) used by all other templates, e.g., handling
different variations in the architectural models related to different vehicles. In the
next subsection, we provide examples of these templates and the AUTOSAR models
that instantiate them.

5.2.3.2 Architectural Design Based on the AUTOSAR Meta-Model

A simplified excerpt from the SWComponentTemplate that is needed for the logical
system and physical ECU design of our minimalistic example that calculates the
vehicle speed and presents its value to the driver is presented in Fig. 5.9 (the meta-
classes from the SWComponentTemplate are depicted in light green color).

The excerpt shows the abstract meta-class SwComponent that can be either
AtomicSwComponent or CompositeSwComponent that may refer to multiple Atom-
icSwComponents. Both types of SwComponents may contain a number of Ports that
can either be ProvidedPorts providing data to the other components in the system or
RequiredPorts requiring data from the other components in the system. Ports on the
CompositeSwComponents are connected to the ports of the AtomicSwComponents
using DelegationSwConnectors that belong to the CompositeSwComponents, i.e.,
DelegationSwConnector points to an outerPort of the CompositeSwComponent and
an innerPort of the AtomicSwComponent. Finally, Ports refer to a corresponding
PortInterface, e.g., SenderReceiverInterface or ClientServerInterface that contains
the actual definition of the DataType that is provided or required by this port (e.g.,
unsigned integer of 32 bits or a structure (“struct” in C programming language) that
consists of an integer and a float).

The model of our example of the logical system design presented in Fig. 5.3 that
instantiates the SWComponentTemplate part of the meta-model is shown in Fig. 5.10
in the ARXML syntax. We chose ARXML as it is used as a model exchange format
between OEMs and Tier1s, but UML or another format could be used as well.

The example shows the definition of the SpeedCalc composite software compo-
nent (lines 1–11) with the VehicleSpeed provided port (lines 4–9) and the Odometer
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Fig. 5.9 Excerpt of the logical system and physical ECU design (SwComponentTemplate)

composite software component (lines 12–22) with the VehicleSpeed required port
(lines 15–20). Both ports refer to the same sender-receiver interface (lines 23–33)
that in turn refers to the unsigned integer type of 16 bits (lines 34–36) for the
provided/required data.

According to the AUTOSAR methodology, these composite software compo-
nents are, after their allocation to the chosen ECUs, broken down into a number
of atomic software components during the physical ECU design phase. The partial
model of our minimalistic example of the physical ECU design presented in Fig. 5.5
that instantiates the SWComponentTemplate part of the meta-model is shown in
Fig. 5.11 in the ARXML syntax.

The example shows the definition of the BrakeControl atomic software compo-
nent (lines 31–41) with the VehicleSpeed provided port (lines 34–39) that is referred
(lines 12–17) from the SpeedCalc composite software component (lines 1–30). We
can also see the delegation connector Delegation1 inside the SpeedCalc composite
software component (lines 20–28) that connects the provided ports in the SpeedCalc
and BrakeControl software components.

A simplified excerpt from the SystemTemplate that is needed for the physical
and COM system design of our minimalistic example is presented in Fig. 5.12 (the
meta-classes from the SystemTemplate are depicted in light blue color).

Related to the physical system design, the excerpt shows the EcuInstance
meta-class with diagnosticAddress attribute that may contain a number of Com-
municationConnectors that represent the connections of the EcuInstance to a
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1 <COMPOSITE-SW-COMPONENT UUID="...">
2 <SHORT-NAME>SpeedCalc</SHORT-NAME>
3 <PORTS>
4 <PROVIDED-PORT UUID="...">
5 <SHORT-NAME>VehicleSpeed</SHORT-NAME>
6 <PROVIDED-INTERFACE-REF DEST="SENDER-RECEIVER-INTERFACE">

ecafretnIdeepSelciheV/.../7
8 </PROVIDED-INTERFACE-REF>
9 </PROVIDED-PORT>
10 </PORTS>
11 </COMPOSITE-SW-COMPONENT>
12 <COMPOSITE-SW-COMPONENT UUID="...">
13 <SHORT-NAME>Odometer</SHORT-NAME>
14 <PORTS>
15 <REQUIRED-PORT UUID="...">
16 <SHORT-NAME>VehicleSpeed</SHORT-NAME>
17 <REQUIRED-INTERFACE-REF DEST="SENDER-RECEIVER-INTERFACE">

ecafretnIdeepSelciheV/.../81
19 </REQUIRED-INTERFACE-REF>
20 </REQUIRED-PORT>
21 </PORTS>
22 </COMPOSITE-SW-COMPONENT>
23 <SENDER-RECEIVER-INTERFACE UUID="...">
24 <SHORT-NAME>VehicleSpeedInterface</SHORT-NAME>
25 <DATA-ELEMENTS>
26 <VARIABLE-DATA UUID="...">
27 <SHORT-NAME>VehicleSpeed</SHORT-NAME>
28 <DATA-TYPEREF DEST="PRIMITIVE-DATA-TYPE">

61tnIU/.../92
30 </DATA-TYPE-REF>
31 </VARIABLE-DATA>
32 </DATA-ELEMENTS>
33 </SENDER-RECEIVER-INTERFACE>
34 <PRIMITIVE-DATA-TYPE UUID="...">
35 <SHORT-NAME>UInt16</SHORT-NAME>
36 </PRIMITIVE-DATA-TYPE>

Fig. 5.10 AUTOSAR model example: logical design

PhysicalChannel (e.g., CanCommunicationConnector connects one EcuInstance to
a CanPhysicalChannel). A number of SwComponents (CompositeSwComponents
or AtomicSwComponents) created in the logical design can be allocated onto one
EcuInstance by means of SwcToEcuMappings.

Related to the physical COM design, the excerpt shows the SenderReceiver-
ToSignalMapping of the VariableData created in the logical design to a System-
Signal. It also shows that one SystemSignal can be sent to multiple buses by means
of creating different ISignals and mapping them to IPdus that are in turn mapped to
Frames. IPdu is one type of a Pdu (protocol data unit) that is used for transporting
signals, and there may be other types of Pdus, e.g., DcmPdu for transporting
diagnostic messages.

The model of our example of the physical system design presented in Fig. 5.4
that instantiates the SystemTemplate part of the meta-model is shown in Fig. 5.13.

The example shows the definition of the BrakeControl ECU with diagnostic
address 10 (lines 1–9) that owns a CAN communication connector (lines 5–7).
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1 <COMPOSITE-SW-COMPONENT UUID="...">
2 <SHORT-NAME>SpeedCalc</SHORT-NAME>
3 <PORTS>
4 <PROVIDED-PORT UUID="...">
5 <SHORT-NAME>VehicleSpeed</SHORT-NAME>
6 <PROVIDED-INTERFACE-REF DEST="SENDER-RECEIVER-INTERFACE">

ecafretnIdeepSelciheV/.../7
8 </PROVIDED-INTERFACE-REF>
9 </PROVIDED-PORT>
10 </PORTS>
11 <COMPONENTS>
12 <COMPONENT>
13 <SHORT-NAME>BrakeControl</SHORT-NAME>
14 <COMPONENT-REF DEST="ATOMIC-SW-COMPONENT">

lortnoCekarB/.../51
16 </COMPONENT-REF>
17 </COMPONENT>
18 </COMPONENTS>
19 <CONNECTORS>
20 <DELEGATION-SW-CONNECTOR UUID="...">
21 <SHORT-NAME>Delegation1</SHORT-NAME>
22 <INNER-PORT-REF DEST="P-PORT-PROTOTYPE">

deepSelciheV/lortnoCekarB/.../32
24 </INNER-PORT-REF>
25 <OUTER-PORT-REF DEST="P-PORT-PROTOTYPE">

deepSelciheV/claCdeepS/.../62
27 </OUTER-PORT-REF>
28 </DELEGATION-SW-CONNECTOR>
29 </CONNECTORS>
30 </COMPOSITE-SW-COMPONENT>
31 <ATOMIC-SW-COMPONENT UUID="...">
32 <SHORT-NAME>BrakeControl</SHORT-NAME>
33 <PORTS>
34 <PROVIDED-PORT UUID="...">
35 <SHORT-NAME>VehicleSpeed</SHORT-NAME>
36 <PROVIDED-INTERFACE-REF DEST="SENDER-RECEIVER-INTERFACE">

ecafretnIdeepSelciheV/.../73
38 </PROVIDED-INTERFACE-REF>
39 </PROVIDED-PORT>
40 </PORTS>
41 </ATOMIC-SW-COMPONENT>

Fig. 5.11 AUTOSAR model example: ECU design

It also shows the mapping of the SpeedCalc composite software component onto
the BrakeControl ECU (lines 10–14). Finally, it shows the definition of the Can1
physical channel (lines 15–24) that points to the CAN communication connector of
the BrakeControl ECU (lines 19–21), thereby indicating that this ECU is connected
to Can1.

The model of our example of the COM system design presented in Fig. 5.6 that
instantiates the SystemTemplate part of the meta-model is shown in Fig. 5.14.

The example shows the definition of the VehicleSpeed system signal (lines 1–
3) that is mapped to the SpeedCalc variable data element defined in the logical
design phase (lines 4–12). The example also shows the creation of the ISignal
VehicleSpeedCan1 (lines 13–19) with an initial value of 0 that is meant to transmit
the vehicle speed on the Can1 bus defined in the physical design phase. This ISignal
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Fig. 5.12 Physical ECU and physical COM design excerpt (SystemTemplate)

is mapped to Pdu1 (lines 20–22) using ISignalToIPduMapping (lines 23–27) that
in turn is mapped to CanFrame1 (lines 28–30) using IPduToFrameMapping (lines
31–35).

5.2.3.3 AUTOSAR Template Specifications

As other language definitions, the AUTOSAR meta-model defines only the syntax
for different types of architectural models without explaining how its meta-
classes shall be used to achieve certain semantics. This is done in the natural
language specifications called templates [Gou10], e.g., SwComponentTemplate and
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1 <ECU-INSTANCE UUID="...">
2 <SHORT-NAME>BrakeControl</SHORT-NAME>
3 <ECU-ADDRESS>10</ECU-ADDRESS>
4 <CONNECTORS>
5 <CAN-COMMUNICATION-CONNECTOR UUID="...">
6 <SHORT-NAME>Can1Connector</SHORT-NAME>
7 </CAN-COMMUNICATION-CONNECTOR>
8 </CONNECTORS>
9 </ECU-INSTANCE>
10 <SWC-TO-ECU-MAPPING UUID="...">
11 <SHORT-NAME>Mapping1</SHORT-NAME>
12 <COMPONENT-REF DEST="SW-COMPONENT">/.../SpeedCalc</SW-REF>
13 <ECU-REF DEST="ECU-INSTANCE">/.../BrakeControl</ECU-REF>
14 </SWC-TO-ECU-MAPPING>
15 <CAN-PHYSICAL-CHANNEL UUID="...">
16 <SHORT-NAME>Can1</SHORT-NAME>
17 <COMM-CONNECTORS>
18 <COMMUNICATION-CONNECTOR-REF-CONDITIONAL>
19 <COMMUNICATION-CONNECTOR-REF DEST="CAN-COMMUNICATION-CONNECTOR">

rotcennoC1naC/lortnoCekarB/.../02
21 </COMMUNICATION-CONNECTOR-REF>
22 </COMMUNICATION-CONNECTOR-REF-CONDITIONAL>
23 </COMM-CONNECTORS>
24 </CAN-PHYSICAL-CHANNEL>

Fig. 5.13 AUTOSAR model example: physical design

SystemTemplate, which are explaining the different parts of the AUTOSAR meta-
model. These templates consist of the following main items:

• Design requirements that should be fulfilled by the models (specification items)
• Constraints that should be fulfilled by the models and checked by modeling tools
• Figures explaining the use of a group of meta-classes
• Class tables explaining the meta-classes and their attributes/connectors

As an example of a specification item related to our minimalistic example that
calculates vehicle speed and presents its value to the driver, we present specification
item no. 01009 from the SystemTemplate [AUT19t] that describes the use of
CommunicationConnectors:
[TPS_SYST_01009] Definition of CommunicationConnector [ An EcuInstance
uses CommunicationConnector elements in order to describe its bus interfaces and
to specify the sending/receiving behavior. ]

As an example of a constraint, we present constraint no. 1032 from the
SwComponentTemplate [AUT19q] that describes the limitation in the use of Del-
egationSwConnectors.
[constr_1032] DelegationSwConnector can only connect Ports of the same
kind [ A DelegationSwConnector can only connect Ports of the same kind, i.e.,
ProvidedPort to ProvidedPort and RequiredPort to RequiredPort. ]

The majority of constraints including constr_1032 could be specified directly in
the AUTOSAR meta-model using OCL (Object Constraint Language). However,
due to the complexity of OCL and thousands of automotive engineers in more
than a hundred OEM and supplier companies that develop automotive software
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1 <SYSTEM-SYGNAL UUID="...">
2 <SHORT-NAME>VehicleSpeed</SHORT-NAME>
3 </SYSTEM-SYGNAL>
4 <SENDER-RECEIVER-TO-SIGNAL-MAPPING UUID="...">
5 <SHORT-NAME>Mapping2</SHORT-NAME>
6 <DATA-ELEMENT-REF DEST="VARIABLE-DATA">
7 /.../VehicleSpeedInterface/SpeedCalc
8 </DATA-ELEMENT-REF>
9 <SYSTEM-SIGNAL-REF DEST="SYSTEM-SIGNAL">
10 /.../VehicleSpeed
11 </SYSTEM-SIGNAL-REF>
12 </SENDER-RECEIVER-TO-SIGNAL-MAPPING>
13 <I-SYGNAL UUID="...">
14 <SHORT-NAME>VehicleSpeedCan1</SHORT-NAME>
15 <INIT-VALUE>0</INIT-VALUE>
16 <SYSTEM-SIGNAL-REF DEST="SYSTEM-SIGNAL">
17 /.../VehicleSpeed
18 </SYSTEM-SIGNAL-REF>
19 </I-SYGNAL>
20 <I-PDU UUID="...">
21 <SHORT-NAME>IPdu1</SHORT-NAME>
22 </I-PDU>
23 <I-SIGNAL-TO-I-PDU-MAPPING UUID="...">
24 <SHORT-NAME>Mapping3</SHORT-NAME>
25 <I-PDU-REF DEST="I-PDU">/.../IPdu1</I-PDU-REF>
26 <I-SIGNAL-REF DEST="I-SIGNAL">/.../VehicleSpeedCan1</I-SIGNAL-REF>
27 </I-SIGNAL-TO-I-PDU-MAPPING>
28 <CAN-FRAME UUID="...">
29 <SHORT-NAME>CanFrame1</SHORT-NAME>
30 </CAN-FRAME>
31 <I-PDU-TO-FRAME-MAPPING UUID="...">
32 <SHORT-NAME>Mapping4</SHORT-NAME>
33 <PDU-REF DEST="I-PDU">/.../IPdu1</PDU-REF>
34 <FRAME-REF DEST="CAN-FRAME">/.../CanFrame1</FRAME-REF>
35 </I-PDU-TO-FRAME-MAPPING>

Fig. 5.14 AUTOSAR model example: COM design

components based on AUTOSAR, natural language specifications are considered
a better approach for such a wide audience [NDWK99].

Meta-model figures show the relationships between a number of meta-classes
using UML notation, and they are similar to Figs. 5.9 and 5.12 presented in the
previous section. These figures are usually followed by class tables that describe
the meta-classes in the figures in more details, e.g., description of the meta-
classes, their parent classes, and attributes/connectors, so that the readers of the
AUTOSAR specification do not need to look directly into the AUTOSAR meta-
model maintained in the Enterprise Architect tool.

In addition to specification items, constraints, figures, and class tables, the
AUTOSAR template specifications also contain a substantial amount of plain text
that provides additional explanations, e.g., introductions to the topic and notes after
specification items and constraints.
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5.2.4 AUTOSAR ECU Middleware

AUTOSAR provides detailed functional specifications for the modules of its mid-
dleware layer (basic software modules). For example, COM specification describes
the functionality of the Communication Manager module that is mostly responsible
for handling the communication between ECUs, i.e., transmitting signals received
from the RTE onto electronic buses and vice versa. These specifications consist of
the following main items:

• Functional requirements that should be fulfilled by the implementation of the
BSW modules

• Description of APIs of the BSW modules
• Sequence diagrams explaining the interaction between BSW modules
• Configuration parameters that are used for configuring the BSW modules

The functional side of the AUTOSAR BSW module specifications (functional
requirements, APIs, and sequence diagrams) is outside of the scope of this chapter.
However, we do describe here the general approach to the configuration of the BSW
modules as it is done based on the AUTOSAR meta-model and its templates.

Two of the AUTOSAR templates are responsible for specifying the config-
uration of the AUTOSAR basic software – ECUCParameterDefTemplate and
ECUCDescriptionTemplate on the ARM2 layer. ECUCParameterDefTemplate spec-
ifies the general definition of configuration parameters so that the parameters
can be grouped into containers of parameters and that they can be configured
at different configuration times (e.g., before or after building the complete ECU
software). ECUCDescriptionTemplate specifies the modeling of concrete parameter
and container values that reference their corresponding definitions from the ECUC-
ParameterDefTemplate.

The values of configuration parameters from the ECUCDescriptionTemplate
models can be automatically derived from the models of other templates, e.g.,
SoftwareComponentTemplate and SystemTemplate. This process is called “upstream
mapping,” and it can be done automatically with the support from the ECU con-
figuration tools [LH09]. A simplified example of the ECUCParameterDefTemplate
and ECUCParameterDefTemplate and their models including the upstream mapping
process is shown in Fig. 5.15 in UML syntax.

The ECUCParameterDefTemplate on the ARM2 layer (left blue box) specifies
the modeling of the definition of configuration parameters (ECUCParameterDef s)
and containers (ECUCContainerDef s), with an example of the integer parameter
definition (ECUCIntegerParameterDef ). The ECUCDescriptionTemplate (left yel-
low box) specifies the modeling of the values of containers (ECUCContainerValues)
and parameters (ECUCParameterValues), with an example of the integer parameter
value (ECUCIntegerParameterValue). As with the elements from the SwCompo-
nentTemplate and SystemTemplate, the elements from these two templates are also
inherited from the common element in the GenericStructureTemplate (green box)
named Identifiable, which provides them with the short name and unique identifier
(UUID).
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Fig. 5.15 Example of the AUTOSAR templates and their models

The standardized model (i.e., provided by AUTOSAR) of the ECUCParame-
terDefTemplate can be seen on the ARM1 layer (right blue box). It shows the
ECUCContainerDef instance with shortName “ComSignal” that refers to the
ECUCParameterDef instance with shortName “ComSignalInitValue.” These two
elements both have the tagged value named UM, denoting upstream mapping. The
UM tagged value for the “ComSignal” container instance refers to the ISignal meta-
class from the SystemTemplate. The UM tagged value for the “ComSignalInitValue”
parameter instance refers to the initValue attribute of the ISignal. This implies that
for every ISignal instance in the SystemModel, one ECUCContainerValue instance
in the ECUCDescriptionModel shall be created with an ECUCParameterValue
instance. The value of this parameter instance shall be equal to the initValue attribute
of that SystemSignal instance.

Considering the “VehicleSpeedCan1” ISignal with “initValue” 0 (orange box)
that we defined in our SystemModel shown in Fig. 5.15 (COM design phase), the
ECUCDescriptionModel (right yellow box) can be generated. This model contains
one instance of the ECUCContainerValue with shortName “VehicleSpeedCan1”
that is defined by the “ComSignal” container definition and refers to one instance of
the ECUCParameterValue with shortName “initValue” of value 0 that is defined by
the “ComSignalInitValue” parameter definition.

AUTOSAR provides the standardized ARM1 models of the ECUCParameter-
DefTemplate for all configuration parameters and containers of the ECU basic
software. For example, the ComSignal container with ComSignalInitValue are stan-
dardized for the COM BSW module. On the smallest granularity, the standardized
models of the ECUCParameterDefTemplate are divided into a number of packages,
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where each package contains configuration parameters of one BSW module. On
the highest granularity, these models are divided into different logical packages,
including ECU communication, diagnostics, memory access, and IO access.

5.3 AUTOSAR Adaptive Platform

In parallel to the development of the AUTOSAR Classic Platform designed for the
traditional automotive ECUs (e.g., ECUs responsible for controlling the engine and
brakes or handling comfort and body functions of the car such as seats and doors,
respectively), AUTOSAR developed a new platform called “AUTOSAR Adaptive
Platform” designed to support the development of new automotive functionalities
which demand high-performance computing such as autonomous drive and con-
nectivity. This means that these two platforms are planned to coexist, i.e., the
AUTOSAR Adaptive Platform is not meant to be a replacement of the AUTOSAR
Classic Platform.

Some examples of the use cases the AUTOSAR Adaptive Platform is designed
for are presented here (the list is not exhaustive):

1. Highly automated driving: Support driving automation level 3 or higher accord-
ing to the NHSTA (National Highway Safety Traffic Administration) [NHT20].
This includes limited driving automation where the driver is occasionally
expected to take control of the vehicle and full driving automation where the
vehicle is responsible for performing the entire journey by itself. This includes
support for cross-domain computing platforms, high-performance microcon-
trollers, distributed and remote diagnostics, etc.

2. Car-2-X applications: Support interaction of vehicles with other vehicles and
off-board systems as part of the common transportation ecosystem. This includes
support for designing automotive systems with non-AUTOSAR ECUs based on,
e.g., GENIVI [GEN20] and Android.

3. Vehicle in the cloud: Support vehicle to cloud communication to enable software
update over-the-air (OTA) and off-board computation (e.g., for complex machine
learning algorithms), including the exchange of data between a fleet of vehicles.
This includes the development of secured on-board communication, security
architecture, and secure cloud interaction.

The idea behind adaptive cars is depicted in Fig. 5.16 [AUT19a]. The figure
shows several AUTOSAR Classic ECUs (“C”) that are responsible for tradi-
tional vehicle functionalities, e.g., engine or brake control units. The figure also
shows several non-AUTOSAR ECUs (“N”) that are responsible for infotainment
functionalities or communication to the outside world (e.g., GENIVI or Android
ECUs). Finally, the figure shows certain AUTOSAR Adaptive ECUs (“A”) that are
responsible for the realization of advanced car functionalities that usually require
inputs, or provide outputs, to both classic and non-AUTOSAR ECUs, such as car-2-
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X applications. These ECUs are commonly developed following Agile development
methodologies and require more frequent OTA updates and runtime configuration.

Fig. 5.16 Adaptive AUTOSAR vehicle architecture [AUT19g]

Considering the functional drivers for the adaptive platform and the idea behind
the adaptive vehicle architecture explained above, adaptive ECUs are expected to be
designed using the following principles and technologies (the list is not exhaustive):

• Agile development methodology enabling continuous functional growth that
starts with a minimum viable product.

• OTA (wireless) updates of the application software. This enables “on-the-road”
software updates without the need for taking the car to a workshop, thereby
assuring fast software innovations cycles.

• Secured service-oriented point-to-point communication.
• Support for runtime configuration (e.g., via service discovery protocol). This

enables dynamic adaptation of the system based on the available services to
which software components can subscribe to.

• High bandwidth based on Ethernet inter-ECU communication. This enables
faster transmission of large data.

• Switched networks (Ethernet switches). This enables smart data exchange
between different Ethernet buses.
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• Micro-processors with external memory instead of microcontrollers. This
enables higher amounts of memory and peripherals that can be extended.

• Multi-core processors, parallel computing, and hardware acceleration. This
enables faster execution of the vehicle functions.

• Integration with classic AUTOSAR ECUs or other non-AUTOSAR ECUs
(e.g., GENIVI, Android). This enables unanimous design of the heterogeneous
automotive software systems.

• Execution models of access freedom, e.g., full access or sandboxing. This enables
security mechanism for separating running programs from each other, e.g., safety
and security critical programs from the rest.

Based on this, the main high-level differences between the AUTOSAR Adaptive
and Classic Platforms can be summarized as follows:

• Service-oriented communication instead of signal-based communication
between applications (software components).

• Runtime binding of the provided and required service interfaces of the software
components instead of design-time binding.

• C++ language for the implementation of the software components instead of C
(other languages are also allowed but not standardized).

• POSIX (PSE51)-compliant operating system (e.g., off-the-shelf implementations
or Linux or QNX [Bla20]) instead of the AUTOSAR’s operating system. The
PSE51 was chosen to enable portability for the existing POSIX applications.

• GPUs (graphics processing units) together with multi-core CPUs (central pro-
cessing units) for computation instead of usually single-core CPUs (even though
multi-core CPUs are also supported by the AUTOSAR Classic Platform).

• Parallel processing on the same machine (e.g., by means of a hypervisor) instead
of single processing on each machine.

• Ethernet as the only communication bus instead of CAN/Lin/FlexRay as the
main communication buses (Ethernet is also available in the AUTOSAR Classic
Platform and recommended to be used for the communication between the
AUTOSAR Classic and AUTOSAR Adaptive software components).

• Agile (Scrum) software development enabling fast innovation cycles relying on
OTA instead of the development based on the V-model.

• Validation of concepts by prototype implementation (known as the AUTOSAR
demonstrator) instead of “paper” validation (e.g., by means of inspection).

In the next four subsections (5.3.1–5.3.4), we show how the AUTOSAR Adaptive
Platform achieves each one of the four main AUTOSAR objectives described in
Sect. 5.2. These sections correspond to Sects. 5.2.1–5.2.4 which show how the
AUTOSAR Classic Platform achieves the same objectives.
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5.3.1 Reference Architecture

The logical architecture of the AUTOSAR Adaptive Platform running on real
hardware or virtual machine (both referred to as Machines to abstract potential
virtualization) is presented in Fig. 5.17.

Fig. 5.17 Logical architecture: AUTOSAR Adaptive Platform [AUT19a]

The AUTOSAR Adaptive Applications run on top of ARA (AUTOSAR Runtime
for Adaptive applications) which provides interfaces to the functional clusters. ARA
is similar to RTE (Runtime environment) in the AUTOSAR Classic Platform, and its
goal is to abstract the fact that the applications may be running as part of different
processes or Machines. However, in comparison to the AUTOSAR Classic Platform
where RTE usually links services and clients during design time, ARA always links
them dynamically during runtime. The functional clusters realize dedicated platform
functionalities similar to BSW modules in the AUTOSAR Classic Platform, and
they need to have at least one instance per (virtual) Machine. A few examples of the
functional clusters and their functionalities are presented below.

The Execution Management cluster is responsible for the initialization of the
Adaptive Platform and starting up and shutting down of the adaptive applica-
tions. The Diagnostic Management enables diagnostic communication according
to the ISO 14229-1 (UDS) [ISO20] and ISO 13400-2 (DoIP) [ISO19] standards.
Persistency enables adaptive applications to store data in a non-volatile memory.
Communication Management provides means for the adaptive applications (or other
applications using ARA interfaces) to communicate using different communication
protocols, e.g., SOME/IP [AUT19r] and IPC (inter-process communication). The
time synchronization cluster enables the correlation of events by providing them
with the same accurate timestamp.
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The physical architecture of the Machine running AUTOSAR Adaptive Platform
consists of a set of processes executing the adaptive applications and functional
clusters. Each process may consist of one or more threads. Scheduling of these
processes at runtime is done by the Operating System (OS). The AUTOSAR
Adaptive OS does not represent a new OS like it was the case in the Classic
Platform but rather specifies the interfaces that adaptive applications can use from
a POSIX PSE51-compliant OS [AUT19s]. As already mentioned, the common
POSIX-compliant OS used by the AUTOSAR Adaptive Platforms is Linux or QNX.

5.3.2 Development Methodology

As opposed to the main signal-based paradigm of the AUTOSAR Classic Platform,
the AUTOSAR Adaptive Platform is based on the SOA (service-oriented archi-
tecture) [Erl16]. The term “service” is used to denote the functionality provided
by the Adaptive Applications, i.e., not the functionality provided by the functional
clusters. As explained in the previous subsection, the Communication Management
functional cluster provides mechanisms to offer or consume such services for intra-
and inter-machine communication. Each service consists of one or several of the
following elements:

1. Events – occurrence of an event (e.g., update of a certain data or expiration of a
timer) at the server side will trigger the server to inform (when the server decides)
the subscribed clients that the event occurred.

2. Methods – a function executed at the server side upon the request from a client.
3. Fields – a piece of data hosted by the server that is accessible by the clients

(usually via get and set accessors). Clients can also subscribe to the updates of
the fields.

Communication between server and its clients can be established at the design
time (static) or startup/runtime (dynamic). The latter is achieved with the help
of the Service Discovery Protocol that relies on the Service Registry component
of the Communication Management functional cluster that acts as a broker. Each
application that provides services registers them at the Service Registry. A consumer
application needs to find the requested service by querying the Service Registry
which is referred to as the Service Discovery. This process is depicted in Fig. 5.18.

Application 1 (server) registers services at the Service Registry. When Applica-
tion 2 (client) finds a certain service, it can then access its fields, call its methods, or
subscribe to its events or changes to its fields.

Software development process based on the AUTOSAR Adaptive Platform
usually starts by defining the services in the system. The sketch of the process is
presented in Fig. 5.19.

