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Abstract The Voronoi tessellation is a natural way of space segmentation, which
has many applications in various fields of science and technology as well as in social
sciences and visual art. The varieties of the Voronoi tessellation methods are com-
monly used in computational fluid dynamics, computational geometry, geolocation
and logistics, game dev programming, cartography, engineering, liquid crystal elec-
tronic technology, machine learning, etc. The very innovative results were obtained
in astronomy, namely for a large-scale galaxy distribution and cosmic web pattern,
for revealing the quasi-periodicity in a pencil-beam survey, for a description of con-
straints on the isotropic cosmic microwave background and the explosion scenario
likely supernova events, for image processing, adaptive smoothing, segmentation,
for signal-to-noise ratio balancing, for spectrography data analysis as well as in the
moving-mesh cosmology simulation. We briefly describe these results paying more
attention to the practical application of the Voronoi tessellation related to the spatial
large-scale galaxy distribution.
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1 The Voronoi Tessellation in a Spatial Galaxy
Distribution: First Works and Basic Approach

The geometrical methods based on the Voronoi diagram deal with a partitioning
of space into regions in a specific subset of generators. It was named after Georgy
F. Voronoi (April 28, 1868, Zhuravka village, Chernihiv region, Ukraine—Nov 20,
1908, Warsaw, Poland), the outstanding Ukrainian mathematician [76, 89], who
studied the general n-dimensional case of these diagrams [101, 102].

In 1984, Matsuda and Shima advanced the idea to apply the Voronoi tessellation
method for describing the cellular structure of the Local Universe [63], finding a
topological tendency of galaxies “to cluster at the vertices, edges and faces of poly-
hedral shaped voids”. In 1987, Ling demonstrated that the Voronoi tessellation and
the Minimal Spanning Tree being applied to the CfA Redshift Survey of galaxies
(the first survey to map the large-scale structure of the Universe) are able to detach
filamentary structures and voids [60]. In 1989, Yoshioka and Ikeuchi proposed three-
dimensional Voronoi tessellation as a model of the evolution of the negative density
perturbations regions, which resulted in the overlapping of shells while the modeled
skeleton can be compared with real observed structures and with mass distribution
correlation functions [107].

For the first time, the Voronoi tessellation was considered in detail as a pattern
of matter distribution in the Universe in work by Icke and Weygaert [48] and series
of their following works [49, 50, 104]. These authors concluded that the regions of
lower density become more spherical with evolution and matter floods away from
expansion centers and accrues at the borders of packing of spheres. This leads to
the partition of space on the Voronoi tessellation with nuclei in the centers of low-
density regions called the voids. High-density regions—clusters of galaxies—lie at
the crossing of vertexes of adjacent cells, filaments at the edge of cells, and pancakes
of large-scale structure (LSS) are faces of cells (Fig. 1, right). Sheth et al. [83] have
developed its idea and considered the model of a void created in the frame of the
Voronoi tessellation paradigm.

The Voronoi tessellation can be constructed as follows. Let us consider a Voronoi
cell of finite size in N-dimensional space (usually N = 2 or N = 3), where a fixed
number of points is distributed according to some statistical law (for example, the
Poisson law). Suppose that each point is the center of a spherical expanding bub-
ble structure. If all these structures begin to expand at the same moment with the
same rate, the bubbles will be touched in planes that perpendicularly bisect the lines
connecting the centers of expansion. These bisecting planes, in turn, intersect each
other. As a result of this process, new lines will be generated, which in turn intersect
each other and form a network. Using an adopted terminology, we will call such
a center of the cell as a nucleus. So, each nucleus will be enclosed by a set of
(N −1)—dimensional planes forming a convex cell. Distribution of nuclei forms the
Voronoi tessellation.

The realization of Voronoi tessellations for a certain number of expanding nuclei,
which is known as the Voronoi foam, can be found in [48, 104]. In the case of two-
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Fig. 1 (Left) The construction of a new Delaunay triangle from two known nuclei N3 such that
(N1, N2, N3) forms a triangle whose circumsphere does not contain any other nucleus in the Voronoi
tessellation. (Right) Identification of the four quantities which were calculated in each Voronoi cell:
li , the length of wall i; α, the angle between two walls meeting at vertex; dw , the distance between
the nucleus and a wall, where the projection of the nucleus doesn’t necessarily lie on the wall ([48],
open astronomy)

dimensional realization, the construction of a Voronoi cell consists of the search for
all the Delaunay triangles having three nuclei (the center of the circumscribing circle
is a vertex of the Voronoi foam). The program proposed by the authors [48], allows
one to find all the Delaunay triangles having N1 as a corner and construct the Voronoi
cell belonging to N1 by joining the circumcentres of the Delaunay triangles. Having
applied this procedure to all nuclei, we obtain the Voronoi tessellation.

