
A Novel Application for Game Tree
Search - Exploiting Pruning Mechanisms

for Quantified Integer Programs

Michael Hartisch(B) and Ulf Lorenz

Chair of Technology Management, University of Siegen, Siegen, Germany
{michael.hartisch,ulf.lorenz}@uni-siegen.de

Abstract. We investigate pruning in search trees of so-called quanti-
fied integer (linear) programs (QIPs). QIPs consist of a set of linear
inequalities and a minimax objective function, where some variables are
existentially and others are universally quantified. A good way to solve a
QIP is to apply game tree search, enhanced with non-chronological back-
jumping. We develop and theoretically substantiate tree pruning tech-
niques based upon algebraic properties. The presented Strategic Copy-
Pruning mechanism allows to implicitly deduce the existence of a strategy
in linear time (by static examination of the QIP-matrix) without explic-
itly traversing the strategy itself. We show that the implementation of
our findings can massively speed up the search process.

1 Introduction

Prominent solution paradigms for optimization under uncertainty are Stochastic
Programming [5], Robust Optimization [3], Dynamic Programming [2], Sampling
[11] and POMDP [21]. Relatively unexplored are the abilities of linear program-
ming extensions for PSPACE-complete problems. In the early 2000s the idea of
universally quantified variables, as they are used in quantified constraint sat-
isfaction problems [10], was picked up again [27], coining the term quantified
integer program (QIP). Quantified integer programming is a direct, very for-
mal extension of integer linear programming (IP), making QIPs applicable in
a very natural way. They allow robust multistage optimization extending the
two-stage approach of Robust Optimization [3]. Multistage models - in contrast
to two-stage models - allow more precise planning strategies as uncertain events
typically do not occur all at the same time (delay in timetables, changed cost
estimate for edges in a graph, alternating moves in games).

Let us start with the following illustrative application. There are b runways at
your airport and all arriving airplanes must be assigned to exactly one time slot
for the landing (therefore a natural worst-case optimization problem). Further,

This research is partially supported by the German Research Foundation (DFG) project
“Advanced algorithms and heuristics for solving quantified mixed - integer linear pro-
grams”.

c© Springer Nature Switzerland AG 2020
T. Cazenave et al. (Eds.): ACG 2019, LNCS 12516, pp. 66–78, 2020.
https://doi.org/10.1007/978-3-030-65883-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65883-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-65883-0_6

Exploiting Pruning Mechanisms for QIPs 67

the airplanes are expected to arrive within some time window and hence the
assigned time slot must adhere to those time windows. Finding an initial match-
ing, even an optimal one considering some objective function, can be modeled
and solved using mixed integer programming techniques [14]. However, the time
windows are uncertain due to adjusted airspeed (due to weather) or operational
problems and an initial schedule might become invalid (see for example Fig. 1).
Thus, one is interested in a robust initial plan that can be adapted cheaply,

Fig. 1. Process of runway scheduling: A schedule for the initial time windows is made
(left). If the predicted time windows differ from the actually occurring time windows
(middle), the initial plan becomes invalid and a new scheduling must be found (right).

e.g. the initial and adapted time slot of each airplane should not be too far
apart from each other [13]. These uncertain events, however, do not uncover all
at the same time: final time slots must be assigned to some airplanes while for
other airplanes the actual time window is still unknown. This problem is literally
crying out to be modeled as a QIP.

A solution of a QIP is a strategy – in the game tree search sense [22] – for
assigning existentially quantified variables such that some linear constraint sys-
tem is fulfilled. By adding a minimax objective function the aim is to find the
best strategy [19]. As not unusual in the context of optimization under uncer-
tainty [3,4] a polyhedral uncertainty set can be used [12]. There are two different
ways known how to tackle a QIP: On the one hand the so-called deterministic
equivalent program can be built, similar to the ones known from stochastic pro-
gramming [5], and solved using standard integer programming solvers. On the
other hand the more natural approach is to conduct a game tree search [18,26].
We are interested in utilizing game solving techniques [25,28] in combination
with linear programming techniques as well as pruning and backjumping tech-
niques from QBF [6]. Recently our solver for quantified mixed integer programs
was made available as open source. This solver combines techniques known from
game tree search, linear programming and QBF [9].

