
Tristan Cazenave
Jaap van den Herik
Abdallah Saffidine
I-Chen Wu (Eds.)

LN
CS

 1
25

16

16th International Conference, ACG 2019
Macao, China, August 11–13, 2019
Revised Selected Papers

Advances in
Computer Games

Lecture Notes in Computer Science 12516

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Tristan Cazenave • Jaap van den Herik •

Abdallah Saffidine • I-Chen Wu (Eds.)

Advances in
Computer Games
16th International Conference, ACG 2019
Macao, China, August 11–13, 2019
Revised Selected Papers

123

Editors
Tristan Cazenave
Université Paris-Dauphine
Paris, France

Jaap van den Herik
Leiden University
The Hague, The Netherlands

Abdallah Saffidine
The University of New South Wales
Sydney, NSW, Australia

I-Chen Wu
National Chiao-Tung University
Hsin-Chu, Taiwan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-65882-3 ISBN 978-3-030-65883-0 (eBook)
https://doi.org/10.1007/978-3-030-65883-0

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4669-9374
https://orcid.org/0000-0001-9751-761X
https://orcid.org/0000-0001-9805-8291
https://orcid.org/0000-0003-2535-0587
https://doi.org/10.1007/978-3-030-65883-0

Preface

This book contains the papers of the 16th Advances in Computer Games Conference
(ACG 2019) held in Macau, China. The conference took place during August 11–13,
2019, in conjunction with the IJCAI conference, the Computer Olympiad, and the
World Computer-Chess Championship.

The ACG conference series is a major international forum for researchers and
developers interested in all aspects of artificial intelligence and computer game playing.
Earlier conferences took place in London, UK (1975), Edinburgh, UK (1978), London,
UK (1981, 1984), Noordwijkerhout, The Netherlands (1987), London, UK (1990),
Maastricht, The Netherlands (1993, 1996), Paderborn, Germany (1999), Graz, Austria
(2003), Taipei, Taiwan (2005), Pamplona, Spain (2009), Tilburg, The Netherlands
(2011), and Leiden, The Netherlands (2015, 2017).

In this conference 19 papers were submitted. Each paper was sent to three reviewers.
The Program Committee accepted 12 papers for presentation at the conference and
publication in these proceedings. As per usual, we informed the authors that they
submitted their contribution to a post-conference editing process. The two-step process
is meant (a) to give authors the opportunity to include the results of the fruitful
discussion after the lecture in their paper, and (b) to maintain the high-quality threshold
of the ACG series.

Moreover three invited talks were given by Jonathan Schaeffer, Nathan Sturtevant
and Cameron Browne, Eric Piette, and Matthew Stephenson.

We now give a brief introduction to the papers included in this book regrouped by
topics.

Cooperation

The first paper is “Advice are Useful for Game AI: Experiments with Alpha-Beta
Search Players in Shogi” by Shogo Takeuchi. It presents methods to strengthen a game
AI using advice from other game AIs during game play. Advice are moves selected by
an adviser and propose a mechanism that makes a player search again when the
player’s move is different from advice. Experiment are made for the game of Shogi.

The second paper by Eisuke Sato and Hirotaka Osawa is “Reducing Partner’s
Cognitive Load by Estimating the Level of Understanding in the Cooperative Game
Hanabi.” Hanabi is a cooperative game for ordering cards through information
exchange. Cooperation is achieved in terms of not only increased scores, but also
reduced cognitive load for the players. The thinking time is used as an indicator of
cognitive load, and the results showed that it is inversely proportional to the confidence
of choice. When the agent uses the thinking time of the player the mean thinking time
of the human player is shortened. It suggests that it could reduce the cognitive load
of the players without influencing performance.

The third paper by Gregory Schmidt and Philip Shoptaugh is “Making a Better
Game: The History of Cluster.” The authors present a case study of the initial

inspiration and design process that led to successfully optimized versions of the game
Cluster.

Single Player Games

The fourth paper by Taishi Oikawa, Chu-Hsuan Hsueh, and Kokolo Ikeda is
“Enhancing Human Players’ T-Spin Technique in Tetris with Procedural Problem
Generation.” They are interested in programs that can entertain or teach human players.
They automatically generate puzzles so that human players improve at playing the
game of Tetris. A technique hard to learn for beginners is T-spin. Automatically
generated two-step T-spin problems are given to human players to solve and they
enable to improve their skills at Tetris.

The fifth paper by Kiminori Matsuzaki is “A Further Investigation of Neural Net-
work Players for Game 2048.” Game 2048 is a stochastic single-player game. Strong
2048 computer players use N-tuple networks trained by reinforcement learning. The
paper investigates neural-network players for Game 2048 and improve their layers and
their inputs and outputs. The best neural-network player achieved an average score of
215 803 without search techniques, which is comparable to N-tuple-network players.

Mathematical Approaches

The sixth paper by Michael Hartisch and Ulf Lorenz is “A Novel Application for Game
Tree Search - Exploiting Pruning Mechanisms for Quantified Integer Programs.” They
investigate pruning in search trees of so-called quantified integer (linear) programs
(QIPs). QIPs consist of a set of linear inequalities and a minimax objective function,
where some variables are existentially and others are universally quantified. They
develop and theoretically substantiate tree pruning techniques based upon algebraic
properties. The implementation of their findings can massively speed up the search
process.

The seventh paper by Nicolas Fabiano and Ryan Hayward is “New Hex Patterns for
Fill and Prune.” A fill pattern in the game of Hex is a subposition with one or more
empty cells that can be filled without changing the position’s minimax value. Some
cells can be pruned and ignored when searching for a winning move. They introduce
two new kinds of Hex fill – mutual and near-dead – and some resulting fill patterns.
They show four new permanently-inferior fill patterns and present three new prune
results, based on strong-reversing, reversing, and game-history respectively.

The eighth paper by Jos Uiterwijk is “Solving Cram Using Combinatorial Game
Theory.” He investigates the board game Cram, which is an impartial combinatorial
game, using an ab solver. He uses knowledge obtained from Combinatorial Game
Theory (CGT) for his solver. Using endgame databases pre-filled with CGT values
(nimbers) for all positions fitting on boards with at most 30 squares and also using two
efficient move-ordering heuristics gives a large improvement of solving power. He also
defines five more heuristics based on CGT that further reduce the sizes of the solution
trees considerably. He was able to solve all odd by odd Cram boards for which results
were available from the literature (even by even and odd by even boards are trivially

vi Preface

solved). He proves new results for the 3 � 21 board, a first-player win, and the 5 � 11
board, a second-player win.

Nonogram: General and Specific Approaches

The ninth paper by Aline Hufschmitt, Jean-Noel Vittaut, and Nicolas Jouandeau is
“Exploiting Game Decompositions in Monte Carlo Tree Search.” They propose the
Multiple Tree MCTS (MT-MCTS) approach to simultaneously build multiple MCTS
trees corresponding to different sub-games. They apply it to single player games from
General Game Playing. Complex compound games are solved from 2 times faster
(Incredible) up to 25 times faster (Nonogram).

The tenth paper by Yan-Rong Guo, Wei-Chiao Huang, Jia-Jun Yeh, Hsi-Ya Chang,
Lung-Pin Chen, and Kuo-Chan, Huang is “On Efficiency of Fully Probing Mechanisms
in Nonogram Solving Algorithm.” Fully probing plays is important for Nonogram. The
authors address several critical factors influencing fully probing efficiency: re-probing
policy, probing sequence, and computational overhead. Taking into account these
factors improves the speed of solving Nonogram puzzles significantly.

Deep Learning

The eleventh paper by Hsiao-Chung Hsieh, Ti-Rong Wu, Ting Han Wei, and I-Chen
Wu is “Net2Net Extension for the AlphaGo Zero Algorithm.” The number of residual
blocks of a neural network that learns to play the game of Go following the AlphaGo
Zero approach is important for the strength of the program but also takes more time for
self-play. The authors propose a method to deepen the residual network without
reducing performance. The deepening process is performed by inserting new layers into
the original network. They present three insertion schemes. For 9 � 9 Go, they obtain a
61.69% win rate against the unextended player while greatly saving the time for
self-play.

The twelfth paper by Tomihiro Kimura and Kokolo Ikeda is “Designing Policy
Network with Deep Learning in Turn-Based Strategy Games.” They apply deep
learning to turn-based strategy games. A recurrent policy network is developed learning
from game records. The game data are generated using Monte Carlo Tree Search. The
resulting policy network outperforms MCTS.

Invited Papers

The first invited paper by Nathan Sturtevant is “Steps towards Strongly Solving 7x7
Chinese Checkers.” Chinese Checkers is a game for 2–6 players that has been used as a
testbed for game AI in the past. He provides an overview of what is required to strongly
solve versions of the game, including a complete set of rules needed to solve the game.
We provide results on smaller boards with result showing that these games are all a
first-player win.

The second invited paper by Cameron Browne, Matthew Stephenson, Éric Piette,
and Dennis J.N.J. Soemers is “The Ludii General Game System: Interactive Demon-
stration.” Ludii is a new general game system, currently under development, which
aims to support a wider range of games than existing systems and approaches. It is

Preface vii

being developed primarily for the task of game design, but offers a number of other
potential benefits for game and AI researchers, professionals, and hobbyists. The paper
describes the approach behind Ludii, how it works, how it is used, and what it can
potentially do.

Acknowledgment

This book would not have been produced without the help of many persons. In par-
ticular, we would like to mention the authors and reviewers for their help. Moreover,
the organizers of IJCAI, the Computer Olympiad, and the World Computer-Chess
Championship have contributed substantially by bringing the researchers together.

September 2020 Tristan Cazenave
Jaap van den Herik
Abdallah Saffidine

I-Chen Wu

viii Preface

Organization

Executive Committee

Tristan Cazenave
Jaap van den Herik
Abdallah Saffidine
I-Chen Wu

Organizing Committee

Grace Krabbenbos
Johanna Hellemons
Hiroyuki Iida
Jan Krabbenbos
Tristan Cazenave
Jaap van den Herik
Abdallah Saffidine
I-Chen Wu
David Levy

Program Committee

Jean-Marc Alliot Institut de Recherche en Informatique de Toulouse,
France

Hendrik Baier Digital Creativity Labs, University of York, UK
François Bonnet Tokyo Institute of Technology, Japan
Bruno Bouzy Paris Descartes University, France
Cameron Browne Queensland University of Technology, Australia
Marc Cavazza University of Greenwich, UK
Tristan Cazenave LAMSADE, Université Paris Dauphine, PSL, CNRS,

France
Lung-Pin Chen Tunghai University, Taiwan
Tzung-Shi Chen National University of Tainan, Taiwan
Albert Chen Yonsei University, South Korea
Siang Yew University of Nottingham, Malaysia Campus, Malaysia
Hsin-Hung Chou Chang Jung Christian University, Taiwan
Vincent Corruble LIP6, Sorbonne University Pierre and Marie Curie

Campus, France
Johannes Fürnkranz TU Darmstadt, Germany
Chao Gao University of Alberta, Canada
Reijer Grimbergen Tokyo University of Technology, Japan

Michael Hartisch University of Siegen, Germany
Ryan Hayward University of Alberta, Canada
Jaap van den Herik Leiden University, The Netherlands
Rania Hodhod Columbus State University, USA
Christoffer Holmgård Northeastern University, USA
Tsan-Sheng Hsu Academia Sinica, Taiwan
Chun-Chin Hsu Chang Jung Christian University, Taiwan
Chu-Hsuan Hsueh Japan Advanced Institute of Science and Technology,

Japan
Kuo-Chan Huang National Taichung University of Education, Taiwan
Hiroyuki Iida Japan Advanced Institute of Science and Technology,

Japan
Takeshi Ito The University of Electro-Communications, Japan
Eric Jacopin CREC Saint-Cyr, France
Nicolas Jouandeau University Paris 8, France
Tomoyuki Kaneko The University of Tokyo, Japan
Hung-Yu Kao National Cheng Kung University, Taiwan
Akihiro Kishimoto IBM Research, Ireland
Walter Kosters LIACS, Leiden University, The Netherlands
Sylvain Lagrue Universitè de Technologie de Compiégne (UTC),

France
Xuejun Li Anhui University, China
Shun-Shii Lin National Taiwan Normal University, Taiwan
Jialin Liu Southern University of Science and Technology, China
Richard Lorentz California State University, USA
Kiminori Matsuzaki Kochi University of Technology, Japan
Helmut Mayer University of Salzburg, Austria
Makoto Miwa Toyota Technological Institute, Japan
Martin Mueller University of Alberta, Canada
Todd Neller Gettysburg College, USA
Mark J. Nelson American University, USA
Diego Perez Liebana Queen Mary University of London, UK
Mike Preuss Leiden University, The Netherlands
Aleksander Sadikov University of Ljubljana, Slovenia
Abdallah Saffidine University of New South Wales, Australia
Jahn-Takeshi Saito Lesson Nine GmbH, Germany
Spyridon Samothrakis University of Essex, UK
Maarten Schadd TNO, The Netherlands
Jonathan Schaeffer University of Alberta, Canada
Moshe Sipper Ben-Gurion University of the Negev, Israel
Nathan Sturtevant University of Alberta, Canada
Ruck Thawonmas Ritsumeikan University, Japan
José Valente de Oliveira Universidade do Algarve, Portugal
Jonathan Vis Leiden University Medical Center, The Netherlands
Tinghan Wei National Chiao Tung University, Taiwan
Mark H. M. Winands Maastricht University, The Netherlands

x Organization

Thomas Wolf Brock University, Canada
I-Chen Wu National Chiao Tung University, Taiwan
Shi-Jim Yen National Dong Hwa University, Taiwan
Kazuki Yoshizoe RIKEN Center for Advanced Intelligence Project,

Japan

Organization xi

Contents

Advice is Useful for Game AI: Experiments with Alpha-Beta Search
Players in Shogi . 1

Shogo Takeuchi

Reducing Partner’s Cognitive Load by Estimating the Level
of Understanding in the Cooperative Game Hanabi 11

Eisuke Sato and Hirotaka Osawa

Making a Better Game: The History of Cluster . 24
Gregory Schmidt and Philip Shoptaugh

Improving Human Players’ T-Spin Skills in Tetris with Procedural
Problem Generation. 41

Taishi Oikawa, Chu-Hsuan Hsueh, and Kokolo Ikeda

A Further Investigation of Neural Network Players for Game 2048 53
Kiminori Matsuzaki

A Novel Application for Game Tree Search - Exploiting Pruning
Mechanisms for Quantified Integer Programs . 66

Michael Hartisch and Ulf Lorenz

New Hex Patterns for Fill and Prune . 79
Nicolas Fabiano and Ryan Hayward

Solving Cram Using Combinatorial Game Theory . 91
Jos W. H. M. Uiterwijk

Exploiting Game Decompositions in Monte Carlo Tree Search 106
Aline Hufschmitt, Jean-Noël Vittaut, and Nicolas Jouandeau

On Efficiency of Fully Probing Mechanisms in Nonogram
Solving Algorithm. 119

Yan-Rong Guo, Wei-Chiao Huang, Jia-Jun Yeh, Hsi-Ya Chang,
Lung-Pin Chen, and Kuo-Chan Huang

Net2Net Extension for the AlphaGo Zero Algorithm 131
Hsiao-Chung Hsieh, Ti-Rong Wu, Ting-Han Wei, and I-Chen Wu

Designing Policy Network with Deep Learning in Turn-Based
Strategy Games. 143

Tomihiro Kimura and Kokolo Ikeda

On Strongly Solving Chinese Checkers . 155
Nathan R. Sturtevant

A Practical Introduction to the Ludii General Game System 167
Cameron Browne, Matthew Stephenson, Éric Piette,
and Dennis J. N. J. Soemers

Author Index . 181

xiv Contents

Advice is Useful for Game AI:
Experiments with Alpha-Beta Search

Players in Shogi

Shogo Takeuchi(B)

Kochi University of Technology, Kami, Japan
takeuchi.shogo@kochi-tech.ac.jp

Abstract. In this paper, we present methods to strengthen a game AI
using advice from other game AIs during game play. People can improve
their strength with advice, such as finding better moves or avoiding mis-
takes. Therefore, to improve the performance of game AIs, we focused
on advice. The issues to be considered are the definition of advice and
mechanism with advice for move selection. In this paper, we propose that
“advice” are moves selected by an adviser and propose a mechanism that
makes a player search again when the player’s move is different from
advice. We performed tournaments among the proposed systems and
other methods against a single engine to compare the strength in shogi.
We showed the effectiveness of the proposed method from the experimen-
tal results and demonstrated that game AIs can improve their strength
with advice. In addition, we found that the advice from a weaker game
AI is still useful for game AI.

Keywords: Search · Advice · Game

1 Introduction

AlphaGo (Zero) has attracted much attention in the game of go because of its
effective learning algorithm and strong results in the man-machine matches [11].
Games have become a testbed of artificial intelligence, particularly, of intelligent
engines that can win against human champions. Strong engines require a search
method and a positional evaluation scheme. Alpha–beta search assisted by an
evaluation function [9] has been the most successful approach in chess and its
Japanese variant, shogi. Recently, a new approach by AlphaGo (Zero), Monte-
Carlo Tree Search with a deep neural network, has been proven successful not
only in the game of go but also in chess and shogi [10].

Advice is forbidden in game tournaments among human players. Humans
can improve their strength by finding better moves or avoiding mistakes with
advice. This applies to advice from human to human; what about other cases?
We are interested in enhancing the strength of game AIs. Thus, we focus on

This work was supported by JSPS Grant-in-Aid for Young Scientists (A) No. 17K12807.

c© Springer Nature Switzerland AG 2020
T. Cazenave et al. (Eds.): ACG 2019, LNCS 12516, pp. 1–10, 2020.
https://doi.org/10.1007/978-3-030-65883-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65883-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-65883-0_1

2 S. Takeuchi

the advice from game AIs to game AIs. The research problem discussed in this
paper is whether game AIs can improve their strength with advice. A definition
of advice and its usage is required.

Advice from game AIs to human has been studied in advanced chess [3] and
3-Hirn system [2]. A human player uses a game AI to enhance his/her strength
by avoiding making a mistake or assuring his/her thought in advanced chess.
Game AIs suggest candidate moves to the human player and the human player
selects one from them in the 3-Hirn system. Both results showed that human
players improve their strength using game AIs. The candidate moves can be seen
as advice from game AIs in 3-Hirn systems.

In a majority voting system, we use multiple game engines, and each engine
votes to its search result (move); then, we select the best move by the number
of votes [8]. If we view search results as advice, the system can be viewed as
summarizing engines’ advice.

The paper is structured as follows. In section two, we introduce related work
about advice in games. We propose our method to improve the strength of
game AI with advice from game AIs in section three. Section four presents the
experimental evaluation of our methods. Finally, section five gives an overall
view of this paper, leading to conclusions and future work.

2 Related Work

There are three types of studies on advice. One is to improve the learning process
with advice. The other one is advice from game AIs to a human player. In
addition, majority voting can be viewed as a method to utilize advice from and
to game AIs.

Taylor et al. proposed a teacher-student framework for reinforcement learning
and investigated the effect of the amount and moments of advice [15]. Their goal
to make agents stronger by learning is different from ours. They improve the
learning method with advice; however, we try to improve the AIs’ decision with
advice during gameplay. A teacher provides students with advice, that is, action
in this framework.

2.1 Advice from Game AIs to Human

There are studies about advice from game AIs to humans, such as advanced
chess [3,6] and 3-Hirn, Double-Fritz, and List-3-Hirn [1,2].

In advanced chess, a human player uses a game AI to enhance his/her
strength by avoiding a mistake or assuring his/her thought.

In 3-Hirn, Double-Fritz, and List-3-Hirn, game AIs suggest candidate moves
to a human player, and then a human player selects the best move from candi-
dates. Differences between the three are as follows: Two different engines suggest
their best moves to a human player in 3-Hirn, one engine suggests top-k moves
to a human player in Double-Fritz, and two different engines suggest their top-k

Advice is Useful for Game AI 3

moves to a human player in List-3-Hirn. Even if the human player thinks of other
moves as being better, he cannot select that move in this method.

It is not clear how human players utilize game AIs to improve their strength
in advanced chess. Meanwhile, it is relatively clear in 3-Hirn and its variants.
A human player receives candidate moves from game AIs and then selects one
move from those. The candidate moves can be seen as advice in those methods.

2.2 Majority Voting

Obata et al. proposed a majority voting system in shogi [8]. In a majority voting
system, engines do not share the information during the search, but the system
summarizes their search results and selects the best after all engines have fin-
ished their search. Their experiment showed that the majority voting system is
stronger than the single engines. If we view search results as advice, the system
can be viewed as summarizing engines’ advice.

Another voting approach in games is optimistic voting, which selects the
move with the highest evaluation value [12]. Optimistic voting [12] is a simple
idea that the move with the highest score is selected. This study was conducted
for shogi with the homogeneous system, and alpha–beta search players.

Marcolino et al. showed that the diversity of the voting system plays an
important role. They compared the homogeneous system with the heteroge-
neous system [7] and other parallelization methods. From their experiments, the
heterogeneous system is stronger than the homogeneous system.

However, a majority voting with a heterogeneous system has a problem with
weaker engines [7]. For example, if the weaker engines are the majority, then the
votes from the stronger engines are ignored, and the system becomes weaker.
Takeuchi proposed a weighted voting method in a heterogeneous system [13] to
solve the problem.

3 Proposed Method

The research problem in this paper is whether game AIs can improve their
strength with advice. Before beginning, a definition of advice and their usage
are required.

First, we define what “advice” in the present paper is. Advice is a move
(or an action) in the related work such as teacher-student framework [15] and
3-Hirn system [2]. Thus, we define “advice” as a candidate move in the context
of present paper.

All engines, including a player, search and obtain their search results (best
moves). If all moves are the same, that move is selected; otherwise, a player
searches again and then selects one.

1. A player searches a position p and obtains the best move m (and its score v).
2. Each adviser e searches the same position p and obtains the best move me,a,

“advice.”

4 S. Takeuchi

(a) If all advice me,a are the same with the player’s best move m, then, player
selects the move m.

(b) Otherwise, the player searches the position p again with the same search
time with the previous search and selects the best move.

Searching the same position can be seen as a search extension because game AIs
use hash tables to store the previous search results.

There are options for the moves to search. Searching advice ma only, advice
ma and its best move m, and all legal moves. If the search time is the same for
each option, the shallower search goes deeper than the wider one. If the option
selected is searching advice only, we need to compare the obtained score with
the previous search result and select the move with a higher score.

3.1 Options of Searching Moves

We have three options below:

Advice a player searches advice only,
Both a player searches advice and its best move,
All a player searches all moves.

Now, we discuss when advice is effective and which option to choose. We
consider two cases as follows:

case A ma is better move (the adviser notices that), however the player scores
the move lower.

case B m is worse move (the adviser selects the other), however the player
scores the move the highest.

To select a better move, the player should notice that the ma is better in case
B; thus, the move ma should be searched deeper. However, in case A, the player
must notice that the selected move m is worse; therefore, the move m must be
searched deeper.

Thus, option “Advice” improves case A and cannot improve case B, whereas
other options can improve both cases. However, their search depth would be
shallower than that of option “Advice”. All options have a tradeoff between
search width (covering both cases is better) and search depth (searching deeper
is better). The frequency with which case A occurs will decrease if the adviser
is weaker and increase if the adviser is stronger. Thus, the better options seem
to depend on the strength of the adviser.

4 Experiments

We performed tournament experiments in the game of shogi to compare the
performance of the proposed methods and optimistic voting. Shogi [5], which is
similar to chess, is a popular game in Japan. The strongest shogi programs have
recently defeated top human players [14] thanks to the recent improvements

Advice is Useful for Game AI 5

made in machine learning techniques in tuning millions of parameters for the
evaluation functions [4]. Some are trying to reproduce the results of AlphaGo
(Zero); the current top program uses a combination of alpha–beta search and
linear evaluation functions.

We used following six shogi programs for experiments: Apery1, YaneuraOu2,
Gikou3, nozomi4, NNUE5, and gpsfish6. All programs use alpha–beta search
with evaluation functions. We performed experiments on a workstation with
Intel Xeon CPU E5-2640 2.40 GHz 10core 2CPU and 96 GB memories.

First, we surveyed the strength of those programs, and then, we compared
the strength of the proposed method and other systems.

4.1 Tournament Between Single Engines

We performed tournaments between single programs to examine the strength of
each single program. Programs have five seconds to search per position. Tourna-
ment results between single programs are summarized in Table 1. Winning ratios
are calculated from one thousand games, and a draw is counted as 0.5 wins.

From this result, we can see that NNUE is the strongest engine and Apery is
the second. All engines are sorted by their strength as NNUE > Apery > Gikou
∼ YaneuraOu > nozomi � gpsfish � random. We use Apery as a reference
program. Thus, we measure the strength of a system by comparing the winning
percentages against Apery. Additionally, we use YaneuraOu as a player in our
experiments and YaneuraOu is abbreviated as Yane.

Table 1. Tournament results between single engines against Apery

Engine time Winning ratio Win/Draw/Loss

Yane 5 s 0.3005 290 21 689

Yane 7 s 0.373 363 20 617

Yane 10 s 0.4445 437 15 548

Gikou 5 s 0.2925 288 9 703

nozomi 5 s 0.214 203 22 775

gpsfish 5 s 0.01 6 8 986

NNUE 5 s 0.613 596 34 370

1 https://github.com/HiraokaTakuya/apery. Accessed May 2019.
2 https://github.com/yaneurao/YaneuraOu. Accessed May 2019.
3 https://github.com/gikou-official/Gikou. Accessed May 2019.
4 https://github.com/saihyou/nozomi. Accessed May 2019.
5 https://github.com/ynasu87/nnue. Accessed May 2019.
6 http://gps.tanaka.ecc.u-tokyo.ac.jp/gpsshogi/index.php?GPSFish. Accessed May

2019.

https://github.com/HiraokaTakuya/apery
https://github.com/yaneurao/YaneuraOu
https://github.com/gikou-official/Gikou
https://github.com/saihyou/nozomi
https://github.com/ynasu87/nnue
http://gps.tanaka.ecc.u-tokyo.ac.jp/gpsshogi/index.php?GPSFish

6 S. Takeuchi

4.2 Tournaments Among Proposed Methods

We performed tournaments among the proposed systems and optimistic voting
system against Apery with various advisers, to survey the effect of the strength
of the adviser. The results are summarized in Table 2. In the right three columns
in the table, each *, **, *** represents p < 0.05, 0.01, 0.005, respectively, using
chi-squared test with Yates’s continuity correction. A hypothesis is that a system
is stronger than a single YaneuraOu with 5, 7, and 10 s.

It is clear that the system with the option “Advice” (extended search is
limited to the advice) is stronger than the single engines except for random
advice. The lowest winning ratio of the systems is 0.376 (adviser : gpsfish),
while the winning percentage of the single engines is 0.3005.

Table 2. Tournament results of the proposed methods against Apery

Adviser Option (or Method) Winning ratio Win/Draw/Loss > YaneuraOu

5 s 7 s 10 s

Gikou Advice 0.483 474 18 508 *** ***

Both 0.462 449 26 525 *** ***

All 0.413 400 26 574 ***

Opt 0.383 381 4 615 ***

nozomi Advice 0.4215 411 21 568 *** *

Both 0.4765 465 23 512 *** ***

All 0.412 404 16 580 ***

Opt 0.3775 370 15 615 ***

gpsfish Advice 0.376 368 16 616 ***

Both 0.4145 403 23 574 ***

All 0.394 386 16 598 ***

Opt 0.1115 110 3 887

Apery Advice 0.4885 477 23 500 *** ***

Both 0.5015 488 27 485 *** *** *

All 0.4375 422 31 547 *** ***

Opt 0.427 421 12 567 *** *

NNUE Advice 0.523 510 26 464 *** *** ***

Both 0.481 467 28 505 *** ***

All 0.446 434 24 542 *** ***

Opt 0.4945 490 9 501 *** *** *

Random Advice 0.3065 300 13 687

Both 0.383 375 16 609 ***

All 0.4315 420 23 557 *** ***

Advice is Useful for Game AI 7

Option “Advice” is the best for the case if the adviser is stronger or equal
to (NNUE, Apery). Option “Both” is the best for the case when the adviser is
weaker (nozomi, gpsfish).

If the advice is random, extension always occurs (almost 100%); thus, the
consumed time is ten seconds. We can see the performance of random advice
with option “All,” which is the almost same with that of the single YaneuraOu
with ten seconds.

We would like to know the ratios of selection of advice, we summarize the
results in Table 3. R1 is a ratio that advice is selected when advice differs from
the player’s best, R2 is a ratio that advice is selected during all game, and R3
is a ratio that advice differs from the player’s best.

Ratios are almost the same between option “Advice” and option “Both”.
R3 is around 40%, except for gpsfish (50 %), thus, comparison of winning ratio
to YaneuraOu with seven seconds is reasonable. The accepted ratio of advice
is almost same in Gikou, nozomi, and Apery. R1 of NNUE is higher than the
others.

Table 3. Ratios selecting advice during the games

Adviser Advice Both All

R1 R2 R3 R1 R2 R3 R1 R2 R3

Gikou 0.226 0.0942 0.416 0.230 0.0955 0.415 0.140 0.0600 0.427

nozomi 0.214 0.0844 0.394 0.246 0.0993 0.403 0.147 0.0596 0.405

gpsfish 0.157 0.0768 0.490 0.169 0.0859 0.509 0.104 0.0516 0.498

Apery 0.221 0.0888 0.402 0.238 0.0962 0.405 0.164 0.0654 0.400

NNUE 0.265 0.100 0.378 0.261 0.105 0.403 0.152 0.0627 0.412

Random 0.0124 0.0118 0.955 0.0113 0.0109 0.960 0.00392 0.00376 0.958

4.3 Tournament Using Two Advisers

We performed tournament experiments with two advisers. We had three game
engines in this case; thus, we could apply majority voting. The comparison results
are summarized in Table 4.

Table 4. Tournament results against Apery: two advisers

Adviser Advice Both Majority

Gikou Nozomi 0.521 0.496 0.3865

Nozomi Gpsfish 0.458 0.4855 0.2815

Gikou NNUE 0.554 0.532 0.578

NNUE Gpsfish 0.498 0.5065 0.5255

8 S. Takeuchi

It can be seen that the wining ratio of the proposed methods increases from
the result with a single adviser except for option “Advice” with NNUE and
gpsfish.

4.4 Time Extension

Until now, we have performed experiments extending another five seconds (the
same with the normal search). We are curious about how performance changes as
the extended time differs. Thus, we compared the performance with extending for
more or less seconds in this subsection. The results are summarized in Table 5;
we used Gikou as adviser and set extending time as half and double in this
experiment.

Table 5. Time Extension: Tournament results with adviser Gikou against Apery

Extension Advice Both All

Half 0.4645 0.407 0.3865

Basic 0.483 0.462 0.413

Double 0.494 0.512 0.496

Option “Advice” does not seem to be sensitive to the extension of time
as compared to other options. The proposed methods extending ten seconds
(Double) are significantly stronger than the single AI with ten seconds, even
though the average searching time of the proposed methods is less than ten
seconds.

4.5 Discussion

We showed that the proposed method is significantly stronger than the single AIs
using the same time in the experiments. Thus, we have shown that the advice
can improve the game AIs’ strength.

We discuss about the relation between the performance and the adviser’s
strength. An option “Advice” was better when the advisers were stronger or
equal to the player in our experimental results. This indicates that case A is
more important than case B in Subsect. 3.1. By contrast, when the advisers were
weaker than the player, option “Both” was better. It implies that the importance
of case A (advice is better) is low, as discussed in Subsect. 3.1. The advice could
be a worse move when the adviser is weak; therefore, searching both moves is
required for weaker advisers to avoid selecting the worse advice accidentally.

The majority voting sometimes was stronger than the proposed method;
however, the performance degradation was seen in the majority voting and opti-
mistic voting when the system included weaker engine. Our methods were stable
compared to the majority voting and optimistic voting.

Advice is Useful for Game AI 9

5 Conclusion

We present methods to enhance search of a game AI using advice from the other
game AIs. This research is motivated by the observation that human players can
improve their strength with advice. We defined “advice” as the candidate moves
selected by adviser and propose the method that make a player search again
when the player’s move is different from advice.

We performed tournaments among the proposed systems and other meth-
ods against a single engine to compare the strength in shogi. We showed the
effectiveness of the proposed method from the experimental results and that the
game AIs can improve their strength with advice. We additionally found that
the advice from weaker game AIs is still useful for a game AI.

In this paper, we simply use the candidate moves as advice. Studying more
complex advice such as the candidate moves with their scores and a more com-
plex usage would be interesting. Marcolino et al. studied the diversity of the
teams in majority voting [7]; analyzing our methods with the diversity between
advisers and players will also be an interesting topic.

References

1. Althöfer, I.: Decision support systems with multiple choice structure. In: Numbers,
Information and Complexity, pp. 525–540. Springer, Heidelberg (2000)

2. Althöfer, I., Snatzke, R.G.: Playing games with multiple choice systems. In: Inter-
national Conference on Computers and Games, pp. 142–153. Springer, Heidelberg
(2002)

3. Hassabis, D.: Artificial intelligence: chess match of the century. Nature 544(7651),
413 (2017)

4. Hoki, K., Kaneko, T.: Large-scale optimization for evaluation functions with min-
imax search. J. Artif. Intell. Res. 49(1), 527–568 (2014)

5. Iida, H., Sakuta, M., Rollason, J.: Computer shogi. Artif. Intell. 134(1–2), 121–144
(2002)

6. Kasparov, G.: The chess master and the computer. New York Rev. Books 57(2),
16–19 (2010)

7. Marcolino, L.S., Jiang, A.X., Tambe, M.: Multi-agent team formation: diversity
beats strength? In: IJCAI 2013, Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence, Beijing, China, 3–9 August 2013, pp. 279–285
(2013)

8. Obata, T., Sugiyama, T., Hoki, K., Ito, T.: Consultation algorithm for computer
shogi: Move decisions by majority. In: International Conference on Computers and
Games, pp. 156–165. Springer, Heidelberg (2011)

9. Schaeffer, J.: The games computers (and people) play. Adv. Comput. 50, 189–266
(2000)

10. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L.,
van den Driessche, G., Graepel, T., Hassabis, D.: A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science 362(6419),
1140–1144 (2018)

10 S. Takeuchi

11. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre,
L., van den Driessche, G., Graepel, T., Hassabis, D.: Mastering the game of go
without human knowledge. Nature 550, 354–359 (2017)

12. Sugiyama, T., Obata, T., Hoki, K., Ito, T.: Optimistic selection rule better than
majority voting system. In: van den Herik, H.J., Iida, H., Plaat, A. (eds.) Com-
puters and Games, Lecture Notes in Computer Science, vol. 6515, pp. 166–175.
Springer, Heidelberg (2011)

13. Takeuchi, S.: Weighted majority voting with a heterogeneous system in the game
of shogi. In: The 2018 Conference on Technologies and Applications of Artificial
Intelligence (TAAI2018), pp. 122–125 (2018)

14. Takizawa, T.: Computer shogi 2012 through 2014. In: Game Programming Work-
shop 2014, vol. 2014, pp. 1–8 (2014)

15. Taylor, M.E., Carboni, N., Fachantidis, A., Vlahavas, I., Torrey, L.: Reinforcement
learning agents providing advice in complex video games. Connect. Sci. 26(1),
45–63 (2014)

Reducing Partner’s Cognitive Load
by Estimating the Level of Understanding

in the Cooperative Game Hanabi

Eisuke Sato(B) and Hirotaka Osawa

University of Tsukuba, Tennnodai, Tsukuba 305-8573, Japan
hailabsec@iit.tsukuba.ac.jp

Abstract. Hanabi is a cooperative game for ordering cards through information
exchange, and has been studied from various cooperation aspects, such as self-
estimation, psychology, and communication theory. Cooperation is achieved in
terms of not only increased scores, but also reduced cognitive load for the players.
Therefore, while evaluating AI agents playing a cooperative game, evaluation
indexes other than scoresmust be considered. In this study, an agent algorithmwas
developed that follows the human thought process for guessing the AI’s strategy
by utilizing the length of thinking time of the human player and changing the
estimation reliability, and the influence of this agent on game scores, cognitive
load, and human impressions of the agent was investigated. Thus, thinking time
was used as an indicator of cognitive load, and the results showed that it is inversely
proportional to the confidence of choice. Furthermore, it was found that the mean
thinking time of the human player was shortened when the agent used the thinking
time of the player, as compared with the estimation of the conventional agent, and
this did not affect human impression. There was no significant difference in the
achieved score and success rate of the estimation by changing the estimation
reliability according to the thinking time. The above results suggest that the agent
developed in this study could reduce the cognitive load of the players without
influencing performance.

Keywords: Cooperative game · Agent · Hanabi · Human–agent interaction

1 Introduction

The purpose of AI is to cooperate with humans; therefore, an agent utilizing AI needs
to act in accordance with the level of human understanding. For example, if an agent
uses an unfamiliar technical term while giving instructions, a definition of the term must
be included to help the user understand the instructions. This creates an extra cognitive
load for the users, although the performance is the same. Cognitive load is one of the
indicators of workload estimation that is also used by NASA-TLX [1]. To achieve a
cooperative task, it is important to reduce the cognitive load in addition to improving
the performance.

© Springer Nature Switzerland AG 2020
T. Cazenave et al. (Eds.): ACG 2019, LNCS 12516, pp. 11–23, 2020.
https://doi.org/10.1007/978-3-030-65883-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65883-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-65883-0_2

12 E. Sato and H. Osawa

The above-mentioned human–AI cooperation is also relevant to games, and Hanabi
has particularly been considered as a benchmark for cooperative games [2, 3]. The main
feature of this game is that players can see only their opponent’s hand, while their own is
seen by the opponent; the information provision to the opponent is restricted by tokens.
As games are more abstract than real problems, they are easy for AI to work on.

In thepast, scoreswere commonlyused as the evaluation criteria forAI agents playing
cooperative games. For instance, Osawa developed an AI agent that can infer its state in
Hanabi by simulating the viewpoints and actions of Hanabi users. This agent obtained
higher scores than agents whose actions were based only on definitive information [4].

However, it is possible that evaluations using only scores cannot sufficiently assess
the reduction in the cognitive load. For example, despite a high score, the cognitive
load is considered to be high if the human side is required to think for a long time,
which is inappropriate for a cooperative AI agent. Therefore, an agent that can reduce
the cognitive load while maintaining a reasonable score is required.

In this paper, an agent algorithm is proposed that changes its estimation reliability,
an index of howmuch estimation to use, according to the thinking time of human players
to reduce cognitive load. When a player takes a long thinking time twice in a row, the
estimation reliability is lowered by increasing the value of the estimation threshold. On
the other hand, when a player takes a short thinking time twice in a row, the estimation
reliability is increased by decreasing the value of the estimation threshold. The mean
thinking time of the player is used as an indicator of the cognitive load. Therefore, the
length of the thinking time is important to measure the cognitive load [5]. The score,
cognitive load, and evaluation for this agent were investigated by conducting two kinds
of experiments while allowing humans to play Hanabi with this agent.

This paper is organized as follows. Section 2 explains the background of Hanabi,
and Section 3 describes the difference between the algorithm using the conventional
self-estimation strategy and the algorithm developed by this study. In Sections 4 and 5,
the two types of evaluation experiment conducted are described. Section 6 presents a
discussion of the experimental results, and Section 7 concludes the work.

2 Background of Hanabi

The rules of Hanabi and related works are discussed below.

2.1 Rules of Hanabi

Hanabi is a cooperative card game that can be played by 2 to 5 players; this study deals
with 2 players. Hanabi is played with a deck of 50 cards and 8 information tokens. The
deck comprises five colors—white, red, blue, yellow, and green—and five numbers, i.e.,
1 to 5. There are 10 cards of each color, and there are three cards of No. 1, two each of
Nos. 2, 3, and 4, and one card of No. 5. The goal of this game is to complete cards of each
color in the ascending order of the numbers from 1 to 5 on the board. Players are dealt
five cards each as a hand. The players can only see their opponent’s hand and not their
own. The remaining cards in the deck are dealt face down. At each turn, a player must
choose one of the following three actions: inform the opponent of an attribute of their

Reducing Partner’s Cognitive Load by Estimating the Level 13

card, discard a card, or play a card. When a player chooses to inform the opponent of an
attribute of their card, the player discloses information regarding the numbers or colors
of the cards of the opponent’s hand. This action consumes one information token and
can be performed only if there are information tokens available. The player must give
complete information: for example, if the cards in the opponent’s hand are arranged as
1 red, 2 red, 1 white, 2 green, and 1 green and the player wishes to inform the opponent
about the instances of red cards, he/she must say, “The first and second cards are red.”

When the player chooses to discard a card, one of the cards of his/her hand is
discarded, and one card is drawn from the deck to replace it. This action adds one
information token. The discarded cards are revealed to both players and cannot be used
anymore during the game. When the player chooses to play a card, he/she attempts to
use a card from his/her hand to connect to one of the played cards. If the card played is
one greater than the number of same colored cards on the board, the play is considered
successful, the card is arranged in the corresponding color on the board, and the number
is increased by one. However, the card is discarded if the play fails. Whether successful
or unsuccessful, the played card is revealed to both players, and the player draws a card
from the deck to replace the played card.

• The game ends when any one of the following conditions is fulfilled.
• The players fail to play a card three times.
• Each player performs an action once after the deck becomes empty.
• The players complete up to five of all colors.

The total value of the cards on the board is the final score.

2.2 Works Related to Hanabi

Although studies on agents playing cooperative games have been rare, in recent years,
many studies have focused on cooperative card games, such as Hanabi [6–8]. There have
been theoretical analyses of Hanabi. For instance, Christopher et al. examined strategies
in Hanabi by applying the hat guessing game and showed that players sharing strategies
in advance can achieve the highest score with a probability of 75%ormore [9]. Similarly,
Bouzy developed a best strategy for Hanabi using the hat guessing game and a depth-
first search [10]. However, these studies assume that the players share their complicated
strategies in advance, which is not suitable for an AI agent cooperating with humans,
which is the goal of this research. Nevertheless, there have also been several studies on
cooperative behavior in Hanabi. Asmentioned earlier, Osawa developed an AI agent that
can infer its state in Hanabi by simulating the viewpoints and actions of Hanabi users.
He also showed that using this strategy results in higher scores compared with those
achieved by agents that act based on only definitive information [4]. Similarly, Eger
et al. showed that human beings appreciated the ability of the agent and felt confident
when they believed that the agent acted with intention. This was demonstrated by having
a human play Hanabi with an agent [11]. Gottwald et al. used an agent that obtains
information from human eye movements while playing Hanabi [12]. Furthermore, a
strategy for Hanabi using theMonte Carlo tree search has also been developed [13] [14].

14 E. Sato and H. Osawa

However, these studies did not consider human thinking time as a strategy for an agent
playing Hanabi, which is an important parameter to measure the understanding of both
the human game and agent’s strategy.

3 Agent Algorithm Using Thinking Time

An agent that uses the thinking time of the human player to determine his/her
understanding of the agent’s strategy and changes the estimation reliability was
developed.

3.1 Method

This agent changes the degree of confidence threshold in the estimation of the hand
according to the length of thinking time of the human player. For example, when the
thinking time of the human player is short, the estimation threshold is lowered to increase
the reliability, andmore estimation results are used. Conversely,when the human player’s
thinking time is long, the threshold is raised to lower the reliability, and the estimation
result is not used much. Furthermore, a short thinking time indicates that the human
player is confident of his/her actions; therefore, the human player’s actions agree with
the model assumed by the agent, resulting in a successful estimation. However, a long
thinking time indicates that the human player is not confident of his/her actions, and it is
highly probable that the action deviates from the model assumed by the agent, making
estimation difficult. Therefore, thinking time is an important measure of human players’
understanding of games and opponents. In this paper, two types of agent are discussed:
a conventional self-estimating agent that does not use the player’s thinking time as a
strategy indicator and the proposed self-estimating agent that uses the human player’s
thinking time as a strategy indicator.

3.2 Conventional Self-Estimation Strategy

An algorithm developed by Kato et al. [15] was used as a conventional self-estimation
strategy. The algorithm acts in the following order of precedence.

(A) Play Playable Card Based on Number Information
The agent plays a card whose color is unknown but whose number indicates that it is

a playable card. For example, at the start of the game, the No. 1 card becomes a playable
card regardless of the color.

(B) Inform Playable Card
If the player has a playable card, but incomplete information, the agent informs

him/her; if both the number and color are unknown to the human player, the agent
presents either information at random.

(C) Play Playable Cards Based on Self-Estimation
The agent uses a simulation of the human player’s observation to estimate the agent’s

own hand. The agent considers the set of possible hands at each time and sorts the ele-
ments in this set by the number of occurrences; when the value of the highest occurrence

Reducing Partner’s Cognitive Load by Estimating the Level 15

number is a constant multiple or more of the value of the next-highest occurrence num-
ber, this card is estimated to be equal to the value of the highest occurrence number. The
agent plays if this value is equal to the playable card.

(D) Inform a Discardable Card
If the human player has a discardable card and can understand that it is discardable

by revealing the number or color, the agent presents the information.
(E) Play Playable Cards Based on Board
If the player’s hand and the observable card on the board show that a playable card

is present in the agent’s hand, the agent plays that card.
(F) Discard a Discardable Card
If the player’s hand and the observable card on the board show that a discardable

card is present in the agent’s hand, the agent discards that card.
(G) Discard a Random Card
The agent discards the cardwith the least information in its hand. If there aremultiple

such cards, the agent discards a random card among these.

3.3 Self-Estimation Strategy That Changes Estimation Reliability According
to Thinking Time

We modified Kato’s self-estimation strategy by adding the algorithm that changed the
estimation reliability according to the thinking time of the human player. As a result,
the agent can be expected to act according to the human player’s understanding of the
game or the agent’s strategy.

First, the agent records the time taken by the human player to choose an action for
the previous five turns. From this, the agent derives the mean (M) and standard deviation
(SD) of the thinking time. If the next thinking time is more than the value of the M +
SD, it is considered as a long thinking time, and, if it is less than the value of M – SD,
it is considered as a short thinking time. Depending on the deviation of the thinking
time for the previous five turns, the standard deviation may be larger than the mean,
and it is difficult to define a time as a prompt decision. Therefore, if the human player
takes a thinking time of 4.1 s or less, it is defined as a short thinking time regardless of
the mean or standard deviation. This is because 4.1 s is 1 standard deviation less than
the mean of the mean thinking time of each player in the Hanabi experiment previously
performed byKato on 12 university students [15]. This value is themean of the threshold
values by which each player is determined to have made a prompt decision. Therefore,
it is considered to be an appropriate threshold to determine a short thinking time. The
following hypotheses were made regarding the length of the thinking time.

• If the player takes a long thinking time, he/she is not confident in his/her action.
• If the player takes a short thinking time, he/she is confident in his/her action.

In other words, it was hypothesized that the thinking time and confidence in selection
are inversely proportional to each other. So, when the player continues to think for a long
time before selecting an action, indicating that he/she is not confident in the selection,
it is considered that the agent’s strategy is not well understood. Hence, the probability

16 E. Sato and H. Osawa

of failure in estimation is higher than usual. This is because the agent’s self-estimation
assumes that the human player acts in the same thinking pattern as the agent, and it is
essential that the human player understands the agent’s strategy to some extent. Thus,
as discussed in Sect. 3.2 (C), this agent follows the estimation if the value of the most
likely card in the estimation is a constantmultiple ormore of the value of the next-highest
occurrence number. Therefore, when the player takes a long thinking time twice in a
row, the estimation reliability is lowered by increasing the value of this constant.On the
other hand, when the human player continues to take a short thinking time in selecting
the action, he/she is considered to have confidence in his/her choice. However, this
situation can result from two circumstances. The first is that the agent’s strategy is
correctly understood, while the second is that the agent’s strategy is misinterpreted, and
the human player’s action is based on that misinterpretation. In the first case, the agent
should increase the confidence of the estimate, while, in the second case, the agent should
reduce the confidence of the estimate. We used the choice of the human player’s action
to determine the situation. Specifically, when the human player took a short thinking
time twice in a row, the estimate reliability was increased, but if his/her card failed to
play in this situation, the estimate reliability was lowered.