The process of forming theVoronoi tessellation is shown in Fig. 1 (left). The points
N0, N1, N2 form a Delaunay triangle obtained in a previous search; corresponding
Voronoi vertex V is shown within the (dashed) circumcircle of N0, N1, N2 as well
as stubs of the Voronoi cell walls. On the left hand side of the diagram, the T are a
sequence of trial points, the third of which produces a circle that encompasses two
nuclei, P1 and P2. The radius of the circumcircle of (N1, N2, P1) being smaller than
that of (N1, N2, P2), the point P2 is N3, i.e. the third corner of the Delaunay triangle.
Thus, the circumcenter of (N1, N2, P1) is the next Voronoi vertex which, if connected
with V, produces a complete Voronoi cell wall [48].

The obtained results could explain the heuristic models that supposing Voronoi
tessellations as 3D templates for the galaxy distribution as well as could reproduce
a variety of galaxy clustering properties. In an ideal scenario, the LSS is organized
by equal spherical voids expanding at the same rate. The walls and filaments would
be found precisely between expanding voids, and the resulting LSS web skeleton
would the Voronoi tessellation.

The Voronoi tessellation method was picked up and also thrived in our research
on a spatial galaxy distribution since 1990-is [92] that allowed us to obtain several
priority results. Namely, we elaborated threemain approaches in Voronoi tessellation
application: (1) to describe a cosmic web skeleton in matter distribution as a Voronoi
tessellationwith nuclei at low-density regions; (2) to useVoronoi tessellation as a tool
for direct measurement of galaxy local concentration and environmental description
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of low-populated galaxy systems such as triplets, pairs, and isolated galaxies; (3) to
applyVoronoi diagrams altogetherwithmachine learningmethods for 3Dmapping of
theZoneofAvoidanceof ourGalaxy [97, 99],whereGenerativeAdversarialNetwork
(GAN) algorithms are very useful [1, 36]. In particular,Coutinho et al. [19] performed
verification of various algorithms that can reproduce the cellular structure of the
Universe. By comparing the simulated distributions with real observational data,
these authors showed that the best algorithm uses the nearest neighbour parameter
between galaxies, and that network algorithms can be improved to reproduce the
large-scale structure of the Universe.

We give examples in Sect. 2, howmanner our developed approach is working. We
briefly overview in Sect. 3 various astronomical research with the Voronoi diagrams,
accentuating the papers related to the large-scale structure of the Universe, as well
as we highlight in Sect. 4 several works and software, where the Voronoi tessellation
and machine learning get along well with each other.

2 Voronoi Tessellation of the First, Second and Third
Orders: Identification of the Low-Populated Galaxy
Groups, Environment Effect, and Dark Matter Content

Because of Voronoi tessellation is a geometrical method based only on galaxy posi-
tions, it allows detaching overdensity regions of galaxies in comparison with the
background [93]. We tested it with various samples of galaxies. First of all, we used
the Local Supercluster of galaxies, which is well studied among other galaxy super-
clusters, for identifying galaxy groups of various populations. It was revealed that
Voronoi’s tessellation method depends weakly on the richness-parameter of groups,
and the number of galaxies in the rich structures is growing rather than in the weak
structures with an increase of this parameter [64].

In the first-order Voronoi tessellation, the critical parameter is the volume of
the galaxy’s Voronoi cell V. This parameter characterizes an environmental galaxy
density. The condition of cluster/group membership of a particular galaxy is the rel-
atively small V. This condition is actual when close neighbouring galaxies surround
the galaxy. That is why the first order Voronoi tessellation is not corrected for the
identification of small isolated galaxy systems [64].

We used the second-order Voronoi tessellation for the identification of pairs and
single galaxies. Each galaxy i from set S forms the common cells with a certain
number of neighbouring galaxies (Fig. 2). So, under neighbouring galaxies of galaxy
i , we understand only galaxies that create common cells with this galaxy. For exam-
ple, galaxy 1 creates only 4 common cells (V1,2 , V1,3 , V1,4 , V1,5) with neighbouring
galaxies 2, 3, 4, and 5, respectively. Each pair of galaxies i , j is characterized by the
dimensionless parameters pi, j :
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Fig. 2 2D Voronoi tessellation of the first- (a), second- (b) and third- (c) order for the same
distribution of the random nuclei ([34], open astronomy)

pi, j =
D
√
Vi, j

mi, j
, (1)

where D—space dimension, Vi, j—the area (for 2D) or volume (for 3D) of cell,
mi, j—distance between galaxies i and j . So, contrary to the first-order tessellation,
the second-order tessellation for set S distribution of nuclei is the partition of the
space which associates a region V1,2 with each pair of nuclei 1 and 2 from S in such
a way that all points in V1,2 are closer to 1 and 2 than other nuclei from S. Region
V1,2 is a common cell for nuclei 1 and 2. However, these nuclei do not need to lie
in the common cell. For example, nuclei 1 and 5 create the common cell V1,5, and
they do not lie in this cell. In such a way, the second-order Voronoi tessellation is
available for the identification of single galaxies and pairs (Fig. 2b).

