
 123

LN
BI

P
40

4

13th International Conference, SWQD 2021
Vienna, Austria, January 19–21, 2021
Proceedings

Software Quality
Future Perspectives on Software
Engineering Quality

Dietmar Winkler · Stefan Biffl ·
Daniel Mendez · Manuel Wimmer ·
Johannes Bergsmann (Eds.)

Lecture Notes
in Business Information Processing 404

Series Editors

Wil van der Aalst
RWTH Aachen University, Aachen, Germany

John Mylopoulos
University of Trento, Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0002-8698-3292
https://orcid.org/0000-0003-3303-2896

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Dietmar Winkler • Stefan Biffl •

Daniel Mendez • Manuel Wimmer •

Johannes Bergsmann (Eds.)

Software Quality
Future Perspectives on Software
Engineering Quality

13th International Conference, SWQD 2021
Vienna, Austria, January 19–21, 2021
Proceedings

123

Editors
Dietmar Winkler
TU Wien
Vienna, Austria

Stefan Biffl
TU Wien
Vienna, Austria

Daniel Mendez
Blekinge Institute of Technology
Karlskrona, Sweden

Manuel Wimmer
Johannes Kepler University Linz
Linz, Austria

Johannes Bergsmann
Software Quality Lab GmbH
Linz, Austria

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-030-65853-3 ISBN 978-3-030-65854-0 (eBook)
https://doi.org/10.1007/978-3-030-65854-0

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4743-3124
https://orcid.org/0000-0002-3413-7780
https://orcid.org/0000-0003-0619-6027
https://orcid.org/0000-0002-1124-7098
https://doi.org/10.1007/978-3-030-65854-0

Preface

Message from the General Chair

The Software Quality Days (SWQD) conference and tools fair was first organized in
2009 and has since grown to be the largest yearly conference on software quality in
Europe with a strong and vibrant community. The program of the SWQD conference
was designed to encompass a stimulating mixture of practice-oriented presentations,
scientific presentations of new research topics, tutorials, and an exhibition area for tool
vendors and other organizations in the area of software quality.

This professional symposium and conference offered a range of comprehensive and
valuable opportunities for advanced professional training, new ideas, and networking
with a series of keynote speeches, professional lectures, exhibits, and tutorials.

The SWQD conference welcomes anyone interested in software quality including:
software process and quality managers, test managers, software testers, product man-
agers, agile masters, project managers, software architects, software designers,
requirements engineers, user interface designers, software developers, IT managers,
release managers, development managers, application managers, and many more.

The guiding conference topic of the SWQD 2021 was “What’s The Next Big Thing
in Software Engineering and Quality?” as changed product, process, and service
requirements, e.g., distributed engineering projects, mobile applications, involvement
of heterogeneous disciplines and stakeholders, extended application areas, and new
technologies include new challenges and might require new and adapted methods and
tools to support quality activities early in the software life cycle.

January 2021 Johannes Bergsmann

Message from the Scientific Program Chairs

The 13th Software Quality Days (SWQD 2021) conference and tools fair brought
together researchers and practitioners from business, industry, and academia working
on quality assurance and quality management for software engineering and information
technology. The SWQD conference is one of the largest software quality conferences
in Europe.

Over the past years, we have received a growing number of scientific contributions
to the SWQD symposium. Starting back in 2012, the SWQD symposium included a
dedicated scientific program published in scientific proceedings. In this 10th edition,
we received an overall number of 13 high-quality submissions from researchers across
Europe which were each peer-reviewed by 4 or more reviewers. Out of these sub-
missions, we selected 3 contributions as full papers, yielding an acceptance rate of
23%. Further, we accepted 5 short papers representing promising research directions to
spark discussions between researchers and practitioners on promising work in progress.
This year, we introduced two interactive sessions: One on Quality Assurance for
Artificial Intelligence, to emphasis future directions in Software Quality supported by
paper contributions, and another one on Academia Industry Collaborations, not sup-
ported by paper contributions. Furthermore, we have two scientific keynote speakers
for the scientific program, who contributed two invited papers. Tony Gorschek from
Blekinge Institute of Technology, Sweden, elaborates further on the role and relevance
of empirical software engineering to foster academia-industry collaborations, and
Henning Femmer from Qualicen GmbH, Germany, elaborates on the future role of a
requirements engineer in light of the ever-growing automation in today’s engineering
processes.

Main topics from academia and industry focused on Systems and Software Quality
Management Methods, Improvements of Software Development Methods and Pro-
cesses, latest trends and emerging topics in Software Quality, and Testing and Software
Quality Assurance.

This book is structured according to the sessions of the scientific program following
the guiding conference topic “Future Perspectives on Software Engineering Quality”:

• Automation in Software Engineering
• Quality Assurance for AI-Based Systems
• Machine Learning Applications
• Industry-Academia Collaboration
• Experimentation in Software Engineering

January 2021 Stefan Biffl
Dietmar Winkler
Daniel Mendez

Manuel Wimmer

Organization

SWQD 2021 was organized by the Software Quality Lab GmbH, Germany, the Vienna
University of Technology, Institute of Information Systems Engineering, Austria, the
Blekinge Institute of Technology, Sweden, and the Johannes Kepler University Linz,
Austria.

Organizing Committee

General Chair

Johannes Bergsmann Software Quality Lab GmbH, Austria

Scientific Program Co-chair

Stefan Biffl TU Wien, Austria
Dietmar Winkler TU Wien, Austria
Daniel Mendez Blekinge Institute of Technology, Sweden, and fortiss

GmbH, Germany
Manuel Wimmer Johannes Kepler University Linz, Austria

Proceedings Chair

Dietmar Winkler TU Wien, Austria

Organizing and Publicity Chair

Petra Bergsmann Software Quality Lab GmbH, Austria

Program Committee

SWQD 2021 established an international committee of well-known experts in software
quality and process improvement to peer review the scientific submissions.

Maria Teresa Baldassarre University of Bari, Italy
Tomas Bures Charles University, Czech Republic
Matthias Book University of Iceland, Iceland
Ruth Breu University of Innsbruck, Austria
Maya Daneva University of Twente, The Netherlands
Deepak Dhungana University of Applied Sciences, Austria
Frank Elberzhager Fraunhofer IESE, Germany
Michael Felderer University of Innsbruck, Austria
Henning Femmer Qualicen GmbH, Germany
Gordon Fraser University of Passau, Germany
Nauman Ghazi Blekinge Institute of Technology, Sweden
Volker Gruhn University of Duisburg-Essen, Germany

Roman Haas CQSE GmbH, Germany
Jens Heidrich Fraunhofer IESE, Germany
Frank Houdek Daimler AG, Germany
Helena Holmström Olsson Malmö University, Sweden
Marcos Kalinowski Pontifical Catholic University of Rio de Janeiro, Brazil
Marco Kuhrmann University of Passau, Germany
Eda Marchetti ISTI-CNR, Italy
Kristof Meixner TU Wien, Austria
Emilia Mendes Blekinge Institute of Technology, Sweden
Paula Monteiro Centro de Computação Gráfica, Portugal
Jürgen Münch Reutlingen University, Germany
Oscar Pastor Universitat Politècnica de València, Spain
Martin Pinzger Alpen-Adria-Universität Klagenfurt, Austria
Dietmar Pfahl University of Tartu, Estonia
Rick Rabiser Johannes Kepler University Linz, Austria
Rudolf Ramler Software Competence Center Hagenberg, Austria
Felix Rinker TU Wien, Austria
Miroslaw Staron University of Gothenburg, Sweden
Rini Van Solingen Delft University of Technology, The Netherlands
Daniel Varro University of Technology and Economics, Hungary
Sebastian Voss fortiss GmbH, Germany
Laura Waltersdorfer SBA Research, Austria
Stefan Wagner University of Stuttgart, Germany

x Organization

Contents

Automation in Software Engineering

Assisted Requirements Engineering - What Will Remain in the Hands
of the Future Requirements Engineer? (Invited Keynote) 3

Henning Femmer

Testing Autogenerated OPC UA NodeSet Models for Product Variants
in Industry . 15

Claus Klammer, Thomas Wetzlmaier, Michael Pfeiffer, Thomas Steiner,
and Matthias Konnerth

Quality Assurance for AI-Based Systems

Quality Assurance for AI-Based Systems: Overview and Challenges
(Introduction to Interactive Session). 33

Michael Felderer and Rudolf Ramler

Software Quality for AI: Where We Are Now?. 43
Valentina Lenarduzzi, Francesco Lomio, Sergio Moreschini,
Davide Taibi, and Damian Andrew Tamburri

Hidden Feedback Loops in Machine Learning Systems:
A Simulation Model and Preliminary Results . 54

Anton Khritankov

The AIQ Meta-Testbed: Pragmatically Bridging Academic AI Testing
and Industrial Q Needs . 66

Markus Borg

Machine Learning Applications

Improving Quality of Code Review Datasets – Token-Based Feature
Extraction Method. 81

Miroslaw Staron, Wilhelm Meding, Ola Söder, and Miroslaw Ochodek

Is Machine Learning Software Just Software: A Maintainability View 94
Tommi Mikkonen, Jukka K. Nurminen, Mikko Raatikainen,
Ilenia Fronza, Niko Mäkitalo, and Tomi Männistö

Industry-Academia Collaboration

Solving Problems or Enabling Problem-Solving? from Purity in Empirical
Software Engineering to Effective Co-production (Invited Keynote). 109

Tony Gorschek and Daniel Mendez

Experimentation in Software Engineering

An Empirical Study of User Story Quality and Its Impact on Open Source
Project Performance . 119

Ezequiel Scott, Tanel Tõemets, and Dietmar Pfahl

An Approach for Platform-Independent Online
Controlled Experimentation . 139

Florian Auer and Michael Felderer

Author Index . 159

xii Contents

Automation in Software Engineering

Assisted Requirements Engineering -
What Will Remain in the Hands

of the Future Requirements Engineer?
(Invited Keynote)

Henning Femmer(B)

Qualicen GmbH, München, Germany
henning.femmer@qualicen.de

Abstract. Requirements engineering (RE) is widely considered one of
the most difficult and risky activities in software and systems engineering.
Since RE requires communication, and despite other ideas and experi-
ments, tasks around textual content remains at the center of the RE for
most projects. With a daily evolving field of natural language processing
(NLP), the question is: Which of these tasks will - independent from any
technological and methodological advancements - stay in the hands of
the requirements engineer and which tasks will be automated?

This paper will take a look into the crystal ball. Based on analogies
from programming and autonomous driving, and based on an analysis of
the abilities of NLP and abilities of other modern technologies, I present
a vision of the life of a future requirements engineer.

Keywords: Requirements engineering · Automatic methods · Natural
Language Processing

1 Introduction: The World is Changing, RE is Changing,
So What Will Remain?

Never before in the history of mankind have we had such a rapid evolution of
products in such short time. The invention of the automobile in the late 19th
century set off a chain reaction of technological changes that have profoundly
reshaped the world. The invention of electricity in the early 20th century was
the final catalyst for the rapid evolution of our world. In the 20th century, we
developed the world ’s most advanced and efficient communication network. By
the 1970s, we had the world ’s first computer. In the 80’s, we moved on to the
internet and by the 1990 1990s, we moved onto mobile phones and smart phones.
In 2000, we reached a point where we have a smartphone that has become the
most important communications device in our lives. Now we are looking at an
almost limitless amount of potential for technology that will transform our world
for the better.

c© Springer Nature Switzerland AG 2021
D. Winkler et al. (Eds.): SWQD 2021, LNBIP 404, pp. 3–14, 2021.
https://doi.org/10.1007/978-3-030-65854-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65854-0_1&domain=pdf
http://orcid.org/0000-0002-6059-4635
https://doi.org/10.1007/978-3-030-65854-0_1

4 H. Femmer

So much so, that in the previous paragraph I only wrote the first sentence
and generated the remaining part through the software system GPT-2 [21]. In
the software world, new computational powers through evolution of hardware,
data centers, powerful abstractions in computer languages and reusable software
libraries enable to build systems which relieve humans from an increasing number
of tasks. Similarly, in the systems engineering world, sensors enable systems to
recognize the world and interact with the world more like us. For example, in
the automotive industry we do now have cars which first assisted the driver and
now little-by-little replace them. If this happens in a way that was previously
considered to be not possible to automate, we speak of Artificial Intelligence 1.
All in all, we see that we are building more and more powerful systems, of which
many are build to automate tasks previously executed by humans.

