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Abstract. The number and importance of AI-based systems in all
domains is growing. With the pervasive use and the dependence on AI-
based systems, the quality of these systems becomes essential for their
practical usage. However, quality assurance for AI-based systems is an
emerging area that has not been well explored and requires collabora-
tion between the SE and AI research communities. This paper discusses
terminology and challenges on quality assurance for AI-based systems
to set a baseline for that purpose. Therefore, we define basic concepts
and characterize AI-based systems along the three dimensions of artifact
type, process, and quality characteristics. Furthermore, we elaborate on
the key challenges of (1) understandability and interpretability of AI
models, (2) lack of specifications and defined requirements, (3) need for
validation data and test input generation, (4) defining expected outcomes
as test oracles, (5) accuracy and correctness measures, (6) non-functional
properties of AI-based systems, (7) self-adaptive and self-learning char-
acteristics, and (8) dynamic and frequently changing environments.
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1 Introduction

Recent advances in Artificial Intelligence (AI), especially in machine learning
(ML) and deep learning (DL), and their integration into software-based systems
of all domains raise new challenges to engineering modern AI-based systems.
These systems are data-intensive, continuously evolving, self-adapting, and their
behavior has a degree of (commonly accepted) uncertainty due to inherent non-
determinism. These characteristics require adapted and new constructive and
analytical quality assurance (QA) approaches from the field of software engineer-
ing (SE) in order to guarantee the quality during development and operation in
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live environments. However, as pointed out by Borg [1], already the concept of
“quality” in AI-based systems is not well-defined. Furthermore, as pointed out
by Lenarduzzi et al. [2], terminology differs in AI and software engineering.

The knowledge and background of different communities are brought together
for developing AI-based systems. While this leads to new and innovative
approaches, exciting breakthroughs, as well as a significant advancement in what
can be achieved with modern AI-based systems, it also fuels the babel of terms,
concepts, perceptions, and underlying assumptions and principles. For instance,
the term “regression” in ML refers to regression models or regression analy-
sis, whereas in SE it refers to regression testing. Speaking about “testing”, this
term is defined as the activity of executing the system to reveal defects in SE
but refers to the evaluation of performance characteristics (e.g., accuracy) of a
trained model with a holdout validation dataset in ML. The consequences are
increasing confusion and potentially conflicting solutions for how to approach
quality assurance for AI-based systems and how to tackle the associated chal-
lenges. While this paper starts from a software engineering point of view, its
goal is to incorporate and discuss also many other perspectives, which even-
tually aggregate into a multi-dimensional big picture of quality assurance for
AI-based systems.

In this paper, we first discuss the terminology on quality assurance for AI in
Sect. 2. Then, we discuss challenges on QA for AI in Sect. 3. Finally, in Sect. 4
we conclude the paper.

2 Background and Terminology

AI-based system (also called AI-enabled system) refers to a software-based sys-
tem that comprises AI components besides traditional software components.
However, there are different definitions of what AI means, which vary in their
scope and level of detail. AI is (human) intelligence demonstrated by machines,
which implies the automation of tasks that normally would require human intel-
ligence. For our context, i.e., quality assurance, we pragmatically include those
AI techniques in our working definition of AI that require new or significantly
adapted quality assurance techniques. This comprises supervised ML and DL,
which require to transfer control from source code (where traditional QA can be
applied) to data. Borg [1] explicitly introduces the term MLware for the subset
of AI that, fueled by data, realizes functionality through machine learning.

Software quality is defined as the capability of a software product to satisfy
stated and implied needs when used under specified conditions [3]. Software
quality assurance is then the systematic examination of the extent to which a
software product is capable of satisfying stated and implied needs [3].

AI components, especially based on supervised ML or DL, differ fundamen-
tally from traditional components because they are data-driven in nature, i.e.,
their behavior is non-deterministic, statistics-orientated and evolves over time in
response to the frequent provision of new data [4]. An AI component embedded
in a system comprises the data, the ML model, and the framework. Data are
collected and pre-processed for use. Learning program is the code for running
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to train the model. Framework (e.g., Weka, scikit-learn, and TensorFlow) offers
algorithms and other libraries for developers to choose from when writing the
learning program.

To characterize AI-based systems for the purpose of quality assurance, it is
meaningful to consider several dimensions. Such dimensions are the artifact type
dimension, the process dimension and the quality characteristics dimension. The
dimensions and their values are shown in Fig. 1.