Let us introduce the parameter pe, which describes only pair environment and
does not depend on the distance between pair members directly. We define it as the
mean value of p j (1) and pl (2) parameters of the first and second galaxy, excepting
p from both sets:

pe =
∑k

j=2 p j (1) + ∑n
l=2 pl(2)

k + n − 2
, (2)

where k and n—number of neighbouring galaxies for 1 and 2 galaxies of geometric
pair, respectively.We started sums from j = 2 and l = 2 for excepting 2p, because the
first galaxy is neighbour for the second galaxy and vice versa. Therefore (k + n − 2)
is sum of neighbouring galaxies of pair members excepting of pair galaxies as neigh-
bouring for each other. Parameter pe depends on the distribution of neighbouring
galaxies. A small value of pe points out that such a pair is located in a loose envi-
ronment. In such case the average volume of common cells of pair components with
neighbouring galaxies is relatively small, and distance between them is significant,
see formula (1) and Fig. 3a.



62 I. Vavilova et al.

Fig. 3 Different configurations of the galaxies: isolated close pair (a) and isolated single galaxy
(b) in the second-order tessellation; isolated close triplet in the third-order tessellation (c) ([34],
open astronomy)

A single galaxy is a galaxy, which is not a member of any geometric pair. The
single galaxies are field galaxies in the environment of geometric pairs. Every single
galaxy has the own neighbours; single galaxies and geometric pair members can be
among them. According to the second-order Voronoi tessellation, the larger is the
degree of galaxy isolation, the larger is the number of neighbours (see Fig. 2b in
comparison with Fig. 3b), but these neighbours locate farther. The best parameter
that describes the isolation degree of the single galaxy, s, is the mean value of all
parameters p j of this galaxy:

s =
∑k

j=1 p j

k
(3)

The third-order Voronoi tessellation is appropriate for the identification of galaxy
triplets. It is the partition of the space which associates a region V1,2,3 with each
triplet of nuclei 1, 2, 3 in such a way that all points in V1,2,3 are closer to nuclei 1,
2, 3 than other nuclei from S [59]. All points of the common triplet’s cell are closer
to galaxies of this triplet than to other galaxies. Similarly to the parameter pi, j for
pairs, we can set up the parameter ti, j,u for triplets:

ti, j,u =
D
√
Vi, j,u

max(mi, j ,mi,u,m j,u),
(4)

where D is the space dimension, Vi, j,u is the area (for 2D) or volume (for 3D) of the
cell, andmi, j ,mi,u ,m j,u are the distances between galaxies in the triplet. A geometric
triplet in the third-order Voronoi tessellation contains three galaxies that have a
common cell and the same maximal parameters tmax (1) = tmax (2) = tmax (3) = t .
The parameter t characterizes a degree of geometric triplet isolation. We can define
the parameter of triplet environment te as the mean value of parameters ti (1), t j (2),
and tu(3), except t from three sets:
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te =
∑k

i=2 ti (1) + ∑n
j=2 t j (2) + ∑q

u=2 tu(3)

k + n + q − 3
(5)

here in the case of the third-order Voronoi tessellation, k, n, and q denote the number
of neighbouring triplets which contain galaxies 1, 2, and 3, respectively. Therefore,
(k + n + q− 3) is the number of neighbouring triplets for a certain triplet that contain
at least one galaxy from this triplet (see, Fig. 3).

Parameters p, s, and t are the basic ones and define the isolation degree of a galaxy
pair, single galaxy, or triplet compared to the background, respectively. Parameters
pe and te are additional ones and contain information about the distribution of the
neighbouring galaxies (environment). Similar to the second- and third-order Voronoi
tessellations, it is possible to apply more high-order Voronoi tessellations to identify
galaxy quartets and quintets, etc.

So, one can use galaxies as the nuclei of the Voronoi tessellation taking into
account the equatorial coordinates α, δ and radial velocities of galaxies Vh only.
For the construction of the 3D Voronoi tessellations, it is necessary to determine the
distances in 3D space. The spatial distance between two galaxies can be decomposed
into projected (tangential) distance r and radial component v (difference of the radial
velocities). We can determine the projected distance with a relatively high accuracy.
Simultaneously, the radial component has errors due to the inaccuracy of radial
velocity measurement of each galaxy and existing strong peculiar velocities (due to
virial motions of galaxies in groups and clusters). As a result, the galaxy distribution
in the radial velocities space is extended along the radial component, the so-called
fingers-of-God effect. This is attributed to the random velocity dispersion in a galaxy
volume-limited sample that cause a galaxy’s velocity to deviate from pure Hubble
flow, stretching out a group of galaxies in redshift space [54, 66]. Various authors
take into account this effect in their way, depending on the specifics of their problem.
For example, Marinoni et al. [62] chose some cylindrical window of clustering,
which is extended along the radial component. We introduced the weight for a radial
component [34], avoiding the problemof tangential and radial distance in equivalence
to apply the high-order 3D Voronoi tessellation method.

An efficient way to show Voronoi tessellation advantages was to apply it to the
galaxy samples from the Local Supercluster [64, 94, 96] and the Sloan Digital Sky
Survey (SDSS), where at the first time we examined it for spectroscopic aims [34,
65, 67, 70, 77, 95]. We did not consider galaxies that located within 2o near borders,
because the correct estimation of Voronoi cell volume is not possible in this case.
Selecting single galaxies andpairs by the second-orderVoronoi tessellation, aswell as
triplets by the third-order Voronoi tessellation method, we obtained 2196 geometric
pairs, 1182 triplets, and 2394 single galaxies. We did not make a clear division
between physical gravitationally bound systems and non-physical ones, following
the supposition that the more isolated a system is, the higher probability that it is
physical (compact pairs are with Rh < 150 kpc and triplets are with Rh < 200 kpc).

