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Preface

During the development of humankind and the knowledge of our world, a large
amount of information was produced. This information of a scientific as well as a
technical nature then again contributed to the further development of our civiliza-
tion. The amount of data that man has produced during scientific development
increases exponentially with time. In the last five years, humankind has produced
more information and data than in all its previous existential development. With
increasing data, there is a need to have methods that can effectively process them
and present the data to humans. Processing here means cleaning from noise,
searching for useful information, visualization and the like. In the last hundred
years, with the development of computers and information science, efficient algo-
rithms have begun to emerge, which today belong to the so-called artificial intel-
ligence and which are able to perform just such tasks. The first has been used
classical algorithms for filtering, compression, dimension reduction, and many
other tasks. Later, another algorithms enrich this class, which today belong to
machine learning, which is basically part of artificial intelligence, and with the help
of these methods and algorithms, we can process very large data in real time, which
is important for science as such. The same goes for technology and society. Areas,
where these methods are most needed, include physics and astrophysics. In physics,
let us mention the CERN accelerator in Geneva, Switzerland, where experiments
produce an enormous amount of data in fractions of a second. All this data must be
processed precisely. Another area is in astrophysics, which, thanks to high robotics
and automation, has become an area that is literally flooding us with by data.
Today, it is a common fact and the fact that robotic telescopes spew up petabytes of
data in one night. If we realize that at the time of Johannes Kepler’s discovery,
about 400 Kb of data was enough to discover the famous Kepler laws, it is clear that
many discoveries can be hidden in these petabytes, which can literally flow between
our fingers. Therefore, especially in astrophysics, all-important methods in the field
of machine learning are very effectively applied, most notably neural networks,
various filtering algorithms and recently it has been shown that evolutionary
algorithms are also a very capable tool for processing such data and their possible
modeling.
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At first glance, the title “Intelligent Astrophysics” may sound strange, because
the “intelligent” term could be wrongly misrepresented, implying as the wanting to
consider “unintelligent” all previous research in Astrophysics. However, this is not
the case. Intelligence is the ability to adapt to the surrounding environment and
conditions. In this sense, the rise of Big Data paradigm and the advent of
multi-messenger astrophysics pose Astronomy & Astrophysics (A&A) in a new
perspective, as becoming de facto a Big Data Science, thus requiring more efficient
solutions. Traditional research in the A&A field is now objectively considered
unable to allow scientists to fully exploit all information inherited within observed
data in a reasonable time. In particular, astronomical data are represented in a
multi-D parameter space, where hidden correlations, anomalies, and peculiarities
are very complex to find and to visualize. Since two decades, Astroinformatics, or
“intelligent Astrophysics”, as being the virtuous synergy between A&A and Data
Science, gained always increasing popularity and interest, enclosing as main fea-
tures the multi-disciplinarity approach (statistics, machine learning, data mining
informatics, image analysis, visualization, and astrophysics as well), parameter
space exploration and optimization, anomaly detection as well as serendipity. It
pushed academic and educational institutions to open and activate dedicated
positions and courses and its bibliometric parameters are exponentially increasing.

The present book discusses the application of these methods to astrophysical
data from different perspectives. In this publication, the reader will encounter
interesting chapters that discuss data processing and pulsars, the complexity and
information content of our universe, the use of tessellation in astronomy, charac-
terization and classification of astronomical phenomena, identification of extra-
galactic objects, classification of pulsars and many other interesting chapters. The
authors of these chapters are experts in their field and have been carefully selected
to create this book so that we can present to the community a representative
publication that shows a unique fusion of artificial intelligence and astrophysics. Of
course, this book is not a complete cookbook covering the whole topic in the
broadest sense, but rather an inspiring book. The aim of which is to motivate and
inspire readers to their own experiments in the intersection of these two disciplines.
We hope that this book will be exciting and beneficial for readers and that this book
will enrich the issue.

Editors
Ostrava, Czech Republic Ivan Zelinka
Napoli, Italy Massimo Brescia
Tel Aviv, Israel
September 2020

Dalya Baron
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Artificial Intelligence in Astrophysics

Ivan Zelinka, Thanh Cong Truong, Diep Quoc Bao, Lumir Kojecky,
and Eslam Amer

Abstract Artificial intelligence and its subparts (like evolutionary algorithms,
machine learning, . . .) are search methods that can be used for solving optimiza-
tion problems. A particular class of algorithms like bioinspired one mimic working
principles from natural evolution (or swarm intelligence) by employing a population-
based (swarm) approach, labelling each individual of the population with a fitness
and including elements of random, albeit the random is directed through a selection
process. In the contemporary astrophysical literature is a lot of research papers, that
work with various machine learning methods, while evolutionary/swarm algorithms
are almost neglected. In this chapter, we review the basic principles of evolution-
ary algorithms and discuss their purpose, structure and behaviour. In doing so, it
is particularly shown how the fundamental understanding of natural evolutionary
processes has cleared the ground for the origin of evolutionary algorithms. Major
implementation variants and they are structural as well as functional elements are
discussed. We also give a brief overview of usability areas of the algorithm and end
with some general remarks of the limits of computing, including demonstration of
its use on astrophysical data processing at the end.

1 Introduction

Machine learning (ML) and related techniques like evolutionary algorithms (EA),
artificial neural networks (ANN) are a part of artificial intelligence (AI) and are
powerful tools that can be used to solve various very complex engineering problems.
Generally speaking, those techniques can be divided into two main categories, as
depicted in Fig. 3. In principle, ML solve selected problems in the same way as
a human, which in general can be used successfully to a large set of engineering
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Department of Computing Science, Faculty of Electrical Engineering and Computing Science,
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problems like the design of different devices and complex systems identification,
control and modelling, etc.

To understand the application capability ofML and its topic in general, it is essen-
tial to remember some basic facts and some selected algorithms as well as its com-
putational capabilities. This chapter is organized in 3 parts. The first one is focused
on a brief overview of AI. It is followed by EAs subsection because while ANN as a
part of ML is very popular in the astronomical community, EAs surprisingly, despite
its wide applicability, are still overlooked. The last, 3rd part, discuss limits of any
kind of computations and simulations. This part is very important because it gives
us information about our computer limits. The chapter is then closed by the example
of EA use on mathematical classification synthesis, applied on astrophysical data.

2 Artificial Intelligence and Machine Learning

2.1 Brief Overview of Artificial Intelligence

Defining AI can take two approaches. First, it is a science that strives to discover the
nature of intelligence and develop smart machines in which scientists apply infor-
mation, logic, self-learning, and determination to make machines becoming intelli-
gently. To put it simply, humans create machines with intelligence. This intelligence
can think, learn, decide, and work while trying to solve a problem as human intellect.

On the other hand, scientists define AI as a science that researches and devel-
ops methods for resolving complex problems that impossible to be resolved without
adopting intelligence. For example, scientists build an AI system for real-time analy-
sis and decision making based on enormous amounts of data. In recent years, AI has
resulted in advances in many scientific and technological fields such as computerized
robots, image and recognition, natural language processes, expert systems and other
majors.

In general, there are two AI classification systems: the first classification is based
on their capacity to mimic human characteristics, the technology they use to do this,
their real-world applications, and the theory of mind. Using these characteristics for
reference, all artificial intelligence systems fall into one of three types: narrow AI,
general AI and strong AI.

The latter one is depended on how a machine compares to humans in terms of
versatility and performance. According to this classification, there are four types of
AI: reactive machines, limited memory machines, the theory of mind, and self-aware
AI (Fig. 1).
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Fig. 1 Type of AI

2.2 Learning Algorithms

AI is a branch of computer science that seeks to produce a new type of intelligent
automaton that responds like human intelligence. To achieve this goal, and machines
need to learn. To bemore precise, we need to train the computer by using the learning
algorithms. Generally, learning algorithms help to enhance performance in accom-
plishing a task through learning and training from experience. There are currently
three major types of learning algorithms which we use to train machines:

• Supervised learning: This type requires a training process with a large and repre-
sentative set of data that has been previously labelled. In other words, the data is
labelled, and the program learns to predict the output from the input data. These
learning algorithms are frequently used as a classification mechanism or a regres-
sion mechanism.

• Unsupervised learning: In contrast to supervised learning, unsupervised learning
algorithms use unlabeled training datasets. More precise, the data is unlabeled,
and the program learns to recognize the inherent structure in the input data. These
approaches are often used to cluster data, reduce dimensionality, or estimate den-
sity.

• Reinforcement learning: Reinforcement learning is a type of learning algorithm
that learns the best actions based on rewards or punishment. Reinforcement learn-
ing is useful for situations where data is limited or not given.

2.3 Machine Learning: An Overview

Machine learning (ML) is a branch of AI that aims to empower systems by utilizing
data to learn and improvewithout being explicitly programmed.ML has strong ties to
mathematical techniques that enable a process of extracting information, discovering
patterns, and drawing conclusions from data. The outputs of ML algorithms are
represented in terms of probabilities and confidence intervals. Manual analysis of
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this huge amount of data becomes a difficult task, so ML algorithms are employed to
automate the learning process. An ML method often comprises the following step:

• Data preparation
• Choosing algorithm
• Prediction

2.4 Machine Learning Process

The process begins with data collection, cleaning, transform; this phase is often
known as data processing. After that, the data then split into a group: one for training
and the other for testing. After the model has completed the training phase with the
training data, it now needs to be tested with the remaining data not being used. This
process can be repeated, and in each iteration, the performance parameters can be
tuned.

Through analyzing data, the ML instructs an algorithm of how to learn. In fact,
the algorithms can learn through a process of mapping of input to output, detection
of patterns or by reward. When the algorithm processes more data, it becomes more
intelligent.

In other words, by observing the data, the ML algorithms learning process can be
done. Accordingly, the algorithm can enhance its predictive performance by exposed
to more observations (Fig. 2).

Data 
Collec�on

Data 
Preprocessing

Data 
Transforma�on

Data Prepara�on

Model

Model 
training

Test 
data

Machine 
learning 

algorithms

Predic�ons

Fig. 2 Machine learning process
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2.5 Machine Learning Algorithms

There are different types of theMLalgorithm, but they can generally be classified into
threemain categories: supervised learning, unsupervised learning, and reinforcement
learning. The Fig. 3 illustrates types of ML algorithms and their applications.

Some of the commonly ML algorithms:

• Linear Regression: This kind of algorithm is often utilized to estimate real values
based on continuous variables. Linear Regression is often split into two types:
Simple Linear Regression, which is characterized by one independent variable
and Multiple Linear Regression, which is characterized by multiple independent
variables

• Logistic Regression: It is a classification algorithm that is often utilized to estimate
discrete values (binary values) based on a given set of independent variables.

• Decision Tree: This supervised learning algorithm is used to solve both regression
and classification problems. Furthermore, it works for both categorical and contin-
uous dependent variables. This algorithm tries to solve the problem, by using tree
representation in which each internal node of the tree corresponds to an attribute,
and each leaf node corresponds to a class label.

• Support Vector Machine (SVM): This algorithm is often used for classification.
An SVM uses support vectors to define a decision boundary. Classifications are
made by comparing unlabeled points to that decision boundary.

• Naive Bayes: This is a family of simple probabilistic algorithms based on apply-
ing Bayes’ Theorem with strong (naive) independence assumptions between the
features.

• k-Nearest Neighbors (kNN): It is an SL algorithm for identifying an unknown data
point basedonKnearest neighbour labelled data. Thenearness of points is typically
determined by using distance algorithms, for instance, Euclidean distance.

• K-Means: This unsupervised algorithm often utilizes to solve the clustering prob-
lem. K-Means groups unlabeled data into K clusters based on the cluster centres.

ML algorithm

Supervised learning

Classifica�on

Regression

Unsupervised 
learning

Clustering

Dimension reduc�on

Reinforcement 
learning

Classifica�on

Controls

Fig. 3 Types of ML algorithm
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• Dimensionality reduction algorithms: These algorithms are used to reduce the
number of random variables under consideration by obtaining a set of a principal
variable. Some common methods: Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA), Generalized Discriminant Analysis (GDA).

• Ensemble Algorithms: These are models composed of multiple models that are
independently trained and whose predictions are combined in some way to make
the overall prediction. Some popular ensemblemodels: AdaBoost, Random forest,
Gradient Boosting.

2.6 Evaluation Metrics

Evaluation metrics measure the performance of a model. An essential aspect of
evaluation metrics is their capability to distinguish among model results.

In term of classification problems, the Confusion matrix is one of the most com-
mon andmost straightforwardmetrics used for deciding the correctness and accuracy
of the model. It is frequently used for the classification issue where the output can
be of two or more types of classes. In fact, many performance metrics are calculated
basing on the confusion matrix and the values inside it, as shown in Table1.

Terms associated with this confusion matrix:

• True Positive (TP): The sample is positive, and the model predicts it positive.
• True Negative (TN): The sample is negative, and the model predicts it negative.
• False Positive (FP): The sample is positive, and the model predicts it positive.
• False Negative (FN): The sample is negative, and the model predicts it negative.

The metrics derive from the confusion matrix are describes as following:

Accuracy = T P + T N

T P + T N + FP + FN
(1)

Precision = T P

T P + FP
(2)

Recall = T P

FN + T P
(3)

Table 1 Confusion matrix

Actual values

Positive (1) Negative (0)

Predicted values Positive (1) True Positive (TP) False Positive (FP)

Negative (0) False Negative (FN) True Negative (TN)
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F1 − score = 2 ∗ Precision ∗ Recall

Precision + Recall
(4)

The accuracy is the rate of precisely predicted news to all of the samples. Precision
metric measures the number of correct positive predictions. Recall value shows the
ratio of the number of correct positive predictions made out of all positive predictions
that could have been made. F1-score is the harmonic mean value of the recall value
and precision.

3 EA and Swarm Overview

Optimization is present in almost all areas of life, from finance to medicine and
engineering. Many real-world problems require finding an optimal solution such as
finding the shortest trajectory for the Travelling Salesman Problem (TSP) or finding
suitable control parameters to minimize the system’s energy consumption, as well
as finding optimal global values for functions. For simple modelled problems, we
can apply classical mathematical means to find optimal solutions to the problem.
However, with complex and constantly changing models, the classical mathematic
solver becomes impossible. It challenges researchers to find the otherway to dealwith
these practical issues. So, the computational optimization was proposed in which the
Evolutionary Algorithm and Swarm Intelligence were representatives [31].

3.1 Evolutionary Algorithm

The Evolutionary Algorithm is a common name for optimization algorithms that
have mechanisms essentially based on the evolutionary theory of Charles Darwin.
From the individuals in the initial population representing the candidate solution of
the problem, through generations of survival, crossover, mutation, and heredity, the
individuals evolved, changing their genomes to adapt to the environment, helping
the population get closer and closer to the optimal solution of the problem [12].

Although implemented in many different forms, these algorithms have a common
characteristic of the evolution of organisms, and can be summarized in the following
processes:

• Initialization: This process aims to initialize an initial population of individuals that
represents a candidate solution to the given problem in the form of the computer
code.

• Selection: The main objective of this process is to select one or several individuals
to be activated, ie individuals will evolve or participate in the evolution of other
individuals.

• Crossover: A combination of selected individuals in a given rule to create new ones
with the heredity characteristics of the parents—selected individuals. Crossover is
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Fig. 4 The evolutionary
algorithm flowchart

Ini�alPop Evalua�on

Selec�on

Over

Done?

Muta�on

Crossover

one of two important points of the evolution of creatures as well as evolutionary
algorithms. It combines and maintains the good characteristics of organisms from
generation to generation.

• Mutation: The mutation is the important rest component, indispensable in the evo-
lution of organisms in nature, as well as in evolutionary algorithms. This process
creates “new characteristics” that have not existed in the previous individuals in
the whole population. Depending on each algorithm, the mutation process will
take place in different ways.

• Evaluation: Over the long evolutionary period, under the influence of harsh envi-
ronments, weak individuals are eliminated, and healthy individuals continue their
survival and growth. In the evolutionary algorithm, this is done by assessing indi-
viduals in the population by the given fitness function. Individuals created after
the selection, crossover, and mutation processes will be evaluated. Inappropriate
individuals that have bad fitness values will be removed from the population and
replaced by better individuals.

These processes are repeated until the algorithm finds an optimization value that
meets the requirements of the practice, as depicted in Fig. 4.

3.2 Swarm Intelligence

The term “Swarm Intelligence” was first introduced by Beni and Wang in the con-
text of cellular robotics system [7]. However, much more sooner, the idea of swarm
robots has been introduced (1964) by Stanislaw Lem in his novel Invictible [25,
44]. The swarm intelligence algorithm, different from the evolutionary algorithm, is
inspired by the cooperation-competition behaviours of intelligent creatures to solve
their problems such as foraging, attacking enemies, or defending the nest. These
behaviours reflect the action between individuals in a population, or between indi-
viduals and the environment, taking placewithin the same generation. In otherwords,
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the mechanism of swarm intelligence algorithm is the interaction between individu-
als with each other or the environment according to a given rule to search the optimal
solution to the problem.

However, there are many similarities between the evolutionary algorithm and
swarm intelligence algorithm. They are all population-based algorithms, meaning
that one population or some sub-populations need to be initialized at the beginning
of algorithm; they select individuals in the population to be activated individuals;
they use the fitness function as a basis for selecting and evaluating individuals; they
create new ones based on previously selected individuals—but the mechanisms for
reproducing new individuals are completely different.

To date, many swarm intelligence algorithms have been proposed in the litera-
ture and successfully applied in practice, including function optimization problems,
finding optimal routes, scheduling, structural optimization, and image analysis [20].
Examples of swarm intelligence algorithms are: Ant Colony Optimization [18], Par-
ticle Swarm Optimization [28], Artificial Bee Colony [27], Bacterial Foraging [39],
Firefly Algorithm [49], Bat Algorithm [48], Self-Organizing Migrating Algorithm
[50], and Whale Optimization Algorithm [38].

3.3 Examples

This subsection introduces the Genetic algorithm and the Self-organizing migrating
algorithm—SOMA, which represents two class of the evolutionary algorithm and
the swarm intelligence, and briefly analyze to point out their characteristics.

3.3.1 Genetic Algorithm

The term “Evolution strategies” was introduced by I. Rechenberg in the 1960s and
developed further in the 1970s and later [41], including ideas about evolutionary
computing, and genetic algorithm, derived from evolutionary computing, introduced
by John Holland in years later [22].

It has to be said, that origin of the evolutionary algorithms comes from A. M.
Turing which defined whole terminology and processes as they are used in EAs
up to now. One of the first to transform Turing’s ideas into a real computer numer-
ical experiments were Barricelli (1954) [6]. Results were published in the journal
“Methodos” with the title “Esempi Numerici di processi di evoluzione” and conse-
quently repeated and improved in 1962 [5] when ECT numerical experiment with
500 of 8 bits strings had been successfully done. Later then has been written papers
like [41] or [22].

Thegenetic algorithmworks basedonDarwin’s theoryof evolution andMendelian
theory of heritage [35] that has been developed in the same time as the Darwinian
theory of evolution, By coding the candidate solutions of the problem into chromo-
somes, similar to the genome of organisms. Under the influence of natural selection,
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Fig. 5 A population is
encoded and initialized in the
genetic algorithm

Chromosome 1 001100111010111100

Chromosome 2 101110001000101010

Chromosome n 101110001000101010

Real problem Candidate solutions

Encoding

here is the fitness function, these chromosomes evolved, getting closer and closer to
the optimal solution of the problem. The following describes the processes of the
genetic algorithm:

• Initialization: A population is randomly generated, containingmany chromosomes
that are candidate solutions to the problem. These chromosomes can be a binary
string, integer, or real number depending on the problem. This process is also
known as the encoding of chromosomes. Figure5 illustrates the process of initial-
izing an initial population and encodes the solution of the problem into chromo-
somes.

• Evaluate: Chromosomes are evaluated by a given fitness function. The fitness
function is the problem to be solved, which represents the influence of the natural
environment on creatures.

• Selection: Selection is the process of selecting two or more individuals as a parent,
according to their fitness values, in principle that individuals with better fitness
values will have a better chance to select, in order to inherit good characteristics
for the next generations.

• Crossover: The segments of chromosomes are exchanged between parents to create
offspring. Figure6 depicts the crossover between chromosomes 1 and 2, in which a
part of the father’s chromosome combines with a part of the mother’s chromosome
to form offspring 1 and 2.

• Mutation: Crossover and mutation are two very important processes of the genetic
algorithm, symbolizing the evolution process of organisms in nature. Figure7
depicts the mutation taking place at three different positions on chromosomes 1
and 2, whereby the value of 0 will be changed to 1 and vice versa, creating new
features that have never appeared before in the genome of the population.

After mutation, the offspring will be re-evaluated with fitness function, and they
will replace parents if they have better fitness value. Furthermore, these processes
are repeated until the algorithm reaches the given stop conditions.
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Fig. 6 The crossover
process between
chromosomes 1 and 2 to
reproduce new offsprings

| 111010111100Chromosome 1 001100

Chromosome 2 101110 | 001000101010

Offspring 1 001100 | 001000101010

Offspring 2 101110 |111010111100

Crossover

Fig. 7 The mutation takes
place in the chromosomes of
offspring

Offspring 1 001100001000101010

Offspring 2 101110111010111100

Offspring 1 001100011000101010

Offspring 2 101100111010111110

Mutate

Obviously, this is the simplest form of the genetic algorithm. Over the decades
of development, genetic algorithm operators have been proposed and continually
improved (refer to [37, 42] for more details), as well as widely applied in almost
areas of life, such as chaos-DNA [43], power generation [3], path planning of mobile
robots [46], and energy recovery [32].

3.3.2 Self-organizing Migrating Algorithm—SOMA

First introduced in 1999, SOMA is a swarm intelligence algorithm, based on sharing
knowledge of individuals in a population [51]. Accordingly, first, a population is
initialized, consisting of individuals that are candidate solutions to the problem. The
population is then evaluated by the fitness function and the best individual is chosen
to be the leader, the remaining individuals will jump step-by-step towards this leader,
called the migration process. Better positions will be found during their movement
and will replace the initial position.

In the SOMA algorithm, individuals share their position. The fitness value of the
position of individuals determines the distribution of the whole population. In other
words, populations tend to move toward the best individuals, similar to birds or ants
in nature that will congregate to where food is most abundant after some members
found it.
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Fig. 8 The principle of SOMA algorithm

The SOMA algorithm contains all the characteristics of swarm intelligence, that
is: initializing an initial population, selecting action individuals, sharing knowledge
among individuals (cooperation), recreating new information, and eliminating bad
individuals (competition). These processes are repeated, namedmigration loops until
the stop conditions are met, see [51, 53] for more details.

Figure8 describes the operating principle of the SOMA algorithm in geomet-
rically. Accordingly, the problem to be solved is described as a contour map, and
the blue points represent the solutions of the problem. These individuals share their
positions to find the best individual in the population, as well as cooperation with
other individuals to find a better position during their migration. Mathematically the
movement of individuals is calculated through Eq.5.

Pnew
os = Pcurrent + (Pleader − Pcurrent ) n Step PRT Vector j (5)

where:

• Pnew
os : the offspring position in new migration loop,

• Pcurrent : the offspring position in current migration loop,
• Pleader : the leader position in current migration loop,
• PRT Vector j : the perturbatively factor, get a value of 0 or 1,
• Step: the step of each move,
• n: the number of jumping step, from 1 to N jump.

This is the canonical version of the SOMA algorithm. During its 21-year devel-
opment, SOMA has had many improved versions such as SOMA T3A [17], hybrid
SOMA [15], and the modified Nelder-Mead SOMA [1], as well as being widely
applied in many areas of engineering such as reliability-redundancy optimization of
systems [19], control a semi-batch chemical reactor [13], and design of electromag-
netic components [26].
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For more informations, we recommend to read for example [23, 52, 54, 56] or
[55].

4 Limits to Computation

Unfortunately, many people believe that everything can be computed if we have a
sufficiently powerful computer and elegant algorithm. The goal of this part is to show
that some problems cannot be solved algorithmically due to their nature. Popularly
speaking, there is not, has not been and will not be enough time for their solution.

Part of these restrictions is also physical limits that follow from thematerial nature
of the universe, which restricts the output of every computer and algorithm by its
space-time and quantum-mechanical properties. These limits, of course, are based on
the contemporary state of our knowledge in physical sciences, which means that they
might be re-evaluated in the case of new experimentally confirmed theories (strings,
etc.). At this moment, however, this is only a speculation, and we must adhere to the
generally accepted and confirmed facts from which these limits follow.

4.1 Searched Space and Its Complexity

The complexity of the optimization problems can be demonstrated by many exam-
ples. Let us follow examples from [36]. A typical representative is the so-called SAT
problem (boolean satisfiability problem). This is a problem from the field of logic
that is represented by a complex logical function with a great number of logical
variables. Relation (6) is an example from [36].

F(x) = (x17 ∨ x̄37 ∨ x73) ∧ (x̄11 ∨ x̄56) ∧ · · · ∧ (x2 ∨ x43 ∨ x̄77 ∨ x̄89 ∨ x̄97), (6)

That contains 100 variables, and the objective is to find such values of individual
arguments of this function for which the resulting value of relation (6) is TRUE. At
first sight, this problem looks very trivial; nevertheless, it is a problem that cannot
be solved by classical methods. If we take into account that the expression contains
100 unknown variables that can assume two values (0, 1), then the number of all
possible combinations is 2100, which is approximately 1030. In order to get a better
impression on the monstrous size of this number, it is sufficient to imagine how
long it would take to evaluate all the combinations if 1013 of these combinations are
evaluated within one second (which is, of course, impossible on a single processor).
The correct answer is 109 years. This essentially means that the solution to this
problem would take approximately the time of the existence of the universe.

Another complication related to this problem is the fact that function (6), as
defined, does not make it possible to evaluate the quality of the current solution. This
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is a substantial drawback, mainly if the evolutionary techniques are used because
there is no possibility how to determine whether the qualities of two subsequently
found solutions are close or not.Aswill be shown further,whenusing the evolutionary
algorithms, it is of vital importance that the information on the quality of the solution
is available for the determination in which “direction” the optimum solution lays.
This is not possible in the case of the SAT problem, because the function only returns
TRUE or FALSE, i.e. “good” or “bad”. It does not return how good or bad a given
solution is.

TheSATproblem ismore or less a scholastic problem.As amore practical problem
from real life, one can use the well-known travelling salesman problem. This is a
problem, in which a travelling salesman must visit a set of N cities in the shortest
possible time or with the smallest fuel consumption or, as the casemay be, fulfil other
criteria. The travelling salesman problem can be visualized by means of graphs, as
demonstrated in Figs. 9, 10 and 11.

The condition is that each route must start and end in the same city and each
city should be visited only once. This is, therefore, a purely practical problem. The
trajectory of the travelling agent represents a sequence of dots, such as, for example,
“2 − 3 − . . . − 7 − 26 . . .”. The number of all possible combinations is n!. In the
case of a symmetrical problem of a travelling salesman (the distance from city A to
B is the same as from city B to A), 2n routes repeats. In this case, the final number
of all possible combinations is (n − 1)!/2. However, this number is still large. As
shown in Fig. 13, the number of all possible combinations very quickly grows with
the number of cities. Already for n> 6, there are more combinations in the travelling
agent problem than in the SAT problem. Figure13 shows the growth of the number
of solutions to the SAT problem in comparison with the growth of the complexity of
the travelling salesman problem.

Let us look further. The travelling salesman problem has 181,440 possible solu-
tions for 10 cities. There are 1016 possible solutions for 20 cities and 1062 for 50
cities. If 60 cities are used, then there is 1079 of possible solutions. This number is
equal to the estimated number of protons in our universe, i.e. if one proton is used
as memory to store one possible solution, then all protons in universe can store only
TSP with size 60 cities. Nomore. It is worth mentioning that there are approximately
1021 litres of water on our Planet [36]. It is a trivial task to calculate howmany globes
could be covered with this volume of water had we used a reservoir with a volume of
1062 litres water. It is therefore evident that even from such a trivial example as the
optimum distribution of parcels, a problem may arise, whose optimum solution is
not known. It is worth mentioning that at the present time, there are particular types
of evolutionary algorithms (ACO—Ant Colony Optimization) that manage up to
10,000 cities satisfactorily. We leave it to the kind reader to calculate what is the
number of combinations (hint: 2.84625968091035659).

The third and last sample problem is the arbitrary artificial testing function,
that is used as a testing function for various types of evolutionary techniques; (for
another example, see [36]). This function is strongly nonlinear, and it is complicated.
Although the function in this example is artificial, one can encounter even “wilder”
functions that represent real physical problems. This type of function looks innocent;
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Fig. 9 Connections in the travelling salesman problem that form n! possible trajectories (see
Fig. 12). We indicate the number of cities/number of connections between the cities a 4/6, b 7/21,
c 10/45, d 20/190

however, it is the contrary in this case. It is necessary to realize that everything is
running in computers, thus also the optimization of such a function is digitized. If
this would not be so, then it would be necessary to calculate the value of the function
in an infinite amount of points. Due to digitization, this infinity reduces to a set of
values of the function, whose cardinality is finite, even though it is still immense. Let
us assume that the computational accuracy of the computer used is 6 decimals. In
this case, every variable in a given function assumes real values. Due to digitization,
the infinity mentioned above reduces to a set of possible solutions, the cardinality
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Fig. 10 Travelling salesman visiting seven cities: the best route is on the left and the worst route
is on the right

Fig. 11 Travelling salesman visiting ten cities: the best route is on the left and the worst route is
on the right
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Fig. 12 Visualization of the travelling salesman complexity The difference is illustrated between
the number of roads (blue dots) and possible trajectories (red dots)
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Fig. 13 Growth of the problem complexity for SAT (blue curve) and travelling salesman (red
curve). Starting with seven cities (or variables in SAT), the travelling salesman problem is more
time consuming

of which is still immense. Let us assume that variable in a given arbitrary complex
function may assume up to 107 different values. In general terms, this function will
assume 107

n
values (n is a number of variables here). This number is many times

greater than the number of solutions for the travelling salesman problem for n≤ 107.
For n = 50, there are 10350 solutions. It is necessary to realize that the accuracy of
present computers is much higher and the problem, therefore, generates a gigantic
number of possible solutions.

Let us mention that the complexity of problems is not measured in theoretical
informatics by the time demand factor (even though it is so de facto in the result), but
primarily by the complexity or dependence of the capacity of the algorithm on the
growing number of input data. As was already mentioned, there are problems whose
complexity grows nonlinearly with the growing input (for example, the travelling
salesman problem, see Fig. 13). We then speak about algorithms with polynomial,
exponential, etc., complexity. The examples of the complexity of problems are in
Tables2, 3 and 4. Table2 gives the number of possible solutions for n input param-
eters. If testing one solution takes the predefined time, the time demand factor for
searching all possible solutions is in Table3. If faster computers are used, the gross
estimation of the acceleration of computation is in Table4. It is obvious from these
tables that there are many problems that no computer can help to solve.

For comparison: The number of protons in the visible Universe has approximately
79 digits. The number of microseconds from the “big bang” has 24 digits.

4.2 Physical Limits of Computation

As was already mentioned, there are limits restricting the output of any computer
that follows from the quantum-mechanical nature of mass. These limits restrict both
the output of the computer and its memory. It is obvious from these restrictions that
there are many problems that no computer can help to solve.
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Table 2 Estimation of the values of some functions

n
Function

10 50 100 300 1,000

Polynomial

5n 50 250 500 1,500 5,000

n log2 n 33 282 665 2,469 9,966

n2 100 2,500 10,000 90,000 1 million
(7 digits)

n3 1,000 125,000 1 million
(7 digits)

27 million
(8 digits)

1 billion
(10 digits)

Exponential

2" 1,024 16 digit
number

31 digit
number

91 digit
number

302 digit
number

n! 3.6 million
(7 digits)

65 digit
number

161 digit
number

623 digit
number

Giant
number

nn 10 billion
(11 digits)

85 digit
number

201 digit
number

744 digit
number

Giant
number

Table 3 Estimation of the time of f(n) operations if 1 operation takes 1 µs

n Function 10 20 50 100 300

Polynomial

n2 1/10,000s 1/2,500s 1/400s 1/100s 9/100s

n5 1/10 s 3.2 s 5.2 s 2.8h 28.1 days

Exponential

2n 1/1,000s 1 s 35.7 years 400 trillion
centuries

75 digit
# of centuries

nn 2.8 days 3.3 trillion
years

70 digit
# of centuries

185 digit
# of centuries

728 digit
# of centuries

Table 4 Estimation of the time of f(n) operations if 1 operation takes 1 µs

Maximum dimension of the input manageable in a reasonable time

Function Current computers 100 times
faster computers

1,000 times
faster computers

n N1 100 N1 1,000 N1

n2 N2 10 N2 31.6 N2

2n N3 N3 + 6.64 N3 + 9.97

n! N4 N4 + 1 N4 + 2
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Basic restriction in this direction is the so-called Bremermann’s limit [8], accord-
ing to which it is not possible to process more than 1051 bites per second in every
kilogram of matter. In the original work of this author [8], the value of 2 ×1047 bites
per second in one gram of matter is indicated. At first sight, this limit does not look
frightening, but only until we take “elementary” real examples for comparison. Let
us consider chess-mate for illustration. For this game, the estimated number of com-
binations is 10120. As another example, let us consider the lattice of cellular automata
[24] of 100 × 100 cells that can only assume black and white values that represents
210,000, which is approximate 103,000 combinations—images. The current TV sets
with an LCD monitor have approximately 1,300 × 700 pixels, which can assume
various colours and degrees of brightness. It is clear that the number of combinations
is much higher on an LCD monitor.

This limit can be derived in the following relatively simple manner: For making
it possible to measure, process and transfer information, it is necessary to store it
on some physical carrier. This information may be electromagnetic radiation, paper
tape, laser beam, etc., therefore, always something material. Information alone, i.e.,
without a physical carrier, cannot exist. Because elementary particles and their energy
states can also be used as a carrier of information, it is obvious that the limit of
how much information the matter can carry follows from the restriction that was
discovered at this physical level.

In order to make it possible to measure this information, it must be modulated
on the corresponding carrier to resolve the individual carrier’s states that represent
the value of the information. Von Neumann [47] called the resolvable states “mark-
ers”. The lowest resolvable energy states are the quantum states of matter, whose
resolvability from the bottom is limited by Heisenberg’s uncertainty relation. When
deriving the alreadymentioned limits, it does notmatterwhethermass or energy types
of carriers are considered. Both types are physically interchangeable. Therefore, if
quantum states are considered as the smallest resolvable energy states, which will be
considered as bits in this case, then the “energy-bit” resolution is given by Heisen-
berg’s uncertainty relation. Generally, one can say that according to the Heisenberg
principle of uncertanity, it is possible to always identify the final number of states.
Because nobody can say which state will be observed, probability has to be used.
It is common to say that variable X will have n different values with probability
p1, p2, .., pn . Based on information theory is clear that we can get

H (p1, p2, .., pn) = −
n∑

i=1

pi log2 pi (7)

bits of information. This function has one global extreme only if it hold p1 = p2 =
· · · = pn = 1

/
n true. Then

H
(
1
/
n, . . . , 1

/
n
) = −

n∑

i=1

(
1
/
n
)
log2

(
1
/
n
) = n

(
1
/
n
)
log2 n = log2 n. (8)
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Such marker can carry maximally log2 n bits of information. Based on quantum
nature of our world it is clear that there is no better marker than marker repre-
sented by n states (i.e. energy levels) of selected quantum system. All levels have
to be in interval [0, Emax] where Emax is maximum of energy. If one can mea-
sure energy with precision �E , then in the marker, can be distinguished maximally
n + 1 = (

Emax
/
�E

) + 1 energy levels. When one marker with n +1 energy lev-
els will be taken into consideration, then by this marker can be represented max-
imally log2 (n + 1) of bits. On the contrary, when two markers will be used with
energy levels in

[
0, 1

/
2Emax

]
it can represent 2 log2

(
n
/
2 + 1

) = log2
(
n
/
2 + 1

)2

bits whereas n + 1 << (n/2 + 1)2 = (
n2/4

) + n + 1 and so on. Based on this, it
is clear that for representation of the maximal information carried by marker is
optimal, when n different markers with energy levels in [0,�E] is used, i.e. with
two energy levels which represents 0 and 1. In total it is possible to represent
maximally n log2 (n/n + 1) = n log2 (n/n + 1) = n log2 2 i.e. n bits of information
because clearly log2 2 = 1 hold.

Carrier with mass m is according to Einstein equation equal to Emax = mc2. It is
obvious that in such a carrier it is possible to maximally have

n = Emax

�E
= mc2

�E
(9)

bits of information. To calculate the exact amount of information stored by (9), then
we need to use the Heisenberg principle of uncertainty.

�E�t ≥ �

2
(10)

In which � = h
/
2π (h is Planck constant, � is Dirac constant). If in (10) the

equality is taken into consideration, then one obtained for the upper estimation

n = mc2

�

2�t

= 4π
mc2

h
�t (11)

During time interval �t it is possible to process maximally 4π mc2

h �t bits of
information. When �t = 1s one can get the maximal number of bits which can be
processed or stored in mass per 1 s. For m = 1kg this number (lets call it BL) is

BL = 4π
c2

h
(12)

where [BL] = 1 kg−1 s−1,
In this moment it is only a matter of simple calculation to get the exact numerical

value of BL, lets: speed of light and Planck constant h = 6, 62607 · 10−34 J.s. Finally
we get
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Fig. 14 Simultaneously plotted dependence of the number of possible solutions of the travelling
salesman problem on the number of cities n (red) and the number of bits processed in a computer
of mass m (blue). Let us add for more attentive readers that there is a logarithmic scale in the left
figure, while a “normal” in the right figure. This is the reason why the plots appear considerably
different in both figures

BL ≈ 1, 7045 · 1051 kg−1 · s−1. (13)

This number, which we call BL here, is the so-called Bremermann limit. It is
the definite limit which gives the maximal number of bits which can be processed
or/and stored by an arbitrary matter. In the original paper Bremermann suggested
1047 which is caused by the use of nonstandard units (cm instead of m and grams
instead of kg, as already mentioned before).

Based on this, it is visible that in our universe, the computational power is limited
by matter, and basically there is no computer (existing or theoretical) which would
be able to solve arbitrary problems.

If the mass of the Earth (5.9742 × 1024 kg) is taken into account, then a computer
of such a mass might store (and subsequently also process) approximately 1076 bits
every second. During the life of Earth (109 years), a computer of its mass might pro-
cessmaximally 1092 bits. If the output of a fictive computer is plotted against itsmass,
it is obvious (Fig. 14) that its “computational capacity” is exceeded already during
the solution of the travelling salesman problem for a small number of cities/computer
mass.

It is clearly obvious from Fig. 14 that the break between the number of cities
and the computer mass occurs somewhere between 43 and 44. Perhaps it is not
necessary to mention that the output of our computer is illustrated in bits, which
is a little bit misleading, because one bit is not sufficient for storing information
on one possible solution of the travelling salesman problem. Had this been taken
into consideration during the computation, then the result would have been different,
nevertheless approximately the same as for the order of magnitude.

If we take into account the ACO (Ant Colony Optimization) algorithm that satis-
factorily solves the travelling salesman problem up to approximately 10,000 cities,
then we would need a computer of the mass of 1035608 kg for storing and processing
the information on all possible trajectories. In other words, 1035566 computers of the



22 I. Zelinka et al.

mass of the Earth, should the computation be finished during the life of the universe
(1017 s). In a similar way [34], we would derive the shortest possible time during
which it is possible to process the stored information. This value is t = 10−12 s; the
current computers work in a region of 10−9 s.

In the publication [34], these considerations have been worked out in more details
and applied to the transfer of information through an information channel (compu-
tation can also be considered as a transfer of information through a special chan-
nel). Beside other things, it was found that if a certain mass (or energy) of the
transfer medium is reached, further information cannot be transferred through the
channel, because the channel collapses into an astrophysical object called a black
hole. According to [34], the transfer of information is efficient (optimum, maximally
usable), if the information channel is on the brink of collapsing into a black hole.

Independently of whether these calculations are accurate or only approximate, it
is obvious that physical limits restrict the possibilities of any computer and also of
the mathematical computational methods.

5 Stellar Data Classification

Swarm intelligence, used to solve astro-physical problems was used for example in
the paper [29, 30] or [16]. Lets discuss here one example.

One of many classification problems in astrophysics that can be taken into con-
sideration is the so-called Be stars [40, 57]. Be stars are hot, rapidly rotating B-type
stars with equatorial gaseous disk producing prominent emission lines Hα in their
spectrum [45]. Be stars show a number of different shapes of the emission lines,
as we can see in Fig. 15. These variations reflect the underlying physical properties
of a star. Research in this section is focused on the evolutionary-automated model
synthesis of Be stars based on typical shapes of their emission lines.

There has not been done much work on the classification of Be stars. The only
application found [14] is focused on a broader category of variable stars including
pulsating Be stars. However, the method is not suitable for our goals, as it is applied
to the whole spectrum where the local differences in the shapes of Be lines are lost.
Another approach is in [11] where the to zoom at the small part of a spectrum with
the Be line is applied, a specific set of features characterizing and discriminating the
shapes of Be lines.

The data of Be stars spectra come from the archive of the Astronomical Institute
of the Academy of Sciences of the Czech Republic in Ondřejov. The aim was to
find a suitable model of Be star spectra and mainly check whether more intensive
experiments shall be done in this way.

The archive contains a huge amount of stellar data [9, 10] and therefore was
selected a dataset containing 1564 sample spectra. This dataset wasmanually divided
into four classes (177, 172, 1159 and 56) of samples. Each sample is given by 1863
equidistant points that represent the dependencyof light intensity on lightwavelength.
In Fig. 15 there is a visualized characteristic part of spectra typical for each class.
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Fig. 15 Examples of selected data samples typical for each of the four classes. In class 1 a there is
a pure emission. Class 2 b contains a small absorption part. In class 3 c there is a pure absorption
part. Class 4 d consists of a larger absorption part

6 Data Preprocessing

From visual observation, it is obvious that each spectrum has a peak of its character-
istic part (either emission or absorption) on a different wavelength. To achieve better
results in further approximation and classification we identified the peak location x
according to (14) and (15) and shifted it to the same location for all spectra. If there
are identified more than one peak in a spectrum (for example class 2 and class 4), as
x is chosen an average of all peak locations.

f (x − 2) < f (x − 1) < f (x) > f (x + 1) > f (x + 2) (14)

f (x − 2) > f (x − 1) > f (x) < f (x + 1) < f (x + 2) (15)

Although all spectra are given by 1863 equidistant points, the characteristic part is
located only in themiddle 100-point interval. The remaining part can be considered as
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noise. Taking into account, only the characteristic part reduces the AP approximation
time more than 18 times and can provide better approximation results by focusing
only on the important data. In our previous research [21] on approximation Quintic
and Sextic functions, AP provided best approximation results on interval [−1, 1]—
the characteristic was also normalized to interval [−1, 1]. For the same reason were
all spectra intensities shifted to have a non-characteristic part around zero.

7 Classification Method

The first basic step of classification of the stellar spectra starts with an approximation
of sample spectra with the most suitable mathematical formula. To save the time of
approximation all spectra and to reduce the spectral noise, for each class, we created
20 normalized spectra as subclass representatives. The normalization was done by
taking 5% of the particular class spectra and calculating average intensity for each
wavelength as is visualized in Fig. 16.

The normalized spectra were approximated by AP that synthesized the most suit-
able mathematical formula—totally was synthesized 80 formulas. These formulas
were one by one compared to the original spectra regarding cost function. As a result
was chosen the class whose subclass-representative AP formula comparison resulted
in the lowest cost value. The comparison is illustrated in Fig. 17.

For more detailed information we recommend papers [29, 30].

Fig. 16 Process of the spectra normalization. In a there are 5% of the particular class spectra; b
shows the normalized output
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Fig. 17 Process of comparison of the original spectra with AP function. The difference in a is
much lower than the difference in b—spectrum is classified as class 3

8 Conclusion

Artificial intelligence and someof its important subparts are intensively used in nowa-
days in the astrophysical data processing. We have been focused in this chapter on a
very brief overview of its structure and mainly focused on evolutionary algorithms
and swarm intelligence, with one application.

Togetherwithmodern algorithms, its limitations are there. It is important to realize
its existence in order to avoid solving problems that simply cannot be solved ever.

There are many publications on the limits of computational technologies based on
quantum physics. However, these publications are relatively very demanding on the
knowledge from the field of quantummechanics and mathematics. For extending the
information indicated in this chapter, we recommend the already mentioned publi-
cations [2, 8, 33]. The substantial part of limits imposed by mass on processing and
storing data is described in the first part [8]. The explanation is so understandable that
even a reader at a high school level will understand it. In the paper [33], the relation
between transfer channels and black holes is discussed. You can also read in [4] on
the representation of individuals, basic concepts of ETV and the properties of the
test functions. Of course, there are other monographs and Internet sources provid-
ing this information, but we consider publications mentioned above as sufficiently
representative.
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The Complexity and Information
Content of Simulated Universes

Franco Vazza

Abstract The emergence of a complex, large-scale organisation of cosmic matter
into the CosmicWeb well exemplifies of how complexity can be produced by simple
initial conditions and simple physical laws. Connecting the stunning variety of multi-
messenger observations to the complex interplay of fundamental physical processes
is an open challenge for Big Data in astrophysics. In this contribution, I discuss a
few relevant applications of Information Theory to the task of objectively measuring
the complexity of modern numerical simulations of the Universe. When applied to
cosmological simulations, the metric of complexity makes it possible to measure the
total informationnecessary tomodel the cosmicweb. It also allowus tomonitorwhich
physical processes are mostly responsible for the emergence of complex dynamical
behaviour across cosmic epochs and environments, and possibly to improve mesh
refinement strategies in the future.

1 Introduction

“I think the next century will be the century of complexity.” Stephen Hawking, Com-
plexity Digest 2001/10, 5 March 2001

“Don’t go on multiplying the mysteries,’ Unwin said.’They should be kept simple.
Bear in mind Poe’s purloined letter, bear in mind Zangwill’s locked room.’ ’Or made
complex,’ replied Dunraven. ’Bear in mind the universe.” (Jorge Luis Borges, The
Aleph and Other Stories)

The description of physical processes in Nature often calls for the concept of
“complexity”, as the reason why achieving a satisfactory and quantitative description
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of a particular phenomenon is challenging, or just impossible. Astrophysics and
Cosmology make no exception. Complexity is generally regarded as a difficulty
inherent to the many degrees of freedom present in a system, or to the difficulty to
compute its evolution, e.g. by direct integration of differential equations.

In the present epoch of “Big Data”, driven by ever-growing multi-wavelength
observing facilities, a continuous struggle for astrophysicists is the one of connecting
the stunning variety of observations to the complex dynamics behind their origin,with
the final goal of establishing the underlying physical processes and initial conditions.

This challenge requires the development of new analysis techniques, derived from
fields even outside of standard astrophysics, and that can be scaled up to increasingly
larger datasets.

The potential of Machine Learning (ML), a branch of Artificial Intelligence, is
now being fully explored in astronomy (for a review see [41, 50]). In particular, a
very successful approach withinML is the Deep Learning, which is optimal for tasks
related to computer vision, text analysis, fragmentation, speech recognition (e.g. [43,
46, 67]).DeepLearning has becomepopular in astronomy thanks to the availability of
computing power to cope with multi-layered neural networks, and to the existence of
large enough data sets to perform the training. For recent applications in astrophysics,
see for example [1, 31, 48, 51], just to cite a few among many recent applications.
The main drawback of the Machine Learning approach is often represented by the
lack of flexibility of a trained model, i.e. networks must be designed and trained on
a very specific kind of data-sets, and generally loose applicability when turned onto
slightly different kind of data. The training phase itself often poses challenges as it
requires large datasets with pre-classified (labeled) images, which are not simple to
produce even in modern surveys (e.g. [3, 49]).

For the above reasons, it is of outstanding importance for astrophysics also to
explore radically different approaches, capable to identify information-rich pattern
in real or simulated data sets, without available pre-labeled training sets.

Information Theory (IT) is a powerful and multidisciplinary field of investiga-
tion, which enables a mathematical representation of the conditions and parameters
affecting the processing and the transmission of information across physical systems
(e.g. [32]). According to IT, all physical systems—the entire Universe included—
can be regarded as an information-processing device, which computes its evolution
based on a software made of physical laws. Thanks to IT, the complexity of a process
becomes a rigorous concept, which can be measured and compared, also between
different fields of research (e.g. [58]). In IT, not all systems whose evolution is com-
plicated to compute or to predict are truly complex in a physical sense. For example,
a purely random process does not allow a precise prediction of its future state, yet
its future evolution be trivial to compute in a statistical sense. On the other hand, a
truly complex phenomenon demands a significant amount of information in order to
predict its future evolution, even in a statistical sense.

Our representation of the Universe, based on the ever-growing collection of multi-
wavelength telescope observations gives us the image of an arguably very complex
hierarchy of processes, spanning an outstanding range of spatial and temporal scales,
leaving us with plenty of unanswered questions.
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How and when did the cosmic structure come into shape? How did galaxies and
the matter connected to them form and shape the Universe we can observe with tele-
scopes?Which processes are fundamental to explain the observed richness of cosmic
structures, and which ones can be neglected to the first degree of approximation?

Getting quantitative answers to the above questions is a challenge in which ana-
lytical, semi-analytical and numerical methods are struggling since almost a century.
Decades of research suggests that large-scale cosmic structures emerged from a hier-
archy of interconnected processes, in which several mechanisms (e.g. the expansion
of the space-time, gravity, hydrodynamics, radiative and chemical gas processes,
etc.) have coupled in a non linear way. Cosmic matter self-organised across an enor-
mous range of scales, transitioning from the smoothest and simplest possible initial
condition (a nearly scale-invariant background of matter fluctuations, δρ/ρ ≤ 10−5,
embedded in an expanding space-time, where ρ is the matter density) into a spectac-
ular hierarchy of clustered sources, with a final density contrast of δρ/ρ ≥ 104 − 105

(e.g. [24, 37, 53, 69, 85]).
The paradigm of structure formation perfectly fits into the standard definition of

how a complex system arises in Nature1: complexity is often found to emerge from
a minimal set of (seemingly simple) initial conditions and physical laws. Moreover,
the observable clustering properties of the Universe cannot be predicted just based
on its main build blocks alone (e.g. galaxies or dark matter halos), but emerged from
the interplay between many components and many scales of interaction.

Numerical simulations are thus the perfect tool to study how a large number of
discrete elements can produce complex collective behaviours through their network
of interactions.

Which aspects of cosmic structure formation can benefit from complexity
analysis?
In the digital representation of our Universe allowed by modern supercom-
puters, the emergence of complex dynamics out of simple initial conditions
is made manifest by the fact that a single random string of a few digits, com-
bined with a source code that can be stored in a few 102 Mb (linked to more
external numerical libraries and compilers) can produce extremely rich and
structured systems, which require tens or hundreds of Terabytes of disk space
to be stored. To give a few reference numbers,the widely used Smoother-
Particle-Hydrodynamics (SPH) cosmological code GADGET-2 (http://www.
mpa-garching.mpg.de/gadget/) has a compressed size of ∼200 kb, but the
largest Magneticum simulations (magneticum.org) need ∼20 Tb to store each
of snapshots. Themoving-mesh codeAREPO (http://arepo-code.org) has a com-
pressed size of ∼12 Mb, but the final raw dataset produced by the Illustris-1
simulation is of ∼200 Tb . The latest version of the adaptive mesh refine-
ment code ENZO used in this work (https://code.google.com/p/enzo/) has a

1See https://complexityexplained.github.io for a recent public repository of resources and visual-
ization tools to explore complexity in physics.

http://www.mpa-garching.mpg.de/gadget/
http://www.mpa-garching.mpg.de/gadget/
http://arepo-code.org
https://code.google.com/p/enzo/
https://complexityexplained.github.io
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compressed size of ∼2.1Mb, but the outputs of the latest Renaissance runs
(https://rensimlab.github.io) need ∼100 Tb of disk space.

Growing almost at the same pace of telescope surveys, cosmological simula-
tions continue to produce larger and larger simulations, with the ambitious goal
of representing a big fraction of the observable Universe with a high enough
resolution to properly resolve galaxy formation (e.g. [86] for a recent review).
The largest cosmological simulations have indeed stepped into the regime of
evolving O(1011) resolution elements, often storing 3-dimensional properties
of gas and dark matter dynamics, chemical composition, star-forming proper-
ties and magnetic fields attached to each of them. Data mining in such colossal
datasets is a challenge, for which standard analysis methods are continuously
being deployed and optimised. Also, the preliminary choice of which dynami-
cal scales and volumes are essential to simulate is often a non-trivial one before
starting every extensive simulation campaign.

In this respect, the development of efficient and objective tools to measure
the emergence of complexity in any numerical model enables simulators to
assess which spatial scales are responsible for complex phenomena observed
by real telescopes. This in turn allows simulators to deduce which are the
relevant scales for minimal working representation of the cosmic dynamics,
which is also crucial to match the extensive sampling of cosmic volumes and
redshift space that future multi-band surveys of the sky will deliver (e.g. from
Euclid to the Square Kilometer Array, e.g. [26]).

There have been valuable attempts to define and study complexity in several
physics topics: climate data analysis (e.g. [34], cellular automata [88], limnol-
ogy [29], epidemiology [33], compact stars [18], perturbation reconstruction
and non-linear signal analysis [25], and many more. However, the application
of Information Theory to the structure formation paradigm has just begun [73,
74].

As Iwill discuss in this contribution (Sect. 3.1), complexity analysis can also
be applied at run-time, and be instrumented to cosmological codes, to enable
them to refine numerical simulations on the fly, wherever complex dynamical
patterns are formed.

Moreover, accretion phenomena responsible for the powering of diffuse
non-thermal radio emissions appears to be associated with the growth of com-
plexity in cosmic structures, which makes complexity an interesting additional
tool to focus on an key scientific driver of existing and future radio surveys
[10, 72, 84]. The fact indeed that non-thermal phenomena and complex evo-
lutionary patterns are closely associated (see, e.g. Sect. 3.2) means that any
progress in the understanding of how complexity has emerged in the Universe
will concern the same environment that the largest astronomical enterprise
of this decade, i.e. the Square Kilometre Array [38, 81, 82], will be mostly
devoted to investigate.

https://rensimlab.github.io
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2 Information and Complexity: An Overview

In this section, I give a compact overview of the key concepts from Information The-
ory, whose origin is commonly fixed to the seminal work by [65] and [66], which
were concerned on signal processing in communications. The following methods
have been applied in [73] and later on in [74] to cosmological simulations. For more
general details on the methods, I refer interested readers to the excellent review by
[58].

2.1 Shannon’s Information Entropy

Information Theory posits that the information content of the outcome a probabilistic
process, x (with probability P(x)) can be defined as

log2
1

P(x)
= − log2[P(x)], (1)

measured in bits [66]. The latter is known as information entropy, and it measures the
degree of randomness contained in the process. Therefore, crucial for any attempt
to quantify information and complexity is the consideration that any physical phe-
nomenon can be regarded as an information processing device, whose evolution
produces a sequence of outputs (e.g. energy states), which can be analysed through
symbolic analysis.

The latter approach also implies that a process with many different possible out-
comes has high entropy, and that this measure is a proper quantification of how
much choice is involved in the realisation of a specific event (i.e. a specific sequence
of symbols). Following from this basis, the complexity of a system equals to the
amount of information needed to fully describe it. The strict connection between
how unlikely is for a specific sequence of events/symbols to occur and the amount
of information necessary to describe such sequence is key to any modern description
of complexity.

2.2 The Algorithmic Complexity

The minimal information needed to perfectly (i.e. without any loss of information)
describe a phenomenon or system is measured through the algorithmic complexity
(e.g. [15, 39]). In numerical simulations, this is roughly connected to the diskmemory
necessary to store every single digit produced by the simulation itself, or by the
entire source code used for the simulation as well as its initial conditions. Such
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representation of complexity introduces some practical problems, which are best
explained by thinking to it as to a compression problem2 a simple periodic object is
characterised by a very little algorithmic complexity as it can be very significantly
compressed because the source code to generate a periodic system can be very short
(e.g. a cosinusoidal function). However, the algorithmic complexity for a purely
random sequence of data can be enormous (i.e. of the order of the sequence itself),
due to the lack of internal structure and to the impossibility of further compressing
it.

Therefore, this definition of complexity does not entirely capture the basic phys-
ical intuition of natural, or artificial phenomena: for example, an arbitrarily long
sequence of rand digits has a higher Kolomogorov complexity than the sequence
of velocity fluctuations in a turbulent fluid, of the sequence of orbits of planets in
the Solar system, or of a symphony. Our physical intuition regards instead all of the
above as more “information rich” phenomena than any purely random sequence of
numbers. For this reason, alternative approaches to the measure of complexity in
natural systems have been developed.

2.3 The Statistical Complexity

More relevant from the physical perspective is the quantification of how much infor-
mation is needed to statistically describe the evolution of a system: this is given by
the statistical complexity (e.g. [2]). The statistical complexity quantifies the simi-
larity between different realisations of the same process (e.g. starting from different
randomly drawn initial conditions) as well as how likely it is that different outputs are
drawn from the same process. It also measures the amount of information needed to
produce a sequence of symbols which is statistically similar to the original sequence
of symbols under study.

At the practical level, the statistical complexity, Cμ, is measured by partitioning
the internal states of a system into Nbin discrete levels (e.g. internal energy levels),
followed by calculating the conditional probability, P(E2|E1), that elements in the
system evolve from level E1 into level E2 going from epoch t to epoch t + �t .

The evolution of each element in the simulation is tracked over time, searching
for patterns. If an element always gives the same output, its evolution is simple to
prescribe, and the statistical complexity is overall small. On the other hand, elements
of the system which require a large amount of information in order to prescribe their
evolution, are complex.

The probability distribution function P(E2|E1) of possible transitions between
the states E2 and E1 can be traced a-posteriori in the data stream, by building amatrix
of all recorded transitions across the simulation’s elements. From the entire matrix
of transition probabilities, it is thus possible to calculate the invariant probability

2http://www.ics.uci.edu/~dan/pubs/DataCompression.html.

http://www.ics.uci.edu/~{d}an/pubs/DataCompression.html
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distribution P(E), over the entire sequence of causal states in the system’s history,
as well as its associated information content as the Shannon entropy of all transitions:

Cμ = −
∑

Ei

Pi (E2|E1) log2 Pi (E2|E1)[bits]. (2)

where the summation is performed over all computing elements in the simulation at
a given time. Each single computing element thus has a statistical complexity given
by Cμ,i = −log2Pi(E2|E1).

