
Exploiting Game Decompositions
in Monte Carlo Tree Search

Aline Hufschmitt1(B), Jean-Noël Vittaut2, and Nicolas Jouandeau3

1 CREC Saint-Cyr, Écoles de Coëtquidan, Guer, France
aline.hufschmitt@st-cyr.terre-net.defense.gouv.fr

2 LIP6, CNRS, Sorbonne Université, F-75005 Paris, France
jean-noel.vittaut@lip6.fr

3 University Paris 8, Vincennes-Saint-Denis, France
n@up8.edu

Abstract. In this paper, we propose a variation of the MCTS framework
to perform a search in several trees to exploit game decompositions. Our
Multiple Tree MCTS (MT-MCTS) approach builds simultaneously mul-
tiple MCTS trees corresponding to the different sub-games and allows,
like MCTS algorithms, to evaluate moves while playing. We apply MT-
MCTS on decomposed games in the General Game Playing framework.
We present encouraging results on single player games showing that this
approach is promising and opens new avenues for further research in the
domain of decomposition exploitation. Complex compound games are
solved from 2 times faster (Incredible) up to 25 times faster (Nonogram).

Keywords: Monte Carlo Tree Search · General Game Playing ·
Decomposition

1 Introduction

General Game Playing (GGP) is a branch of Artificial Intelligence with the
aim of achieving versatile programs capable of playing any game without human
intervention. Game specific algorithms cannot be used in a general game player as
the game played should not be known in advance. An important aspect of GGP
research is the development of automated rule analysis techniques to speedup
the search.

Among the games considered in GGP, some are composed of different
independent sub-games assembled sequentially or in parallel and played syn-
chronously or asynchronously [3]. A player program able to identify the sub-
games, solve them individually and synthesize the resulting solutions, can greatly
reduce the search cost [2,4]. Some approaches have been proposed to decom-
pose single [5] and multi-player games [6,7,17]. Using these decompositions two
different strategies have been proposed to solve the global game in the GGP
framework. The first approach, inspired from hierarchical planning and named
Concept Decomposition Search [5], aims at solving single player games. The
search algorithm is split into two stages: local search collecting all local plans
c© Springer Nature Switzerland AG 2020
T. Cazenave et al. (Eds.): ACG 2019, LNCS 12516, pp. 106–118, 2020.
https://doi.org/10.1007/978-3-030-65883-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65883-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-65883-0_9


Exploiting Game Decompositions in Monte Carlo Tree Search 107

and global search trying to interleave local plans from different sub-games to find
the best global plan. These two steps are embedded into an iterative deepening
framework. Concept Decomposition Search is extended to multi-player games [17]
using turn-move sequences (TMSeqs) as a result of the local search. A TMSeq
indicates both moves and players who performed them. Global search is based on
standard search techniques but uses TMSeqs instead of legal moves, which results
in a much smaller game tree compared to full search. The second approach [3]
is based on Answer Set Programming (ASP) to solve decomposed games. Local
plans are combined as and when they are calculated to find a global plan. This
search is used on single player games. How to generalize this approach to multi-
player games is not clear and remains an open problem. In these previous works,
if a global plan is not found in the allocated time, the search returns nothing.

In this paper, we propose a new approach to solve decomposed games based
on Monte Carlo Tree Search (MCTS). MCTS is the state of the art frame-
work for GGP players but also for specialized player like Alpha Go [15], for
video games and non-game domains [1]. Our Multiple Tree MCTS (MT-MCTS)
approach builds simultaneously multiple MCTS trees corresponding to different
sub-games. Instead of producing a global plan, MT-MCTS allows to evaluate
moves in the different states of the game. A player program using MT-MCTS
can therefore begin to play while continuing to explore the game and identify
the next best moves. We compared the performance of our MT-MCTS algo-
rithm with that of an MCTS search using the Upper Confidence Bound applied
to Trees (UCT) policy and transposition tables on single player games.

