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1  Introduction

Salinity is a crucial abiotic stress condition that hinders the growth and production 
of any crop (Long et al. 2020), particularly in arid and semi-arid regions (Munns 
and Tester 2008). This problem is relatively becoming higher due to problems of 
climate change, especially global warming. Misra et al. (2020b) had revealed that 
contribution of such soils in the world is 7%, having increased salt content and dif-
ficulty in leaching out of water (Zhao et al. 2007). Agricultural lands covering large 
areas under this abiotic stress cause heavy losses in economy of the world (Chaitanya 
et al. 2014). In India, saline soils cover a total area of about 6.73 million ha (of five 
states, Gujarat, U.P., West Bengal, Maharashtra and Rajasthan). Gujarat covers the 
highest area (2.23  million ha)  of saline soil  followed by U.P. (1.37 million ha), 
Maharashtra, West Bengal and Rajasthan (Sharma and Singh 2015). Sharma et al. 
(2014) had revealed that approximately 75% of soil in India belongs to saline (40%) 
and sodic (60%) categories. This amount is expected to increase thrice its present 
value to 20 million ha by the upcoming year 2050 (Sharma et al. 2014). The abiotic 
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stresses prevent the plants to explore out their fully inherited potential of high yield-
ing, leading to less crop yield (Cramer et al. 2011; Misra et al. 2020a; Ansari and 
Silva da 2012; Jalil and Ansari 2018; Jalil and Ansari 2020b). Amongst these abiotic 
stresses, salinity is a serious issue which is increasing day by day (Rogers and 
McCarty 2000). Saline soil can be defined as the one comprising of chloride and 
sulphates of four ions, viz., sodium, calcium, magnesium and potassium (Rani et al. 
2019). There are many causes of elevation of sodium ions in soils. They are as fol-
lows: natural means through weathering of parental rocks (Szabolcs 1998), salt 
deposition in marine through wind and rains, anthropogenic activities, i.e. use of 
poor-quality war for irrigation of crops, global warming, etc. According to tolerance 
or sensitivity, plants are also grouped into glycophytes and halophytes. Zakharin 
and Panichkin (2009) had revealed that glycophytes are the ones which are sensitive 
towards salt-stress condition and majority of plants belong to this category. These 
plants even have slower growth rate when salt concentration in soil exceeds 0.01% 
(Dajic 2006). Regarding halophytes, these plants are bestowed with natural ability 
of tolerating high salt content, i.e. greater than 300–400  mmol NaCl 
(Cheeseman 2015).

In certain cases, salt stress also occurs in combination with other stresses creat-
ing a secondary salinity. Salt stress along with waterlogging is one amongst them 
which is becoming a crucial problem in Indian soils, chiefly in north western states 
(Singh et al. 2010). The losses caused due to these have resulted in monetary losses 
of Rs. 1669 million in Haryana (Datta and De Jong 2002). Munns and Tester (2008) 
had even showed that combination of nutrient imbalance and salt stress causes 
strong impact on photosynthesis resulting in chlorosis of plants. Parvaiz and 
Satyavati (2008) had shown that leaf senescence is another aspect which limits plant 
growth. Studies had reported that cotton plants exposed to salt-stress condition have 
poor growth germination and reduced seed yield. Furthermore, the quality of fibre 
of such plants is also low (Dong et al. 2009; Higbie et al. 2010). At times, salt stress 
even causes death of plants and it is known that plant growth is negatively affected 
when the range of salt stress lies from 0.2% to 0.5% (Yu et al. 2012). Considering 
the increasing problem of salt stress and its negative influence on plant growth, this 
chapter will highlight the physiological response in plants due to high accumulation 
of sodium ions as well as the response of various genes at molecular level under 
such a situation.

2  Physiological Response Under Increased Sodium Ions 
in Plants

When salt levels in soil get increased, it reduces plant water uptake (Maser et al. 
2002). Once root uptakes a large amount of sodium and chloride ions from soil, the 
photosynthetic rate is declined and metabolic processes undergo alterations result-
ing in harmful effect on plant growth, irrespective of the growth stage (Maser et al. 
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2002). Plants exposed to high salt concentration undergo many alterations in physi-
ological processes and are explained below.

