®

Check for
updates

An Approach for Platform-Independent
Online Controlled Experimentation

Florian Auer®™) and Michael Felderer

University of Innsbruck, Innsbruck, Austria
{florian.auer,michael.felderer}@uibk.ac.at

Abstract. Online controlled experimentation is an established tech-
nique to assess ideas for software features. Current approaches to conduct
experimentation are based on experimentation platforms. However, each
experimentation platform has its own explicit properties and implicit
assumptions about an experiment. As a result, experiments are incom-
plete, difficult to repeat, and not comparable across experimentation
platforms or platform versions. Our approach separates the experiment
definition from the experimentation platform. This makes the experimen-
tation infrastructure-less dependent on the experimentation platform.
Requirements on the independent experiment definition are researched
and an architecture to implement the approach is proposed. A proof-of-
concept demonstrates the feasibility and achieved level of independence
from the platform.

Keywords: Online controlled experimentation - Continuous
experimentation + Experimentation platform - Experimentation
infrastructure

1 Introduction

Online controlled experimentation is an established approach commonly used
by organizations to make data-driven decisions about changes in their prod-
uct. Fabijan et al. conducted in [9] a survey in which they observed that most
organizations use in-house built experimentation platforms. Similar in litera-
ture, large organizations report of their self-built experimentation platforms,
like Microsoft [15] or Google [23]. However, the development of an experimen-
tation platform is a resource-intensive and error-prone project [16]. Thus, many
organizations cannot afford to develop a platform. Alternatives are third-party
experimentation platforms. But, these platforms do not support all aspects of
experimentation [5] and focus more on the technical execution of experiments.
For example, not all platforms (proprietary as well as open-source) support the
definition of a hypothesis or criteria to automatically shut down an experiment
based on business-critical metrics. Thus, it seems that organizations have to
choose between high upfront costs of developing an in-house experimentation

© Springer Nature Switzerland AG 2021
D. Winkler et al. (Eds.): SWQD 2021, LNBIP 404, pp. 139-158, 2021.
https://doi.org/10.1007/978-3-030-65854-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65854-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-65854-0_11

140 F. Auer and M. Felderer

platform or to reduce their requirements on experimentation and use a third-
party experimentation platform. Moreover, the experiment definitions do not
include the implicit assumptions made by the used experimentation platform
(e.g. the segmentation algorithm). Hence, the definitions are incomplete and the
described experiments are difficult to repeat.

The separation of the experiment definition from the experimentation plat-
form could combine the benefits of both approaches. It would allow organizations
to select a cost-effective third-party experimentation platform to execute the
experiment while developing independently of it the remaining infrastructure
to support the organization’s experimentation process. This would, for exam-
ple, allow developing an infrastructure to assure the quality of the experiments
without having to depend on the feature set provided by the experimentation
platform.

This research aims to propose an architecture for platform-independent
online controlled experimentation by releasing the experiment definition from
the experiment platform. As a consequence of the separation, the experiment
definition becomes an independent artifact. Moreover, it allows developing exper-
imentation infrastructure independently of the used experimentation platform.

The remainder of this paper is structured as follows. Section 2 provides back-
ground information on online controlled experimentation. Section 3 describes the
applied research method. Section 4 presents the findings. Then, Sect.5 presents
the architecture, and Sect.6 the evaluation of it. Section 7 discusses the study.
Finally, Sect. 8 concludes the paper.

2 Background

In this section, an overview of the research this paper is based on is given. The
overview starts with the general concept of online controlled experimentation.
Next, the research on the characteristics of online controlled experiment defi-
nitions is outlined, and finally, research on domain-specific language (DSL) to
define online controlled experiments is discussed.

2.1 Online Controlled Experimentation

Online controlled experiments are a technique to evaluate software changes based
on data [17]. The change could be a novel feature, a performance optimization,
modified elements in the user interface, and many more. A version of the software
with the change (treatment) is deployed in addition to the unchanged software
(control). Thereafter, requests on the software (e.g. user interaction) are split
between the two versions (segmentation). In addition to the regular processing
of a request, both software versions collect relevant data about the processing
and the request. After a predefined duration or number of requests, the collected
data (telemetry) is used to calculate metrics. Finally, the telemetry is analyzed,
and based on the success criteria that are defined before the execution of the
experiment, the experiment is evaluated.

An Approach for Platform-Independent Online Controlled Experimentation 141

In [2] the authors highlight the technique’s potential to improve software
quality assurance for modern technologies like machine learning or the internet
of things—areas that are challenging for traditional software testing with offline
testing techniques.

The experiment lifecycle by Fabijan et al. [8] gives an overview of the activ-
ities related to an online controlled experiment (see Fig.1). First, during the
ideation phase, a hypothesis and its implementation are developed. Thereafter,
the design of the experiment is specified. This includes amongst others, the user
segmentation across the different software versions, and calculations about the
size and duration of the experiment. Next, the experiment is executed. Besides
the deployment, the instrumentation and monitoring of the deployed software are
important. Thereafter, the collected data is analyzed and data-driven arguments
for decisions are provided. The last activity is learning, in which the experiment
metadata is captured and institutionalized.

*MVH generation eExperiment design
«MVP development A B *Experiment execution
. Design &
Ideation en
Execution

C

Analysis &
Learning

*Analysis of results
*Decision making
eInstitutionalizing learnings

Fig. 1. Experiment lifecycle by Fabijan et al. [8]. It describes the lifecycle of an exper-
iment from its ideation by the generation of a minimal viable hypothesis (MVH) and
the development of a minimal viable product (MVP) over the design, execution and
analysis to the decision making and institutionalization of the learnings.