Fig. 1. Dimensions of AI-based systems and quality assurance

On the artifact type dimension, we can consider, based on the characteriza-
tion of AI components in the previous paragraph, the system, framework, model
and data perspective. On the process dimension, we can distinguish whether
AI components and systems are developed in isolation or continuously by iter-
atively taking feedback from the deployed components into account based on
DevOps principles. For all artifact and process settings, quality characteristics
are relevant.

For instance, additional quality properties of AI components and AI-based
systems have to be taken into account. Zhang et al. [5] consider the following
quality properties:

– Correctness refers to the probability that an AI component gets things right.
– Model relevance measures how well an AI component fits the data.
– Robustness refers to the resilience of an AI component towards perturbations.
– Security measures the resilience against potential harm, danger or loss made

via manipulating or illegally accessing AI components.
– Data privacy refers to the ability of an AI component to preserve private data

information.
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– Efficiency measures the construction or prediction speed of an AI component.
– Fairness ensures that decisions made by AI components are in the right way

and for the right reason to avoid problems in human rights, discrimination,
law, and other ethical issues.

– Interpretability refers to the degree to which an observer can understand the
cause of a decision made by an AI component.

Felderer et al. [6] highlight the additional importance of data quality for the
quality of AI components. According to ISO/IEC 25012 [7] data quality charac-
teristics in the context of software development can be classified into inherent
and system-dependent data characteristics. Inherent data quality refers to data
itself, in particular to data domain values and possible restrictions, relation-
ships of data values and meta-data. System-dependent data quality refers to the
degree to which data quality is reached and preserved within a system when data
is used under specified conditions. For the framework, which ultimately is soft-
ware, the classical software quality characteristics based on ISO/IEC 25010 [8],
i.e., effectiveness, efficiency, satisfaction, freedom from risk and context cover-
age for quality in use as well as functional suitability, performance efficiency,
compatibility, usability, reliability, security, maintainability, and portability for
system/software product quality can be applied.

Testing of AI components or AI-based systems refers to any activity aimed at
detecting differences between existing and required behaviors of AI components
or AI-based systems. The testing properties (such as correctness, robustness,
or efficiency) stem from the quality characteristics defined before. Testing can
target the data, the ML model, the framework, or the entire system.

Depending on whether testing activities for AI components are performed
before or after ML model deployment one can distinguish offline and online
testing. Offline testing tests the AI component with historical data, but not in
an application environment [5]. Cross-validation using a validation dataset is
a typical offline testing approach to make sure that the AI component meets
the required conditions. Online testing tests deployed AI components in a real
or virtual application environment. Online testing complements offline testing,
because the latter relies on historical data not fully representing future data, is
not able to test some problematic circumstances occurring in real environments
like data loss, and has no access to direct user feedback. A common online testing
technique is A/B testing, which is a splitting testing technique to compare two
or more versions of a deployed component. A/B tests are often performed as
experiments and the activity is called continuous experimentation in software
engineering [9,10].

3 Challenges

A wide range of challenges exists, which stem from the novelty of the topic.
Currently, there is a lack of (standardized) approaches for quality assurance
of AI-based systems. Many attempts are in progress to fill the void. Yet the
understanding of the problem is still very incomplete. It prolongs to fundamental
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questions like what are relevant quality characteristics (see previous section)
and what is a bug. An example for a “new type of bug” unseen in conventional
software is the phenomenon of adversarial examples [11], where small variations
in the input (e.g., noise in image data or recorded speech that is not or barely
noticeable for the human user) has a dramatic impact on the output as it results
in a severe misclassification.

In addition to outlining important concepts and terms in the previous section,
this section elaborates on the following key challenges encountered in the devel-
opment of approaches for quality assurance and testing of AI-based systems.

– Understandability and interpretability of AI models
– Lack of specifications and defined requirements
– Need for validation data and test input generation
– Defining expected outcomes as test oracles
– Accuracy and correctness measures
– Non-functional properties of AI-based systems
– Self-adaptive and self-learning characteristics
– Dynamic and frequently changing environments.