 1. Photosynthesis Rate and Water Potential: Photosynthesis is considered as a sen-
sitive physiological aspect when sodium ions are excessive in plants. High 
amount of sodium ions in plants results in damage of photosynthetic apparatus 
due to dehydration of cell membrane resulting in closure of stomata. This in turn 
causes reduction in CO2 permeability (Piotr and Giles 2009). Munns et al. (2006) 
had revealed that metabolic hindrance also occurs during photosynthesis in 
leaves when sodium ions are present in large amount in plants. Besides, when 
plants adapt to salt-stress condition, at times it changes its photosynthetic cycle 
which requires water for opening of stomata during night (Zhu and Meinzer 1999).

 2. Ionic Homeostasis and Compartmentalization: In such a condition, sodium ion 
is transported from cytoplasm to vacuolar region via sodium hydrogen antiporter. 
Vacuolar type H+-ATPase (V-ATPase), a type of H+ pump, helps in regulating ion 
homeostasis and compartmentalization as well as its survival under salt-stress 
condition (Polash and Hossain 2019). Otoch et  al. (2001) had revealed that 
V-ATPase activity is enhanced while vacuolar pyrophosphatase (V-PPase) activ-
ity is suppressed in cowpea hypocotyls under high sodium ions condition.

 3. Solute Accumulation: Solute biosynthesis and accumulation get increased under 
salt-stress condition. Glycinebetaine, proline, trehalose, sugars, etc., are the sol-
utes which are known to enhance their production and accumulation when 
sodium ions concentration gets increased (Ashraf and Foolad 2007; Tahir et al. 
2012; Kerepesi and Galiba 2000). These solutes do not hinder with reactions 
occurring under normal condition (Hasegawa et al. 2000; Zhifang and Loescher 
2003). Increased proline content under salt-stress condition is known to be seen 
in plants like sugar beet, Brassica juncea, tolerant sugarcane variety, etc. 
(Ghoulam et  al. 2002; Yusuf et  al. 2008; Vasantha and Rajlakshmi 2009). 
Biosynthesis and accrual of these solutes cause protective shield for the plant 
cells exposed to such a situation and help in maintaining the osmotic balance 
through incessant water supply (Hasegawa 2013).

 4. Enzyme Activity: Inhibition in enzyme activity takes place when plants are 
exposed to salt-stress condition. Booth and Beardall (1991) had reported that the 
ratio of sodium to potassium is increased under salt-stress condition which 
results in inactivity of enzyme. This in turn causes changes in cellular metabo-
lism and interruption in uptake of potassium ions. Furthermore, partition in the 
cells is also affected. On an overall basis, salt-stress condition causes an influ-
ence on opening of stomata due to which there is reduction in plant growth 
(Nawaz et al. 2010). Protein synthesis in such plants is also affected that results 
in reduction in leaf growth or at times may causes death of leaf (Ashraf 2004; 
Munns 2005).

 5. Ionic Balance: Due to the excessive sodium ions in the root region of the plant, 
interruption in water uptake and nutrients is seen. This also contributes to altera-
tion in plant metabolism (Munns 2002; Lacerda et al. 2003). Nutrient imbalance 
(due to higher Na+, Cl− ions accumulation) and deficiencies (due to interruption 
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in uptake of K+, Mn2+ ions, etc.) have been reported in plants exposed to salt- 
stress conditions (Karimi et al. 2005).

 6. Hormonal Balance: Plants exposed to salt-stress condition have an imbalance of 
hormones due to reduction in osmotic potential (Khan and Weber 2008), changes 
in metabolism of nucleic acid, proteins and enzyme activity (Gomes-Filho et al. 
2008; Yupsanis et al. 1994; Dantas et al. 2007).