4 Thinking-Time Experiment

Two experiments were performed in this study: a thinking-time experiment and a
cognitive-load experiment. The objectives of the thinking-time experiment were:

A)To confirm the validity of the hypotheses about thinking time and confidence of
choice described in Sect. 3.3.

B)To compare the performance of an agent that uses the human player’s thinking
time with that of the conventional agent, and to determine the parameters that affect the
human impression on the agent.

4.1 Interface

An interface implemented by Kato et al. using Visual C++ was used to realize a game
between a human and an AI agent [15], which is shown in Fig. 1.

The user’s hand is displayed at the lower left of the screen, and the opponent’s hand is
displayed at the upper left of the screen. The upper center represents the current board,
and the numbers from left to right in the lower center represent the number of cards
remaining in the deck, the number of information tokens, the number of failed plays,
and the score, respectively. On the right, the cards that have been played, failed, or
discarded are displayed.

4.2 Evaluation Method of the Thinking-Time Experiment

In the first thinking-time experiment, to check the impression of the users on the agent,
the game was recorded, and an impression evaluation questionnaire was conducted after
the experiment. The following questionnaire was used for the evaluation.

Reducing Partner’s Cognitive Load by Estimating the Level 17

Q1. Did you feel that the agent has the intention?
Q2. Did the agent get used to the game?
Q3. Was the agent friendly?
Q4. Did the agent understand you?
Q5. Was the agent wise?
Q6. Did the agent act as you wanted?
Q7. Did you understand the intention of the agent’s action?
Q8. Do you think that the agent’s behavior was consistent?
Q9. Did you try to increase the score?
Q10. Was the game easy to play?
Q11. Do you consider any of your own actions unsuccessful?
Q12. Were there any unreliable actions, whether they were correct or not?
Q13. Did you go ahead with the game?
Q14. Were you satisfied with the outcome of the game?
Q15. Do you have any comments? (Free description)

Q1 to Q5 were based on The Godspeed Questionnaire Series by Bartneck et al.,
which is one of the indexes used for evaluation [16]. All questions except Q15 used the
7-step Likert scale for the responses, where 0 means “No” and 7 means “Yes”.

Fig. 1. Interface of Hanabi

4.3 Procedure of the Thinking-Time Experiment

Four male college students in their twenties participated in the experiment. The par-
ticipants played the game twice after receiving instructions about Hanabi’s rules and
interface. Each participant played two games, one with the conventional self-estimation
agent (condition A) and the other with the proposed self-estimated agent (condition B).

18 E. Sato and H. Osawa

Therefore, four samples were gathered for each condition. During the game, the partic-
ipants were asked to record their confidence in their choices of actions after each turn.
Two types of decks were prepared and used in the experiment. The questionnaire was
conducted at the end of each game.

4.4 Result of the Thinking-Time Experiment

The mean thinking time for the turns where the participants were confident in their
actions was 21.1 s (SD: 15.1), whereas that for the turns where they were not confident
was 39.8 s (SD: 17.8). Furthermore, the mean thinking time for the entire game was 24.7
s (SD: 17.7). The results of the t-test (p < .05) showed a significant difference between
the mean thinking time for the turns where the participants were confident and the mean
thinking time (p< .05) for the entire game. Similarly, there was a significant difference
between the mean thinking time of the turns where the participants were not confident
and themean thinking time (p< .01) for the entire game. Themean score for condition A
was 17.5 points (SD: 5.4), and that for condition B was 17.8 points (SD: 2.9); the results
of the t-test showed no significant difference. Under condition A, cards were estimated
7.5 times per game (SD: 5.7) on average, and the mean success rate was .57 (SD: .34).
Under condition B, cards were estimated 6.5 times per game (SD: 2.2) on average, and
the mean success rate was .57 (SD: .17); the results of the t-test once again showed no
significant difference. The results of the questionnaire are presented in Table 1. It was
observed that, for Q1 and Q2, there was no significant difference between conditions A
and B (p < .05).

Table 1. Results of the questionnaire in the thinking-time experiment

Mean for condition A Mean for condition B p

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14

5.50 (SD 1.34)
6.25 (SD .43)
3.25 (SD 1.16)
3.75 (SD 1.30)
3.75 (SD .97)
3.25 (SD 1.79)
6.00 (SD .63)
5.25 (SD 1.30)
6.25 (SD .74)
5.25 (SD 2.05)
5.25 (SD 1.83)
5.75 (SD 1.09)
5.00 (SD 1.67)
4.00 (SD 2.55)

3.50 (SD 1.84)
3.25 (SD 1.60)
2.50 (SD .77)
3.50 (SD 1.61)
2.75 (SD 1.83)
2.25 (SD 1.47)
3.50 (SD 1.34)
4.50 (SD 2.05)
5.75 (SD 1.16)
3.75 (SD 2.04)
6.50 (SD .77)
6.00 (SD .89)
4.50 (SD 1.34)
2.50 (SD 1.84)

.016*

.046*

.547

.889

.474

.613

.127

.638

.664

.576

.391

.638

.804

.547
*p < .05

Reducing Partner’s Cognitive Load by Estimating the Level 19

5 Cognitive-Load Experiment

Because there were several questionnaire items in the thinking-time experiment, there
was a possibility of pseudosignificant differences. Therefore, the questionnaire items for
the cognitive-load experiment were reduced. The following were the objectives of the
cognitive-load experiment:

A) To compare the cognitive load imposed by the two agents.
B) To observe the significant differences in the questionnaire items that showed

changes in the thinking-time experiment.
C) To observe the significant differences in the scores and estimates when the sample

size was increased.

5.1 Evaluation of the Cognitive-Load Experiment

To observe the changes in the cognitive load due to changes in agents, the mean thinking
time of the human player per turn was recorded. To check the impression on the agent,
the game was recorded and impression evaluation questionnaires were conducted after
the experiment. The following are the contents of the questionnaire.

Q1. Did you feel that the agent has the intention?
Q2. Did the agent get used to the game?
Q3. Did you understand the intention of the agent’s action?
Q4. Do you think that the agent’s behavior was consistent?
Q5. Was the game easy to play?
Q6. Were you satisfied with the outcome of the game?
Q7. Do you have any comments? (Free description)
From the first experiment, it was observed that significant differences appeared in Q1

and Q2 during the experiment, and it was speculated that Q3 and Q4 played an important
role in determining if humans recognized the difference between the two agents. In this
experiment, the questions were reduced to six; the last two questions about the game
were added to the existing four questions. All questions except Q7 used the 7-step Likert
scale for the responses.

5.2 Procedure of the Cognitive-Load Experiment

The participants included 12 male and 8 female university students. None of the partic-
ipants knew the rules of Hanabi. Each participant played the game twice after receiving
instructions about Hanabi’s rules and interface. The first game involved the conventional
self-estimation agent (condition A), and the second involved the proposed self-estimated
agent (condition B). The participants then changed the order and played the same game
one by one. Therefore, two samples were collected per participant for each condition.
Four types of deck were prepared and used for the experiment. A questionnaire was
conducted at the end of each game. The order of conditions A and B was changed for
each participant for counterbalance.

20 E. Sato and H. Osawa

5.3 Results of the Cognitive-Load Experiment

In this experiment, the game was played 40 times for each condition, i.e., A and B.
Therefore, there were 40 pieces of data each for conditions A and B. The mean score
for condition A was 16.6 points (SD: 4.6), whereas that for condition B was 17.1 points
(SD: 4.1); the results of the t-test showed no significant difference. Under condition A,
cards were estimated 5.1 times per game (SD: 3.6) on average, and the mean success
rate was .66 (SD: .27). Under condition B, cards were estimated 6.1 times per game (SD:
4.3) on average, and the mean success rate was .71 (SD: .27). The results of the t-test
showed no significant difference. The results of the questionnaire are presented in Table
2; no significant difference was observed in the results. The mean thinking time in one
turn of condition A was 16.8 s (SD: 7.11) and that in one turn of condition B was 15.12
s (SD: 4.76); the results of the t-test showed a significant trend (+p < .10).

Table 2. Results of the questionnaire in the cognitive-load experiment

Mean for condition A Mean for condition B P

Q1
Q2
Q3
Q4
Q5
Q6

4.78 (SD 1.87)
4.78 (SD 1.48)
4.88 (SD 1.64)
4.60 (SD 1.61)
4.78 (SD 1.58)
4.13 (SD 1.56)

4.85 (SD 1.79)
4.67 (SD 1.76)
5.18 (SD 1.67)
4.91 (SD 1.70)
4.82 (SD 1.98)
4.15 (SD 1.70)

.395

.440

.314

.232

.405

.480

6 Discussion

The discussion of these experiments is shown below.

6.1 Discussion of the Thinking-Time Experiment

In the thinking-time experiment, there was a significant difference between the mean
thinking time of the turns where the participants were confident and the mean thinking
time of the entire game; similarly, there was a significant difference between the mean
thinking time of the turns where participants were not confident and the mean thinking
time for the entire game. Therefore, the hypotheses that thinking time and confidence
in selection are inversely proportional was validated. In this experiment, no significant
difference was observed in the scores, the number of estimations, and the success rates
between the two conditions. Therefore, itwas concluded that agents that used the thinking
time had no influence on the score in this experiment. Furthermore, the results of Q1
and Q2 in the questionnaire in Table 1, although based on a small sample, show that
when the estimation reliability is affected by the thinking time, the users may feel that
the agent is either unwilling or not accustomed to the game. This could be because,
when the estimation reliability decreases because of long thought times among all the
participants, the agent acts with greater emphasis on the definite information. To the
human user, it may appear that the agent is not used to the game.

Reducing Partner’s Cognitive Load by Estimating the Level 21

6.2 Discussion of the Cognitive-Load Experiment

In the cognitive-load experiment, there was a significant trend in the mean thinking time
between conditions A and B, which shows that agents using thinking time may have a
smaller mean thinking time than the conventional agents do. This could be because the
use of thinking time allows greater human–agent cooperation, which may reduce the
cognitive load. As no significant difference was observed between the scores obtained
for conditions A and B, similar to the thinking-time experiment, it was concluded that
the proposed agent algorithm had no influence on the score. This could be because the
mean score of the participants was high while playing with the conventional agent, and
there was no further increase in the score when the agent was changed. In fact, the mean
scores for both conditions A and B were 16 or more, and, according to the rule book,
this is regarded as an excellent score [17]. Similarly, in the first experiment, there was
no significant difference between the two conditions in the number of estimations and
the success rate. Therefore, it was concluded that the proposed agent algorithm had no
influence on the number of estimations in this experiment. Furthermore, Tables 1 and
2 show no significant difference between the questionnaire results of conditions A and
B. Therefore, the effect of the proposed agent algorithm on the impression of people
was not observed clearly. This result is different from the questionnaire result of the first
experiment; this could be because of a bias in the data owing to the small sample size.

6.3 Limitations and Future Work

This experiment showed that changes in the agent algorithms may have reduced the
cognitive load. However, as the questionnaire results showed no significant differences
between conditions A and B, the player of the game was likely to be unaware of the
change in agent. Therefore, we believe that it is not possible to improve the evaluation of
humans by using the agent algorithm developed in this study. So, it would be necessary
to modify the agent’s strategy so that it is more easily recognized by humans without
raising the cognitive load. For example, in addition to changing the estimation reliability
of the agent, adding an observable change, such as the time taken to select the agent’s
action, can solve this problem. This study shows that agents that use thinking time may
reduce the cognitive load of their partners. Using these results, development of more-
cooperative agents can be expected. For example, an agent that can reduce the thought
process of the user by changing his/her speech or action based on the user’s cognitive
ability could be developed.

7 Conclusion

In this study, an agent algorithm was developed that uses a human player’s thinking time
to estimate the degree of confidence in choosing an action and uses this as an index
to change the estimation reliability. Furthermore, the changes in the score, thinking
time, and impression of the human users were compared with those obtained using the
conventional self-estimation strategy. The results validated the hypothesis that the human
player’s thinking time is inversely proportional to the selection confidence. Additionally,

22 E. Sato and H. Osawa

it was observed that the proposed agent algorithm could reduce the cognitive load of the
human user. This can be a newmetric that can replace the score obtained by a cooperative
agent. However, the results of the questionnaire were not clear regarding the effect on
the human impression of the agent. A future improvement would be the development
of agents that use the thinking time more appropriately. This improvement is expected
to be achieved through more complicated hypotheses on human thinking time that are
closer to the actual human thought process.

Acknowledgement. This research was supported by JSPS Research Grants JP26118006,
JP18KT0029.

References

1. Hart, S.G.: Nasa-task load index (NASA-TLX); 20 years later. Proc. Hum. Fact. Ergon. Soc.
Annual Meet. 50(9), 904–908 (2006)

2. Jaderberg, M., Czarnecki, W.M., Dunning, I., Marris, L., Lever, G., Castaneda, A.G., Beattie,
C., Rabinowitz, N.C., Morcos, A.S., Ruderman, A., Sonnerat, N., Green, T., Deason, L.,
Leibo, J.Z., Silver, D., Hassabis, D., Kavukcuoglu, K., Graepel, T.:Human-level performance
in first-person multiplayer games with population-based deep reinforcement learning (2018).
arXiv:1807.01281

3. Venture Beat, Google Brain and DeepMind researchers release AI benchmark based
on card game Hanabi.https://venturebeat.com/2019/02/04/google-brain-and-deepmind-res
earchers-release-ai-benchmark-based-on-card-game-hanabi/(accessed 2019–05–03).

4. Osawa, H.: SolvingHanabi : estimating hands by opponent’s actions in cooperative gamewith
incomplete information. In: AAAI Workshop, Computer Poker and Imperfect Information,
pp. 37–43 (2015)

5. Khawaja, M.A., Ruiz, N., Chen, F.: Think before you talk: an empirical study of relationship
between speech pauses and cognitive load. In: Proceedings of the 20th Australasian Confer-
ence on Computer-Human Interaction: Designing for Habitus and Habitat (OZCHI 2008),
pp. 335–338 (2008)

6. Bard, N., Foerster, J.N., Chandar, S., Burch, N., Lanctot, M., Song, H.F., Parisotto, E.,
Dumoulin, V., Moitra, S., Hughes, E., Dunning, I., Mourad, S., Larochelle, H., Bellemare,
M.G., Bowling, M.: The Hanabi Challenge: A New Frontier for AI Research (2019). arXiv:
1902.00506

7. Canaan, R., Shen, H., Torrado, R., Togelius, J., Nealen, A., Menzel, S.: Evolving agents for
the Hanabi 2018 CIG competition. In: 2018 IEEE Conference on Computational Intelligence
and Games (CIG), pp. 1–8 (2018)

8. van den Bergh, M., Spieksma, F., Kosters, W. Hanabi, a co-operative game of fireworks.
Leiden University, Bachelor thesis (2015)

9. Cox, C., De Silva, J., Deorsey, P., Kenter, F.H.J., Retter, T., Tobin, J.: How to make the perfect
fireworks display: two strategies for Hanabi. Math. Mag. 88, 323–336 (2015)

10. Bruno, B.: Playing Hanabi near-optimally. In: ACG 2017: Advances in Computer Games,
pp. 51–62 (2017)

11. Eger, M., Martens, C., Córdoba, M.A.: An intentional AI for Hanabi. In: IEEE Conference
on Computational Intelligence and Games (CIG), pp. 68–75 (2017)

12. Gottwald, E.T., Eger,M.,Martens, C.: I see what you see: integrating eye tracking into Hanabi
playing agents. In: Proceedings of the AIIDE workshop on Experimental AI in Games (2018)

http://arxiv.org/abs/1807.01281
https://venturebeat.com/2019/02/04/google-brain-and-deepmind-researchers-release-ai-benchmark-based-on-card-game-hanabi/(accessed
http://arxiv.org/abs/1902.00506

Reducing Partner’s Cognitive Load by Estimating the Level 23

13. van den Bergh, M.J.H., Hommelberg, A., Kosters, W.A.: Aspects of the cooperative card
game Hanabi. In: BNAIC 2016: Artificial Intelligence, pp. 93–105 (2016)

14. Walton-Rivers, J., Williams, P.R., Bartle, R., Perez-Liebana, D., Lucas, S.M.: Evaluating and
modelling Hanabi-playing agents. In: 2017 IEEE Congress on Evolutionary Computation,
pp. 1382–1389 (2017)

15. Kato, T., Osawa, H.: I know you better than yourself:estimation of blind self improves
acceptance for an agent. In: HAI 2018 Proceedings of the 6th International Conference on
Human-Agent Interaction, pp. 144–152 (2018)

16. Bartneck, C., Kulić, D., Croft, E., Zoghbi, S.: Measurement instruments for the anthropomor-
phism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int. J. Soc.
Rob. 1(1), 71–81 (2018)

17. Ultra Board Games,“Hanabi Game Rules”. https://www.ultraboardgames.com/hanabi/game-
rules.php. Accessed 03 May 2019

https://www.ultraboardgames.com/hanabi/game-rules.php

Making a Better Game: The History of Cluster

Gregory Schmidt1 and Philip Shoptaugh2(B)

1 Rockwell Automation, Mayfield Heights, OH, USA
gschmidt958@yahoo.com

2 Shoptaugh Games, Oakland, CA, USA
philip@shoptaugh.com

Abstract. The authors present a case study of the initial inspiration and design
process that led to successfully optimized versions of the game “Cluster”. Various
aspects of gamedesign are examined in the context of humanand computer assisted
playtesting.

1 Introduction

Cluster is a two player connection game designed by Philip Shoptaugh in 1972. This
article describes the initial inspiration and development of successively optimized ver-
sions of the game. In doing so, the primary question addressed by this work is: “How
can playtesting be effectively applied to successively improve the design of a game?”
Herein, the following aspects of the game’s design are addressed:

• Twoplayer games are sometimes produced via the recombination of elements obtained
from the domain of existing games [3]. An example is given whereby a novel “hybrid”
two-player game is derived from a cross between a two player game and a single player
puzzle.

• The optimization of an existing game is demonstrated via applying design heuristics
gleaned from insights acquired through playtesting.

• The utilization of computer assisted game design software is examined. Prior work in
this area has been primarily directed towards the goal of automatic invention of new
games via automated recombination and evaluation of existing two player games [2,
3]. These systems typically employ a generic AI. This work illustrates utilizing a game
design system that incorporates a high quality customAI specifically designed to play
variations of a single game. The rule set is fixed, whereas the board topology and initial
piece type distribute and initial placement is allowed to vary. This work is aimed at
increasing the interaction between the game designer and the game design software
by enabling the designer to quickly generate and playtest proposed variations.

The resulting design rules and playtesting techniques, shown to be successful for
Cluster, should yield applicability to a larger domain of games. The applicable classes
of games include connection and territorial games, where the primary design goal is
to optimize the board topology, the distribution of piece types, and the initial piece
placements.

© Springer Nature Switzerland AG 2020
T. Cazenave et al. (Eds.): ACG 2019, LNCS 12516, pp. 24–40, 2020.
https://doi.org/10.1007/978-3-030-65883-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65883-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-65883-0_3

Making a Better Game: The History of Cluster 25

1.1 Rules of Cluster

The Cluster game board consists of a pattern of holes, some which are deep (as identi-
fied with a chamfer), and some which are shallow (without the chamfer). Each player,
identified as black or white, has two rows of pegs of their respective color inserted into
holes. Some pegs are tall and some are short. Based on the combination of peg length and
hole depth, three levels are possible, short, medium, and tall which can also be identified
numerically by the numbers 1, 2, and 3 respectively (Fig. 1). With white opening, the
players take turns moving their pegs until the winning player forms a contiguous group
of pegs of their respective color and all pegs of the group are at medium height (level 2).
Pegs can move in two ways. They can either step to an adjacent empty hole or they can
jump any number of pieces on the lateral or on the diagonal, regardless of ownership or
height of the pieces being jumped, then landing in the first vacant hole.

Fig. 1. Peg height as determined by peg size and hole depth.

2 The Genesis of a New Game

Interestingly, the inspiration for Cluster originated from combining elements from two
sources, Fig. 2, the “Lines of Action” (LOA) game [1], and Fig. 3, the “Plunging Pegs”
(PP) puzzle. In LOA, the goal is to form a connected group of one’s own pieces. In PP,
the goal is to align pegs of varying lengths into holes of varying depths. This ancestry
highlights an important aspect of game design whereby new, “hybrid” games can emerge
via recombination of elements from existing games [3], and in this case, includes the
puzzle domain. It is a process somewhat akin to that of genetic recombination.

2.1 Cluster’s Lineage

During Cluster’s inception, Shoptaugh was working with a company named Four Gen-
erations in Sebastopol California. One of the products produced was a puzzle called
“Plunging Pegs”. It is a puzzle made out of a single block of wood with four holes, each
at a different depth. It has eight pegs of differing lengths. The object of the puzzle is to
stack two pegs into each hole such that the tops of the extending pegs are all at the same
level. After playing with the puzzle quite a bit, Shoptaugh thought that it would be fun

26 G. Schmidt and P. Shoptaugh

Fig. 2. Lines of Action game starting position.

Fig. 3. Plunging Pegs Puzzle.

to make a two player strategy game using the same “leveling” concept. At the time he
had just created a couple of other games for Four Generations, a game called TAU (now
called Calypso) and another game called Impasse (now called Shuttles). Shoptaugh also
happened to be reading Sid Sackson’s newly published book, “A Gamut of Games”, and
had reviewed Claude Soucie’s game “Lines of Action” with its “grouping concept”. In a
moment of inspiration, Cluster was born as a two player game with two different depths

Making a Better Game: The History of Cluster 27

of holes, and two different lengths of pieces. The object of the game is to arrange all of
one’s pieces clustered together in any free formed group, all the same level, anywhere on
the game board. Shoptaugh later met collectively with Sid Sackson, and Claude Soucie.
Cluster met with Soucie’s approval as he was complimentary of the game1.

3 From Concept to Realization

There is no doubt that settling on the general form of the rules is a crucial milestone in a
game’s development. However, in addition to the rules, one must also consider the actual
topology of the board and pieces. For Cluster, this topology is represented both by the
number and arrangement of shallow and deep holes, along with the number and initial
placement of the black and white pegs. These variables represent degrees of freedom
which must ultimately be finalized prior to claiming completion of the game design.
In the case of Cluster, handmade wooden prototypes were tediously produced for the
purpose of experimenting with various board configurations, various depths of holes,
differing initial peg positions, and even alterations to the initially proposed rules.

3.1 Design Considerations

One initial design goal was to require each player to move each one of their pieces at
least once during the course of the game. This requirement was met by ensuring that
none of the initial peg placements were at level 2 (Fig. 4). Specifically, a player’s tall
pieces are placed along the furthest row consisting of shallow holes (at opposite sides
for each player). The short pieces are placed at the second furthest row of deep holes
(and on the opposite side of the board with respect to that player’s tall pieces).

This arrangement has the additional advantage of promoting the strategic interaction
of both players’ pieces during the early phase of the game since there are initially six
jump moves available to each player. The remaining holes in the center of the board
are spaced so that there would be both shallow and deep holes in the center of the
game board, with an equal number of each kind. In order to provide a visual cue of the
differing hole depths, a chamfer (i.e. countersink) appears on the top of each deep hole.
This distinction reduces the memory burden of the two players allowing increased focus
on strategic and tactical concerns thereby enhancing the clarity of the game2.

Initially, the pegs were allowed to jump over other pegs only if the levels of all the
pegs along the line to be jumped over were either less than or equal to the level of the
jumping peg. This design proved to be both overly confusing and restrictive and thus
was abandoned (Fig. 5). The final rules are both simple and elegant. A player can either
step to an adjacent empty hole or jump any number of adjacent pieces on the lateral or
on the diagonal, regardless of ownership or height of the pieces being jumped, landing
in the first vacant hole. The layout of the shallow and deep holes in the “honeycomb”
pattern was inspired by Hex, although maintaining symmetry and equal distribution of
the two depths were guiding principles.

1 Personal communications with Shoptaugh in 2009.
2 http://www.thegamesjournal.com/articles/DefiningtheAbstract.shtml.

http://www.thegamesjournal.com/articles/DefiningtheAbstract.shtml

28 G. Schmidt and P. Shoptaugh

Fig. 4. Starting configuration. All pegs must be moved to win the game since none are initially
at level 2.

Fig. 5. Initially jumps could only occur over pegs at a less than or equal length of the jumping
peg.

During the course of experimenting with the game play, there was a desire to avoid
the potential problem of “first player advantage”. Fortunately, this was not an issue,
because in many cases the second player can jump over the opponent’s initially moved
piece, thereby advancing further (Fig. 6). Additionally, the layout of the differing hole
depths is such that neither player can achieve an insurmountable blocking configuration
during the early stages of the game. In order for a player to build a “wall”, both tall
and short pieces must work in unison to form a string of level 2 pieces. Even if a player
creates a wall, the opponent may be able to overcome it by jumping over the wall, and
in some cases strategically jump from one end of the game board to the opposite end.

Making a Better Game: The History of Cluster 29

Fig. 6. Following white’s initial move, black is able to advance over two pieces.

Two critical elements in winning the game are timing and position. Games between
players of similar strength are usually very close with only one or two moves apart from
achieving the winning “cluster” formation. As in any good strategy game, it is necessary
to think ahead and carefully observe the consequences of the opponent’smoves. The rules
for Cluster are simple, but players of the game develop complex multi-move strategies
that emerge from these simple rules.

3.2 Initial Release

The initial version of the game contained 46 holes (referred to generically as “Cluster-
46”) with 20 shallow holes and 26 deep holes, and with the initial peg location as
shown in Fig. 7. Although two larger prototypes were also proposed, due to cost and
manufacturing constraints, the smaller version was selected for production.

Fig. 7. The original Cluster game with Four Generations packaging, circa 1973.

30 G. Schmidt and P. Shoptaugh

Four Generations made the Cluster game for several years, circa 1972–1975, before
the company went bankrupt. The combination of the peg movement rules and the con-
nection goal along with the additional constraint of leveled pieces make Cluster a novel
enough game to warrant a patent. The game was patented in 1974 [4] and the patent lists
several variations, including holes which have three depths rather than two.

4 Cluster-64

During 2009, Schmidt corresponded with Shoptaugh to create an Axiom [5] computer
version of the original game. At that time, he had expressed belief that the initial design
of the game could be improved and wanted to experiment with some ideas. However,
testing new variations of the game would require the effort intensive work of creating
physical wooden prototypes. Obviously, the number of prototypes created this way is
limited by both patience and physical resources.

4.1 Automating the Prototype Generation Process

What if instead of creating a Cluster computer game that was bound to a specific con-
figuration, the designer could instead design their own Cluster game and playtest it?
This idea formed the basis of a new program called “Cluster Designer”3. When invoked,
Cluster Designer initially presents an empty board void of all holes. The game designer
can subsequently place holes, both shallow and deep, on the board to create a unique
hole pattern. Once the hole pattern is fully specified, an arbitrary number of black and
white pegs can then be placed to form the initial placement of pieces. The completed
game variation can then be saved to a computer file. The game variant is now ready to be
playtested. Prior to playing a game, black and white can be assigned to either a human
or an AI player.

A Cluster variation can alter the number, layout, and distribution of shallow and
deep holes, as well as the number, initial placement, and distribution of short and tall
pegs. Otherwise, all variations share the same rules and end of game condition. Cluster
Designer’sAIwas designed specifically to play these variations generically. For example,
the AI examines features which are common to all variations such as encouraging level
2 piece groupings and peg mobility while discouraging other negative features such as
isolated pegs.

Cluster Designer was implemented as an Axiom game and presented to Shoptaugh
who then began creating experimental variations of Cluster. After playtesting a variety of
games ideas, he settled on a 64 hole configuration (Fig. 8), and via additional playtesting,
concluded that Cluster-64 is superior to the original Cluster-46. The number of pieces
per player was increased from 8 to 12 as it was determined that 12 pieces led to deeper
game play with a more satisfying tempo. Having 12 pieces increases the challenge of
timing the coordination of moves required to bring all pieces into play. The board size
increased as well since increasing the number of pieces naturally led to a corresponding
increase in the number of holes, equally split between shallow and deep.

3 Understandably, due to a desire to prevent the proliferation of endless variations of Cluster,
Shoptaugh requested that Cluster Designer not be made publically available.

Making a Better Game: The History of Cluster 31

Fig. 8. Cluster-64, a.k.a. “Cluster Tournament”.

The revised game was not marketed although a small number of handmade copies
were produced by Shoptaugh in his workshop. However, Cluster-64 was made more
widely available via a subsequent Axiom program that includes the new Cluster-64
design along with the original Cluster-46 (a.k.a. “Cluster Classic”) version (Fig. 9).
Both stand-alone Axiom PC version4 and Zillions of Games™5 versions are available.

Fig. 9. Axiom implementation of Cluster-64.

4 http://www.boardgamegeek.com/filepage/46261/cluster-axiom-computer-game-pcs
5 http://www.zillions-of-games.com/cgi-bin/zilligames/submissions.cgi?do=show;id=1760

http://www.boardgamegeek.com/filepage/46261/cluster-axiom-computer-game-pcs
http://www.zillions-of-games.com/cgi-bin/zilligames/submissions.cgi%3fdo%3dshow%3bid%3d1760

32 G. Schmidt and P. Shoptaugh

5 Cluster-58

Fast forwarding to 2015, Shoptaugh discovered a third incarnation of Cluster (Fig. 10),
played on a 58 hole board (30 shallow, 28 deep).

Fig. 10. The new Cluster-58.

Cluster-58 is an improvement over Cluster-64 for the reasons discussed below.
Here we will illustrate the transformation of Cluster-64 to Cluster-58 as a series of
incrementally improving steps.

5.1 The Refinement Process

First, the blank area gap (no holes) in the two starting rows were eliminated and the
remaining six shallow holes were brought together to form a single contiguous row
(Fig. 11). By eliminating the gap, players can now jump laterally across the back row. It
also has the benefit of increasing clarity by eliminating potential confusion as to whether
or not a player is allowed to jump laterally over the gap. Furthermore, it improves the end
game play, as a player can now jump a piece laterally across the entire row, unrestricted
by the former gap.

Secondly, after observing the use of the side holes during play of many games, it
was determined that some of the outside, deep holes, were very infrequently used, so a
total of six deep holes were eliminated from both sides of the board thus reducing the
number of holes to a total of 58 (Fig. 12). By reducing the number of holes from 64
to 58, and adding one more piece per player (from 12 to 13 for a total of 26 pieces),
there is improved interaction and increased competition for critical holes between the
two players. However, removing these six deep holes left some undesirable gaps in the
middle row.

Thirdly, some of the holes were then rearranged in such a way as to both remove the
gaps and to achieve a more even distribution between the two hole types (Fig. 13).

Making a Better Game: The History of Cluster 33

Fig. 11. Cluster-64 with starting row gaps removed.

Fig. 12. Revised Cluster game with starting gaps removed and 6 deep holes eliminated.

Finally, since there is no way to divide 58 in half (yielding 29 holes of each depth)
while maintaining a symmetrical board, the 2nd and 8th row shallow holes were changed
to deep holes resulting in 30 shallow holes and 28 deep holes. Also, an additional piece
was added for each player in order to increase the interaction between players (e.g.
vying for the same shallow hole at the end of the game) as well as for aesthetic reasons
(Fig. 14).

34 G. Schmidt and P. Shoptaugh

Fig. 13. Revised Cluster game following hole re-arrangement. Note the large number of shallow
holes (32 shallow vs. 26 deep).

Fig. 14. Final version of Cluster (Cluster-58) now with 28 deep and 30 shallow holes and two
additional pieces.

5.2 The Finalized Design

Visually, the new shape with its slightly truncated corners, (due to the gap elimination),
is more aesthetically pleasing to the eye.

The revised game board is now slightly longer than it is wide and simply “felt” right
to the designer. Most games end with a clear winner and rarely does a situation occur
where neither player can force a win thereby ending the game in a draw. Although the

Making a Better Game: The History of Cluster 35

gameworks in a variety of configurations, it is nowfinalized in its preferred configuration
as Cluster-58.6

6 Cluster Strategy

Cluster is a game where “efficiency” is of key importance. Quite frequently the games
are won or lost by just a few moves, so players must be careful not to lose tempo by
playing subpar moves. Listed here are a few important strategic and tactical concepts
which are intrinsic to Cluster game play.

Definitions:

• A “group” is defined as a collection of connected pieces, of uniform color, all at
height 2.

• A “cluster” is defined as a group containing all 13 pieces of a single color.
• A “liberty” is defined as an empty hole that is immediately adjacent to (i.e.
“touching”) one’s group.

• A “sentinel” is defined as a piece strategically placed for the purpose of inhibiting
the further growth and/or eventual completion of the opponent’s cluster.

Strategic and tactical concepts:

1. Mobility – Maximizing the number of moves available to one’s own pieces while
minimizing the number of opponent moves.

2. Center control – Frequently, winning clusters occur at the center of the board so
it’s often advantageous to occupy centrally located spaces.

3. Advancement – It is important in advancing one’s pieces to desired spaces quickly
by leveraging jump moves.

4. Group size – In many cases, it is good to favor moves which increase the size of
one’s largest group.

5. Wall formation – A player forms a connected string of pieces, (i.e. a “wall”)
which splits the opponent’s pieces into two groups thereby making it harder for
them to unite as a single cluster.

6. Fork –Moving a piece to an intermediate location such that in a subsequent move,
it can connect to a group in more than one way.

7. Adequate Liberties – One must ensure that sufficient liberties exist in order
to complete the cluster. Note that this includes taking into consideration the
hole depths of these liberties in conjunction with the length of the remaining
“stray” pieces such that they will eventually mate at the correct height as they are
assimilated into the group.

8. Offensive moves – A player can inhibit the formation of the opponent’s cluster
by deliberately placing a piece in one of the opponent’s liberties. By strategically
placing a sentinel, it’s possible to “starve” the opponent’s group thereby thwarting

6 Cluster-58 will be commercially marketed in late 2016.

36 G. Schmidt and P. Shoptaugh

its completion. If the sentinel is not already part of the offensive player’s group, it
must eventually be moved. An expert player using this tactic can sometimes defer
movement of their sentinel such that it becomes the final winning move. Note that
just as in a “fork”, a “block” can prevent multiple pieces from connecting.

9. Tempo – It’s important not to get too far behind in the game. Although tempo is
critical during all phases of the game, an advanced player can obtain a good sense
of tempo during the end game by counting the number of moves required for each
player to turn their largest group into a cluster.

Figure 15 illustrates a few of these concepts. White’s attempt at forming a cluster
is inhibited by the fact that it is bounded by the south and east edges of the board.
Consequently, white has a limited number of liberties available. Furthermore, black has
a sentinel which prevents white’s group from becoming a cluster. White’s only option
is to relocate its group to another place on the board. However, doing so would result
in white losing tempo, a serious disadvantage since black requires comparatively few
remaining moves to win. This example also highlights the pitfall of increasing one’s
group size at the expense of sacrificing the liberties required to eventually form a cluster.

Fig. 15. White’s group is lacking liberties. Note black’s sentinel.

7 Experimental Game Designs

Included here is a sampling of a few experimental game designs considered, but not
adopted since the goal was to converge on a single “best” version of Cluster. Playtesting
revealed that although these game variations were both viable and playable, each had its
shortcomings. However, if producing a “suite” of Cluster game variations had instead
been the goal, then these games might serve as potential candidates.

Making a Better Game: The History of Cluster 37

1. “Cluster-82” (Fig. 16) – A large version of the game. It served as a starting point
for paring down the size and number of pieces until the “optimal” configuration of
the Cluster-58 version was finally settled upon.

Fig. 16. Cluster-82.

2. “Cluster-80” (Fig. 17) – A large version of the game played on a hexagonal board.
It was found that A ratio of 80 spaces to 22 pieces does not work well because the
players often tend to avoid each other and the game becomes more of a race than a
“thought provoking” positional game

Fig. 17. Cluster-80 featuring a hexagonal hole Pattern.

3. “Cluster-30” (Fig. 18) – A “mini” version of the game. Due to the small number of
holes, there is much less flexibility to the games.

38 G. Schmidt and P. Shoptaugh

Fig. 18. Cluster-30, an experimental “mini” variation.

8 Piece to Space Ratio

An important discovery is that Cluster works much better and becomes more enjoyable
when there is a higher level of interaction between the players’ pieces. When there is a
higher degree of scarcity of spaces at both hole depths, this results in increased competi-
tion between the players and they are required to do more strategic and tactical planning
in order to form a cluster. Via extensive playtesting, a 2:1 ratio between game board
spaces and total number of pieces appears to work best. The main design challenge was
to discover a board topology that approximates this ratio while yielding a symmetrical
and elegant aesthetic design. Note that the final Cluster-58 game board has a 2.23:1 ratio
of spaces to pieces.

9 Design Heuristic Synopsis

As discussed, there were a number of heuristics that motivated the sequence of the
Cluster designs. The most important ones are summarized below:

• Board topology – Refers to the overall shape of the board and how it affects game
play. It includes effective distribution of the hole depths, consideration of the effect
of gaps, and removal of infrequently used spaces.

• Piece count and initial piece placement – Refers to the number and initial placement
of the pieces. Typically it has the largest effect during the opening phase of the game.
However, it can also lead to longer range effects such as requiring all pieces to be
moved at least once (as in the case where no initial piece is at level 2).

• Piece to space ratio - Affects the level of interaction of the pieces as well as the tempo
of the game.

• Rule simplicity – The goal is to ensure that the rules are not unnecessarily complex.

Making a Better Game: The History of Cluster 39

• Minimizing the potential for draws – Ideally, most if not all games result in a clear
winner. The rules, the board topology, and the piece count can have significant impact
on this goal.

• First player advantage – The goal is to ensure that the second player can make a
comparably strong reply to the first player’s initial move.

• Balance – One player should not be able to easily “tip the scales” too easily such that
the other player cannot recover.

• Aesthetics & symmetry – A subjective consideration which can often lead to aes-
thetically pleasing and balanced designs. It can positively affect both game play and
player satisfaction.

• Use of visual cues – The goal is to reduce the player’s mental burden on the game
mechanics, thereby allowing greater focus on the game play itself.

Note that the above design heuristics are general enough that, in many cases, they
may be applicable to games other than Cluster.

10 Game Design Wisdom

Each game design has its own key core elements that must be discovered and exploited
in order to optimize the game play experience. Finding and refining these elements is
arguably a blend of art and science. Aesthetics and intuition apply mainly to the “art”
aspect, whereas applying one’s knowledge base of game design heuristics, coupled with
extensive playtesting, apply to the more formal “science” side. In retrospect, the Cluster
design experience has revealed the following “wisdom” for approaching game design.

1. Don’t quit or finalize your design too soon. In other words, your game may be good,
but it might not be in its “preferred form”.

2. Be open to making changes. Keep working until it cannot be improved any further.
Be obsessed about your project and stay with it until it “feels” right.

3. Simplify the rules, and the format. Strive for elegance and avoid complexities, i.e.
“less is more”.

4. Be sure to thoroughly playtest your game. If there are any “flaws” either in the rules
or in the topology of the game board, then determine and identify the problem and
make changes to remove them. Don’t “fall in love” with your first creation, as it most
likely can be improved.

5. Try to holistically refine your game in order to find the optimum combination of
rules, format, materials, sizes, shapes, colors, etc. until you feel that it cannot be
improved any more. Clarity and aesthetics do matter here.

11 Conclusion

New game designs often arise by combining existing game concepts, and in the case
of Cluster, may involve puzzle concepts as well. Recombination represents a powerful
tool for game invention. Once the basis for the new game has been established, further

40 G. Schmidt and P. Shoptaugh

refinement based on applying a variety of game design heuristics can be considered and
then evaluated through playtesting.

In the case of Cluster, the variations are primarily based on the form of the shal-
low/deep hole configuration along with the initial setup of the pegs. These various
setups can only be effectively evaluated via persistent experimentation and extensive
playtesting.

The utilization of computer assisted game design software has so far provided two
major benefits. Not only has it eliminated the need for physical prototypes, it has also
accelerated the playtesting phase of proposed variations thereby promoting the discovery
of new candidate variations.

Future work should explore this potential further. For example, through computer
self-play that facilitates logging and replay of a series of games, various metrics of a
specific game variation can be examined and assessed. For example, these metrics may
include the degree of first player advantage and the average number of moves per game.
Additionally, observing the automated games in a “replay” fashion may likely yield
further strategic insights into effective game play.

Aswe havewitnessedwithCluster, the improvement processmay even span decades.
As new insights are found, improved variations of the game are discovered constituting
a “plateau” or “sub-optima” in the game’s fitness landscape (e.g. an extreme example is
the evolution of Chess rules over a period of centuries7). Finally, this design experience
has revealed some general “wisdom”, useful for approaching game design. The evolution
of Cluster from Cluster-46 to Cluster-64, and ultimately to the current Cluster-58, offers
an excellent example of applying these processes and principles.

Acknowledgements. Thanks to Cameron Browne for his helpful suggestions.

References

1. Sackson, S.: A Gamut of Games. Pantheon Books, New York (1982). [1st Pub. 1969, Random
House, New York]. ISBN 0-394-71115-7

2. Hom, V., Marks, J.: Automatic design of balanced board games. In: Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE), pp. 25–30
(2007)

3. Browne, C., Maire, F.: Evolutionary game design. IEEE Trans. Comput. Intell. AI Games 2(1),
1–16 (2010)

4. Shoptaugh, P.: Cluster game. U.S. Patent 3,834,708, filed February 23, 1973, and issued
September 10, 1974 (1973)

5. Schmidt, G.: The axiom general purpose game playing system. IEEE Trans. Comput. Intell.
AI Games 6(4), 332–342 (2014)

7 See http://www.chess.com/groups/forumview/history-of-chess-rules

http://www.chess.com/groups/forumview/history-of-chess-rules

Improving Human Players’ T-Spin Skills
in Tetris with Procedural Problem

Generation

Taishi Oikawa, Chu-Hsuan Hsueh, and Kokolo Ikeda(B)

School of Information Science, Japan Advanced Institute of Science and Technology,
Nomi, Ishikawa, Japan

{taishi o,hsuehch,kokolo}@jaist.ac.jp

Abstract. Researchers in the field of computer games interest in creat-
ing not only strong game-playing programs, but also programs that can
entertain or teach human players. One of the branches is procedural con-
tent generation, aiming to generate game contents such as maps, stories,
and puzzles automatically. In this paper, automatically generated puzzles
are used to assist human players in improving the playing skills for the
game of Tetris, a famous and popular tile-matching game. More specif-
ically, a powerful technique called T-spin is hard for beginners to learn.
To assist beginners in mastering the technique, automatically generated
two-step to T-spin problems are given for them to solve. Experiments
show that the overall ability for beginners to complete T-spin during
play is improved after trained by the given problems. The result demon-
strates the possibility of using automatically generated problems to assist
human players in improving their playing skills.

Keywords: Procedural content generation · Puzzle · Tetris · Training
system · Entertainment

1 Introduction

In recent years, artificial intelligence has made significant progress in computer
board games as well as video games. Remarkably, computer programs can learn
to surpass human levels without human knowledge of games. One example is the
AlphaZero algorithm [17], which achieved superhuman levels of plays in three
classical board games, chess, shogi, and Go. Another example for video games is
that the programs based on deep reinforcement learning [8,10] obtained higher
scores than professional human players in many of the Atari 2600 games.

Creating programs to entertain or teach human players is another popular
research topic in the past decades. Hunicke and Chapman [4] proposed a prob-
abilistic method to dynamically adjust the difficulty of a first-person shooter
game. Ikeda and Viennot [6], and Sephton et al. [15] tried to create entertain-
ing programs based on Monte-Carlo tree search (MCTS). Sephton et al. [15],

c© Springer Nature Switzerland AG 2020
T. Cazenave et al. (Eds.): ACG 2019, LNCS 12516, pp. 41–52, 2020.
https://doi.org/10.1007/978-3-030-65883-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65883-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-65883-0_4

42 T. Oikawa et al.

Demediuk et al. [2], and Wu et al. [19] investigated strength and difficulty adjust-
ment for MCTS-based programs. Ikeda et al. [5], Takahashi [18], and Oikawa and
Ikeda [11] aimed to build training systems for the games of Go, Puyo-Puyo, and
Tetris respectively.

This paper continues the work by Oikawa and Ikeda [11] to create a training
system for Tetris, a famous tile-matching puzzle game. In Tetris, a technique
called T-spin is powerful but hard to be learnt by beginners. As the first step to
assist human players in mastering the technique, the previous work automatically
generated one-step to T-spin problems. The generated problems were solved
and rated by beginners in five-grade interestingness and difficulty. Generally,
interestingness and difficulty were highly positively correlated.

In addition to generating problems, more emphasis in the paper is put on
analyzing the effectiveness of training human players by the automatically gen-
erated problems. In the experiments, players are divided into three groups where
one is trained by normal play and the other two by two-step to T-spin problems
as well as normal play. After training, the win rates increase for all groups in
a competition variant of Tetris. Especially, the two groups trained with T-spin
problems can trigger T-spin more often. The results demonstrate the potential
to build a training system for improving the playing skills of human players.

The rest of this paper is organized as follows. Subsect. 2 briefly introduces
the game of Tetris, including the technique of T-spin, and then reviews some
work related to procedural problem generation. Sections 3 and 4 present the
two-stage experiments where the latter is the key experiments in this paper. In
the first stage, prediction models for interestingness and difficulty of two-step
problems are built. The second stage incorporates the interestingness predictor
to generate problems to train human players. The experiments aim to verify how
T-spin problems assist human players in improving their playing skills. Finally,
Sect. 5 makes concluding remarks and discusses future research directions.

2 Background

This section introduces the game of Tetris in Subsection 2.1 and related work
on procedural problem generation in Subsect. 2.2.

2.1 The Game of Tetris

Tetris is a kind of tile-matching puzzle video game presented in 1984 by Pajit-
nov1. The game has a widespread popularity and can be played on various plat-
forms. There are many different variants of the game. This subsection briefly
describes some basic elements of Tetris. The game is played on a rectangular
field with twenty rows and ten columns. Seven kinds of tetrominoes are used,
each of which is made up of four connected squares. The tetrominoes are named
according to the similarity to Latin alphabet letters, I, J, L, O, T, S, and Z.

1 https://en.wikipedia.org/wiki/Tetris.

https://en.wikipedia.org/wiki/Tetris

Improving Human Players’ T-Spin Skills in Tetris 43

During play, tetrominoes fall down by a random sequence. One tetromino
falls down at a time, with the next one(s) shown as a hint. The player can move
the given tetromino by one of the three directions left, right, and down, or rotate
it by 90-degree. The tetromino stops falling when at least one square meets the
bottom line or other occupied squares below, as shown by the bright gray squares
in Figs. 1a and 1b in smaller fields. When all squares in a row are occupied, the
row is cleared and the player obtains some bonus scores. An example of clearing
a single row is depicted in Fig. 1c where the second row from the bottom is
cleared. It is possible to clear at most four rows at a time, and higher scores
are obtained when more rows are cleared. The squares above the cleared row(s)
then fall down with the shape remained, as shown in Fig. 1d. A game ends when
the occupied squares reach the top of the playing field and no tetromino can be
further inserted. The goal of Tetris is to clear rows to obtain high scores. In some
competition variants of Tetris, clearing rows on the player’s own field generates
garbage on the opponent field from the bottom, which may push the opponent
closer to the end of games.

(a) (b) (c) (d)

Fig. 1. An example of actions and row clearing in Tetris: (a) the current state, (b)
manipulating the given L-tetromino, (c) clearing a row, and (d) the state after the row
cleared.

A technique called T-spin is to insert a T-tetromino into a tight space by
rotation immediately after the T-tetromino stops falling. An example of T-spin
is shown in Fig. 2. For the state in Fig. 2a, if the T-tetromino falls down directly,
a square in the second row from the bottom remains empty, as shown in Fig.
2b. At the moment, the T-tetromino can be rotated clockwise by 90-degree,
and then the state becomes the one in Fig. 2c. In this example, two rows are
cleared after T-spin, which is called T-spin Double. It is possible to clear at most
three rows with T-spin, which is called T-spin Triple. Clearing rows with T-spin
obtains extra bonuses; moreover, in competition variants of Tetris, more garbage
is generated on the opponent field.