An optimization task is often split up into two parts: finding the optimal
solution itself and proving that no better solution can exist. For the latter, it
turned out that applying backjumping techniques as utilized by QBF-solvers
[29] and cutting planes as commonly used in integer programming [20] are also

68 M. Hartisch and U. Lorenz

highly beneficial for QIPs in order to assess that no (better) strategy can exist
in certain subtrees. For the first task, however, it seems that the exponential
number of leaves belonging to a strategy must be traversed explicitly. This is
certainly true in the worst-case. However, typically there are “difficult” parts
of a game tree where a very deliberated substrategy must be found but also
other parts where a less sophisticated substrategy suffices. In this paper we
present a procedure, called strategic copy-pruning (SCP), that is capable of rec-
ognizing such subtrees making it possible to implicitly deduce the existence of
a winning strategy therein. In contrast to similar ideas in QBF, as e.g. coun-
terexample guided abstraction refinement [16], an optimization process over a
minimax objective must be considered. Further, our SCP draws its power not
from memory-intensive learning, but from deep findings in the search tree. This
perspective has led to remarkable achievements in the past [7,15]. For game
tree search there are already several algorithms trying to rapidly show the exis-
tence of winning strategies such as Kawano’s simulation [17], MTD(f) [23] and
(nega)scout [24]. They, however, always have to traverse an exponential num-
ber of leafs. In our experiments, SCP often allows to conclude the existence of
an winning strategy with a linear number of algebraic operations and in par-
ticular, in those cases it is not necessary to examine an exponential number of
leaves resulting in a significant performance improvement both in time (about
a factor 4) and number of solved instances. The effect of SCP is reinforced if
the sequence of variable assignments predicted as optimal by minimax for both
sides, called the principal variation [8], is traversed in an early stage of the tree
search. Detecting and verifying this particular variable assignment is essential in
order to obtain the objective value. Thus having reasonable knowledge of which
universal variable assignments are particularly vicious can massively boost the
search process. Several heuristics exist to analyze and find such promising moves
in a game tree search environment [1,23,25]. The paper is organized as follows:
First basic definitions and notations regarding QIPs are presented. Then two
pruning techniques for the QIP game tree search are introduced: First, the well
known monotonicity [6] of variables is recaptured. Second, as our main result,
we derive from already found strategies the existence of winning strategies in
other branches. This happens in a way such that these branches do not need to
be investigated explicitly. Finally the conducted experiments are presented.

2 Preliminaries: Basics of Quantified Integer
Programming

Let n ∈ N be the number of variables and x = (x1, . . . , xn)� ∈ Z
n a vector

of variables.1 For each variable xj its domain Lj with lj , uj ∈ Z, lj ≤ uj ,
1 ≤ j ≤ n, is given by Lj = {y ∈ Z | lj ≤ y ≤ uj}. The domain of the entire
variable vector is described by L = {y ∈ Z

n | ∀j ∈ {1, . . . , n} : yj ∈ Lj},

1
Z, N and Q denote the set of integers, natural numbers, and rational numbers,
respectively.

Exploiting Pruning Mechanisms for QIPs 69

i.e. each variable must obey its domain. Let Q ∈ {∃,∀}n denote the vector of
quantifiers. We call E = {j ∈ {1, . . . , n} | Qj = ∃} the set of existential variables
and A = {j ∈ {1, . . . , n} | Qj = ∀} the set of universal variables. Further, each
maximal consecutive subsequence in Q consisting of identical quantifiers is called
quantifier block with Bi ⊆ {1, . . . , n} denoting the i-th block. Let β ∈ N, β ≤ n,
denote the number of blocks and thus β − 1 is the number of quantifier changes.
The variable vector of variable block Bi will be referred to as x(i).

Definition 1 (Quantified Integer Linear Program (QIP)). Let A ∈
Q

m×n and b ∈ Q
m for m ∈ N and let L and Q be given as described above.

