
Net2Net Extension for the AlphaGo Zero
Algorithm

Hsiao-Chung Hsieh, Ti-Rong Wu, Ting-Han Wei, and I-Chen Wu(B)

Department of Computer Science, National Chiao Tung University, 1001 University
Road, Hsinchu, Taiwan, ROC

{michael81420,kds285,ting,icwu}@aigames.nctu.edu.tw

Abstract. The number of residual network blocks in a computer Go
program following the AlphaGo Zero algorithm is one of the key factors
to the program’s playing strength. In this paper, we propose a method
to deepen the residual network without reducing performance. Next, as
self-play tends to be the most time-consuming part of AlphaGo Zero
training, we demonstrate how it is possible to continue training on this
deepened residual network using the self-play records generated by the
original network (for time saving). The deepening process is performed
by inserting new layers into the original network. We present in this
paper three insertion schemes based on the concept behind Net2Net.
Lastly, of the many different ways to sample the previously generated
self-play records, we propose two methods so that the deepened network
can continue the training process. In our experiment on the extension
from 20 residual blocks to 40 residual blocks for 9 × 9 Go, the results
show that the best performing extension scheme is able to obtain 61.69%
win rate against the unextended player (20 blocks) while greatly saving
the time for self-play.

Keywords: AlphaGo Zero · Deep learning · Net2Net

1 Introduction

Since AlphaGo Zero’s [7] recent achievement of reaching superhuman level in
Go, there have been numerous projects to reproduce or analyze its core algo-
rithm, such as Facebook AI Research’s ELF OpenGo [9], the crowd-sourced
Leela Zero [6], and CGI [10]. The AlphaGo Zero algorithm works by training
deep convolution neural networks (CNNs) using self-play game records, which

H.-C. Hsieh and T.-R. Wu–Equal contribution.
This research is partially supported by the Ministry of Science and Technology
(MOST) under Grant Number MOST 107-2634-F-009-011 and MOST 108-2634-F-009-
011 through Pervasive Artificial Intelligence Research (PAIR) Labs, Taiwan and also
partially supported by the Industrial Technology Research Institute (ITRI) of Taiwan
under Grant Number B5-10804-HQ-01. The computing resource is partially supported
by national center for high-performance computing (NCHC).

c© Springer Nature Switzerland AG 2020
T. Cazenave et al. (Eds.): ACG 2019, LNCS 12516, pp. 131–142, 2020.
https://doi.org/10.1007/978-3-030-65883-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65883-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-65883-0_11


132 H.-C. Hsieh et al.

requires a large amount of computing resources. During the prototyping process,
a common approach is to train a relatively small network, say, 20 residual blocks
[2], to ensure that the chosen hyper-parameters are viable, and that the overall
algorithm has been implemented correctly. Once this prototype converges, it is a
non-trivial problem to improve overall playing strength by extending the training
to use a deeper or wider network. On the one hand, while it is simple to retrain
completely using the same hyper-parameters, the process of generating the self-
play records can be very costly. On the other hand, if we reuse the previously
generated self-play records, it is not clear how to initialize the larger network’s
parameters, nor do we know how the self-play records should be sampled.

Techniques have been proposed to rapidly transfer the information stored in
one neural network (NN) (referred to as the parent network) into another NN
(referred to as the child network), so that the training process of the larger child
network can be accelerated. Net2Net [1] is one such technique that can accelerate
training by transferring an NN into another deeper or wider NN without reduc-
ing performance in image recognition. Net2Net expands the parent network by
adding identity layers to it; the output of these identity layers are essentially
the same as its inputs, so the child network behaves the same as the parent
network initially. While Net2Net has been shown to be useful for CNN architec-
tures, the same technique cannot be easily applied to computer Go, where the
building blocks tend to consist of residual networks (ResNets), as in AlphaGo
Zero’s case [7]. Namely, ResNets contain shortcut connections [2] to deal with
the degradation problem, which complicates the design of identity layers.

In this paper, we propose a new method to deepen a previously-trained parent
ResNet following the AlphaGo Zero algorithm. The expanded child network is
able to retain comparable performance, with further potential for training. We
then propose two methods to train and further improve this child network, where
the training data consists of the same self-play game records. This allows us to
skip the most time consuming step in the AlphaGo Zero algorithm. Given the
same collection of self-play records, by expanding the 20 block parent network
at 3/4 of the overall training progress into 40 blocks, we were able to reach the
same level of strength as a randomly initialized 40 block network in only 1/4 of
the total training time.

2 Background

In this section, we briefly review residual networks, the AlphaGo Zero algorithm,
and the key concepts of Net2Net network extension technique.