Services are defined in the Service Interface Description files which serve as
input, on the one side, to the development of the services and its methods, fields,
and events (Adaptive Application) and, on the other side, to the configuration of the
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Fig. 5.18 Service registry [AUT19g]
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Fig. 5.19 AUTOSAR Adaptive Platform methodology [AUT19g]

service-oriented communication. Another input to the configuration of the service-
oriented communication is the description of the actual machine (Machine Manifest)
in terms of CPUs and cores. Instantiation of the service interfaces on a CPU core
is described by the Service Instance Manifest. Together with machine hardware, the
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Machine Manifest also describes the OS, functional clusters, and processes available
on this machine. The processes are needed so that the implemented adaptive
applications can be mapped to them in the form of executables. The executables
are described in the Execution Manifest.

Adaptive applications are implemented in the C++ language. A generator that
is part of the development tools for the Communication Management software
generates C++ classes that contain type-safe representations of the fields, events, and
methods for each respective service. On the server side, these generated classes are
called service provider skeletons. On the client side, they are called service requester
proxies [AUT19g].

Service Instance Manifest, Machine Manifest, and Execution Manifest are usu-
ally installed on the target Machine together with the executables. This is done in
order to configure the startup sequence of the Execution Management and the OS
(e.g., scheduling of executables).

5.3.3 AUTOSAR Meta-Model

There is just one AUTOSAR meta-model for both AUTOSAR Classic and Adaptive
Platforms. This is because many modeling concepts are shared between the two
platforms which could also be seen in the examples below. Modeling concepts
from the AUTOSAR Adaptive Platform are structured in the AUTOSAR meta-
model into different “manifests” (as shown in Fig. 5.19) and are described in
the supporting Manifest specification [AUT19m]. Similar to the templates in the
AUTOSAR Classic Platform, the AUTOSAR Adaptive Platform manifests reside on
the M2 layer of MOF [Obj04]. Despite its name, manifest describes both the design
model elements (meta-classes) and the model elements related to deployment.

Instances of the AUTOSAR manifests related to deployment can be uploaded
to the Adaptive Platform Machines to support their configuration, i.e., the actual
configuration can be directly instantiated from the manifests. Therefore, there is no
need for an additional configuration model populated by the upstream mappings
from the manifest instances like it was the case in the AUTOSAR Classic Platform
with the instance of templates.

Similar to the models in the AUTOSAR Classic Platform, the serialization format
of the manifest models is ARXML which can be broken down to several physical
files. It is important to understand that this is just the standardized format and that
in practice other formats can be used as well, e.g., YAML or JSON.

The AUTOSAR meta-model for the Adaptive Platform is divided into the
following four main manifests [AUT19m]:

• Application Design Manifest specifies how to design an application software
running on the AUTOSAR Adaptive Platform. It is not necessary to deploy it
to Machines as it is mostly used as a prerequisite for the deployment of the
application software described in the following two manifests.
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• Execution Manifest is used to specify the deployment of the applications
running on the AUTOSAR Adaptive Platform. It is bundled with the executable
code to support its deployment onto the Machine.

• Service Instance Manifest is used to specify how service-oriented communica-
tion is configured for the underlying transport protocols. It is bundled with the
executable code that implements the respective service-oriented communication.

• Machine Manifest is used to describe the deployment information for the
Machine without any applications running on it. It is bundled with the software
representing the instance of the AUTOSAR Adaptive Platform.

In addition to these manifests, the AUTOSAR meta-model specifies how to
design the automotive software system with both AUTOSAR Classic ECUs and
AUTOSAR Adaptive Machines. This includes the potential mapping of signals
to services to create a bridge between the service-oriented communication of the
Adaptive Platform and the signal-based communication of the Classic Platform.

5.3.3.1 Architectural Design Based on the AUTOSAR Meta-Model

In this section, we show excerpts from the AUTOSAR Adaptive Platform part of the
AUTOSAR meta-model structured into four manifest files presented in Sect. 5.3.1.
The examples of the actual ARXML models (on the M1 layer) of these files are not
presented this time as they instantiate the Adaptive Platform part of the meta-model
in the same way as the ARXML models presented in Figs. 5.10, 5.11, and 5.13
instantiate the Classic Platform part of the meta-model (templates).

We start with Fig. 5.20 which shows a simplified excerpt from the Application
Design Manifest (the meta-classes from the Application Design Manifest are
depicted in dark green color, while the meta-classes from the SwComponentTem-
plate presented also in Fig. 5.9 which are shared between the two platforms are
depicted in light green color).

The excerpt shows AdaptiveSwComponent, a new specialization of the SwCom-
ponent meta-class which is used for representing the software components running
on top of the AUTOSAR Adaptive Platform. It also shows ServiceInterface, a
new specialization of the PortInterface meta-class which is used for representing
the service-oriented communication between AdaptiveSwComponents using their
ProvidedPorts and RequiredPorts. Each ServiceInterface may contain a number of
events, methods, and fields that can be provided by the server AdaptiveSwCompo-
nent or requested by the client AdaptiveSwComponent(s).

The mapping between these two types of AdaptiveSwComponents is usually done
at runtime using Service Discovery as presented in Fig. 5.18, but they can also
be mapped at design time by means of connecting the concrete ServiceInstances
representing ServiceInterfaces deployed to a specific Machine. This is presented
in Fig. 5.21 (the meta-classes from the Service Instance Manifest are depicted in
dark blue color, while the meta-classes from the SwComponentTemplate presented
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Fig. 5.20 Simplified excerpt from the Application Design Manifest

in Fig. 5.9 and SystemTemplate in Fig. 5.12 which are shared between the two
platforms are depicted in light green and light blue color, respectively).
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Fig. 5.21 Simplified excerpt from the Service Instance Manifest
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ServiceInstance is defined by the ServiceInterface through the abstract Servi-
ceInterfaceDeployment meta-class which defines how fields, methods, and events of
this ServiceInstance are bound to a specific transport protocol, e.g., SOME/IP, using
specialized meta-classes. Regarding connections to other parts of the system design,
ServiceInterfaces are on the one side mapped to the Ports of the AdaptiveSwCom-
ponents defined in the Application Design Manifest and on the other side mapped
to the concrete CommunicationConnector (i.e., Ethernet) of the Machine defined in
the Machine Manifest shown below using the corresponding mapping meta-classes.

As already explained, the applications running on top of the AUTOSAR Adaptive
Platform communicate in a service-oriented manner. Due to the fact that the com-
plete automotive system will usually compose of both AUTOSAR Classic ECUs
and AUTOSAR Adaptive Machines, it is also needed to enable communication
between the AUTOSAR Adaptive and AUTOSAR Classic software components. If
an AUTOSAR Classic ECU communicates via SOME/IP on Ethernet in a service-
oriented manner, the communication with an AUTOSAR Adaptive Machine works
without the need for any adaptations. If the AUTOSAR Classic ECU communicates
using signals on traditional automotive buses (e.g., CAN), the translation of the
signals into services needs to be performed, e.g., in an AUTOSAR Classic gateway
ECU. The modeling solution of this translation is presented in Fig. 5.22.
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Fig. 5.22 Simplified excerpt from the mapping of service instances to signals

You can see in this diagram that each event, method, and field of the ServiceIn-
stance are mapped to one ISignal described in Fig. 5.12.

Finally, Fig. 5.23 shows the simplified excerpt from the Machine Manifest and
the Execution Manifest (the relevant new meta-classes are depicted in gray color).



5.3 AUTOSAR Adaptive Platform 129

Machine

Communica�onConnector

CPU Core

ProcessToMachineMapping

ProcessEthernetCommunica�onConnector

Executable

So�wareCluster

UploadablePackageElement

SwComponent

+process 1

+core

1..*

+swComponent

1..*

+executable 1

+connector 0..*

+core 1

+cpu

1..*

+containedProcess

1..*

+uploadableElements 1..*

Fig. 5.23 Simplified excerpt from the Machine and Execution Manifests

Machine Manifest is mostly used for describing CPUs and their Cores that
belong to one Machine. A Machine can commonly be understood as a multi-
CPU/multi-core version of the AUTOSAR Classic ECUs, but this is not always
true as Machines can also represent virtual execution environments (ECUs always
include hardware). Machines are usually connected to Ethernet buses indicated by
their relation to the EthernetCommunicationConnector meta-class.

Execution Manifest is mostly used for two purposes. The first purpose is to define
the Processes executing a number of Executables containing AdaptiveSwCompo-
nents and map them to specific Core (and thereby CPU) on the Machine. The
SoftwareCluster meta-class is used for describing the structure of the executing
software by referencing a number of UploadablePackageElements which can, e.g.,
be ServiceInstances. The second purpose is to describe the startup configuration and
the initialization sequence of tasks. This segment is not covered in this section.
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5.3.3.2 AUTOSAR Manifest Specification

The Manifest specification of the AUTOSAR Adaptive Platform [AUT19m] is
organized in the same way as the template specifications of the AUTOSAR
Classic Platform. This means that it consists of design requirements, constraints,
figures, class tables, and plain text providing additional explanatory description
to the aforementioned items. One difference though is that there is only one
manifest specification in the AUTOSAR Adaptive Platform in comparison to a
dozen of template specifications in the AUTOSAR Classic Platform. Note also that
many concepts (i.e., class tables, requirements, and constraints) from the template
specifications are also used in the manifest specification, as shown in light green and
light blue colors in the figures of the previous subsection.

5.3.4 AUTOSAR ECU Middleware

In comparison to the AUTOSAR Classic Platform which provides M1 models
for the configuration parameters for each basic software module, the AUTOSAR
Adaptive Platform has a different approach. The configuration of the specific
functional cluster modules is described in the Platform Module Development part
of the meta-model and the manifest specification on the M2 layer. The actual
configuration for each functional cluster module can then be directly instantiated
from the meta-classes explained there, so there is no need for the upstream mapping
between models as in the AUTOSAR Classic Platform. A simplified excerpt from
the Platform Module Development part of the meta-model is presented in Fig. 5.24.
(Machine, CPU, Core and ProcessToMachineMapping meta-classes are from the
Machine and Execution Manifests).

A distinction was made between the OS module whose configuration is pro-
vided in the meta-class OSInstallation and related meta-classes and the non-OS
modules whose configuration is provided in the specialized meta-classes of the
NonOSInstallation, e.g., NMInstallation and TimeSyncInstallation, and their related
meta-classes. This distinction was needed as the non-OS modules need to be
mapped to a specific process which is not true for the OS module (e.g., Linux or
QNX) itself.

5.4 AUTOSAR Foundation

The purpose of the AUTOSAR Foundation [AUT19c] is to enable interoperability
between the AUTOSAR Classic and the AUTOSAR Adaptive Platforms. This is
achieved by fulfilling a set of common requirements and technical specifications
provided by this part of the AUTOSAR standard. Examples of the AUTOSAR
Foundation specification are SOME/IP protocol [AUT19r] for communication over
Ethernet, E2E protocol [AUT19f] for safety critical communication, or the descrip-
tion of the general objectives [AUT19p] and requirements [AUT19l] from both
platforms such as decoupling application software from the underlying middleware.
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Fig. 5.24 Simplified excerpt from the Platform Module Development

Similar to the functional description of the basic software modules in the
AUTOSAR Classic Platform, the functional description of the functional clusters
in the AUTOSAR Adaptive Platform is provided in the supporting specifications
containing the functional requirements, APIs, and sequence diagrams. This is also
outside of the scope of this document.

5.5 Further Reading

For those of you who would like to learn the details of the AUTOSAR standard,
it is important to understand that AUTOSAR is a huge standard with over 200
specifications and more than 20,000 requirements, so it is nearly impossible to
become an expert in all of its areas. AUTOSAR’s specifications are divided into
standard and auxiliary specifications, where only standardized specifications are
required to be followed for achieving full AUTOSAR compliance. Nevertheless,
both standardized and auxiliary specifications could be of interest to the readers
who would like to learn the specifics about both AUTOSAR platforms presented
above.

We recommend all AUTOSAR beginners to start reading the Layered Software
Architecture document [AUT19j], as it defines the high-level features of the
AUTOSAR architecture that should be known before diving deeper into other
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specifications. The AUTOSAR’s Methodology specification [AUT19n], covering
both Classic and Adaptive Platforms, could be a natural continuation as it contains
descriptions of the most important artifacts created by different roles in the
AUTOSAR development process. However, it also contains many details that may
not be understandable at this point, so it should be initially skimmed through
focusing on the familiar topics.

The rest of the readings are specific to the interest topic of the reader. Readers
interested in the architectural design of the automotive software systems built on the
AUTOSAR Classic Platform should look into AUTOSAR’s template specifications
(TPS). For example, if you are interested in the logical system/ECU design, you
should take a look at the AUTOSAR Software Component template [AUT19q] in
order to understand how to define the application software components and their
data exchange points. Some general concepts used in all templates could be found
in the Generic Structure template [AUT19i], but it is probably best to follow the
references from the template being read to the concrete section in the Generic
Structure template. This is because understanding the entire document at once could
be challenging. There is no real need to look at the UML model of the AUTOSAR
meta-model as all relevant diagrams are exported to the template specifications.

Readers interested in the architectural design of the automotive software systems
built on the AUTOSAR Adaptive Platform should start by reading the general
description of the goal, methodology, and elements of this platform described in
the Platform Design report [AUT19g]. After reading this and being familiar with
the general modeling concepts of the AUTOSAR Classic Platform, the readers
are ready to look into the Manifest specification [AUT19m] that, among others,
covers the aspects of application design, deployment, and execution of the software
components running on top of the AUTOSAR Adaptive Platform.

Readers interested in the functionalities of the AUTOSAR basic software in the
Classic Platform should read the software specifications (SWS) of the relevant basic
software modules. For example, if you are interested in the ECU diagnostic func-
tionality, you should look at the AUTOSAR Diagnostic Event Manager [AUT19e]
and Diagnostic Configuration Manager [AUT19d] specifications. Requirements
applicable to all basic software modules can be found in the General Requirements
on Basic Software Modules specification [AUT19h]. Similar is true in the case of
interest in the AUTOSAR functional clusters in the Adaptive Platform where, for
example, the SWS specification of Persistency [AUT19o] specifies how to store
information in non-volatile memory, and the SWS specification of Log and Trace
[AUT19k] defines the interfaces for sending logging data on the bus or storing it in
a file system.

On a higher granularity level, the design requirements from the template
specifications (TPS) including the manifest can be traced to the more formalized
requirements from the requirements specifications (RS) documents. Similarly, the
functional basic software requirements and the requirements of the functional clus-
ters from the SWS specifications can be traced to the more formalized requirements
from the software requirements specifications (SRS) documents [MDS16]. RS and
SRS requirements can be traced to even higher-level specifications such as the
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ones describing the general AUTOSAR requirements [AUT19l] and AUTOSAR’s
objectives [AUT19p]. However, we advise AUTOSAR beginners to stick to the TPS
and SWS specifications, at least in the beginning, as these specifications contain
explanations and diagrams needed for understanding the functionalities provided by
AUTOSAR.

There are two additional general recommendations that we could give to the
readers who want to learn more about the AUTOSAR standard. First, AUTOSAR
specifications are not meant to be read from the beginning until the end. It is
therefore recommended to switch between different specifications in search of
explanations related to a particular topic. Second, the readers should always read
the latest AUTOSAR specifications as they contain up-to-date information about
the current features of the AUTOSAR standard. These specifications are available
at the AUTOSAR website [AUT20].

Apart from the specifications released by AUTOSAR, readers interested to know
more about the AUTOSAR standard could find useful information in a few scientific
papers. Related to the AUTOSAR methodology, Briciu et al. [BFH13] and Sung
et al. [SH13] show an example of how AUTOSAR software components shall be
designed according to AUTOSAR, and Boss et al. [Bos12] explain in more details
the exchange of artifacts between different roles in the AUTOSAR development
process, e.g., OEMs and Tier1s.

Related to the AUTOSAR meta-model, Durisic et al. [DSTH16] analyze the
organization of the AUTOSAR meta-model and show possible ways in which it
could be re-worked in order to be compliant to the theoretical meta-modeling
concept of strict meta-modeling. The same authors also explain how the evolution
of the AUTOSAR meta-model can be quantitatively analyzed related to its different
features [DSTH17] and provide a tool for it [DST15]. Additionally, Pagel et al.
[PB06] provide more details about the generation of the AUTOSAR’s XML schema
from the AUTOSAR meta-model, and Brorkens et al. [BK07] show the benefits of
using XML as an AUTOSAR exchange format.

Related to the configuration of the AUTOSAR basic software, Lee et al. [LH09]
explain further the use of the AUTOSAR meta-model for the configuration of
the AUTOSAR basic software modules. Finally, Mjeda et al. [MLW07] connect
the phases of the automotive architectural design based on AUTOSAR and the
functional implementation of the AUTOSAR software component in Simulink.

5.6 Summary

Since its beginnings (2003), AUTOSAR soon became a worldwide standard in
the development of automotive software architectures accepted by the majority
of car manufacturers and their software/hardware suppliers in the world. Until
recently (2017), AUTOSAR focused on supporting the development of traditional
automotive functionalities such as engine and climate control embodied in its
AUTOSAR Classic Platform. Today, AUTOSAR also supports the development of
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functionalities expected from future cars such as autonomous drive and connectivity
to the outside world embodied in the AUTOSAR Adaptive Platform.

In this chapter, we explained the reference architecture defined by both Classic
and Adaptive AUTOSAR Platforms that is instantiated in dozens of car ECUs
(Classic) and Machines (Adaptive). We also showed how different architectural
components are usually developed according to the AUTOSAR methodology. We
showed the role of the AUTOSAR meta-model in the development methodology
of both platforms and the exchange of architectural models between different roles
in the automotive development process. We also described the major components
of the AUTOSAR middleware layer (basic software in the Classic Platform and
functional clusters in the Adaptive Platform) and how they should be configured.

When it comes to the future of AUTOSAR, it is yet to be seen how it will deal
with the new prominent trends in the development of automotive software systems.
One of these trends is increased in-house development by car manufacturers,
reducing the need for several layers of traditional suppliers in the development
process. Another prominent trend is the entrance of Silicon Valley players into
the automotive domain, such as NVidia and Google, with both hardware (e.g.,
high-performance processing units) and software (e.g., algorithms for autonomous
drive and operating systems) with whom traditional car manufacturers would
need to compete and/or collaborate. These trends will undoubtedly put different
requirements on the standardization of automotive software/system architectures.
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Chapter 6
Detailed Design of Automotive Software

Abstract Having discussed architectural styles and one of the major standards
impacting architectural design of automotive software systems, we can now discuss
the next abstraction level—detailed design. In this chapter we continue to dive into
the technical aspects of automotive software architectures and we describe ways
of working when designing software within particular software components. We
present methods for modelling functions using Simulink modelling and we show
how these methods are used in the automotive industry. We dive deeper into the
need for modelling of software systems with Simulink by presenting an example
of the braking algorithm and its implementation in Simulink (the example can be
extended by the Simulink tutorials from Matlab.com). After presenting the most
common design method—Simulink modelling—we discuss the principles of design
of safety-critical systems in C/C++. We also introduce the MISRA standard, which
is a standard for documenting and structuring C/C++ code in safety-critical systems.

6.1 Introduction

Architecting and high-level description of the automotive car software is usually the
domain of OEMs. They decide what they want in their cars and what requirements
they pose on their software system and electrical system. OEMs are responsible for
breaking requirements on the system level to requirements on particular software
components.

However, detailed design of software components and their subsequent imple-
mentation is the domain of suppliers (both Tier-1, Tier-2 and Tier-3) or in-house
software development teams. It is these suppliers and in-house development teams
that understand the requirements of the components, design the architecture of the
components, implement the software, integrate it and then test it before delivering
to the OEMs.

In this chapter we go through the principles of detailed design of automotive
software. We start by describing the method used widely—Simulink modelling—
then move to the principles of programming of safety-critical embedded systems and
finally discuss principles of good programming according to the MISRA standard.
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Fig. 6.1 Designing using
Simulink models—a
conceptual overview

Physical process model
(equation)

Simulink process model
(diagram)

Target platform code
(program)

void brake(int i_force, int i_mass) 
{ 

{ 
f_speed -= i_force / i_mass  

} 
}

STOP

6.2 Simulink Modelling

The models used in the design of automotive software often reflect the behavior of
the function of a car and therefore, as such, are created in formalisms which reflect
the physical world rather than the software world.

This kind of designing has implications on the design process and the compe-
tence of the designers. The process is shown in Fig. 6.1

First of all, the process starts by describing the function of a car as a mathematical
function in terms of its input, and outputs, with the focus on data flow. This means
that the designers often operate with mathematical models to describe the function
of a car. For instance, in order to describe the Anti-lock Breaking System (ABS,
a well-known example from Matlab/Simulink), the designers need to describe the
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physical processes of wheel slippage, torque and velocity as a function (or functions)
of time. When the mathematical descriptions are ready, each of the equations is
translated to a set of Simulink blocks.

When translating the mathematical equations into Simulink blocks, transitions
and functions, the designers focus on the flow of the data and the feedback loops
present there. For example, in the ABS example the slippage of the wheel depends
on the speed and the speed depends on the slippage. These feedback loops are
present in the model. In more advanced cases, the designers need to write pieces
of code in Matlab to describe some of the functions which are not available in the
standard Simulink libraries.

Once the model is completed and tested, it is used to generate the code in the
target programming language—usually C or C++, depending on the system.

In this section we go into more depth about this process.

6.2.1 Basics of Simulink

Simulink has a rich library of functions and blocks which help the designers to
model their systems. We present the main blocks and describe their usage.

The basic principle of each Simulink model is that it starts with the source and
ends with a sink, which means that there is data flowing through a number of steps
in the process, starting from the source and ending in the sink.

The usual sources of the data are the function blocks or the step blocks. The usual
sinks in the model are either scope blocks (for observing the outcome) or the output
ports of the models.

6.2.1.1 Sources

The model usually “starts” with the step block, which provides the basic input to the
entire model and allows for its simulation. The standard source blocks are shown in
Fig. 6.2. The figure shows only a subset of the most commonly used source blocks
in automotive software design.

The meaning of these blocks is:

• Constant—generates the signal of a constant value.
• Clock—generates the signal which is the current time of the simulation.
• Digital clock—generates the simulation signal at specific periods of time.
• Pulse generator—generates a pulse, where all parameters can be specified.
• Ramp—generates a signal which is constantly increasing or decreasing at a

specified rate.
• Random number—generates a random number for the simulation.
• Signal generator—generates some of the most commonly used signals such as a

Sine wave or a specific function.
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Fig. 6.2 Simulink basic
blocks—sources of signals in
the Simulink model

Pulse
Generator

Signal
Generator

Step

untitled.mat simin

From
Workspace

From File

Ramp Random
Number

Uniform Random
Number

• Step—generates a discrete step signal of which the value and frequency can be
specified.

• Uniform random number—generates a random number which is evenly dis-
tributed over a specified interval.

• From file—generates a set of signals which are stored in a file (which can be the
result of simulations from other models).

• From workspace—similar to from a file, but with signals that do not store the
time.

The source blocks can provide the input signals in terms of continuous signals
(e.g. a Sine wave), discrete signals (e.g. Step blocks), random signals (e.g. random
number) or a predefined sequence (e.g. from File).

6.2.1.2 Commonly Used Blocks

The blocks which are collected under the category of the most commonly used
blocks are:

• Gain—gives the output as a multiplication of the input (the multiplier is specified
by the designer).

• Product—gives the output as the product of two inputs (e.g. signals).
• Sum—similar to the Product block, but shows the output as the sum of two

signals.
• Saturation—imposes upper and lower limits on the input signal.
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Fig. 6.3 Simulink commonly
used blocks
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• Subsystem—a block representing a subsystem (e.g. an embedded model). This
type of block is used very often to structure models into hierarchies and to use
one model as part of another one.

• Out1—models a signal that goes outside of the current model (e.g. to another
model).

• In1—the opposite to Out1—used to take the signal from outside of the current
model into the simulation.

• Integrator—where the output is the integral of the input.
• Switch—a block which chooses between the first and the third input based on the

value of the second input.
• Terminator—a block used to capture signals which do not connect to other

blocks.

The graphical symbols for these blocks are shown in Fig. 6.3.
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Fig. 6.4 Simulink model sink blocks

Function block encapsulating a Matlab function (e.g. u y

MATLAB Function

fcn

Fig. 6.5 Simulink basic blocks—Matlab function encapsulation in the Simulink model

6.2.1.3 Sinks

The standard blocks that are used as sinks of the models are:

• Display—the current value of the step of the simulation at specific location of the
simulation.

• Scope—diagram showing the display as a function of time of the simulation.
• Stop—stopping the simulation when the signal is other than zero.
• To file—sending the signal to the specified file.
• To workspace—storing the signal without the time variable.
• XY graph—diagram used to plot two signals against each other (instead of

against time).

The graphical representation of these blocks is presented in Fig. 6.4.
In the design of physical processes it is often the case that we need to describe

a process as a mathematical function. The Matlab environment is well suited for
that purpose and the Simulink environment can take advantage of all built-in and
user-defined functions. The basic block used for that is presented in Fig. 6.5.
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> 0

Digitalize signal 

Fig. 6.6 Digitalization of a signal value as designed in Simulink

Fig. 6.7 Specification of the digitalization function in the Digitalize signal block

6.2.2 Sample Model of Digitalization of a Signal

Let us now focus on designing a simple Simulink model which converts an analog
signal to a digital one. This process can be described in Formula 6.1.

f (x) =
{

1, if x > 0

0, if x ≤ 0
(6.1)

This equation corresponds to the Simulink model presented in Fig. 6.6.
The equation is specified in the middle block—the “Compare to constant” block

named “Digitalize signal”, as shown in Fig. 6.7.
The main part of the figure is the two options—Operator and Constant. They are

also shown in the icon in Fig. 6.6.
Now that we have the digitalization function, we need to package that into a

block with two ports—input and output. We can also add an example function that
will generate a signal used to test the block—as presented in Fig. 6.8.

Figure 6.8 shows three blocks: The sine wave function (left-hand side) generates
the signal to digitalize; the scope block (right-hand side) is used to visualize the
results of the simulation. The scope block has two inputs—one from the sine
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x y

Digitalization of a sin wave functionSine Wave
Function

Scope

Fig. 6.8 Making the digitalization into a Simulink block

Fig. 6.9 The result of the simulation visualized as two parallel diagrams—the digitalized result at
the top and the original input as provided by sine wave source at the bottom

wave function itself and one from the digitalization function. These two inputs are
visualized in two diagrams after the simulation, as shown in Fig. 6.9.

The newly designed block contains the diagram presented in Fig. 6.6 and is
named “Digitalization of a sin wave function”.

The model presented in this example is naturally very simple and illustrates the
simplicity of using Simulink to model a mathematical equation. Now, this particular
equation is about the process of digitalization of a signal, which is not based on
physical processes in real life. The model also does not contain such elements as
the feedback loop important in designing of control systems (which we expand on
in the upcoming sections).

The next step in the design of a system based on the digitalization block is to
generate the C/C++ code from the model. The code generated from this Simulink
model has the property that it is hard to read for a human being and therefore the
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Fig. 6.10 Code report for the digitalization function

Simulink environment provides a report about what has been generated. The report
for this model is presented in Fig. 6.10.

The report guides us to all the files that were generated (“Model files” in the
left-hand side of the figure) and provides the summary in the main window.

The actual piece of code can look like the code presented in Fig. 6.11. The code
in the figure presents a C structure with the initialization of the blocks (e.g. the sine
wave parameters and the digitalization threshold “0”).

6.2.2.1 Comments on the Sample Model

In this simplistic example we managed to see the power of Simulink and at the same
time we managed to follow the process of designing automotive software as shown
in Fig. 6.1. In the design of the automotive software we have libraries which take
care of this kind of process. These libraries, however, are part of the lowest layers of
automotive software and can be seen in the architecture diagram of a communication
layer in the CAN bus communication.
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Fig. 6.11 Generated source code for the initialization of the block

Fig. 6.12 Relation between linear and wheel velocity

6.2.3 Translating Physical Processes to Simulink

The example with the digitalization of the signal is rather trivial and has no
physical process that is modelled. However, in most cases of Simulink modelling
in automotive software, we have such models.

To illustrate that such processes are modelled both as mathematical equations
and as Simulink blocks, let us consider an example of calculating the linear velocity
of a wheel based on its wheel velocity and vice versa. Figure 6.12 shows the relation
between these two kinds of velocity for a wheel of radius “radius”.

The equations describing the relation between the two velocities are:

v = ω ∗ radius (6.2)
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Fig. 6.13 Simulink model calculating the linear velocity
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Fig. 6.14 Simulink model calculating the wheel velocity

and

ω = v

radius
(6.3)

Both of the equations are rather simple and let us now build the model which will
take two scalar values and calculate the linear velocity. The model is presented in
Fig. 6.13.

The model consists of two scalar values (wheel speed and radius), their product
and the display sink. Executing the model displays the result in the display sink.

The model which calculates wheel velocity based on linear velocity requires
changing the product to be a fraction instead. The resulting model is presented in
Fig. 6.14.

The properties of the product block are changed as presented in Fig. 6.15.
In the “Number of inputs” field we make a change, which denotes division

instead of multiplication.
Before we move to another example, let us illustrate another important concept

in the design of control systems using Simulink—feedback loops. The concept of a
feedback loop is often used in control systems to design self-regulating systems. In
Fig. 6.16 we can see an example of a simple feedback loop.