At the same time, another technological shift changed requirements engineer-
ing. Previously, bug fixing an existing system was a cumbersome and expensive
endeavor. For many systems today, bug fixing is just a commit, which automati-
cally redeploys the software to the users. This all of a sudden made fast feedback
loops with users possible that would have been unthinkable before. If you can
improve, getting it wrong is no longer a project failure. This change questioned
the whole requirements engineering paradigm which ultimately is just a means,
but not an end, on the way to the real system, i.e. source code.

Now, that most of the engineering world is in motion, we are at a pivotal
moment to shape the future of RE. Will it become a forgotten technique, or will
it redefine itself? Which are tasks that - with current technologies or technologies
that are imaginable today - can be executed by computers? Where are domains
where computers, much like driver assistance functions in cars, can simplify the
tasks? And finally, where is the human to our current understanding irreplaceable
and always will be?

If you’re looking for evidence, sorry, wrong paper. This paper is a personal
opinion and just spells out one vision of what is possible. It is intended to
serve as a hypothesis, not as an argument. As such it updates previous outlooks
into the future, such as the ones by Nuseibeh and Easterbrook [20], Finkelstein
and Emmerich [9], or Cheng and Atlee [3]. Looking at recent visions, there are
people discussing the outlook on various topics such as Crowd-based RE [16],
Data-Driven RE [19]. Obviously also tool vendors think into these directions, for
example by Jama Software [23].

2 Which Steps Do Automations Take? Some Analogies

As previously mentioned, never before in the history did we have this extraor-
dinary evolution in technology. Therefore, the best analogies are close to our
current time. In the following, I describe the evolution in two areas, namely
Programming Software and Assisted Automotive Driving.

We will see that in both analogies, we start with very solution oriented ways
to solve the problem. The evolution goes through the following steps (see Fig. 1):
1 “Artificial intelligence is the science and engineering of making computers behave in

ways that, until recently, we thought required human intelligence.” [13].

Assisted Requirements Engineering (Invited Keynote) 5

First, a very solution-oriented way to achieve a task is found. The steps to
achieve the actual goal must be found and executed by a human, usually with
plenty of manual work. Next, a form of indirection is introduced that enables
to separate the actual task from the physical work. This enables the third step,
where now humans are supported through assistance functions that warn them
about dangerous behavior, e.g. a car appearing in a blind spot. This leads to the
fourth step, where simple tasks are executed by the automated system, such as
emergency braking. Finally, we have a 6th step, where the human only focuses
on the actual goal of the task, while the necessary means to get there are defined
and executed by a computer system.

Fig. 1. Automation phases

2.1 Driver Assistance

Phase 0: The road that was taken by automotive drivers started with the drivers
task to manually move the vehicle into the right direction: The first cars were
equipped with tillers for steering [25]. As an explanation, one can find that at the
time this was the way to steer carriages and most boats and this was therefore the
most obvious solution. I want to add that this is also the most solution-oriented
way to steer in the sense that it is closest to steering the raw engine power. In
other words, the design of the system, not the goal of the driver, dominates the
user interaction.

Phase 1: In the next evolution, car designers abstracted from directing the forces
and looked closer at the needs of the driver. The new steering wheels, again taken
from ship designs, enabled to more directly influence the direction of driving
instead of the direction of raw forces, focusing a little further on the problem
domain. It furthermore enabled a large set of follow-up evolutions.

Phase 2: Then came the time of assistance functions: The vehicle designers were
now free from the raw forces and able to add functionality independent from the

6 H. Femmer

original mechanics of the system. Starting with adjustable steering wheels, the
wheels were most prominently enhanced by power steering, which was ultimately
perfected with drive-by-wire systems. Drive-by-wire is, technically, completely
detached from the necessities of the solution domain. This abstraction then gives
opportunities to support and manipulate the actions. Blind spot and distance
warning systems are among the more recently introduced functions. Here, the
user must still execute tasks within the realm of the traffic situation, but the
computer makes sure that every action taken by the human is happening within
a safe space.

Phase 3: Now we’re seeing the system taking over in simple tasks. E.g. adaptive
cruise control, parking and lane change assists are examples where the user is
still needed as a backup, but now the computer is executing the actions and
determining the next necessary steps.

Phase 4: Which leads to the final stage, level-6 autonomous driving, where the
users are only concerned with defining the destination. Everything else, all the
low-level steps that are necessary to get to that destination are taken over by the
system. One could say, that at this point the user is completely abstracted and
detached from the solution and does not need to dive into the solution domain.

2.2 Programming

A second, similar example is the history of programming.

Phase 0: Ever since Charles Babbage’s computer designs, creating punched
cards was the main way to program computers. Basically with pen and paper,
programmers had very little technical support. As with driving, the design of
punch cards was dominated by the physical reality of the solution (i.e. the punch
card processing computer), not by the necessities of the programmer.

Phase 1: Along came digital file systems, programming with text editors and
digital compilers. They abstracted from the raw powers of computers and thereby
enabled programmers to reuse and exchange files more easily. Most fundamen-
tally, however, programming systems within the computer itself, but detached
from the physical reality now enabled computer-assisted programming.

Phase 2: The rise of IDEs (integrated development environment) is attributed
to Borland with their TurboPascal editor in the 80ies, as well as Microsoft’s
Visual Basic in ’91. Among other things, these new tools provided assistance
in various areas: Syntax highlighting, rapid compiler feedback, resource organi-
zation, refactoring and more. Similar to blind spot warning systems, IDEs can
sound an alarm when the programming is about to make a mistake.

Phase 3: In our current programming world, assistance systems have become
ubiquitous during programming. It starts with static analysis tools indicating
potential issues such as security threats [18] or maintainability issues [12]. But
those systems do not remain passive anymore. Modern IDEs are equipped with

Assisted Requirements Engineering (Invited Keynote) 7

recommender systems which basically aim at being one step ahead of the pro-
grammers, taking some mental load of their minds and making their day-to-day
work less complex. In a way, these next level assistance functions are similar to
lane change assistance functions in car, in that they take away simple tasks from
the programmers, while still forcing them to come up with the individual steps
to achieve their goal.

Phase 4: Now the final stage, again, can only be programmers expressing what
they need and leaving the “pathfinding” to the system. As an outlook, we have
just recently seen the ability of deep learning networks to transform natural
language text into code [22]. Albeit much further from that goal than say current
cars from Level-6-Autonomous Driving, this would represent the final level of
abstraction.

3 Text Analytics Revisited: What is, Will, and Will
Never Be Possible?

In the following, I want to shed a light on what automation can potentially do
with text. For this, we could look at the abilities of various Natural Language
Processing (NLP) APIs. However, to our end, let us focus on the problem domain
that is addressed (which we call text analytics), instead of focusing on how a
problem is addressed in the solution domain of NLP. The following sections
will first look into challenges and limitations of text analytics with regards to
requirements engineering. The section afterwards will discuss the potentials and
look at the stakeholders and uses cases of text analytics as we see it today.

3.1 What Will Not Change Despite of Text Analytics?

In a previous study [5], we analyzed to which extent checking requirements
guidelines could be automated. To this end, we went through a large guideline
with more than 100 rules and decomposed it even further until we faced only
atomic rules. We then independently classified what is, what could and what
would never be possible to automate. Even though also the quantitative find-
ings were interesting since it revealed a substantial potential for automation in
checking guidelines, the qualitative findings are more applicable to our ques-
tion. The analysis indicated the following reasons why rules were challenging to
automate2:

Unclear or imprecise: If the task is subjective, and different humans cannot
agree which solution is correct, then this will be challenging to automate. An
example of this is the question whether a requirement is well-written.

2 Please note that these are challenges in the sense that in individual cases you can
still overcome the challenge but in the very most situations the solution will be
inherently incomplete or imprecise.

8 H. Femmer

Deep semantic understanding: If the task requires knowledge about the
actual semantics of the text, full understanding of semantics of phrases, per-
fect coreference resolution across full texts, ability to deduce the logical mean-
ing from the sentences grammar, etc. this is still far away and unclear whether
it will be possible to reach at all. An example of this is the question whether
a set of requirements is consistent.

Profound domain knowledge: If the task requires deep knowledge about
which solutions are optimal inside a specific context, and this context is not
available in any form of data, this might indicate a challenge as well. An exam-
ple of this is the question whether a set of requirements is implementable.

Process status knowledge: If the task requires knowledge that is acquired
in informal and undocumented ways, such as discussions during coffee, this
would also make automatic analysis impossible. An example of this is the
question whether the status of a requirement is up-to-date.

In addition to the challenges above, there is one item which makes it abso-
lutely impossible to automate.

System scope knowledge: If the task touches anything about the actual goal
of the system, this task remains impossible to automate. This is comparable to
a level-6 automotive driving solution, which cannot tell the driver where they
want to go. An example of this is the question whether a set of requirements
is correct and complete.

Despite the list being created with a different question in mind (Which
requirements guideline rules can be automatically checked?) I have been applying
it in various text analytics project discussions in practice. Therefore, it might be
useful also here in order to understand what will remain with the requirements
engineer.

3.2 What Could Change with Text Analytics?

To discuss how RE could change, we also have to look at what’s possible. For
this, we have to discuss the generic stakeholders and their potential use cases of
text analytics.

The four generic stakeholders for any form of text, as illustrated in Fig. 2,
are writers, readers, users (anybody who uses the text as an input to a follow-up
activity), and quality or supervisor people, who are not necessarily interested in
reading the text itself but only want to make sure that the quality is adequate.

The use cases of text analytics for these roles are the following:

Writers: provide feedback while writing. The most obvious use case is
concerned with assisting the author of a text. Here, a text analytics solu-
tion can provide fast, cheap and consistent (including unbiased) feedback, for
example to support terminological work, unambiguity, and more (see e.g. [4]).
Various common NLP tasks, such as morphological analysis [15] or others are
required for this text analytics use case.

Assisted Requirements Engineering (Invited Keynote) 9

Fig. 2. Text analytics stakeholders

Writers: generate text. The use case which probably gets the most attention
at the moment is the text generation use case. Here, GPT-3 [1] creates aston-
ishing texts. However, it is still unclear how the incredible text generation
skills can be steered into the intention of the writer, so that the automation
does not just create any readable text, but instead the text that the writer
intends.

Readers: find information. Readers want to first find, but ultimately extract
a piece of information from a text. Finding usually refers to defined concepts,
such as a specific product. The piece of information to extract can be either
a fact such as a name, date or value, or it can be a relationship, e.g. which
versions of the product were produced where.

Users: transform relevant information into new artifacts. Users of the
text go one step further: Not only do they want to acquire a certain informa-
tion, but they want to use that knowledge to generate the next artifact. For
example, testers reads a requirements artifact, apply their testing methodol-
ogy and thus create test cases (see [10,11]).

QA: Overview large pieces of text. Lastly, there are various roles who are
not really interested in the contents of the actual artifacts. All they care
about is that the artifacts fulfill a specific quality definition. This definition
can be either a standard, such as ISO/IEEE/IEC-29148 [14], or it is something
along the lines of it must be usable leading to a quality-in-use definition of
quality [6].