A more detailed view of experimentation and its process is given by models
for continuous experimentation like the RIGHT model by Fagerholm et al. [13]
or the HYPEX (Hypothesis Experiment Data-Driven Development) model by
Holmstrom Olsson and Bosch [20]. There is also research about the required
infrastructure [12] and guidelines about experimentation in general [17].

In summary, the process of online controlled experimentation received a lot
of attention in research. Process models of continuous experimentation [8,13],
experimentation platforms [12] and guidelines [17] for experimentation are
researched amongst others.

142 F. Auer and M. Felderer

2.2 Characteristics of Online Controlled Experiments

Although the experimentation process and specifics of it are researched well
[1,21], there is little research explicitly on the experimentation definition and
its characteristics. Nevertheless, the definition of experiments is fundamental for
experimentation. A taxonomy of its characteristics allows experiment owners to
choose the necessary characteristics of it for a concrete experiment. Without such
an overview, experiment owners are at the risk to miss important characteristics
or to define experiments incomplete. Therefore, the authors reviewed in [3] the
literature on characteristics of experiment definitions. It revealed 17 properties
that were grouped by common themes among the properties.

However, the authors expected that there are additional properties used in
practice. Thus, based on the results on the characteristics of experiment defini-
tions, the more detailed study reported in [5] was conducted. The study covers
the analysis of existing open-source as well as proprietary experimentation plat-
forms. In [5] the results are combined to one taxonomy of experiment definition
characteristics. Figure 2 visualizes the identified characteristics for each phase of
an experiment.

Ideation
Identification Hypothesis Segmentation
Experiment ID Hypothesis Variant ID
Name Description Eligibility Condition
Guardrail Metrics Created Tags Allocation Expression
Metrics Description
Expected Movement Scope Owner
Documentation Application Name Variants
Feature Role Variant ID
Data Quality Metrics Area Contact Information Value Expression
Metrics Description
Expected Movement Scope
é Documentation Experiment Implementation Type | 9
| - e |2
<< Diagnosis Metrics Sizing =)
Metrics Related Experiments Telemetry Required Participants
Expected Movement Linked Experiments Required Telemetry Description
Documentation Exp. Exclusion List ~ Trigger Conditions
Description Description Duration
Success Metrics Start
Metrics Iteration Alerting & Shutdown End
Expected Movement Prior Experiment Alert Conditions
Documentation Updater Shutdown Conditions Risk
Updated Known Risks
Description Decisions
Description
Execution

Fig. 2. Experiment definition characteristics taxonomy [5]. It enumerates for every
phase of the experimentation lifecycle the characteristics (bold) and their properties
(below each characteristic).

To conclude, the authors presented in [5] a taxonomy of the known charac-
teristics and properties used in the definition of online controlled experiments.

An Approach for Platform-Independent Online Controlled Experimentation 143

However, the application of the taxonomy, or its usefulness to describe experi-
ments was not known.

2.3 Experimentation Definition Language

The taxonomy of experiment definition characteristics [5] represents the charac-
teristics that are used in literature and experimentation platforms. However, it
is not fully clear whether this set of characteristics is useful to define concrete
experiments. Thus, a DSL was developed in [4] that was built on the taxonomy.

The language allows to describe an experiment with the characteristics of
the taxonomy. As the host language, the most commonly used exchange format
observed during the analysis of experimentation platforms, JSON (Javascript
object notation) was selected. Listing 1.1 provides an experiment defined in the
language and shows that the structure follows the taxonomy closely. Each char-
acteristic and its properties can be defined using the JSON syntax.

Listing 1.1. Structure of an experiment written in EDL. It follows closely the structure
of the experimentation characteristics taxonomy (see Fig. 2).
{
"Ideation":{
"Hypothesis":...,
"Owners":...
},
"Design":{
"Variants":...,
"Segmentation":...
},
"Execution":{
"AlertingAndShutdown":...
},
"Analysis":{
"SuccessMetrics":...,
"GuardrailMetrics":...
¥
}

A technology acceptance study [4] revealed that the language and the idea of
describing an experiment in a structured form, according to the characteristics
were accepted by the majority of participants. Moreover, for most participants,
the language was considered easy to use. However, the data too showed that there
is a relationship between the participant’s assessment of the language’s ease of
use and the participant’s background (i.e. business or software engineering).

As a result, the research on a DSL for the definition of an online controlled
experiment shows that the developed taxonomy with its characteristics and prop-
erties is considered useful. However, the representation of the definition as a DSL
hosted in JSON may not be beneficial for all stakeholders.

3 Research Method

This study aims to propose an architecture for platform-independent online con-
trolled experimentation. It is based on the idea of separating the experiment

144 F. Auer and M. Felderer

definition from the experimentation platform. Therefore it is necessary to study
which elements an experiment definition includes (0.), for what an experiment
definition is used during the experiment lifecycle [8] (1.) and what the qualities
of an experiment definition are to ensure reliable experimentation (2.). Next (3.),
an architecture needs to be designed that meets the identified requirements of
(0.) and (1.). Finally, it is necessary to evaluate whether the approach is feasible
and beneficial (4.).

The first objective (0.) was mentioned for completeness. It is already
researched in [5], in which the authors studied the characteristics specified in
an experiment definition. Moreover, in [4] a DSL for an experiment definition
was proposed and evaluated. The results are summarized in the Background
Section. It follows the objectives researched in this study.

1. Roles of experiment definitions. After having studied what characteristics an
experiment definition describes, it is necessary to identify the roles that an
experiment definition takes in each phase of the experiment lifecycle. The
roles describe the applications of the information stored in the experiment
definition. Moreover, they make visible the requirements of the experiment
definition on the proposed architecture.