 7. Nutrient Balance: Under salt-stress condition, plants show an imbalance in nutri-
ents. Several studies had shown that there was a decrease in uptake of nutrients 
along with its accumulation in salt-stress condition (Hu and Schmidhalter 2005; 
Jalil and Ansari 2019). This may even lead to nutrient deficiency or disorder at 
times in plants (Khorsandi and Anagholi 2009). Association of nutrient uptake 
and nutrients accumulation has been reported to be hampered under salt-stress 
condition because of two reasons, one being the composition of soil and other 
being the competition between various salts occurring due to sodium accumula-
tion under salt-stress condition (Khorsandi and Anagholi 2009). There is also a 
reduction in accumulation of nitrogen under increased sodium ions due to Na+ 
and NH4

+ interaction and/or between NO3
− and Cl−. This results in reduction in 

yield and in plants like sugarcane, growth of the plant also gets influenced by salt 
stress (Rozeff 1995). Further, another nutrient, phosphorus is also revealed to be 
deficit in saline soils. This is so as activity of phosphate ion gets decreased. 
Epstein (1983) had shown that reduction in potassium, magnesium and calcium 
ions are seen in plants exposed to salt-stress condition which causes imbalance 
of nutrients. Furthermore, deficiency in micronutrients is also seen due to high 
pH values (Zhu et al. 2004). Chaitanya et al. (2014) had revealed that increase in 
sodium ions due to salt stress causes induction of potassium deficiency as plants 
selectively absorb these ions in comparison to sodium ions.

 8. Other Parameters: When sodium and chloride ions are high, osmotic potential in 
soil is reduced which in turns results in water absorption by plant roots (Isayenkov 
2012). Furthermore, increase in respiration rate and increase in ion toxicity are 
also observed in plants grown under salt stress. Besides, calcium displacement 
by sodium ions and permeability property of membrane cause membrane insta-
bility in plants of such condition.

3  Salt Overly-Sensitive (SOS) Stress-Signalling Pathway

Under salt-stress conditions, studies showed that salt overly-sensitive stress signal-
ling is important for ion homeostasis as well as providing tolerance towards salt. 
There are basically three major proteins, viz., SOS 1, SOS 2 and SOS 3, involved in 
this signalling pathway that perform different functions. SOS 1 protein is responsi-
ble for controlling efflux of sodium ions at cellular level and long length of trans-
portation from roots to shoot. It encodes Na+/H+ antiporter of plasma membrane. 
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Furthermore, this protein is reported to provide salt tolerance, if over-expressed in 
plants (Shi et al. 2002). SOS 2 protein consists of two terminal domains, N terminal 
which is the catalytic domain and C terminal which is the regulatory domain. This 
protein is known to encode serine/threonine kinase and is activated by combination 
of SOS 3 protein and Ca2+ ions (Liu et al. 2000). SOS 3 protein is also referred to as 
myristoylated Ca2+ binding protein. This protein has myristoylation site at its 
N-terminus, known to play important role in providing tolerance against salt stress 
(Ishitani et al. 2000).

The SOS signalling pathway is depicted in Figure 1, which illustrates that SOS 
signalling gets activated when SOS 2 protein (particularly regulatory domain of C 
terminus) initiates kinase by interacting with calcium-binding ions of SOS 3 pro-
teins (Guo et al. 2004) after which phosphorylation of SOS 1 protein occurs due to 
the activated kinase which increases the activity of transportation of ions through 
Na+/H+ antiporter (Quintero et al. 2002). Martinez-Atienza et al. (2007) had revealed 
that this rise causes efflux of sodium ions into the cells making sodium ion toxicity 
ease out (Fig. 11.1).