10 H. Femmer

4 A Look into the Crystal Ball: The Role of a
Requirements Engineer in Different Levels of
Automation

The analysis of the state of the art in text analytics, together with the phases of
automation from the previous sections feed into the following view of what the
work of the future requirements engineer looks like.

4.1 Phase 1: Decoupled Requirements Engineering

Within the last 30 years, we perfected the age of Decoupled RE. This is, we
document stakeholder needs and system requirements into Application Lifecycle
Management (ALM) or word processing tools. This is decoupled from the raw
data: the mental models are extracted from people’s minds and put into a com-
puter system. As discussed previously, this now enables all kinds of processing
of that information.

4.2 Phase 2: Assistance Functions in Requirements Engineering

We’re now peeking into a new phase: Projects in Assisted RE run very similarly
to today’s projects. REs will “stay in the driver seat” by still being the main
actor in nearly all tasks:

– REs will select stakeholders and interview them, select further input sources
for possible requirements (e.g. app reviews).

– They must also facilitate requirements prioritization.
– REs will document the extracted needs together with attributes, traces and

further meta-information.
– REs must review for correctness, completeness, consistency and other

attributes.

However, in addition, the system will support REs, e.g.:

– The system will point out identified ambiguities, semantic duplication, and
more problems, either in documented text [4] or during direct communica-
tion [8,24].

– Furthermore, the system will ensure that the documented requirements follow
defined quality guidelines, either constructively through pattern or structure
mechanisms, or analytically through rule-based engines.

– The system will automatically suggest specific meta attributes [26] or trace-
ability links.

– Lasttly, the system will automatically scan certain sources, such as App
Reviews and identify possible requirements [2].

Assisted Requirements Engineering (Invited Keynote) 11

4.3 Phase 3: Partly Automated Requirements Engineering

After this, the automation will go one step further. Projects in Partly Automated
RE are willing to give responsibility to automation for simpler scenarios.

For example, the system will support REs in the following ways:

– The system will visualize the information accessed from interviews, and sug-
gest textual requirements.

– In addition, the system will suggest test cases based on requirements. Based
on human demonstrations, the system will then learn about relevant features
and (possibly semi-automatically) link these to the test cases. This would
create maintenance-free fully-automated requirements-based system testing.

However, REs will still:

– REs will guide interviews and identify incompleteness.
– REs will proof-read all texts generated by the automation.
– REs will detect difficult inconsistencies or items that are outside of project

scope or budget.

4.4 Phase 4: Fully Automated Requirements Engineering

In Fully Automated RE, Requirements Engineers are reduced to their facilitation
role.

In addition to everything from Phase 3, the RE system will support REs as
follows:

– The system will interactively execute interviews with the stakeholders, record
their responses, and visualize back to the stakeholders what it understood. If
answers are unclear, it will request clarifications.

– The system will generate a model of how each of the stakeholders perceive
the problem and what each of the stakeholders expects from the solution.3

The model will most probably be based on transfer learning and not start at
zero, but instead start with pretrained models for different applications, e.g.
automotive, healthcare, insurance etc.

– The system will allow interactively requesting information of all kinds from
this system. Since real world systems have allegedly crossed the mark of
one million requirements, we will soon need to find new ways of structuring
information. One possible answer is to not structure the information manually
beforehand, but instead build a highly capable query language to extract and
structure the information on the go, based on the current use case.

– Based on its knowledge model, the system will identify inconsistencies, and
request the stakeholders to resolve them.

Ultimately, in the hands of the RE remains only:

3 Please note that, due to the other abilities, this model no longer needs to be written
in a human-readable language.

12 H. Femmer

– REs will identify the goal of the project and guide the discussion through
prototyping.

– REs will prioritize the suggested stakeholders and define their relevance for
the project.

– REs will analyse and manage risks.
– REs will identify which parts of the system are possible to implement within

the system scope.
– REs will identify potential reuse and its impact on the project scope.
– Through their knowledge of what’s possible, REs will identify smart creative

functional solutions on how to address a certain customer need (functional
creativity) and steer the system by feeding it these creative ideas.4

Obviously, as of today, these are very bold statements and to which extent
they will be possible to fully implement remains very unclear. In addition, similar
to the autonomous driving case, we also have to consider the consequences of
such a high level of automation and ask whether we want to go this way. In
particular, this has also an ethical dimension. Who is liable if things go wrong?

5 Summary and Outlook

Most requirements engineers today are still heavily relying on gut feeling and
manual work to execute their day to day work. This paper illustrates how in other
applications, namely steering a car and programming, the computer gradually
took over task by task, until the activity is reduced to its core.

Based on those examples, the paper continues to describe different ages of
requirements engineering. Right now - at least in requirements engineering in
industry - we’re still in the age of Decoupled RE. In research and partly in
practice, we’re seeing the dawn of Assisted RE, with more and more support
from computer systems. First ideas exist towards Partly Automated RE, where
simpler tasks are executed by the computer with the RE only watching. Lastly,
very few time has been spent on the vision of a Fully Automated RE, where a
computer system (or model) becomes the source of knowledge that is able to
digest various types of information and transform it just-in-time according to
the needs of the consumer.

Not discussed in this work is - besides minor questions about how we are
actually going to achieve this - the question of what should be done first. Of
course, this is ultimately a cost-benefit-analysis. Here, two lines of thought are
possible: First, we should automate what is laying in front of us. Automatic
quality feedback mechanism are probably among those. But second, we should
also focus on risk: Based on necessary empirical evidence about what are the
most risky aspects of aforementioned analysis (e.g. from NAPIRE reports [7]),
research will continue to focus on those most important aspects.

4 Note that here the role of a RE is not passive consumption and documentation of
information, but the very active role of a digital designer, c.f. [17] (in German).

Assisted Requirements Engineering (Invited Keynote) 13

Acknowledgments. I would like to thank Daniel Mendez and Jannik Fischbach for
their feedback and opinion on the ideas as well as early drafts of this paper.

References

1. Brown, T.B., et al.: Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020)

2. Carreño, L.V.G., Winbladh, K.: Analysis of user comments: an approach for soft-
ware requirements evolution. In: 2013 35th International Conference on Software
Engineering (ICSE), pp. 582–591. IEEE (2013)

3. Cheng, B.H., Atlee, J.M.: Research directions in requirements engineering. In:
Future of Software Engineering (FOSE 2007), pp. 285–303. IEEE (2007)

4. Femmer, H., Méndez Fernández, D., Wagner, S., Eder, S.: Rapid quality assur-
ance with requirements smells. J. Syst. Softw. (2017). https://doi.org/10.1016/j.
jss.2016.02.047

5. Femmer, H., Unterkalmsteiner, M., Gorschek, T.: Which requirements artifact
quality defects are automatically detectable? a case study. In: 2017 IEEE 25th
International Requirements Engineering Conference Workshops (REW), pp. 400–
406. IEEE (2017)

6. Femmer, H., Vogelsang, A.: Requirements quality is quality in use. IEEE Softw.
36(3), 83–91 (2018)

7. Fernández, D.M.: Supporting requirements-engineering research that industry
needs: the napire initiative. IEEE Softw. 1, 112–116 (2018)

8. Ferrari, A., Spoletini, P., Gnesi, S.: Ambiguity and tacit knowledge in requirements
elicitation interviews. Requirements Eng. 21(3), 333–355 (2016). https://doi.org/
10.1007/s00766-016-0249-3

9. Finkelstein, A., Emmerich, W.: The future of requirements management tools. In:
Oesterreichische Computer Gesellschaft (Austrian Computer Society) (2000)

10. Fischbach, J., Vogelsang, A., Spies, D., Wehrle, A., Junker, M., Freudenstein, D.:
Specmate: automated creation of test cases from acceptance criteria. In: 2020 IEEE
13th International Conference on Software Testing, Validation and Verification
(ICST), pp. 321–331. IEEE (2020)

11. Freudenstein, D., Junker, M., Radduenz, J., Eder, S., Hauptmann, B.: Automated
test-design from requirements-the specmate tool. In: 2018 IEEE/ACM 5th Interna-
tional Workshop on Requirements Engineering and Testing (RET), pp. 5–8. IEEE
(2018)

12. Heinemann, L., Hummel, B., Steidl, D.: Teamscale: Ssoftware quality control in
real-time. In: Companion Proceedings of the 36th International Conference on
Software Engineering, pp. 592–595 (2014)

13. High, P.: Carnegie Mellon Dean Of Computer Science On The Future Of
AI (2017). https://www.forbes.com/sites/peterhigh/2017/10/30/carnegie-mellon-
dean-of-computer-science-on-the-future-of-ai/#3747e3b62197

14. ISO, IEC, IEEE: ISO/IEC/IEEE 29148:2018-Systems and software engineering -
Life cycle processes - Requirements engineering. Technical report, ISO IEEE IEC
(2018)

15. Jurafsky, D., Martin, J.H.: Speech and Language Processing. 2nd edn. Pearson
Education, London (2014)

http://arxiv.org/abs/2005.14165
https://doi.org/10.1016/j.jss.2016.02.047
https://doi.org/10.1016/j.jss.2016.02.047
https://doi.org/10.1007/s00766-016-0249-3
https://doi.org/10.1007/s00766-016-0249-3
https://www.forbes.com/sites/peterhigh/2017/10/30/carnegie-mellon-dean-of-computer-science-on-the-future-of-ai/#3747e3b62197
https://www.forbes.com/sites/peterhigh/2017/10/30/carnegie-mellon-dean-of-computer-science-on-the-future-of-ai/#3747e3b62197

14 H. Femmer

16. Khan, J.A., Liu, L., Wen, L., Ali, R.: Crowd intelligence in requirements engi-
neering: current status and future directions. In: Knauss, E., Goedicke, M. (eds.)
REFSQ 2019. LNCS, vol. 11412, pp. 245–261. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-15538-4 18

17. Lauenroth, K., Lehn, K., Trapp, M., Schubert, U.: Digital design-der nächste
schritt für das requirements engineering im kontext der digitalen transformation
(in German) (2017)

18. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in java applications with
static analysis. USENIX Secur. Symp. 14, 18–18 (2005)

19. Maalej, W., Nayebi, M., Johann, T., Ruhe, G.: Toward data-driven requirements
engineering. IEEE Softw. 33(1), 48–54 (2015)

20. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proceed-
ings of the Conference on the Future of Software Engineering, pp. 35–46 (2000)

21. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

22. sharifshameem: Twitter. (2020). https://twitter.com/sharifshameem/status/
1284421499915403264?s=20/. Accessed 27 Aug 2020

23. Software, J.: What is the future of requirements management? (2020). https://
www.jamasoftware.com/blog/what-is-the-future-of-requirements-management/
(2020). Accessed 27 Aug 2020

24. Spoletini, P., Brock, C., Shahwar, R., Ferrari, A.: Empowering requirements elic-
itation interviews with vocal and biofeedback analysis. In: 2016 IEEE 24th Inter-
national Requirements Engineering Conference (RE), pp. 371–376 (2016)

25. Wikipedia: Steering Wheel (2020). https://en.wikipedia.org/wiki/Steering wheel/.
Accessed 27 Aug 2020

26. Winkler, J., Vogelsang, A.: Automatic classification of requirements based on con-
volutional neural networks. In: 2016 IEEE 24th International Requirements Engi-
neering Conference Workshops (REW), pp. 39–45 (2016)

https://doi.org/10.1007/978-3-030-15538-4_18
https://doi.org/10.1007/978-3-030-15538-4_18
https://twitter.com/sharifshameem/status/1284421499915403264?s=20/
https://twitter.com/sharifshameem/status/1284421499915403264?s=20/
https://www.jamasoftware.com/blog/what-is-the-future-of-requirements-management/
https://www.jamasoftware.com/blog/what-is-the-future-of-requirements-management/
https://en.wikipedia.org/wiki/Steering_wheel/

Testing Autogenerated OPC UA NodeSet
Models for Product Variants in Industry

Claus Klammer1(B), Thomas Wetzlmaier1, Michael Pfeiffer1, Thomas Steiner2,
and Matthias Konnerth2

1 Software Competence Center Hagenberg GmbH, Hagenberg, Austria
{claus.klammer,thomas.wetzlmaier,michael.pfeiffer}@scch.at

2 ENGEL Austria GmbH, Schwertberg, Austria
{thomas.steiner,matthias.konnerth}@engel.at

Abstract. Product line management activities have to ensure that
offered product options are valid and compatible. With the arise of the
Internet of Things (IoT) movement not only the own product compati-
bility has to be managed by the vendors anymore, but also the compli-
ance and openness to standardized interfaces has to be supported as well.
The Machine to Machine (M2M) communication protocol standard Open
Platform Communications Unified Architecture (OPC UA) has received
great attention in the field of mechanical engineering recently. In this
industrial experience report we describe our approach how to support
the testing of automatically generated models for OPC UA, by applying
test case generation at the integration level. We show the feasibility of our
approach and report about found issues, discuss some general findings
and provide an outlook for future work.