Let c ∈ Q
n be the vector of objective coefficients and let c(i) denote the vector of

coefficients belonging to block Bi. Let the term Q◦x ∈ L with the component wise
binding operator ◦ denote the quantification vector (Q1x1 ∈ L1, . . . , Qnxn ∈ Ln)
such that every quantifier Qj binds the variables xj to its domain Lj. We call
(A, b, c,L, Q) with

z = min
B1

(
c(1)x(1) + max

B2

(
c(2)x(2) + . . . min

Bβ

c(β)x(β)

))

s.t. Q ◦ x ∈ L : Ax ≤ b (�)

a QIP with objective function (for a minimizing existential player).

For simplicity’s sake, and since it goes well with the example in Fig. 1, we will
consider only binary QIPs, i.e. lj = 0 and uj = 1 for all j ∈ {1, . . . , n}. However,
note that our results and in particular Theorem 1 can easily be adapted to be
valid for general integer variables.

A QIP instance can be interpreted as a two-person zero-sum game between
an existential player setting the existentially quantified variables and a universal
player setting the universally quantified variables with payoff z. The variables
are set in consecutive order according to the variable sequence. Consequently, we
say that a player makes the move xk = y if she fixes the variable xk to y ∈ Lk.
At each such move, the corresponding player knows the settings of x1, . . . , xk−1

before taking her decision xk. If the completely assigned vector x ∈ L satisfies
the linear constraint system Ax ≤ b, the existential player pays z = c�x to the
universal player. If x does not satisfy Ax ≤ b, we say the existential player loses
and the payoff will be +∞. This is a small deviation from conventional zero-sum
games but using2 ∞+(−∞) = 0 also fits for zero-sum games. The chronological
order of the variable blocks given by Q can be represented using a game tree
G = (V,E, c) with V = V∃ ∪ V∀ ∪ VL consisting of existential, universal and
leaf nodes [9]. Thus, a path from the root to a leaf represents a play of the
QIP and the sequence of edge labels encodes its moves, i.e. the corresponding
variable assignments. Solutions of a QIP are strategies [9]. In the following, the
word strategy will always refer to an existential strategy. A strategy is called a
winning strategy if all paths from the root node to a leaf represent a vector x
such that Ax ≤ b. A QIP is called feasible if (�) is true (see Definition 1), i.e. if a

2 This is only a matter of interpretation and consequences are not discussed further.

70 M. Hartisch and U. Lorenz

winning strategy exists. If there is more than one winning strategy, the objective
function aims for a certain (the “best”) one. The value of a strategy is given by
its minimax value which is the maximum value at its leaves [22]. Note that a
leaf not fulfilling Ax ≤ b can be represented by the value +∞. The objective
value of a feasible QIP is the minimax value at the root, i.e. the minimax value
of the optimal winning strategy, defined by the principal variation (PV) [8]:
the sequence of variable assignments being chosen during optimal play. For any
v ∈ V we call f(v) the outcome of optimal play by both players starting at v.

Example. Let us consider a QIP with n = 4 binary variables:

min(2x1 max(−2x2 min(−3x3 max(−2x4))))
s.t. ∃x1 ∈ {0, 1} ∀x2 ∈ {0, 1} ∃x3 ∈ {0, 1} ∀x4 ∈ {0, 1} :

x1 +x2 +x3 ≤ 2
−x1 +x3 −x4 ≤ 0

−x2 +x3 −x4 ≤ 0
−x1 +x2 −x3 +x4 ≤ 1

The minimax value of the root node (for the minimizing starting player) of
the game tree is 2 and the principal variation is given by x1 = 1, x2 = 0, x3 = 0
and x4 = 0. The inner node at level 1 resulting from setting x1 = 0 has the
minimax value +∞, i.e. after setting x1 = 0 there exists no winning strategy.