The remainder of this paper is organized as follows. In the next section,
we briefly review the MCTS framework, the UCT policy and common opti-
mizations. In Sect. 3, we present our MT-MCTS approach using multiple trees
to solve decomposed games. We present experimental results on several single-
player games in Sect. 4. In Sect. 5, we discuss these results, the challenges risen by
a simultaneous search in several trees, the possible extensions of our algorithm
and open problems. We conclude in Sect. 6.

2 MCTS and UCT

The MCTS framework allows to build a game tree in an incremental and asym-
metric manner [1]. Each node represents a state of the game, and each edge
represents a joint move1. MCTS begins from a node representing the current
state and then repeats four steps for a given number of iterations or for a given
time: the selection of a path in the game tree according to some tree policy ; the
expansion of the tree with the creation of a new node; a game simulation (play-
out) according to a default policy ; the back-propagation of the playout result to
update nodes statistics. The number of playouts in MCTS is a key factor for the
quality of the evaluation of a game tree node [9].

The default policy usually consists in playing random moves until a termi-
nal state is reached. For the selection, UCT is the most common tree policy. It
1 In the GGP framework, player moves are always simultaneous. In alternate move

games, all players but one play a useless move to skip the turn.



108 A. Hufschmitt et al.

provides a balance between the exploitation of the best moves and the explo-
ration of the whole tree. A common optimization consists in using transposition
tables: identical states are represented by a single node in the tree. In the GGP
domain, many games that involve cycles use a stepper, a counter used to avoid
infinite games. Identical states present at different depths in the game tree are
then differentiated by this stepper and transpositions can only occur at a same
depth. Using transpositions, a GGP game tree becomes a directed acyclic graph.
When using transpositions, the evaluation of the different moves is commonly
stored in the outgoing edges instead of the child nodes [14]. The number of visits
remains stored in the parent node. Another common optimization used to guide
the search is the pruning of fully explored branches [11,16]. During the selection
step, instead of returning in branches that are completely evaluated, the mean
score of the branch is computed and used for the back-propagation step.

3 Multiple Tree MCTS (MT-MCTS)

The decomposition of a game into several sub-games produces sub-states, in
which available moves depend on the sub-states combination, and then provides
a difficulty for legal moves computation. The decomposition also poses a problem
for the identification of terminal sub-states. For example, the game Incredible is
decomposed into a labyrinth (Maze), a game of cubes (Blocks), a stepper and a
set of useless contemplation actions. The game is over if the stepper reaches 20
or if the Maze sub-game is over. But, in Blocks, a sub-state is never terminal by
itself. We can also imagine a game where two sub-states are both non-terminal
but their conjunction is terminal and must be avoided in a global plan. The
decomposition also raises an issue for evaluating sub-states where scores can
result from a timely combination with other sub-states. More specifically in
GGP, the score described by the goal predicate is reliable only if the current
state is terminal [10]. These two facts make the score function less reliable in
sub-trees. At last, the decomposition raises the problem of its reliability. If the
decomposition is inconsistent, the evaluation of legal moves can be wrong, leading
the player program to choose illegal moves and compute inconsistent sub-states.

To avoid all these problems, we propose the following approach: doing sim-
ulations in the global game and building a sub-tree for each sub-game. Legal
moves, next states and the end of game can be evaluated for the global game in
which the real score is known. Move selection is performed according to the eval-
uation of the sub-states in the sub-trees. An inconsistency of the decomposition
is detected if during two simulations, the same move from the same sub-state
leads to different following sub-states. A partial2 but consistent decomposition
allows to play by the rules, although exploration may be less effective.

When a stepper is separated from the rest of a game, cycles can occur in some
sub-games and in sub-state transpositions a move evaluation may differ accord-
ing to the game depth. This problem is referred as the graph history interaction
problem [12]. A general solution for games with binary scores is available [8].
2 A decomposition is partial if a sub-game can be further decomposed.