Keywords: Middleware · Integration testing · Test case generation ·
OPC UA

1 Introduction

With the internet, as global standardized available communication channel, not
only human can now collaborate with each other easily regardless their location,
but also production processes and dependent services can exchange data eas-
ily. Building upon this idea, the Internet of Things (IoT) movement draws the
vision of interconnected things, where so-called smart sensors are connected to
the internet [1]. However, in the traditional manufacturing domain there exist
older communication technologies and protocols to connect sensors and actors
to a program logic control (PLC) unit of a machine or device. Extension or inte-
gration of additional hardware components, even from other vendors, is difficult
since they may use different interfaces starting from the physical layer up to the
protocol layer. With the increasing pressure towards better support of Machine
to Machine (M2M) communication, the existing Open Platform Communications
(OPC) standard has been evolved to Open Platform Communications Unified
c© Springer Nature Switzerland AG 2021
D. Winkler et al. (Eds.): SWQD 2021, LNBIP 404, pp. 15–29, 2021.
https://doi.org/10.1007/978-3-030-65854-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65854-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-65854-0_2

16 C. Klammer et al.

Architecture (OPC UA)1. OPC UA is the enabling technology for flexible, adap-
tive, and transparent production [2,3]. It provides the technological foundation,
based on standard internet technologies, to build up standardized information
models for a specific domain to ensure interoperability between different vendors.

However, in order to support these standardized information models every
manufacturer has to provide an adapter for the existing middleware or control
program to join these worlds. The OPC UA standard defines different approaches
to provide the required model instance. One is to provide a so-called NodeSet
file, which is an xml file whose structure is specified by an xml schema file. For
instance, such information model descriptions provide the program variables to
be published via OPC UA middleware. Vendors of OPC UA servers provide mod-
eling tools that support the creation of such adapters. However, such a manual
approach is only feasible in the context of small, more or less static control pro-
grams. In recent years control programs grew in size and complexity and often
the numbers of variations and options are even reflected in modularized and cus-
tomized control programs. To manage these available options and link them to
appropriate software components, many companies apply tools that automate
such tasks and support the product line management. The provided models for
the OPC UA middleware have to match the underlying control program. There-
fore, there is a need to automatically generate most models for different variants
and order-specific control programs. All information required for the generation
of corresponding NodeSets has to be available within the control program. That
assuming, the next question is how to ensure that the generation process creates
correct NodeSets for any thinkable control program.

The objective of this paper is to describe our approach how to support the
testing of automatically generated models for OPC UA, by applying test case
generation at the integration level. Besides the goal of communicating the imple-
mentation of the approach and demonstrating its basic feasibility, we will answer
the main research question:

Which Issues Will Our Generative Testing Approach Find in Its Pro-
ductive Application? Therefore we analyze the executed test runs and discuss
found issues. The answer to this question is important to assess the potential of
the approach and to derive tasks for its further development.

The remainder of this paper is structured as follows. Section 2 provides the
industrial context and some references to related literature motivating our testing
approach. Afterwards the approach and its implementation are presented in
Sect. 3. The results and the discussion of the research question and additional
findings are provided in Sect. 4 and the paper ends with the conclusion and
outlook in Sect. 5.

2 Industrial Context and Related Work

ENGEL Austria GmbH (ENGEL) is a world-leading manufacturer of injection
molding machines. With about 6900 employees worldwide, the company pro-
1 https://reference.opcfoundation.org/.

https://reference.opcfoundation.org/

Testing Autogenerated OPC UA NodeSet Models 17

duces ma-chines and automation solutions for the plastics processing industry.
Its products are known for high quality and support of custom features. The
product range covers small, individually operating machines up to large, com-
plex production lines including robots and support for additional equipment from
other manufacturers. The software from control level to human machine inter-
face (HMI) level is component oriented, to support all these different machine
features. New major versions of the software stack are released twice a year.
For every order, the selected features and options define which software com-
ponents are required. In addition, customer specific software components are
implemented and provided when needed. This high flexibility and customization
ability are supported by semi-automatic processes, which ensure the composi-
tion of the right software component versions and its dependencies. ENGEL has
developed over the last years a static code analysis (SCA) platform for the used
control program language Kemro IEC 61131-3 [4]. The core of the platform is
the parser that transforms programs into a corresponding abstract syntax tree
(AST) and allows the implementation of so-called meta programs with the Java
programming language. Meta programs are tools, which read sentences of soft-
ware languages, like IEC 61131-3 defined languages, and produce any kind of
output [5]. All static analyses and calculations can be implemented in the high-
level language Java and are performed on the AST representation provided by the
SCA platform. This syntax tree also contains the information about the variables
to be exposed to the middleware. Obviously, this established platform is used
to generate the required NodeSet files for the new OPC UA based solution. A
patent application was submitted for this meta program by ENGEL [6] recently.
The development of this generator approach has been supported by manually
prepared control programs and its appropriate resulting NodeSet files. Every of
these control programs focuses on one specific feature of the exported NodeSet,
e.g. to support variables of the type array. This way, step by step development
and enhancement of the generator was supported by a safety-net of manually
created and maintained control programs. Although this approach was fine for
the start of the generator development, it soon became clear that changes in the
generator causes high maintenance effort of the effected test control programs.
Furthermore, the complexity of the data structures to be exported and all pos-
sibilities of the control program language to define and reference such structures
cannot be covered by handmade test programs. Therefore, the question was how
we could provide a denser safety net supporting the ongoing development with
automation.

Grammar based test input generation is a research field with a 50 year long
history [7]. It is a preferred approach for testing meta programs. Unfortunately,
random generation of test input for big languages is not effective and often results
in poor coverage of the tested meta program [8]. Hentz et al. [9] propose an app-
roach that tackles this problem. By extracting information of the used input
patterns of the tested meta program they tried to reduce the cost of grammar
based testing. The test input data generation is guided by this pattern informa-
tion with the aim to generate a minimal amount of inputs that will cover the meta

18 C. Klammer et al.

program. In contrast to their pattern coverage approach, our test case generation
approach should follow a more imperative generation approach by implement-
ing a custom-made program that generates test data for the actual test focus.
There exist few works, which cover the testing of industrial automation software.
Ramler et al. present a test automation approach in the field of PLC software,
share learned lessons and provide some recommendations [10]. Symbolic execu-
tion is applied by Suresh et al. [11] to create test cases for small PLC programs.
However, they do not transfer this approach for testing meta programs targeting
PLC programs. Pauker et al. report about a systematic approach to OPC UA
information model design [12]. Model-driven architecture (MDA) as software
development process is applied to create OPC UA information models. Though,
the resulting workflow does not take into account the reverse, the creation and
testing of the information model out of existing program code. González et al.
provide a literature survey on the industrial application of OPC [13] and encour-
ages the utilization of OPC UA to handle systems integration.

The Software Competence Center Hagenberg GmbH (SCCH) is a longtime
partner of ENGEL for application-oriented research in the field of software
quality and test automation, and has already gained experience and important
insights into the application of test case generation at system level [14]. There-
fore, we decided to work together on a solution to ensure the functionality of the
generative approach for a broader range of programs.

3 Approach and Implementation

The main underlying idea of our solution is to automatically create test control
pro-grams, perform the automatic node set generation and to check whether the
resulting node sets files contain the expected data (Fig. 1). This cycle can then
be repeated for a certain amount of time and failing projects are archived for
later analyses.

Fig. 1. Test cycle solution concept: generate PLC program project (1), extract OPC
UA Nodeset (2), perform checks (3) and archive project in case of an test failure

Testing Autogenerated OPC UA NodeSet Models 19

Derived from the main idea our solution approach essentially consists of three
building blocks, whose implementations are described later on. The test project
generator (TPG) represents the core of our approach, since its purpose is to
create valid control programs. The input data for the conformance test of the
generated node sets, is provided by the test metadata exporter (TME) analyzing
the generated control programs. The third building block is the test execution
(TE), which uses the generated metadata to check the content of the exported
node set files. Figure 2 provides an over-view of the integration of this building
blocks into the existing NodeSet generation process.

Fig. 2. Illustration of integrated main test building blocks: the color blue represents
the added system parts for our test approach (Color figure online)

TPG with its generated control programs replaces real world, customized,
production ready control programs. The static code analysis platform is utilized
not only to generate the node sets, but also to extract the required control pro-
gram metadata as xml file. The NodeSetExportTester implements and controls
the test execution cycle by using the TPG, TME and TE. It uses the generated
node sets, which are imported by the OPC UA server normally, and exported
test metadata to perform conformance tests and to report the corresponding test
results. The implementation of the solution has started with the implementation
of the TPG in summer 2019. The first version of TPG was used by the devel-
opment team to manually check for unknown use cases that were automatically
generated by the tool but currently not supported by NodeSet generation. In
parallel, the implementation of the metatdata exporter and corresponding test
oracles started. It provides the basis for automatic testing of randomly created
control programs by TPG. With the completion of its implementation an auto-
matic test build job was configured that repeated the test cycle depicted in Fig. 1
for an hour every night and reported test failures. The node set generator is still
in development and at the beginning of 2020 an extended version with additional

20 C. Klammer et al.

tests has been set into production, which covers recently changed features of the
node set generator.

3.1 Test Project Generator (TPG)

The purpose of the TPG is to generate valid, compilable Kemro IEC control
programs that contain data that is intended to be exported by the node set
exporter. In addition, every generated control program should be different. But
configuration options should ensure that the generated control programs cover
the features of the node set exporter since this is the software under test (SUT).

IEC 61131-3 provides a standard including the overall software model and a
structuring language for industrial automation [15]. Nevertheless, vendors sup-
porting this standard still provide enhancements and additional functionality,
which for example is required to deliver first class editing support for their devel-
opment environments and to increase development productivity. The downside
of this situation is, that the vendor specific compiler often requires information
that is created by its vendor specific development environment. This is also true
for the used PLC vendor by ENGEL. The corresponding integrated develop-
ment environment (IDE) assumes a certain folder structure and creates special
files and sections in existing source files containing IDE specific information. It
is obvious that our TPG has to consider these vendor specific requirements to
create valid, compilable programs.

The main building blocks of a control program are so-called function units
(FU) that represent specific functional units of the system. FUs are organized
in subfolders and can reference variables from, and depend on types defined
in, other function units. The random generation approach has to support the
creation of several FUs and create types and use them by declared variables. As
mentioned earlier data structures are marked within the source code, which is
intended to be accessed via the middleware. This is achieved by adding a special
attribute VARIABLE GROUP with value ComponentModel to the variable. All
variables marked with this attribute value are intended to be exported to the
middleware. Besides, of the random assignment of this attribute for variables,
the generator has to support this assignment also for structured datatypes like
arrays and structs and complex custom data structures that mix and nest these
basic data types.