2. Qualities of experiment definitions. The qualities of an experiment definition
are requirements that need to be fulfilled to ensure reliable experimenta-
tion. The separation of the experiment definition from the experimentation
platform should not impact the quality of an experiment definition or the
experiment itself.

3. Architecture. An architecture is proposed that separates the experiment def-
inition from the experiment platform. It shows what infrastructure compo-
nents have to be provided to support all requirements imposed by the iden-
tified roles and qualities.

4. Feasibility. Finally, the proposed architecture is evaluated about its feasibility
and its potential to mitigate the dependency on the experimentation plat-
form. Therefore, a prototypical implementation for an experimental scenario
is presented that retains the essence of the problem in an industrial setting.
Additionally, the migration to another experimentation platform in the con-
text of the scenario is discussed to evaluate the architecture’s independence
to the experimentation platform.

The roles and qualities are inferred from the results of the previously con-
ducted literature review [3], observations made during the analysis of open-source
as well as proprietary experimentation platforms in [5] and adjustments made
during the evaluation. Note that the identified qualities and roles constitute our
proposed architecture. However, they are not static nor expected to be com-
plete. Further research on roles and qualities might extend the enumerations
about additional roles and qualities.

An Approach for Platform-Independent Online Controlled Experimentation 145

4 Experiment Definition’s Qualities and Roles

In the following the qualities and roles of experiment definitions that were iden-
tified from the results of the literature review [3] and observations made during
the analysis of experimentation platforms [5] are presented.

4.1 Qualities

Four qualities of experiment definitions were identified.

Knowledge exchange of experimentation results and their implications support
the collaborative optimization of systems [19]. Improving the institutional mem-
ory of experimentation [7] also prevents from accidental repeating already con-
ducted experiments. Therefore, Fabijan et al. [7] suggest building an archive of
executed experiments. It should summarize an experiment with metadata like
its hypothesis, execution date, and results. A requirement to enable knowledge
exchange is that experimentation decisions (like the selection of the learning
component [18]) are explicitly documented.

Reproducibility and replicability are two important qualities of an experiment [6].
Reproducibility means that experiments can be independently replicated by
another experimenter. Therefore, the context of the experiment and a detailed
description of all steps are necessary. Furthermore, Buchert et al. [6] note that
“the description of an experiment has to be independent of the infrastructure
used”. Replicability refers to the act of repeating an experiment under the same
conditions, which will lead to the same results.

Traceability. Experiment iterations allow to gradually improve the system under
experimentation by iterative adjustments of the parameters in order to maximize
a metric of interest [22]. Hence, experiments are commonly part of a series of
iterative evolving experiments. Specifications of experiments should therefore
highlight the relationship between experiments to improve the traceability.

All of these qualities are supported by the experiment definition language
(EDL) [4]. Required characteristics and properties are provided by the language
to define reproducible and replicable experiments. Moreover, the language itself
is based on the data exchange format JSON which ease the information exchange.
Additionally, each characteristic has properties to document the decisions behind
the chosen property values. Finally, properties are included that can be used to
reference to previous versions of an experiment and document the changes made
(see Sect. 2.2).

4.2 Roles

Concerning the roles of an experiment definition, the analysis of the selected
papers [3] and observations among experimentation platforms identified that
the definition serves various purposes throughout an experiment. Each phase
uses the experiment definition in another way (see Fig. 3).

146 F. Auer and M. Felderer

Ideation Design Execution Analysis Learning

e Communication ¢ Quality assurance Plan of action ¢ Metadata * Documentation

Fig. 3. Main role of the experiment definition in each phase of an experiment. In each
phase of the experiment the definition serves another main role.

Communication. A central purpose of the experiment definition is its usage as
a communication tool between stakeholders. Online controlled experimentation
involves multiple stakeholders that need to exchange information between them.
Fagerholm et al. [13] enumerate various stakeholders that are involved in the pro-
cess of experimentation. The business analysts and product owners that create
ideas for experimentation, the data scientist that ensures rigor experimentation,
software developers that implement the necessary modifications, quality assur-
ance to verify the software changes, DevOps engineers to deploy the changes,
and many more. Although Fig. 3 indicates that communication is used mostly
during the ideation of an experiment, activities in all phases can be found that
use an experiment definition artifact as a communication tool. For example, the
hypothesis made by a business analyst is used by a data scientist to define a
fitting segmentation that is used by a DevOps engineer to adapt environment
variables. To conclude, all stakeholders use the experiment definition as a tool
to manifest and share their decisions on an experiment.

Quality Assurance. The results of an online controlled experiment can have a sig-
nificant impact on the decisions made by an organization. Hence, it is important
to ensure reliable and comprehensible results [19]. Therefore, the quality of exper-
imentation needs to be assured. A structured experiment definition improves the
constructive quality of an experiment. It can, for example, limit the number of
possible values for a property. In addition, analytical quality approaches can
be applied to a definition. Examples are tests to ensure required properties,
or sanity-checks on the respective experiment design (e.g. is a user segment
assigned to every variant). The definition is used in each phase of an experi-
ment to improve the experiment’s quality. For example, in the ideation phase,
constructive quality approaches on the definition ensure a solid definition of an
experiment idea. During the design phase, analytical quality approaches sup-
port the data scientist in the specification of experiment parameters. Moreover,
the quality of the experiment execution benefits from a well-structured defini-
tion that allows automating previous manual steps. Similarly, the analysis and
the learning phase rely on trustworthy information that benefits from a reliable

An Approach for Platform-Independent Online Controlled Experimentation 147

experiment definition. As a result, the experiment definition considerably influ-
ences the quality assurance of experimentation throughout each experimentation
phase.