3 Pruning in QIP Search Trees

3.1 Theoretical Analysis

In a natural way, a quantified integer program can be solved via game tree
search. During such a tree search we are interested in quickly evaluating or
estimating the minimax value of nodes, i.e. we want to examine the optimal
(existential) strategy of the corresponding subtree. In order to speed up the
search process, limiting the number of subtrees that need to be explored is
extremely beneficial. Such pruning operations are applied in many search based
algorithms, e.g. the alpha-beta algorithm [18], branch-and-bound [20] and DPLL
[29]. In the following, we will present two approaches that allow pruning in a
QIP game tree search, and thus in a strategic optimization task.

In case of QIPs certain variable assignments never need to be checked as they
are worse than their counterparts. The concept of monotone variables is already
well known for quantified boolean formulas [6] and integer programming [20].

Definition 2 (Monotone Variable)
A variable xk of a QIP is called monotone if it occurs with only positive or only
negative sign in the matrix and objective, i.e. if the entries of A and c belonging
to xk are either all non-negative or all non-positive.

Exploiting Pruning Mechanisms for QIPs 71

Using this easily verifiable monotonicity allows us to omit certain subtrees a
priori since solving the subtree of its sibling is guaranteed to yield the desired
minimax value.

In contrast to this usage of prior knowledge we also want to gather deep
knowledge during the search process: found strategies in certain subtrees can
be useful in order to assess the minimax value of related subtrees rapidly. The
idea is based upon the observation that typically in only a rather small part of
the game tree a distinct and crafty strategy is required in order to ensure the
fulfillment of the constraint system: in the right-hand side subtree of Fig. 2 it
suffices to find a fulfilling existential variable assignment for only one scenario
(universal variable assignment) and reuse it in the other branches.

x∀ = 0 x∀ = 1

Fig. 2. Illustrative strategy for which the universal assignment x∀ = 1 entails a simple
winning strategy: Regardless of future universal decisions existential variables can be
set in a certain simple way, e.g. the existential decisions in the dashed ellipse are all
the same. x∀ = 0 on the other hand compels a more clever strategy, e.g. the existential
decisions in the dotted ellipse differ depending on previous universal decisions.

Theorem 1. [Strategic Copy-Pruning (SCP)]
Let k ∈ A and let (x̃1, . . . , x̃k−1) ∈ {0, 1}k−1 be a fixed variable assignment of
the variables x1, . . . , xk−1. Let v ∈ V∀ be the corresponding universal node in the
game tree. Let w̃ ∈ V and ŵ ∈ V be the two children of v corresponding to the
variable assignment x̃k and x̂k = 1− x̃k of the universal variable xk, respectively.
Let there be an optimal winning strategy for the subtree below w̃ with minimax
value f(w̃) = z̃ defined by the variable assignment x̃ = (x̃1, . . . , x̃n) ∈ {0, 1}n,
i.e. z̃ = c�x̃. If the minimax value of the copied strategy for the subtree below
ŵ - obtained by adoption of future3 existential variable assignments as in x̃ - is
not larger than z̃ and if this copied strategy constitutes a winning strategy then
f(v) = z̃. Formally: If both

ck(x̂k − x̃k) +
∑

j∈A, j>k
and cj≥0

cj(1 − x̃j) −
∑

j∈A, j>k
and cj<0

cj x̃j ≤ 0 (1)

and ∑
j∈E

or j<k

Ai,j x̃j + Ai,kx̂k +
∑

j∈A, j>k
and Ai,j>0

Ai,j ≤ bi (2)

3 Future means variable blocks with index ≥ k.

72 M. Hartisch and U. Lorenz

for all constraints i ∈ {1, . . . , m} then f(v) = z̃.

For clarification note that Condition (1) ensures that the change in the min-
imax value of the copied strategy, resulting from flipping xk and using the worst
case assignment of the remaining future universal variables, is not positive, i.e.
that its minimax value is still smaller than or equal to z̃. Condition (2) verifies
that every constraint is satisfied in each leaf of the copied strategy by ensuring
the fulfillment of each constraint in its specific worst case scenario.