Estimating the dark matter content in the low-populated groups, we obtained
the median values of mass-to-luminosity ratio [34]: 12MSun/LSun for the isolated
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Fig. 4 Mass-to-luminosity ratio diagram for galaxy systems of different population (star clusters,
galaxies, galaxy groups, clusters, and superclusters), where the result for the low-populated groups
[66] is pointed ([96], open astronomy)

pairs and 44MSun/LSun for the isolated triplets. Note that for the most compact
pairs and triplets (with R < 50 (100) kpc, respectively) there is not a very large
difference in darkmatter content for pairs and triplets: 7MSun/LSun and8MSun/LSun .
The mass-to-luminosity ratio diagram for galaxy systems of different population
(star clusters, galaxies, galaxy groups, including the low-populated ones, clusters,
and superclusters) is presented in Fig. 4. Several examples of isolated triplets of
galaxies are given in Fig. 5. We conclude about the dark matter distribution that
for the dynamically younger sparsely groups (triplets), dark matter is more likely
associated with the individual galaxy halos, for the interacting and late sparsely
groups the dark matter lies in a common halo of galaxy groups.

Using an inverse volume of Voronoi cell (1/V ) as a parameter describing the local
environmental density of a galaxy, we considered the volume-limited SDSS (DR5
and DR9) galaxy samples (0.02 < z < 0.1, −24 < Mr < −19.4) [26, 27, 30, 67]
and found that

• the early type galaxies prefer to reside in the Voronoi cells of smaller volumes (i.e.,
dense environments) than the late type galaxies, which are located in the larger
Voronoi cells (i.e., sparse environments);

• the relationships between the morphological types and the u − r , g − i , and r − z
color indices of pairs of galaxies with radial velocities 3000 < V < 9500 km/s
evident that the Holmberg effect is not revealing, by the other words, it can be
considered only in historical aspect [28];
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Fig. 5 The interacting (VV894), most compact (KTG39), and wide triplets of galaxies, where Sv
is the rms velocity of galaxies with respect to the triplet centre, Rh—harmonic mean radii of the
triplet, τ = 2H0Rh/Sv—its dimensionless crossing time ([96], open astronomy)

• properties of such small groups as pairs and triplets, where segregation by lumi-
nosity was clearly observed, are fit well to Dressler effect: galaxies in isolated
pairs and triplets are on average two times more luminous than isolated galaxies;

• the dependence of the color indices and stellar magnitudes is effective for the
automated morphological classification of the galaxies (E—early types, L—late
types).

The morphological types of the galaxies were divided into two classes: Early—E
(from elliptical to lenticular) and Late—L (from spiral Sa to irregular I rr types).
The absolute magnitude

Mr = mr − 5log(V/H0) − 25 − K (z) − ext (6)

could be corrected for Galactic absorption ext in accordance with [81] and K—
correction K (z) according to [16]. Here we used the CDM model of the Universe
with the WMPS7 cosmological parameters (�M = 0.27, �� = 0.73, �k = 0, H0 =
0.71). In order to apply the Voronoi tessellation method we should done transition
from equatorial coordinates and velocities to the comoving x , y, z coordinates for
each central galaxy in the sample (Mr < −20.7). To do this we can transform the
redshift z to the corresponding distanceχ(z) for each galaxy by integrating as follows
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χ(z) = DH

∫ z

0

dz′

E(z′)
(7)

where DH = c/H0 is the Hubble distance and E(z′) is the Hubble parameter defined
as follows

E(z′) =
√

�M(1 + z)3 + �k(1 + z)2 + �� (8)

The coordinates x , y, z of the galaxies in the comoving space are determined as
follows

x = χ(z)cos(θ)cos(φ) (9)

where (θ ) is the declination of each galaxy, (φ) is the right ascension, and (χ(z)) is the
corresponding distance for redshift z. After getting the three-dimensional Cartesian
coordinates of the galaxies, we divided the geometrical space occupied by the galaxy
sample inmosaic cells (volumes V in the 3D case). Each cell has a galaxy as a nucleus
and consists of elementary volumes of space closer to this galaxy than to any other
galaxy [63]. The use of the Voronoi tessellation to isolate groups of galaxies in
three dimensions has been described in detail by Melnyk et al. [64]. Figure2a shows
an example of the Voronoi tessellation in a two dimensional case. Let us use the
value of inverse volume (1/V ) of the Voronoi cells to describe the density of galaxy
environments; when 1/V is higher, a galaxy is less isolated.