Plan of Action. The execution of an experiment requires the accurate execution
of a sequence of actions to ensure a trustworthy result. An explicit plan of action
that lists all steps of an experiment supports the execution of an experiment.
Moreover, it improves the experiment’s reproducibility, which is a fundamental
quality aspect for experimentation [6]. The experiment definition is implicitly
used as a plan of action in the execution phase of an experiment. In this phase,
the specified properties are translated into the required actions to set up and
execute the experiment. However, other phases use the definition too as the plan
of action. For example, during the design phase, development might have to
implement changes to the software according to the definition. Similar, analysis,
for example, is directed amongst others by the specified metrics and success
criteria stated in the definition. To conclude, the experiment definition serves
for many activities during an experiment as the plan of action.

Metadata. The definition of an experiment serves as metadata about an exper-
iment [14] during the analysis phase. Data scientists that analyze the collected
data are dependent on complete and trustworthy metadata of an experiment
to draw conclusions about the collected data. Metadata about an experiment is
not only used during the analysis but also, for example, in the ideation phase.
Previous experiments could be searched by properties similar to a planned exper-
iment to find relevant experiments and consult their results and learnings [19].
In summary, the experiment definition serves as metadata about an experiment.

Documentation. The prerequisite to draw lessons learned from an experiment is
to document it. It is the essential difference between a sequence of independent
experiments and continuous experimentation. Although documentation is neces-
sary in each phase of experimentation [14], it is especially relevant for the learn-
ing phase. In this phase, the definition serves as a description of the conducted
experiment, its idea, the decisions made, and the steps taken. Institutional learn-
ing can use this information and draw conclusions from it [10]. For instance, a
series of experiments that explore the user habits may reveal that fundamental
assumptions about users are no longer true. In addition to learning, documenta-
tion can also be useful in other phases of experimentation. For example, during
the analysis of an experiment, the documentation of reasons behind decisions
made in the design or execution of an experiment gives additional insights into
the data. As a result, the experiment definition represents a documentation of an
experiment that gives insights into the executed steps and the reasoning behind
them.

148 F. Auer and M. Felderer

5 Platform-Independent Experimentation

In this section, the development of the architecture for experimentation platform-
independent experimentation is presented. First, the requirements resulting from
the roles and qualities identified in the previous sections are discussed. There-
after, the architecture itself is presented.

5.1 Requirements

The requirements are inferred from the previously identified roles and quali-
ties. Figure4 visualizes the experimentation lifecycle, the related roles and the
requirements on the experiment definition. The definition itself is expected to
describe the characteristics of an experiment according to the taxonomy devel-
oped in [5]. The qualities are considered in the inferred requirements, which
is why they are not explicitly visualized in the figure. In the following, each
requirement is discussed in detail.

Ideation

Communication

Experiment
Definition

Fig. 4. Roles and requirements of the experimentation definition throughout the exper-
iment lifecycle. The experiment definition (center) is surrounded by its qualities in each
phase of the experimentation lifecycle and its main role.

Transformable. The experiment definition not only needs to contain all infor-
mation relevant for each stakeholder (e.g. hypothesis for the product owner, or
segmentation for data scientists) but also be accessible for each stakeholder.
The definition needs to be presented in a form that is interpretable and usable

An Approach for Platform-Independent Online Controlled Experimentation 149

for the respective stakeholder and its professional background. The varying
fields of expertise of the stakeholders (e.g. business, user experience, develop-
ment, ...) suggest providing the information in different representations with
varying level of detail. For example, developers may prefer a more technical rep-
resentation (e.g. JavaScript Object Notation), whereas business analysts may
prefer a human-readable textual description. Nevertheless, both should work on
the same artifact to ensure a single point of truth.

A technology acceptance model study reported in [4] indicates that it is not
sufficient to provide one DSL for all possible stakeholders. In the study, a DSL
based on the JavaScript Object Notation (JSON) was evaluated. Participants
with a strong business background were not as convinced of the language as
participants with a technical background.

As a result, the architecture is required to provide information about an
experiment in different formats.

Verifiable. Constraints on the structure and the content of the experiment def-
inition are necessary to ensure reliable experimentation. The syntactical veri-
fication of the definition is necessary to assure that the properties and values
specified in the definition are syntactically correct. Without syntactical valid
experiment definitions, the information exchange becomes infeasible. Additional
to the syntactical verification, the semantical verification further improves the
quality assurance of an experiment. Rules that verify the semantic of a defini-
tion complete the verification of an experiment definition. An example of a rule
could be that the sum of the user partitioned upon the variants sum up to all
users available. Another example could be the enforcement of an organizational
rule that for each experiment two owners with emergency contact information
need to be defined. Thus, the architecture is required to provide a syntactical
verification and the capability to define rules on an experiment definition.

Executable. In the execution phase of the experiment lifecycle, it is required of
the experiment definition to provide enough information in a level of detail to
infer the plan of action — the steps necessary to execute the experiment. This
can include activities like the deployment of a software variant, the collection
of data, or the monitoring of shutdown criteria for an experiment (see Fig.2,
Execution). Hence, the definition is required to provide enough information in
the necessary level of detail and the architecture is required to interpret the
experiment definition and execute the necessary actions to run the experiment.

Processable. The data stored in an experiment definition needs to be in a format
that supports the exchange of data between programs. Given that it is the source
of information about an experiment, the experiment definition is used by many
programs. In order to ease the access of the stored data, the format for the

150 F. Auer and M. Felderer

experiment definition artifact should be commonly supported by programs and
programming languages.