2.2 Related Work on Procedural Problem Generation

Procedural Content Generation (PCG) [16] is a research branch aiming to auto-
matically create game contents by computer programs with limited or indirect
human input. The term game content covers a large variety of components and

44 T. Oikawa et al.

(a) (b) (c)

Fig. 2. An example of T-spin Double: (a) the current state, (b) falling down the T-
tetromino, and (c) rotating the stopped T-tetromino to finish T-spin Double.

may refer to maps, levels, stories, and puzzle problems. This paper focuses on
generating puzzle problems [1] and reviews some related work as follows.

Hirose et al. [3] proposed to compose tsume-shogi problems (mating prob-
lems in shogi) by reverse method, which started from board states with check-
mate and then searched reversely for n moves. Two of the generated problems
were introduced in a tsume-shogi magazine and received favourable feedback. For
chess mating problems, Schlosser [14] automatically composed based on endgame
tables built up by retrograde analysis. Iqbal [7] improved the efficiency to gener-
ate mate-in-3 problems with incorporating probabilities of piece locations derived
from different databases.

Mantere and Koljonen [9] applied genetic algorithm (GA) to not only solve
but also generate and rate Sudoku puzzles. For another puzzle game called
Shinro, Oranchak [12] showed that GA was effective to construct puzzles. Ortiz-
Garćıa et al. [13] proposed to automatically generate picture-logic puzzles (also
known as nonograms) from RGB color images. Takahashi [18] compared random
method and reverse method on generating problems for Puyo-Puyo, where the
later was shown to be more efficient.

Oikawa and Ikeda [11] proposed to generate n-step to T-spin problems by
reverse method. The approach is briefly summarized as follows. For the simplic-
ity of discussion, T-spin in the rest of this paper refers to T-spin Double if not
specified. First, basic patterns with a complete T-shape was created, as the part
highlighted in Fig. 3a. To enrich the diversity of the generated T-spin patterns,
noises were introduced. An example of the resulted T-spin pattern is depicted
in Fig. 3a. Reverse method then generated n-step to T-spin problems by remov-
ing n tetrominoes from the playing field one at a time. Figures 3b and 3c show
two examples of one-step to T-spin problems with removing the highlighted S-
tetromino and J-tetromino respectively. A two-step to T-spin problem with S-
and J-tetrominoes is shown in Fig. 3d. In their experiments, one-step to T-spin
problems were generated and analyzed. They showed that interestingness and
difficulty of the problems had a highly positive correlation for beginners.

3 Experiments on Interestingness and Difficulty

As a preliminary study, a total of sixteen players (males between 22 and 27 years)
participated in the experiments. All of them were interested in playing games,

Improving Human Players’ T-Spin Skills in Tetris 45

(a) (b) (c) (d)

Fig. 3. An example of the reverse method for T-spin problems: (a) a T-spin pattern,
(b) a one-step problem with S-tetromino, (c) a one-step problem with J-tetromino, and
(d) a two-step problem with S- and J-tetrominoes.

among which one was an expert of Tetris and the rest were beginners. To ver-
ify how two-step to T-spin problems assisted in improving the playing skills of
beginners, the experiments were designed with two parts. In the first part, as
described in more details in this section, predictors on interestingness and diffi-
culty of two-step problems were built by data collected from the beginners. In
the second part, beginners were divided into three groups, where one was trained
without T-spin problems, one with randomly generated problems, and the other
with interesting problems. The details are included in Sect. 4.

In this section, the settings of experiments on interestingness and difficulty,
the features extracted for two-step to T-spin problems, and the results are pre-
sented in Subsects. 3.1, 3.2, and 3.3 respectively.

3.1 Experiment Settings

First, the T-spin technique and its importance to Tetris were explained to the
beginners. They then solved 50 two-step problems with the tool shown in Fig.
4a. All players solved the same set of problems but in random order.

(a)

(b)

Fig. 4. (a) Tool for the experiments and (b) an example for the new features in two-step
problems.

46 T. Oikawa et al.

After pressing the “Start” button, 50 problems were given one at a time. At
the beginning of a problem, the given tetromino was put in the playing field,
with the next one shown on the right-hand side, as illustrated in Fig. 4a. Players
could drag, rotate, and drop the given tetromino. After pressing the “Confirm”
button, the location of the first tetromino was determined and could not be
changed. The second tetromino was then put into the playing field. After deter-
mining the location of the second tetromino, players rated the interestingness
and the difficulty in five-grade evaluation. Scores 1 to 5 represented most unin-
teresting/easiest to most interesting/difficult. Solutions could also be obtained
by pressing the “Show Answer” button. Players then pressed the “Next” button
to solve the next problem until all problems were finished. The reason to enable
players to obtain the solutions was to prevent the players from giving up due to
frustration and rating the problems arbitrarily.

3.2 Features of Two-Step to T-Spin Problems

Oikawa and Ikeda [11] have proposed some features for one-step problems. Two-
step problems are supposed to be more difficult than one-step problems. Some
problems may require the cooperation between the two given tetrominoes, as
shown in Fig. 4b. In order to better predict the interestingness and difficulty,
four additional features are designed in this paper: (1) the number of edges
connected between the two given tetrominoes, (2) the number of squares of the
second tetromino that are located above the first one, (3) the number of squares
of the two given tetrominoes that are located in the two rows to be cleared by T-
spin, and (4) the number of squares of the two given tetrominoes that are located
below the T-shape. The values of the four features for the example in Fig. 4b
are 1, 3, 4, and 2 respectively.

3.3 Results of Predictors

For each problem, the interestingness and the difficulty were averaged from the
fifteen beginners. The results are plotted in Fig. 5a. The correlation coefficient
between interestingness and difficulty was 0.86, which showed a highly positive
correlation. When looking into the ratings player by player, different preference
can be found. This paper comments on the results of two players, as shown
in Figs. 5b and 5c with the data scattered for better display. For player A, no
problems were rated as difficulty 5, and difficult problems tended to be interest-
ing. Player B tended to rate difficult problems as either very interesting or very
uninteresting. The player also rated easy problems as different interestingness.

It is expected that problems too difficult become uninteresting, and Player
B did rate some difficult problems as very uninteresting. However, the overall
interestingness and difficulty for two-step problems still had a high correlation.
One possible explanation is that two-step problems were not too difficult for
most of the beginners. The decrease of interestingness may occur for problems
with more steps which are supposed to be even more difficult.

Improving Human Players’ T-Spin Skills in Tetris 47

(a) (b) (c)

Fig. 5. Relations between interestingness and difficulty for (a) fifteen beginners aver-
aged, (b) player A, and (c) player B.

To automatically generate interesting problems to train human players, a
model to rate the interestingness of problems is required. In the experiments,
supervised learning was applied to learn the interestingness. Ratings averaged
from fifteen beginners for a total of 50 problems were used as the training data,
with the features described in Subsect. 3.2. The predictor was built based on
the LightGBM framework2 with 10-fold cross-validation. The results are plotted
in Fig. 6a, and the symmetric mean absolute percentage error (SMAPE) and
mean absolute error (MAE) were 8.74% and 0.27 respectively. The model was
able to predict the interestingness of two-step problems well. The results of the
difficulty predictor are shown in Fig. 6b, with a little higher SMAPE of 14.50%
and MAE of 0.34. The model performed better for easier problems.

Figure 7a shows a problem which was predicted to be interesting by the inter-
estingness predictor. Players may feel that the center part is a little bit empty
and doubt whether it is possible to complete T-spin. The two L-tetrominoes, no
matter the order, both locate beside the T-spin pattern. Once the solution is
found, players may feel more satisfied and interesting.

One additional experiment was to ask the expert to solve and rate 147 two-
step to T-spin problems. The results in Fig. 6c shows that it was also possi-
ble to create interestingness predictors for individuals even experts, though the
SMAPE of 26.17% and MAE of 0.84 were higher. One possible reason is that
the granularity of the ratings for a single player is larger than the averaged val-
ues. Still, the model can be used to distinguish problems with interestingness
1 by predicted values lower than 2 and interestingness 4 and 5 by predicted
values higher than 4.7. A problem considered interesting by the predictor is
shown in Fig. 7b. At the first glance, the expert thought that T-spin could be
completed. However, the way that the expert considered resulted in a T-spin
Single, which was thought as a trap and made the expert feel interesting. The
experiment demonstrated the potential to personalize training systems.

2 https://lightgbm.readthedocs.io/en/latest/.

https://lightgbm.readthedocs.io/en/latest/

48 T. Oikawa et al.

(a) (b) (c)

Fig. 6. Results of predictors on (a) interestingness and (b) difficulty for beginners, and
(c) interestingness for an expert.

(a) (b)

Fig. 7. Interesting problems for predictors on (a) beginners and (b) an expert.

4 Experiments on Improving Human Players’ Skills

This section presents the key experiments in this paper to demonstrate how two-
step to T-spin problems assist human players in improving their T-spin skills in
Tetris. Subsection 4.1 describes the experiment settings. The results and some
discussions are then included in Subsect. 4.2.

4.1 Experiment Settings

The flow chart of the experiments is shown in Fig. 8. At the beginning, the
strength of the players was measured by two approaches. First, they played
best-of-three matches against three built-in CPU agents (Arle, Ess, and Zed) in
Puyo-Puyo Tetris on the Steam platform3. Puyo-Puyo Tetris is a competition
variant of Tetris, and the three CPU agents have different strength. Each player
played at least six and at most nine games. The numbers of wins and losses, the
time, the number of T-spin, and the whole progress of the games were recorded.
The average time to finish a best-of-three match was 448 s with the standard
deviation of 231 s. The actual time varied a lot from players, with the shortest
and longest time of 161 s and 1,354 s respectively.

In addition, the players solved fifteen two-step to T-spin problems selected by
an expert. Each of the three levels, easy, middle, and difficult from the expert’s
3 https://store.steampowered.com/app/546050/Puyo PuyoTetris.

https://store.steampowered.com/app/546050/Puyo{_}PuyoTetris

Improving Human Players’ T-Spin Skills in Tetris 49

Fig. 8. Flow chart of the experiments on training human players.

view, contained five problems. The tool for solving problems was similar to the
one shown in Fig. 4a, except that the time limit for each problem was set to 30 s
and the players could not obtain the solutions.

To investigate whether T-spin problems assisted players in improving playing
skills, three different kinds of training menus were designed, one without T-spin
problems while the other two with T-spin problems. Fifteen players were evenly
divided into three groups such that the strength of the groups was similar. By
strength of a group, it was the sum of the number of wins against the CPU
agents and the number of correctly solved problems. The numbers are listed
in Table 1, where “#W”, “#G”, “FTS”, and “#Sol” represent the number of
wins, the number of played games, the frequency of T-spin per minute during
play, and the number of correctly solved problems respectively. The three menus
were given to the groups randomly. One set of training lasted for 40 min. All
groups underwent the given sets of training three times. Namely, all the players
were trained for 120 min.

Table 1. Results for groups A, B, and C before and after training.

A (Competition Only) B (Two-Step Problems) C (Interesting Problems)

#W #G FTS #Sol #W #G FTS #Sol #W #G FTS #Sol

Before 7 35 0.21 59 4 33 0.24 62 5 32 0.18 61

After 13 33 0.13 60 11 36 0.75 67 8 33 0.79 61

The players in group A played against all three CPU agents Arle, Ess, and
Zed during the whole 40 min in one set of training. For groups B and C, players
were trained by 75 two-step to T-spin problems first. A similar tool to Fig. 4a
was used except that the time limit for each problem was set to 20 s and the
solutions were always displayed after the players solved the problems. Group B
was provided with problems randomly generated, while group C with interesting
problems rated by predictor for beginners. Training by T-spin problems took
about 20 min. In the rest of the time in 40 min, the players in both groups played
against CPU agents as group A. After three sets of training were finished, the
strength of the players was measured again, with the order of the fifteen problems
changed.

50 T. Oikawa et al.

4.2 Results of Skill Improvement

The results for the three groups after training are listed in Table 1. The win
rates of all the groups increased after training, which were 20.0±13.3% to
39.4±16.7%, 12.1±11.1% to 30.6±15.0%, and 15.6±12.6% to 24.2±14.6% respec-
tively. Although the result of group C was not statistically significant, the experi-
ments still showed that the strength of the players with regard to the competition
variant could be improved after training. The correctness rates for T-spin prob-
lems of 78.7±9.3% to 80.0±9.1%, 82.7±8.6% to 89.3±7.0%, and 81.3±8.8% to
81.3±8.8% were not improved significantly, even for groups B and C.

However, when focusing on the frequency of T-spin, the growth rates for
groups B and C were 212% and 334% respectively, while group A was −39%.
The frequencies of T-spin per minute for the fifteen players are plotted in Fig. 9.
Generally, players in groups B and C improved their T-spin skills. Especially, for
those who completed less T-spin before training, the growth was even clearer.
Interestingly, a player in group A tended not to perform T-spin after training.

Fig. 9. Frequency of T-spin per minute before and after training.

To investigate the reason why players with higher T-spin skills did not win
more games (groups B and C vs. group A), the recorded progress of the games
was reviewed by an expert. It was found that the speeds to arrange the tetromi-
noes were reduced while the players attempted to create T-spin patterns. Some-
times, they also made mistakes on the arrangement of tetrominoes. As a result,
the merits obtained from T-spin were almost eliminated by the speed reduction
and the mistakes. If the players were trained for a longer time to be familiar
with T-spin patterns, their strength may improve more significantly. Overall,
the experiments suggested that the strength of players could be improved after
training. Especially, players trained with T-spin problems improved the strength
with aware of the technique.

5 Conclusions and Future Work

In this paper, two-step to T-spin problems are generated automatically to train
beginners. First, models trained by ratings collected from beginners can predict
the interestingness of two-step problems well. In addition, it is also possible to

Improving Human Players’ T-Spin Skills in Tetris 51

train models to predict interestingness of problems for individual players. This
demonstrates the potential to personalize training systems of games.

Moreover, experiments on training players with three different menus are
conducted. Overall, the strength of the players is improved. Especially, players
trained with T-spin problems indeed complete T-spin more frequently, though
they do not improve win rates more than the players trained without T-spin
problems. It is supposed that the difference will be bigger if the training time
became longer for the players to master their T-spin skills.

The followings discuss several promising research directions. With the success
in predicting the interestingness of one-step and two-step to T-spin problems.
the next step to the training system is to try three-step or four-step problems,
which are even closer to real game-play. It is also interesting to find the point
that difficult problems become uninteresting for beginners. In addition, some
more techniques such as clearing four rows and T-spin Triple are also important
to Tetris. Similar approaches can be applied to build training systems for these
techniques. It is also possible to mix different techniques in a training system.

Acknowledgments. This research is financially supported by Japan Society for the
Promotion of Science (JSPS) under contract numbers 18H03347 and 17K00506.

References

1. De Kegel, B., Haahr, M.: Procedural puzzle generation: a survey. IEEE Trans.
Games 12(1), 21–40 (2020). https://doi.org/10.1109/TG.2019.2917792

2. Demediuk, S., Tamassia, M., Raffe, W.L., Zambetta, F., Li, X., Mueller, F.: Monte
Carlo tree search based algorithms for dynamic difficulty adjustment. In: 2017
IEEE Conference on Computational Intelligence and Games (CIG 2017), pp. 53–
59. IEEE (2017). https://doi.org/10.1109/CIG.2017.8080415

3. Hirose, M., Ito, T., Matsubara, H.: Automatic composition of Tsume-shogi by
reverse method. J. Jpn. Soc. Artif. Int. 13(3), 452–460 (1998)

4. Hunicke, R., Chapman, V.: AI for dynamic difficulty adjustment in games. In:
AAAI-04 Workshop on Challenges in Game Artificial Intelligence, pp. 91–96. AAAI
Press (2004)

5. Ikeda, K., Shishido, T., Viennot, S.: Machine-learning of shape names for the game
of Go. In: Plaat, A., van den Herik, J., Kosters, W. (eds.) ACG 2015. LNCS,
vol. 9525, pp. 247–259. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27992-3 22

6. Ikeda, K., Viennot, S.: Production of various strategies and position control for
Monte-Carlo Go - entertaining human players. In: 2013 IEEE Conference on Com-
putational Intelligence in Games (CIG 2013), pp. 145–152. IEEE (2013). https://
doi.org/10.1109/CIG.2013.6633625

7. Iqbal, A.: Increasing efficiency and quality in the automatic composition of three-
move mate problems. In: Anacleto, J.C., Fels, S., Graham, N., Kapralos, B., Saif
El-Nasr, M., Stanley, K. (eds.) ICEC 2011. LNCS, vol. 6972, pp. 186–197. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24500-8 20

8. Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., Dabney, W.: Recurrent expe-
rience replay in distributed reinforcement learning. In: The Seventh International
Conference on Learning Representations (ICLR 2019) (2019)

https://doi.org/10.1109/TG.2019.2917792
https://doi.org/10.1109/CIG.2017.8080415
https://doi.org/10.1007/978-3-319-27992-3_22
https://doi.org/10.1007/978-3-319-27992-3_22
https://doi.org/10.1109/CIG.2013.6633625
https://doi.org/10.1109/CIG.2013.6633625
https://doi.org/10.1007/978-3-642-24500-8_20

52 T. Oikawa et al.

9. Mantere, T., Koljonen, J.: Solving, rating and generating Sudoku puzzles with GA.
In: 2007 IEEE Congress on Evolutionary Computation (CEC 2007), pp. 1382–1389.
IEEE (2007). https://doi.org/10.1109/CEC.2007.4424632

10. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236

11. Oikawa, T., Ikeda, K.: Procedural problem generation of Tetris for improving T-
spin skill. In: The 23rd Game Programming Workshop (GPW-18), pp. 175–182
(2018)

12. Oranchak, D.: Evolutionary algorithm for generation of entertaining Shinro logic
puzzles. In: Di Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6024, pp.
181–190. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12239-
2 19

13. Ortiz-Garćıa, E.G., Salcedo-Sanz, S., Leiva-Murillo, J.M., Pèrez-Bellido, A.M.,
Portilla-Figueras, J.A.: Automated generation and visualization of picture-logic
puzzles. Comput. Graph. 31(5), 750–760 (2007). https://doi.org/10.1016/j.cag.
2007.08.006

14. Schlosser, M.: Computers and chess problem composition. ICCA Journal 11(4),
151–155 (1988). https://doi.org/10.3233/ICG-1988-11404

15. Sephton, N., Cowling, P.I., Slaven, N.H.: An experimental study of action selection
mechanisms to create an entertaining opponent. In: 2015 IEEE Conference on
Computational Intelligence and Games (CIG 2015), pp. 122–129. IEEE (2015).
https://doi.org/10.1109/CIG.2015.7317939

16. Shaker, N., Togelius, J., Nelson, M.J.: Procedural Content Generation in Games:
A Textbook and an Overview of Current Research. Springer (2016)

17. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science 352(6419), 1140–1144 (2018). https://doi.
org/10.1126/science.aar6404

18. Takahashi, R.: Mating problem generation of Puyo-Puyo for training. Master the-
sis, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
(2018)

19. Wu, I.C., Wu, T.R., Liu, A.J., Guei, H., Wei, T.h.: On strength adjustment for
MCTS-based programs. In: The 33rd AAAI Conference on Artificial Intelligence
(AAAI-19). AAAI Press (2019)

https://doi.org/10.1109/CEC.2007.4424632
https://doi.org/10.1038/nature14236
https://doi.org/10.1007/978-3-642-12239-2_19
https://doi.org/10.1007/978-3-642-12239-2_19
https://doi.org/10.1016/j.cag.2007.08.006
https://doi.org/10.1016/j.cag.2007.08.006
https://doi.org/10.3233/ICG-1988-11404
https://doi.org/10.1109/CIG.2015.7317939
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1126/science.aar6404

A Further Investigation of Neural
Network Players for Game 2048

Kiminori Matsuzaki(B)

School of Information, Kochi University of Technology, Kami, Kochi 782–8502, Japan
matsuzaki.kiminori@kochi-tech.ac.jp

Abstract. Game 2048 is a stochastic single-player game. Development
of strong computer players for Game 2048 has been based on N-tuple
networks trained by reinforcement learning. Some computer players were
developed with neural networks, but their performance was poor. In our
previous work, we showed that we can develop better policy-network
players by supervised learning. In this study, we further investigate
neural-network players for Game 2048 in two aspects. Firstly, we focus
on the component (i.e., layers) of the networks and achieve better per-
formance in a similar setting. Secondly, we change input and/or output
of the networks for better performance. The best neural-network player
achieved average score 215 803 without search techniques, which is com-
parable to N-tuple-network players.

Keywords: Game 2048 · Neural network · Supervised learning

1 Introduction

Neural networks (NN) are now widely used in development of computer game
players. Among these, deep convolutional neural networks have been studied
actively in recent years and played an important role in the development of
master-level computer players, for example, for Go (AlphaGo Zero [11]), Chess
(Giraffe [7], DeepChess [2] and AlphaZero [10]) and Shogi (AlphaZero [10]).

The target of this study is Game “2048” [1], a stochastic single-player game.
Game 2048 is a slide-and-merge game and its “easy to learn but hard to master”
characteristics have attracted quite a few people. According to its author, during
the first three weeks after its release, people spent a total time of over 3000 years
on playing the game.

Several computer players have been developed for Game 2048. Among them,
the most successful approach is to use N-tuple networks as evaluation functions
and apply a reinforcement learning method to adjust the weights in the networks.
This approach was first introduced to Game 2048 by Szubert and Jaśkowski [12],
and several studies were then based on it. The state-of-the-art computer player
developed by Jaśkowski [5] combined several techniques and achieved an average
score of 609 104 within a time limit of 1 s per move.

c© Springer Nature Switzerland AG 2020
T. Cazenave et al. (Eds.): ACG 2019, LNCS 12516, pp. 53–65, 2020.
https://doi.org/10.1007/978-3-030-65883-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65883-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-65883-0_5

54 K. Matsuzaki

NN-based computer players, however, have not achieved a success yet for
Game 2048. The first work by Guei et al. [4] proposed a player with two convo-
lution layers followed by two full-connect layers, but the average score was about
11 400. The player by tjwei [13] used two convolution layers with a large num-
ber of weights, and achieved an average score 85 351 after supervised learning.
Though there exist other implementations of NN-based players [9,14,16], the
scores of these players were not so good or were not reported. In our previous
work [6], we tried to improve the performance of NN-based players by increasing
the number of convolution layers and supervised learning. We designed networks
with 2–9 convolution layers with 2 × 2 filters and applied supervised learning
with playlogs from existing strong players [8]. As the result, we achieved the
best average score 93 830 with a player with five convolution layers.

In this paper, we further investigate the NN-based players in two aspects.
Firstly, we focus on the component of the networks. We compare players with
full-connect layers (multi-layer perceptrons), convolution layers with 2×2 filters,
and convolution layers with 1 × 2 filters. We also compare the performance of
these players by using two sets of playlogs from two different players. Secondly,
we explore the input and/or output of networks. We designed four networks by
changing the input and output of the networks. The best player obtained in the
paper achieved an average score 215 803 without search techniques.

Contributions in this paper are summarized as follows.

– We designed three networks by changing the components (layers). The experi-
ment results showed that the network with convolution layers with 1×2 filters
performed the best. (Sect. 4)

– We used two sets of playlogs from two different players as the training data.
We confirmed by experiments that the performance of players could differ
significantly even though the average and maximum scores of the playlogs
were almost the same. (Sect. 4)

– We designed four networks by changing input and/or output. The experiment
results showed that a straightforward implementation of value network does
not work well. The network named Policy AS performed the best, and the
best average score was 215 803, which is comparable to greedy plays of N-
tuple-network players. (Sect. 5)

The rest of the paper is organized as follows. Section 2 briefly introduces the
rule of Game 2048. Section 3 reviews related work in terms of existing neural-
network player for Game 2048. Section 4 designs neural networks with different
components where we find that convolution layers with 1× 2 filters perform the
best. Section 5 designs neural networks with different input/output where we
find that policy networks can be improved by extending the input. We conclude
the paper in Sect. 6.

2 Game 2048

Game 2048 is played on a 4× 4 grid. The objective of the original Game 2048 is
to reach a 2048 tile by moving and merging the tiles on the board according to

A Further Investigation of Neural Network Players for Game 2048 55

Fig. 1. Process of game 2048

the rules below. In an initial state (Fig. 1), two tiles are placed randomly with
numbers 2 (p2 = 0.9) or 4 (p4 = 0.1). The player selects a direction (either up,
right, down, or left), and then all the tiles will move in the selected direction.
When two tiles of the same number collide, they create a tile with the sum value
and the player gets the sum as the score. Here, the merges occur from the far
side and newly created tiles do not merge again on the same move: move to the
right from 222�, �422 and 2222 results in ��24, ��44, and ��44, respectively.
Note that the player cannot select a direction in which no tiles move nor merge.
After each move, a new tile appears randomly at an empty cell with number 2
(p2 = 0.9) or 4 (p4 = 0.1). If the player cannot move the tiles, the game ends.

When we reach the first 1024-tile, the score is about 10 000. Similarly, the
score is about 21 000 for a 2048-tile, 46 000 for a 4096-tile, 100 000 for an 8192-
tile, 220 000 for a 16384-tile, and 480 000 for a 32768-tile.

3 Related Work: Neural-Network Players for Game 2048

Several computer players have been developed for Game 2048. The most widely
used and successful approach is based on N-tuple networks trained by reinforce-
ment learning methods [5,8,12,15]. The state-of-the-art player by Jaśkowski [5]
was based on a redundant N-tuple network that was adjusted by the tempo-
ral coherence learning with some other techniques. It achieved an average score
324 710 with the greedy (1-ply search) play and 609 104 with the expectimax
search within a time limit of 1 s per move.

Behind the success of N-tuple networks, neural networks have not been
actively studied or utilized for the development of Game 2048 players. As far as
the authors know, the work by Guei et al. [4] was the first study on the subject.
Some open-source programs have been developed, for instance, with multi-layer
perceptrons [16], with convolutional neural networks [13,14] and with recurrent
neural networks [9], but the performance of these players was not very good
or not analyzed well (at least from the documents provided). Table 1 summa-
rizes existing neural-network players in terms of the number of weights and the
average score of greedy (1-ply search) play.

In our previous work [6], we tried to improve the performance of neural-
network players by increasing the number of convolution layers. We designed

56 K. Matsuzaki

Table 1. Summary of neural-network players in terms of number of weights and average
score of greedy (1-ply search) play.

Authors Network Learning Weights Score

Guei et al. [4] 2 conv (2× 2), 2 FC Reinforcement N/A 11 400∗

Guei et al. [4] 3 conv (3× 3), 2 FC Reinforcement N/A 5 300∗

tjwei [13] 2 conv (2× 1), 1 FC Supervised 16.95× 106 85 351

tjwei [13] 2 conv (2× 1), 1 FC Reinforcement 16.95× 106 33 000∗

Virdee [14] 2 conv (2× 1), 2 FC Reinforcement 1.98× 106 16 000∗

Kondo and Matsuzaki [6] 2 conv (2× 2), 1 FC Supervised 0.82× 106 25 669

Kondo and Matsuzaki [6] 5 conv (2× 2), 1 FC Supervised 0.82× 106 93 830

This work 3 conv (2× 1), 2 FC Supervised 3.69× 106 215 802

conv = convolution layers, FC = full-connect layers. Values marked by * were read from figures.

networks with 2–9 convolution layers with 2 × 2 filters and applied supervised
learning with playlogs from existing strong players [8]. As the result, we achieved
better results than existing neural-network players and the best player with five
convolution layers achieved an average score 93 830.

4 Experiment 1: Changing Components

Network Structure. The first experiment is about the components (layers) of
neural networks. We design a network with full-connect layers only (i.e., multi-
layer perceptrons) and two networks with convolution layers as shown in Fig. 2.
In this experiment, we borrow the basic design of the networks from our previous
work [6]. The input board is a binary-encoded 16-channel image such that the
first channel represents positions of empty cells, the second does 2-tiles, the third
does 4-tiles, and so on. The output consists of 4 values each of which represents
probability of selecting the corresponding direction (i.e., policy network).

The most basic components in neural networks are full-connect layers and
convolution layers. Convolution layers are often used in many applications
because we can reduce the number of parameters by capturing local features.
However, since the board size of Game 2048 is just 4×4, the effect of parameter
reduction would be small. In contrast, use of full-connect layers from the first
layer would have a benefit of directly capturing some global features. Therefore,
we designed network MLP that consists of five full-connect layers (Fig. 2 (a)).
In the network MLP, we increased the number of filters as 512, 1024, 2048, in
order, and then narrowed down to 256 at the fourth layer. We conducted prelim-
inary experiments by changing the number of filters and encountered failures of
training when a large number of filters (e.g., 1024) are used at the fourth layer.
The last layer is a full-connect layer with a softmax function. We did not use
dropouts in our experiments.

The second network CNN22 has two convolution layers with 2×2 filters. 2×2
filters were used in the work by Guei et al. [4] and in our previous work [6]. In our
design, the network has two convolution layers in which 2× 2 filters are applied

A Further Investigation of Neural Network Players for Game 2048 57

Fig. 2. Structure of networks used in first experiment

without padding (yielding 2×2 outputs). Considering the number of parameters
and GPU memory usage, we set the number of filters for the convolution layers
to be 160 and 320, in order. After the convolution layers, three full-connect layers
follow in the same manner as the network MLP.

The third network CNN12 has three convolution layers with 1×2 (and 2×1)
filters. These 1×2 and 2×1 filters were also used by tjwei [13]. The differences are
(1) convolution layers are in three plies, (2) only the outputs of the third layer are
concatenated (tjwei’s network concatenated all the outputs of two layers), and
(3) we share weights between filters by considering duality to reduce the number
of parameters. For instance in Fig. 2, filters in a’ (of size 2 × 1) are transposes
of those in a (of size 1 × 2). In the second and third layers, similarly, the filters
with the same label share weights through transposition. Each component in
the first three layers has 256 filters, and thus we have 256, 512, and 1024 filters
in total, in order. After the three convolution layers, we flatten and concatenate
the outputs and apply two full-connect layers in the same way as the network
MLP.

58 K. Matsuzaki

Table 2. Size and cost of neural networks used in the first experiment.

Name # parameters Learning Playing

Time GPU Memory Time GPU Memory

MLP 3 281 668 57 min 377 MiB 0.57 ms 377 MiB

CNN22 3 364 580 66 min 6 135 MiB 1.24 ms 887 MiB

CNN12 3 681 284 117 min 3 181 MiB 1.95 ms 765 MiB

Table 3. Players used for generating training dataset.

Name Description Ave. score Max. score

acg17 [8] 4 × 6-tuples, 8 stages, 3-ply expectimax 461 062 838 332

nneo [17] hand-made features, variable-depth expectimax 435 448 840 320

Table 2 summarizes the number of parameters, execution time and GPU
memory usage for the learning and playing phases1. As we can see in the table,
though the number of parameters was controlled to be almost the same, the
GPU memory usage differed largely: CNN22 consumed 16 times as large GPU
memory as MLP did.

Supervised Learning. As in our previous work [6], we apply supervised learn-
ing to train neural networks. We collected a large number of playlogs from two
strong computer players and utilized the players’ moves as the correct labels.
The training was performed to minimize the cross entropy.

To see the impact of training datasets, we prepared two datasets. The first
one named acg17 is a set of playlogs from players developed in our previous
work [8]. The players utilized N-tuple networks as the evaluation functions: the
networks consisted of four 6-tuples and the game was split into eight stages based
on the maximum number of tiles. The weights of the networks were adjusted by
backward temporal coherent learning with restart strategy. The player selected
moves by the 3-ply expectimax search. The second one named nneo is playlogs
from an open-source player [17]. It utilized hand-made features and variable-
depth expectimax search.

We collected for each player more than 6 × 108 actions and then chose 5 ×
108 actions for the training and different 10 000 actions for the evaluation. The
training data were shuffled before fed to the training. The average and maximum
scores of these two players are given in Table 3. The performance of these two
players seems to be almost the same.

Playing Method. Since the board of Game 2048 is symmetric, we can fed
symmetric boards to a network to make robust decisions. In our playing method,
1 All the experiments were conducted on a single PC with an Intel Core i3-8100 CPU,

16 GB Memory, and a GeForce GTX 1080 Ti GPU (GPU Memory 11GB).

A Further Investigation of Neural Network Players for Game 2048 59

Table 4. Evaluation results of the first experiment for dataset acg17.

Name Loss Agreement [%] Score

MLP 1 × 108 actions 0.571 ± 0.019 73.31 ± 0.18 33 543 ± 5 209

2 × 108 actions 0.544 ± 0.018 74.64 ± 0.23 37 159 ± 6 249

CNN22 1 × 108 actions 0.554 ± 0.017 74.07 ± 0.25 63 969 ± 5 163

2 × 108 actions 0.526 ± 0.017 75.29 ± 0.26 74 867 ± 3 746

CNN12 1 × 108 actions 0.535 ± 0.018 75.63 ± 0.63 77 074 ± 6 351

2 × 108 actions 0.513 ± 0.027 75.92 ± 0.63 91 728 ± 5 609

Table 5. Evaluation results of the first experiment for dataset nneo.

Name Loss Agreement [%] Score

MLP 1 × 108 actions 0.464 ± 0.009 79.34 ± 0.39 6 911 ± 320

2 × 108 actions 0.433 ± 0.013 81.39 ± 0.48 8 201 ± 829

CNN22 1 × 108 actions 0.447 ± 0.017 80.88 ± 0.25 14 935 ± 750

2 × 108 actions 0.383 ± 0.020 82.70 ± 0.18 18 258 ± 1 587

CNN12 1 × 108 actions 0.423 ± 0.018 81.57 ± 0.33 25 694 ± 2 311

2 × 108 actions 0.387 ± 0.027 83.20 ± 0.33 30 810 ± 2 429

we fed eight symmetric boards and pick up the direction with the majority vote.
If two or more directions have ties, we select the direction based on the sum of
probabilities. Refer to [6] for the details of the playing method.

Feeding symmetric boards at the playing improved the performance largely.
In contrast, we did not observe a significant difference when we fed symmetric
boards during the training.

Evaluation. We conducted five runs (of training and evaluation) for each net-
work structure and dataset. For the training, we selected 2 × 108 actions from
shuffled playlogs and fed them to the training with batches of size 1 000. We
observed the values of loss functions as a metric of training progress. For the
evaluation, we computed the direction for each evaluation board and calculated
the agreement ratio to the dataset player. We also played 100 games and calcu-
lated the average score.

Table 4 shows the experiment results for the dataset acg17 after learning
1 × 108 and 2 × 108 actions, and Table 5 for the dataset nneo. Note that the
standard deviations over five runs are denoted after the ± sign. Figures 3 and 4
plot the agreement ratio and the average score of test plays, respectively.

Comparing the three networks, CNN12 with the smallest filters performed
the best and MLP performed the worst. The difference of the loss values was
small: 0.018 between MLP and CNN22; 0.013 between CNN22 and CNN12. The
agreement ratios differ in some degree (about 1–2%). However, the scores of test

60 K. Matsuzaki

Fig. 3. Agreement ratio of the first
experiment.

Fig. 4. Average score of the first exper-
iment.

plays differ considerably: by a factor of 1.2 between CNN12 and CNN22; by a
factor of 2.3 between CNN12 and MLP.

Another interesting finding is that though the two datasets seemed similar
in terms of the average and maximum scores, the training with them resulted
in very different players. In particular, the loss values and the agreement ratios
for the dataset nneo were better than those for the dataset acg17, but the player
trained with the dataset nneo performed much worse. We guess that the differ-
ence came from the difference in play styles. Detailed analysis remains as our
future work.

5 Experiment 2: Changing Input/Output

Since we have obtained a good structure for the policy network in the first
experiment, we now extend the network by changing and extending the input
and output. For the input, we consider to use not only the board to play called
beforestate2 but also the board after the slides (and before appearing a new tile)
called afterstate. For the output, we compute policy and/or value (of expected
score until the game end).

Network Structure. Based on the network CNN12 in the first experiment,
we design three additional networks as shown in Fig. 5. Note that the network
Policy is the same as CNN12 in Fig. 2 (c).

The network Value is a straightforward conversion to a value network. It takes
an afterstate of the intended move and computes a single value as the output.
The network Dual is a combination of Policy and Value, where the parameters
are mostly shared in the network. We expected that by this design with shared
variables, we could capture features in the boards more effectively. The last
network Policy AS is also a policy network but it takes not only the beforestate
but also four afterstates corresponding to all the moves. Parameters are shared
among five subnetworks. It is worth noting that in Game 2048 an afterstate
2 The terms beforestate and afterstate are from Szubert and Jaśkowski [12].

A Further Investigation of Neural Network Players for Game 2048 61

Fig. 5. Structure of networks used in the second experiment. The dashed parts (Conv
3ply + FC) correspond to one in Fig. 2 (c).

Table 6. Size and cost of neural networks used in the second experiment.

Learning Playing

Name # parameters Time GPU memory Time GPU memory

Policy 3 681 284 117 min 3 181 MiB 1.95 ms 765 MiB

Value 3 680 513 136 min 3 581 MiB 3.33 ms 765 MiB

Dual (policy) 3 681 541 248 min 3 581 MiB 3.70 ms 761 MiB

(value) 5.45 ms 765 MiB

Policy AS 3 685 380 370 min 4 733 MiB 6.89 ms 765 MiB

could completely differ from the beforestate. We expect that the performance of
the player would be improved by extending the input with afterstates.

Supervised Learning. From the results of the first experiment, we use the
dataset acg17 only in the second experiment.

The loss function for the Policy and Policy AS networks is cross entropy (not
changed). The loss function for the Value network is mean square error against
the score obtained until the game end. In the Dual network, we have two loss
values: the cross entropy of the policy part (policy loss) and the mean square
error of the value part (value loss). Since the scale of the two loss values is very
different, we scale the value loss down to the policy loss based on the ratio in
the previous batch, before summing up the two loss values.

62 K. Matsuzaki

Table 7. Evaluation results of the second experiment.

Name Loss Agreement [%] Score

Policy 1× 108 actions 0.535± 0.018 75.63± 0.63 77 074± 6 351

2× 108 actions 0.513± 0.027 75.92± 0.63 91 728± 5 609

Value 1× 108 actions 2.27× 1010 ± 3.9× 108 32.77± 0.34 1 091± 190

2× 108 actions 2.26× 1010 ± 3.9× 108 29.82± 0.12 1 121± 199

Dual (policy) 1× 108 actions 0.127± 0.023 23.74± 0.66 1 431± 162

2× 108 actions 0.120± 0.017 23.86± 0.33 1 209± 281

(value) 1× 108 actions 2.28× 1010 ± 2.4× 108 32.57± 0.37 3 000± 210

2× 108 actions 2.27× 1010 ± 3.8× 108 32.90± 0.10 3 021± 451

Policy AS 1× 108 actions 0.514± 0.021 77.01± 0.33 174 486± 7 407

2× 108 actions 0.481± 0.025 78.01± 0.08 215 803± 12 060

Fig. 6. Agreement ratio of the second
experiment.

Fig. 7. Average score of the second
experiment.

The other settings (number of actions learnt, methods of evaluation, playing
method by majority vote, etc.) are the same as the first experiment.

Table 6 summarizes the number of parameters, time and GPU memory for
the learning and playing phases. By the sharing of parameters, the numbers of
parameters of the four networks are almost the same. For the GPU memory for
the training phase, Policy AS consumed a bit more than the others. Whereas,
the training time and the playing time differ considerably. Playing with value
networks (Value and Dual) took longer time than policy networks, because we
need to compute values for four afterstates. The network Policy AS took the
longest time3 both for training and playing because of the five paths for the
beforestate and the afterstates.

Evaluation. Table 7 shows the experiment results after learning 1 × 108 and
2 × 108 actions. Figures 6 and 7 plot the agreement ratio and the average score
of test plays, respectively. Dual (policy) and Dual (value) means that we used
the policy part and the value part for the evaluation, respectively.

3 But the factor was less than 3.6.

A Further Investigation of Neural Network Players for Game 2048 63

First of all, the obtained networks for Value and Dual completely failed to
play, even though the loss values decreased over the training. Due to the ran-
domness in Game 2048, scores after a certain board could change by more than
106. Considering this fact, the loss values about 2.26 × 1010 were sufficiently
small. However, the scores of test plays with these two value networks were at
the level of a random player. This bad result coincides with our previous trials
of supervised learning for value networks [3]. We guess that the large variance
of scores spoiled the training of value networks, and detailed analysis remains as
our future work.

For the network Dual, the loss value of the policy part decreased to 0.12,
which was much smaller than that of the network Policy. On the contrary, the
agreement ratio and the score of test plays were quite bad. Since the loss values
and the results of evaluations were inconsistent, we checked the output of the
policy part and found that the outputs were either zero or one for most of the
cases. Therefore, we guess that it started overfitting at an early stage of the
training.

We achieved a success only with the network Policy AS. Though the improve-
ment in terms of the loss value and the agreement ratio was rather small, we
obtained a large improvement in terms of score of test plays. By attaching after-
states to the input, the network could look-ahead by a move and thus avoided
to select some dangerous states. This reason was supported by the clear rate
(achieving a 2048-tile) in the test plays: the clear ratio of the Policy network was
87.2% and that of the Policy AS network increased up to 98.8%.

Note that the average score of the acg17 players with the greedy (1-ply search)
plays was 211 017. Our Policy AS player is the first neural-network player that
achieved almost the same performance as top-level N-tuple-network players by
a greedy (1-ply search) play if we ignore the playing time4.

6 Conclusion

In this paper, we further investigated the NN-based players in two aspects.
Firstly, we focused on the component of the networks. We compared NN-based
players with full-connect layers, convolution layers with 2 × 2 filters, and con-
volution layers with 1 × 2 filters. We also compared the performance of these
players by using two sets of playlogs from two different players. Secondly, we
explored the input and/or output of networks. We designed four networks by
changing the input and output of the networks.

The following are the important findings from experiment results. (1) Using
full-connect layers only (multi-layer perceptrons) was not as good as convolu-
tional networks with small filters. (2) Convolution layers with small 1× 2 filters
was the best for Game 2048. (3) We could obtain very different players from play-
logs with similar performance. (4) Training of value networks failed for Game
2048. (5) Performance of policy networks was improved largely by extending the
4 The playing time of player Policy AS was about 5 000 times as long as that of N-

tuple-network players.

64 K. Matsuzaki

input with afterstates. (6) The best average score achieved was 215 803 without
search techniques.

One important topic for future work is to identify the reason of the failure for
the value networks. Another topic is to apply reinforcement learning methods to
the networks to obtain better results.

Acknowledgment. The training data acg17 and nneo used in this study were gener-
ated with the support of the IACP cluster in Kochi University of Technology.

References

1. Cirulli, G.: 2048 (2014). http://gabrielecirulli.github.io/2048/
2. David, O.E., Netanyahu, N.S., Wolf, L.: DeepChess: end-to-end deep neural net-

work for automatic learning in chess. In: Villa, A.E.P., Masulli, P., Pons Rivero,
A.J. (eds.) ICANN 2016, Part II. LNCS, vol. 9887, pp. 88–96. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44781-0 11

3. Fujita, R., Matsuzaki, K.: Improving 2048 player with supervised learning. In:
Proceedings of 6th International Symposium on Frontier Technology, pp. 353–357
(2017)

4. Guei, H., Wei, T., Huang, J.B., Wu, I.C.: An early attempt at applying deep
reinforcement learning to the game 2048. In: Workshop on Neural Networks in
Games (2016)

5. Jaśkowski, W.: Mastering 2048 with delayed temporal coherence learning, multi-
stage weight promotion, redundant encoding and carousel shaping. IEEE Trans.
Comput. Intell. AI Games 10(1), 3–14 (2018)

6. Kondo, N., Matsuzaki, K.: Playing game 2048 with deep convolutional neural net-
works trained by supervised learning. J. Inf. Process. 27, 340–347 (2019)

7. Lai, M.: Giraffe: Using Deep Reinforcement Learning to Play Chess. Master’s the-
sis, Imperial College London (2015). arXiv:1509.01549v1

8. Matsuzaki, K.: Developing a 2048 player with backward temporal coherence learn-
ing and restart. In: Winands, M.H.M., van den Herik, H.J., Kosters, W.A. (eds.)
ACG 2017. LNCS, vol. 10664, pp. 176–187. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-71649-7 15

9. Samir, M.: An attempt at applying Deep RL on the board game 2048 (2017).
https://github.com/Mostafa-Samir/2048-RL-DRQN

10. Silver, D., et al.: Mastering Chess and Shogi by self-play with a general reinforce-
ment learning algorithm. arXiv 1712.01815 (2017)

11. Silver, D.: Mastering the game of go without human knowledge. Nature 550, 354–
359 (2017)

12. Szubert, M., Jaśkowski, W.: Temporal difference learning of N-tuple networks
for the game 2048. In: 2014 IEEE Conference on Computational Intelligence and
Games, pp. 1–8 (2014)

13. tjwei: A deep learning AI for 2048 (2016). https://github.com/tjwei/2048-NN
14. Virdee, N.: Trained a convolutional neural network to play 2048 using deep-

reinforcement learning (2018). https://github.com/navjindervirdee/2048-deep-
reinforcement-learning

15. Yeh, K.-H., Wu, I.-C., Hsueh, C.-H., Chang, C.-C., Liang, C.-C., Chiang, H.: Multi-
stage temporal difference learning for 2048-like games. IEEE Trans. Comput. Intell.
AI Games 9(4), 369–380 (2016)

http://gabrielecirulli.github.io/2048/
https://doi.org/10.1007/978-3-319-44781-0_11
http://arxiv.org/abs/1509.01549v1
https://doi.org/10.1007/978-3-319-71649-7_15
https://doi.org/10.1007/978-3-319-71649-7_15
https://github.com/Mostafa-Samir/2048-RL-DRQN
https://arxiv.org/abs/arXiv 1712.01815
https://github.com/tjwei/2048-NN
https://github.com/navjindervirdee/2048-deep-reinforcement-learning
https://github.com/navjindervirdee/2048-deep-reinforcement-learning

A Further Investigation of Neural Network Players for Game 2048 65

16. Wiese, G.: 2048 reinforcement learning (2018). https://github.com/georgwiese/
2048-rl

17. Xiao, R.: nneonneo/2048-ai (2015). https://github.com/nneonneo/2048-ai

https://github.com/georgwiese/2048-rl
https://github.com/georgwiese/2048-rl
https://github.com/nneonneo/2048-ai

A Novel Application for Game Tree
Search - Exploiting Pruning Mechanisms

for Quantified Integer Programs

Michael Hartisch(B) and Ulf Lorenz

Chair of Technology Management, University of Siegen, Siegen, Germany
{michael.hartisch,ulf.lorenz}@uni-siegen.de

Abstract. We investigate pruning in search trees of so-called quanti-
fied integer (linear) programs (QIPs). QIPs consist of a set of linear
inequalities and a minimax objective function, where some variables are
existentially and others are universally quantified. A good way to solve a
QIP is to apply game tree search, enhanced with non-chronological back-
jumping. We develop and theoretically substantiate tree pruning tech-
niques based upon algebraic properties. The presented Strategic Copy-
Pruning mechanism allows to implicitly deduce the existence of a strategy
in linear time (by static examination of the QIP-matrix) without explic-
itly traversing the strategy itself. We show that the implementation of
our findings can massively speed up the search process.

1 Introduction

Prominent solution paradigms for optimization under uncertainty are Stochastic
Programming [5], Robust Optimization [3], Dynamic Programming [2], Sampling
[11] and POMDP [21]. Relatively unexplored are the abilities of linear program-
ming extensions for PSPACE-complete problems. In the early 2000s the idea of
universally quantified variables, as they are used in quantified constraint sat-
isfaction problems [10], was picked up again [27], coining the term quantified
integer program (QIP). Quantified integer programming is a direct, very for-
mal extension of integer linear programming (IP), making QIPs applicable in
a very natural way. They allow robust multistage optimization extending the
two-stage approach of Robust Optimization [3]. Multistage models - in contrast
to two-stage models - allow more precise planning strategies as uncertain events
typically do not occur all at the same time (delay in timetables, changed cost
estimate for edges in a graph, alternating moves in games).