Exploiting Game Decompositions in Monte Carlo Tree Search 109

However, in the GGP framework, the scores are more graduated and this general
solution is therefore not applicable. To exploit some transpositions while avoid-
ing the graph history interaction problem, the current version of our MT-MCTS
considers transpositions only at a same depth in the sub-trees i.e. sub-games are
represented by rooted directed acyclic graphs.

Global Simulations and Sub-trees Building: Our MT-MCTS iterates four
steps like MCTS (Algorithm 1) except that the selection step is composed of
alternated local and global selections3.

Algorithm 1. MtMcts(nbPlayouts)
1: for nbPlayouts do
2: S ← current state
3: {s1, ..., sn} ← getSubstates(S)
4: {val1, ..., valn} ← selectionWithExpansion({s1, ..., sn})
5: simulationWithBackProp({val1, ..., valn})

Global variables are:

S : the current global state
M : moves played during selection and expansion
S : sets of sub-states visited during selection and expansion
{val1, ..., valn} : a vector of evaluations, one for each sub-game.
{e1, ..., en} : a set of booleans indicating whether sub-games are fully explored
or not, initialized to {false, ..., false}
{d1, ..., dn} : depth where a revision of a “fully explored” move flag occurred

At each step of the selection (Algorithm 2), the legal moves evaluation is
processed in the global game and an expansion is attempted (l.8–9). To try an
expansion (Algorithm 3), a random move is played (l.33). Each sub-game is
informed of the new sub-state reached. A new transition, and possibly a new
node, are added to the sub-tree if necessary (l.36–39). If the transition is already
known, i.e. a previously visited action triggers the same transition, the transition
is labeled with these different moves which form a meta-action [6]. If a legal move
triggers an already known transition in each sub-game, it is already evaluated and
it is not necessary to test it: this move leads to a combination of already evaluated
sub-states. Then, another move is randomly chosen. Playing with decomposed
games therefore allows to reduce significantly the search space size. If no legal
move leads to an expansion in one of the sub-games, the selection continues.

In a game like Incredible, the Maze sub-game is quickly fully explored. Then
it systematically recommends the sequence of moves leading to the maximum
gain allowed by this sub-game. However, ending this sub-game terminates the
3 An informal presentation of MT-MCTS with an example has been published in

Journées d’Intelligence Artificielle Fondamentale (JIAF) 2019.



110 A. Hufschmitt et al.

global game prematurely. For a local selection algorithm based on a balance
between exploration and exploitation, it takes a large number of visits of the
Maze terminal move to guide the search towards the exploration of other possible
moves (playing in the Block sub-game). To alleviate this problem, the terminal
legal moves are evaluated (l.10). If a terminal move returns the maximum score
possible for the current player, it is always selected (l.12–15), otherwise, the
selection continues with the non-terminal moves.

Algorithm 2. selectionWithExpansion({s1, ..., sn})
6: loop
7: S := S ∪ {s1, ..., sn}
8: L ← getLegalMoves(S)
9: if expansion({s1, ..., sn}, L) then return {∅, ..., ∅}

10: T ← filterTerminalMoves(L)
11: {d1, ..., dn} ← checkNotFullyExplored({s1, ..., sn}, T)
12: {best, score} ← getBestMove(T)
13: if score = maximum possible evaluation then
14: M ← M ∪ best
15: return maximum evaluation for each sub-game

16: explored ← true
17: for i in {1, ..., n} do
18: if ∃m ∈ L - T: ¬ fullyExplored(si, m) then
19: explored ← false
20: else
21: fullyExplored(last(S ), last(M )) ← true
22: ei ← true if {s1, ..., sn} = initial state

23: if explored but ∃i : ei = false then
24: return mean evaluation for each sub-game

25: for i in {1, ..., n} do
26: selectedi ← localSelectPolicy(si, L - T)