As a result, the architecture is required to provide the artifact in a commonly
supported data exchange format, like XML, JSON, or CSV.

Technology-Independent. The experiment definition should be independent of
the concrete technology used to implement the experiment execution, analysis,
or archival. The separation between the infrastructure and the experiment def-
inition requires the architecture to provide transformations of the definition of
infrastructure specific actions (execution phase) and formats (ideation phase,
analysis phase). Nevertheless, the architecture allows creating a robust experi-
ment definition, that is beneficial to documentation, allows interpreting exper-
iment definitions independently of the technology used to execute them, and
makes experiments even portable across different experimentation infrastruc-
tures.

As a consequence, the architecture is required to define experiments inde-
pendent of the used technology to conduct the experiment.

5.2 Architecture

The architecture is designed to make a clear distinction between the experi-
ment definition and the experimentation infrastructure (e.g. monitoring service,
deployment service). Additionally, it considers all discussed requirements of the
experimentation lifecycle on experiment definitions. Note that it is an architec-
ture and not a description of a concrete implementation of a framework. Thus,
it focuses on the structure of the system’s components it describes. The archi-
tecture is visualized in Fig. 5. In the following, the elements of the architecture
are described.

Application Format Converter i Verification Rules : Interface Execution
: " Custom Rule J | Experimentation
HTML 1| R n |
Shareholders f—— | H Platform
Report H Custom Rule] :
Converter ! [Schema] : Interface
K"OWIngE Textual ; : Logging Service
Repository Description
Converter Interface
Statistical csv Verify Deployment
Software B \7{ Converter Interface Service
) Transform] [Execute nterf. H Monitoring
Dashboard Xis ntertace Service
. Interface
Experiment
Definition

i

B

Fig. 5. Architecture for platform-independent online controlled experimentation. The
four main elements are the experiment definition, the Transform tool, Verify tool and
the Execute tool.

An Approach for Platform-Independent Online Controlled Experimentation 151

Ezperiment Definition. In the center of the architecture is the experiment defini-
tion artifact. It documents all relevant information of an experiment (e.g. hypoth-
esis, segmentation, or success criteria) according to the taxonomy of experiment
characteristics [5]. Therefore, the artifact stores characteristics and their related
properties in a systematic way to ensure that the artifact allows systematic access
to individual experiment characteristics. Hence, a general data exchange format
or a DSL like [4] is suggested as a data format.

Transform. On the left side in Fig. 5, the components that support the trans-
formation of the definition to application-specific formats can be found. The
component responsible for this is called Transform. It delegates a requested
transformation to the appropriate converter. For example, a data scientist may
request the metadata of an experiment in the CSV-format for the statistical
software R. In this case the Transform component selects among the known con-
verters the appropriate one and executes it. The transformation could also be
from an application-specific format to the experiment definition. For a meeting,
for instance, the experiment is transformed into an interactive form that allows
editing the properties. After the meeting, the form is saved and transformed
back to the experiment definition. Note, that the list of formats is exemplary. It
depends on the concrete experimentation infrastructure in place and the stake-
holders’ needs. As a result, the component is extendable by arbitrary converters.

Verify. On top of the experiment definition in Fig.5 is the Verify compo-
nent. It consists of two subcomponents, namely Schema and Rulesystem. The
Schema component verifies the structure of the experiment definition. Most data
exchange formats (like XML or JSON) provide a language to describe the struc-
ture and verify a document according to it. This technology can be used by the
component. The other subcomponent is Rulesystem. It is a lightweight, modular
system that allows to register custom rules that verify a document syntactically
or semantically. A rule, for instance, could be that each experiment has to have
a hypothesis following a specific template, like “Based on [qualitative/quanti-
tative] insight, we predict that [change X] will cause [impact Y]” [11]. Rules
are a mechanism provided by the architecture to support an automated quality
assurance of the experiments. Note that the rules allow to verify an experiment
independent of the platform and prior execution of an experiment. Furthermore,
they could be used as quality gates that, for example, enforce organizational
requirements on an experiment.

Ezecute. On the right side of the experiment definition in Fig.5 is the Ezecute
component. It is responsible for the interface between the experiment definition
and the execution of an experiment. The architecture itself does not include com-
ponents for the execution or monitoring of an experiment. These are traditional
tasks in which experimentation platforms excel [5]. The alternative, to develop
custom components that cover tasks like segmentation, is resource-intensive and

152 F. Auer and M. Felderer

error-prone as reported in the literature (e.g. [16]). Therefore, the architecture
delegates these tasks to individual services or platforms that provide the respec-
tive functionality.

6 Evaluation

In this section, a prototypical implementation and an evaluation of the experi-
mentation platform-independent architecture is presented. In the experimental
scenario, first, the feasibility of the architecture is evaluated. Second, the claim
of platform-independence is validated by changing the experimentation plat-
form and discussing the changes necessary. Finally, the result of the experiment
is summarized.

6.1 Scenario

The experimental scenario represents a common infrastructure of an organization
developing an Internet service. Thus, common approaches, tools, and methods
for the development of an Internet service are assumed. The fictional organiza-
tion follows the agile development process and uses the Internet service Trello!
as Kanban board. The developed software is deployed with Docker?. Additional
assumptions about the scenario are not necessary, given that the experiment
focuses on the feasibility and the experimentation platform-independence. Thus,
for the scenario, it is not of importance which programming language, libraries,
or frameworks are used for the development of the Internet service or possible
experiments of it. As experimentation platform the proprietary platform Opti-
mizely® was selected.