Examples of the distributions of E and L galaxies versus inverse volume of
the Voronoi cells that contain them are shown in Fig. 6. In work [27] we grouped
galaxies from the SDSS sample at z < 0.1 into 4 logarithmic intervals 1/V < 0.001,
0.001 < 1/V < 0.01, 0.01 < 1/V < 0.1, and 1/V > 0.1 for four ranges of the
redshift 0.02 < z < 0.04, 0.04 < z < 0.06, 0.06 < z < 0.08, and 0.08 < z < 0.1
(in the rows) and for different ranges of absolute stellar magnitude, −21.5 < Mr <

−20.7, −22.5 < Mr < −21.5, and Mr < −22.5. The number of galaxies in each

Fig. 6 The distribution of the number of galaxies versus inverse volume of the Voronoi cell (local
density parameter), with early morphological type E indicated by red lines and late type L indicated
by blue lines, for different ranges of redshift; absolute stellarmagnitude of galaxies selected from the
SDSS at z < 0.1 is −22.5 < Mr < −21.5. The number of galaxies in each bin is normalized to the
total number of E ÷ L within the given subsample. The number of central bright E and L galaxies
is as follows: E = 1636, L = 459 for 0.02 < z < 0.04, E = 3609, L = 1247 for 0.04 < z < 0.06,
E = 9432, L = 3596 for 0.06 < z < 0.08 [27]
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bin for the E and L types is normalized to the total number of E ÷ L galaxies within
the given subsample. Figure6 shows that the fraction of galaxies of spiral and late
types becomes larger while redshift increasing, while the fraction of early types, on
the contrary, is smaller. It explains the well known evolutionary trend of a reduction
in the number of galaxies with suppression of star formation for increasing redshift
[21, 90], even at comparatively low redshifts down to z < 0.1. Also, for the brighter
galaxies in the sample, the fraction of galaxies of earlier types is larger since, on
the average, earlier types have higher luminosities (the well-known morphological
type versus colour indices/luminosity relation) [8, 44, 73]. The brightest galaxies
of earlier types with Mr < −22.5 appear preferentially in denser environments: the
peak of the distribution of the inverse volumes of the Voronoi cells for the E types lie
within the interval 0.01 < 1/V < 0.1, while in other intervals of Mr , for the L types
the peak of the distribution always is within 0.001 < 1/V < 0.01 (the morphology-
density relation [8, 28, 32, 44]).

We can also determine the density of galaxies in a Voronoi cell, including their
faint satellites, i.e., galaxies with Mr > −20.7: (n + 1)/V , where n is the number
of faint galaxies in the Voronoi cell, and V is the volume of the Voronoi cell. We
also constructed distributions of early E and late L types galaxies in dependence on
the parameter (n + 1)/V in four intervals: (n + 1)/V < 0.01, 0.01 < (n + 1)/V <

0.1, 0.1 < (n + 1)/V < 1, and (n + 1)/V > 1. The number of galaxies is normal-
ized to the number of E ÷ L galaxies within the given range of (n + 1)/V . We
examined the density of galaxies only in the first two redshift intervals, since we
cannot evaluate the evolution of their properties at a higher z because there are not
enough faint galaxies. However, we can compare the galaxies’ environmental density
as a function of the absolute magnitude and morphological type of the bright central
galaxy. Thus, the fraction of early types of central galaxies increases with increasing
environmental density, while, on the other hand, the fraction of late types decreases;
that is, the earlier types are in a denser environment than the late types. When the
central galaxy is brighter, the fraction of early types in a subsample will be larger
[27, 100].

3 The Voronoi Tessellation in Astrophysical Research

Ebeling and Wiedenmann [33] were the first to apply the Voronoi tessellation for
finding galaxy groups and clusters. Later such an approach was used by Ramella et
al. [78], Kim et al. [56], Lopes et al. [61], Barrena et al. [6], Melnyk et al. [65], Panko
and Flin [71]. Doroshkevich [31] introduced its for filaments and walls (1D and 2D
LSS structures) as well as Neyrinck [68] for the search of voids in a spatial galaxy
distribution.

We note some important earlier works as concerns with other applications of
Voronoi diagrams to the large-scale galaxy distribution: for revealing the quasi-
periodicities in a pencil-beam survey [51, 87], for a description of constraints on the
Voronoi model when applied to the isotropic cosmic microwave background [17]. A
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significant contribution for Voronoi tessellation application to various astronomical
tasks was made by Zanninetti, who considered two- and three-dimensional cases of
the explosion scenario likely supernova events and developed a dynamical method
allowing to describe the explosion phases [108, 109].

Ramella et al. [78] created a Voronoi Galaxy Cluster Finder, which uses posi-
tions and magnitudes of galaxies to define galaxy clusters and extract its parameters:
size, richness, central density, etc. The 3D Voronoi tessellation for galaxy group
identification was realized by Marinoni et al. [62] and Cooper et al. [18]. Weygaert
et al. prepared a useful review of the spatial galaxy distribution with Delaunay and
Voronoi tessellations [42, 105]. They discussed the Delaunay Tessellation Field Esti-
mator (DTFE) and the concept of Alphashapes for matter distribution; theMultiscale
Morphology Filter (MMF),which uses theDTFE for detachment of filaments, sheets,
and clusters; the Watershed Voidfinder (WVF) to identify voids.