In the figure we can see that the loop takes a signal directly from the output of
the summation and puts it back with a delay. The delay is needed in order to make
sure that the first iteration of the simulation has the initial value in the summation.
The properties of the delay block are shown in Fig. 6.17
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Fig. 6.15 Properties of the product block

start_value

Delay

+
+

Scope

Z–1

1

Fig. 6.16 Properties of the product block

The important part is the “Delay length” property, which denotes how many
simulation cycles the input signal is postponed. Once we execute the simulation,
we can see that the summation results in the gradual increase of the signal as shown
in Fig. 6.18.
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Fig. 6.17 Properties of the product block

6.2.4 Sample Model of Car’s Interior Heater

Now let us look into a bit more complex model—the heater of a car. The model
introduces the feedback loop and has been inspired by the house heating model from
the Matlab Simulink standard model library, but has been simplified to illustrate only
the most important aspects of modelling systems with the control loop.

In general the model of a heater contains three components, which we will turn
into blocks:

• Car interior—describing the temperature of the car’s interior, including heat loss
• Heater—describing the heater, its on/off status and the heating temperature
• Thermostat—describing the switch for the heater

There are two inputs to this simulation model—the outdoor temperature and the
desired temperature of the interior.

Let us start with modelling the heater itself. The heater has an on/off switch
for the flow of the air as well as the heater element. This means that when it is
switched on, it blows hot air at a given temperature into the interior compartment of
the modelled car. A simple model can look as in Fig. 6.19.
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Fig. 6.18 Results of the simulated feedback result
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Fig. 6.19 Heater model

In this model the heater blows hot air of temperature 30 ◦C at a given rate
(modelled as Gain K). The gain block is configured as shown in Fig. 6.20.

The two constants that are multiplied by each other are (i) the air flow per hour,
which we assume is a constant rate of 1 kg/s, which gives 3600 kg/h, and (ii) the heat
capacity of the air, which is 1005.4 J/kg-K at the room temperature (in our model).

We need to make a small observation here—the values which we use in the model
are mostly constant, as we want to illustrate how to design an algorithm in Simulink.
However, in real life the challenge is to model these constants as functions. For
example, we assume the heat capacity of air to be constant, which is not accurate
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Fig. 6.20 Heater model—gain block properties

1

In1
Relay

Out1

1

Fig. 6.21 Switcher model

as it changes with the temperature of the air. The flow rate of the heater is also not
constant as when the heater starts the fan needs some time to start spinning and
therefore the flow rate changes. In reality we could have two equations modelling
these two processes and use them as input instead of providing constants.

Now, let us move over to the model of the switch of the heater, which needs to
switch on and off the heater based on the difference in the temperature outside of
the car. Let us configure the on/off deviation to be 3 ◦C compared to the desired
temperature. We can use the relay block to model that, as shown in Fig. 6.21.

The properties of the relay are the on/off criteria (+/– 3◦) and the output signal
for on (1) and off (0), as shown in Fig. 6.22.

The next step is to link both blocks together as shown in Fig. 6.23. The link has to
connect the input on/off port of the heater to the output on/off port of the switcher.

Now, we need to model the environment and the feedback loops before we go
into modelling the car’s interior. In particular we need to model the calculation of
the temperature difference between the interior and the desired temperature. We
do it by adding a proxy for the car (an empty subsystem), which we will design
in the next steps by adding the summation component to calculate the difference
between the desired and the current temperature. We also need to add a constant
which configures the model with the desired temperature. We do it by adding a
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Fig. 6.22 Switcher model—relay properties
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Fig. 6.23 Linking the heater to the switcher

constant block and setting the temperature to 21 ◦C. The resulting model is presented
in Fig. 6.24

The model has one port which is not connected—it is the current temperature
port of the heater; we need to connect this to a signal from the interior of the car.

Now, we need to model the actual temperature of the car’s interior. The
temperature of the car’s interior is the same as the temperature outside (which
we need to add to our model) and increases as the heater blows in the hot air.
The increase of the temperature of the interior can be described by the following
equation:

dT empcar

dt
= 1

Mair ∗ 1005.4J/kg − K
∗

(
dQheater

dt

)
(6.4)
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Fig. 6.24 First version of the air heater model with the feedback loop
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Fig. 6.25 Model of the interior of the car

Now, for a normal car, the mass of the air (Mair ) is a product of the volume of
the car’s interior and the density of the air (a constant of 1.2250kg/m3). In order to
simplify things, let’s say that the volume of a personal vehicle’s interior is 3 cubic
meters, which, multiplied by the density of the air gives 3.675 kg as the mass of the
air. Now we have a model which looks like the one in Fig. 6.25.

In the model we use the gain block to increase the temperature and the integrator
to set the initial temperature. We also add the feedback loop to make the increase in
the temperature similar to a loop in a programming language. Inside the gain block
we put the calculated increase in temperature as shown in Eq. 6.4, resulting in the
configuration shown in Fig. 6.26

When we connect all the elements, we get the following model—Fig. 6.27.
When we look at the plot of the temperature over time we can see the result as

shown in Fig. 6.28
Now we can see that the model is too simplistic. The temperature of the car’s

interior goes up from the initial value of 1 and then stays at the constant level. It
is because our model of the car’s interior takes into consideration only the heating
process of the interior, at the same time ignoring the process of chilling the interior
when the heater is not working. In order to fix that without complicating the model
too much, let us add a feedback loop after the gain block, in the way shown in
Fig. 6.29

Once we make this addition, we can see that the temperature of the car’s interior
drops when the heater is not powered on, as shown in Fig. 6.30
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Fig. 6.26 Properties of the gain block in the interior
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Fig. 6.27 Heating-only model of the car’s heater

6.2.4.1 Summary of the Heater Model

The heater model presented in this section is a simplistic model with a feedback
loop and illustrates a few important principles which make Simulink modelling so
popular in software development.

Once the model is somewhat complete, the designers can execute the model and
observe the results. As the “Scope” sink can be placed virtually at any signal, it is
easy to debug the models and to understand where it does not work (if needed).

Another principle is the ability to make the model modular. The designers can
use constants and assumptions during early prototyping phases of their software
development. As the development progresses and the designers know more about
the physical processes, they can replace constants with calculations of values using
blocks and Matlab functions. These functions can be developed either analytically
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Fig. 6.28 Result of a simulation of the heater model
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Fig. 6.29 Model of the interior with cooling effect

based on the designer’s knowledge of the physical processes or they can be done
using mathematical regression and statistical modelling techniques.

And finally the ability to generate source code which can be executed on target
platforms. If a model can be executed, then the code for it can be generated, which
is a very big help for automotive software engineers.

6.3 Simulink Compared to SySML/UML

SySML is a notation based on the Unified Modelling Language (UML). Compared
to the Simulink notation, it is different and neither of them has a specific software
development process which the notation supports. However, in practice these two
notations support different development processes. In Fig. 6.31 we outline these
differences per phase of software development.
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Fig. 6.30 Result of the simulation with the cooling effect
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Fig. 6.31 Simulink and SySML process models comparison

In the analysis phase these two notations support different types of analysis
and modelling. Simulink is based on describing the system using mathematical
equations (as we saw in the examples in this chapter) whereas SySML/UML use
conceptual models and class diagrams (with low level of detail). The models created
in SySML/UML are intended to be high level and non-executable whereas the
mathematical models need to be rather complete as they will be used in modelling
in the design phase.

In the design phase the main goal is to develop a detailed model of the software
and there these two notations differ significantly. In SySML/UML the main entities
are classes (corresponding to programming language classes/modules), statecharts
and sequence diagrams. Although the SySML/UML notations provide more types of
diagrams than these three, these three are by far the most popular ones. In Simulink
the primary entities are blocks and signals, as we saw in the examples in this chapter.

The implementations of the two designs differ significantly—Simulink usually
results in 100% code generation. The generated code can be compiled and executed.
The SySML/UML notations usually do not result in full code generation, but in so-
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called skeleton code. The skeleton code needs to be complemented by the designers
with manually written code in the target programming language.

Once the designs are implemented, they are tested, which in Simulink happens
through simulations (sometimes using test environments to execute the simulations),
whereas for the SySML/UML generated code, the code is tested in a traditional
manner, e.g. using unit tests.

The SySML/UML languages are often called architectural languages because
they come from the field of object-oriented analysis and design and focus on the
conceptual modelling of objects in the real world. This means that the main part
of the effort is on the development of the design models, because all details of the
target programming language have to be taken into consideration—otherwise we
cannot generate the code. Therefore we can see that in the automotive domain these
languages are often used to specify logical component architectures, whereas the
detailed design of automotive systems is done using Simulink.

6.4 Principles of Programming of Embedded Safety-Critical
Systems

Safety-critical systems have entered the automotive industry quite recently com-
pared to the aviation and space industry [Sto96, Kni02]. Historically, the aviation
industry and the space industry relied on the Ada programming language due to its
well-defined semantics and mechanisms for parallel programming.

In the telecommunication industry engineers use functional programming lan-
guages such as Haskell or Erlang, even if the safety criticality is not that crucial
there.

In the automotive industry, however, it is the generated C/C++ code which is
the most common. C/C++ have the advantage of being relatively well known by
the software engineering community, relatively simple if needed and with good
compiler support. In practice this means that the code can be ported easily between
different operating systems, as the majority of the safety critical OSs have the Unix
kernel at their core.

The operating systems often used in automotive software are VxWorks and
QNX, which are relatively simple, with great schedulers and task handlers. It
is their simplicity that allows the designers to retain a large degree of control
over the programs and therefore makes them so popular. The AUTOSAR standard
standardizes a number of elements of the underlying operating systems, as discussed
in Chap. 4.

As the software system of the car is distributed over multiple ECUs, it is
the communication between the ECUs which is important. From the designer’s
perspective this communication means that there are signals exchanged between
different software components and state machines need to be synchronized. Often,
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in the programming language this means that the messages are packaged as
packages or sent using sockets.

From the physical perspective the designers have a number of different commu-
nication protocols available, such as:

• CAN bus—Specified in the ISO standard [Org93], it is currently the most
frequently used bus in the automotive industry. It allows us to send messages
with a speed of up to 1 MBps, which allows to send even video streams in the
car’s bus (e.g. from the parking camera). The standard is popular because of its
relatively simple architecture and specifications of the MAU (Medium Access
Unit) and the DLL (Data Link Layer) parts.

• Flexray bus—Specified in the ISO 17458 standard, is one of the possible future
directions of development in the automotive industry. It allows communications
with a speed of up to 10 Mbps over a similar type of wiring and has two
independent data channels (one for fault tolerance).

• Ethernet bus—Used throughout the internet for communications, it is now being
considered for speeds of up to 1 Gbps. At the time of writing of this book
the protocol is used for downloading new software to ECUs for many car
manufacturers and for communications during driving some cars. As the protocol
is prone to electrostatic distortions, the majority of the manufacturers are waiting
for more mature specifications before they start using this protocol more widely
in their electrical systems.

• MOST bus—Used in the automotive industry for sending/receiving multimedia-
related content (e.g. video and audio signals). The communication speeds are up
to 25–150 Mbps depending on the version of the standard.

• LIN bus—used for low cost communications with speeds of up to 20 Kbps
between mechatronic nodes in the car.

In the design of the automotive systems, the architects usually decide upon the
topology of the network and its communication buses rather early. As we can see
from the description of each of these protocols, they are aimed at different purposes
and therefore their choice is rather straightforward.

6.5 MISRA

When designing the software for automotive applications, we need to follow certain
design guidelines. The automotive industry has adopted the MISRA-C standard
where the details of the design of computer programs are in the C programming
language [A+08]. The standard contains the principle of how to document embed-
ded C code—in terms of naming conventions, documentation and the use of certain
programming constructs. The rules are grouped into such categories as:

1. Environment—rules related to the programming environment used in the
development (e.g. mixing of different compilers).
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2. Language extension—rules specifying which types of comments are to be used,
enclosing assembly code or removing commented code.

3. Documentation—rules defining which code constructs should be documented
and how.

4. Character sets—usage of ISO C character sets and trigraphs.
5. Identifiers—defining the length and naming convention of identifiers as well as

the usage of typedef.
6. Types—the usage of the “char” type, the naming convention of new types and

the usage of bit fields.
7. Constants—preventing the usage of octal constants.
8. Declarations and definitions—rules about the explicit visibility of types of

functions and their declarations.
9. Initialisation—rules about default values of variables at their declaration.

10. Arithmetic type conversions—describing implicit and explicit rules for type
conversions as well as the dangerous conversions.

11. Pointer type conversions—rules regarding the interchangeability of different
types of pointers.

12. Expressions—rules about the evaluation of arithmetical expressions in pro-
grams.

13. Control statement expressions—rules about the expressions used in for loops,
explicit evaluations of values to Boolean (instead of 0).

14. Control flow—rules about the dead code, null statements and their location and
prohibited goto statements.

15. Switch statements—rules about the structure of the switch statements (a subset
of possible structures from the C language).

16. Functions—rules prohibiting such unsafe constructs as variable argument lists
or recursion.

17. Pointers and arrays—rules about the usage of pointers and arrays.
18. Structures and unions—rules about the completeness of union declarations and

their location in memory; prohibiting the usage of unions.
19. Preprocessing directives—rules about the usage of #include directives and C

macros.
20. Standard libraries—rules about the allocation of heap variables, checking

the parameters of library functions and prohibiting certain standard library
functions/variables (e.g. errno).

21. Run-time failures—rules prescribing of usage of static analysis, dynamic
analysis and explicit coding for avoiding runtime failures.

The MISRA rules are often encoded in the C/C++ compilers used in safety-
critical systems. This inclusion in compilers makes it rather simple and straightfor-
ward and therefore widely used.

The MISRA standard was revised in 2008 and later in 2012, leading to the
addition of more rules. Today, we have over 200 rules, with the majority of them
classified as “required”.
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Let us now analyze one of the rules and its implications—we take rule #20.4:
“Dynamic heap memory allocation shall not be used.” This rule in practice prohibits
dynamic memory allocations for the variables. The rationale behind this rule is the
fact that dynamic memory allocations can lead to memory leaks, overflow errors and
failures which occur randomly. Taking just the defects related to the memory leaks
can be very difficult to trace and thus very costly. If left in the code, the memory
leaks can cause undeterministic behavior and crashes of the software. These crashes
might require restart of the node, which is impossible during the runtime of a safety-
critical system. Following this rule, however, also means that there is a limit on the
size of the data structures that can be used, and that the need for memory of the
system is predetermined at design time, thus making the use of this software “safer”.

6.6 NASA’s Ten Principles of Safety-Critical Code

The United States-based NASA has a long tradition of developing and using safety-
critical software. In fact, much of the initial reliability research has been done in the
vicinity of NASA’s Jet Propulsion Laboratory. The reason for that is that NASA’s
missions often require safety-critical software to steer their devices such as space
shuttles or satellites.

In 2006 Holtzman presented ten rules of safety-critical programming, which
come from NASA, but apply to all safety-critical software [Hol06]. These rules
are (the original wording of the rules is kept):

1. Restrict all code to very simple control flow constructs, do not use goto
statements, setjmp or longjmp constructs, direct or indirect recursion.

2. Give all loops a fixed upper bound. It must be trivially possible for a checking
tool to prove statically that the loop cannot exceed a preset upper bound on the
number of iterations. If a tool cannot prove the loop bound statically, the rule is
considered violated.

3. Do not use dynamic memory allocation after initialization.
4. No function should be longer than what can be printed on a single sheet of paper

in a standard format with one line per statement and one line per declaration.
Typically, this means no more than about 60 lines of code per function.

5. The code’s assertion density should average to minimally two assertions per
function. Assertions must be used to check for anomalous conditions that
should never happen in real-life executions. Assertions must be side effect-free
and should be defined as Boolean tests. When an assertion fails, an explicit
recovery action must be taken, such as returning an error condition to the caller
of the function that executes the failing assertion. Any assertion for which a
static checking tool can prove that it can never fail or never hold violates this
rule.

6. Declare all data objects at the smallest possible level of scope.
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7. Each calling function must check the return value of non-void functions, and
each called function must check the validity of all parameters provided by the
caller.

8. The use of the preprocessor must be limited to the inclusion of header files and
simple macro definitions. Token pasting, variable argument lists (ellipses), and
recursive macro calls are not allowed. All macros must expand into complete
syntactic units. The use of conditional compilation directives must be kept to a
minimum.

9. The use of pointers must be restricted. Specifically, no more than one level
of dereferencing should be used. Pointer dereference operations may not be
hidden in macro definitions or inside typedef declarations. Function pointers
are not permitted.

10. All code must be compiled, from the first day of development, with all compiler
warnings enabled at the most pedantic setting available. All code must compile
without warnings. All code must also be checked daily with at least one, but
preferably more than one, strong static source code analyzer and should pass
all analyses with zero warnings.

These rules are naturally captured by the MISRA rules and show the similarity
of safety-critical systems regardless of the application domain. The “heart” of these
rules is that the safety-critical should be simple and modularized. For example, the
length of a typical function should be less than 60 lines of code (principle #4), which
is supported by the limits of the maintainability of large and complex code.

What these principles also show is the difficulty of automatically checking for
their violation. For example, the principles #6 (“Declare all data objects at the
smallest possible level of scope”) requires parsing of the code in order to establish
the boundary of the “smallest possible level of scope”).

6.7 Detailed Design of Non-safety-Critical Functionality

In the previous sections we focused on designing software which is often considered
safety-critical to various extents. However, there is a significant amount of software
in modern cars which is not safety-critical. One of such non-safety-critical domains
is the infotainment domain, where the main focus is on connectivity and user
experience of the interface. Let us look into one of the standards in this domain—
GENIVI [All09, All14].

6.7.1 Infotainment Applications

The GENIVI standard is built upon a layered architecture with five basic layers, as
shown in Fig. 6.32.
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Fig. 6.32 GENIVI layered architecture overview

In the GENIVI architecture the top layers are designated to the user applications,
which in turn can expose their services to one another. The standard itself, however,
focuses on the basic and high-level functions [All15]. The following areas are
included in the reference architecture:

• Persistence—providing persistent data storage
• Software management—supporting such functionality as SOTA (Software-Over-

The-Air) updates
• Lifecycle—supporting the start-up and shutdown of the system
• User management—supporting multiple users and their profiles
• Housekeeping—supporting error management
• Security infrastructure—supporting cryptography and interactions with hardware

security modules
• Diagnostics—supporting the diagnostics as specified in ISO 14229-1:2013
• Inter-Process Communications (IPC)—supporting communication between pro-

cesses (e.g. message brokers)
• Networks—supports the implementation of different vehicle network technolo-

gies (e.g. CAN)
• Network management—supports the management of network connections
• Graphics support—providing graphics libraries
• Audio/Video processing—providing codecs for audio and video playback
• Audio management—supporting the streaming and prioritizing streams of audio
• Device management—providing support for devices via (for example) USB
• Bluetooth—providing the Bluetooth communication stack
• Camera—providing the functionalities needed for vehicle cameras (e.g. rear-

view camera)
• Speech—supporting voice commands
• HMI support—provides the functionality to handle user interactions
• CE Device integration—supports such protocols as CarPlay
• Personal Information management—supporting the basic functionality of

address book and passwords
• Vehicle interface—provides the possibility to communicate with other vehicle

systems
• Internet functions—provides the support for internet, e.g. web browsing
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• Media sources—provides support for media sharing such as DLNA
• Media framework—provides the generic logic of media players
• Navigation and Location Based Services—supporting the navigation systems
• Telephony—provides the support for telephony stack
• Radio and tuners—provides the support for radio

The above list shows that the GENIVI reference architecture is a large step
towards standardization of the internals of infotainment systems, which will allow
users to use common software ecosystems rather than OEM-specific solutions.

Today we can see the GENIVI implementation in many car platforms, such as
BMW with the system from Magneti Marelli (according to the GENIVI website).
The standard ADL for the GENIVI applications is the Franca IDL which is used for
defining interfaces in GENIVI software components.

6.8 Quality Assurance of Safety-Critical Software

Quality assurance of automotive software follows a number of standards, one of
them being the ISO/IEC 25000 series of standards [ISO16]. The usual way that
the standards describe the quality is that they divide the quality into a set of
characteristics and a set of perspectives. The three perspectives on software quality
are:

1. External software quality—describing the quality of the software product in
relation to its requirements (hence the classification as “external”).

2. Internal software quality—describing the quality of the software in relation to
the construction of the software (hence the classification as “internal”).

3. Quality in use—describing the quality of the software from the perspective of its
users (hence the classification as “in use”).

In this chapter we focus on the internal quality of the software and the methods
to monitor and control the internal quality—formal methods for verifying the
correctness of the software and static analysis for verifying properties of software
such as complexity. Testing as a technique for finding defects has been discussed in
Chap. 3.

6.8.1 Formal Methods

Formal methods is a term used to collectively denote a set of techniques for
specification, development and verification of software using formalisms related to
mathematical logic, type theories, and symbolic type executions.
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In the automotive domain formal methods are required during the verification
of ASIL D components (classified according to the ISO/IEC 26262 standard; see
Chap. 8).

The verification in the formal way often follows a strict process where the
software is specified using a formal notation (e.g. a VDM) and then gradually refined
into source code of the program. Each step is shown to be correct and therefore the
software is formally proven to be correct.

6.8.2 Static Analysis

Another method for assuring the internal quality of automotive software is the static
analysis [BV01, EM04]. Static analysis refers collectively to a set of techniques
for analyzing the source code (or the model code) of a software system. The
analysis aims at discovering vulnerabilities in the software code and violations
of programming good practices. Static analysis in the automotive systems usually
looks for violations of MISRA rules and good coding rules.

In addition to the MISRA rules, the static analysis often checks for the following
(examples):

• API usage errors, for example, using of private APIs
• Integer handling issues, for example, potentially dangerous type casts
• Integer overflows during calculations
• Illegal memory accesses, for example, using of pointer operations
• Null pointer dereferences
• Concurrent data access violations
• Race conditions
• Security best practices violations
• Uninitialized members

In order to analyze a program statically no execution is needed and therefore this
technique is very popular. The majority of static analysis tools do not need the code
to actually execute and therefore there is no requirement for the code to be complete
and runnable, which is the case for formal analysis (e.g. symbolic execution) or
dynamic analysis.

An example screenshot from one of the tools for static analysis (SonarQube) is
presented in Fig. 6.33.

In the figure we can see the development of complexity per module. The
complexity has direct impact on testability (higher complexity, lower testability),
and therefore it is an important parameter of the internal quality of the software.

Another view is presented in Fig. 6.34. The figure presents a custom view on the
quality—complexity per class and percentage of duplicated (cloned) code.

SonarQube can be expanded with the help of plug-ins to include multiple
programming languages and analyses; it can also be extended by custom plug-ins.
However, this lack of execution of software during analysis has its limitations. It
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Fig. 6.33 Screenshot from SonarQube static analysis software

Fig. 6.34 Screenshot from SonarQube static analysis software, customized dashboard
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Fig. 6.35 Screenshot from XRadar static analysis software

cannot check for such problems as deadlocks, data race conditions and memory
leaks.

Another example of a tool used for static analysis from the open source domain
is the XRadar tool, which includes both the static and dynamic execution analysis.
An example screenshot is presented in Fig. 6.35.

If the software development is done in the Eclipse environment (www.eclipse.
org) then there are over 1000 plug-ins which provide the ability to statically analyze
the software code. Many of these plug-ins implement the MISRA standard checks.

6.8.3 Testing

Testing is also a very well-known technique which should be mentioned here.
However, we’ve already discussed it in Chap. 3.

6.9 Further Reading

Readers who are interested in more hardware-software integration and programming
for automotive systems can study the book by Schauffele and Zurawka [SZ05].
They describe in more detail the concepts used in the detailed design of automotive
software, such as timing analysis and hardware-oriented programming.

www.eclipse.org
www.eclipse.org
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A good read for software engineers who move into the field of automotive
software design is the book chapter by Saltzmann and Stauner [SS04], who describe
the specifics of automotive software development compared to non-automotive
development.

For modelling in Simulink the best resource is the website of Matlab with its
numerous tutorials—www.matlab.com. In order to strengthen one’s understanding
of the process of translating the physical world to the Simulink models, we
recommend the tutorial from https://classes.soe.ucsc.edu/cmpe242/Fall10/simulink.
pdf.

More advanced readers who are seeking methods for optimizing Simulink
models should look at the article by Han et al. [HNZ+13], who focus on that topic
discussing areas such as, for example, hydraulic servo mechanism. Another good
read in this direction, about detection of model smells, is the paper by Gerlitz et al.
[GTD15].

The MISRA standard is a well-known one, but it has been developed taking
into consideration NASA’s 10 rules of safety-critical programming [Hol06]. The
rationale and empirical evidence of using smaller sets of language constructs in
safety-critical systems can be found in the article by Hatton [Hat04].

Readers who are interested in a more detailed description of programming
languages and principles used in safety-critical programming can refer to Fowler’s
compendium [Fow09] or to the classical position by Storey [Sto96]. We also
recommend our previous work on the evolution of complexity of automotive
software [ASM+14] and its impact on reliability [RSM+13].

Using formal methods in the design of automotive software has been shown to be
efficient to validate product configurations when the number of all potential variants
is large. It is less efficient while the number of allowed variants is much smaller. Sinz
et al. have shown one such application [SKK03]. Another area is the integration of
software as shown by Jersak et al. [JRE+03].

As using formal methods in general is rather costly, researchers constantly seek
new ways of decreasing cost, for example, by searching for lightweight methods,
such as the one advocated by Jackson [Jac01].

For readers interested in using and customizing UML for the purpose of detailed
design of automotive software I recommend taking a look at our previous work on
the impact of different customization mechanisms on the quality of models [SW06]
and the process of realizing MDA in industry [SKW04, KS02] and the problems of
inconsistent designs [KS03].

Finally, readers interested in the quality of automotive software may find it
interesting to study defect classification schemes, where the attributes of faults
encountered in automotive software are described in more detail [MST12].

www.matlab.com
https://classes.soe.ucsc.edu/cmpe242/Fall10/simulink.pdf
https://classes.soe.ucsc.edu/cmpe242/Fall10/simulink.pdf
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6.10 Summary

Since automotive software consists of multiple domains and multiple types of
computers, detailed design of it is based on many different paradigms, which we
briefly introduced in this chapter.

In this chapter we have explored ways in which software designers work
with detailed design of automotive software. We have focused on model-based
development using Simulink, which is the most common design tool and method
for the automotive software.

We have also introduced the principles of programming of safety-critical sys-
tems, which are based on NASA’s principles and the MISRA standard. In short,
these principles postulate the need to use simple programming constructs which
allow us to verify the validity of the program before its execution and minimize the
risk of unexpected behaviour of the software.

In this chapter we have also looked at the GENIVI architecture of infotainment
systems, which is one of the interesting areas in automotive software. Finally,
towards the end of the chapter we looked at a number of different techniques for
verifying automotive software, such as static analysis and formal verification.
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Chapter 7
Machine Learning in Automotive
Software

Abstract Modern software is expected to grow, improve its operations, and adapt to
new contexts. We often realize these requirements by introducing machine learning
algorithms in the software architecture. In automotive software, we can observe the
use of machine learning technology in recognizing objects on the road (active safety
systems) and optimizations of control systems (engine and gearbox operation). In
this chapter, we explore the use of deep learning for image classification and object
recognition, and through this we explain the concepts of supervised learning. We
also introduce the concepts of reinforced learning using an example algorithm for
engine optimization.

7.1 Introduction

In the first edition of this book, machine learning was an important technology to
watch (see [Sta17, Chapter 9]). A lot has changed since then. The technology has
entered the mainstream of innovation in modern car software [FLC17, SG20].

Machine learning is used in automotive software in the following cases (the most
common scenarios):

• Object recognition in active safety cameras
• Censor fusion in situation awareness (LIDAR and camera pictures)
• Speech recognition in multimodal communication (in infotainment)
• Intersection structure perception
• Nighttime pedestrian detection

The reason for using more machine learning in automotive software is the
availability of tensor processors (e.g., NVidia’s GPUs), fast and low-latency 5G
telecommunication links, efficient algorithms for neural networks, and the ability
to simulate high-fidelity environments using game engines (like Ubisoft’s Unreal
game engine).

One of the main differences between standard software development and
machine learning is the training phase, which is illustrated in Fig. 7.1. The non-
ML software development is focused on implementation and testing. Depending
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on the type of the software development process, the length differs. In Agile
software development, these phases are also iterative and not linear. However, the
main principle remains – software is developed, calibrated, and tested before it is
deployed.

Require-
ments Design Implementa�on Tes�ng Deploym

ent
Maint-
enance

Reqs. Design Data Implemen-
ta�on

Calibra�on
/training

Tes�ng
/evalua�on

Deploy
ment

Maint-
enance

Non-ML so�ware development process

ML so�ware development process

Fig. 7.1 Overview of software development phases without machine learning components (upper
part of the figure) and with machine learning components (bottom part of the figure)

In ML software development, new phases are needed: data collection and
management (data) and training (calibration). The machine learning process results
in the development of a machine learning classifier. The classifier is the trained
instance of a generic algorithm, which can be deployed: for example, a trained
instance of a neural network for image recognition. This trained classifier needs
to be evaluated in terms of the statistical probability of how often it is correct,
how accurate it is, and how often it results in true positives (correctly recognized
objects) and false positives (objects classified incorrectly). Depending on the
machine learning task, these performance measures differ. The data collection and
management phase is needed to find the right datasets to train the machine learning
algorithms. This data needs to be of the right quality, as complete as possible,
free from biases, and representative of real-world scenarios. Although it sounds
straightforward, it is quite difficult. Let us consider the example of image data
from driving scenarios. In order to train algorithms, we need to provide data which
represents real-world scenarios. This means that we need to manage the diversity
of scenarios – daytime vs. nighttime, yellow line road marking vs. white line road
marking, city vs. highway scenarios. Managing this means that we need to control
which sample data is used for training and which for evaluation.