In general, there is no unique way of partitioning the internal energy levels of
a specific simulation. The exact partitioning strategy of the system is the result of
a compromise between the need of keeping the computing resources under control
(as the computation of the statistical complexity scales as ∝ N 2

bin (where Nbin is the
number of energy bins), and the need of resolving all relevant energy transitions
between close timesteps.

2.4 The Block Entropy and the Entropy Gain

The probability of observing a specific sequence of symbols, responsible for the
generation of a string of length L , is

H(L) = −
∑

x L ∈X L

P(x L) log P(x L)[bits] (3)

where X L contains all possible sequences of symbolswith length L in the datastream,
and it is called block entropy (e.g. [45]).

The block entropy is a monotonically increasing function of L (e.g. [17, 27]), and
the increase of H(L) is called entropy gain:

hμ(L) = H(L) − H(L − 1). (4)

The entropy gain is a good proxy for the intrinsic randomness in a sequence
of symbols, because it measures the information-carrying capacity of a string of L
symbols, and it also quantifies the internal level of correlation in an evolutionary
sequence. In the limit of large L , such metric converges to H(L)/L:

hμ = lim
L→∞ hμ(L) = lim

L→∞ H(L)/L , (5)

which is usually called source entropy rate.
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2.5 The Excess Entropy and the Efficiency of Prediction

The information due to correlation over larger blocks (i.e. due to the intrinsic redun-
dance of the source of symbols) is the excess entropy:

E =
∑

L=1→∞
[hμ(L) − hμ]. (6)

The excess entropy can be interpreted as the apparent memory of structure in a
source of L symbols (e.g. [64]). E can be further simplified into a finite partial-sum
for a length L:

E(L) = H(L) − L · hμ(L). (7)

Systems with a large dynamical range allow the observer to describe them on a
variety of scales. The efficiency of prediction, e, quantifies the scale at which making
future predictions of the system gives the best emergent and information-rich view
[64]:

e = E

Cμ

, (8)

i.e. the ratio between the excess entropy and the statistical complexity. The spatial
scale at which e is maximum allows the observer to make the most informative
predictions about the future of a system. Indeed, while the excess entropy E uses the
past evolution of the system to predict its future evolution, the statistical complexity
Cμ gives the amount of information necessary to statistically reproduce its behaviour.
Therefore, e = E/Cμ can be regarded as a proxy for “how much can we predict”
compared to “how much difficult it is for us to predict” about the evolution of a
system [58].

3 Results

In the following Sections I will give an overview of the main results concerning the
study of the complexity of large-scale structures in the cosmic web using numerical
grid simulations and various proxies for complexity, extending first results presented
in [73, 74]. Section3.1 focuses on the analysis at high-resolution of a massive galaxy
cluster while Sect. 3.2 presents a more global study of the cosmic web. All numer-
ical simulations used in this work are Eulerian (grid) simulations produced using
the cosmological code ENZO [14]. ENZO is a highly parallel code for cosmological
(magneto)hydro-dynamics, which uses a particle-mesh N-body method (PM) to fol-
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low the dynamics of theDarkMatter (DM) and a variety ofmagneto-hydrodynamical
(MHD) solvers to evolve the gas component on a support uniform or adaptive grid
[14].

3.1 How Complex Is the Formation of a Galaxy Cluster?

Sitting at the top of the mass distribution of cosmic structure, galaxy clusters are
key astrophysical objects which form and evolve over cosmological timescales
(∼1 − 10Gyr). They behave under many respects as “closed boxes”, whose prop-
erties are strongly linked to cosmology (e.g. [40]). Given their large volume and
overdensity, they usually represent the first detectable signpost of the cosmic web at
most wavelengths (e.g. [59, 72]) as a well as the perfect plasma laboratories in the
Universe [11].

The simulation presented in this work includes the effect of magnetic fields, radia-
tive cooling of gas and energy feedback from active galactic nuclei in a standard
�CDM cosmological setup. Adaptive mesh refinement (AMR) was used to selec-
tively increase the dynamical resolution in the formation region of galaxy clusters,
up to �xmax = 32 kpc (comoving), which is mandatory to start resolving turbulence
and magnetic field amplification in galaxy clusters.

I re-simulated the objects studied in here in two different flavors: (a) with a non-
radiative setup, only including gravity, hydrodynamics and magnetic fields, or (b)
with a radiative setup, including equilibrium gas cooling (assuming a primordial
chemical composition) and thermal/magnetic feedback from active galactic nuclei
(see Sect. 3.1.2). Themagnetic field has been initialised to B0 = 10−10 G everywhere
in the box at the start of the simulation. More details can be found in [47, 73, 87].

All physical fields of the simulationswere outputted on disk every�t ∼ 3.11 · 106
yr and at the maximum available resolution (�xmax = 32 kpc).

3.1.1 The Morphology of Complexity

Figure1 shows the spatial distribution of thermal, magnetic and kinetic energy for a
thin slice crossing the centre of one simulated galaxy cluster (with a final virial mass
M100 ∼ 3 · 1014M	) at z = 0.01.

The thermal and the kinetic energyfields (and to a smaller extent, also themagnetic
energy) closely follow the roughly spherically symmetric distribution of gas density,
which reaches ≈5 · 10−3 part/cm3 in the cluster core and ∼10−5 part/cm3 in the
cluster periphery, which are typical values for galaxy clusters.

The thin slice shown here allows to see smaller scale perturbations associated to
the various mechanisms responsible for the mass growth of the cluster (which is still
ongoing at z = 0).
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Fig. 1 Magnetic, thermal and kinetic energy for a slice through the centre of a ∼3.0 · 1014M	
cluster at z = 0.01. The panel is 6 × 6Mpc2 across

Several filaments are connected to the cluster periphery, as well as sharp bound-
aries, and they penetrate the quasi-spherical envelope of strong shocks (i.e. Mach
number M ≥ 10 − 100) at which the infall gas kinetic energy gets thermalized (e.g.
[54, 60]). In such peripheral regions, the flow is predominantly supersonic, with
accretion velocities exceeding the local sound speed.

Within the denser cluster atmosphere, the budget of kinetic energy gets smaller
than the thermal energy, and velocity fluctuations are due to residual subsonic
motions, mostly of turbulent origin (e.g. [20, 35, 77]). The magnetic energy is sub-
dominant everywhere in the cluster volume, and barely reaches a few percent of the
thermal/kinetic energy, remaining of order ≤ 10−4 of the thermal energy in most of
the volume.3

The spatial distribution of statistical complexity for the same cluster is given in
Fig. 2. In order to compute Cμ, I employed Nbin = 200 equally spaced logarithmic
energy bins, and compared the outputs of two snapshots separated by one root grid
time step (�t ∼ 3.11 · 106 yr).

The complexity distribution captured by the statistical complexity filtering shows
a wide distribution of scales that highlights both large scale complexity pattern asso-
ciated to several filamentary accretions in the cluster periphery, as well as small-scale
fluctuations in the innermost cluster regions. Patches of significant complexity are
found in association with large physical jumps of the energy fields, mostly concen-
trated in narrow zones near shocks (as it can be independently measured with shock
finder methods). The thermal energy, on average, requires∼5 − 10 timesmore infor-
mation (reflected in a higherCμ), because the jumpof thermal energy in strong shocks
is much larger than that of kinetic energy. Although non-radiative numerical shocks
obey “simple” Rankine–Hugoniot jump conditions, at every time step only a small
fraction of the cells within a specific energy bin (i.e. environment) is modified by

3It shall be remarked that the magnetic field is by far the energy field which is most sensitive to
changes in the spatial resolution, because of the strong dependence of the dynamo amplification
with the numerical Reynolds number (see discussion in [22]). Due to the limited spatial resolution
probed in this simulation, the simulated magnetic field is a factor ∼10 smaller than suggested by
radio observations (e.g. [8]).
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Fig. 2 Magnetic, thermal and kinetic complexity for the same cluster and selection of Fig. 1

shocks. To predict whether or not a specific cell is going to be affected by shocks (or
more in general how its energy should evolve) additional information is required to
solve the local Riemann problem (on average, of the order of ∼10 bits/cell here).

Compared to the thermal energy, the kinetic energy EK shows more complex
fluctuations away from shocks, as well as closer to the cluster centre. The ICM is
known to host volume filling subsonic turbulence at all epochs, as result of gravity-
driven randommotions (e.g. [77]); thusmost of suchfluctuations are due to turbulence
on the short timescale which separates the two time steps used for this analysis.
Finally, the magnetic energy is sub-dominant compared to the thermal/kinetic energy
of the ICM. However, this means that one needs more information in order to predict
the evolution of magnetic fluctuations. The ultimate driver of its evolution is indeed
turbulence, through small-scale dynamo amplification (e.g. [21, 89]): this makes the
evolution of the magnetic typically more complex at all scales and distances from
the cluster centre. Very similar results were found for all simulated galaxy clusters
using ENZO, provided that small differences in the dynamical state and in the shock
history of each object are reflected in the final distribution of complexity (e.g. [73,
74]).

Why is complexity useful to simulate the formation of galaxy clusters
If complexity can be measured at run-time while the simulation is running,
this information can allow the simulation code to identify exactly where and
when complex evolutionary patterns are emerging in the domain. Coupled with
adaptivemesh refinement, this approach can selectively increase the local force
and spatial resolution at run-time. Traditionally, this task is performed by fixing
a-priori some relevant threshold values for the combination of several quantity
of interest (e.g. matter overdensity, local jumps in thermodynamical quantities,
etc.), and letting the simulation reduce (typically, by halving) the local mesh
resolution whenever such threshold values are exceeded. Examples of this
include refining on the local matter overdensity (e.g. [13, 68]), on the velocity
shear [42], on gas vorticity [35], on 1-dimensional velocity jumps tracking
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shocks [78], onmagnetic field intensity [89], etc. Each of these choices depends
on the simulator’s prior knowledge and expectations about the physics in the
simulation, and it is thus biased to refine on behaviours that can be predicted (or
at least guessed) before the run begins. Moreover, dedicated tests have shown
that the employment of too aggressive AMR techniques introduces un-physical
perturbations to simulated systems (e.g. [63]).

The possible application of statistical complexity, as a newmethod to trigger
new refinements during the simulation, can offer an unbiasedway of improving
calculations, independently on the observer’s prior expectations on the problem
under study.

Moreover, the usualworkflowrequiresfirst to run lowormoderate resolution
versions of such simulations, and to apply increasingly aggressive AMR in a
second step, by restarting the first run from an interesting epoch. Information
Theory thus allows a more elegant solution to this challenge (which can be a
challenge for large simulations), because statistical complexity only relies on
the symbolic analysis of the data-stream generated by the simulation, without
any a-priori knowledge of what is in the data, nor of the relevant physical
threshold to exceed.

3.1.2 The Impact of Galaxy Formation on Cluster Complexity

The impact of galaxy formation physics on the dynamical evolution of the intra-
cluster medium (namely radiative cooling leading to the collapse of overdense gas
clumps and their later feedback on the surrounding gas distribution via feedback) is
a wide field of research for numerical simulations, as it significantly modifies the
(self-similar) scaling relations between the total mass of clusters and their thermo-
dynamical or observable properties (e.g. [52, 71]).

I investigated the role of galaxy formation on the emergence of complexity with
variations of the physical model discussed in the previous section. In detail, radia-
tive re-simulations of the same galaxy clusters include equilibrium gas cooling from
primordial chemical composition, and effective model for the (large-scale) energy
release by AGN bursts in the course of the simulation. In this case, each feedback
event (triggered whenever the gas density within a cell exceeded 10−2 part/cm3)
releases 1060 erg of thermal energy and 1059 erg of magnetic energy (as bipolar struc-
ture). The above simplistic model bypasses the problem of following prohibitively
small scales involved in the accretion of gas onto super massive black holes. How-
ever, it has been shown to adequately reproduce the thermodynamical properties of
the observed ICM on ≥ 100 kpc scales (e.g. [75]).

The combined effect of cooling and AGN feedback on simulated clusters is typ-
ically to increase the gas density in the core, to produce large transients in gas
temperature, to promote the significant expulsion of baryons from the innermost
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Fig. 3 Top panel: radial
profile of the average total
(thermal, kinetic and
magnetic) energy for a
simulated galaxy cluster at
z = 0.01, in a non-radiative
setup or in a model including
radiative cooling and AGN
feedback. Bottom panel:
radial profile of the average
statistical complexity of all
energy fields for the same
two resimulations
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cluster regions, as well as to introduce more turbulence and clumpiness in the ICM
(see discussion in [75]).

As an example, Fig. 3 shows the average radial distribution of the total energy
(kinetic, thermal and magnetic) for the gas in the simulated cluster of Fig. 1 at
z = 0.01. On the one hand, the overall radial energy distribution is similar to the
non-radiative re-simulation, but the radial profile shows more substructures (due to
the enhanced clumping of gas) as well as a higher energy budget in the cluster core (as
a mixed effect of gas compression and extra heating from the central AGN). A more
detailed analysis of re-simulations with AGN feedback can also be found in [73].
Overall, despite the additional physics included in the simulation, the volumetric dis-
tribution of all fields is quite similar for≥Mpc radii, indicating that the equilibration
of non-gravitational perturbations within the cluster atmosphere is overall efficient
enough to erase most of the signatures from AGN across the entire cluster volume.

Remarkably, the radial distribution of total statistical complexity (bottom panel
of Fig. 3) shows large differences across the entire radial extent, out to ∼10 Mpc,
leading to an overall∼50 − 100% increase ofCμ everywhere. All energy fields show
an almost equally increased complexity, with a larger difference in all cases for the
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innermost cluster regions. The fact that more complexity is found even at large radii
suggests that the extra complexity is not entirely due to the central AGN in the cluster,
but that it probably was contributed by the activity of several AGN in the volume,
and/or by volume filling processes produced before the cluster was fully assembled.

Why is complexity useful to study the evolution of intergalactic gas

When and how did the extra complexity in the cluster arise?
The block entropy analysis introduced in Sect. 2.4, is a monotonically

increasing parametrisation of the information content of a system, hence it
is very suitable for time-integrated studies, in which past and recent events can
be dynamically related.

Following [73], I computed the block entropy, H(L), and its source rate
term, hμ(L), for the entire sequence of kinetic, thermal and magnetic energy
from z = 30 to z = 0 within a volume centre on the formation region of a clus-
ter. The full analysis of the sequence of symbols (e.g. energy levels) computed
by the simulation requires a huge amount of data (e.g. ≥ 2 Tb to follow all
cells in the simulation at high resolution for the entire sequence of 440 root
grid timesteps), hence the analysis is here restricted to a small representative
data set in cluster formation region, comprising ∼1.6 · 105 cells. More opti-
mised algorithms will need to be developed, in order to process the entire data
flow of existing and future large simulations. While the absolute value of block
entropy at a specific epoch may depend on the volume being investigated (as
well on specific choices of the binning of energy levels and on the time sam-
pling frequencies) the relative growth of block entropy in the energy fields is
more robust to model variations (e.g. see [73] for a discussion).

Figure4 (top panel) gives the evolution of the total energies contained in
the selected sub-region in the cluster, from z = 30 to z = 0. By the end of the
simulation, the total thermal and kinetic energy of gas in the cluster volume
are nearly identical, as implied by the radial profile while in the first half of
the simulation (and before the efficient heating by AGN) the thermal energy
in the radiative simulation is lower, due to the effect of radiative losses on the
densest clumps in the region. On the other hand, the magnetic energy in the
same region is larger in the radiative run, due to the due to the combined effect
of gas compression (induced by cooling) and of the additional magnetisation
induced by AGN feedback.

The middle panel of Fig. 4 gives the evolution of block entropy for the
kinetic, thermal and magnetic energy of both re-simulations as a function of
time. In this case, larger differences are visible: the block entropy increases in
a monotonic way, as expected, reaching 〈H(L)〉 ≈ 22.5 bits/cell in the non-
radiative case and 〈H(L)〉 ≈ 28.1 bits/cell in the radiative run. Despite the
similar thermal and kinetic energy distribution across most of the simulation,
the complexity of all energy fields is consistently larger in the radiative run.
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Fig. 4 Top panel: evolution of the kinetic, thermal and magnetic energy fields (as well as of the gas
mass) for a sample of 1.9 · 105 cells in the central region of the galaxy cluster of Figs. 1 and 2. The
thick lines refer to the non-radiative simulation while the thin lines are for the radiative simulation
including feedback from AGN. Central panel: evolution of block entropy for the same selection of
cells. Bottom panel: evolution of the entropy gain for the same selection of cells
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Cooling and feedback have overall a little impact on the relative complexity
of the energy fields after the cluster assembled, for t ≥ 4Gyr, and their role
is more evident at earlier times. Longer before contributing to the mass of
the cluster in this region at late epochs, the cosmic gas in the simulation was
subject to a complex dynamical evolution of all fields, long before there was
(approximate) equilibriumbetween the forming gravitationalwell of the cluster
and the thermal gas energy.

The entropy gain, h(L) (bottom panel of Fig. 4) better illustrates when and
how complexity gets increased in the two runs: shortly after mergers andmatter
accretions experienced by the cluster (e.g. see the spike in gas mass at t ∼
6Gyr), as well as after AGN bursts inducing outflows when this is included
(e.g. bursts at t ∼ 3Gyr, t ∼ 5Gyr). Since the local fluctuations driven by
AGN in all fields are more violent than in mergers, the entropy gain also is
manifestly more significant after AGN bursts. As a consequence, the largest
spikes in entropy gain are reached well before the cluster has fully assembled,
i.e. for t ≤ 5 Gyr, when its gas mass was ≤ 10% of its z = 0 value and a large
fraction of infall kinetic energy still had to be virialized.

This test well illustrates the power of Information Theory applied to astro-
physical simulations, in which several different mechanisms operate together:
complexity analysis can detect and expose large differences related to the
underlying complexity of the adopted physical models being tested, even when
detecting such differences is difficult with standard analysis. For example, the
impact of AGN on the kinetic perturbations away from cluster cores is hard to
detect in simulations (e.g. [23, 36, 56, 75], owing to the rather fast dissipation
of turbulent motions in the ICM).

Which scales contains most information?

The volume of galaxy clusters is large, and it comprises so many different
spatial scales that it is natural to ask whether there is there a preferred scale at
which the emergence of complexity is maximum, and which is the scale that
contains the most information on the evolution of such systems.

In [73] I studied the evolution of energy fields in ≈1.9 · 105 cells in the
centre of a forming galaxy cluster, computing their average H(L) and E(L),
for different levels of linear coarse-interpolation of the data, from the coarsest
�xmax = 634 kpc resolution to finest �xmin = 32 kpc one. Figure5 gives the
trend of efficiency, e, measured in the galaxy cluster simulation analysed above,
depending on the adopted interpolation scale, which displays a similar trend
for all energy fields.
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Fig. 5 Relation between the efficiency of prediction (Sect. 2.5) at different interpolation scales,
for sample of 1.9 · 105 cells in a forming galaxy cluster. The dashed lines connects the values of e
measured in the simulation, with the e values estimated from plasma physics on unresolved scales
(see text for explanation). The black line is referred to the thermal energy, the blue and the red to
the kinetic and magnetic energy, respectively

Themaximum e is found in the range of∼63 − 190 kpc,with e ≈ 0.1 − 0.2.
This range of scale is the typical one of turbulent eddies in the simulated ICM
(e.g. [62, 83]), of the typical outer correlation scale of observed andof simulated
magnetic fields in the ICM (e.g. [8, 89]), as well as of measured projected
density fluctuations in X-ray (e.g. [30]). It appears therefore reasonable that
e is the largest on where the ICM presents the highest degree of dynamical
self-organisation, which is also routinely targeted by telescope observations at
differentwavelengths.On the other hand, the coarse-grained evolution onmuch
larger scales allows a more robust prediction of future evolution as on such
scales the evolution approaches the linear regimeof small density perturbations.
However, this also makes such evolution relatively easier to predict, making
the E/Cμ ratio lower than for smaller scales.

This simulation cannot probe scales  �xmin = 32 kpc, however a few
basic considerations suggest that e should decrease again for such “micro-
scopic” scales. The efficiency of prediction at these scales can be estimated by
considering that the dynamics of thermal gas in the ICM can be assumed to be a
Markovian process, whichmeans that the thermodynamic value of single parti-
cles only depends on their last micro-state. Hence E = Cμ − Lhμ ≈ Cμ − hμ

because L ≈ 1 (e.g. [58, 64]).
In this regime, the thermodynamic entropy also gives the statistical complex-

ity, which for the thermal particles of the ICM is S ∼ 10 keV/particle (e.g. [9]).
On the other hand, the source entropy rate crucially depends on how energy is
exchanged between particles on very small scales. The ICMplasma is expected
to be weakly collisional on these scales, hence energy gets mostly exchanged
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by collective plasma effects (including a wide range of possible plasma insta-
bilities) acting on ∼ seconds timescales (e.g. [12, 44]). In this scenario, the
extremely fast action of plasma collective motions implies that on microscopic
scales the efficiency of prediction is ≈1 only in the scale of seconds, while it
must rapidly drop to zero for any other longer timescale. Even in the rather
standard (and probably out-dated) model of a collisional ICM [61], where
Coulomb collisions between particles solely exchange energy, the entropy rate
can be estimated to h ≈ 10−7 keV/particle/yr based on the expected proton-
proton Coulomb collision frequency, implying that e ≈ 1 only for ≤ 105 yr
timescales.

In summary, a detailed thermodynamic view of single particle interactions
in the ICM appears to irrelevant to predict the evolution of the ICM on any
astronomically relevant scale, given the enormous difference in scale between
microscopic andmacroscopic processes involved. Collective processes emerge
on ≥ kpc scales, which are routinely observed by telescopes and usually are
simulatedwith numerical simulations represent the best rangeof scales atwhich
the “emergent” properties of the ICM are evident, and where the evolution of
such systems can be effectively described using a (magneto) hydrodynamical
model. In particular, the ∼50 − 200 kpc range of scales appears to be the one
that maximises the efficiency of prediction in the investigated cosmological
simulations, and that is used in the subsequent investigation of complexity in
the entire cosmic web.

3.2 How Complex Is the Formation of the Cosmic Web?

With a different set of numerical simulations, I measured the distribution of com-
plexity in a full cosmological volume (40Mpc/h)3 ≈ 573 Mpc, simulated with ENZO

using 4003 cells and DM particles, at the constant resolution of �x = 141 kpc/cell.
With this setup, I investigated several variations of gas physics and of cosmological
parameters in order to assess their impact on the emergence of complexity, as detailed
in [74]. All simulations employed the numerical MHD scheme of Dedner [19] as in
the previous case, with a magnetic field initialised to be B0 = 0.1 nG (comoving)
along all magnetic field components at the begin of the simulation (z = 40).

The choice of this spatial resolution was motivated by the measured trend of the
efficiency of prediction Sect. 3.1.2, which ensures the most “information rich” view
of the emerging complexity of the cosmic web.

The statistical complexity, Cμ, is here measured as in [79] (and similar to the
previous section), by employing equal logarithmic energy bins, ranging from the
maximum and the minimum of each energy field, respectively, and considering a
time spacing of dt = 5 timesteps (≈200Myr) between snapshots.
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A couple of visualisation examples of Cμ for the full cosmological volume, and
of its spatial relation with the entire cosmic web on scales much larger than the ones
probed in the previous cluster analysis (Sect. 3.1) are given in Figs. 6 and 7.

Figure6 give a 2-dimensional view of the distribution of the thermal andmagnetic
energy fields for a thin slice through the simulation at z = 0, and the corresponding
distribution of statistical complexity for the same volume.A 3-dimensional rendering
of the entire simulated volume at the same epoch is given in Fig. 7, which shows
the total gas density in red, the gas temperature in blue, and additionally the total
complexity (in green) in the right panel.

While the large-scale distribution of all energy fields closely trace the matter
distribution of the cosmic web and its related gravitational potential, with maxima
located in self-gravitatingmatter halos, the spatial distribution of complexity appears

Fig. 6 Slices through a 573 Mpc3 simulated volume at z = 0. The top panels show the magnetic
energy (left) or the magnetic complexity (right), the lower panels show the thermal energy (left) or
the thermal complexity (right)
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Fig. 7 Left panel: total gas density (red) and gas temperature (blue) for the 573 Mpc3 simulated
volume at z = 0. Right panel: total complexity (green) over imposed to the previous map

Fig. 8 Matrix of transition probabilities, Pxyz measured between the energy states at timesteps t
and t + dt , considering transitions of thermal (left), kinetic (centre) and magnetic (right) energy at
z = 0.0

broader. This means that, across the full range of cosmic environment, regions with
significantly different energiesmay have an equally complex evolution, depending on
their local dynamics and past history. The visual inspection also shows that prominent
spikes of complexity are associated with shocks, marked as sharp contours around
filaments or at the periphery of halos in the volume, in line with the previous section.

The complexity in different environments directly follows from the transition
probability matrix (Sect. 2.3) across the entire range of cosmic overdensities. For
example, the 3-dimensional structure of the complexity traces shocks around fila-
ments and massive halos, for which a large spread in P(E2|E1) can be expected.
Figure8 gives the transition probability matrix, P(E2|E1) (see Sect. 2.3) measured
in the full volume at z = 0.0 and referred to 50 logarithmic energy bins. Here the
diagonal 1-to-1 relation corresponds to little complexity transitions, in which Ei (t)
states are mapped onto the same level at the following timestep. On the other hand, a
large spread around the 1-to-1 correlation hints at complex transitions which require
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more information to predict, like large thermodynamic jumps associated with shocks
(see also Sect. 3.1.1).

Indeed, most energy levels in the intermediate range are spread in the probability
distribution. This is consistent with the fact that strong structure formation shocks
typically change the energy content of gas particles in the linear overdensity regime,
with T ∼ 104 K (mostly related to the most filamentary part of the cosmic web),
even on the short timescale of the simulation timestep. On the other hand, as already
observed in Sect. 3.1.1, strong shocks are able to cause only smaller transitions of
kinetic and magnetic energy levels within cells, following from shock jump con-
ditions. Across most environments, we can observe a spread of magnetic energy
levels in the probability matrix, mostly associated with the fact that the magnetic
field can be changed both by compression or by magnetic field amplification, via
small-scale dynamo—albeit at a rate limited by the modest spatial dynamical range
that is achieved by turbulence and dynamo in this simulation (e.g. [22]).

The distribution of complexity as a function of the cosmic environment is better
quantified by the phase diagrams in Fig. 9, which give the average statistical com-
plexity of energy fields, for the reference epochs of z = 3 and z = 0 as a function
of ρ and T . The range of n/〈n〉 ≥ 10 − 100 approximately marks groups or clusters
of galaxies, while T ≤ 104 K marks cosmic voids. Intermediate ranges of values are
the location of linear or mildly non-linear structures of the cosmic web, i.e. matter
sheets and filaments.

From the phase diagrams, we can observe that the peak of complexity in the
cosmic volume moves across the environment as a function of time.

At z = 3, most of halos in the simulation are still being assembled, leading to a
significant conversion of infall kinetic energy into thermalisation and magnetic field
amplification, prior to the establishment of (approximate) hydrostatic equilibrium.
The complexity thus peaks for the high densities at which the conversion of infall
kinetic energy is more prominent, i.e. in halos undergoing mass growth, typically
reaching Cμ ∼ 102 bits/cell.

Later on, it is the periphery of galaxy clusters or filaments to become the most
complex environment in the volume, with 〈Cμ〉 ≥ 10 − 102 bites/cell. Conversely,
the internal volume of halos becomes less complex (〈Cμ〉 ∼ 10 bits/cell) by z = 0,
because only rare and extreme perturbations (e.g. major mergers) can change pre-
existing energy levels by a large amount. Despite the significantly different numerical
resolution, these trends are in line with the highest resolution of galaxy clusters view
previously discussed in Sect. 3.1.

Finally, the average complexity is measured to be small in voids, 〈Cμ〉  10
bits/cell, due to their relatively simple evolution,mostly ruled by adiabatic gas expan-
sion. Nevertheless, a residual amount of complexity is also found in low density
regions, resulting from the expansion of the structure formation shocks released
during the very first stage of halo formation, and still expanding into lower densities.



50 F. Vazza

F
ig
.9

Ph
as
e
di
ag
ra
m
s
sh
ow

in
g
th
e
av
er
ag
e
co
m
pl
ex
ity

of
th
e
th
er
m
al
,k

in
et
ic
an
d
m
ag
ne
tic

en
er
gy

at
z

=
3
an
d
at

z
=

0
fo
r
th
e
si
m
ul
at
ed

co
sm

ic
w
eb
.T

he
fir
st
co
lu
m
n
sh
ow

s
th
e
av
er
ag
e
ga
s
en
tr
op
y
fo
r
th
e
sa
m
e
bo
xe
s.
T
he

gr
ey

co
nt
ou
rs
in

ea
ch

pa
ne
ls
ho
w
th
e
ga
s
de
ns
ity

di
st
ri
bu
tio

n
(w

ith
lo
ga
ri
th
m
ic
sp
ac
in
g
of

co
nt
ou
rs
)



The Complexity and Information Content of Simulated Universes 51

The first column of Fig. 9 additionally shows the phase diagram of gas entropy
(S ∝ T/ρ2/3), which overall is similar to the one of thermal complexity. The latter is
not surprising considering that there is indeed a duality between entropy and Shannon
information (as defined in Eq.1), which stems from the basic definition of entropy
in statistical thermodynamics:

S = −kB

∑
Pi log Pi (9)

(where Pi ∝ e
εi

kB T is the probability of the energy state εi with temperature T , in a
Boltzmann distribution).

In the non-radiative simulations considered here, the gas entropy in the volume
is only increased by the irreversible dissipation at shocks, or by spurious numerical
effects. The fact that the high-temperature envelope of the phase diagrams corre-
sponds to the location of maximum entropy production and maximum complexity,
confirms that dissipative processes related to structure formation are indeed the main
agents of emerging complexity for intergalactic gas in the simulated Universe.

How can complexity analysis measure different cosmologies?

Thanks to statistical complexity, it is also possible to investigate whether even
small variations on the set of cosmological parameters can affect the level of
complexity in a simulated universe. In detail, here I restrict the analysis to a
few relevant variations of the baseline concordance �CDMmodel (see Fig. 10
for the detail on assumed parameters) while in [74] I have also explored the
simpler CDM case.

Figure10 gives the total statistical complexity for gas residing in the cosmic
web, T ≥ 104 K (normalised to a comoving Gpc3 volume) as a function of
time for four different resimulations of the same volume considered above, for
different variations of the σ8 parameters, or the fiducial set of parameters from
PLANCK [55].

The difference between all �CDM models is overall tiny (≤ 30%) at most
epochs and for all energies. There clearly is a dependence between the ampli-
tude of σ8 (which indicates the amplitude of the initial matter power spectrum
within a reference scale of 8 comoving Mpc) and the final complexity, with a
quite regular increase of complexity going from σ8 = 0.7 to σ8 = 0.9.

This follows from the fact that σ8 is known to correlate with the rate of
structure formation, and hence with the frequency of perturbations to the gas,
driven by mergers. A higher σ8 implies that the collapse of self-gravitating
halos can begin earlier in time, and also more massive substructures within
halos are present at all redshifts (e.g. [40]). In the case of a high σ8, also
more shocks are launched in the cosmic volume by the infall of gas matter
(see Appendix of [76]). All these factors make the high σ8 Universe slightly
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Fig. 10 Evolution of the
total complexity in the
cosmic web, for four
different variations of
cosmological parameters for
the same volume

more complex than a low σ8 one, at all epochs. In [74] I have also shown that
complexity analysis can easily detect a large difference between �CDM and
CDMmodels, even if the CDMmodel is calibrated to reproduce approximately
the same number of halos in the volume. While the total number of clusters
forming in the volume approximately scale as �Mσ 0

8 .5 (e.g. [59]), the growth
of cluster is significantly delayed in the CDM cosmology (e.g. [7]), due to the
lower σ8 (0.43 in this case), and complex pattern driven by matter accretions
in halos only emerge at later times.

4 Conclusions

In the present epoch of Big Data in astrophysics, as a result of existing and future
multi-messenger surveys (as well as by increasingly more sophisticated numerical
simulations), the tasks of identifying the complex chain of processes which lead to
observed astronomical phenomena is an open challenge, calling for new and powerful
analysis approaches.

In this contribution, I have discussed how new statistical tools based on Infor-
mation Theory (e.g. [2, 28, 58]) may allow us to objectively measure the level of
complexity of modern astrophysical simulations, as well as to identify patterns and
sequences of events otherwise impossible to identify with standard approaches.

Complexity enables us to identifywhich physical processes aremostly responsible
for the emergence of observed complex dynamical behaviour across cosmic epochs
and environments, and possibly to improve numerical refinement strategies in future
simulations attempting to reproduce the Universe.
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With this method, I have shown that the complexity of cosmic structures has
emerged early in time, when most of seeds of halos in the cosmic web started to col-
lapse and convert their gravitational infall energy into thermal energy and magnetic
field. The process is mostly mediated by violent fluid perturbations, often in the form
of strong shocks and turbulent motions. On smaller scales, and before the formation
of halos, the activity connected with the formation of galaxies (e.g. radiative gas
cooling and feedback from active galactic nuclei) can introduce more complexity
to the evolution of baryons in the cosmic web, which can be identified even at later
simulated epochs.

It must be noticed that the concept of complexity used in this work is a dynami-
cal, rather than a geometrical/topological one; the latter approach has been instead
explored in works that studied cosmic structure using Minkowski functionals and
Betti numbers as a proxy for topological persistence of structures (e.g. [57] and
references there in).

In passing, we can also remark that the dynamical view of complexity exposed
here is different from the definition of maximum information usually adopted by the
holographic description of the Universe (e.g. [6, 70]), which yields the astounding
maximum information capacity of∼10100 bits which can be stored in the entire fabric
of space-time using all available Planck lengths thereby contained (e.g. [5]).

Likewise, a similar astounding difference of orders of magnitude is found by
comparing the theoretical maximum computing speed of all matter enclosed by
large-scale structures, and their effective computing speed on the large scales
considered here. The (classic) Bremermann’s limit (which limits to ≈ Mc2/h ≈
1047 bits/(s · g) the maximum processing rate of any physical system) allows a max-
imum of ∼1095 bits/s processing rate for the most massive galaxy clusters in the
Universe, while the entropy gain computed in Sect. 3.1.2 can be extrapolated to
∼1028 − 1030 bits/s, depending on the different phases of cluster growth.

Based on the complexity measured in my simulation [74], it is possible to extrap-
olate the total statistical complexity within the entire observable Universe:

CUniverse = 4π
∫ ∞

0
〈Cμ(z)〉r2 dr

dz
dz ≈ 3.56 · 1016 bits ≈ 4.3 Pb. (10)

where the integration is done using the redshift evolution of Cμ measured in the
fiducial �CDM simulation, and dr/dz has been measured as a function of redshift
and of the cosmological model (e.g. [16]). Interestingly, this is of the same order of
the total amount of data daily generated by social media,4 and this is also similar
to the latest estimates of the maximum memory capacity of the human brain, which
follows from the extrapolation of the information that can be stored by synaptic
plasticity [4].5

4http://res.cloudinary.com/yumyoshojin/image/upload/v1/pdf/future-data-2019.pdf.
5See also Vazza & Feletti [80] for a recent semi-quantitative comparison between the structural
properties of the cosmic web and of the human neuronal network.

http://res.cloudinary.com/yumyoshojin/image/upload/v1/pdf/future-data-2019.pdf
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The abovememory capacity estimate represents theminimum amount of informa-
tion required to describe the evolution of the entire visible cosmic web with a spatial
detail of ∼102 kpc, which is the one that maximises the efficiency of prediction
(Sect. 2.5).

This information can be crucial to define the optimal approaches for future simu-
lations, aiming at matching the sky and redshift coverage of incoming wide and deep
multi-band surveys of the sky wavelengths (e.g. from Euclid to the Square Kilometre
Array), which will define the future of astronomical data.

The expected flurry of complex data produced by such surveys will keep challeng-
ing simulators to produce Universes containing an equal amount of complexity. The
new analysis methods offered by Information Theory, and described in this work,
promise to offer simulators with objective tools to embark on this exciting challenge
that awaits in the near future.
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The Voronoi Tessellation Method in
Astronomy

Iryna Vavilova, Andrii Elyiv, Daria Dobrycheva, and Olga Melnyk

Abstract The Voronoi tessellation is a natural way of space segmentation, which
has many applications in various fields of science and technology as well as in social
sciences and visual art. The varieties of the Voronoi tessellation methods are com-
monly used in computational fluid dynamics, computational geometry, geolocation
and logistics, game dev programming, cartography, engineering, liquid crystal elec-
tronic technology, machine learning, etc. The very innovative results were obtained
in astronomy, namely for a large-scale galaxy distribution and cosmic web pattern,
for revealing the quasi-periodicity in a pencil-beam survey, for a description of con-
straints on the isotropic cosmic microwave background and the explosion scenario
likely supernova events, for image processing, adaptive smoothing, segmentation,
for signal-to-noise ratio balancing, for spectrography data analysis as well as in the
moving-mesh cosmology simulation. We briefly describe these results paying more
attention to the practical application of the Voronoi tessellation related to the spatial
large-scale galaxy distribution.
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1 The Voronoi Tessellation in a Spatial Galaxy
Distribution: First Works and Basic Approach

The geometrical methods based on the Voronoi diagram deal with a partitioning
of space into regions in a specific subset of generators. It was named after Georgy
F. Voronoi (April 28, 1868, Zhuravka village, Chernihiv region, Ukraine—Nov 20,
1908, Warsaw, Poland), the outstanding Ukrainian mathematician [76, 89], who
studied the general n-dimensional case of these diagrams [101, 102].

In 1984, Matsuda and Shima advanced the idea to apply the Voronoi tessellation
method for describing the cellular structure of the Local Universe [63], finding a
topological tendency of galaxies “to cluster at the vertices, edges and faces of poly-
hedral shaped voids”. In 1987, Ling demonstrated that the Voronoi tessellation and
the Minimal Spanning Tree being applied to the CfA Redshift Survey of galaxies
(the first survey to map the large-scale structure of the Universe) are able to detach
filamentary structures and voids [60]. In 1989, Yoshioka and Ikeuchi proposed three-
dimensional Voronoi tessellation as a model of the evolution of the negative density
perturbations regions, which resulted in the overlapping of shells while the modeled
skeleton can be compared with real observed structures and with mass distribution
correlation functions [107].

For the first time, the Voronoi tessellation was considered in detail as a pattern
of matter distribution in the Universe in work by Icke and Weygaert [48] and series
of their following works [49, 50, 104]. These authors concluded that the regions of
lower density become more spherical with evolution and matter floods away from
expansion centers and accrues at the borders of packing of spheres. This leads to
the partition of space on the Voronoi tessellation with nuclei in the centers of low-
density regions called the voids. High-density regions—clusters of galaxies—lie at
the crossing of vertexes of adjacent cells, filaments at the edge of cells, and pancakes
of large-scale structure (LSS) are faces of cells (Fig. 1, right). Sheth et al. [83] have
developed its idea and considered the model of a void created in the frame of the
Voronoi tessellation paradigm.

The Voronoi tessellation can be constructed as follows. Let us consider a Voronoi
cell of finite size in N-dimensional space (usually N = 2 or N = 3), where a fixed
number of points is distributed according to some statistical law (for example, the
Poisson law). Suppose that each point is the center of a spherical expanding bub-
ble structure. If all these structures begin to expand at the same moment with the
same rate, the bubbles will be touched in planes that perpendicularly bisect the lines
connecting the centers of expansion. These bisecting planes, in turn, intersect each
other. As a result of this process, new lines will be generated, which in turn intersect
each other and form a network. Using an adopted terminology, we will call such
a center of the cell as a nucleus. So, each nucleus will be enclosed by a set of
(N −1)—dimensional planes forming a convex cell. Distribution of nuclei forms the
Voronoi tessellation.

The realization of Voronoi tessellations for a certain number of expanding nuclei,
which is known as the Voronoi foam, can be found in [48, 104]. In the case of two-
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Fig. 1 (Left) The construction of a new Delaunay triangle from two known nuclei N3 such that
(N1, N2, N3) forms a triangle whose circumsphere does not contain any other nucleus in the Voronoi
tessellation. (Right) Identification of the four quantities which were calculated in each Voronoi cell:
li , the length of wall i; α, the angle between two walls meeting at vertex; dw , the distance between
the nucleus and a wall, where the projection of the nucleus doesn’t necessarily lie on the wall ([48],
open astronomy)

dimensional realization, the construction of a Voronoi cell consists of the search for
all the Delaunay triangles having three nuclei (the center of the circumscribing circle
is a vertex of the Voronoi foam). The program proposed by the authors [48], allows
one to find all the Delaunay triangles having N1 as a corner and construct the Voronoi
cell belonging to N1 by joining the circumcentres of the Delaunay triangles. Having
applied this procedure to all nuclei, we obtain the Voronoi tessellation.

The process of forming theVoronoi tessellation is shown in Fig. 1 (left). The points
N0, N1, N2 form a Delaunay triangle obtained in a previous search; corresponding
Voronoi vertex V is shown within the (dashed) circumcircle of N0, N1, N2 as well
as stubs of the Voronoi cell walls. On the left hand side of the diagram, the T are a
sequence of trial points, the third of which produces a circle that encompasses two
nuclei, P1 and P2. The radius of the circumcircle of (N1, N2, P1) being smaller than
that of (N1, N2, P2), the point P2 is N3, i.e. the third corner of the Delaunay triangle.
Thus, the circumcenter of (N1, N2, P1) is the next Voronoi vertex which, if connected
with V, produces a complete Voronoi cell wall [48].

The obtained results could explain the heuristic models that supposing Voronoi
tessellations as 3D templates for the galaxy distribution as well as could reproduce
a variety of galaxy clustering properties. In an ideal scenario, the LSS is organized
by equal spherical voids expanding at the same rate. The walls and filaments would
be found precisely between expanding voids, and the resulting LSS web skeleton
would the Voronoi tessellation.

The Voronoi tessellation method was picked up and also thrived in our research
on a spatial galaxy distribution since 1990-is [92] that allowed us to obtain several
priority results. Namely, we elaborated threemain approaches in Voronoi tessellation
application: (1) to describe a cosmic web skeleton in matter distribution as a Voronoi
tessellationwith nuclei at low-density regions; (2) to useVoronoi tessellation as a tool
for direct measurement of galaxy local concentration and environmental description
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of low-populated galaxy systems such as triplets, pairs, and isolated galaxies; (3) to
applyVoronoi diagrams altogetherwithmachine learningmethods for 3Dmapping of
theZoneofAvoidanceof ourGalaxy [97, 99],whereGenerativeAdversarialNetwork
(GAN) algorithms are very useful [1, 36]. In particular,Coutinho et al. [19] performed
verification of various algorithms that can reproduce the cellular structure of the
Universe. By comparing the simulated distributions with real observational data,
these authors showed that the best algorithm uses the nearest neighbour parameter
between galaxies, and that network algorithms can be improved to reproduce the
large-scale structure of the Universe.

We give examples in Sect. 2, howmanner our developed approach is working. We
briefly overview in Sect. 3 various astronomical research with the Voronoi diagrams,
accentuating the papers related to the large-scale structure of the Universe, as well
as we highlight in Sect. 4 several works and software, where the Voronoi tessellation
and machine learning get along well with each other.

2 Voronoi Tessellation of the First, Second and Third
Orders: Identification of the Low-Populated Galaxy
Groups, Environment Effect, and Dark Matter Content

Because of Voronoi tessellation is a geometrical method based only on galaxy posi-
tions, it allows detaching overdensity regions of galaxies in comparison with the
background [93]. We tested it with various samples of galaxies. First of all, we used
the Local Supercluster of galaxies, which is well studied among other galaxy super-
clusters, for identifying galaxy groups of various populations. It was revealed that
Voronoi’s tessellation method depends weakly on the richness-parameter of groups,
and the number of galaxies in the rich structures is growing rather than in the weak
structures with an increase of this parameter [64].

In the first-order Voronoi tessellation, the critical parameter is the volume of
the galaxy’s Voronoi cell V. This parameter characterizes an environmental galaxy
density. The condition of cluster/group membership of a particular galaxy is the rel-
atively small V. This condition is actual when close neighbouring galaxies surround
the galaxy. That is why the first order Voronoi tessellation is not corrected for the
identification of small isolated galaxy systems [64].

We used the second-order Voronoi tessellation for the identification of pairs and
single galaxies. Each galaxy i from set S forms the common cells with a certain
number of neighbouring galaxies (Fig. 2). So, under neighbouring galaxies of galaxy
i , we understand only galaxies that create common cells with this galaxy. For exam-
ple, galaxy 1 creates only 4 common cells (V1,2 , V1,3 , V1,4 , V1,5) with neighbouring
galaxies 2, 3, 4, and 5, respectively. Each pair of galaxies i , j is characterized by the
dimensionless parameters pi, j :
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Fig. 2 2D Voronoi tessellation of the first- (a), second- (b) and third- (c) order for the same
distribution of the random nuclei ([34], open astronomy)

pi, j =
D
√
Vi, j

mi, j
, (1)

where D—space dimension, Vi, j—the area (for 2D) or volume (for 3D) of cell,
mi, j—distance between galaxies i and j . So, contrary to the first-order tessellation,
the second-order tessellation for set S distribution of nuclei is the partition of the
space which associates a region V1,2 with each pair of nuclei 1 and 2 from S in such
a way that all points in V1,2 are closer to 1 and 2 than other nuclei from S. Region
V1,2 is a common cell for nuclei 1 and 2. However, these nuclei do not need to lie
in the common cell. For example, nuclei 1 and 5 create the common cell V1,5, and
they do not lie in this cell. In such a way, the second-order Voronoi tessellation is
available for the identification of single galaxies and pairs (Fig. 2b).

Let us introduce the parameter pe, which describes only pair environment and
does not depend on the distance between pair members directly. We define it as the
mean value of p j (1) and pl (2) parameters of the first and second galaxy, excepting
p from both sets:

pe =
∑k

j=2 p j (1) + ∑n
l=2 pl(2)

k + n − 2
, (2)

where k and n—number of neighbouring galaxies for 1 and 2 galaxies of geometric
pair, respectively.We started sums from j = 2 and l = 2 for excepting 2p, because the
first galaxy is neighbour for the second galaxy and vice versa. Therefore (k + n − 2)
is sum of neighbouring galaxies of pair members excepting of pair galaxies as neigh-
bouring for each other. Parameter pe depends on the distribution of neighbouring
galaxies. A small value of pe points out that such a pair is located in a loose envi-
ronment. In such case the average volume of common cells of pair components with
neighbouring galaxies is relatively small, and distance between them is significant,
see formula (1) and Fig. 3a.
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Fig. 3 Different configurations of the galaxies: isolated close pair (a) and isolated single galaxy
(b) in the second-order tessellation; isolated close triplet in the third-order tessellation (c) ([34],
open astronomy)

A single galaxy is a galaxy, which is not a member of any geometric pair. The
single galaxies are field galaxies in the environment of geometric pairs. Every single
galaxy has the own neighbours; single galaxies and geometric pair members can be
among them. According to the second-order Voronoi tessellation, the larger is the
degree of galaxy isolation, the larger is the number of neighbours (see Fig. 2b in
comparison with Fig. 3b), but these neighbours locate farther. The best parameter
that describes the isolation degree of the single galaxy, s, is the mean value of all
parameters p j of this galaxy:

s =
∑k

j=1 p j

k
(3)

The third-order Voronoi tessellation is appropriate for the identification of galaxy
triplets. It is the partition of the space which associates a region V1,2,3 with each
triplet of nuclei 1, 2, 3 in such a way that all points in V1,2,3 are closer to nuclei 1,
2, 3 than other nuclei from S [59]. All points of the common triplet’s cell are closer
to galaxies of this triplet than to other galaxies. Similarly to the parameter pi, j for
pairs, we can set up the parameter ti, j,u for triplets:

ti, j,u =
D
√
Vi, j,u

max(mi, j ,mi,u,m j,u),
(4)

where D is the space dimension, Vi, j,u is the area (for 2D) or volume (for 3D) of the
cell, andmi, j ,mi,u ,m j,u are the distances between galaxies in the triplet. A geometric
triplet in the third-order Voronoi tessellation contains three galaxies that have a
common cell and the same maximal parameters tmax (1) = tmax (2) = tmax (3) = t .
The parameter t characterizes a degree of geometric triplet isolation. We can define
the parameter of triplet environment te as the mean value of parameters ti (1), t j (2),
and tu(3), except t from three sets:
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te =
∑k

i=2 ti (1) + ∑n
j=2 t j (2) + ∑q

u=2 tu(3)

k + n + q − 3
(5)

here in the case of the third-order Voronoi tessellation, k, n, and q denote the number
of neighbouring triplets which contain galaxies 1, 2, and 3, respectively. Therefore,
(k + n + q− 3) is the number of neighbouring triplets for a certain triplet that contain
at least one galaxy from this triplet (see, Fig. 3).

Parameters p, s, and t are the basic ones and define the isolation degree of a galaxy
pair, single galaxy, or triplet compared to the background, respectively. Parameters
pe and te are additional ones and contain information about the distribution of the
neighbouring galaxies (environment). Similar to the second- and third-order Voronoi
tessellations, it is possible to apply more high-order Voronoi tessellations to identify
galaxy quartets and quintets, etc.

So, one can use galaxies as the nuclei of the Voronoi tessellation taking into
account the equatorial coordinates α, δ and radial velocities of galaxies Vh only.
For the construction of the 3D Voronoi tessellations, it is necessary to determine the
distances in 3D space. The spatial distance between two galaxies can be decomposed
into projected (tangential) distance r and radial component v (difference of the radial
velocities). We can determine the projected distance with a relatively high accuracy.
Simultaneously, the radial component has errors due to the inaccuracy of radial
velocity measurement of each galaxy and existing strong peculiar velocities (due to
virial motions of galaxies in groups and clusters). As a result, the galaxy distribution
in the radial velocities space is extended along the radial component, the so-called
fingers-of-God effect. This is attributed to the random velocity dispersion in a galaxy
volume-limited sample that cause a galaxy’s velocity to deviate from pure Hubble
flow, stretching out a group of galaxies in redshift space [54, 66]. Various authors
take into account this effect in their way, depending on the specifics of their problem.
For example, Marinoni et al. [62] chose some cylindrical window of clustering,
which is extended along the radial component. We introduced the weight for a radial
component [34], avoiding the problemof tangential and radial distance in equivalence
to apply the high-order 3D Voronoi tessellation method.

An efficient way to show Voronoi tessellation advantages was to apply it to the
galaxy samples from the Local Supercluster [64, 94, 96] and the Sloan Digital Sky
Survey (SDSS), where at the first time we examined it for spectroscopic aims [34,
65, 67, 70, 77, 95]. We did not consider galaxies that located within 2o near borders,
because the correct estimation of Voronoi cell volume is not possible in this case.
Selecting single galaxies andpairs by the second-orderVoronoi tessellation, aswell as
triplets by the third-order Voronoi tessellation method, we obtained 2196 geometric
pairs, 1182 triplets, and 2394 single galaxies. We did not make a clear division
between physical gravitationally bound systems and non-physical ones, following
the supposition that the more isolated a system is, the higher probability that it is
physical (compact pairs are with Rh < 150 kpc and triplets are with Rh < 200 kpc).

Estimating the dark matter content in the low-populated groups, we obtained
the median values of mass-to-luminosity ratio [34]: 12MSun/LSun for the isolated
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Fig. 4 Mass-to-luminosity ratio diagram for galaxy systems of different population (star clusters,
galaxies, galaxy groups, clusters, and superclusters), where the result for the low-populated groups
[66] is pointed ([96], open astronomy)

pairs and 44MSun/LSun for the isolated triplets. Note that for the most compact
pairs and triplets (with R < 50 (100) kpc, respectively) there is not a very large
difference in darkmatter content for pairs and triplets: 7MSun/LSun and8MSun/LSun .
The mass-to-luminosity ratio diagram for galaxy systems of different population
(star clusters, galaxies, galaxy groups, including the low-populated ones, clusters,
and superclusters) is presented in Fig. 4. Several examples of isolated triplets of
galaxies are given in Fig. 5. We conclude about the dark matter distribution that
for the dynamically younger sparsely groups (triplets), dark matter is more likely
associated with the individual galaxy halos, for the interacting and late sparsely
groups the dark matter lies in a common halo of galaxy groups.

Using an inverse volume of Voronoi cell (1/V ) as a parameter describing the local
environmental density of a galaxy, we considered the volume-limited SDSS (DR5
and DR9) galaxy samples (0.02 < z < 0.1, −24 < Mr < −19.4) [26, 27, 30, 67]
and found that

• the early type galaxies prefer to reside in the Voronoi cells of smaller volumes (i.e.,
dense environments) than the late type galaxies, which are located in the larger
Voronoi cells (i.e., sparse environments);

• the relationships between the morphological types and the u − r , g − i , and r − z
color indices of pairs of galaxies with radial velocities 3000 < V < 9500 km/s
evident that the Holmberg effect is not revealing, by the other words, it can be
considered only in historical aspect [28];



The Voronoi Tessellation Method in Astronomy 65

Fig. 5 The interacting (VV894), most compact (KTG39), and wide triplets of galaxies, where Sv
is the rms velocity of galaxies with respect to the triplet centre, Rh—harmonic mean radii of the
triplet, τ = 2H0Rh/Sv—its dimensionless crossing time ([96], open astronomy)

• properties of such small groups as pairs and triplets, where segregation by lumi-
nosity was clearly observed, are fit well to Dressler effect: galaxies in isolated
pairs and triplets are on average two times more luminous than isolated galaxies;

• the dependence of the color indices and stellar magnitudes is effective for the
automated morphological classification of the galaxies (E—early types, L—late
types).

The morphological types of the galaxies were divided into two classes: Early—E
(from elliptical to lenticular) and Late—L (from spiral Sa to irregular I rr types).
The absolute magnitude

Mr = mr − 5log(V/H0) − 25 − K (z) − ext (6)

could be corrected for Galactic absorption ext in accordance with [81] and K—
correction K (z) according to [16]. Here we used the CDM model of the Universe
with the WMPS7 cosmological parameters (�M = 0.27, �� = 0.73, �k = 0, H0 =
0.71). In order to apply the Voronoi tessellation method we should done transition
from equatorial coordinates and velocities to the comoving x , y, z coordinates for
each central galaxy in the sample (Mr < −20.7). To do this we can transform the
redshift z to the corresponding distanceχ(z) for each galaxy by integrating as follows
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χ(z) = DH

∫ z

0

dz′

E(z′)
(7)

where DH = c/H0 is the Hubble distance and E(z′) is the Hubble parameter defined
as follows

E(z′) =
√

�M(1 + z)3 + �k(1 + z)2 + �� (8)

The coordinates x , y, z of the galaxies in the comoving space are determined as
follows

x = χ(z)cos(θ)cos(φ) (9)

where (θ ) is the declination of each galaxy, (φ) is the right ascension, and (χ(z)) is the
corresponding distance for redshift z. After getting the three-dimensional Cartesian
coordinates of the galaxies, we divided the geometrical space occupied by the galaxy
sample inmosaic cells (volumes V in the 3D case). Each cell has a galaxy as a nucleus
and consists of elementary volumes of space closer to this galaxy than to any other
galaxy [63]. The use of the Voronoi tessellation to isolate groups of galaxies in
three dimensions has been described in detail by Melnyk et al. [64]. Figure2a shows
an example of the Voronoi tessellation in a two dimensional case. Let us use the
value of inverse volume (1/V ) of the Voronoi cells to describe the density of galaxy
environments; when 1/V is higher, a galaxy is less isolated.

Examples of the distributions of E and L galaxies versus inverse volume of
the Voronoi cells that contain them are shown in Fig. 6. In work [27] we grouped
galaxies from the SDSS sample at z < 0.1 into 4 logarithmic intervals 1/V < 0.001,
0.001 < 1/V < 0.01, 0.01 < 1/V < 0.1, and 1/V > 0.1 for four ranges of the
redshift 0.02 < z < 0.04, 0.04 < z < 0.06, 0.06 < z < 0.08, and 0.08 < z < 0.1
(in the rows) and for different ranges of absolute stellar magnitude, −21.5 < Mr <

−20.7, −22.5 < Mr < −21.5, and Mr < −22.5. The number of galaxies in each

Fig. 6 The distribution of the number of galaxies versus inverse volume of the Voronoi cell (local
density parameter), with early morphological type E indicated by red lines and late type L indicated
by blue lines, for different ranges of redshift; absolute stellarmagnitude of galaxies selected from the
SDSS at z < 0.1 is −22.5 < Mr < −21.5. The number of galaxies in each bin is normalized to the
total number of E ÷ L within the given subsample. The number of central bright E and L galaxies
is as follows: E = 1636, L = 459 for 0.02 < z < 0.04, E = 3609, L = 1247 for 0.04 < z < 0.06,
E = 9432, L = 3596 for 0.06 < z < 0.08 [27]
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bin for the E and L types is normalized to the total number of E ÷ L galaxies within
the given subsample. Figure6 shows that the fraction of galaxies of spiral and late
types becomes larger while redshift increasing, while the fraction of early types, on
the contrary, is smaller. It explains the well known evolutionary trend of a reduction
in the number of galaxies with suppression of star formation for increasing redshift
[21, 90], even at comparatively low redshifts down to z < 0.1. Also, for the brighter
galaxies in the sample, the fraction of galaxies of earlier types is larger since, on
the average, earlier types have higher luminosities (the well-known morphological
type versus colour indices/luminosity relation) [8, 44, 73]. The brightest galaxies
of earlier types with Mr < −22.5 appear preferentially in denser environments: the
peak of the distribution of the inverse volumes of the Voronoi cells for the E types lie
within the interval 0.01 < 1/V < 0.1, while in other intervals of Mr , for the L types
the peak of the distribution always is within 0.001 < 1/V < 0.01 (the morphology-
density relation [8, 28, 32, 44]).