2.1 Residual Networks

The ResNet architecture was proposed by He et al. [2] to address the degrada-
tion problem in DNNs. In short, it is intuitive to assume that deeper networks
tend to be better universal function approximators, and so earlier on, researchers
have attempted to improve performance by simply increasing the depth of NNs.



Net2Net Extension for the AlphaGo Zero Algorithm 133

Without going into details, two problems can arise from having networks that
are simply too deep: the vanishing/exploding gradient problem (solved by tech-
niques such as normalization layers [4]) and the degradation problem. When the
degradation problem occurs, performance saturates and converges at a lower
accuracy despite having more layers in the NN. Degradation has a different root
cause than vanishing gradients, and is not caused by overfitting. By using short-
cut connections to allow features to skip over one or more layers, as shown in
Fig. 1, deeper ResNets are able to overcome the degradation problem and obtain
better accuracy than shallower networks.

Fig. 1. Illustration of a ResNet block.

2.2 AlphaGo Zero

The goal of AlphaGo Zero is to train a Go agent using no human knowledge
except the rules of the game. The algorithm is divided into 3 parts, self-play,
optimization, and evaluation. Since this paper focuses on network training, the
Monte Carlo tree search (MCTS) component of the AlphaGo Zero algorithm
will not be discussed.

First, a randomly initialized network is used by the self-play player initially,
denoted by p0. In each epoch of training, this player continuously plays Go
against itself to generate game records until a specified amount of games are col-
lected. We refer to the set of game records generated in one epoch as a collection,
denoted as ck, and the self-play player as pk, where k is the epoch number.

Second, during each epoch, a replay buffer is used to store the r most recent
collections of game records, from which the optimization process involves sam-
pling training data from this buffer to optimize the network. The replay buffer
does not contain the full repository of game records because earlier collections
(say, c1) tend to be of too low quality for network optimization. In other words,
the collections which are in the replay buffer need to match the current net-
work’s playing level. The hyperparameter r is referred to as the replay buffer
size. During the predefined interval (from a collection newly used to the next),
the network weights are saved as checkpoints, whose count is a hyperparameter.

Third, the network at each checkpoint is evaluated according to its win rate
against the current self-play player. If the network at some checkpoint wins more
than 55% of the games against the current self-play player, the former replaces



134 H.-C. Hsieh et al.

the latter as the new self-play player. By iterating these three steps, the strength
of the self-play player generally improves. During the process the quality of game
records will also increase.

2.3 Net2Net

Net2Net is a technique proposed to transfer a smaller network to a larger one [1].
With Net2Net, new layers are added to the original, smaller network (or parent
network), to form a new, larger network (or child network). More specifically,
a strategy called the function-preserving initialization is proposed, from which
the parameter θ′ of the child network g can be decided such that

∀x, f(x, θ) = g(x, θ′) (1)

where x is the input data, f is the parent network, and θ is parent network’s
parameters. The strategy can also be use in partial consecutive networks. As
long as strategy is satisfied, the output of the child network g will always be
the same as the output of the parent network f . Following this strategy, the
methods Net2WiderNet and Net2DeeperNet were both investigated, where the
former tries to widen f and the latter tries to deepen f . Since the scope of this
paper focuses on deepening ResNets for the AlphaGo Zero algorithm, we will
not discuss Net2WiderNet further.

Net2DeeperNet uses identity layers I to deepen the parent network. Suppose
the shape of the identity layer is (Cin, Cout,K,K) where Cin is the number of
input channels, Cout is the number of output channels, and K is the kernel size,
which is usually an odd number. Since the output must be equal to the input to
satisfy the function-preserving strategy, Cin = Cout. The kernel of the identity
layer at index (m,n) is then as follows,

I(m,n) =

{
identity kernel m = n

zero matrix otherwise
1 ≤ m,n ≤ Cin = Cout. (2)

The identity layer can be added anywhere in a network. However, we must take
into consideration the activation functions. The network usually consists of an
activation function φ after a convolution layer. To satisfy the function-preserving
strategy, the activation function composition must satisfy

∀v, φ(Iφ(v)) = φ(v) (3)

where v is a vector. As an example, if φ is the sigmoid function, the condition
would not be satisfied. On the other hand, a ReLU would be acceptable. As long
as the strategy is satisfied, we can deepen a network by adding identity layers
at any depth within the parent network.

3 Our Method

In this section, we describe our transfer method and how we train the child
network using the parent network’s collection of self-play records.



Net2Net Extension for the AlphaGo Zero Algorithm 135

3.1 Transfer Method

We divide the method into two parts. First, we describe the extension type, which
defines how we add new residual blocks. Second, we describe the connection type,
which refers to where the new residual blocks are placed.