The data collection and management phase is a cost-intensive phase, because
it requires labeling of data. Each data point used in the training and evaluation of
the machine learning classifier needs to be labeled. For example, if we want to use
our classifier to recognize a traffic light, each image (or videosequence) used in the
training/evaluation of the algorithm needs to be labeled: which traffic light is visible,
whether there is a traffic light sign at all, or where in the image this traffic light is.
This is often a manual process, which requires effort and grows as the size of the
dataset grows. The general principle is that accuracy requires large datasets; the data
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labeling process is one of the new cost drivers in automotive software development.
Therefore, the number of reusable datasets and frameworks is constantly growing,
e.g., [MK19].

Thanks to modern frameworks, like TensorFlow or PyTorch, we do not need to
implement machine learning algorithms. We do not need to reimplement a neural
network from scratch; we only need to configure the framework with the number of
layers, number of neurons, and which types of layers we need. However, we need
to spend more time to test and evaluate the performance of the resulting systems.
Therefore, in addition to standard testing, we need to assess whether the training
process is sufficiently complete. In our example of image recognition, we need to
complement the test of the hardware and software with our assessment of whether
the machine learning classifier can recognize images correctly – to be precise,
whether the machine learning classifier’s accuracy is sufficient. The sufficiency
may vary from use case to use case – it is different for the classifier used for
active safety and different for the classifier used to find vehicles to communicate
with. NVidia drive labs is one of the research centers which showcases advanced
machine learning technology for automotive software, e.g., object recognition and
using active learning to improve machine learning classifiers over time. It provides
technology, infrastructure, and knowledge for car manufacturers.

Game engines can provide a very realistic simulation of the environment, which
can be used to train onboard cameras to recognize objects and driving situations.
Instead of spending hours of driving, and thus spending precious human-driver
time, we can generate realistic driving images in order to bootstrap the training of
the machine learning classifier. Although there is a trade-off between the synthetic,
simulated data, research studies are done to analyze how to estimate and understand
that trade-off [PBS19].

5G telecommunication networks provide a platform for high-speed and high-
fidelity connectivity between cars and their infrastructure. All major telecommu-
nication equipment manufacturers provide this possibility (e.g., Ericsson, Nokia).
This connectivity enables remote management/driving of vehicles as well as using
cloud infrastructure in cars. The cars can use cloud infrastructure for processing part
of the data, thus decreasing the need for computing power in cars’ electronics. An
example of this is the use of speech recognition – similar to the speech recognition
technology in services like Siri or Alexa.

In this chapter, we explore the use of machine learning from the perspective
of software architecture. We start by describing how machine learning can be
integrated into the architecture. We then present one case of using machine learning
for image recognition, where we explore the main concepts of supervised learning.
Then we show a simple case of reinforced learning, which is one of the most
powerful ways of integrating deep learning in software systems today. Finally, we
show the limitations of these technologies and what needs to be overcome to evolve
machine learning technology in modern cars’ software.
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7.2 Fundamentals of Supervised Learning

There are three major types of machine learning algorithms:

• Supervised learning
• Unsupervised learning
• Reinforced learning

In supervised learning algorithms, the goal is to train the algorithm to mimic the
decisions encoded in the dataset. We input the data where each instance is labeled
with either a class or a predicted variable. The training of the algorithm is a process
where we use statistics to optimize a classifier to be able to classify or predict a
value. The training process requires that each data point has a label indicating where
it belongs. An example of the use of such algorithms in the automotive domain is
image recognition.

The unsupervised learning algorithms are designed to find patterns in the input
dataset. The goal is to group or automatically classify instances of objects in the
dataset. There are no good examples in the automotive domain, but we can see
examples of such algorithms in recommendation systems, e.g., when recommending
songs to play or movies to watch.

Finally, reinforced learning algorithms are designed to make optimizations
towards a specific function. They use as inputs the dataset and the function that they
need to optimize towards. Some examples of using reinforced learning are engine
optimizations and route planning in navigation systems.

To illustrate the concepts important in machine learning, let us explore an
example of how machine learning works in image recognition using convolutional
neural networks. We start with understanding the input data and the process of
labeling it.

Figure 7.2 presents an example of a labeled picture with information about the
location, time of day, and type of object. The labeling of the data is done manually,
as we need to be certain about the labels. In the example in Fig. 7.2, the data analyst
added information about the picture which is important in the classification. These
labels are arbitrarily chosen, based on the needs for which we train the machine
learning.

We need to manually label the cases, for example, the pictures, as we need to
keep the quality of the data high. Mistakes in labeling can result in either reducing
the accuracy or, in the worst-case scenario, training the classifier to make the same
mistakes. Naturally, the more data points we can label, the better, as the size of the
dataset is important for the training process. The more examples we use, the better
the accuracy of the resulting classifier and thus the better the car’s software becomes.
The more diversity in the dataset, the better, as the resulting classifier will be able to
recognize a wider variety of cases and therefore operate with higher precision and
low error rate. However, the major challenge with labeling of data is its cost. Since
it is a manual process, it is effort-intensive and therefore costly.
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Image Labels

Object: Car
Weather: Rainy
Posi�on: Back
Time: Evening
Loca�on: City
Manoeuvre: Braking

Fig. 7.2 Annotated image for supervised learning. Photograph: pixabay.com

Classification of images is only one machine learning task which is relevant for
the vehicle’s software. Figure 7.3 is quite different from the examples in Fig. 7.2
as it shows multiple objects in one image – there are multiple cars, a pedestrian,
several buildings, and persons. This figure shows a more realistic scenario that we
need to address with machine learning – object detection and classification. The
major difference is that we need to segment the figure, find objects, and classify
them. Although this seems like a straightforward task for humans, it is significantly
more challenging for machine learning.

Figure 7.3 shows an example of a figure annotated with objects, which we can
use for training the machine learning classifier for the task of object detection and
classification.

When labeling the objects for classification tasks, we provide a predefined set of
labels for each image – we call it a feature vector, where the labels are the classes to
which the specific image belongs to, like position of the car. In the object detection
and classification task, every image can have a different set of classes, as the number
and types of objects can differ.

In all cases of labeling of data, we need to be able to provide the data in the
format of an array, which can be used for machine learning tasks. In the case of
images, we need to be able to transform the image data into a large vector where
we have pixel intensity and image label(s). Table 7.1 presents an example of a few
rows of an image. This feature matrix is used as an input to the machine learning
classifier in the training process.

Table 7.1 Example of a
feature vector with the
corresponding classes

Image ID Pixel 1 Pixel 2 Pixel 3 . . . Class

I1 0.3 0.0 0.1 . . . Car

I2 0.0 0.1 1.0 . . . Pedestrian

. . . . . . . . . . . . . . . . . .

In 0.3 0.0 0.1 . . . Car

The feature matrix in Table 7.1 shows each row as a vector, which is a simplified
way of representing images. Since images are two-dimensional, each row of such
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Car

Pedestrian
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Fig. 7.3 Annotated image for object detection and recognition. Photograph: pixabay.com

a feature matrix is essentially a two-dimensional array – a two-dimensional tensor
– which is then classified with “Class” as the last column. It is difficult to illustrate
that in a table, so we can stay with the vector representation of images. We show
how the images are used as input to neural networks in the forthcoming sections.

7.3 Neural Networks

Neural networks are one of the most powerful mechanisms used in machine
learning, in particular for image recognition [PDCLO98]. The concept of neural
networks is based on how human brains are structured – as a network of neurons
connected via synapses. The main concept, the building block, is the artificial
neuron, which is shown in Fig. 7.4.

The neuron takes as input the output of neurons from the layer before and
calculates the output for the neurons in the next layers. The values x of each neuron
are multiplied by the weights w. The sum of these products is then filtered by the
so-called activation function, which produces the value of 0 if the sum is below a
given threshold or 1 if the value is above the threshold.

Neurons are grouped into layers and the layers are stacked one upon another.
The structure of the neurons can differ, but the major advantage of neural networks
is how the neurons are grouped into layers and how they are connected. It is outside



7.4 Image Recognition Using Convolutional Neural Networks 177

x1

w1

w2

wn

x2

xn

.

.

.

y

neuron in
layer X

neuron in
layer X-1

ac�va�on
func�on

Fig. 7.4 Artificial neuron

of the scope of this book to discuss these architectures, so we refer the interested
readers to a great book by Gereon [Ger18].

The most common architectures of the neural networks are:

• Dense networks – where all in one layer are connected to all networks in the
previous and the next layer

• Convolutional networks – where the layer before is wider than the next one and
only the subset of neurons in those layers are connected to each other

• Recurrent networks – where networks in the same layers are connected to each
other

• Autoencoders – where the network has a very narrow layer in the middle (the
bottleneck)

The dense networks are very good for problems of classification and prediction
of data, similar to the regression problems, like predicting the price of a real estate.
The convolutional networks are very good for image recognition, and we focus on
them in the next section. The recurrent neural networks are used to solve problems
which have a temporal dimension, e.g., in language translation. Autoencoders are
used to reduce noise in images, and they are the main part for generative neural
networks, which are often used for creative tasks – composing music, writing text,
and painting [Gan17].
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7.4 Image Recognition Using Convolutional Neural Networks

Image recognition essentially encompasses several techniques – image classifica-
tion, object recognition, image segmentation, or image description, just to name a
few. In this chapter, we start with the first, image classification, as the rest of the
techniques expand on it. Today, the state-of-the-art neural networks used for image
classification are based on the concept of convolutions, where the first several layers
are narrowed than the previous ones and the neurons are not fully connected in these
layers. Figure 7.5 illustrates the concept of convolutional neural networks for image
recognition/classification.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Car
Bike

Pedestrian

Convolu�onal layers Dense layers Output layer

......

...

...

Fig. 7.5 Convolutional neural network for image recognition/classification

The whole idea behind convolutional neural networks is that they learn patterns
in images, similar to how we, humans, perceive images [Ger18, KSH12]. In the first
layer (the left-most layer in Fig. 7.5), the neurons are linked directly to pixels in the
image – one neuron per pixel. However, in the subsequent few layers, the neurons
are linked only to one neuron. Furthermore, the next layer’s neurons are only linked
to a subset of neurons from the previous layer – this subset is called a window. The
window can connect adjacent neurons or it can skip some, which is called a stride.
Using the window allows the neurons to recognize parts of images, e.g., lines or
points. The ability of the network to recognize shapes is designated by its depth –
the deeper the network, the more complex shapes it can recognize.

After a number of convolutional layers, the network has two or three layers of
fully connected neurons, the so-called dense layers. These layers learn what each
shape in the image means – they classify the encoded image. The last layer is where
the network provides its output – a probability that the image belongs to a specified
class (label). All neural networks provide the probability for each image, which
means that the output is a vector of probability, e.g., [0.1, 0.3, 0.6]. It’s the
responsibility of the software components outside of the neural network to make the
decisions based on these probabilities.
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In typical machine learning applications, we use a softmax layer to, simply, pick
the most probable class and output, instead of a set of probabilities for each class.

It sounds quite straightforward, but there are a few aspects which are important in
the context of automotive software: probabilistic output of the image classification
and performance of the network.

To illustrate the challenges related to probabilistic outputs, let us consider the
data flow architecture of a component which uses image classification, as presented
in Fig. 7.6.

Camera

Image
processing

Neural
network

Decision
controller

Driver
support

Actuator:
brake

Image feed Single image Image class(es)

Car: 0.7,
Pedestrian: 0.1,
Bike: 0.2

Decision

Collision
imminent

Ac�on
Ac�vate
brakes:
power = 30%

Fig. 7.6 Data flow architecture with machine learning for driver support

In the figure, the probability vector is changed into a binary decision. In this
example, it is done by the decision controller component, although it can be done
by any component. The important aspect is that the probability is taken as a “fact”
later in the data flow. In this example, the probability of the image showing a car
is 0.7 (70%), which is quite high. However, it is not 100%, which means that
there is a danger that the vehicle activates brakes when it is not needed. Such a
situation is called a false-positive classification – we recognize a car when there is
none. Activating the brakes can be dangerous as it can cause rear collision (from
the vehicles behind). In the false-negative case, i.e., when we do not recognize a
car when there is one, the decision controller would not recommend activation of
brakes, and therefore the collision can still happen.

In this scenario, we can fix the problem by adding a radar or lidar and use their
data in the decision controller. However, there are scenarios where radar will not
provide any useful information, for example, when we want to recognize the color
of the traffic light ahead (or even which traffic light we should adhere to) [GLY95].
The probabilistic information can be deceptive and lead to more or less dangerous
situations, e.g., autonomous cars ignoring the red light [Dav17].
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The second challenge which we want to bring up is the computing power needed
to provide sufficient performance. High-quality image recognition, especially of
color images, requires very deep networks, which means high performance. For
example, the AlexNet network [KSH12] has eight layers and requires a desk-
top computer in order to output recommendations fulfilling the soft real-time
requirements of a vehicle’s software. The process of training such networks is so
computationally intensive that it is infeasible for the on-board computers.

7.5 Object Detection

Image classification is a rather simple machine learning task if we compare it to the
tasks that really bring value in the automotive context. One of the more complex
tasks is object detection and recognition, especially in traffic scenarios [ST09].
Detecting and recognizing objects is about finding multiple objects in one image,
and therefore it requires three activities:

• Object localization – where the object detection algorithm finds regions with
objects

• Image segmentation – where the algorithm marks regions in the image which
contain objects

• Image recognition – where the algorithm classifies the objects in these regions

In the object detection part, the algorithm finds contours of objects. It then
exports the regions where these objects are placed out of the image for further
processing. The illustration of this is presented in the example from Sect. 7.2, in
particular in Fig. 7.3, where different objects are marked by bounding boxes.

Although the last part seems to be exactly the same as the image recognition
task, it requires preprocessing of images as the regions found by the segmentation
algorithm can be of different sizes. These differences in size require scaling of
images or using different architectures of image recognition to be able to process
images (as stated previously, the first layer of neurons maps one neuron to one pixel
in the image, so the number of pixels and the number of neurons have to be the
same).

In scenarios like finding the traffic lights in the camera feed images, the algorithm
finds the relevant objects only, which is called single-object localization, or finding
one object in the image. In scenarios related to autonomous drive, the algorithm
marks all objects it can recognize in the image, which is called multiple-object
detection.

There are two major approaches for the object detection task. The first one is
Region-based Convolutional Neural Networks [GDDM14]. This approach is based
on three parts or modules: region proposal, feature extraction, and the classifier. The
second one is based on the same algorithm as mentioned previously – AlexNet. The
most interesting part, object localization, is based on the selective search algorithm
[UVDSGS13], which groups pixels into regions and then finds similarity between
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these regions. The most similar regions are grouped together, and the steps are
repeated until the entire image has been processed, i.e., no more similar regions
are found. Once all regions are marked, they are then processed by the image
segmentation and recognition part.

An alternative approach to the Region-based Convolutional Neural Networks
is the YOLO algorithm (You Only Look Once, [RDGF16]). YOLO algorithms
involve a single neural network, which takes an image as input and predicts and
classifies the bounding boxes in one pass. It is much faster than the region-based
networks and can achieve a real-time performance of over 45 images per second.
However, it can result in more localization errors. YOLO algorithms resize the
input to a specific dimension (448*448 pixels in the original network), run a single
convolutional network on the image, and threshold the resulting detections by the
model’s confidence. The algorithm chooses the segments by dividing the image into
a grid and predicting the center of a bounding box in that grid. The segment with
the center of the bounding box is then used to predict the class of the box.

Both fast implementations of region-based networks and YOLO can be used for
object tracking when applied for camera feeds. In the automotive domain, they are
often used in tandem with radar to confirm objects in the images. They are then used
in active safety systems to provide input to the system.

7.6 Reinforced Learning and Parameter Optimization

Reinforcement learning is similar to finding an optimal solution to a problem,
given a specific goal. In essence, it is very similar to the concept of control loops,
well known in the automotive software. The reinforcement learning algorithms,
therefore, are often designed as part of these control loops, as shown in Fig. 7.7.

Figure 7.7 contains the system and the controller, which has the reinforcement
learning algorithm. Reinforcement learning algorithms can vary from simple opti-
mization algorithms to deep learning-based ones [ZWLL20].

In reinforcement learning, the algorithm keeps a map of all possible choices at
any given moment and the cost or reward for each of these moves. Every time the
algorithm solves a given problem, it notes whether it was successful or not. If it was
successful, then it updates the cost/reward matrix – reinforces the choices either in
a positive or negative way (depending on whether we optimize for rewards or for
costs). To understand the concepts behind reinforced learning, we can think of this
as a process of playing a computer game – every time we play a game, we know a bit
better how to react to events in the game. To win the game, we construct a model of
the game structure, its rules, and events. The same is true for reinforcement learning.

In deep learning-based algorithms, the controller is able to generalize from
previous observations and therefore can solve new problems. This is often used
when the decision space is so large that it cannot be specified in a matrix, i.e., it is
not possible to keep all possible states and transitions. Deep neural networks provide
the possibility of generalizing actions and therefore reduce the decision space – they
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Fig. 7.7 Schematic view of reinforcement learning used as part of the controller loop in control
systems

can propose actions based on previous experiences rather than based on the state-
transition matrix.

7.7 On-Board and Off-Board Machine Learning Algorithms

Machine learning algorithms can be trained in different ways. Training can either
be conducted once or repeated whenever required. The resources for training and
using machine learning differ significantly; therefore, we can consider two different
architectures for using machine learning – on-board training and off-board training.
In on-board training, the ECU used for training the algorithm is placed as part of
the vehicle’s electronics. In off-board training, the ECU is placed outside of the
vehicle’s electronics, usually as part of the data center. There are advantages and
disadvantages in both approaches, so let us explore these in more detail.

Figure 7.8 presents a diagram of on-board training. It shows the additional ECU,
depicted as a larger computer, placed in the car. In on-board training, the vehicle’s
sensors collect the data and send it to the training ECU, which trains the algorithm,
and then a new version of the classifier is used.

This additional ECU needs to be more powerful than the rest of the ECUs in the
vehicle. It also needs to be placed on the edge of the architecture, as the process of
training the machine learning classifier can take a long time. The classifier needs
to be evaluated before it is used, because the additional data may decrease its
performance, which is something that we do not want.
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1. Vehicle collects data using
on-board sensors

3. Machine learning classifiers
are trained using on-board
computers

3. Vehicle so�ware is updated
with the new version of the
classifier

Fig. 7.8 On-board training and use of machine learning classifiers using an additional, more
computationally powerful ECU

Cars which use on-board training, or even just use machine learning in live traffic,
often have additional sensors. Figure 7.91 presents Uber’s Volvo XC90 with the
additional sensors on the roof of the car.

The main advantage of using on-board training is the ability to adjust to individ-
ual driving preferences and conditions. For example, we can use on-board training
to optimize route planning in GPS navigations or optimize engine parameters.
By optimizing classifiers towards individual driving preferences, we increase the
driving experience and improve the driving parameters, e.g., minimize the carbon
footprint by optimal engine control. Using on-board training requires no Internet
connection to a data center.

However, on-board training has disadvantages, which come from the fact that
the developer of the software has no control of the training and evaluation process.
The training process is dependent on the data collected and therefore can result
in optimizing towards local optima or, in extreme cases, even deteriorating the
performance of classifiers. Therefore, the software architecture includes deter-
ministic, non-ML components, which monitor the use of ML components. One
of such mechanisms is the mechanism of a safety cage, where the non-ML
component captures out-of-bound parameters and uses a safe mode (with predefined
parameters) instead of the ML mode [HGP+11].

1This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International
license. Source: commons.wikimedia.com, author: Dllu.
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Fig. 7.9 Uber’s XC90 with additional sensors on the roof

On-board training also requires additional hardware – the ECU used for training
needs to be more powerful than the one used for making decisions (classifying
new data points). To be able to use advanced algorithms, like neural networks,
the processing unit needs to be designed specifically for that purpose – instead of
processing 8-, 16-, 32-, and 64-bit words, it needs to process tensors and vectors
of words. These modern processing units are called tensor processing units (TPUs)
or graphics processing units (GPUs) and provide orders of magnitude speed-up in
training compared to traditional CPUs. However, they are also more expensive and
require a different processing architecture. This cost and different architecture bring
us to the other way of training machine learning classifiers – using off-board TPUs
in data centers. Instead of adding new TPUs to the vehicle’s architecture, we use
telecommunication components to send data to a data center, where it is processed,
and download new versions of the trained classifier in return. This process is shown
in Fig. 7.10.

Off-board training is based on distributed architecture with asynchronous com-
munication. It requires connection between the vehicle and the data center, but it
provides software developers control over the training and validation process. It also
resembles the traditional updates of the vehicle’s software, e.g., over-the-air update
[CLR+18].

In off-board training, the vehicle’s electronic system is responsible for collecting
the data from its sensors, creating a dataset of it, and sending it to the data center.
The data center collects datasets from multiple vehicles and uses them to train the
classifier. The new version of the classifier is then evaluated and tested in the data
center. If the results are satisfactory, then the vehicles receive the updated classifier
as a software update.
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1. Vehicle collects data using on-
board sensors

2. The collected data is sent to a
data center for processing

3. Machine learning classifiers
are trained using high capacity
hardware

4. Trained classifier is sent to the
vehicle

5. Vehicle so�ware is updated
with the new version of the
classifier

Fig. 7.10 Off-board training of machine learning classifiers by communicating with external (to
the vehicle) data center

The off-board training setup has a number of advantages. First, it provides more
control over the training process than on-board training. The software development
organization, usually the OEM, can stop the updates if the training is not satisfactory,
for example, if the accuracy is not sufficient. Second, the use of the data center
provides the possibility to use more advanced algorithms, as the TPU capacity can
be much higher than if a TPU was placed in each car. It is also cheaper to maintain
these TPUs if they are located in the data center.

Finally, when training the algorithms off-board, the datasets available for the
training algorithms are much larger than for the individual vehicles. This means
that the classifiers are better equipped to handle the variability in the datasets and
that the results of the algorithms are more robust to changes in the operational
environment. For example, training image recognition is more accurate for diverse
driving scenarios (day vs. night, European vs. American lane markings).

However, there are some disadvantages. One of them is the transfer of
user/customer data to the data center. Privacy and security challenges need to be
solved, and the OEM needs to ensure that the data cannot be traced to individuals.
Another challenge is the fact that the algorithms are trained on datasets from
multiple vehicles, which means that the classifier is not specific for each individual
vehicle but is in some kind of a middle ground.

7.8 Challenges with Using Machine Learning in Automotive
Software

Artificial intelligence and machine learning methods have become increasingly
popular in the last few years. Developments in image recognition paved the way
for efficient object recognition. This development has been fueled by the initiatives
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of large companies that used crowdsourcing to label large datasets. Every time we
get an image “captcha,” we help AI algorithms in learning.

Another development was the development of deep reinforcement learning
– combining the power of generalization of deep networks with the power of
reinforcement learning. This helped to solve complex problems and even win
complex computer games (like StarCraft [VBC+19]).

However, there are still challenges in using machine learning in modern vehicles:
the availability of high-quality data for training and safety assurance.

Data is extremely important, but it is also very costly to provide. Labeling of
data, noise reduction, and quality assurance are activities that need to be performed
manually. There are specialized companies which provide services for that, which
means that there is a business case in data provision. This also means that it is
difficult to get open data, which does not cost much. At the same time, since using
the data for training affects the performance of the software, vehicle manufacturers
need to have a legal contract with data providers to ensure traceability and legal
responsibility.

Therefore, from my experience, the availability of high-quality data under the
right license is crucial. It is also the major hurdle for the adoption of machine
learning at the large scale in the automotive domain.

In addition to the availability of data, we need to solve challenges with using
machine learning in a safe way. In today’s systems, safety argumentation is difficult
if we have probabilistic reasoning (machine learning) and almost impossible to
formally validate. This means that it is almost impossible to use machine learning in
ASIL D components. Today, this is solved by using safety mechanisms around the
machine learning components, e.g., safety cages. These mechanisms help to keep
the system safe, but they reduce the benefits from machine learning – as we use
predefined boundaries when the safety cages take over the control. They are also
costly to develop and introduce complexity to the overall architectural design.

So, although machine learning is getting more popular and we start using it in the
automotive domain, we need to solve the above challenges before we can unleash
the full potential of machine learning.

7.9 Summary

Software in modern cars get increasingly prevalent, which drives the complexity
of such software but also the need to handle more use cases. The first software
components in cars handled simple use cases – controlling the engine or the gearbox.
There, the input data was predictable and provided by a handful of sensors. In
modern cars, there are over 100 computers that execute even more processes.
Some of these processes execute code that realize complex use cases, for example,
collision avoidance by braking.
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As the use cases grow more complex, so does the software. The software
has to adapt to diverse situations, and therefore machine learning becomes an
appealing technology for modern cars. However, it comes with a price – the software
development effort shifts from the development of algorithms to calibrating them
(known as “training” in machine learning). The procurement costs require new posts
– data for training and driving time for collecting the data.

In this chapter, we looked into machine learning as part of the vehicle’s
software. We started by understanding the fundamentals of machine learning, in
particular neural networks. We then explored the use of machine learning for image
recognition and for optimizations. Finally, we explored how machine learning is
trained on-board and off-board the vehicle’s software system.

We strongly believe that machine learning will change the face of automotive
software, and with that, it will also change the way in which automotive software is
engineered.
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Chapter 8
Evaluation of Automotive Software
Architectures

Abstract In this chapter we introduce methods for assessing the quality of software
architectures and we discuss one of the techniques—ATAM. We discuss the non-
functional properties of automotive software and we review the methods used to
assess such properties as dependability, robustness and reliability. We follow the
ISO/IEC 25000 series of standards when discussing these properties. In this chapter
we also address the challenges related to the integration of hardware and software
and the impact of this integration. We review differences with stand-alone desktop
applications and discuss examples of these differences. Towards the end of the
chapter we discuss the need to measure these properties and introduce the need
for software measurement.

8.1 Introduction

Having the architecture in place, as we discussed in Chap. 2, is a process which
requires a number of steps and revisions of the architecture. As the evolution of the
architecture is a natural step, it is often guided by some principles. In this chapter
we look into aspects which drive the evolution of the architectures—non-functional
requirements and architecture evaluation methods.

During this process the architects take a number of decisions about their
architecture—starting from the basic one on what style should be used in which
part of the architecture and ending in the one on the distribution of signals over
the car’s communication buses. All of these evaluations lead to a better or worse
architecture and in this chapter we focus on the question that each software architect
confronts—How good is my architecture?

Although the question is rather straightforward, the answer to it is rather
complicated, because the answer to it depends on a number of factors. The major
complication is related to the need to balance all of these factors. For example, the
performance of the software needs to be balanced with the cost of the system, the
extensibility needs to be balanced with the reliability and performance, etc. Since
the size of the software system is often large the question whether the architecture
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is optimal, or even good enough, requires an organized way of evaluating the
architecture.

In Chap. 3 we discussed the notion of a requirement as a customer demand on
the functionality of the software and the need for the fulfillment of certain quality
attributes. In this chapter we dive deeper into the question—What quality attributes
are important for the automotive software architectures? and How do we evaluate
that an architecture fulfills these requirements?

To answer the first question we review the newest software engineering standard
in the area of product quality—ISO/IEC 25023 (Software Quality Requirements
and Evaluation—Product Quality, [ISO16b]). We look into the construction of the
standard and focus on how software quality is described in this standard, with the
particular focus on product quality.

To answer the second question about the evaluation of architectures, we look into
one of the techniques for evaluating quality of software architectures—Architecture
Trade-off Analysis Method (ATAM), which is one of the many techniques for
assessing quality of software architectures.

So, let us dive deeper into the question of what software quality is and how it is
defined in modern software engineering standards.

8.2 ISO/IEC 25000 Quality Properties

One of the main standards in the area of software quality is the ISO/IEC 25000 series
of standards—Software Quality Requirements and Evaluation (SQuaRE) [ISO16a].
The standard is an extension of the old standard in the same area—ISO/IEC 9126
[OC01]. Historically, the view of the software quality concept in ISO/IEC 9126
was divided into a number of sub-areas such as reliability or correctness. This view
was found to be too restrictive as the quality needs to be related to the context of
the product—its requirements, operating environment and measurement. Therefore,
the new ISO/IEC 25000 series of standards is more extensive and has a modular
architecture with a clear relation to other standards. An overview of the main quality
attributes, grouped into quality characteristics, is presented in Fig. 8.1. The dotted
line shows a characteristic which is not part of the ISO/IEC 25000 series, but another
standard—ISO/IEC 26262 (Road Vehicles—Functional Safety).