We can also determine the density of galaxies in a Voronoi cell, including their
faint satellites, i.e., galaxies with Mr > −20.7: (n + 1)/V , where n is the number
of faint galaxies in the Voronoi cell, and V is the volume of the Voronoi cell. We
also constructed distributions of early E and late L types galaxies in dependence on
the parameter (n + 1)/V in four intervals: (n + 1)/V < 0.01, 0.01 < (n + 1)/V <

0.1, 0.1 < (n + 1)/V < 1, and (n + 1)/V > 1. The number of galaxies is normal-
ized to the number of E ÷ L galaxies within the given range of (n + 1)/V . We
examined the density of galaxies only in the first two redshift intervals, since we
cannot evaluate the evolution of their properties at a higher z because there are not
enough faint galaxies. However, we can compare the galaxies’ environmental density
as a function of the absolute magnitude and morphological type of the bright central
galaxy. Thus, the fraction of early types of central galaxies increases with increasing
environmental density, while, on the other hand, the fraction of late types decreases;
that is, the earlier types are in a denser environment than the late types. When the
central galaxy is brighter, the fraction of early types in a subsample will be larger
[27, 100].

3 The Voronoi Tessellation in Astrophysical Research

Ebeling and Wiedenmann [33] were the first to apply the Voronoi tessellation for
finding galaxy groups and clusters. Later such an approach was used by Ramella et
al. [78], Kim et al. [56], Lopes et al. [61], Barrena et al. [6], Melnyk et al. [65], Panko
and Flin [71]. Doroshkevich [31] introduced its for filaments and walls (1D and 2D
LSS structures) as well as Neyrinck [68] for the search of voids in a spatial galaxy
distribution.

We note some important earlier works as concerns with other applications of
Voronoi diagrams to the large-scale galaxy distribution: for revealing the quasi-
periodicities in a pencil-beam survey [51, 87], for a description of constraints on the
Voronoi model when applied to the isotropic cosmic microwave background [17]. A
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significant contribution for Voronoi tessellation application to various astronomical
tasks was made by Zanninetti, who considered two- and three-dimensional cases of
the explosion scenario likely supernova events and developed a dynamical method
allowing to describe the explosion phases [108, 109].

Ramella et al. [78] created a Voronoi Galaxy Cluster Finder, which uses posi-
tions and magnitudes of galaxies to define galaxy clusters and extract its parameters:
size, richness, central density, etc. The 3D Voronoi tessellation for galaxy group
identification was realized by Marinoni et al. [62] and Cooper et al. [18]. Weygaert
et al. prepared a useful review of the spatial galaxy distribution with Delaunay and
Voronoi tessellations [42, 105]. They discussed the Delaunay Tessellation Field Esti-
mator (DTFE) and the concept of Alphashapes for matter distribution; theMultiscale
Morphology Filter (MMF),which uses theDTFE for detachment of filaments, sheets,
and clusters; the Watershed Voidfinder (WVF) to identify voids.

The era of big data surveys (see, for example, review in work by Vavilova et al.
[98] accelerated the Voronoi diagrams application on a spatial galaxy distribution
properties and environment influence: z = 0.1 − 3.0, COSMOS survey [82]; z≤ 0.5,
Herschel-ATLAS/GAMA [9]; z < 0.1, Coma Supercluster [20]; z < 0.3, ALHAM-
BRA survey [79]. Söchting et al. used Voronoi tessellation within overlapping slices
in the photometric redshift space (0.2< z <3.0). It allowed them to detach region
z ∼ 0.4 with a slow emergence of virialized clusters accordingly to the hierarchical
scenario and to detect new superclusters as the peaks of a matter distribution up to
z = 2.9 [85]. As for the Voronoi tessellation cluster finder algorithms, we note the
work by Soares et al., who developed it to produce reliable cluster catalogs up to
z = 1 or beyond and down to 1013.5 Msun. They built the Voronoi tessellation cluster
finder in photometric redshift shells and used the two-point correlation function of
the galaxies in the field to determine the density threshold for the detection of cluster
candidates and to establish their significance [84].

A principal new galaxy cluster finder based on a 3D Voronoi Tessellation plus
a maximum likelihood estimator, followed by gapping-filtering in radial velocity
(VoML + G), was created. Pereira et al. [74, 75] applied it successfully to find
optical clusters (R200) in the Local Universe as well as Santiago-Batista et al. for
the identification of continuous filaments in the environment of superclusters [80].
Grokhovskaya et al. developed filtering algorithms of multiparameter analysis of
the large-scale distribution of galaxies (identification of galaxy systems and voids)
in narrow slices in the entire range of redshifts of HS 47.5-22 constructing density
contrast maps, namely with adaptive kernel and Voronoi tessellation [40]. The 3D
Voronoi tessellation application to the DEEP2 survey was first introduced by Gerke
et al. [38].Meanwhile, Shen Ying et al. [106] proposed an algorithmwhich computes
the cluster of 3D points by applying a set of 3D Voronoi cells and allows a 3D point
cluster pattern can be highlighted and easily recognized.

Hung et al. have demonstrated that Voronoi tessellation Monte-Carlo mapping is
beneficial for studying the environment effect on galaxy evolution in high-redshift
large-scale structures (z∼1) in the ORELSE survey (Observations of Redshift Evo-
lution in Large Scale Environments) [47]. An exciting application of Voronoi tes-
sellation was proposed by Lam et al. [57]: for constructing the white dwarfs lumi-



The Voronoi Tessellation Method in Astronomy 69

nosity functions they used parameters of proper motion and colours from the Pan-
STARRS13π Steradian Survey Processing Version 2; for improving the accuracy
of the maximum volume method they used Voronoi tessellation space binning to
recalculate photometric/astrometric uncertainties. It helped to estimate disk-to-halo
dark matter ratio as 100. Another a non-parametric method for estimating halo con-
centration using Voronoi tessellation, TesseRACT, was proposed by Lang et al. [58],
who showed that it fits well with non-spherical halos andmore accurate at recovering
intermediate concentrations for N-body halos than techniques that assume spherical
symmetry.

The very interesting algorithm, Void Finder ZOBOV (ZOnes Bordering On Void-
ness), based on Voronoi tessellation, was proposed by Neyrinck et al. [68]. This
algorithm finds density depressions galaxy distribution without free parameters. To
estimate local density, it uses the Voronoi tessellation. One of the output of this algo-
rithm is the probability that each void arises from Poisson fluctuations. However,
Elyiv et al. [35] have demonstrated a weak spot for ZOBOV void finder. Voids are
the lowest density regions, so any method that uses the positions of galaxies directly
to measure density for identifying the voids is then prone to shot noise error since
voids are the regions with a very low concentration of galaxies by definition (Fig. 7).
The Void IDentification and Examination toolkit (VIDE) developed by Sutter et al.
[88] includes the parameter-free void finder ZOBOV, where “Voronoi tessellation
of the tracer particles is used to estimate the density field followed by a watershed
algorithm to group Voronoi cells into zones and subsequently voids”.

Zaninetti in series of works [110, 112] developed a practical statistics for the voids
between galaxies with two new survival functions and considered the 3D distribution
of the volumes of Poissonian Voronoi Diagrams to their 2D cross-sections in the
assumption of gamma-function for the 3D statistics of the volumes of the voids in the
Local Universe. He also conducted simulations [111] of a spatial galaxy distribution
using the Poissonian Voronoi polyhedra and the 2dF Galaxy Redshift Survey and
the Third Reference Catalog of Bright Galaxies; Zaninetti gives a brief overview of
a current status of the research on the statistics of the Voronoi Diagrams in [113].

Among other astronomical tasks, the Voronoi diagrams have been used for image
processing, adaptive smoothing, segmentation, for signal-to-noise ratio balancing
[14], for spatial structure of the solar wind and solar-terrestrial connections [7],
for spectrography data analysis in different electromagnetic regions [12, 13, 25],
in the moving-mesh cosmology simulation [86] and [103] (AREPO Public Code),
chemical evolution in the early Universe [15], star formation simulation [46], spatial
distribution of lunar craters [45].

For example,Cabrera et al. [11] applied theVoronoi diagram for image reconstruc-
tion technique in the interferometric data based on the Bayesian approach. Cadha et
al. proposed Voronoi compact image descriptors and showed that Voronoi partition-
ing improves the geometric invariance and performance of image retrieval [14] as
well as they developed a Voronoi-based machine learning method (deep convolution
neural network). As for the cosmological simulation, Busch and White [10] used
Voronoi tessellation for a hierarchical tree structure that allowed them to associate
local density peaks with disjoint subsets of particles and to analyze mass distribu-
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Fig. 7 The reconstructed displacement field (top panels) and its divergence (bottom panels)
obtained with the two void finders, the Uncorrelating Void Finder (left-hand panels) and the
Lagrangian Zel’dovich Void Finder (right-hand panels). The displayed region’s size is 80 × 80
Mpc h−1, with a thickness of 5 Mpc h−1. Black dots represent dark matter haloes. The amplitude
of the vector field components (red arrows) is reduced by a factor of 0.75, for visual clarity ([35],
open access)

tion at different levels of threshold. Similar to our work [27], when we introduced
parameter of the volume of Voronoi cell to study environment influence on galaxies
from the SDSS, Paranjape and Alam [72] also applied the inverse local number den-
sity parameter. They studied physical effects for such properties as halo (subhalo)
mass, large-scale environment, etc. in various cosmological dark matter models and
concluded that the Voronoi volume function gives a new mathematical instrument
for galaxy evolution physics and dark sector study. Nightingale et al. developed
the PyAutoLens software (https://github.com/Jammy2211/PyAutoLens), where the
Voronoi tessellation is applied for reconstruction of strongly lensed galaxies.

Neyrinck developed the sectional-Voronoi algorithms in Python for cosmic-web
research, because the Voronoi/Delaunay duals and origami tessellation give a wide
class of spiderwebs. “Voronoi edges are perpendicular bisectors of their correspond-
ing Delaunay edges; the ‘bisector’ part can be relaxed. Each Voronoi edge may

https://github.com/Jammy2211/PyAutoLens
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be slid along its Delaunay edge, closer to one of the generators. They may not be
slid entirely independently, though, since the Voronoi edges must still join vertices.
There turns out to be one extra degree of freedom per generator, causing its cell
to expand or contract. The result is a sectional-Voronoi diagram, a section through
a higher-dimensional Voronoi tessellation. A generator’s extra degree of freedom
in a sectional-Voronoi diagram can be thought of as its distance from the space
being tessellated. A sectional-Voronoi diagram can also be thought of as a Voronoi
tessellation in which each generator may have a different additive ‘power’ in the
distance function used to determine which points are closest to the generator (thus
an alternative term, power diagram). Ash and Bolker [2] showed that 2D spiderwebs
and sectional Voronoi tessellations are equivalent” (cited by [69]). The package is
available at https://github.com/neyrinck/sectional-tess, https://mybinder.org/v2/gh/
neyrinck/sectional-tess/master.

In the present day, the Voronoi diagrams methods have many applications in vari-
ous fields of science and technology as well as in social sciences and visual art [3, 4].
They are commonly used in computational fluid dynamics, computational geometry,
geolocation and logistics, game dev programming, cartography, engineering, liquid
crystal electronic technology, etc. For the first time, the Voronoi tessellation was
utilized by Debnath et al. [22] for the discoveries in the particle physics beyond the
Standard Model at the Large Hadron Collider at CERN. “Since such tessellations
capture the underlying probability distributions of the phase space, interesting fea-
tures in the data can be detected by studying the geometrical aspects of the ensemble
of Voronoi cells” (cited by [23]). These methods allow identifying kinematic edges
in two dimensions and generalize the technique for robust detection of phase space
boundaries, which could be applied to discover new physics. An interesting library
of “Voronoi Diagrams: Applications from Archaeology to Zoology” is collected by
Scot Drysdale on the website https://www.ics.uci.edu/~eppstein/gina/scot.drysdale.
html.

4 The Voronoi Tessellation and Machine Learning

Straight application of classical Voronoi diagram in Machine Learning is the k-
nearest neighbors (k-NN) algorithm at the number of neighbors k = 1. In the case of
the classifier, the output class is choosing among its k the closest neighbors. Each of
them gives a contribution to the class with some weight. Normally weight is inverse
to the distance between target object and neighbor (closer neighbors will have a
stronger influence than further neighbors) or uniform (all points in neighborhood are
weighted equally). If k = 1, then the object is just linked to the class of the nearest
neighbor. From the other side, it could be interpreted as the building of the Voronoi
diagram by training objects as nuclei of the diagram. The target object will have a
class depending on which Voronoi cell it resides. Bring your data to life.

A set of programming codes for 1-NN visualization (k = 1) with examples
(Hover Voronoi, a demonstration of d3-Delaunay, Voronoi Labels, Voronoi neigh-

https://github.com/neyrinck/sectional-tess
https://mybinder.org/v2/gh/neyrinck/sectional-tess/master
https://mybinder.org/v2/gh/neyrinck/sectional-tess/master
https://www.ics.uci.edu/~eppstein/gina/scot.drysdale.html
https://www.ics.uci.edu/~eppstein/gina/scot.drysdale.html
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bors, Voronoi update) are available on the website https://observablehq.com/@d3/
by Mike Bostock (2018). For the color image segmentation problem in computer
vision, an adaptive and unsupervised clustering approach with Voronoi diagrams
was introduced, which outperforms the existing algorithms [43]. A Python library
“Pycobra” contains several ensemble machine learning algorithms and visualization
tools based on the Voronoi tessellations [41]. It can be downloaded from the Python
Package Index (PyPi) and Machine Learning Open Source Software (MLOSS) at
https://github.com/bhargavvader/pycobra.

In the case of k > 1, we should use the concept of high order Voronoi diagram,
where a cell represents the set of points in space closer to a given k nuclei that
to all others (see, Sect. 2 and works by Elyiv et al. [34, 99]). In this case, k–order
Voronoi space dividing can help us to find k-near neighbors directly. The crossing of
high-order Voronoi diagram borders represent the set of k near neighbors. In k–NN
regression, the output value for the target object is the average of the values of k
nearest neighbors. If each neighbor has equal weight, it means that for each cell
could be assigned pre-calculated averaged value. Next, if the target object resides
in this cell, automatic assigned could be done. In all these cases, creating a Voronoi
diagram on the training sample could make a faster k–NN algorithm application.

For example, Inkulu andKapoor [53] presented an algorithm covering theVoronoi
diagram with hyperboxes, which provides ANN queries. Another parallel spatial
range query algorithm based on Voronoi diagrams and MR-tree, which is benefiting
from the k-NN, is developed by Fu and Liu [37].

Voronoi diagram also has a wide application in deep learning. In work [5], the
authors studied the geometry of Deep Artificial Neural Networks with piecewise
affine and convex nonlinearities. The authors demonstrated that each layer’s input
space partition corresponds to the Voronoi diagram with several regions that grow
exponentially with increasing neurons. Numerical experiments support these theo-
retical results, which are expressed by the Deep ANN decision boundary in the input
space, a measure of its curvature that depends on the network architecture, activation
functions, and weights.

In work [52] the authors presented a Deep Convolution Neural Network (CNN)
constructedonaVoronoi tessellationof 3Dmolecular structures of proteins (VoroCNN
model). Both convolution and pooling operations were used as a part of network
architecture to predict local qualities of 3D protein folds. They computed Voronoi
tessellation of molecular 3D structures and converted them into a protein interaction
graph. The graph’s critical property is that it implicitly keeps the information about
the spatial relationship between the atoms of the protein model. The authors claim
that for presently available amounts of data and computational resources, Voronoi
tessellation is the best representation of 3D protein structure than raw volumetric
data.

https://observablehq.com/@d3/
https://github.com/bhargavvader/pycobra
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5 Instead of Conclusion

Today, hierarchical clustering is a common scenario for the evolution of galaxies.
The fact that galaxies are observed mostly at redshifts to z ∼ 5, while the most
distant observed galaxy clusters are at z ∼ 2, suggests that galaxies and sparsely
populated groups were formed first, and galaxy clusters later by subcluster merging
and/or via capturing galaxies and galaxy groups. The hierarchical clustering scenario
is in good agreement with the cosmological �CDM model. Having great success
in explaining the formation of the large-scale structure of the Universe as a whole,
this model faces potentially severe problems on the scales of individual dark halo
of galaxies and galaxy clusters, with statistics of the distribution of galaxies with
different morphological types in a wide range of redshifts, with evolutionary prop-
erties of sparsely populated groups and galaxy clusters, with the lack of data on the
large-scale structure of the Universe behind the Zone of Avoidance of the Galaxy.

In this context, we have demonstrated the perfection and elegance of the Voronoi
tessellation in solving many astronomical problems, focusing on its effectiveness for
describing the web of large-scale structures of the Universe and data mining of its
properties at various redshifts from early epochs to the scales of the Local Universe.

“God first partitioned the plenum into equal-sized portions, and then placed these
bodies into various circular motions that, ultimately, formed the three elements of
matter and the vortex systems” (cited by Descartes [24], vol. III, article 46, in [4]).
“The modern view shoves baryogenesis, leptogenesis, WIMP–genesis, and all very

Fig. 8 (Left) Vortex theory applied to the Solar system (R. Descartes, 1644) ([4], open access).
(Right) Illustration of the Voronoi tessellation for galaxy 2D web distribution
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far back in time, but builds up structure continuously, using not-very-special initial
conditions and gravity (plus perhaps other forces) to develop what we see today. In
between come some remarkable constructs, including Thomas Wright’s hierarchy,
Descartes’s Voronoi tessellation of whirlpools in the ether, Alfred Russel Wallace’s
(yes, the evolution guy) “Goldilocks” location for the Solar system,Cornelis Easton’s
off-center spiral arms, and the Kapteyn Universe” (cited by Trimble [91]). We have
combined this representation, which is consonantwith ours, in Fig. 8 as an illustration
of partitioning the space into cells for the subsequent extraction of the physical
essence of the phenomena: one of them displays classical physics, Vortex theory
applied to the Solar system (Descartes, 1644), the other gives a visualization of
galaxy distribution through the 2D-Voronoi tessellation.
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1 Introduction

The scientific topics covered in this work falls within what is called Time Domain
Astronomy. This is the study of variable sources, i.e. astronomical objects whose
light changes with time. Although the taxonomy of such sources is extremely rich,
there are two main kinds of objects, respectively, transients and variables. The first
changes its nature during the event, while the second presents just a brightness
variation. The study of these phenomena is fundamental to identify and analyze
either the mechanisms causing light variations and the progenitors of the various
classes of objects.

Since ancient times the phenomenon of Supernovae (SNe) has fascinated human
beings, but only recently we understood, in most cases, why and how this explosion
happens [1]. Obviously there are still many open questions, but the knowledge about
the type of galaxy hosting various kinds of Supernova and at which rate they take
place, could help us to better understand this phenomenon and many other related
properties of the Universe [2].

For example, the observed luminosity dispersion of SNe is evidenced through
inhomogeneities in the weak lensing event and this is an upper limit on the cosmic
matter power spectrum. Massive cosmological objects like galaxies and clusters of
galaxies can magnify many times the flux of events like SNe that would be too faint
to detect and bring them into our analysis scope. Studies on lensed SNe type Ia by
clusters of galaxiesmay be used to probe the distribution of darkmatter on them.Time
delay between the multiple images of lensed SNe could provide a good estimates
of its high redshift. Furthermore there are two factors that makes SNe better than
other sources, like quasars, in measuring time delay [3]: (i) if the Supernovae is taken
before the peak, the measurements are easier and on short timescale compared to the
quasars; (ii) the SN light fade away with time, so we can measure the lens stellar
kinematics and the dynamics lens mass modeling. In the next decade, the Vera C.
Rubin Observatory will perform the Rubin Observatory Legacy Survey of Space and
Time (LSST), using the Rubin Observatory LSST Camera and the Simonyi Survey
Telescope. LSST will play a key role in the discovery of new lensed SNe Ia [4].
LSST will help to find apparently host-less SNe of every type, and this may help to
study dwarf galaxies with a mass range of 104 ÷ 106 solar masses. These galaxies,
indeed, play a key role in large scale structure models, and despite their very big
predicted population, over 1 Mpc we cannot see them until now. Same story for the
theorized intracluster population of stars stripped from their galaxies, which could
be seen through the SNe host-less events.

In order to understand and push ourselves further and further into the universe, ever
more powerful incoming observing instruments, like LSST, will be able to deliver
impressive amounts of data, for which astronomers are obliged to make an intensive
use of automatic analysis systems. Methods that fall under the heading Data Mining
and Machine Learning have now become commonplace and indispensable to the
work of scientists [5–7]. But then, where the human work is still needed? For sure in
terms of final analysis and validation of the results. This thesiswork is therefore based
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on this virtuous combination, by exploiting data science methodology and models,
such as Random Forest [8], Nadam, RMSProp and Adadelta [9], to perform a deep
investigation on time domain astronomy, by focusing the attention on Supernovae
classification, performed on realistic sky simulations. Furthermore, a special care
has been devoted to the parameter space analysis, through the application of the
method�LAB [10, 11] to the various classification experiments, in order to evaluate
the commonalities among them in terms of features found as relevant to solve the
recognition of different types of transients.

In Sect. 2 we describe the two data simulations used for the experiments and the
extracted statistical features composing the data parameter space. In Sect. 3 we give a
brief introduction of the MLmethods used, while in Sect. 4 the series of experiments
performed are deeply reported. Finally, in Sect. 5 we analyze the results and draw
the conclusions.

2 Data

In this work two simulation datasets were used; the Supernova Photometric Classifi-
cation Challenge (hereafter SNPhotCC, [12]) and the Photometric LSST Astronom-
ical Time-Series Classification Challenge (hereafter PLAsTiCC, [13–15]).

2.1 The SNPhotCC Simulated Catalogue

This catalogue was the subject of a challenge performed in 2010 and consists of a
mixed set of simulated SN types, respectively, Ia, Ibc and II, selected by respecting
the relative rate (Table 1). The volumetric rate was found by Dilday et al. [16] as
rv = α(1 + z)β , where for SNe Ia parameters we have αI a = 2.6 × 10−5Mpc−3h370
yr−1, βI a = 1.5 and h70 = H0/(70 kms−1Mpc−1). H0 is the present value of the
Hubble parameter. For non Ia SNe, the parameters come from Bazin et al. [17]
and are αNonIa = 6.8 × 10−5Mpc−3h370 yr−1 and βNonIa = 3.6. The simulation is
based on four bands, griz, with cosmological parameters �M = 0.3, �� = 0.7 and
ω = −1, where �M is the density of barionic and dark matter, �� is the density of
dark energy andω is the cosmological constant.Moreover, the point-spread function,

Table 1 SNPhotCC dataset composition

Types Bands Sampling % Amount

SNIa g, r, i, z Uneven 23,86 5088

SNIbc g, r, i, z Uneven 13,14 2801

SNII g, r, i, z Uneven 63 13430
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Fig. 1 Examples of SNPhotCC light curves in g band. From the top to the bottom: SN004923(Ia),
SN000760(Ib), SN003475(Ic), SN001986(II)

atmospheric transparency and sky-noiseweremeasured in each filter and epoch using
the one-year chronology.

The dataset sources are based on two variants, respectively, with or without the
host-galaxy photometric redshift. For this work only the samples without redshift
information were used.

Every simulated light curve has at least one observation, in two or more bands,
with signal-to-noise ratio >5 and five observations after the explosion (Fig. 1). A
spectroscopically confirmed training subset was provided; it was based on observa-
tions from a 4 m class telescope with a limiting r-band magnitude of 21.5 and on
observations from an 8 m class telescope with a limiting i-band magnitude of 23.5.

2.2 The PLAsTiCC Simulated Catalogue

This catalogue arises from a challenge focused on the future use of the LSST,1 by
simulating the possible objects on which science will be based. In particular, most
of these objects are transients.

LSST will be the largest telescope specialized for the Time Domain Astronomy,
whose first light is foreseen in late 2020. Its field of view will be ∼3.5 degrees (the

1https://www.kaggle.com/c/PLAsTiCC-2018

https://www.kaggle.com/c/PLAsTiCC-2018
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Fig. 2 Examples of PLAsTiCC light curves in g band. From the top to the bottom: 2198(AGN),
2157270(M-Dwarf), 22574(Eclipsing Binary), 139362(Kilonova), 80421(Mirae), 45395(μ-lens),
184176(RR lyrae), 9197(TDE)

diameter will be about seven full moons side by side), with a 6.5m effective aperture,
a focal ratio of 1.23 and a camera of 3.2 Gigapixel.

Every four nights it will observe the whole sky visible from the Chile (south-
ern hemisphere). Therefore, it will find an unprecedented amount of new transients:
Supernovae Ia, Ia-91bg, Iax, II, Ibc, SuperLuminous (SL), Tidal Disruption Events,
Kilonova, Active Galactic Nuclei, RRLyrae,M-dwarf stellar flares, Eclipsing Binary
and Pulsating variable stars, μ-lens from single lenses, μ-lens from binary lenses,
Intermediate Luminosity Optical Transients, CalciumRich Transients and Pair Insta-
bility Supernovae.

LSST data will be used for studying stars in our Galaxy, understanding how solar
systems and galaxies formed and the role played bymassive stars in galaxy chemistry
as well as measuring the amount of matter in the Universe. PLAsTiCC includes light
curves with realistic time-sampling [15], noise properties and realistic astrophysical
sources.

Each object has observations in six bands: u (300 ÷ 400 nm), g (400 ÷ 600 nm),
r (500 ÷ 700 nm), i (650 ÷ 850 nm), z (800 ÷ 950 nm), and y (950 ÷ 1050 nm). The
training set is a mixture of what we can expect to have before LSST, so it is a quite
homogeneous ensemble of ∼8000 objects; the test set, instead, is based on what we
expect to have after 3 years of LSST operations and it is formed by ∼3, 5 million
of objects. The observations are limited in magnitude in single band to 24.5 in the r
band and to 27.8 r stacked band (see Figs. 2 and 3 for examples of light curves). By
combining training and test, we collected the objects per class as listed in Table 2.
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Fig. 3 Examples of PLAsTiCC light curves in g band. From the top to the bottom: 15461391(SNIa),
1143209(SNIa-91bglike), 1019556(SNIax), 1076072(SNIbc), 73610(SLSN I), 1028853(SNII)

Table 2 PLAsTiCC dataset composition

Types Training Test Bands Sampling % Amount

SNIa 2313 1659831 u, g, r, i, z, y Uneven 47.57 1662144

SNIax 183 63664 u, g, r, i, z, y Uneven 1.81 63847

SNIa
91bglike

208 40193 u, g, r, i, z, y Uneven 1.15 40401

SNIbc 484 175094 u, g, r, i, z, y Uneven 5.00 175578

SNII 1193 1000150 u, g, r, i, z, y Uneven 28.65 1001343

SLSN I 175 35782 u, g, r, i, z, y Uneven 1.02 35957

AGN 370 101424 u, g, r, i, z, y Uneven 2.89 101794

M-Dwarf 981 93494 u, g, r, i, z, y Uneven 2.68 94475

RR Lyrae 239 197155 u, g, r, i, z, y Uneven 5.63 197394

Mirae 30 1453 u, g, r, i, z, y Uneven 0.04 1483

Eclipse 924 96572 u, g, r, i, z, y Uneven 2.77 97496

KN 100 131 u, g, r, i, z, y Uneven 0.01 231

TDE 495 13555 u, g, r, i, z, y Uneven 0.38 14050

μ Lens 151 1303 u, g, r, i, z, y Uneven 0.04 1454

Other 0 13087 u, g, r, i, z, y Uneven 0.36 13087
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2.3 The Statistical Parameter Space

In order to evaluate the classification performances, the light curves of the objects
have been subject of a statistical approach, by transforming them into a set of features
representing some peculiar characteristics of the astrophysical objects. Within this
work we used the following features (already used in a similar task in [18]), resulting
from a preliminarymapping of variable object light curves into a statistical parameter
space:

• Amplitude (ampl): the arithmetic average between themaximumand theminimum
magnitude,

ampl = magmax − magmin

2
(1)

• Beyond1std (b1std): the fraction of photometric points above or under one standard
deviation from the weighted average,

b1std = P(|mag − mag| > σ) (2)

• Flux Percentage Ratio (fpr): the ratio between two flux percentiles Fn,m . The flux
percentile is defined as the difference between the flux value at percentiles n and
m, respectively. For this work, the following fpr values have been used:

f pr20 = F40,60/F5,95

f pr35 = F32,5,67,5/F5,95

f pr50 = F25,75/F5,95

f pr65 = F17,5,82,5/F5,95

f pr80 = F10,90/F5,95

• Lomb-Scargle Periodogram (ls): the period obtained by the peak frequency of the
Lomb-Scargle periodogram.

• Linear Trend (lt): the slope a of the light curve in the linear fit,

mag = a ∗ t + b

lt = a (3)

• Median Absolute Deviation (mad): the median of the deviation of fluxes from the
median flux,

mad = mediani (|xi − median j (x j )|) (4)

• Median Buffer Range Percentage (mbrp): the fraction of data points which are
within 10% of the median flux,
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mbrp = P(|xi − median j (x j )| < 0.1 ∗ median j (x j )) (5)

• Magnitude Ratio (mr): an index to see if the majority of data points are above or
below the median of the magnitudes,

mr = P(mag > median(mag)) (6)

• Maximum Slope (ms): the maximum difference obtained measuring magnitudes
at successive epochs,

ms = max(| (magi+1 − magi )

(ti+1 − ti )
|) = 	mag

	t
(7)

• Percent Difference Flux Percentile (pdfp): the difference between the fifth and the
95th percentile flux, converted in magnitudes, divided by the median flux,

pd f p = (mag95 − mag5)

median(mag)
(8)

• Pair Slope Trend (pst): the percentage of the last 30 couples of consecutive mea-
sures of fluxes that show a positive slope,

pst = P(xi+1 − xi > 0, i = n − 30, ..., n) (9)

• R Cor Bor (rcb): the fraction of magnitudes that is above 1.5 magnitudes with
respect to the median,

rcb = P(mag > (median(mag) + 1.5)) (10)

• Small Kurtosis (kurt): the ratio between the 4th order momentum and the square
of the variance. For small kurtosis it is intended the kurtosis on a small number of
epochs,

kurt = μ4

σ 2
(11)

• Skewness (skew): the ratio between the 3rd order momentum and the variance to
the third power,

skew = μ3

σ 3
(12)

• Standard deviation (std): the standard deviation of the flux.
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3 Machine Learning Models

A classifier can be used as a descriptive model to distinguish among objects of
different classes, and as a predictive model to predict the class label of input patterns.
Classification techniques work better for predicting or describing data sets with
binary or nominal categories. Each technique uses a different learning algorithm
to find a model that fits the relationship between the feature set and class labels
of the input data. The goal of the learning algorithm is to build models with good
generalization capability. The typical approach of machine learning models is to
randomly shuffle and split the given input dataset with known assigned class labels
into three subsets: training, validation and blind test sets. The validation set can be
used to validate the learning process, while the test set is used blindly to verify the
trained model performance and generalization capabilities. In the following sections
we briefly introduce the methods used to perform the classification experiments,
together with the statistical estimators adopted to evaluate their performances.

3.1 The Random Forest Classifier

A Random Forest (RF, [8]) is a classifier consisting of a collection of tree-structured
classifiers {h(x,
k), k = 1, ...} where the {
k} are independent identically dis-
tributed random vectors and each tree casts a unit vote for the most popular class
at input x [19]. The generalization error for this algorithm depends on the strength
of single trees and from their correlations through the raw margin functions. The
upper bound, instead, tell us that smaller the ratio of those quantities, better the RF
performance. To improve the model accuracy by keeping trees strength, the corre-
lation between trees is decreased and bagging with a random selection of features
is adopted. Bagging or Bootstrap Aggregating, is a method designed to improve the
stability and accuracy of machine learning algorithms. It also reduce variance and
minimizes the risk of overfitting. Given a training set of size n, bagging generates
m new training sets, each of size p, by sampling from the original one uniformly
and with replacement. This kind of sampling is known as a bootstrap sample. The
m models are fitted using the m bootstrap samples and combined by averaging the
output (for regression) or voting (for classification). Bagging is useful because, in
addition to improving accuracy when using random features, it provides an estimate
of the generalized error of the set of trees and the strength and correlation of trees.
The estimation is done out-of-bag. Out-of-bag means that the error estimate of each
pair (x, y) is made on all those bagging datasets that do not contain that given pair.



90 M. Vicedomini et al.

3.2 The Nadam, RMSProp and Adadelta Classifiers

The simplest optimization algorithm is the Gradient Descent, in which the gradient
of the function to be minimized is calculated. This depends on the parameter θt−1.
Only a portion of the gradient is used to update the parameters; this portion is given
by the parameter η:

⎧
⎪⎨

⎪⎩

gt ←− ∇θt−1 f (θt−1 − ημmt−1)

mt ←− μmt−1 + gt
θt ←− θt−1 − ηmt

where m is the so-called momentum vector, used to accelerate the update of the
learning function, while μ is the decay constant. These two terms increase the speed
of gradient decreasing in the direction where the gradient tends to remain constant,
while reducing it where the gradient tends to oscillate.

Nadam is a modified version of the Adam algorithm, based on the combination
between the momentum implementation and the L2 normalization. This type of
normalization changes the η member, dividing it by the L2 norm of all previous
gradients.

Adadelta is a variant that tries to reduce the aggressive, monotonically decreasing
learning rate. In fact, instead of accumulating all past squared gradients, it restricts the
window of accumulated past gradients to some fixed size w. This has the advantage
of compensating for the speeds along the different dimensions by stabilizing the
model on common features and allowing the rare ones to emerge. A problem of this
algorithm comes from the norm vector that could become so large to stop the training,
preventing the model from reaching the local minimum. This problem is solved by
RMSProp, a L2 normalization based algorithm, which replaces the sum of nt with a
decaying mean, characterized by a constant value ν. This allows the model to avoid
any stop of the learning process. For a detailed description of these models, see [9].

3.3 Parameter Space Exploration

The choice of an optimal set of features is connected to the concept of feature impor-
tance, based on the measure of a feature’s relevance [11]. Formally, the importance
or relevance of a feature is its percentage of informative contribution to a learning
system. We approached the feature selection task in terms of the all-relevant feature
selection, able to extract the most complete parameter space, i.e. all features consid-
ered relevant for the solution to the problem. This is appropriate for problems with
highly correlated features, as these features will contain nearly the same information.
With a minimal-optimal feature selection, choosing any one of them (which could
happen at random if they are perfectly correlated), means that the rest will never be
selected. The method �LAB, deeply discussed in [11], includes properties of both
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embedded and wrappers categories of feature selection to optimize the parameter
space, by solving the all-relevant feature selection problem, thus indirectly improv-
ing the physical knowledge about the problem domain.

3.4 Classification Statistics

In this work, the performance of the classification models is based on some statistical
estimators, extracted from a matrix known as confusion matrix [20].

The example shown in Table 3 is a confusion matrix for a binary classification.
Each entry ai j in this table is the number of records from class i predicted to be of
class j. The numbers a00 and a11 show correct classified records. The a01 records
named False Positive indicate wrong records classified in class 0, when their correct
classification was class 1; instead, a10 named False Negative show the records clas-
sified in class 1 but belonging to class 0. The total number of correct predictions is
a11 + a00, and the total number of wrong ones is a10 + a01. For a better comparison
between different models, summarizing the results through a confusion matrix is the
common way. We can do this using a performance metric, such as accuracy, defined
as follows:

Accuracy = a00 + a11
a00 + a11 + a01 + a10

A highest accuracy is the target of every classifier. Other important statistical
estimators, for a better understanding of the results for each class, are:

Purity = TruePosi tive

TruePosi tive + FalsePosi tive

Completeness = TruePosi tive

TruePosi tive + FalseNegative

Contamination = 1 − Purity = FalsePosi tive

TruePosi tive + FalsePosi tive

Table 3 Example of a binary confusion matrix
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F1Score = 2

(Purity)−1 + (Completeness)−1

Purity of a class is the percentage of correctly classified objects in that class,
divided by the total classified objects in that class. Also named as precision of a
class.

Completeness of a class is the percentage of the correctly classified objects in that
class divided by the total amount of objects belonging to that class. Also named as
recall of a class.

Contamination of a class is the dual measure of purity.
F1-Score of a class is the harmonic mean between purity and completeness of that

class and it is a measure of the average trade-off between purity and completeness.

4 Experiments

In order to pursue the main goal of the present work, related to a deep analysis of SNe
in terms of their classification and characterization of the parameter space required
to recognize their different types, we relied on the two simulation datasets, one in
particular developed and specialized within the LSST project (see Sects. 2.1 and 2.2).
We preferred a statistical approach, by mapping the light curves into a set of statis-
tical features. The classification with statistical data have been performed through
the comparison of different types of classifiers, respectively, Nadam, RMSProp,
Adadelta and Random Forest.

A data pre-processing phase was carried out on the PLAsTiCC dataset, based on a
pruning on the flux and related error, in order to reduce the amount of negative fluxes
presentwithin data,which could affect the learning capability of themachine learning
models. On the SNPhotCC dataset, both the errors in the flux and the quantity of
negative fluxes were such that it was not deemed necessary to perform the pruning.
The curves in the PLAsTiCC dataset were selected in successive steps so as to
minimize the presence of negative fluxes, reaching, where possible, a subset of about
35,000 light curves per type. In the SNPhotCC dataset, on the other hand, all the
given 5088 SN-Ia curves were selected and the type II curves were reduced so as
to balance the classes; the other types of SNe have been discarded, due to their
negligible amount available.

The sequence of classification experiments followed an incremental complexity,
starting from the most simple exercise on the PLAsTiCC dataset, i.e. the separation
between periodic and non-periodic objects (P Vs NP), expected to be well classified
due to their very different features within any parameter space. In terms of initial
minimization of negative fluxes, it was decided to apply the following replacement:
for each class of objects, the observations related to the same day were grouped, by
taking the least positive flux value. This value has been replaced to all the negative
fluxes of that day.
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As expected, the classifiers revealed a high capability to disentangle periodic
from non-periodic objects. Therefore, in all further experiments we excluded peri-
odic sources, by focusing the exclusive attention to variable objects, increasing the
complexity of classification, by considering different sub-classes of transients and
evaluating the performances of the selected machine learning classifiers.

The next step was, in fact, to recognize the SNe from all the other non-periodic
objects available in the dataset (SNe Vs All). But, preliminarly, we tested different
methods for replacing the negative fluxes. For instance, in addition to the first men-
tioned method (e.g. minimum positive flux extracted from observations within the
same day), a second method was chosen, in which negative fluxes were replaced
by the constant number 0.001, considered as the absolute minimum flux emitted by
the sources. We tried also a third method, in which the negative fluxes were sim-
ply excluded from the input dataset, without any replacement. In theory, such third
method was considered the worst case, since it would cause a drastic reduction of
the light curve sample available. As we will show, the second method (the constant
minimum flux value), obtained the best classification performances for all classifiers.
Therefore, it was used as the reference for all further classification experiments.

The subsequent experiments concerned some fine classifications of most inter-
esting SNe types, starting from the classic case of SNIa versus SNII types, followed
by a mix of SNIa versus Superluminous SNe I (SNIa Vs SL-I), concluding with
the most complex case, based on the multi-class experiment, in which we tried to
simultaneously classify all six different types of SNe (six-class SNe).

Besides the negative flux replacement, we investigated also the feature selection
problem, in order to identify the most significant parameter space able to recognize
different types of SNe. After the selection process we verified that such reduced
amount of data dimensions could maintain sufficiently high the classification perfor-
mances.We tried also tomaintain uniform the number of features among the different
use cases, although respecting their statistical importance, exploring the possibility
to find a common parameter space, suitable for all classification cases.

The SNIa versus SNII use case was also performed on the SNPhotCC dataset,
since this dataset was composed almost exclusively by such two types of SNe. The
results were then comparedwith those performed on the PLAsTiCC dataset, deprived
of the u and y bands for uniformity with the SNPhotCC dataset bands, in order to
maximize the fair comparison.

In summary, in this work five series of experiments were performed on the PLAs-
TiCC dataset and one on the SNPhotCC dataset. Such experiments were chosen
hierarchically and considering the most important goal of this work, i.e. the fine
classification of SNe types. An overview of the followed procedure is shown in
Fig. 4.
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Fig. 4 Summary of the procedure designed and followed along the experiments
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4.1 Data Pre-processing

From the whole PLAsTiCC dataset a maximum of 200,000 objects per class was
randomly extracted (whenever possible). For each class, a pruning in flux and its
error was performed. While, no any pruning was done on the SNPhotCC dataset.
The Table 4 shows the limits derived from pruning.

After this first skimming, the amount of objects for the various classeswas reduced
to a maximum of about 35,000 curves. The reduction for classes with more than 35 K
objects was driven by the choice of the curves with the least number of observations
with negative fluxes and with at least 6 observations per band.

Due to the residual presence of negative fluxes, we started their handling by
trying the following replacement method. By considering all the curves of a class,
we checked all the observations of a given day. If in that day there was a negative
or zero flux, then it was replaced with the lowest positive flux present. Else if only
negative fluxes were present, they were replaced with the lowest positive flux of the
previous day. This replacement has been applied to every day, for all curves and for
all classes. An example of the replacing method is shown in Table 5.

Since 19 features have been chosen for our statistical approach, by considering 6
bands in PLAsTiCC, a total of 114 features composed the original parameter space.

After the composition of statistical datasets, some light curves included some
missing entries, or NaN (Not-a-Number), causing the exclusion of those objects
from the datasets, due to their unpredictable impact on the training of classifiers. The
total amount of light curves per class is reported in Table 6.

4.2 Periodic Versus Non Periodic

This was the first classification experiment, performed only on PLAsTiCC simu-
lation. Having no need, at this level, to optimize the treatment of negative fluxes,
we used only the method previously described (Sect. 4.1). We had RR lyrae, Mirae
variables and Eclipsing Binaries in the periodic class (P) and all the others in the non
periodic (N P) class. To balance the classes we excluded some objects in the second
class, as shown in Table 7. The random partitioning percentage between training and
test sets was fixed, respectively, to 80% and 20%.

This series of experiments, as expected, being the simplest given the intrinsic
difference of the objects involved, did not reveal any surprise. All estimators showed
a great efficiency to recognize periodic objects from the variables (non periodic) ones
(Table8).
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Table 4 Table of values retained after data pruning on the classes of PLAsTiCC dataset

Object Band Flux Flux error Object Band Flux Flux error

AGN u >–50 <160 M-Dwarf u >–60 <300

g, r >–50 <160 g, r >–60 <100

i, z >–50 <160 i, z >–60 <80

y >–50 <160 y >–60 <180

E. Binary u >–200 <800 Kilonova u >–10 <60

g >–800 <800 g >–10 <20

r >–900 <800 r >–10 <20

i >–800 <800 i >–10 <25

z >–1100 <800 z >–20 <40

y >–800 <650 y >–30 <70

Mirae u >–30 <2500 μ Lens u >–40 <1700

g >–20 <800 g >–20 <250

r >–50 <900 r >–30 <400

i >–1200 <1700 i >–40 <300

z >–8000 <3000 z >–60 <400

y >–11000 <3300 y >–90 <500

RR Lyrae u >–1300 <1500 SN Ia u >–50 <1350

g >–6000 <1500 g >–20 <500

r >–6000 <1500 r >–20 <400

i >–4500 <1500 i >–40 <170

z >–4500 <1200 z >–60 <200

y >–5500 <1200 y >–100 <300

SN Iax u >–30 <550 SN Ia91bg u >–30 <800

g >–10 <150 g >–20 <200

r >–20 <150 r >–20 <200

i >–30 <100 i >–30 <150

z >–50 <125 z >–40 <150

y >–90 <200 y >–90 <325

SN Ibc u >–50 <800 SN II u >–40 <200

g >–20 <200 g >–20 <100

r >–20 <150 r >–20 <100

i >–30 <100 i >–30 <100

z >–60 <125 z >–60 <100

y >–110 <350 y >–110 <150

SL SN I u >–30 <1000 TDE u >–20 <200

g >–10 <150 g >–10 <50

r >–15 <125 r >–10 <50

i >–20 <100 i >–20 <50

z >–40 <100 z >–30 <75

y >–70 <175 y >–60 <150
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Table 5 Example of the negative fluxes replacement within the PLAsTiCC catalogue

ID MJD Flux

Before After

1 59820.0015 –25.154862 0.284215

2 59820.0238 15.458932 15.458932

3 59820.1234 –5.848961 0.284215

4 59820.4451 –20.548951 0.284215

5 59820.8251 0.284215 0.284215

6 59820.0234 –9.542318 0.284215

7 59820.6234 10.854215 10.854215

Table 6 Summary of the light curves composing the simulated datasets

Dataset Object Curves Object Curves

PLAsTiCC AGN 34666 E. Binary 34484

Kilonova 232 M-Dwarf 34849

Mirae 1154 μ Lens 1187

RR Lyrae 32698 SN Ia 34953

SN Iax 34977 SN Ia 91bg 34923

SN Ibc 34932 SN II 34828

SL SN I 34959 TDE 14023

Total objects 361711

SNPhotCC SNIa 5088 SNII 12027

Total objects 17115

Table 7 Summary of the sources belonging to the PLAsTiCC dataset in the P (periodic class)
versus N P (non periodic class) use case divided in training (80%) and test (20%) sets

Object Number of curves Object Number of curves

Training Test Training Test

RR Lyrae 26158 6540 Kilonova 187 46

E. Binary 27587 6897 M-Dwarf 6001 1501

Mirae 923 231 μ Lens 950 238

AGN 6001 1501 SN Ia 6001 1501

SN Iax 6001 1501 SN Ia 91bg 6001 1501

SN Ibc 6001 1501 SN II 6001 1501

SL SN I 6001 1501 TDE 6001 1501

Total P training 54668 Total NP training 55146

Total P test 13668 Total NP test 13793
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Table 8 Summary of the best results (in percentages) for the 4 classifiers in the classification
experiment P versus NP. For Nadam, RMSProp and Adadelta models, a decay value of 10−5 and
a learning rate of 0.0005 were assigned

% Type RF Nadam RMSProp Adadelta

Accuracy – 99 97 98 96

Purity NP 99 97 99 95

P 99 98 98 97

Completeness NP 99 98 98 97

P 99 97 99 95

F1 Score NP 99 98 98 96

P 99 97 98 96

4.3 Handling of Negative Fluxes

In both simulated catalogues, as introduced in Sect. 4, the presence of negative fluxes
required an investigation on how to replace them in order to minimize their negative
impact on the learning efficiency of machine learning models. Therefore, it was
decided to approach this problem in three ways.

The first (named as M1) was to replace their value as introduced in Sect. 4 (and
preliminarly used for the Periodic versus Non Periodic classification experiment,
described in Sect. 4.2): for each class of objects, the observations related to the same
daywere grouped, by taking the least positive flux value. This value has been replaced
to all the negative fluxes of that day.

The second approach (named as M2) was to replace the negative fluxes with a
constant value of 0.001, considered as the minimum flux emitted by the sources.

The third solution (M3) consisted into the total rejection of negative fluxes from
the dataset, without any replacement.

The impact on classification accuracy has been analyzed by comparing the three
solutions in the SNe versus All (the class All includes the rest of transient types)
classification experiment on the Plastic dataset and the SNIa versus SNII experi-
ment on the SNPhotCC dataset. In both cases, the data have been treated with the
three replacement types, producing different amount of objects per class. The entire
composition of the datasets for the three methods is shown in Table 9, while the
composition of the classes of SN, All, SNIa and SNII are shown in Table 10.

The results of the two experiments are shown, respectively, in Tables 11 and 12.
The results indicated that, on average, in the case of the PLAsTiCC dataset, the
second method (M2) obtained a better accuracy, with some exception in favor of
M3. In the case of SNPhotCC dataset, on the other hand, M2 and M3 resulted more
close in terms of classification efficiency. Therefore, since we were mostly interested
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Table 9 Summary of sources of datasets for each replacing method adopted for negative fluxes

Object Number of curves Object Number of curves

M1 M2 M3 M1 M2 M3

PLAsTiCC AGN 34666 34666 34082 Kilonova 232 232 229

μ Lens 1187 1187 1144 M- Dwarf 34849 34849 34191

SN Ia 34953 34891 34423 SL SN I 34959 34959 34750

SN Iax 34977 34977 34680 SN Ia
91bg

34923 34923 34559

SN Ibc 34932 34932 34437 SN II 34828 34771 34393

TDE 14023 14023 13985

Total objects M1: 294529 Total objects M2: 294410 Total objects M3: 290873

SNPhotCC SNIa 5088 5088 5086 SNII 5088 5088 5077

Total objects M1: 10176 Total objects M2: 10176 Total objects M3: 10163

Table 10 Summary of sources of training and test sets for each negative flux replacing method

M1 M2 M3

Object Training Test Training Test Training Test

PLAsTiCC AGN 27732 6934 27732 6934 27266 6816

Kilonova 186 46 186 46 183 46

μ Lens 949 238 949 238 915 229

M-Dwarf 27879 6970 27879 6970 27353 6838

SN Ia 12001 3001 11975 2994 11802 2954

SL SN I 12001 3001 12001 3001 11935 2979

SN Iax 12001 3001 12001 3001 11900 2976

SN Ia
91bg

12001 3001 12001 3001 11866 2975

SN Ibc 12001 3001 12001 3001 11828 2951

SN II 12001 3001 11983 2992 11835 2970

TDE 11218 2805 11218 2805 11188 2797

Total SN 72006 18006 71962 17990 71166 17805

Total All 67964 16993 67964 16993 66905 16726

SNPhotCC SNIa 4071 1017 4071 1017 4062 1016

SNII 4071 1017 4071 1017 4070 1015

to directly compare the classification performances between the two datasets, by
considering also the drastic reduction of available sources using the M3 method, we
definitely selected and applied the M2 to both datasets.
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Table 11 Comparison among the three replacing methods for negative fluxes on the PLAsTiCC
dataset in the classification case SNe versus All. For Nadam, RMSProp and Adadelta a learning rate
of 0.001 and a decay value of 10−5 were chosen. The statistics are expressed in percentages
Dataset Use case Algorithm Class Estimator M1 M2 M3

PLAsTiCC SNe versus
All

RF SN Purity 86 91 85

Completeness 94 93 91

F1-score 90 92 88

All Purity 93 92 90

Completeness 83 90 83

F1-score 88 91 86

Nadam SN Purity 77 84 83

Completeness 82 78 85

F1-score 79 81 84

All Purity 80 78 84

Completeness 73 85 82

F1-score 76 81 83

RMSProp SN Purity 85 89 87

Completeness 83 89 91

F1-score 84 89 89

All Purity 83 88 90

Completeness 85 89 86

F1-score 84 88 88

Adadelta SN Purity 80 85 85

Completeness 84 86 87

F1-score 82 86 86

All Purity 82 85 86

Completeness 78 84 84

F1-score 80 85 85

4.4 Optimization of the Parameter Space for Transients

After choosing how to handle the negative fluxes, we investigated the statistical
parameter space (PS) of the two simulated datasets, in order to explore the possibility
to reduce the dimensionality of the classification problem (feature selection) and to
analyze the impact of the resulting optimized PS on the classification efficiency for
each particular type of classes involved in all cases, as well as the possibility to find
a common set of relevant features, suitable to separate different types of transients.
We applied the �LAB algorithm, introduced in Sect. 3.3, to both datasets in various
classification use cases (except the preliminary experiment P Vs NP), obtaining an
optimized parameter space for each of them. The analysis of feature commonalities
among all classification experiments is shown in Fig. 5. In particular, the feature
selection of the SNIa versus SNII use case has been done on the PLAsTiCC dataset
deprived of the u and y bands, for uniformity with the SNPhotCC dataset in terms of
direct comparison.
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Table 12 Comparison among the three replacing methods for negative fluxes on the SNPhotCC
dataset in the classification case SNIa versus SNII. For Nadam, RMSProp and Adadelta a learning
rate of 0.001 and a decay value of 10−5 were chosen. The statistics are expressed in percentages
Dataset Use case Algorithm Class Estimator M1 M2 M3

SNPhotCC SNIa
versus SNII

RF SNIa Purity 91 95 91

Completeness 94 97 93

F1-score 93 96 92

SNII Purity 94 97 93

Completeness 91 95 91

F1-score 92 96 92

Nadam SNIa Purity 86 91 92

Completeness 92 92 94

F1-score 89 92 93

SNII Purity 91 92 94

Completeness 86 91 92

F1-score 88 91 93

RMSProp SNIa Purity 91 92 93

Completeness 93 96 94

F1-score 92 94 94

SNII Purity 93 96 94

Completeness 91 92 93

F1-score 92 94 94

Adadelta SNIa Purity 89 86 92

Completeness 92 88 92

F1-score 91 87 92

SNII Purity 92 88 92

Completeness 89 85 92

F1-score 90 87 92

From the analysis of the histogram of Fig. 5 it was possible to extract a common
optimized parameter space, composed by relevant features with higher percentage of
common occurrences among various classification use cases (the cumulative mea-
surement process is explained in the caption of the Fig. 5). The extraction was done
trying also to balance the different amount of relevant features provided by �LAB
in every classification case with their percentage of commonality among different
cases, with the aim at extracting the same number of relevant features in all cases.
The best compromise found is reported in Table 13 and corresponds to 78 extracted
features (on a total of 114) suitable for the six-band cases (ugrizy in PLAsTiCC) and
52 (on a total of 76) for the four-band cases (griz in SNPhotCC). These two result-
ing optimized (reduced) parameter spaces have been used in the classification cases
described in the next sections, each time by comparing the classification efficiency
between the complete and the reduced parameter spaces.

By looking at the optimized parameter spaces obtained (Fig. 5), extremely inter-
esting is the presence of some common features among the various classification
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Fig. 5 Cumulative statistical analysis of the feature selection performed with the method �LAB
on different use cases. The results include the four classification cases on PLAsTiCC (SN Vs All,
SNIa Vs SNII, SNIa Vs SL-I, six-class SNe) and the single case SNIa versus SNII on SNPhotCC.
The indicated features are grouped per statistical type, including all their available bands. After
having calculated the various feature rankings for each classification case with �LAB, ordered by
decreasing importance, the vertical bars shown in the histogram represent the percentage of common
occurrences of each feature type, among various classification use cases, within, respectively, the
first 25% (cyan), 50% (blue), 75% (yellow) and 100% (gray) of feature rankings. While dotted red
bars indicate the percentage of common occurrences of rejection among various feature rankings

cases. In particular, the Amplitude (ampl) shows a crucial role for the classification
of various SNe types. Also important is the Standard Deviation (std), which reaches
79.2% of common occurrences. Equally interesting appears the high percentage of
common rejections of Median Buffer Range Percentage (mbrp), Magnitude Ratio
(mr) and R Cor Bor (rcb). Within most of the light curves of the datasets used, the
average value of the mbrp, which is the percentage of points in an interval of 10% of
the median flux, is very high. This shows that most of the light curves are relatively
contained within the flux extension. The mr feature, the percentage of points above
the median magnitude, has always values greater than 40%, with a standard devia-
tion of a lower order of magnitude, except in the case of the six-class SNe problem,
in which the standard deviation is comparable with the mr value. This shows that
most of the light curves are basically symmetrical in magnitude. Finally, the rcb has
an average value of about 30% with a comparable standard deviation. Therefore, it
ranges over the whole spectrum of possible values without any class distinction.

The ampl, which from a physical point of view represents the half-amplitude, in
magnitude, of the light curves, is the most important feature in all use cases and it is
related to the different distribution of objects in the classes. In the SNe versus All use
case, the class of SNe shows a bi-modal distribution, while the class All shows an
alternation between bi-modal and uni-modal distributions, with different peaks from
the SNe distributions. In the SNIa versus SL-I use case, the SNe Ia have a bi-modal
distribution, unlike the SL-I type, which instead is uni-modal. The six-class SNe use
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Table 13 Summary of the resulting common optimized parameter spaces from the analysis of
the feature selections. Each feature listed is intended to include all its available bands. First four
use cases (columns 2 to 5) refer to the classification cases approached on PLAsTiCC with such
optimized PS in six bands (ugrizy), while last column is referred to the classification experiment
done with SNPhotCC in four bands (griz). For PLAsTiCC the optimized PS include 78 features,
while SNPhotCC is composed by 52. Take into account that the feature fprXXband includes 5
different types per band group (See Sect. 2.3 for details)

Feature [SNe Vs All] [SNIa Vs
SNII]

[SNIa Vs SL-I] [six-class
SNe]

[SNIa Vs
SNII]

PLAsTiCC SNPhotCC

amplband x x x x x

pdfpband x x x x

msband x

madband x x x x x

stdband x x x x x

skewband x x x x x

fprXXband x x x x x

kurtband x x x x x

lsband x x x x x

ltband x x x x x

Totals PLAsTiCC:
78

SNPhotCC:
52

case shows that the SNe Ia have a similar peak w.r.t. the sub-types Iax, Iabg91, SL
and the Ibc. The SNe II instead, show an unexpected shape similarity with the SNe
Ia in the PLAsTiCC simulation, and this should explain a classification efficiency in
the SNIa versus SNII case smaller than what obtained on the SNPhotCC data (see
Sect. 4.6).

The std, the deviation from the mean flux, has the same trend of the ampl, with
bi-modal and uni-modal distributions and with peaks at different values.

The fpr, the flux percentage ratio, related to the sampling of the light curve assum-
ing a relevance with the higher flux values, shows that, in the SNe versus All case
and with the griz bands, there are two distributions with distinguishable peaks. In the
six-class SNe case, the riz bands, with the wider flux ratios, contribute to solve the
envelope of the 6 classes. In the SNIa versus SL-I case, the different distributions can
be particularly identified in the rizy bands, again in the broader flux ratios such as 50,
65 and 80. Finally, in the SNIa versus SNII problem the distinction is more complex
and only in few riz band cases it is possible to see the two different distributions.