27: best ← globalSelectPolicy({selected1, ..., selectedn})
28: M ← M ∪ best
29: S ← apply(S, best)
30: if terminal(S) then return {∅, ..., ∅}
31: {s1, ..., sn} ← getSubstates(S)

To avoid re-visiting fully explored branches unnecessarily, we flag them to
encourage visits to nearby branches. However, in the case of sub-games, a sub-
state is not always terminal depending on the rest of the overall state. It is then
necessary to develop a specific approach to flag the fully explored branches in
sub-trees. We solve this problem by simply revising the labeling during selection
and expansion update (l.11,38). If an action was flagged terminal during previous
descents in the tree but is not terminal in the current situation, or if a new
transition is added, the labeling is revised and revisions are back-propagated
along the descent path (l.54–55).



Exploiting Game Decompositions in Monte Carlo Tree Search 111

When all legal moves from a sub-state are terminal or fully explored, the
previous move is also flagged “fully explored” (l.21). If the current state is the
initial state, the whole sub-tree is fully explored (l.22). When the current sub-
state is fully explored in each subgame, the mean evaluation is computed and
returned (l.24). Otherwise a local selection policy is applied in each sub-game on
non-terminal legal moves (l.26). The best move is selected according to a global
selection policy (l.27).

Algorithm 3. expansion({s1, ..., sn}, L)
32: while L �= ∅ do
33: m ← popRandomMove(L)
34: S’ ← apply(S, m)
35: {s′

1, ..., s
′
n} ← getSubstates(S’)

36: new transition ← false
37: for i in {1, ..., n} do
38: if update(si, s

′
i, m) then � possible inconsistency is detected here

39: new transition ← true
40: if new transition then
41: M ← M ∪ m
42: S ← S’
43: return true
44: return false

Algorithm 4. simulationWithBackProp({val1, ..., valn})
45: if {val1, ..., valn} = {∅, ..., ∅} then
46: if ¬terminal(S) then
47: S ← playoutWithDefaultPolicy(S)

48: for i in {1, ..., n} do
49: vali ← {global score, max score for sub-game i with 3-valued logic}
50: for p in {1, ...,M .length} do
51: {s1, ..., sn} ← Sp

52: m ← Mp

53: for i in {1, ..., n} do
54: if p < di then
55: fullyExplored(si, m) ← false

56: t ← transition from si labeled with m
57: update(N, nt, wt, wmax

t ) � see local selection policy

If the selection ends on a non-evaluated state (Algorithm 4, l.45), a playout
is done to reach a terminal state if necessary (l.47), then the state is evaluated
(l.49). The details of this evaluation depend on the local selection policy and
are explained below. The evaluation is back-propagated along the visited path
(l.50–57) and the “fully explored” flags are revised if necessary.



112 A. Hufschmitt et al.

The Local Selection Policy chooses the best moves among legal non-terminal
moves. The current sub-state is associated with a number of visits N . Each
transition t from this sub-state is evaluated by a number of visits nt and a
cumulated score wt. The local selection returns a set of moves if there exists
different transitions with the same evaluation or if the best transition is labeled
with several moves.

We investigate different ways to perform this local selection. The first one
is a standard application of the UCT policy. However, this approach is not
satisfactory because a transition in a sub-game can receive a good evaluation
without contributing to the global score: the evaluation was obtained thanks to
a move sequence leading to a positive evaluation in another sub-game. Another
more troublesome problem occurs in the case of binary scores: the score is always
zero until a solution is found. The search is in this case reduced to a breadth
first search and is not guided to the right combination of sub-states.