These quality characteristics describe various aspects of software quality, such as
whether it fulfills the functions described by the requirements correctly (functional-
ity) and whether it is easy to maintain (maintainability). However, for safety-critical
systems like the software system of a car, the most important part of the quality
model is actually the reliability part, which defines the reliability of a software
system, such as Degree to which a system, product or component performs specified
functions under specified conditions for a specified period of time [ISO16b].
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Quality 
attributes 
of ISO/IEC 

25000

Functionality

Reliability

Maintainability

Portability

Usability

Suitability

Accuracy

Interoperability

Security

Maturity

Recoverability

Fault tolerance

Analysability

Changeability

Testability

Stability

Installability

Co-existence

Adaptability

Replaceability

Time behaviour

Resource utilization

Understandability
Learnability
Operability
Attractiveness

Availability

Safety Latency
Responsiveness

Fig. 8.1 ISO/IEC 25000 quality attributes

8.2.1 Reliability

Reliability of a software system in common understanding is the ability of the
system to work according to the specification during a period of time [RSB+13].
This characteristic is important as car’s computer system, including software, has
to be in operation for years after its manufacturing. The ability to “reset” the car’s
computer system is very limited as it needs to operate constantly, controlling the
powertrain, brakes, and safety mechanisms.

Reliability is a generic quality characteristics and contains four sub-
characteristics as shown in Fig. 8.2—maturity, availability, recoverability and fault
tolerance.

Maturity is defined as degree to which a system, product or component meets
needs for reliability under normal operation. The concept defines how the software
operates over time, i.e. how many failures the software has over time, which is often
shown as a curve of the number of defects over time; see Fig. 8.2 from [RSM+13]
and [RSB+16].

The figure shows that the number of faults discovered during the design and
operation of the software system can have different shapes depending on the type of
development, type of the functionality being developed and the time of the lifecycle
of the software. The type of development (discussed in Chap. 3) determines how
and when the software is tested and the testing determines the type of faults that are
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Fig. 8.2 Reliability growth
of three different software
systems in the automotive
domain

discovered—e.g. the late testing phases often uncovers more severe defects, while
the early testing phases can isolate simpler defects that can be fixed easily. Flattening
of the curve towards the end of the development shows that the maturity of the
system is higher as the number of defects found gets lower—the software is ready
for its release and deployment.

Another sub-characteristic of reliability is the availability of the system, which
is defined as degree to which a system, product or component is operational and
accessible when required for use. The common sense of this definition is the ability
of the system to be used when needed, which can be seen as a momentary property.
High availability systems do not need to be available over time, all the time, but
they need to be available when needed. This means that these systems can be
restarted often and the property of “downtime” is not as important as for fault-
tolerant systems which should be available all the time (e.g. 99.999% of the time,
which is ca. 4 min of downtime per year).

Recoverability is defined as Degree to which, in the event of an interruption
or a failure, a product or system can recover the data directly affected and re-
establish the desired state of the system. This quality property is often quoted in the
research on self-* systems (e.g. self-healing, self-adaptive, self-managing) where
the software itself can adjust its structure in order to recover from failure. In the
automotive domain, however, this is still in the research phase as the mechanisms of
self-* often should be formally proven that the transition between states is safe. The
only exception is the ability of the system to restart itself, which has been used as a
“last resort” mechanism for tackling failures.

Fault tolerance is defined as degree to which a system, product or component
operates as intended despite the presence of hardware or software faults. This
property is very important as the car’s software consists of hundreds of software
components distributed over tens of ECUs communicating over a few buses—
something is bound to go wrong in this configuration. Therefore we discuss this
property separately in the next section.
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Fig. 8.3 Engine check control light indicating reduced performance of the powertrain, Volvo
XC70

8.2.2 Fault Tolerance

Fault tolerance, or robustness is a concept of the degree to which a computer
system can operate in the presence of errors [SM16]. Robustness is important as the
software system of a car needs to operate, sometimes with reduced functionality,
even if there are problems (or errors) during runtime.

A common manifestation of the robustness of the car is the ability to operate
with reduced functionality when the diagnostics system indicates a problem with,
for example, the powerline. In many modern cars the diagnostics system can detect
problems with the exhaust system and reduce the power of the engine (degradation
of the functionality), but still enable the operation of the car. The driver is only
notified by a control lamp on the instrument panel as in Fig. 8.3.

As the figure shows, the software system (the diagnostics) has detected the
problem and has taken action to allow the driver to continue the journey—which
shows high robustness to failures.

8.2.3 Mechanisms to Achieve Reliability and Fault Tolerance

The traditional ways of achieving fault tolerance are often found on the lower levels
of system design—hardware level. The ECUs used in the computer system can rely
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on hardware redundancy and fail-safe takeover mechanisms in order to ensure the
operation of the system in the presence of faulty component. However, this approach
is often non-feasible in the car’s software as the electrical system of the car cannot
be duplicated and hardware redundancy is not possible. Instead, the designers of the
software systems usually rely on substituting data from different sensors in order to
obtain the same (or similar) information once one of the components fails.

One of the main mechanisms used in modern software is the mechanism of
graceful degradation. Shelton and Koopman [SK03] define graceful degradation
as a measure of the system’s ability to provide its specified functional and non-
functional capabilities. They show that a system that has all of its components
functioning properly has maximum utility and “losing” one or more components
leads to reduced functionality. They claim that “a system degrades gracefully if
individual component failures reduce system utility proportionally to the severity
of aggregate failures.” For the architecture, this means that the following decisions
need to be prioritized:

• No single point of failure—this means that no component should be exclusively
dependent on the operation of another component. Service-oriented architectures
and middleware architectures often do not have a single point of failure.

• Diagnosing the problems—the diagnostics of the car should be able to detect
malfunctioning of the components, so mechanisms like heartbeat synchroniza-
tion should be implemented. The layered architectures support the diagnostics
functionality as they allow us to build two separate hierarchies—one for handling
functionality and one for monitoring it.

• Timeouts instead of deadlocks—when waiting for data from another component,
the component under operation should be able to abort its operation after a
period of time (timeout) and signal to the diagnostics that there was a problem in
the communication. Service-oriented architectures have built-in mechanisms for
monitoring timeouts.

Prioritizing such decisions should lead to an architecture where a single failure
in a component leaves the entire system operational and signals the need for manual
intervention (e.g. workshop visit to replace a faulty component).

A design principle to achieve fault-tolerant software is to use programming
mechanisms which reduce the risk of both design and runtime errors, such as:

• using static variables when programming—using static variables rather than
variables allocated dynamically on the heap allows taking advantage of atomic
write/read operations; when addressing a memory dynamically on the heap
the read/write operation requires at least two steps (read the memory address,
write/read to the address), which can pose threats when using multithreaded
programs or interrupts.

• using safety bits for communication—any type of communication should include
the so-called safety bits and checksums in order to prevent operation of software
components based on faulty inputs and thus failure propagation.
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The automotive industry has adopted the MISRA-C standard, where the details
of the design of computer programs in C programming language [A+08], which has
been discussed in more detail in the previous chapter.

However, since the architecture of the software is an artifact that is abstract and
cannot be tested, the evaluation of the architecture needs to be done based on its
description as a model and often manually.

8.3 Architecture Evaluation Methods

In our discussion of the quality of the system we highlighted the need to balance
different quality characteristics against each other. This balancing needs to be
evaluated and therefore we look into an example software architecture evaluation
technique.

The goals behind evaluating architectures can differ from case to case, from the
general understanding of the architectural principles to the exploration of specific
risks related to software architectures. Let us explore what kinds of architecture
analysis methods are the most popular today and why.

Techniques used for analysis of architectures, as surveyed by Olumofin
[OM05]:

1. Failure Modes and Effects Analysis (FMEA)—a method to analyze software
designs (including the architecture) from the perspective of risk of failures of
the system. This method is one of the most generic ones and can come either in
fully qualitative form (based on expert analysis) or as a combination of qualitative
expert analysis and quantitative failure analysis using mathematical formulas for
failure modelling.

2. Architecture Trade-off Analysis Method (ATAM)—a method to evaluate soft-
ware architectures from the perspective of the quality goals of the system.
ATAM, based on expert-based reviews of the architecture from the perspective
of scenarios (more about it later in this chapter).

3. Software Architecture Analysis Method (SAAM)—a method which is seen as
a precursor to ATAM is based on the evaluation of software architectures from
the perspective of different types of modifiability, portability and extendability.
This method has multiple variations, such as: SAAM Founded on Complex Sce-
narios (SAAMCS), Extending SAAM by Integration in the Domain (ESAAMI)
and Software Architecture Analysis Method for Evolution and Reusability
(SAAMER).

4. Architecture Level Modifiability Analysis (ALMA)—a method for evaluating
the ability of the software architecture to withstand continuous modifications,
[BLBvV04].
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Fig. 8.4 Parking assistance camera showing the view behind the car while backing up, Volvo
XC70

The above evaluation methods constitute an important method portfolio for
software architects who need to make judgements about the architecture of the
system before the system is actually implemented. It seems like a straightforward
task, but in reality it requires skills and experience to be performed correctly.

An example of the need for skills and experiences is the evaluation of the perfor-
mance of the system before it is implemented. When designing the software system
in cars the performance of the communication channels is often a bottleneck—the
bandwidth of the CAN bus is usually limited. Therefore adding new, bandwidth-
greedy components and functions requires analysis of both the scenario of using
the function in question and the entire system. A simple case is the function of
providing a camera video feed from the back of the car when backing-up—used in
the majority of premium segment cars today. Figure 8.4 shows this function on the
instrument panel.

When adding the camera to the electrical system the amount of data transmitted
from the back of the car to the front of the car increases dramatically (depending
on the resolution of the camera, it could be up to 1Mbit/s). Since the data is to be
transmitted in real time the communication bus must constantly prioritize between
the video feed data and the signals from such sensors as parking assist sensors.

In this scenario the architects need to answer the question—will it be possible to
add the camera component to the electrical system without jeopardizing such safety
critical functions as park assist?
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8.4 ATAM

ATAM has been designed as a response to the need of the American Department
of Defense in the 1990s to be able to evaluate the quality of software systems in
their early development stage (i.e. before the system is implemented). The origins
of ATAM are at the Software Engineering Institute, in the publication of Kazman
et al. [KKB+98]. The ATAM method, which can be used to answer this question is
based on [KKC00]:

The Architecture Tradeoff Analysis Method (ATAM) is a method for evaluating software
architectures relative to quality attribute goals. ATAM evaluations expose architectural risks
that potentially inhibit the achievement of an organization’s business goals. The ATAM gets
its name because it not only reveals how well an architecture satisfies particular quality
goals, but it also provides insight into how those quality goals interact with each other and
how they trade off against each other.

As stressed in the above definition, the method relates the system to its quality,
i.e. non-functional requirements on its performance, availability, reliability (fault
tolerance) and other quality characteristics of ISO/IEC 25000 (or any other quality
model).

8.4.1 Steps of ATAM

ATAM is a stepwise method which is similar to reading techniques used in
software inspections (e.g. perspective-based reading [LD97] or checklist-based
reading [TRW03]). The steps are as follows (after [KKC00]).

Step 1: Present ATAM. In this step the architecture team presents the ATAM
method to the stakeholders (architects, designers, testers and product managers).
The presentation should explain the principles of the evaluation, evaluation
scenarios and its goal (e.g. which quality characteristics should be prioritized).

Step 2: Present business drivers. After presenting the purpose of the evaluation,
the purpose of the business behind this architecture is presented. Topics covered
in this step should include: (1) the main functions of the system (e.g. new car
functions), (2) the business drivers behind these functions and their optionality
(e.g. which functions are to be included in all models and which should be
optional), business case behind the architecture and its main principles (e.g.
performance over extendability, maintainability over cost).

Step 3: Present architecture. The architecture should be presented in a sufficient
level of detail to make the evaluation. The designers of the ATAM method do
not propose a specific level of detail, but it is customary that the architects guide
the reading of the architecture model—show where to start and where to stop
reading the architecture model.
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Step 4: Identify architectural approaches. In this step the architects introduce
the architectural styles to the analysis team and present the high-level rationale
behind these approaches.

Step 5: Generate quality attribute utility tree. In this step, the evaluation team
constructs the system utility measure tree by combining the relevant quality
factors, specified with scenarios, stimuli and responses.

Step 6: Analyze architectural approaches. This is the actual evaluation step
where the evaluation team explores the architecture by studying the prioritized
scenarios from step 5 and architectural approaches which address these scenarios
and their corresponding quality characteristics. This step results in identifying
architectural risks, sensitivity points, and tradeoff points.

Step 7: Brainstorm and prioritize scenarios. After the initial analysis of the
architectural approaches is done, there is a lot of scenarios and sensitivity points
elicited from the evaluation team. Therefore they need to be prioritized to guide
the further analysis of the architecture. The 100 dollar technique, planning game
and analytical-hierarchy-process are useful prioritization techniques at this stage.

Step 8: Analyze architectural approaches. In this step the team reiterates the
analysis from step 6 with a focus on the highly prioritized scenarios from step 7.
The result is again the list of risks, sensitivity points and trade-off points.

Step 9: Present results. After the analysis the team compiles and presents a
report about the found risks, sensitivity points, non-risks and tradeoffs in the
architecture.

The results of the analysis can only be as good as the input to the analysis, i.e.
the quality of the architecture documentation (its completeness and correctness), the
quality of the scenarios, the templates used in the analysis and the experience of the
evaluation team.

8.4.2 Scenarios Used in ATAM in Automotive

ATAM is an extensible method which allows us to identify scenarios by the
evaluation team, which is strongly encouraged. In this chapter we present a set of
inspirational scenarios to guide the evaluation team. Our example set is based on
the example set of scenarios presented by Bass et al. [BM+01] and in this chapter
we present a set of scenarios important for the evaluation of automotive software.
We present them in generic terms and in compact textual format. We group them
according to quality characteristics, following the approach presented by Bass et al.
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8.4.2.1 Modifiability

We start with the set of scenarios which date back to the origins of ATAM and
address one of the main challenges for the work of the software architects—How
extendable and modifiable is our architectural design?

It is worth noting that some of the scenarios impact the design (or the internal
quality) of the product and some impact the external quality. The modifiability
scenarios impact the internal quality of the product.

Scenario 1: A request arrives to change the functionality of the system. The
change can be to add new functionality, to modify existing functionality, or to
delete functionality [BM+01].

Scenario 2: A request arrives to change one of the components (e.g. because of a
technology shift); the scenario needs to consider the change propagation to the
other components.

Scenario 3: Customer wants different systems with different capabilities but using
the same software and therefore advanced variability has to be built into the
system [BM+01].

Scenario 4: New emission laws: the constantly changing environmental laws
require adaptation of the system to decrease its environmental impact [BM+01].

Scenario 5: Simpler engine models: Replace the engine models in the software
with simple heuristics for the low-cost market [BM+01].

Scenario 6: An additional ECU is added to the vehicle’s network and causes new
messages to be sent through the existing network. In the scenario we need to
understand how the new messages impact the performance of the entire system.

Scenario 7: An existing ECU after the update adds a new message type: same
messages but with additional fields that we are currently not set up to handle
(based on [BM+01]).

Scenario 8: A new AUTOSAR version is adopted and requires update of the base
software. We need to understand the impact of the new version in terms of the
number of required modifications to the existing components.

Scenario 9: Reduce memory: During development of an engine control, the cus-
tomer demands we reduce costs by downsizing the flash-ROM on chip (adapted
from [BM+01]). We need to understand what the impact of this reduction is on
the system performance.

Scenario 10: Continuous actuator: Changing two-point (on/off) actuators to con-
tinuous actuators within 1 month (e.g., for the EGR or purge control valve). We
need to understand the impact of this change on the behavior of our models
[BM+01].

Scenario 11: Multiple engine types in one car need to coexist: hybrid engine. We
need to understand how to adapt the electrical system and isolate the safety-
critical functions from the non-safety-critical ones.
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8.4.2.2 Availability and Reliability

Availability and reliability scenarios impact the external quality of the product—
allow us to reason about the potential defects which come from unfulfilled perfor-
mance requirements (non-functional requirements).

Scenario 12: A failure occurs and the system notifies the user; the system
may continue to perform in a degraded manner. What graceful degradation
mechanisms exist? (based on [BM+01]).

Scenario 13: Detect software errors existing in third-party or COTS software
integrated into the system to perform safety analysis [BM+01].

8.4.2.3 Performance

Performance scenarios also impact the external quality of the product and allow us
to reason about the ability of the system to fulfill performance requirements.

Scenario 14: Start the car and have the system active in 5 s (adapted from
[BM+01]).

Scenario 15: An event is initiated with resource demands specified and the event
must be completed within a given time interval [BM+01].

Scenario 16: Using all sensors at the same time creates congestion and this causes
loss of safety-critical signals.

8.4.2.4 Developing Custom Scenarios

It is natural that during an ATAM assessment the assessment group combines
standard scenarios with custom ones. The literature about ATAM encourages us
to create custom scenarios and use them in the evaluations, and therefore a few key
points emerge which can help the development of scenarios.

Scenarios should be relevant to both the quality model’s chosen/prioritized
quality attributes and the business model of the company. It is important that the
evaluation of the architecture be done in order to ensure that it fulfills the boundaries
of product development. The BAPO model (Business Architecture Process and
Organization, [LSR07]) from the evaluation of product lines can be used to make
the link.

The criteria applied for the scenarios should be clear to the assessment team
and the organization. It is important that all stakeholders understand what “good”,
“wrong”, “insufficient”, and “enough” mean in the evaluation situation. It is all too
easy to get stuck in a detailed discussion of mechanisms used in the evaluation
without the good support of measures or checklists.

When defining custom scenarios we can get help of the table with the elements
presented in Fig. 8.5.
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Aspect Value

Source
The description of which architectural element initiates the scenario.

Stimulus The stimulus signal or component of the scenario.

Artifact Architectural elements which are affected by the scenario.

Environment
Description of the environment when this stimulus appears. 

Response Description of the expected outcome observed after the received
stimulus. 

Measure Quantifiable measures that could help if the scenario is successful. 

Fig. 8.5 Template for defining custom scenarios

Scenario ID Unique ID of the scenario to identify it, later on used to link 
the scenario to the quality characteristics, and requirements 

Stimulus

The stimulus in the scenario, i.e. what kind of event or activity 
of interest in the scenario. For example: Adding a new rear-
view camera to the main CAN bus.

Response

The outcome of interest in the scenario. For example: Causes 
the congestion of signals on the bus and loss of safety critical 
signals from the parking assist sensors. 

Requirement
The link of the scenario to the requirement(s) of the 
architecture, its performance or other non-functional 
characteristics.

Quality 
characteristics

The link of the scenario to one of the quality characteristics, 

Textual version 
(optional)

Combining the stimulus and response into one sentence. For 
example: r-view camera to the main CAN 
bus can cause the congestion of signals on the bus and thus 
loss of safety-

Fig. 8.6 Template for the description of a scenario in ATAM

8.4.3 Templates Used in the ATAM Evaluation

The first template which is needed in the ATAM evaluation is the template to specify
the scenarios. An example scenario template is presented in Fig. 8.6.

One of the templates, needed after the ATAM evaluation is completed, is the risk
description template, which should be included in the results and their presentation.
An example template is presented in Fig. 8.7.
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Risk ID

Description
Detailed description of the risk, including the source of the risk.

Source / 
Sensitivity point

reference to the element of the architecture which is the source of the 
risk in question. A detailed reference is important as it is needed for the 
assessment of the safety of the software system. 

Impact

The description of the impact of the risk on the scenario, the quality 
characteristics of the system and ultimately the user of the system. 
For the risks related to the safety-critical functions of the system (e.g. 
when the ASIL level D is assigned to the source component), this 
impact should be related to the appropriate ASIL level requirements. 

Severity
Severity of the risk, usually on the scale 1-5 from the least severe 
to critical.

Probability
The probability that this risk will manifest itself in the runtime system, 
usually on the scale 1-5 from the very unlikely to certain. 

Fig. 8.7 Template for the description of risks found in ATAM

Another part of the results from ATAM is the set of sensitivity points which
have been found in the architecture. A sensitivity point is defined by the Software
Engineering Institute as

a property of one or more components (and/or component relationships) that is critical for
achieving a particular quality attribute response. Sensitivity points are places in a specific
architecture to which a specific response measure is particularly sensitive (that is, a little
change is likely to have a large effect). Unlike tactics, sensitivity points are properties of a
specific system

A tradeoff template is presented in Fig. 8.8.

8.5 Example of Applying ATAM

Now that we have reviewed the elements of ATAM and its process, let us illustrate
ATAM analysis using the example of placing the functionality related to a rear-view
camera on the back bumper of the car. As we have just introduced ATAM in this
chapter, let us start with the introduction of the business drivers.
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Tradeoff ID The ID of the tradeoff.

Quality characteristic 1
-off.

Quality characteristic 2
The second characteristic which is taking part of the 
trade-off.

Sensitivity point
The sensitivity point in the software architecture where 
the trade-off decision takes place. 

Tradeoff description

The description of the rationale and reasoning behind the 
trade-off. Here, the evaluation team should describe why 
this is trade-
architecture to address one of the quality characteristics 
affect the other one.

Fig. 8.8 Template for the description of trade-offs identified after the ATAM analysis

8.5.1 Presentation of Business Drivers

The major business driver in this architecture is achieving a high degree of safety.

8.5.2 Presentation of the Architecture

First, let us present the function architecture of the car in Fig. 8.9.
Since we focus on camera functionality, we only include the major functions

from the domains of active safety and infotainment. The functions presented in the
figure represent the basic functions of braking and ABS in the active safety domain
and the displaying of information on screens (both the main screen and the head-up
display HUD).

Let us now introduce the simplistic architecture of the car’s electrical system—
i.e. the physical view of the architecture. The physical view is presented in Fig. 8.10.

In the example architecture we have two buses:

• CAN bus: connecting the ECUs related to the infotainment domain.
• Flexray bus: connecting the ECUs related to the safety domain and the chassi

domain

We can also see the following ECUs :

• Main ECU: the main computer of the car, controlling the configuration of the car,
initialization of the electronics and diagnostics of the entire system. The main
ECU has the most powerful computing unit in the car, with the largest memory
(in our example).
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Domain active safety

Domain infotainment

Emergency
breaking

ABS

Info
message

Warning
message

Sound
playing

Emergency communication

Parking assist 
warning

Main display RadioHUD

Camera view

ABS

Domain chassi

Turn indicator
lights

Low beam lights

Windshield
wipers

Fig. 8.9 Function dependencies in the architecture in our example
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Fig. 8.10 Physical view of the architecture in our example
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Fig. 8.11 Logical view of the architecture in our example

• ABS (Anti-locking Brake System): the control unit responsible for the braking
system and the related functionality; it is a highly safety-critical unit, with only
the highest safety integrity level software.

• ADAS (Advanced Driver Assistance and Support): the control unit responsible
for higher-level decisions regarding active safety, such as collision avoidance by
braking, emergency braking and skid prevention; it is also responsible for such
functions as parking assistance.

• Steering: the control unit responsible for the steering functionality such as the
electrical servo; it is also the controller of parts of the functions or parking
assistant.

• BBC (Back Body Controller): the unit responsible for controlling non-safety
critical functions related to the back of the car, such as adjusting of anti-dim
lights, turning on and off of blinkers (back), and electrical opening of the trunk.

In the logical view of the architecture we focus on showing the main components
used in the display of information and its processing from the camera unit, as we
need them to perform the architecture analysis. Now let us introduce the logical
architecture of the system in Fig. 8.11.

And finally let us show the potential deployment alternative of the architecture,
where the majority of the processing takes place in the BBC node—as we can see
in Fig. 8.12.

8.5.3 Identification of Architectural Approaches

In this example let us focus on the deployment of software components on the
target ECUs. We also say that the physical architecture (hardware) does not change
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Fig. 8.12 The first deployment alternative in our example
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Fig. 8.13 The second deployment alternative in our example

and therefore we analyze the software aspects of the car’s electrical system. As an
alternative approach let us consider deploying all the processes on the main ECU
instead of dividing the components between the Main ECU and the BBC. This
results in the deployment as shown in Fig. 8.13. The dominant architectural style
is pipes-and-filters as the processing of images is the main functionality here. The
car’s electrical system should support the advanced mechanisms of active safety (i.e.
controlled by software) and should ensure that none of the mechanisms interfere
with another one, jeopardizing safety.

In our subsequent considerations we look into these two alternatives and decide
which one should be chosen to support the desired quality goals—i.e. what decision
the architect should take given his quality attribute tree.

8.5.4 Generation of Quality Attribute Tree and Scenario
Identification

In this example let us consider two scenarios which complement each other. We
could naturally generate many more for each of the quality attributes presented
earlier in this chapter, but we focus on the safety attribute—a scenario where there is
congestion on the CAN bus when reverse driving and using a camera, and a scenario
where we overload the main ECU when the video feed computations can interfere
with other functions such as the operation of windshield wipers and low beam lights.
We can use the scenario description template to outline the scenario in Fig. 8.14.
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Aspect Value

Source
Rear camera.

Stimulus Camera feed.

Artifact Main ECU, BBC ECU, CAN Bus.

Environment
Car in reverse driving.

Response Process video data and show it on the display.

Measure Video displayed in real time and no loss of safety signals from 
the parking sensors.

Fig. 8.14 Scenario described with its stimulus, response, environment and measure

Scenario ID SC1: Congestion on the bus during reverse driving prevents
safety-critical signals from reaching their destination.

Stimulus

The scenario is that during the reverse driving (backing up) of the car
the video feed from the rear camera uses too much of the capacity
and the communication bus is not able to relay (send) signals from the 
parking sensors.

The main question to evaluate in this scenario is what kind of software
deployment has the lowest influence on the safety of the car’s
software?

Response

• Analysis of the potential congestion for two architecture
deployments.

• List of constraints on the functionality for each of the solutions.

Requirement
"The architecture should allow the safety critical signals to 
be sent/received at any given point of time."

Quality
characteristics

Safety: in this scenario we need to know that the particular
architecture of the software does not cause congestions on buses 
and potential loss of signals. 

Textual version 
(optional)

When reversing the car, the video feed from the camera can reduce
the ability of the parking sensors to send signals to the main ECU and 
therefore do not warn the driver about the potential collision. 

Fig. 8.15 Scenario of congestion on the communication bus

Let us also fully describe the first scenario as presented in Fig. 8.15.
In this scenario we are interested in the safety aspect of the reverse camera. We

need to understand what kind of implications the video feed data transfer has on the
capacity of the CAN bus which connects the BBC computer with the main ECU.
We therefore need to consider both alternative architectural decisions—deployment
of the video processing functionality on the BBC and the main ECU. We assume



208 8 Evaluation of Automotive Software Architectures

Scenario ID SC2: Overloading of the main processor during heavy weather
conditions reduces the quality of the video feed

Stimulus

The scenario is that during the heavy rain/snow condition where the
main ECU is responsible for steering the windshield wipers,
the lights and process  the video feed, the processing power of the
ECU might not be enough to cope with all calculations

The main question to evaluate in this scenario is  wh kind of 
software deployment has the lowest influence on the performance of
the car’s software

Response

• Analysis of the potential processing power for two architecture
deployments

• List of constraints on the functionality for each of the solutions

Requirement
The car should provide the video feed from the rear-view camera

during reverse driving in all weather conditions.

Quality
characteristics

Performance: in this scenario we need to know the particular
architecture of the software does not cause overload of the computers
and thus reduce the quality of the video feed. 

Textual version 
(optional)

When reversing in heavy weather conditions, the car’s ECUs might be 
overloaded with computations and therefore not be able to handle all 
calculations related to the video feed processing.  

Fig. 8.16 Scenario of overloading of the main ECU

that none of the deployments result in adding new hardware and therefore do not
influence the performance of the electrical system as a whole.1

We also can identify a scenario which is complementary to this one—see
Fig. 8.16.

The reason for including both scenarios is the fact that they illustrate different
possibilities of reasoning about deployment of functionality on nodes.

The quality attribute utility tree in our case consists of these two scenarios linked
to two attributes—performance and safety. Both of these scenarios are ranked as
high (H) in the utility tree, as shown in Fig. 8.17.

Now that we have the utility tree let us analyze the two architecture scenarios,
and describe the trade-offs and sensitivity points.

1This assumption simplifies the analysis as we do not need to consider the physical architecture,
but can focus only on the logical and deployment views of the architecture.
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Utility

Safety

Performance

SC1: 

SC2: 

Congestion on the bus during reverse 
driving prevents safety-critical signals 
from reaching their destination.

Overloading of the main 
processor during heavy weather 
conditions reduces the quality of 
the video feed

(H, H)

(H, M)

Fig. 8.17 Quality attribute utility tree

Risk ID
R1_S1

Description
The signals from the parking sensors cannot be transmitted over the bus. This causes
the risk that the car does not stop before an obstacle and causes a collision. 

Source / Sensitivity 
point

The sensitivity point is the Flexraybus between BBC and Main ECU as in the figure
(SP1).

Impact

ASIL C requirement:
RQ1: The can should stop when detecting an obstacle in the range of 20 cm or less 
from the car. 

The impact on the user is that the car does not stop and therefore causes damage
to property. It could also cause mild damage to the health of the passengers. 

Severity 3

Probability
5 – it is very likely that during the reverse the safety signals and camera video feed
coexist

Fig. 8.18 Risk description

8.5.5 Analysis of the Architecture and the Architectural
Decision

Now we can analyze the architecture and its two deployments. In this analysis we
can use a number of risks, for example the risk that the signal does not reach its
destination. We can describe the risk using the template described in this chapter.
The description is presented in Fig. 8.18.
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Scenario 5 Capture video during the reverse driving (backing up) of the car from the rear-
camera and show it on the main display.