The era of big data surveys (see, for example, review in work by Vavilova et al.
[98] accelerated the Voronoi diagrams application on a spatial galaxy distribution
properties and environment influence: z = 0.1 − 3.0, COSMOS survey [82]; z≤ 0.5,
Herschel-ATLAS/GAMA [9]; z < 0.1, Coma Supercluster [20]; z < 0.3, ALHAM-
BRA survey [79]. Söchting et al. used Voronoi tessellation within overlapping slices
in the photometric redshift space (0.2< z <3.0). It allowed them to detach region
z ∼ 0.4 with a slow emergence of virialized clusters accordingly to the hierarchical
scenario and to detect new superclusters as the peaks of a matter distribution up to
z = 2.9 [85]. As for the Voronoi tessellation cluster finder algorithms, we note the
work by Soares et al., who developed it to produce reliable cluster catalogs up to
z = 1 or beyond and down to 1013.5 Msun. They built the Voronoi tessellation cluster
finder in photometric redshift shells and used the two-point correlation function of
the galaxies in the field to determine the density threshold for the detection of cluster
candidates and to establish their significance [84].

A principal new galaxy cluster finder based on a 3D Voronoi Tessellation plus
a maximum likelihood estimator, followed by gapping-filtering in radial velocity
(VoML + G), was created. Pereira et al. [74, 75] applied it successfully to find
optical clusters (R200) in the Local Universe as well as Santiago-Batista et al. for
the identification of continuous filaments in the environment of superclusters [80].
Grokhovskaya et al. developed filtering algorithms of multiparameter analysis of
the large-scale distribution of galaxies (identification of galaxy systems and voids)
in narrow slices in the entire range of redshifts of HS 47.5-22 constructing density
contrast maps, namely with adaptive kernel and Voronoi tessellation [40]. The 3D
Voronoi tessellation application to the DEEP2 survey was first introduced by Gerke
et al. [38].Meanwhile, Shen Ying et al. [106] proposed an algorithmwhich computes
the cluster of 3D points by applying a set of 3D Voronoi cells and allows a 3D point
cluster pattern can be highlighted and easily recognized.

Hung et al. have demonstrated that Voronoi tessellation Monte-Carlo mapping is
beneficial for studying the environment effect on galaxy evolution in high-redshift
large-scale structures (z∼1) in the ORELSE survey (Observations of Redshift Evo-
lution in Large Scale Environments) [47]. An exciting application of Voronoi tes-
sellation was proposed by Lam et al. [57]: for constructing the white dwarfs lumi-
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nosity functions they used parameters of proper motion and colours from the Pan-
STARRS13π Steradian Survey Processing Version 2; for improving the accuracy
of the maximum volume method they used Voronoi tessellation space binning to
recalculate photometric/astrometric uncertainties. It helped to estimate disk-to-halo
dark matter ratio as 100. Another a non-parametric method for estimating halo con-
centration using Voronoi tessellation, TesseRACT, was proposed by Lang et al. [58],
who showed that it fits well with non-spherical halos andmore accurate at recovering
intermediate concentrations for N-body halos than techniques that assume spherical
symmetry.

The very interesting algorithm, Void Finder ZOBOV (ZOnes Bordering On Void-
ness), based on Voronoi tessellation, was proposed by Neyrinck et al. [68]. This
algorithm finds density depressions galaxy distribution without free parameters. To
estimate local density, it uses the Voronoi tessellation. One of the output of this algo-
rithm is the probability that each void arises from Poisson fluctuations. However,
Elyiv et al. [35] have demonstrated a weak spot for ZOBOV void finder. Voids are
the lowest density regions, so any method that uses the positions of galaxies directly
to measure density for identifying the voids is then prone to shot noise error since
voids are the regions with a very low concentration of galaxies by definition (Fig. 7).
The Void IDentification and Examination toolkit (VIDE) developed by Sutter et al.
[88] includes the parameter-free void finder ZOBOV, where “Voronoi tessellation
of the tracer particles is used to estimate the density field followed by a watershed
algorithm to group Voronoi cells into zones and subsequently voids”.

Zaninetti in series of works [110, 112] developed a practical statistics for the voids
between galaxies with two new survival functions and considered the 3D distribution
of the volumes of Poissonian Voronoi Diagrams to their 2D cross-sections in the
assumption of gamma-function for the 3D statistics of the volumes of the voids in the
Local Universe. He also conducted simulations [111] of a spatial galaxy distribution
using the Poissonian Voronoi polyhedra and the 2dF Galaxy Redshift Survey and
the Third Reference Catalog of Bright Galaxies; Zaninetti gives a brief overview of
a current status of the research on the statistics of the Voronoi Diagrams in [113].

Among other astronomical tasks, the Voronoi diagrams have been used for image
processing, adaptive smoothing, segmentation, for signal-to-noise ratio balancing
[14], for spatial structure of the solar wind and solar-terrestrial connections [7],
for spectrography data analysis in different electromagnetic regions [12, 13, 25],
in the moving-mesh cosmology simulation [86] and [103] (AREPO Public Code),
chemical evolution in the early Universe [15], star formation simulation [46], spatial
distribution of lunar craters [45].