Extension Type. We introduction three extension types based on the strategy
given in Eq. 1. For all three types, suppose that a block B is represented by a
function y = B(x, θ), where y is the output. To add a new block B′ after B, we
must satisfy the following:

∀x,B(x, θ) = B′(B(x, θ), θ′), (4)

where θ′ is the parameter of the new block B′. We list the three extension types
as follows.

1. Unit-extension: We add two identity layers in the new block. However, due
to the shortcut connection architecture of ResNets, we must add a 1/2 scale
operator at the end of the new block to ensure the sum remains at a similar
scale.

2. Zero-extension: We add two convolutions in the new block. Instead of identity
layers, we initialize the weights of the convolutions to be zeros, referred to
as zero layers. There is no need to add the scale operator. However, this
extension might be more difficult to converge during training.

3. Intra-extension: In Net2Net, several identity layers were added in every block.
Therefore, we increase two identity layers within the original blocks. That is,
with this extension, the number of blocks does not increase.

The activation function used in ResNets tend to be the ReLU function, so
by definition Eq. 3 is satisfied. Furthermore, a small noise signal is added so that
subsequent training of the child network will not remain at the local optimum of
the parent network, and therefore lead to faster convergence. With this addition
of noise, the performance of the child network is expected to be slightly worse
than the parent network, but we believe that the child network should reach
the parent network’s performance rapidly, and eventually exceed it. This also
ensures that the child network can learn to use the new blocks’ capacity.

Connection Type. For clarity of communication, we introduce an encoding
system that can represent where the new blocks are added into the parent net-
works in this paper. We use ‘1’ to represent ten new blocks, and ‘0’ to represent
ten original blocks. Ext-ITL represents the new blocks and original blocks inter-
leaved with each other. The encoding string from left to right refers to the child
network architecture from the first layer to the last layer. Note that since the
Intra-extension method does not create any new blocks, this encoding system
does not apply to the method. To illustrate the various connection types, we
extend the AlphaGo Zero training from 20 blocks to 40 blocks as an example,
shown in Fig. 3.



136 H.-C. Hsieh et al.

Fig. 2. Illustration of three extension types.

Fig. 3. Connection types. The white squares represent 10 original blocks, and the gray
squares represent 10 new blocks. The Ext-ITL connection type represents 20 original
blocks and 20 new blocks interleaved with each other.

3.2 Training Method

There are different approaches to sampling the game records when training the
child network. More specifically, game records collections from earlier epochs
tend to be less suitable for networks at later epochs, and vice-versa. Since the
child network is expected to retain a similar level of strength as the parent
network, once the parent network is transferred at some epoch, the child network
should continue training with the game records from the replay buffer at that
epoch. The problem is therefore at which epoch the transfer should take place.
We now propose two different methods that describe when the parent network
will be transferred, and how the child network should be subsequently trained.



Net2Net Extension for the AlphaGo Zero Algorithm 137

End-Training. For end-training, the transfer occurs for the last self-play player
pn, that is, the last epoch is n. The r most recent collections (i.e. cn−r+1 to cn) are
loaded into the replay buffer, and the replay buffer does not need to be changed
for the subsequent training of the child network. As shown in Algorithm 1, we
transfer the player pn to the child network. Then we load the last r collections
into the replay buffer. Next, we simply train the child network using the replay
buffer game records iteratively until a preset maximum number of iterations
is reached. One of the caveats of end-training is that if the preset maximum
number of iterations is small, the training may not be sufficient; on the other
hand, if it is large, the same game records in the replay buffer will be trained
many times, possibly leading to overfitting. Thus, another training method is
proposed below.

Algorithm 1. End-Training
load game records in collections cn−r+1 ∼ cn;
while maxIter is not reach do

select cn−r+1 ∼ cn games to train the child network;
end

Shift-Training. When compared to the previous method, the parent network
is transferred at epoch i. The game record collections matching the player pi’s
level is loaded into the replay buffer. We then iteratively train the child network
using the replay buffer, shifting the contents of the buffer to load more recent
collections accordingly. As shown in Algorithm 2, we transfer the parent network
for pi to its child network, where i is referred to as the transfer epoch. Then we
load at most r collections, specifically ci−r+1 to ci, into the replay buffer. Next,
we repeatedly load the next collection and train the child network using the
replay buffer until the last collection cn is loaded.

When training the child network, we increase the number of times t a sampled
game is used to update the network. That is, since the child network is deeper
than the parent network, our expectation is that more back-propagations need to
be performed. For this reason, in this paper, each sampled game in shift-training
is trained five times (i.e. t = 5), unless otherwise mentioned.