The TPG has been implemented as a command line tool with the Java pro-
gramming language, since also the developed Kemro IEC language parser has
been developed in Java and the development team has years of development
experience with the language. The generation process is divided into two steps
(Fig. 3). Phase one, the generation phase, takes an optional xml file to configure
the generation process and creates a model of a project regarding this configu-
ration in memory. In phase two, the export phase, this internal representation is
exported as folders and files to create the valid representation that is assumed by
the used Kemro IEC programming language compiler and editor. At the end of
this phase the project compiler is executed to ensure that the generated project
is valid and that all files necessary for the subsequent node set export exist.

Testing Autogenerated OPC UA NodeSet Models 21

Fig. 3. TPG generation process overview

Phase One: In the generation phase a model has to be build up, which not only
contains IEC source code, but that also allows the creation of the required project
structure sup-ported by the targeted PLC vendor. TPG therefore defines its own
model objects and reuses parts of the AST model provided by the language parser
of the SCA platform previously mentioned. The random generation of the model
is controlled via a set-tings file in xml notation. Configuration of the generation
phase can be divided into following groups:

– General properties: The seed value of the used random number generator can
be set. In addition, a name prefix for the generated projects can be set.

– Generation constraints: These properties define settings and boundaries con-
sidered during the generation of the test projects, like the minimum and
maximum number of FUs to create, which data types should be considered,
and valid value ranges for default data types and nesting depth for custom
types.

– Generation probabilities: Probability-defining properties are used to control
the generation of various aspects. For example, the probability to apply the
export at-tribute can be set.

Phase Two: To create only valid, compilable projects, we had to investigate
which source files and meta information is required by the compiler first. The
IDE supports the feature to import plain IEC files into a project and adds
the additional vendor specific meta information for these files automatically.
We utilized this feature to avoid the need to generate IDE specific metadata
ourselves. Fortunately, many of the required files that form a valid project are
more or less static. Hence, we used template files as base for the generation of
most of the required files. As template engine velocity2 was used. To get a quick
overview about the actual content of the generated project, a summary report
with statistical data is generated at the end of the generation process. It provides
basic counters about the generated project, like the number of FUs, number of

2 https://velocity.apache.org/.

https://velocity.apache.org/

22 C. Klammer et al.

files defining types and variables, but also the number of generated types and
variables.

To sum things up, the TPG uses an optional settings file specified as com-
mand line property, which is merged with the default settings and that controls
the generation process. Resulting settings are exported for later reference and a
loop to create IEC projects is started. The number range of projects to create
is also defined within the settings file. In that loop TPG’s project generation
process with its two phases, generate and export, is run. When the TPG process
finishes its run, all generated and compiled projects are available in its output
directory. These projects are then the input for the TME to extract the infor-
mation required for checking the generated OPC UA NodeSets.

3.2 Test Metadata Exporter (TME)

The SUT is the NodeSet exporter, which has been implemented as an extension
of the utilized SCA platform. The SCA platform provides visitor hooks that
allow the traversal of the AST of the parsed PLC program. Such implemented
extensions (meta programs) are called rules, referring to the main purpose of
the platform as static code analysis tool. Which rules are executed during a
run of the SCA-Tool is configured by a configuration file in xml notation, in
which the rules to be executed are listed by their identifier. If the NodeSet
exporter rule, named ExportOPCUANodeset, is configured to be executed, the
corresponding OPC UA NodeSet models are generated and exported in a folder
called opcua next to the PLC program. To check the conformance of the exported
NodeSet models to the PLC program, we have introduced the TME that is also
implemented as SCA platform rule named ExportOPCUAMetadata. This rule is
intended to provide all information that is required to check the conformance of
the exported NodeSet model. The data is provided as one xml file per project,
named metadata.xml, and saved within the project folder.

Currently the data structure is simple (Fig. 4) but sufficient to implement
basic conformance tests. The root node of the file is named metadata. Its child
nodes fuData groups the data of the exported variables by the projects FUs.
The value of attribute name identifies the corresponding FU. All properties of
every exported variable are listed under the node varData.

The TME rule implementation uses the given AST root node of a project
to start with the data collection. Therefore, an instance of the implemented
component MetadataCollector is created for the project internally, that is able
to collect the metadata for every FU. It iterates over the variables and gathers
metadata about variables that are marked to be intended to be exported to the
middleware. The resulting xml file metadata.xml can then be used, to check the
conformance of the exported OPC UA NodeSets.

Testing Autogenerated OPC UA NodeSet Models 23

Fig. 4. Example excerpt of metadata.xml file

3.3 Test Execution (TE)

To check the conformance of the automatically generated NodeSets of a given
PLC project, we implemented the tool NodesetExportTester. The tool starts the
test cycle and runs the conformance checks.

An instance of an OPCUAModelChecker implements the comparison of the
generated NodeSet xml files with the information provided by the given meta-
data file of one project. Currently, it supports two different test oracles. The first
check allVariablesExported tests whether all variables are exported and avail-
able in the exported NodeSets and the second check allUnitsExported performs
the same availability check for units. The overall check of the complete project
fails if any check for any FU fails. The implementation provides an integration
test that combines and utilizes TPG, SCA and the OPCUAModelChecker to
create and execute automatic tests for the NodeSet exporter feature. JUnit5 3

supports the generation of tests during runtime by implementation of so-called
DynamicTests. We use this feature to implement a test factory that creates and
executes dynamic tests during its runtime for a specified time. Internally we use
Java’s pseudo random number generator to create the seed numbers to be used
by the TPG to create different PLC projects for every test.

During test runtime, the test execution is performed according our solution
approach depicted in Fig. 3 with following steps. At the start of every test cycle,
the seed of the used configuration for the TPG is set to a unique value. Before
starting with the project generation, all content of the defined output directory
is removed, to ensure a clean project workspace. In the next step the TPG is
called to create and prepare one random PLC project to the configured output
directory. If an unexpected error occurs in this step, the test generation process
is stopped and the test run is canceled. Otherwise the SCA platform is started
and applied to the generated project afterwards with ExportOPCUANodeset and
ExportOPCUAMetadata as the configured rules. The resulting output of this run

3 https://junit.org/junit5/.

https://junit.org/junit5/

24 C. Klammer et al.

is used as the input for the final step. An instance of the OPCUAModelChecker
is created and applied for this data. If the conformance test fails, the generated
PLC project including the exported NodeSets and metadata are archived as zip
compressed file for later analyses, before starting again with a new test creation
cycle.

4 Results and Discussion

We provide general data about the executed test runs and present and discuss
the found issues to answer our research question. Besides this discussion, we will
share some general findings as result of the implementation and application of
our automated test generation approach.

4.1 Test Execution Data

The analyzed time span of the provided data (Table 1) comprises eight months
and starts with the first setup of the long running nightly test case generation
build job. The data also contains some manually triggered builds, but the vast
majority of the executed test runs were timed. Because of major refactorings of
the NodeSet exporter, the execution of the test case generation was temporarily
deactivated for two and a half months. This results in the total number of 194
executed test runs that are included in the analyzed data. Each test run was con-
figured to create test cases for about one hour. 185 test runs ended successfully,
i.e. have not been aborted or ended because of a build exception. Seven of these
executions showed unstable behavior by at least one failing generated test case.

Table 1. Statistical data of build server test execution

Property Value

Time span of collected

data

8month (August

2019–April 2020)

Configured test case

generation duration (per

test run)

3 600 s

Total number of executed

test runs

194

Number of successful test

run executions

185

Number of

Passed/Unstable test runs

178/7

Number of

Failed/Aborted test runs

8/1

Total number of

generated test cases

36 640

Median number of

generated test cases per

successful test runs

204

Median execution time

per test case

17.8 s

Number of real errors 2

Testing Autogenerated OPC UA NodeSet Models 25

Eight out of nine unsuccessful test runs were caused by compile errors of the test
project, because of changed interfaces, and general network issues between the
jenkins host and the executing test agent machine. Only one of the executed test
runs was aborted manually. During these entire 185 successful test runs 36 640
test cases have been generated. The median of generated test cases per test run
is 204. Generated violin plot in Fig. 5a depicts the deviation of the numbers of
generated test cases for all test runs in the productive test infrastructure. About
17.8 s is the median execution time of all generated test cases. Its distribution is
shown in Fig. 5b by the provided violin plot, with few, yet not examined outliers.

Fig. 5. a) distribution of generated test cases per test run and b) distribution of test
case execution time in seconds

In the following we will discuss the main research question of this work:
Which issues will our generative testing approach find in its produc-
tive application? Our approach is intended to provide a safety net for changes
to the NodeSet exporter. Five of the seven failing test runs occurred at the begin-
ning of the implementation of support for exposing variable’s physical units.
These changes introduced some general changes to the structure and content of
the generated NodeSets. That is, our test case generation approach did not check
the correct features of the exported NodeSet anymore and therefore this failed
test runs do not indicate real issues. In contrast to this, the two remaining insta-
ble test runs revealed real issues, that the developers of the NodeSet exporter
have not been aware at the time of its discovery. An exported variable would not
have been available via the OPC UA server at runtime if one of these problems
had not been detected. The first bug was detected on day two of the activation
of the nightly test case generation build job. The current implementation of the
NodeSet exporter did not consider annotations at the array index level as valid
export annotations. About three weeks later the nightly test execution failed
again. This time ongoing changes of the NodeSet exporter caused an issue with
the resolution of array content types. To fix this issue the implementation of the
NodeSet exporter had to be extended to also consider type references of multi
dimensional arrays. The two problems found are special cases that have not been
detected so far due to the complexity of the causing IEC code data structures.
As above results show, our approach is able to find hidden problems and comple-
ment the set of manually created test cases. But we also have to admit that we

26 C. Klammer et al.

only considered a relatively short period of application and that these are only
preliminary results. In addition, we have added the manual written regression
test series with tests that mimic this problem to avoid this kind of errors in
the future. In this way, we are no longer dependent on the randomness of our
approach to detect this concrete issues.

4.2 General Findings

We successfully applied our test case generation approach for building a safety
net for the automatic generation of OPC UA NodeSets. Besides providing first
answers to the question which issues will be found with this approach, during
implementation several additional questions popped up. In the following we want
to share some of these common findings observed during the application:

– Why We Did Not Follow an MBT Approach? At the beginning of the
project, we thought that we could adopt an existing MBT approach to solve
our problem to generate arbitrary Kemro IEC control programs. In addition,
some of the involved developers had already applied MBT at none unit testing
level in the past. However, at a second glance some requirements concerning
the necessary configurability showed that the use and adaption of an existing
tool would most probably require more effort with less implementation flex-
ibility. Furthermore, if we look at the resulting approach, it is obvious that
we do not dynamically test the features of our SUT (as intended by MBT),
instead our solution is based on the data generator TPG and test oracle data
collector TME and follows much more a data driven test approach.

– How to Tackle the Problem of Reproducibility? One of the most annoy-
ing problems in the context of test case generation is how the developer that
should fix the problem can easily reproduce a revealed failure. Therefore, the
test report provide all the necessary information. Our approach realizes this
by archiving the generated test projects for failing tests. In addition, the base
configuration with the used seed for the random number generator is saved in
the case to regenerate the same IEC control program. Nevertheless, we also
have to utilize tools of the IEC development environment during generation.
We need these tools as external dependencies and newer versions might break
the functionality of the implemented TPG because we depend on the vendor
specific code parts and project structure.