For example,Cabrera et al. [11] applied theVoronoi diagram for image reconstruc-
tion technique in the interferometric data based on the Bayesian approach. Cadha et
al. proposed Voronoi compact image descriptors and showed that Voronoi partition-
ing improves the geometric invariance and performance of image retrieval [14] as
well as they developed a Voronoi-based machine learning method (deep convolution
neural network). As for the cosmological simulation, Busch and White [10] used
Voronoi tessellation for a hierarchical tree structure that allowed them to associate
local density peaks with disjoint subsets of particles and to analyze mass distribu-



70 I. Vavilova et al.

Fig. 7 The reconstructed displacement field (top panels) and its divergence (bottom panels)
obtained with the two void finders, the Uncorrelating Void Finder (left-hand panels) and the
Lagrangian Zel’dovich Void Finder (right-hand panels). The displayed region’s size is 80 × 80
Mpc h−1, with a thickness of 5 Mpc h−1. Black dots represent dark matter haloes. The amplitude
of the vector field components (red arrows) is reduced by a factor of 0.75, for visual clarity ([35],
open access)

tion at different levels of threshold. Similar to our work [27], when we introduced
parameter of the volume of Voronoi cell to study environment influence on galaxies
from the SDSS, Paranjape and Alam [72] also applied the inverse local number den-
sity parameter. They studied physical effects for such properties as halo (subhalo)
mass, large-scale environment, etc. in various cosmological dark matter models and
concluded that the Voronoi volume function gives a new mathematical instrument
for galaxy evolution physics and dark sector study. Nightingale et al. developed
the PyAutoLens software (https://github.com/Jammy2211/PyAutoLens), where the
Voronoi tessellation is applied for reconstruction of strongly lensed galaxies.

Neyrinck developed the sectional-Voronoi algorithms in Python for cosmic-web
research, because the Voronoi/Delaunay duals and origami tessellation give a wide
class of spiderwebs. “Voronoi edges are perpendicular bisectors of their correspond-
ing Delaunay edges; the ‘bisector’ part can be relaxed. Each Voronoi edge may

https://github.com/Jammy2211/PyAutoLens
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be slid along its Delaunay edge, closer to one of the generators. They may not be
slid entirely independently, though, since the Voronoi edges must still join vertices.
There turns out to be one extra degree of freedom per generator, causing its cell
to expand or contract. The result is a sectional-Voronoi diagram, a section through
a higher-dimensional Voronoi tessellation. A generator’s extra degree of freedom
in a sectional-Voronoi diagram can be thought of as its distance from the space
being tessellated. A sectional-Voronoi diagram can also be thought of as a Voronoi
tessellation in which each generator may have a different additive ‘power’ in the
distance function used to determine which points are closest to the generator (thus
an alternative term, power diagram). Ash and Bolker [2] showed that 2D spiderwebs
and sectional Voronoi tessellations are equivalent” (cited by [69]). The package is
available at https://github.com/neyrinck/sectional-tess, https://mybinder.org/v2/gh/
neyrinck/sectional-tess/master.

In the present day, the Voronoi diagrams methods have many applications in vari-
ous fields of science and technology as well as in social sciences and visual art [3, 4].
They are commonly used in computational fluid dynamics, computational geometry,
geolocation and logistics, game dev programming, cartography, engineering, liquid
crystal electronic technology, etc. For the first time, the Voronoi tessellation was
utilized by Debnath et al. [22] for the discoveries in the particle physics beyond the
Standard Model at the Large Hadron Collider at CERN. “Since such tessellations
capture the underlying probability distributions of the phase space, interesting fea-
tures in the data can be detected by studying the geometrical aspects of the ensemble
of Voronoi cells” (cited by [23]). These methods allow identifying kinematic edges
in two dimensions and generalize the technique for robust detection of phase space
boundaries, which could be applied to discover new physics. An interesting library
of “Voronoi Diagrams: Applications from Archaeology to Zoology” is collected by
Scot Drysdale on the website https://www.ics.uci.edu/~eppstein/gina/scot.drysdale.
html.

4 The Voronoi Tessellation and Machine Learning

Straight application of classical Voronoi diagram in Machine Learning is the k-
nearest neighbors (k-NN) algorithm at the number of neighbors k = 1. In the case of
the classifier, the output class is choosing among its k the closest neighbors. Each of
them gives a contribution to the class with some weight. Normally weight is inverse
to the distance between target object and neighbor (closer neighbors will have a
stronger influence than further neighbors) or uniform (all points in neighborhood are
weighted equally). If k = 1, then the object is just linked to the class of the nearest
neighbor. From the other side, it could be interpreted as the building of the Voronoi
diagram by training objects as nuclei of the diagram. The target object will have a
class depending on which Voronoi cell it resides. Bring your data to life.

A set of programming codes for 1-NN visualization (k = 1) with examples
(Hover Voronoi, a demonstration of d3-Delaunay, Voronoi Labels, Voronoi neigh-

https://github.com/neyrinck/sectional-tess
https://mybinder.org/v2/gh/neyrinck/sectional-tess/master
https://mybinder.org/v2/gh/neyrinck/sectional-tess/master
https://www.ics.uci.edu/~eppstein/gina/scot.drysdale.html
https://www.ics.uci.edu/~eppstein/gina/scot.drysdale.html
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bors, Voronoi update) are available on the website https://observablehq.com/@d3/
by Mike Bostock (2018). For the color image segmentation problem in computer
vision, an adaptive and unsupervised clustering approach with Voronoi diagrams
was introduced, which outperforms the existing algorithms [43]. A Python library
“Pycobra” contains several ensemble machine learning algorithms and visualization
tools based on the Voronoi tessellations [41]. It can be downloaded from the Python
Package Index (PyPi) and Machine Learning Open Source Software (MLOSS) at
https://github.com/bhargavvader/pycobra.