138 H.-C. Hsieh et al.

Algorithm 2. Shift-Training
if i − r + 1 > 0 then

load game records in collections ci−r+1 ∼ ci−1;
head = i − r + 1;

else
load game records in collections c1 ∼ ci−1;
head = 1;

end
end = i;
while end ≤ n do

load game records in collection cend;
if end - head = r then

delete the chead game records from replay buffer;
head = head + 1;

end
select chead ∼ cend games to train the child network t times;
end = end + 1;

end

4 Experiments

We demonstrate our method on 9×9 Go. We follow the AlphaGo Zero algorithm
to train a Go agent with 20 ResNet blocks (and with 256 channels), at the end
of which we obtain a player pn. Our goal is to transfer the network to a deeper
child network by adding 20 new blocks (consisting of 40 new convolution layers),
following up with child network training, and evaluating the resulting player
with pn.

4.1 Experimental Setup

In the following experiments, we evaluate the strength of the resulting child
network players by its win rate against the baseline pn, where both players use
2 s of simulation time with a single NVIDIA Tesla V100 GPU. Since the child
network is deeper than the parent network, the forward-pass of the child network
takes more time. Nonetheless, the total simulation time is equally set to 2 s for
both the child and the parent network. Each transfer method is expressed in
terms of its extension type and its connection type. Furthermore, to speed up the
overall experiments, for each match up, we continue playing against the baseline
until a confidence interval of 95 % is reached to evaluate the probability of having
a higher win rate against the baseline than 50%. We show the experiment setup
in Table 1.

4.2 Experiment for Shift-Training

We use two experiments to analyze the effect of different transfer methods and
transfer epoch i.



Net2Net Extension for the AlphaGo Zero Algorithm 139

Table 1. Experiment hyperparameters and details.

Setting

Replay buffer size r 20

Collection size 10000

Number of epochs n 243

Total batch size 2048

Learning rate 0.005

Weight decay 0.0001

SGD momentum 0.9

Local memory 754 GB

Thread count 36

Training hardware 8 GPUs (V100)

Comparison Between Transfer Methods. In this experiment, i = 3n/4.
In addition to the transfer methods, we also trained a control group where the
parent network is replaced by a randomly initialized 40 block network at i =
3n/4. This control group signifies what happens when no transfer occurs. Table 2
shows the highest win rate of various transfer methods. Unit-extension Ext-
0011 has the best performance. It seems likely that the new blocks’ capacity
enhances the network to recognize more high level features. On the contrary,
Zero-extension Ext-1100 performs the worse; it is possible that by introducing
new layers, the low level features learned by the parent network were not carried
over into the child network. With the exception of Zero-extension Ext-1100, all

Table 2. Result of various transfer methods.

Extension-type Connection-type Highest win rate of network (2 s)

Unit-extension Ext-0011 61.69% (±4.00%)

Ext-0110 55.45% (±3.88%)

Ext-1100 57.07% (±3.29%)

Ext-0101 47.85% (±3.78%)

Ext-ITL 53.76% (±3.83%)

Zero-extension Ext-0011 45.61% (±4.09%)

Ext-0110 52.47% (±3.79%)

Ext-1100 23.53% (±3.88%)

Ext-0101 56.70% (±3.90%)

Ext-ITL 48.15% (±3.77%)

Intra-extension X 52.16% (±3.78%)

Random initialization (control) 42.60% (±4.34%)



140 H.-C. Hsieh et al.

other transfer methods exceed the random initialized control group, showing
that the transfer methods can be used to preserve information learned by the
parent network, with potential for further growth.

Comparison Between Transfer Epochs. Next, we set the transfer method
to be Unit-extension Ext-0011. The transfer epoch i is set to {2n/3, 3n/4, 4n/5,
7n/8}, as shown in Table 3. The best performing transfer epoch is shown to be
3n/4. Nonetheless, the win rates for all settings are higher than 50%, indicating
that the resulting players can achieve at least pn level. Earlier transfer epochs
i imply more time spent training the more expensive child network, since the
child network with shift-training uses 5 updates per sampled game. Therefore,
there is a trade-off between transferring earlier (therefore spending more time
training) and performance.

Table 3. Result of different transfer epochs.

i Highest win rate of network (2 s)

2n/3 57.00% (±3.92%)

3n/4 61.69% (±4.00%)

4n/5 54.50% (±3.85%)

7n/8 51.92% (±3.77%)

Evaluation of Shift-Training. According to the previous experiments, Unit-
extension Ext-0011 with i = 3n/4 is used as the setting for this experiment. We
compare with the randomly initialized 40 block ResNet with i = 1 and t = 5,
which is the naive method of retraining the 40 block network from scratch,
with all other hyperparameters set equally. We refer to this group as the 40
block retrain set. Compared with the retrained model, our method requires only
about 1/4 of the training time, with its highest win rate to be as high as the
retrained model, as shown in Fig. 4.