Fig. 11.1 SOS pathway model in plants exposed to salt stress. Under salt-stress condition, when 
sodium ions are high at plasma membrane, it induces calcium ion influx. On influx of calcium ions, 
SOS 3 gene alters its conformation and thereafter interacts with SOS 2 for its auto-inhibition. SOS 
2 in complex with SOS 3 phoshorylates SOS 1. The complex of SOS 3 and SOS 2 inhibits HKT1 
activity while SOS 2 activates activity of NHX. This in turn causes Na+/H+ antiporter to get acti-
vated for efflux of excess sodium ions
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4  Halophytes: Tolerance Capability Under Increased 
Sodium Ions

Halophytes are the plants which have the property to survive under such saline envi-
ronment and this salt increase helps in their growth and development. In Suaeda 
salsa, role of V-PPase is not much in salt environment while V-ATPase activity is 
upregulated. Halophytes are known to tolerate excessive sodium chloride ions either 
by salt-tolerant mechanism or by salt-avoidance mechanism. In salt-tolerance 
mechanism adopted by halophytes, studies have illustrated that reduction of sodium 
ion influx, excretion of sodium ions and compartmentalization are the three strate-
gies involved (Flowers and Colmer 2015; Misra et al. 2020b) while in salt avoid-
ance, strategies involved are shedding, secretion and succulence (Aslam et al. 2011; 
Shabala et al. 2014). Another way of halophyte to survive under saline environment 
is sequestration of salts into cell vacuoles which occurs via transporters. These 
transporters help in maintaining the ratio of potassium and sodium ions in cytosol 
(Kronzucker and Britto 2011; Sreeshan et al. 2014). High production of osmolytes 
such as proline, polyphenols, etc., also acts as osmo-protectants in halophytes which 
provides the capacity to tolerate such condition (Lokhande and Suprasanna 2012; 
Patel et al. 2016). In respect to genes imparting tolerance to such condition, halo-
phytes regulate through mechanism of ABA dependent or ABA independent. There 
are two ways by which halophytes survive under such condition. They are as 
follows:

 1. Salt-Avoidance Mechanism: In halophytes, salt-secreting structures such as salt 
hairs or salt glands are present. In certain halophytes, excess salt is secreted in 
liquid form which takes crystal formation when it comes under contact of air. 
These crystals appear on leaves of the plant. Balsamo et al. (1995) had reported 
that these crystals are washed off during heavy rains or in tides, thus, preventing 
the reabsorption of it into the cells of leaves. In shredding strategy, older leaves 
of the plants are shredded so as to avoid toxicity of salt (Mishra and Tanna 2017). 
Several studies had reported this method of mechanism for tolerance adaption in 
halophytes (Rozema et al. 1981; Waisel et al. 1986; Shabala et al. 2014).

 2. Salt-Tolerant Mechanism: In plants several physiological aspects such as water 
status, transpiration, leaf area, antioxidant production, transpiration use effi-
ciency, etc. contribute to tolerate salt stress (Ashraf 2009; Barbieri et al. 2012; 
Harris et al. 2010; Maggio et al. 2007). Munns and Tester (2008) had revealed 
that there are three mechanisms by which plants undergo salinity tolerance. 
These are: ion exclusion, tissue tolerance and shoot ion-independent tolerance. 
In ion exclusion, toxic ions from shoot are excluded out. In tissue tolerance, 
toxic ions are compartmentalized into particular tissues, cells and subcellular 
organelles. In shoot ion-independent tolerance, growth of the plant and water 
uptake by the plant is independent of the sodium ions accumulate under salt- 
stress condition (Fig. 11.2).
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5  Molecular Response in Plant: Tolerance to Saline 
Environment Condition