Let us start with the following illustrative application. There are b runways at
your airport and all arriving airplanes must be assigned to exactly one time slot
for the landing (therefore a natural worst-case optimization problem). Further,

This research is partially supported by the German Research Foundation (DFG) project
“Advanced algorithms and heuristics for solving quantified mixed - integer linear pro-
grams”.

c© Springer Nature Switzerland AG 2020
T. Cazenave et al. (Eds.): ACG 2019, LNCS 12516, pp. 66–78, 2020.
https://doi.org/10.1007/978-3-030-65883-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65883-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-65883-0_6

Exploiting Pruning Mechanisms for QIPs 67

the airplanes are expected to arrive within some time window and hence the
assigned time slot must adhere to those time windows. Finding an initial match-
ing, even an optimal one considering some objective function, can be modeled
and solved using mixed integer programming techniques [14]. However, the time
windows are uncertain due to adjusted airspeed (due to weather) or operational
problems and an initial schedule might become invalid (see for example Fig. 1).
Thus, one is interested in a robust initial plan that can be adapted cheaply,

Fig. 1. Process of runway scheduling: A schedule for the initial time windows is made
(left). If the predicted time windows differ from the actually occurring time windows
(middle), the initial plan becomes invalid and a new scheduling must be found (right).

e.g. the initial and adapted time slot of each airplane should not be too far
apart from each other [13]. These uncertain events, however, do not uncover all
at the same time: final time slots must be assigned to some airplanes while for
other airplanes the actual time window is still unknown. This problem is literally
crying out to be modeled as a QIP.

A solution of a QIP is a strategy – in the game tree search sense [22] – for
assigning existentially quantified variables such that some linear constraint sys-
tem is fulfilled. By adding a minimax objective function the aim is to find the
best strategy [19]. As not unusual in the context of optimization under uncer-
tainty [3,4] a polyhedral uncertainty set can be used [12]. There are two different
ways known how to tackle a QIP: On the one hand the so-called deterministic
equivalent program can be built, similar to the ones known from stochastic pro-
gramming [5], and solved using standard integer programming solvers. On the
other hand the more natural approach is to conduct a game tree search [18,26].
We are interested in utilizing game solving techniques [25,28] in combination
with linear programming techniques as well as pruning and backjumping tech-
niques from QBF [6]. Recently our solver for quantified mixed integer programs
was made available as open source. This solver combines techniques known from
game tree search, linear programming and QBF [9].

An optimization task is often split up into two parts: finding the optimal
solution itself and proving that no better solution can exist. For the latter, it
turned out that applying backjumping techniques as utilized by QBF-solvers
[29] and cutting planes as commonly used in integer programming [20] are also

68 M. Hartisch and U. Lorenz

highly beneficial for QIPs in order to assess that no (better) strategy can exist
in certain subtrees. For the first task, however, it seems that the exponential
number of leaves belonging to a strategy must be traversed explicitly. This is
certainly true in the worst-case. However, typically there are “difficult” parts
of a game tree where a very deliberated substrategy must be found but also
other parts where a less sophisticated substrategy suffices. In this paper we
present a procedure, called strategic copy-pruning (SCP), that is capable of rec-
ognizing such subtrees making it possible to implicitly deduce the existence of
a winning strategy therein. In contrast to similar ideas in QBF, as e.g. coun-
terexample guided abstraction refinement [16], an optimization process over a
minimax objective must be considered. Further, our SCP draws its power not
from memory-intensive learning, but from deep findings in the search tree. This
perspective has led to remarkable achievements in the past [7,15]. For game
tree search there are already several algorithms trying to rapidly show the exis-
tence of winning strategies such as Kawano’s simulation [17], MTD(f) [23] and
(nega)scout [24]. They, however, always have to traverse an exponential num-
ber of leafs. In our experiments, SCP often allows to conclude the existence of
an winning strategy with a linear number of algebraic operations and in par-
ticular, in those cases it is not necessary to examine an exponential number of
leaves resulting in a significant performance improvement both in time (about
a factor 4) and number of solved instances. The effect of SCP is reinforced if
the sequence of variable assignments predicted as optimal by minimax for both
sides, called the principal variation [8], is traversed in an early stage of the tree
search. Detecting and verifying this particular variable assignment is essential in
order to obtain the objective value. Thus having reasonable knowledge of which
universal variable assignments are particularly vicious can massively boost the
search process. Several heuristics exist to analyze and find such promising moves
in a game tree search environment [1,23,25]. The paper is organized as follows:
First basic definitions and notations regarding QIPs are presented. Then two
pruning techniques for the QIP game tree search are introduced: First, the well
known monotonicity [6] of variables is recaptured. Second, as our main result,
we derive from already found strategies the existence of winning strategies in
other branches. This happens in a way such that these branches do not need to
be investigated explicitly. Finally the conducted experiments are presented.

2 Preliminaries: Basics of Quantified Integer
Programming

Let n ∈ N be the number of variables and x = (x1, . . . , xn)� ∈ Z
n a vector

of variables.1 For each variable xj its domain Lj with lj , uj ∈ Z, lj ≤ uj ,
1 ≤ j ≤ n, is given by Lj = {y ∈ Z | lj ≤ y ≤ uj}. The domain of the entire
variable vector is described by L = {y ∈ Z

n | ∀j ∈ {1, . . . , n} : yj ∈ Lj},

1
Z, N and Q denote the set of integers, natural numbers, and rational numbers,
respectively.

Exploiting Pruning Mechanisms for QIPs 69

i.e. each variable must obey its domain. Let Q ∈ {∃,∀}n denote the vector of
quantifiers. We call E = {j ∈ {1, . . . , n} | Qj = ∃} the set of existential variables
and A = {j ∈ {1, . . . , n} | Qj = ∀} the set of universal variables. Further, each
maximal consecutive subsequence in Q consisting of identical quantifiers is called
quantifier block with Bi ⊆ {1, . . . , n} denoting the i-th block. Let β ∈ N, β ≤ n,
denote the number of blocks and thus β − 1 is the number of quantifier changes.
The variable vector of variable block Bi will be referred to as x(i).

Definition 1 (Quantified Integer Linear Program (QIP)). Let A ∈
Q

m×n and b ∈ Q
m for m ∈ N and let L and Q be given as described above.

Let c ∈ Q
n be the vector of objective coefficients and let c(i) denote the vector of

coefficients belonging to block Bi. Let the term Q◦x ∈ L with the component wise
binding operator ◦ denote the quantification vector (Q1x1 ∈ L1, . . . , Qnxn ∈ Ln)
such that every quantifier Qj binds the variables xj to its domain Lj. We call
(A, b, c,L, Q) with

z = min
B1

(
c(1)x(1) + max

B2

(
c(2)x(2) + . . . min

Bβ

c(β)x(β)

))

s.t. Q ◦ x ∈ L : Ax ≤ b (�)

a QIP with objective function (for a minimizing existential player).

For simplicity’s sake, and since it goes well with the example in Fig. 1, we will
consider only binary QIPs, i.e. lj = 0 and uj = 1 for all j ∈ {1, . . . , n}. However,
note that our results and in particular Theorem 1 can easily be adapted to be
valid for general integer variables.

A QIP instance can be interpreted as a two-person zero-sum game between
an existential player setting the existentially quantified variables and a universal
player setting the universally quantified variables with payoff z. The variables
are set in consecutive order according to the variable sequence. Consequently, we
say that a player makes the move xk = y if she fixes the variable xk to y ∈ Lk.
At each such move, the corresponding player knows the settings of x1, . . . , xk−1

before taking her decision xk. If the completely assigned vector x ∈ L satisfies
the linear constraint system Ax ≤ b, the existential player pays z = c�x to the
universal player. If x does not satisfy Ax ≤ b, we say the existential player loses
and the payoff will be +∞. This is a small deviation from conventional zero-sum
games but using2 ∞+(−∞) = 0 also fits for zero-sum games. The chronological
order of the variable blocks given by Q can be represented using a game tree
G = (V,E, c) with V = V∃ ∪ V∀ ∪ VL consisting of existential, universal and
leaf nodes [9]. Thus, a path from the root to a leaf represents a play of the
QIP and the sequence of edge labels encodes its moves, i.e. the corresponding
variable assignments. Solutions of a QIP are strategies [9]. In the following, the
word strategy will always refer to an existential strategy. A strategy is called a
winning strategy if all paths from the root node to a leaf represent a vector x
such that Ax ≤ b. A QIP is called feasible if (�) is true (see Definition 1), i.e. if a

2 This is only a matter of interpretation and consequences are not discussed further.

70 M. Hartisch and U. Lorenz

winning strategy exists. If there is more than one winning strategy, the objective
function aims for a certain (the “best”) one. The value of a strategy is given by
its minimax value which is the maximum value at its leaves [22]. Note that a
leaf not fulfilling Ax ≤ b can be represented by the value +∞. The objective
value of a feasible QIP is the minimax value at the root, i.e. the minimax value
of the optimal winning strategy, defined by the principal variation (PV) [8]:
the sequence of variable assignments being chosen during optimal play. For any
v ∈ V we call f(v) the outcome of optimal play by both players starting at v.

Example. Let us consider a QIP with n = 4 binary variables:

min(2x1 max(−2x2 min(−3x3 max(−2x4))))
s.t. ∃x1 ∈ {0, 1} ∀x2 ∈ {0, 1} ∃x3 ∈ {0, 1} ∀x4 ∈ {0, 1} :

x1 +x2 +x3 ≤ 2
−x1 +x3 −x4 ≤ 0

−x2 +x3 −x4 ≤ 0
−x1 +x2 −x3 +x4 ≤ 1

The minimax value of the root node (for the minimizing starting player) of
the game tree is 2 and the principal variation is given by x1 = 1, x2 = 0, x3 = 0
and x4 = 0. The inner node at level 1 resulting from setting x1 = 0 has the
minimax value +∞, i.e. after setting x1 = 0 there exists no winning strategy.

3 Pruning in QIP Search Trees

3.1 Theoretical Analysis

In a natural way, a quantified integer program can be solved via game tree
search. During such a tree search we are interested in quickly evaluating or
estimating the minimax value of nodes, i.e. we want to examine the optimal
(existential) strategy of the corresponding subtree. In order to speed up the
search process, limiting the number of subtrees that need to be explored is
extremely beneficial. Such pruning operations are applied in many search based
algorithms, e.g. the alpha-beta algorithm [18], branch-and-bound [20] and DPLL
[29]. In the following, we will present two approaches that allow pruning in a
QIP game tree search, and thus in a strategic optimization task.

In case of QIPs certain variable assignments never need to be checked as they
are worse than their counterparts. The concept of monotone variables is already
well known for quantified boolean formulas [6] and integer programming [20].

Definition 2 (Monotone Variable)
A variable xk of a QIP is called monotone if it occurs with only positive or only
negative sign in the matrix and objective, i.e. if the entries of A and c belonging
to xk are either all non-negative or all non-positive.

Exploiting Pruning Mechanisms for QIPs 71

Using this easily verifiable monotonicity allows us to omit certain subtrees a
priori since solving the subtree of its sibling is guaranteed to yield the desired
minimax value.

In contrast to this usage of prior knowledge we also want to gather deep
knowledge during the search process: found strategies in certain subtrees can
be useful in order to assess the minimax value of related subtrees rapidly. The
idea is based upon the observation that typically in only a rather small part of
the game tree a distinct and crafty strategy is required in order to ensure the
fulfillment of the constraint system: in the right-hand side subtree of Fig. 2 it
suffices to find a fulfilling existential variable assignment for only one scenario
(universal variable assignment) and reuse it in the other branches.

x∀ = 0 x∀ = 1

Fig. 2. Illustrative strategy for which the universal assignment x∀ = 1 entails a simple
winning strategy: Regardless of future universal decisions existential variables can be
set in a certain simple way, e.g. the existential decisions in the dashed ellipse are all
the same. x∀ = 0 on the other hand compels a more clever strategy, e.g. the existential
decisions in the dotted ellipse differ depending on previous universal decisions.

Theorem 1. [Strategic Copy-Pruning (SCP)]
Let k ∈ A and let (x̃1, . . . , x̃k−1) ∈ {0, 1}k−1 be a fixed variable assignment of
the variables x1, . . . , xk−1. Let v ∈ V∀ be the corresponding universal node in the
game tree. Let w̃ ∈ V and ŵ ∈ V be the two children of v corresponding to the
variable assignment x̃k and x̂k = 1− x̃k of the universal variable xk, respectively.
Let there be an optimal winning strategy for the subtree below w̃ with minimax
value f(w̃) = z̃ defined by the variable assignment x̃ = (x̃1, . . . , x̃n) ∈ {0, 1}n,
i.e. z̃ = c�x̃. If the minimax value of the copied strategy for the subtree below
ŵ - obtained by adoption of future3 existential variable assignments as in x̃ - is
not larger than z̃ and if this copied strategy constitutes a winning strategy then
f(v) = z̃. Formally: If both

ck(x̂k − x̃k) +
∑

j∈A, j>k
and cj≥0

cj(1 − x̃j) −
∑

j∈A, j>k
and cj<0

cj x̃j ≤ 0 (1)

and ∑
j∈E

or j<k

Ai,j x̃j + Ai,kx̂k +
∑

j∈A, j>k
and Ai,j>0

Ai,j ≤ bi (2)

3 Future means variable blocks with index ≥ k.

72 M. Hartisch and U. Lorenz

for all constraints i ∈ {1, . . . , m} then f(v) = z̃.

For clarification note that Condition (1) ensures that the change in the min-
imax value of the copied strategy, resulting from flipping xk and using the worst
case assignment of the remaining future universal variables, is not positive, i.e.
that its minimax value is still smaller than or equal to z̃. Condition (2) verifies
that every constraint is satisfied in each leaf of the copied strategy by ensuring
the fulfillment of each constraint in its specific worst case scenario.

Proof. If (2) is satisfied there automatically exists a winning strategy for the
subtree of v corresponding to xk = x̂k with root node ŵ, since for any future
universal variable assignment the assignment of upcoming existential variables as
in x̃ fulfills the constraint system. Further, the minimax value ẑ of this strategy
is smaller than or equal to z̃ due to Condition (1):

ẑ =
∑
j∈E

or j<k

cj x̃j + ckx̂k +
∑

j∈A, j>k
and cj≥0

cj

(1)

≤
∑
j∈E

or j<k

cj x̃j + ckx̃k +
∑

j∈A, j>k

cj x̃j = z̃

Hence, the (still unknown) optimal strategy for the subtree below ŵ has a min-
imax value smaller than or equal to z̃, i.e. f(ŵ) ≤ ẑ ≤ z̃ = f(w̃). Therefore,
f(v) = f(w̃) = z̃.

Note that, since Ax̃ ≤ b, Condition (2) is trivially fulfilled for any constraint
i ∈ {1, . . . , m} with Ai,j = 0 for all j ∈ A, j ≥ k, i.e. constraints that are not
influenced by future universal variables do not need to be examined. Hence, only
a limited number of constraints need to be checked in case of a sparse matrix.
Further, note that (1) is fulfilled if cj = 0 for all j ∈ A, j ≥ k, i.e. if the future
universal variables have no direct effect on the objective value. In particular,
if c = 0, i.e. it is a satisfiabilty problem rather than an optimization problem,
Condition (1) can be neglected as it is always fulfilled.

3.2 SCP Implementation Details

As soon as a leaf v is found during the tree search with the corresponding xv being
a potentially new PV for this subtree the following mechanism is invoked: the two
Conditions (1) and (2) of Theorem 1 are checked at each universal node starting
from this leaf towards the root (Line 5). While both conditions are fulfilled the
corresponding universal nodes are marked as potentially finished. If one of the
conditions is not satisfied the remaining universal nodes above are marked as
unfinished. If a level is closed during the tree search and the above universal
node is marked as potentially finished this level also can be closed immediately
as a strategy is guaranteed in the other branch with worse objective value (from
the universal player’s point of view). The unmarking of universal nodes (Line 8)
is necessary since Theorem 1 demands xv to be the actual PV of this subtree
and hence previous markings where made based on a false assumption.

Exploiting Pruning Mechanisms for QIPs 73

Algorithm 1. Marking of potentially finished universal nodes
Input: leaf node v

1: useSCP=true;
2: repeat
3: v=parent(v);
4: if v ∈ V∀ then
5: if useSCP and v fulfills Conditions (1) and (2) then
6: mark v as potentially finished;
7: else
8: useSCP=false; mark v as unfinished;
9: end if

10: end if
11: until v is root node

3.3 Example

Consider the following binary QIP (The min/max alternation in the objective
and the binary variable domains are omitted):

min 2x1 + 3x2 − 2x3 − 2x4 + x5

s.t. ∃x1 ∀x2 ∃x3 ∀x4 ∃x5 :
x1 − x2 + x3 + 3x4 − x5 ≤ 2

3x1 + 2x2 + 3x3 + x4 − 2x5 ≤ 1

Starting at the root node of the corresponding game tree we can immediately
omit the subtree corresponding to x1 = 1 due to the monotonicity of x1. Keep in
mind that the result of Theorem 1 is particularly beneficial if the search process
of a QIP solver first examines the principal variation, i.e. the variable assignment
defining the actual minimax value. Assume the search process follows the path
drawn thick in Fig. 3 to node v8, i.e. the path corresponding to the variable
assignment x1 = 0, x2 = 1, x3 = 0 and x4 = 0. Setting x5 = 1 is optimal in this
case, as x5 = 0 would violate the second constraint. Hence, the minimax value
of v8 is 4. On the way up in the search tree we then want to determine f(v5).
As (1) and (2) are fulfilled for k = 4, z̃ = 4 and x̃ = (0, 1, 0, 0, 1) we know that
f(v5) = 4. That means we have (easily) verified a winning strategy starting from
v9 with minimax value smaller than or equal to 4. In node v3 setting x3 = 1
is obviously to the detriment of the existential player, as the second constraint
would become unfulfillable. Hence, f(v3) = f(v5) = 4. In node v1 we once again
try to apply Theorem 1 by copying the existential decisions of x3 and x5 in
the thick path to the not yet investigated subtree associated with x2 = 0. As
(1) and (2) are fulfilled for k = 2, z̃ = 4 and x̃ = (0, 1, 0, 0, 1) this attempt is
successful and f(v1) = 4. Note that by applying Theorem 1 the minimax value
of the subtrees below v2 and v9 are not known exactly: in particular we only
obtain f(v2) ≤ ẑ = 1, whereas a better strategy exists resulting in f(v2) = 0
(Setting x5 = 0 in node v6).

Hence, by finding the principal variation first (thick path), exploiting mono-
tonicity of x1 at node v0, Theorem 1 at node v1 and v5 and some further reasoning

74 M. Hartisch and U. Lorenz

v0

v1

v2

v4

v6

1

x5 = 1

x4 = 0

v7

-1

x5 = 1

x4 = 1

x3 = 0

x2 = 0

v3

v5

v8

4

x5 = 1

x4 = 0

v9

2

x5 = 1

x4 = 1

x3 = 0

x2 = 1

x1 = 0

MIN

MAX

MIN

MAX

MIN

Fig. 3. Optimal winning strategy for the QIP. Circular nodes are existential decision
nodes, rectangular nodes are universal decision nodes and pentagonal nodes are leaves.
The values given in the leaves constitute the objective value corresponding to the
variable assignment along the path from the root to this leaf. The dashed lines indicate
that those existential decisions where simply copied from the path drawn thicker.

from linear programming at node v3 and v8 the minimax value at the root node
v0 was found to be 4 with optimal first stage solution x1 = 0.

Theorem 1 can particularly come into effect if the branching decisions at
universal nodes result in rather vicious scenarios, i.e. in variable assignments
restricting the constraint system and maximizing the objective value. Hence,
the applicability of the presented results largely depends on the implemented
diving and sorting heuristic.

4 Solver, Experiments and Results

We use our open source4 solver Yasol [9] to analyze the theoretical findings.
The solver basically performs an enhanced alpha-beta-search and proceeds in
two phases: a feasibility phase, where it is checked whether the instance has
any solution at all, and an optimization phase for finding the provable optimal
solution. We enhanced this solver in two different ways:

1. The detection and exploitation of monotone variables.
2. The adoption of existing winning strategies from one branch of a universal

node to another (SCP).

The SCP-enhancement can be switched on and off in both phases separately.
The instances used to study the effect of the presented results are run-

way scheduling problems under uncertainty as motivated in the introduction.

4 Sources are available at http://www.q-mip.org.

http://www.q-mip.org

Exploiting Pruning Mechanisms for QIPs 75

They were created following the ideas presented in [13]. The task is to find a b-
matching: all airplanes must be assigned to exactly one time slot, while one time
slot can take in at most b airplanes. Furthermore, the airplanes must land within
an uncertain time window. Hence, we are interested in an initial matching plan
that can be fixed cheaply if the mandatory time windows for some airplanes do
not contain the initially scheduled time slot. The testset contains 29 instances5,
varying in the number of airplanes, the number of time slots, the type of allowed
disturbances, the number of universal blocks and the cost function. In terms
of the sizes of the (solved feasible) instances this results in between 100–300
existential variables, 10–30 universal variables and 50–100 constraints.

Table 1. Number of solved instances dependend on the solver setting: exploitation of
monotone variables and SCP in different phases.

monotonicity SCP solved instances

off both phases 24

only optimization phase 21

only feasibility phase 16

off 14

on both phases 25

only optimization phase 25

only feasibility phase 24

off 23

0 1,000 2,000 3,000
0

5

10

15

20

25

time

nu
m

be
r

of
so

lv
ed

in
st

an
ce

s

Off/Both
Off/Opt
Off/Feas
Off/Off

0 1,000 2,000 3,000

5

10

15

20

25

time

nu
m

be
r

of
so

lv
ed

in
st

an
ce

s

On/Both
On/Opt
On/Feas
On/Off

Fig. 4. Comparison of the effect of SCP in different phases of the solver without exploit-
ing monotonicity (left) and when also exploiting monotonicity (right).

In Table 1 and Fig. 4 the number of solved instances and the cumulative solu-
tion diagram is displayed for different settings. For each instance a maximum
5 The studied benchmark instances and a brief explanation can be found at http://

www.q-mip.org/index.php?id=41.

http://www.q-mip.org/index.php?id=41
http://www.q-mip.org/index.php?id=41

76 M. Hartisch and U. Lorenz

Table 2. Average time needed for the 23 instances solved in all four settings while
exploiting monotonicity.

SCP setting off only feas only opt both

average runtime 84s 102s 25s 32s

of one hour solution time was provided. All experiments were executed on a
PC with an Intel i7-4790 (3.6 GHz) processor and 32 GB RAM. If neither of the
presented procedures is used 14 out of 29 instances are solved. Without taking
advantage of the monotonicity SCP can be beneficial in either solution phase
regarding the number of solved instances. If applied in both phases the number
of solved instances is increased up to 24. When also exploiting the monotonicity
the number of solved instances increases to 25. However, SCP turns out to be
somewhat disadvantageous in the feasibility phase. Even though an additional
instance is solved (24) compared to the setting with SCP turned off (23) the
average solution time increases: in Table 2 the average time needed for the 23
instances solved by all versions with turned on monotonicity is displayed. Addi-
tionally using SCP in the feasibility phase slightly increases the average solution
time. Our conjecture is that this is due to biasing effects. Four instances with
more than 100 universal variables and 10000 existential variables were not solved
at all. However, there also are infeasible instances of the same magnitude that
are solved within seconds. In order to assess the performance results, we also
built the deterministic equivalent program of each instance and tried to solve
the resulting integer program using CPLEX 12.6.1.0, a standard MIP solver.
Only six of the 29 instances where solved this way, given the same amount
of time, while for 14 instances not even the construction of the corresponding
DEP could be finished, some of them because of the limited memory of 32 GB
RAM. Experiments conducted on a QBF test collection of 797 instances, taken
from www.qbflib.org, also show positive effects for the SCP version. When only
exploiting monotonicity 644 instances are solved. If additionally SCP is turned
on 674 instances can be solved. Further, the solution time decreases by 15%.

5 Conclusion

We introduced the concept of strategic copy-pruning (SCP) during tree search
for quantified integer programs. SCP makes it possible to omit certain subtrees
during the search process by implicitly verifying the existence of a strategy in
linear time: finding a single leaf and applying SCP can be sufficient to guar-
antee an optimal strategy in an entire subtree. This is standing in contrast to
existing algorithms in which the existence of a strategy is proven by traversing
it explicitly. In addition, we presented how those findings can be applied in a
search environment. Experiments showed that utilizing our approach resulted in
a massive boost in both the number of solved instances and the solution time
(about 4 times faster) on a particular testset. The achievement opens the door
to solving larger and more complex real-world problems.

www.qbflib.org

Exploiting Pruning Mechanisms for QIPs 77

References

1. Akl, S., Newborn, M.: The principal continuation and the killer heuristic. In: ACM
1977, pp. 466–473 (1977)

2. Bellman, R.: Dynamic Programming. Dover Publications Incorporated, Mineola
(2003)

3. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton Uni-
versity Press, Princeton (2009)

4. Bertsimas, D., Brown, D., Caramanis, C.: Theory and applications of robust opti-
mization. SIAM Rev. 53(3), 464–501 (2011)

5. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New
York (2011). https://doi.org/10.1007/978-1-4614-0237-4

6. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate
quantified Boolean formulae and its experimental evaluation. J. Autom. Reasoning
28(2), 101–142 (2002)

7. Campbell, M., Hoane, A., Hsu, F.H.: Search control methods in deep blue. In:
AAAI Spring Symposium on Search Techniques for Problem Solving under Uncer-
tainty and Incomplete Information, pp. 19–23 (1999)

8. Campbell, M., Marsland, T.: A comparison of minimax tree search algorithms.
Artif. Intell. 20(4), 347–367 (1983)

9. Ederer, T., Hartisch, M., Lorenz, U., Opfer, T., Wolf, J.: Yasol: an open source
solver for quantified mixed integer programs. In: Winands, M.H.M., van den Herik,
H.J., Kosters, W.A. (eds.) ACG 2017. LNCS, vol. 10664, pp. 224–233. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-71649-7 19

10. Gerber, R., Pugh, W., Saksena, M.: Parametric dispatching of hard real-time tasks.
IEEE Trans. Comput. 44(3), 471–479 (1995)

11. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: approximation algo-
rithms for stochastic optimization. In: ACM 2004, pp. 417–426. ACM (2004)

12. Hartisch, M., Ederer, T., Lorenz, U., Wolf, J.: Quantified integer programs with
polyhedral uncertainty set. In: Plaat, A., Kosters, W., van den Herik, J. (eds.) CG
2016. LNCS, vol. 10068, pp. 156–166. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-50935-8 15

13. Heidt, A., Helmke, H., Kapolke, M., Liers, F., Martin, A.: Robust runway schedul-
ing under uncertain conditions. JATM 56, 28–37 (2016)

14. Helmke, H.: Scheduling algorithms for ATM applications–tools and toys. In: 2011
IEEE/AIAA 30th Digital Avionics Systems Conference, p. 3C2-1. IEEE (2011)

15. van den Herik, H., Nunn, J., Levy, D.: Adams outclassed by hydra. ICGA J. 28(2),
107–110 (2005)

16. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. Artif. Intell. 234, 1–25 (2016)

17. Kawano, Y.: Using similar positions to search game trees. Games No Chance 29,
193–202 (1996)

18. Knuth, D., Moore, R.: An analysis of alpha-beta pruning. Artif. Intell. 6(4), 293–
326 (1975)

19. Lorenz, U., Wolf, J.: Solving multistage quantified linear optimization problems
with the alpha-beta nested benders decomposition. EURO J. Comput. Optim.
3(4), 349–370 (2015)

20. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. Wiley-
Interscience, New York (1988)

https://doi.org/10.1007/978-1-4614-0237-4
https://doi.org/10.1007/978-3-319-71649-7_19
https://doi.org/10.1007/978-3-319-50935-8_15
https://doi.org/10.1007/978-3-319-50935-8_15

78 M. Hartisch and U. Lorenz

21. Nguyen, D., Kumar, A., Lau, H.: Collective multiagent sequential decision making
under uncertainty. In: AAAI 2017. AAAI Press (2017)

22. Pijls, W., de Bruin, A.: Game tree algorithms and solution trees. Theoret. Comput.
Sci. 252(1), 197–215 (2001)

23. Plaat, A., Schaeffer, J., Pijls, W., de Bruin, A.: Best-first fixed-depth minimax
algorithms. Artif. Intell. 87(1–2), 255–293 (1996)

24. Reinefeld, A.: An improvement to the scout tree search algorithm. ICGA J. 6(4),
4–14 (1983)

25. Schaeffer, J.: The history heuristic and alpha-beta search enhancements in practice.
IEEE Trans. Pattern Anal. Mach. Intell. 11(11), 1203–1212 (1989)

26. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529, 484–503 (2016)

27. Subramani, K.: Analyzing selected quantified integer programs. In: Basin, D.,
Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 342–356.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25984-8 26

28. Winands, M., van den Herik, H., Uiterwijk, J., van der Werf, E.: Enhanced forward
pruning. Inf. Sci. 175(4), 315–329 (2005)

29. Zhang, L.: Searching for truth: techniques for satisfiability of Boolean formulas.
Ph.D. thesis, Princeton, USA (2003)

https://doi.org/10.1007/978-3-540-25984-8_26

New Hex Patterns for Fill and Prune

Nicolas Fabiano1 and Ryan Hayward2(B)

1 Dèpartement d’Informatique, ENS Ulm, Paris, France
2 Department of Computing Science, University of Alberta, Edmonton, Canada

Abstract. For a position in the game of Hex, a fill pattern is a sub-
position with one or more empty cells that can be filled without changing
the position’s minimax value. A cell is prunable if it can be ignored
when searching for a winning move. We introduce two new kinds of
Hex fill – mutual and near-dead – and some resulting fill patterns; we
show four new permanently-inferior fill patterns; and we present three
new prune results, based on strong-reversing, reversing, and game-history
respectively. Experiments show these results slightly reducing solving
time on 8 × 8 openings.

1 Introduction

Black and White alternate turns; on each turn, a player places one stone of their
color on any unoccupied cell. The winner is the player who forms a chain of their
stones connecting their two opposing board sides. See Fig. 1.

5

8

7

9

10

3

4

11

12

6

1

13

14

2

15

16

Fig. 1. An empty 5 × 5 Hex board and a game won by White.

Hex never ends in a draw [3] and it is never disadvantageous to move [14], so
by strategy-stealing the first player has a winning strategy on an empty board
[2]. But, for general sizes, no explicit first-player-wins strategy is known, nor is
the location of a winning opening move. For boards up to 9× 9 (resp. the 10× 10
board) all (4) winning opening moves are known [6,12].

Typical Hex solvers use tree search and these optimizations [1] : a) search
promising moves first (which saves time when the move wins), e.g.. with a neural
network [4], b) prune provably redundant moves (which limits the growth of the
tree size), c) detect wins early, e.g.. by computing virtual connections [8,13], d)
use a transposition table to recognize positions already solved.
c© Springer Nature Switzerland AG 2020
T. Cazenave et al. (Eds.): ACG 2019, LNCS 12516, pp. 79–90, 2020.
https://doi.org/10.1007/978-3-030-65883-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65883-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-65883-0_7

80 N. Fabiano and R. Hayward

In this paper we present new fill and prune results. This is of interest from
a combinatorial game theory (CGT) point of view and can speed up solving
and playing. Fill replaces a position (whole-board pattern) with an equivalent
one with fewer empty cells, which can help all optimizations, especially (b).
Section 2 gives definitions and results, Sect. 3 recalls known fill results, Sect. 4
presents new fill results, Sect. 5 presents new prune results, and Sect. 6 reports
on experiments.

2 General Analysis

s(X) denotes a stone (or move) of player X in cell s. E.g., position C changes to
C + s(W) after White plays in s. X denotes the opponent of player X. The two
players are usually B and W . The following definition – which we will apply to
positions that differ by only a few stones – relies on the relation ≤ from CGT.
We will only use it with positions that differ by just a few stones.

Definition 1 (A pre-order relation). For two positions C, C ′, we say
that C ≤X C ′ when for any player Y , if player X has a winning strategy in
CY to play, then she also has one in C ′

Y to play.

For two patterns P , P ′, we say that P ≤X P ′ when, for every position C that
contains P , if we call C ′ the position where it is replaced by P ′, then C ≤X C ′.

Note 2. Hex is a perfect-information deterministic no-draw 2-player game, so
≤W is exactly ≥B , so =W is the same as =B, which we write as =.

As with Defenition 1, the following definitions and properties can be extended
from positions to patterns: a pattern P has property A if, for every position C
that contains P , C has property A.

Definition 3 (Dead cells and stones). An empty cell s is live for player X
when it is in a minimal (for inclusion) set of empty cells that, if X-colored,
would join X’s two sides. A cell is live for one player whenever it is live for the
other [5]. A cell that is live for neither player is dead. A stone is dead when, if
removed, the associated cell is dead.

Theorem 4. [5] If the empty cell s is dead, then C = C + s(B) = C + s(W).

In practice, dead cells can be detected either by seeing the board as a graph
or by using patterns as those in Fig. 2.

Fig. 2. Each dashed cell is dead. Any whitespace cell can be empty or colored.

New Hex Patterns for Fill and Prune 81

Definition 5 (Fill pattern). An empty cell s is X-fillable when C = C+s(X).

E.g., any dead cell is W -fillable and B-fillable. In practice, X-fillable cells are
usually X-filled and then considered as stones.

Definition 6 (Inferior cells). An empty cell s is X-inferior to another empty
cell t when C + s(X) ≤X C + t(X).

Definition 7 (Reversing a move). A move r(X) X-reverses s(X) when C +
r(X) + s(X) ≥X C.

This CGT notion is useful: after s(X), X should reply with r(X). (Warning:
if s(X) is a blunder, X might have a better reply than r(X).) In some (but not
all) reverse patterns, s(X) can be pruned, e.g.. with vulnerable patterns [5]. In
§ 5.1 we give a condition sufficient to prune some reversible moves.

Definition 8 (X-iterativity). A cell (resp. empty cell) s is X-iteratively dead
(Y -filled) when we can iteratively X-fill some cells that leave s dead (Y -filled).

Theorem 9. If s(X) is X-iteratively dead, then C = C − s(X) = C − s(X) +
s(X).

Proof. Let T be the set of cells that is X-filled to kill s. Then, C = C +T (X) =
C − s(X) + s(X) + T (X) ≥X C − s(X) + s(X) ≥X C − s(X) ≥X C. ��
Theorem 10. If s is X-iteratively X-filled (and so empty) then C = C + s(X).

Proof. Let T be the set of cells that is X-filled to fill s. Then, C = C + T (X) =
C + s(X) + T (X) ≥X C + s(X) ≥X C. ��

Some following results assume C = C + s(X) as an hypothesis, so we can
use iterative death/fill as sufficient conditions. This is also useful for pruning, in
two ways:

– C + s(X) = C + s(X)+ t(X) implies that t is inferior to s for X, so provided
that we explore s, or a move superior to s, we can prune t;

– C + r(X) + s(X) = C + r(X) implies that s(X) is X-reversible by r(X).

3 Previous Fill Results

Dead and iteratively dead cells can be filled. Other fill results are known [7,10]:

Definition 11 (X-captured cells). A set of empty cells S is X-captured when
X has a second-player strategy in S that guarantees every cell in S to be X-
colored or dead.

Theorem 12. If S is X-captured, then any subset of S can be X-filled.

Proof. C + S(X) ≥X C, and the strategy gives C + S(X) ≤X C. ��

82 N. Fabiano and R. Hayward

Fig. 3. Each white-dotted cell is W -captured.

In practice, captured cells are detected using patterns such as those in Fig. 3.

Definition 13 (X-permanently inferior cells). Assume that there is an
empty cell s and a set of empty cells T (with s /∈ T) such that ∀t ∈ T, P +
t(X) + s(X) = P + s(X) = P + t(X) + s(X). Then any cell t ∈ T such that
P + t(X) + s(X) = P + s(X) is said X-permanently inferior.

Theorem 14. If t is X-permanently inferior, then t can be X-filled.

Proof. Let C be such a position and let C ′ = C + t(X). In C (and in C ′), each
cell of T is X-inferior to s and X-reversible by s, so we may assume that one
player will play in s while T is still empty. But after this first move, regardless
of who makes it, t can be filled. ��

Before, only the three patterns shown in Fig. 4 were known.

s s s

Fig. 4. Each white-dotted cell is W -permanently inferior.

4 New Fill Results

4.1 Near-Death Patterns

Definition 15 (Near-death pattern). Pattern P with non-intersecting empty
cell sets b and w and remaining empty cell set x is near-death when these hold:

– if b is B-colored and w is W -colored, then x is dead;
– if w is W -colored, then B has a second-player strategy in b∪ x that leaves all

cells of b black or dead;
– if b is B-colored, then W has a second-player strategy in w ∪ x that leaves all

cells of w white or dead.

New Hex Patterns for Fill and Prune 83

We calls the cells of x nearly dead because, assuming optimal play, each
player can save her side of the pattern and what remains will be dead:

Theorem 16. For a near-death pattern P , P = P + b(B) = P + w(W) =
P + b(B) + w(W).

Proof. First, we have P + w(W) ≥W P + b(B) + w(W) ≥W P + b(B) and
P + w(W) ≥W P ≥W P + b(B), so it is sufficient to prove P + b(B) ≥W

P + b(B) +w(W) ≥W P +w(W), which by symmetry reduces to P + b(B) ≥W

P + b(B) + w(W). Now following the white second-player strategy gives P +
b(B) ≥W P + w(W) + b(B) + x(B) = P + w(W) + b(B). ��
Note 17. In the hypothesis, one might be tempted to replace b ∪ x by w ∪ b ∪ x
(and to remove “if w is W -colored”). This is sufficient for P = P + b(B)+w(W)
but not P = P + w(W), so monocolor-iterativity cannot be used for pruning.

Note 18. When b = ∅ the theorem implies that W -captured cells can be W -filled,
which is not new. But some capture patterns found with b = ∅ are new.

Here is how to produce patterns from this theorem: choose a core death
pattern; remove some stones; add a gadget (pattern of stones and empty cells)
so that, for each cell that had a stone, that cell can be killed by playing in an
empty cell; check whether the theorem applies. See Fig. 5, 6 and 7.

Fig. 5. Start with a pattern where the dashed cell is dead. Remove one stone for
each player. On the final pattern, where two gadgets have been added, apply the
theorem with b containing the black-dotted cell, w containing the white-dotted cell
and x containing the dashed cell.

Fig. 6. A larger near-death pattern, constructed similarly. Here the theorem still applies
if we move the left cell from x to b and the right one from x to w, giving a stronger
result. This phenomenon often occurs when x has at least 2 cells.

This method gives more than 100 new fill patterns of radius 3 (each pattern
has up to 1 + 6 + 12 + 18 = 37 cells).

84 N. Fabiano and R. Hayward

Fig. 7. A new W -capture pattern, constructed similarly

4.2 Mutual-Fill Patterns

Theorem 19. Let P be a pattern with empty cells S, and two disjoint subsets
T , U of S. Denote P ′ = P + T (B) + U(W) and S′ = S\(T ∪ U). Assume this:

∃b ∈ S, P + b(B) = P + S(B); ∃w ∈ S, P + w(W) = P + S(W);
∃b′ ∈ S′, P ′ + b′(B) = P + S(B); ∃w′ ∈ S′, P ′ + w′(W) = P + S(W).

Then P = P ′.

To prove the theorem, it suffices to use that in both P and P ′ whoever plays
first in the pattern gets all of S. We omit the details.

Figure 8 shows the four mutual-fill patterns we found. The leftmost pattern
applies on any empty board with at least two rows and columns.

Fig. 8. In each pattern the dotted cells can be mutually filled.

Note 20. Warning: mutual-fill can change a move from losing to winning. E.g.,
apply the left-most pattern in Fig. 8 to the 2× 2 board: now each corner cell
wins, whereas on the original empty board it is losing.

Note 21. This theorem fills cells for both players at the same time, so it cannot
be used to derive strong-reversible or inferior cells via monocolor-iterativity.

4.3 New X-permanently Inferior Patterns

Along with the permanently inferior patterns of Fig. 4, we found the three new
ones shown in Fig. 9. The leftmost occurs often on a border.

We also found a fourth more complicated pattern, shown in Fig. 10, which
can occur near an acute corner of the board. We omit the proofs that these
patterns are permanently inferior. Combining the left patterns of Figs. 10 and 8
yields the right pattern of Fig. 10.

New Hex Patterns for Fill and Prune 85

s s s

Fig. 9. Three new W -permanently inferior patterns.

s s

Fig. 10. Another new W -permanently inferior pattern, and a corollary.

5 New Prune Results

Previous prune results were based on mustplay (prune moves that let the oppo-
nent a simple way of making a winning connection) and monocolor-iterativity.
This second approach is strengthened by the large number of new fill patterns.
Other results were based on star decomposition [9] – some of which now apply
via mutual-fill or near-death patterns – and on strategy-stealing arguments [1].

Prune results often have the form “if s wins, then t wins”. Thus, we must
take care to avoid logical implication cycles when pruning moves. Warning: some
of our results here are based on game history, which requires extra consideration
when implemented with a transposition table.

5.1 New Theorem Using Reversibility

Here we strengthen a result from [9].

Definition 22 (X-strong-reversing). A move r(X) X-strong-reverses s(X)
when C + r(X) + s(X) = C + r(X).

Definition 23 (Carrier of a X-strong-reverse pattern). For a X-strong-
reverse pattern P where r X-reverses a single cell s, we denote by F the set of
the empty cells except r and s. This is the carrier of the pattern.

Definition 24 (Blocking). A X-strong-reverse pattern P1 blocks another one
P2 when r1 is in F2.

In particular, some patterns (usually called “vulnerable”) have an empty
carrier, so they are never blocked.

86 N. Fabiano and R. Hayward

Fig. 11. (left) The black-dotted cell B-strong-reverses the white-dotted cell (carrier
size 2). (right) The black-dotted cell B-strong-reverses each white-dotted cell (carrier
size 1 each), and neither pattern blocks the other.

Theorem 25. Let (Pn) be a sequence of (possibly overlapping) X-strong-reverse
patterns of a position C. Assume that for all k < n, Pn does not block Pk, and
that X has a winning move in C. Then X has a winning move that is not one
of the sn (or, if there is no other move, then skipping the next move wins).

Proof. The special case where there is no other move is left as an exercise for
the reader.

Argue by contradiction: assume that the theorem is false, and let (Pn)1≤n≤N

be a counter-example with N minimum, i.e. the only winning moves (with X to
play) are among the sn (so N ≥ 1)

By applying the result to (Pn)1≤n≤N−1, we know that sN wins, so C +
rN (X)+sN (X) = C+rN (X) (with X to play) wins for X. In this new position,
we can apply the result to (Pn), from which we remove the potential patterns
for which rN = sn (because X cannot play in sn) or rN = rn (but anyway
in this case sn is X-fillable, so if sn wins for X then any move or even skip-
ping the next move wins) (this removes at least n = N), and we get that
there is a winning move t that is not one of the sn. This means that C +
rN (X)+ t(X) (with X to play) wins for X, so t was a winning move for X in C,
contradiction. ��

5.2 New Reverse Patterns

Theorem 26. Let P be a pattern with exactly 3 empty cells s, t, u such that,
in P + t(X) + u(X), s is dead, and P + s(X) + t(X) + u(X) ≥X P + s(X) +
t(X) + u(X). Then t(X) reverses s(X).

Proof. First, we prove that P + s(X) + t(X) ≥X P + s(X) + u(X). We denote
P1 = P+s(X)+u(X) and P2 = P+s(X)+t(X). Let C1 be a position containing
P1, and let C2 be the position obtained from C1 by replacing P1 with P2. Assume
that C1 wins for X with a strategy S. We will show that C2 also wins for X.

To win in C2, X follows S, pretending that there is P1 instead of P2 until
one player moves in P2. There are three cases:

– If neither player moves in P2, then at the end of the game, after a X move,
X would have a winning connection in C ′

1 and thus in C ′
1 + t(X); and C ′

1 +
t(X) ≤X C ′

2 + u(X) ≤X C ′
2.

New Hex Patterns for Fill and Prune 87

– If S tells X to play in t then X plays instead in u, and we get a position that
S proves wins.

– If X plays in u, then S tells us that C ′
1 + t(X) wins for X, and given C ′

1 +
t(X) ≤X C ′

2 + u(X) we get a position at least as good as one that S proves
wins.

Now we prove that P ≤X P2. Let C be a position containing P , and let C2

be the position obtained from C by replacing P with P2. Assume that C wins
for X with a strategy S. We will show that C2 also wins for X.

To win in C2, X follows S, pretending that there is P instead of P2, until
one player moves in P2. Again, there are three cases:

– If neither player moves in P2, argue as in the same case above.
– If S tells X to play somewhere in P , then X plays in u instead. Then s is

dead so we can consider s to be X-colored, so we get a position at least as
good as one that S proves wins.

– If X plays in P2, then this must be in u given this is the only empty cell.
Then X pretends that X has played in s in P , and follows S accordingly.
P2 is now full, so X can not play there any more. The case where X also
does not play there can be treated as previously. So we may assume that at
some point S tells X to play in P , and we may assume that this is in t since
P + s(X) + t(X) ≥X P + s(X) + u(X). But then S tells us that, after this
move and X’s reply in u, X wins. So the current position wins.

��
To produce patterns from this theorem, we combine one left-gadget (to make

sure that W -coloring t and u kills s) with one right-gadget (to make sure that
B-coloring s and t kills u, which in practice is the only interesting case) from
Fig. 12. This yields 18 patterns, two of which are shown in Fig. 13.

1 1 1

1

1

1

1 1

1

Fig. 12. The 1 (resp. dotted) (resp. empty) cell coresponds to s (t) (u). (left) The six
left-gadgets. (right) The three right-gadgets.

Note 27. Unlike strong-reverse moves, which are mostly pruned (see Thm 25),
a reversible move be good, or even a unique winning move. Often, when s(X)
is really good, X should move in u(X) immediately after t(X). We have not
formalized this observation (in particular the definition of “really good”).

88 N. Fabiano and R. Hayward

1 1

Fig. 13. In each pattern, the white-dotted cell W -reverses 1.

5.3 Self-reversibility

Observation 28. Let s,t,u be empty cells such that C + s(X) + t(X) + u(X) =
C + t(X) + u(X). Then C + u(X) ≥X C + s(X) + t(X) + u(X).

In practice, this means that the move u(X) after the moves s(X), t(X) can
be pruned (up to logical implication cycles), because X should have played in u
instead of s. E.g., this can happen in the games in Fig. 14.

2

1 1 2 2 1

Fig. 14. In each game, after moves 1 and 2, White should not play in the white-dotted
cell.

The conditions of this theorem are easily detected: for a possible move, can
you prove (e.g.. by monocolor-iterativity) that it would make your previous move
useless? If yes, then you should move elsewhere.

6 Experiments

We ran some experiments using the Benzene software package (maintained by
Chao Gao at https://github.com/cgao3/benzene-vanilla-cmake) that includes
the player MoHex and a parallel depth-first proof number (DFPN) search Hex
solver [11,12].

We implemented near-death and new permanently inferior patterns. These
are simply fill patterns, so this was straightforward. We did not implement
mutual fill, due to technical issues mentioned in Note 20.

We also implemented applications of Theorem 25(in greedy fashion) and
the new reversible patterns. We did not implement self-reversibility: we suspect
that the cost of checking for logical implication cycles would yield negligible
improvement.

We compared different implementations by solving a fixed set of 1-move Black
openings on the 8 × 8 board. The results are shown in Fig. 15.

https://github.com/cgao3/benzene-vanilla-cmake

New Hex Patterns for Fill and Prune 89

none Nd Pi F F+St F+St+Rp F+St+Rp’ F+Rp’
a1 103432 93774 96544 93416 93398 95287 88844 88838
b2 341130 356745 316543 320501 327763 384242 316390 316695
c3 195830 193217 190741 195419 195423 240345 202943 202936
Σ 640392 643736 603828 609336 616584 719874 608177 608469
d41 155659 200313 372527 198621 198649 184876 186944 361603
Σ 796051 844049 976355 807957 815233 904750 795121 970072

Fig. 15. Number of nodes created, depending on features enabled. Openings a1 and
b2 lose, while c3 and d4 win. Nd: near-death patterns and derived strong-reversible
and inferior patterns; Pi: new permanently inferior patterns and derived patterns;
F: Nd+Pi; St: strong-reversible theorem, replacing theorem from [9]; Rp: reversible
patterns, reverser always picked; Rp’: reversible patterns where, for OR (resp. AND)
node n, reverser r is picked only when r’s disproof (proof) number is less than or equal
to the minimum proof (disproof) number among n’s children.(For opening d4, after
White’s strongest reply d5, Black has two main winning moves: g4 and c5. The latter
has a smaller search tree, with ∼ 65000 nodes instead of ∼ 240000. This explains the
differences for this opening, depending on the initial choices. One cannot fairly compare
features that differ on this g4-c5 choice.)