Proof. If (2) is satisfied there automatically exists a winning strategy for the
subtree of v corresponding to xk = x̂k with root node ŵ, since for any future
universal variable assignment the assignment of upcoming existential variables as
in x̃ fulfills the constraint system. Further, the minimax value ẑ of this strategy
is smaller than or equal to z̃ due to Condition (1):

ẑ =
∑
j∈E

or j<k

cj x̃j + ckx̂k +
∑

j∈A, j>k
and cj≥0

cj

(1)

≤
∑
j∈E

or j<k

cj x̃j + ckx̃k +
∑

j∈A, j>k

cj x̃j = z̃

Hence, the (still unknown) optimal strategy for the subtree below ŵ has a min-
imax value smaller than or equal to z̃, i.e. f(ŵ) ≤ ẑ ≤ z̃ = f(w̃). Therefore,
f(v) = f(w̃) = z̃.

Note that, since Ax̃ ≤ b, Condition (2) is trivially fulfilled for any constraint
i ∈ {1, . . . , m} with Ai,j = 0 for all j ∈ A, j ≥ k, i.e. constraints that are not
influenced by future universal variables do not need to be examined. Hence, only
a limited number of constraints need to be checked in case of a sparse matrix.
Further, note that (1) is fulfilled if cj = 0 for all j ∈ A, j ≥ k, i.e. if the future
universal variables have no direct effect on the objective value. In particular,
if c = 0, i.e. it is a satisfiabilty problem rather than an optimization problem,
Condition (1) can be neglected as it is always fulfilled.

3.2 SCP Implementation Details

As soon as a leaf v is found during the tree search with the corresponding xv being
a potentially new PV for this subtree the following mechanism is invoked: the two
Conditions (1) and (2) of Theorem 1 are checked at each universal node starting
from this leaf towards the root (Line 5). While both conditions are fulfilled the
corresponding universal nodes are marked as potentially finished. If one of the
conditions is not satisfied the remaining universal nodes above are marked as
unfinished. If a level is closed during the tree search and the above universal
node is marked as potentially finished this level also can be closed immediately
as a strategy is guaranteed in the other branch with worse objective value (from
the universal player’s point of view). The unmarking of universal nodes (Line 8)
is necessary since Theorem 1 demands xv to be the actual PV of this subtree
and hence previous markings where made based on a false assumption.

Exploiting Pruning Mechanisms for QIPs 73

Algorithm 1. Marking of potentially finished universal nodes
Input: leaf node v

1: useSCP=true;
2: repeat
3: v=parent(v);
4: if v ∈ V∀ then
5: if useSCP and v fulfills Conditions (1) and (2) then
6: mark v as potentially finished;
7: else
8: useSCP=false; mark v as unfinished;
9: end if

10: end if
11: until v is root node

3.3 Example

Consider the following binary QIP (The min/max alternation in the objective
and the binary variable domains are omitted):

min 2x1 + 3x2 − 2x3 − 2x4 + x5

s.t. ∃x1 ∀x2 ∃x3 ∀x4 ∃x5 :
x1 − x2 + x3 + 3x4 − x5 ≤ 2

3x1 + 2x2 + 3x3 + x4 − 2x5 ≤ 1

Starting at the root node of the corresponding game tree we can immediately
omit the subtree corresponding to x1 = 1 due to the monotonicity of x1. Keep in
mind that the result of Theorem 1 is particularly beneficial if the search process
of a QIP solver first examines the principal variation, i.e. the variable assignment
defining the actual minimax value. Assume the search process follows the path
drawn thick in Fig. 3 to node v8, i.e. the path corresponding to the variable
assignment x1 = 0, x2 = 1, x3 = 0 and x4 = 0. Setting x5 = 1 is optimal in this
case, as x5 = 0 would violate the second constraint. Hence, the minimax value
of v8 is 4. On the way up in the search tree we then want to determine f(v5).
As (1) and (2) are fulfilled for k = 4, z̃ = 4 and x̃ = (0, 1, 0, 0, 1) we know that
f(v5) = 4. That means we have (easily) verified a winning strategy starting from
v9 with minimax value smaller than or equal to 4. In node v3 setting x3 = 1
is obviously to the detriment of the existential player, as the second constraint
would become unfulfillable. Hence, f(v3) = f(v5) = 4. In node v1 we once again
try to apply Theorem 1 by copying the existential decisions of x3 and x5 in
the thick path to the not yet investigated subtree associated with x2 = 0. As
(1) and (2) are fulfilled for k = 2, z̃ = 4 and x̃ = (0, 1, 0, 0, 1) this attempt is
successful and f(v1) = 4. Note that by applying Theorem 1 the minimax value
of the subtrees below v2 and v9 are not known exactly: in particular we only
obtain f(v2) ≤ ẑ = 1, whereas a better strategy exists resulting in f(v2) = 0
(Setting x5 = 0 in node v6).