6.2 System Overview

The implementation consists of three tools, namely transform, verify and
execute. For the experiment definition artifact the EDL [4] was selected. It
is a DSL based on JSON, which eases the processing of it. As programming
language python was used, because of the major ecosystem of libraries and soft-
ware development kits for third-party applications. An overview of the developed
system is visualized in Fig. 6.

The transform tool is modular structured and allows adding arbitrary con-
verters in the form of python scripts with the name schema to-<format>.py
that are located at a specific folder. For the experiment, three converters were
implemented that are based on python libraries to convert the information stored
in the experiment definition JSON to the respective format.

The verify tool is based on two submodules namely verifySchema and
verifyRules. The first, verifySchema, provides syntactical verification of the

! https://trello.com.
2 https://docker.com.
3 https://optimizely.com.

https://trello.com
https://docker.com
https://optimizely.com

An Approach for Platform-Independent Online Controlled Experimentation 153

Verification | Rules

: hypothesisTemplate.py 1

v : optimizely.py -y
| HTML f~{ tohtml.py (REST) }7{& Optlmlzely}
verify.py dock
. ocker.py =5
0 git (i o ﬁ{ tocsv.py }— transform.py ‘[(SDK) }’{ -"docker}

Experiment

trello.,
o oty Definion er L @reltr |

(EDL)

Application Format Converter Interface Execution

¢
i

1

Fig. 6. System overview of the experimental implementation. It demonstrates concrete
adaptions of the architecture for the exemplary scenario.

experiment definition. Therefore, the JSON schema definition of the EDL is
used to automatically verify the syntax of the definition artifact. The second
submodule, verifyRules verifies the artifact semantically by executing custom
rules against the experiment definition. Rules are python scripts that are located
at a specific folder. They can be specific to the project (e.g. 20% is the mini-
mum allocation of users for the unmodified variant) or organization (e.g. two
experimentation owners at least).

The execute tool is similar implemented as the transform tool. It allows
adding arbitrary scripts that interpret the experiment definition and execute
the related interface calls. In the experimental scenario, three interfaces were
considered. An interface to the experimentation platform Optimizely to deploy
the experiment on the experimentation platform, another to docker to deploy the
software version under experimentation and the third to Trello to create a task
for Operations to monitor the experiment. All three of them are built on SDKs
or REST APIs that are provided by the tools. The prototypical implementation
is available at GitHub?.

6.3 Feasibility

The feasibility is evaluated by the implementation of the described experimental
scenario and the researchers’ observations doing so. Therefore, in the following,
each components’ development is discussed.

Initially, the format and language of the experiment definition artifact had
to be selected. A common data exchange format is beneficial, given that the
information stored in the artifact needs to be processed by multiple programs.
The EDL [4] was selected because it is based on JSON and provides a Schema
with all necessary characteristics and properties of an experiment. Given that
the verification and interpretation of the artifact are delegated to the verify
and execute tool, a generic experiment definition language like EDL can be
used without modifications. Project-specific interpretations or verification rules

4 https://github.com/auerflorian /platform-independent-experimentation-prototype.

https://github.com/auerflorian/platform-independent-experimentation-prototype

154 F. Auer and M. Felderer

can be implemented with the extension of the respective tools. This eases the
decision of the format for the experiment definition.

Next, the tool verify that verifies the definition was implemented. It is
supposed to verify the definition syntactically and semantically. The syntactical
verification is in the case of EDL already provided by the JSON Schema that is
defined for it. For the semantic verification, the rule system was implemented.
It is a lightweight, modular approach to implement reusable rules. Thus, the
verification of experiment definitions can be reused and improved across projects
and for different infrastructures without additional implementation effort.

The transform tool has a modular architecture and calls the appropriate
converter provided as a script within a specific folder. For the implementation of
the specific converters, the selected format of the experiment definition artifact
was beneficial. JSON stores data objects and thus provides a rich structure of the
data, which is used by the EDL to provide the characteristics and properties of
an experiment in a structure of hierarchical objects. The additional information
by the hierarchy of the individual properties ease the conversion. For example,
the hierarchy of the properties could be translated to headings for a report in
an HTML report.

Finally, the execute tool that redirects calls to the appropriate interface was
implemented. For the experimental scenario, an interface to Optimizely, docker,
and Trello was implemented. All three systems provide REST APIs or SDKs.
Thus, the interface’s main complexity was in the interpretation of the experiment
definition and translation of it into system-specific function calls. For example,
for the experimentation platform Optimizely, the initial implementation created
an experiment on the platform according to the experiment definition. In the next
iteration, the interface, first verified that there is not already an experiment wit
the same ID on the platform. A future iteration could consider to update the
experiment specification according to the experiment definition. This demon-
strates that the implementation of an interface to an experimentation platform
is not a trivial task, if all possible states of the experiment definition and the
experimentation platform have to be considered. Note, however, that the pro-
posed architecture does not specify where in the process of experimentation or of
the software development process the tools are executed. Thus, with additional
call arguments and the integration of the tools at the right places within the
development process the complexity of the interfaces could be reduced. Never-
theless, the integration of third-party tools through interfaces introduced the
most complexity in the implementation of the proposed architecture.

6.4 Platform-Independence

The platform-independency of the proposed architecture is evaluated with a
theoretical modification to the experimental scenario. Therefore, the following
addition to the scenario description is assumed:

After a year of experimentation, the organization reevaluates the infrastruc-
ture used to identify possible optimizations. The analysis of the infrastructure

An Approach for Platform-Independent Online Controlled Experimentation 155

components revealed that there is another more cost-effective experimentation
platform available. Thus, the experimentation platform needs to be changed.