In the GGP framework, a game state is described by a finite set of instantiated
fluents, some of which are true. The decomposition partitions these fluents in
several groups which represent the sub-games states. In a global terminal state,
it is possible to keep only the fluents corresponding to a sub-game, to give
an undefined value to the other and to evaluate the logic rules of the game
with a 3-valued logic. The true or undefined goal predicate instances represent
the possible scores according to this sub-game state. The maximum goal score
(lmax ) corresponds to the maximum potential score that can be obtained if the
best possible configuration is found in the other sub-games. The lmax score is a
maximum indication, the true maximum score may not match exactly because
using a 3-valued logic does not guarantee the most accurate information [13].
lmax evaluation is nevertheless a valuable indication of the sub-state value. It
can be back-propagated in addition to the global score and cumulated in a wmax

t

variable. For a given transition, wt/nt is a global score estimator and wmax
t /nt

is a local score estimator. These two estimators can be used in a new policy
derived from UCT:

U = α
wt

nt
+ (1 − α)

wmax
t

nt
+ C ∗

√
log N

nt
(1)

with C the constant balancing the exploitation and exploration terms and α ∈
[0, 1] setting the balance between local and global score estimations.

To avoid going back into already fully explored sub-branches, the transitions
corresponding to these branches are excluded from the local selection as long as
there are transitions that are not fully explored.

The Global Selection of the best move is made depending on the moves rec-
ommended by the sub-games. In serial or synchronous parallel games, the inter-
section of the recommended move sets is always non-empty. The global selection
is then straightforward: a move can be randomly selected in the intersection.
However, in a parallel asynchronous game, different sub-games can propose dis-
joint move sets. It is then necessary to define a policy for the choice of a move



Exploiting Game Decompositions in Monte Carlo Tree Search 113

at the global level. To define an any game policy, we propose a voting pol-
icy. Each sub-game recommending a move brings a vote. In the case of serial
or synchronous parallel games, the best moves get as many votes as there are
sub-games. In the case of parallel asynchronous games, each move may win a
maximum of one vote. Among the moves that received the most votes, those with
the highest expected earnings are selected to direct the search towards moves
that can lead to the best combination of sub-states. When the game goal is the
conjunction of the sub-games goals, this highest expected earning for a move m
among T sub-games is the product of the probability of gain in each sub-game
s:

∏T
s=1 ws

m/ns
m. When the game goal is the disjunction of the sub-games goals,

this highest expected earning is the sum of the probability:
∑T

s=1 ws
m/ns

m with
ws

m the cumulated rewards earned during playouts and ns
m the number of visits

of the transition labeled with that move m in sub-game s. If several moves offer
the greatest probability of gain, one of them is randomly selected.

4 Experiments

We present here experiments on MT-MCTS4. Firstly we evaluate different
weighting of our local selection policy and secondly we compare the effectiveness
of MT-MCTS against UCT and show that this approach can reduce the overall
number of simulations and the solving time. We conducted our experiments on
several single-player games: Incredible, different grids of Nonogram of size 5 × 5
and 6 × 6 and Queens08lg.

Incredible is an interesting game because it is possible to end the game pre-
maturely with a suboptimal score. It is a usual test bed to evaluate players able
to exploit decompositions. Nonogram is a logic puzzle in which cells in a grid
must be colored or left blank according to numbers placed in front of columns
and lines. The score is binary and UCT provides no improvement over depth-first
or breadth-first search in this game. Queens08lg is on the contrary quickly solved
by UCT. It is an Eight Queens puzzle in which it is illegal to place a queen in
a position where it could capture another queen in one move. The game is over
when a queen can no longer be placed. See [Anonymised Author PhD], for more
information about these games and a detailed presentation of each Nonogram
grid. We decompose these games with the statistical approach proposed by [7].
The decomposition time can vary slightly depending on the simulations done to
collect statistical information. For each game and each configuration, we real-
ized 10 tests and present the mean number of playouts and mean time necessary
to solve the game. A game is considered solved when a maximum score leaf is
found.