Attributes Safety.

Environment Car in reverse driving.

Stimulus Camera feed to be shown on the display.

Response Process video data and show it on the display.

Architectural decisions Sensitivity Trade-off Risk

Placing the processing of 
the video feed on the Main 
ECU

S1 T1 R1

Placing the processing of 
the video feed on BBC

T2 R2

Reasoning The functioning of the main ECU is vital to the system (see sensitivity point S1)

Safety versus lowered cost (see trade-off point T1)

Safety requirement might be at risk due to heavy processing on Main ECU (see 
risk R1)

Architecture diagram

Fig. 8.19 Tabular summary of the example ATAM evaluation

Since the risk presented in Fig. 8.18 affects the safety of the passengers, it should
be reduced. Reduction of this risk means that communication over the bus should not
affect the safety-critical signals. Therefore the architectural decision is that priority
should be given the deployment alternative 1—i.e. placing the processing of the
video feed on the BBC ECU rather than on the main ECU.

The alternative means that the BBC ECU should have sufficient processing power
to process the video in real time, which may increase the cost of the electrical
components in the car. However, safety can allow the company to pursue its main
business model (as described by the business drivers) and therefore balance the
increased cost with increased sales of cars.

8.5.6 Summary of the Example

In this example we presented a simple assessment of a part of the software
architecture for a car. The intention of this example is to provide an insight on how to
think and reason when conducting such an assessment. In practice, the main purpose
of an assessment like this one is all the discussions and presentations conducted by
the assessment and the architecture teams. The questions, scenarios, prioritizations,
and simply, brainstorming of ideas are the main point and benefit of the architecture.
We summarize them in table presented in Fig. 8.19.
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The ATAM procedure is defined for software architectures, but in the automotive
domain the deployments of the software components and physical hardware archi-
tectures are tightly connected to the software—they both influence the software
architecture and are influenced by the architecture (as this example assessment
shows). Therefore, our advice is to always broaden the assessment team to
include both software specialists and the hardware specialists—to cover the system
properties of software architectures.

8.6 Further Reading

An interesting overview of scenario-based software architecture evaluation methods
has been presented by Ionita et al. [IHO02]. Readers interested in a comparison
between the methods are directed to this interesting article.

This article can be complemented by the work of Dobrica and Niemela [DN02],
which focused on a more general overview and comparison of architecture evalua-
tion methods.

A comprehensive work on the notion of graceful degradation has been presented
by Shelton [She03, SK03] who discusses the notion of graceful degradation in
the context of an example safety-critical system of an elevator, its modelling and
measurement.

Readers interested in a wider view of the applicability of ATAM in other domains
can look into the work of Bass et al. [BM+01], who analyzed the architecture
evaluation scenarios of a number of safety-critical systems.

The original works of Bass and Kazman have been expanded to other domains
and other quality attributes than the original few (modifiability, reliability, availabil-
ity). An example of such extensions is presented by Govseva et al. [GPT01] and
Folmer and Bosch [FB04].

In the automotive domain we often consider different car models as product
lines with the equipment levels as product line members. For this kind of view on
automotive software architectures one could find the extension of ATAM to capture
product lines to be interesting [OM05].

Readers interested in further examples of architecture evaluations can be found in
the article by Bergey et al. [BFJK99], who describe the experiences of using ATAM
in the context of software acquisitions. The readers can also consider the work of
Barbacci et al. [BCL+03].

8.7 Summary

Architecting is a discipline of high-level design which is often described in the form
of diagrams. However, equally important to the design is the set of decisions taken
when creating the architecture. These decisions delineate a set of principles which
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designers have to follow in order to make sure that the software system fulfills its
purpose.

Arriving at the right decisions is a process of combining the expertise of
architects and the considerations of architects and designers. In this chapter we
presented a method to elicit architectural decisions based on discussions between
an external evaluation team and the architecture team—ATAM (Architecture Trade-
off Analysis Method). Through the assessments we can learn about the principles
behind the architectural design and design decisions. We can learn about the
alternative choices and why they are rejected.

In this chapter we focus on the “human” aspects of software architecture
evaluation, which is by definition bound to be subjective to a certain degree. In the
next chapter, however, we focus on the monitoring of the architecture quality given
the set of information needs. This monitoring is done by conducting measurements
and quantifying quality attributes discussed in this chapter.
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Chapter 9
Metrics for Software Design
and Architectures

This chapter has been co-authored with Wilhelm Meding,
Ericsson AB

Abstract Understanding the architecture in a qualitative manner can be time-
consuming and effort-intensive. Therefore the qualitative methods such as assess-
ments presented in Chap. 6 are often done periodically at given milestones.
However, architects need to monitor the quality of the architecture constantly
and ensure that the characteristics of the architecture are within the limits of the
product boundaries. In this chapter we present a set of measures used for measuring
architectures and detailed designs. We explore the existing measures and present the
ones which are common in industrial applications. Towards the end of the chapter
we show the limits of selected measures by using an openly available industrial data
set from an automotive OEM.

9.1 Introduction

In the previous chapter we explored one way of understanding the architecture—
qualitative assessment based on scenarios. This method has multiple advantages as it
allows architects to dive deeply into the details of a selected set of prioritized aspects
of the architecture. The major disadvantage is the fact that qualitative evaluation is
effort-intensive and can be done as soon as the architecture is somehow mature.

Architecting, however, is not done when the architecture is finished but is done
intensively before the architecture is finished. Moreover, it is done constantly, so
periodical assessments need to be complemented with methods for continuous
quality assessment. In order to achieve this continuity we need to use automated
methods which are usually based on measuring properties of architectures and
properties of detailed designs.

Software architecting as an area has gained increasing visibility in the last two
decades as the software industry has recognized the role of software architectures
in maintaining high quality and ensuring longevity and sustainability of software
products [Sta15, LKM+13]. Even though this recognition is not new, there is still
no consensus on how to measure various aspects of software architectures beyond
the basic structural properties of the software architecture as a design artifact. In
the literature we can encounter studies applying base measures for object-oriented
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designs to software architectures [LTC03] and studies designing low-level software
architecture measures such as number of interfaces [SFGL07].

In order to understand the kinds of measures which are used in software
architectures we have found a generic measurement portfolio of 54 measures in the
literature. The portfolio can be applied to software architectures and designs, but
interpreted differently based on where it is applied. The portfolio was developed by
the literature review using snowballing and following the principles of systematic
mapping of Petersen et al. [PFMM08]. The measures in the portfolio were then
organized according to the ISO/IEC 15939 standard’s measurement information
model [OC07] into base measures, derived measures and indicators.

This chapter is structured as follows. Next, Sect. 9.2 presents our theoretical
foundation for designing the portfolio—the ISO/IEC 15939 measurement infor-
mation model. In Sect. 9.3 we present an overview of the standardized measures
presented in the new quality standard “Software Product Quality Requirements and
Evaluation”. In Sect. 9.4 we present more measures found in literature and we
organize them in the portfolio in Sect. 9.5 by identifying indicators. In Sect. 9.6
we present the limits of the selected measures based on an open data set from an
automotive OEM. We conclude the chapter with further reading in Sect. 9.7.

9.2 Measurement Standard in Software
Engineering—ISO/IEC 15939

The ISO/IEC 15939:2007 [OC07] standard is a normative specification for pro-
cesses used to define, collect, and analyze quantitative data in software projects or
organizations. The central role in the standard is played by the information product,
which is a set of one or more indicators with their associated interpretations that
address the information need. The information need is an insight necessary for a
stakeholder to manage objectives, goals, risks, and problems observed in measured
objects. These measured objects can be entities like projects, organizations, software
products, etc. characterized by a set of attributes. We use the following definitions
from ISO/IEC 15939:2007:

• Base measure, defined in terms of an attribute and the method for quantifying it.
This definition is based on the definition of base quantity from [oWM93].

• Derived measure, defined as a function of two or more values of base measures.
This definition is based on the definition of derived quantity from [oWM93].

• Indicator, provides an estimate or evaluation of specified attributes derived from
a model with respect to defined information needs.

• Decision criteria—thresholds, targets, or patterns used to determine the need for
action or further investigation, or to describe the level of confidence in a given
result.

• Information product—one or more indicators and their associated interpretations
that address an information need.
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• Measurement method—a logical sequence or operations, described generically,
used in quantifying an attribute with respect to a specified scale.

• Measurement function—an algorithm or calculation to combine two or more base
measures.

• Attribute—a property or characteristic of an entity that can be distinguished
quantitatively or qualitatively by human or automated means.

• Entity—an object that is to be characterized by measuring its attributes.
• Measurement process—a process for establishing, planning, performing and

evaluating measurement within an overall project, enterprise or organizational
measurement structure.

• Measurement instrument a procedure to assign a value to a base measure.

The view on measures presented in ISO/IEC 15939 is consistent with other engi-
neering disciplines; the standard states at many places that it is based on such stan-
dards as ISO/IEC 15288:2007 (Software and Systems engineering—Measurement
Processes), ISO/IEC 14598-1:1999 (Information technology—Software product
evaluation), ISO/IEC 9126-x, the ISO/IEC 25000 series of standards, and the
International vocabulary of basic and general terms in metrology (VIM) [oWM93].
Conceptually, the elements (different kinds of measures) which are used in the
measurement process can be presented as in Fig. 9.1.

The model provides a very good abstraction and classification of measures—
from very basic ones to more complicated ones. The base measures are often close
to the entities they measure, such as architectural designs, and as such reflect
the entities relatively well, although using a different domain of mathematical
symbols and numbers. The indicators, on the other hand, serve the different purpose
of fulfilling the information need of their stakeholder and as such are closer
to the concepts which the stakeholders want to get information about, e.g. the
architecture’s quality, stability or complexity.

As the indicators provide insight into what the stakeholders would like to
measure, see and observe, it is often easy to provide an analysis model (or coloring)
of the values of the indicators. It can be illustrated as in Fig. 9.2.

We use this model to describe the measures used for quantifying properties of
software architectures. Conceptually we can also consider the fact the higher in the
model the measure is, the more advanced the information need it fulfills. In Fig. 9.3
we can see a number of measures divided into three levels—the more basic ones at
the bottom and the more complex ones at the top.

The more advanced information needs are related to the work of the architects
whereas the more basic ones are more related to the architecture as an artifact in
software development. So, now that we have the model, let’s look into one of the
standards where the software measures are defined—ISO/IEC 25000.
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Fig. 9.1 Measurement Information Model—adopted from ISO/IEC 15939

9.3 Measures Available in ISO/IEC 25000

The ISO/IEC 25000 Software Quality Requirements and Evaluation (SQuaRE)
standard provides a set of reference measures for software designs and architectures.
At the time of writing of this book the standard is not fully adopted but the main
parts are already approved and the work is fully ongoing regarding the measures,
their definitions and usage. The standard presents the following set of measures
related to product, design and architecture in one of its chapters—ISO/IEC 25023—
Software and Software Product Quality Measures [ISO16]:

• Quality measures for functional suitability—example measure: functional imple-
mentation coverage addressing the information need of functional completeness

• Quality measures for performance efficiency—example measure: response time
addressing the information need of time behavior performance
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Fig. 9.3 Higher-level measures correspond to more advanced information needs—an example

• Quality measures for compatibility—example measure: connectivity with exter-
nal systems addressing the information need of interoperability

• Quality measures for usability—example measure: completeness of user docu-
mentation addressing the information need of learnability of the product

• Quality measures for reliability—example measure: test coverage addressing the
information need of reliability assessment

• Quality measures for security—example measure: data corruption prevention
addressing the information need of integrity
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• Quality measures for maintainability—example measure: modification complex-
ity addressing the information need of modifiability

• Quality measures for portability—example measure: installation time efficiency
addressing the information need of installability of the software product

The list of the areas and the example measures illustrate how the measures
are discussed in the standards related to product quality. We can see that these
measures are related to the execution of the product and do not focus on the
internal quality of the product with such example measures as size (e.g. number
of components) or complexity (e.g. control flow complexity). Therefore we need
to turn to scientific literature to understand the measures and indicators related to
software architectures. There we can find measures which are of interest to software
architects.

9.4 Measures

Let’s start with the base measures which quantify the architecture shows in
Table 9.1—we can quickly notice that these measures correspond to the entities they
measure. The measurement method (the algorithms to calculate the base measure)
are very similar and are based on counting entities of a specific type. The list in
Table 9.1 shows a set of example base measures.

Collecting the measures presented in the table provides the architects with the
understanding of the properties of the architecture, but the architects still need
to provide context to these numbers in order to reason about the architectures.
For example, the number of components by itself does not provide much insight;
however, if put together with a timeline and plotted as a trend, allow to extrapolate
the information and therefore allow the architects to assess if the architecture is
overly large and should be refactored.

In addition to the measures for the architecture we can also find many measures
which are related to software design in general—e.g. object-oriented measures
or complexity measures [ASM+14, SKW04]. Examples of these are presented in
Table 9.2.

Once again these examples show that the measures are related to the design the
quantification of its properties. Such measures as the abstractness of a Simulink
block, however, are composed of multiple other measures and therefore are classified
as derived measures and as such are closer to the information need of architects.
In the literature we can find a large number of measures for designs and their
combinations and therefore when choosing measures it is crucial to start from the
information needs of the architects [SMKN10] since these information needs can
effectively filter out measures which are possible to collect, but not relevant for the
company (and as such could be considered as waste).

In the next section we identify which measures from the above two groups are to
be included in the portfolio and what areas they belong to.
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Table 9.1 Base measures for software architectures

Measure Description

Number of components [SJZ14] The basic measure quantifying the size of the
architecture in terms of its basic building
block—components.

Number of connectors [SJZ14] The basic measure quantifying the internal
connectivity of the architecture in terms of its basic
connectors.

Number of processing units [LK00] The basic measure quantifying the size of the
physical architecture in terms of processing units.

Number of data repositories [LK00] The complementary measure quantifying the size in
terms of data repositories.

Number of persistent components
[LK00]

Quantifies the size in terms of the need for
persistency.

Number of links [LK00] Quantifies the complexity of the architecture,
similarly to the McCabe cyclomatic complexity
measure. It is sometimes broken down by type of link
(e.g., asynchronous—synchronous, data—control).

Number of types of communication
mechanisms [LK00]

Quantifies the complexity of the architecture in terms
of the need to implement multiple communication
mechanisms.

Number of external interfaces
[KPS+98]

Quantifies the coupling between architectural
components and external systems.

Number of internal interfaces
[KPS+98]

Quantifies the coupling among the architectural
components.

Number of services [KPS+98] Quantifies the cohesion of the architecture in terms of
how many services it provides/fulfills.

Number of concurrent components
[KPS+98]

The measure counts the components which have
concurrent calculations as part of their behavior.

Number of changes in the
architecture [DNSH13]

The measure quantifies the number of changes (e.g.
changed classes, changed attributes) in the
architecture

Fanout from the simplest structure
[DSN11]

The measure quantifies the degree of the lowest
complexity of the coupling of the architecture

9.5 Metrics Portfolio for the Architects

The measures presented so far can be collected, but, as the measurement standards
prescribe, they need to be useful for the stakeholders in their decision processes
[Sta12, OC07]. Therefore we organize these measures into three areas correspond-
ing to the information needs of software architects. As architecting is a process
which involves software architecture artifacts, we recognize the need of grouping
these indicators into areas related to both the product and the process.
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Table 9.2 Base measures for software design

Measure Description

Weighted methods per class [CK94] The number of methods weighed by their
complexity.

Depth of inheritance tree [CK94] The longest path from the current class to
its first predecessor in the inheritance
hierarchy.

Cyclomatic complexity [McC76] Quantifies the control path complexity in
terms of the number of independent
execution paths of a program. Used often
as part of safety assessment in ISO/IEC
26262.

Dependencies between blocks/modules/classes
[SMHH13]

Quantifies the dependencies between
classes or components in the system.

Abstractness of a Simulink block [Ols11] Quantifies the ratio of contained abstract
blocks to the total number of contained
blocks.

9.5.1 Areas

In our portfolio we group the indicators into three areas related to basic properties
of the design, its stability and its quality:

Area: architecture measures—this area groups product-related indicators that
address the information need about how to monitor the basic properties of the
architecture, like its component coupling.
Area: design stability—this area groups process-related indicators that address
the information need about how to ascertain controlled evolution of the architec-
tural design.
Area: technical debt/risk—this area groups product-related indicators that
address the information need about how to ascertain the correct implementation
of the architecture.

In the following subsections we present the measures and the suggested way
to present them. One of the criteria for each of these areas in our study was that
the upper limit on the number of indicators be four. The limitations are based on
empirical studies of cognitive aspects of measurement, such as the ability to take in
information by the stakeholders [SMH+13].

9.5.2 Area: Architecture Measures

In our portfolio we could identify 14 measures as applicable to measure the basic
properties of the architecture. However, when discussing these measures with the
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architects, the majority of the measures seemed to quantify basic properties of the
designs. The indicators found in the study in this area are:

Software architecture changes: To monitor and control changes over time the
architects should be able to monitor the trends in changes of software architecture
at the highest level [DNSH13]. Based on our literature studies and discussions
with practitioners we identified the following measure to be a good indicator of
the changes—number of changes in the architecture per time unit (e.g. week)
[DSTH14a, DSTH14b, DSN11].
Complexity: To manage module complexity, the architects need to understand
the degree of coupling between components, as the coupling is perceived as cost-
consuming and error-prone in the long-term evolution of the architecture. The
identified indicator is Average squared deviation of actual fanout from the simplest
structure.
External interfaces: To control the degree of coupling on the interface level (i.e.
a subset of all types of couplings), the architects need to observe the number of
internal interfaces—number of interfaces.
Internal interfaces: To control of external dependencies of the product, the
architects need to monitor the coupling of the product to external software
products—number of interfaces.

The suggested presentation of these measures is presented in Fig. 9.4.
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Fig. 9.4 Visualization of the measures in the architecture property area
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9.5.3 Area: Design Stability

The next area which is of importance for the architects is related to the need for
monitoring the large code base for stability. Generally, in this area we used visual-
izations from our previous research into code stability [SHF+13]. We identified the
following three indicators to be efficient in monitoring and visualizing the stability:

Code stability: To monitor the code maturity over the time the architects need to
see how much code has been changed over time as it allows them to identify code
areas where more testing is needed due to recent changes. The measure used for
this purpose is number of changes per module per time unit.
Defects per modules: To monitor the aging of the code the architects need to
monitor defect-proneness per component per time, using a similar measure as that
for code stability—number of defects per module per time unit (e.g. week).
Interface stability: To control the stability of the architecture over its interfaces
the architects measure the stability of the interfaces—number of changes to the
interfaces per time unit.

We have found that it is important to be able to visualize the entire code/product
base in one view and therefore the dashboard which depicts the stability is based
on the notion of heatmaps [SHF+13]. In Fig. 9.5 we present such a visualization
with three heatmaps corresponding to these three stability indicators. Each of the
figures is a heatmap which depicts different aspects, but each of them is organized in
the same way—columns designate weeks, rows designate the single code modules
or interfaces and the intensity of the color of each cell designates the number of
changes to the module or interface during the particular week.

9.5.4 Area: Technical Debt/Risk

The last area in our portfolio is related to the quality of the architecture over a longer
period of time. In this area we identified the following two indicators:

Coupling: To have manageable design complexity the architects need to have a
way to get a quick overview over the coupling between the components in the
architecture—measured by number of explicit architectural dependencies, where
the explicit dependencies are links between the components which are introduced
by the architects.
Implicit architectural dependencies: To monitor where the code deviates from
the architecture the architects need to observe whether there are any additional
dependencies introduced during the detailed design of the software—this is
measured by number of implicit architectural dependencies, where the implicit
dependencies are such links between the components which are part of the code,
but not introduced in the architecture documentation diagrams [SMHH13].
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Fig. 9.5 Visualization of the measures in the architecture stability area

The visualization of the architectural dependencies shows the degree of coupling
and is based on circular diagrams, as presented in Figs. 9.6 and 9.7, where each area
on the border of the circle represents a component and a line shows a dependency
between two components.
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Fig. 9.6 Visualization of the measures in the architecture technical debt/risk: implicit
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Fig. 9.7 Visualization of the
measures in the architecture
technical debt/risk: explicit
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9.6 Industrial Measurement Data for Software Designs

The metrics portfolio for software architects should be complemented with a set
of metrics for software designs, which we presented in Table 9.2. One of these
measures is software complexity, measured as a number of independent paths in
the program (McCabe complexity). In order to illustrate how complex automotive
systems are, let us look into one of the industrial data sets publicly available
[ASD+15].

In general, software complexity can be measured in multiple ways, but there is a
small number of measures which have been found to be correlated with each other—
e.g. McCabe cyclomatic complexity, lines-of-code. The inherent correlations (cf.
[ASH+14]) allow us to simplify the problem to only one of them (for the sake of
the discussion)—we choose the McCabe complexity due to its spread in practice. In
short, the metric measures the number of independent execution paths in the source
code.

In the automotive sector, in data from the open domain we find that the
complexity of software modules is highly over the theoretical limit of 30 (execution
paths), as presented in Fig. 9.8.

What the data shows is that there are components where the number of execution
paths is over 160, which means that only to test each of the execution paths once
there is a need for 160+ test cases. However, in order to achieve full coverage one
needs more than 500 test cases for the entire component. If we need to test each
path with a positive and a negative case (so called boundary case) we need to at
least double the number of test cases. Exploring the other metrics provided in the
same data set shows that the trends are very similar—the numbers are highly over
the theoretical complexity limits.

These numbers indicate that it is increasingly more difficult to provide full
verification of the software functionality in order to ensure the safety of software
systems. Therefore we need new approaches than just testing.
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In Chap. 5 we explored the detailed designs in terms of simulink models. In the
data set presented in the studied paper [ASD+15], the size of such models can be
huge—as shown in Fig. 9.9.
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Fig. 9.9 Sizes of the models in the example data set

As the figure shows, some of the models (Johnson.mdl) are huge models with
over 50,000 blocks and models of over 10,000 blocks are not uncommon. One
should note that this data comes only from one domain and one manufacturer;
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however, the scale of the size shows how much software is included in modern
cars. It also shows the effort required to develop and to test such software.

9.7 Further Reading

Some of the most popular methods for evaluating software architectures in general
are to use qualitative methods like ATAM [KKC00], where the architecture is
analyzed based on scenarios or perspectives. These methods are used for final
assessments of the quality of the architectures, but as they are manual they need
effort and therefore cannot be conducted in a continuous manner. However, as many
contemporary projects are conducted using Agile methodologies, Lean software
development [Pop07] or the minimum viable product approach [Rie11], these
methods are not feasible in practice. Therefore the architects are willing to trade
off quality of evaluation for speed of the feedback on their architecture, which leads
to more extensive use of measure-based evaluation of software architectures.

In our previous work we have studied metrics used for monitoring of architectural
changes [DNSH13, DSN11]. The results showed that the use of a modified coupling
metric can provide a very good estimation of the impact of the change in the
architecture between two different releases of the architecture.

One of the tools and methods supporting the architects’ work with measures is the
MetricViewer [TLTC05], which augments software architecture diagrams expressed
in UML with such measures as coupling, cohesion and depth of inheritance tree.
This augmentation is important for reasoning about the designs, but it is not
linked to the information needs of the stakeholders. Having such a link allows the
stakeholders to monitor attainment of their goals, which otherwise require them to
conduct the same analyses manually.

Similarly to Tameer et al., Vasconcelos et al. [VST07] propose a set of metrics
for measuring architectures based on low-level properties of software architectures,
such as number of possible operating systems or number of secure components. Our
work complements their study by focusing on internal quality properties related to
the design and not quality in use.

In the same vein, Dave [Dav01] patented the method for co-synthesis of software
and hardware using measures such as scheduling and task allocation metrics, which
complement the portfolio of architecture metrics presented in this chapter. The
major difference in the approach of the patent and our research is our focus on
three areas and their associated information needs rather than on a specific goal—
integration.

Additionally, even though it is a decade old, the technical recommendation for
the architecture evaluation still provides useful guidelines for choosing the right
method [ABC+97]. In particular, the recommendation is to customize the evaluation
to a specific quality or goal. In the case of the study presented in this chapter, this
goal is the set of information needs represented by the stakeholder.
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The specific view, information need or goal which is prescribed in the archi-
tecture evaluation is a specific case of the domain context of the metrological
properties of measures [Abr10]. In software engineering in general and in software
architectures in particular there is no consensus about the universal values of
measures (e.g. how strongly coupled two entities should be), and therefore the
stakeholders approximate this using their experience and mandate in product
development organizations [RSB+13, RSB+14, RSM+13].

Readers interested in other examples of information needs for software metrics
are referred to a survey study conducted at Microsoft where the authors interview
over 100 engineers, managers, and testers to map their current and future informa-
tion needs [BZ12].

Using business intelligence and corporate performance measurement can be of
interest to readers interested in decision making at the strategic level, e.g., [Pal07,
RW01, KN98].

Readers interested in mechanisms of effective visualization and manipulation
of measurement data can explore the field of visual analytics, e.g., [VT07, Tel14,
BOH11].

Close to the field of visual analytics is the field of project telemetry, which
focuses on online visualization of selected software metrics; interested readers
should explore:

• tools like Hackystat that are examples in this field [Joh01, JKA+03]
• the SonarQube tool suite for monitoring internal quality of software products

during development [HMK10] and
• dashboards for visualizing product development where the authors describe

experiences from introducing dashboards for a single team [FSHL13].

Readers interested in the concepts of measurement systems should explore the
following publications:

• ISO/IEC 15939 (and its IEEE correspondent), defining the concepts related to
measurement systems [OC07].

• Practical Software Measurement [McG02].
• The classical book on software metrics by Fenton and Pfleeger [FB14].
• The process of designing measurement systems in industry [SMN08].
• The graphical way of designing measurement systems with the focus on the

information need of the stakeholders [SM09].

One of the trends observed in the software industry is the growing focus on
customers even in measurement of internal quality attributes. Readers interested
in how to work with customer data can find the following works of value:

• Post-deployment data [OB13],
• developing customer profiles [AT01], and
• mining and visualizing customer data [Kei02].

In this context of customer data collections, it is also important to understand the
defects in automotive software. In our previous work we have developed a method
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for classifying defects based on their criticality, targeted towards automotive soft-
ware [MST12] which is related to studies on the understanding of inconsistencies in
designs [KS03].

9.8 Summary

In this chapter we focused on the challenge of constantly monitoring the architecture
quality and the properties of software designs. We have focused on two aspects—
what measures exist in the literature that can be used for this purpose and which
measures should be used as indicators.

In the chapter we used the approach postulated by modern measurement
standards in software engineering—ISO/IEC 15939 and ISO/IEC 25000. The first
of this standard provided us with a way of structuring the measures and the second
one provided us with a list of measures. Based on our work with industrial partners
[SM16] we identified three areas of interest. In these areas we managed to identify
a set of measures and indicators which address the needs of the stakeholders.

Finally we have also presented reference visualizations of these indicators.
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Chapter 10
Functional Safety of Automotive Software

Per Johannessen

Abstract In the previous chapters we explored generic methods for assessing
quality of software architecture and software designs. In this chapter we continue
with a much related topic, functional safety of software, in which functional safety
assessment is one of the last activities during product development. We describe
how the automotive industry works with functional safety. Most of this chapter is
based on the ISO 26262 standard that was first published in 2011. That version of
the standard was only applicable for passenger cars up to 3500 kg. In 2018 a second
version of the standard was published. This version is also applicable to buses,
motorcycles, and trucks. The scope of the ISO 26262 standard is more than software
development, and for better understanding we give an overview of these other
development phases in this chapter. However, we focus on software development
according to ISO 26262. The different phases that are covered are software planning,
software safety requirements, software architectural design, software unit design
and implementation, software integration and testing, and verification of software.

10.1 Introduction

Functional safety is in ISO 26262 defined as “absence of unreasonable risk due to
hazards caused by malfunctioning behaviour of E/E systems”. In a simplified way,
we could say that there shall not be any harm to persons resulting from faults in
electronics or software. At the same time, for an automotive product, this electronic
and software is within a vehicle. Hence, when working with functional safety, it is
important to consider the vehicle, the surrounding traffic situations including other
vehicles and road users as well as the persons involved.

The safety lifecycle of ISO 26262 starts with planning of product development,
continues with product development, production, operation and ends with disas-
sembling the vehicle. In ISO 26262, the base for product development is Items. An
Item in ISO 26262 is defined as a “system or combination of systems, to which
ISO 26262 is applied, that implement a function or part of a function at the vehicle
level”. The key words here are “function at the vehicle level”, which defines which
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components are involved. This also implies that a vehicle consists of many Items, to
which ISO 26262 is applied.

The work on the ISO 26262 standard started in Germany in the early 2000
and was based on another standard, ISO/IEC 61508—Functional Safety of Electri-
cal/Electronic/Programmable Electronic Safety-related Systems. As ISO/IEC 61508
[C+99] originates from the process control industry, there was a need to adapt it
to the automotive industry. The work within the ISO standardization organization
started in 2005 and resulted in the first edition of ISO 26262 published in 2011
[Org11]. As this edition was limited to passenger cars, the revision work for the
second edition was started directly and resulted in the second edition of ISO 26262
for all road vehicles excluding mopeds, published in 2018 [Org18].