Our experiments show that the benefit of the new patterns is in most cases
positive. Using St is less beneficial. These features did not help as consistently
as we expected, perhaps in part because a small change in fill or prune can cause
DFPN search to move to a different part of the tree.

Feature Rp’ is always better than Rp, perhaps because the presence of a
reverser is positively correlated with the presence of a move more easily proved
to be winning. Feature Rp’ appears globally positive.

Overall, our preferred setting is to enable all new features.

Note 29. Each new pattern requires more pattern matching and so slows node
creation. There are few reversible patterns, so they slow runtime negligibly. But
the new fill patterns yield thousands of inferior and strong-reversible patterns.
Thus, the previous tests were run with only with patterns as large as in Fig. 5.
E.g., we excluded the pattern in Fig. 6. The slowdown almost exactly compen-
sates for the reduction in size of the resulting search tree, but – given that the
slowdown is a constant factor while pruning can yield exponentially smaller trees
– we expect that for larger boards using the new patterns will be beneficial.

Acknowledgements. We thank Chao Gao for many helpful comments and
suggestions.

References

1. Arneson, B., Hayward, R.B., Henderson, P.: Solving hex: beyond humans. In: van
den Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2010. LNCS, vol. 6515, pp. 1–10.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17928-0 1

https://doi.org/10.1007/978-3-642-17928-0_1

90 N. Fabiano and R. Hayward

2. Beck, A., Bleicher, M.N., Crowe, D.W.: Excursions into Mathematics. Worth, New
York (1969)

3. Gale, D.: Game of hex and the brouwer fixed point theorem. Am. Math. Monthly
86(10), 818–827 (1979)

4. Gao, C., Müller, M., Hayward, R.: Focused depth-first proof number search using
convolutional neural networks for the game of hex. In: Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence (IJCAI-17), pp.
3668–3674 (2017)

5. Hayward, R., van Rijswijck, J.: Hex and combinatorics. Discrete Math. 306(19–
20), 2515–2528 (2006)

6. Hayward, R.B., Toft, B.: Hex, the full story. CRC Press, London (2019)
7. Henderson, P.: Playing and Solving Hex. PhD thesis, University of Alberta, Edmon-

ton, Alberta, Canada, Fall (2010). https://webdocs.cs.ualberta.ca/∼hayward/
theses/ph.pdf

8. Henderson, P., Arneson, B., Hayward, R.B.: Hex, Braids, the Crossing Rule, and
XH-Search. In: van den Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048,
pp. 88–98. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12993-
3 9

9. Henderson, P., Hayward, R.B.: Captured-reversible moves and star-decomposition
domination in Hex. Integers 13(CG1), 1–15 (2013)

10. Henderson, P., Hayward, R.B.: A Handicap Strategy for Hex, pp. 129–136. MSRI
and Cambridge University Press (2015)

11. Huang, S.-C., Arneson, B., Hayward, R.B., Müller, M., Pawlewicz, J.: MoHex 2.0:
a pattern-based MCTS hex player. In: van den Herik, H.J., Iida, H., Plaat, A.
(eds.) CG 2013. LNCS, vol. 8427, pp. 60–71. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-09165-5 6

12. Pawlewicz, J., Hayward, R.B.: Scalable parallel DFPN search. In: van den Herik,
H.J., Iida, H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427, pp. 138–150. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09165-5 12

13. Pawlewicz, J., Hayward, R.B., Henderson, P., Arneson, B.: Stronger virtual con-
nections in hex. IEEE Tran. Comput. Intel. AI Games 7(2), 156–166 (2015)

14. Yamasaki, Y.: Theory of division games. Pub. Res. Inst. Math. Sci. 14, 337–358
(1978)

https://webdocs.cs.ualberta.ca/~hayward/theses/ph.pdf
https://webdocs.cs.ualberta.ca/~hayward/theses/ph.pdf
https://doi.org/10.1007/978-3-642-12993-3_9
https://doi.org/10.1007/978-3-642-12993-3_9
https://doi.org/10.1007/978-3-319-09165-5_6
https://doi.org/10.1007/978-3-319-09165-5_6
https://doi.org/10.1007/978-3-319-09165-5_12

Solving Cram Using Combinatorial
Game Theory

Jos W. H. M. Uiterwijk(B)

Department of Data Science and Knowledge Engineering (DKE),
Maastricht University, Maastricht, The Netherlands

uiterwijk@maastrichtuniversity.nl

Abstract. In this paper we investigate the board game Cram, which is
an impartial combinatorial game, using an αβ solver. Since Cram is a
notoriously hard game in the sense that it is difficult to obtain reliable
and useful domain knowledge to use in the search process, we decided to
rely on knowledge obtained from Combinatorial Game Theory (CGT).

The first and most effective addition to our solver is to incorporate
endgame databases pre-filled with CGT values (nimbers) for all posi-
tions fitting on boards with at most 30 squares. This together with two
efficient move-ordering heuristics aiming at early splitting positions into
fragments fitting in the available databases gives a large improvement of
solving power. Next we define five more heuristics based on CGT that
can be used to further reduce the sizes of the search trees considerably.

In the final version of our program we were able to solve all odd × odd
Cram boards for which results were available from the literature (even
× even and odd × even boards are trivially solved). Investigating new
boards led to solving two boards not solved before, namely the 3 × 21
board, a first-player win, and the 5 × 11 board, a second-player win.

1 Introduction

Cram is a variant of Domineering, which is a two-player perfect-information
game invented by Göran Andersson around 1973. Both games were popularized
to the general public in an article by Martin Gardner [7] (where Domineering
was called CrossCram). Both games can be played on any subset of a square
lattice, though mostly they are restricted to rectangular m×n boards, where m
denotes the number of rows and n the number of columns.

Play consists of the two players alternately placing a 1 × 2 tile (domino)
on the board. For Domineering the first player may place the tile only in a
vertical alignment, the second player only horizontally; for Cram there is no such
restriction: each player may place a tile vertically or horizontally. The first player
being unable to move loses the game, his opponent (who made the last move)
being declared the winner. Since the board is gradually filled, i.e., Domineering
and Cram are converging games, the games always end, and ties are impossible.
With these rules the games belong to the category of combinatorial games, for

c© Springer Nature Switzerland AG 2020
T. Cazenave et al. (Eds.): ACG 2019, LNCS 12516, pp. 91–105, 2020.
https://doi.org/10.1007/978-3-030-65883-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65883-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-65883-0_8

92 J. W. H. M. Uiterwijk

which a whole theory, the Combinatorial Game Theory (further CGT in short)
has been developed [1,3,6].

The only difference between Domineering and Cram thus is that in the latter
both players are allowed to place a domino both horizontally and vertically, i.e.,
in any position both players have the same possible moves. By this fact Cram
belongs to the category of impartial games [1,3,6].

Cram has not received as much attention as Domineering in scientific
research. 1 × n Cram, also called Linear Cram, was proposed as early as 1934
by Dawson and completely solved by Guy and Smith in 1956 [10]. The sequence
of values of the game (which is called ·07 by them) is quite irregular, but turns
out to be periodic from n = 53 onwards, with a period of 34. Cram was further
described in several sources on CGT [1,3,6], where many values were given, but
mainly for small boards. For the 2×n boards it was stated [3] that all even-width
boards have value ∗0 and all odd-width boards value ∗1, though no formal proof
was given. The first systematic investigation of larger Cram boards was the 2009
master thesis by Martin Schneider [15]. It reported the solution of 3 × n boards
up to n = 9, and the 4 × 5, 5 × 5 and 5 × 7 boards. More recently Lemoine and
Viennot [12] extended this to 3 × n boards up to n = 18, 4 × n boards up to
n = 9, and 5 × n boards up to n = 8. A few later results (3 × 19, 3 × 20, 5 × 9,
6 × 7, and 7 × 7) were published on-line [13].

In a previous publication [17] we reported how we have constructed CGT
endgame databases for Cram for all board sizes up to 30 squares. We also pro-
vided a formal proof that 2×n boards have values ∗0 and ∗1 for even and odd n,
respectively. It was further shown in a preliminary experiment that incorporat-
ing most of these databases in a simple αβ solver considerably raised the solving
efficiency [20]. We now have developed an elaborated αβ solver for Cram aiming
at solving large Cram games more efficiently and especially solving even larger
games not solved hitherto. Below we report the results.

2 Combinatorial Game Theory for Cram

For combinatorial games a whole theory has recently been developed, the Com-
binatorial Game Theory [1,3,6]. According to this theory the main distinction
within combinatorial games is in partisan games and impartial games. In par-
tisan games both players have their own moves, for which the types and CGT
values may vary wildly. Domineering belongs to this category, and a survey on
different (types of) values occurring in Domineering positions was given in [18].
In CGT a game position is defined by the sets of options (moves) for the two
players, conventionally named Left and Right, separately. So the notation is

G = {GL
1 , GL

2 , ...|GR
1 , GR

2 , ...},

where GL
1 , GL

2 , ... are the games (positions) that can be reached in one move by
the left player, and similarly GR

1 , GR
2 , ... for the right player. Options for Left and

Right are defined similarly, thus full game definitions are stated in a recursive
way and can become quite complex.

Solving Cram Using Combinatorial Game Theory 93

For partisan games the definitions are simpler: since both players have the
same moves, a game position is just defined by the set of all its options

G = {G1, G2, ...}.

If options have the same value, then all but one can be removed from the set.
Moreover, for impartial games the Sprague-Grundy Theorem [9,16] states that
any position is equivalent to some Nim pile and the value of that position is then
always a nimber ∗n, where n is the size of the equivalent Nim pile.

Note that in CGT it is common to use the terms “game position” and “game
value” synonymously. This stems from a powerful theorem stating that game
positions with the same value act the same and are fully interchangeable (even
with positions or configurations of completely different games), so are equivalent.
Therefore, if some game position has some value x, the game position is often
identified by its value and we speak just about the game x.

2.1 Nimbers

Nimbers are a special type of CGT values occuring in impartial games and
sometimes in partisan games. Their main characteristic is that the options follow
a certain pattern. Before we give this pattern, we first introduce some small
nimbers. By reason of self-containedness we repeat a short introduction to the
theory of nimbers taken from [17].

The most common nimbers occurring in Cram are the endgame ∗0 and the
star game ∗1. In game notation the endgame looks as G = {}. Its value is denoted
by ∗0. It denotes a terminal position where neither player has a possible move.
Therefore the endgame is a loss for the player to move. Due to the equivalence of
game positions with equal values it means that any non-terminal Cram position
with value ∗0 is also a loss for the player to move. Besides the trivial position
with no squares at all, the position consisting of a single empty square (where
no domino can be placed in either direction) is the only (but frequent) terminal
position with value ∗0, see Fig. 1.

Fig. 1. A Cram endgame position.

A star is a position with just a single move, or equivalently, where each move
leads to a terminal position ∗0. It looks as G = {∗0} and it is denoted by ∗1. It
is of course a win for the player to move. Figure 2 shows several ∗1 positions in
Cram.

Since the values of all these positions are equal, the positions are equivalent,
meaning that they are interchangeable without changing the outcome of the
game. The next nimbers, ∗2 and ∗3, are defined as ∗2 = {∗0, ∗1} and ∗3 =

94 J. W. H. M. Uiterwijk

= = {∗0} = ∗1

= , = {∗0} = ∗1

= , , = {∗0} = ∗1

= , , , = {∗0} = ∗1

Fig. 2. Several equivalent ∗1 positions in Cram.

{∗0, ∗1, ∗2}, respectively. Example ∗2 and ∗3 positions are shown in Fig. 3, where
the value of the third option of the ∗3 position is ∗0, since the player to move
always will lose. Note that in this and following positions symmetric options
(with same values as previous options) are omitted.

= , = {∗1, ∗0} = ∗2

= , ,
= {∗2, ∗1, ∗0} = ∗3

Fig. 3. Example ∗2 and ∗3 positions.

In general a nimber ∗n is defined as ∗n = {∗0, ∗1, ..., ∗(n − 1)}. It might be
tempting to think that an empty 1 × 2n board has value ∗n, but that does not
hold for n > 3. In fact the sequence of values, even for simple strips of 1 × n is
quite chaotic and they are difficult to obtain, except by laboriously investigating
all options (recursively). Note that it is not necessarily the case that all options
of a position have all values from a consecutive series from ∗0 to ∗(n−1), to yield
a ∗n position. More precisely, the value of an arbitrary Cram position is obtained
as the mex function applied to the values of the options of the position. The mex
function (minimal excludant) is defined as the smallest nimber not among the
options. E.g., if a position has options with values ∗0, ∗1, ∗2, and ∗4, its value
is ∗3.

As an example, consider the position depicted in Fig. 4. Since all options have
value ∗0 or ∗2, the position has value ∗1.

Solving Cram Using Combinatorial Game Theory 95

= , , = {∗0, ∗0, ∗2} = ∗1

Fig. 4. A ∗1 position with options with values ∗0 and ∗2 only.

This process of calculating the values of all options (and the options of the
options, etc., up to endgame positions) is a laborious task, too time-consuming
to execute during the search process of a solver. This is exactly why we opted
for constructing Cram endgame databases filled with their nimber values once
and for all.

What all nimbers ∗n have in common is that if n > 0 the first player to move
wins by moving to ∗0, and that if n = ∗0 the first player to move loses (all moves
lead to positions with nimber value > ∗0, being wins for the next player).

2.2 Disjunctive Sums of Subgames

According to the Sprague-Grundy Theorem a Cram position with value ∗n is
equivalent to a single heap of n tokens in the game of Nim. Therefore, the
theory for Nim can be applied to (sums of) Cram positions. As a consequence,
if a position is decomposed into several disjoint subgames, the CGT value of
the whole position is the Nim sum of the CGT values of the components. This
Nim-addition rule was already discovered in 1902 by Bouton in analyzing the
game of Nim [4]. In particular, if two Nim piles (or Cram fragments) have nimber
values ∗m and ∗n, their sum is given by the Nim sum ∗m ⊕ ∗n, where ⊕ is the
exclusive-or operator applied to the binary representations of m and n. As an
example, in Fig. 5 a position is depicted with two non-interacting fragments with
values ∗1 (binary representation 01) and ∗2 (binary representation 10). Since the
Nim sum of 01 and 10 = 11, binary for 3, the position has value ∗3.

Fig. 5. A ∗3 position consisting of two fragments with values ∗1 and ∗2.

This also introduces an interesting property of nimbers: since the exclusive-or
of any number with itself yields 0 (n ⊕ n = 0) for any n ≥ 0, every nimber is
its own negative, i.e., ∗n = −∗n. As a consequence, when two identical nimbers
occur, they cancel each other, since their sum is equivalent to the endgame.

2.3 Cram Strategies

For empty rectangular positions in Cram it is easy to state some general obser-
vations regarding the CGT values. These were already given by Gardner [7].

96 J. W. H. M. Uiterwijk

Theorem 1. Every even × even empty Cram board is a second-player win.

Proof. The second-player’s strategy to reach this is easy: after every first-player’s
move the second player responds by playing the symmetrical move (with respect
to the centre of the board), ensuring that he/she will make the last move and
win the game. Consequently, even × even empty boards have value ∗0. ��
Theorem 2. Every even × odd empty Cram board is a first-player win.

Proof. The winning strategy of the first player is to occupy with the first move
the two central squares, after which he/she plays according to the strategy given
in Theorem 1 (pretending to be the second player from now on), securing the
win. Consequently, even × odd (and odd × even) empty boards have values ∗n
with n ≥ 1. ��

Regarding odd× odd empty boards both theorems give no clue about their
values, and no other optimal strategy is known, so they can be either first-player
wins (with any positive nimber value) or second-player wins (with value ∗0).

3 Experiments and Discussion

We implemented a straightforward depth-first αβ [11] solver in C# on a standard
HP desktop PC with an Intel i5-4590 CPU @ 3.30 GHz. This searcher investigates
lines until the end (returning that either the first or the second player made the
last move and so wins the game). We further used a standard transposition
table [8] based on Zobrist hashing [22] using a Deep replacement scheme [5].
This table contains 226 entries of 8 bytes each, so with a total size of 0.5 GB.
Further the Enhanced Transposition Cutoff (ETC) method [14] is implemented.
Mirror symmetries and (for square boards) rotational symmetries are taken into
account.

The CGT endgame databases used [17] consisted of all databases with a size
up to 30 squares, with 1 byte per entry (representing a nimber). In total they
need 3.77 GB of storage.

To make the experiments feasible, all experiments were terminated when a
threshold of 1 × 109 nodes investigated is exceeded, unless noted otherwise.

3.1 Base Case

As a base case we first performed experiments with a plain αβ solver without any
particular heuristics1 or CGT knowledge. We did experiments with several move-
ordering heuristics, but these did not yield any significant increase in efficiency
so far. This is in agreement with our experience that it is extremely difficult to
foresee which moves on a board will be winning and which ones losing. Therefore
we decided to run these experiments without any move ordering. This means that
1 By a heuristic we mean a method that does not impact the final results, but only

(hopefully) obtains the results faster.

Solving Cram Using Combinatorial Game Theory 97

in a position first all possible horizontal moves are investigated, from left to right
and then down to up, and then all possible vertical moves, in the same order.
Since according to Sect. 2.3 all even × even boards are losses for the first player,
whereas all odd × even (and so even × odd) boards are wins for the first player,
we only investigated odd × odd boards. Results using this basic αβ solver are
given in Table 1.

Table 1. Number of nodes investigated solving odd × odd Cram boards using several
search engines (explained in the text). A ‘-’ in an entry denotes that the board could
not be solved within the threshold of 1 × 109 nodes investigated.

Board win BF + DB + FN + FS

3 × 3 2 7 1 1 1

3 × 5 1 254 1 1 1

3 × 7 1 7,617 1 1 1

3 × 9 1 415,550 1 1 1

3 × 11 2 14,801,591 413,522 192,004 31,109

3 × 13 1 – 16,061,481 3,032,649 80,917

3 × 15 1 – 733,255,885 22,351,558 73

3 × 17 2 – – – 627,228,056

5 × 5 2 73,500 1 1 1

5 × 7 1 49,687,795 4,496,711 4,906,301 1,978,017

5 × 9 1 – – – 142,237,539

7 × 7 1 – – – 956,663,573

In this table the first column gives the board dimensions, the second column
the winner (a ‘1’ for a first-player win and a ‘2’ for a second-player win) and the
third column (marked ‘BF’ for Brute Force) gives the number of nodes investi-
gated to solve the board. The remaining columns denote the number of nodes
investigated when some particular enhancement is added (discussed below). To
keep the number of experiments feasible, we have chosen to always add a single
new enhancement to the previous one.

3.2 Using Endgame Databases

Our next step is to investigate how the databases can increase the efficiency. For
that we check during search whether the position consists of only a single or more
fragment(s) available in the databases. If not, the search continues, otherwise if
the position consists of a single fragment, the position is denoted as a win for the
player to move (value ≥ ∗1) or for the opponent (value ∗0), and the branch is
pruned. If the position consists of more fragments the Nim sum of the fragments
is calculated and used to value the position accordingly. The results using this
database support are tabulated in Table 1 in the column marked ‘+ DB’.

98 J. W. H. M. Uiterwijk

It is clear that database support has a profound impact on the solving effi-
ciency of our Cram solver. Of course all boards with a size of at most 30 squares
just need one investigated node now, since the results are directly available from
the databases. But also for all other solved boards we see a large increase in effi-
ciency. Moreover, two boards that were not solvable within the threshold without
database support are now solvable (3 × 13 and 3 × 15).

Once database support is incorporated, two move-ordering heuristics come
to mind, both aiming at early splitting the position in multiple fragments.

Fragment Narrowing. The easiest of the two to implement is denoted as the
Fragment Narrowing Heuristic (FN). According to this heuristic, for non-square
boards if the board is “wide” (more columns than rows) vertical moves are
always preferred over horizontal moves, and vice versa for “high” boards (more
rows than columns). This is justified since moves across the short dimension
will in general split the position earlier into subfragments. As a second criterion,
both for vertical and horizontal moves, we prefer moves closer to the centre. The
reason for this is that when a move splits the position into fragments, it is better
that they are of roughly equal size than one small and one large fragment, since
in the latter case the probability is higher that the larger fragment still will not
be available in the databases. The results using this heuristic additionally to the
previous version are tabulated in Table 1 in the column marked ‘+ FN’.

It is clear from the table that this heuristic also has a significant positive
influence on the solving efficiency.

Fragment Splitting. As second move-ordering heuristic we make sure that
moves splitting a fragment are preferred over moves just narrowing a fragment
(since the narrowing has as goal an early splitting). This is implemented as the
Fragment Splitting Heuristic (FS) and has preference (by scaling the values)
over the Fragment Narrowing Heuristic. This heuristic works by summing the
squared sizes of all empty fragments and deducting these from the squared total
number of empty fields on the board. In this way splitting moves are favoured
and especially splitting moves where the parts are roughly equal in size. A simple
example calculation of a move-ordering value will clarify this heuristic2: in the
position on the 3 × 19 board after 1. j2:j3 the non-splitting move 2. i2:i3 with 1
fragment of 53 squares receives an ordering value of 532 − 532 = 0. In fact, any
non-splitting move gets a value of 0. The splitting move 2. i1:i2 with 2 fragments
of 25 and 28 squares receives the ordering value 532 − 252 − 282 = 1400. The
optimal splitting move is 2. i1:j1 with 2 fragments of 26 and 27 squares receiving
the ordering value 532 − 262 − 272 = 1404. The results using this heuristic
additionally to the previous version are tabulated in Table 1 in the column
marked ‘+ FS’.

2 We use chess-like notation for moves, where squares are indicated by their column
(‘a’, ‘b’, etc, from left to right) and their row (‘1’, ‘2’, etc, from bottom to top). A
move consists of the two squares covered separated by a colon.

Solving Cram Using Combinatorial Game Theory 99

Again we observe a large improvement in solving power. Moreover, another
three boards that were not solvable within the threshold without the FS Heuristic
are now solved (3 × 17, 5 × 9, and 7 × 7).

Remarkable is the increase in solving efficiency for the 3 × 15 board. After
the opening move h1:h2 (chosen due to the FN Heuristic) a position is reached
(see Fig. 6) where all possible moves by the second player are trivially shown to
be losses using the databases for 3 × n with n ≤ 8.

3
2
1

a b c d e f g h i j k l m n o

Fig. 6. The winning move h1:h2 on the 3 × 15 board.

Of the 66 possible moves, we only consider the 33 moves in the left half
of the board (the other ones are symmetric). Using the FS Heuristic, first the
moves that split the board are considered (g2:g3, g3:h3, and f3:g3). They lose
immediately, since the Nim sum of the fragments after splitting is ≥ ∗1. After
all 30 other second moves, at level 3 first splitting moves are investigated, and
for these boards it is always the case that one of them wins (leading to two
fragments with Nim sum ∗0). As a consequence, the complete search tree for the
3 × 15 board is at most 3 deep, which leads to a tremendous reduction in tree
size (from more than 22 million without the FS Heuristic to just 73 nodes with
this heuristic).

3.3 Using CGT Values

In this subsection we investigate several ways to reduce the search trees further,
based on using knowledge from CGT applied to Cram fragments obtained. The
results are in Table 2. This table continues from the best results in Table 1 (the
rightmost column marked ‘+ FS’), where we now omitted the results for the
boards directly available from the databases. The remaining columns contain
the experimental results for five enhancements explained below the table, again
in an additive manner.

Skipping Moves. When the position is split in multiple fragments and one
or more of these have known values (from the databases), but the value of at
least one fragment is still unknown (so the search should continue), we often can
omit moves in the known fragments from further consideration. We consider the
following three steps:

1. In each fragment with value ∗0 all moves can be skipped from further investi-
gation, since it denotes a losing fragment and it is never useful to play within

100 J. W. H. M. Uiterwijk

Table 2. Number of nodes investigated solving odd × odd Cram boards using several
search engines (explained in the text). A ‘-’ in an entry denotes that the board could
not be solved within the threshold of 1 × 109 nodes investigated. In the final version
(rightmost column) no threshold was set.

Board Win Table 1 + SM + SF + LBS + SLR + BD

3× 11 2 31,109 31,008 30,670 30,323 29,882 26,437

3× 13 1 80,917 80,312 79,573 79,080 77,300 66,079

3× 15 1 73 73 73 73 73 73

3× 17 2 627,228,056 377,565,993 258,704,721 256,011,532 250,196,286 204,860,712

3× 19 2 – – – – – 18,327,715,035

3× 21 1 – – – – – 962,810,282

5× 7 1 1,978,017 1,935,662 1,888,485 1,861,601 1,803,369 1,354,483

5× 9 1 142,237,539 116,023,958 98,784,937 97,365,853 94,970,220 75,190,993

5× 11 2 – – – – – 204,521,419,098

7× 7 1 956,663,573 710,643,974 607,605,602 590,066,547 567,193,292 433,712,107

a losing fragment (every move leads to a new fragment with some value ∗n
with n ≥ 1, to which the opponent always can just respond with a move
leading to a fragment with value ∗0 again).

2. Next we check if in the remaining known fragments pairs of fragments occur
with the same value. Each such pair can be omitted from further considera-
tion, since an arbitrary move by the player to move in one fragment of such
pair, changing its value to some new value, can always be responded by the
opponent in playing an equivalent move (to the same new value) in the other
fragment of the pair. Therefore all moves in each such pair can be skipped.
This of course also follows from the fact that the Nim sum of such a pair has
CGT value ∗0 (∗n + ∗n = ∗0 for arbitrary n).

3. Finally, we calculate the sum-value of all remaining known fragments that
are not skipped. If this sum-value is ∗0 the fragments together are losing and
all moves in them can be skipped (e.g., consider three fragments with values
∗1, ∗2, and ∗3, with Nim sum ∗0). If the sum-value is not ∗0, but lower than
or equal to the value of one of the non-skipped fragments, then all fragments
except this one can be skipped, since any value that can be reached by playing
in one of all non-skipped fragments, can also be reached by playing in that
particular fragment.

These three ways of skipping moves based on CGT-values of fragments are taken
together in the Skip Moves Heuristic (SM). The results using this heuristic addi-
tionally to the previous version are tabulated in Table 2 in the column marked
‘+ SM’.

Although the increase of efficiency is negligible for the smaller boards, it still
is significant for larger boards.

Solving Cram Using Combinatorial Game Theory 101

Simplifying Fragments. For all remaining known (unskipped) fragments it
is useful to simplify such fragments if possible. This is based on the idea that
two different fragments with the same value are equivalent. So if the fragment
under consideration is large but is equivalent with a much smaller fragment, we
simplify it. Effectively this is done by only allowing some specific moves in the
fragment. More explicity, if a fragment has value ∗n, then we only allow n moves
in this fragment, one resulting in a value ∗0, one in ∗1, up to one in ∗(n − 1).
All other moves in the fragment are skipped. This method is called the Simplify
Fragments Heuristic (SF). The results using this heuristic additionally to the
previous version are tabulated in Table 2 in the column marked ‘+ SF’.

We observe again that the increase of efficiency is negligible for the smaller
boards, but significant for larger boards.

Linear and Bended Fragments. Occasionally we encountered during search
a linear chain that is longer than the dimension of any of the databases used.
Since Linear Cram is completely solved for arbitrary length [10], we just obtain
its value by a look-up in a prefilled array. As an example, the linear chain in
Fig. 7(left) is not in any of our databases, still its value is determined to be ∗5.
Consequently the whole position in this figure has value ∗5 and thus the position
is a win for the player to move. More often, we encounter bended chains (also
called snakes [3,21]) that have the same value as a linear chain of the same size.
So these also can be looked-up in our preprogrammed array. As an example,
the snake in Fig. 7(right) has the same value ∗5 as the chain in Fig. 7(left). The
recognition of linear or bended snakes is simple: the fragment must consist of
squares where exactly two have one neighbour (the endpoints of the snake), and
all others have exactly two neighbours.

3
2
1

a b c d e f g h i j k l m n o p

3
2
1

a b c d e f g h i j k l m n o p

Fig. 7. An example of a linear chain of size 16 and a bended snake with the same size
on the 3 × 16 board.

The method of recognizing and valuing snakes is called the Linear/Bended
Snakes Heuristic (LBS). The results using this heuristic additionally to the pre-
vious version are tabulated in Table 2 in the column marked ‘+ LBS’.

Using this heuristic we observe a small increase in efficiency for all boards
investigated.

Skipping Lost Responses. When in a position we investigate a move x for a
player and if x turns out to be a loss after some response y by the opponent, then
it is not needed for the player to investigate y itself (if not already done), since

102 J. W. H. M. Uiterwijk

then y will lose to x now being played by the opponent. Of course this stems
from the fact that the resulting position is the same (losing, so with value ∗0),
and does not depend on the order of the moves played leading to the position.
We denoted this as the Skip Lost Responses Heuristic (SLR). The results using
this heuristic additionally to the previous version are tabulated in Table 2 in the
column marked ‘+ SLR’.

Using this heuristic we observe a small but significant increase in efficiency
for all boards investigated.

Bridge Destroying. In the last heuristic applied we use proofs in Winning
Ways [3], showing that a Cram fragment with some particular pattern may be
split into two fragments, such that the value of the original fragment (when
not obtained from the databases) is equal to the sum of the values of the two
smaller fragments (each with possibly known value). We distinguish four cases,
according to the sketches depicted in Fig. 8.

Fig. 8. Sketches of empty Cram fragments that can be broken in subfragments without
changing the value. [Taken from [3], Vol. 3, p. 504.]

In these figures the dots denote empty squares, the lines denote connected
(neighbouring) squares and the balloons denote arbitrary empty fragments (but
not connected to the other parts of the fragment). Thin lines denote connections
that may be broken without changing the value of the fragment.

The first 3 fragments have in common that there is a denoted empty square
(the “bridge”) connected to 1 to 3 subfragments, where each subfragment is con-
nected to one single empty square (the bold connection) and further arbitrarily
to some remainder (the balloon). Since in Cram a square has maximally four
neighbours, this in principle leads to 4 such cases, but the fourth can “physically”
only occur on boards where all balloons in the four subfragments are empty, thus
consisting necessarily of a single empty square with four neighbouring fragments
of exactly two empty squares each (a “cross”), with known value from the 5 × 5
database of ∗0. The first two (with one or two subfragments) occur frequently
in Cram positions, the third one (with three subfragments) can physically only
occur on boards with both dimensions ≥ 5 and moreover at least 1 of the three
balloons empty, but still is useful.

The fourth fragment in Fig. 8 consists of four empty squares in a 2×2 arrange-
ment with two arbitrary subfragments connected to two opposing squares of

Solving Cram Using Combinatorial Game Theory 103

the 2 × 2 array. Note that in this case breaking the thin connections means that
the fragment can be split either vertically through the 2×2 part (as depicted) or
horizontally (rotated), but not diagonally. Again, the value of the whole fragment
is equal to the sum of the values of the parts after splitting.

We implemented all four cases in Fig. 8 and denoted them together as the
Bridge Destroying Heuristic (BD). The results using this heuristic additionally
to the previous version are tabulated in Table 2 in the column marked ‘+ BD’.

Using this heuristic we observe a modest increase in efficiency for all boards
investigated. We also solved a new board within the set threshold using this
version of our solver, namely the 3 × 21 board. This board was hitherto not
solved, so is our first extension of known solved Cram boards. It is a first-player
win.

Since this is (for the time being) the last version of our Cram solver, we
decided to also investigate a few more boards without using the 1 × 109 nodes
threshold. First of all we investigated the 3× 19 board (which remarkably needs
much longer to be solved than the 3×21 board), requiring some 1.8×1010 nodes
investigated. With considerably more effort we also solved the 5 × 11 board,
needing some 2 × 1011 nodes. This board was also not solved up to date and is
a second-player win.

4 Conclusions and Future Research

The results using the CGT endgame databases into our αβ solver are good, with
reductions of at least 90% in worst case for non-trivial boards, and of course 100%
for the trivial boards (i.e., directly available from a database). This shows that
the effect on solving power for the impartial game Cram is comparable to those
for the partisan game Domineering [2] and the partisan all-small game Clobber
[19]. By this result it is shown that this method of incorporating CGT into αβ
solvers by building CGT endgame databases is beneficial for a wide range of
combinatorial games with the characteristic that game positions can split into
independent subgames.

Using two move-ordering heuristics (the Fragment Narrowing Heuristic and
the Fragment Splitting Heuristic) promoting early splitting of positions into
independent fragments and thus enlarging the probability of early hitting the
databases, results in another reduction in search tree size of a factor of 2 to
10 (and sometimes much more).3 We can therefore conclude that endgame
databases with CGT values are pivotal for the success of solving Cram boards.

The inclusion of five additional enhancements, based on domain-specific
knowledge from Combinatorial Game Theory for Cram, enables a further large
increase in solving power. Although modest per heuristic, in combination they
reduce the search tree size for large boards with another factor of 2 to 3.
3 The fact that these move-ordering heuristics are so successful does not contradict our

statement that it is hard to find criteria indicating which moves are probably good
or bad. It just leads to investigating first moves with small search trees (including
hopefully “accidentally” winning moves).

104 J. W. H. M. Uiterwijk

All our results are in agreement with previous outcomes published in the
literature. Moreover, we were so far able to solve two new Cram boards not
solved before, the 3 × 21 board, being a first-player win, and the 5 × 11 board,
being a second-player win.

Regarding future research a first idea is based on the observation that ter-
minal nodes might vary widely regarding the depth in the search tree, even
among splitting or narrowing moves. Therefore it might be useful to implement
some form of iterative deepening into the search. We further still have sev-
eral ideas based on Combinatorial Game Theory that might prune the search
trees for Cram boards even further. Finally we consider implementing a Nimber
Search program that calculates the exact CGT value for each position investi-
gated instead of just determining if the position is a win or loss for the player to
move. Comparing the results using Nimber Search with the results from our cur-
rent αβ solver it is interesting to investigate the claim by Lemoine and Viennot
[12] that it might be more efficient to determine outcomes of Cram boards by
computing nimbers for fragments than to determine the outcomes by developing
directly the game tree for the sum of fragments.

References

1. Albert, M.H., Nowakowski, R.J., Wolfe, D.: Lessons in Play: An Introduction to
Combinatorial Game Theory. A K Peters, Wellesley (2007)

2. Barton, M., Uiterwijk, J.W.H.M.: Combining combinatorial game theory with an
α-β solver for Domineering. In: Grootjen, F., Otworowska, M., Kwisthout, J. (eds.)
BNAIC 2014 - Proceedings of the 26th Benelux Conference on Artificial Intelli-
gence, pp. 9–16. Radboud University, Nijmegen (2014)

3. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for your Mathematical
Plays. Academic Press, London (1982). 2nd edition, in four volumes: vol. 1 (2001),
vols. 2, 3 (2003), vol. 4 (2004). A K Peters, Wellesley

4. Bouton, C.I.: Nim, a game with a complete mathematical theory. Ann. Math. 3,
35–39 (1902)

5. Breuker, D.M., Uiterwijk, J.W.H.M., van den Herik, H.J.: Replacement schemes
for transposition tables. ICCA J. 17(4), 183–193 (1994)

6. Conway, J.H.: On Numbers and Games. Academic Press, London (1976)
7. Gardner, M.: Mathematical games. Sci. Am. 230, 106–108 (1974)
8. Greenblatt, R.D., Eastlake, D.E., Crocker, S.D.: The Greenblatt chess program. In:

Proceedings of the AFIPS Fall Joint Computer Conference, vol. 31, pp. 801–810
(1967)

9. Grundy, P.M.: Mathematics and games. Eureka 2, 6–8 (1939)
10. Guy, R.K., Smith, C.A.B.: The G-values of various games. Proc. Camb. Philos.

Soc. 52(3), 514–526 (1956)
11. Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artif. Intell. 6,

293–326 (1975)
12. Lemoine, J., Viennot, S.: Nimbers are inevitable. Theoret. Comput. Sci. 462, 70–79

(2012)
13. Lemoine, J., Viennot, S.: Records. http://sprouts.tuxfamily.org/wiki/doku.php?

id=records#cram. Accessed 13 May 2019

http://sprouts.tuxfamily.org/wiki/doku.php?id=records#cram
http://sprouts.tuxfamily.org/wiki/doku.php?id=records#cram

Solving Cram Using Combinatorial Game Theory 105

14. Plaat, A., Schaeffer, J., Pijls, W., de Bruin, A.: Nearly optimal minimax tree
search? Technical report 94-19. University of Alberta, Department of Computing
Science (1994)

15. Schneider, M.: Das Spiel Juvavum. Master thesis, Universität Salzburg (2009)
16. Sprague, R.P.: Über mathematische Kampfspiele. Tohoku Math. J. 41, 438–444

(1935)
17. Uiterwijk, J.W.H.M.: Construction and investigation of Cram endgame databases.

ICGA J. 40(4), 425–437 (2018)
18. Uiterwijk, J.W.H.M., Barton, M.: New results for Domineering from combinatorial

game theory endgame databases. Theoret. Comput. Sci. 592, 72–86 (2015)
19. Uiterwijk, J.W.H.M., Griebel, J.: Combining combinatorial game theory with an

α-β solver for Clobber: theory and experiments. In: Bosse, T., Bredeweg, B. (eds.)
BNAIC 2016 – Artificial Intelligence. Communications in Computer and Informa-
tion Science, vol. 765, pp. 78–92 (2017)

20. Uiterwijk, J.W.H.M., Kroes, L.: Combining combinatorial game theory with an
alpha-beta solver for Cram. In: Atzmueller, M., Duivesteijn, W. (eds.) BNAIC
2018: 30th Benelux Conference on Artificial Intelligence, pp. 267–280. Jheronimus
Academy of Data Science, ’s-Hertogenbosch (2018)

21. Wolfe, D.: Snakes in Domineering games. Theoret. Comput. Sci. (Math Games)
119, 323–329 (1993)

22. Zobrist, A.L.: A new hashing method with application for game playing. Technical
report #88, Computer Science Department, The University of Wisconsin, Madison
(1970). Reprinted in ICCA J. 13(2), 69–73 (1990)

Exploiting Game Decompositions
in Monte Carlo Tree Search

Aline Hufschmitt1(B), Jean-Noël Vittaut2, and Nicolas Jouandeau3

1 CREC Saint-Cyr, Écoles de Coëtquidan, Guer, France
aline.hufschmitt@st-cyr.terre-net.defense.gouv.fr

2 LIP6, CNRS, Sorbonne Université, F-75005 Paris, France
jean-noel.vittaut@lip6.fr

3 University Paris 8, Vincennes-Saint-Denis, France
n@up8.edu

Abstract. In this paper, we propose a variation of the MCTS framework
to perform a search in several trees to exploit game decompositions. Our
Multiple Tree MCTS (MT-MCTS) approach builds simultaneously mul-
tiple MCTS trees corresponding to the different sub-games and allows,
like MCTS algorithms, to evaluate moves while playing. We apply MT-
MCTS on decomposed games in the General Game Playing framework.
We present encouraging results on single player games showing that this
approach is promising and opens new avenues for further research in the
domain of decomposition exploitation. Complex compound games are
solved from 2 times faster (Incredible) up to 25 times faster (Nonogram).

Keywords: Monte Carlo Tree Search · General Game Playing ·
Decomposition

1 Introduction

General Game Playing (GGP) is a branch of Artificial Intelligence with the
aim of achieving versatile programs capable of playing any game without human
intervention. Game specific algorithms cannot be used in a general game player as
the game played should not be known in advance. An important aspect of GGP
research is the development of automated rule analysis techniques to speedup
the search.

Among the games considered in GGP, some are composed of different
independent sub-games assembled sequentially or in parallel and played syn-
chronously or asynchronously [3]. A player program able to identify the sub-
games, solve them individually and synthesize the resulting solutions, can greatly
reduce the search cost [2,4]. Some approaches have been proposed to decom-
pose single [5] and multi-player games [6,7,17]. Using these decompositions two
different strategies have been proposed to solve the global game in the GGP
framework. The first approach, inspired from hierarchical planning and named
Concept Decomposition Search [5], aims at solving single player games. The
search algorithm is split into two stages: local search collecting all local plans
c© Springer Nature Switzerland AG 2020
T. Cazenave et al. (Eds.): ACG 2019, LNCS 12516, pp. 106–118, 2020.
https://doi.org/10.1007/978-3-030-65883-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65883-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-65883-0_9

Exploiting Game Decompositions in Monte Carlo Tree Search 107

and global search trying to interleave local plans from different sub-games to find
the best global plan. These two steps are embedded into an iterative deepening
framework. Concept Decomposition Search is extended to multi-player games [17]
using turn-move sequences (TMSeqs) as a result of the local search. A TMSeq
indicates both moves and players who performed them. Global search is based on
standard search techniques but uses TMSeqs instead of legal moves, which results
in a much smaller game tree compared to full search. The second approach [3]
is based on Answer Set Programming (ASP) to solve decomposed games. Local
plans are combined as and when they are calculated to find a global plan. This
search is used on single player games. How to generalize this approach to multi-
player games is not clear and remains an open problem. In these previous works,
if a global plan is not found in the allocated time, the search returns nothing.

In this paper, we propose a new approach to solve decomposed games based
on Monte Carlo Tree Search (MCTS). MCTS is the state of the art frame-
work for GGP players but also for specialized player like Alpha Go [15], for
video games and non-game domains [1]. Our Multiple Tree MCTS (MT-MCTS)
approach builds simultaneously multiple MCTS trees corresponding to different
sub-games. Instead of producing a global plan, MT-MCTS allows to evaluate
moves in the different states of the game. A player program using MT-MCTS
can therefore begin to play while continuing to explore the game and identify
the next best moves. We compared the performance of our MT-MCTS algo-
rithm with that of an MCTS search using the Upper Confidence Bound applied
to Trees (UCT) policy and transposition tables on single player games.

The remainder of this paper is organized as follows. In the next section,
we briefly review the MCTS framework, the UCT policy and common opti-
mizations. In Sect. 3, we present our MT-MCTS approach using multiple trees
to solve decomposed games. We present experimental results on several single-
player games in Sect. 4. In Sect. 5, we discuss these results, the challenges risen by
a simultaneous search in several trees, the possible extensions of our algorithm
and open problems. We conclude in Sect. 6.

2 MCTS and UCT

The MCTS framework allows to build a game tree in an incremental and asym-
metric manner [1]. Each node represents a state of the game, and each edge
represents a joint move1. MCTS begins from a node representing the current
state and then repeats four steps for a given number of iterations or for a given
time: the selection of a path in the game tree according to some tree policy ; the
expansion of the tree with the creation of a new node; a game simulation (play-
out) according to a default policy ; the back-propagation of the playout result to
update nodes statistics. The number of playouts in MCTS is a key factor for the
quality of the evaluation of a game tree node [9].

The default policy usually consists in playing random moves until a termi-
nal state is reached. For the selection, UCT is the most common tree policy. It
1 In the GGP framework, player moves are always simultaneous. In alternate move

games, all players but one play a useless move to skip the turn.

108 A. Hufschmitt et al.

provides a balance between the exploitation of the best moves and the explo-
ration of the whole tree. A common optimization consists in using transposition
tables: identical states are represented by a single node in the tree. In the GGP
domain, many games that involve cycles use a stepper, a counter used to avoid
infinite games. Identical states present at different depths in the game tree are
then differentiated by this stepper and transpositions can only occur at a same
depth. Using transpositions, a GGP game tree becomes a directed acyclic graph.
When using transpositions, the evaluation of the different moves is commonly
stored in the outgoing edges instead of the child nodes [14]. The number of visits
remains stored in the parent node. Another common optimization used to guide
the search is the pruning of fully explored branches [11,16]. During the selection
step, instead of returning in branches that are completely evaluated, the mean
score of the branch is computed and used for the back-propagation step.

3 Multiple Tree MCTS (MT-MCTS)

The decomposition of a game into several sub-games produces sub-states, in
which available moves depend on the sub-states combination, and then provides
a difficulty for legal moves computation. The decomposition also poses a problem
for the identification of terminal sub-states. For example, the game Incredible is
decomposed into a labyrinth (Maze), a game of cubes (Blocks), a stepper and a
set of useless contemplation actions. The game is over if the stepper reaches 20
or if the Maze sub-game is over. But, in Blocks, a sub-state is never terminal by
itself. We can also imagine a game where two sub-states are both non-terminal
but their conjunction is terminal and must be avoided in a global plan. The
decomposition also raises an issue for evaluating sub-states where scores can
result from a timely combination with other sub-states. More specifically in
GGP, the score described by the goal predicate is reliable only if the current
state is terminal [10]. These two facts make the score function less reliable in
sub-trees. At last, the decomposition raises the problem of its reliability. If the
decomposition is inconsistent, the evaluation of legal moves can be wrong, leading
the player program to choose illegal moves and compute inconsistent sub-states.

To avoid all these problems, we propose the following approach: doing sim-
ulations in the global game and building a sub-tree for each sub-game. Legal
moves, next states and the end of game can be evaluated for the global game in
which the real score is known. Move selection is performed according to the eval-
uation of the sub-states in the sub-trees. An inconsistency of the decomposition
is detected if during two simulations, the same move from the same sub-state
leads to different following sub-states. A partial2 but consistent decomposition
allows to play by the rules, although exploration may be less effective.

When a stepper is separated from the rest of a game, cycles can occur in some
sub-games and in sub-state transpositions a move evaluation may differ accord-
ing to the game depth. This problem is referred as the graph history interaction
problem [12]. A general solution for games with binary scores is available [8].
2 A decomposition is partial if a sub-game can be further decomposed.

Exploiting Game Decompositions in Monte Carlo Tree Search 109

However, in the GGP framework, the scores are more graduated and this general
solution is therefore not applicable. To exploit some transpositions while avoid-
ing the graph history interaction problem, the current version of our MT-MCTS
considers transpositions only at a same depth in the sub-trees i.e. sub-games are
represented by rooted directed acyclic graphs.

Global Simulations and Sub-trees Building: Our MT-MCTS iterates four
steps like MCTS (Algorithm 1) except that the selection step is composed of
alternated local and global selections3.

Algorithm 1. MtMcts(nbPlayouts)
1: for nbPlayouts do
2: S ← current state
3: {s1, ..., sn} ← getSubstates(S)
4: {val1, ..., valn} ← selectionWithExpansion({s1, ..., sn})
5: simulationWithBackProp({val1, ..., valn})

Global variables are:

S : the current global state
M : moves played during selection and expansion
S : sets of sub-states visited during selection and expansion
{val1, ..., valn} : a vector of evaluations, one for each sub-game.
{e1, ..., en} : a set of booleans indicating whether sub-games are fully explored
or not, initialized to {false, ..., false}
{d1, ..., dn} : depth where a revision of a “fully explored” move flag occurred

At each step of the selection (Algorithm 2), the legal moves evaluation is
processed in the global game and an expansion is attempted (l.8–9). To try an
expansion (Algorithm 3), a random move is played (l.33). Each sub-game is
informed of the new sub-state reached. A new transition, and possibly a new
node, are added to the sub-tree if necessary (l.36–39). If the transition is already
known, i.e. a previously visited action triggers the same transition, the transition
is labeled with these different moves which form a meta-action [6]. If a legal move
triggers an already known transition in each sub-game, it is already evaluated and
it is not necessary to test it: this move leads to a combination of already evaluated
sub-states. Then, another move is randomly chosen. Playing with decomposed
games therefore allows to reduce significantly the search space size. If no legal
move leads to an expansion in one of the sub-games, the selection continues.

In a game like Incredible, the Maze sub-game is quickly fully explored. Then
it systematically recommends the sequence of moves leading to the maximum
gain allowed by this sub-game. However, ending this sub-game terminates the
3 An informal presentation of MT-MCTS with an example has been published in

Journées d’Intelligence Artificielle Fondamentale (JIAF) 2019.

110 A. Hufschmitt et al.

global game prematurely. For a local selection algorithm based on a balance
between exploration and exploitation, it takes a large number of visits of the
Maze terminal move to guide the search towards the exploration of other possible
moves (playing in the Block sub-game). To alleviate this problem, the terminal
legal moves are evaluated (l.10). If a terminal move returns the maximum score
possible for the current player, it is always selected (l.12–15), otherwise, the
selection continues with the non-terminal moves.