In the other relevant features shown in Fig. 5, we do not infer distinct distributions
in the various use cases, but only different fluctuations around the same distribution.
This means that all the curves of all the classes share, more or less, the same distri-
bution w.r.t. the flatness of the curve (kurt), the symmetry of the curve (skew), the
slope deriving from the linear fit (lt), the period obtained from the peak frequency of
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the Lomb Scargle Periodogram (ls), the ratio of difference between percentiles and
the median (pdfp) and finally the median of deviations from the median (mad). Since
these features have proved to be highly relevant, this implies that those fluctuations in
the class distributions contribute substantially to the classification of different types
of SNe. Finally, in the six-class SNe problem, another feature appears relevant, which
is the maximum difference in magnitude between two successive epochs (ms), pro-
viding, slightly in the u band and in a more consistent way in the y one, fluctuations
suitable in principle for the resolution of the more complex classification.

4.5 Supernovae Versus All

In this use case we had SNe type Ia, Iax, Ia 91bg-like, Ibc, II and SL-I within the
SNe class and all the other object types, except the excluded periodic ones, in the All
class. We performed the experiments on the PLAsTiCC dataset with the 4 classifiers
using, respectively, the entire set of statistical features available (114) and with the
optimized parameter space (78). The amount of objects for each type included in the
two classes is shown in Table 14.

Among Nadam, RMSProp and Adadelta, the best performances were obtained
with the RMSProp in both cases (whole and optimized parameter spaces). While
Random Forest reached the best classification performances. The statistical results
are shown in Table 15.

Table 14 Summary of the objects belonging to the PLAsTiCC dataset, used for the SNe versus All
experiment, randomly partitioned in training (80%) and test (20%) sets

Type Training Test

SN Ia 11975 2994

SN Iax 12001 3001

SN Ia91bg 12001 3001

SN Ibc 12001 3001

SN II 11983 2992

SL SN I 12001 3001

Kilonova 186 46

M-Dwarf 27879 6970

μ Lens 949 238

TDE 11218 2805

AGN 27732 6934

Total SN 71962 17990

Total All 67964 16993
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Table 15 Summary of the statistical results for the 4 classifiers with, respectively, all the features
and the 78 selected. For Nadam, RMSProp and Adadelta, the values of 10−5 and 0.0005 were
assigned to the decay and learning rate hyper-parameters, respectively

Random forest Nadam RMSProp Adadelta

Features All 78 All 78 All 78 All 78

%
Accu-
racy

– 92 92 85 86 90 90 86 85

%
Purity

SN 91 91 85 86 91 91 86 84

All 92 92 85 86 89 90 86 86

%
Com-
plete-
ness

SN 93 93 86 87 90 90 87 87

All 90 90 84 85 90 90 85 83

% F1
Score

SN 92 92 86 87 90 87 87 86

All 91 91 84 86 90 86 86 84

4.6 Supernovae Ia Versus II

In this experimentwe considered onlySNeof type Ia and II. In this case itwas possible
to use both SNPhotCC and PLAsTiCC datasets, since in the case of SNPhotCC, these
two types of SN were available. The amount of objects used is shown in Table 16.

We performed the experiment with the 4 classifiers using, respectively, all the
features and the amounts related to the two optimized feature sets, respectively, 78 for
PLAsTiCC and 52 for SNPhotCC. For a direct comparison between the SNPhotCC
and PLAsTiCC datasets, we also considered a reduced version of the PLAsTiCC
dataset, by excluding the u and y bands for uniformity with the SNPhotCC catalogue
in terms of bands available. The statistical results are reported in Table 17.

Table 16 Summary of the objects belonging to the datasets used for the SNIa versus SNII experi-
ment on PLAsTiCC and SNPhotCC, randomly partitioned in training (80%) and test (20%) sets

Dataset Type Number of curves

Training Test

PLAsTiCC SN Ia 27964 6990

SN II 27983 6966

Total 55947 13956

SNPhotCC SN Ia 4071 1017

SN II 4071 1017

Total 8142 2034
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In terms of classification performance, it appears evident the discrepancy between
the two datasets. The capability of classifiers to recognize the two classes is higher on
SNPhotCC and this implies a strong dependency of learning models from the overall
accuracy of the simulations. Furthermore, the very similar percentages among the
whole feature set and the optimized versions probes the capability of the feature
selection method �LAB to extract a set of relevant features, able to preserve the
level of classification efficiency.

4.7 Superluminous SNe Versus SNe I

In the SNIa versus SL-I experiment, the three sub-classes of SNe, Ia, Ia91bg and Iax
have been mixed in the same percentage and then classified against Superluminous
SNe I. We performed the experiments with the 4 classifiers using all the features and
the 78 selected with �LAB. The amount of objects per type is shown in Table 18.

The statistical results of the classification are shown in Table 19.
By analyzing the results, it is noticeable the lower performance of Adadelta w.r.t.

other classifiers, where Random Forest appeared the best one for all estimators. The
similar results obtained for both parameter spaces confirm the validity of the feature
selection.

In terms of error percentages on the SN I class (all Ia sub-types), Table 20 reports
the level of contamination for each sub-type in the experiment with all features and
using Random Forest.

As shown in Table 20, the most contaminated sub-class is SNIax, which indicates
its high difficulty of recognition among other SN types.

Table 18 Summary of the objects belonging to the dataset used for the SNIa versus SL-I experiment
on PLAsTiCC, randomly partitioned in training (80%) and test (20%) sets

Type Number of curves

Training Test

SN Ia 9323 2331

SN Iax 9323 2331

SN Ia91bg 9323 2331

SLSN I 27967 6992

Total Ia 27969 6993

Total SL 27967 6992
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Table 19 Summary of the statistical results for the 4 classifiers on the SNIa versus SL-I experiment,
with, respectively, all the features and the 78 of the optimized parameter space of PLAsTiCC dataset.
For Nadam, RMSProp and Adadelta, the values of 10−5 and 0.0005 were assigned to the decay and
learning rate hyper-parameters, respectively

Random forest Nadam RMSProp Adadelta

Features All 78 All 78 All 78 All 78

%
Accu-
racy

– 88 87 81 82 85 82 71 70

%
Purity

SL-I 83 80 77 74 81 77 71 70

SN Ia 93 93 85 89 90 87 71 70

%
Com-
plete-
ness

SL-I 94 95 87 92 91 89 71 70

SN Ia 80 76 74 69 79 74 72 71

% F1
Score

SL-I 88 87 82 82 86 83 71 70

SN Ia 86 84 79 78 84 80 71 70

Table 20 Summary of the contamination analysis among all SN Ia sub-types obtained by the
Random Forest, with the complete parameter space, on the SNIa versus SL-I experiment

Class Total Correctly
classified

Wrongly classified

SN Ia 2331 2328 3 ≈0%

SN Iax 2331 1508 823 35%

SN Ia91bg 2331 1779 552 24%

4.8 Simultaneous Classification of Six SNe Sub-Types

Last classification experiment performed was the most complex, because we tried to
classify simultaneously all the six classes of SNe available in the PLAsTiCC dataset.
The experiments with the 4 models were performed using all the features and the 78
selected by the optimization procedure. The amount of objects per class is shown in
Table 21.

The statistical results of the six-class classification is reported in Table 22.
Also in this case, the Random Forest obtained best results and the similar statistics

between the whole and optimized parameter space confirm the good performances
of the feature selection method. By analyzing the classification estimators for the
single classes, the SNIa91bg showed a high difficulty to be recognized, while Ia91bg
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Table 21 Summary of the objects belonging to the dataset used for the six-class SNe experiment
on PLAsTiCC, randomly partitioned in training (80%) and test (20%) sets

SN class Number of curves

Training Test

Ia 27912 6979

Ia91bg 27938 6985

Iax 27981 6996

II 27816 6955

Ibc 27945 6987

SL I 27967 6992

Table 22 Summary of the statistical results for the 4 classifiers on the six-class SNe experiment,
with, respectively, all the features and the 78 of the optimized parameter space of PLAsTiCC dataset.
For Nadam, RMSProp and Adadelta, the values of 10−4 and 0.001 were assigned to the decay and
learning rate hyper-parameters, respectively

Random forest Nadam RMSProp Adadelta

Features All 78 All 78 All 78 All 78

% Accu-
racy

– 66 62 53 55 60 61 48 48

% Purity SN Ia 79 79 68 71 73 76 62 59

SN Ia
91bg

82 78 64 70 79 81 52 58

SN Iax 58 57 46 48 52 51 39 34

SN II 74 75 58 61 68 66 56 55

SN Ibc 40 42 32 34 34 35 32 32

SL SN I 62 59 48 47 56 56 47 50

% Com-
plete-
ness

SN Ia 77 77 56 57 68 67 55 48

SN Ia
91bg

25 30 27 20 20 17 21 16

SN Iax 33 37 16 20 26 27 21 15

SN II 79 79 79 77 77 78 67 67

SN Ibc 64 57 47 47 54 58 38 47

SL SN I 91 91 76 88 88 85 85 87

% F1
Score

SN Ia 78 78 62 63 71 71 58 53

SN Ia
91bg

39 44 38 31 32 28 30 26

SN Iax 42 45 23 29 35 35 27 21

SN II 76 77 67 68 72 72 61 60

SN Ibc 49 48 38 40 42 44 34 38

SL SN I 73 72 59 62 68 67 61 63
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Table 23 Percentages of contamination in the six-class SNe classification results

and Iax types were often confused for SNIbc. SL type resulted the most complete,
although the puritywas reduced by the contamination of SNIbc andSNIax (Table 23).

Finally SNIa andSNII types, although reducing their efficiencyw.r.t. the dedicated
two-class experiment, maintained a sufficient level of classification.

5 Discussion and Conclusions

The present work is related to the important problem of classification of astrophysical
variable sources, with special emphasis to SNe. Their relevance in terms of cosmo-
logical implications is well known, causing a special attention to the problem of
recognizing different types of such astronomical explosive events.

To face this challenge, the SNPhotCC dataset and the PLAsTiCC dataset have
been chosen to have a statistical sample, albeit of simulations, as wide as possible.
Based on the objects in the datasets, a test campaign with increasing complexity has
drawn up. To approach the problemwe have chosen 4 machine learning methods that
require a transformation of light curves into a series of statistical features, potentially
suitable to recognize different source types.

In the construction of statistical datasets, the presence of negative fluxeswithin the
observations had to be solved, due to their negative impact on the learning capability
ofMLmodels.Working directly with the light curves, their shape is relevant, thus the
presence of negative fluxes is not a big problem, because it is always possible to trans-
late the curve along the ordinate axis. In the statistical parameter space instead, since
there are features requiring the conversion to magnitudes and since the translation
would alter the features values in an unpredictable way, the negative fluxes must be
replaced in some way. To solve this problem we tried three approaches, as described
in Sect. 4.3. In the first one, the atmospheric and instrumental setup conditions were
respected, by grouping the observations taken in the same day; this solution evi-
dently introduced noise, by altering the phase within groups of light curves. The
second solution, which proved to be the best candidate, replaced negative fluxes
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with a positive number, by maintaining unchanged the sampling, and introducing a
lower contribution of noise within data. Finally, the third method removed the obser-
vations with negative fluxes, thus highly sub-sampling the light curves. From the
classification results obtained adopting the second solution, we were confident that
the deformations undergone by the light curves were not able to alter their original
nature nor to significantly reduce the performances in both simulation datasets used.

The parameter space analysis was approached with the �LAB algorithm to per-
form a reduction of dimensionality of the classification use cases and to investigate
the possibility to identify a common set of features that could be considered suit-
able to recognize different types of transients. From the comparison between the
original and optimized feature spaces, in terms of classification performance, the
adopted method resulted extremely reliable to find a reduced set of relevant fea-
tures, able to preserve the amount of information required to maintain the same level
of classification efficiency. Starting from the �LAB results, a statistical analysis
was performed, which highlighted some interesting aspects related to the physical
nature of transients and SNe in particular. The Amplitude feature, representing the
semi-difference between the minimum and maximum of the light curve, resulted the
most relevant. Since the various classes of SNe have different light peaks, the semi-
difference of the amplitude of the curve is typical of each different type of object.
Also relevant resulted the standard deviation, MAD, and all features related to the
percentiles or characterizing the light curve shape, such as skewness and kurtosis.
The relevance of percentiles is related to the different decay time of the light radia-
tion for the various types of SNe. Although a SN is not a periodic event, the feature
related to the Lomb-Scargle periodogram has a high importance, because it is able
to classify the SNe with a different periods of light decay. On the other hand, all the
feature related with thresholds on the number of points around the median (such as
the rcb, mr and mbrp), were rejected by our feature analysis method, probably due
to their average values too close to their limits.

Themost important outcome of the parameter space analysiswas the identification
of a feature set common to all classificationuse cases that revealed a coherent behavior
in terms of classification performances obtained in all cases, always well close to the
efficiency arising from the original parameter spaces.

In terms of pure classification among different types of sources, the high capa-
bility to distinguish between Periodic and Non Periodic objects confirmed what
expected and posed ML methodology as a good candidate to approach the transient
classification problem in Astronomy.

Once removed periodic objects, the high completeness (93%) reached in classify-
ing SNe in the SNe versus All case (Fig. 6), confirmed that MLmethods, in particular
the Random Forest, could be suitable to distinguish SNe from other transients.

We wanted to verify in the remaining 7%, which was the most contaminating
among the different sub-types of SNe; both SNe Ia91bg and SNe Iax were found to
have the highest misclassification rate (12% of their test set). Moreover, from this
analysis it was revealed that SNIa and SNII have an error rate of about 1 per thousand,
a remarkable result compared to the other SNe error rates. For completeness, the
contamination was also verified for the All class, revealing that the AGN type has an
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Fig. 6 Histogram of the statistical results (in %) for the SNe versus All classification problem

Fig. 7 Histogram of the statistical results (in %) for the SNIa versus SL-I classification problem

error rate of 1 per thousand, while the M-Dwarf and the TDE are the classes with
the highest error rates (16%). Further experiments should be carried out to identify
the SNe classes with which these two different types of transients are confused and
to verify which features play a key role in their classification.

Another interesting casewas the classification between Super Luminous (SL) SNe
and the mixed Ia types, from which ML appeared able to recognize the SL category
with a completeness, in the best case, of 95% (Fig. 7).

Although further experiments could be in principle performed, from the results
obtained in this work, we can suppose to have identified a set of features suitable
to help the classification of the SNe Ia, II and SL. However, those able to classify
the sub-types Ia91bg and Iax are still unclear. Hopefully, with the availability of
real LSST data in the near future, tests with only these two sub-classes could be
conducted, with at most the addition of SNIbc, to evaluate which features could
result relevant to recognize such types of SNe.
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Application of Machine and Deep
Learning Methods to the Analysis of
IACTs Data

Alessandro Bruno, Antonio Pagliaro, and Valentina La Parola

Abstract The Imaging Atmospheric Cherenkov technique opened a previously
inaccessible window for the study of astrophysical sources of radiation in the very
high-energy regime (TeV) and is playing a significant role in the discovery and char-
acterization of very high-energy gamma-ray emitters. However, the data collected by
Imaging Atmospheric Cherenkov Telescopes (IACTs) are highly dominated, even
for the most powerful sources, by the overwhelming background due to cosmic-ray
nuclei and cosmic-ray electrons. For this reason, the analysis of IACTs data demands
a highly efficient background rejection technique able to discriminate gamma-ray
induced signal. On the other hand, the analysis of ring images produced by muons
in an IACT provides a powerful and precise method to calibrate the overall optical
throughput and monitor the telescope optical point-spread function. A robust muon
tagger to collect large and highly pure samples of muon events is therefore required
for calibration purposes. Gamma/hadron discrimination and muon tagging through
Machine and Deep Learning techniques are the main topics of the present work.
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1 Introduction

When high energy particles and photons enter the Earth’s atmosphere, they initiate a
chain reaction of particles known as an atmospheric cascade. Secondary relativistic
charged particles in the cascade emit Cherenkov light.

Imaging Atmospheric Cherenkov Telescopes (IACTs) can detect and image the
Cherenkov radiation, allowing the observation of gamma-rays from the ground.How-
ever, gamma-rays contribute only to a small fraction of the flux of cosmic rays. The
difficulty in suppressing the vast number of cosmic ray background events is one of
the aspects that limit the sensitivity of IACTs. In order to detect gamma-ray sources
an IACT analysis method must be able to perform an efficient background rejection,
that is to separate the gamma-ray induced signal from themuchmore prevalent back-
ground of hadron induced showers, through the identification of shape features in
the image. Luckily, the images generally contain sufficient information to separate
the gamma-ray signal from the dominant cosmic rays background and reconstruct
the arrival direction and energy of the primary.

Electromagnetic showers are characterized by an elliptically shaped shower image
whose major axis is directed towards the source. If the primary particle is a cosmic
ray, a hadronic shower develops. Although such hadronic showers often have elec-
tromagnetic sub-shower components as well, they lead to a typically more irregular
shape. Analysis of IACT images relies on the extraction of relevant features from the
camera pixel data.Whether those features are a vector of parameters representing the
image, such as the image moments, or the full photo-electron intensity count in each
pixel, in a Deep Learning approach they are automatically chosen by the network.

In general, Deep Learning concerns the application of complex Artificial Neural
Networks to hierarchical learning tasks. For computer vision, Convolutional Neural
Networks were designed specifically to perform image recognition tasks. We aim
to develop and test several Convolutional Neural Networks Deep Learning architec-
ture to determine the effectiveness of Deep Learning solutions over gamma/hadron
separation.

High energy muons generated by air showers can be detected via their ring signa-
ture. In this paper, muon tagging is achieved by means of Machine Learning based
on the extraction of relevant parameters from the data. We propose a feature set for
muon tagging in order to automatically identify them.

2 The Simulations

The production of Cherenkov light in a shower induced either by a photon or by a
particle in the atmosphere is a stochastic process. The shape, intensity and dimension
of the observed Cherenkov pool depend on several factors, and most of them cannot
be known with enough precision. The (unknown) height of the first interaction in the
atmosphere, for example, introduces a large spread in the dimension of the light pool
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at ground level, that reflects in large uncertainty in the evaluation of the energy of the
primary particle. For this reason, the use of detailed simulation sets with different
starting parameters and in different observing conditions is fundamental both for the
calibration of the telescopes and for the analysis of the real data.

Throughout this work, all data sets used for training the different networks com-
prise air showers produced by high energy photons and cosmic rays generated
by Monte Carlo simulations. These events are obtained by simulating the inter-
action of muons, gamma-rays and protons with the atmosphere using the CORSIKA
software tool [Heck, Pierog and Knapp, 2012, Astrophysics Source Code Library,
ascl:1202.006], that tracks the particles through the atmosphere while they undergo
reactions with the air nuclei. An appropriate ray-tracing code follows the Cherenkov
light produced by each shower when it is focused by the telescope mirrors. Finally,
the image of the shower as it is recorded by the IACT camera on the focal plane is
produced. The final image also includes the contribution of the night sky background.
Simulated data trigger the telescope sensors giving rise to images. The camera images
we produce at the end of the simulations are of size 56 × 56 pixels. Each pixel value
represents the signal intensity. We produced:

• Muons: a set of muon events with energy between 6 and 1TeV. Our final sample
consists of 1500 muons and 1500 non-muons (both photons and hadrons).

• Gamma-ray photons and hadrons: two sets of Gamma-ray photons and hadrons
simulations: one with standard night sky background, the second one with high
night sky background. Events are distributed according to a realistic spectrum
(with index -2.49 for the photons and −2.72 for the hadrons) between 3 and 100
TeV. We simulated 5075 photons and 5075 hadron events for each set.

3 The Muon Case

The optical throughput of an IACT is calibrated analyzing the image produced by
highly energetic muons.Muons induce Cherenkov light emission, which, if themuon
impact point is close to the optical axis, is imaged onto the focal plane as an arc or
a ring.

Muon tagging is achieved by means of Machine Learning based on the extrac-
tion, from the camera data, of relevant parameters such as the image moments, the
full photo-electron intensity count, the fullness and others. This task is not very
computationally demanding, while the choice of the best parameters is crucial.

3.1 Image Cleaning Method

Muon tagging is applied to images cleaned from the Night Sky Background (Fig. 1).
The cleaning maintains the basic shape of the signal and cancels isolated pixels. Our
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Fig. 1 Examples of muon
events before and after the
application of the cleaning
method

method is based on a two-step cut algorithm. The first step cancels out all the pixel
under a threshold τ . The threshold depends on the mean and standard deviation of
the data and is computed as:

τ = I + k · σI

where I average and root mean square are computed on the intensity of the image
pixels, with no distinction between signal and Night Sky Background. Our best
choice from trial and error for the value of k is k = 2.5.

The second step of the cleaning algorithm applies a 3x3 pixels window and selects
only structures containing at least three pixels. Outliers are then removed: structures
farther than eight pixels from the centre of mass are cancelled.



Application of Machine and Deep Learning Methods to the Analysis of IACTs Data 119

3.2 Choice of the Parameters

A set of sixteen discriminating parameters computed on the cleaned image has been
chosen as input for our neural network. These are:

• The fractal dimension computed by means of the box-counting method (for a
description of the box-counting method see [1]);

• The standard deviation of the fractal dimensions computed on different scales by
means of wavelet methods as described in [2];

• The circularity computed as

Circulari t y = 4π(̇Area/Perimeter2)

on the approximate polygon.We approximate a polygon from the largest connected
structure by means of the Douglas-Peucker algorithm. Connected structures are
selected defining feature connections with a 3x3 structuring element;

• The number of sides of the approximate polygon;
• The total intensity computed as the sum of the values of all the pixels;
• The first four Hu’s moments computed on the approximate polygon (see [3]). Hu’s
moment invariants are a set of numbers calculated using central moments that are
invariant to image transformations. The first six moments have been proved to be
invariant to translation, scale, rotation, and reflection. If

μi j =
∑

x

∑

y

(x − x)i (y − y) j I (x, y)

and we define normalized central moments as

ηi j = μi j

μ
(i+ j)/2+1
00

the first four Hu’s moments are:

h0 = η20 + η02

h1 = (η20 − η02)
2 + 4η2

11

h2 = (η30 − 3η12)
2 + (3η21 − η03)

2

h3 = (η30 + η12)
2 + (η21 + η03)

2

We found that Hu’s moments higher than the fourth are not enough discriminating
for our purpose;

• The total number of pixels over 3σI , being σI the standard deviation of the
uncleaned image;
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• The average distance of the connected structures with three or more pixels from
the centre of mass;

• The total number of non zero pixels in connected structures with two or more
pixels;

• The maximum value of the radii of the connected structures with three or more
pixels;

• The maximum distance of a connected structure from the centre of mass;
• The radius of the best fit circle computed on the largest connected structure;
• The fullness, defined as the number of non zero pixels inside a 2.5 pixels radius
from the centre of the best fit circle computed on the largest connected structure.

The histograms of the values of the parameters for 1000 muon events and 1000
non-muon events are shown in Fig. 2. Histograms show how some of them are
strongly discriminating, some are slightly.

3.3 Architecture and Results

The Machine Learning architecture used in our muon tagger is a linear stack of
four layers, the input shape is made of the previously described sixteen parameters,
hidden layers are made of 240 and 120 neurons, with a dropout of 0.2 after each
stage, while the output stage is a single number between zero and one. Dropout is
a technique widely used in machine learning methods to improve performances. It
is a regularization technique applied to the output of some layers; some neurons
are randomly dropped from the network during the training process. The dropout
technique aims to prevent neurons of a network from relying on some other neurons
during the training step.

We use the rectifier activation function on the first layers and the sigmoid function,
that ensures our network output is between zero and one, in the output layer.

The algorithm has been applied on a mixed data set of muon and non-muon (both
protons and gamma) events.

For the learning process we choose the following arguments: for the optimizer,
we use the Nesterov Adam optimizer, which is essentially RMSprop with Nesterov
momentum; for the loss function, we use binary cross-entropy.

We trained our neural network to identify muons. The learning process is made
on a set of 1000 muons and 1000 non-muons events. After only 200 epochs the
validation accuracy (on a 20% random samples of the data) is over 99%.

Our results for a test set of 1000 muons and 1000 non-muons events is as follows:

• True identification of non-muons: 96.1 %
• True identification of muons: 99.5 %

The selection power for muons is very high, while being not very computing
demanding and pave the way for the development of high performance machine
learning techniques run directly on the telescope camera server for the pre-selections
of muon events.
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3.4 Transfer Learning for the Muon Case

Transfer Learning is a Deep Learning approach which relies on pre-trained networks
trained over a specific domain to be used over a new task domain (see [5]). A faster
preliminary training step is needed rather than training networks from scratch. The
latter scenario involves a large number of images to set-up a lot of parameters char-
acterizing each CNNs.

The objective of this specific study is to analyse the power of the Transfer Learning
paradigm to infer knowledge from a little number of images with constrained condi-
tion such as a strong background signal like the one present in the IACT domain. To
this aim, we built a sample of 1500 muons plus 1500 non-muons images. The choice
of 3000 as number of samples is not given by chance.

We want to find out a sort of trade-off between the number of images per class
(muons and non-muons) and the test-accuracy of several DeepLearning architectures
based on different principles and operations, trained over image classification tasks
such as GoogLeNet, ResNet, SqueezeNet, MobileNet, putting in evidence how they
affect the efficiency of the system.

Different pre-built ConvolutionalNeuralNetworks (CNNs), extensively described
in the appendices, have been employed to find correlations between network depths,
layers, hyper-parameters and performances over the detection topic. We conduct the
study using a gradual approach, that is, first employing simpler networks made up of
a lower number of layers and then, using networks with a higher number of layers.
The list of the adopted networks follows:

• Flattened Deep Learning Architecture [6], which is one of the first basic and
straightforward (Appendix A);

• GoogLeNet [8], based upon a graph with a large number of layers, characterized
with higher depth than many state of the art approaches (Appendix D);

• ResNet-50 [7], made up of an ensemble of Residual Nets combining a graph
(Appendix E).

In our work we customised CNNs pre-trained on ImageNet whose implementa-
tions are with Python packages such as TensorFlow Keras, PyTorch, and Torchvi-
sion. The latter is focused on image classification, semantic segmentation, and object
detection.

To compare different performances among the above mentioned architectures we
go through a multiple iterative refinement step to assess the best configurations for
each given CNN. The step of parameters tuning relies upon trials with different
epochs, number of images, number of classes for training.
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3.5 Experimental Results of Transfer Learning over the
Muon Case

First experimental results show a variety of performances which mostly depend on
some parameters such as the number of images, the type of architecture and the
number of epochs during training. Since we wanted to evaluate the performances of
pre-built networks, we applied the Transfer Learning paradigm to transfer knowledge
from a general domain to the specific IACT one. To this aimwe focused our attention
on CNNs pre-trained over ImageNet [11], an image database organized according
to a semantic hierarchy called WordNet. The database counts in almost 14 millions
of images. Several algorithms for object detection and image classification at large
scale have been continuously tested and evaluated through the ImageNet Large Scale
VisualRecognitionChallenge (from2010up to 2017). In ourwork,weuse fourCNNs
(GoogleNet, ResNet-50, MobileNet, SqueezeNet) pre-trained over ImageNet to be
specialized over the muon case. As briefly mentioned before, the choice of Transfer
Learning rather than training from scratch is required if we want to assess the power
of Deep Learning methods using a strict constraint such as the number of images.
In fewer words, we want to find out whether a connection can be found between
the level of depth of the architectures we test and the level of knowledge inference
abilities over a new application domain such as the IACT. In order to provide the
artificial intelligence model with a sufficient number of images to set up parameters
describing the application domain patterns and representations closely, we used Data
Augmentation [12], a common practice in Transfer Learning.

Wecompared the test accuracy of the training process of the architecture: Flattened
Network, GoogLeNet, ResNet-50 and SqueezeNet along with a growing number of
epochs. We observe that different architecture-based CNNs have dissimilar perfor-
mances. The experiments are conducted with a number of epochs up to 50 because
the test accuracy function is observed not to increase its values, reaching out a sort of
plateau. As we notice in Table1, the first model we test is the one with the worst per-
formance over the task of muon detection since it gets stuck with percentages around
60%. As we go along with a growing number of layer architectures, we notice bet-
ter performances. In order, SqueezeNet, GoogleNet and ResNet-50 reach out test

Table 1 Validation accuracy values of CNN architectures for the muon case study

Validation accuracy of CNNs

No. of epochs Flattened network GoogLeNet ResNet-50 SqueezeNet

2 0.67 0.43 0.57 0.52

3 0.65 0.85 0.82 0.65

10 0.63 0.88 0.87 0.70

20 0.63 0.89 0.89 0.73

50 0.62 0.89 0.90 0.80
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accuracy values equal or more significant than 80%. While SqueezeNet can achieve
up to 80%, models with even a more-in-depth architecture, such as GoogleNet and
ResNet-50 score top test accuracy values, 89% and 90% respectively. That said, all
performances of GoogleNet and ResNet-50 being almost equal, ResNet-50 turns out
to be preferable in terms of the computational burden. Validation accuracy is used
as metrics to evaluate the performances of four CNN architectures and is defined as
follows:

Validation Accuracy = Number of correct predictions on validation dataset

T otal number of predictions made

4 The Gamma / Hadron Case

The capability to reduce the hadron background is one of the key aspects that deter-
mine the sensitivity of an IACT. Currently, the main data reduction and analysis
software of the operating IACT facilities adopt methods based on Machine Learning
algorithms. Although the performance of these methods has proven over the years
to be rather robust and reliable, it may be overcome by new methods, in particular
those based on Deep Learning.

To assess the performance of Deep Learning architectures we conducted several
experimental sessions over raw data, whose Night Sky Background has not been
suppressed.

Since in a Deep Learning approach the relevant parameters of the image are
automatically chosen by the network, and the relevant shape features of the image
are sorted out, Night Sky Background suppression is automatically achieved and no
preliminary cleaning is requested.

4.1 Models

This section is devoted to the description of the Deep Learning architectures
employed to test the Transfer Learning paradigm on the gamma/hadron separation
from IACT data. In greater detail, we adopt the Convolutional Neural Networks
(CNNs) [14] which are already pre-trained over the ImageNet repository. It is worth
mentioning that CNNs have been widely adopted as one of the most accurate meth-
ods over tasks such as object recognition, suspicious region detection in biomedical
imaging, speech recognition and semantic analysis. Each architecture needs to abide
by some rules and constraints given by its own layers size, the number of layers, pool-
ing, stride and hyper-parameters, which characterise the overall structure of the CNN
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Fig. 3 The graphical representation of a basic CNN with convolutional and pooling layers

stack. Here we describe themost important detail of Flattened Network, GoogLeNet,
ResNet-50, MobileNet, SqueezeNet. More specific descriptions can be found in the
appendices. Figure3 shows a graphical representation of a basic Convolutional Neu-
ralNetworkwith convolutional, pooling and fully-connected layers, which are shared
through the most of CNN architectures. Apart from the above-mentioned layers, a
fundamental role is played by the so-called feature maps [15], that is, the output
of filtering at each of the layers composing a CNN. A feature map is the result of
the spatial filtering operation of input images with kernels such as the convolution
and the pooling ones. The pooling layer and the stride parameter generally act to
downsample the input image and extract features from the image itself, giving rise
to a certain number of feature maps. The computational burden of the above steps is
shared through the whole architecture and concerns mostly the size of kernels and
pooling filters along with stride parameters. The role played by the size of filters is
fundamental for the extraction of sized features in images. Filters with size 3 × 3,
5 × 5 or even 7 × 7 are conventional in CNN stacks. It is expected that the size of
filters increases along with the dimensions of the images to inspect. The convolu-
tional layer is meant to filter out some particular spatial features from input images.
A spatial filter mask slides across the image using a sliding step parameter called
stride. One can briefly state the output size of the filtering as well as the number and
size of feature maps to be affected by two factors such as the kernel size and the stride
value. The Flattened Network has been proposed by Jin et al. [6] to achieve the state-
of-the-art results in terms of classification and recognition and to obtain a speed-up
in the training time. All of that is achieved using a more lightweight architecture, that
is, a reduced number of parameters to avoid redundancy of filters in the Convolu-
tional Network. Jin et al. separated the conventional 3D convolution filters into three
consecutive 1D filters. This step goes under the name of 3D filter separation under
rank one. A graphic scheme is given in Fig. 4. The main idea behind it is all over the
Convolution layer. The output of three consecutive 1D filterings gives an equivalent
representation of the 3D filter if the rank is one. In greater details, Jin et al. chose a
CNN model architecture as the one proposed by Srivastava and Salakhutdinov [13]
with a smaller multilayer perceptron.
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Fig. 4 In order, a graphical scheme of 3D convolution (upper row) and the corresponding 1D
convolutions over different directions

5 Results

In this section, we give a detailed description of the experiments we ranwith different
CNN architectures and models. On the first instance, we detail the experimental
sessions concerning the training process to draw some considerations about how
diverse models suit the gamma/hadron separation. The dataset we use during our
experimental trials consists of 10150 images with size 56 × 56 pixels and a standard
Night Sky Background value. We split the whole dataset into two parts: the first
80% is used as a training set; the remaining images are used during the test trials.
The training set is, in turn, split into two parts so that 20% of training images are
used as a validation set. We highlight that in order to work with CNN architectures
we need to abide by some requirements, such as the size of the input layer. Both
test and training images go through resize transforms to make them CNN input
layer compliant. In the mentioned architectures, SGD (Stochastic gradient descent)
is adopted as an iterative learning algorithm to carry out the process of training over
a dataset. Epochs and batch size are hyper-parameters which initialise SGD; the
number of epochs controls the number of complete steps through the training set.
The batch size handles the number of samples the training step goes through before
the internal model parameters are updated.

We assess the accuracy of the CNN architectures using a different number of
epochs (2, 3, 10, 20, 50). The batch size is experimentally fixed to 64. Dropout
regularization parameter is set to 0.2. As a first step, we evaluate the performances
of CNNs in the task of the gamma/hadron separation using the validation accuracy
as described in Sect. 4. As it can be observed in Fig. 5, ResNet-50 achieves better
performances than the other CNNs. Upon that, we decide to keep going on with
our tests using ResNet-50 architecture and trying to assess the ability of knowledge
inference over data apart from validation and training sets. As well as standard
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Fig. 5 Validation accuracy rates of four architectures are given with 50 epochs

Machine Learning metrics such as validation and test accuracy, we report results
using the Quality Factor as defined down below:

Q = εγ√
εbkg

From the equation above, εγ is the γ rate while εbkg represents the hadron accep-
tance rate. The γ acceptance rate is defined as the correctly classified γ events out
of the total number of γ events. The hadron acceptance rate is defined as the ratio
of proton events which behave like γ events after the γ-hadron classification. On
the other side, the hadron rejection rate is the number of hadron events which have
been correctly classified out of the total number of hadron events. The larger Quality
Factor, the better gamma/hadron discrimination capabilities of the method.

We set up two runs with different Night Sky Background levels, described as it
follows:

• Run no. 1 consists of 10150 images with standard Night Sky Background value
(the same Night Sky Background as in the training set);

• Run no. 2 consists of 10150 images with one and a half times the Night Sky
Background value in Run 1.

The network we fine-tuned over the gamma/hadron application domain appears to
be Night Sky Background sensitive (see Fig. 6). Zooming in on Fig. 6a, b, our trained
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Fig. 6 Gamma Acceptance and Hadron Rejection rates are given for different experimental runs
(a) and their corresponding Quality Factor values. The experiments have been conducted with the
ResNet-50 model which is shown to perform better during the training step as shown in Fig. 11

model achieves respectively 98.7% and 99.3% of gamma and hadron acceptance
rates on the run 1 while, as long as we analyse experimental trials with higher Night
Sky Background we observe decreases in both rates coefficients (gamma and hadron
acceptance rates). The corresponding Quality Factor values shown in Fig. 6a directly
derived from gamma and hadron acceptance rates show the performance of ResNet-

Fig. 7 Test accuracy rates of ResNet-50 model fine-tuned on gamma/hadron images for
the gamma/hadron separation task. The test accuracy is defined as T est Accuracy =
Number of correct predictions on test dataset

T otal number of predictions made
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50 equal respectively to 11.80 and 1.15 on run 1 and run 2. We want to highlight that
ResNet-50 performances over run 1 simulation data is highly competitive with many
state-of-the-art techniques as described in [19]. Because of our experimental results,
Deep Learning architectures might resent from Night Sky Background values. From
a pure detection viewpoint, looking at Fig. 7 higher values of test accuracy are shown
to be over run no. 1 while results on run no. 2 dramatically decrease (the model is
not able to make enough correct predictions of hadrons). Much more efforts would
be necessary to clearly disambiguate the role played by the training set over the
performances of the model on the test runs.

6 Conclusions

We have studied the application of different Machine and Deep Learning techniques
to IACT images, with the aim of assessing their effectiveness in discriminating the
images produced by muons, gamma-rays, and protons, respectively.

The muon case is relatively simple, since muon images have a well defined either
circular or arc-shaped shape. This case was studied using a Machine Learning archi-
tecture, consisting of a linear stack of four layers. We selected a set of 16 image
parameters, and we find that this approach is highly effective, reaching a 99.5% of
correct identification over the muon sample, and 96.1% over the non-muon sample.
Wehave also tested the effectiveness of aTransfer Learning approach over the domain
of muon images.We find that the best results are achieved using the architecture with
the highest level of depth. However Machine Learning is still more efficient.

The gamma/hadron discrimination case is more complicated: the difference
between the two domains is vaguer whereas showers produced by hadrons may
have an electromagnetic component, while showers produced by photons, especially
by the low energy ones, or falling very close to the telescope axis may have a more
irregular shape. In this case our study shows that an approach based on Transfer
Learning may be effective in the discrimination, achieving a Quality Factor of ∼ 12,
highly competitive with many state-of-the-art techniques as described in [19]. Con-
sidering that we have trained the network only on a limited case sample, we expect
that a more efficient training, including, e.g., images with different levels of Night
Sky Background, off-axis photons, and/or a spectral distribution optimized for the
training, may improve this result.
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Appendices: Deep Learning architectures

A. Flattened Network

The Flattened Network [6] consists of a consecutive sequence of one-dimensional
filters across all directions. The architecture of the network is simple and light-
weight, and we use it in order to test whether such a simple network is affected by
overfitting using a limited number of images. Models affected by overfitting usually
make predictions that fit the data at hand perfectly, but are not able to generalize
knowledge from larger datasets. This generally happens when the system does not
discriminate information from bias or background noise embedded with data.

Each output channel requires a filter W ∈ R
C×X×Y described as:

Ff (x, y) = I ∗ W f =
C∑

c=1

X∑

x ′=1

Y∑

y′=1

I (c, x − x ′, y − y′)W f (c, x
′, y′)

where f is an index of output channel, I ∈ R
C×N×M×F is the input map, N and M

are the spatial dimensions of the input. We assume the stride parameter to be one.
A rule of thumb to accelerate multi-dimensional convolution is to apply filter

separation. To accomplish filter separation some constraints need to be considered.
Under unit rank of the filter W f , the unit rank filter Ŵ f can be separated into cross-
products of three one-dimensional filters as follows:

Ŵ f = α f × β f × γ f

It is necessary to highlight that separability of filters is a strong condition. The rank
of filter W f is usually larger than one in practice. The problem mentioned above
might affect the performance of the network over classification tasks. In our work
we used Flattened Networks abiding by the condition that one or more convolutional
layers are converted to a sequence of 1-dimensional convolutions.

B. MobileNets

MobileNets [9] represent a class of efficient models based on streamlined architec-
tures employing depth-wise separable convolutions to set-up lightweight deep neu-
ral networks. As an innovative solution Howard et al. [9] introduced two different
global hyper-parameters as a trade-off between latency and accuracy of the network.
MobileNets have different application domains, even though their ideal destination
is to allow developers and computer scientists for testing and training CNNs over
mobile devices and embedded vision applications. Depthwise separable filters rep-
resent the base on which MobileNets are built. Depthwise separable convolutions
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Fig. 8 MobileNets are basedonDepthwiseConvolutional Filters (b) andPointwiseConvolution (c),
which make a noticeable parameter reduction over the architectures based on Standard Convolution
Filters (a)

make use of factorization of convolutions into a depthwise and a 1 × 1 pointwise
convolution. A standard convolution layer both filters and combines the input into a
new set of outputs. The depthwise separable convolution splits this into two layers,
the first one is devoted to filtering inputs while the second one is for the combination
of inputs into a new series of outputs. The innovation of the proposed scheme in
MobileNets is depicted as in Fig. 8 where standard Convolutional Filters are substi-
tuted with Depthwise Convolutional Filters and Pointwise Convolution allowing for
a reduction of a great number of the architecture parameters. By zooming in Fig. 8
we notice that standard convolutions carry out a computational burden of:

Dk · Dk · M · N · D f · D f

whereM represents the number of input channels, N is the number of output channels,
Dk · Dk represents the size of the kernel while D f · D f is the feature map size.
Depthwise convolution with one filter per input channel turns out to have a cost of:

Dk · Dk · M · D f · D f

Depthwise convolution filters input channels but it does not combine the input into a
new set of outputs. For this reason another layer is needed to combine the results of
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Depthwise Convolutions filtering. That is accomplished with a linear combination of
Depthwise Convolution using a 1 × 1 convolution. The latter one is called depthwise
separable convolution whose computational cost is as it follows:

Dk · Dk · M · D f · D f + M · N · M · D f · D f

As described in [9], a reduction in computation is achieved expressing convo-
lution as a two-step process of filtering. By adopting 3 × 3 Depthwise separable
convolutions, MobileNet is able to achieve up to 9 times less the computation than
standard convolution. In our work we are interested in assessing the performance
of MobileNets in the topic of IACT. For a more-in-depth description of the overall
architecture the reader is remanded to [9].

C. SqueezeNet

SqueezeNet [10] architecture aims to leverage the reduction of parameters to deliver
proper levels of accuracy in classification tasks with a short latency time as well as
MobileNets. As well as in MobileNets, Iandola et al. [10] aim to identify a model
that has fewer parameters in such a way to carry out experiments with more efficient
training, to have less overhead time in client-server Deep Learning-based applica-
tions and to rely upon available architecture in embedded deployment. Iandola et
al. [10] focused their efforts on the so-called model compression which has recently
arisen around the objective of compressing existing CNN models in a lossy way.
Denton et al. [17] applied SVD (Singular Value Decomposition) to pre-trained CNN
models, Han et al. [18] used a pruning algorithm over networks to compress model
dimensions. When it was introduced, SqueezeNet represented an innovation in the
field of model compression for CNN architecture because of the introduction of the
so-called fire module out of which the architecture itself is built.

In greater detail, Iandola et al.[10] proposed SqueezeNet by leveraging three
strategies. The first strategy consists of replacing 3 × 3 filterswith 1 × 1 filters (1 × 1
convolution filters have nine times fewer parameters than 3 × 3 convolution filters).
The second strategy is to decrease the number of input channels to 3 × 3 filters. The
third strategy consists of apply downsampling late in CNN to achieve larger feature
maps as convolution layer output across the most of layers in the network. The first
two strategies concern mainly decreases of parameters in CNN architectures, and
the third one is focused on accuracy maximization with fewer parameters. A Fire
module consists of a squeeze convolution layer sized 1 × 1 which feeds into an
expand layer that is a combination of 1 × 1 and 3 × 3 convolution layers. In Fig. 9
a simplified scheme of this module is given. Furthermore, the module can be tuned
up using three different hyper-parameters. In our work, we adopt the architecture
of SqueezeNet with a standalone convolution layer, followed by a series of 8 Fire
modules and a final convolution layer. Max pooling is performed along with the
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Fig. 9 SqueezeNet CNN architecture allows for a huge reduction of parameters, which is mainly
based on the employment of squeeze (a) and expand (b) steps. The usage of 1 × 1 convolution
filters make the CNN architecture more lightweight

network while the stride parameter is set to 2. The reader who is interested in further
and more detailed description is remanded to the reference paper [10].

D. GoogLeNet

GoogLeNet is crafted to be an efficient deep neural network for computer vision tasks
and its performances over the context of classification have been widely assessed [8].
Szegedy et al.[8] proposed an architecture whose main hallmark is the improved uti-
lization of computing resources in the network itself. The main idea behind the
GoogLeNet architecture is to find out how sparse structures in a convolutional net-
work can be approximated by dense components. The authors of GoogLeNet engi-
neered a network using a layer-by-layer approach where high statistic correlation
values of the last layer are used to group visual features (boundaries, edges, contours,
motifs) in clusters. These clusters give rise to units of the next layer and, at the same
time, are connected to the previous layer. I nception module is described in Fig. 10.
The current version of I nception includes layers with filters sized 1 × 1, 3 × 3,
5 × 5. Furthermore, max-pooling filters are added in the architecture as successful
elements in state-of-the-art CNNs. Each unit from the earlier layers corresponds to
a region of the input image. As depicted in Fig. 10, the visual information coming
out of the previous layer is conveyed onto the next one through both convolution and
pooling filters which are combined using a filter concatenation. I nception modules
are piled up on top of each other. The outputs of inception modules are statistically
correlated with the corresponding layers of the network: features of higher levels are
expected to decrease in spatial density when captured by higher layers. It is necessary
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Fig. 10 The Inception module allows for multiple outputs coming out of the previous layer to be
combined using a filter concatenation

to highlight that because of technical reasons, such as memory efficiency, I nception
modules are added only at higher layers. The overall network counts in 22 layers
when only layers with parameters are considered (no pooling layers are counted in).
If we consider each block inside I nception modules the overall networks can count
up to 100 layers (this number is affected by the infrastructure system set-up). Who-
ever interested in further insights on the architecture of GoogLeNet is remanded to
the reference paper [8].

E. ResNet-50

He et al. [7] proposed Deep Residual Learning to generally ease the process of
training of deep networks, which are likely to get through the problem of degradation.
When the depth of networks increases accuracy gets saturated and then degrades
rapidly. This kind of degradation is not caused by overfitting, and what sounds more
surprisingly is that adding more layers makes the training accuracy even lower. He
et al. [7] addressed the issue of training accuracy degradation with the introduction
of Deep Learning Residual. Rather than considering Deep Learning models fitting
a particular mapping between input and output, they approach the improvement
of training accuracy from a different perspective. They let a stack of layers fit a
residual mapping function. Denoting the original mapping function as H(x), the
Deep Residual Learning is based on the position of letting the layer stack fit the
residual function defined as down below.

F(x) := H(x) − x
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Fig. 11 A building block of
Residual Net

Following this approach, the original mapping problem is proposed in a new form
as F(x) + x . As a new formulation based on a simple summation, it can be realised
using feedforward networks with shortcut connections as in Fig. 11. Shortcut con-
nections simply add new layers with identity mapping. Their outputs are added to
the outputs of the stack. Using shortcut connections is an excellent way to avoid new
parameters because they are based on identity mapping. The intuition of Deep Resid-
ual Learning authors is thatmultiple nonlinear layers can asymptotically approximate
complicated function representing the input of the training process. The reformula-
tion of learning is meant to deal with the training accuracy degradation problem. He
et al. named ResNet (Residual Network) after the Deep Residual Learning formu-
lation. The standard version of ResNet is 34 parameter layer sized where shortcut
connections turn the network structure into its residual counterpart. A more in-depth
version of ResNet has also been proposed with a bottleneck building block whose
each residual function F involves a number of three layers rather than two. In our
work we conducted different experiments with ResNet-50, which counts a number
of 50 parameter layers.
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Intelligent Photometric Identification of
Extragalactic Objects from
AllWISE×Pan-STARRS DR1 Data

Vladislav Khramtsov, Volodymyr Akhmetov, Peter Fedorov, Sergii Khlamov,
Artem Dmytrenko, and Anna Velichko

Abstract We present the results of identification of extragalactic objects within
cross-matching result of the two photometric catalogues, AllWISE and Pan-STARRS
DR1. To separate galaxies and quasars from stars, we constructed a machine learn-
ing model, trained on photometric information from optical and infrared wavelength
ranges. The model was based on three essential procedures: construction of the
autoencoder artificial neural network, separation of galaxies and quasars from stars
with Support Vector Machine (SVM) classifier, and cleaning the AllWISE×PS1
sample from sources with unusual colour indexes with one-class SVM. As a training
sample, we used a set of spectroscopically confirmed sources from Sloan Digital
Sky Survey Data Release 14. In the result of applying the classification model to the
AllWISE×PS1 sample, we created catalogue, containing 40 million extragalactic
objects, and covering 3/4 of the celestial sphere up to g=23m . A number of tests to
examine the classification quality using differentmethods, namely data from spectro-
scopic surveys, and astrometric examination, are in agreement with each other. Tests
indicate high purity (∼ 98.0%) and completeness (> 98%) of resulting catalogue at
the faint end of magnitude range; classification quality still retains acceptable levels
of 70% for purity and 97% for completeness for the brightest and faintest parts of g
magnitude range.

1 Introduction

Classification of photometrically observed sources is a crucial stage to produce reli-
able astrophysical results. Notably, the identification of the extragalactic objects is a
crucial point for improvement of the celestial reference frame [25, 26, 42, 58], mor-
phological classification of galaxies [9], finding strongly lensed quasars [35, 61]; the
large-scale structure of Universe analysis [12], and supporting the identification of
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the host candidates for gravitational-wave events [22] also could be supplemented
with the extragalactic catalogue, attracting the photometric redshifts [55].

The simplest method of identifying the extragalactic objects is applying the mor-
phological criterion on images of sources. However, this method has significant limi-
tations [65]. Though the low-redshift galaxies are resolved, images of the faint and/or
distant galaxies as well as the quasars appear to be point-like in the main. Besides,
in the high-density sky areas (for example, in the galactic plane), the blending phe-
nomenon results in the false classification of the pairs of stars, the nearest neighbours,
which are classified with any morphological criteria as extended sources, i.e., galax-
ies. Another classification method is in using the colour index values (after this
referred to as colour). On the colour-colour or colour-magnitude diagrams (then—
colour diagrams) locations of galaxies and quasars sharply differ from the locations of
stars due to different forms of spectral energy distribution. It is known that utilisation
of optical magnitudes only is not enough to perform the classification of sources with
both high purity and completeness with colour diagrams [35]. Therefore, infrared
information often complements the optical one, because of the combination of these
two wavelength ranges allows describing the spectral energy distribution of sources
more distinctly [3, 38]. Furthermore, using mid-infrared colours is a very effec-
tive way to distinguish quasars from the vast majority of passive galaxies and stars,
because of quasars emit strongly at mid-infrared wavelengths range [7, 23, 63].

Although it is possible to separate low-redshift quasars from stars with using
optical magnitudes (see e.g. [1, 14]), utilization of mid-infrared colour diagrams
also helps in separation of quasars from stars and galaxies (e.g. the two-colour cri-
teria [20, 32, 41, 44, 63] and the one-colour criteria [7, 62]). However, separating
the galaxies in the same way is harder because of stars overlap with non-active
galaxies at these colour diagrams (e.g., Fig. 12 in [67]). Kovács & Szapudi [37]
presented approach enabling to identify galaxies with given near-infrared and mid-
infrared colour indexes—with using of photometry fromTwoMicronAll Sky Survey
(2MASS) [59] and Wide-field Infrared Survey Explorer (WISE) [67], it is possible
to separate extragalactic objects from the stars almost clearly.

For the problem of optimal source separation on the colour diagrams, the Support
Vector Machine (SVM) [64] classifier has been established as one of the most pop-
ular geometrical classifiers. Classification of sources into groups with SVM comes
down to the construction of separating hyperplane in a high-dimensional space of
features. This method has found an application in the many works dedicated to the
identification of extragalactic objects, including Solarz et al. [60], where the classifi-
cation of objects on the infrared colour diagrams within AKARI [45] North Ecliptic
Pole Deep Field (AKARI NEP) has been implemented; in Malek et al. [47] work,
SVM was used to classify objects into stars, galaxies and quasars with their colours
within optical-infrared wavelength range for the VIMOS Public Extragalactic Red-
shift Survey. SVM algorithm has been used in Kovács & Szapudi [37] to analyse the
colours, which contribute to the separation of objects into extragalactic sources and
stars with using the 2MASS×WISE catalogue. The re-adaptation procedure for the
WISE×SuperCOSMOS galaxy catalogue [10], performed to identify the galaxies
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using SVM separation in colour space, is proposed in paper from Krakowski et al.
[38].

We present the method of the identification of the extragalactic objects within the
wide-field photometric surveys. The resulting catalogue of galaxies and quasars is
named Northern Extragalactic WISE×Pan-STARRS (NEWS), which covers almost
3/4 of the sky in the broad optical-infrared wavelength range up to g=23m . To cre-
ate the NEWS catalogue, we combined data from the AllWISE [17] survey in the
mid-infrared range and Pan-STARRS [15] digital survey in optical and near-infrared
ranges. Our catalogue is a result of the classification of the AllWISE×Pan-STARRS
objects with SVM machine learning algorithm. The classification has been done on
photometric information only, with automatic feature engineering using an autoen-
coder neural network.

2 Data and Sample Selection

2.1 AllWISE

The Wide-field Infrared Survey Explorer (WISE) [67] is a space NASA Medium
ClassExplorermission that surveyed thewhole celestial sphere inmid-infraredwave-
length range using four filters—W1,W2,W3,W4 (3.4, 4.6, 12 and 22 μm respec-
tively with angular resolutions of 6.1′′, 6.4′′, 6.5′′, and 12′′ in bands respectively).We
used data from AllWISE catalogue [17] of 747.6 million sources. The catalogue is
95% complete up to W1 < 17.1m,W2 < 15.7m,W3 < 11.5m , and W4 < 7.7m (in
Vega system).

AllWISE photometry is problematic in high-dense regions because of the effects
of saturation and blending. Also, the aperture photometry is insecure for the extended
sources in AllWISE because of the lack of aperture corrections on source com-
pactness. Keeping this in mind, we selected sources with existent measurements in
W1,W2 profile-fit magnitudes (that are signed in the catalogue as w1mpro and
w2mpro, hereafter W1 and W2) and limited this sample by the following crite-
ria: snrW1 > 5, snrW2 > 2 and W1 > 13.8m , where snrW1, snrW2—signal-to-noise
ratio of measurements in W1,W2 bands respectively. We used no information in
W3,W4 bands because of its low sensitivity. In consequence, a sample comprising
508 854 970 million objects has been obtained.

2.2 Pan-STARRS DR1

Pan-STARRS Data Release 1 (PS1) catalogue [15] is the first release of Panoramic
Survey Telescope and Rapid Response System (Pan-STARRS1), located in the
Haleakala Observatory on the island of Maui in Hawaii. Within the Pan-STARRS1
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survey, the observations of almost 30 000 sq.deg. (90◦ > δ > −30◦) involving opti-
cal and near-infrared filters (g, r, i, z, y filters with average wavelengths 481, 617,
752, 866, and 962 nm accordingly) were conducted up to the 23.3m , 23.2m , 23.1m ,
22.3m , 21.4m in each band respectively (on the 5σ limiting sensitivity level). PS1
catalogue consists of ≈1.9 billions of sources, mostly with measured photometry.

We used mean PSF magnitudes (in AB system) from the PS1 catalogue. These
magnitudes providemore accuratemeasurement for the point-like sources thanKron-
like or aperture photometry. We selected the sources within 14m < g < 23m and
14m < r < 23m magnitude ranges, and limited the sample by the errors ofmagnitudes
(σx < 0.5 mag, where x denote one of the five filters). Reasons for selecting such
limits are evident. First of all, extragalactic sources are almost absent in the bright
part of optical magnitudes < 14m . Besides, images of bright sources are saturated,
leading to unreliable magnitude measurements. And from another side, limiting by
g < 23m and r < 23m results in excluding the sources with low signal-to-noise ratio
andmore uniform limitingmagnitude distribution on sky. After filtering, we received
the sample of 835 713 490 objects.

2.3 Positional Cross-Matching

For each source from AllWISE catalogue, we have chosen the nearest one from the
PS1 in the fixed circular window with 1.5′′ radius employing the software described
in [4]. Thus, all of the sources from AllWISE, which have more than one counterpart
in PS1, were excluded. To avoid cross-matching of fast nearby to the Sun objects (for
example, brown dwarfs) with the absolute value of proper motion greater than ∼10
mas yr−1, the radius in use was found as optimal. In the result, we got cross-matched
AllWISE×PS1 photometric sample, consisted of ∼200 million sources, for each of
which the positions from the PS1 and seven magnitudes in optical-infrared filters
were presented. The resultant sample will be below referred to as the investigated
sample.

2.4 Training Sample: SDSS DR14

As a training sample, we have chosen the Sloan Digital Sky Survey Data Release
14 (SDSS DR14) [2]—a catalogue of spectroscopically confirmed sources. SDSS
DR14 is the second release of Sloan Digital Sky Survey IV phase [11]. It is a cumula-
tive dataset, including extended Baryon Oscillation Spectroscopic Survey [19] data
and data from the second phase of Apache Point Observatory Galactic Evolution
Experiment observations [43].

SDSS DR14 catalogue consists of 4 851 200 spectroscopically confirmed objects
among which 2 541 242 objects are galaxies, 680 843 are quasars, and 928 859
are stars. To create a training sample, we have used well-confirmed objects only
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(zWarning=0), and removed all stars with CLASS=GALAXY morphological flag,
corresponding to the extended sources. Training sample was cross-matched with the
investigated sample using 1.0′′ radius.As a result, we have obtained SDSS×AllWISE
×PS1 sample composed of 1 784 610 objects for which seven magnitudes and
confirmed classes are available. A resultant sample contains mainly extragalactic
(1474458 galaxies and quasars) objects but also comprises stars (310152 objects).
This entire sample will be below referred to as the training sample.

3 Classification Model

3.1 Formal Description

The proposed classification model performs a probabilistic classification of objects
into two classes: stars and extragalactic sources. As the input features, we have used
the optical-infrared colour indexes [34]. We have used the machine learning to create
the classification model, namely: the form of transformation from original colours
into the feature space, outlier detector and separating hyperplane.

First of all, we have performed the construction of the feature space, in which the
location of extragalactic sources differs from the location of the stars. Usually, only
sure of the original colours are used to building feature space for classification [3,
37, 38, 66]. This process can be done through different feature selection methods
(for example, with Principal Component Analysis). In our model, we used feature
engineering as the approach to build feature space, that is fully automatic, instead
of manual colour selection. A distinctive speciality of our classification model is
an automatic creation of features, that are connected to all colours. To perform the
creation of such features, an autoencoder [51] neural network was used.