The purpose of our first experiment is to compare different values of α in the
local selection policy (Eq. 1). We use C = 0.4 which allow a good balance between
exploration and exploitation in a majority of GGP games. We experimented on

4 The experiments are performed on one core of an Intel Core i7 2,7 GHz with 8Go of
1.6 GHz DDR3.



114 A. Hufschmitt et al.

two games: Incredible and Nonogram “checkerboard”. The results are presented
in Fig. 1. Using only the global score estimator (α = 1) in the local selection
policy does not allow to solve Nonogram due to its binary score. The estimated
score is always zero in this game and the randomly chosen moves very unlikely
lead to the right combination of sub-states. On the contrary, the local score
estimator (α = 0) allows to guide the search in the sub-trees and solve this
Nonogram in less than 5 s. However, the use of α = 1 gives better results on
Incredible while α = 0 requires almost twice as much time to solve the game.
By varying α, we notice that a small participation of the local score estimator
(α = 0.75) allows an even better result in Incredible. The weighting α = 0.25
seems to allows the fastest resolution of Nonogram. However, the importance of
the standard deviations, of the same order of magnitude as the resolution times
or an order below, does not allow to identify a significant effect of the variation
of this weighting. Considering these standard deviations, the resolution times
are similar in the three tests mixing the local and global score estimators. More
experiments will be necessary to verify the influence of unequal weighting of
these two pieces of information.

Nevertheless, the association of both estimators appears desirable to consti-
tute a polyvalent policy. In the following experiments, we used α = 0.5 for the
local selection since it gives overall the best result.

Fig. 1. Mean time on 10 tests to solve Incredible and Nonogram “checkerboard” with
different values of α in the local selection policy of MT-MCTS (Eq. 1).

In a second experiment (Fig. 2) we compare the effectiveness of MT-MCTS
against UCT in terms of number of playouts and time spent.

On Incredible, MT-MCTS is significantly better than UCT in terms of num-
ber of playouts necessary to solve the game. MT-MCTS uses twenty times less
playouts but the move selection is significantly longer. In the end, the game is
solved twice as fast.

Comparing our results with [5] (Fluxplayer) and [3] (ASP) is difficult because
their approaches are totally different from UCT. Fluxplayer takes about 2 h to
solve Incredible by computing over 41 million states (compared to 280 thousand



Exploiting Game Decompositions in Monte Carlo Tree Search 115

playouts for UCT5). Their decomposition method reduces this time to 45 s and
3212 calculated states. Their resolution time is greater than ours although fewer
states are computed by their approach. The encoding of Incredible in ASP allows
game resolution in 6.11 s. This time is reduced to 1.94 s by decomposition,
a factor of 3. It should be noted that this approach is optimized for solitary
games. Since our approach requires 21 times less playouts for the resolution of
the decomposed game, by optimizing the selection step of MT-MCTS, we hope
to obtain a similar or even better improvement.

For a simple puzzle like Queens08lg, even if the resolution of the decomposed
game requires 3 times less playouts, the decomposition time is too important
compared to the gain that can be expected in the resolution.

Game Algo. # Playouts Time (decomp.) σ # Fail

Incredible UCT 280158 1m 14.3s -
MT-MCTS 13199 32.86s (2.50s) 4.4s -

Queens08lg UCT 67 0.01s <0.1s -
MT-MCTS 22 1.30s (1.29s) <0.1s -

Nonogram UCT 432019 31.31s 16.5s -
“checkerboard” MT-MCTS 776 4.81s (0.69s) 0.5s -
Nonogram UCT 2988921 4m24s 4m8s -
“G” MT-MCTS 9344 36.61s (0.77s) 16.45s -
Nonogram UCT 4969111 7m20s 3m53s 1 (after 107 play. / 15m17s)
“tetris” MT-MCTS 3767 16.36s (1.01s) 6.5s -
Nonogram UCT 2552082 3m43s 2m50s -
“sitdog” MT-MCTS 5476 26.27s (0.98s) 14.92s -
Nonogram UCT 3086172 4m34s 3m9s -
“iG” MT-MCTS 10232 28.60s (0.85s) 12.40s -
Nonogram UCT 4284872 13m7s 6m41s 4 (after 107 play. / 31m9s)
“rally” MT-MCTS 1762 49.26s (2.40s) 3.72s -
Nonogram UCT 21438731 1h17m23s 19m16s 8 (after 5 × 107 play. / 3h4m)
“cube” MT-MCTS 358608 1h53m8s (2.75s) 45m7s -