Algorithm 2. selectionWithExpansion({s1, ..., sn})
6: loop
7: S := S ∪ {s1, ..., sn}
8: L ← getLegalMoves(S)
9: if expansion({s1, ..., sn}, L) then return {∅, ..., ∅}

10: T ← filterTerminalMoves(L)
11: {d1, ..., dn} ← checkNotFullyExplored({s1, ..., sn}, T)
12: {best, score} ← getBestMove(T)
13: if score = maximum possible evaluation then
14: M ← M ∪ best
15: return maximum evaluation for each sub-game

16: explored ← true
17: for i in {1, ..., n} do
18: if ∃m ∈ L - T: ¬ fullyExplored(si, m) then
19: explored ← false
20: else
21: fullyExplored(last(S), last(M)) ← true
22: ei ← true if {s1, ..., sn} = initial state

23: if explored but ∃i : ei = false then
24: return mean evaluation for each sub-game

25: for i in {1, ..., n} do
26: selectedi ← localSelectPolicy(si, L - T)

27: best ← globalSelectPolicy({selected1, ..., selectedn})
28: M ← M ∪ best
29: S ← apply(S, best)
30: if terminal(S) then return {∅, ..., ∅}
31: {s1, ..., sn} ← getSubstates(S)

To avoid re-visiting fully explored branches unnecessarily, we flag them to
encourage visits to nearby branches. However, in the case of sub-games, a sub-
state is not always terminal depending on the rest of the overall state. It is then
necessary to develop a specific approach to flag the fully explored branches in
sub-trees. We solve this problem by simply revising the labeling during selection
and expansion update (l.11,38). If an action was flagged terminal during previous
descents in the tree but is not terminal in the current situation, or if a new
transition is added, the labeling is revised and revisions are back-propagated
along the descent path (l.54–55).

Exploiting Game Decompositions in Monte Carlo Tree Search 111

When all legal moves from a sub-state are terminal or fully explored, the
previous move is also flagged “fully explored” (l.21). If the current state is the
initial state, the whole sub-tree is fully explored (l.22). When the current sub-
state is fully explored in each subgame, the mean evaluation is computed and
returned (l.24). Otherwise a local selection policy is applied in each sub-game on
non-terminal legal moves (l.26). The best move is selected according to a global
selection policy (l.27).

Algorithm 3. expansion({s1, ..., sn}, L)
32: while L �= ∅ do
33: m ← popRandomMove(L)
34: S’ ← apply(S, m)
35: {s′

1, ..., s
′
n} ← getSubstates(S’)

36: new transition ← false
37: for i in {1, ..., n} do
38: if update(si, s

′
i, m) then � possible inconsistency is detected here

39: new transition ← true
40: if new transition then
41: M ← M ∪ m
42: S ← S’
43: return true
44: return false

Algorithm 4. simulationWithBackProp({val1, ..., valn})
45: if {val1, ..., valn} = {∅, ..., ∅} then
46: if ¬terminal(S) then
47: S ← playoutWithDefaultPolicy(S)

48: for i in {1, ..., n} do
49: vali ← {global score, max score for sub-game i with 3-valued logic}
50: for p in {1, ...,M .length} do
51: {s1, ..., sn} ← Sp

52: m ← Mp

53: for i in {1, ..., n} do
54: if p < di then
55: fullyExplored(si, m) ← false

56: t ← transition from si labeled with m
57: update(N, nt, wt, wmax

t) � see local selection policy

If the selection ends on a non-evaluated state (Algorithm 4, l.45), a playout
is done to reach a terminal state if necessary (l.47), then the state is evaluated
(l.49). The details of this evaluation depend on the local selection policy and
are explained below. The evaluation is back-propagated along the visited path
(l.50–57) and the “fully explored” flags are revised if necessary.

112 A. Hufschmitt et al.

The Local Selection Policy chooses the best moves among legal non-terminal
moves. The current sub-state is associated with a number of visits N . Each
transition t from this sub-state is evaluated by a number of visits nt and a
cumulated score wt. The local selection returns a set of moves if there exists
different transitions with the same evaluation or if the best transition is labeled
with several moves.

We investigate different ways to perform this local selection. The first one
is a standard application of the UCT policy. However, this approach is not
satisfactory because a transition in a sub-game can receive a good evaluation
without contributing to the global score: the evaluation was obtained thanks to
a move sequence leading to a positive evaluation in another sub-game. Another
more troublesome problem occurs in the case of binary scores: the score is always
zero until a solution is found. The search is in this case reduced to a breadth
first search and is not guided to the right combination of sub-states.

In the GGP framework, a game state is described by a finite set of instantiated
fluents, some of which are true. The decomposition partitions these fluents in
several groups which represent the sub-games states. In a global terminal state,
it is possible to keep only the fluents corresponding to a sub-game, to give
an undefined value to the other and to evaluate the logic rules of the game
with a 3-valued logic. The true or undefined goal predicate instances represent
the possible scores according to this sub-game state. The maximum goal score
(lmax) corresponds to the maximum potential score that can be obtained if the
best possible configuration is found in the other sub-games. The lmax score is a
maximum indication, the true maximum score may not match exactly because
using a 3-valued logic does not guarantee the most accurate information [13].
lmax evaluation is nevertheless a valuable indication of the sub-state value. It
can be back-propagated in addition to the global score and cumulated in a wmax

t

variable. For a given transition, wt/nt is a global score estimator and wmax
t /nt

is a local score estimator. These two estimators can be used in a new policy
derived from UCT:

U = α
wt

nt
+ (1 − α)

wmax
t

nt
+ C ∗

√
log N

nt
(1)

with C the constant balancing the exploitation and exploration terms and α ∈
[0, 1] setting the balance between local and global score estimations.

To avoid going back into already fully explored sub-branches, the transitions
corresponding to these branches are excluded from the local selection as long as
there are transitions that are not fully explored.

The Global Selection of the best move is made depending on the moves rec-
ommended by the sub-games. In serial or synchronous parallel games, the inter-
section of the recommended move sets is always non-empty. The global selection
is then straightforward: a move can be randomly selected in the intersection.
However, in a parallel asynchronous game, different sub-games can propose dis-
joint move sets. It is then necessary to define a policy for the choice of a move

Exploiting Game Decompositions in Monte Carlo Tree Search 113

at the global level. To define an any game policy, we propose a voting pol-
icy. Each sub-game recommending a move brings a vote. In the case of serial
or synchronous parallel games, the best moves get as many votes as there are
sub-games. In the case of parallel asynchronous games, each move may win a
maximum of one vote. Among the moves that received the most votes, those with
the highest expected earnings are selected to direct the search towards moves
that can lead to the best combination of sub-states. When the game goal is the
conjunction of the sub-games goals, this highest expected earning for a move m
among T sub-games is the product of the probability of gain in each sub-game
s:

∏T
s=1 ws

m/ns
m. When the game goal is the disjunction of the sub-games goals,

this highest expected earning is the sum of the probability:
∑T

s=1 ws
m/ns

m with
ws

m the cumulated rewards earned during playouts and ns
m the number of visits

of the transition labeled with that move m in sub-game s. If several moves offer
the greatest probability of gain, one of them is randomly selected.

4 Experiments

We present here experiments on MT-MCTS4. Firstly we evaluate different
weighting of our local selection policy and secondly we compare the effectiveness
of MT-MCTS against UCT and show that this approach can reduce the overall
number of simulations and the solving time. We conducted our experiments on
several single-player games: Incredible, different grids of Nonogram of size 5 × 5
and 6 × 6 and Queens08lg.

Incredible is an interesting game because it is possible to end the game pre-
maturely with a suboptimal score. It is a usual test bed to evaluate players able
to exploit decompositions. Nonogram is a logic puzzle in which cells in a grid
must be colored or left blank according to numbers placed in front of columns
and lines. The score is binary and UCT provides no improvement over depth-first
or breadth-first search in this game. Queens08lg is on the contrary quickly solved
by UCT. It is an Eight Queens puzzle in which it is illegal to place a queen in
a position where it could capture another queen in one move. The game is over
when a queen can no longer be placed. See [Anonymised Author PhD], for more
information about these games and a detailed presentation of each Nonogram
grid. We decompose these games with the statistical approach proposed by [7].
The decomposition time can vary slightly depending on the simulations done to
collect statistical information. For each game and each configuration, we real-
ized 10 tests and present the mean number of playouts and mean time necessary
to solve the game. A game is considered solved when a maximum score leaf is
found.

The purpose of our first experiment is to compare different values of α in the
local selection policy (Eq. 1). We use C = 0.4 which allow a good balance between
exploration and exploitation in a majority of GGP games. We experimented on

4 The experiments are performed on one core of an Intel Core i7 2,7 GHz with 8Go of
1.6 GHz DDR3.

114 A. Hufschmitt et al.

two games: Incredible and Nonogram “checkerboard”. The results are presented
in Fig. 1. Using only the global score estimator (α = 1) in the local selection
policy does not allow to solve Nonogram due to its binary score. The estimated
score is always zero in this game and the randomly chosen moves very unlikely
lead to the right combination of sub-states. On the contrary, the local score
estimator (α = 0) allows to guide the search in the sub-trees and solve this
Nonogram in less than 5 s. However, the use of α = 1 gives better results on
Incredible while α = 0 requires almost twice as much time to solve the game.
By varying α, we notice that a small participation of the local score estimator
(α = 0.75) allows an even better result in Incredible. The weighting α = 0.25
seems to allows the fastest resolution of Nonogram. However, the importance of
the standard deviations, of the same order of magnitude as the resolution times
or an order below, does not allow to identify a significant effect of the variation
of this weighting. Considering these standard deviations, the resolution times
are similar in the three tests mixing the local and global score estimators. More
experiments will be necessary to verify the influence of unequal weighting of
these two pieces of information.

Nevertheless, the association of both estimators appears desirable to consti-
tute a polyvalent policy. In the following experiments, we used α = 0.5 for the
local selection since it gives overall the best result.

Fig. 1. Mean time on 10 tests to solve Incredible and Nonogram “checkerboard” with
different values of α in the local selection policy of MT-MCTS (Eq. 1).

In a second experiment (Fig. 2) we compare the effectiveness of MT-MCTS
against UCT in terms of number of playouts and time spent.

On Incredible, MT-MCTS is significantly better than UCT in terms of num-
ber of playouts necessary to solve the game. MT-MCTS uses twenty times less
playouts but the move selection is significantly longer. In the end, the game is
solved twice as fast.

Comparing our results with [5] (Fluxplayer) and [3] (ASP) is difficult because
their approaches are totally different from UCT. Fluxplayer takes about 2 h to
solve Incredible by computing over 41 million states (compared to 280 thousand

Exploiting Game Decompositions in Monte Carlo Tree Search 115

playouts for UCT5). Their decomposition method reduces this time to 45 s and
3212 calculated states. Their resolution time is greater than ours although fewer
states are computed by their approach. The encoding of Incredible in ASP allows
game resolution in 6.11 s. This time is reduced to 1.94 s by decomposition,
a factor of 3. It should be noted that this approach is optimized for solitary
games. Since our approach requires 21 times less playouts for the resolution of
the decomposed game, by optimizing the selection step of MT-MCTS, we hope
to obtain a similar or even better improvement.

For a simple puzzle like Queens08lg, even if the resolution of the decomposed
game requires 3 times less playouts, the decomposition time is too important
compared to the gain that can be expected in the resolution.

Game Algo. # Playouts Time (decomp.) σ # Fail

Incredible UCT 280158 1m 14.3s -
MT-MCTS 13199 32.86s (2.50s) 4.4s -

Queens08lg UCT 67 0.01s <0.1s -
MT-MCTS 22 1.30s (1.29s) <0.1s -

Nonogram UCT 432019 31.31s 16.5s -
“checkerboard” MT-MCTS 776 4.81s (0.69s) 0.5s -
Nonogram UCT 2988921 4m24s 4m8s -
“G” MT-MCTS 9344 36.61s (0.77s) 16.45s -
Nonogram UCT 4969111 7m20s 3m53s 1 (after 107 play. / 15m17s)
“tetris” MT-MCTS 3767 16.36s (1.01s) 6.5s -
Nonogram UCT 2552082 3m43s 2m50s -
“sitdog” MT-MCTS 5476 26.27s (0.98s) 14.92s -
Nonogram UCT 3086172 4m34s 3m9s -
“iG” MT-MCTS 10232 28.60s (0.85s) 12.40s -
Nonogram UCT 4284872 13m7s 6m41s 4 (after 107 play. / 31m9s)
“rally” MT-MCTS 1762 49.26s (2.40s) 3.72s -
Nonogram UCT 21438731 1h17m23s 19m16s 8 (after 5 × 107 play. / 3h4m)
“cube” MT-MCTS 358608 1h53m8s (2.75s) 45m7s -

Fig. 2. Comparison of the resolution times of different games with UCT and MT-
MCTS. The columns present the mean number of playouts and the mean time to
solve the puzzles (failures excluded) over 10 tests. In parentheses is the time used for
decomposition. The σ column indicates the standard deviations. The column “# Fail”
indicates how many searches were stopped without finding the solution.

On Nonograms grids (5×5 and 6×6) MT-MCTS is significantly better than
UCT. The resolution is 25 times faster for “Tetris”. This gain is not directly
related to the number of sub-games identified: in “Checkerboard”, which has
a larger number of sub-games, the resolution is only 6 times faster. The gain
obtained for the resolution speed is directly related to the number of simulations
needed: 300 times less for “iG” up to 2400 times less for “rally” (not to mention
the 4 tests where UCT was interrupted after 107 playouts without finding any
solution). The heavier selection step is largely mitigated here by the significant

5 As each playout results in an expansion of the tree, we can compare the number of
playouts with the number of calculated states.

116 A. Hufschmitt et al.

gain in the number of simulations. The time needed to solve “cube” with MT-
MCTS is 2 h on average. The resolution with UCT is sometimes successful in
less than an 2 h, but the majority of tests (8/10) failed to find the solution after
3 h on average.

5 Discussion

During the expansion, some actions are not tested as we already have an evalu-
ation for the resulting sub-states from previous descents in the sub-trees. There-
fore some combinations of sub-states may never be visited and splitting the
search over several game trees offers in theory no guarantee of convergence
toward a solution with an infinite number of playouts. In practice, a good selec-
tion policy allows to guide the search to find the right sequence of moves to reach
the right combination of sub-states.

The problem in the GGP domain is that the optimal policy depends on the
structure of the game. For example, excluding fully explored branches in local
selection can quickly guide to the solution in Incredible as it avoids re-exploring
a path leading to a suboptimal score. However, it can delay the resolution in a
game like Nonogram where playing the already known good moves would have
allowed to color some cells and guide the discovery of the following good moves.

Despite this delay, MT-MCTS is still more efficient than UCT on Nonogram.
However, as an interesting specific combination of sub-states can remain unex-
plored for a long time, we assume that a fixed value for α in our policy may not
be as effective on all GGP games. Further research is therefore needed. Many
different policies could be considered to allow to go down rarely in the fully
explored branches and to improve the selection step of MT-MCTS. Finding a
policy for MT-MCTS that is proven effective on all games is an interesting open
problem.

Nonogram naturally presents a composition of rules in rows and columns.
The structure of MT-MCTS allows to explore a game decomposed in this way.
Another avenue of research to consider is then the exploitation of different over-
lapping sub-games and, more generally, of non-disjoint sub-games.

Our version of MT-MCTS does not consider all transpositions to avoid games
with cycles. Fifty-five percent of GGP games use a stepper, the development of a
specific selection policy to take advantage of transpositions in games containing
cycles is therefore an open and interesting search track that could significantly
improve the level of GGP players.

6 Conclusion

In this paper we proposed an extension of MCTS to search in several trees rep-
resenting the different parts of a decomposed problem. We tested this idea on
several single player games in the General Game Playing domain. Playing with
decomposed games allows to hope for a real change of scale in their resolution
speed. Our tests with a weighted selection policy give promising results: the

Exploiting Game Decompositions in Monte Carlo Tree Search 117

games are solved from 2 times (Incredible) to 25 times faster (Nonogram). Mul-
tiple Tree MCTS (MT-MCTS) can be extended to multi-player games such as
conventional MCTS approaches and also allows non-independent sub-games to
be exploited.

The new MT-MCTS approach opens different research tracks: the develop-
ment of a selection policy efficient for the different types of compound games,
the support of the specific case of games with cycles using a stepper, playing
with overlapping sub-games and even the exploitation of incomplete or imper-
fect decompositions.

References

1. Browne, C.B., et al.: A survey of Monte Carlo Tree search methods. IEEE Trans.
Comput. Intell. AI Games 4(1), 1–43 (2012)

2. Cazenave, T.: Monte-Carlo approximation of temperature. Games Chance 4(63),
41–45 (2015)

3. Cerexhe, T., Rajaratnam, D., Saffidine, A., Thielscher, M.: A systematic solution
to the (de-)composition problem in general game playing. In: Proceedings of the
European Conference on Artificial Intelligence (ECAI) (2014)

4. Cox, E., Schkufza, E., Madsen, R., Genesereth, M.: Factoring general games using
propositional automata. In: Proceedings of the IJCAI-09 Workshop on General
Game Playing (GIGA 2009), pp. 13–20 (2009)

5. Günther, M., Schiffel, S., Thielscher, M.: Factoring general games. In: Proceedings
of the IJCAI-09 Workshop on General Game Playing (GIGA 2009), pp. 27–33
(2009)

6. Hufschmitt, A., Méhat, J., Vittaut, J.N.: A general approach of game description
decomposition for general game playing. In: Proceedings of the IJCAI-16 Workshop
on General Game Playing (GIGA 2016), pp. 23–29 (2016)

7. Hufschmitt, A., Vittaut, J.N., Jouandeau, N.: Statistical GGP games decomposi-
tion. In: Proceedings of the IJCAI-18 Workshop on Computer Games (CGW 2018),
pp. 1–19 (2018)

8. Kishimoto, A., Müller, M.: A general solution to the graph history interaction prob-
lem. In: Nineteenth National Conference on Artificial Intelligence (AAAI 2004),
San Jose, CA, pp. 644–649 (2004)

9. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

10. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game
playing: game description language specification. Tech. rep. LG-2006-01, Stanford
University, January 2006

11. Mehat, J., Cazenave, T.: Combining UCT and nested monte carlo search for single-
player general game playing. IEEE Trans. Comput. Intell. AI Games 2(4), 271–277
(2011)

12. Palay, A.: Searching With Probabilities. Research Notes in Artificial Intelligence
Series, Pitman Advanced Publishing Program (1985)

13. Reps, T.W., Loginov, A., Sagiv, S.: Semantic minimization of 3-valued proposi-
tional formulae. In: 17th IEEE Symposium on Logic in Computer Science (LICS
2002), 22–25 July 2002, Copenhagen, Denmark, Proceedings, p. 40 (2002)

https://doi.org/10.1007/11871842_29

118 A. Hufschmitt et al.

14. Saffidine, A., Méhat, J., Cazenave, T.: UCD: upper confidence bound for rooted
directed acyclic graphs. In: TAAI 2010, Piscataway, NJ, pp. 467–473. IEEE (2010)

15. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550,
354–359 (2017)

16. Winands, M.H.M., Björnsson, Y., Saito, J.-T.: Monte-Carlo tree search solver. In:
van den Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS,
vol. 5131, pp. 25–36. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-87608-3 3

17. Zhao, D., Schiffel, S., Thielscher, M.: Decomposition of multi-player games. In:
Nicholson, A., Li, X. (eds.) AI 2009. LNCS (LNAI), vol. 5866, pp. 475–484.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10439-8 48

https://doi.org/10.1007/978-3-540-87608-3_3
https://doi.org/10.1007/978-3-540-87608-3_3
https://doi.org/10.1007/978-3-642-10439-8_48

On Efficiency of Fully Probing Mechanisms
in Nonogram Solving Algorithm

Yan-Rong Guo1, Wei-Chiao Huang1, Jia-Jun Yeh1, Hsi-Ya Chang2, Lung-Pin Chen3,
and Kuo-Chan Huang1(B)

1 National Taichung University of Education, No. 140, Minsheng Road,
West District, Taichung 40306, Taiwan

acs103149@gmail.com, erica.ttc@gmail.com, s000032001@gmail.com,
kchuang@mail.ntcu.edu.tw

2 National Center for High-Performance Computing, Hsinchu, Taiwan
9203117@narlabs.org.tw

3 Tunghai University, Taichung, Taiwan
lbchen@thu.edu.tw

Abstract. Fully probing plays an important role in the nonogram solving algo-
rithm developed by Wu et al., whose implementation, named LalaFrogKK, has
won several nonogram tournaments since 2011. Different fully probing methods
affect the overall nonogram solving performance greatly as shown in previous
studies. In this paper, we explore fully probing efficiency from different aspects
and evaluate its impact on the performance of solving an entire nonogram puz-
zle. In the exploration, we found several critical factors influencing fully probing
efficiency greatly, i.e. re-probing policy, probing sequence, and computational
overhead. Taking these critical factors in account, we developed several new fully
probing mechanisms to improve nonogram solving performance. Experimental
results based on the puzzles of previous nonogram tournaments show that our
new fully probing methods have the potential to improve the speed of solving
nonogram puzzles significantly.

Keywords: Nonogram · Line solving · Propagation · Fully probing ·
Backtracking

1 Introduction

A nonogram puzzle [14] looks like Fig. 1, which is a kind of picture logic puzzles with
clues given as row and column constraints. Solving a nonogram puzzle is to paint each
pixel in black or white under the given row and column constraints. Figure 1 illustrates
a solved nonogram puzzle, represented by a 5 × 5 grid with its row clues given next
to the leftmost column and column clues showed above the top row. Each clue is an
integer indicating the required length of a segment of consecutive black pixels which
should appear in the corresponding row or column in the solution. Moreover, segments
of black pixels implied by consecutive clues should be separated by at least one white

© Springer Nature Switzerland AG 2020
T. Cazenave et al. (Eds.): ACG 2019, LNCS 12516, pp. 119–130, 2020.
https://doi.org/10.1007/978-3-030-65883-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65883-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-65883-0_10

120 Y.-R. Guo et al.

pixel. For example, in Fig. 1 the clues of the third row, 2 1, indicate that the row in the
solution should have exactly two segments of consecutive black pixels, starting from the
left, where the length of the first segment is 2 and that of the second segment is 1. It is
possible that a nonogram puzzle has more than one solution all satisfying the constraints.

3 3
1
1 2 3

2

4

2 1

3

1

Fig. 1. A solved 5 × 5 nonogram puzzle

Solving a nonogram puzzle has been shown to be an NP-complete problem [20], and
received a lot of research attention [1, 8, 24].Wu et al. [23] proposed an efficient approach
to solving nonograms, featuring a fast dynamic programming method for line solving,
followed by fully probing (FP) methods to solve as many pixels as possible before the
final backtracking stage. A nonogram solver developed based on the approach in [23],
named LalaFrogKK [13], has won several nonogram tournaments [12].

In general, a nonogram puzzle might have more than one solution. Regarding each
pixel in a nonogrampuzzle, itmight either have only one choice for its value or could have
two alternative choices, depending on the clues of the puzzle and those pixels already
being set values. For the pixels potentially having alternative choices, their values might
have interrelationship and depend on each other under the row and column constraints.
The algorithm in [23] adopts a conservative approach to solving a nonogram puzzle. It
tries to paint those pixels with only once choice first in the earlier stages, and then solve
the other pixels with two alternative choices by figuring out their interrelationship.

Line solving is the basic unit of the nonogram solving approach in [23], which treats
a line, i.e. a single row or a column, at a time, trying to determine the values of those
pixels with only one choice in the line based on the information of line clues and the
values of the already solved pixels in the same line. Line solving in [23] is based on the
recurrence definitions of Fix and Paint functions. A dynamic programming method was
proposed in [23] to improve the speed of computing the recursive functions.

Based on line solving, an iterative procedure, Propagate, was proposed to paint as
many one-choice pixels as possible for the entire grid by checking potential conflicts
between specific values of pixels and clues. Propagate in [23] is conservative in the sense
that it paints a pixel into a specific value, i.e. 0 for white pixels and 1 for black pixels,
only when it could confirm that the other value would result in a conflict with some line
clues. Therefore, during the nonogram solving process, a temporary unknown value for
a pixel doesn’t necessarily mean that it could have two alternative choices in the puzzle.

On Efficiency of Fully Probing Mechanisms in Nonogram Solving Algorithm 121

It is only a sign that we have not found any evidence for it to be a single-choice pixel yet.
Later in the solving process, it could finally turn out to be either a single-choice pixel or
a two-choice pixel.

When no more pixels can be painted after the Propagate procedure, a common
approach in previous works is to employ backtracking to search all possible solutions.
On the other hand, in [23] fully probing was proposed to be used before backtracking.
It attempts to guess a value, i.e. 0 or 1, on each pixel to see whether or not more pixels
can then be painted by a following re-run of the Propagate procedure. Fully probing
is different from backtracking in that it is not recursive. In contrast to Propagate, fully
probing is more aggressive since it guesses a value first and then checks whether or not
that guess would result in a conflict with clues on other lines, while Propagate would
determine a pixel’s value only when it could immediately find the conflict between a
specific value and the clues right on the line containing the pixel.

Since fully probing is also used in later backtracking stage, it plays an important role
in the nonogram solving approach in [23]. In our previous work [9], we proposed a new
fully probing method, called selective_repeat, to paint new pixels with less efforts at
the algorithmic level. Experimental results in [9] showed that selective_repeat can paint
almost as many pixels as the FP1 method in [23] but with relatively much less probing
activities, resulting in faster nonogram solving speed. However, for very few puzzles
in the experiments, selective_repeat would paint one less pixel than FP1. This finding
motivated our researchwork presented in this paper.We investigated the efficiency issues
of fully probing from different aspects at both algorithmic and implementation levels.
Three factors were found to have critical influence on fully probing efficiency, i.e. re-
probing policy, probing sequence, and computational overhead. Based on the research
results, we present several new fully probing mechanisms to improve nonogram solving
performance further in this paper. Experimental results show that our new fully probing
methods could improve the speed of solving nonogram puzzles significantly, ranging
from 11% to 99%.

2 Related Work

Many researchers have tried to tackle the nonogram solving problem from different
angles. Translating nonogram solving into other classical problems is one of the major
approaches. For example, Bosch translated it into an integer linear programming problem
for solution in [4]. On the other hand, Faase [8] translated it into an exact cover problem
and then used Knuth’s dancing-links method [11] to solve it. Unfortunately, nonogram
puzzles usually cannot be solved efficiently by these kinds of problem transformations,
especially for large nonogram puzzles.

Meta-heuristic algorithms have been used by some researchers to solve nonogram
puzzles. For example, Wiggers [21] used a genetic algorithm to solve nonogram puz-
zles, while Batenburg [1] proposed an evolutionary algorithm for nonogram solving.
Approaches of this kind can also be found in [17–19]. However, one potential drawback
of these approaches is that they cannot guarantee to solve a puzzle.

Another kind of nonogram solving approaches are based on logical rules. For exam-
ple, Yu et al. [24] developed an algorithm which tries to solve nonogram puzzles based

122 Y.-R. Guo et al.

on specific logical rules in the beginning, and then use backtracking to find the solutions
of unpainted pixels aided with the same set of logical rules for improving search effi-
ciency. Jing [10] divided nonogram solving into two parts. In the first part, logical rules
are used to paint some pixels first. The remaining unpainted pixels are then solved using
a depth first search method enhanced by the branch and bound mechanism in the second
part. These logical rules are usually focused on painting as many pixels as possible in
a line-by-line manner. There are also other line painting methods proposed in [15, 16],
which are simpler, however, cannot guarantee painting as many pixels as in [10, 24] for
each row or column.

For line solving to paint as many pixels as possible for each row or column, Baten-
burg and Kosters [3] adopted a dynamic programming approach instead of logical rules.
In general, their approach paints more pixels than those in [15, 16, 24], and thus result
in faster nonogram solving speed. Moreover, they used a 2-Satisfiability method to paint
more pixels before the backtracking stage. [22] presents information of many nono-
gram solvers. Generating nonogram puzzles is also an important issue for conducting
nonogram solving research. Several nonogram-generating algorithms are discussed in
[2].

The nonogram solving approach in [23] consists of three major parts: propagation
based on line solving, fully probing, and backtracking. They developed a faster dynamic
programming method for line solving based on previous research in [3]. Three fully
probing methods were also proposed for painting more pixels before the backtracking
part. In addition to painting more pixels after the propagation part, fully probing also
provides the later backtracking stage with useful information about which pixel to guess
first in order to find the solution of a nonogram puzzle more quickly. Many nonogram
solvers participating recent tournaments are based on the approach in [23] and try to
make some enhancements, such as [5–7, 9].

3 Fully Probing Efficiency from Different Aspects

The nonogram solving approach in [23] has three major components: Propagate() for
conservative pixel painting, FP() for painting pixels in a more aggressive way, and
Backtracking() for brute-force depth-first search with some smart guessing techniques.
However, the three components are not executed one by one. They exhibit a partic-
ular computational structure where Backtracking() invokes FP() and FP() would call
Propagate().Therefore, FP() plays an major role in the entire nonogram solving process
and affects the overall performance greatly. That’s why we choose fully probing as the
research topic for improving nonogram solving efficiency further. The entire nonogram
solving process is as follows. It tries to paint as many pixels as possible first by conduct-
ing the fully probing method at line 3, which would invoke Propagate(). After that, all
unsolved pixels are painted by the recursive backtracking procedure.
Nonogram solving algorithm in [23]

1. Initialize G to be the grid representing the solution of a nonogram puzzle with all
pixels being unsolved. G is also accompanied by the row and column clues of the
nonogram puzzle.

On Efficiency of Fully Probing Mechanisms in Nonogram Solving Algorithm 123

2. Initialize all Gp,0 and Gp,1 for each pixel p, where p is guessed to be 0 and 1,
respectively.

3. FP(G);//conduct the fully probing method in [23]
4. if (status(G) is CONFLICT or SOLVED) then return;
5. Backtracking(G);

The idea of fully probing in [23] is to make guesses for all unpainted pixels. Each
guess would result in a new partial solution grid. Then, it performs Propagate on each
resultant partial solution grid. The following shows the first proposed fully probing
method in [23], named FP1.

Procedure FP(G) //the FP1 fully probing method in [23]
1. repeat
2. PROPAGATE(G)
3. if (status(G) is CONFLICT or SOLVED) then return
4. for (each unpainted pixel p in G) do
5. Update Gp,0 and Gp,1 with newly painted pixels in G
6. PROBE(p) //invoking Propagate() on Gp,0 and Gp,1 inside to paint more pixels
7. if (status(G) is CONFLICT or SOLVED) then return
8. if (status(G) is PAINTED) then break
9. end for

10. until (no more pixels can be painted)
end procedure

In the following, we investigate into three potential factors that affect fully probing
efficiency, respectively.

3.1 Re-probing Policy

In the fulling probing method proposed in [23], as shown in the definition of FP() in
the previous section, line 8 is a key part which enforces re-probing all the unsolved but
already probed pixels by the break statements once the most recent probing successfully
paints new pixels. This mechanism is important to make sure one run of FP() could paint
as many pixels as possible. However, we found that the goal is achieved at the cost of
inefficient fully probing because many re-probing activities are not necessary and result
in no more pixels painted.

We explored this issue and proposed several new re-probing polices, which all out-
performed the original fully probing method in [23] significantly, in our previous work
[9]. Selective_repeat was the best re-probing policy in [9]. However, our goal, i.e. paint-
ing as many pixels as the original fully probing in [23] with less probing activities,
was not achieved completely by the selective_repeat policy since for very few puzzles
its fully probing result is one less pixel than that of the original method in [23]. The
unachieved goal motivated our research work in this paper.

In the following, we evaluate three existing re-probing policies, original FP in [23],
one_run [9], and selective_repeat [9], together with a new enhancement mechanism to
selective_repeat, and investigate the issue of fully probing efficiency at an algorithmic
level, measuring howmany pixels can be painted with howmany times of pixel probing.

124 Y.-R. Guo et al.

The following describes the re-probing policies to be evaluated in this section except the
original fully probing method in [23].

• One_run. In this policy, no pixel re-probingwould be conducted. Each unsolved pixel
would be probed for only once in each FP() invocation.

• Selective_repeat. In this policy, fully probing is conducted iteratively. At the first
iteration, all unsolved pixels would be probed. In later iterations, it tries to re-probe
only those pixels promising to paint new pixels. An unsolved pixel is regarded as
promising for re-probing only when it is located at the row or column crossing on a
pixel newly painted at last iteration. The iterative fully probing processwould continue
until no new pixels are painted after an entire iteration.

• Selective_repeat_with_final_check. This enhancement adds an iteration of probing
all unsolved pixels for once when the selective_repeat fully probing procedure paints
no more pixels after an iteration. The fully probing procedure would come to an
end only when this added iteration still cannot paint any new pixels. Otherwise, the
procedure would continue following the selective_repeat policy.

Table 1 compares the four re-probing policies with three puzzles selected from the
1000 TAAI 2014 nonogram tournament puzzles in terms of total pixels painted, how
many times of probing performed, how many times of probing in vain (i.e. painting no
more pixels), and how many pixels can be painted by a probing in average. The data
were measured after the first run of fully probing when solving a nonogram puzzle. The
experimental results show that both FP in [23] and selective_repeat_with_final_check
could paint most pixels for all the three puzzles. In terms of efficiency, the new selec-
tive_repeat_with_final_check policy is obviously better than FP in [23] since it painted
the same number of pixels withmuch less times of probing. Selective_repeat also painted
the most number of pixels as those two policies for two puzzles, but painted one less
pixel for the other puzzle. However, it required much less times of probing to paint
those pixels, resulting in a much higher value of painted pixels per probing than FP in
[23] and selective_repeat_with_final_check. One_run painted the least number of pixels
in each puzzle, but also conducted the fewest times of probing. It achieves the highest
value of painted pixels per probing, i.e. most efficient at the algorithmic level among all
re-probing policies.

3.2 Probing Sequence

The fully probing method in [23] doesn’t describe any specific sequence for probing
unsolved pixels. One natural and common approach is to probe the unsolved pixels row
by row starting from the left top corner in the puzzle grid, whichwas used in LalaFrogKK
and our previous solvers. In our previous work [9], we pointed out that probing sequence
could also be an algorithm-level issue with experimental evidence. However, we didn’t
offer any specific better probing sequence in [9]. In the following, we propose a new
clue-based probing mechanism and compare it to the commonly used one.

The clue-based probing mechanism assigns a priority value to each unsolved pixel,
and then probes all unsolved pixels in the specific order determined by their priority
values. The basic idea of the clue-based probing mechanism is that the importance of

On Efficiency of Fully Probing Mechanisms in Nonogram Solving Algorithm 125

Table 1. Comparison of re-probing policies

Painted
pixels

Times of
probing

Times of
probing in
vain

Painted
pixels per
probing

Puzzle #50

FP in (Wu et al. 2013) 569 299 271 1.903

One_run (Huang et al. 2018) 567 91 65 6.231

Selective_repeat (Huang et al. 2018) 569 161 134 3.534

Selective_repeat_with_final_check 569 204 177 2.789

Puzzle #100

FP in (Wu et al. 2013) 607 5365 5295 0.113

One_run (Huang et al. 2018) 375 292 266 1.284

Selective_repeat (Huang et al. 2018) 607 433 387 1.402

Selective_repeat_with_final_check 607 433 387 1.402

Puzzle #309

FP in (Wu et al. 2013) 191 7398 7352 0.026

One_run (Huang et al. 2018) 160 493 464 0.325

Selective_repeat (Huang et al. 2018) 190 1520 1475 0.125

Selective_repeat_with_final_check 191 2278 2232 0.084

an unsolved pixel, i.e. how promising it can lead to more pixels being painted, is related
to the clues of the row and column crossing on it. In the following, the priority value
of each unsolved pixel is calculated by summing up the clues of the row and column
crossing on it, and the probing sequence is in the decreasing order of priority values. The
assumption is that unsolved pixels on the rows and columns with constraints of more
black pixels are more promising to paint more new pixels in the next probing. Table 2
evaluates the new clue-based probing mechanism by comparing it to the One_run [9]
fully probing method. Both methods probe each unsolved pixel for at most once in a
single run of fully probing, but One_run adopts a simple row-wise probing sequence
starting from the left-top corner of the puzzle grid.

The experimental results in Table 2 confirm that probing sequence is an algorithm-
level issue affecting performance significantly, and show that clue-based probing is
promising to paint more pixels than the original method in a single run of fully probing.
In addition to painting more pixels, clue-based probing also results in less times of
probing in vain and thus more painted pixels per probing in average, improving fully
probing efficiency. The higher efficiency of the clue-based probingmechanism also leads
to its faster speed than One_run for solving the three puzzles.

126 Y.-R. Guo et al.

Table 2. Comparison of probing sequences

Painted pixels Times of
probing

Times of
probing in
vain

Painted pixels
per probing

Execution
time

Puzzle #50

One_run
(Huang et al.
2018)

567 91 65 6.231 0.103

Clue_based
probing

569 83 62 6.855 0.041

Puzzle #100

One_run
(Huang et al.
2018)

375 292 266 1.284 0.043

Clue_based
probing

607 246 197 2.467 0.037

Puzzle #309

One_run
(Huang et al.
2018)

160 493 464 0.325 0.209

Clue_based
probing

170 496 452 0.343 0.204

3.3 Computational Overhead

The methods discussed in the previous sections can be divided into two categories. The
first category, e.g. the clue-based probing mechanism, probes each unsolved pixel for
just once, while the second category, e.g. selective_repeat [9], would conduct re-probing
on all or some unsolved pixels. In general, fully probing methods of the second category
could paint more pixels as shown in Table 1, however, at the cost of larger computational
overheads because of more times of probing in vain. The computational overheads of
fully probing methods should be taken seriously because fully probing would also be
repeatedly conducted in the later backtracking stage, not just run for once.

Table 3 evaluates the effects of such computational overheads on the speed of solving
a nonogram puzzle. For easier puzzles, e.g. puzzles #50 and #100 in Table 3, more pixels
could be painted after the first run of fully probing and thus the computational overheads
incurred by the methods of the second category don’t hurt the overall performance of
nonogram solving since only fewer unsolved pixels are left for the backtracking stage.
Therefore, selective_repeat outperforms the clue-based probing method in both puzzles
#50 and 100 in terms of execution time. On the other hand, for more difficult puzzles,
such as puzzles #799 and #990 in Table 3, only very few pixels can be painted after
the first run of fully probing. Since many unsolved pixels are left to the backtracking
stage, requiring many times of fully probing at that stage, the computational overheads

On Efficiency of Fully Probing Mechanisms in Nonogram Solving Algorithm 127

of fully probing methods could have a crucial influence on the overall nonogram solving
performance. Therefore, as shown in Table 3, the clue-based probing mechanism with
less computational overheads outperforms selective_repeat in both puzzles #799 and
#990. The results demonstrate that it is difficult to have a single fully probing method
which can achieve the best performance for all nonogram puzzles.

Table 3. Effects of computational overhead

Painted pixels Times of probing Execution time

Puzzle #50

Clue_based probing 569 83 0.041

Selective_repeat (Huang et al. 2018) 569 161 0.039

Puzzle #100

Clue_based probing 607 246 0.037

Selective_repeat (Huang et al. 2018) 607 433 0.024

Puzzle #799

Clue_based probing 1 624 0.102

Selective_repeat (Huang et al. 2018) 1 672 0.158

Puzzle #990

Clue_based probing 3 623 0.116

Selective_repeat (Huang et al. 2018) 3 717 0.180

4 New Fully Probing Methods and Performance Evaluation

Based on the investigation and experimental results of three crucial factors affecting fully
probing efficiency in Sect. 3, we present and evaluate three new fully probing methods
in the following.

• Clue-based fully probing. This is exactly the clue-based method evaluated in
Sect. 3.2, which would probe each unsolved pixel for just once and adopt a new
priority-based probing sequence to improve efficiency.

• Selective_repeat_and_clue_based probing. This method tries to take into consider-
ation the effects of both re-probing policies and probing sequence. Therefore, it inte-
grates the selective_repeat re-probing policy and the clue-based probing sequence. In
this method, each unsolved pixel is possible to be probed for more than one time. The
method conducts fully probing in an iterative manner. At each iteration, only some
unsolved pixels would be selected for re-probing based on the selective_repeat policy,
and the clue-based probing sequence is used to perform probing.

• Adaptive_FP. This method aims to make an appropriate balance between effec-
tiveness, i.e. painted pixels, and computational overheads. In the former part of the

128 Y.-R. Guo et al.

nonorgam solving process, it adopts a method which incurs a higher computational
overhead, but is promising to paint more pixels in each run of fully probing. On the
other hand, in the later part of the nonorgam solving process, it focuses on overhead
reduction, and thus uses a method painting each unsolved pixel for just once. The
separation between the former and later part of a nonogram solving process is con-
trolled by a parameter defined in terms of the times of fully probing already performed.
In the following experiments, Adaptive_FP adopts selective_repeat_and_clue_based
probing for the former part and One_run for the later part.

The experimentswere conductedon a laptop computer running64-bitMicrosoftWin-
dows and containing an Intel i5-8250U CPU and 12 GBmemory. The nonogram solvers
were compiled in Dev-C++ 5.11 which is equipped with TDM-GCC 4.9.2. Table 4
evaluates the above three fully probing methods with three different sets of nonogram
tournament puzzles, i.e. TAAI 2014, TCGA 2017, TAAI 2018, and compares them to
three previous methods in [9, 23]. There are 1000 25× 25 puzzles for each tournament.
Table 4 presents the average execution time of a single puzzle in seconds and the standard
deviation among 1000 puzzles for each method. The experimental results show that all
the three new fully probing methods have the potential to outperform the three existing
methods in [9, 23]. Moreover, for each set of puzzles either the proposed clue-based
probing or adaptive FP method achieves the best performance.

Table 4. Performance evaluation of fully probing methods in seconds

TAAI 2014 TCGA 2017 TAAI 2018

Average
execution
time

Standard
deviation

Average
execution
time

Standard
deviation

Average
execution
time

Standard
deviation

FP in (Wu et al., 2013) 1.700674 10.60825 2.62176 23.94344 2.359404 24.42377

One_run (Huang et. al., 2018) 1.260429 21.39171 0.991373 9.881388 1.44393 16.50721

Selective_repeat (Huang et. al.,
2018)

0.721714 4.409144 0.986693 9.764836 1.378681 16.76851

Clue_based probing 0.937931 6.103683 0.89477 5.813115 0.430268 2.775844

Selective_repeat_and_clue_based
probing

0.676481 4.267752 1.02144 10.73068 0.937244 9.727025

Adaptive_FP 0.64753 4.059608 0.947791 9.487506 0.899915 9.5812

The above experimental results also indicate an interesting finding that the perfor-
mance of a fully probing method could vary for different set of puzzles, and thus no
one method can always achieve the best performance across all puzzles. As an example,
Table 5 shows the execution time of two puzzles in TAAI 2014 tournament required by
different fully probing methods. One_run [9] outperforms the other methods in solving
puzzle #670, but results in the worst performance among all methods when solving puz-
zle #961. For both puzzles, the performance difference between the best and the worst
method is extraordinary large, demonstrating that each method has potential drawback

On Efficiency of Fully Probing Mechanisms in Nonogram Solving Algorithm 129

Table 5. Execution time (sec.) of two puzzles by different fully probing methods

#670 #961

FP in (Wu et al. 2013) 150.871 0.110

One_run (Huang et al. 2018) 6.077 665.990

Selective_repeat (Huang et al. 2018) 60.376 0.031

Selective_repeat_and_clue_based probing 58.517 0.047

Adaptive_FP 60.889 0.031

for specific kinds of puzzles. We believe that is because different methods lead to dif-
ferent partial solutions after the first run of fully probing, and different characteristics
in the partial solutions would affect the required times of the following backtracking
greatly. Investigation into this phenomenon is a promising future research direction
for developing new methods to further improve the overall performance of nonogram
solving.

5 Conclusions and Future Work

This paper presents our research on exploring the issues of fully probing efficiency in
solving nonogram puzzles based on the framework proposed in [23].We found that three
critical factors influence fully probing efficiency greatly, i.e., re-probing policy, probing
sequence, and computational overhead. Experimental evaluations of the three factors
are presented and new probing mechanisms are proposed considering specific factors.
Based on such results, three new fully probing methods are presented and evaluated with
nonogram puzzles of three different tournaments. Compared to previous methods in [9,
23], the new fully probing methods have the potential to achieve better performance,
resulting in performance improvement ranging from 11% to 99% for puzzles of different
tournaments.

The experimental results also indicate a promising future research direction, inves-
tigating and resolving the inconsistent performance of a fully probing method across
different nonogram puzzles. Backtracking process would be the potential target worth
further investigation and improvement. A good starting point is to figure out the influ-
ence of the characteristics of the partial solution after each fully probing on the following
backtracking performance. New search and backtrackingmethods taking into considera-
tion the characteristics of partial solutions could be developed to resolve the inconsistent
performance issue and improve the overall nonogram solving performance further.

References

1. Batenburg, K.J.: A network flow algorithm for reconstructing binary images from dis- crete
X-rays. J. Math. Imag. Vis. 27(2), 175–191 (2007)

2. Batenburg, K.J., Henstra, S., Kosters, W.A., Palenstijn, W.J.: Constructing simple nonograms
of varying difficulty. Pure Math. Appl. 20, 1–15 (2009)

130 Y.-R. Guo et al.

3. Batenburg, K.J., Kosters, W.A.: Solving nonograms by combining relaxations. Pattern
Recogn. 42(8), 1672–1683 (2009)

4. Bosch, R.A.: Painting by numbers. Optima 65, 16–17 (2001)
5. Chen, L.P., Huang, K.C.: Solving nonogram puzzles by using group-based fully probing.

Comput. Games Assoc. J. 40(4), 387–396 (2018)
6. Chen, L.P., Hung, C.Y., Liu, Y.C.: A new simplified line solver for nonogram puzzle games.

In: TCGA Computer Game Workshop (TCGA2017) (2017)
7. Chen, Y.C., Lin, S.S.: A fast nonogram solver that won the TAAI 2017 and ICGA 2018

tournaments. Comput. Games Assoc. J. 1–13 (2019, pre-press)
8. Faase, F.: Nonogram to exact cover, 31 March 2018 (2009). http://www.iwriteiam.nl/D0906.

html#28
9. Huang, K.C., Yeh, J.J., Huang, W.C., Guo, Y.R.: Exploring effects of fully probing sequence

on solving nonogram puzzles. Comput. Games Assoc. J. 40(4), 397–405 (2018)
10. Jing, M.Q.: Solving Japanese puzzles with logical rules and depth first search algorithm. In:

International Conference on Machine Learning and Cybernetics, pp. 2962–2967 (2009)
11. Knuth, D.E.: Dancing links. In: Millennial Perspectives in Computer Science: the Oxford-

Microsoft Symposium in Honour of Sir Tony Hoare (Cornerstones of Computing), Bas-
ingstoke, U.K., pp. 187–214. Palgrave (1999)

12. Lin, H.H., Sun, D.J., Wu, I.C., Yen, S.J.: The 2011 TAAI computer-game tournaments.
Comput. Games Assoc. J. 34(1), 51–54 (2011)

13. LalaFrogKK, 11May 2019 (2015). http://java.csie.nctu.edu.tw/~icwu/aigames/LalaFrogKK.
html

14. Nonogram: Wikipedia, the free encyclopedia, 11 May 2019 (2017). http://en.wikipedia.org/
wiki/Nonogram

15. Olšák, M., Olšák, P.: Griddlers solver, 11 May 2019 (2003). http://www.olsak.net/grid.html#
English

16. Simpson, S.: Nonogram solver, 11 May 2019. http://www.lancaster.ac.uk/~simpsons/sof
tware/pkg-nonowimp.htmlz.en-GB

17. Tsai, J.: Solving Japanese nonograms by taguchi-based genetic algorithm. Appl. Intell. 37(3),
405–419 (2012)

18. Tsai, J., Chou, P.: Solving Japanese puzzles by genetic algorithms. In: International
Conference on Machine Learning and Cybernetics, pp. 785–788 (2011)

19. Tsai, J., Chou, P., Fang, J.: Learning intelligent genetic algorithms using Japanese nonograms.
IEEE Trans. Educ. 55(2), 164–168 (2012)

20. Ueda, N., Nagao, T.: NP-completeness results for nonogram via parsimonious reductions.
Tech. rep. TR96-0008, Department Computer Science, Tokyo Institute Technology, Tokyo,
Japan (1996)

21. Wiggers,W.A.: A comparison of a genetic algorithm and a depth first search algorithm applied
to Japanese nonograms. In: Twenty Student Conference IT, pp. 1–6 (2004)

22. Wolter, J.: The ‘Pbnsolve’ paint-by-number puzzle solver, 11 May 2019 (2012). http://web
pbn.com/pbnsolve.html

23. Wu, I.C., et al.: An efficient approach to solving nonograms. IEEE Trans. Comput. Intell. AI
Game 5(3), 251–264 (2013)

24. Yu, C.H., Lee, H.L., Chen, L.H.: An efficient algorithm for solving nonograms. Appl. Intell.
35(1), 18–31 (2009)

http://www.iwriteiam.nl/D0906.html#28
http://java.csie.nctu.edu.tw/%7eicwu/aigames/LalaFrogKK.html
http://en.wikipedia.org/wiki/Nonogram
http://www.olsak.net/grid.html#English
http://www.lancaster.ac.uk/%7esimpsons/software/pkg-nonowimp.htmlz.en-GB
http://webpbn.com/pbnsolve.html

Net2Net Extension for the AlphaGo Zero
Algorithm

Hsiao-Chung Hsieh, Ti-Rong Wu, Ting-Han Wei, and I-Chen Wu(B)

Department of Computer Science, National Chiao Tung University, 1001 University
Road, Hsinchu, Taiwan, ROC

{michael81420,kds285,ting,icwu}@aigames.nctu.edu.tw

Abstract. The number of residual network blocks in a computer Go
program following the AlphaGo Zero algorithm is one of the key factors
to the program’s playing strength. In this paper, we propose a method
to deepen the residual network without reducing performance. Next, as
self-play tends to be the most time-consuming part of AlphaGo Zero
training, we demonstrate how it is possible to continue training on this
deepened residual network using the self-play records generated by the
original network (for time saving). The deepening process is performed
by inserting new layers into the original network. We present in this
paper three insertion schemes based on the concept behind Net2Net.
Lastly, of the many different ways to sample the previously generated
self-play records, we propose two methods so that the deepened network
can continue the training process. In our experiment on the extension
from 20 residual blocks to 40 residual blocks for 9 × 9 Go, the results
show that the best performing extension scheme is able to obtain 61.69%
win rate against the unextended player (20 blocks) while greatly saving
the time for self-play.