Autoencoder, as a particular architecture of an artificial neural network, consists
of two parts: encoder and decoder. Autoencoder represents data into a feature vector
having lower dimensionality than the input vector (encoding) and recovers original
data from these features (decoding). Quality of representation is determined by the
accuracy of the recovering the colours in the output of the decoder. The main goal
of the autoencoder learning within our model is the creation of the most informative
features, that allow us to represent original colours most accurately.

In our model, we used the result of encoder only; decoder has been used only
to learn the autoencoder and to control the quality of representation. In order to
create the feature space, we used the deep autoencoder: encoding was performed
through a four-layer fully-connected neural network. The encoder input consisted of
21 colours, and the output layer of encoder reproduced it as five features.

Decoding was performed using symmetrical, concerning the encoder, network. In
order to provide the representation of 21 colours, calculated through W1,W2, g, r,
i, z, y magnitudes, we have used the data on all of the 1.8 million objects from the
training sample. As a result of encoding, we successfully represented 21-dimensional
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vector of colours by a 5-dimensional feature vector for each training object with
recovering error (mean squared error) on the order of 10−5 mag.

The AllWISE×PS1 sample could contain sources with unusual (concerning the
training sample) sources. In order to perform correct classification, we have con-
ducted the preliminary excluding of objects with unusual colours in the
AllWISE×PS1 catalogue. That was done via One-Class Support Vector Machine
(OCSVM) [57] within the constructed feature space.

The next step of classification model construction is a separation of extragalactic
objects from the stars. We applied the Support Vector Machine (SVM) [64] method
for our purpose. SVM classification has a simple geometrical interpretation. The
algorithm receives a set of training objects with known features and classes at the
input and returns the equation of optimally separating hyperplane. Under the term
‘optimally separating hyperplane’ we mean a hyperplane, which is located between
different classes and which is the most distant from the nearest points of both classes
(so-called, support vectors). To avoid the shift of separating hyperplane due to class
imbalance [37], we have attributed weights for the sources from one of the class. The
weights were equal to the ratio of the number of sources from the unweighted group
to the number of sources from the weighted group.

3.2 Technical Details

The final architecture of autoencoder was constructed with simple searching over
parameters of artificial neural network (number of layers, number of neurons, acti-
vation functions, etc.) with the aim to encode input colour vector in such feature
space, where extragalactic objects are separated from stars. Our artificial neural net-
work was constructed manually, without adopting the automatic algorithms, e.g.,
Neural Architecture Search methods1. Autoencoder in use consisted of seven layers
in total (with 21-15-10-5 neurons in the encoder, and with non-linear connections
between layers; decoder was constructed symmetrically). Input values were scaled
from 0 to 1. Weights were initialised by random orthogonal matrices [54] and were
optimised with Adaptive Moment Estimation (Adam) algorithm [36], with a mean
squared error loss function.

To separate extragalactic objects from stars, we used linear SVM, trained to clas-
sify sources within five-dimensional representative feature space. In this context,
SVM had to be tuned over one free parameter, namely C . We have searched for
the optimal C parameter with the simple grid-search method and five-fold cross-
validation; parameter tuning was done concerning the value of area under receiver
operating characteristic (ROCAUC) [13].We have chosenC=1 as the optimal value,
corresponding to the maximal ROC AUC metric equal to ≈ 99.3%.

Then, we have trained SVM with five-fold cross-validation on SDSS training
data. Important to note, that with using five-fold cross-validation, it is possible to get

1See, for example, https://www.automl.org/automl/literature-on-neural-architecture-search.

https://www.automl.org/automl/literature-on-neural-architecture-search
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validation estimations of the classes for all of the training sources, without worrying
about overfitting. Thus, for validation with SDSS DR14 sample, we used out-of-fold
predictions, received after five-fold cross-validation.

OCSVM with radial basis function kernel was optimised over two parameters (γ
and ν) via simple grid-search with using five-fold cross-validation on the training
sample. We choose ν=10−5 and γ=10−3, with which the fraction of training sources,
predicted as unusual objects, was minimal and equal to 0.004%.

In result of the training, we obtained the algorithmwhich is able to classify sources
into the stars and extragalactic objects with the ROC AUC=99.32%; the purity and
the completeness of the extragalactic sample are estimated to be about ≈ 99.75%
and ≈ 99.85% respectively, as we directly obtained with five-fold cross-validation.

4 Application of Approach

In this section, we present the results of our approach application to the extragalactic
objects identification within AllWISE×PS1 sample. To create the final galaxy cat-
alogue, we mapped colours of each source into the five-dimensional feature space,
provided outlier detection with OCSVM, and classified the sources with SVM.

4.1 Classification Result

After training theOCSVMas an anomalydetector,we applied it to theAllWISE×PS1
sample. As a result, ∼300 000 sources were identified as objects with unusual fea-
tures (colours in fact). These sources were located outside the region of feature space,
occupied by training objects.

The sources, which were not excluded with OCSVM, were classified with trained
SVM. To decide the belonging of sources to a particular class, we used additional
parameter, released by the SVM classifier, namely a probability, that source belongs
to extragalactic group pxgal . In terms of the SVM, probability pxgal is a distance,
expressed through the sigmoid function [50], between a feature vector of a source
and the separating hyperplane.

We considered that a source is extragalactic objects if the corresponding prob-
ability is pxgal > 0.5. This criterion allowed us to derive the NEWS catalogue of
40350492 objects. The g magnitude distribution of sources from NEWS peaks at
g ∼21.7m , showing an obtained catalogue of extragalactic objects is one of the most
in-depth catalogues, covering significant fraction of the sky.

NEWS catalogue consists of the extended sources in the main. We calculated
the amount of point-like sources using g − gKron value, where gKron—Kron-like
magnitudes [39]. Difference between PSF and Kron-like magnitudes for a source is
a criterion of its ‘pointness’ [24]. This difference is almost zero for the point-like
sources, and, in most cases, greater than zero for the extended sources. We assumed
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Fig. 1 Sky distribution of
the pxgal for 40 million
sources from the NEWS
catalogue in Aitoff
projection (galactic
coordinates, the origin of the
coordinate system is at the
centre)

the pointness with the following criteria: g − gKron < 0.05 and g − gKron > −0.25
within g < 21m ; all sources, failed criteria, we assumed as extended sources. In
result, ∼2 million sources were identified as point-like among ∼38 million sources
with available gKron magnitude in PS1 catalogue.

Besides extended sources,NEWScatalogue contains quasars also.Byvirtue of our
classification model construction, we are not able to separate quasars from galaxies
naturally, but we can do this postfactum, with using criteria allowing us to identify
quasars withmid-infrared colours. For example, with using the criterion [62], namely
W1 − W2 > 0.8,we identified2286418quasars in theNEWS,∼1 000 000ofwhich
are point-like sources. We note, that rest ∼1 000 000 sources could be, in fact, stars,
which could be removed from the NEWS catalogue as extremely suspicious sources.

The sources within the high-extinction region of the sky from the NEWS galaxy
catalogue could have insecure classification. This is clearly shown in Fig. 1—
probability pxgal is strongly dependent on sky location and is pxgal < 0.9 at δ < −30◦
and within the Zone of Avoidance.

5 Validation with External Data

Various spectroscopic surveys contain precise information about classes of the
observed sources. In this regard, we are especially interested in catalogues of con-
firmed galaxies as well as in catalogues of confirmed stars. The classes of such
sources could be treated as the ground truth.

To validate NEWS catalogue, we, first of all, need to match in AllWISE×PS1
sample spectroscopically confirmed galaxies and stars, and then compare the actual
classes (received by spectroscopic data) with predicted by our model classes. This
approach allows estimation of the main parameters of classification quality—purity
PG and completeness CG .

The purity of the NEWS catalogue was estimated not with using this definition,
due to unreliability of this estimation in the case of high-class imbalance in validation
sample. As it is shown below, the catalogues in use contain an order of magnitude
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fewer stars than galaxies. This remark is not relevant for completeness estimation,
where the count information about galaxies only is used. Thus, to estimate a purity
of NEWS catalogue, we used the Matthews correlation coefficient (MCC) [46].

5.1 Spectroscopic Datasets

As validation samples, we used the following catalogues of spectroscopically con-
firmed sources:

• Deep Imaging Multi-Object Spectrograph (DEIMOS) [31];
• Galaxy And Mass Assembly (GAMA) Data Release 3 [8, 21];
• Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data
Release 4 [16];

• SDSS DR14 (see Sect. 2.4);
• VIMOS Public Extragalactic Redshift Survey (VIPERS) Data Release 2 [56];
• zCOSMOS [18].

We cross-matched each catalogue with AllWISE×PS1 within 1.0′′ circular radius
for subsequent validation. The cross-matching results, as well as criteria of selecting
sources from validation data, we describe in Table1. In Fig. 2, we present g-band
magnitude distribution of the validation samples within AllWISE×PS1 catalogue.
This clearly shows different magnitude distributions for each validation dataset and
allowing the investigation of classification quality at different magnitudes.

Table 1 Number of stars and galaxies within validation catalogues, matched in AllWISE×PS1.
To select reliable data, we used criteria, separately described in the second column

Survey Criteria Galaxies Stars

DEIMOS z is not −1,Q = 2 438 285

GAMA z > 0.05 97820 0

z < 0.90

NQ > 1

survey is not SDSS

LAMOST class is not None 30093 1107982

SDSS see Sect. 2.4 1474458 310152

VIPERS z f lg > 2 2517 312

zCOSMOS z > 0 2188 0
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Fig. 2 Dependence of classification quality (MCC—left plot, completeness—right plot) for the
AllWISE×PS1 spectroscopically confirmed sources on g-band magnitude

5.2 Validation with Galaxy Catalogues

We have estimated the purity and completeness of NEWS catalogue with using
spectroscopic datasets, presented in Sect. 5.1. These catalogues, in matching with
AllWISE×PS1, are variously distributed over the g-band magnitude, allowing the
estimation of classification quality starting from the bright (g ∼17m) part and finish-
ing at the faint (g ∼ 23m) end of magnitude range. We stress that the classification
quality is a function of magnitude because of the dependence between the precision
of features, used in classification, and precision of magnitudes, which, in its turn,
degrades with magnitude increasing.

To analyse the purity of the NEWS catalogue, we used MCC metric, with which
we compared the predicted by our model classes with actual classes from catalogues,
containinggalaxies and stars, namely fromVIPERS,DEIMOS,SDSS, andLAMOST
samples. Other catalogues (zCOSMOS and GAMA) could not be used to analyse
purity due to the absence of stars in these samples. Completeness of the NEWS
catalogue was estimated employing all of the validation catalogues.

The result of purity estimation is shown in Fig. 2 (left plot) as dependencies of
MCC values against the magnitude for six various validation samples. MCC curves
are entirely consistent for the SDSS, LAMOST, DEIMOS, and VIPERS datasets,
showing the similar trends, namely low classification quality (MCC < 0.9) at bright
range (g < 18m), satisfactory quality (MCC > 0.9) in the range 18.0m < g < 21.5m

with monotone decreasing of classification quality to the faintest magnitudes (g ∼
23m). Sharp declines of MCC curves at the edges of magnitude ranges for almost
all of the validation samples are the result of a relatively small number of sources
at these magnitude bins. Obviously, that smaller number of sources results in more
enormous contribution in decreasing MCC of each wrong classified by our model
source.

We also carried out a similar manipulation to investigate the completeness of the
NEWScatalogue.Result of completeness estimation of theNEWSwith using various
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samples of galaxies is shown in Fig. 2 (right plot). Completeness of the NEWS is
95% at g ∼18m , > 99% at g ∼20m , and 98% at g ∼22.5m .

Estimated purity and completeness of the NEWS are mitigated at the bright
g < 18m and the faint g > 22m parts magnitude range and reach 70% and 97%
respectively.

Of course, the validation samples are not exhaustive, because of the validation
samples cover restricted regions of the five-dimensional feature space (in virtue of
specific target selection for spectroscopic observations), and the sources, included in
the validation samples, could not fully reflect the variation nature of objects, compris-
ing AllWISE×PS1 dataset. Therefore, validation with such spectroscopic samples
could not guarantee the exact concurrence of purity and completeness estimations
with the real ones. However, despite the substantial difference between sources of
validation samples, the behaviour of estimated purity and completeness is, in gen-
eral, coincided between catalogues, that is an indicator of stable classification quality
estimation.

5.3 Astrometric Validation

Validation with external spectroscopic data gives the direct, consistent estimations of
purity and completeness of theNEWScatalogue.However, the stars and extragalactic
objects, besides spectroscopic properties, have other features of their nature, using
of which could provide validation of the galaxy catalogue.

Examples of such features are proper motions. Extragalactic objects, due to their
remoteness, aremotionless sources on the sky, despite the stars. At the precision level
∼1 mas, positions of extragalactic sources could be assumed independent on time,
approximately during ∼100 years. Great platform to carry out such test of NEWS
sources is the second data release of Gaia astrometric mission (Gaia DR2) [28–30,
42].

The reliability of astrometric validation was shown in [48], where candidate
quasars were validated with an analysis of the mean values of proper motions and
parallaxes. But for our analysis, we used a model of rigid-body rotation of the ref-
erence frame, with which we can estimate the ωx , ωy, ωz—the components of the
angular velocity vector, knowing the components of proper motion for reference
sources.

If the NEWS catalogue contains extragalactic objects (galaxies and quasars) only,
the rotation of the system, defined by positions and proper motions of these sources
in respect with reference frame Gaia-CRF2 will be absent. However, in the case of
nonzero components of rotation vector, one could assume some effects, the most
likely of which is the existence of stars in the NEWS sample.

An important feature of Gaia DR2 is that point-like sources only are included in
this catalogue [52]. Thus, cross-matching NEWS and Gaia DR2 result in the sample
of point-like sources—quasars, and, in the case of wrong classification, stars. This
allows estimation of the contamination in the NEWS by stars.
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Fig. 3 Dependence of
components of rotation
vector ωx , ωy , ωz of the
system, defined by positions
and proper motions of 1.2
million NEWS sources
concerning the Gaia-CRF2
on the G magnitude

We notice that Gaia DR2 contains measured proper motions for the sources that
meet the following conditions:

1. mean G-band magnitude G < 21m ;
2. astrometric_sigma5d_max < 1.2 × γ ,

where astrometric_sigma5d_max—is a longest principal axis in the five-
dimensional error ellipsoid (correspond to the errors of five astrometric parameters),
and γ=max[1, 100.2×G−3.6] [42].

After cross-matching of the NEWS catalogue with Gaia DR2 within 0.5′′ radius,
we have found 4.3 million common sources. For most of the matched in Gaia DR2
galaxies fromNEWShad themeasured positions only, possibly due to the high errors
in photocentre determination. Thus, we constructed a sample, containing 1242635
sources from NEWS in Gaia DR2, which passes the criteria listed above (and, as a
result, have themeasured propermotions), are located above δ=−30◦, and are outside
the regions with high extinction (E(B − V )< 0.1m).

In addition to that, 95% of the matched sources are within the magnitude range
g < 21.6m . Accordingly, the NEWS catalogue, except the sources within the Zone of
Avoidance (E(B − V )> 0.1m), consists of 20.05 million sources up to the g=21.6m

magnitude limit.
Assuming our sample comprising extragalactic objects only, we expect the zero

components of rotation vector with using the rigid-body rotation model. In Fig. 3
the dependencies of components of rotation vector, defined by positions and proper
motions of 1.2 million sources, on G-band magnitude are shown. Vertical error bars
represent the dispersion of components within the magnitude bin. The components
ωx , ωz were shifted by ±1.0 mas yr−1 for better visibility.

As we can see, the values of ωx , ωy, ωz reach (−0.8,−0.1, 0.6) mas yr−1 at
G=17m , (−0.4, 0.0, 0.3)mas yr−1 atG=19m , and (−0.3, 0, 0.2)mas yr−1 atG=21m .
Reason of such behaviour of components of rotation vector could be magnitude
equation in proper motions, as well as stellar proper motions. Even if the magnitude
equation exists in the Gaia DR2 data, its effect, in the case of a relatively uniform
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Fig. 4 Dependence of
components of rotation
vector ωx , ωy , ωz of the
system, defined by positions
and proper motions of 1.0M
NEWS sources, passed
astrometric criterion,
concerning the Gaia-CRF2
on the G magnitude

distribution of sources across the wide field on the sky, should be rather random
than systematic. Thus we assume, stars in NEWS catalogue cause this magnitude
dependence (and nonzero components of rotation vector).

To exclude the stars from NEWS×Gaia DR2 sample, we used the following
criterion [42]: ( μα∗

ζμα∗
)2 + ( μδ

ζμδ

)2 < 25, which allows to pick up the ‘motionless’ sources
only. Choosing the sources from the 1.2 million sample, proper motions of which
passed this criterion, and the probability of being extragalactic objects for which was
pxgal > 0.95, we received the sample of 1019687 sources. Repeating the procedure
of estimating rotation vector, we found that magnitude dependence of the rotation
vector acquired a weaker trend, resulting in zero components of rotation vector
almost at fullmagnitude range (see Fig. 4). Vertical error bars represent the dispersion
of components within the magnitude bin. The components ωx , ωz were shifted by
±1.0 mas yr−1 for better visibility. Important to note, that such a probability limit
was chosen as a compromise between the purity of the resulting sample (as far as
components of rotation vector are concerned), and its completeness (i.e., the total
number of the sources in the resulting sample).

We can transform this result into the numerical estimation of the NEWS catalogue
purity, supposingmost of the extended galaxies fromNEWSwere not cross-matched
in the Gaia DR2. This assumption is based on the observational strategy of the Gaia
mission [52]. Assuming the number of 20.05 million sources, as a total number of
galaxies and stars in NEWS up to g=21.6m (this magnitude limit corresponds to the
one, at which NEWS×Gaia DR2 cross-matching result contains 95% of sources)
and also assuming ∼220 000 sources, which have significant proper motions are
stars, we can estimate the purity of NEWS as PG = (20.05 − 0.22)/20.05 ≈ 98.9%.
We conclude that applying astrometric validation shows the estimated purity of the
NEWS catalogue, consistent with the estimations via external spectroscopic datasets.
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6 Conclusions

In this work, we presented the approach for the identification of the extragalactic
objects. Our approach incorporates the feature engineering with autoencoder artifi-
cial neural network, outlier detection with OCSVM, and binary classification with
SVM. As a result of our approach application, we have created the NEWS catalogue,
comprising 40350492 candidates in extragalactic objects (quasars and galaxies),
which passed the classification, based on the proposed classification model. NEWS
catalogue covers 3/4 of the sky up to g=23m and is one of themost in-depth catalogues
of extragalactic objects, covering most of the sky.

We identified with a high-quality extragalactic objects within AllWISE×PS1
sample, as confirmed by several checks. Namely, with using independent valida-
tion data—catalogues of spectroscopically confirmed sources and astrometric cat-
alogue Gaia DR2—we estimated purity (MCC > 0.95 at 19m < g < 21.5m with
spectroscopic data, PG ∼99% at 17m < g < 21.6m with Gaia DR2, and PG ∼ 99%
at 15m < g < 23m with five-fold cross-validation) and completeness (CG > 99% at
18m < g < 21.5m) of the NEWS sample.

The proposed method for identifying extragalactic objects is flexible and fully-
automatic approach that could become an alternative to traditional colour cuts with
manually-selected colours for classifying sources into two classes: stars and extra-
galactic objects. Using this model, we created the NEWS catalogue, which can be
used for cosmological, astrophysical [5], astrometric [6, 27, 53], photometric studies
[40, 49] and for any astronomical data sets processing [33].

Soon we plan to analyze the methods of classifying the sources with a few missed
magnitudes. Successful solving this task could help in increasing the number of
identified extragalactic sources, because of some of them were excluded at the stage
of data preparation due to leaving on the sources with all available magnitudes only.
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Ensemble Classifiers for Pulsar Detection

Jakub Holewik and Gerald Schaefer

Abstract A common way of identifying pulsars is based on their emitted radio
waves. To allow for automated screening of a large number of radio signals, machine
learning methods can be adopted. One challenge here though is that training such
methods is hampered by the inherent imbalance in the available data since signals
related to actual pulsars are relatively rare. In this chapter, we show that ensemble
classification methods that specifically address class imbalance can be successfully
employed for pulsar detection. Ensemble classifiers combine several base classifiers
to provide more robust and typically improved classification performance, while
class imbalance can be addressed through careful sampling or through cost-sensitive
classification. Our results demonstrate that such dedicated ensembles yield better
results compared to methods that do not consider class balance.

1 Introduction

Pattern classification is an important area of machine learning and a variety of tech-
niques for designing classifiers have beenproposed in the literaturewhile applications
in industry include, among many others, speech recognition, fingerprint identifica-
tion and data analysis [10]. A classifier is trained on a set of training samples and
tries to learn the correspondence between features in the data and the given classes.
The goal is to train a classifier that, when presented with a previously unseen sample,
is able to assign it to its correct class.

In astrophysics there are various problemswhere a classifier can be applied includ-
ing classifying objects such as photometric variable stars [31], supernovas [26] or
globular clusters [5], as well as for catalogue matching [34].

Our interest in this chapter is the automatic identification of pulsars. Pulsars are
rare neutron stars detectable through the radio waves they emit [33]. To allow for
automated methods of screening a large number of radio signals, machine learn-
ing methods can be adopted. However, the recorded signals contain a considerable
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amount of noise as well as radio frequency interference. In fact, interference is so
common that the large majority of candidate signals detected turn out to not stem
from pulsars. This makes the use of common machine learning algorithms challeng-
ing since they are not designed to take into account such a class imbalance.

Class imbalance is a common issue in classification tasks.When collecting data for
training, in particular for binary classification (i.e., tasks where patterns are separated
into exactly two classes as in “pulsar” or “not pulsar”), the ideal scenario is that the
split of patterns between the classeswill be approximately equal.Unfortunately,when
collecting data for pulsar candidates, only a handful of observations correspond to
true pulsars. Consequently, conventional classifiers struggle to learn effectively from
such an imbalanced dataset and in particular to learn well from the minority class,
which for our problem here (real pulsars) is the one of interest.

In this chapter, an extension of our earlier work in [18], we show that ensemble
classificationmethods, i.e. methods that combine several base classifiers, that specifi-
cally address class imbalance can be successfully employed for pulsar detection. Our
results demonstrate that such dedicated ensembles yield better results compared to
methods that do not consider class balance, and suggest their use for other applica-
tions in the field of astrophysics.

The remainder of the chapter is organised as follows. Section2 covers some of the
background on pulsar detection, while Sect. 3 looks at the problem of class imbalance
and some common approaches to overcome it. Ensemble classification is described
in Sect. 4, and the ensemble classifiers that we employ to address class imbalance
in Sect. 5. Experimental results are presented in Sect. 6, while Sect. 7 concludes the
chapter.

2 Background

Searching for pulsars is conducted through collecting pulsar candidates, that is, sets
of statistical information about certain radio emissions captured from space [28].
Search techniques used to isolate these look for periodic broadband signals that
appear dispersed. The collected signals are then converted into numerical values
which can be analysed to determine which of them are actual pulsars. Signals that
are determined to be likely coming from pulsars can then be passed on for further
observation. Traditionally, this analysis was conducted manually by human experts.
Unfortunately, the majority of captured signals does not come from pulsars, leading
to a lot of time dedicated to discarding noisy candidates.Also, technological advance-
ments have significantly increased the number of candidates being discovered [37],
leading to the manual approach becoming infeasible.

Consequently, various automated approaches have been developed for pulsar clas-
sification, with [19] describing a program for candidate selection as early as 1992.
However these methods were not intelligent enough, since after initial filtering of
candidates, the selected samples still needed to be manually checked. The use of
advanced machine learning approaches leads to more reliable detection. Examples
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include an artificial neural network for pulsar classification [11], PICS, a method
which utilises image pattern classification approaches to recognise pulsars from
diagnostic plots [44], and SPINN, a high-performance solution that is also based on
neural networks [29].

While such machine learning approaches have shown potential to greatly reduce
the work needed for identifying pulsars, none of them address the fundamental prob-
lem of data imbalance present in the candidate selection task with true pulsars being
greatly outnumbered by noisy samples. It is this aspect that we specifically address
in this chapter.

3 Imbalanced Classification

Many real-life datasets are imbalanced so that patterns of interest (commonly referred
to as the “positive class” or “minority class”) are outnumbered by “other” patterns
(referred to as the “negative class” or “majority class”). In our pulsar detection task,
there are many more noise samples compared to those that represent a true pulsar.
This is challenging since classification algorithms typically try to maximise accuracy
over all samples and thus tend to be biased towards the majority class, leading to
often poor recognition of minority class samples.

3.1 A Closer Look at Rarity

While we can draw a distinction between “rare classes” and “rare cases” in datasets
[43], our issue of imbalance typically refers to rare classes where the positive class
as a whole represents a smaller portion of the dataset (rare cases are singular patterns
that differ from most other patterns in the same class).

We can also distinguish between absolute and relative rarity [43]. Relative rarity
means that the positive class contributes a much lower percentage to the dataset,
whereas absolute rarity suggests that the overall number of patterns in a class is just
generally low. Absolute rarity is often a reflection of lack of data, while, not surpris-
ingly, classes lacking a sufficient number of samples tend to suffer from higher mis-
classification rates [42]. Relative rarity can still cause problems even in big datasets,
for example when using greedy search heuristics [43].

3.2 Addressing Imbalance—Sampling

The most common approach to address class imbalance is through sampling. The
aim here is trying to “fix” the data by creating a new training dataset with equal class
distribution. In undersampling approaches, this is achieved by removing samples of
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the majority class, at the cost of discarding potentially useful data [43]. On the other
hand, in oversampling, the number of patterns of the minority class is increased to
match more closely that of the majority class. The key obstacle here is how to obtain
useful new minority class samples.

SMOTE (for Synthetic Minority Over-sampling TEchnique) [6] generates new,
artificial patterns of the minority class that are supposed to be similar to the actual
patterns in the dataset. For this, it uses a nearest neighbour approach, creating new
patterns by combining features from existing neighbouring patterns. SMOTE has
been widely used and is known to help with generalisation in imbalanced classi-
fiers [6, 43].

3.3 Addressing Imbalance—Cost-Sensitive Classification

An alternative approach to address class imbalance is cost-sensitive classification
which is based on the idea of assigning a penalty to misclassifications [30]. Con-
ventional classifiers try to reduce the number of misclassifications but do not pay
attention towhich class these belong to.Defining classweights is a common approach
to reflect the varying degrees of importance among classes. In most imbalanced clas-
sification problems, the minority class is the class of interest and is thus assigned a
higher weight so that the resulting classifier will focus more on reducing the error
rate of that class.

4 Ensemble Classification

Typically, a single classifier is used in pattern recognition problems. However, classi-
fiers are rarely perfect and designing a classifier that will generalise well is a difficult
problem. On the other hand, different classifiers can complement each other when
it comes to achieving high performance [15]. This observation leads to the develop-
ment of multiple classifier systems, also known as ensemble classification. By using
a set of base classifiers and then combining their outputs, these methods can deal
particularly well with noisy inputs and yield more robust classification [16].

4.1 Rationale Behind Ensembles

Before exploring ensemble classification in depth, it is useful to ask whether it is
worth the effort in the first place [14]. In general there are three reasons for why
ensemble methods are worth using [9]:
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• Statistical argument: This is relevant in problems that suffer from data sparsity.
With a limited number of samples, training could produce many different clas-
sifiers with similar performance. But some of them will be better than others at
generalisation. Combining these classifiers into an ensemble is better than picking
one and risking that it will not perform well on unseen data.

• Computational argument: This argument applies to methods that use some sort of
hill-climbing or random search, for example neural networkswith gradient descent
or decision trees with greedy splitting rules. These techniques are inherently dif-
ficult to optimise and a common issue is getting stuck in a local optimum. This
is where an ensemble can be beneficial by employing multiple classifiers which
begin searching in different places, thus improving the likelihood of finding the
global optimum.

• Representational argument: It may be impossible to obtain an optimal classifier.
For example, for a binary dataset with a non-linear decision boundary, there is no
linear classifier that can yield perfect classification. In a situation like this, there are
two possible solutions. One is to train a classifier of higher complexity, while the
other solution is to combine some imperfect classifiers with the aim of increasing
the overall performance.

4.2 Voting

The simplest approach to create an ensemble is to train a set of classifiers indepen-
dently, and then have them vote for the classification result. The decision about how
to classify a pattern is made by every member of the ensemble performing classi-
fication, and then conducting a vote to determine the final class. Different voting
schemes such as selecting the class that receives most votes or weighted voting can
be employed.

While voting yields a straightforward method to combine different classifiers, for
better performance more sophisticated approaches are needed, the most common of
which are bagging and boosting.

4.3 Bagging

In bagging, short for “bootstrap aggregating”, each classifier is trained not on the
full dataset, but the dataset is randomly sampled multiple times (with replacement)
and each classifier trained on a different random subset [1]. The classifiers are then
combined, usually by plurality vote (i.e., the sample assigned to the class that receives
most votes).

Unstable classifiers are ones where even a small change in the training set can
drastically affect the end result [2], and bagging was intended for unstable classifiers
such as neural networks and decision trees. If usedwith stable classifiers, for example
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nearest neighbour classification, there is a risk that the ensemble members trained
on slightly different data subsets will end up very similar to each other so that the
ensemble will not be much different from a single classifier.

The best-known adaptation of bagging is the Random Forest algorithm [3]. Here,
decision trees are used as base classifiers for the ensemble, and training sets are
obtained from independent and identically distributed random vectors which can
be random samples of the dataset, samples with random features or even randomly
varying parameters of the tree itself. A common strategy is to sample both the data
space and the feature space, i.e., grow the trees from a random subset of the dataset,
with patterns containing only a random subset of all features [23].

4.4 Boosting

Boosting,whose origin stems from theweightedmajority algorithmproposed in [24],
has the idea of “weak learners”—classifiers that are only slightly better than a random
guess—at its core with the aim of transforming, or “boosting”, them into strong
learners [35]. In boosting algorithms, this is accomplished by iteratively training
ensemble members, with each of them focussing on specific data patterns that were
difficult to learn for the previous classifier.

In AdaBoost [13], short for “Adaptive Boosting”, a weight is assigned to each
pattern. These weights can be used in two different ways. One approach is to treat the
weight as a probability that the given pattern will be selected in the random training
subset generated for the next classifier. Another approach is to feed all classifiers the
entire dataset and use the weights directly as weights for training, which requires
classifiers that support weighted learning and also makes the algorithm deterministic
as no sampling occurs [23]. The key feature of AdaBoost is that the weights are
updated after a classifier has been trained, with weights increasing if the classifier
predicts the sample incorrectly, and decreasing otherwise.

5 Ensembles for Imbalanced Classification

In this chapter, we investigate the use of ensemble classifiers that specifically address
class imbalance for pulsar detection. In the following we briefly describe the algo-
rithms we evaluate.

5.1 SMOTEBagging

SMOTEBagging combines abagging ensemblewith various sampling strategies [41].
The main idea is to employ a bagging scheme that trains base classifiers on subsets
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of the training data so that each class is equally represented. SMOTE is applied to the
minority class, and original patterns and generated patterns are used together with a
random subsample of the majority class when training each classifier. Experimental
results in [41] show that SMOTE effectively improves the diversity and performance
of a bagging ensemble.

5.2 SMOTEBoost

SMOTEBoost [7] uses SMOTE in combination with an AdaBoost classifier with
SMOTE employed to improve performance on the minority class, and boosting used
to make up for the loss of general accuracy. However, SMOTEBoost is more sophis-
ticated than just running SMOTE on a dataset and then training an ensemble on it.
SMOTE is instead used separately for each classifier, and all synthetically generated
patterns are discarded before training the next classifier. Unlike standard AdaBoost,
which treats all misclassifications equally, misclassified minority class patterns are
focussed on. Particularly hard to learn minority patterns will have “similar” synthetic
patterns with similar weights added to the training set, thus enabling classifiers to
better learn them, while implicitly creating more diversity in the ensemble (since
every classifier is trained on a number of exclusive patterns that will be discarded
afterwards).

5.3 EasyEnsemble

Liu et al. [25] proposes an effective ensemble which focusses on undersampling
rather than oversampling. EasyEnsemble can be seen as a fusion between bagging
and boosting but is somewhat unique in that it technically generates an ensemble of
ensembles. During each iteration, it uses random undersampling with replacement to
generate a subset of the majority class training data. This subset is then used together
with the full minority class data as a training set for an AdaBoost ensemble. This
way, a set of diverse AdaBoost ensembles is generated, each trained on different
majority class data. Finally, the outputs of all classifiers predicting the same class
are summed, and the class with higher support is chosen.

5.4 Balanced Random Forest

In a similar fashion to EasyEnsemble, the Balanced Random Forest algorithm [8]
adapts Random Forest classification for imbalanced classification problems. In stan-
dard Random Forest, for an imbalanced dataset, there is a high risk of selecting very
few minority class patterns in the bootstrap samples selected for learning. Possible
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solutions to this issue include sampling stratified subsets (i.e., subsets that preserve
the distribution of classes), or utilising a sampling technique like oversampling or
undersampling. Balanced Random Forest uses undersampling on the majority class,
and so each tree is based on a subset that is balanced between the classes.

5.5 AdaC2

With a rationale similar to the one behind SMOTEBoost, AdaC2 [38] uses AdaBoost
with a cost-sensitive approach to address data imbalance. The aim is to adjust the
weights so that misclassified minority class patterns are the main focus, and the
algorithm uses a cost value for each pattern which represents the penalty to the
classifier formisclassifying that patternwithminority class costs higher thanmajority
class costs. These costs are incorporated to define the weight wk+1

i of pattern i in the
next classifier as

wk+1
i = wk

i e
βi Ci

Z
, (1)

where wk
i is the pattern’s weight in the current classifier, βi = αk if pattern i was

misclassified by classifier k, and βi = −αk otherwise, with αk a parameter which is
a predefined function of the classifier’s error rate, and Z is a normalisation factor.

5.6 AdaCost

AdaC2 and related algorithms are actually simplified variants of another cost-
sensitive method, namely AdaCost [12]. Here, the AdaBoost cost function is

wk+1
i = wk

i e
βi Di

Z
, (2)

where, instead of introducing a constant cost for each pattern, a cost adjustment
function Di is used, which is designed to have higher values when the pattern was
misclassified. An interesting aspect of this algorithm is that, unlike AdaC2, it does
not reduce to AdaBoost when both the majority and minority class are given the
same weight [38].

5.7 USBE

USBE (for UnderSampling Balanced Ensemble) uses balanced data subspaces and
a classifier fusion technique to construct an ensemble [21]. The dataset is split into
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subsets with balanced class distributions based on undersampling the majority class,
and a base classifier trained on each balanced subsets. Additionally, feature selec-
tion is performed, separately for each classifier, which in turn further increases the
diversity of the ensemble. The classifiers are then fused by deriving weights for the
individual classifiers based either on a genetic algorithm or a neural network.

6 Experimental Results

6.1 Dataset

In this chapter, we perform pulsar classification based on the HTRU2 study [27],
which is a large database of pulsar candidates collected in the dedicated High Time
Resolution Universe Survey [20].

The features are extracted from the pulse profile which describes the longitude-
resolved version of a the signal, averaged in frequency and time. The DM-SNR
curve represents the correlation between the dispersion measure (DM; the integrated
density of free electron columns between the pulsar and the point of observation)
and the signal-to-noise ration (SNR) from the given pattern.

Specifically, we use eight attributes that represent the various features of each
pulsar candidate [29], namely:

• mean of the integrated pulse profile;
• standard deviation of the integrated pulse profile;
• excess kurtosis of the integrated pulse profile;
• skewness of the integrated pulse profile;
• mean of the DM-SNR curve;
• standard deviation of the DM-SNR curve;
• excess kurtosis of the DM-SNR curve;
• skewness of the DM-SNR curve.

The dataset comprises 16,259 bogus patterns (caused by radio frequency interfer-
ence andnoise) and1,639 real pulsar patternswhich have beenmanually verified [27],
thus exhibiting significant class imbalance.

6.2 Performance Measures

In binary classification problem, there are four basic measures which form the basis
of various performance metrics [36], namely:

• True positives (TP): the number of patterns from the positive class that are correctly
classified;
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• True negatives (TN): the number of patterns from the negative class that are cor-
rectly classified;

• False positives (FP): the number of patterns from the negative class that are incor-
rectly classified as the positive class;

• False negatives (FN): the number of patterns from the positive class that are incor-
rectly classified as the negative class.

For conventional classification, the basic performance measures are [36]:

• Accuracy: the overall percentage of correctly classified patterns, i.e.

Acc = T P + T N

T P + FN + FP + T N
; (3)

• Precision: the percentage of patterns classified as positive that are correctly clas-
sified, i.e.

Prec = T P

T P + FP
; (4)

• Recall (or Sensitivity): the percentage of positive patterns that are classified cor-
rectly, i.e.

Rec = Sen = T P

T P + FN
; (5)

• Specificity: the percentage of negative patterns that are classified correctly, i.e.

Spec = T N

T N + FP
. (6)

However, for imbalanced classification problems, these standard measures are
not sufficient [39]. In particular, using accuracy to describe the overall efficacy of a
classifier can bemisleading since it will largely describe performance on themajority
class. On the other hand, precision and recall express how well the classifier is doing
on the positive (minority) class [43]. The F-score integrates these two measures into
a single one as [32]

F = 2× Prec × Rec

Prec + Rec
. (7)

Another useful measure is the G-Mean [22] which is defined as the geometric mean
between sensitivity and specificity, i.e.

G = √
Sen × Spec, (8)

and thus corresponds to a point on the receiver operator characteristic (ROC) curve.
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6.3 Results

In our experiments we evaluate the classifiers detailed in Sect. 5 and do so based
on two types of base classifiers, decision trees based on CART [4], and support
vector machines (SVMs) [40] with polynomial kernels and parameters optimised
using a grid search. For comparison, we also tested 3 classifier ensembles that are
not dedicated to imbalanced problems, namely an ensemble based on the random
subspace method [17], with 80% of features in each subspace and majority voting,
standard Random Forest, and AdaBoost.

We perform 20-fold cross validation, where the dataset is divided into 20 parti-
tions, and 19 are used for training while the remaining partition is employed as the
test set. The process is repeated 20 times so that each partition is once used for testing
and the results averaged. All ensembles are based on 5 base classifiers.

The obtained results are given in Table1 for tree classifiers and in Table2 for
SVMs.

From Tables1 and 2, we can see that already the standard ensembles give fairly
good performance, except forAdaBoost with SVMs as base classifiers. This confirms
that the extracted features provide a good basis for successful pulsar identification.

However, ensembles that are dedicated to imbalanced classification problems do
indeed yield better results, in particular in terms of both a high G-mean and good
F-score results combined with high sensitivity, thus confirming the usefulness of the
presented approaches. While the Balanced Random Forest only slightly outperforms
standard Random Forest classification, bigger gains are achieved by AdaC2 and
AdaCost compared to AdaBoost, in particular when using SVMs as individual clas-
sifiers. Still better performance is achieved by SMOTEBagging, EasyEnsemble and
USBE. Overall, USBE gives the best results in terms of G-mean, which is the most
appropriate single measure for imbalanced problems, with the neural fuser slightly

Table 1 Results using decision trees as base classifiers

Accuracy Precision Recall Specificity F-score G-mean

Random subspace ensemble 97.85 93.41 81.21 99.45 86.88 89.87

Random Forest 98.07 93.60 84.81 99.42 88.92 91.79

AdaBoost 97.96 94.80 81.21 99.57 87.48 89.92

SMOTEBagging 96.66 76.64 89.11 97.39 82.40 93.16

SMOTEBoost 96.63 76.48 88.93 97.37 82.24 93.06

Balanced Random Forest 96.15 73.84 86.96 97.04 79.86 91.86

EasyEnsemble 95.89 71.10 89.60 96.50 79.29 92.99

AdaC2 97.82 90.41 84.08 99.14 87.13 91.30

AdaCost 97.82 90.41 84.08 99.14 87.13 91.30

USBE (genetic fuser) 95.92 71.87 91.58 96.36 80.48 93.93

USBE (neural fuser) 95.98 72.25 91.70 96.41 80.75 94.01
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Table 2 Results using SVMs as base classifiers

Accuracy Precision Recall Specificity F-score G-mean

Random subspace ensemble 97.93 93.48 82.17 99.45 87.46 90.40

AdaBoost 96.82 94.64 67.52 99.63 78.81 82.02

SMOTEBagging 97.33 81.84 89.44 98.09 85.48 93.67

SMOTEBoost 96.97 81.29 84.95 98.12 83.08 91.30

EasyEnsemble 97.22 80.76 89.68 97.95 84.99 93.72

AdaC2 98.04 94.20 82.80 99.51 88.14 90.77

AdaCost 97.96 92.58 83.44 99.36 87.77 91.05

USBE (genetic fuser) 97.30 83.01 88.96 98.14 85.81 93.42

USBE (neural fuser) 96.03 72.65 91.64 96.48 80.95 94.03

outperforming the one based on a genetic algorithm. In addition, we can notice that
the use of SVMs as base classifiers is generally superior to decision trees, leading to
the highest G-mean of 94.03 by USBE with a neural fuser and SVMs as individual
classifiers, representing an excellent performance on this challenging problem.

7 Conclusions

In this chapter, we have investigated the use of ensemble classifiers that address
class imbalance for finding true pulsars among the candidates in the HTRU2 study,
and have shown that they indeed provide a useful approach for this challenging task
and improved performance compared to standard ensembles. Since the investigated
methods are essentially agnostic with respect to the application, we expect that they
can also be successfully employed for other astrophysical applications such classifi-
cation of photometric variable stars [31], supernovas [26] or globular clusters [5].
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Periodic Astrometric Signal Recovery
Through Convolutional Autoencoders
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Abstract Astrometric detection involves precise measurements of stellar positions,
and it is widely regarded as the leading concept presently ready to find Earth-mass
planets in temperate orbits around nearby sun-like stars. The TOLIMAN space tele-
scope [39] is a low-cost, agile mission concept dedicated to narrow-angle astrometric
monitoring of bright binary stars. In particular themissionwill be optimised to search
for habitable-zone planets around α Centauri AB. If the separation between these
two stars can be monitored with sufficient precision, tiny perturbations due to the
gravitational tug from an unseen planet can be witnessed and, given the configuration
of the optical system, the scale of the shifts in the image plane are about one-millionth
of a pixel. Image registration at this level of precision has never been demonstrated
(to our knowledge) in any setting within science. In this paper, we demonstrate that
a Deep Convolutional Auto-Encoder is able to retrieve such a signal from simplified
simulations of the TOLIMAN data and we present the full experimental pipeline to
recreate out experiments from the simulations to the signal analysis. In future works,
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all the more realistic sources of noise and systematic effects present in the real-world
system will be injected into the simulations.

1 Introduction

Astronomy seeks to answer our deepest questions. Where did it all begin and how is
it going to end? Are we alone in the Universe? Is there life beyond our biosphere—or
conversely is Earth and our planetary system in some way unique? Such inquiries
have given rise to the fields of astrobiology and exoplanetary research.

Despite our long term commitment to explore these questions, the development
of instruments capable of detecting planets around distant stars has proven to be
one of the most challenging astronomical quests [22]. The first exoplanet orbiting a
Sun-like star was detected through small deviations caused in radial velocity mea-
surements of its host [27, this work was subsequently awarded the 2019 Nobel Prize
in Physics]. A little more than twenty years later, there are more than 4000 con-
firmed exoplanets.1 The celestial garden is therefore a fertile ground for discovery,
and the synergy between new astronomical missions and modern statistical learning
techniques promises an exceptionally bright future for this rapidly expanding field.
Discovery and characterisation of exoplanets is particularly suited to combinations
of approaches that can push the boundaries in both the acquisition of exceptionally
clean, low-noise data, as well as the ability to sift large volumes of observations in
order to extract subtle signals that are often submerged under orders of magnitude
by statistical and systematic noise. Every technology in this area has to face these
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problems because, on a cosmic scale, exoplanets are almost completely irrelevant.
They contribute only infinitesimally to the mass or energy budget of galaxies. Even
in our own solar system major gas-giant planets such as Neptune and Uranus evaded
detection until the advent of the modern telescope; the challenge of discovery at
light-year distance scales can seem forbidding.

The most successful techniques to reveal exoplanets are indirect in that they
do not witness signals from the planet itself, but rather the planet’s influence on
its host star. One is the transit method which witnesses a dip in starlight as the
planet traverses the observer’s line-of-sight to the star. An alternative method is the
radial velocity, which records to-and-from perturbations in the velocity of the star,
as it is perturbed by the gravitational field of the planet. The TOLIMAN (Telescope
for Orbital Locus Interferometric Monitoring of our Astrometric Neighbourhood)
program was motivated by the realisation that neither of these methods are suited
to answer a fundamental question: are there any potentially habitable exoplanets
around the Sun’s nearest neighbour twin system—α Centauri AB? Unfortunately,
the transits require an alignment, a very rare event, while radial velocity can find
massive gas-giant planets, but not small rocky exo-Earths in the habitable zone of
the system.

Arguably, a very promising alternative method is the most traditional branch
of Astrometry: the study of deviations in the position of the star in the plane of
the celestial sphere that, in this case, are imposed by the motion of the star and the
exoplanet around a common center ofmass. Like all signals in this domain of science,
the deviations in position are very small, of the order of one micro-arcsecond. To
give a sense of scale, for an observer on Earth, this is the angle subtended by a coin
held edge-on (∼2mm) while standing on the moon. For the specific case we are
interested in, the situation is even more interesting.

α Centauri is a binary star system (thus the A/B), with two stars constantly in
motion one around each other. If their motion could be monitored, for example by
taking a series of images at different times, one would see the distance between
the center of the stars changing as their orbit evolves. After their equivalent of a
year this pattern would repeat—thus, by observing the separation between the stars
during some time one would detect a periodic signal. This expected signal would
be slightly different if one considers the presence or absence of an Earth-like planet
as the third element in this system—and that is the type of perturbation we aim at
measuring. One can imagine that at such scales even the smallest deviations in the
position of the satellite or thermal effects in its structure and instruments are enough
to build up noise in each image, which is orders of magnitude higher than the signal.
TOLIMAN has been designed to implement innovative optical principles to deliver
a robust estimate of this signal, despite the inevitable presence of many competing
random processes and systematic noise. Details can be found in [39] and in Sect. 3
of the present work. A critical component for the success of the mission is our ability
to extract periodic signals at the milliarcsecond level from a data stream consisting
of over a million of images downlinked from the satellite.

The general process to solve this problem has at least two major stages: first, it
is necessary to estimate the period of one cycle for the binary star system; then, a
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more careful analysis of the amplitude deviations at the relevant periods enables the
discovery of additional clues about the presence of the planet. In this chapter, we
present some first concepts of one of the possible strategies to solve the first stage
directly from raw, imaging data.

Given a series of images of a binary star system as observed by the TOLIMAN
mission, our framework uses an unsupervised neural network to learn an abstract
(latent), low dimensional representation of the data (the raw images). Here we use
a deep convolutional autoencoder [15]. This step reduces the dimensionality of the
problem from 256 × 256 pixels (size of the images) at each sampling time to 1
parameter of the latent space, which can then be analyzed as a traditional time series.
An overview of the workflow is given in Fig. 1. We use simplified simulated versions
of the images to be measured by TOLIMAN to show how one can use concepts
of neural networks to construct a data analysis pipeline that may be able to extract
periodic astrometric signals with an amplitude up to a million times smaller than the
pixel size.

In this chapter, we shall guide the reader through all the modules illustrated in
Fig. 1. Section2 gives an overview of the astrometric principles that inspired the
TOLIMANmission, presented in more details in Sect. 3. We then show how the sim-
ulationswere constructed in Sect. 4, with a brief review of the principles of traditional
dimensionality reduction techniques in Sect. 5. We introduce basic concepts of deep
learning, and how they can be used to learn a meaningful non-linear representation
of the input data, in Sect. 6. In Sect. 7 we analyze the architectural choices made
to build the deep convolutional autoencoder and in Sect. 8 the time-series analysis
tools, which allow to extract the periodic signal from the data latent space. Once
most of the tools are presented, we show the performed experiment and their results
in Sect. 9. We finally draw the conclusions in chapter in Sect. 10.

2 Astrometry

Before delving in the conceptual diagramof Fig. 1,wewant to introduce the astromet-
ric detection field and thus the reasons behind the TOLIMAN satellite architectural
choices. Astrometric detection involves precise measurements of stellar positions
and it is widely regarded as the leading concept presently ready to find Earth-mass
planets in temperate orbits around nearby sun-like stars [e.g. 34, 36]. The principle
for detecting a planet using astrometry is the same as that adopted by the hunters of
unseen companions of stars [e.g. 2] about two hundred years ago. As a planet orbits
the star, the latter is tugged in a small circle by reflex motion, thus, by careful mea-
surements of the position of the star over time (either in a local or global frame, that
must be more stable than the signal produced by the invisible companion), these tiny
displacements, imposed on the host star by the gravity of orbiting exoplanets, yield
a solution for the planet mass and orbit. Unlike other methods, there are few blind
spots, and the signal generated by companions increases with planet-star separation,
converse to both radial velocity and transit methods. These unique characteristics
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Fig. 1 Conceptworkflow.The underlying concept of the proposed data analysis is based onfinding a
lower-dimensional representation (a compression) of the raw data which preserves periodic signals.
Once a suitable representation is found, the effect caused by the presence of the planet can be
detected using a time series analysis

make it ideal for probing habitable zones at larger orbital radii. Furthermore, the
intrinsic signal (the amplitude of the periodic angular wobble on the sky) is inversely
proportional to distance, favouring stars in the immediate neighbourhood of the Sun.

However, despite the potential promise, astrometric detection for exoplanetary
discovery has not yet entered the mainstream. The angular excursions induced by
habitable-zone Earth-analog planets are small, of order of one micro-arcsecond even
for best-case targets, such as Alpha-Centauri. Ground-based high precision astrom-
etry campaigns must fight the considerable sources of noise, such as the starlight
path through the Earth’s turbulent atmosphere. Long-baseline optical interferome-
ters have historically delivered precisions better than 100µ-arcseconds, with a recent
resurgence of interest prompted by ESO’s GRAVITY instrument [16] with accuracy
an order of magnitude better, which is still not sufficient for Earth-mass planets, how-
ever. Furthermore, the nearest stars to Earth present a large apparent angular diameter
and are correspondingly difficult to observe on long baselines, since they are over-
resolved objects, and thus present challenges to the interferometric technique, due to
low fringe contrast. These intrinsic challenges for ground-based astrometric obser-
vation have increasing the interest in space. Global, large space astrometric surveys
over wide angles have proved to be extremely productive delivering fundamental
stellar positions, distances and kinematics with the ESA/HIPPARCOS mission [11],
and its ambitious successor ESA/Gaia [13, 14], which is nowmeasuring billion stars
with precisions of the order of ∼10µas. Although the Gaia mission expected to
deliver a rich harvest of gas giant planets [e.g. 3, 31], in order to detect and study
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rocky planets in temperate orbits, we need to push detection thresholds down to levels
better than 1µas, something that will require dedicated new concepts.

Conventional astrometry approaches measure the position of a star, using a grid
of reference nearby objects. This requires relatively large fields of view since the
distance between science targets and sufficiently bright reference objects are of the
order of several arcminutes. However, maintaining long-term instrumental stability
over such large angles is notoriously challenging. Several interesting missions have
been proposed by groups in Europe [36], the US [40] and China [4], addressing the
different concepts to solve this problem with highly stable and continuously moni-
tored spacecrafts and instruments. This poses, however, an additional non-negligible
problem: the instrumental cost scales significantly with the field-of-view. Thus it is
natural to ask the question if it is possible to obtain micro-arcsecond level measure-
ments for certain targets, like Alpha-Centauri, using much narrower fields-of-view,
and thus avoiding the high costs associated to the stability of large field-of-view
concepts.

2.1 Narrow-Angle Astrometry

Our ability to perform narrow field astrometric science ultimately rests on the ability
to precisely register the position of the stellar image in each exposure. This meets
a fundamental photon noise limit, even with a perfectly stable optical apparatus.
Typically any bright nearby star will provide enough photons so that this theoretical
limit is not a major problem, requiring only minutes or hours of integration with
a telescope of reasonable aperture. However, the critical limitation is not set by
photons from the target star but from the absolute stability of the image plane sensor
required to perform the measurement; something that can only be accomplished
with continual monitoring and ongoing calibration. For the practical narrow-field
astrometry, registration of the images is performed by simultaneous monitoring of
a constellation of background stars, which provide instantaneous information about
the exact plate scale and further order deformations. Our astrometric detection error
budget is therefore dominated by the accumulation of sufficient counts on thesemuch
fainter reference stars that, for a field of view of several arcminutes, are likely to be
thousands of times fainter than the target star. The concept underlying the TOLIMAN
mission was developed on the principle that it is possible to entirely sidestep this
dilemma for the special case of observations of bright binary stars.

Where two bright stars lie close together in the sky, precise monitoring of their
separation will deliver the key science with negligible photon noise. In particular,
α Centauri is almost ideally tailored for a mission exploiting narrow-angle self-
referenced astrometric detection. As our nearest celestial neighbour system, Alpha
Cen’s pair of solar-analogue stars means that habitable-zone exoplanets could be
true Earth-twins in year orbits: at the sweet spot for detectability within an attainable
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mission duration and yielding signals factors of 2–10 times stronger than the next-
best systems. The two habitable zones have wide enough orbits to yield good signals,
yet not so wide as to require an extended mission lifetime for detection.

3 TOLIMAN

The TOLIMAN space telescope [39] is a low-cost mission which aims to push the
boundaries of astrometric measurements in binary star systems and to enable the
detection of Earth-like planets around α Centauri, our closest extra-solar system.
The mission is optimised to search for habitable-zone planets that, for α Centauri,
implies deflections with amplitudes of order of ∼1µas over roughly 1-year orbital
periods. The detection of such a small astrometric signal has never been reported
before in the astronomical literature.

To accomplish this task with an affordable spacecraft and mission profile, an
innovative optical and signal encoding architecture was proposed. It explores and
reformulates the idea of a Diffractive Pupil based optical system.

As originally envisaged, a diffractive pupil telescope would have a set of diffrac-
tive features, most simply a regular array of small opaque dots, embedded in the
pupil of the instrument [e.g. 17]. These must be anchored to some element with
extreme mechanical stability. The features cause starlight to diffract in the image,
essentially forming a pattern whose features are exactly known and stable so long
as the diffractive pupil remains stable. For bright sources, this simple concept offers
a cunning solution to the key problem that overwhelmingly dominates astrometric
error budgets: the stability of the instrument.

When trying to reference stellar positions at micro-arcsecond scales, a host of
small imperfections and mechanical drifts, warps and creep of optical surfaces, gen-
erates systematic instabilities that can be orders of magnitude larger than the true
signal. Rather than trying to directly contain all these errors, the Diffractive Pupil
approach sidesteps them. It creates a new ruler of patterned starlight against which
to register positions in the image plane. The cleverness of this approach is that the
diffractive grid of starlight suffers identical distortions and aberrations to the signal
that is measured. Therefore, drifts in the optical system cause identical displacements
of both the object and the ruler being used to measure it, making data immune to a
large class of errors that encompasses other precision relative astrometry approaches.

The opaque dots pupil proposed byGuyon et al. [17] results in a diffraction pattern
where the image plane is populated by a regular grid of sidelobe images diffracted
from the bright target star. However,when considering broadband illumination, band-
width smearing of the starlight will draw each sidelobe into a narrow radial streak
or ray. The signal recovery proceeds by registering the location of these rays against
the background field stars. Because the diffractive ruler takes the form of long nar-
row radial rays, positional information recovered must be in the orthogonal ordinate.
Therefore, the primary observable consists of the recovery of azimuthal positions of
(a rich field of) background stars registered against the nearest diffraction rays. For
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Fig. 2 Left Panel: a conceptual design pupil for the TOLIMAN mission, with white/black regions
indicating discrete phase steps of 0/π . Right Panel: the monochromatic PSF generated yields a
complex and strongly featured pattern extending from the core, uniformly filling the region with
sharp fringes

the TOLIMAN mission, the diffractive pupil formulation described above has two
fatal flaws: (1) it relies on background field stars and (2) with its radially smeared
ruler it is unable to yield precision measurement of the separation of any binary star.
For only a single pair of stars, as is the case of Alpha-Centauri, radial information is
essential. Instead, TOLIMAN proposes a novel form of diffractive ruler which gen-
erates fine-featured patterns capable of spanning the required separations between
the components of a binary star system.

TOLIMAN requires diffractive pupils capable of creating patterns with a sharp
structure extending in the radial direction. Our primary design driver was to find
patterns that create a region on the image plane uniformly filled with features that
have the highest gradient energy and that occupy the minimum span in dynamic
range. Essentially, the former criteria attempt to optimise our ability to accurately
register the resulting pattern—fitting algorithms rely on regions where the image
has the strongest slopes or sharp edges. The latter condition is required to spread
the starlight preventing saturation of the detector, and spanning the separation of the
binary with diffractive features so as to enable the diffractive pupil methodology.
Such a design is depicted in Fig. 2 and is now seen to meet our goal of filling the
entire diffractive region, including the core, with sharp structure. Sharp gradients in
the image plane optimise the ability to precisely register such an image.
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3.1 The TOLIMAN Data Challenge

In its simplest form, extracting the science signal arising from TOLIMAN data
requires the exact registration of two overlapping point-spread functions, one for
each component of the binary star, in the image sensor plane of the orbiting space
telescope. If the separation between these two stellar images can be monitored with
sufficient precision, tiny perturbations due to the gravitational tug from an unseen
planet can be detected. Given the configuration of the optical system, the scale of the
shifts in the image plane are about one-millionth of a pixel (10−6 pix), thus exquisite
stability is required: these motions are only manifest as a sinusoidal perturbation
over year timescales.

Although there are many potential sources of imperfection and error, this first
study restricts itself to the most basic and fundamental one, with noise processes
arising principally from photon noise and the spatial discretization of the signal.
Additional terms, as imperfect spacecraft pointing, jitter and roll stability, will be
addressed in future work. For the present study, simulated and laboratory testbed
data were created to embody such error terms.