Fig. 2. Comparison of the resolution times of different games with UCT and MT-
MCTS. The columns present the mean number of playouts and the mean time to
solve the puzzles (failures excluded) over 10 tests. In parentheses is the time used for
decomposition. The σ column indicates the standard deviations. The column “# Fail”
indicates how many searches were stopped without finding the solution.

On Nonograms grids (5×5 and 6×6) MT-MCTS is significantly better than
UCT. The resolution is 25 times faster for “Tetris”. This gain is not directly
related to the number of sub-games identified: in “Checkerboard”, which has
a larger number of sub-games, the resolution is only 6 times faster. The gain
obtained for the resolution speed is directly related to the number of simulations
needed: 300 times less for “iG” up to 2400 times less for “rally” (not to mention
the 4 tests where UCT was interrupted after 107 playouts without finding any
solution). The heavier selection step is largely mitigated here by the significant

5 As each playout results in an expansion of the tree, we can compare the number of
playouts with the number of calculated states.



116 A. Hufschmitt et al.

gain in the number of simulations. The time needed to solve “cube” with MT-
MCTS is 2 h on average. The resolution with UCT is sometimes successful in
less than an 2 h, but the majority of tests (8/10) failed to find the solution after
3 h on average.

5 Discussion

During the expansion, some actions are not tested as we already have an evalu-
ation for the resulting sub-states from previous descents in the sub-trees. There-
fore some combinations of sub-states may never be visited and splitting the
search over several game trees offers in theory no guarantee of convergence
toward a solution with an infinite number of playouts. In practice, a good selec-
tion policy allows to guide the search to find the right sequence of moves to reach
the right combination of sub-states.

The problem in the GGP domain is that the optimal policy depends on the
structure of the game. For example, excluding fully explored branches in local
selection can quickly guide to the solution in Incredible as it avoids re-exploring
a path leading to a suboptimal score. However, it can delay the resolution in a
game like Nonogram where playing the already known good moves would have
allowed to color some cells and guide the discovery of the following good moves.

Despite this delay, MT-MCTS is still more efficient than UCT on Nonogram.
However, as an interesting specific combination of sub-states can remain unex-
plored for a long time, we assume that a fixed value for α in our policy may not
be as effective on all GGP games. Further research is therefore needed. Many
different policies could be considered to allow to go down rarely in the fully
explored branches and to improve the selection step of MT-MCTS. Finding a
policy for MT-MCTS that is proven effective on all games is an interesting open
problem.

Nonogram naturally presents a composition of rules in rows and columns.
The structure of MT-MCTS allows to explore a game decomposed in this way.
Another avenue of research to consider is then the exploitation of different over-
lapping sub-games and, more generally, of non-disjoint sub-games.

Our version of MT-MCTS does not consider all transpositions to avoid games
with cycles. Fifty-five percent of GGP games use a stepper, the development of a
specific selection policy to take advantage of transpositions in games containing
cycles is therefore an open and interesting search track that could significantly
improve the level of GGP players.

6 Conclusion

In this paper we proposed an extension of MCTS to search in several trees rep-
resenting the different parts of a decomposed problem. We tested this idea on
several single player games in the General Game Playing domain. Playing with
decomposed games allows to hope for a real change of scale in their resolution
speed. Our tests with a weighted selection policy give promising results: the



Exploiting Game Decompositions in Monte Carlo Tree Search 117

games are solved from 2 times (Incredible) to 25 times faster (Nonogram). Mul-
tiple Tree MCTS (MT-MCTS) can be extended to multi-player games such as
conventional MCTS approaches and also allows non-independent sub-games to
be exploited.