This scenario can lead to considerable migration costs without the application
of the proposed platform-independent architecture. All experiment definitions
are stored implicitly within the platform. Moreover, the process of experimenta-
tion is coupled to the platform and its implicit experimentation lifecycle. Thus,
with the change of the platform not only the existing knowledge base of exper-
iments may be lost, but also the process of experimentation, that requires an
expensive adaptation of the process to the new platform. Additionally, verifi-
cation rules that were implicitly in the previous experimentation platform may
no longer exist in the new platform or may have changed. To summarize, the
migration to another experimentation platform has a considerable impact on the
whole experimentation process.

In contrast, with a platform-independent architecture, the migration is
reduced to a new implementation of an experiment platform interface. Metadata
about existing experiments is not affected and would still be “executable”. More-
over, the process of experimentation is not affected. Verification, for example,
follows the same organization-defined rules as with the previous experimentation
platform.

Note, that in both cases the migration to another experimentation platform
may require changes in the software, deployment, or infrastructure. For instance,
the interface for the platform has to be implemented and the related code sec-
tions within the software that request the experimentation platform to decide
which variant to show, have to be adapted. Nevertheless, neither the experi-
ment definition nor the generators or the verification should be affected by the
migration.

6.5 Experimental Result

The experimental scenario of an organization developing an Internet service was
presented. An implementation of the proposed architecture demonstrated the
feasibility of it. The description of the development indicates the implementation
effort of its components and may allow reasoning about the possible return of
investment when compared, for example, to the outlined benefits in the case of
a migration to another experimentation platform.

Finally, the scenario was adapted to portrait the possible impacts of a migra-
tion. Thereby, it was argued that the proposed architecture is experimentation
platform-independent by considering the changes that are necessary in the case
of a migration to another experimentation platform.

7 Discussion

The study identified the roles of an experiment definition throughout the exper-
imentation lifecycle. It shows that in each phase of the lifecycle, the definition
of an experiment plays an important role. Moreover, the described qualities and

156 F. Auer and M. Felderer

requirements on the experiment definition make the strong impact of the defini-
tions on the success of an experiment visible. For example, its appropriateness
as a tool for communication in the ideation phase for each shareholder, the
precise representation of the experiment for verification, or its availability in a
processable form for the analysis of the collected data.

In addition, the study indicated how dependent the experimentation pro-
cess is on the experimentation platform that commonly provides the (implicit)
experiment definition. Furthermore, the implicit experiment definition of third
party experimentation platforms introduces a risk of vendor lock-in. A data-
exchange format for experiment definitions does not exist. Thus all metadata
about experiments is platform-specific and may not always be exportable. Thus,
it is not surprising that most organizations do not use third party experimen-
tation platforms, as the survey [9] among practitioners indicates. However, the
development of a self-built experimentation platform is not feasible for every
organization. The high upfront cost of time and resources to develop a reliable
experimentation platform [16] are not manageable for every organization.

The proposed experimentation platform-independent architecture mitigates
the impact of a platform on the experimentation lifecycle. Despite the use of
a third-party experimentation platform, the organization can define and adjust
its experimentation lifecycle. Moreover, the migration to another experimenta-
tion platform becomes feasible as discussed in the experimental scenario of a
migration.

Limitations. Even though possible threats to validity were considered during
the design and execution of the study, the findings of this experiment have to
be interpreted within their limitations. The main limitation of the study is the
evaluation of the proposed architecture. Although the technical feasibility was
evaluated by a proof-of-concept implementation, the organizational feasibility of
the approach cannot be demonstrated with this method. Thus, the evaluation
does not show whether the approach would also be feasible to be followed by a
team. However, the construction of the architecture that is based on the require-
ments on the experiment definition is expected to have guided the development
of the architecture to be also organizational feasible. The second point of eval-
uation was the platform-independence. This was evaluated by the discussion of
the impacts of a migration to another experimentation platform to stress the
dependency of the architecture to the experimentation platform. Even though
the evaluation was only done by the discussion of the theoretical implications,
the impacts are arguable sufficiently predictable on the architecture to use this
evaluation technique.

8 Conclusions

Organizations that use third-party experimentation platforms are in the risk of
a vendor lock-in. The implicit experimentation lifecycle enforced by the plat-
form and the predefined definition of an experiment requires the organization

An Approach for Platform-Independent Online Controlled Experimentation 157

to adapt its experimentation process to the platform. To mitigate this risk, an
experimentation platform-independent architecture is proposed.

The proposed architecture separates the experiment definition from the
experimentation platform. Therefore, the qualities and roles of experiment def-
initions were studied to develop an architecture that separates the definition
from the platform without mitigating a role or a quality of the definition. The
conducted evaluation suggest that the architecture is feasible and mitigates the
impact of the experimentation platform on experimentation.

Interesting future research directions are the conduction of a case study to
observe the architecture in an industrial setting. This could further improve the
evaluation of the architecture and show the benefits as well as disadvantages of
the approach.