A pictorial illustration of the basic challenge is shown in Fig. 3: two patterns exist
within the frame of data, in this case without the noise terms. High degrees of sharp
image structure result in a data for which accurate image registration is possible;
however, on the other hand the levels of extreme measurement precision required to
obtain the science move this from a relatively routine exercise in image processing
(at levels of 10−2 pixel) to an unsolved problem at signal fidelity levels never yet
attempted (at levels of 10−6 pixel).

Fig. 3 A simulated binary
star as observed with the
conceptual design
TOLIMAN pupil discussed
above
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4 Simulations

We are now ready to describe the simulations of the TOLIMAN data, i.e. the inputs
of our conceptual workflow shown in Fig. 1. These simulations were necessary given
that no testbed has been build yet to accurately reproduce the TOLIMAN data. This
section, thus, describes the formalism and necessary steps to produce a mock data set
that mimics the precision level required by the TOLIMAN mission. The first chal-
lenge in developing a method capable of extracting a signal as small as one-millionth
of a pixel is to develop a computational model capable of emulating such signal under
varying conditions of noise. Although injecting a signal into an image may seem a
rather trivial task, conventional approaches fall short when pushed to the limits of
precision required by the TOLIMANmission, often resulting in large computational
cost. The traditional simulation approach consists of generating a super-sampled
Point Spread Function (PSF). Since stars can be considered point sources, to sim-
ulate a stellar field as would appear on the detector, we simply need to shift and
downsample that PSF in the sensor grid. Thus, by assigning it to either random or
specified positions within the image and repeating the procedure for many different
point sources, we can recreate a stellar field. While this can be made computation-
ally efficient today using the widespread GPU accelerators, such traditional methods
unfortunately introduce errors orders of magnitude greater than the signal we expect
to measure, thus requiring alternative approaches to the generation of the mock data.

4.1 The Fast Fourier Transform

The Fast Fourier Transform (FFT) has long been used as an optical simulator since
it performs the same operation numerically as a focusing mirror or lens does opti-
cally. An input image will undergo a transformation from a spatial representation
to a frequency representation when observed at the focal plane. The Fast Fourier
Transform operates on a digitised representation of the input with an O(n.log(n))

computational complexity, making it a corner stone in basic computations of optical
systems. In this section, presenting the basic underpinnings, we detail how one can
use FFT’s to create images of stellar fields with the injection of arbitrarily sized
positional information.

Generating these PSF’s is conceptually straightforward, requiring only the rep-
resentation of the electric field at the aperture E(x, y, λ) = A(x, y)eiθ(x,y,λ) as its
amplitude A(x, y) and phase θ(x, y)and combine these terms into a complex array.
The PSF in the (u, v) focal plane is then found by taking the power of the resultant
FFT of the complex array.

PSF(u, v) = |F {E(x, y, λ)}|2 = |F {A(x, y)eiθ(x,y,λ)}|2 (1)
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Positional information can then be injected through applying a linear gradient to
the phase θ . An Optical Path Difference (OPD) is introduced across the aperture
by any source off-axis from the normal of the telescope pointing. Easily calculated
through the angular offset from the normal, the OPD simply translates into phase as
a function of the observation wavelength.

θslope(x, y, λ) = 2π

λ
OPD(x, y) (2)

Having this mathematical representation of on-sky position to telescope response
allows for arbitrary signal sizes to be introduced to any stellar objects. Other natural
or designed phase perturbations like optical aberrations (coma, astigmatism, etc.) or
devices like the TOLIMAN diffractive pupil can easily be represented and added to
the other phase sources. Optical aberrations are not explored in this work but the
principles underpinning their simulation follows simply from this work. Other phase
devices like the TOLIMAN diffractive pupil θPupil(x, y, λ) follow the same general
idea. Formulated as a mirror with ‘steps’ cut in, we take the height of each step
h(x, y) and translate to phase by taking the OPD as twice the height of the step.

θPupil(x, y, λ) = 2π

λ
2h(x, y) (3)

The total phase θ is then a linear combination of these effects. Taking the field
amplitude A(x, y) as unity for all non-masked regions of the aperture gives the full
description of the electric field E(x, y, λ).

Having formulated the electric field response to the system, we must introduce
a complete description of the optical architecture. This is described by a handful
of parameters: aperture diameter D, effective focal length f l and pixel size dpix .
Desiring computational efficiency through the inclusion of our optical system, we
define some value Nout to be the size of the array which we pass to the FFT. This
is the primary driver behind the computation cost. Using this value and the previ-
ously described parameters, the size of the array NE representing our electric field
E(x, y, λ) can be found. Note all arrays are taken to be of size N × N . These two
values necessarily differ as a way to encode optical parameters without focal plane
interpolation. The ratio between Nout and NE determines sampling in the focal plane
matching that of our system.

NE = Nout
dpix × λ

D × f l
(4)

Embedding this array representing the electric field into an Nout sized array, we
use Eq.1 to generate a PSF that requires no interpolation and can have positional
signals of any size injected, limited only by floating-point precision of course. Further
details and descriptions of these processes can be found in [32].
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4.2 Generating Data

With the tools to simulate PSF’s through our optical system we must now generate
a data set. By adding basic noise processes, stellar spectrum and astrometric signals
we can create a comprehensive set of images that can be used to test the recovery and
reconstruction abilities of all the data-driven techniques described in this chapter.
Here a balance must be struck, generating a truly comprehensive data set for the
TOLIMANmission is merely intractable. With a full signal period of order one year,
any data set must present the foundamental challenges of the mission in an efficient
way. Here we examine choices such as number of wavelengths, stars and images to
simulate, along with the included noise processes.

One of the first things to consider is the size of the data set, the total number of
images produced. The TOLIMAN signal is introduced to the α Cen system through
the gravitational tug of an orbiting planet and so our signal is sinusoidal by nature. The
orbital period that we are searching for is of order of a single year, and so producing
a ‘frame by frame’ data set would be computationally intractable. Consequently, we
need to generate each ‘image’ as a representation of a collection of multiple from
the actual telescope. We chose to represent three full signal cycles over 1000 images,
with each image representing approximately a full day.

Observing in the visible spectrum over a 100nm bandwidth, the choice spectral
resolution is essential. The wavelength dependence of the PSF demands that the
image at each wavelength be computed individually. To represent the real world as
closely as possible, a spectral resolution of 1nm was chosen for several reasons: (1)
firstly the Toliman PSF is spread over many diffraction limits (10λ/D) so at the outer
reaches bandwidth smearing begins to have a substantial effect on the PSF shape (for
an example see Fig. 4); (2) secondly, by choosing to maintain the stellar alignment
on the detector constant and keeping one of the stars stationary, we can massively
reduce the number of PSFs we must compute. A stationary star only requires the
calculation of a single broadband PSF. For the moving star, since the TOLIMAN
signal is sinusoidal by nature and the stellar alignment is kept stationary, we only

Fig. 4 TOLIMAN PSF at different bandwidths. Left: Monochromatic 600nm. Centre: 550–600
(best resembles actual mission). Right: 500–700
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need to calculate the PSFs for a single signal cycle. The result is a large overhead for
small simulations but with the benefit of being able to produce large and accurate
simulations efficiently.

Given our spectral resolution, we can use one of the many libraries available to
generate spectra that reflect the true stellar parameters for each star. These libraries
access existing stellar databases and recreate synthetic spectra for a host of variable
stellar parameters such an effective temperature, metalicity and observational flux.
We used Pysynphot [35] to generate stellar spectra and fluxes for our system. This
package uses models built fromHST observations across the HR diagram to simulate
atmospheric emissions fromdifferent stars. Taking the relative fluxes and total photon
counts output from this system, we can scale each monochromatic PSF by its relative
power to recreate accurate PSFs.

While real data will feature many varied noise processes, here we only consider
two noise sources: photon and detector noise. These are dictated by Poisson and
Gaussian statistics respectively. Detector noise is primarily driven by random thermal
fluctuations of the discrete electrons that carry the signal through the detector. With
available modern low-noise sensors, this noise is not expected to limit the extraction
of the signal since it averages out to some constant value over many frames. The
addition of even modest levels of this noise also serves a separate motivation: to
allow for a smoother error space. This helps numerical algorithms converge faster as
fine structures in the gradients are rounded and the algorithms can follow a smooth
descent to the optimum. On the other hand, photon noise is an essential processes
that must be examined. Arising from the discrete nature of photons, this noise is
simulated at each pixel by drawing from the Poisson distribution whose mean is
dictated by the PSF. When performing image registration of small signals such as
those anticipated in the TOLIMAN mission, the total number of photons that arrive
in each image becomes an important factor. As shown in [17], there is a fundamental
relationship between the number of photons received and the positional information
carried by those photons. With insufficient photons, signals can not be extracted.

Simulations proceeded with the production of a comprehensive batch of noisy
image data sets, with sinusoidal signals in separation of the binary star injected
with decreasing amplitude to mimic increasingly more challenging planets, up to the
limiting deflection of one-millionth of a pixel. These simulations closely resemble
the expected response of the TOLIMAN optical system to the observation of the
α Cen system and were used to build and train machine learning algorithms.

5 Dimensionality Reduction

As it can be seen in the conceptual diagram in Fig. 1, the first and the most crucial
step in the proposed data analysis scheme is to apply some transformation to the raw
data produced by the instrument to allow us to unveil the periodic changes in the
images through time. This transformation can be seen as a dimensionality reduction,
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a compression of the imaging data into a smaller dimensional space that preserves
periodic signals that may exist in the data.

Dimensionality reduction [e.g. 30], that is, of representing data in a different
space than that in which it can naturally be observed, is a set of techniques that try to
transform data from one representation to a lower-dimensional one with the lowest
information loss. Reducing dimensionality of data with minimal information loss
is important for feature extraction, compact coding and computational efficiency,
to eliminate redundancies and enforce constraints. In particular image compression
techniques try to take advantage of the statistical properties of the images in order
to reduce their computational footprint. One of the most straightforward and widely
used approaches of dimensionality reduction is the Principal Components Analysis
(PCA) [9]. This approach consists in applying a linear projection of the original data
on a set of orthogonal axes (the principal components), built to recover the maximum
amount of information contained in the original data with as few coefficients as possi-
ble. In practice, PCA can be computed by performing a singular value decomposition
of the data, contained in a matrix X . Each datapoint can then be reconstructed by a
linear combination of the basis elements: X ≈ DA, where D is a matrix containing
the principal components, and A a matrix containing the coefficients used in their
linear combination when reconstructing the data. Another broad class of dimension-
ality reduction methods, closer in heuristic to using a neural network to build the
new representation space, is that of dictionary learning (DL). Instead of using PCA
to select the new basis of representation D, one can instead learn it from the data
itself. Much like in deep learning approaches, dictionary learning relies on the choice
of a loss function l to quantify the difference between input data and its reconstruc-
tion. Learning the representation then amounts to solving the following optimization
problem:

min
D,A

l(X, DA). (5)

Depending on the desired properties of the representation to be learned, one can
further add constraints to either the dictionary D or the coefficients A. A great many
flavours of dictionary learning exist depending on the constraints selected. One of
the most widely used is the addition of a sparsity constraint on A [26]. In practice,
the sparsity constraint is often obtained by adding an l1 term to the cost function:

min
D,A

l(X, DA) + λ‖A‖1. (6)

Several other constraints exist, and often lead to the resulting dictionary learning
approach having its own name: non-negative matrix factorization [23] when using
positivity constraints, sparse PCA [8] when the sparsity constraint is instead imposed
on the dictionary, independent components analysis [19] when imposing statistical
independence between the components. Both PCA and DL have been utilized, in
the development of the work described in this chapter, to compress the images and
a period consistent with the one of the signal injected in images could be found in
the produced lower-dimensional representations up to a signal amplitude of 10−4.
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These techniques were not capable to detect astrometric signals with amplitudes
at the order of 10−6 times smaller than the pixel size. However, their application
showed us that, through data driven techniques, the images could be transformed
into a lower-dimensionality space while preserving the temporal signal structure and
thus that the challenging µarcsecond level signals could perhaps still be recovered
with the use of other techniques, such as Deep Learning. The next section makes a
small, but self-contained, introduction to these other techniques.

6 Deep Learning

In this section we will review all the concepts underpinning Deep Learning needed
to understand the inner workings of the deep convolutional autoencoder used in this
work to create a lower-dimensional representation of the TOLIMAN simulated data.
The main advantage of these techniques over classical dimensionality reduction is
that the layered structures of Deep Neural Networks (DNNs) can encode an input
representation with increasing levels of abstraction in successive layers [15, 21].
For such reasons, in the last decade, Deep Learning has been successfully applied
across a wide range of applications including computer vision, speech recognition,
bioinformatics and astroinformatics.

In this work, we make use of two classes of Neural Networks: fully connected
and convolutional. Fully connected Neural Networks, also simply known as Neural
Networks, can be used to approximate any nonlinear functional relationship between
a set of inputs and outputs [7]. Each layer of a neural network transforms a vector of
inputs x ∈ RN as follows:

ŷ = f (Wx + b), (7)

where W ∈ R(N×K ) is a matrix of weights, b ∈ RK is a bias term, and the nonlinear
activation function f : R → R is applied component-wise. The bias term shifts the
baseline activation function input away from zero, providing richer behavior for
modelling the functional relationship between the input and output variables. In
networks with multiple layers, the output of each layer is connected to the input of
the following one

ˆyl+1 = fl+1(Wlhl + bl) = fl+1(Wl fl(...( f1(W0x + b0) + bl) (8)

where hl is the hidden layer or feature vector of layer l. The input is processed
through all the layers until it reaches the output of the network ŷ.

The parameters (weights and biases) of the network are selected to minimize a
loss function, such as a mean square error, summarizing the difference between the
network output and a desired or observed target value y. Stochastic gradient descent
(SGD) is a common optimization process for neural networks: at each stage of train-
ing, the network parameters are updated by a small vector proportional to the gradient
of the loss function with respect to those parameters. This is straightforward for the
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output layer; weights and biases in overlying layers can be efficiently calculated
through successive applications of the chain rule for derivatives, in a process called
backpropagation. The use of derivative information for efficient network training
requires that the loss function be smooth.

Convolutional Neural Networks (CNNs) differ from fully connected neural nets
only in that their architecture exploits the localized structure of images to reduce the
number of network parameters needed. Instead of connecting each neuron in a layer
to every other neuron in the next layer, the connection structure of CNN layers is
sparse, and parameters are shared across a layer to enforce translation invariance of
features extracted on each scale across the image. Three types of layers are typically
used: (1) Convolutional Layers, (2) Pooling Layers and (3) Fully-Connected Layers.
In the following, we will analyze in detail the architecture and inner workings of
each one of them.

6.1 Convolutional Layer

The Convolutional Layer is the most computationally intensive part of a CNN archi-
tecture; its parameters consist of a set of learnable filters. Every filter, also know as
a kernel, is spatially small (usual sizes are 3 × 3, 5 × 5 and so on, where three and
five are sizes in number of pixels), but includes weights for each channel of its input.
For the first layer, these channels are the data channels (for example R, G, B in a
three-channel image). In subsequent layers, each channel corresponds to the output
of a single kernel from the previous layer. During the forward pass, each kernel slides
across the spatial dimensions of the input, computing the dot product between itself
and the part of the input volume that it encompasses (convolution). As the kernel
slides, it produces a bi-dimensional activation map that encodes the responses of the
kernel at every spatial position. The content of the activation map at each location
is a direct response to some visual feature present in the image to which the kernel
is sensitive, such as an edge or a colour. Each convolutional layer employs multiple
different filters, producing a set of activation maps that are stacked along the depth to
produce a multi-channel output. Due to the limited size of the filters, neurons are not
connected to the full extent of the input volume but only to a small region (the recep-
tive field). The connections are thus local in space (width and height of the input),
but are always fully connected in-depth (i.e. across learned/extracted features).

The structure of the output volume of a convolutional layer is controlled by three
hyper-parameters:

• Depth: the number of filters learned in the layer;
• Stride: the number of pixels the filter is shifted along the spatial dimensions of the
input volume. It is usually set to one but it can be set to higher values, depending on
the image geometry, to achieve less redundancy in the output volume. The stride
controls the spatial dimensions of the output volume;
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• Padding or zero-padding: the width in pixels of a spatial region on the borders of
the output that is filled with zeros. It controls the spatial dimensions of the output
volume and can be used to preserve the spatial dimensions through the layer.

Finally, to ensure that each kernel is learning a single feature that has a consistent
interpretation across the spatial extent of the input, all neurons in the same depth
slice share the same weights and biases, irrespective of where across the extent of
the input they are applied. Thus the action of each filter in the forward pass becomes
a discrete convolution of a single set of kernel weights with the input.

A convolutional layer acts to encode its inputs into a latent space spanned by the
features it learns. However, the autoencoder architecture we will consider in later
sections also involves a transformation froma learned latent space back into the image
domain. Thus, while convolutional layers typically decrease the spatial extent of their
inputs, we will also need deconvolutional layers which increase them, recombining
a potentially large number of learned features into a flat image. Mathematically both
convolutional and deconvolutional layers can be summarized as

lh = f

( ∑
i∈L

xi ⊗ wh + bh
)

(9)

where lh is the latent representation of the hth activation map of the current layer, f
is the activation function, and xi is the i th activation map of the L-feature activation
of the previous layer in the network (or the lth channel of an L-channel image in the
case of the first convolutional layer after the input image).wh and bh are, respectively,
the weights and biases of the hth activation map (shared by all neurons of the map)
of the current layer. Given that xi has size m × m and the filters have size k × k, a
convolutional layer produces an output feature map with shape (m − k + 1) × (m −
k + 1), thus reducing the size of the input. A de-convolutional layer outputs a feature
map with shape (m + k − 1) × (m + k − 1), thus increasing the size of the input.

6.2 Pooling Layer

The architectural function of a Pooling Layer is to reduce the spatial size of the
representation, which reduces the number of parameters, lightens the computational
load, and mitigates overfitting. The pooling operation is carried independently on
each input feature, leaving the number of input features unchanged. Different criteria
in the literature exist to perform the pooling operation, including max, average and
L2-normpooling;max-pooling is themost commonly used.There are alsoun-pooling
layers to desegregate and expand activation maps in transformations back towards
the image domain.

A max-pooling layer pools features by computing the maximum within the fea-
ture map and outputs a feature map with reduced size, according to the chosen size of
the pooling kernel. To perform a successive un-pooling, the max-pooling layer also
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Fig. 5 Illustration of max-pooling, unpooling, convolution and deconvolution layers [29]

records a set of switch variables which describe the positional information relative
to the pooled features. The un-pooling layer restores the max-pooled features into
the correct position specified by the relative switch variable values. The combination
of max-pooling and un-pooling layers is thus able to retain both the image magni-
tude (answering the “what” question) and the positional information (the “where”
question). Figure5 [29] shows some stylised representations of convolution—de-
convolution and pooling—un-pooling operations.

6.3 Deep Convolutional Autoencoder

An Auto-Encoder model (AE) is a neural network composed by an encoder and
decoder part; the encoder f : X → H transforms the input image into a lower-
dimensional representation (the latent space), while the decoder g : H → X tries
to reconstruct the original input image from this representation. By constraining the
latent space to be of lower dimension than the original input data, we can force
the autoencoder to capture the most important features of the input data in order to
reproduce it successfully. This type of restriction can be used for feature extraction
and for dimensionality reduction.

During the learning process, network parameters are adjusted to minimize a loss
function
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L(x, g( f (x))) (10)

that encodes the difference between the input x and its reconstruction g( f (x)). As
for the NNs discussed in Sect. 6, L must be smooth in order to use gradient-based
minimization algorithms such as SGD. If L is chosen to be linear, the auto-encoder
performs adimensionality reduction similar toPrincipalComponentAnalysis (PCA);
in fact, the latent space h ends up to be the principal subspace of the input data. If,
instead, L is non-linear the auto-encoder can learn much complex representation.

Generally, autoencoders are built by two shallow fully connected NNs joined
through a lower-dimensional latent space. A CAE (Convolutional AutoEncoder),
instead, contains, in the encoder part, a stack of convolutional andmax-pooling layers
before the fully connected layer and, in the decoder part, a stack of up-sampling and
de-convolutional layers after the fully connected layer. It has been shown [45] that
CAE are better suited, with respect to AE, for image processing and reconstruction
tasks, due to the full utilisation of the CNNs capacity to extract a hierarchical set of
features from the images. These have been proven to show a better performance over
shallow neural networks when working with noisy or complex images. Moreover,
the combination of a convolutional and max-pooling layer allows the higher-layers
representations to be invariant to small rotations and translations thus helping with
the TOLIMAN satellite inevitable jitters and translations.

In recent years AEs have been applied to solve a wide range of problems in the
Astrophysical context; to model the Point Spread Function of Wide Filed Small
Aperture Telescope [20], to uncover and separate the faint cosmological signal from
the epoch of reionization [24], to classify galaxies Spectral Energy Distributions
[12], to identify Strong Lenses candidates in the simulated data of the Euclid Space
Telescope [5] and to solve the Star—Galaxy classification problem [18]. Moreover
in the fields of Computer Vision and Image Processing, AEs have been successfully
used to recover structured signals from natural images [28], for image compression
[1, 10, 37, 38, 41], achieving compressing performances similar or better than the
JPEG 2000.

Encouraged by the results obtained in literature in lossless image compression
and signal recovery from images through AEs, we decided to develop our custom
CAE architecture to recover the astrometric signal from the TOLIMAN simulation
images. Sect. 7 contains an in-detail description of the architectural design, given the
peculiar nature of the scientific problem.

7 Model Architecture

In this section we take implement knowledge detailed in Sect. 6 to build the actual
CAE architecture that compresses the TOLIMAN simulated images into a latent
space that showed a periodic trend with time. Some of the architectural choices came
from our knowledge of the physical problem, some from the expected behaviour of
the network, and others were discovered on a trial-and-error basis.



186 M. D. Veneri et al.

Fig. 6 Architecture of the Deep Convolutional Auto-Encoder

Fig. 7 Comparison Between
Rectified Linear Unit and
Exponential Linear Unit
activation functions

Figure6 shows the overall architecture of the CAE. Each convolutional and de-
convolutional layer is followed by an Exponential Linear Unit (ELU) activation
function. It has been shown by [6] that this function is able to capture the degree of
presence of particular phenomena (the signal) and not its absence, thus creating in
the network a complex weight space, chains of connections specialised in solving
particular tasks (like encoding the signal). Moreover, since ELU may have negative
values, it pushes the mean of the activations closer to zero. Having mean activations
closer to zero causes faster learning and convergence. Said that, ELU is very similar
to RELU, except for negative input values. In fact ELU becomes smooth slowly until
its output equals −α where RELU sharply smooths (Fig. 7).

For negative activations, RELU’s gradient will be 0 and this may prevent the
network weights to be adjusted during descent. This means that all the affected
neurons going into that state will stop, responding to variations in input (being the
gradient 0 there is no input that can make them change, they have reached a local
minima from which they are unable to escape). This is called dying RELU problem.
Apart from the described computational problem,RELU is less responsive to negative
activations, something that may harm the signal reconstruction in the latent space
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for all images where the binaries separation is smaller than their mean separation in
the training set. For all these reasons, we chose ELU as the activation function of all
hidden layers.

The Network latent space was chosen to be uni-dimensional (represented by the
single ATOM in Fig. 6), for the following reasons: (i) when a higher dimensional
latent space was used, the Pearson correlation coefficient between the latent vari-
ables was found to be compatible with a value of 1.0; (ii) given that the separation
of the star’s PSFs is radial, and, given that the only varying feature in the images
is the signal, it seems reasonable to think that the only information the network
needs to recover from the latent space in order to decode, and thus reproduce, the
images is the signal itself. The remaining constant information (pixel luminosity
and image geometry) can be stored in the network weights. In literature, Deep Neu-
ral Networks tend to employ two types of loss functions: the Mean Square Error
(MSE) and entropy-based loss function like cross-entropy or binary-entropy or the
kullback leibler divergence. Although all types of loss functions have explicit prob-
abilistic interpretations, MSE is estimating the mean of any distribution, while the
entropy-based functions try tomaximize the likelihood of amultinomial distribution,
they differ in their application field. The latter type, with a logistic output, tends to
heavily penalize wrong class predictions and thus are specifically suited to work
in classification tasks where the decision boundary is significant. The first (MSE)
is very forgiving on misclassifications but is well suited to handle regression prob-
lems, where the distance between two predicted values is small. Since our scope is
dimensionality reduction, i.e. a regression problem, the MSE was chosen. To test
the quality of the image reconstruction, we computed the mean MSE (MMSE) and
the mean Structural Similarity Index (MSSI), [43], between all the available images
and their reconstructions. the SSI models any image distortion as a combination of
three factors: correlation loss, luminance and contrast distortions. When comparing
two images, the estimator takes into account the mean luminance difference between
the two images, the closeness of their contrast and their correlation coefficient. The
number of layers, filters and other layer parameters were heuristically chosen through
a trial-and-error campaign.

8 Signal Analysis

As the reader can see from the workflow figure (Fig. 1), the second step in the pro-
posed pipeline is to perform the Signal Analysis in order to unveil periodic trends in
time. For these reasons, in this section we present an overview of the chosen method,
for instance the Lomb Scargle Periodogram technique, explaining the pre-processing
steps performed to compare the atom time series (see Sect. 7 and VanderPlas [42]
for details.)
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8.1 The Lomb-Scargle Periodogram

Themost commonly used tool for period searching in irregular cadence astronomical
light curves is the Lomb-Scargle periodogram [LSP, 25, 33, with 4000 citations]
that assumes a sinusoidal periodic behavior. It is a generalization of the Schuster
periodogram in Fourier analysis

Ps( f ) = 1

N

∥∥∥∥∥
N∑

n=1

gne
−2π i f tn

∥∥∥∥∥
2

, (11)

but for irregularly cadences. TheLSP stands out as a robust procedure to build a power
spectrum in order to detect periodic components in unevenly sampled datasets. In
the uniform sampling regime, the Schuster periodogram encodes all of the relevant
frequency information present in the data. This definition can be generalized to
the non-uniform case, which is the scenario we explore here. It follows that the
generalized form of the periodogram addressed by [33] takes the form:

PLS( f ) = 1

2

⎧⎪⎨
⎪⎩

∥∥∥∑N
n=1 gn cos(2π f [tn − τ ])

∥∥∥2

∑N
n=1 cos

2(2π f [tn − τ ]) +
∥∥∥∑N

n=1 gn sin(2π f [tn − τ ])
∥∥∥2

∑N
n=1 sin

2(2π f [tn − τ ])

⎫⎪⎬
⎪⎭ ,

(12)
where τ is specified for each f to ensure time-shift invariance:

τ = 1

4π f
tan−1

( ∑
n sin(4π f tn)∑
n cos(4π f tn)

)
. (13)

This modified periodogram differs from the classical periodogram only to the extent
that the denominators

∑
n sin

2(2π f tn) and
∑

n cos
2(2π f tn) differ from N/2, which

is the expected value of each of these quantities in the limit of complete phase
sampling at each frequency.

8.2 Atom Time Series Analysis

Toestimate the period of the atom time series,weused theLombScargle Periodogram
and to validate the goodness of the period estimation, we employed the following
metrics:

• False Alarm Probability (FAP): encodes the probability of measuring a peak of a
given height (or higher) conditioned on the assumption that the data consists of
Gaussian noise with no periodic component;

• Full Width at Half Maximum (FWHM): this expresses the extent of a function
produced by the difference between the two extreme values of the independent
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variable at which the dependent variable is equal to half of its maximum value.
Treating the FWHMas an error measure, we derived an error on the period through
the following expression:

P = 1

f (peak)
(14)

�P = 1

f (peak)2
×

[
f

(
peak + FWHM

2

)
− f

(
peak

FWHM

2

)]
(15)

where peak stands for the peak of the power spectrum and f (peak) its relative
frequency.

In order to compare the atom time series and the signal, we standardized both
of them, i.e. with subtracted to both time series their mean values and divided by
their standard deviations. This preprocessing step was needed due to the Network
inability to perfectly recover the signal amplitude in the latent space.

9 Experiments and Results

This section describes all the experiments performed with the CAE to compress the
images to a lower-dimensional representation, showing a periodic trend in time, i.e.
a latent space that preserved the signal, analysing the compressed representation in
search of a periodic signal in time.

Before deploying the model on the simulations containing the signal with an
amplitude a factor of 10−6 smaller than the pixel dimension (for details on the sim-
ulations see Sect. 4) and the realistic binaries PSFs flux ratio, the Network encoding
capabilities were tested on images containing signals with amplitudes respectively
10−2, 10−3, 10−4, 10−5 smaller than the pixel dimensions, equal flux PSFs (the bina-
ries PSFs presented the same flux) and an image peak value of 109 photons and
photon noise arising from the Poisson statistics. Due to the absence of any realistic
noise components (jitter, rotations, aberrations etc.), each image was cropped with a
256 × 256 pixels window centred around the image barycenter. This preprocessing
was needed in order to eliminate any spurious shift in the image pixels that could
have compromised any training attempt capable of extracting the signal from the
images. In fact, both the max-pooling and convolutional layers (see Sect. 6) are not
shift-invariant and, as clearly shown in [44], the presence of a shift can completely
change the outcome of these operations unpredictably. Each dataset thus contains
1095 single-channel centred images of which 985 were used for training and 110 for
validation. The network was trained for 10, 000 epochs. The signal is sinusoidal with
a period of 356 days and thus it performs three complete cycles in the 1095 images.

The final MMSE and MSSI on the validation set are found to be respectively
4.4 × 10−8 and 0.999938 and thus the images are reconstructed with a precision
good enough (with respect to the accuracy needed) to recover the signal. Although
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Fig. 8 Example of the signal reconstruction after training the network. The first row contains a
random subset of simulated Toliman images, the second row shows their respective reconstructions
produced by the trained network

the image reconstruction capability of the network directly correlates with these
losses (as one should expect), we do not find any direct correlation with the signal
reconstruction capabilities. Although after 1000 epochs the MSE Loss gradient flat-
tened, for some reasons the latent space began showing an increasing sinusoidal trend
in time with an increasing number of epochs. To have a loss function that correlates
with the signal reconstruction in the latent space, we would need an architecture
that makes use of the time dimension of the images: something not anticipated at
the time of the publication of this work. For this reason, the network is encoding
only the detection of the signal and not its amplitude. In order to make sure that the
periodic trend observed in the latent space was coming from a signal injected in the
images and not from any other periodic trend (in time) in the images or by chance,
the Network was run on a blind set of simulations of which some contained a signal
and some did not. The Network latent space did not show any periodic trend for all
the simulations with no signal injected or, even if a period was recorded, the resulting
FAP (see Sect. 8) would be extremely low (Fig. 8).

Table1 shows the result of applying the method of compressing the signal using
Deep Convolutional Auto-Encoders (CAE) and afterwards using Lomb Scargle Peri-
odogram to analyse this compressed representation. This table shows that the pro-
posed method is able to capture the signal with very low FAP and reasonable relative
error, when compared with the error obtained by direct analysis of a perfect signal.
The Signal and Atom time series, and their relative Lomb Scargle Periodogram, are



Periodic Astrometric Signal Recovery Through Convolutional … 191

Table 1 Period found with the Lomb Scargle Periodogram and relative error and FAP

Time Series Period FAP

Signal 0.33 ± 0.05 0

Atom 0.33 ± 0.06 7.2 × 10−68

Fig. 9 In the left panels, a perfect signal is represented in the top and the relative Lomb Scargle
Periodogram obtained from its analysis is represented in the bottom. In the right, a time series from
the atoms obtained with the deep convolutional auto-encoder applied to TOLIMAN simulation
with a 10−6-level astrometric shifts is shown on the top, while its Lomb Scargle Periodogram is
represented in the bottom. The power peaks and their relative FWHM are shown in red over the
power spectrum

shown in Fig. 9. In yellow we highlighted the power peak and the FWHM of the
power spectrum around that peak.

9.1 Discussion of Results

Section9 describes both the Network reconstruction capabilities and the analysis on
the atom time series to find its periodicity. We have shown that the found periodicity
is compatible with the injected astrometric signal period and thus that the architecture
is able to recover the signal directly from the TOLIMAN simulation images. One of
the main current issues is the lack of correlation between the Network reconstruction
of the TOLIMAN images and the presence of a periodic trend in the atom time series.
Since the Network is only training with spatial information and that the used loss
(MSE) only takes into consideration the ability to reconstruct the input images, in
reality there is no encoded reason why the latent space should present a sinusoidal
trend with time. The only thing that the latent space should be encoding is “how
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to reconstruct the images” and nothing else. That being said, given our knowledge
of the sinusoidal nature of the astrometric signal and being the astrometric shift the
only element changing through the images, we do not see any reason why the latent
space should not present a sinusoidal trend with time, regardless the fact that we did
not apply any constrain (on the architectural level) to force it. As seen in Fig. 9, in
fact, given enough epochs, the time series actually shows a sinusoidal behaviour.

A necessary step forward in this work is to produce simulations with increasing
noise realism and complexity, in order to evaluate if Deep Learning can still be
used to recover the astrometric signal. It must be expected that this simple approach
would fail to recover the signal if spatial transformations invariance is achieved on
an architectural level.

10 Conclusions

In this work, we have shown how Deep Learning, in particular deep convolutional
autoencoders (CAE) can be used to extract, in a completely unsupervised way, peri-
odic astrometric signals with amplitudes of the order of 10−6 with respect to the
size of a pixel. This is the magnitude of the signals that would be produced by an
Earth-like planet at the habitable zone of a star in the Alpha Centauri binary system
(see Sect. 2).

We presented a detailed explanation of the adopted network architecture (see
Sect. 7) and of the simulations used, which were created using FFT techniques (see
Sect. 4).Although the present simulations do not yet contain some realistic systematic
noise components, such as telescope jitter, rotations and aberrations, they pose a
significant challenge to classical unsupervised techniques, due to the small amplitude
of the signal with respect to the pixel size. We have shown that, from the obtained
CAE latent space, we can obtain a time-trend that can be analysed for periodicity,
using any time-domain signal extraction technique. Here we used a standard Lomb
Scargle technique (see Sect. 8), and were able to find a period consistent with that of
the injected signal (see Sect. 9).

Finally, we note that in this work we only explored a fully unsupervised method
for the compression, although semi-supervised and hybrid methods can be a natural
extension, by considering that we may constrain the problem’s dimensionality—
for instance, a first-order approximation of the shape of the PSF. A further step
will be the generation of increasingly realistic systematic noise contributions, to
design network architectures that can handle them and still allow for detection of
the planetary signal. This work opens an exciting path that we believe should be
further studied, towards the extraction of periodic signals of binary systems at the
milliarcsecond level, directly from times series of satellite imaging data.2

2https://cosmostatistics-initiative.org/focus/toliman1/.

https://cosmostatistics-initiative.org/focus/toliman1/
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Abstract Among the many challenges posed by the huge data volumes produced
by the new generation of astronomical instruments there is also the search for rare
and peculiar objects. Unsupervised outlier detection algorithmsmay provide a viable
solution. In this workwe compare the performances of sixmethods: the Local Outlier
Factor, Isolation Forest, k-means clustering, a measure of novelty, and both a normal
and a convolutional autoencoder. These methods were applied to data extracted from
SDSS stripe 82. After discussing the sensitivity of each method to its own set of
hyperparameters, we combine the results from each method to rank the objects and
produce a final list of outliers.
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1 Introduction

As it has been amply discussed in the literature (cf. [1, 2]) the discovery of most
new astronomical objects and phenomena can be interpreted in terms of either an
enlargement or better sampling of the observable parameter space (OPS) or in terms
of an increased capability to extract patterns and trends. An example of the first type
being the discovery of quasars (due to the opening of a new dimension defined by
the radio fluxes), while an example of the second type can be the discovery of the
fundamental plane of elliptical galaxies [3]. So far, our capability to explore the OPS
has been strongly limited by the human factor, i.e. by the difficulties encountered
by the human brain in finding patterns or outliers in OPS with more than three
dimensions.

The OPS defined by modern panchromatic multi-epoch surveys has a very large
amount of dimensions, with more than several hundreds of parameters measured for
each object. While on the one hand it poses large computational problems, on the
other it offers unprecedented possibilities inmoving from the so called “serendipitous
discoveries” to a more systematic search for the rare and of the unknown.

This aspect, by considering also the huge amounts of data collected by modern
sky surveys, implies that it is no longer feasible to go through all observations by
hand to retrieve and flag the interesting objects. The unbiased and automatic data-
driven capability of methods based on the paradigms of Machine Learning (ML),
to explore the OPS and to extract hidden correlations among data, may achieve
a realistic possibility to perform a manageable selection of peculiar objects, most
likely to be interesting. In astrophysical terms, the peculiar objects, or outliers, are
mostly characterizedby their intrinsic singularitywithin a data distribution. Satellites,
imaging artifacts, interacting galaxies, lensed objects or other unexpected entities are
just a few of examples of outliers that could emerge from a distribution. MLmethods
may efficiently analyze a dataset and isolate such peculiar candidates, by proceeding
in two different ways: (i) supervised, i.e. by inferring knowledge of the nature of
objects from a limited number of samples during training and by generalizing the
obtained insights in order to recognize outliers in new data; (ii) unsupervised, i.e.
by self-organizing their internal structure, just driven by data themselves, in order to
recognize commonalities among data and isolating potential outliers as single entities
within the parameter space. The supervised approach has an important downside,
since it limits the capability of a method to recognize only expected (hence known)
peculiarities, i.e. those provided within the training set. Therefore, we preferred to
proceed in an unsupervised way and to perform a totally unbiased data exploration.

Among the varieties of unsupervisedmethods available, by considering the known
heuristic process at the base of any ML approach, we selected a set of models and
performed a comparison of their performance in extracting outliers. These methods
were: (a) Local Outlier Factor [4], (b) Isolation Forest [5], (c) k-means [6], (d)
a recently introduced novelty measure [7] (hereinafter named modified novelty or
MN), and (e) both a normal and a convolutional autoencoder [8, 9].
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The comparison was driven not only in terms of the efficiency and accuracy
to extract peculiar objects, but also regarding the capability to recognize common
objects as potential outliers, trying to investigate the performance in case of decision
discrepancies.

In this work these methods were used to detect the most abnormal points in the
training dataset. These can be singular observations, or small clusters of relatively
normal data, lying far away from the normal dataset distribution within the feature
space. Both types were considered as outliers. Alternatively, one could consider the
training dataset as “normal” and use the trainedmodels for the detection of anomalies
in a different test set by searching for the largest deviations from the observations
from the training set [10]. This approach will be explored in a forthcoming project.

Most methods suggested in the literature for the detection of outliers in sky sur-
veys, focus on spectroscopic or tabular data. Examples include Chaudhary et al. [11],
who proposed a new outlier detection method, using five-dimensional SDSS data.
In Fustes et al. [12] self-organizing maps were used to find outlying spectra. Giles
et al. [13] used a variant of the DBSCAN clustering algorithm to detect outliers in
derived light curve features. The work more pertinent to that presented here is the
one proposed by Baron et al. [14], where an unsupervised Random Forest was used
to detect the most outlying galaxy spectra within the SDSS survey and its results
were compared with a standard Random Forest, a one-class Support Vector Machine
and an Isolation Forest. The key difference is that in the present work the outliers are
searched within images, instead of spectra, and including multiple kinds of objects
in the dataset, instead of just galaxies.

The remainder of this work is organized as follows. We begin in Sect. 2 with an
exploration of the dataset used and its preparation procedure. Then, in Sect. 3 we
describe and assess the performance of the various selected methods. The results are
compared and analyzed in Sect. 4, followed by a description of the model proposed
to find outliers in new data in Sect. 4.1. Finally, we draw the conclusions and mention
some perspectives for future work.

2 The Data

As template data set for our experiments we used a subset of data extracted from
the Sloan Digital Sky Survey (SDSS, [15, 16]) Data Release 9 (hereafter SDSS-
DR9). This subset was originally assembled to estimate the photometric redshifts
without any pre-classification in (cf. [17]). The extraction was performed randomly,
trying tomaintain the object class types asmuch as possible balanced in terms of their
quantities, thusminimizing any risk of selection effect induced by the overabundance
of a particular class.

It consists of 200, 000 stars, 200, 000 galaxies and 185, 718 quasars, represented
by a OPS composed by the five bands (ugriz filters).
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2.1 Data Exploration and Preprocessing

Prior to start the experiments, we performed an analysis of the extracted data, in
order to identify possible anomalies or artifacts that could affect the outlier detection
performances.

A first consideration is that the spectroscopic and photometric classifications of
the objects composing the SDSS dataset do not alwaysmatch. For example, the SDSS
object J145416.34+212953.91 is a galaxy according to the spectroscopy, but is listed
as a star by the photometric classification. An example of the reverse is the SDSS
object J170616.32+242609.2,2 spectroscopically classified as a star, but resulting as
a galaxy from the photometry. However, since this work is based on data for which
the spectroscopy was always available, we refer to the spectroscopic classification
in all experiments.

Furthermore, a number of duplicate entries in the dataset were found: a couple
of identical stars, two galaxy couples and 393 couples of quasars. These duplicates
were removed.

Another example of irrelevant anomalies was the presence of strong straight lines
passing through the r band, as for instance caused by a satellite or and asteroid. In
order to remove such events from the dataset, a heuristic procedure was applied, by
setting amagnitude amagnitude threshold in some band, able to reveal the occurrence
of such events. By looking at all images where the maximum value in the r band
was at least 1.75 times higher than the highest value in all other bands, we found
106 images affected by the straight line (considered as true positives), and 3 images
with a false anomaly event (called false positives). The true positives found with this
criterion were removed from the data. An example is given in Fig. 1a.

By applying the same procedure on the other bands (u, g or i) with a threshold of
2, an additional 88 images were detected. Only four of these had a line present, all
in the i band, similar to those found in the r band. Such a line was visible only for
one object in the object explorer, see Fig. 1b. These objects were not removed from
the dataset.

Furthermore, we noticed that the five bands do not span the same range of pixel
values, see Table1. Therefore, we decided to standardize all bands, using a scaling
factor, able to obtain images with zero mean and unitary standard deviation [18]. In
the caseswhere the dataset was split into a training and testing set, the standardization
was performed using the mean and standard deviation of the training set as reference,
in order to align both training and test distributions.

Finally, we were interested in detecting all occurrences of double sources. This
was done by looking at the center of mass within the images, averaged on all bands.
Figure2 shows a histogram of the distances between the center of mass and the center
of the images. There is no obvious cut-off which could separate double sources and

1http://skyserver.sdss.org/dr12/en/tools/explore/summary.aspx?ra=223.568087062725&dec=21.
4983280618327.
2http://skyserver.sdss.org/dr12/en/tools/explore/summary.aspx?ra=256.568027662234&dec=24.
4358907062636.

http://skyserver.sdss.org/dr12/en/tools/explore/summary.aspx?ra=223.568087062725&dec=21.4983280618327
http://skyserver.sdss.org/dr12/en/tools/explore/summary.aspx?ra=223.568087062725&dec=21.4983280618327
http://skyserver.sdss.org/dr12/en/tools/explore/summary.aspx?ra=256.568027662234&dec=24.4358907062636
http://skyserver.sdss.org/dr12/en/tools/explore/summary.aspx?ra=256.568027662234&dec=24.4358907062636
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(a) SDSS J161226.29+402805.3 (b) SDSS J171043.64+582219.5

Fig. 1 Examples of straight lines within the images, mostly due to Asteroids/satellites

Table 1 Mean and standard deviations of the pixel values among the different bands

Filter Mean Standard
deviation

u 0.028 0.387

g 0.076 0.769

r 0.133 1.290

i 0.179 1.628

z 0.224 2.183

single sources. Therefore, we performed a searching within SDSS archive, in order
to find all candidate sources to be paired. We used a cross-match threshold of 15
pixels, corresponding to 0.6arcsec. We found 48, 814 galaxies, 26, 126 quasars and
33, 130 stars with at least one more object within this distance in our dataset.

This information was not used to reject these sources from the dataset, but was
taken into account in the post-processing phase in order to recognize this special
category of objects.

3 Outlier Detection Methods

The outlier detection methods considered in this work can be broadly grouped in
two categories: (i) those applied on a dataset whose dimensionality is pre-reduced
by Principal Component Analysis (Local Outlier Factor, Isolation Forest, K-Means,
Modified Novelty Measure), and (ii) deep learning models, for instance standard and
convolutional autoencoders.
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(a) Whole dataset

Fig. 2 Histogram of the distances between the image center of mass and image center

3.1 PCA-Based Detection Methods

Before applying the outlier detection metrics on the pixel values, we decided to
preliminarily reduce the dimensionality of the images. We used the sklearn imple-
mentation3 of the widely used Principal Component Analysis (PCA) for this [19].

Two common approaches, for choosing the number of components to reduce the
input data, are the elbow method [20] and explaining some set amount of variance
[21].

As there is no clear elbow present in the variance graph of Fig. 3a, we chose
to explain a set amount, namely a 90% of the variance, which comes down to 14
components, see Fig. 3.

As stated in Sect. 3, we used the features extracted by the PCA as input for a series
of outlier detection methods, for instance the Local Outlier Factor, Isolation Forest,
K-Means and Modified Novelty Measure, described in the following sections.

3.1.1 Local Outlier Factor

TheLocalOutlier Factor (LOF) is ameasure for how isolated is an object with respect
to its neighbourhood [4].

Let the k-distance kd of an object be the distance to its kth nearest neighbours,
and let Nk(p) be the set of those neighbours. The reachability distance of an object

3https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html.

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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(a) After thresholding

Fig. 3 Explained variance by number of PCA components, see Sect. 3

p with respect to another object o, when considering k nearest neighbours, is given
by

rdk(p, o) = max{kd(o), d(p, o)},

where d(p, o) is the distance between points p and o. Note that this is the actual
distance between p and o, if p does not belong to the k nearest neighbours of o,
and the k-distance of o if it does. Now define the local reachability density of p
considering k nearest neighbours as

lrdk(p) = 1/

(∑
o∈Nk (p)

rdk(p, o)

|Nk(p)|

)
.

The LOF score for an object p is then calculated by

LOFk(p) =
∑

o∈Nk (p)
lrdk(o)

lrdk(p)|Nk(p)| .

Intuitively, when the density around point p is lower than the average of the densities
around its k neighbours, this fraction will result in a value above 1, in which case p
can be considered an outlier above some threshold.

Themost important hyperparameter to set when calculating the LOF is the number
of neighbours used. In their paper [4], the authors recommended taking a range. The
lower bound should be seen as the minimum number of samples a cluster has to
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contain, such that other samples can be local outliers relative to this cluster. The
upper bound can be instead considered the maximum number of close samples that
can potentially be local outliers. The LOF value for each datapoint is computed for
each value in this range and the maximum is taken as the final value.

The choice of the best bound in our case, by considering the reduced parameter
space after having applied the PCA, is not obvious. Therefore, we refer to the range
introduced by the authors of the method, used in an analogous case of a large dataset,
namely 30–50.

As the current scikit learn implementation4 does not support a range but only
a scalar value for this hyperparameter, we computed the scores for the parameter
values k = 30, 35, 40, 45, 50 instead of at every integer value between 30 and 50 to
save computing time.

Thematrix shown in Fig. 4 provides information about the sensitivity to the hyper-
parameter setting. Each cell in this matrix shows what fraction of objects obtained
by using the hyperparameter settings denoted in the column name are also present in
results obtained by using the hyperparameter settings of the row name. For example,
out of the 2,507 objects scoring above 5 standard deviations when using the range
[30, 50], approximately 80% also score above 5 standard deviations when using the
range [10, 30]. This format is used throughout this work.

There is more overlap between the outliers scoring above 5 standard deviations
from the mean, for the different hyperparameter ranges used, than for the outliers
scoring between 3 and 5 standard deviations. All in all, apart from the [10, 30]
range, the results are quite insensitive to the parameter settings, with the overlap
mostly reaching over 80% between 3 and 5 standard deviations and over 90% above
5 standard deviations.

3.1.2 Modified Novelty Measure

Amodified novelty (MN)measure originally designed for collider physics proposed,
in Hajer et al. [7], as an improvement to the LOF, is defined by

d−m
test − d−m

train

d−m/2
train

where dtest denotes the average distance from a point to its k nearest neighbours in
the testing set, dtrain the average distance to its k nearest neighbours in the training
set, and m the dimensionality.

In contrast to the LOF, which only considers one point at a time, this measure
takes into account the clustering of testing data [7]. While we do not split our dataset
for the calculation of the LOF, and as such testing data clustering is not an issue, it

4https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html#
sklearn.neighbors.LocalOutlierFactor.

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html#sklearn.neighbors.LocalOutlierFactor
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html#sklearn.neighbors.LocalOutlierFactor
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Fig. 4 LOF results using
different parameter settings.
The name indicates the
hyperparameter range used,
e.g. LOF1030 used a range
of [10, 30]. The size of the
results is shown between
brackets

(a) Between 3 and 5 standard deviations from the mean

(b) Above 5 standard deviations from the mean

is still interesting to see how the results for the two measures differ. When applying
the methods to novel data, this benefit will come into play.

The one hyperparameter to consider is the number of nearest neighbours used
for the calculation of the metric. The authors do not provide guidelines on how to
choose the hyperparameter for this method. As it serves a similar purpose to the
hyperparameter used for LOF, we chose a value of 40, the average of the range of
values used there.
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There is no library currently implementing this method for Python. In contrast to
the previous methods, this measure assigns a score very close to zero to its outliers,
while the most normal points can get a very negative score. As a result it is not the
outliers that score above 3 standard deviations but the most normal objects instead.

3.1.3 Isolation Forest

The Isolation Forest (IF, [5]) method is based on the idea that an outlier will be
separated from normal datapoints at an early stage when randomly partitioning the
dataset. This is implemented by repeatedly partitioning a sampled subset of the
dataset with a random value between theminimum andmaximum value for a random
feature until all data points are isolated, resulting in a tree structure. This process is
repeated multiple times on different samples, creating a forest, and the mean path
length to a data point over all trees in the forest is the outlier score for that point.

The two most important hyperparameters of IF are the number of trees in the
forest, and the number of randomly sampled data points to use for the construction
of each tree. In their paper the authors suggest using 100 trees, as the path lengths
usually converge well before this point, as well as using a sub-sampling size of 256
for higher dimensional datasets [5].

In Fig. 5we see the sensitivity of the detections to these hyperparameters.A logical
consequence of using more samples is that the size of the set of objects with higher
outlier scores becomes larger, as with bigger trees there will be larger differences
between the average path lengths to isolation for a normal object and an outlier. For
100 trees with a sample size of 128 the consequence is that no object scores above 5
standard deviations and 17,163 between 3 and 5. On the other hand, with 100 trees of
size 512 this is shifted to 3, 288 and 15, 347. This makes it more difficult to compare
the sets with different sample sizes, especially above 5 standard deviations.

Between 3 and 5 standard deviations the results are very similar for sample sizes
of 128 and 256. For a sample size of 512 there is less overlap. This can be explained
by the fact that, due to the larger trees, the outliers scoring between 3 and 5 standard
deviations,whenusing the lower sample sizes, are nowscoring toohigh to be included
in this set and are now scoring above 5 standard deviations. Note that the trees are not
built from the same random samples, so the small differences in outliers can be caused
by which data points were used to build the trees, instead of what hyperparameter
settings were chosen.

3.1.4 Clustering

Another approach to detecting outliers is by grouping the dataset into clusters and
using the distance between objects and their closest cluster center as the outlier score
[22]. One of the most commonly used clustering algorithms is k-means (KM, [6]).
The only hyperparameter of this algorithm determines how many cluster prototypes
will be generated. Points are then assigned to the closest prototype, after which the
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Fig. 5 Overlap between the
IF results using different
parameter settings. The
name indicates the
hyperparameters used, e.g.
IF100256 used 100 trees
with 256 samples each. The
size of the results is shown
between brackets

(a) Between 3 and 5 standard deviations from the mean

(b) Above 5 standard deviations from the mean

location of the prototypes is recomputed as the mean of all points assigned to it. This
is repeated until convergence [6].

As there are three types of objects in our dataset the logical choice for k is three.
We can verify this choice by plotting the quantization error against the number of
clusters. At a value of three there is a slight kink in the line, suggesting that this
would be a good choice for k (Fig. 6). We noticed that the absence of a true elbow
in the curve gives a first indication that our data is not partitioned into well-defined
clusters using KM.
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Fig. 6 Normalized
quantization error by number
of clusters used

Table 2 Cluster membership with k = 3

Members

0 47,883

1 517,110

2 13,097

The clusters are not equally populated, shown in Table2, and each cluster does not
represent each type of object. Visualizing the prototypes by reverting the PCA gives
the results shown in Fig. 7. The defining difference between the clusters seems to be
the maximum value. This explains the uneven cluster membership as the prototype
with the lowest value, the second cluster, has by far the largest number of objects
associated with it, and by far the largest number of objects in our dataset have a low
maximum value (Fig. 12b).

The distance metric used when determining the outliers after clustering is another
hyperparameter. A standard choice is the Lk norm for some value k, defined by

(a) First cluster prototype (b) Second cluster prototype (c) Third cluster prototype

Fig. 7 Cluster prototypes when using k = 3 and Euclidean distance
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Lk(x, y) =
d∑

i=1

(‖xi − yi‖k)1/k

When using the Lk norm for KM with high-dimensional data, often a lower k is
preferred [23]. As the current scipy implementation only supports integer values for
k,5 we use the Manhattan distance (k = 1).

We can still gain insights into the sensitivity of the results to the choice of these
hyperparameters by looking at the overlap matrix, found in Fig. 8. Especially the
lower scoring outliers are different when using a different value for k. Where the
maximal values of the prototypes for k = 3 have rounded values of 2, 21 and 54,
for k = 4 we have 2, 14, 37 and 63, and for k = 5 they are 1, 9, 25, 49 and 74, the
morphologies for the prototypes with higher k are very similar to the ones in Fig. 7.
Apparently the KM is producing a clustering mostly based on the maximum value
of the pixels, rather than a proper partition. They are unable to take another shape as
the center of mass is almost uniformly distributed around the center, as illustrated in
Fig. 9. A convolutional approach might be favorable to deal with this problem.

3.2 Autoencoders

Autoencoders are a fundamental architecture for unsupervised outlier detection using
deep learning [24]. Autoencoders consist of two mirrored parts, an encoder and a
decoder. The idea is that the encoder tries to learn a representation of the input in a
lower dimensionality, while the decoder rebuilds the original input from the smaller
representation. Ideally the autoencoder as a whole behaves the same as the identity
function.

Autoencoders can be used in two ways to detect outliers. The first way is to feed
an input to the trained model and look at the difference between the output and
the input. This difference is called the reconstruction error. The bigger this error is,
the more outlying the input is with respect to the data the autoencoder was trained
with. Secondly, one can use the lower dimensional representation obtained after the
encoder as a new feature vector to apply other outlier detection methods on. We use
the first method in this work.

3.2.1 Standard Autoencoder

The simplest autoencoders (AE, [8]) treat the input as a one-dimensional feature
vector with in our case 28 ∗ 28 ∗ 5 = 3920 elements (five images, one for each band
of 28 × 28 pixels). As we are dealing with image-like data, and tuning and training
autoencoders is a time-consuming process, we focused on tuning the convolutional

5https://docs.scipy.org/doc/scipy/reference/spatial.distance.html.

https://docs.scipy.org/doc/scipy/reference/spatial.distance.html
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Fig. 8 Overlap between the
KM results using different
parameter settings. The
name indicates the
hyperparameters used, e.g.
KM3Eu used 3 clusters and
measured the Euclidean
distance. The size of the
results is shown between
brackets

(a) Between 3 and 5 standard deviations from the mean

(b) Above 5 standard deviations from the mean

autoencoder as it should be better suited to our dataset. For this reason the normal
autoencoder is included in the visual comparisons in Sect. 4, to get an idea if the
results are different from other variants, but the results are not used in the final
comparisons.

Themodel we used for the comparison reduces the 3,920 dimensional input to 128
dimensions with 3 hidden layers for both the encoder and decoder part, see Table3
for the details.
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Fig. 9 Image pixels colored
by center of mass occurrence

Table 3 Standard autoencoder architecture

Layer 0 1 2 3 4 5 6

Number
of neurons

3,920 784 256 128 256 784 3,920

3.2.2 Convolutional Autoencoder

Convolutional autoencoders (CAE) do not treat each individual measurement as a
separate entity, but instead use small filters to extract and detect local image features
[9].

The performance of neural networks such as autoencoders can be very sensitive to
the hyperparameters used. Unlike the previous PCA-based methods, the training of
the CAE is a supervised procedure, enabling the use of hyperparameter optimization
algorithms such as random search [25]. We used the hyperparameters of the best
performing network obtained from the random search to train on the whole dataset
and used this for the comparison in the next chapter. The input is reduced by 2
hidden layers to a 7 × 7 image. Each hidden layer consists of a convolutional layer
with a filter size of 3 × 3, followed by a max pooling layer for the encoder and
an upsampling layer for the decoder, both of size 2 × 2. A learning rate of 0.075
was used, linearly decaying to 0 over the epochs, finally we used a stride of 1 × 1
(Table4).

In Fig. 10 we look at the overlap in outliers when training a CAE with different
values for the number of hidden layers, the number of convolutions in each layer, the
learning rate and the batch size. The first 3 versions are trained with hyperparameters
tested in the random search. The 4th version uses the same settings as version 2 but
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Table 4 CAE architecture

Layer 0 1 2 3

Number of
convolutions

48 24 24 48

Fig. 10 Overlap between
the CAE results using
different parameter settings.
The size of the results is
shown between brackets

(a) Between 3 and 5 standard deviations from the mean

(b) Above 5 standard deviations from the mean
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is trained on the whole dataset and is the one used for our comparisons. As the CAEs
were trained using a different training/testing split, at least part of the difference will
be because of testing data being inherentlymore likely to have a higher reconstruction
error than the training data.

The third iteration had a total reconstruction error more than 6 times higher than
the first two (±0.033 versus ±0.20). Its outliers are also very different from the
others, never reaching an overlap above 30%. While the first two had a similar
total reconstruction error, the outliers differ, especially between 3 and 5 standard
deviations, but it is difficult to determine how much of this can be attributed to the
training/testing split.