Additionally, we also retrained a separate 40 block ResNet with the same set-
tings, except t = 1.3, so that the total number of training iterations are close to
the transferred method. This second model is referred to as the iteration normal-
ized retrain set. Our transfer method (Unit-extension Ext-0011) played against
the 40 block retrain, iteration normalized retrain, and other high level players,
where the result is shown in Table 4. The results show that Unit-extension Ext-
0011 can match the 40 block retrain in performance, while exceeding the iteration
normalized retrain model significantly. Furthermore, the win rates between Unit-
extension Ext-0011 and other high level players are all higher than 50%. This
shows that Unit-extension Ext-0011 does not exhibit signs of overfitting.



Net2Net Extension for the AlphaGo Zero Algorithm 141

0 100,000 200,000 300,000
0%

20%

40%

60%

80%

100%

iteration

w
in

ra
te

(2
se
cs
)

Unit-extension Ext-0011
40 Block Retrain

50%

Fig. 4. The win rate curve of our method and the 40 block retrained model.

Table 4. Comparison with other high level players.

Player Opponent Win rate (2 s)

Unit-extension Ext-0011 40 block retrain 50.32% (±3.91%)

Iteration normalized retrain 63.50% (±6.69%)

p232 89.00% (±4.35%)

p235 77.00% (±5.85%)

p236 72.50% (±6.20%)

p238 67.50% (±6.51%)

p243 61.69% (±4.00%)

Table 5. Results for end-training.

Extension-type Connection-type Highest win rate of network (2 s)

Unit-extension Ext-0011 39.20% (±4.28%)

Intra-extension × 64.76% (±4.03%)

4.3 Experiment for End-Training

In this experiment, we analyze two transfer methods of end-training. With end-
training, the transfer epoch i can be thought of as fixed at n. As shown in Table 5,
the results for Intra-extension seem to be very strong. This could be because the
training data (from the replay buffer) is fixed, so it is relatively easier to fit.
Playing between Intra-extension with end-training and the 40 block retrain with



142 H.-C. Hsieh et al.

2 s simulation time yields a win rate of 42.85%, so it is possible end-training can
lead to overfitting.

5 Conclusion

We present a study on extending the ResNet of an agent trained using the
AlphaGo Zero algorithm. We propose a scheme which transfers a parent network
to a deeper child network without losing the learned knowledge; additionally,
we propose two methods of sampling game records generated by the parent
network for training the child network. Overall, the child network can retain the
parent network’s performance, or even surpass it with further training. From
our experiments, we analyze a collection of hyperparameters to conclude that
the Unit-extension Ext-0011 transfer method performs the best, with a win
rate of 61.69% against the strongest player from the parent network. Finally,
We demonstrate our method only requires about 1/4 of the training time as
completely retraining a network of the same size, while simultaneously achieving
the same level of performance.

Further research is left open to investigate more general extension-types in
the future which can then be used for various network architectures, such as
VGGNet [8], AlexNet [5], and DenseNet [3].

References

1. Chen, T., Goodfellow, I., Shlens, J.: Net2Net: accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641 (2015)

2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

3. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4700–4708 (2017)

4. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

6. Pascutto, G.C.: Leela-Zero Github repository (2018). https://github.com/gcp/
leela-zero

7. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature
550(7676), 354 (2017)

8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

9. Tian, Y., et al.: ELF OpenGo: an analysis and open reimplementation of Alp-
haZero. arXiv preprint arXiv:1902.04522 (2019)

10. Wu, I.C., Wu, T.R., Liu, A.J., Guei, H., Wei, T.: On strength adjustment for
MCTS-based programs. In: Thirty-Third AAAI Conference on Artificial Intelli-
gence (2019)

http://arxiv.org/abs/1511.05641
http://arxiv.org/abs/1502.03167
https://github.com/gcp/leela-zero
https://github.com/gcp/leela-zero
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1902.04522

	Net2Net Extension for the AlphaGo Zero Algorithm
	1 Introduction
	2 Background
	2.1 Residual Networks
	2.2 AlphaGo Zero
	2.3 Net2Net

	3 Our Method
	3.1 Transfer Method
	3.2 Training Method

	4 Experiments
	4.1 Experimental Setup
	4.2 Experiment for Shift-Training
	4.3 Experiment for End-Training

	5 Conclusion
	References