References

1. Auer, F., Felderer, M.: Current state of research on continuous experimentation:
a systematic mapping study. In: 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE (2018)

2. Auer, F., Felderer, M.: Shifting quality assurance of machine learning algorithms
to live systems. In: Software Engineering und Software Management 2018 (2018)

3. Auer, F., Felderer, M.: Characteristics of an online controlled experiment: prelim-
inary results of a literature review. arXiv preprint arXiv:1912.01383 (2019)

4. Auer, F., Felderer, M.: Evaluating the usefulness and ease of use of an experi-
mentation definition language. In: 2020 32th International Conference on Software
Engineering and Knowledge Engineering. KSI Research Inc. and Knowledge Sys-
tems Institute Graduate School (2020)

5. Auer, F., Lee, C.S., Felderer, M.: Continuous experiment definition characteris-
tics. In: 2020 46th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). IEEE (2020)

6. Buchert, T., Ruiz, C., Nussbaum, L., Richard, O.: A survey of general-purpose
experiment management tools for distributed systems. Fut. Gener. Comput. Syst.
45, 1-12 (2015). https://doi.org/10.1016/j.future.2014.10.007

7. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The evolution of continuous
experimentation in software product development: from data to a data-driven orga-
nization at scale. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE (2017). https://doi.org/10.1109/icse.2017.76

8. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The online controlled experiment
lifecycle. IEEE Softw. 37, 60-67 (2018)

9. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: Online controlled experimen-
tation at scale: an empirical survey on the current state of a/b testing. In: 2018
44th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), pp. 68-72. IEEE (2018)

10. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J., Vermeer, L., Lewis, D.: Three key
checklists and remedies for trustworthy analysis of online controlled experiments at
scale. In: 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pp. 1-10. IEEE (2019)

http://arxiv.org/abs/1912.01383
https://doi.org/10.1016/j.future.2014.10.007
https://doi.org/10.1109/icse.2017.76

158

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

F. Auer and M. Felderer

Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J., Vermeer, L., Lewis, D.: Three key
checklists and remedies for trustworthy analysis of online controlled experiments at
scale. In: 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE (2019). https://doi.org/10.
1109/icse-seip.2019.00009

Fagerholm, F., Guinea, A.S., Maenpéé, H., Miinch, J.: Building blocks for continu-
ous experimentation. In: Proceedings of the 1st International Workshop on Rapid
Continuous Software Engineering, pp. 26-35 (2014)

Fagerholm, F., Guinea, A.S., Maenpéaa, H., Miinch, J.: The right model for contin-
uous experimentation. J. Syst. Softw. 123, 292-305 (2017)

Gupta, S., Ulanova, L., Bhardwaj, S., Dmitriev, P., Raff, P., Fabijan, A.: The
anatomy of a large-scale experimentation platform. In: 2018 IEEE International
Conference on Software Architecture (ICSA), pp. 1-109. IEEE (2018)

Kevic, K., Murphy, B., Williams, L., Beckmann, J.: Characterizing experimenta-
tion in continuous deployment: a case study on Bing. In: 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineering in Prac-
tice Track (ICSE-SEIP), pp. 123-132. IEEE (2017)

Kohavi, R., Deng, A., Frasca, B., Longbotham, R., Walker, T., Xu, Y.: Trustworthy
online controlled experiments: five puzzling outcomes explained. In: Proceedings
of the 18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 786-794 (2012)

Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experi-
ments on the web: survey and practical guide. Data Min. Knowl. Discov. 18(1),
140-181 (2008). https://doi.org/10.1007/s10618-008-0114-1

Mattos, D.I., Bosch, J., Holmstrom Olsson, H.: More for less: automated experi-
mentation in software-intensive systems. In: Felderer, M., Méndez Ferndndez, D.,
Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS,
vol. 10611, pp. 146-161. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69926-4_12

Issa Mattos, D., Dmitriev, P., Fabijan, A., Bosch, J., Holmstréom Olsson, H.: An
activity and metric model for online controlled experiments. In: Kuhrmann, M.,
et al. (eds.) PROFES 2018. LNCS, vol. 11271, pp. 182-198. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03673-7_14

Olsson, H.H., Bosch, J.: From opinions to data-driven software R&D: a multi-
case study on how to close the open loop problem. In: 2014 40th EUROMICRO
Conference on Software Engineering and Advanced Applications, pp. 9-16. IEEE
(August 2014). https://doi.org/10.1109/seaa.2014.75

Ros, R., Runeson, P.: Continuous experimentation and A/B testing: a mapping
study. In: Proceedings of the 4th International Workshop on Rapid Continuous
Software Engineering (RCoSE), pp. 35-41. ACM (2018). https://doi.org/10.1145/
3194760.3194766

Tamburrelli, G., Margara, A.: Towards automated a/b testing. In: Le Goues, C.,
Yoo, S. (eds.) SSBSE 2014. LNCS, vol. 8636, pp. 184-198. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09940-8_13

Tang, D., Agarwal, A., O’Brien, D., Meyer, M.: Overlapping experiment infras-
tructure: more, better, faster experimentation. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
17-26 (2010)

https://doi.org/10.1109/icse-seip.2019.00009
https://doi.org/10.1109/icse-seip.2019.00009
https://doi.org/10.1007/s10618-008-0114-1
https://doi.org/10.1007/978-3-319-69926-4_12
https://doi.org/10.1007/978-3-319-69926-4_12
https://doi.org/10.1007/978-3-030-03673-7_14
https://doi.org/10.1109/seaa.2014.75
https://doi.org/10.1145/3194760.3194766
https://doi.org/10.1145/3194760.3194766
https://doi.org/10.1007/978-3-319-09940-8_13

	An Approach for Platform-Independent Online Controlled Experimentation
	1 Introduction
	2 Background
	2.1 Online Controlled Experimentation
	2.2 Characteristics of Online Controlled Experiments
	2.3 Experimentation Definition Language

	3 Research Method
	4 Experiment Definition's Qualities and Roles
	4.1 Qualities
	4.2 Roles

	5 Platform-Independent Experimentation
	5.1 Requirements
	5.2 Architecture

	6 Evaluation
	6.1 Scenario
	6.2 System Overview
	6.3 Feasibility
	6.4 Platform-Independence
	6.5 Experimental Result

	7 Discussion
	8 Conclusions
	References