Hence, by finding the principal variation first (thick path), exploiting mono-
tonicity of x1 at node v0, Theorem 1 at node v1 and v5 and some further reasoning

74 M. Hartisch and U. Lorenz

v0

v1

v2

v4

v6

1

x5 = 1

x4 = 0

v7

-1

x5 = 1

x4 = 1

x3 = 0

x2 = 0

v3

v5

v8

4

x5 = 1

x4 = 0

v9

2

x5 = 1

x4 = 1

x3 = 0

x2 = 1

x1 = 0

MIN

MAX

MIN

MAX

MIN

Fig. 3. Optimal winning strategy for the QIP. Circular nodes are existential decision
nodes, rectangular nodes are universal decision nodes and pentagonal nodes are leaves.
The values given in the leaves constitute the objective value corresponding to the
variable assignment along the path from the root to this leaf. The dashed lines indicate
that those existential decisions where simply copied from the path drawn thicker.

from linear programming at node v3 and v8 the minimax value at the root node
v0 was found to be 4 with optimal first stage solution x1 = 0.

Theorem 1 can particularly come into effect if the branching decisions at
universal nodes result in rather vicious scenarios, i.e. in variable assignments
restricting the constraint system and maximizing the objective value. Hence,
the applicability of the presented results largely depends on the implemented
diving and sorting heuristic.

4 Solver, Experiments and Results

We use our open source4 solver Yasol [9] to analyze the theoretical findings.
The solver basically performs an enhanced alpha-beta-search and proceeds in
two phases: a feasibility phase, where it is checked whether the instance has
any solution at all, and an optimization phase for finding the provable optimal
solution. We enhanced this solver in two different ways:

1. The detection and exploitation of monotone variables.
2. The adoption of existing winning strategies from one branch of a universal

node to another (SCP).

The SCP-enhancement can be switched on and off in both phases separately.
The instances used to study the effect of the presented results are run-

way scheduling problems under uncertainty as motivated in the introduction.

4 Sources are available at http://www.q-mip.org.

http://www.q-mip.org

Exploiting Pruning Mechanisms for QIPs 75

They were created following the ideas presented in [13]. The task is to find a b-
matching: all airplanes must be assigned to exactly one time slot, while one time
slot can take in at most b airplanes. Furthermore, the airplanes must land within
an uncertain time window. Hence, we are interested in an initial matching plan
that can be fixed cheaply if the mandatory time windows for some airplanes do
not contain the initially scheduled time slot. The testset contains 29 instances5,
varying in the number of airplanes, the number of time slots, the type of allowed
disturbances, the number of universal blocks and the cost function. In terms
of the sizes of the (solved feasible) instances this results in between 100–300
existential variables, 10–30 universal variables and 50–100 constraints.

Table 1. Number of solved instances dependend on the solver setting: exploitation of
monotone variables and SCP in different phases.

monotonicity SCP solved instances

off both phases 24

only optimization phase 21

only feasibility phase 16

off 14

on both phases 25

only optimization phase 25

only feasibility phase 24

off 23

0 1,000 2,000 3,000
0

5

10

15

20

25

time

nu
m

be
r

of
so

lv
ed

in
st

an
ce

s

Off/Both
Off/Opt
Off/Feas
Off/Off

0 1,000 2,000 3,000

5

10

15

20

25

time

nu
m

be
r

of
so

lv
ed

in
st

an
ce

s

On/Both
On/Opt
On/Feas
On/Off

Fig. 4. Comparison of the effect of SCP in different phases of the solver without exploit-
ing monotonicity (left) and when also exploiting monotonicity (right).