– How to Ensure and Assess Further Development of the Test Gener-
ation Approach? In the last few years, the development process at ENGEL
has transformed from a more or less waterfall approach to an agile, develop-
ment sprint based process. For single developers and teams this means more
freedom, but in turn also more responsibilities. Testing and its automation
are tasks that are increasingly performed by the development team itself.
Our integration testing approach has been implemented in parallel to the
development of the OPC UA NodeSet exporter by different developers. The
implemented and involved test infrastructure is quite complex. However, fur-
ther development to support additional functionality of the NodeSet exporter

Testing Autogenerated OPC UA NodeSet Models 27

should be done by the core team in the future. Only the developers of addi-
tional features know whether it is worth to utilize such a test generation
approach for specific features and which additional checks have to be imple-
mented as the test oracle. Hence, we are convinced that the development team
itself has to maintain the approach and drive its future development.

– What is the Right Abstraction Level for Testing the Exported
OPC UA NodeSet? For this project, we tried to follow the most abstract
path. The question about how concrete or abstract checks should be is one
of the most challenging and controversially discussed questions. Nevertheless,
the context of this project favors checks that are more abstract. The exis-
tence of handcrafted example projects, and its expected OPC UA NodeSet
files, already assures the concrete representation of the expected NodeSet
exporter output for these examples. This is achieved by structural compar-
ison of the generated xml files. We argue that a generative test approach
should only extend existing tests. If you try to generate test cases that are
more concrete or test oracles automatically, you will have to provide a second
implementation of the required features at the end, which might not be the
intention of testing and what would cause much maintenance efforts in the
future.

5 Conclusion and Outlook

In this paper we share our experiences in supporting the development of an
automatic exporter of OPC UA NodeSets for arbitrary Kemro IEC control pro-
grams with automated testing. We presented the main idea to generate random
PLC programs guided by a configuration and checking the conformance of the
generated NodeSets afterwards automatically. The implementation of the main
building blocks TPG, TME and TE is explained in detail and highlights the
required automation effort. The results are discussed and show that the app-
roach was able to uncover some regressions during the ongoing development of
the NodeSet exporter. The problems found represent complex special cases that
were previously not covered by manually implemented regression tests. Hence,
we suggest the introduction of such a generative test approach for highly cus-
tomizable software systems. Particularly its application will be beneficial for
software in domains, where the quality of the product has to be ensured more
thoroughly because the deployment of bug fixes is more difficult and expensive.
Currently we are not aware of any publication that uses test case generation to
test the conformance of automatically generated OPC UA information models.
However, the implementation of this test generation approach also raised some
additional questions, which should be addressed in future work:

– How Could We Provide Any Quantitative Coverage Information
About a Nightly Test Run? Currently, only statistical information about
the generated project and its content is reported. But we should investigate
how and which coverage could be measured to get a clue about which portion

28 C. Klammer et al.

of all possible IEC language features for a specific test generation configura-
tion is covered. One possibility is to follow the pattern coverage approach by
Hentz et al. [9].

– Should the Test Generation Approach Also Consider Changing the
Generation Configuration? Our current test approach uses a fix config-
uration for the TPG. It determines the basic conditions of the generation
and only the seed of used random generator is altered. The basic configura-
tion is intended to produce the most realistic PLC programs. Nevertheless,
it might be beneficial to alter this configuration with the hope to produce
more unusual corner cases that might uncover unknown NodeSet exporter
issues. Therefore, we should investigate how this alternation of the configu-
ration can be realized and how it influences the bug-revealing capabilities of
our approach.

– Could Our Approach Be Extended to Ensure Compatibility
Requirements of Generated NodeSet Models? The NodeSet exporter
will evolve in the future. New features will be added and existing ones
changed, which will most likely also change the structure and content of the
exported NodeSet files. Even new versions of or other standardized informa-
tion models have to be supported in the future. Therefore, it is necessary to
consider the compatibility requirements of these models and investigate how
our test generation approach could provide support to ensure them.

– How to Improve Maintainability of Our Approach? Major refactor-
ings of the code base of the NodeSet exporter broke our approach in the past.
The existing implementation does not provide any other way than changing
the source code to apply to the introduced changes and adapt to its changed
behavior. An advanced version of our approach should be faster and easier
to maintain, without the need to know the details of the underlying imple-
mentation. Hence, we have to explore and compare different possibilities to
realize a much more flexible and adaptable solution first.

Acknowledgments. The research reported in this paper has been funded by the
Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and
Technology (BMK), the Federal Ministry for Digital and Economic Affairs (BMDW),
and the Province of Upper Austria in the frame of the COMET - Competence Cen-
ters for Excellent Technologies Programme managed by Austrian Research Promotion
Agency FFG.

References

1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Inter-
net of Things: a survey on enabling technologies, protocols, and applications.
IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015). https://ieeexplore.ieee.org/
document/7123563/

2. Mahnke, W., Leitner, S.H., Damm, M.: OPC Unified Architecture. Springer, Berlin
Heidelberg (2009). http://link.springer.com/10.1007/978-3-540-68899-0

https://ieeexplore.ieee.org/document/7123563/
https://ieeexplore.ieee.org/document/7123563/
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-540-68899-0

Testing Autogenerated OPC UA NodeSet Models 29

3. Schleipen, M., Gilani, S.S., Bischoff, T., Pfrommer, J.: OPC UA & Industrie 4.0 -
enabling technology with high diversity and variability. Procedia CIRP 57, 315–320
(2016) http://www.sciencedirect.com/science/article/pii/S2212827116312094

4. Angerer, F., Prahofer, H., Ramler, R., Grillenberger, F.: Points-to analysis of IEC
61131–3 programs: implementation and application. In: 2013 IEEE 18th Confer-
ence on Emerging Technologies & Factory Automation (ETFA), pp. 1–8. IEEE,
Cagliari, Italy (2013). http://ieeexplore.ieee.org/document/6648062/

5. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and
Applications. Addison Wesley, Boston (2000)

6. Engel Austria GmbH: a computer-implemented method to generate an OPC UA
information model. EP19179350.4, submitted 11.06.2019

7. Hanford, K.V.: Automatic generation of test cases. IBM Syst. J. 9(4), 242–257
(1970) http://ieeexplore.ieee.org/document/5388302/

8. Candea, G., Godefroid, P.: Automated software test generation: some challenges,
solutions, and recent advances. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 505–531. Springer, Cham (2019). https://
doi.org/10.1007/978-3-319-91908-9 24

9. Hentz, C., Vinju, J.J., Moreira, A.M.: Reducing the cost of grammar-based testing
using pattern coverage. In: El-Fakih, K., Barlas, G., Yevtushenko, N. (eds.) ICTSS
2015. LNCS, vol. 9447, pp. 71–85. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-25945-1 5

10. Ramler, R., Putschögl, W., Winkler, D.: Automated testing of industrial automa-
tion software: practical receipts and lessons learned. In: Proceedings of the 1st
International Workshop on Modern Software Engineering Methods for Industrial
Automation - MoSEMInA 2014, pp. 7–16. ACM Press, Hyderabad, India (2014).
http://dl.acm.org/citation.cfm?doid=2593783.2593788

11. Suresh, V.P., Chakrabarti, S., Jetley, R.: Automated test case generation for pro-
grammable logic controller code. In: Proceedings of the 12th Innovations on Soft-
ware Engineering Conference (formerly known as India Software Engineering Con-
ference) - ISEC 2019, pp. 1–4. ACM Press, Pune, India (2019). http://dl.acm.org/
citation.cfm?doid=3299771.3299799

12. Pauker, F., Frühwirth, T., Kittl, B., Kastner, W.: A systematic approach to OPC
UA information model design. Procedia CIRP 57, 321–326 (2016). http://www.
sciencedirect.com/science/article/pii/S2212827116312100

13. González, I., Calderón, A.J., Figueiredo, J., Sousa, J.M.C.: A literature survey
on open platform communications (OPC) applied to advanced industrial environ-
ments. Electronics 8(5), 510 (2019) https://www.mdpi.com/2079-9292/8/5/510

14. Klammer, C., Ramler, R.: A journey from manual testing to automated test gener-
ation in an industry project. In: 2017 IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS-C), pp. 591–592. IEEE, Prague,
Czech Republic (2017). http://ieeexplore.ieee.org/document/8004387/

15. IEC 61131–3: Programmable controllers - Part 3: Programming languages. Inter-
national Standard IEC 61131–3:2013, International Electrotechnical Commission,
Geneva, CH (2013)

http://www.sciencedirect.com/science/article/pii/S2212827116312094
http://ieeexplore.ieee.org/document/6648062/
http://ieeexplore.ieee.org/document/5388302/
https://doi.org/10.1007/978-3-319-91908-9_24
https://doi.org/10.1007/978-3-319-91908-9_24
https://doi.org/10.1007/978-3-319-25945-1_5
https://doi.org/10.1007/978-3-319-25945-1_5
http://dl.acm.org/citation.cfm?doid=2593783.2593788
http://dl.acm.org/citation.cfm?doid=3299771.3299799
http://dl.acm.org/citation.cfm?doid=3299771.3299799
http://www.sciencedirect.com/science/article/pii/S2212827116312100
http://www.sciencedirect.com/science/article/pii/S2212827116312100
https://www.mdpi.com/2079-9292/8/5/510
http://ieeexplore.ieee.org/document/8004387/

Quality Assurance for AI-Based Systems

Quality Assurance for AI-Based Systems:
Overview and Challenges (Introduction to

Interactive Session)

Michael Felderer1(B) and Rudolf Ramler2

1 University of Innsbruck, Innsbruck, Austria
michael.felderer@uibk.ac.at

2 Software Competence Center Hagenberg GmbH (SCCH),
Hagenberg im Mühlkreis, Austria

rudolf.ramler@scch.at

Abstract. The number and importance of AI-based systems in all
domains is growing. With the pervasive use and the dependence on AI-
based systems, the quality of these systems becomes essential for their
practical usage. However, quality assurance for AI-based systems is an
emerging area that has not been well explored and requires collabora-
tion between the SE and AI research communities. This paper discusses
terminology and challenges on quality assurance for AI-based systems
to set a baseline for that purpose. Therefore, we define basic concepts
and characterize AI-based systems along the three dimensions of artifact
type, process, and quality characteristics. Furthermore, we elaborate on
the key challenges of (1) understandability and interpretability of AI
models, (2) lack of specifications and defined requirements, (3) need for
validation data and test input generation, (4) defining expected outcomes
as test oracles, (5) accuracy and correctness measures, (6) non-functional
properties of AI-based systems, (7) self-adaptive and self-learning char-
acteristics, and (8) dynamic and frequently changing environments.

Keywords: Artificial Intelligence · AI · AI-based systems · Machine
learning · Software quality · System quality · AI quality · Quality
assurance

1 Introduction

Recent advances in Artificial Intelligence (AI), especially in machine learning
(ML) and deep learning (DL), and their integration into software-based systems
of all domains raise new challenges to engineering modern AI-based systems.
These systems are data-intensive, continuously evolving, self-adapting, and their
behavior has a degree of (commonly accepted) uncertainty due to inherent non-
determinism. These characteristics require adapted and new constructive and
analytical quality assurance (QA) approaches from the field of software engineer-
ing (SE) in order to guarantee the quality during development and operation in

c© Springer Nature Switzerland AG 2021
D. Winkler et al. (Eds.): SWQD 2021, LNBIP 404, pp. 33–42, 2021.
https://doi.org/10.1007/978-3-030-65854-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65854-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-65854-0_3

34 M. Felderer and R. Ramler

live environments. However, as pointed out by Borg [1], already the concept of
“quality” in AI-based systems is not well-defined. Furthermore, as pointed out
by Lenarduzzi et al. [2], terminology differs in AI and software engineering.

The knowledge and background of different communities are brought together
for developing AI-based systems. While this leads to new and innovative
approaches, exciting breakthroughs, as well as a significant advancement in what
can be achieved with modern AI-based systems, it also fuels the babel of terms,
concepts, perceptions, and underlying assumptions and principles. For instance,
the term “regression” in ML refers to regression models or regression analy-
sis, whereas in SE it refers to regression testing. Speaking about “testing”, this
term is defined as the activity of executing the system to reveal defects in SE
but refers to the evaluation of performance characteristics (e.g., accuracy) of a
trained model with a holdout validation dataset in ML. The consequences are
increasing confusion and potentially conflicting solutions for how to approach
quality assurance for AI-based systems and how to tackle the associated chal-
lenges. While this paper starts from a software engineering point of view, its
goal is to incorporate and discuss also many other perspectives, which even-
tually aggregate into a multi-dimensional big picture of quality assurance for
AI-based systems.