Even if the automotive industry had been working with functional safety since
long, this was a significant step to standardize the work across the industry. As with
standards in general, the key advantage is to simplify cooperation between different
organizations. Another benefit with ISO 26262 is that it can be seen as a guideline on
how to develop safe functions on vehicle level that to some degree are implemented
in electronics and software. By following this guideline, the result is a harmonized
safety level across the industry and this level is considered as acceptable.

When looking into ISO 26262, there are twelve different parts as shown in
Fig. 10.1. In this chapter we focus on Part 6 for software development. At the same
time, it is important to understand the context in which this software is developed
and also the context where this software is used. Hence, there is a very brief
overview of these other parts in ISO 26262 as well.

As we can see in Fig. 10.1, Parts 4 to 6 are based on the V-model of product
development which we discussed in Chap. 4 and which has been a de-facto
standard in the automotive industry, even if one current trend is towards more
agile development approaches. It should be noted that even if the V-model is the
basis here, the standard is in reality applied in many different ways including e.g.
distributed development across multiple organizations, iterative development and
the mentioned agile approaches. Independent on the development approach used,
the key is that an argumentation is available that the requirements and objectives in
the standards have been appropriately fulfilled.

In the forthcoming sections we briefly describe Parts 2 to 8 of the standard.
Part 1 contains definitions and abbreviations used in the standard. The safety
analysis methods described in Part 9 is only covered implicitly in this chapter
as they are referenced from the activities in Parts 3 to 6. Also, Part 10 and Part
11 are not described here as these parts are informative collections of guidelines
for how to apply ISO 26262 in general and semiconductors in detail. Part 12
includes requirements on how to comply with ISO 26262 for motorcycles, but is
not described here as there are no differences with respect to software development.
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Fig. 10.1 The twelve different parts in the ISO 26262 standard, adopted from [Org18]

10.2 Management and Support for Functional Safety

When an organization works with functional safety, there are other processes that
should be established. In Part 2 of the ISO 26262 standard, there are requirements to
have a quality management system in place, e.g. ISO 9001 [Org15] or IATF 16949
[Aut16], to have all relevant processes established in the quality management sys-
tem, sufficient competence and experience in the organization, and field monitoring
established. Field monitoring from a functional safety perspective is in particular
important to detect potential faults in electronics and software when the vehicle is
in use to be able to correct these to ensure safe use of all vehicles.

During product development, there are also requirements on assigning proper
responsibilities for functional safety, to plan activities related to functional safety
and to monitor that the planned activities are done accordingly.

In addition, there are requirements to have proper support according to Part 8,
including:

• Interfaces within distributed developments, which ensure that responsibilities are
clear between different organizations that shared the development work, e.g.
between a vehicle manufacturer and its suppliers. It is often referred to as a
Statement of Work.

• Requirement management, which ensure that requirements, in particular the
safety requirements are properly managed. This includes identification of
requirements, requirement traceability, and status of the requirements.

• Configuration management, which ensure that the item including all docu-
mentation, systems and components belong together and at any time these
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can be identified and reproduced. There are other standards for configuration
management, e.g. ISO 10007, referenced from ISO 26262.

• Change management, which in ISO 26262 ensures that functional safety is
maintained when there are changes to an Item. It is based on an analysis
of proposed changes and control of those changes. Change management and
configuration management typically goes hand in hand with each other.

• Documentation management, which in ISO 26262 ensures that all documents are
managed such that they are retrievable and contain certain formalities such as
unique identification, author and approver.

• Confidence in the use of software tools, which shall be done when compliance
with the ISO 26262 standard relies on correct behavior of software tools used
during product development, e.g. code generators and compilers. The first step is
a tool classification to determine if the tool under consideration is critical and if
critical a tool qualification is done to ensure that the tool can be trusted.

These requirements mean that ISO 26262 poses requirements on the product
development databases described in Chap. 4 in terms of which kind of connections
and relations that should be maintained.

10.3 Concept and System Development

According to ISO 26262, product development starts with the development of a
concept as described in Part 3. In this phase, the vehicle level function of an
Item is developed. Also, the context of the Item is described, i.e. the vehicle
and other technologies such as mechanical and hydraulical components. After
the concept phase, there is the system development phase according to Part 4
in ISO 26262. In ISO 26262, the system only contains electronic hardware and
software components, no other components of other technology such as hydraulic
and mechanical components. The development of these other components is not
covered by ISO 26262.

The first step in concept development is to define the Item to which ISO
26262 is applied. This definition of the Item contains functional and non-functional
requirements, use of the Item including its context, and all relevant interfaces and
interactions of the Item. It is an important step as this Item definition is the basis for
the continued work.

The following step is the hazard analysis and risk assessment which includes
hazard identification and hazard classification. A hazard in ISO 26262 is a potential
source of harm, i.e. a malfunction of the Item that could harm persons. Examples of
hazards are no airbag deployment when intended and unintended steering column
lock. These hazards are then further analyzed in relevant situations, e.g. driving in
a curve with oncoming traffic is a relevant situation for the unintended locking of
the steering column. The combination of a hazard and all relevant driving situations
that could lead to harm are called hazardous events.
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During hazard classification, these hazardous evens are classified with an ASIL.
ASIL is an ISO 26262 specific term defined as Automotive Safety Integrity Level.
There are four ASILs ranging from ASIL A to ASIL D. The ASIL D is assigned
to hazardous events that have the highest risk that need to be managed by ISO
26262 and ASIL A for the lowest risk. If there is no ASIL, it is assigned QM,
i.e. Quality Management. The ASIL is derived by three parameters; Controllability,
Exposure, and Severity. These parameters estimate the magnitude of the probability
of being in a situation where a hazard could result in harm to persons (Exposure),
the probability of someone being able to avoid that harm given the that situation and
that hazard (Controllability), and an estimate of the severity of that harm (Severity).
In Table 10.1, a brief explanation of the different ASILs and examples are shown.

Table 10.1 Brief description of different ASILs with examples, the examples are dependent on
vehicle type

Risk
classification Description of risk Examples of hazardous event

QM The combination of probability
of accident (Controllability and
Exposure) and severity of harm
to persons (Severity) given the
hazard is considered as an
acceptable risk.

With a QM classification, there are no ISO
26262 requirements on the development.
No locking of steering column when
leaving the vehicle in a parked position.
Not possible to open sunroof.

ASIL A The combination of probability
of accident and severity of harm
to persons given the hazard
occurring results in a low risk.

No airbag deployment in a crash where the
airbag deployment criteria is met.

ASIL B . . . Unintended hard acceleration of vehicle
during driving.

ASIL C . . . Unintended hard braking of vehicle during
driving while maintaining vehicle stability.

ASIL D The combination of probability
of accident and severity of harm
to persons given the hazard
occurring results in the highest
risk level.

Unintended locking of steering column
lock during driving.

In addition to ASIL being a measure of risk, it also puts requirements on safety
measures that need to be taken to reduce the risk to an acceptable level. The higher
the ASIL, the more safety measures are needed. Examples of safety measures are
analysis, reviews, verification and validation, safety mechanisms implemented in
electronic hardware and software to detect and handle fault, and independent safety
assessments. If there is a QM, it means that there are no requirements on safety
measures specified in ISO 26262. Still, a normal automotive development is needed
and this includes proper quality management, reviews, analysis, verification and
validation, and much more.
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For hazardous events where there is an ASIL assigned, a Safety Goal shall
be specified. A Safety Goal is a top level safety requirement to specify how the
hazardous event can be avoided. A simplified hazard analysis and risk assessment is
shown in Table 10.2.

Table 10.2 A simplified hazard analysis and risk assessment with two separate examples

Function Hazard Situation Hazardous event ASIL Safety goal

Steering
column
lock

Unintended
steering column
lock

Driving in curve
with oncoming
traffic

Driver loses
control of the
vehicle, entering
the lane with
oncoming traffic

D Steering column
lock shall not be
locked during
driving

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

Driver
airbags

No deployment
of driver airbags

Crash where
airbag should
deploy

Driver is not
protected by
airbags as
intended

A Driver airbag
should deploy in a
crash which meets
the deployment
criteria.

. . . . . . . . . . . . . . . . . .

The third step is the functional safety concept where each Safety Goal with an
ASIL is decomposed into a set of Functional Safety Requirements and allocated to a
logical design. It is also important to provide an argumentation why the Functional
Safety Requirements fulfill the Safety Goal, this argumentation can be supported by
a fault tree analysis.

During the Functional Safety Concept, and also during later refinements of safety
requirements, it is possible to lower the ASILs if there is redundancy with respect
to the requirements. However, it is always a trade-off between using redundancy or
not. Redundant components could increase cost and lower availability. At the same
time as lower ASILs could save development cost and development efforts. The
choice to take need to be assessed on a case by case basis.

An example of a Functional Safety Concept is shown in Fig. 10.2. Here the
logical design consists of three parts; the sensor element S, the decision element D
and the actuation element A. The sensor element has been refined using redundancy
of two sensor elements; S1 and S2. For all of these elements, there are Functional
Safety Requirements allocated, denoted as FSR with a sequence number and an
ASIL. For the argumentation why these Functional Safety Requirements fulfill the
Safety Goal SG1, a fault tree with the violation of the Safety Goal, SG1, as a top
event is used.
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Fig. 10.2 The three parts of a functional safety concept; the Functional Safety Requirements noted
as FSR, their allocation to logical design elements, and the argumentation in a fault tree why the
Functional Safety Requirements fulfill the Safety Goal noted as SG

During system development according to Part 4, as shown in Fig. 10.1, the
Functional Safety Concept is refined into a Technical Safety Concept. It is very
similar to a Functional Safety Concept, but more specific in details. At this point, the
architecture include actual systems and components, including signaling in between.
It is common that the Technical Safety Concept includes interfaces, partitioning, and
monitoring. The Technical Safety Concept includes Technical Safety Requirements
that are allocated to actual systems and components, and an argumentation why
the Technical Safety Concept fulfills the Functional Safety Concept. A simplified
example of one possible level of design for a Technical Safety Concept is shown
in Fig. 10.3. Here the design for the decision element has been refined to an ECU
that consists of a microcontroller and an ASIC. For these two elements, there are
Technical Safety Requirements allocated, denoted as TSR with a sequence number
and an ASIL.

During an actual development, it is common that there is a hierarchy of Technical
Safety Concepts. In addition, for each Safety Goal with an ASIL there are other
Functional Safety Concepts and Technical Safety Concepts. An example of the
relationships between safety concepts is shown in Fig. 10.4. In this case, the top ones
allocate Technical Safety Requirements to elements that consist of both software
and hardware, e.g. an ECU. In the lowest one, the Technical Safety Requirements
are allocated to software and hardware. In this lowest level of Technical Safety
Concept, there is also a hardware-software interface. The following step in the
design is detailed hardware and software development. In this chapter, we will only
consider the software part. The hardware development has a similar structure as the
software development.
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Fig. 10.3 A Technical Safety Concept is one level more detailed than a Functional Safety Concept,
here with Technical Safety Requirements noted as TSR allocated to a microcontroller (μC)
including software (SW) and an ASIC for ensuring correct activation

Fig. 10.4 An example of a hierarchy of Technical Safety Concepts derived from one Functional
Safety Concept. Other parallel safety concepts are faded in the figure

10.4 Planning of Software Development

The software development starts with a planning phase. In addition to the planning
of all software activities, including assigning resources and setting schedule accord-
ing to Part 2, the methods and tools used need to be decided according to Part 6.
At this phase, the modeling or programming languages to be used are also decided.
The software activities to be planned are shown in Fig. 10.5 and also described in
more detail in this chapter.
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Fig. 10.5 The software development activities according to ISO 26262, adopted from [Org18]

Even if ISO 26262 is described in a traditional context with manually written
code according to a waterfall model, ISO 26262 both supports automatic code
generation and it is possible to tailor the way of working to a more agile approach.

To support the development and to avoid common mistakes, there is a require-
ment to have modeling and coding guidelines. These shall address the following
aspects:

• Enforcement of low complexity: ISO 26262 does not define what low complex-
ity is and it is up to the user to set an appropriate level of what is sufficiently low.
An appropriate compromise with other methods in this part of ISO 26262 may
be required. One method that can be used is to measure cyclomatic complexity
and have guidance for what to achieve.

• Use of language subsets: When coding, depending on the programming lan-
guage, there are language constructs that may be ambiguously understood or
may easily lead to mistakes. Such language constructs should be avoided, e.g. by
using MISRA-C [A+08] when coding in C.

• Enforcement of strong typing: Either strong typing is inherent in the program-
ming language used, or there shall be principles added to support this in the
coding guidelines. The advantage of strong typing is that the behavior of a piece
of software is more understandable during design and review as the behavior has
to be explicit. When strong typing is inherent in the programming language, a
value has a type and what can be done with that value depends on the type of the
value, e.g. it is not possible to add a number to a text string.

• Use of defensive implementation techniques: The purpose of defensive imple-
mentation is to make the code robust to continue to operate even in the presence
of faults or unforeseen circumstances, e.g. by catching or preventing exceptions.
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• Use of well-trusted design principles: The purpose is to re-use principles that
are known to work well.

• Use of unambiguous graphical representation: When using graphical repre-
sentation, e.g. data flow diagrams, it should not be open for interpretation.

• Use of style guides: A good style when coding typically makes the code
maintainable, organized, readable, and understandable. Hence, the likelihood for
faults is lowered when using good style guides. One example of a style guide for
C is MISRA-C [A+08].

• Use of naming conventions: By using the same naming conventions the code
becomes easier to read, e.g. by using Title Case for names of functions.

• Concurrency: The purpose is to cover aspects when having software executing
out-of-order or in partial order, e.g. on multiple cores and multiple processors, to
ensure correct outcome.

10.5 Software Safety Requirements

Once we have Technical Safety Requirements allocated to software and the software
development planned, it is time to specify the software safety requirements. These
are derived from the Technical Safety Concept and the system design specification,
also considering the hardware-software interface. At the end of this step, we shall
also verify that the software safety requirements including the hardware-software
interface realize the Technical Safety Concept.

In a safety critical context, there are several services expected from software that
are specified by software safety requirements, including:

• Correct and safe execution of the intended functionality.
• Monitoring that the system maintain a safe state.
• Transition the system to a degraded state with reduced or no functionality, and

keeping the system in that state.
• Fault detection and handling of hardware faults, including setting diagnostic fault

codes.
• Self-test to find faults before they are activated.
• Functionality related to production, service and decommissioning, e.g. calibra-

tion and deploying airbags during decommissioning.

10.6 Software Architectural Design

The software safety requirements need to be implemented in a software architecture
together with the other software requirements that are not safety related. In the
software architecture, the software units shall be identified. As the software units
get different software safety requirements allocated to them, it is also important to
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consider if these requirements, potentially with different ASILs can coexist in the
same software unit. There are certain criteria to be met for coexistence. If these
criteria aren’t met, the software needs to be developed and tested according to
the highest ASIL of all allocated safety requirements. These criteria may include
memory protection and guaranteed execution time.

The software architecture includes both static and dynamic aspects. Static aspects
are related to interfaces between the software units and dynamic aspects are
related to timing, e.g. execution time and order. An example of a simple software
architecture be seen in Fig. 10.6. To specify these two aspects, the notation of the
software architecture to be used is informal, semi-formal or formal. The higher the
ASIL, the more formality is needed.

Fig. 10.6 An example of a simple software architecture with four software units

It is also important that the software architecture consider maintainability
and testability. In an automotive context, software need to be maintainable as
its lifetime is considerable. It is also needed that the software in the software
architecture easily can be tested as testing is important when arguing for fulfillment
of safety requirements according to ISO 26262. During the design of the software
architecture, it is also possible to consider the use of configurable software. There
are both advantages and disadvantages when using it.

To avoid systematic faults in software resulting from high complexity, ISO 26262
specifies a set of principles that shall be used for different parts, including:

• Components shall have a hierarchical structure, high cohesion within them and
be restricted in size.

• Interfaces between software units that shall be kept simple and small. This can be
supported by limit the coupling between software units by separation of concerns.

• Scheduling of software units shall be considered to ensure execution time of
software units. In general interrupts should be avoided, but if used these shall be
priority based.

At the software architectural level there is a good possibility to detect errors
between different software units. As in general for different ASILs, the higher the
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ASIL, the more mechanisms are needed. These are the mechanisms mention in ISO
26262, some are overlapping each other:

• Range checks of data: This is a simple method to ensure that the data read from
or written to an interface is within a specified range of values. Any value outside
this range is to be treated as faulty, e.g. a temperature below absolute zero.

• Plausibility checks: This is a type of sanity check that can be used on signals
between software units. It should e.g. catch a vehicle speed signal going from
standstill to 100 km/h in one second for a normal car. Such acceleration is not
plausible, or even possible. A plausibility check could use a reference model or
compare information from other sources to detect faulty signal values.

• Detection of data errors: There are many different ways of detecting data errors,
e.g. error detecting codes such as checksums and redundant data storage.

• Monitoring of program execution: To detect faults in execution, external
monitoring can be quite effective. It can e.g. be software executed in a different
microcontroller or a watchdog.

• Control flow monitoring: By monitoring the execution flow of a software unit,
certain faults can be detected, including skipped instructions and software stuck
in infinite loops.

• Diverse software design: Using diversity in software design can be efficient.
The approach is to design two different software units monitoring each other, if
the behaviors differ, there is a fault that should be handled. This method can be
questioned as it is not uncommon that software designers do similar mistakes. To
avoid similar mistakes, the more diverse the software functionality is, the lower
the likelihood for these types of mistakes.

• Access control: By using access violation control mechanisms implemented in
either software or hardware, safety related resources can be protected by granting
and denying access to them, e.g. memory protection units.

Once an error has been detected, it should be handled. The mechanisms for error
handling at the software architectural level specified in ISO 26262 are:

• Deactivation: For some systems, it may be possible to deactivate functionality
in order to be in a safe state.

• Static recovery mechanism: The purpose is to go from a corrupted state back
into a state from which normal operation can be continued.

• Graceful degradation: This method takes the system from a normal operation
to a safe operation when faults are detected. A common example in automotive
is to warn the driver that something is not working by a warning lamp, e.g., the
airbag warning lamp when the airbags are unavailable.

• Homogenous redundancy: This type of mechanism focuses on controlling
faults in hardware by having redundant hardware units. The concept is based
on the assumption that the likelihood for simultaneous failures in hardware is
low and one redundant channel should always be operating safely.

• Diverse redundancy: This type of mechanism focuses on controlling design
faults in software by having different software, i.e., different implementation
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of software fulfilling the same safety requirements, typically two different
implementations. This mechanism also works for hardware design faults.

• Correcting codes for data: For data errors, there are mechanisms that can
correct these. These mechanisms are all based on adding redundant data to give
different level of protection. The more redundant data that is used, the more errors
can be corrected. This is, for instance, typically used on CDs, DVDs, and RAM
but can be used in this area as well.

Once the software architectural design is done, it needs to be verified against the
software requirements. ISO 26262 specifies a set of methods that are to be used:

• Walk-through of the design: This method is a form of peer review where the
software architecture designer describes the architecture for a team of reviewers
with the purpose to detect any potential problems.

• Inspection of the design: In contradiction to a walk-through, an inspection is
more formal. It consists of several steps, including planning, off-line inspection,
inspection meeting, rework and follow-up of the changes.

• Simulation: If the software architecture can be simulated, it is an effective
method, in particular for finding faults in the dynamic parts of the architecture.

• Prototype testing: As for simulation, prototyping can be quite efficient for the
dynamic parts. It is however important to analyze any differences between the
prototype and intended target.

• Formal verification: This is a method, rarely used in the automotive industry,
to prove or disprove correctness using mathematics. It can be used to ensure
expected behavior, exclude unintended behavior, and prove safety requirements.

• Control flow analysis: This type of analysis can be done during a static code
analysis. The purpose is to find any safety critical paths in the execution of the
software at an architectural level.

• Data flow analysis: This type of analysis can also be done during a static code
analysis. The purpose is to find safety critical values of variables in the software
at an architectural level

• Scheduling analysis: The purpose is to ensure that the scheduling of software
units is good. It can be done by a combination of analysis and testing.

10.7 Software Unit Design and Implementation

Once the software safety requirements are specified and the software architecture
down to software unit level is ready, it is time to design and implement the software
units. ISO 26262 supports both manually written code and automatically generated
code. If the code is generated, some requirements on software unit could be omitted,
given that the tool used can be trusted as determined by tool classification and if
needed tool qualification. In this section, the focus will be on manually written code.

As for the specification of the software architecture, ISO 26262 specifies the
notation that should be used for the software unit design. ISO 26262 requires an
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appropriate combination of notation to be used. Natural language is always highly
recommended and in addition informal notation, semi-formal notation and formal
notation are mentioned additions. Formal notation is not really required at this time.

There are many design principles mentioned in ISO 26262 for software unit
implementation. Some may not be applicable, depending on the type of develop-
ment. Many could also be covered by the coding guidelines used. However, all are
mentioned here for completeness.

• One entry and one exit point: One main reason for this rule is to have
understandable code. Multiple exit points complicate the control flow through
the code and therefore the code is harder to understand and to maintain.

• No dynamic objects or variables: There are two main challenges with dynamic
objects and variables, unpredictable behavior and memory leaks. Both may have
a negative effect on safety.

• Initialization of variables: Without initializing variables, anything can be put
in that variable including unsafe and illegal values. Both of these may have a
negative effect on safety.

• No multiple use of variable names: Having different variables using the same
name risk adding confusion to readers of the code.

• Avoid global variables: Global variables are bad from two aspects; they can be
read by anyone and be written to by anyone. Working with safety related code, it
is highly recommended to have control of variables from both aspects. However,
there may be cases where global variables are preferred and ISO 26262 allows
for these cases if the use can be justified in relation to the associated risks.

• Restricted use of pointers: Two significant risks of using pointers are corruption
of variable values and crashes of programs, both should be avoided.

• No implicit type conversions: Even if supported by compilers for some
programming languages, this should be avoided as it could result in unintended
behavior, including loss of data.

• No hidden data flow or control flow: Hidden flows make the code both harder
to understand and to maintain.

• No unconditional jumps: Unconditional jumps makes the code harder to
analyze and understand with limited added benefit.

• No recursions: Recursion is a powerful method. However, it complicates the
code making it harder to understand and to verify.

10.8 Software Unit Verification

The purpose of verification of the software units, as shown in Fig. 10.7, is to
demonstrate that the software units meet their software safety requirements and
do not contain any undesired behavior. There are four steps needed to achieve
this purpose; verification of software units by review and analysis, selecting an
appropriate combination of test methods, determine and execute test cases, and an
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argumentation why the test done give sufficient coverage. It is also important that the
test environment used for the software unit testing represent the target environment
as closely as possible, e.g. model-in-the-loop tests and hardware-in-the-loop tests as
described in Chap. 4.

Fig. 10.7 Software unit verification is done at the level of software unit design and implementation

At the time of software unit verification, it is required to verify that both
the hardware-software interface and the software safety requirements are met. In
addition, it shall be ensured that the implementation fulfills the coding guidelines
and that the software unit design is compatible with the intended hardware. To
achieve this, an appropriate combination of methods shall be selected depending on
the ASIL of the applicable software safety requirements. The methods for software
unit verification in ISO 26262 are:

• Walk-through1

• Pair programming: This is a technique where two programmers work in
parallel. One is writing the code and the other is reviewing the code as it is
written.

• Inspection (see footnote 1)
• Semi-formal verification: This family of methods is between informal verifica-

tion like reviews and formal verification, with respect to ease of use and strength
in verification results.

• Formal verification (see footnote 1).
• Control flow analysis (see footnote 1).
• Data flow analysis (see footnote 1).

1See Sect. 10.6.
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• Static code analysis: The basis for this analysis is to debug source code without
executing it. There are many tools with an increasing capability. These often
includes analysis of syntax and semantics, checking coding guidelines like
MISRA-C, variable estimation, and analysis of control and data flows.

• Semantic code analysis: This is a type of static code analysis considering the
semantic aspects of source code. Examples of what can be detected include
variables and functions not being properly defined and used in incorrect ways.

• Requirements-based test: This testing method target to verify that the software
under test meet the applicable requirements.

• Interface test: This testing method target to verify that all interactions with
the software under test work as intended. It should also detect any incorrect
assumption made on the interfaces under test. These interactions should have
been specified by requirements and hence this testing method is overlapping with
requirement-based tests.

• Fault injection test: This method is a very efficient test method for safety related
testing. The key part is to test to see if there is something missing in the test target.
By injecting different types of faults together with monitoring and analyzing the
behavior, it is possible to find weaknesses that need to be fixed, e.g. by adding
new safety mechanisms.

• Resource usage evaluation: The purpose of this verification method is to verify
that the resources, e.g. communication bandwidth, computational power and
memory, are sufficient for safe operation. For this type of testing, the test target
is very important.

• Back-to-back comparison test: This method compares the behavior of a model
with the behavior of the implemented software when both are stimulated in the
same way. Any differences in behavior could be potential faults that need to be
addressed.

Similarly, ISO 26262 provides a set of methods for deriving test cases for
software unit testing. These methods are:

• Analysis of requirements: This method is the most common approach for
deriving test cases. Basically, the requirements are analyzed and a set of
appropriate test cases are specified.

• Generation and analysis of equivalence classes: The purpose of this method
is to reduce the number of test cases needed to give good test coverage. This
is done by identifying equivalence classes of input and output data that test the
same condition. Test cases are then specified with the target to give an appropriate
coverage.

• Analysis of boundary values: This method complements equivalence classes.
The test cases are selected to stimulate boundary values of the input data. It
is recommended to consider the boundary value itself, values approaching and
crossing the boundaries and out of range values.

• Error guessing: The advantage of this method is that the test cases are generated
based on experience and previous lessons learned.
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The last step in the software unit testing is to analyze if the test cases performed
provide sufficient test coverage. If this isn’t the case, more tests need to be carried
out. The analysis of coverage is according to ISO 26262 done using these three
metrics:

• Statement coverage: The goal is to have all statements, e.g. printf
(“Hello World”), in the software executed.

• Branch coverage: The goal is that all branches from each decision statement in
the software executed, e.g. both true and false branches from an if statement.

• Modified Condition/Decision Coverage (MC/DC): The goal of this test cov-
erage is that four different criteria are met. These are; each entry and exit point
is executed, each decision executes every possible outcome, each condition in
a decision executes every possible outcome, and each condition in a decision is
shown to independently affect the outcome of the decision.

10.9 Software Integration and Verification

Once all software units have been implemented, verified and tested, it is time to
integrate the software units and to test the integrated software. For this testing, the
target is to test that the integrated software comply with the software architectural
design as shown in Fig. 10.8. This testing is very similar to software unit testing
and consists of three steps; selection of test methods, specification of test cases, and
an analysis of test coverage. Also, the test environment shall be as representative as
possible.

Fig. 10.8 The software integration and verification is done at the level of the software architecture
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The methods for software integration and verification are mostly the same as for
software unit verification with some additions. The methods listed in ISO 26262
are:

• Requirements-based test.2

• Interface test (see footnote 2).
• Fault injection test (see footnote 2).
• Resource usage evaluation (see footnote 2).
• Back-to-back comparison test (see footnote 2).
• Verification of control flow and data flow: To complement the control flow

analysis3 and data flow analysis (see footnote 3) done earlier, it is done during
software integration as well for the integrated software

• Static code analysis (see footnote 3).
• Semantic code analysis (see footnote 3).

The methods for deriving test cases for software integration testing are the same
as for software unit testing as described in Sect. 10.8, namely:

• Analysis of requirements.
• Generation and analysis of equivalence classes.
• Analysis of boundary values.
• Error guessing.

The last step in the testing of the integrated software is to analyze the test
coverage. Again, if the coverage is too low, more tests need to be done. The analysis
of coverage according to ISO 26262 is done using the following methods:

• Function coverage: The goal of this method is to execute all functions in the
software.

• Call coverage: The goal of this method is to execute all function calls in the
software. The key difference of this coverage compared with function coverage
is that a function may be called from many different places and ideally all of
these calls are executed during testing.

10.10 Testing Embedded Software

Once the software has been fully integrated, it is time for verification of the software
against the software safety requirements as shown in Fig. 10.9. ISO 26262 specifies
possible test environments that can be used. At this point in time, the environment
to use is very dependent on the type of development. These test environments may
include a combination of:

2See Sect. 10.8.
3See Sect. 10.6.
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• Hardware-in-the-loop: Using actual target hardware in a combination with a
virtual vehicle could be a cost efficient way of testing. As it uses a virtual vehicle,
it should be complemented by another environment.

• Electronic control unit network environments: Using actual hardware and
software for the external environment is quite common. It is more correct
compared to a virtual vehicle, at the same time it may be less efficient in running
the tests.

• Vehicles: Using vehicles during this level of testing is in particular useful when
there is software that is in operation and has been modified. At the same time, it
is the most costly test environment.

Fig. 10.9 The testing of the embedded software is done against the software safety requirements

10.11 Examples of Software Design

In this section we take some brief examples from the previous sections to show how
ISO 26262 could impact a software design. In the example in Fig. 10.10, we have
an assumed Safety Goal covering faulty behavior classified as ASIL D and no other
Safety Goal. This example has also broken down the ASIL D to two independent
ASIL B channels using ASIL decomposition. However, the comparator in the end
need to meet ASIL D requirements as it is a single point of failure.