In Table 1 and Fig. 4 the number of solved instances and the cumulative solu-
tion diagram is displayed for different settings. For each instance a maximum
5 The studied benchmark instances and a brief explanation can be found at http://

www.q-mip.org/index.php?id=41.

http://www.q-mip.org/index.php?id=41
http://www.q-mip.org/index.php?id=41

76 M. Hartisch and U. Lorenz

Table 2. Average time needed for the 23 instances solved in all four settings while
exploiting monotonicity.

SCP setting off only feas only opt both

average runtime 84s 102s 25s 32s

of one hour solution time was provided. All experiments were executed on a
PC with an Intel i7-4790 (3.6 GHz) processor and 32 GB RAM. If neither of the
presented procedures is used 14 out of 29 instances are solved. Without taking
advantage of the monotonicity SCP can be beneficial in either solution phase
regarding the number of solved instances. If applied in both phases the number
of solved instances is increased up to 24. When also exploiting the monotonicity
the number of solved instances increases to 25. However, SCP turns out to be
somewhat disadvantageous in the feasibility phase. Even though an additional
instance is solved (24) compared to the setting with SCP turned off (23) the
average solution time increases: in Table 2 the average time needed for the 23
instances solved by all versions with turned on monotonicity is displayed. Addi-
tionally using SCP in the feasibility phase slightly increases the average solution
time. Our conjecture is that this is due to biasing effects. Four instances with
more than 100 universal variables and 10000 existential variables were not solved
at all. However, there also are infeasible instances of the same magnitude that
are solved within seconds. In order to assess the performance results, we also
built the deterministic equivalent program of each instance and tried to solve
the resulting integer program using CPLEX 12.6.1.0, a standard MIP solver.
Only six of the 29 instances where solved this way, given the same amount
of time, while for 14 instances not even the construction of the corresponding
DEP could be finished, some of them because of the limited memory of 32 GB
RAM. Experiments conducted on a QBF test collection of 797 instances, taken
from www.qbflib.org, also show positive effects for the SCP version. When only
exploiting monotonicity 644 instances are solved. If additionally SCP is turned
on 674 instances can be solved. Further, the solution time decreases by 15%.

5 Conclusion

We introduced the concept of strategic copy-pruning (SCP) during tree search
for quantified integer programs. SCP makes it possible to omit certain subtrees
during the search process by implicitly verifying the existence of a strategy in
linear time: finding a single leaf and applying SCP can be sufficient to guar-
antee an optimal strategy in an entire subtree. This is standing in contrast to
existing algorithms in which the existence of a strategy is proven by traversing
it explicitly. In addition, we presented how those findings can be applied in a
search environment. Experiments showed that utilizing our approach resulted in
a massive boost in both the number of solved instances and the solution time
(about 4 times faster) on a particular testset. The achievement opens the door
to solving larger and more complex real-world problems.

www.qbflib.org

Exploiting Pruning Mechanisms for QIPs 77

References

1. Akl, S., Newborn, M.: The principal continuation and the killer heuristic. In: ACM
1977, pp. 466–473 (1977)

2. Bellman, R.: Dynamic Programming. Dover Publications Incorporated, Mineola
(2003)

3. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton Uni-
versity Press, Princeton (2009)

4. Bertsimas, D., Brown, D., Caramanis, C.: Theory and applications of robust opti-
mization. SIAM Rev. 53(3), 464–501 (2011)

5. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New
York (2011). https://doi.org/10.1007/978-1-4614-0237-4

6. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate
quantified Boolean formulae and its experimental evaluation. J. Autom. Reasoning
28(2), 101–142 (2002)

7. Campbell, M., Hoane, A., Hsu, F.H.: Search control methods in deep blue. In:
AAAI Spring Symposium on Search Techniques for Problem Solving under Uncer-
tainty and Incomplete Information, pp. 19–23 (1999)