In this paper, we first discuss the terminology on quality assurance for AI in
Sect. 2. Then, we discuss challenges on QA for AI in Sect. 3. Finally, in Sect. 4
we conclude the paper.

2 Background and Terminology

AI-based system (also called AI-enabled system) refers to a software-based sys-
tem that comprises AI components besides traditional software components.
However, there are different definitions of what AI means, which vary in their
scope and level of detail. AI is (human) intelligence demonstrated by machines,
which implies the automation of tasks that normally would require human intel-
ligence. For our context, i.e., quality assurance, we pragmatically include those
AI techniques in our working definition of AI that require new or significantly
adapted quality assurance techniques. This comprises supervised ML and DL,
which require to transfer control from source code (where traditional QA can be
applied) to data. Borg [1] explicitly introduces the term MLware for the subset
of AI that, fueled by data, realizes functionality through machine learning.

Software quality is defined as the capability of a software product to satisfy
stated and implied needs when used under specified conditions [3]. Software
quality assurance is then the systematic examination of the extent to which a
software product is capable of satisfying stated and implied needs [3].

AI components, especially based on supervised ML or DL, differ fundamen-
tally from traditional components because they are data-driven in nature, i.e.,
their behavior is non-deterministic, statistics-orientated and evolves over time in
response to the frequent provision of new data [4]. An AI component embedded
in a system comprises the data, the ML model, and the framework. Data are
collected and pre-processed for use. Learning program is the code for running

Quality Assurance for AI (Introduction to Interactive Session) 35

to train the model. Framework (e.g., Weka, scikit-learn, and TensorFlow) offers
algorithms and other libraries for developers to choose from when writing the
learning program.

To characterize AI-based systems for the purpose of quality assurance, it is
meaningful to consider several dimensions. Such dimensions are the artifact type
dimension, the process dimension and the quality characteristics dimension. The
dimensions and their values are shown in Fig. 1.

Fig. 1. Dimensions of AI-based systems and quality assurance

On the artifact type dimension, we can consider, based on the characteriza-
tion of AI components in the previous paragraph, the system, framework, model
and data perspective. On the process dimension, we can distinguish whether
AI components and systems are developed in isolation or continuously by iter-
atively taking feedback from the deployed components into account based on
DevOps principles. For all artifact and process settings, quality characteristics
are relevant.

For instance, additional quality properties of AI components and AI-based
systems have to be taken into account. Zhang et al. [5] consider the following
quality properties:

– Correctness refers to the probability that an AI component gets things right.
– Model relevance measures how well an AI component fits the data.
– Robustness refers to the resilience of an AI component towards perturbations.
– Security measures the resilience against potential harm, danger or loss made

via manipulating or illegally accessing AI components.
– Data privacy refers to the ability of an AI component to preserve private data

information.

36 M. Felderer and R. Ramler

– Efficiency measures the construction or prediction speed of an AI component.
– Fairness ensures that decisions made by AI components are in the right way

and for the right reason to avoid problems in human rights, discrimination,
law, and other ethical issues.

– Interpretability refers to the degree to which an observer can understand the
cause of a decision made by an AI component.

Felderer et al. [6] highlight the additional importance of data quality for the
quality of AI components. According to ISO/IEC 25012 [7] data quality charac-
teristics in the context of software development can be classified into inherent
and system-dependent data characteristics. Inherent data quality refers to data
itself, in particular to data domain values and possible restrictions, relation-
ships of data values and meta-data. System-dependent data quality refers to the
degree to which data quality is reached and preserved within a system when data
is used under specified conditions. For the framework, which ultimately is soft-
ware, the classical software quality characteristics based on ISO/IEC 25010 [8],
i.e., effectiveness, efficiency, satisfaction, freedom from risk and context cover-
age for quality in use as well as functional suitability, performance efficiency,
compatibility, usability, reliability, security, maintainability, and portability for
system/software product quality can be applied.

Testing of AI components or AI-based systems refers to any activity aimed at
detecting differences between existing and required behaviors of AI components
or AI-based systems. The testing properties (such as correctness, robustness,
or efficiency) stem from the quality characteristics defined before. Testing can
target the data, the ML model, the framework, or the entire system.

Depending on whether testing activities for AI components are performed
before or after ML model deployment one can distinguish offline and online
testing. Offline testing tests the AI component with historical data, but not in
an application environment [5]. Cross-validation using a validation dataset is
a typical offline testing approach to make sure that the AI component meets
the required conditions. Online testing tests deployed AI components in a real
or virtual application environment. Online testing complements offline testing,
because the latter relies on historical data not fully representing future data, is
not able to test some problematic circumstances occurring in real environments
like data loss, and has no access to direct user feedback. A common online testing
technique is A/B testing, which is a splitting testing technique to compare two
or more versions of a deployed component. A/B tests are often performed as
experiments and the activity is called continuous experimentation in software
engineering [9,10].

3 Challenges

A wide range of challenges exists, which stem from the novelty of the topic.
Currently, there is a lack of (standardized) approaches for quality assurance
of AI-based systems. Many attempts are in progress to fill the void. Yet the
understanding of the problem is still very incomplete. It prolongs to fundamental

Quality Assurance for AI (Introduction to Interactive Session) 37

questions like what are relevant quality characteristics (see previous section)
and what is a bug. An example for a “new type of bug” unseen in conventional
software is the phenomenon of adversarial examples [11], where small variations
in the input (e.g., noise in image data or recorded speech that is not or barely
noticeable for the human user) has a dramatic impact on the output as it results
in a severe misclassification.

In addition to outlining important concepts and terms in the previous section,
this section elaborates on the following key challenges encountered in the devel-
opment of approaches for quality assurance and testing of AI-based systems.

– Understandability and interpretability of AI models
– Lack of specifications and defined requirements
– Need for validation data and test input generation
– Defining expected outcomes as test oracles
– Accuracy and correctness measures
– Non-functional properties of AI-based systems
– Self-adaptive and self-learning characteristics
– Dynamic and frequently changing environments.

Understandability and Interpretability: Data scientists are struggling with
the problem that ML and in particular DL are producing models that are
opaque, non-intuitive, and difficult for people to understand. The produced mod-
els turned out to be uninterpretable “black boxes” [12]. This challenge propa-
gates to testing and quality assurance activities and it affects debugging models
when they have confirmed defects. Black-box testing is a common approach in
software quality assurance. So why does the lack of understandability and inter-
pretability also have an impact on testing? The challenge for quality assurance
results from the lack of specifications and defined requirements that developers
and testers are used to have for conventional software systems and which provide
the knowledge necessary to understand, build and test the system [13].

Lack of Specifications and Defined Requirements: Data-based/learning-
based approaches do not rely on specifications and predefined requirements. They
automatically generate models from existing data. The data used for learning
consists of a wide range of input and labeled output. Model generation is an
exploratory approach. Learning algorithms are applied to seek relevant “rules”
how to connect the input to the expected output. Whether such rules can be
found and how adequate they are to accurately model the connection is usually
unclear at the beginning of the learning process.

Conventional software development works in the exact opposite way com-
pared to data-based/learning-based approaches [14]. Specifications are defining
the required behavior of the system, i.e., the “rules”. They are available before
the system is implemented. People have learned about relevant rules, for exam-
ple, by experience (e.g., domain experts) or because they have acquired the
knowledge from specifications (e.g., developers). The goal in testing convention-
ally developed systems is to come up with inputs and labeled outputs to verify
and validate the implemented rules. Testing explores representative scenarios

38 M. Felderer and R. Ramler

as well as boundaries and corner cases. This goal is also important for test-
ing AI-based systems. However, testing techniques for conventional systems are
supposed to rely on specifications to derive inputs or to determine the expected
outcome for an input, which leads to further challenges such as the challenge of
test input generation and defining test oracles when testing AI-based systems.

Test Input Generation: In testing, it is usually the case that systems have
a huge input space to be explored. Hence, at the core of any testing approach
is the problem that completely exercising even a moderately complex system is
impossible due to the combinatorial explosion of the number of possible inputs.
Testing AI-based systems is no difference [15].

Software testing techniques commonly deal with the challenge of huge input
spaces by adopting sampling strategies for selecting inputs when designing test
cases. A number of testing techniques have been developed that are classified [16]
as specification-based (black-box), structure-based (white-box), or experience-
based. Similar techniques suitable for AI-based system testing are yet to emerge.
First techniques have been proposed that exploit structure information of deep
neural networks to derive coverage measures such as various forms of neuron cov-
erage (see, e.g., [17]). Inputs (test data) is generated with the goal to maximize
coverage. Various approaches are currently explored, from random generation
(fuzzing) [17] to GAN-based metamorphic approaches [18]. However, due to the
lack of interpretability and understandability (resulting from a lack of speci-
fications and requirements), identifying and selecting representative inputs to
construct meaningful test cases is still an open challenge [19].

Defining Test Oracles: The goal of testing is to reveal faults in terms of
incorrect responses or behavior of the system in reaction to a specific input.
In order to determine whether the observed output (responses and behavior) is
correct or incorrect, it has to be compared to some expected output. The source
providing information about what is a correct output is called test oracle [20].
In manually constructing test cases, a human tester defines the input and the
corresponding expected output. In a production setting, however, the input is
dynamically created throughout the actual use of the system in a particular
context or environment. It typically includes values and value combinations that
have never been used before and which were even not anticipated to be used at
all. Hence, the “oracle problem” of determining the correct output for an input,
a core challenge in testing, dramatically increases when testing in performed in
production environments under diverse settings.

Accuracy and Correctness: Closely related is the accuracy problem. Software
is expected to be deterministic and correct. Any deviation from the expected
behavior and any difference in the output is considered a defect that is supposed
to be fixed. It is well known, that real-world software is not defect-free and there
is no perfect system. However, the underlying principles and the level of correct-
ness currently achieved in software engineering is different from what AI-based
systems exhibit. AI-based systems are accepted to be inherently “defective”, as
they usually operate in a defined accuracy range. Yet a system with 99% accu-

Quality Assurance for AI (Introduction to Interactive Session) 39

racy will “fail” in about one out of hundred runs. Applying conventional testing
and quality assurance principles and approaches is incompatible with the under-
lying assumption that the system is considered correct although it exhibits a
high number of contradicting (“failing”) cases. The corresponding testing tech-
niques and quality metrics developed for deterministic systems first need to be
adapted before they can be used to assess systems with probabilistic behavior.

Non-functional Properties: Testing for non-functional aspects is always chal-
lenging and requires suitable approaches to specify expected properties. This
also holds for testing of AI-based systems, where testing non-functional aspects
has rarely been explored [5]. Especially robustness and efficiency are well suited
for testing in production. Testing robustness of AI components is challenging
because input data has more diverse forms, for instance image or audio data.
Especially adversarial robustness, where perturbations are designed to be hard
to detect are also hard to define in terms of corresponding test oracles. Metamor-
phic relations [21,22] are therefore frequently exploited as alternative ways to
construct test oracles. Testing efficiency for AI components has to deal not only
with prediction speed, but also with construction speed, which poses challenges
to measuring and analyzing performance, especially in a real-time context when
decisions have to be made instantaneous (e.g., in autonomous driving).