4 Discussion

Through an exploration of the input dataset, composed by the image cutouts extracted
from the SDSS, an analysis at pixel level of images was performed. By projecting on
a histogram the distribution of pixels with the maximum value among all involved
bands (shown in Fig. 12b), it appeared a peak at∼148. Looking at the sources around
the peak, these were recognized as objects located nearby to a very bright star. Two
examples of such objects are given in Fig. 11.

When we look at the maximum value of pixel for each object (over all bands), we
get the histogram shown in Fig. 12b.

Since such kind of objects were affected by the presence of the much brighter
second source, they were considered as unreliable and removed from the dataset. We
decided to cut the images with a maximal value higher than 100 from the dataset.

(a) SDSS J053838.82+053809.2 (b) SDSS J090331.62+220120.0

Fig. 11 Two examples of images showing the highest values in terms of pixel’s intensity among
all SDSS bands. It is possible to see a set of sources close to a very bright star nearby
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(a) Minimum values (b) Maximum values

Fig. 12 Histogram the distribution of pixels with the maximum value among all SDSS bands

This threshold was chosen because, when running the outlier detection methods on
the whole dataset, only five outliers were detected with a maximum value below 50,
none with a maximum value between 50 and 100 and the rest with a maximum value
over 100. Of the latter, all objects are child sources close to another, very bright
object. Applying this threshold we removed 300 galaxies, 97 quasars and 7, 232
stars, leaving a total of 578, 090 objects. The histogram of minimal values shown in
Fig. 12a does not show any unexpected peak.

In terms of outlier detection, we decided to compare the results from different
methods, by considering the overlap of objects scoring above 5 standard deviations
from the mean and between 3 and 5 standard deviations from the mean for the
different outlier detection methods. This is shown in Fig. 13. Note that the modified
noveltymeasure is not included in this comparison here, due to the absence of outliers
scoring above 3 standard deviations for this method.

We explored the possibility to visualize the results by reducing the dimensionality
with two different methods, PCA and t-SNE [26] but without noticing any clear
clusters. What we saw from both the visualization and the correlation matrices is
that the LOF gives very different results than the other methods. The other PCA-
based methods and the normal autoencoder produce more similar results, especially
when looking at the visualization. The CAE, while not as different as the LOF, does
have less overlap with the other methods.

We found 63 objects that score above 5 standard deviations from the combination
of LOF, IF, KM and CAE methods. They consist of 6 galaxies, no quasars and 57
stars. Of the 57 stars, 35 are observations with 2 bright stars present in the frame.
While these are definitely outliers from a data perspective, as they have two relatively
bright objects, they are not the most interesting from an astronomical point of view.
There are 4 detections with triple stars that, although rarer, are equally uninteresting.
The rest are either big, blue single stars or objects labeled as galaxies very close to
bright stars. The 6 galaxies vary from the reflection of a bright star in the telescope
to irregular starburst regions, but do not share common traits. Four of the weirdest
objects can be found in Fig. 14d.
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Fig. 13 Overlap between
the different outlier detection
methods. The size of the
results is shown within
brackets

(a) Between 3 and 5 standard deviations from the mean

(b) Above 5 standard deviations from the mean

Out of the 63 objects, 12 have no other sources in the imagewithin 0.6arcsec from
the object center, respectively, 9 stars and 3 galaxies. One galaxy is an artifact caused
by a reflection in the telescope, while the other 2 are either close by or interacting
with a nearby galaxy further away than the threshold. Out of the 9 stars, for 2 of
them the bands are moved, 1 is close to an artifact, while the other 6 are relatively
big, blue stars.

When looking at objects that score over 5 standard deviations for some methods
and between 3 and 5 for others, the number of objects found does not increase as
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(a) SDSS J081328.10+205556.6 (b) SDSS J020938.56-100846.1

(c) SDSS J065437.72+274200.4 (d) SDSS J125900.31+345042.8

Fig. 14 4 objects scoring above 5 standard deviations for LOF, IF, KM and CAE

expected. This is again caused by the LOF way of finding mostly different outliers,
compared to the other 3 methods, as shown in Table5. None of the filtered asteroids
showed up in the intersections of the combination of the 4 methods.

Splitting the results into the three classes of objects (Stars, Galaxies and QSOs)
present and looking at their overlaps, could give us an idea if there is one method
that filtered the outlying galaxies and quasars out of the intersection. The correlation
matrices are found in Fig. 15 for galaxies, Fig. 16 for quasars and Fig. 17 for stars.
The CAE outliers consist of around 80% stars in both categories, followed by around
10% galaxies and slightly less quasars. The other methods except LOF follow the
same ordering. The LOF finds more quasars than galaxies, and both categories are
better represented in the results, with stars only making up around 50% of the objects
scoring between 3 and 5 standard deviations.
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Table 5 Number of objects that score above 5 for some models and between 3 and 5 standard
deviations for other models when considering those given in the row name. For example, there are
153 objects that, when taking into account all four models, score above 5 standard deviations for
two of them, and between 3 and 5 standard deviations for the others. The number of single source
objects is reported between brackets

Number of methods
with score > 5σ

4 3 2 1 0

Number of methods
with 5 >= score >

3σ

0 1 2 3 4

Methods Number of objects

LOF/IF/KM/CAE 63 (12) 134 (39) 153 (35) 112 (24) 44 (6)

IF/KM/CAE – 194 593 890 382

LOF/IF/KM – 75 195 350 225

The fact that all these stars are detected as outliers again indicates that an high
maximum value of pixels, among all SDSS bands, make for strong outliers. In Fig. 18
we see that stars are the brightest class present in the dataset, followed by galaxies,
while quasars have the lowest intensity. This is in line with the objects with high
outlier scores for all methods except LOF.

Similar to using the SDSS database to find double objects, this split into the object
classes cannot be performed on new datasets and as such is only used to understand
the results.

By looking at the strongest scoring objects per method we can get a general idea
of what kind of objects the methods consider especially outlying.

The highest scoring objects for the LOF are the most varied. The top 250 objects
include 19 galaxies and 50 quasars. The lowest maximal image value is 0.15 and the
highest 94.33, and there are 108 single sources. There are 24 asteroids in the top 250
that are filtered from the results as discussed in Sect. 2, while none of the others have
a single one of these in their 250 highest scoring objects. There are 8 objects with
an entirely flat band in this list, whereas none of the others score such an object this
highly.

The strongest IF outliers are mostly very bright objects. The lowest maximal
intensity is 4.10, which is an entirely blue field due the reflection of a star, but where
the LOF has 27 objects with a maximal value below 1, the IF has 27 objects below
50. There are 10 objects with a maximum value of exactly 50.93, all big blue stars.
The IF is the strongest filter of quasars, with only 3 quasars scoring in the top 250.

The KM results on the other hand contain the most single sources, 187 out of 250.
It also has the largest number of stars, namely 210. A large number of these are big,
blue stars instead of the double sources we see more often for the other methods. 15
of these have a maximal value of exactly 50.93, of the in total 17 of these that exist
in our dataset. While not as extreme as IF, the KM results are also mostly very bright
objects. with only 3 of them having a maximal intensity below 25.
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Fig. 15 Overlap between
the different outlier detection
methods on galaxies. The
size of the results and the
fraction of the total results
this constitutes is shown
within brackets

(a) Between 3 and 5 standard deviations from the mean

(b) Above 5 standard deviations from the mean

Finally, for the CAE we again have a more diverse list with 4 objects having a
maximal value below 1 and the different types of objects better represented, even
though not as varied as the LOF results. While the other 3 methods do not have a
single object scoring in the top 250 with a center of mass over 8 pixels away from
the image center, there are 58 objects that do so for the CAE. These are all relatively
faint objects with a very bright star at the image edges. This method thus seems to
consider double sources as the most outlying.
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Fig. 16 Overlap between
the different outlier detection
methods on quasars. The size
of the results and the fraction
of the total results this
constitutes is shown within
brackets

(a) Between 3 and 5 standard deviations from the mean

(b) Above 5 standard deviations from the mean

While for the method detecting the least single sources still over half of the
strongest 250 objects contain a single source, the intersection between the methods
contains comparatively a very small number of single sources, see Table5.

Taking the above observations into consideration, we can look at the objects
scoring above 5 standard deviations for 3 methods and between 3 and 5 for one
method to see if they match our expectations. We found that 86 out of the 135
objects have a lower score for IF, most of which will be caused by the small number
of objects scoring above 5 standard deviations for IF. There are no objects only
scoring between 3 and 5 standard deviations for KM. The 7 objects that do so for the
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Fig. 17 Overlap between
the different outlier detection
methods on stars. The size of
the results and the fraction of
the total results this
constitutes is shown between
brackets

(a) Between 3 and 5 standard deviations from the mean

(b) Above 5 standard deviations from the mean

CAE seem representative of the objects scoring high for all methods and do not share
a common trait. The 42 objects scoring lower for the LOF all have a high intensity,
the lowest being 50.93, which is in line with the expectations.

We tried a number of ideas, such as normalizing each object independently, but
the resulting outliers are simply noisy images as these tend to have strange intensity
distributions.

Secondly, as we know that each image is centered on the object, we tried seg-
menting this object and using it as a mask on the original observation. The distance
between masked background and the lowest intensity value within the object, as
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Fig. 18 Histogram of the
maximal value of pixels,
among all SDSS bands, for
Galaxies, Stars and QSOs

well as the degree to which the intra-object values are scaled, can be considered
hyperparameters that influence the trade-off in importance between morphology and
intensity. Segmenting the objectwith a threshold, followed bymorphological closing,
however, makes too many assumptions about the underlying object.

Therefore, taking into account the four methods used in our comparison, the
strongest outliers are dominated by images with multiple, relatively bright sources.
Clearly, some pre-processing step is needed to get rid of multiple sources as well
as enabling low intensity objects to reach a higher score. Deciding which method
outperforms the others, if any, is not possible without a domain expert, analyzing
the most outlying results one by one. We can conclude that the CAE and especially
the LOF find mostly different outliers than the other more similar methods discussed
in this work, and that taking the intersection of the highest scoring objects for each
method does result in a list of manageable size for further inspection.

In conclusion, despite at this stage we did not find very interesting objects, the
proposed strategy is actually capable to identify outliers, like satellites, asteroids
or problematic images and we think that, when applied to data of a higher quality,
for instance with a deeper and higher quality photometry, possibly extending to IR
bands, it could lead to more interesting results.

4.1 Future Work

There is a variety of possible improvements for the methods applied in this work.
The first could be, instead of using PCA for the dimensionality reduction, to

use more involved options, such as the features extracted by a CNN or the lower
dimensional representation of the CAE. They could be used as the input to the
outlier detection methods.
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Using all integers for the LOF as hyperparameter values in the chosen range,
instead of using intervals of 5, is in line with the recommendation of the authors. This
can efficiently be computed by calculating the required values for the upper bound
number of neighbours, and using these pre-computed values to quickly calculate the
LOF values in the whole range [4].

As for the IF, a variant, such as the Extended Isolation Forest (EIF), can be
used. The EIF claims to increase the reliability and consistency of the outlier scores
compared to those of vanilla IF, which can produce artifacts as its decision boundaries
are either vertical or horizontal [27].When applied to spectra, IF is unable tofindmore
subtle outliers, which are often more interesting from an astronomical standpoint.
Restricting the value at which to split at a certain node, to be for example between
the 10th and 90th percentile of the feature value, improved the performance [28].

Variants of KM such as fuzzy k-means can be tried out, as well as many other
different clustering algorithms.

For the CAE, further testing with a wider range of hyperparameters and their
values can be performed to improve its performance. Whether this also improves the
quality of the outliers found can also be investigated.

Creating the mask of the center object could be done by more sophisticated meth-
ods than thresholding, such as using a object detection and segmentation tool like
MTObjects to detect the shape of the object [29]. These could also be used to detect
observations with multiple sources present without the need for a database.

For the LOF, KM andMNmethods, a decision about which distance metric to use
has to be made. The effect of different values for k in the Lk norm or using a different
distance metric altogether, such as the cosine distance, remains to be investigated.

Finally, an adaptation of the unsupervised random forest algorithm, which out-
performed IF and some other outlier detection methods on the SDSS galaxy spectra,
can be tried out on our dataset [14].
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Anomaly Detection in Astrophysics: A
Comparison Between Unsupervised Deep
and Machine Learning on KiDS Data

Maurizio D’Addona, Giuseppe Riccio, Stefano Cavuoti, Crescenzo Tortora,
and Massimo Brescia

Abstract Every field of Science is undergoing unprecedented changes in the dis-
covery process, and Astronomy has been a main player in this transition since the
beginning. The ongoing and future large and complex multi-messenger sky surveys
impose a wide exploiting of robust and efficient automated methods to classify the
observed structures and to detect and characterize peculiar and unexpected sources.
We performed a preliminary experiment on KiDS DR4 data, by applying to the
problem of anomaly detection two different unsupervised machine learning algo-
rithms, considered as potentially promising methods to detect peculiar sources, a
Disentangled Convolutional Autoencoder and an Unsupervised Random Forest. The
former method, working directly on images, is considered potentially able to identify
peculiar objects like interacting galaxies and gravitational lenses. The latter instead,
working on catalogue data, could identify objects with unusual values of magnitudes
and colours, which in turn could indicate the presence of singularities.
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1 Introduction

Due to the rapid growth in volume and complexity of astronomical datasets, Machine
Learning (ML) paradigms are gaining a key role within the data exploration and
analysis. They are demonstrated as valid mechanisms to find hidden correlations
among data and to discover rare and unexpected structures that do not fit those
relations [1–3]. The latter, considered as outliers of a data distribution, can be of
various nature and may have different degrees of scientific relevance: they can be
artifacts produced by anomalies in the data processing pipelines or in the observing
conditions, as well as peculiar objects underlining special and rare astronomical
events, whose detection may improve the scientific knowledge of relevant physical
phenomena.

Machine learningparadigms are divided into twomain classes, respectively, super-
vised and unsupervisedmethods.While in the supervised case, an a prioriKnowledge
Base is needed to train the algorithms, unsupervised methods can learn the complex
relationships among data, without inferring any known information and with a min-
imum of human supervision. Therefore, it is evident that unsupervised methods are
the most suitable to detect anomalies. In particular, we focus on two specific models:
an unsupervised variant of random forests (Unsupervised Random Forest orURF) [4]
and ahybrid type of autoencoder (Disentangled Convolutional Autoencoder orDCA),
which exploits the disentangling property of a variational autoencoder [5] but pre-
serving the structure of a standard convolutional autoencoder [6].

In recent years bothmethods have successfully been used in the astrophysical con-
text. For example, Tuccillo et al. [7] validated the former method on both analytic
profiles and real galaxy images. Baron et al. [1] used a URF on galaxy spectra from
the Sloan Digital Sky Survey (SDSS), finding objects with extreme emission line
ratios, abnormally strong absorption lines, extremely reddened galaxies and other
peculiar objects. Reis et al. [8] applied this method to infrared spectra of stars, show-
ing that the metric defined in this algorithm traced the physical properties of the stars.
Finally, Reis et al. [9] also discovered 31 new redshifted broad absorption line quasars
within SDSS spectral data. Concerning the DCA model, a very similar architecture
was successfully applied to radio data to disentangle noise signal contamination,
revealing emissions from air showers, thus enabling accurate measurements of cos-
mic particle kinematics and identity [10]. More in general, such models are faster,
compared to other traditional profile fitting methods, can be easily adapted to more
simple/complex models and could be used to detect peculiar substructures, such as
strong gravitational lenses and galaxy mergers.

In this preliminarywork, we first useDCA on synthetic images in order to evaluate
its theoretical performance, then we apply both methods on real image cutouts and
catalogue counterparts. In particular, in Sect. 3 we describe the use of a DCA to
perform an outlier detection using images extracted from the 4th Data Release of the
European Southern Observatory (ESO) Kilo Degree Survey (KiDS) [11]. Then, for
the same purpose, in Sect. 4 we describe the use of an URF on the same subset of
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objects but using photometric data, always extracted from the KiDS DR4. Finally
in Sects. 5 and 6 we discuss the results and compare the performance of the two
methods.

2 Data Preparation

In order to validate the DCA model and assess its performance we generated three
sets of 20, 000 synthetic images of 64 × 64 pixels, using three different models of
surface brightness profile of galaxies that are further described in Sect. 3.1. These
images have a dynamic range between 0 and 1.AGaussian noise, drawn froma folded
normal distribution with a standard deviation of σnoise = 0.09, has also been added
to each image and the value of the standard deviation has been chosen to maintain the
∼99% of the values within the 30% of the dynamic range. The generated noise has
a mean value μnoise ≈ 5 · 10−2 that corresponds to the 5% of the maximum value of
the dynamic range of the image.

The real data selected to perform our tests on both methods are extracted from the
KIDS Data Release 4 [11]. In particular, we randomly extracted a subset of object
cutouts from the tiles that are in common with the DR3 data release [12] and using
the DR4 photometry in the related catalogue.

For the photometry we used the Gaussian Aperture and PSF (GAaP) magnitudes
in the four bands u, g, r , i , with the minimum aperture of 1.0 arcsec and the cor-
responding automatic minimal aperture magnitudes uauto, gauto, rauto, iauto, which
are also corrected for the galactic extinction. In addition to these features, we also
included all colours and magnitude ratios [13], derived from all the above magni-
tudes, resulting in a total of 36 photometric features. From this dataset we excluded
all objects with missing data in any of the photometric bands. We also applied a
minimum set of magnitude cuts, in order to remove the objects lying in the tails of
the distributions: 16 < i < 22 and 16 < r < 22. The result is a dataset of 400, 000
objects.

For each object, a cutout of 32 × 32 pixels (corresponding to ∼6.7 × 6.7 arcsec)
has been extracted from the corresponding photometrically and astrometrically cal-
ibrated r band coadded tiles. The size of the cutouts has been chosen so that almost
all of them contain only the central object, while preserving a sufficient amount
of surrounding pixels and angular size. All pixel values of the cutouts have been
normalised between 0 and 1.

About the 90% of these objects was also present in the candidate quasars (QSOs)
catalogue, produced for the 3rdDataRelease ofKiDS, containing amixed set of stars,
QSOs and galaxies, classified with Machine Learning [14]. The two catalogues were
cross-matched, resulting in a subset of ∼1100 QSOs and ∼260 stars with a reliable
classification, considered useful information to take into account in the evaluation
of the anomaly detection experiment results.
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3 Disentangled Convolutional Autoencoders

Autoencoders are a particular type of neural network used to learn data codings by
efficiently mapping high-dimensional inputs into low-dimensional encoded vectors
and reconstructing the input data from the encoded vector only [15]. By forcing
the low-dimensional representation, or latent space, to have less dimensions than the
input data, the network is forced to learn useful features from the data and, through the
use of the backpropagation algorithm, in combination with a smooth loss function,
the content of the latent space is iteratively adapted, in order to achieve a good
reconstruction performance. For such reasons, the autoencoder is able to perform the
feature extraction and dimensionality reduction tasks in a completely unsupervised
fashion. The basic structure of an autoencoder consists of two sections (Fig. 1):

• An encoder that maps the input data into semantic code vectors that live in a so
called latent space.

• A decoder that learns to decompress the semantic code vectors from the latent
space back to the input space, producing a reconstructed representation of the
input.

In traditional convolutional autoencoders, both the encoder and the decoder are
Convolutional Neural Networks (CNN) [16]. The convolution operations allow to
identify the key features in an image, thus making themwell suited for classification,
denoising and image compression tasks. However, since there is no direct control on
how the input space is mapped to the latent space, it is difficult to extract specific
and valuable information from the encoded semantic code vectors.

Fig. 1 Representation of the basic structure of an autoencoder
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Fig. 2 The structure of the encoder used in our experiments: there are three convolutional blocks
followed by a fully connectedMLPwith two hidden layers. Each block has two convolutional layers
followed by a 2 × 2 max-pooling operation. imw and imh are respectively the width and height of
the input images

One way to overcome this limitation is to replace the decoder CNN with a given
function that produces a synthetic model of the input data, as already proposed
by Aragon-Calvo [17]. In this way, after a successful training, the latent space is
forced to coincide with the domain of the model function and each parameter of
the semantic code controls a different characteristic of the generated model, thus the
nameDisentangled Convolutional Autoencoder. An interesting feature of this type of
autoencoders, implicitly deriving from its construction, is that they can successfully
represent only objects compatible with the model assumed. Identifying those objects
means to detect artifacts, images containing wrong data, but also interesting outliers.

In our experiments we developed a multi-GPU DCA, using the Python bindings
of TensorFlow [18] and its built-in Keras module [19]. The encoder part is made
by three convolutional blocks, each one containing two convolution layers, using a
ReLU activation function and followed by a 2 × 2 max-pooling layers (Fig. 2). The
convolutional layers in the three blocks have respectively 32, 64 and 128 kernels of
size 4 × 4. The last max-pooling layer has 128 channels of size imh

8 × imw
8 , where

imh and imw are, respectively, the height and width of the input images. This hierar-
chical module is then flattened and fed to a fully connected Multi-Layer Perceptron
(MLP) [20], with two hidden layers of 64 and 32 neurons, respectively. The output
layer of the MLP section has as many neurons as many parameters there are in the
model used by the decoder.

The decoder is a custom TensorFlow layer object that encapsulates a given model
and passes to it the encoder output p along with a pair of coordinate meshes X and
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Y . If needed, the model may also take care of applying some appropriate constraints
to the parameters. The coordinate meshes have the same size of the input images and
contain, respectively, the x and y pixel coordinates.

3.1 Validation with Synthetic Data

In order to evaluate the autoencoder performance, we have first created two simple
models of galaxy surface brightness: an exponential and a Sérsic profile model. Then
we added a third more complex Bulge/Disk model, which is a linear combination
of these two. For each profile, we generate a set of synthetic images as described in
Sect. 2 and used half of them as train set, while the rest as a blind test set.

3.1.1 Exponential Profile of Galaxy Surface Brightness

The exponential profile usually well describes the light distribution of the disk of a
galaxy as a function of the distance from its centre [21]. The model we implemented
has five parameters:

• x0: the x coordinate of the center of the galaxy;
• y0: the y coordinate of the center of the galaxy;
• a: the size of the semi-major axis in pixels;
• q: the ratio between the minor ad major axis;
• θ : the rotation angle, defined as the angle that the major axis forms with the x axis
of the image.

Using these parameters, we first apply a coordinate transformation to take into
account the translation and rotation of the galaxy (Eq.1).

x ′(x, y) = (x − x0) · cos (θ) − (y − y0) · sin (θ)

y′(x, y) = (x − x0) · cos (θ) + (y − y0) · sin (θ)
(1)

Using the transformed coordinates we then compute the radius value for a give
pixel coordinate (x, y) with the Eq.2.

r ′(x, y) = 1

a
·
√

x ′(x, y)2 +
(

y′(x, y)

q

)2

(2)

And finally we compute the exponential brightness profile (Eq.3).

fexp(x, y) = exp(−r ′(x, y)) (3)
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This profile is normalised so that the maximum value is 1 at (x = x0, y = y0)
and the minimum value is zero. With this profile and using random parameters, we
generated 20, 000 synthetic images of 64 × 64 pixels, according to the procedure
described in Sect. 2. We then split the images into a train set and test set of 10, 000
images each. We run the autoencoder on the train set using different optimizers and
loss functions. We obtained the best results using the Adam optimizer [22] with a
learning rate of lr = 1e − 4, a batch size of 128 images and a maximum number of
2000 training epochs. We also used a custom loss function defined as follows (Eq. 4):

lossmael = 1

N · W · H
N∑

j=0

W,H∑
x=0,y=0

|ln(1 + f j (x, y)) − ln(1 + I j (x, y))| (4)

where W and H are, respectively, the width and height of the input images I j ; f j is
the output image generated by the autoencoder for the corresponding input image
and N is the total number of the images. The logarithmic transformations in Eq. (4)
give more weight to the fainter regions of the galaxies that are also the parts more
difficult to fit. Using a higher learning rate, the training time decreases, but it also
increases the chances that the algorithm will not converge to an optimal solution.
Other optimizers like Adadelta [23] or Stochastic gradient descent (SGD) [24, 25]
very often did not converge to an optimal solution, even using different learning
rates. Using these training parameters we performed 25 executions and selected the
trained model that provided the minimum mean absolute error (MAE) between the
input and the output images and ran it on the test set (Fig. 3).

As described in Sect. 3, the output of the autoencoder is a reconstruction of the
input images, based on the parameters of themodel. Therefore, to assess the goodness
of the reconstructed image and in turn of the parameters, we computed the MAE and
the normalised median absolute deviation (NMAD) of the residuals for each pair of

Fig. 3 Comparison between the autoencoder input and output images. The colour-map was chosen
for better visualization, so that the brightest pixels are yellow and the darkest ones are in dark blue.
The two top images are training examples, while the two on the bottom are examples from the test
set. For each image, from left to right panels respectively, there are the original synthetic image
with noise, the output of the autoencoder and the residual of the two images
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Table 1 Statistical estimators for the true versus predicted values for each parameter of the expo-
nential galaxy profilemodel. Note that, although the uncertainty on the size of the galaxy is relatively
larger than other parameters, the uncertainty on the axis ratio is small

Parameter x0 y0 a q θ

NMAE 0.16 0.16 0.32 0.02 0.01

NMAD 0.02 0.02 0.03 0.01 0.01

input-output images, finding an average M AE = 0.07 ± 0.02, which is compatible
with themean noise level and an average N M AD = 0.03 ± 0.01, fromwhichwe can
compute the equivalent standard deviation σN M AD ≈ 1.5 · N M AD = 0.05 ± 0.02,
which is compatiblewith the standard deviation of the noise. InTable1 the normalised
MAE and NMAD for each parameter of the model are also reported, computed using
the true parameter values and the ones predicted by the trained encoder. The small
values of these statistical indicators show that the autoencoder was able to train the
model successfully.

3.1.2 Sérsic Profile of Galaxy Surface Brightness

The Sérsic profile usually describes well the light distribution of the bulge of a galaxy
and elliptical galaxies in general [26, 27]. This profile is a generalization of the
exponential profile, obtained by introducing a parameter n, called Sérsic index, that
controls how the light is distributed across the galaxy. The inverse of this parameter
β = 1/n is used as exponent of the radius in the surface brightness profile equation.
For n = 1 the Sérsic profile coincides with the exponential one. The model we
implemented has six parameters:

• x0: the x coordinate of the center of the galaxy;
• y0: the y coordinate of the center of the galaxy;
• a: the size of the semi-major axis in pixels;
• c: the ratio between the minor ad major axis;
• θ : the rotation angle defined as the angle that the major axis forms with the x axis
of the image;

• β: the inverse of the Sérsic index.

The only difference with the exponential model is in the profile function of Eq. (3)
that becomes as specified in Eq. (5).

fsersic(x, y) = exp(−r ′(x, y)
β
) (5)

As in the previous profile case, by using random parameters we generate 20, 000
synthetic images, divided into a training and a test set, each one composed by 10, 000
images. Also in this case we obtained the best training results using the Adam opti-
mizer with the custom loss function (4), a learning rate of lr = 1e − 4, a batch size
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Table 2 Statistical estimators for the true versus predicted values, reported for each parameter of
the Sérsic galaxy profile model

Parameter x0 y0 a q θ β

NMAE 0.17 0.17 0.35 0.02 0.02 0.33

NMAD 0.02 0.02 0.04 0.01 0.01 0.08

of 128 images, and a maximum number of training epochs of 2000. We computed
theMAE and theNMAD of the residuals for each pair of input-output images, finding
an average M AE = 0.06 ± 0.03 that is compatible with the mean noise level and
an average N M AD = 0.03 ± 0.01. In Table2 the normalised MAE and NMAD for
each parameter of the model are reported, computed using the true parameter values
and the ones predicted by the trained encoder. The small values of these statistical
estimators show that the autoencoder was able to train the model successfully.

3.1.3 Bulge/Disk Profile of Galaxy Surface Brightness

This model is a linear combination of the Exponential and Sérsic profiles, used to
mimic a combination of bulge and disk components as well as a uniform back-
ground. We also introduced a constant background level to take into account the sky
background present in almost all real images. It has eleven parameters:

• x0: the x coordinate of the center of the galaxy;
• y0: the y coordinate of the center of the galaxy;
• adisk : the size of the semi major axis of the disk component in pixels;
• cdisk : the ratio between the minor ad major axis of the disk component;
• θdisk : the rotation angle of the disk component, defined as the angle that the major
axis forms with the x axis of the image;

• α: the fractional ratio between the central brightness of the bulge and the central
brightness of the disk;

• abulge: the size of the semi major axis of the bulge component in pixels;
• cbulge: the ratio between the minor ad major axis of the bulge component;
• θbulge: the rotation angle of the bulge component, defined as the angle that the
major axis forms with the x axis of the image;

• β: the inverse of the bulge Sérsic index;
• k: the background level expressed as the fractional ratio between the brightness of
the background and the maximum brightness of bulge+disk.

The profile function of this model is shown in the Eq. (6).

fbd(x, y) = (1 − k) · (
α · fsersic(x, y) + (1 − α) · fexp(x, y)

) + k (6)

As done in the previous tests, by using random parameters, we generate 20, 000
synthetic images, divided into a training and a test set, each one containing 10, 000
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images. Also in this case we obtained the best training results using the Adam opti-
mizer with the custom loss function (4), a learning rate of lr = 1e − 4, a batch size of
128 images, and a maximum number of 2000 training epochs. The results of the test
and the training were similar to those found in the previous test, finding an average
M AE = 0.07 ± 0.04 that is compatible with the mean noise level and an average
N M AD = 0.03 ± 0.02.

3.2 Application to KiDS Data

After having validated the autoencoder model on synthetic data, we tried to apply the
Bulge/Disk profile model on real data. As already introduced in Sect. 2, the images
used in this experiment are cutouts taken from the r band tiles of the KIDS DR4. We
divided them into a training set of 30, 000 images and a set of 370, 000 images used
to detect potentially interesting outliers.

We trained the autoencoder by using the Bulge/Disk profile model, the optimizer
and training parameters validated with synthetic data. 25 training runs were per-
formed, selecting the trained model with the lowest MAE. Finally, we ran the best
trained model on the image test set.

3.2.1 Anomaly Detection with DCA

As we said above, if the autoencoder is correctly trained and the chosen model is
a valid representation of the input objects, then the residual images—obtained by
subtracting the output of the decoder from the corresponding input—should contain
only residual noise. Therefore, it is clear that the statistical estimators computed on
the residual images have a key role in detecting anomalies that the model is not able
to describe. We used the following statistical estimators:

• MAD: since it is not very influenced by extreme values, the median of the pixel
values in the residual image corresponds approximately to the mean background
value. Thus, the Median Absolute Deviation is a valid measure of how broadly the
residuals are distributed around the background. A high value could indicate the
presence of substructures or artifacts.

• Skewness: unusually high or low values of this statistical moment could indicate
that there is something odd in the image.

• Maximum: hot pixels, artifacts but also other objects in the whole image produce
very bright pixels in the residual images.

The outliers were selected using the following automated procedure: as first step,
the average maximum value of the residuals max was computed along with the
respective standard deviation σmax and all objects for which max > max + 3σmax

were marked as outliers. Then for each unique pair of statistical estimators, the
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average number density of the objects, ρn , and the corresponding standard deviation
σn were computed; then this two-dimensional space was divided into 400 tiles of
equal size. The local number density ρn was computed in each tile and the resulting
density map was smoothed with a gaussian kernel. Finally, each object falling in
a sub-region with a density ρ < ρn − 2σρ was marked as an outlier, as it can be
seen in Fig. 4. In Fig. 5 the percentage of objects detected as outliers is reported as
a function of the detection threshold previously defined. We note the robustness of
the detection that remains approximately constant above the value of 2σρ . About the
93% of the objects are concentrated in a quite continuous region with an average
of M AD = 0.011 ± 0.005, skewness = 2.3 ± 1.7 and max = 0.12 ± 0.03. These
are objects that the autoencoder was able to fit with the model. The low values of the
M AD and max indicate that the reconstructions of the autoencoder describe very
well the original images and that the residuals contain basically only background
noise. This is also confirmed by the value of skewness greater than zero, which
is typical of Poissonian distributions, characterized by a low value of the mean, as
in the case of the shot noise that affects digital images. We identified few objects

Fig. 4 From top to bottom:
scatter plots of the skewness
versus maximum, skewness
versus MAD and MAD
versus maximum. Axes are
in logarithmic scale and the
colour indicates the
logarithm of the local
number density of the points,
where a lighter colour means
a denser region. Objects
identified as outliers are
highlighted in green
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Fig. 5 Percentages of
objects classified as outliers
by the DCA, as a function of
the detection threshold
expressed in units of σρ

having a very low skewness, which usually indicates a Gaussian-like distribution of
the residuals and thus the presence of something else beyond the pure Poissonian
background noise.

Some of these objects were bigger than the cutout area (Fig. 6), which the autoen-
coder was less able to fit properly, while others showed traces of substructures in the
residual image, which were hidden by the galaxy light. There was also a small clump
of objects, less than 2% of the total amount, having a very high maximum value:
these were very faint sources or objects with a very bright companion (Fig. 7).

A small set of objects has also a very low MAD. Although a low value of this
statistical estimator could imply a low dispersion of the residuals, an unusual low
valuemeans thatmost of the pixels in the residual image have the samevalue,which in
turn could indicate some sort of corruption. In fact, most of these objects were located
on the edge of the tile, thus resulting in partially corrupted cutouts (Fig. 8). Finally,
there was a subset of objects, approximately the 5% of the total amount, having a
fairly average of MAD and skewness values, but with a quite large maximum value
ranging from 0.3 to 0.8. Almost all of these objects have one or more than one faint
companion, as shown in the examples of Fig. 9.

Fig. 6 Some of these objects show the presence of substructures that were hidden by the light of
the galaxy (upper left and upper right), while in other cases the autoencoder failed to fit the surface
brightness profile because the objects were bigger than the size of the cutout. For each image, from
left to right panels, there is the original image, the images produced by the autoencoder and the
residual image, re-scaled to highlight the presence of substructures
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Fig. 7 Examples ofKiDS galaxy that are very faint or have a very bright close companion or present
artifacts like hot-pixels. For each image, from left to right panels, there is the original image, the
images produced by the autoencoder and the residual image

Fig. 8 Examples of objects that are just on the border of the tile from where the cutouts have been
extracted. For each image, from left to right panels, there is the original image, the images produced
by the autoencoder and the residual image

Fig. 9 Examples of objects showing the presence of a faint quite close companion. For each image,
from left to right panels, there is the original image, the images produced by the autoencoder and
the residual image

4 Unsupervised Random Forests

Random Forests are an ensemble of several independently grown decision tree clas-
sifiers, where each tree is a non-parametric model organized in a top-bottom tree-
like structure and is grown using a random subset of the features of the training
dataset [28]. They are usually used to classify objects for which a training set of
labelled objects exists so that each tree in the forest learns to map the input features
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to the corresponding correct label. When an object identified by a set of feature is
passed to the forest, each tree votes for its belonging to one of the given classes,
identified by the labels, and the resulting class is usually determined by majority
voting.

For the problem of outliers detection, where obviously a labelled training set is
not available, random forests can also be used in an unsupervised configuration.

A simple but efficient way to use Random Forest as an unsupervised method
is to generate a synthetic dataset from the original one, with the same size and
the same marginal distribution in all its features, but without the covariance among
objects. Then the RandomForest is trained on both datasets to learn to recognize their
similarity, thus isolating the outliers. By defining a similarity index Si, j between any
two objects as the number of common “real” leaves of the trees, divided by the total
number of trees in the forest, a weirdness score can be introduced, which describes
how distant is, on average, from all the others. This score can assume any value
between 0 and 1, but the distribution of its values mostly depends on the specific
dataset involved. Therefore, a reasonableway to use it is to impose a certain threshold,
based on the distribution of its values for all the objects in the dataset and then to
consider as outliers all objects with a weirdness value greater of such threshold.
Baron and Poznanski [1] proposed this method that was able to find some galaxies
with peculiar spectra in the 12th data release of the Sloan Digital Sky Survey [29].

4.1 Anomaly Detection in KiDS Data Based on the URF

For this experiment we used the photometric catalogue containing the counterparts
of the image cutouts, organized as described in Sect. 2. According to what described
in Sect. 4, we then created a synthetic dataset of the same size of the real one and
with objects drawn randomly from the same marginal distribution of each feature
(Fig. 10).

We then merged the two datasets into a single one, labelling the objects depend-
ing on whether they were real or synthetic, and used for training and testing a Ran-
dom Forest Classifier containing 800 trees, built using the Python package scikit-
learn [30]. We remark that in the case of the URF model, both training and testing
sets coincide, since the same data are used to perform the anomaly detection experi-
ment along the construction of the random forest trees process. We then divided the
original dataset into batches of 6000 objects and computed the weirdness index for
each batch. The size was limited by the amount of memory necessary to compute the
weirdness. The whole process has been repeated four times and the weirdness values
have been averaged for each object. The objects show a distribution centred on an
average value of weirdness of W = 0.83 with a standard deviation of σw = 0.06,
while the number of objects decreases as the weirdness value increases (Fig. 11). In
analogy to what done in the case of the DCA model (Sect. 3.2.1), and to perform a
direct comparison between the two models, we imposed a detection threshold of 2σ
and considered as outliers all objects for which w > w + 2σw = 0.95.
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Fig. 10 Projection on two features (magnitudes r and g) of the density distributions of the KiDS
sample (left panel) and synthetic data (right panel). The latter was generated from the samemarginal
distributions of the real one, by removing the covariance among original data

Fig. 11 Percentages of
objects classified as outliers
by the URF, as a function of
the weirdness

5 Discussion

Both chosen algorithms, DCA and URF, were tested on a subset of 400, 000 objects
extracted from theKiDS surveyData Release 4. TheDCAwas used directly on image
cutouts extracted from the r band coadded tiles, while the URF was used on the cat-
alogue of counterparts, made by magnitudes in the bands ugri, their derived colours
and ratios. The model DCA required only a minimum of human supervision during
the training, just to check the convergence of the algorithm to an optimal solution. It
performed very well in both terms of memory requirements and computing time and
was able to pinpoint some peculiar sources, about the 5% of the sample, showing
substructures that were hidden by the close galaxy light, as well as objects with very
small and/or faint close companions.

Since the URF is based on the computation of a similarity matrix, whose size
increases as the square of the number of the objects, the dataset has to be analysed
in batches and a supplementary amount of human intervention was required in order
to determine the optimal batch size.

To perform a comparative analysis of the results obtained by the two methods, we
imposed a similar criterion to extract candidate outliers, for instance, a common value
of 2σ with w > w + 2σw = 0.95 in terms of weirdness w for the URF and object
density ρ < ρn − 2σρ in the case of DCA. With such outlier detection thresholds,
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both methods found a comparable amount of peculiar objects, ∼7% of the test set
for DCA and ∼5 for URF. Among the objects considered as an anomaly by at least
one of the two methods, the ∼7% were detected as peculiar objects by both of
them. The distributions of the outliers (Fig. 12) shows that most of the peculiar
objects found by the two models cover a wide and uncorrelated area of the parameter
space, with a limited overlapping region in which most of the common outliers lay.
This seems to suggest a certain amount of complementarity of the two methods in

Fig. 12 Upper panel:
colour-colour diagram of all
the candidate outliers
detected by URF (in
magenta) and DCA (in cyan).
Common outliers found by
both methods are coloured in
blue. Lower panel:
colour-colour diagram of the
outliers detected by both
DCA and URF (in red),
plotted against all the objects
in the dataset (in black)
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Fig. 13 Examples of cutouts including irregular galaxies (a, b and c) and interacting galaxies (d),
detected as anomalies by the two methods

detecting peculiarities, according to a similar behaviour found in [31], concerning the
analysis of outliers identified from a distribution of photometric redshifts, estimated
by different methods, however no any particular evidence of interesting peculiarity
seems to emerge.

By analyzing the detected peculiar objects having a class label provided in [14],
only about the ∼27% of stars and QSOs were detected as anomalies. Most of these
objects, in fact, were not confirmed as peculiar by DCA and appear uniformly dis-
tributed with respect to the different thresholds of weirdness calculated by the URF.
This behaviour was expected for DCA because no any limitation was imposed on
the value of the Sérsic index nor on the galaxy size, thus the model should be able
to fit also star-like objects. Through visual inspection of the cutouts for the peculiar
objects detected, we observe that bothmethods tend to assign as peculiar the irregular
and interacting galaxies (see examples in Fig. 13), as well as objects that are in more
crowded fields, like the ones showed in Fig. 14.

6 Conclusions

The identification of anomalies in Astronomy has always played a major role in
making new scientific discoveries. Nowadays, the shift to more large and complex
surveys makes essential the use of robust and efficient automated algorithms to iden-
tify peculiar patterns. In this context, we performed a preliminary set of anomaly
detection experiments, by testing two different unsupervised machine learning algo-
rithms, a Disentangled Convolutional Autoencoder and an Unsupervised Random
Forest, using the former on real image cutouts and the latter on the catalogue of their
counterparts, which includes measured magnitudes, derived colours and magnitude
ratios, both extracted from the 4th KiDS Data Release.

We performed a comparative analysis of the peculiar objects detected by both
methods, by analyzing their colour distribution in the parameter space and their
capability to disentangle the presence of QSOs and stars from galaxies within a
mixed dataset. The results of this preliminary experiment revealed that most of the



242 M. D’Addona et al.

Fig. 14 Examples of cutouts for sources within crowded fields, detected as anomalies by the two
methods

anomalies detected by both methods involve irregular and interacting galaxies and
sources located in more crowded fields. Further experiments are then required on
these models, especially in terms of their setup and configuration, to investigate their
real capability to isolate peculiar types of sources. In particular, since the DCA is
mainly a method to estimate the goodness of a fit to the data, it may result affected
by the presence of nearby objects, not taken into account by the model. Improving
the detection criteria for DCA is thus one of the future enhancements of this method,
as well as to take into account the PSF and seeing in the Bulge/Disk model, which
should achieve a more accurate estimation of the structural parameters. Regarding
URF, on the other hand, a further step is the introduction of the infrared bands in the
photometric dataset, as well as the search for spectroscopic counterparts, which can
improve the classification accuracy and the validation of the method.
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Abstract The Probability Density Function (PDF) provides an estimate of the pho-
tometric redshift (zphot) prediction error. It is crucial for current and future sky
surveys, characterized by strict requirements on the zphot precision, reliability and
completeness. The presentwork stands on the assumption that properly defined rejec-
tion criteria, capable of identifying and rejecting potential outliers, can increase the
precision of zphot estimates and of their cumulative PDF, without sacrificing much
in terms of completeness of the sample.We provide a way to assess rejection through
proper cuts on the shape descriptors of a PDF, such as the width and the height of
the maximum PDF’s peak. In this work we tested these rejection criteria to galaxies
with photometry extracted from the Kilo Degree Survey (KiDS) ESO Data Release
4, proving that such approach could lead to significant improvements to the zphot
quality: e.g., for the clipped sample showing the best trade-off between precision and
completeness, we achieve a reduction in outliers fraction of � 75% and an improve-
ment of� 6% for NMAD,with respect to the original data set, preserving the� 93%
of its content.
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1 Introduction

Photometric redshifts (zphot) are crucial for modern cosmology surveys, since they
provide the only viable approach to determine the distances of large samples of
galaxies. Over the years they have been used to constrain the dark matter and dark
energy contents of the Universe through weak gravitational lensing [1–3], to recon-
struct the cosmic Large Scale Structure [4], to identify galaxy clusters and groups
[5–7], to disentangle the nature of astronomical sources [8, 9]; to map the galaxy
colour-redshift relationships [10] and to measure the baryonic acoustic oscillations
spectrum [11, 12].

Baum [13] first noticed that the stretching of a galaxy spectrum due to the redshift
affects the observed colours and hence, if the correlation between photometry and
redshift can be uncovered, multi-band photometry could become a powerful tool to
estimate redshifts.

However it became immediately apparent that such correlation is highly non-
linear and too complex to be derived analytically [14] and that the derivation of
zphot required alternative, interpolative approaches.

Nowadays, it is common praxis to divide these methods into two broad classes:
the Spectral Energy Distribution (SED) template fitting methods (e.g., [15–17]) and
the empirical (or interpolative) methods (e.g., [18–28]), both characterized by their
pros and cons.

SED methods rely on fitting the multi-wavelength photometric observations of
the objects to a library of synthetic or observed template SEDs, shifted to create
synthetic magnitudes for each galaxy template as a function of the redshift. SED
fitting methods, while relying on many assumptions, allow pushing zphot beyond
the spectroscopic limit.

Empirical methods use instead an a priori spectroscopic knowledge (zspec) for a
subsample of objects to infer the complicated relationship existing between the pho-
tometric data (i.e. magnitudes and or derived colours, in some cases complemented
by morphological information) and the redshift. Among these methods, a critical
role is played by machine learning (ML). Among the many ML models applied to
the zphot estimation, we quote just a few: neural networks, boosted decision trees,
random forests, self-organized maps, convolutional neural networks (see [29] and
references therein). A primary advantage of ML is the high accuracy of predicted
zphot within limits imposed by the spectroscopic knowledge base (KB). On the other
hand, ML methods have an inferior capability to extrapolate information outside the
regions of the parameter space properly sampled by the training data and, for instance,
they cannot be used to estimate the redshift of objects fainter than those present in
the spectroscopic sample.

Extensive reviews of both approaches can be found in [30–32]. An additional
difference between the two approaches is that SED fitting methods allow obtaining,
at once, the zphot, the spectral type of the objects and the Probability Density Func-
tion (hereafter, PDF) of the predicted zphot. In contrast, ML-based methods do not
naturally provide a PDF unless special procedures are implemented.

The essential complementarity of the twomethodologieswas proven to be themost
reliable and efficient way to produce a high-quality zphot catalogue [33], particularly
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suitable for extensive surveys, like Euclid (Desprez et al., in prep.) and VRST [34].
In this work, we explore the possibility to improve the quality of zphot predictions
by excluding from the data potential outliers without loosing much in completeness.

The work is structured as follows: in Sect. 2, we introduce some aspects of PDF
evaluation; in Sect. 3, we describe the photometry and spectroscopy used for the
analysis herein; in Sect. 4, we give a description of the method for the rejection
criteria identification as well as of the statistical estimators used to quantify the
performance of both zphot and cumulative PDF statistics. In Sect. 5, we show all the
results, and, finally, in Sect. 6, we draw the conclusions.

2 Probability Density Function

In general terms, a PDF is a way to parametrise the uncertainty on the zphot predic-
tion and to provide a robust estimate of the reliability of any individual redshift. From
a rigorous statistical point of view, however, a PDF is an intrinsic property of a par-
ticular phenomenon, regardless of the measurement methods that allow quantifying
the phenomenon itself [35].

Unfortunately, in the zphot context, the PDF depends both on the measurement
methods (and chosen internal parameters of the methods themselves) as well as on
the underlying physical assumptions. In this sense, the definition of a PDF in the
context of zphot estimation needs to be taken with some caution [36].

The factors affecting the reliability of zphot PDFs are: photometric errors, intrinsic
errors of the methods and statistical biases. The PDF becomes, therefore, just a way
to somehow compress the information contained in a single error estimate. In other
words, the parametrization of a single error, through a probability, allows to cover an
entire redshift range (with the chosen bin accuracy), thus leading to an increase of the
information rate in order to match the precision required by a specific scientific goal
(cf. for instance, the cases of the determination of cosmological parameters [37], and
weak lensing measurements [38]).

Therefore, over the last few years, much attention has been paid to develop meth-
ods able to compute a full zphot PDF for both individual sources and entire galaxy
samples [39–45].

The study of the PDFs and their properties (see Sect. 4) represents a useful tool to
test zphot reliability. In fact, rejection criteria, aimed at removing unreliable zphot
and PDFs estimates, as long as they are reproducible in the photometric space, can
improve the precision of the results in terms of both NMAD and fraction of outliers
for zphot estimates, as well as the quality of individual PDFs and their cumulative
performances described by the statistical indicators discussed in Sect. 4. Of course,
this comes at the cost of a decreased completeness.

3 Data

As spectroscopic knowledge base we used zspec for 136, 057 galaxies extracted
from the fourth Data Release (DR) of the ESO Public Kilo-Degree Survey (hereafter,
KiDS-ESO-DR4, [46]) which combines data from KiDS and the VISTAKilo degree
INfrared Galaxy survey (VIKING; [47]).
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KiDS is an optical survey of about 1350 deg2 carried in 4 bands (ugri) with
limiting magnitude r=25.0 AB (5 σ in 2”), i.e. 2.5 magnitudes deeper than the Sloan
Digital Sky Survey (SDSS), in good seeing conditions (∼0.7” median full width at
half-maximum, FWHM, in the r band). KiDS has been complemented with the NIR
photometry in the five bands Z, Y, J, H and Ks from the VIKING survey.

The survey is complemented by a set of spectroscopic observations available
within the KiDS collaboration as well as from other surveys: COSMOS [48], zCOS-
MOS [49], CDFS [50], DEEP2 [51] and GAMADR2 and DR3 [52, 53] fields public
data.

The photometry used in this work consists of the 9 Gaussian Aperture and PSF
(GAaP) magnitudes (u, g, r, i, Z, Y, J, H, Ks), corrected for extinction and zero-point
offsets, and 8 derived colours, for a total of 17 photometric parameters for each
object. After investigating the photometric parameter distribution for the sample, the
data was cleaned by cutting the tails of the magnitude distributions in order to ensure
a homogeneous distribution of training points in the parameter space.

The spectroscopic data set has been randomly shuffled and split in a 70% training
set and a 30% test set (95, 261 and 40, 796 sources, respectively). We stress that
objects in the test set used to evaluate and validate the trained model are not used
during the training phase of the methods (see Sect. 4). In what follows, we used
PDFs obtained using METAPHOR (Machine-learning Estimation Tool for Accurate
PHOtometric Redshifts [54]) on KiDS-ESO-DR4 data (cf. [36] for details).

METAPHOR is a modular workflow designed to produce both zphot and related
PDFs. The internal zphot estimation engine is MLPQNA (Multi-Layer Perceptron
trained with Quasi-Newton Algorithm; [55, 56]) while for the zphot we used the
best-estimates as defined in [36].

We just recall that the selected binning step in zphot used to estimate individual
PDFs is 0.02 and the spectroscopic depth available is equal to zspec=7.01. The zspec
distribution for the whole test set is shown in Fig. 1.

4 Methods

The zphot statistics are calculated on the residuals:

�z = (zspec − z phot )/(1 + zspec) (1)

using as zphot the best-estimate referenced in Sect. 3.
We use as accuracy estimators the mean (or bias), the fraction of catastrophic

outliers, defined as those objects for which |�z| > 0.15, and the normalized median
absolute deviation (NMAD), defined as:

NMAD = 1.4826 × median(|�z − median(�z)|) (2)

The shapes of the PDFs, and therefore their intrinsic quality, can be characterized
in terms of:

• pdfWidth: the width of the PDF in terms of redshift;
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Fig. 1 The zspec distribution of the initial test set (40, 796 sources). The bottom diagram is the
same top plot but in a logarithmic scale

• pdfNBins: the total number of bins of chosen amplitude (which defines the accuracy
of the PDF itself), in which the PDF is different from 0;

• pdfPeakHeight: the amplitude of the peak of the PDF, i.e. the value of themaximum
probability of the PDF.

The cumulative performance of the stacked PDF on the entire sample is instead
evaluated by means of the following three estimators:

• f0.05: the percentage of residuals �z within ±0.05;
• f0.15: the percentage of residuals �z within ±0.15;
• 〈�z〉: the average of all the residuals �z of the stacked PDFs.

where by stacked PDFs we mean the individual zphot PDFs transformed into the
PDFs of scaled residuals �z and then stacked for the entire sample.
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Furthermore, the quality of the individual PDFs is evaluated against the single
corresponding zspec in the test set, by defining five types of occurrences:

• zspecClass = 0: the zspec is within the bin containing the peak of the PDF;
• zspecClass = 1: the zspec falls in one bin from the peak of the PDF;
• zspecClass = 2: the zspec falls into the PDF, e.g. in a bin in which the PDF is
different from zero;

• zspecClass = 3: the zspec falls in the first bin outside the limits of the PDF;
• zspecClass = 4: the zspec falls out of the first bin outside the limits of the PDF.

Finally, we use two additional diagnostics to analyze the cumulative performance
of the PDFs: the credibility analysis presented in [57] and the Probability Integral
Transform (hereafter PIT), described in [58].

The credibility test should assess if PDFs have the correct width or, in other
words, it is a test of the overconfidence of any method used to calculate the PDFs. In
particular, the method is considered overconfident if the produced PDFs result too
narrow, i.e. too sharply peaked, underconfident otherwise. The implementation of
the credibility method is straightforward and is reached by computing the threshold
credibility Ci for the i-th galaxy with

Ci =
∑

z∈pi≥pi (zspec,i )

pi (z) (3)

where pi is the normalized PDF for the i-th galaxy. The credibility is then tested
by calculating the cumulative distribution F(C), which should be equal to C. F(C)
is a q-q plot, (a typical quantile-quantile plot used to compare two distributions), in
which F is expected to match C, i.e. it follows the bisector in the F and C ranges
equal to [0,1]. Therefore, the overconfidence corresponds to F(c) falling below the
bisector (implying that too few galaxies have zspec with a given credibility interval),
otherwise, the underconfidence occurs. In both cases, this method indicates the inac-
curacy of the error budget [57]. Overconfidence and underconfidence are plotted in
Fig. 2.

The PIT analysis measures how consistent are the predicted zphot and the true
redshift (zspec) distributions, by calculating the histogram for the following proba-
bilities:

pi = Fi (xi ) (4)

Fi in Eq.4 is the cumulative distribution function (CDF) of the i-th object and
xi = zspeci . The closer the histogram is to a uniformdistribution, the better is the cal-
ibration between zphot and zspec distributions. A strongly U-shaped PIT histogram
denotes a highly underdispersive character of the zphot distribution.

Thevisual inspection of aPIT can, therefore, shed light on the consistencybetween
the zspec and zphot distributions. In particular, if the PDFs are too broad, then the
relative PIT histogram appears overdispersed, that is with a peak in the centre of the
histogram itself. In contrast, if the PDFs are too narrow, then the PIT is U-shaped and
it results underdispersed. Finally, only when the widths of the PDFs agree with the
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Fig. 2 Credibility analysis examples of overconfidence, represented by the black curve below the
bisector of the plot F(C) vs C , and of underconfidence, indicated by the red curve above the same
bisector

Fig. 3 Examples of well-calibrated (left) and underdispersed U-shaped PIT (right). The overdis-
persion is simply the opposite of the right panel, with a very broad PDF distribution, having a high
peak in the centre of the diagram

discrepancies between zphot and zspec, then a uniformly distributed PIT histogram is
produced. In Fig. 3 an example ofwell-calibrated and underdispersed PIT histograms
is shown.

Credibility and PIT tests are complementary since both the underdispersion and
the overconfidence are related to the narrowness of the PDFs. The narrower the PDFs
are, the more the PIT histogram is underdispersed and the results of credibility are
overconfident.

5 Results

The initial test dataset was composed by 40, 796 zphot estimates and relative individ-
ual PDFs.Among these,we have 970 outlier sources (2.4%), and 39, 826 non-outliers
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(97.6%): outliers were singled out as explained in Sect. 4. We then proceeded with
the visual inspection of the individual PDFs, i.e. their width, number of bins, the
height of the maximum peak. To do so, we first derived a set of statistical descrip-
tors, such as mean, standard deviation and the minimum and maximum values of
the PDF shape properties, dividing the sample into outliers and non-outliers. These
values are given in Tables1 and 2, respectively. By comparing the mean values of
such descriptors, the expected differences for the two populations become appar-
ent: outliers have wider PDFs, with a higher number of bins (intervals of amplitude
�z=0.02), in which the PDF is not null and lower peaks with respect to those for
non-outliers samples.

Table 1 Statistics of the three descriptors of the PDF shape: width, number of bins, and maximum
peak height, defined in Sect. 4, for the outliers in the test set

PDF feature Mean σ Min Max

PdfWidth 3.94 2.33 0.1 7.02

PdfNBins 124.90 71.74 5 277

PdfPeakHeight 0.067 0.072 0.011 0.66

Table 2 Statistics of the three descriptors of the PDF shape: width, number of bins, and maximum
peak height, defined in Sect. 4, for the non-outliers in the test set

PDF feature Mean σ Min Max

PdfWidth 1.23 1.82 0.040 7.02

PdfNBins 25.01 29.91 2 305

PdfPeakHeight 0.28 0.15 0.012 0.99

For the test set data, in Figs. 4, 5 and 6 we plot, respectively: (i) the histogram of the
pdfWidth distribution, (ii) the scatter plot of PdfPeakHeight against PdfWidth, and
(iii) PdfNBins versus PdfWidth, distinguishing outliers and non-outliers populations.

The inspection of these plots led us to define four data sets:

• In Fig. 4, we can see that a cut of objects with PdfWidth > 4 can remove a fraction
of outliers � 1.1% from the test sample. We, therefore, define a first (Cut-1) data
set of objects with reliable PDF widths, using the condition:

pd f Width < 4 (5)

with which we come out with 36, 170 sources (of which 518 are outliers, and
35, 652 non-outliers, respectively, 1.4% and 98.6% of the total number of objects
in the sample).
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Fig. 4 PdfWidth normalized counts for outliers and non-outliers populations. Dashed vertical line:
PdfWidth value equal to 4, identified as threshold for clipping outliers that populate the region with
widths larger than 4 (Cut-1)

Fig. 5 Scatter plot of PdfPeakHeight versus PdfWidth. The dashed horizontal line indicates the
PdfPeakHeight value, equal to 0.09, identified as threshold for removing outliers laying under the
line (see Cut-2 in the text)

• In Fig. 5, we show the PdfPeakHeight versus the PdfWidth. Outliers lay at the
bottom of the scatter plot, thus allowing to define a second data set (Cut-2) via the
condition:

Pd f PeakHeight > 0.09 (6)
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Fig. 6 Scatter plot PdfNBins versus PdfWidth. The dashed horizontal line identifies the value of
PdfBins equal to 150, useful to clip the outliers populating the region above this threshold (see
Cut-3 in the text)

The Cut-2 data set contains a total of 38, 107 sources: 226 outliers (0.6%), and
37, 881 non-outliers (99.4%).