The new MT-MCTS approach opens different research tracks: the develop-
ment of a selection policy efficient for the different types of compound games,
the support of the specific case of games with cycles using a stepper, playing
with overlapping sub-games and even the exploitation of incomplete or imper-
fect decompositions.

References

1. Browne, C.B., et al.: A survey of Monte Carlo Tree search methods. IEEE Trans.
Comput. Intell. AI Games 4(1), 1–43 (2012)

2. Cazenave, T.: Monte-Carlo approximation of temperature. Games Chance 4(63),
41–45 (2015)

3. Cerexhe, T., Rajaratnam, D., Saffidine, A., Thielscher, M.: A systematic solution
to the (de-)composition problem in general game playing. In: Proceedings of the
European Conference on Artificial Intelligence (ECAI) (2014)

4. Cox, E., Schkufza, E., Madsen, R., Genesereth, M.: Factoring general games using
propositional automata. In: Proceedings of the IJCAI-09 Workshop on General
Game Playing (GIGA 2009), pp. 13–20 (2009)

5. Günther, M., Schiffel, S., Thielscher, M.: Factoring general games. In: Proceedings
of the IJCAI-09 Workshop on General Game Playing (GIGA 2009), pp. 27–33
(2009)

6. Hufschmitt, A., Méhat, J., Vittaut, J.N.: A general approach of game description
decomposition for general game playing. In: Proceedings of the IJCAI-16 Workshop
on General Game Playing (GIGA 2016), pp. 23–29 (2016)

7. Hufschmitt, A., Vittaut, J.N., Jouandeau, N.: Statistical GGP games decomposi-
tion. In: Proceedings of the IJCAI-18 Workshop on Computer Games (CGW 2018),
pp. 1–19 (2018)

8. Kishimoto, A., Müller, M.: A general solution to the graph history interaction prob-
lem. In: Nineteenth National Conference on Artificial Intelligence (AAAI 2004),
San Jose, CA, pp. 644–649 (2004)

9. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

10. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game
playing: game description language specification. Tech. rep. LG-2006-01, Stanford
University, January 2006

11. Mehat, J., Cazenave, T.: Combining UCT and nested monte carlo search for single-
player general game playing. IEEE Trans. Comput. Intell. AI Games 2(4), 271–277
(2011)

12. Palay, A.: Searching With Probabilities. Research Notes in Artificial Intelligence
Series, Pitman Advanced Publishing Program (1985)

13. Reps, T.W., Loginov, A., Sagiv, S.: Semantic minimization of 3-valued proposi-
tional formulae. In: 17th IEEE Symposium on Logic in Computer Science (LICS
2002), 22–25 July 2002, Copenhagen, Denmark, Proceedings, p. 40 (2002)

https://doi.org/10.1007/11871842_29


118 A. Hufschmitt et al.

14. Saffidine, A., Méhat, J., Cazenave, T.: UCD: upper confidence bound for rooted
directed acyclic graphs. In: TAAI 2010, Piscataway, NJ, pp. 467–473. IEEE (2010)

15. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550,
354–359 (2017)

16. Winands, M.H.M., Björnsson, Y., Saito, J.-T.: Monte-Carlo tree search solver. In:
van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS,
vol. 5131, pp. 25–36. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-87608-3 3

17. Zhao, D., Schiffel, S., Thielscher, M.: Decomposition of multi-player games. In:
Nicholson, A., Li, X. (eds.) AI 2009. LNCS (LNAI), vol. 5866, pp. 475–484.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10439-8 48

https://doi.org/10.1007/978-3-540-87608-3_3
https://doi.org/10.1007/978-3-540-87608-3_3
https://doi.org/10.1007/978-3-642-10439-8_48

	Exploiting Game Decompositions in Monte Carlo Tree Search
	1 Introduction
	2 MCTS and UCT
	3 Multiple Tree MCTS (MT-MCTS)
	4 Experiments
	5 Discussion
	6 Conclusion
	References