Understandability and Interpretability: Data scientists are struggling with
the problem that ML and in particular DL are producing models that are
opaque, non-intuitive, and difficult for people to understand. The produced mod-
els turned out to be uninterpretable “black boxes” [12]. This challenge propa-
gates to testing and quality assurance activities and it affects debugging models
when they have confirmed defects. Black-box testing is a common approach in
software quality assurance. So why does the lack of understandability and inter-
pretability also have an impact on testing? The challenge for quality assurance
results from the lack of specifications and defined requirements that developers
and testers are used to have for conventional software systems and which provide
the knowledge necessary to understand, build and test the system [13].

Lack of Specifications and Defined Requirements: Data-based/learning-
based approaches do not rely on specifications and predefined requirements. They
automatically generate models from existing data. The data used for learning
consists of a wide range of input and labeled output. Model generation is an
exploratory approach. Learning algorithms are applied to seek relevant “rules”
how to connect the input to the expected output. Whether such rules can be
found and how adequate they are to accurately model the connection is usually
unclear at the beginning of the learning process.

Conventional software development works in the exact opposite way com-
pared to data-based/learning-based approaches [14]. Specifications are defining
the required behavior of the system, i.e., the “rules”. They are available before
the system is implemented. People have learned about relevant rules, for exam-
ple, by experience (e.g., domain experts) or because they have acquired the
knowledge from specifications (e.g., developers). The goal in testing convention-
ally developed systems is to come up with inputs and labeled outputs to verify
and validate the implemented rules. Testing explores representative scenarios
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as well as boundaries and corner cases. This goal is also important for test-
ing AI-based systems. However, testing techniques for conventional systems are
supposed to rely on specifications to derive inputs or to determine the expected
outcome for an input, which leads to further challenges such as the challenge of
test input generation and defining test oracles when testing AI-based systems.

Test Input Generation: In testing, it is usually the case that systems have
a huge input space to be explored. Hence, at the core of any testing approach
is the problem that completely exercising even a moderately complex system is
impossible due to the combinatorial explosion of the number of possible inputs.
Testing AI-based systems is no difference [15].

Software testing techniques commonly deal with the challenge of huge input
spaces by adopting sampling strategies for selecting inputs when designing test
cases. A number of testing techniques have been developed that are classified [16]
as specification-based (black-box), structure-based (white-box), or experience-
based. Similar techniques suitable for AI-based system testing are yet to emerge.
First techniques have been proposed that exploit structure information of deep
neural networks to derive coverage measures such as various forms of neuron cov-
erage (see, e.g., [17]). Inputs (test data) is generated with the goal to maximize
coverage. Various approaches are currently explored, from random generation
(fuzzing) [17] to GAN-based metamorphic approaches [18]. However, due to the
lack of interpretability and understandability (resulting from a lack of speci-
fications and requirements), identifying and selecting representative inputs to
construct meaningful test cases is still an open challenge [19].

Defining Test Oracles: The goal of testing is to reveal faults in terms of
incorrect responses or behavior of the system in reaction to a specific input.
In order to determine whether the observed output (responses and behavior) is
correct or incorrect, it has to be compared to some expected output. The source
providing information about what is a correct output is called test oracle [20].
In manually constructing test cases, a human tester defines the input and the
corresponding expected output. In a production setting, however, the input is
dynamically created throughout the actual use of the system in a particular
context or environment. It typically includes values and value combinations that
have never been used before and which were even not anticipated to be used at
all. Hence, the “oracle problem” of determining the correct output for an input,
a core challenge in testing, dramatically increases when testing in performed in
production environments under diverse settings.

Accuracy and Correctness: Closely related is the accuracy problem. Software
is expected to be deterministic and correct. Any deviation from the expected
behavior and any difference in the output is considered a defect that is supposed
to be fixed. It is well known, that real-world software is not defect-free and there
is no perfect system. However, the underlying principles and the level of correct-
ness currently achieved in software engineering is different from what AI-based
systems exhibit. AI-based systems are accepted to be inherently “defective”, as
they usually operate in a defined accuracy range. Yet a system with 99% accu-
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racy will “fail” in about one out of hundred runs. Applying conventional testing
and quality assurance principles and approaches is incompatible with the under-
lying assumption that the system is considered correct although it exhibits a
high number of contradicting (“failing”) cases. The corresponding testing tech-
niques and quality metrics developed for deterministic systems first need to be
adapted before they can be used to assess systems with probabilistic behavior.