Expression of many plant genes has been showed to regulate transcriptional and 
post-transcriptional process under salt-stress condition (Jalil and Ansari 2020a; Long 
et al. 2020). Understanding the molecular mechanism involved under such a condi-
tion is difficult as revealed by several studies (Munns and Tester 2008; Zhu 2001; 
Zhu 2002). The most important gene that plays a role under salt-stress condition is 
SOS 1 gene which is known to be upregulated (Oh et al. 2009; Shi et al. 2000). In 
certain plants like Thellungiella, genes associated with photosynthesis process do 
not show much changes under such condition (Wu et al. 2012); however, in plants 
like Oryza sativa, such genes play a role in recovering from stress (Zhou et  al. 
2009). Characterization of expression of genes and proteins under salt stress has 
also been reported in several plants like Oryzae sativa, Nicotinum tobaccum, 
Medicago truncatula, Triticum aestivum, and Arabidopsis thaliana (Sobhanian 
et al. 2010; Capriotti et al. 2014; Ghaffari et al. 2014). Heat shock proteins also play 
a role in plants exposed to salt-stress condition. Manaa et al. (2011) had revealed the 
upregulation of heat shock proteins in tomato plants exposed to salt-stress condi-
tions. Long et al. (2020) had shown that heat shock protein (70 kDa) was upregu-
lated in Zhongmu-1 (S28), but downregulated in Jemalong A17 (T26). Besides, Wu 
et al. (2012) had revealed that genes responsible for photosynthesis processes do not 
vary much under such a condition in plants which are tolerant to it like Thellungiella, 
whereas in rice, variation has been observed but it has been correlated with stress 
recovery (Zhou et al. 2009). Furthermore, Sewelam et al. (2014) had illustrated that 
there are many stress-responsive genes which are expressed due to combination of 
salt and osmotic stress, as ionic and osmotic stresses are the secondary stresses 
induced by excessive salt content. Salt stress solely generates 932 genes in 
Arabidopsis while 435 overlapping genes are expressed along with 367 repressive 
genes solely by salt stress and 154 overlapping genes (Sewelam et al. 2014).

Certain plants are also capable of tolerating salt stress. As a response to salt 
stress, high affinity potassium ion transporter 1 (HKT1) is an important determinant 
considered for such a condition. Studies had revealed that this gene helps in 

Fig. 11.2 Salt tolerant mechanism in halophytes under salt-stress condition
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improving salt-tolerance capability as it lowers accumulation of sodium ions in tis-
sue of shoot (Horie et  al. 2009; Møller et  al. 2009). In Arabidopsis plant, htk1 
mutant expresses higher sodium ions in shoots while lesser in roots under salt-stress 
condition (Rus et al. 2004; Davenport et al. 2007). Møller et al. (2009) had also 
showed that HKT1 gene expressed in tissues of vascular bundle or pericycle are 
known to increase salt tolerance in plants. Furthermore, hkt1 mutations are known 
to suppress hypersensitive phenotypes associated with this stress (Rus et al. 2001; 
Rus et al. 2004). Studies had also revealed that HKT proteins are also important in 
plants as a response towards salt stress during developing new plant genotype 
through breeding (Asins et al. 2013; Ariyarathna et al. 2016). Yang and Guo (2018) 
had illustrated that there are other unidentified and SOS genes which are expressed 
in specific tissues under such condition for improving tolerance power against 
salt stress.

6  Conclusion

Salt stress is causing severe problems to agriculture and productivity. It is affecting 
physiological processes as well as alteration in osmotic and ionic balance has also 
been reported that leads to decline in biomass production. Salt stress does not affect 
the plant on a single growth stage rather it causes adverse effect on any plant growth 
stage at which it strikes. Salt stress also causes other secondary stress like osmotic 
stress leading to more severe impact on the plant growth. Several physiological 
responses have been known to cause alteration in plants, such as photosynthetic 
rate, hormone imbalance, and ionic imbalance. Since last two decades, salt- tolerance 
genes have also been identified using molecular approaches for coping with such 
condition. Genomic studies have also been reported in salt-tolerant plants. 
Identification and cloning of several genetic loci which are playing role in salt stress 
have been done. Transgenic plants are being developed for tolerating such situation 
and enhancing productivity under field conditions. In order to enhance tolerance 
towards this stress, it is vital to identify and characterize determinants and mecha-
nism behind regulation of these determinants. There is a need to know molecular 
mechanism mediated by salt-responsive genes for regulating the developmental 
process of plant. Furthermore, there is a need to identify the markers for salt- 
tolerance capability for breeding programmes.
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