Keywords: AlphaGo Zero · Deep learning · Net2Net

1 Introduction

Since AlphaGo Zero’s [7] recent achievement of reaching superhuman level in
Go, there have been numerous projects to reproduce or analyze its core algo-
rithm, such as Facebook AI Research’s ELF OpenGo [9], the crowd-sourced
Leela Zero [6], and CGI [10]. The AlphaGo Zero algorithm works by training
deep convolution neural networks (CNNs) using self-play game records, which

H.-C. Hsieh and T.-R. Wu–Equal contribution.
This research is partially supported by the Ministry of Science and Technology
(MOST) under Grant Number MOST 107-2634-F-009-011 and MOST 108-2634-F-009-
011 through Pervasive Artificial Intelligence Research (PAIR) Labs, Taiwan and also
partially supported by the Industrial Technology Research Institute (ITRI) of Taiwan
under Grant Number B5-10804-HQ-01. The computing resource is partially supported
by national center for high-performance computing (NCHC).

c© Springer Nature Switzerland AG 2020
T. Cazenave et al. (Eds.): ACG 2019, LNCS 12516, pp. 131–142, 2020.
https://doi.org/10.1007/978-3-030-65883-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65883-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-65883-0_11

132 H.-C. Hsieh et al.

requires a large amount of computing resources. During the prototyping process,
a common approach is to train a relatively small network, say, 20 residual blocks
[2], to ensure that the chosen hyper-parameters are viable, and that the overall
algorithm has been implemented correctly. Once this prototype converges, it is a
non-trivial problem to improve overall playing strength by extending the training
to use a deeper or wider network. On the one hand, while it is simple to retrain
completely using the same hyper-parameters, the process of generating the self-
play records can be very costly. On the other hand, if we reuse the previously
generated self-play records, it is not clear how to initialize the larger network’s
parameters, nor do we know how the self-play records should be sampled.

Techniques have been proposed to rapidly transfer the information stored in
one neural network (NN) (referred to as the parent network) into another NN
(referred to as the child network), so that the training process of the larger child
network can be accelerated. Net2Net [1] is one such technique that can accelerate
training by transferring an NN into another deeper or wider NN without reduc-
ing performance in image recognition. Net2Net expands the parent network by
adding identity layers to it; the output of these identity layers are essentially
the same as its inputs, so the child network behaves the same as the parent
network initially. While Net2Net has been shown to be useful for CNN architec-
tures, the same technique cannot be easily applied to computer Go, where the
building blocks tend to consist of residual networks (ResNets), as in AlphaGo
Zero’s case [7]. Namely, ResNets contain shortcut connections [2] to deal with
the degradation problem, which complicates the design of identity layers.

In this paper, we propose a new method to deepen a previously-trained parent
ResNet following the AlphaGo Zero algorithm. The expanded child network is
able to retain comparable performance, with further potential for training. We
then propose two methods to train and further improve this child network, where
the training data consists of the same self-play game records. This allows us to
skip the most time consuming step in the AlphaGo Zero algorithm. Given the
same collection of self-play records, by expanding the 20 block parent network
at 3/4 of the overall training progress into 40 blocks, we were able to reach the
same level of strength as a randomly initialized 40 block network in only 1/4 of
the total training time.

2 Background

In this section, we briefly review residual networks, the AlphaGo Zero algorithm,
and the key concepts of Net2Net network extension technique.

2.1 Residual Networks

The ResNet architecture was proposed by He et al. [2] to address the degrada-
tion problem in DNNs. In short, it is intuitive to assume that deeper networks
tend to be better universal function approximators, and so earlier on, researchers
have attempted to improve performance by simply increasing the depth of NNs.

Net2Net Extension for the AlphaGo Zero Algorithm 133

Without going into details, two problems can arise from having networks that
are simply too deep: the vanishing/exploding gradient problem (solved by tech-
niques such as normalization layers [4]) and the degradation problem. When the
degradation problem occurs, performance saturates and converges at a lower
accuracy despite having more layers in the NN. Degradation has a different root
cause than vanishing gradients, and is not caused by overfitting. By using short-
cut connections to allow features to skip over one or more layers, as shown in
Fig. 1, deeper ResNets are able to overcome the degradation problem and obtain
better accuracy than shallower networks.

Fig. 1. Illustration of a ResNet block.

2.2 AlphaGo Zero

The goal of AlphaGo Zero is to train a Go agent using no human knowledge
except the rules of the game. The algorithm is divided into 3 parts, self-play,
optimization, and evaluation. Since this paper focuses on network training, the
Monte Carlo tree search (MCTS) component of the AlphaGo Zero algorithm
will not be discussed.

First, a randomly initialized network is used by the self-play player initially,
denoted by p0. In each epoch of training, this player continuously plays Go
against itself to generate game records until a specified amount of games are col-
lected. We refer to the set of game records generated in one epoch as a collection,
denoted as ck, and the self-play player as pk, where k is the epoch number.

Second, during each epoch, a replay buffer is used to store the r most recent
collections of game records, from which the optimization process involves sam-
pling training data from this buffer to optimize the network. The replay buffer
does not contain the full repository of game records because earlier collections
(say, c1) tend to be of too low quality for network optimization. In other words,
the collections which are in the replay buffer need to match the current net-
work’s playing level. The hyperparameter r is referred to as the replay buffer
size. During the predefined interval (from a collection newly used to the next),
the network weights are saved as checkpoints, whose count is a hyperparameter.

Third, the network at each checkpoint is evaluated according to its win rate
against the current self-play player. If the network at some checkpoint wins more
than 55% of the games against the current self-play player, the former replaces

134 H.-C. Hsieh et al.

the latter as the new self-play player. By iterating these three steps, the strength
of the self-play player generally improves. During the process the quality of game
records will also increase.

2.3 Net2Net

Net2Net is a technique proposed to transfer a smaller network to a larger one [1].
With Net2Net, new layers are added to the original, smaller network (or parent
network), to form a new, larger network (or child network). More specifically,
a strategy called the function-preserving initialization is proposed, from which
the parameter θ′ of the child network g can be decided such that

∀x, f(x, θ) = g(x, θ′) (1)

where x is the input data, f is the parent network, and θ is parent network’s
parameters. The strategy can also be use in partial consecutive networks. As
long as strategy is satisfied, the output of the child network g will always be
the same as the output of the parent network f . Following this strategy, the
methods Net2WiderNet and Net2DeeperNet were both investigated, where the
former tries to widen f and the latter tries to deepen f . Since the scope of this
paper focuses on deepening ResNets for the AlphaGo Zero algorithm, we will
not discuss Net2WiderNet further.

Net2DeeperNet uses identity layers I to deepen the parent network. Suppose
the shape of the identity layer is (Cin, Cout,K,K) where Cin is the number of
input channels, Cout is the number of output channels, and K is the kernel size,
which is usually an odd number. Since the output must be equal to the input to
satisfy the function-preserving strategy, Cin = Cout. The kernel of the identity
layer at index (m,n) is then as follows,

I(m,n) =

{
identity kernel m = n

zero matrix otherwise
1 ≤ m,n ≤ Cin = Cout. (2)

The identity layer can be added anywhere in a network. However, we must take
into consideration the activation functions. The network usually consists of an
activation function φ after a convolution layer. To satisfy the function-preserving
strategy, the activation function composition must satisfy

∀v, φ(Iφ(v)) = φ(v) (3)

where v is a vector. As an example, if φ is the sigmoid function, the condition
would not be satisfied. On the other hand, a ReLU would be acceptable. As long
as the strategy is satisfied, we can deepen a network by adding identity layers
at any depth within the parent network.

3 Our Method

In this section, we describe our transfer method and how we train the child
network using the parent network’s collection of self-play records.

Net2Net Extension for the AlphaGo Zero Algorithm 135

3.1 Transfer Method

We divide the method into two parts. First, we describe the extension type, which
defines how we add new residual blocks. Second, we describe the connection type,
which refers to where the new residual blocks are placed.

Extension Type. We introduction three extension types based on the strategy
given in Eq. 1. For all three types, suppose that a block B is represented by a
function y = B(x, θ), where y is the output. To add a new block B′ after B, we
must satisfy the following:

∀x,B(x, θ) = B′(B(x, θ), θ′), (4)

where θ′ is the parameter of the new block B′. We list the three extension types
as follows.

1. Unit-extension: We add two identity layers in the new block. However, due
to the shortcut connection architecture of ResNets, we must add a 1/2 scale
operator at the end of the new block to ensure the sum remains at a similar
scale.

2. Zero-extension: We add two convolutions in the new block. Instead of identity
layers, we initialize the weights of the convolutions to be zeros, referred to
as zero layers. There is no need to add the scale operator. However, this
extension might be more difficult to converge during training.

3. Intra-extension: In Net2Net, several identity layers were added in every block.
Therefore, we increase two identity layers within the original blocks. That is,
with this extension, the number of blocks does not increase.

The activation function used in ResNets tend to be the ReLU function, so
by definition Eq. 3 is satisfied. Furthermore, a small noise signal is added so that
subsequent training of the child network will not remain at the local optimum of
the parent network, and therefore lead to faster convergence. With this addition
of noise, the performance of the child network is expected to be slightly worse
than the parent network, but we believe that the child network should reach
the parent network’s performance rapidly, and eventually exceed it. This also
ensures that the child network can learn to use the new blocks’ capacity.

Connection Type. For clarity of communication, we introduce an encoding
system that can represent where the new blocks are added into the parent net-
works in this paper. We use ‘1’ to represent ten new blocks, and ‘0’ to represent
ten original blocks. Ext-ITL represents the new blocks and original blocks inter-
leaved with each other. The encoding string from left to right refers to the child
network architecture from the first layer to the last layer. Note that since the
Intra-extension method does not create any new blocks, this encoding system
does not apply to the method. To illustrate the various connection types, we
extend the AlphaGo Zero training from 20 blocks to 40 blocks as an example,
shown in Fig. 3.

136 H.-C. Hsieh et al.

Fig. 2. Illustration of three extension types.

Fig. 3. Connection types. The white squares represent 10 original blocks, and the gray
squares represent 10 new blocks. The Ext-ITL connection type represents 20 original
blocks and 20 new blocks interleaved with each other.

3.2 Training Method

There are different approaches to sampling the game records when training the
child network. More specifically, game records collections from earlier epochs
tend to be less suitable for networks at later epochs, and vice-versa. Since the
child network is expected to retain a similar level of strength as the parent
network, once the parent network is transferred at some epoch, the child network
should continue training with the game records from the replay buffer at that
epoch. The problem is therefore at which epoch the transfer should take place.
We now propose two different methods that describe when the parent network
will be transferred, and how the child network should be subsequently trained.

Net2Net Extension for the AlphaGo Zero Algorithm 137

End-Training. For end-training, the transfer occurs for the last self-play player
pn, that is, the last epoch is n. The r most recent collections (i.e. cn−r+1 to cn) are
loaded into the replay buffer, and the replay buffer does not need to be changed
for the subsequent training of the child network. As shown in Algorithm 1, we
transfer the player pn to the child network. Then we load the last r collections
into the replay buffer. Next, we simply train the child network using the replay
buffer game records iteratively until a preset maximum number of iterations
is reached. One of the caveats of end-training is that if the preset maximum
number of iterations is small, the training may not be sufficient; on the other
hand, if it is large, the same game records in the replay buffer will be trained
many times, possibly leading to overfitting. Thus, another training method is
proposed below.

Algorithm 1. End-Training
load game records in collections cn−r+1 ∼ cn;
while maxIter is not reach do

select cn−r+1 ∼ cn games to train the child network;
end

Shift-Training. When compared to the previous method, the parent network
is transferred at epoch i. The game record collections matching the player pi’s
level is loaded into the replay buffer. We then iteratively train the child network
using the replay buffer, shifting the contents of the buffer to load more recent
collections accordingly. As shown in Algorithm 2, we transfer the parent network
for pi to its child network, where i is referred to as the transfer epoch. Then we
load at most r collections, specifically ci−r+1 to ci, into the replay buffer. Next,
we repeatedly load the next collection and train the child network using the
replay buffer until the last collection cn is loaded.

When training the child network, we increase the number of times t a sampled
game is used to update the network. That is, since the child network is deeper
than the parent network, our expectation is that more back-propagations need to
be performed. For this reason, in this paper, each sampled game in shift-training
is trained five times (i.e. t = 5), unless otherwise mentioned.

138 H.-C. Hsieh et al.

Algorithm 2. Shift-Training
if i − r + 1 > 0 then

load game records in collections ci−r+1 ∼ ci−1;
head = i − r + 1;

else
load game records in collections c1 ∼ ci−1;
head = 1;

end
end = i;
while end ≤ n do

load game records in collection cend;
if end - head = r then

delete the chead game records from replay buffer;
head = head + 1;

end
select chead ∼ cend games to train the child network t times;
end = end + 1;

end

4 Experiments

We demonstrate our method on 9×9 Go. We follow the AlphaGo Zero algorithm
to train a Go agent with 20 ResNet blocks (and with 256 channels), at the end
of which we obtain a player pn. Our goal is to transfer the network to a deeper
child network by adding 20 new blocks (consisting of 40 new convolution layers),
following up with child network training, and evaluating the resulting player
with pn.

4.1 Experimental Setup

In the following experiments, we evaluate the strength of the resulting child
network players by its win rate against the baseline pn, where both players use
2 s of simulation time with a single NVIDIA Tesla V100 GPU. Since the child
network is deeper than the parent network, the forward-pass of the child network
takes more time. Nonetheless, the total simulation time is equally set to 2 s for
both the child and the parent network. Each transfer method is expressed in
terms of its extension type and its connection type. Furthermore, to speed up the
overall experiments, for each match up, we continue playing against the baseline
until a confidence interval of 95 % is reached to evaluate the probability of having
a higher win rate against the baseline than 50%. We show the experiment setup
in Table 1.

4.2 Experiment for Shift-Training

We use two experiments to analyze the effect of different transfer methods and
transfer epoch i.

Net2Net Extension for the AlphaGo Zero Algorithm 139

Table 1. Experiment hyperparameters and details.

Setting

Replay buffer size r 20

Collection size 10000

Number of epochs n 243

Total batch size 2048

Learning rate 0.005

Weight decay 0.0001

SGD momentum 0.9

Local memory 754 GB

Thread count 36

Training hardware 8 GPUs (V100)

Comparison Between Transfer Methods. In this experiment, i = 3n/4.
In addition to the transfer methods, we also trained a control group where the
parent network is replaced by a randomly initialized 40 block network at i =
3n/4. This control group signifies what happens when no transfer occurs. Table 2
shows the highest win rate of various transfer methods. Unit-extension Ext-
0011 has the best performance. It seems likely that the new blocks’ capacity
enhances the network to recognize more high level features. On the contrary,
Zero-extension Ext-1100 performs the worse; it is possible that by introducing
new layers, the low level features learned by the parent network were not carried
over into the child network. With the exception of Zero-extension Ext-1100, all

Table 2. Result of various transfer methods.

Extension-type Connection-type Highest win rate of network (2 s)

Unit-extension Ext-0011 61.69% (±4.00%)

Ext-0110 55.45% (±3.88%)

Ext-1100 57.07% (±3.29%)

Ext-0101 47.85% (±3.78%)

Ext-ITL 53.76% (±3.83%)

Zero-extension Ext-0011 45.61% (±4.09%)

Ext-0110 52.47% (±3.79%)

Ext-1100 23.53% (±3.88%)

Ext-0101 56.70% (±3.90%)

Ext-ITL 48.15% (±3.77%)

Intra-extension X 52.16% (±3.78%)

Random initialization (control) 42.60% (±4.34%)

140 H.-C. Hsieh et al.

other transfer methods exceed the random initialized control group, showing
that the transfer methods can be used to preserve information learned by the
parent network, with potential for further growth.

Comparison Between Transfer Epochs. Next, we set the transfer method
to be Unit-extension Ext-0011. The transfer epoch i is set to {2n/3, 3n/4, 4n/5,
7n/8}, as shown in Table 3. The best performing transfer epoch is shown to be
3n/4. Nonetheless, the win rates for all settings are higher than 50%, indicating
that the resulting players can achieve at least pn level. Earlier transfer epochs
i imply more time spent training the more expensive child network, since the
child network with shift-training uses 5 updates per sampled game. Therefore,
there is a trade-off between transferring earlier (therefore spending more time
training) and performance.

Table 3. Result of different transfer epochs.

i Highest win rate of network (2 s)

2n/3 57.00% (±3.92%)

3n/4 61.69% (±4.00%)

4n/5 54.50% (±3.85%)

7n/8 51.92% (±3.77%)

Evaluation of Shift-Training. According to the previous experiments, Unit-
extension Ext-0011 with i = 3n/4 is used as the setting for this experiment. We
compare with the randomly initialized 40 block ResNet with i = 1 and t = 5,
which is the naive method of retraining the 40 block network from scratch,
with all other hyperparameters set equally. We refer to this group as the 40
block retrain set. Compared with the retrained model, our method requires only
about 1/4 of the training time, with its highest win rate to be as high as the
retrained model, as shown in Fig. 4.

Additionally, we also retrained a separate 40 block ResNet with the same set-
tings, except t = 1.3, so that the total number of training iterations are close to
the transferred method. This second model is referred to as the iteration normal-
ized retrain set. Our transfer method (Unit-extension Ext-0011) played against
the 40 block retrain, iteration normalized retrain, and other high level players,
where the result is shown in Table 4. The results show that Unit-extension Ext-
0011 can match the 40 block retrain in performance, while exceeding the iteration
normalized retrain model significantly. Furthermore, the win rates between Unit-
extension Ext-0011 and other high level players are all higher than 50%. This
shows that Unit-extension Ext-0011 does not exhibit signs of overfitting.

Net2Net Extension for the AlphaGo Zero Algorithm 141

0 100,000 200,000 300,000
0%

20%

40%

60%

80%

100%

iteration

w
in

ra
te

(2
se
cs
)

Unit-extension Ext-0011
40 Block Retrain

50%

Fig. 4. The win rate curve of our method and the 40 block retrained model.

Table 4. Comparison with other high level players.

Player Opponent Win rate (2 s)

Unit-extension Ext-0011 40 block retrain 50.32% (±3.91%)

Iteration normalized retrain 63.50% (±6.69%)

p232 89.00% (±4.35%)

p235 77.00% (±5.85%)

p236 72.50% (±6.20%)

p238 67.50% (±6.51%)

p243 61.69% (±4.00%)

Table 5. Results for end-training.

Extension-type Connection-type Highest win rate of network (2 s)

Unit-extension Ext-0011 39.20% (±4.28%)

Intra-extension × 64.76% (±4.03%)

4.3 Experiment for End-Training

In this experiment, we analyze two transfer methods of end-training. With end-
training, the transfer epoch i can be thought of as fixed at n. As shown in Table 5,
the results for Intra-extension seem to be very strong. This could be because the
training data (from the replay buffer) is fixed, so it is relatively easier to fit.
Playing between Intra-extension with end-training and the 40 block retrain with

142 H.-C. Hsieh et al.

2 s simulation time yields a win rate of 42.85%, so it is possible end-training can
lead to overfitting.

5 Conclusion

We present a study on extending the ResNet of an agent trained using the
AlphaGo Zero algorithm. We propose a scheme which transfers a parent network
to a deeper child network without losing the learned knowledge; additionally,
we propose two methods of sampling game records generated by the parent
network for training the child network. Overall, the child network can retain the
parent network’s performance, or even surpass it with further training. From
our experiments, we analyze a collection of hyperparameters to conclude that
the Unit-extension Ext-0011 transfer method performs the best, with a win
rate of 61.69% against the strongest player from the parent network. Finally,
We demonstrate our method only requires about 1/4 of the training time as
completely retraining a network of the same size, while simultaneously achieving
the same level of performance.

Further research is left open to investigate more general extension-types in
the future which can then be used for various network architectures, such as
VGGNet [8], AlexNet [5], and DenseNet [3].

References

1. Chen, T., Goodfellow, I., Shlens, J.: Net2Net: accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641 (2015)

2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

3. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4700–4708 (2017)

4. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

6. Pascutto, G.C.: Leela-Zero Github repository (2018). https://github.com/gcp/
leela-zero

7. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature
550(7676), 354 (2017)

8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

9. Tian, Y., et al.: ELF OpenGo: an analysis and open reimplementation of Alp-
haZero. arXiv preprint arXiv:1902.04522 (2019)

10. Wu, I.C., Wu, T.R., Liu, A.J., Guei, H., Wei, T.: On strength adjustment for
MCTS-based programs. In: Thirty-Third AAAI Conference on Artificial Intelli-
gence (2019)

http://arxiv.org/abs/1511.05641
http://arxiv.org/abs/1502.03167
https://github.com/gcp/leela-zero
https://github.com/gcp/leela-zero
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1902.04522

Designing Policy Network with Deep
Learning in Turn-Based Strategy Games

Tomihiro Kimura(B) and Kokolo Ikeda

Japan Advanced Institute of Science and Technology, JAIST, Ishikawa, Japan
kt499887@gmail.com, kokolo@jaist.ac.jp

Abstract. Research on artificial intelligence (AI) has experienced a sub-
stantial stride since the advent of the AlphaGo, progressing the appli-
cation of deep learning techniques for the game application. However,
significant research is still unpublished in the field of turn-based strategy
games, owing to the complexity of the game structure and its compu-
tational problem. To apply deep learning to turn-based strategy games,
a policy network created from match data was developed from learning
game records. The neural network design used as a policy network is
integrated into the turn-based strategy games, using a recurrent neural
network to reduce the number of output neurons and to divide the out-
put structure into original positions, destinations, and attack positions.
Using the state and action data as a database, the game data are gen-
erated from the learning map based on the competition with the Monte
Carlo Tree Search (MCTS) algorithm. However, the produced policy net-
work demonstrates a superior performance against the MCTS algorithm
with a winning rate of over 50% on the learning maps, and over 40% on
the validation maps. In the game, the thinking time for the deep learning
is extremely short since this it is performed by inference only, whereas
MCTS thinking the time is approximately 5 to 10 s per move.

Keywords: Turn-based strategy game · Deep learning · Recurrent
neural network · Policy network

1 Introduction

Research on game of artificial intelligence (AI) agent has recorded great break-
throughs since the advent of AlphaGo, that combines highly sophisticated deep
learning and reinforcement learning techniques. AlphaGo has advanced to the
level of beating professional Go players, demonstrating high performance in the
game [1–3]. In many game domains, AI players have improved more tremen-
dously than humans. However, humans have surpassed the AI agents in the
game of turn-based strategy because AI agents still possess inadequate strength
levels, and fewer scientific researches have just been published in this area.

In the present study, we describe difficulties in the game of turn-based strat-
egy to accelerate its research framework. Then, we demonstrate a method of

c© Springer Nature Switzerland AG 2020
T. Cazenave et al. (Eds.): ACG 2019, LNCS 12516, pp. 143–154, 2020.
https://doi.org/10.1007/978-3-030-65883-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65883-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-65883-0_12

144 T. Kimura and K. Ikeda

solving the data complexity problem by applying recurrent networks success-
fully. Furthermore, we apply deep learning to avoid a computational explosion.
Finally, we build and evaluate a policy network at a level turn-based strategy
games are played. Typically, we apply deep learning to design the game policy
network and to integrate it with a Monte Carlo Tree Search (MCTS) algorithm
or value network. Traditionally, policy networks have been learned from game
records, however, learning on a map is still difficult because of the application
of complex data structure of a game to deep learning.

2 Turn-Based Strategy Games as an Academic Platform:
TUBSTAP

2.1 Difficulty of Turn-Based Strategy Games

The difficulty of turn-based strategy games is based on the following features:

1. Huge search space beyond Shogi and Go.
2. Initial board condition is unfixed.
3. Various characteristics are elements of units.
4. Several types of terrain.
5. Multiple units operate in one turn.

While a large amount of previous game record data is accumulated in chess,
Shogi, and Go, this is unavailable in the turn-based strategy game. Thus it is
necessary to create a new one.

To promote research that is being delayed, we proposed Turn-Based Strategy
Games as an Academic Platform: TUBSTAP [4] despite its long history and pop-
ularity in the game market and its lack research platform in turn-based strategy
games. In TUBSTAP, it is possible to compare the performance by develop-
ing, evaluating and researching a turn-based strategy game AI agent without
using additional work. The game rules are examined, extracted, simplified, and
abstracted from the rules of various turn-based strategy such as “Daisenryaku”
and “Famicon Wars”. With this, it is possible to check the basic operation of
the turn-based strategy game on this platform [5]. Although microRTS [6] exists,
which is a framework similar to TUBSTAP and target real-time strategy games,
the difference is its real-time game structure with a relatively large-scale system.

2.2 TUBSTAP Game System

Infantry, Panzer, Cannon, Anti-air Tank, Fighter planes, and Attack Aircraft
are units in the TUBSTAP game. Six types of land cells are mountain, forest,
plain, road, sea, and fortress. All units have an initial HP(Hit Point indicating
the life of unit) integer value between one and ten, removed from the board
when it reaches 0. When the units attacked, the HP decreased; simultaneously,
the counterattack reduced the attacking side unit HP. In many ways, TUBSTAP

Designing Policy Network with Deep Learning 145

is similar to the “Famicom Wars”, the game progresses by fighting between the
RED and BLUE forces.

The match ends when either units are completely destroyed, or the specified
number of turns is reached. The winner is either annihilated all opponent’s units
or, the winner has a difference in the total number of HP at the end of all turns
that exceed the specified value.

TUBSTAP allow users to create and test a wide variety of maps. Typical
map examples are shown in Fig. 1.

(a) map01 (b) map03

Fig. 1. Map01 is the most basic type of map of 6 × 6 square size. Map03 is a 6 × 7
size map where cannon plays an active role.

2.3 Related Works for TUBSTAP

The algorithms applicable to TUBSTAP are limited owing to the difficulties in
turn-based strategy games. MCTS [7] and its variations are well-known algo-
rithms. As another type, a method of searching a tree by dividing the positions
of units has been published [8,9]. Other algorithms are still unpublished; thus, we
applied deep learning to TUBSTAP [10]. However, the match setup was limited
to single units.

Benchmark Maps. We developed and proposed a set of benchmark problems to
compensate for the small number of maps and to increase diversity [11]. These
benchmark problems are from simple to difficult levels, such as escape tracking
problems, pinch problems, pathfinding problems, and multi-unit coordination
problems used to evaluate the standard performance of AI.

146 T. Kimura and K. Ikeda

TUBSTAP AI Tournaments. In recent years, TUBSTAP AI tournaments have
been held in Japan, and several AI agents compete for performance [12,13].
Many of the AI agents who participated in the competition were open and
downloadable.

3 Purpose and Procedure

The purpose of this experiment is to propose a neural network design suitable
for a turn-based strategy game using a complicated data structure.

In this study, the experiment consists of three phases: the first is the creation
of game record data. The second is the learning of the neural network, and the
third is the verification of the match, as shown in Fig. 2. The game is a battle
between infantry on a plain with no obstacle, and the infantries are two: each
in RED and BLUE. Using a standardized neural network, the overall map size
was fixed at eight squares; however, the battlefield was reduced to five squares
for easier fighting.

We expects that deep learning distills and extracts tactics and strategies from
a database and transfers them into a neural network. To check the generalization
capabilities of deep learning, learning validation is performed on wider maps,
not on the map for learning. Moreover, it checks the learning capability of the
designed neural network by competing with other algorithms on an unknown
map.

Learning Maps. The map for learning is a battlefield of 5 cell × 5 cell square-
shaped plains surrounded by no-entry cells, as shown in Fig. 2.

(a) sq5x5 basic setting (b) location position of basic setting

Fig. 2. Learning maps. The boundaries are shifted by one cell per map like 0s, 1s, and
2s, to avoid bias and ensure diversity.

Designing Policy Network with Deep Learning 147

3.1 Previous Studies

For the last decades, neural networks have been applied to the field of artificial
intelligence, using many approaches to learn game records. Neurogammon [14],
adopted the multilayer neural network, learning from the expert dataset to win a
Gold medal in the 1st Computer Olympiad 1989. In the domain of Go, Deep Con-
volutional Neural Network [15], learned from a human’s professional database
demonstrated a high winning rate without search results, and AlphaGo’s policy
network achieved better performance later [1].

Fig. 3. Experimental procedure

4 Experiments

4.1 Game Record Database for Learning

The game records for learning are created under the following two policies. One
uses AI agent running on TUBSTAP to create a match record from the initial
state of the learning map. The second uses the same AI agent to create a set of
additional match record from various situations which some specific tactics are
needed to win. This is a tactical procedure.

The sizes of this database are approximately 800,000 in the number of game
phases and approximately 100,000 number of games. When the game is over, only
the winner’s status and actions are incorporated into the database to enhance
the superior experience.

The M-UCT is the AI agent, a top performer in the 2016 Game AI Tourna-
ments in Japan [12], M3Lee won the 2nd place in the same competition. And

148 T. Kimura and K. Ikeda

the tree search algorithm based on the self-made alpha beta search is also used.
M-UCT runs 5000 simulations and rolls out to the terminal. And M3Lee runs
3000 simulations.

Figure 2 shows the basic setting of learning maps. There are only two infantry
units on a simple terrain, so it may look quite easy. However, even with this
settings, a bit difficult or unexpected tactics are sometimes needed to win (we
will show examples later). Then we chose these maps as the first step.

Validation Maps. After learning the neural network, the maps that verify
the generalization performance of the network are validation maps, as shown in
Fig. 4. Validation maps are not used for learning.

(a) sq6x6 basic setting (b) location position of basic setting

Fig. 4. Validation maps. These maps are used only for verification tests. The bound-
aries are shifted by one cell per map like 0s, 1s, and 2s, to avoid bias and ensure
diversity.

Tactical Procedures. Figure 5 shows part of an example of the tactical proce-
dures for the layout map. In the initial phase, attacks as indicated by the arrow
effectively reduces the opponent’s HP and increases the chance of winning the
game. We considered more than 30 patterns of such tactical procedures, and
prepared over 400,000 data by hands.

Data Augmentation. To enrich data and prevent bias in the neural network,
rotation, and mirror data augmentation are performed. There are four times
as large as rotation (0/90/180/270-degrees) and twice as large as a reflection
(vertical/horizontal), eight times of data in total.

Designing Policy Network with Deep Learning 149

(a) sq5x5-0s (b) sq5x5-2s

Fig. 5. Tactical procedure examples. The arrow shows the attack target to rob the
opponent’s HP effectively.

4.2 Neural Network Design

Designing neural networks for turn-based strategy games is complicated and
difficult owing to many features such as terrain features and unit features. To
use a neural network as a policy network, an action unit instruction unit must
be output. Moreover, the complicated data output is essential, and we propose
a high performance design suitable for turn-based strategy games.

Input Data Structure. All input channels to the neural network are encoded
into 7 layers of terrain data, 14 layers of unit data(the type of units and moved
record for each RED/BLUE), and 1 layer of turn data.

Output Data Structure. The minimum information to describe the unit’s
behavior in TUBSTAP is the unit’s original position, destination, and attack-
ing unit position. Although the neural network must output these signals, the
conventional one-hot output representation requires an enormous number of neu-
rons. In the case of a map of 8 × 8 squares, at least 64 × 64 × 64 = 262144
neurons have been required since 8 × 8 = 64 neurons are multiplied by the orig-
inal position, destination and attacking position. A design with only this neuron
is unrealistic. Therefore, we aim to reduce the number of output neurons and
to simplify the design by the time-dividing the output using a recurrent neural
network (RNN). As shown in Fig 6, the output structure of the designed neural
network is illustrated in its schematic diagram (unfolded in time). The output
of t = 1, indicating the original position, is connected to the input t = 2. The
output of t = 2, indicates the destination and connected to the input of t =
3. This connection enhances correlation and reduces inference errors. Usually,

150 T. Kimura and K. Ikeda

RNN is effective for the output of the time division. Thus, the GRU unit [16]
was adopted instead of the LSTM unit in consideration of the execution speed.
The GRU unit is reset at the end of t = 3. The program corrects the output by
legal move masks.

The neural network outputs the behavior of one unit at a time. In order to
define the behavior of two units, it is necessary to perform two inferences.

Fig. 6. Output data structure

Neural Network Structure. The configuration of the neural network is as
follows: As shown in Fig. 7, a three-layer Conv2D network is in the input state.
Three affine layers, are in the next stage, fully connected layer; connected with
batch normalization and L2 regularization In the next stage, a further recurrent
network for time division output is connected with Dropout and ReLU. In the
affine and recurrent layers, 800 neurons were used for each layer.

4.3 Learning Procedure

Since the game record file size is huge and cannot load entire files into the PC
memory, a buffer memory is prepared, sampled randomly, and used for learning
of the neural network. In this case, the buffer memory acts like a replay memory
in reinforcement learning [17]. The buffer memory size is 12000 game phases, and
the data of one file is updated for each iteration. In this learning procedure, it is 1
epoch per iteration, the batch sizes are 2048, executed up to 7000 iterations. The
optimizer used Adam, and loss function was set to cross entropy type. Neural
networks start learning from zero, the initial state of random weights. Therefore,
no need for other data or settings other than the database used.

In the game match process, several correct procedures are available not lim-
ited to only one answer in many cases.

Therefore, common measurements such as accuracy or recall used in usually
supervised learning researches are not sufficient to evaluate the performance of

Designing Policy Network with Deep Learning 151

Fig. 7. Neural network structure

trained a policy network. In our case, the accuracy reached 59.5% after 7000
iterations. We can compare such measurements of different methods (such as
different network structure), but we cannot say this policy network is good or
not in an absolute manner. Thus, we evaluate the performance through the
actual matching against MCTS player.

Policy Network Accuracy. Table 1 shows the data of the matching rate between
the 10,000 phases extracted from the produced database and the output of the
learned neural network.

Table 1. Matching rate between the 10,000 phases extracted from the database and
the policy network output

Iteration Accuracy

1000 29.8%

5000 37.6%

7000 59.6%

Learning Rate. Learning rate scheduling was performed to speed up the learn-
ing process at 10−3 up to 1000 times, 10−4 up to 5000 times, and 5×10−5 up to
7000 times.

Hardware and Software. In this experiment, Python 3.6 and Keras 2.2 were
the software. The CPU Intel i7 3.4 GHz and GPU NVIDIA GTX 1050 Ti were
the hardware specifications.

152 T. Kimura and K. Ikeda

4.4 Result of the Competition Experiment

To evaluate the performance of the neural network to complete learning, a total
of 300 games, 100 games for each map, were carried out on the learning maps
(Fig. 2) and the validation maps (Fig. 4), respectively. Of the 100 games, 50
played RED first, and BLUE moved the remaining 50 games first. As an oppo-
nent, we set M-UCT that operates on standard MCTS. The AI agent in the
under test assigned to RED. Without a look-ahead search, the policy network
assistes in deciding the action.

On the Learning map, the match result is Win/Lose/Draw = 55/45/0,
53/42/5, 60/40/0, for each map, and the total winning rate is 56.0%. On the vali-
dation map, the match result is Win/Lose/Draw = 50/42/8, 35/54/11, 37/59/4,
for each map, and the total winning rate is 40.7%. This degraded is approximate
10% compared with the learning map, leading to an increased draw. The results
are as shown in Fig. 8.

In the battle, the output of the neural net showed that the scenes of several
independent games were integrated and beyond the MCTS algorithm.

Fig. 8. Results of the match against M-UCT. 100 matches per map. 0S indicates sq5x5-
0s map, similarly 1S/2S indicates sq5x5-1s and sq5x5-2s map respectively.

5 Discussion and Conclusion

The results of the learning reached a level in which the winning rate exceeded
50% against the MCTS algorithm of the learning map; starting from zero the
initial state of random weights. In the validation map, the performance exceeded
40%; even though only the action decision of the policy network was used. Vali-
dation maps, similar in shape to learning maps, are larger in size and are unused
for learning. Therefore, the learning ability of the neural network designed in this
study produced high performance. In the game, the thinking time on the deep
learning side is extremely short as it is performed only by inference, whereas
MCTS side thinking time is about 5 to 10 s per move.

We introduce a designing policy network using the refinement of the recurrent
network in turn-based strategy game when the application of deep learning is

Designing Policy Network with Deep Learning 153

difficult. The produced policy network demonstrates a superior performance on
the unknown map against the MCTS algorithm without a look-ahead search.

We know the current work is a bit premature, for example, different network
structures with/without using RNN are not compared, tree search is not com-
bined with the trained policy network, etc. So, we will try to solve such problems
soon, especially we intend to use more complex maps such as many and various
units are used, and diverse terrains are employed.

References

1. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

2. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature
550(7674), 354–359 (2017)

3. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science 362(6419), 1140–1144 (2018)

4. Fujiki, T., Ikeda, K., Viennot, S.: A platform for turn-based strategy games, with
a comparison of Monte-Carlo algorithms. In: IEEE Conference on Computational
Intelligence and Games, CIG2015, pp. 407–414 (2015)

5. TUBSTAP Homepage. http://www.jaist.ac.jp/is/labs/ikeda-lab/tbs eng/index.
htm. Accessed 10 Apr 2019

6. Stanescu, M., Barriga, N.A., Hess, A., et al.: Evaluating real-time strategy game
states using convolutional neural networks. In: IEEE Computational Intelligence
and Games (CIG) (2016)

7. Kato, C., Miwa, M., Tsuruoka, Y., Chikayama, T.: UCT and its enhancement for
tactical decisions in turn-based strategy games. In: Game Programming Workshop
2013, pp. 138–145 (2013). (in Japanese)

8. Sato, N., Ikeda, K.: Three types of forward pruning techniques to apply alpha beta
algorithm to turn-based strategy game. In: IEEE Conference on Computational
Intelligence and Games, CIG2016, pp. 294–301 (2016)

9. Sato, N., Fujiki, T., Ikeda, K.: An approach to evaluate turn-based strategy game
positions with offline tree searches in simplified games. In: Game Programming
Workshop 2015, pp. 61–68 (2015). (in Japanese)

10. Kimura, T.: Simple data representation method with deep learning for turn-based
strategy game. IPSJ SIG technical reports, 2019-GI-41, vol. 5, pp. 1–8 (2019). (in
Japanese)

11. Kimura, T., Ikeda, K.: Offering new benchmark maps for turn based strategy game.
In: Game Programming Workshop 2016, pp. 36–43 (2016). (in Japanese)

12. Game AI Tournaments Homepage (GAT). http://minerva.cs.uec.ac.jp/gat uec/
wiki.cgi?page=FrontPage. Accessed 10 Apr 2019. (in Japanese)

13. Game Programming Workshop Homepage (GPW). http://www.ipsj.or.jp/sig/gi/
gpw/index-e.html. Accessed 10 Apr 2019

14. Tesauro, G.: Neurogammon wins computer Olympiad. Neural Comput. 1(3), 321–
323 (1989)

15. Clark, C., Storkey, A.: Training deep convolutional neural networks to play Go.
In: ICML 2015 Proceedings of the 32nd International Conference on International
Conference on Machine Learning, vol. 37, pp. 1766–1774. JMLR (2015)

http://www.jaist.ac.jp/is/labs/ikeda-lab/tbs_eng/index.htm
http://www.jaist.ac.jp/is/labs/ikeda-lab/tbs_eng/index.htm
http://minerva.cs.uec.ac.jp/gat_uec/wiki.cgi?page=FrontPage
http://minerva.cs.uec.ac.jp/gat_uec/wiki.cgi?page=FrontPage
http://www.ipsj.or.jp/sig/gi/gpw/index-e.html
http://www.ipsj.or.jp/sig/gi/gpw/index-e.html

154 T. Kimura and K. Ikeda

16. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing, pp. 1724–1734 (2014)

17. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

On Strongly Solving Chinese Checkers

Nathan R. Sturtevant(B)

University of Alberta, Edmonton, AB, Canada
nathanst@ualberta.ca

Abstract. Chinese Checkers is a game for 2–6 players that has been
used as a testbed for game AI in the past. The game is easily scalable to
different size boards, different numbers of players, and different numbers
of pieces for each player. In this paper we provide an overview of what is
required to strongly solve versions of the game, including a complete set
of rules needed to solve the game. We provide results on smaller boards
with result showing that these games are all a first-player win.

Keywords: Solve · Game · Chinese Checkers

1 Introduction

This paper studies the problem of strongly solving variants of Chinese Checkers,
and provides the foundation needed to strongly solve them. Chinese Checkers
is closely related to the game of Halma, which was invented around 1883–1884,
except that Chinese Checkers is played on a star-shaped board while Halma is
played on a square board [4]. It is typically played by 2–6 players, with the goal
of moving your pieces across the board into a goal area before your opponent.
There are two reasons why we are interested in studying this game and strongly
solving variants of the game.

First, many traditional two-player perfect information games, such as
Connect-Four [2], Awari [9], Checkers [13], and Hex [6] have been strongly solved
or weakly solved, so solving Chinese Checkers follows in this line of work. One
common board size for Chinese Checkers has a 1.73×1024 states, and thus might
be weakly solvable, given a good proof strategy. However, in our work we have
found it difficult to construct small proofs for the game. Thus, by strongly solv-
ing small versions of the game, we can study the nature of the game and learn
how to build compact proofs for the game.

Second, recent work on AlphaZero [14] has suggested a common approach
for learning to play deterministic two-player games with perfect information. As
Chinese Checkers falls into this category, we expect that the AlphaZero approach
is able to learn to play the game. But, given that we can strongly solve some
board sizes, this offers the opportunity to precisely measure and evaluate how
learning takes place in the game. Thus, we suggest that Chinese Checkers will
be a good testbed for evaluating learning in a two-player deterministic perfect
information game.
c© Springer Nature Switzerland AG 2020
T. Cazenave et al. (Eds.): ACG 2019, LNCS 12516, pp. 155–166, 2020.
https://doi.org/10.1007/978-3-030-65883-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65883-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-65883-0_13

156 N. R. Sturtevant

Given this reasoning, we have built a number of solvers for the game of
Chinese Checkers with different board sizes and different numbers of pieces on
the board. Through analysis of these solvers we can now provide a deeper analysis
of Chinese Checkers than has previously been found in the literature, including
comprehensive rules for wins, losses, draws, and illegal positions in the game.
This paper provides an overview of these insights, as well as the results of strongly
solving games with up to the 6 × 6 board with 6 pieces per player which has
2,313,100,389,600 positions. All games that we have solved have been a first-
player win.

2 Background and Related Work

Victor Allis defined three different types of solved games. These are defined as [1]:

– Ultra-weakly solved. For the initial position(s), the game-theoretical value
has been determined.

– Weakly solved. For the initial position(s), a strategy has been determined
to obtain at least the game-theoretical value of the game, for both players,
under reasonable resources.

– Strongly solved. For all legal positions, a strategy has been determined
to obtain the game-theoretic value of the position, for both players, under
reasonable resources.

While reasonable resources might change over time, it is suggested that a limit
of several minutes of computation per move should be allowed. Thus, storing
the result of every position would qualify for a game being strongly solved.
But, sometimes there are too many positional combinations to store efficiently,
requiring the use of search to dynamically re-compute this data when making
queries about a state. In such cases, the a game would still be considered to be
strongly solved even if it took a few minutes to perform these re-computations.

Given these classifications, significant research has gone into both solving
games or and subgames of a game, such as in endgame databases [3,12].

Connect-Four was one of the first non-trivial games to be solved. One of the
original proofs used specialized knowledge to build a small proof tree for the game
[2], although the full game can now be enumerated efficiently [5], so the game is
now strongly solved. Awari [9] was strongly solved using parallel hardware; the
value of 889,063,398,406 positions was determined during this proof. Pentago [7]
has also been strongly solved on parallel hardware, with 3,009,081,623,421,558
positions in the game. In the Pentago solution positions with more than 18 stones
are not recorded on disk, as it requires too much storage and the value of the
states can be re-computed easily.

Weakly solved games include Checkers [13], which is solved for the primary
opening moves, and 8 × 8 Hex [6], which is solved for any opening move.

Chinese Checkers has been a common domain used in testing for multi-player
games [11,16,18]. A common heuristic used for play is the single-agent distance

On Strongly Solving Chinese Checkers 157

Next Next Next

(a) 9x9 start state (b) 7x7 start state (c) 6x6 start state

Fig. 1. Examples of different board sizes.

to the goal [16], which can be easily calculated on smaller board sizes. The single-
agent distances on the full board size can also be calculated [19] and used for
game play [15], but other approaches such as MCTS [10] and TD learning [15]
have also been explored for playing Chinese Checkers.

2.1 Terminology

In this paper we use the terms board, board position, and state interchangeably.
The term jumps can be substituted anytime we use the term hops. We refer to
pieces on the board, but these can also be referred to as marbles, as physical
versions of the game often use marbles for pieces. We will also talk about corners
of the board and goal or start areas interchangeably.

3 Rules of Chinese Checkers

If we wish to strongly solve variants of Chinese Checkers, we must be able to
determine the value of every state in the game. This requires resolving a number
of special cases around how the game is played. In this section we work through
and propose resolutions for each of these special cases. This paper focuses pri-
marily on the two-player game.

Chinese Checkers is typically played on a star-shaped board with six corners,
as shown in Fig. 1(a) with 10 pieces per player. In the two-player game, player 1
and player 2’s pieces start at the top and bottom of the board, respectively, and
the goal is for a player to get their pieces into their goal area, which, in this case,
is the corner where the opponent’s pieces started. Pieces are not typically allowed
to move into the other corners of the board, although the rules sometimes allow
for pieces to move through these areas as long as they do not remain in one of
the other corners at the end of a turn.1

1 Our current two-player implementation does not allow this, but we are considering
adding this for 7 × 7 boards. The rule does not seem to play an important role in
optimal play and may be more useful in the n-player version of the game (n > 2)
when space is more constrained.

158 N. R. Sturtevant

Next Next Next

Fig. 2. Adjacent moves in Chinese Checkers.