• In Fig. 6, we show the distribution of the descriptors PdfBins vs PdfWidth. As
expected, the majority of the outliers rests in the region with higher values of PDF
width and number of bins. This allows defining a third data set Cut-3, by rejecting
objects with PdfBins > 150. This third data set consists of 39, 905 sources, of
which 591 are outliers (1, 5%) and 39, 314 non-outliers (98.5%).

• Finally, we derived a fourth data set (Cut-4) via the combination of Cut-1 and Cut-
2. This last data set contains 34, 802 sources, of which 196 (0.6%) are outliers and
34, 606 (99.4%) non-outliers.

Some additional tests showed that making more severe cuts would result in an
uncomfortable loss in completeness. For instance, by producing an additional data
set Cut-5, selecting objects with PdfWidth < 1, having less than 150 bins and a
maximum peak height of at least 0.15, we reduced the test set by 34% (27, 297 out
of 40, 796 sources).

5.1 Zphot and Stacked PDF Statistics

The results in terms of both zphot statistics and of cumulative PDF performance are
reported in Table3, for the test set and the four data sets corresponding to the different
cuts. As we can see, the NMAD statistics is not different for the four adopted cuts,
and there is only a slight improvement with respect to the whole data set. It has to be
noted, however, that all cuts prove quite effective in reducing the fraction of outliers,
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with an improvement of 39.8%, 75.0%, 37.7%, and 76.3% (for Cut-1, Cut-2, Cut-3,
and Cut-4, respectively) with respect to the test set.
In the case of the data set extracted from Cut-5, we were left with a fraction of
outliers � 0.2%. The NMAD is reduced to 0.013, and the fractions of residuals for
the stacked PDF, f0.05 and, f0.15, increase to, respectively, 85.9% and 99.3%. This
was expected, since the role played by NMAD and fraction of outliers for zphot
point estimates, is analogous to the one of, respectively, f0.05 and f0.15 for the PDF.
Another estimator that allows quantifying the reliability of the estimated PDF is
the zspecClass flag as defined in Sect. 4. The results for zspecClass are reported in
Table4. As it could be expected, the best results in terms of fractions of zspecClass
equal to 0 and 1, occur for the data setsCut-2 andCut-4, which include the best scores
in terms of zphot point estimates and of cumulative PDF performances (Table3).

For the Cut-5 data set, we achieve for classes 0 and 1 the scores of 31.0% and
42.8% respectively, and a smaller fraction of objects of class 3 (only 0.1%) with
respect to the other data sets. Classes 3 and 4 quantify the number of objects falling
outside the PDF. The distinction between the two classes gives the supplementary
information about how far from the PDFs is their zspec.
In Fig. 7 we present the scatter plots of the zphot best-estimates as a function of the
spectroscopic redshifts, for the test set and the four probed cut data sets. The mean
and standard deviation of zphot are also plotted, in 40 evenly spaced zspec bins in a
whole range of [0, 4.0]. Not all bins are populated, due to the reduction of the amount
of samples resulting from the application of the rejection criteria, and the σ value in
each bin increases in under-sampled bins.

Table 3 Statistics of the zphot and stacked PDFs for the whole test set sample and the four pruned
data sets performed

Estimator Test set Cut 1 Cut 2 Cut 3 Cut 4

bias −0.003 −0.004 −0.002 −0.003 −0.002

NMAD 0.016 0.015 0.015 0.015 0.015

outliers 2.4% 1.4% 0.6% 1.5% 0.6%

f0.05 76.1% 79.2% 79.8% 77.5% 81.2%

f0.15 94.6% 96.6% 97.4% 95.9% 98.0%

〈�z〉 −0.025 −0.016 −0.018 −0.008 −0.013

Table 4 zspecClass fractions for the whole test set and the four cuts.
zspecClass Test set Cut 1 Cut 2 Cut 3 Cut 4

0 10652 (26.1%) 9930 (27.5%) 10535 (27.6%) 10631 (26.6%) 9834 (28.3%)

1 15476 (37.9%) 14224 (39.3%) 15214 (39.9%) 15430 (38.7%) 14084 (40.5%)

2 13893 (34.0%) 11353 (31.4%) 11727 (30.8%) 13115 (32.9%) 10271 (29.5%)

3 156 (0.4%) 90 (0.2%) 79 (0.2%) 115 (0.3%) 64 (0.2%)

4 619 (1.5%) 600 (1.7%) 552 (1.4%) 614 (1.5%) 540 (1.6%)
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Fig. 7 Scatter plots of photometric redshift best-estimates as a function of spectroscopic redshifts.
Red diamonds: mean of the zphot best-estimates in 40 evenly spaced zspec bins. Red bars: standard
deviation of zphot values populating the bins. Outliers and non-outliers are identified by the colour
bar, showing the absolute values of the residuals (see Eq.1)
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It is interesting to notice the similar trends for data sets deriving from cuts 1 and
3, and cuts 2 and 4. This is expected for cut data sets 1 and 3 since, as we mentioned,
PDF width and the number of bins in which PDF differ from 0, are highly correlated.
In the case of cut data sets 2 and 4, being the cut data set 4 obtained by the joint
application of cuts 1 and 2 conditions, the similar performance can shed light on the
cut which drives the statistical performance outcome.

Of course, we should favour those rejection criteria that, leading to similar statis-
tical performance, remove a smaller number of sources from the original data set. In
other words, we should adopt rejection criteria corresponding to the best trade-off
between precision and completeness.

Among the tested cuts, the best results in terms of precision and completeness are
achieved for the data setCut-2, which while showing comparable results (cf. Tables 3
and 4) to data set Cut-4, contains � 9% more sources.

Finally, in Fig. 8, we show the stacked PDF for the test set and two cut data sets
(Cut-1 and Cut-4), along with the spectro-photometric redshift distributions of the
test set. Note that the redshift range has been cut at z = 1, due to the low amount of
objects in the test set above such value.

Besides the good agreement with the zphot distribution for the stacked PDF of the
test set, we can see the effect of the rejection for the clipped data sets, which leads
to a lower amount of sources at high redshift, and a more substantial amount at low
redshift.

Fig. 8 Superposition of the stacked PDF (percentage) of the test set (red), for the cut 1 (blue)
and cut 4 (magenta) data sets, and the zphot best-estimates (in green) distributions obtained by
METAPHOR applied to the zspec distribution (in black), for the test set, limited to z = 1, due to
the very few objects over such value
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This is highlighted in Fig. 9, where the distribution of zspec for the whole test set
and the two clipped data sets Cut-1 and Cut-4 are shown. Moreover, in Fig. 13 in the
Appendix, it is reported the zspec distribution for the whole test set against the zspec
distributions for the tested four clipped data sets. As we can see more clearly from
this figure, rejection is successful in removing outliers at higher redshift. Comparing
the distributions for the Cut-2 and Cut-4 data sets, we can notice that the range of
zspec between 3 and 4 is more populated in the case of Cut-2 data set with respect to
Cut-4 data set. This leads to the conclusion that, as anticipated above,Cut-2 achieves
a better trade-off between completeness and precision with respect to Cut-4. This
is a clue of the effectiveness of the rejection in removing most of outliers at high
redshift, i.e. in a region of the parameter space where the density of the training
points is lower.

Fig. 9 Top panel: zspec distribution for the whole test set (red), and the cut data sets Cut 1 (black)
and Cut 4 (blue). Bottom panel: the same of the top panel in a logarithmic scale
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Fig. 10 PIT histogram (left panel). The red dashed line identifies the ideal PIT value, which
represents the best calibration between the true zspec and the reconstructed zphot distributions.
Credibility analysis (right panel) for the test set. The solid black line represents the best credibility
for which the two distributions F(C) and C are indistinguishable (see Sect. 4)

5.2 PIT and Credibility Analysis

PIT and credibility analysis for the test set are shown in Fig. 10. The PIT histogram
shows a certain degree of underdispersion of the zphot distribution and the credibility
plot stresses the overconfidence of the PDFs. The complementary information carried
by these two visual diagnostics (see Sect. 4) is therefore confirmed.

In the plots of Figs. 11 and 12, we show, respectively, the credibility analysis for
the four clipped data sets against the credibility of the test set, and the comparison of
PIT and credibility for the data set Cut-5. Data sets obtained from cuts 1 and 4 show
a slightly higher degree of overconfidence with respect to the test set, while cut data
sets 2 and 3 show an indistinguishable credibility trend.

We stress that the PIT histogram fails to reveal differences between the four
clipped data sets probed, with respect to the test set: for this reason, we do not show
the relative plots. However, in the case ofCut-5, PIT shows a more significant degree
of bias with respect to the test set, whereas the credibility shows a narrower shape,
resulting in a larger overconfidence with respect to the whole test set.

6 Conclusions

In this work, we presented a method for defining low-quality zphot rejection criteria
through the characterization of outliers, using the descriptors of the PDF shape (e.g.
the width, the value of the maximum peak, etc.). The first step was, therefore, to
compare the PDF descriptors for the two populations of outliers and non-outliers.
Outliers appear to be characterized by wider PDFs with small maximum probability,
as well as by a more significant number of bins in which the PDF differs from zero.
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Fig. 11 Credibility analysis for the four tested cut data sets (red) against thewhole test set credibility
(black). In the top panels:Cut-1 (left) andCut-2 (right). In the bottom panels: Cut-3 (left) andCut-4
(right)

Fig. 12 PIT histogram (left panel) and credibility analysis (right panel) for the Cut-5 data set,
plotted against that of the whole test set

Zphot outliers tend to populate particular regions of the photometric parameter
space and of the one defined by the PDF characteristics. Most outliers populate the
top right part of a plot PdfNBins vs PdfWidth, where both the quantities are larger.
Furthermore, the PDFs of the outliers have lowmaximumpeaks, and populate a stripe
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at low values of PdfPeakHeight, in a plane PdfPeakHeight vs PdfWidth. This allows
the identification of cuts suitable to remove outliers, thus improving the precision on
the clipped data sets.

We detailed the results for four different cut data sets obtained by applying rejec-
tion through the PDFwidth, the height of the maximum peak, and the number of bins
in which the PDF is not null for, respectively Cut-1, 2, 3 data sets. A further clipped
data set (Cut-4)was created by removing outliers through the application of both the
cuts used to generate Cut-1 and Cut-2 data sets. The best precision and completeness
results were achieved for the data set Cut-2. This data set, in fact, from the one hand,
shows comparable results to data setCut-4, in terms of both zphot point estimate and
cumulative PDF statistical performances. On the other hand, Cut-2 data set contains
� 9% more sources than Cut-4, which mostly populate the spectroscopic region in
the range [3, 4], as it is visible in Fig. 13.

Finally, we tested many others more strict rejection criteria, all of them leading to
a severe loss of completeness with respect to the original data set.We reported for one
of these pruned data set (Cut-5) the results throughout the Sect. 5, also showing the
more biased PIT histogram and more overconfident credibility diagram with respect
to the other four pruned data sets (see Fig. 12).

Although still not fully automated, the rejection approach is very general in its
applicability, since it does not depend on the particular method used to calculate
the PDFs. On the other hand, the overall quality of PDFs depends strictly on the
particular method used to derive them. This last aspect is not discussed in this paper.
However, we deem particularly useful a future comparison of rejections applied to
PDFs obtained by different approaches (e.g. SED and ML methods referenced in
Sect. 2). This with the final goal of further increasing the precision of the measure-
ments.

As mentioned in Sect. 1, precision and completeness are both relevant quanti-
ties for matching the requirements of ongoing as well as future cosmological sky
surveys, since the accuracy of the cosmological parameters strongly depends on an
optimal trade-off between these two properties. The systematic study and automatic
implementation of rejection can help to improve the precision, keeping a congruous
number of non-outliers objects, thus preserving the completeness.
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Fig. 13 Zspec distribution for the whole test set (red) and the four tested cut data sets (black), in a
logarithmic scale. Top panels: Cut-1 (left) and Cut-2 (right). Bottom panels: Cut-3 (left) and Cut-4
(right)

Appendix

See Fig. 13
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Large Astronomical Time Series
Pre-processing for Classification Using
Artificial Neural Networks

David Andrešič, Petr Šaloun, and Bronislava Pečíková

Abstract During last years, several successful algorithms emerged for classification
of time series from various areas of real world. But astronomical time series (a.k.a.
light curves containing usually flux or magnitude on one axis and Julian date on
the other axis) are a bit more challenging to classify. As they comes from multiple
observational devices and observatories (designed for e.g. variable stars detection,
stellar system analysis or extra-sollar planets discoveries) that are usually located in
outer space, they greatly vary in lengths, periods, noisiness and do not have clear
borders between classes. Finding periods in these time series is therefore crucial
for further research in this area. As these instruments produces huge amount of data
(even Petabytes per observing night), we are facing big data issues and the analysis of
the data requires an automated solution. In this chapter, we depict these issues on two
publicly available data sets from BRITE and Kepler K2 projects and several well-
performing algorithms, such as Convolutional networks, Long Short-term Memory
and other Recurrent neural networks etc. We compare these approaches with various
data pre-processingmethods including e.g. statisticmarkers, periodograms or Fourier
transformation for feature extraction as well as different means of data normalization
and balancing. We also compare the affect of various activation functions used in
the classification model. At the end, we present our own approach that includes the
use of artificial neural networks (Multi-layer perceptron and Convolutional Neural
Network) enhanced by genetic algorithm to find and learn the best performing clas-
sification model for pre-processed light curves with extracted features. Our approach
is able to challenge the results of related work that includes these data sets.
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1 Introduction

Time series classification in astronomy can be useful in many areas. In this chapter,
we focus on so-called light curves: flux or magnitude values measured in some
(often irregular) period of time. This can be used to detect variable stars (of many
physical classes), extra-solar planets or maybe (in future with more powerful astro-
nomical hardware) extra-solar moons orbiting planets, stellar systems analysis and
other physical phenomena.

Since these data comes from various automatized astronomical instruments that
produce huge amount of data (even petabytes per night [40]), we are facing big
data issues. To handle classification of this amount of data, an automated solution is
crucial. In this chapter, we present an overview of current algorithms used for time
series classification in general as well as different variations of algorithms based
on the artificial neural network as a mean of machine learning to test how they
perform with astronomical light curves. We also propose a network enhanced by
genetic algorithm capable to challenge current top results on similar data sets. We
also compare the tested approaches with various feature extraction techniques such
as statistics markers or e.g. Fourier transformation.

1.1 Types of Stars Variability

In the Universe, most of the stars are actually variable in their luminosity. Describing
physical reasons for this variability is beyond the scope of this chapter, so we offer
at least a brief overview of classes used in our training data:

• Delta Scuti—youngpulsating stars that are similarly as cepheids used as a so-called
standard candle to measure distances between galaxies.

• Detached Eclipsing Binary—when both companions in a binary star system have
no significant gravitational effect to each other.

• Semi-Detached/Contact Eclipsing Binary—when one of the companions in a
binary star system is affected by the gravitational pull of the other one (but not
vice versa) which actually transfers its gas to itself (accretion).

• Gamma Dor—young pulsating stars with a not very clear physical cause.
• RR Lyrae ab—pulsating stars typically with half of mass of our Sun used as

standard candles.
• Other Periodic/Quasi-Periodic.

In our training data, other stars are labelled as noise. An example of how such time
series for these classes looks like is depicted on Fig. 1. On x-axis, there is always time
(usually some variation of Julian Date). On y-axis, there is usually a flux defined as
the total amount of energy that crosses a unit area per unit time1 (see Eq.1).

1According to COSMOS—The SAO Encyclopedia of Astronomy: http://astronomy.swin.edu.au/
cosmos/F/Flux.

http://astronomy.swin.edu.au/cosmos/F/Flux
http://astronomy.swin.edu.au/cosmos/F/Flux
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Fig. 1 Example light curves from Kepler K2 data set. Left one from the pair is always with low
confidence in class (under 50%), right ones have high confidence in class (over 90%)

F = L

4πr2
(1)

Where F is the flux at distance r , L is the luminosity of the source star, and r is
the distance between Earth and the source star.

2 State of the Art

Time series classification is a bit specific because the classifier works with sorted
data where even in the order of the data significant markers for some class can be
hidden. Most literature on time series classification assumes following [1, 23]:

• copious amounts of perfectly aligned atomic patterns can be obtained,
• the patterns are all of the equal length,
• every item that we attempt to classify belongs to exactly one of our well-defined
classes.
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For such time series, the classification using Nearest Neighbour algorithm with
the relatively expensive Dynamic TimeWarping as a distance measure function usu-
ally performs best as a machine learning approach [32]. But these assumptions are
challenging in astronomical time series since they greatly vary in lengths, periods,
noisiness and are without clear borders between classes. In [26], authors also con-
cludes that Long Short-Term Memory is another state-of-the-art technique for this
task.

2.1 Time Series Classification Methods

During the last years, several successful machine learning methods emerged for
time series classification. They are often bench-marked using UCR Time Series
Archive [12] made in 2002 by the University of California. It is a set of data sets
from different domains that is continuously extended, and today it contains 128 data
sets. Over 1000 papers were published using this archive until now, but it may not
be so conclusive since it heavily depends on experiment configuration details [5].
Nevertheless, authors in [14] shown that on this data set COTE and HIVE-COTE
performs best (followed by ResNet and FCN).

2.1.1 Traditional and Other Machine Learning Methods

Although we focused on artificial neural networks, we also come with a brief
overview of current methods and algorithms without them to summarize current
state-of-the-art approaches.

Dynamic Time Warping (DTW)

This algorithm was introduced in 1978 [35] for speech recognition. It defines a
distance between two time series, which is a metric that can be used with K-nearest
neighbour. Multiple variations of this algorithms have emerged since then, but with
an only marginal improvement of its original results [38]. The greatest advantage of
DTW is that in opposite to a traditional Euclidean distance metric, it uses a mapping
between two structurally similar points which makes this metric independent [13].
It should therefore be able to identify stars of the same variability class even in case
when the stars were not in the same time in the same phase. Another advantage should
be the ability to discover a similarity even with different densities of measurements
(or speed of change) which means that it could discover a similarity of time series
of two variable stars with different gaps between measurements (“sample rate”). It
also means that it should be able to discover a similarity even in case of different
periods. Authors in [5] compare similar methods of time series classification, and it
turned out that they did not achieve significantly better results than DTW.

Since we have labelled data, we prefer supervised learning, which is why we did
not consider this method. The metric itself could be useful for data pre-processing
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Fig. 2 Critical difference diagram comparing eight classifiers over UCR and UEA archives. Source
[14]

(e.g. for establishing an average distance of variable/non-variable stars as one of
extracted attributes).

Back of SFA Symbols (BOSS)

Introduced in 2015 by Patrick Schäfer [38]. The algorithm is based on a comparison
of patterns extracted from the time series and contains three steps:

1. separation of time series to blocks of the same length (sliding windows),
2. transformation of each block using Symbolic Fourier Transformation (SFA),

a. a discrete Fourier transform is applied to each block,
b. then a symbolic representation of each block is created (SFA word),

3. a construction of the BOSS histogram for identifying structural similarities in
time series.

BOSS algorithm includes a noise reduction. It is also fast and successful in classifi-
cation. The author claims that it is able to supersede the best classification algorithms
of the time and that one of the modifications could reach the top results on UCR data.
But in experiments in [5] it performed a little bit worse.

Transformation of time series could be useful for us as well as a part of data
pre-processing. We could also use SFA words themselves or BOSS histograms as
inputs for the artificial neural network.

Collective of Transform-based Ensembles (COTE)

First introduced in [4] where authors designed a method that collects several time
series classifiers in various domains, related transformations to these domains and
metrics that evaluates individual classifiers outputs.

Authors in [4] claim that COTE reaches significantly higher accuracy than other
known algorithms (those based on artificial neural networks were not covered). This
statement can be supported by [5]. COTEwas also a part of experiments in [14]where
itwas comparedwith sevenother algorithms.Results are depicted onFig. 2 andCOTE
took second place with statistically insignificant difference from the winner.

2.1.2 Methods with the Use of Artificial Neural Networks

Methods that utilize artificial neural networks were the main aim of this work. We
bring a brief overview of those that we considered as they are usually performing
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best for time series from various areas. In [13] authors also proved that artificial
neural networks could supersede other time series classification algorithms. We can
name for example Convolutional network [28], Fully Convolutional Network [13,
26], Residual Network [26], Multi-scalable Convolutional Network [11, 13] or Long
Short-term Memory (Recurrent) Network [13, 26].

Multi-layer Perceptron

Consists of interconnected layers containing artificial neurons. Neurons in two layers
are connected byweighted connection. There is no connection betweenneurons of the
same layer. The output of each neuron consists of a sum of bias and weighted inputs
processed by an activation function. It is trained by a traditional backpropagation
algorithm. A more detailed description of MLP can be found in e.g. [33].

In [11] authors attempts to find how each training parameter affects the classifier
performance, especially in variable stars classification. According to them, the train-
ing speed has no significant effect on the accuracy, but the size of internal layers has.
They also experimented with layers from 4 to 18 neurons, and it turned out that those
with 4 and 8 neurons performed best. But the main aim of their work was to compare
MLP, KNN, SVM and RF in a field of variable stars classification. They attempted
to establish a specific classifier for each class, and the final class was assigned as a
combination of all classifiers outputs. From these, MLP turned out to be somewhere
in the middle.

In [5] authors compares algorithms for time series classification that emerged
after 2010. It also contains MLP and Naive Bayes (NB), logistic regression, SVM
with linear (SVML), quadratic kernel (SVMQ), random forest (RandF) and rotation
forest (RotF), 1-nearest neighbour with Euclidean distance (ED) and WEKA C4.5
(C45). From these, MLP achieved better results than DTW, RotF and RandF while
it achieved worse results than BN, NB, C45 and logistic regression.

Convolutional Network

Although first convolutional networks were designed for image recognition [15, 29,
30], today they are commonly used in other domains such as speech recognition and
processing [6, 42] or time series analysis [16].

A typical convolutional network consists of convolutional, pooling and fully-
connected layers (as depicted on Fig. 3). A convolutional layer consists of several

Fig. 3 Convolutional neural network architecture. Source [30]
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Fig. 4 Convolutional neural network architecture for time series classification. Source [14]

convolutional filters attempting to detect patterns (e.g. shapes, gradients or even
more complex structures like hairs in the image processing domain). The filter is
implemented as a matrix used for multiplication of input image. Outputs of the
convolutional layer are then accumulated in pooling layer made for simplification
of inputs their dimensionality reduction. At the end of the network, there is a fully-
connected network similar to MLP.

In time series domain the convolution can take place in the application of its
filter on time series areas. The difference from image processing is that it is applied
to one-dimensional inputs. This operation can also be understood as a non-linear
transformation of the time series. For example, in case of convolution of time series
by filter [ 14 ,

1
4 ,

1
4 ,

1
4 ] we talk about moving average with window of 4. A visualization

of a convolutional network for time series classification is depicted on Fig. 4.
In case of traditional algorithms, it is usually necessary to take care of intense

data pre-processing [28]. The great advantage of a convolutional network is that it
requires only minimal modifications of input data for the classifier. This is due to
convolutional filters that do the pre-processing on their own. According to [14] the
CNN is the most used type of artificial neural network for time series classification,
most probably for its robustness a relatively good training speed in comparison to
MLP and RNN.

Fully Convolutional Network

The architecture of Fully Convolutional Network (FCN) is similar to CNN. The only
difference is that in the last layer, there is (instead of fully connected layer) Global
Average Pooling (GAP) layer and that it does not contain local pooling layers, so
the time series length remains the same during the processing by the entire network.
Using GAP significantly reduces the number of parameters for the network. GAP
performs dimensionality reduction of a tensor with dimensions h × w × d to 1×
1× d by reducing each h × w matrix to the arithmetic average of all of its values.
Please note that while in image recognition we work with h, w > 1, in time series
domain one of these parameters is equal to one prior the reduction.

The advantage of FCN is that it does not require any significant data pre-processing
or features extraction [45] and it can even be used as a mean of pre-processing [26].
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FCN achieves great results in the domain of semantic segmentation of images
[45] and also in the field of time series classification [18, 26]. The first use of FCN
for time series classification is described in [45]. Authors compared FCN, MLP
and ResNet with DTW, COTE, BOSS and several other algorithms. They used UCR
archive for comparison (with 44 data sets in that time). Data pre-processing contained
only z-normalization, and for FCN and ResNet training the Adam Optimizer was
used. Four metrics were used to evaluate results: the arithmetic average of errors
across all datasets, geometric average of errors across all data sets, number of data
sets where the given algorithm performed with the lowest error and Mean Per-Class
Error (MPCE):

M PC E = 1

K

∑
PC Ek (2)

where PC Ek = ek
ck

where ek is classification error on kth data set, ck is the number
of classes in kth data set and K is number of data sets. FCN performed best using
these metrics (in 18 of 44 data sets in reached lowest classification error).

Authors in [14] compared current time series classification algorithms. They
experimented with 5-layered FCN with ADAM optimizer with learning factor 0.001
and Entropy cost function. Details of parameters and results can be found in [14], but
we can conclude that FCN performs worse that ResNet and better than other seven
classifiers.

FCN was also included in experiments in [41] although this work mostly aims
to recurrent neural networks in time series classification domain. FCN with MLP
were included in these experiments just to compare the accuracy. It turned out that
FCN performs much better than all recurrent networks in these experiments (simple
recurrent network and LSTM).

Residual Network

In general, adding more neurons and layers should increase the approximation accu-
racy. The problem is that when the network architecture grows, then the backprop-
agation algorithm faces the vanishing (or exploding) gradient issues. This problem
was identified in [20]. Removing this weakness was the major aim of Residual net-
work (ResNet) in order to allow effective network training for deep learning [18].
Another great advantage is (similarly to CNN and FCN) the need for very little data
pre-processing [26].

ResNet performs verywell in image recognition domain. In [18], authors designed
a contest-winning network that on ImageNet data set [34] reached only 3.5%. It also
turned out that ResNet can be successfully applied to time series classification. In
[45], authors experimented with various types of networks and data sets, and ResNet
achieved the lowest classification error in 8 of 44 data sets. In arithmetic average, it
took fourth place and in geometric average, it took fifth place (of 11 algorithms).

Elman’s Network

Elman’s network is one of the simplest recurrent neural networks (RNN—they store
an information about their previous activations in internal memory so the information
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can also spread among neurons in the same layer; successfully used for sequence
data processing [13]). The main difference between MLP and Elman’s network is
that Elman’s network is enhanced with context layer that stores information about
activation of neurons from the previous iteration. These activations then affect the
output of the layer using recurrent links. These links exist only between i th neuron
of the context layer and ith neuron of the internal layer and have weight equal to 1.
The network is trained using real-time recurrent learning method [46].

In [41] authors attempts to use recurrent neural networks in time series classi-
fication domain. They compare different neural networks using UCR Time Series
Archive [12]: MLP, FCN, LSTM and several other types of recurrent networks. They
divided recurrent networks into two groups: those with a dense layer on the output
and those with a recurrent layer. Their results for recurrent networks are not very
conclusive because they did not reach a significantly higher accuracy than random
classifier. They conclude that according the Wilcoxon signed-rank test:

• replacing recurrent layer by LSTM layer leads to better accuracy,
• adding the third layer leads to no significant improvement of accuracy,
• replacing dense layer by the recurrent layer has no significant impact on the accu-
racy,

• an increasing number of neurons in the one-dimensional recurrent network from
128 to 256 leads to worse classification accuracy.

Long Short-Term Memory
The main motivation to create LSTM [21] was to be able to effectively model depen-
dencies in large time series and also to eliminate problemswith vanishing and explod-
ing gradients [26]. The strength of LSTM comes from the regulation of spreading
of the activation by gates. These gates regulate input, output and the internal state of
the LSTM cell. Each LSTM cell consists of three gates: input, forget and output. The
forget gate decides which information will be removed from the internal memory.
Input gate filters cell inputs and output gate decides what input values and values
from internal layer will be sent to the output of the cell.

LSTMwas also a subject of experiments in [41] on UCR Time Series Archive [12]
where is achieves better accuracy than standard RNN, but worse than FCN. Authors
also concluded that increasing the number of neurons in a layer from 128 to 256 had
no significant effect on classification accuracy. Authors in [19] attempted to classify
astronomical time series using LSTM and other methods. Their experiments were
evaluated using Balanced Accuracy:

T P
P + T N

N

2
(3)

where TP is a count of correctly classified positive samples and TN is a count of
correctly classified negative samples. P is a count of positive samples and N a count
of negative samples. Authors were surprised that LSTM performed badly in their
experiments using these metrics. They conclude that the Balanced Accuracy for
LSTM was only 52%.
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It seems that noisy time series are quite a challenge for LSTMandRNN in general.
A possible solution can be inspired by [17], where the authors used a conversion into
a symbolic representation with a self-organizing map.

LSTM Fully Convolutional Neural Network

Introduced in [26] and designed to extend FCNN by LSTM module. Authors state
that their solution significantly improves the performance of FCNNwith only a small
increase of the model. They also state that their solution requires only minimal data
pre-processing. They also conclude that their method super-seeds other state-of-the-
art methods.

2.2 Other Related Work

In [36] authors performed multi-class classification (instead of our binary one) for
the data from the original Kepler mission (“K1”) that are very similar to ours. Their
original results were similarly poor as ours and among others concludes that LSTM
is not suitable for Kepler data. They achieved the best results with feature extraction.
The results are very similar to those described in [7] (again experimented on original
Kepler data).

There is also a Kaggle2 competition aiming at original Kepler data, but although
it promises high accuracy, it uses highly unbalanced data set and achieved results are
therefore not very informative.

In [22] authors works with a totally different light curves data set, but conclude
that feature extraction (in their case a set o seven statistical markers) is a must-have
for astronomical time series. They also work purely with time series without any
additional meta-data describing the stars themselves. Based on just this information,
they conclude that it is not possible to perform good-performing multi-class classifi-
cation for most of the variability classes. Using Random Forest, Decision Trees and
kNN algorithm, they reached up to 70% accuracy, which they suspect is caused by
an imbalanced data set.

3 Data Sets

In this section, we briefly describe data sets we used for experiments with various
classification algorithms. Frompublicly available, real-world data sets such asAll Sky
Automated Survey for Supernovae (ASAS-SN), MACHO Project, Microvariability &
Oscillations of Stars (MOST) we eventually chose BRITE (enhanced by variability
data from GCVS catalogue) and NASA’s Kepler (mission K2) as they provide data
sets in a shape suitable for machine learning (ML).

2Mystery Planet (99.8%, CNN): https://www.kaggle.com/toregil/mystery-planet-99-8-cnn.

https://www.kaggle.com/toregil/mystery-planet-99-8-cnn
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Real light curves are quite challenging for ML classification. They are very often
noisy due to various physical reasons or due to contamination by other signals. In
[19], authors for example filtered out those light curveswith large contamination from
the neighbouring stars or those with total measured flux or a flux yield significantly
lower than the object’s total flux. The sampling rate varies, and especially in case of
e.g. BRITE data set, we can see that whole parts of the time series are missing. Such
sparseness is suspected to be one of the reasons why classification usingML does not
work very well [7]. Another suspect for ML classification poor results is the density
of the data [7], which is why we selected in case of K2 data an original pre-processed
data set with ‘smoothed’ light curves. This data set also removes incorrect values
from the light curves caused by instrumentation orientation change performed by on-
board thrusters fired during the exposure time. This provides more consistent light
curves, but on the other hand, it brings in another issue which is sparseness. Kepler
data are also a bit specific as they contain time seriesmeasured in 2 so called cadences
where each has a different sampling rate that affects the density of the data. Some
authors overcome this by simply ignoring them [19]. As we can see, there are many
challenges, which is why there are very often used additional metadata like those
available in K2 FITS files that come with photometric data and physical properties of
each measured star [7, 19]. This—side by side with feature extraction—is the usual
ML framework for Kepler data set. In our work, we focused only on raw light curves
and labels established by a respected third party without these meta data.

3.1 BRITE

Data fromBRITE project—a group of nanosatellites on lower orbit launched in 2013
and 2014. This data set is made of tabular ASCII files containing (among others)
Heliocentric Julian Date and Flux (ADU/s). There are 1119 light curves within this
data set. According to GVCS catalogue [37], 601 of them are of variable stars, 279
not variable and 239 cannot be identified by cross-matching in GCVS catalogue.

Besides the fact that variability data comes from a 3rd party archive, the greatest
disadvantage of this data set is its variability in sampling rate (in some cases, intervals
between samples are less than 1ms on one side and approximately 60 days on the
other side). Another disadvantage is that number of samples in each light curve
varies (some light curves have less than 10 measurements, while others have tens
of thousands of measurements). The average length of the light curve is 12642 of
samples [1].

3.1.1 General Catalogue of Variable Stars (GCVS)

GCVS [37] is a list of variable stars. Its first version contained 10820 stars and
was released in 1948. Since then it was updated several times and today in contains
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52011 variable stars (version 5.1 released in 2015). This catalogue allows a cross
identification of stars based on their IDs in various catalogues.

Since BRITE data set does not come with information about star variability, we
used this catalogue to add information about variability by cross-matching its ID.
By this, we were able to obtain a label (7 classes of star variability) for 1119 light
curves.

3.2 Kepler K2

NASA’s mission to search Earth-like extra-solar planets in our Galaxy. Data from the
K2 mission that are subject of this work, are publicly available [2, 3] and well docu-
mented [10, 25]. In this work we are interested in Kepler K2 light curves containing
flux of individual objects in time. For these data, Kepler K2 also provides official
catalogue of confirmed variable objects that we can utilize. Based on sampling fre-
quency, we distinguish two cadency groups: long with 1765.5 s (29.4min) and short
with 58.89 s. On each Thursday, more than 160000 objects with long cadency and
512 objects with short cadency were measured and archived. The minimal length of
measurement was 1/4 of year for long cadency and onemonth for short cadency (with
the exception of Q4 where module 3 objects were lost due to hardware failure). Light
curve file is in the form of time series where all undefined values are represented
as NaN (not a number). As a result, we can obtain about 40000 light curves with a
length up to 1300 measurements [1].

As mentioned before, we used original but corrected K2 data that excludes obser-
vations during thruster firings [44]. The resulting data are more smooth and without
irrelevant samples (although with some sparseness). The difference between raw and
corrected data is depicted on Fig. 5.

3.2.1 Similarity with Kepler “K1” Data

Kepler mission “K2” followed the original NASA’s Kepler mission with the same
purpose after the instrument stabilization failure. For this reason, these data sets are
very close to each other in terms of the content. Original Kepler data also contains
light curves containing flux values with two cadences: long with 29.4min and short
with 58.89 s sampling frequency.

Currently, more research seems to be done on original (“K1”) Kepler data, but due
to the data similarity, we include their results in our work as well. In [19], authors
performed multi-class classification but with poor results (balanced accuracy 52%).
They confirm that LSTMdoes not performverywell forKepler data (they discuss that
it was either due to the limited positive sample size within our data or the sparseness
and/or noisiness of real data) and they achieved best results with a use of significant
attributes extraction (with a balanced accuracy 74.7%). This conclusionwas basically
confirmed by experiments performed in [7] where authors performed alsomulti-class
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classification of 150000 objects into 14 variable star classes reaching up to 65–70%
accuracy. Authors also mention previous research on Kepler data achieving up to
55% accuracy.

4 Artificial Neural Networks Approaches

We decided to compare several methods of time series classification that utilizes
artificial neural networks. Our primary goal is to find the best method that will
classify time series (light curves) at least binary in the sense of object variability: the
light curve contains some period (and is therefore of a variable object) or whether
there is no period found (an object is not variable) [1] as much as the data will allow
us. We started with the following approaches:

• multi-layer perceptron classification with own activation function,
• the recurrent neural network of type LSTM,
• multi-layer perceptron with own activation function in combination with time
series pre-processing using Fourier transformation,

• the recurrent neural network of type LSTM in combination with time series pre-
processing using Fourier transformation,

• multi-layer perceptron classification with own activation function in combination
with some method of significant attribute extraction,

Fig. 5 An example of the uncorrected fluxes from K2 (blue) and the corrected K2SFF version
(orange). Source [44]
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• the recurrent neural network of type LSTM in combination with some method of
significant attribute extraction (a.k.a. feature extraction),

• a convolutional neural network with sigmoid activation function,
• other, not so successful (in terms of our results) artificial neural networks such as
fully-convolutional neural networks, MCDCNN and ResNet.

After these, we attempted (using genetic algorithm) to engineer ANN specifically
for our binary classification task and established a framework that can match the
classification accuracy of related work.

4.1 Data Pre-processing

We pre-processed both BRITE and Kepler K2 data sets and transformed the raw data
(light curves with flux) into a common form digestible by the ANN:

• Balancing data sets, so it contains the same number of variables and not variables.
• Cutting light curves in order to equal their length.
• Mix the data.
• Generate periodogram.
• Perform Fourier transformation.
• Significant attributes extraction in order to reduce the dimensionality of time series
data (different techniques).

• Data normalization into interval relevant to the selected activation function.
• Splitting the data set to training and test set.

4.1.1 Significant Attributes Extraction and Visualization

During our experiments described laterwe discovered that both original data setsmay
not provide clear examples of time series of variable and non-variable stars. This led
to poor accuracy, and we were, therefore, looking for a way how to distinguish these
time series by means of significant attributes extraction. We tested the usability of
extracted attributes by visualization using Sammonmapping [36]. Sammonmapping
attempts to find a low-dimensionality representation of objects in high-dimensional
space with as much respect to their original geometric distances as possible. We used
it to convert extracted significant attributes to 2D and visualize, hoping to see clear
clusters with variable and non-variable time series. Such a set of attributes could be
then used for further classification using ANN.
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5 Experiments and Results

Aswe achieved poor initial results with BRITE data set (as described in Sect. 5.1, not
all experiments covers it. We were looking at results with ten following activation
functions: exponential, sigmoid, hyperbolic tangent, relu, elu, selu, soft plus, softsign,
harp sigmoid, linear. Experiments were performed with an artificial neural network
containing three hidden layers: 16 neurons in input, 34 neurons in first hidden, 16 in
second hidden and 64 in third hidden layer [1].

5.1 BRITE Data Set

We had started with a more problematic BRITE data set. We attempted to classify
time series in several ways, but eventually with poor results.

5.1.1 Multi-layer Perceptron

The sigmoid activation functionwasused in the output layer. The trainingwas stopped
after 3000 epochs. The learning rate was set to 0.005. For each activation function,
we trained the MLP 10-times, and based on validation data, we selected the best
model. Its accuracy was then tested on testing data. Results can be seen in Table1.

Bad results are probably caused by a small data set. Only 538 light curves came
out from pre-processing, these were then divided into the training and test set in
70:30 ratio, 10% of training set was used for validation. For the training, only 338
light curves remained. Another issue was the irregular interval between individual

Table 1 Results of MLP classification for BRITE data set

Act. function Precision Recall Accuracy

Exponential 0 N/A 0.64

Sigmoid 0 N/A 0.64

Hyperb. tan. 0.03 0.18 0.59

Relu 0 0.60 0.64

Elu 0 N/A 0.64

Selu 0 N/A 0.64

Soft plus 0 N/A 0.64

Soft sign 0 0 0.62

Harp sigmoid 0 N/A 0.64

Linear 0 0 0.61
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measurements within the time series. Based on these results and results with LSTM,
we decided to continue only with Kepler K2 data set.

5.1.2 Long Short-Term Memory

In this case, the process was a bit different. We used 900 raw time series (as LSTM
is supposed to handle it) cross-matched with GCVS catalogue. We divided them into
training and test set in 70:30 ratio. Each time series had up to 66500 measurements
(“feature vector”). Shorter time series were padded with −1 to this length and all
data normalized. With these settings, we achieved the accuracy of 60%.

5.2 Kepler K2 Data Set

After attempts with BRITE data set, we switched to a more promising Kepler K2
data set. Configuration was the same as in the case of BRITE.

5.2.1 Multi-layer Perceptron

The results with the same configuration as in case of BRITE can be seen in Table2.
Unfortunately, there is justminimal improvement. The best activation function turned
out to be Selu that achieved accuracy 0.66. The recall is also an interesting metric
because it is not such an issue if some non-variable object is classified as variable,
but it is important to minimize the number of undetected variables. From this point
of view, the Elu function performed best. Accuracy and loss function of best models
is depicted on Figs. 6 and 7.

Table 2 Results of MLP classification for Kepler K2 data set

Act. function Precision Recall Accuracy

Sigmoid 0.98 0.53 0.56

Hyperbolic tangent 0.72 0.61 0.64

Relu 0.67 0.60 0.61

Elu 0.64 0.63 0.63

Selu 0.78 0.62 0.66

Soft plus 0.82 0.58 0.62

Soft sign 0.64 0.58 0.60

Harp sigmoid 0.98 0.49 0.48

Linear 0.73 0.61 0.63
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Thenwe attempted to improve the accuracy by generating so-called periodograms
created by conventional statistical analysis. The classifier then attempted to classify
these periodograms instead of light curves. Results can be seen in Table3 and shows
no significant improvement in accuracy. Nevertheless, hyperbolic tangent performed
best.We also attempted to establish some custom activation functions listed in Table4
(raw light curves were used). As the last experiment with MLP, we attempted to
use our own activation functions with Kepler K2 light curves processed by Fourier
transformation. Results are listed in Table5. We achieved similar results with Cosine
transformation.

5.2.2 Convolutional Network

We decided to compare CNN with MLP. All data from K2 data set were normalized
by min-max normalization, we run 5000 epochs with learning rate 0.005 and follow-
ing network configuration: two convolutional layers with the sigmoid act. function,

Fig. 6 Results of MLP training with Elu activation function on the K2 data set. Source [1]

Fig. 7 Results of MLP training with Selu activation function on the K2 data set. Source [1]
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Table 3 MLP classification for K2 data converted to periodograms

Act. function Precision Recall Accuracy

Sigmoid 1.00 0.49 0.49

Hyperbolic tangent 0.51 0.71 0.66

Relu 0.54 0.70 0.65

Elu 0.63 0.65 0.65

Selu 0.65 0.61 0.62

Soft plus 0.80 0.61 0.65

Soft sign 0.56 0.67 0.64

Harp sigmoid 0.00 0.00 0.50

Linear 0.61 0.65 0.64

Table 4 MLP classification for K2 data using own act. functions

Act. function Precision Recall Accuracy

tanh(0.1*x) 0 0 0.45

tanh(0.3*x) 0.05 0.53 0.45

tanh(0.5*x) 0.52 0.66 0.59

tanh(x) 0.72 0.68 0.66

tanh(1.5*x) 0.68 0.68 0.65

tanh(2*x) 0.71 0.67 0.65

Table 5 MLP classification for K2, own act. functions, FT

Act. function Precision Recall Accuracy

tanh(1.1*x) 0.68 0.64 0.64

tanh(1.4*x) 0.75 0.65 0.67

tanh(1.5*x) 0.74 0.65 0.66

tanh(1.7*x) 0.68 0.61 0.61

tanh(2*x) 0.72 0.63 0.63

window size of 7 and 6 (or 12) filters, each followed by pooling layer and with output
layer with a sigmoid activation function. Results are in Table6 and on Fig. 8.

5.2.3 Other Artificial Neural Networks

We have been experimenting with several other ANNs including ResNet, Fully-
convolutional network, MCDCNN and other configurations of MLP and CNN with
even less success than as described above. Their results are, therefore omitted from
this paper.
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Table 6 Results of CNN classification for Kepler K2 data with different count of light curves and
measurements in each time series (cutted to this length)

Light curves Length Precision Acc. Recall

500 800 0.65 0.65 0.65

7502 1300 0.65 0.64 0.64

500 400 0.64 0.62 0.63

5.2.4 Other Significant Attributes Extraction Methods

As mentioned before, we attempted to extract the most significant attributes from
K2 data set in order to distinguish variable and non-variable objects. To verify this,
Sammon projection was used (see Figs. 9 and 10). The experiment confirmed that
the original data does not contain clusters, and we need to focus on domain-specific
details of the data.

5.2.5 Improvement of Accuracy Using Genetic Algorithm

Weeventually focused on themost-promising feature extraction approach and certain
domain knowledge. We used Kepler K2 variability metadata that also provides a
confidence level of each class label (in the form of probabilistic distribution over
all possible classes). The histogram of such label confidence is depicted on Fig. 11.
For the training purposes, we fine-selected only those time series that has confidence
level over 80% and thus are more “clean” for the feature extraction (in other cases
there is a significant probability of a bad label)—an experimentally established set
of statistical markers (calculated using tsfresh3 framework):

• The absolute sum of changes of the time series x :
∑n−1

i=1 |xi+1 − xi |.
• Aggregated auto-correlation: fagg = (R(1), . . . , R(m)) form = max(n, maxlag)

where n is the length of the time series X , maxlag is the maximal number of lags

Fig. 8 CNN experiment loss function chart during training phase (from left: experiment #1, #2,
#3) [1]

3tsfresh: https://tsfresh.readthedocs.io.

https://tsfresh.readthedocs.io
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to consider, fagg is mean, variance and standard deviation in our case and R(l)
is the autocorrelation for lag l: R(l) = 1

(n−l)σ 2

∑n−l
t=1(Xt − μ)(Xt+l − μ) with σ 2

being variance and μ mean.
• Change quantiles with lower quantile being 0.5, higher quantile being 0.7, using
absolute differences and variance as the aggregation function applied to a corridor
established by quantiles.

• CID—an efficient complexity-invariant distance for time series x attempting to
estimate its complexity specified by more peaks, valleys etc. [8]:√∑n−2lag

i=0 (xi − xi+1)2.
• A count above/below mean returning the number of values in time series x that
are above/below its mean.

• Energy ratio by chunks—sum of squares of chunk i out of N chunks expressed as
a ratio with the sum of squares over the whole series (we used ten chunks).

• Fast Fourier coefficients Ak = ∑n−1
m=0 ame−2π i mk

n for k = 0, . . . , n − 1 where Ak

is the kth Fourier (complex) coefficient, n is the length of the time series and am

is the mth value of time series. We used the first 3 Fourier coefficients: their real,
imaginary, absolute and angle value.

• Aggregated Fast Fourier Transformation—spectral centroid (mean), variance,
skew, and kurtosis of the absolute Fourier transform spectrum.

Fig. 9 Sammon projection, random init.: 500 epochs, different time series length (1200–1225
measurements), extracted attributes or just FT or min-max norm [1]
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Fig. 10 Sammon mapping: 500 epochs, time series length: 1200–1225. Attr.: stand. dev., variance,
min, max, mean, sum val., median, abs. sum of changes, agg. autocorr., arithmetic coeff., binned
entropy, energy ratio, agg. FFT val., first loc. of min/max, mult. max values, index mass quant.,
linear trend etc. Or processed by FT or min-max normalization [1]

Fig. 11 Histogram of class probabilities (label confidence) for Kepler K2 data
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• C3 measuring non-linearity in time series x [39] by computing 1
n−2lag∑n−2lag

i=0 x2
i+2lag · xi+lag · xi where we used lag = 350.

• Mean value of a central approximation of the second derivative: 1
n

∑n−1
i=1

1
2 (xi+2 −

2xi+1 + xi ) where n is the length of time series x .
• Partial autocorrelation at lag k = 2 of time series x [9].
• Quantile q = 0.5.
• Range count of observed values within the interval [0, 100).
• A ratio beyond rσ—ratio of values that are more than r · σ(x) away from the
mean of time series x where σ is standard deviation a r = 100 in our case.

• The ratio of a count of unique values to count of all values of the give time series.
• Skewness.
• The power spectrum of the different frequencies of the given time series.
• Standard deviation.
• Variance.

On Fig. 12 we depict our pre-processed data set. Visualization in 3D was done
using a non-linear projection called t-SNE [31]. We can see that variable and non-
variable stars are now much more distinguishable. In the bottom part where most
of the non-variable stars are located, we can see a significant number variable stars
as well which suggests that there will be a need of a rather higher number of layers
and neurons in them in order to “bend” the space around them and separate them in
high-dimensional space.

We also introduced batch normalization [24] for each hidden layer. The best
experimentally found performing network was MLP containing three dense layers
(64, 128 and 256 neurons) and reaching accuracy over 70%.

We then decided to optimize the ANN hyperparameters using a simple genetic
algorithm. We used an initial population of 10 individuals initialized with random
values or values established by our previous experience and results. Our genetic
algorithm identifies four best individuals of each iteration, and using them, it gener-
ates six new individuals. Together they represent a new population. In each iteration,
genomes of 2 randomly chosen individuals are mutated.

Multi-layer Perceptron

We started with MLP with up to 1000 neurons represented as a gene of the genome.
Other genes covered activation function,metrics and fitness function.As it is depicted
inTable7, after 12 iterations the number of neurons stopped at 1000.We can speculate
that if we increased the upper limit for the number of neurons, the genetic algorithm
would continue to this limit as well. After 12 iterations, we also got final values for
activation function and metrics. The algorithm suggests sigmoid activation function
an accuracy as a metric. Based on our results, we can also say that categorical cross-
entropy and Kullback–Leibler divergence are equal in the sense of the accuracy.

Convolutional Neural Network

We extended the genome by several more attributes (genes) mostly for data pre-
processing and convolutional layers:



Large Astronomical Time Series Pre-processing … 287

Fig. 12 Best describing extracted features for most reliable (in a sense of class confidence) time
series

• time series length,
• data normalization method,
• number of epochs,
• number of neurons,
• sliding window size,
• activation function,
• cost function.

In Table8 we can see the best individuals from each iteration. We can see that
even in the first iteration, a great individual has emerged, meaning that the genetic
algorithm had limited space to push the classification F1 score further. Yet we can
see that even better individual was found: 0.98%. These results was achieved using
the following parameters for data pre-processing and network topology:



288 D. Andrešič et al.

Table 7 Results of genetic algorithm optimizing the MLP network

Number of neurons Activation function Cost function F1 score

200 Relu Categorical
cross-entropy

0.8542

200 Relu Categorical
cross-entropy

0.8709

200 Relu Categorical
cross-entropy

0.8647

200 Relu Kullback–Leibler
divergence

0.8732

300 Relu Categorical
cross-entropy

0.8818

250 Relu Kullback–Leibler
divergence

0.8741

250 Relu Kullback–Leibler
divergence

0.8747

300 Relu Kullback–Leibler
divergence

0.8765

300 Sigmoid Categorical
cross-entropy

0.8861

300 Sigmoid Categorical
cross-entropy

0.8871

300 Sigmoid Categorical
cross-entropy

0.8921

1000 Sigmoid Categorical
cross-entropy

0.9176

1000 Sigmoid Categorical
cross-entropy

0.9204

1000 Sigmoid Categorical
cross-entropy

0.9165

1000 Sigmoid Kullback–Leibler
divergence

0.9216

1000 Sigmoid Kullback–Leibler
divergence

0.9177

1000 Sigmoid Kullback–Leibler
divergence

0.9181

1000 Sigmoid Kullback–Leibler
divergence

0.9159

1000 Sigmoid Kullback–Leibler
divergence

0.9199

1000 Sigmoid Categorical
cross-entropy

0.9201
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Table 8 Results of genetic algorithm optimizing the CNN network

Time
series
length

Data nor-
malization
method

Number
of epochs

Number
of neurons

Sliding
window
size

Activation
function

Cost
function

F1 score

750 Mean 456 30 3 Relu Mean
squared
error

0.9522

750 Mean 456 30 3 Relu Mean
squared
error

0.9522

850 Mean 456 15 3 Relu Mean
squared
error

0.9513

850 Mean 456 15 3 Relu Poisson 0.9539

850 Mean 456 15 3 Relu Poisson 0.9539

850 Mean 456 70 13 Relu Mean
squared
error

0.9625

850 Mean 456 70 13 Relu Mean
squared
error

0.9673

850 Mean 456 70 11 Relu Poisson 0.9790

850 Mean 456 70 11 Relu Poisson 0.9790

850 Mean 456 70 11 Relu Poisson 0.9790

• time series length: 850,
• data normalization method: mean,
• number of epochs: 456,
• number of neurons: 70,
• sliding window size: 11,
• activation function: relu,
• cost function: Poisson.

Fully-convolutional Neural Network

In Table9 we can best individuals of 10 iterations performed with the same genome
as in the previous case, just using FCN. In this case, the best individual found in the
first iteration reached even higher F1 score, yet there was found a slightly better one
in later iterations reaching 97%. The best individual had the following parameters:

• time series length: 800,
• data normalization method: mean,
• number of epochs: 100,
• number of neurons: 50,
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Table 9 Results of genetic algorithm optimizing the FCN network

Time
series
length

Data nor-
malization
method

Number
of epochs

Number
of neurons

Sliding
window
size

Activation
function

Cost
function

F1 score

400 Mean 100 10 20 relu Mean
squared
error

0.9613

300 min_max 456 15 50 relu Mean
squared
error

0.9432

800 Mean 100 50 50 relu Mean
squared
error

0.9716

800 Mean 100 50 50 relu Mean
squared
error

0.9716

800 Mean 100 15 50 relu Mean
squared
error

0.9707

800 Mean 100 15 50 relu Mean
squared
error

0.9622

700 Mean 100 50 50 relu Mean
absolute
percent-
age
error

0.9645

700 Mean 1000 50 50 relu Mean
absolute
percent-
age
error

0.9656

700 min_max 350 30 50 relu Mean
absolute
percent-
age
error

0.9539

700 Mean 350 30 50 relu Mean
squared
error

0.9666

• sliding window size: 50,
• activation function: relu,
• cost function: mean squared error.
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5.2.6 Results Summary

Similarly to [19] we achieved poor results with LSTM and best results using feature
extraction. Although in [7, 19] authors worked with original Kepler mission data
and multi-class classification (instead of our binary one), we were able to reach
higher accuracy on a very similar data Kepler K2 data set and binary classification. It
seems that the key lies in data pre-processing and selection of correct training data as
the confidence level for the label data is often deeply under 50%. Comparison with
Kaggle competition results is also problematic not just for the fact that it also uses
the original Kepler mission data, but also for using a highly imbalanced data set.

6 Conclusions

Astronomical time series (a.k.a. light curves) are very specific in comparison to
other ones—they are noisy, variable in length, and observational intervals and with
overlapping classes. Traditional methods for their classification seems to not perform
very well with them. Significant attributes extraction that includes various statistical
markers and FFT coefficients seems to be necessary to achieve good results and the
classification accuracy can be highly improved by optimizing the hyper-parameters
and topology with genetic algorithm. It also seems that a successful classification
model must contain a large amount of neurons, high-length samples and a high
number of epochs during training. It also seems that mean normalization of data
performs better.

In the end it can reach high accuracy confirmed by validation and test set to prevent
over-fitting. So far, we are not aware of a related work reaching similar accuracy on
Kepler data set. Similar work usually performs multi-class classification with the
help of photometric meta-data as additional features while we rely just on the time
series themselves (although we select only those with high confidence in the label).
No other work using Kepler data that we are aware of also mentions what kind of or
how much data they used (that is, whether the data set was balanced, what was the
number of samples used or what was the minimum or mean of the label confidence).

We expect that by introducing photometric meta-data we can lower the confidence
in label while keeping similar accuracy in the future. We would also like to confirm
this approach on different astronomical data sets and possibly on multi-class classi-
fication (as samples of individual classes may differ too much from each other to be
united as one ‘variable’ class).

Our future work will include testing various ANN topology and hyperparameters
optimization using e.g. evolutionary algorithms. We are also aware of papers that
attempt to speed up the convergence of hyperparameters optimization using e.g.
Decision trees or Bayesian optimization.A nice overview of optimizing (deep) neural
networks also offers e.g. [43]. Another possibility for binary classification could be
for example a solution inspired by anomaly detection where the anomaly could be
anything but noise (where the noise simply masks a non-variable star, and everything
else would be considered variable).
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In this book, which you have just read, the issue of data processing in the field of
astrophysics using Machine learning methods or, if you want more generally, using
artificial intelligencemethods, was discussed. This area, if we look at the history of its
development, is relatively young and has less than a hundred years of development,
if we take into account the first neuron model of the 1920s as the first technical
algorithm in the field of artificial intelligence. Over the last 80 years, the development
of computational methods has undergone relatively fundamental changes, both at
the hardware level and at the software level. Your mobile phone can now handle
mainframe computers that used to match the power of a small power plant. In the
field of computer science, significant changes can also be observed, especially in
the area of the already mentioned artificial intelligence. In the last 40 years, artificial
intelligence algorithms have evolved a lot, and the class of these algorithms iswealthy
today.We can encounter neural networks, fuzzy logic, evolutionary algorithms, flock
intelligence, and many other algorithms, including exotic ones as cell automata or
fractal geometry. These are no longer officially part of artificial intelligence, but
can also be used to solve very complex tasks. Based on all this, it is challenging
to predict further developments, because recent developments have proven to be
very surprising. Developments in data processing technologies can, therefore, only
be speculated. Today, artificial intelligence is used for many tasks such as speech
analysis, language structure analysis, for modelling extremely complex processes
and processes, for analyzing and simplifying data from very complex processes
and many other exciting tasks. It is logical that astrophysics that generates a large
amount of data using modern technologies has become an object of interest in the
application of thesemethods and anobject of interest of the community that dealswith
these methods. Thus, an apparent increase in the application of artificial intelligence
methods to astrophysical data can be expected in the near future, not only for some
simple noise cleaning or interpretation but also for creating very complex models,
estimating missing data based on the existing data set context, analysis of signals
coming from space, whether from natural or possibly other sources, andmany others.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
I. Zelinka et al. (eds.), Intelligent Astrophysics, Emergence, Complexity
and Computation 39, https://doi.org/10.1007/978-3-030-65867-0

295

https://doi.org/10.1007/978-3-030-65867-0


296 Frontiers

It can also be expected that artificial intelligencewill help us to find an explanation
of new phenomena, or their prediction, as was the case with the use of evolutionary
techniques in the discovery of a new quantum phenomenon, which would be appre-
ciated at the GECCO conference. This recorded case clearly shows the potential of
artificial intelligence and its ability to estimate incomplete data the correct result or
predict the correct behaviour of the model. Or the existence of unknown phenomena
can be successfully estimated in cooperation with other methods, such as the already
mentioned fractal geometry, which is reflected both in the time series of various
complex systems and in the structures of natural systems. Thus, it can be expected
that artificial intelligence, together with other exotic methods, will bring us many
exciting results in the astrophysics.
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