In the case of k > 1, we should use the concept of high order Voronoi diagram,
where a cell represents the set of points in space closer to a given k nuclei that
to all others (see, Sect. 2 and works by Elyiv et al. [34, 99]). In this case, k–order
Voronoi space dividing can help us to find k-near neighbors directly. The crossing of
high-order Voronoi diagram borders represent the set of k near neighbors. In k–NN
regression, the output value for the target object is the average of the values of k
nearest neighbors. If each neighbor has equal weight, it means that for each cell
could be assigned pre-calculated averaged value. Next, if the target object resides
in this cell, automatic assigned could be done. In all these cases, creating a Voronoi
diagram on the training sample could make a faster k–NN algorithm application.

For example, Inkulu andKapoor [53] presented an algorithm covering theVoronoi
diagram with hyperboxes, which provides ANN queries. Another parallel spatial
range query algorithm based on Voronoi diagrams and MR-tree, which is benefiting
from the k-NN, is developed by Fu and Liu [37].

Voronoi diagram also has a wide application in deep learning. In work [5], the
authors studied the geometry of Deep Artificial Neural Networks with piecewise
affine and convex nonlinearities. The authors demonstrated that each layer’s input
space partition corresponds to the Voronoi diagram with several regions that grow
exponentially with increasing neurons. Numerical experiments support these theo-
retical results, which are expressed by the Deep ANN decision boundary in the input
space, a measure of its curvature that depends on the network architecture, activation
functions, and weights.

In work [52] the authors presented a Deep Convolution Neural Network (CNN)
constructedonaVoronoi tessellationof 3Dmolecular structures of proteins (VoroCNN
model). Both convolution and pooling operations were used as a part of network
architecture to predict local qualities of 3D protein folds. They computed Voronoi
tessellation of molecular 3D structures and converted them into a protein interaction
graph. The graph’s critical property is that it implicitly keeps the information about
the spatial relationship between the atoms of the protein model. The authors claim
that for presently available amounts of data and computational resources, Voronoi
tessellation is the best representation of 3D protein structure than raw volumetric
data.

https://observablehq.com/@d3/
https://github.com/bhargavvader/pycobra
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5 Instead of Conclusion

Today, hierarchical clustering is a common scenario for the evolution of galaxies.
The fact that galaxies are observed mostly at redshifts to z ∼ 5, while the most
distant observed galaxy clusters are at z ∼ 2, suggests that galaxies and sparsely
populated groups were formed first, and galaxy clusters later by subcluster merging
and/or via capturing galaxies and galaxy groups. The hierarchical clustering scenario
is in good agreement with the cosmological �CDM model. Having great success
in explaining the formation of the large-scale structure of the Universe as a whole,
this model faces potentially severe problems on the scales of individual dark halo
of galaxies and galaxy clusters, with statistics of the distribution of galaxies with
different morphological types in a wide range of redshifts, with evolutionary prop-
erties of sparsely populated groups and galaxy clusters, with the lack of data on the
large-scale structure of the Universe behind the Zone of Avoidance of the Galaxy.

In this context, we have demonstrated the perfection and elegance of the Voronoi
tessellation in solving many astronomical problems, focusing on its effectiveness for
describing the web of large-scale structures of the Universe and data mining of its
properties at various redshifts from early epochs to the scales of the Local Universe.

“God first partitioned the plenum into equal-sized portions, and then placed these
bodies into various circular motions that, ultimately, formed the three elements of
matter and the vortex systems” (cited by Descartes [24], vol. III, article 46, in [4]).
“The modern view shoves baryogenesis, leptogenesis, WIMP–genesis, and all very

Fig. 8 (Left) Vortex theory applied to the Solar system (R. Descartes, 1644) ([4], open access).
(Right) Illustration of the Voronoi tessellation for galaxy 2D web distribution
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far back in time, but builds up structure continuously, using not-very-special initial
conditions and gravity (plus perhaps other forces) to develop what we see today. In
between come some remarkable constructs, including Thomas Wright’s hierarchy,
Descartes’s Voronoi tessellation of whirlpools in the ether, Alfred Russel Wallace’s
(yes, the evolution guy) “Goldilocks” location for the Solar system,Cornelis Easton’s
off-center spiral arms, and the Kapteyn Universe” (cited by Trimble [91]). We have
combined this representation, which is consonantwith ours, in Fig. 8 as an illustration
of partitioning the space into cells for the subsequent extraction of the physical
essence of the phenomena: one of them displays classical physics, Vortex theory
applied to the Solar system (Descartes, 1644), the other gives a visualization of
galaxy distribution through the 2D-Voronoi tessellation.

Acknowledgements This work was partially conducted in the frame of the budgetary program of
the NAS of Ukraine “Support for the development of priority fields of scientific research” (CPCEL
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