Non-functional Properties: Testing for non-functional aspects is always chal-
lenging and requires suitable approaches to specify expected properties. This
also holds for testing of AI-based systems, where testing non-functional aspects
has rarely been explored [5]. Especially robustness and efficiency are well suited
for testing in production. Testing robustness of AI components is challenging
because input data has more diverse forms, for instance image or audio data.
Especially adversarial robustness, where perturbations are designed to be hard
to detect are also hard to define in terms of corresponding test oracles. Metamor-
phic relations [21,22] are therefore frequently exploited as alternative ways to
construct test oracles. Testing efficiency for AI components has to deal not only
with prediction speed, but also with construction speed, which poses challenges
to measuring and analyzing performance, especially in a real-time context when
decisions have to be made instantaneous (e.g., in autonomous driving).

Self-adaptive and Self-learning Systems: Regression testing is a major
task in any modern software development project. The agile paradigm and the
DevOps movement have led to short development cycles with frequent releases as
well as the widespread use of techniques such as Continuous Integration, Deploy-
ment, and Delivery [23]. The answer to the question how quality assurance can
keep up with the continuously growing development speed is automated test-
ing. Test automation, however, is a major cost-driver. First, due to the effort
for initially setting up the test environment and implementing the automated
tests, and second, even more so due to the effort for maintaining the automated
tests when the system under test has been changed [24]. In contrast to conven-
tional software that is evolved over a series of development iterations, many AI-
based systems are designed to evolve dynamically at run-time by self-adapting
to changing environments and continuously learning from the input they pro-
cess [25]. Testing dynamic self-adaptive systems raises many open issues about
how to cope with the complexity and dynamics that result from the flexibility
of self-adaptive and self-learning systems [26].

Dynamic Environments: AI components often operate in dynamic and fre-
quently changing environments. Examples are typically data intensive applica-
tions that have to integrate data from various sources (including sensors, web
data, etc.), which all have different characteristics regarding their data qual-
ity [27,28]. Data can also stem from simulators or AI components may have to
control simulations. Due to the complexity and non-determinism of the envi-
ronment, testability (i.e., controllability and observability) is highly challenging.
Furthermore, due to information heterogeneity also privacy and security aspects
are essential. To address these issues, run-time monitoring and online testing
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have been suggested. Online testing, the assessment of the system’s behavior is
performed live, in production and in a real application environment [5].

Real application environments provide the advantage of real user integration
and real user experience. In modern cloud-based environments user information
can easily be collected and used to evaluate and continuously improve the system
(e.g., in web-based recommender systems). However, this requires a significant
number of users with a clear user profile. In addition, applying testing in pro-
duction for business-critical users poses business risks. In addition, one has to
carefully select metrics to guarantee their validity and reliability. The term “test-
ing in production” can even be considered as an oxymoron, especially if systems
are safety-critical and can harm the health of impacted stakeholders (e.g., for
autonomous systems controlling vehicles). In that context, clear constraints have
to be defined and guarantees under which conditions testing in production can
be performed at all because safety-criticality requires clear strategies to remove
defects before deployment or to handle them properly in production. However,
besides safety also privacy and ethical issues may restrict the applicability of
testing in production and therefore require specific constraints and monitors.

4 Summary and Conclusions

In this paper, we discussed terminology and challenges on quality assurance for
AI-based systems. To characterize AI-based systems for the purpose of qual-
ity assurance, we defined the three dimensions artifact type (i.e., data, model,
framework, and system), process (from isolated to continuous), and quality char-
acteristics (with respect to software quality, quality-in-use, and data quality).
Furthermore, we elaborated on the key challenges of (1) understandability and
interpretability of AI models, (2) lack of specifications and defined requirements,
(3) need for validation data and test input generation, (4) defining expected out-
comes as test oracles, (5) accuracy and correctness measures, (6) non-functional
properties of AI-based systems, (7) self-adaptive and self-learning characteristics,
and (8) dynamic and frequently changing environments.

In order to properly address the challenges raised in this paper and to enable
high quality AI-based systems, first and foremost, exchange of knowledge and
ideas between the SE and the AI community is needed. One channel of exchange
is education or training through dedicated courses [29] or media [30]. Another
one are dedicated venues for exchange and discussion of challenges on quality
assurance for AI-based systems like the IEEE International Conference On Arti-
ficial Intelligence Testing or the workshop Quality Assurance for AI collocated
with the Software Quality Days.
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