8. Campbell, M., Marsland, T.: A comparison of minimax tree search algorithms.
Artif. Intell. 20(4), 347–367 (1983)

9. Ederer, T., Hartisch, M., Lorenz, U., Opfer, T., Wolf, J.: Yasol: an open source
solver for quantified mixed integer programs. In: Winands, M.H.M., van den Herik,
H.J., Kosters, W.A. (eds.) ACG 2017. LNCS, vol. 10664, pp. 224–233. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-71649-7 19

10. Gerber, R., Pugh, W., Saksena, M.: Parametric dispatching of hard real-time tasks.
IEEE Trans. Comput. 44(3), 471–479 (1995)

11. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: approximation algo-
rithms for stochastic optimization. In: ACM 2004, pp. 417–426. ACM (2004)

12. Hartisch, M., Ederer, T., Lorenz, U., Wolf, J.: Quantified integer programs with
polyhedral uncertainty set. In: Plaat, A., Kosters, W., van den Herik, J. (eds.) CG
2016. LNCS, vol. 10068, pp. 156–166. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-50935-8 15

13. Heidt, A., Helmke, H., Kapolke, M., Liers, F., Martin, A.: Robust runway schedul-
ing under uncertain conditions. JATM 56, 28–37 (2016)

14. Helmke, H.: Scheduling algorithms for ATM applications–tools and toys. In: 2011
IEEE/AIAA 30th Digital Avionics Systems Conference, p. 3C2-1. IEEE (2011)

15. van den Herik, H., Nunn, J., Levy, D.: Adams outclassed by hydra. ICGA J. 28(2),
107–110 (2005)

16. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. Artif. Intell. 234, 1–25 (2016)

17. Kawano, Y.: Using similar positions to search game trees. Games No Chance 29,
193–202 (1996)

18. Knuth, D., Moore, R.: An analysis of alpha-beta pruning. Artif. Intell. 6(4), 293–
326 (1975)

19. Lorenz, U., Wolf, J.: Solving multistage quantified linear optimization problems
with the alpha-beta nested benders decomposition. EURO J. Comput. Optim.
3(4), 349–370 (2015)

20. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. Wiley-
Interscience, New York (1988)

https://doi.org/10.1007/978-1-4614-0237-4
https://doi.org/10.1007/978-3-319-71649-7_19
https://doi.org/10.1007/978-3-319-50935-8_15
https://doi.org/10.1007/978-3-319-50935-8_15

78 M. Hartisch and U. Lorenz

21. Nguyen, D., Kumar, A., Lau, H.: Collective multiagent sequential decision making
under uncertainty. In: AAAI 2017. AAAI Press (2017)

22. Pijls, W., de Bruin, A.: Game tree algorithms and solution trees. Theoret. Comput.
Sci. 252(1), 197–215 (2001)

23. Plaat, A., Schaeffer, J., Pijls, W., de Bruin, A.: Best-first fixed-depth minimax
algorithms. Artif. Intell. 87(1–2), 255–293 (1996)

24. Reinefeld, A.: An improvement to the scout tree search algorithm. ICGA J. 6(4),
4–14 (1983)

25. Schaeffer, J.: The history heuristic and alpha-beta search enhancements in practice.
IEEE Trans. Pattern Anal. Mach. Intell. 11(11), 1203–1212 (1989)

26. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529, 484–503 (2016)

27. Subramani, K.: Analyzing selected quantified integer programs. In: Basin, D.,
Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 342–356.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25984-8 26

28. Winands, M., van den Herik, H., Uiterwijk, J., van der Werf, E.: Enhanced forward
pruning. Inf. Sci. 175(4), 315–329 (2005)

29. Zhang, L.: Searching for truth: techniques for satisfiability of Boolean formulas.
Ph.D. thesis, Princeton, USA (2003)

https://doi.org/10.1007/978-3-540-25984-8_26

	A Novel Application for Game Tree Search - Exploiting Pruning Mechanisms for Quantified Integer Programs
	1 Introduction
	2 Preliminaries: Basics of Quantified Integer Programming
	3 Pruning in QIP Search Trees
	3.1 Theoretical Analysis
	3.2 SCP Implementation Details
	3.3 Example

	4 Solver, Experiments and Results
	5 Conclusion
	References