From the early phases of planning, there will be a requirement on the pro-
gramming language used as shown in Fig. 10.10, when using the C language,
the MISRA-C standard [A+08] is common. An example of a software safety
requirement for the comparator in the figure is to transition to a safe state in case
of detected errors for the comparator. In this example a safe state could be no
functionality, a so called fail silent state. As intentionally shown in Fig. 10.10,
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working with the software architectural design is quite important. In this example
we see the plausibility and range checks on the sensor side as well as external
monitoring using diverse software. To make full benefit of this monitoring function,
it needs to be allocated to an independent hardware. For the testing of the main
function, using methods meeting ASIL B requirements on testing is sufficient.

Fig. 10.10 TA simple example of a software design for an assumed ASIL D Safety Goal

10.12 Integration, Testing, Validation, Assessment
and Release

Once we have fulfilled the Technical Safety Requirements in the design and
implementation of software and hardware and also shown by testing that the derived
requirements are fulfilled, it is time to integrate hardware and software. In ISO
26262, this is done in three different levels; hardware-software, system and vehicle.
At each level, both integration and testing are required. In a real development,
there can be fewer integration levels or more integration levels, especially when
the development has been distributed among vehicle manufacturer and suppliers in
many different levels. At each level, there are specific methods to derive test cases
and methods to be used during testing. All of these have the purpose to provide
evidence that the integrated elements work as specified.

Once we have our Item integrated in a vehicle we can finalize the safety
validation. The purpose of safety validation is to provide evidence that the safety
goals and the functional safety concept are appropriate and achieved for the Item.
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By doing so, we have finalized the development and the only remaining activities
are to assess and to conclude that the development has resulted in a safe product.

To document the conclusion and the argument that safety has been achieved, a
safety case is written. A safety case consists of this argumentation with references to
different documentation as evidence. Typical evidence includes the hazard analysis
and risk assessment, safety concepts, safety requirements, review reports, analysis
reports, and test reports. It is recommended that the safety case is written in parallel
with the product development, even if it can’t be finalized before the development
activities have been finalized.

Once the safety case has been written, it is time for functional safety assessment
for Items with higher ASILs. There are many details on how this is to be done,
but simplified, an independent person shall review the developed system, the
documentation that lead up to the system, in particular the safety case, and the ways
of working during the development. If the person doing the assessment is satisfied,
it is possible to do the release for production and start producing.

10.13 Production and Operation

Functional safety as a discipline mainly focuses on product development. At the
same time, what is developed needs to be produced and is intended to be used in
operation by the users of the vehicle. Part 7 of ISO 26262 is the smallest part of the
whole standard and describes what is required during both production and operation.
In addition, planning for both production and operation are activities to be done in
parallel to the product development.

The requirements for production can be summarized as to produce what was
intended including maintaining a stable production process, documentation of what
was done during production if traceability is necessary, and carrying out needed
activities such as end-of-line testing and calibrations.

For operation, there are clear requirements on information that the driver and
service personnel should be aware of, e.g., instructions in a driver’s manual, service
instructions and disassembly instructions. One key part during operation is also a
field monitoring process. The purpose of this process is to detect potential faults,
analyze those faults, and if needed initiate proper activities for vehicles in operation.

10.14 Further Reading

In this chapter, we have looked at an overview of ISO 26262 and gone into details
of the software specific parts. For more details on both of these parts, the ISO 26262
standard itself [Org18] is a good alternative when starting to work, especially for
the software-specific parts. At the same time, understanding this standard, as many
standards, would benefit from a basic training to get the bigger picture and the logic
behind. For more details on safety-related software, the work in [HHK10] gives a
good start.
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To go into details on functional safety in general, there are some good books
available. One of the classical books that gives a good overview, even if it is a bit
old, is [Sto96]. A newer book by Smith et al. [SS10] gives a good overview of
functional safety standards in general and in details of the IS/IEC 61508 and IS/IEC
61511 standards. Even if these are different from ISO 26262, the book still gives a
good insight that can be used in an automotive context.

When working with functional safety, it is apparent that much of the work is
based on various safety analyses. There is one book [E+15] that gives a good
overview of most used in an automotive context and is well worth reading.

Also, one of the key parts in ISO 26262 and many other safety standards is
the argumentation for safety, e.g., as documented in a Safety Case. To understand
more on Safety Cases, Wilson et al. [WKM97] give a good overview. For the
argumentation part, the Goal Structuring Notation is both well recognized and an
effective approach. This is well described in other papers [KW04, Sta16].

10.15 Conclusions

In this chapter we have described how the automotive industry works with functional
safety and in particular focused on software development. As apparent in this
section, the ISO 26262 standard is the basis for this in the automotive industry.
It is quite a significant standard and is more or less a prerequisite for being in the
industry, both for organizations and for individuals.

It is not a standard that is possible to learn overnight; at the same time, it is fairly
straightforward for some parts like software engineering. As seen in this section, the
software-specific details in ISO 26262 are more or less a set of additional rules that
one adheres to following normal software development practices.

The reader should also have seen what is typical of ISO 26262, there is no single
answer. This is a standard that describes a simplified way of working with functional
safety in the automotive industry. As there are many different types of development,
this standard has to be adapted to fit each type of development. Hence, the user of
this standard has both a lot of flexibility when applying it and at the same time a lot
of responsibility to argue for the choices made, e.g., for the test methods chosen
when testing a software unit. There are also differences in how the standard is
interpreted in, e.g., different nations, type of vehicles and level in the supply chain.
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Chapter 11
Current Trends in Automotive Software
Architectures

Abstract Cars have evolved a lot since their introduction and will evolve even
more. Today’s cars would not work without the software that is embedded in their
electronics. Although the physical processes are often the same as in the cars’ of
the 1990s (combustion engines, servo steering), they become computer platforms
and are able to “think” and drive autonomously. In this chapter we look into a few
trends which shape automotive software engineering—autonomous driving, self-*
systems, big data and new software engineering paradigms. We look into how these
trends can shape the future of automotive software engineering.

11.1 Introduction

Automotive software evolves over time and requires changes to the methods used
to develop it. The evolution of software means that we can use new functions
which require more software, but also that we can use more advanced software
development methods.

If we look at the history of electronics and software in cars, we can see that
it is today that the big technological breakthroughs are happening. The cars of
today have become sophisticated computer platforms which can be used in multiple
ways. The powertrain technology has changed from traditional combustion engines
to electrical or hybrid (e.g. hydrogen technology).

Living in these interesting times, software engineers and architects will see a lot
of great possibilities and great potential. Let us then explore a few trends that seem
to shape current automotive software engineering. In particular, let us explore the
following trends:

• Autonomous driving—how the introduction of autonomous driving shapes the
automotive sector and the software needed to steer cars.

• Self-*—how the ability to develop self-healing and self-adaptive systems influ-
ences the way in which we can design software in modern cars.

• Big data—how the ability to communicate and process large quantities of data
changes the way we think about decision making in cars.
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• New software development paradigms—how new software engineering methods
influence the way we develop software for automotive systems.

In the remainder of this chapter we go through these trends.

11.2 Autonomous Driving

Undoubtedly the main trend in modern software in cars’ is autonomous driving
software. Autonomous driving software allows drivers to skip controlling the
car or some of its functions. The NHSTA (National Highway Safety Traffic
Administration) in the United States recognizes the following levels of autonomous
functionality in cars [A+13]:

• Level 0, No automation—there are no functions in the car that can drive the car
or support the driver.

• Level 1, Function-specific automation—according to the definition “automation
at this level involves one or more specific control functions”, meaning that certain
functions can be autonomous, e.g. adaptive cruise control.

• Level 2, Combined function automation—where a group of functions can be
automated and be autonomous. The driver, however, is still responsible for the
control of the vehicle and must be prepared to take control of the vehicle on very
short notice. Example functions are self-driving on highways.

• Level 3, Limited self-driving automation—the vehicle is able to drive
autonomously under certain conditions and monitor the conditions; the drivers
might need to occasionally take control, but the transition time is comfortably
longer than at Level 2.

• Level 4, Full self-driving automation—the vehicle is able to perform the entire
trip autonomously; the driver is only expected to enter constraints and the
destination for the trip. The level applies to both manned and unmanned vehicles.

One can see that modern vehicles already provide functions for automation Level
2 (combined function automation) and some even for Level 3 (e.g. Tesla’s autopilot
functionality, [Pas14, Kes15]). This kind of functionality puts a lot of constraints on
the automotive software.

First of all, this drives the complexity of software and therefore the cost
of its development, verification, validation and certification. As the self-driving
functionality is safety-critical it requires specific validation. It also requires complex
reasoning in traffic situations on a very abstract level—e.g. whether it is better to
save lives of the car’s passengers or the lives of others in the accident.

Second of all, this kind of functionality drives the need for large quantities of
data to process, which drives the need for processing power in modern cars. The
processing power requires efficient CPUs and electronic buses of high throughput,
which require more advanced infrastructure (e.g. cooling fans), that is often suscep-
tible to environmental influences such as vibrations, humidity and temperature. This
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means that new components need to be develop especially for the cars, which drives
costs.

Third of all, we need to understand that the quality of the sensors today is
insufficient for advanced scenarios. Cameras are able to see clearly in specific
conditions, but the human eye is still better synchronized with the human brain in
all situations. Therefore cameras are not able to work effectively in low light or bad
weather conditions [KTI+05]. Using high-end cameras and sophisticated equipment
would drive up the cost and still not guarantee the same quality as from human eyes
and brains.

And finally, this kind of autonomous functionality requires acting on higher
abstraction levels. Information about distance to the nearest obstacle needs to be
transformed to a worldview which can be compared to a map view to determine the
best course of action in a specific situation [BT16]. This requires more advanced
algorithms which can be based on heuristics. The heuristics, however, are very
challenging to prove to work correctly in all kinds of traffic situations, thus posing
problems for safety certification.

11.3 Self-*

Self-healing is the ability of the system to autonomously change its structure so that
its behaviour stays the same. An example concept of self-healing can be seen in
the work of Keromytis et al. [Ker07], who define the self-healing as the ability to
autonomously recover from erroneous execution.

One of the most prominent mechanisms used in self-healing systems is the
MAPE-K (Measure, Analyse, Plan and Execute + Knowledge, [MNS+05]). It is
shown in Fig. 11.1 as an overwatch algorithm for an ECU realizing the adaptive
cruise control functionality.

The algorithm in short is based on monitoring the execution of the algorithm
for correctness. In the example of adaptive cruise control, we can monitor the radar
to confirm it provides reliable results (e.g. no distortion is present). The analysis
component checks whether one of the failure conditions has been detected (e.g. too
much noise in the radar readings) and sends a signal to the plan component which
plans appropriate action based on the reading and analysis. One of the actions can
be to disable the adaptive cruise control and inform the user. Once the component
makes a decision about the recovery strategy it moves to the execution and executes
the repair strategy (i.e. informs the user and disables the adaptive cruise control
algorithm).

This trend of using self-adaptation is used increasingly in safety-critical systems
as it allows us to change the operation of a component in the presence of errors
and failures. It can provide the ability to the system to self-degrade the functionality
(e.g. temporarily change the operation of the engine, as discussed in Chap. 6).

However, there are still challenges which need to be addressed in order to make
self-adaptation even more applicable to automotive systems. One of the major
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Fig. 11.1 Realization of MAPE-K for ECU software

challenges is the ability to prove that the system is “safe” (in the sense of ISO/IEC
26262) during self-adaptation. Another is the fact that self-adaptation algorithms
can be complex and need to be validated, but in many situations the failure modes
cannot be replicated in real life. For example, it is difficult to safely replicate the
situation where a radar in adaptive cruise control is broken when a vehicle drives at
150 km/h.

Nevertheless, we can perceive more self-* algorithms entering automotive
systems as they need to monitor the increasingly complex decision algorithms in
modern cars (e.g. related to autonomous driving).

11.4 Big Data

With the ability of modern cars to communicate with each other and the ability to
use their own sensors in decision making, the amount to data used in modern cars
has increased exponentially. At the same time, the field of computer science has
evolved and started to tackle challenges related to storing, analysing and processing
large quantities of data [MCB+11, MSC13].

Big Data systems are often characterized by the so-called five Vs:

• Volume—big data systems have large amounts of data (e.g. tera- or petabytes),
which makes storage and processing a challenging task requiring new types of
algorithms.
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• Variety—the data comes from heterogeneous sources, has different formats, and
has multiple semantic models, which require preprocessing before the data can
be fed to analysis algorithms.

• Velocity—the data is provided at high speeds and requires processing realtime
(e.g. from multiple sensors in the car and needs to be used to make safety-
critical decisions). The speed requires large processing power, which might not
be available in such systems as the automotive software.

• Value—the data collected has some business value (e.g. data about the driving
routines of cars) which makes the storage, privacy and security issues chal-
lenging, especially in combination with the velocity of processing and the next
V—veracity.

• Veracity—the data has varying degree of quality, e.g., in terms of accuracy and
trustworthiness. This varying degree of accuracy makes it challenging for the
systems to use.

The challenges of using big data in automotive systems are related to all of
the above V’s. The large volume of data which comes from the car’s own sensors
needs to be processed and often stored, which puts requirements on storage in cars.
Before the popularization of the SSD (Solid State Disk) technology it was rather
challenging to use hard disks to store data (durability problems due to vibrations).
Now, it is possible to store more data and also to process more data.

The high speed of processing requires more processing power, more efficient
processors which take power and more connectivity. This drives the cost of
automotive hardware since the more efficient processors require more infrastructure
(stability, cooling), which is prone to problems in the automotive environment
(humidity, vibrations). The hardware price is so important in the automotive domain
(as opposed to other domains, where hardware is considered cheap) that one usually
takes a calculation (a rule of thumb) that one dollar more expensive hardware per
ECU can lead to 100 dollars more expensive cars.

The veracity of the data is a challenge as in many cases the “true” values
cannot be measured but computed. For example, the slippage of the road in winter
conditions cannot be measured but are derived either from ABS usage or the steering
wheel friction. In some cases the data is obfuscated in order to secure privacy
(e.g. triangulation algorithms to hide the true position of a car), which prevent the
algorithms from “knowing” the true value of the data point [SS16].

In the future we will see more of big data, as large quantities of data are needed
for autonomous driving and for advanced algorithms for collision prevention and
avoidance.
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11.5 New Software Development Paradigms

Software engineering for automotive systems has evolved the pace of the automotive
domain. So, let us look into a few of the trends which shape the field today and will
potentially shape the field in the future.

Agility in Specification Development Agile software development has been used
in many domains outside of the automotive and now there is evidence that it is
used increasingly in the automotive domain. In particular, at the lower part of the V-
model suppliers work more agilely with their requirements engineering and software
development [MS04]. We can also observe these trends scaling up to complete
vehicle development [EHLB14] and [MMSB15]. With this increased adoption
of Agile principles we can foresee the increased ability to specify requirements
alongside software development, especially as the trends in automotive electronics
increasingly contain more commodity (or off-the-shelf) components. AUTOSAR
also prescribes a standardized approach to development, which eases the use of
iterative development principles as the development of electronics/hardware is
decoupled from the development of functions/software.

Increased Focus on Traceability The increased amount of software in cars and
their increased presence in safety systems leads to stricter processes for keeping
track of requirements for safety-critical systems. ISO 26262 (Road vehicles—
Functional Safety) is one example of this. In the automotive domain this means that
the increased complexity of software modules [SRH15] leads to more fine-grained
traceability management. One of the enablers of this increased traceability is the
increased integration between the tools—tool chaining [BDT10] and [ABB+12].

Increased Focus on Non-functional Properties The increased use of software
for active safety systems calls for increased focus on non-functional properties of
software. The increased traffic on communication buses within the car, and the
increased capacity of the communication buses call for more synchronization and
verification. Safety analyses such as control path monitoring, safety bits and data
complexity control, are just a few examples [Sin11]. As the focus of requirements
engineering research in the automotive domain was mainly (or implicitly) in the
functional requirements, we foresee an increased growth of research and emphasis
on the non-functional requirements.

Increased Focus on Security Requirements A dedicated group of requirements
is the security requirements, as our cars are increasingly connected and therefore
prone to hacker attacks [SLS+13] and [Wri11]. The recent demonstration of the
possibility of steering a Jeep Wrangler vehicle offroad showed that the threat is real
and related to the safety of cars and transport systems. We therefore perceive that
the ability to prevent attacks will the focus of the automotive software development
increasingly more in the coming decade.
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11.5.1 Architecting in the Age of Agile Software Development

Architecture development in software development is usually conducted by experi-
enced architects, and the larger the product, the more the experience required. As
each type of system has its specific requirements, the architectural design requires
attention to specific aspects like realtime properties or extensibility. For example,
in the telecom domain the extensibility and performance are the main aspects,
whereas in the automotive domain it is safety and performance that are of the
utmost priority. The architecture development efforts are dependent to some extent
on the software development process adopted by the company, e.g. the architecture
development methods differ in the V-model and Agile methodologies. In the V-
model the architecture work is mostly prescriptive and centralized around the
architects whereas in the Agile methods the work can be more descriptive and
distributed into multiple self-organized teams.

As Agile software development principles spread in industry, architecture devel-
opment evolved. As Agile development teams became self-organized, architecture
work became more distributed and harder to control centrally [Ric11]. The dif-
ficulties stem from the fact that Agile teams value independence and creativity
[SBB+09] whereas architecture development requires stability, control, trans-
parency and proactivity [PW92]. Figure 11.2 presents an overview of how the
functional requirements (FR) and non-functional requirements (NFR) are packaged
into work packages and developed as features by teams. Each team delivers code to
the main branch. Each team has the possibility to deliver the code to any component
of the product.

Customer PM – product 
management

SM – system 
management

DM – design 
and 

maintenance
Test Release

FR-F1
FR-P1 WP

WPNFR-P

Fig. 11.2 Feature development in Lean/Agile methods

The requirements come from the customers and are prioritized and packaged into
features by product management (PM), which communicates with system manage-
ment (SM) on the technical aspects of how the features affect the architecture of the
product. System management communicates with the teams (DM, Test) that design,
implement and test (functional testing) the feature before delivering it to the main
branch. The code in the main branch is tested thoroughly by dedicated test units
before being release [SM11].
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11.6 Other Trends

Bosch has presented three trends which shaped software engineering in the mid-
2010s [Bos16]: speed of software development, ecosystems and data-driven devel-
opment. He predicted that the companies which are the first ones on the market
would be more successful than others as the innovation model is based on the shark’s
tail rather than the traditional technology adoption curve. In particular, the majority
of new, innovative software products are adopted by the market at a tremendous
pace, and then companies need to be prepared to be ready for the market. Followers
do not have the same ability to attract customers [DN14]. Ecosystem thinking (e.g.
Apple’s App store or Google’s Play store) has been present in the automotive sector
from way back in the hardware domain (e.g. customers of BMW are bound to
buy spare parts from manufacturer) but not in the software domain. And finally
we have data-driven development and the Lean innovation thinking [Rie11] where
customers provide the companies with the data on how to develop their products.
With connected cars and the ability to update the car software over the air we
will probably see more data-driven development in the automotive industry in the
coming decade.

Burton and Willis from Gartner identified five mega-trends which have the
potential of shaping software engineering in the coming decades [BW15]. These
mega-trends are:

• Digital Business Moves Toward the Peak of Inflated Expectations
• IoT, Mobility and Smart Machines Rapidly Approach the Peak
• Digital Marketing and Digital Workplace Quickly Move Up
• Analytics Are at the Peak
• Big Data and Cloud Make Big Moves Toward the Trough of Disillusionment

In short, these trends will drive the need for more advanced functionality of cars
and the use of big data for decision making and even the development of the cars
(finding out the requirements from the data rather than focus group interviews).
However, they predict that the era of wearables (e.g. smartwatches) will reach the
so-called “pit of disillusion” where they will probably reach the state where no more
development is of interest to the customers.

In their 2016 report, Gartner Associates provide even more focus on Artificial
Intelligence, Machine Learning and autonomy. We perceive these technologies as
new hype in automotive software engineering, especially when combined with
different levels of autonomy and self-adaptation algorithms. This will mean even
more complexity and software in future cars.



References 267

11.7 Summary

To conclude this chapter let us make a speculation that future cars will be more like
computer platforms where different third party companies can build applications.
We can see the self-driving car of Google as an example of such a move [Gom16].

The telecommunication domain has evolved from proprietary solutions in mobile
phones of the 1990s to standardized platforms and ecosystems of the smartphones of
the 2010s—Android and iOS leading the field in this direction. Customers buying a
new mobile phone buy a device which they can load with apps of their own choice—
some free and some paid. We can see that the ability to update car’s software will
lead to similar trends (already visible in the infotainment domain).

These possibilities of opening up for third party software in cars is expected to
change the face of the automotive industry in the future. Commoditizing platforms
and portability between vendors on the application level can cause cars to become
much safer and much more fun. We can expect the cars to become hubs for all kinds
of devices and integrated with wearables to provide drivers and passengers with an
even better driving experience than today’s. We need to live and see what the future
of software in cars will bring.
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Chapter 12
Summary

Abstract In this book we have introduced the concept of software architecture
in automotive software and overviewed different architectural styles that can be
encountered in modern automotive software. In this chapter we present the summary
of the main points of the book and pinpoint additional reading in the area.

12.1 Software Architectures in General and in the
Automotive Software—A Short Recap

Software architecture is a high level design and organization of the software system.
It provides guidelines for the detailed design of the software, its components and
their deployment. It is usual that software architecture documentation contains
a number of different viewpoints, such as the functional viewpoint, the logical
viewpoints, or the deployment one.

As the software architecture also provides the principles of the high-level
organization of the software system, they often include different architectural styles.
In general, we could observe over 20 different styles which are often accompanies
by over 20 different patterns. However, in the automotive software design only some
of these styles and patterns are applicable.

In this book we collected the most important methods and tools for the design of
automotive software—both at the architectural level and at a detailed design level.
In this chapter we provide a short summary of each chapter and briefly outline why
this knowledge is important for the future of the automotive software engineering.

12.2 Chapter 2—Software Architectures

In the second chapter of this book we introduced the notion of software architecture
as high level structures of a software system, the discipline of creating such
structures, and the documentation of these structures. We have introduced the notion
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of software component and discussed a set of architectural viewpoints which are
common in the design of the automotive software systems, such as:

• Functional view—describing the architecture of the functions of the vehicle and
the dependency between them

• Physical view—describing the physical nodes (ECUs) and their connections
• Logical view—describing the software components and their organization, and
• Deployment view—describing the deployment of software components onto the

ECUs

We have also exemplified the main architectural styles present in the automotive
sector:

• Layered architecture
• Component-based architecture
• Monolithic architecture
• Microkernel architecture
• Pipes and filters architecture
• Event-driven architecture, and
• Middleware architecture with message brokers

The knowledge contained in Chap. 2 prepares us to start designing software
systems at a very high level. In order to be effective we need to understand how
the automotive software development is done, and therefore we describe it in the
next chapter.

12.3 Chapter 3—Contemporary Software Architectures:
Federated and Centralized

When describing the architectural styles, we focus on the principle governing each
architectural style. However, a modern software system combines several styles. In
this chapter, we look at the principles of designing the entire system and how the
modern automotive software is organized.

In Chap. 3, we explore examples of two architectural styles used in contemporary
automotive software—federated and centralized software architectures. The feder-
ated architectures are organized into domains where each domain is independent
from each other and contains a dedicated domain controller—a larger coordinating
node. The centralized architectures are characterized by a large node at the center
of the architecture. This node uses redundancy mechanisms and virtualization
to ensure that the software is safe and reliable. It is also complemented with
coordinating nodes to reduce the communication buses with ECUs on the edge of
the vehicle’s network.

We show examples of how systems are designed according to these styles and
how they evolve. Towards the end of the chapter, we provide an example of design
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of an automated parking function, which is based on a real design, simplified for the
purpose of this book.

12.4 Chapter 4—Automotive Software Engineering

When describing the automotive software engineering practices, we start with the
description of requirements, which are a bit specific for the automotive software.
We discuss the following types of requirements:

• Textual requirements—specifications which are done in form of free text or tables
• Use case requirements—specifications which are based on UML Use cases and

the corresponding sequence diagrams
• Model-based requirements—specifications which are done in form of models

that should be implemented by suppliers

We need to understand the way in which requirements are done so that we
understand the way in which software verification and validation is done. This
verification and validation, done in form of testing, is discussed in the remaining
of that chapter, where we introduce:

• Unit testing—verification of the functionality of individual software modules
• Component testing—verification of groups of software modules—components
• System testing—verification of the complete system (both of its complete

functionality and partial functionality during the course of the development), and
• Functional testing—validation of the end user functions against their specifica-

tions

Once we introduce the different testing techniques, and the stages of integration
of the software of a car, we discuss how these elements are stored in the so-called
product databases.

12.5 Chapter 5—AUTOSAR

One of the major trends in today’s automotive software is the introduction of the
AUTOSAR standard. The standard specifies how the automotive software is to be
organized and how it should communicate with each other.

This chapter has been written by Darko Durisic, who is one of the representatives
of one of the Swedish OEMs in the AUTOSAR consortium. His research and
expertise in the area resulted in a good introduction to the standard from the
perspective of a software designer. The focus on the chapter is on the reference
architecture provided by AUTOSAR and its implications.
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12.6 Chapter 6—Detailed Design of Automotive Software

The discussion about automotive architectures would not be complete if we did not
discuss the methods for detailed design of this software. In Chap. 5 we introduce a
number of methods:

• Simulink modelling—probably the most widely used method for detailed design
of algorithms in the automotive software, usually used in such domains as
Powertrain and Active Safety or Chassi development.

• SysML—a UML based method for specifying the software focused on the
concepts of the programming languages.

• EAST-ADL—another UML based method for designing the automotive soft-
ware, combining the problem domain concepts with the programming/system
level concepts.

• GENIVI—a standard for programming infotainment systems, which is currently
gaining increasingly more popularity in the market.

Knowing the notation is one thing, understanding the principles of the design of
safety-critical systems is another. Therefore we introduce the principles of designing
of safety critical systems based on the research from NASA and its space program.

12.7 Chapter 7—Machine Learning in Automotive Software

Modern software systems contain an increasing amount of new technologies. One
of these technologies is machine learning, which brings the power of artificial
intelligence to the automotive software. In this chapter, we outline the main
principles behind machine learning and how these non-deterministic algorithms can
be integrated with the rest of the software components.

In particular, we explore the supervised learning technology for image recog-
nition and outline reinforced learning used for optimizations. We also discuss the
principles behind on-board and off-board training.

12.8 Chapter 8—Evaluation of Automotive Software
Architectures

Once we introduce the detailed design we also discuss methods for evaluating
software architectures. In Chap. 8 we focus on presenting methods based on
qualitative evaluations—we focus on Architecture Trade-Off Analysis Method
(ATAM).
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We start the chapter by introducing the rationale for the evaluation of the
architectures anchored in the international standard ISO/IEC 25000. We then
describe the ATAM and provide a number of typical scenarios for evaluating safety
critical systems.

Finally we present an example evaluation of a simple architectural design.

12.9 Chapter 9—Metrics for Software Designs and
Architectures

To complement the methods presented in Chap. 6, we focus on methods based
on quantitative measurements of software design. We introduce the international
standard ISO/IEC 15939 for software measurement processes and we discuss
abstraction levels of different metrics.

We provide a set of measures used by software architects—an architect
portfolio—and their visualizations. We also present a set of metrics for the detailed
designs of the automotive software.

As an example in this chapter we present measurement results of publicly
available industrial data set from one of the modern cars. Based on this open data
we discuss the properties of the software such as its size or cyclomatic complexity.
We reason what that means for the validation of software and its safety.

This chapter is co-authored with Wilhelm Meding from Ericsson, who is a senior
measurement program and team leader and has been working in this domain for
more than 10 year.

12.10 Chapter 10—Functional Safety of Automotive
Software

Once we outlined the risks of not being able to fully validate the software once it
becomes too complex, we move on and introduce one of the major standard in the
automotive software today—ISO 26262 (functional safety).

This chapter was authored by Per Johannessen who was part of the introduction
of the ISO 26262 standard to one of the OEMs of the passenger vehicles and is
currently working on the same topic for heavy vehicles and buses.

As an example in this chapter we present an architecture of a microcontroller
where the different ASILs are demonstrated.
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12.11 Chapter 11—Current Trends

Finally we close this book by outlining the current trends in the automotive software
development. We outline the following trends:

• Autonomous driving—a trend which requires more complex software and higher
degree of connectivity

• Self-healing, self-adaptive, self-organizing systems—a trend which enables more
reliable and smarter software, but is challenging in terms of safety assessment
over time

• Big data—a trend which enables the cars’ software to make smarter decisions
based on the availability of information from external sources, at the same time
putting requirements on the processing power, storage and other characteristics
of the software system

• New trends in software development—for example the trend of continuous
integration of software which enables constant improvements of the software, but
at the same time putting a lot of requirements on safety assessment and validation
of the software on-the-fly

12.12 Closing Remarks

At this point we finish our journey through the automotive software development of
the second decade of the second millennium. We see that we live in very dynamic
times where the field of software engineering in the automotive sector just starts to
grow and expand rapidly.

We hope that this book will help You, the reader to become a better software
engineer and will help the cars to be smarter, better, more fun and above all—safer!
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