Given that a player cannot move into corners of the board besides their start
and goal corners, the primary game play takes place on the center diamond of
the board, which can be represented as a m×m grid. The game in Fig. 1(a) has
a 9 × 9 gameplay area with 10 pieces per player. Another common board size
used in research [16] is shown in Fig. 1(b), which is a 7 × 7 gameplay area with
6 pieces per player. It is possible to draw the board as a star when the size of
the gameplay area is odd. If we use an even-sized gameplay area, then it is not
possible to draw uniform-sized corners, and thus it is only to play these sized
boards with two players, as shown in Fig. 1(c). In the remainder of the paper we
will only draw the main gameplay area, and we will give each player anywhere
from one to six pieces.

3.1 Movement Rules

In the game of Chinese Checkers there are two types of moves that can be
performed, moves to an adjacent location, or hops over adjacent pieces to non-
adjacent locations. Figure 2 shows moves to adjacent locations from the starting
position of the game. There are six possible adjacent moves at the beginning
of the game; three of the moves are shown in the figure. The remaining moves
result in positions that are symmetric to the ones shown, something that will be
discussed in Sect. 3.5.

The second type of move hops over an adjacent piece to land on an empty
location on the other side. A hop from the starting position is illustrated in
Fig. 3(a). If multiple hops are available for a single piece, they can be chained
together into longer hops that cross the entire board. Figure 3(b) sets up an
alternate board position where additional hops can be chained, allowing a piece
to move across the board, giving the position in Fig. 3. A piece can take any
number of legal hops in a turn, and can stop when further hops are still possible.
Additionally, pieces are not removed from the board when they are hopped over
by another pieces.

One notable feature of Chinese Checkers is that the game is not acyclic – it
is possible to return to the same position and not make progress. This makes
Chinese Checkers more complex to analyze than games like Pentago, which adds
a new piece to the board every turn.

On Strongly Solving Chinese Checkers 159

Next Next Next

(a) Single hop (b) Board position that (c) Board position after
allows multiple hops. three hops are taken.

Fig. 3. Hopping moves in Chinese Checkers.

3.2 Winning Conditions

In the most general case a player wins a game of Chinese Checkers if they
get all of their pieces into their goal area on the opposite side of the board. In
normal play this is achievable, but for exhaustive analysis we need a more precise
definition of the winning conditions. In particular, it has been observed that a
single player can leave one piece in their start area, preventing the opponent
from ever getting their pieces into the goal. This rule is typically not handled
in rule books for the game, although web sites discussing the game often make
suggestions for handling this. One suggested handling is as follows:2

“If one or more of a player’s marbles are imprisoned in his/her original
starting point so that the marbles cannot be moved, such player forfeits
the game. In the event of multiple players, the imprisoned marbles are
removed and the game continues as before.”

However, this rule is inadequate. It is possible for a player to place a piece
on the outer row of their goal area so that it cannot be imprisoned, but it will
still block the other play from winning. Other suggestions that we have seen for
handling this have also been inadequate. Thus, we propose the combination of
two rules for wins and illegal states to force an end to the game in these types
of situations. The first has been traditional used in our implementation of the
game, while the second was adapted based on our ongoing work.

Definition 1. A state in Chinese Checkers is won for player n if player n’s goal
area is filled with pieces, and at least one of the pieces belongs to player n.

2 http://www.abstractstrategy.com/chinese-checkers-g.html#c-checkers-rules.

http://www.abstractstrategy.com/chinese-checkers-g.html#c-checkers-rules

160 N. R. Sturtevant

Next Next Next

(a) Unreachable state (b) Illegal state for red (c) Illegal state for blue

Fig. 4. Illegal states in Chinese Checkers. (Color figure online)

Under this definition if a player leaves some pieces in their goal area, the other
player can just fill in around these pieces in order to win the game. For very small
versions of the game this can have unintended consequences, as shown in Fig.
3(c). After only 3 ply this state qualifies as a win for the red player, because the
red player has a piece in their goal area, and the remainder of the home is filled
with blue pieces. Such shallow goal states are not found on larger boards, and
the small boards are not used widely, so the shallow goal states seem acceptable.
Note that even Chess has possible goal states just 4 ply into the game.

This definition has been adequate for our past experiments with Chinese
Checkers playing agents, but it is not adequate for strongly solving the game
when there are six pieces on the board, as there are still some conditions it
cannot catch. However, instead of modifying our definition of a winning state,
we declare certain board positions to be illegal, which we discuss in the next
section.

3.3 Illegal States

In Chinese Checkers there are states that are unreachable via normal play. One
example of an illegal position is shown in Fig. 4(a). In this state both players
have their pieces in the goal area. But, because a player should win as soon
as their pieces are moved into the goal area, it is impossible for both players
to simultaneously have their pieces in their respective goals. Thus, this state is
not reachable by normal play and should be excluded from any analysis that
attempts to strongly solve the game. We do this by declaring the state to be
illegal. As long as all illegal states are marked or checked appropriately, they can
then be ignored in any proof procedure.

Given the definition of a winning state in the previous section, there are a
large number of illegal states in the game – all combinations of states where both
goals are filled with pieces. Thus, we form a general rule for illegal states, the
first of two rules that are required for strongly solving the game.

Definition 2. (Part 1) A state in Chinese Checkers is illegal for player n if the
winning conditions are met for player n and it is player n’s turn to move.

On Strongly Solving Chinese Checkers 161

This definition implies that it is illegal for a player to take a suicidal action
that causes the other player to win. For instance, a player might move back into
their own start area to fill it up when the opponent already has a piece in this
area, thus creating a win for the other player even when it was their turn to
move.

The other type of state that we declare to be illegal are states where a player is
blocking the other player from filling their goal area. This type of position is shown
in Fig. 4(b). In this state the red player has blocked the outer two rows of their start
area. In such a position it is impossible for the blue player to move a single piece
into their goal area, even though one of the locations in the goal area is open. This
allows the red player to prevent the blue player from winning, because a game is
only won when the goal area is filled with pieces, and in this case the red player
can always move its other piece instead of unblocking the goal.

While we could declare a state to be illegal if two consecutive rows are blocked
with empty locations behind them, our experiments showed that this rule is still
inadequate, as shown in Fig. 4(c). This state shows an arrangement of the blue
pieces at the bottom of the board that is sufficient to prevent the red player from
filling the goal without blocking two consecutive rows. We use this position to
formulate the second condition for a state to be illegal.

Definition 3. (Part 2) A state in Chinese Checkers is illegal if there are one or
more unoccupied locations in player n’s goal area that are unreachable by player
n due to another players pieces.

These rules are only necessary on game variants with more pieces. When
there are six pieces, it suffices to check the two outer edges of the goal area to
see if they are occupied, and if the tip of the goal is unoccupied. On larger boards,
when a player has 10 pieces, the conditions are more complicated because there
are more ways to block locations within the goal area.

Under this rule the states in both Fig. 4(b) and (c) are illegal, meaning it
is illegal to take an action that leads to this state. This solves one particular
problem; the question remains whether it creates alternate problems in gameplay.
In looking at the shortest single-player sequence of actions needed to cross the
board, such positions are never reached. This is because players are focused on
getting their pieces out of the start area as quickly as possible, not on fortifying
the start area.

For human play against suboptimal opponents, these positions could appear
as part of normal play, and we do not dismiss the possibility that we could
be missing some important cases. But, in human play it is also possible to use
reasonable judgement to determine if a player is intending to block the goal, and
thus such a rule would only need to be applied selectively. But, since we do not
have that luxury in optimal computer vs computer play, we choose to err on the
side of simpler rules.

162 N. R. Sturtevant

3.4 Draws

Next Next Next

(a) (b) (c)

Fig. 5. Drawn states in Chinese Checkers.

In some games, such as Hex, all states can be determined to be a win or loss.
The possible value of states in Chinese Checkers has not, to our knowledge, been
previously determined. That is, we have unable to find any rules for the game
that discuss drawn positions. If we prove all possible states that are wins, losses
and illegal, yet have states that are still unable to be proven, these remaining
states are drawn. Drawn states begin to appear in Chinese Checkers once there
are three pieces on the board.

We illustrate one such state in Fig. 5(a). On this board each player has two
pieces in the goal area, and one piece left in the middle of the board. Ignoring
the blue piece, the red piece in the middle can reach the goal area in six moves.
Similarly, the blue piece in the middle can also reach its goal area in six moves.
However, if the red player takes the first move, it will allow the blue player
to perform a jump and reach the goal in five moves, thus winning the game.
Thus, this similar to a zugzwang position, where the player to move is at a
disadvantage, except that there are other pieces that can be moved in order to
delay the disadvantageous move. Instead of making progress, both player will
alternate moving one of their two pieces that have already reached the goal.

Figures 5(b) and 5(c) illustrate a more complicated position that is also
drawn. In 5(b) the red player moves to the state shown in 5(c) to block the
blue player from performing a double hop into their goal area. As a result, the
blue player will move its piece in the middle row one step to the left in order
to enable a different double hop. After this the red player will undo its previous
move, returning to block the blue piece. This then causes the blue player to move
back to the position in 5(b). In this set of positions blue has an advantage, but
red can continually block that advantage.

These figures illustrate that drawn positions can occur in Chinese Checkers.
As existing rules do not account for repeated positions, we suggest the following
rule.

On Strongly Solving Chinese Checkers 163

Next Next Next

(a) Original state (b) Left-right symmetry (c) P1-P2 symmetry

Fig. 6. Symmetric states in Chinese Checkers.

Definition 4. A game of Chinese Checkers is drawn if any board state is
repeated during play.

Under this rule, if a drawn position is reached players can either repeat
the position to draw the game, or a player can move into a position that is a
theoretical loss, hoping that the opponent will make a mistake later in game
play. While other games require positions to be repeated multiple times to cause
a draw, it seems that one repetition should be sufficient.

3.5 Chinese Checkers Symmetry

Chinese Checkers has two types of symmetry. The first is right-left symmetry
where flipping the board results in a position that must have an equivalent value
to the original position. This type of symmetry is shown in Fig. 6(a) and 6(b).
This symmetry was exploited in previous work when solving the single-agent
version of Chinese Checkers [19], but also applies to the two-player version of the
game. While the symmetry can be used to reduce the size of the stored solution
to the game, the symmetric states will still be reached during the process of
solving the game. Note also that there are some positions which are identical
when flipped, and thus the savings from this symmetry is close to, but does not
reach a factor of 2. On the 6×6 board with 6 pieces our implementation reduces
the number of stored states by a factor of 1.998.

Chinese Checkers also has symmetry between player 1 and player 2. That is,
if we flip the board top-to-bottom and swap the colors and the player to move,
we also end up in a symmetric position. The state in Fig. 6(a) is symmetric to
the state in Fig. 6(c).

4 Strongly Solving the Chinese Checkers

We have built a number of different solvers that strongly solve the game of
Chinese Checkers in different ways, including in-memory solvers and external-
memory solvers. The various solvers have been used to test the efficiency of solv-
ing techniques and to verify the correctness of each of the new implementations.

164 N. R. Sturtevant

Many of the structural choices have been based on our earlier work studying the
influence of solving parameters [17]. One focus of the work has been strongly
solving the game efficiently using moderate hardware, as opposed to using mas-
sive parallelization to solve the game more quickly, yet less efficiently (from a
CPU/power usage perspective).

Three important choices in the solving process are (1) the ranking function
which orders the states in the state space (2) the order in which states are proven,
and (3) immediate propagation of wins to parent states once a win is proven.
On 7 × 7 Chinese Checkers with 3 pieces per player and well-optimized choices
for these parameters, we can determine the value of 99% of the states in the
state space in one pass through the data, and only 8 passes through the data
are needed to complete the proof. Without parent propagation or an optimized
proof ordering, the proof takes up to 34 passes through the data with only 0.5%
of the states proven in the first iteration. Both proofs find the same result, but
the first implementation performs the computation more efficiently.

5 Results

Results from our solves are found in Table 1. We have solved a variety of board
sizes of Chinese Checkers with up to the 6 × 6 board with 6 pieces per player,
which has 2 trillion states. The solvers use two bits per state, so given the two
types of symmetry, this solution requires storing 500 billion states and 135 GB
of storage, which exceeds the main memory available in the computer used for
building the solution. As a result, external memory (disk) was used for this
solution. A full description of this solver is outside of the scope of this paper,
but our solver borrows ideas from external memory BFS implementations such
as search with structured duplicate detection [20] and TBBFS [8].

Table 1. Proven results and win/loss/draw/illegal counts from various size games. All
results except for the 6 × 6 board with 6 pieces have been solved multiple times with
different solvers to validate the results.

Board Size # Pieces Positions Wins Draws Illegal Start

7 × 7 1 4,704 2,304 0 96 P1 Win

7 × 7 2 2,542,512 1,265,851 0 10,810 P1 Win

7 × 7 3 559,352,640 279,297,470 180,860 576,840 P1 Win

7 × 7 4 63,136,929,240 31,532,340,944 51,686,042 20,561,310 P1 Win

4 × 4 6 3,363,360 1,205,441 547,058 405,420 P1 Win

5 × 5 6 9,610,154,400 4,749,618,788 47,056,118 63,860,706 P1 Win

6 × 6 6 2,313,100,389,600 1,153,000,938,173 5,199,820,604 1,898,692,650 P1 Win

7 × 7 6 170,503,381,976,928 ? ? ? ?

Because the game is symmetric between the two players, the number of wins
and losses is the same. Thus, in Table 1 we only report the number of won states
in the game. These counts are for the full game, ignoring symmetry. Note that

On Strongly Solving Chinese Checkers 165

all results, except for the largest game, were computed multiple times and by
multiple solvers, validating the counts. We are in the process of building a more
efficient external-memory solver which will validate these results with signifi-
cantly better performance. The exact count of wins should not be considered
correct until this verification has been completed.

Our goal is to strongly solve the 7× 7 board with 6 pieces per player, as this
is the largest game that can likely be strongly solved on hardware that we have
readily accessible.

6 Conclusions and Future Work

This paper has outlined the steps required to begin strongly solving games of
Chinese Checkers, including rules for ending the game and for drawn states.
The games solved thus far are all first-player wins, something we do not expect
to change on larger board sizes. Besides providing new information about a
game that has not previously been solved, the solved information provides a
new testbed for studying games.

References

1. Allis, L.V.: Searching for Solutions in Games and Artificial Intelligence. Ph.D.
thesis, Maastricht University (1994)

2. Allis, V.: A knowledge-based approach of Connect-Four-the game is solved: White
wins. Ph.D. thesis, Vrije Universiteit (1988)

3. Björnsson, Y., Schaeffer, J., Sturtevant, N.R.: Partial information endgame
databases. In: van den Herik, H.J., Hsu, S.-C., Hsu, T.-S., Donkers, H.H.L.M.J.
(eds.) ACG 2005. LNCS, vol. 4250, pp. 11–22. Springer, Heidelberg (2006). https://
doi.org/10.1007/11922155 2

4. Carlisle, R.P.: Encyclopedia of Play in Today’s Society, vol. 1. Sage, Thousand
Oaks (2009)

5. Edelkamp, S., Kissmann, P.: Symbolic classification of general two-player games.
In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R.
(eds.) KI 2008. LNCS (LNAI), vol. 5243, pp. 185–192. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85845-4 23

6. Henderson, P., Arneson, B., Hayward, R.B.: Solving 8x8 hex. In: Twenty-First
International Joint Conference on Artificial Intelligence (2009)

7. Irving, G.: https://perfect-pentago.net/details.html, https://perfect-pentago.net/
details.html

8. Korf, R.E.: Minimizing disk i/o in two-bit breadth-first search. In: AAAI Confer-
ence on Artificial Intelligence, pp. 317–324 (2008)

9. Romein, J.W., Bal, H.E.: Solving awari with parallel retrograde analysis. Computer
36(10), 26–33 (2003)

10. Roschke, M., Sturtevant, N.R.: UCT enhancements in chinese checkers using an
endgame database. In: Cazenave, T., Winands, M.H.M., Iida, H. (eds.) CGW 2013.
CCIS, vol. 408, pp. 57–70. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-05428-5 5

https://doi.org/10.1007/11922155_2
https://doi.org/10.1007/11922155_2
https://doi.org/10.1007/978-3-540-85845-4_23
https://perfect-pentago.net/details.html
https://perfect-pentago.net/details.html
https://perfect-pentago.net/details.html
https://doi.org/10.1007/978-3-319-05428-5_5
https://doi.org/10.1007/978-3-319-05428-5_5

166 N. R. Sturtevant

11. Schadd, M.P., Winands, M.H.: Best reply search for multiplayer games. IEEE
Trans. Comput. Intell. AI Games 3(1), 57–66 (2011)

12. Schaeffer, J., Björnsson, Y., Burch, N., Lake, R., Lu, P., Sutphen, S.: Building
the checkers 10-piece endgame databases. In: Van Den Herik, H.J., Iida, H., Heinz,
E.A. (eds.) Advances in Computer Games. ITIFIP, vol. 135, pp. 193–210. Springer,
Boston, MA (2004). https://doi.org/10.1007/978-0-387-35706-5 13

13. Schaeffer, J., et al.: Checkers is solved. Science 317(5844), 1518–1522 (2007)
14. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,

shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)
15. Sturtevant, N.: Challenges and progress on using large lossy endgame databases in

chinese checkers. In: IJCAI Workshop on Computer Games (2015)
16. Sturtevant, N.: A comparison of algorithms for multi-player games. In: Schaeffer, J.,

Müller, M., Björnsson, Y. (eds.) CG 2002. LNCS, vol. 2883, pp. 108–122. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-40031-8 8

17. Sturtevant, N.R., Saffidine, A.: A study of forward versus backwards endgame
solvers with results in chinese checkers. In: Cazenave, T., Winands, M.H.M., Saf-
fidine, A. (eds.) CGW 2017. CCIS, vol. 818, pp. 121–136. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-75931-9 9

18. Sturtevant, N.: Multi-player games: Algorithms and approaches. Ph.D. thesis,
UCLA (2003). http://www.cs.du.edu/∼sturtevant/papers/multiplayergames
thesis.pdf

19. Sturtevant, N., Rutherford, M.: Minimizing writes in parallel external memory
search. In: International Joint Conference on Artificial Intelligence (IJCAI), pp.
666–673 (2013). http://www.cs.du.edu/∼sturtevant/papers/bfs min write.pdf

20. Zhou, R., Hansen, E.A.: Parallel structured duplicate detection. In: Twenty-Second
AAAI Conference on Artificial Intelligence (AAAI), pp. 1217–1224. AAAI Press,
Vancouver, British Columbia, Canada, Jul 2007. http://www.aaai.org/Library/
AAAI/2007/aaai07-193.php

https://doi.org/10.1007/978-0-387-35706-5_13
https://doi.org/10.1007/978-3-540-40031-8_8
https://doi.org/10.1007/978-3-319-75931-9_9
http://www.cs.du.edu/~sturtevant/papers/multiplayergamesthesis.pdf
http://www.cs.du.edu/~sturtevant/papers/multiplayergamesthesis.pdf
http://www.cs.du.edu/~sturtevant/papers/bfs_min_write.pdf
http://www.aaai.org/Library/AAAI/2007/aaai07-193.php
http://www.aaai.org/Library/AAAI/2007/aaai07-193.php

A Practical Introduction to the Ludii
General Game System

Cameron Browne(B), Matthew Stephenson, Éric Piette,
and Dennis J. N. J. Soemers

Department of Data Science and Knowledge Engineering, Maastricht University,
Bouillonstraat 8-10, 6211 LH Maastricht, The Netherlands
{cameron.browne,matthew.stephenson,eric.piette,

dennis.soemers}@maastrichtuniversity.nl

Abstract. Ludii is a new general game system, currently under devel-
opment, which aims to support a wider range of games than existing
systems and approaches. It is being developed primarily for the task of
game design, but offers a number of other potential benefits for game and
AI researchers, professionals and hobbyists. This paper is based on an
interactive demonstration of Ludii at thuis year’s Advances in Computer
Games conference (ACG 2019). It describes the approach behind Ludii,
how it works, how it is used, and what it can potentially do.

Keywords: General game system · General game playing · Game
description language · Ludeme · Ludii · Game design · Artificial
intelligence

1 Introduction

Ludii is a general game system (GGS) [4] for modelling, playing, evaluating,
optimising, reconstructing and generating a range of games in a digital format.
It is distinct from existing GGSs in that its primary purpose is as a game design
tool, with the focus being on the flexibility and expressiveness of its design
language and the ease with which games can be defined.

1.1 The Digital Ludeme Project

Ludii is being developed as part of the Digital Ludeme Project (DLP)1, a five-
year research project which aims to model the world’s traditional strategy games
in a single, playable digital database. This database will be used to find rela-
tionships between games and their components, in order to develop a model
for the evolution of games throughout recorded human history and to chart
their spread across cultures worldwide. This project will establish a new field of
research called Digital Archæoludology [2].

1 Digital Ludeme Project: http://ludeme.eu/.

c© Springer Nature Switzerland AG 2020
T. Cazenave et al. (Eds.): ACG 2019, LNCS 12516, pp. 167–179, 2020.
https://doi.org/10.1007/978-3-030-65883-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65883-0_14&domain=pdf
http://ludeme.eu/
https://doi.org/10.1007/978-3-030-65883-0_14

168 C. Browne et al.

The DLP will model the thousand most influential traditional strategy games
throughout history, each of which may have multiple interpretations and require
hundreds of variant rule sets to be tested. These will mostly be board games but
will also include card games, dice games, tile games, etc., and will involve games
with non-deterministic elements of chance or hidden information. The Ludii
system was developed for this purpose, as no existing general game approach
would support the full range of games required for the execution of the DLP.

The following sections describe the approach behind Ludii, its game grammar
and compilation mechanisms, how games are represented and played, how the
user interacts with the system, and potential services Ludii might offer.

2 Ludemic Approach

Ludii is based on a ludemic approach that decomposes games into atomic con-
stituents describing relevant equipment and rules.

2.1 Ludemes

Ludemes are “game memes” or units of game-related information that represent
the building blocks of games; they are the conceptual units that game designers
work with when developing their designs. The term was coined in the 1970 s by
Alain Borvo for his analysis of a novel card game [1].

The following example shows how the game of Tic-Tac-Toe might be
described in ludemic form. All information required to play the game – the
players, the equipment and the rules – are presented in a simple, structured
format:

(game "Tic-Tac-Toe"
(players 2)
(equipment {

(board (square 3))
(piece "Nought" P1)
(piece "Cross" P2)

})
(rules

(play (to (empty)))
(end (if (line 3) (result Mover Win)))

)
)

The ludemic approach is a high-level approach to game description that
encapsulates the key game-related concepts while hiding the complexity of the
underlying implementation, making it well suited to the task of game description
and design. This is in contrast with existing approaches, such as the Stanford
Game Description Language (GDL) [13], that explicitly state the instructions

A Practical Introduction to the Ludii General Game System 169

for updating the game state in the descriptions themselves, yielding verbose
and complex descriptions that do not encapsulate relevant concepts and are less
amenable to the modifications required for game design.

2.2 Ludi

Ludii is based on similar principles to the first author’s previous Ludi game sys-
tem, which was used to evolve combinatorial board games in ludemic form [5].
However, Ludii has been completely redesigned to address shortcomings in its
previous incarnation, in order to provide the generality, extensibility and effi-
ciency required for the successful execution of the DLP. These improvements
are due mainly to the class grammar approach for automated game grammar
generation, and Monte Carlo-based move planning with a forward model only,
yielding speed-ups in the order of 100 times faster for most games.

3 Class Grammar

The Ludi class grammar is a set of production rules derived directly from the
Java code implementation of the ludeme classes, in which sequences of symbols
on the RHS are assigned to a nonterminal symbol on the LHS very much like
an Extended Backus-Naur Form (EBNF) grammar [6]. The basic syntax is as
follows:

<class> ::= { (class [{<arg>}]) | <subClass> | terminal }

where:

<class> denotes a LHS symbol that maps to a class in the code library.
(class [{<arg>}]) denotes a class constructor and its arguments.
Terminal denotes a terminal symbol (fundamental data type or enum).
{...} denotes a collection of one or more items.
| denotes a choice between options in the RHS sequence.

The grammar is intrinsically bound to the underlying code library, but is
context-free in that it is self-contained and can be used without knowledge of
the underlying code. The mechanism for generating the grammar is similar to
that of parsing C++ constructors described by Hall [11] to produce a form of
domain specific language (DSL) [10]. The Ludii class grammar is effectively a
snapshot of the class hierarchy of the program’s current ludeme code base in
Java. Ludii is implemented in Java for its cross-platform support, performance,
flexible compilation and good Reflection library support.

3.1 Annotations

Custom annotations are used to decorate arguments in ludeme class constructors
to help shape the resulting grammar. For example, the @Opt annotation is used to

170 C. Browne et al.

denote optional arguments for a ludeme, @Named is used to denote arguments that
must be named in the grammar, and @Or denotes consecutive runs of arguments
of which exactly one must be specified in the game description. For example, a
Line class constructor with the following signature:

public Line(
@Name final IntFunction length,

@Opt final Direction dirn,
@Or @Opt @Name final IntFunction what,
@Or @Opt final RoleType who

)

would generate the following rule with named and optional arguments:

<line> ::= (line length:<int> [<direction>] [(what:<int> |
<roleType>)])

3.2 Game Descriptions

Games are described as symbolic expressions or s-expressions expressed in the
Ludii class grammar. The following example shows the game of Havannah, in
which players win by connecting two corners, three board sides (not including
corners) or form a ring with their pieces:

(game "Havannah"
(players 2)
(equipment {(board (hexagon 8) (hexagonal)) (piece "Ball"

Each)})
(rules

(play (to (empty)))
(end

(if (or {(connect 2 Corners)(connect 3
SidesNoCorners)(ring)})

(result Mover Win)
)

)
)

3.3 Game Compilation

Game descriptions are processed using a recursive descent parser [7] in which
LHS class names are matched to the actual classes they refer to. The (terminal
or non-terminal) arguments to each (non-terminal) class are compiled, then the
appropriate class constructor is found, compiled and passed up the compilation
hierarchy. The object returned at the root of this compilation process is an
executable Game object ready to run.

A Practical Introduction to the Ludii General Game System 171

3.4 Advantages and Disadvantages

Advantages of the class grammar approach include its easy extensibility, as any
required functionality can be simply implemented, added to the code base, and
automatically subsumed into the grammar. The system will theoretically support
any functionality that can be implemented in Java, taking a step towards the
ideal of the programming language becoming the game description language [15].

A drawback is that users adding ludemes to the code base must follow strict
formatting guidelines for the ludeme constructors if they are to produce a well-
behaved grammar. However, these are well documented for those who need them.

4 Game Representation

A game in Ludii is given by a 4-tuple = 〈Players,Mode,Equipment ,Rules〉.
Players is a finite set of k players described by the numbers of players. Mode is
the type of the game between: Alternating (by default if not specified), Simulta-
neous and Real Time. Equipment describes the containers and the components
of the game. The containers are mainly a description of the main board by its
shape and its tiling and if necessary the hands of the players. Each component
is described by the ludeme piece specifying its name, its owner and if neces-
sary how this component can be moved in the board. Finally, Rules defines the
operations of the game which is split in three distinct parts: start, play and end.

For each container, the system builds a graph representation of the board
according to its tiling and precomputes any useful data structure (neighbours of
each vertex, corners of the board, etc.) in order to efficiently compute the legal
moves from each game state.

4.1 Game States

When a game is compiled different flags corresponding to game types are auto-
matically generated in function of the ludemic description. According to them,
a game state in Ludii is built. A set of ContainerState objects associated with
each container defines a game state. A Container state is defined using a cus-
tom BitSet class (called ChunkSet) that compresses the required state infor-
mation into a minimal memory footprint. The ChunkSet encodes multiple data:
What(locn) the index of the component located at locn, Who(locn) the owner
of this piece, count(locn) the number of this component, an internal state of a
component (direction, side, etc.) by state(locn) and if the information hidden
to a player are given by hidden(player, locn).

4.2 Moves and Actions

Legal moves are described by a Moves object which contains a list of component
Move objects generated by the “play” rules of the game for the given state. Each
move equates to a complex instruction set (CISC) command that decomposes

172 C. Browne et al.

into a set of atomic reduced instruction set (RISC) Action objects, each of which
typically modifies a ChunkSet in the state.

For example, the move To(1, 4) sets the piece with index 1 at cell location
4 of the default container (i.e. the board), by applying the sequence of atomic
actions: { SetWhat(4,1), SetWho(4,1)}.

5 AI Agents

One of the primary aims of Ludii is to facilitate the implementation of general
game playing agents, and their evaluation in a wide variety of game. To this
end, Ludii contains a number of default agent implementations, and provides an
interface for the development of third-party agents.

5.1 Default AI Agents

The default agents implemented in Ludii are:

– Random: an agent that samples actions uniformly at random.
– Monte-Carlo (flat): an agent that estimates the values of actions avail-

able in the root node using a flat Monte-Carlo search (i.e. uniformly random
playouts), and selects the action with the maximum estimated value.

– UCT: a standard UCT implementation [3,9,12]. An open-loop Monte-Carlo
tree search (MCTS) approach [14] is used in stochastic games.

– MC-GRAVE: an implementation of Generalized Rapid Action Value Esti-
mation [8].

– Biased MCTS: a variant of MCTS that uses simple patterns as features for
state-action pairs to bias [16] the selection and playout phases of MCTS.

5.2 Third-Party AI Support

Ludii provides an interface for the implementation of new agents, which can
subsequently be imported into Ludii’s GUI and used to play any Ludii game.
Programmatic access to Ludii’s game is also available, which allows for conve-
nient evaluation of custom algorithms using Ludii’s wide array of implemented
games. Example implementations are available on github.2

6 Ludii Player

In this section we describe the Ludii player, that provides the front-end interface
for accessing the complete functionality of the Ludii system. Some of the main
highlights of the Ludii Player include:

2 https://github.com/Ludeme/LudiiExampleAI.

https://github.com/Ludeme/LudiiExampleAI.

A Practical Introduction to the Ludii General Game System 173

– A graphical interface for playing hundreds of traditional and modern strategy
games, both locally and online internationally, with other players from around
the world.

– A variety of included general game playing algorithms (UCT, Flat-MC
GRAVE, etc.) with comprehensive evaluation metrics and visualisation
options, as well as the ability to integrate third-party agents.

– Tools for creating, playtesting, and sharing your own game designs, defined
using the Ludii general game language.

6.1 Game Playing

One of the key advantages of Ludii over other previous general game playing
systems such as GGP, is the ability to view and interact with all implemented
games via a sophisticated graphical environment. This allows human users to
play and enjoy any game created within Ludii, whilst also making tasks such as
correcting bugs and identifying incorrect rule descriptions much easier to per-
form. The main graphical interface provided by the Ludii player is shown in Fig.
1. The left side of the view shows the main playing area of the current game, the
top right section provides information about the games’s players (name, colour,
score, components in hand, etc.), and the bottom right area provides additional
information about the game (moves made, game description, AI analysis, etc.).

Fig. 1. The Ludii Player interface, showing a completed game of Gomoku.

The Ludii player currently allows up to 8 players (both human and AI) to
play games against each other, either on a single Ludii application or else using

174 C. Browne et al.

multiple applications within a single local network. By registering for a free Ludii
user account, Ludii games can also be played internationally with other human
players online. A large and active community of players from many different
demographics and geographic regions, may also provide valuable insight into the
game playing preferences and abilities of different cultures.

The Ludii Player also includes many customisable options for improving the
overall game experience. Examples include changing the colours of the board and
pieces, visualising the game’s mathematical graph, showing the axes or coordi-
nates of the game board, displaying the possible moves that can be made by each
player, providing a complete list of all moves made, the ability to undo moves,
and analysis on the current winning likelihood of each player.

6.2 Agent Evaluation

As well as allowing humans to play games, the Ludii Player also contains sev-
eral features that make it easier to evaluate and analyse the performance of
different agents. Any player within a game can be controlled by one of the pro-
vided game playing algorithms that are included with Ludii. Analysis provided
by these agents, such as their iteration count, child mode visits, and value esti-
mates, is provided directly within the Ludii Player. It is also possible to visualise
the distribution of possible moves for each agent at any given game state, see
Fig. 2, providing a graphical representation of the AI”thought process”. Moves
that involve adding a new piece into the game are represented by a dot, see
Fig. 2a, whilst those that involve changing the position of an existing piece are
represented by arrows, see Fig. 2b.

The size of either the dot or arrow for each possible move represents how
much the AI is thinking about that move (playout number), whilst the colour
indicates the average score obtained from playouts after making this move (red =
low win likelihood, blue = high win likelihood, purple = neutral win likelihood).
These features makes it easier to identify the different playing abilities of general
game playing agents, and can also provide a useful teaching tool for explaining
how certain algorithms search the available action space.

6.3 Manual Game Creation

The Ludii player also provides many useful tools for aiding with the creation and
testing of games using the Ludii language. A complete game editor for the Ludii
Player is currently under development and will allow designers to adjust certain
properties or ludemes of the current game’s description directly within the Ludii
app, with the resulting changes being compiled and applied automatically.

A large number of board and piece designs will be included within the Ludii
player for game designers to use – see Fig. 3 for examples – but it will also be
possible to specify your own piece and board images within Ludii game descrip-
tions. This will provide a wide range of possibilities for both the rules and visuals
of a created game. These game descriptions can the be loaded into any Ludii

A Practical Introduction to the Ludii General Game System 175

(a) Reversi - black to move. (b) Chess - white to move.

Fig. 2. AI visualisations for two example games (Reversi and Chess) showing the out-
come likelihood (colour) and number of playouts (size) for each move.

Fig. 3. Thumbnails for some of the games provided with the Ludii Player.

application, allowing designers to easily share their created games with other
Ludii users.

7 Ludii Portal

The Ludii Portal website, hosted at the URL www.ludii.games, provides addi-
tional information and services beyond those offered by the main Ludii system.
Some of these services are not yet available at the time of writing, but will be
added to the Ludii Portal over the coming months.

www.ludii.games

176 C. Browne et al.

Library. The Ludii Game Library provides a wide range of computational and
historical information on the complete collection of official Ludii games, see Fig.
4. This includes diagrams, rule descriptions, strategies, tutorials, mathematical
and social profiles, geographical regions, time periods, cultural importance, game
reconstructions, and much more.

Fig. 4. The Game Library page of the Ludii Portal.

Forum. The Ludii Forum offers a dedicated space to discuss any subject related
to Ludii and the DLP. This may include discussions about the latest research on
general game AI, archaeological finds from recent excavations, promotion and
sharing of new game descriptions, the results of Ludii competitions, recommen-
dations for new games to include within the official Ludii game repository, and
whatever else the Ludii community feels is important to discuss.

Competitions. We plan to run several general game AI competitions using
Ludii over the following years [17]. This includes many AI competitions that
focus on the development of autonomous general game playing agents, proce-
dural content generators, and data mining algorithms. In addition to this, we
aim to organise a handful of non-AI related competitions focusing on human
playing abilities and game design. Such competitions will hopefully stimulate
conversation on the Ludii forum, and would likely rely on the cooperation of a
large number of Ludii users to compete, playtest and evaluate submitted entries.

A Practical Introduction to the Ludii General Game System 177

Game Recommendations. Another service that will be offered by the Ludii
Portal will be personalised game recommendations. These recommendations will
be based on user personal information, prior game results within the Ludii
Player, regional and cultural data, and other factors that may influence an indi-
vidual’s game preference. The more users that participate in this game recom-
mendation system, the more accurate our suggestions will be.

8 Planned Services

Ludii provides a platform for many potential game design services, including the
following, which we plan to provide over the course of the DLP.

8.1 Automated Game Design

Games might be generated automatically in a number of modes:

– Unconstrained: New games might be generated through standard search
techniques (e.g.. evolutionary methods or hill-climbing techniques) using the
provided database of known games as a starting point.

– Directed: New games might be generated by directed search according to
metrics, conditions or desired behaviours specified by the user.

– Bespoke: Games might be generated for individual users based on implicit
preferences inferred from player behaviour.

8.2 Game Optimisation

Ludii has already proven to be a useful tool for automated play-testing to detect
imbalances and other flaws in candidate rule sets. This may in future be cou-
pled with intelligent rule modification to optimse rule sets in order to reduce or
(ideally) remove flaws.

8.3 Historical Game Reconstruction

One of the most important services offered by Ludii will be the facility to perform
reconstructions of historical games based on partial or unreliable information.
This includes taking material evidence in the form of (possibly partial) game
boards and pieces, and inferring likely rule sets based on the geographical, his-
torical and cultural context of the evidence, using historical data accumulated
during the course of the DLP through archival and on-site research [2]. The aim
is to produce likely reconstructions that maximise historical authenticity as well
as quality of play, and to provide a tool to help traditional games researchers in
the difficult reconstruction process.

178 C. Browne et al.

9 Conclusion

The Ludii general game system, while being developed to address the needs of the
larger Digital Ludeme Project, has the potential to be a significant and useful
software tool in its own right. It has been designed to allow the description
of as wide a range of (mostly traditional) games as easily as possible, and to
provide a platform for a range of game analysis and design services that games
researchers will hopefully benefit from. Ludii will continue to mature and expand
in functionality as the DLP progresses.

Acknowledgements. This research is part of the European Research Council-funded
Digital Ludeme Project (ERC Consolidator Grant #771292) run by Cameron Browne
at Maastricht University’s Department of Data Science and Knowledge Engineering.

References

1. Borvo, A.: Anatomie D’un Jeu de Cartes: L’Aluette ou le Jeu de Vache. Librarie
Nantaise Yves Vachon, Nantes (1977)

2. Browne, C.: AI for ancient games. KI - Künstliche Intelligenz 34(1), 89–93 (2019).
https://doi.org/10.1007/s13218-019-00600-6

3. Browne, C., et al.: A survey of monte carlo tree search methods. IEEE Trans.
Comput. Intell. AI Games 4(1), 1–49 (2012)

4. Browne, C., Togelius, J., Sturtevant, N.: Guest editorial: general games. IEEE
Trans. Comput. Intell. AI Games 6(4), 1–3 (2014)

5. Browne, C.B.: Automatic Generation and Evaluation of Recombination Games.
Phd thesis, Faculty of Information Technology, Queensland University of Technol-
ogy, Queensland, Australia (2009)

6. Browne, C.: A class grammar for general games. In: Plaat, A., Kosters, W., van den
Herik, J. (eds.) CG 2016. LNCS, vol. 10068, pp. 167–182. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-50935-8 16

7. Burge, W.H.: Recursive Programming Techniques. Addison-Wesley, Boston (1975)
8. Cazenave, T.: Generalized rapid action value estimation. In: Yang, Q., Woolridge,

M. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence (IJCAI 2015), pp. 754–760. AAAI Press (2015)

9. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M. (eds.) Computers and
Games. LNCS, vol. 4630, pp. 72–83. Springer, Berlin Heidelberg (2007)

10. Fowler, M., Parsons, R.: Domain-Specific Languages. Addison-Wesley, Boston
(2011)

11. Hall, P.W.: Parsing with C++ constructors. ACM SIGPLAN Not. 28(4), 67–69
(1993)

12. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

13. Love, N., Hinrichs, T., Genesereth, M.: General game playing: Game description
language specification. Technical report LG-2006-01, Stanford Logic Group (2008)

14. Perez, D., Dieskau, J., Hünermund, M., Mostaghim, S., Lucas, S.M.: Open loop
search for general video game playing. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference, pp. 337–344. ACM (2015)

https://doi.org/10.1007/s13218-019-00600-6
https://doi.org/10.1007/978-3-319-50935-8_16
https://doi.org/10.1007/11871842_29

A Practical Introduction to the Ludii General Game System 179

15. Schaul, T., Togelius, J., Schmidhuber, J.: Measuring intelligence through games.
CoRR abs/1109.1314 (2011). http://arxiv.org/abs/1109.1314

16. Soemers, D.J.N.J., Piette, É., Browne, C.: Biasing MCTS with features for general
games. In: Proceedings of the 2019 IEEE Congress on Evolutionary Computation
(CEC 2019), pp. 442–449 (2019)

17. Stephenson, M., Piette, É., Soemers, D.J.N.J., Browne, C.: Ludii as a competition
platform. In: Proceedings of the 2019 IEEE Conference on Games (COG 2019),
pp. 634–641. London (2019)

http://arxiv.org/abs/1109.1314

Author Index

Browne, Cameron 167

Chang, Hsi-Ya 119
Chen, Lung-Pin 119

Fabiano, Nicolas 79

Guo, Yan-Rong 119

Hartisch, Michael 66
Hayward, Ryan 79
Hsieh, Hsiao-Chung 131
Hsueh, Chu-Hsuan 41
Huang, Kuo-Chan 119
Huang, Wei-Chiao 119
Hufschmitt, Aline 106

Ikeda, Kokolo 41, 143

Jouandeau, Nicolas 106

Kimura, Tomihiro 143

Lorenz, Ulf 66

Matsuzaki, Kiminori 53

Oikawa, Taishi 41
Osawa, Hirotaka 11

Piette, Éric 167

Sato, Eisuke 11
Schmidt, Gregory 24
Shoptaugh, Philip 24
Soemers, Dennis J. N. J. 167
Stephenson, Matthew 167
Sturtevant, Nathan R. 155

Takeuchi, Shogo 1

Uiterwijk, Jos W. H. M. 91

Vittaut, Jean-Noël 106

Wei, Ting-Han 131
Wu, I-Chen 131
Wu, Ti-Rong 131

Yeh, Jia-Jun 119

	Preface
	Organization
	Contents
	Advice is Useful for Game AI: Experiments with Alpha-Beta Search Players in Shogi
	1 Introduction
	2 Related Work
	2.1 Advice from Game AIs to Human
	2.2 Majority Voting

	3 Proposed Method
	3.1 Options of Searching Moves

	4 Experiments
	4.1 Tournament Between Single Engines
	4.2 Tournaments Among Proposed Methods
	4.3 Tournament Using Two Advisers
	4.4 Time Extension
	4.5 Discussion

	5 Conclusion
	References

	Reducing Partner’s Cognitive Load by Estimating the Level of Understanding in the Cooperative Game Hanabi
	1 Introduction
	2 Background of Hanabi
	2.1 Rules of Hanabi
	2.2 Works Related to Hanabi

	3 Agent Algorithm Using Thinking Time
	3.1 Method
	3.2 Conventional Self-Estimation Strategy
	3.3 Self-Estimation Strategy That Changes Estimation Reliability According to Thinking Time

	4 Thinking-Time Experiment
	4.1 Interface
	4.2 Evaluation Method of the Thinking-Time Experiment
	4.3 Procedure of the Thinking-Time Experiment
	4.4 Result of the Thinking-Time Experiment

	5 Cognitive-Load Experiment
	5.1 Evaluation of the Cognitive-Load Experiment
	5.2 Procedure of the Cognitive-Load Experiment
	5.3 Results of the Cognitive-Load Experiment

	6 Discussion
	6.1 Discussion of the Thinking-Time Experiment
	6.2 Discussion of the Cognitive-Load Experiment
	6.3 Limitations and Future Work

	7 Conclusion
	References

	Making a Better Game: The History of Cluster
	1 Introduction
	1.1 Rules of Cluster

	2 The Genesis of a New Game
	2.1 Cluster’s Lineage

	3 From Concept to Realization
	3.1 Design Considerations
	3.2 Initial Release

	4 Cluster-64
	4.1 Automating the Prototype Generation Process

	5 Cluster-58
	5.1 The Refinement Process
	5.2 The Finalized Design

	6 Cluster Strategy
	7 Experimental Game Designs
	8 Piece to Space Ratio
	9 Design Heuristic Synopsis
	10 Game Design Wisdom
	11 Conclusion
	References

	Improving Human Players' T-Spin Skills in Tetris with Procedural Problem Generation
	1 Introduction
	2 Background
	2.1 The Game of Tetris
	2.2 Related Work on Procedural Problem Generation

	3 Experiments on Interestingness and Difficulty
	3.1 Experiment Settings
	3.2 Features of Two-Step to T-Spin Problems
	3.3 Results of Predictors

	4 Experiments on Improving Human Players' Skills
	4.1 Experiment Settings
	4.2 Results of Skill Improvement

	5 Conclusions and Future Work
	References

	A Further Investigation of Neural Network Players for Game 2048
	1 Introduction
	2 Game 2048
	3 Related Work: Neural-Network Players for Game 2048
	4 Experiment 1: Changing Components
	5 Experiment 2: Changing Input/Output
	6 Conclusion
	References

	A Novel Application for Game Tree Search - Exploiting Pruning Mechanisms for Quantified Integer Programs
	1 Introduction
	2 Preliminaries: Basics of Quantified Integer Programming
	3 Pruning in QIP Search Trees
	3.1 Theoretical Analysis
	3.2 SCP Implementation Details
	3.3 Example

	4 Solver, Experiments and Results
	5 Conclusion
	References

	New Hex Patterns for Fill and Prune
	1 Introduction
	2 General Analysis
	3 Previous Fill Results
	4 New Fill Results
	4.1 Near-Death Patterns
	4.2 Mutual-Fill Patterns
	4.3 New X-permanently Inferior Patterns

	5 New Prune Results
	5.1 New Theorem Using Reversibility
	5.2 New Reverse Patterns
	5.3 Self-reversibility

	6 Experiments
	References

	Solving Cram Using Combinatorial Game Theory
	1 Introduction
	2 Combinatorial Game Theory for Cram
	2.1 Nimbers
	2.2 Disjunctive Sums of Subgames
	2.3 Cram Strategies

	3 Experiments and Discussion
	3.1 Base Case
	3.2 Using Endgame Databases
	3.3 Using CGT Values

	4 Conclusions and Future Research
	References

	Exploiting Game Decompositions in Monte Carlo Tree Search
	1 Introduction
	2 MCTS and UCT
	3 Multiple Tree MCTS (MT-MCTS)
	4 Experiments
	5 Discussion
	6 Conclusion
	References

	On Efficiency of Fully Probing Mechanisms in Nonogram Solving Algorithm
	1 Introduction
	2 Related Work
	3 Fully Probing Efficiency from Different Aspects
	3.1 Re-probing Policy
	3.2 Probing Sequence
	3.3 Computational Overhead

	4 New Fully Probing Methods and Performance Evaluation
	5 Conclusions and Future Work
	References

	Net2Net Extension for the AlphaGo Zero Algorithm
	1 Introduction
	2 Background
	2.1 Residual Networks
	2.2 AlphaGo Zero
	2.3 Net2Net

	3 Our Method
	3.1 Transfer Method
	3.2 Training Method

	4 Experiments
	4.1 Experimental Setup
	4.2 Experiment for Shift-Training
	4.3 Experiment for End-Training

	5 Conclusion
	References

	Designing Policy Network with Deep Learning in Turn-Based Strategy Games
	1 Introduction
	2 Turn-Based Strategy Games as an Academic Platform: TUBSTAP
	2.1 Difficulty of Turn-Based Strategy Games
	2.2 TUBSTAP Game System
	2.3 Related Works for TUBSTAP

	3 Purpose and Procedure
	3.1 Previous Studies

	4 Experiments
	4.1 Game Record Database for Learning
	4.2 Neural Network Design
	4.3 Learning Procedure
	4.4 Result of the Competition Experiment

	5 Discussion and Conclusion
	References

	On Strongly Solving Chinese Checkers
	1 Introduction
	2 Background and Related Work
	2.1 Terminology

	3 Rules of Chinese Checkers
	3.1 Movement Rules
	3.2 Winning Conditions
	3.3 Illegal States
	3.4 Draws
	3.5 Chinese Checkers Symmetry

	4 Strongly Solving the Chinese Checkers
	5 Results
	6 Conclusions and Future Work
	References

	A Practical Introduction to the Ludii General Game System
	1 Introduction
	1.1 The Digital Ludeme Project

	2 Ludemic Approach
	2.1 Ludemes
	2.2 Ludi

	3 Class Grammar
	3.1 Annotations
	3.2 Game Descriptions
	3.3 Game Compilation
	3.4 Advantages and Disadvantages

	4 Game Representation
	4.1 Game States
	4.2 Moves and Actions

	5 AI Agents
	5.1 Default AI Agents
	5.2 Third-Party AI Support

	6 Ludii Player
	6.1 Game Playing
	6.2 Agent Evaluation
	6.3 Manual Game Creation

	7 Ludii Portal
	8 Planned Services
	8.1 Automated Game Design
	8.2 Game Optimisation
	8.3 Historical Game Reconstruction

	9 Conclusion
	References

	Author Index