Self-adaptive and Self-learning Systems: Regression testing is a major
task in any modern software development project. The agile paradigm and the
DevOps movement have led to short development cycles with frequent releases as
well as the widespread use of techniques such as Continuous Integration, Deploy-
ment, and Delivery [23]. The answer to the question how quality assurance can
keep up with the continuously growing development speed is automated test-
ing. Test automation, however, is a major cost-driver. First, due to the effort
for initially setting up the test environment and implementing the automated
tests, and second, even more so due to the effort for maintaining the automated
tests when the system under test has been changed [24]. In contrast to conven-
tional software that is evolved over a series of development iterations, many AI-
based systems are designed to evolve dynamically at run-time by self-adapting
to changing environments and continuously learning from the input they pro-
cess [25]. Testing dynamic self-adaptive systems raises many open issues about
how to cope with the complexity and dynamics that result from the flexibility
of self-adaptive and self-learning systems [26].

Dynamic Environments: AI components often operate in dynamic and fre-
quently changing environments. Examples are typically data intensive applica-
tions that have to integrate data from various sources (including sensors, web
data, etc.), which all have different characteristics regarding their data qual-
ity [27,28]. Data can also stem from simulators or AI components may have to
control simulations. Due to the complexity and non-determinism of the envi-
ronment, testability (i.e., controllability and observability) is highly challenging.
Furthermore, due to information heterogeneity also privacy and security aspects
are essential. To address these issues, run-time monitoring and online testing

40 M. Felderer and R. Ramler

have been suggested. Online testing, the assessment of the system’s behavior is
performed live, in production and in a real application environment [5].

Real application environments provide the advantage of real user integration
and real user experience. In modern cloud-based environments user information
can easily be collected and used to evaluate and continuously improve the system
(e.g., in web-based recommender systems). However, this requires a significant
number of users with a clear user profile. In addition, applying testing in pro-
duction for business-critical users poses business risks. In addition, one has to
carefully select metrics to guarantee their validity and reliability. The term “test-
ing in production” can even be considered as an oxymoron, especially if systems
are safety-critical and can harm the health of impacted stakeholders (e.g., for
autonomous systems controlling vehicles). In that context, clear constraints have
to be defined and guarantees under which conditions testing in production can
be performed at all because safety-criticality requires clear strategies to remove
defects before deployment or to handle them properly in production. However,
besides safety also privacy and ethical issues may restrict the applicability of
testing in production and therefore require specific constraints and monitors.

4 Summary and Conclusions

In this paper, we discussed terminology and challenges on quality assurance for
AI-based systems. To characterize AI-based systems for the purpose of qual-
ity assurance, we defined the three dimensions artifact type (i.e., data, model,
framework, and system), process (from isolated to continuous), and quality char-
acteristics (with respect to software quality, quality-in-use, and data quality).
Furthermore, we elaborated on the key challenges of (1) understandability and
interpretability of AI models, (2) lack of specifications and defined requirements,
(3) need for validation data and test input generation, (4) defining expected out-
comes as test oracles, (5) accuracy and correctness measures, (6) non-functional
properties of AI-based systems, (7) self-adaptive and self-learning characteristics,
and (8) dynamic and frequently changing environments.

In order to properly address the challenges raised in this paper and to enable
high quality AI-based systems, first and foremost, exchange of knowledge and
ideas between the SE and the AI community is needed. One channel of exchange
is education or training through dedicated courses [29] or media [30]. Another
one are dedicated venues for exchange and discussion of challenges on quality
assurance for AI-based systems like the IEEE International Conference On Arti-
ficial Intelligence Testing or the workshop Quality Assurance for AI collocated
with the Software Quality Days.

Acknowledgments. The research reported in this paper has been partly funded
by the Federal Ministry for Climate Action, Environment, Energy, Mobility, Inno-
vation and Technology (BMK), the Federal Ministry for Digital and Economic Affairs
(BMDW), and the Province of Upper Austria in the frame of the COMET - Compe-
tence Centers for Excellent Technologies Programme managed by Austrian Research
Promotion Agency FFG.

Quality Assurance for AI (Introduction to Interactive Session) 41

References

1. Borg, M.: The AIQ meta-testbed: pragmatically bridging academic AI testing and
industrial Q needs. In: SWQD 2021. LNBIP, vol. 404, pp. 66–77. Springer, Cham
(2021)

2. Lenarduzzi, V., Lomio, F., Moreschini, S., Taibi, D., Tamburri, D.A.: Software
quality for AI: where we are now? In: SWQD 2021. LNBIP, vol. 404, pp. 43–53.
Springer, Cham (2021)

3. ISO/IEC: ISO/IEC 25000:2005 software engineering—software product quality
requirements and evaluation (square)—guide to square. Technical report, ISO
(2011)

4. Amershi, S., et al.: Software engineering for machine learning: a case study. In:
2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pp. 291–300. IEEE (2019)

5. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: survey, land-
scapes and horizons. IEEE Trans. Softw. Eng. PP, 1 (2020)

6. Felderer, M., Russo, B., Auer, F.: On testing data-intensive software systems. In:
Biffl, S., Eckhart, M., Lüder, A., Weippl, E. (eds.) Security and Quality in Cyber-
Physical Systems Engineering, pp. 129–148. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-25312-7 6

7. ISO/IEC: ISO/IEC 25012:2008 software engineering – software product quality
requirements and evaluation (square) – data quality model. Technical report, ISO
(2008)

8. ISO/IEC: ISO/IEC 25010:2011 systems and software engineering – systems and
software quality requirements and evaluation (square) – system and software qual-
ity models. Technical report, ISO (2011)

9. Ros, R., Runeson, P.: Continuous experimentation and A/B testing: a mapping
study. In: 2018 IEEE/ACM 4th International Workshop on Rapid Continuous Soft-
ware Engineering (RCoSE), pp. 35–41. IEEE (2018)

10. Auer, F., Felderer, M.: Current state of research on continuous experimentation:
a systematic mapping study. In: 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pp. 335–344. IEEE (2018)

11. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for
deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2805–2824 (2019)

12. Goebel, R., et al.: Explainable AI: the new 42? In: Holzinger, A., Kieseberg, P.,
Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2018. LNCS, vol. 11015, pp. 295–303.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99740-7 21

13. Bosch, J., Olsson, H.H., Crnkovic, I.: It takes three to tango: requirement, out-
come/data, and AI driven development. In: SiBW, pp. 177–192 (2018)

14. Fischer, L., et al.: Applying AI in practice: key challenges and lessons learned.
In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2020.
LNCS, vol. 12279, pp. 451–471. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57321-8 25

15. Marijan, D., Gotlieb, A., Ahuja, M.K.: Challenges of testing machine learning
based systems. In: 2019 IEEE International Conference On Artificial Intelligence
Testing (AITest), pp. 101–102. IEEE (2019)

16. ISO/IEC/IEEE international standard - software and systems engineering–
software testing–part 4: Test techniques, pp. 1–149. ISO/IEC/IEEE 29119-4:2015
(2015)

https://doi.org/10.1007/978-3-030-25312-7_6
https://doi.org/10.1007/978-3-030-25312-7_6
https://doi.org/10.1007/978-3-319-99740-7_21
https://doi.org/10.1007/978-3-030-57321-8_25
https://doi.org/10.1007/978-3-030-57321-8_25

42 M. Felderer and R. Ramler

17. Xie, X., et al.: DeepHunter: a coverage-guided fuzz testing framework for deep
neural networks. In: Proceedings of the 28th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, ISSTA 2019, pp. 146–157. Association
for Computing Machinery, New York (2019)

18. Zhang, M., Zhang, Y., Zhang, L., Liu, C., Khurshid, S.: DeepRoad: GAN-based
metamorphic testing and input validation framework for autonomous driving sys-
tems. In: 2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 132–142. IEEE (2018)

19. Braiek, H.B., Khomh, F.: On testing machine learning programs. J. Syst. Softw.
164, 110542 (2020)

20. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The Oracle problem
in software testing: a survey. IEEE Trans. Softw. Eng. 41(5), 507–525 (2015)

21. Xie, X., Ho, J.W., Murphy, C., Kaiser, G., Xu, B., Chen, T.Y.: Testing and vali-
dating machine learning classifiers by metamorphic testing. J. Syst. Softw. 84(4),
544–558 (2011)

22. Dwarakanath, A., et al.: Identifying implementation bugs in machine learning based
image classifiers using metamorphic testing. In: Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pp. 118–
128 (2018)

23. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Pearson Education, London (2010)

24. Garousi, V., Felderer, M.: Developing, verifying, and maintaining high-quality
automated test scripts. IEEE Softw. 33(3), 68–75 (2016)

25. Khritankov, A.: On feedback loops in lifelong machine learning systems. In: SWQD
2021. LNBIP, vol. 404, pp. 54–65. Springer, Cham (2021)

26. Eberhardinger, B., Seebach, H., Knapp, A., Reif, W.: Towards testing self-
organizing, adaptive systems. In: Merayo, M.G., de Oca, E.M. (eds.) ICTSS 2014.
LNCS, vol. 8763, pp. 180–185. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44857-1 13

27. Foidl, H., Felderer, M., Biffl, S.: Technical debt in data-intensive software sys-
tems. In: 2019 45th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pp. 338–341. IEEE (2019)

28. Foidl, H., Felderer, M.: Risk-based data validation in machine learning-based soft-
ware systems. In: Proceedings of the 3rd ACM SIGSOFT International Workshop
on Machine Learning Techniques for Software Quality Evaluation, pp. 13–18 (2019)

29. Kästner, C., Kang, E.: Teaching software engineering for AI-enabled systems. arXiv
preprint arXiv:2001.06691 (2020)

30. Hulten, G.: Building Intelligent Systems. Springer, Berkeley (2018). https://doi.
org/10.1007/978-1-4842-3432-7

https://doi.org/10.1007/978-3-662-44857-1_13
https://doi.org/10.1007/978-3-662-44857-1_13
http://arxiv.org/abs/2001.06691
https://doi.org/10.1007/978-1-4842-3432-7
https://doi.org/10.1007/978-1-4842-3432-7

Software Quality for AI: Where We Are
Now?

Valentina Lenarduzzi1(B), Francesco Lomio2, Sergio Moreschini2,
Davide Taibi2, and Damian Andrew Tamburri3

1 LUT University, Lahti, Finland
valentina.lenarduzzi@lut.fi

2 Tampere University, Tampere, Finland
{francesco.lomio,sergio.moreschini,davide.taibi}@tuni.fi

3 Eindhoven University of Technology - JADS, ’s-Hertogenbosch, The Netherlands
d.a.tamburri@tue.nl

Abstract. Artificial Intelligence is getting more and more popular,
being adopted in a large number of applications and technology we use
on a daily basis. However, a large number of Artificial Intelligence appli-
cations are produced by developers without proper training on software
quality practices or processes, and in general, lack in-depth knowledge
regarding software engineering processes. The main reason is due to the
fact that the machine-learning engineer profession has been born very
recently, and currently there is a very limited number of training or
guidelines on issues (such as code quality or testing) for machine learn-
ing and applications using machine learning code. In this work, we aim
at highlighting the main software quality issues of Artificial Intelligence
systems, with a central focus on machine learning code, based on the
experience of our four research groups. Moreover, we aim at defining a
shared research road map, that we would like to discuss and to follow
in collaboration with the workshop participants. As a result, the soft-
ware quality of AI-enabled systems is often poorly tested and of very
low quality.

Keywords: Software quality · AI software

1 Introduction

The term Artificial Intelligence (AI) commonly indicates a software system that
is capable of mimicking human intelligence [27]. AI systems are capable of per-
forming actions thanks to underlying algorithms that can learn from the data
without being specifically programmed. The set of these algorithms are referred
to as Machine Learning (ML) algorithms [21].

As any software system, AI systems require attention attaining quality assur-
ance, and in particular to their code quality [26]. Conversely, current develop-
ment processes, and in particular agile models, enable companies to decide the

c© Springer Nature Switzerland AG 2021
D. Winkler et al. (Eds.): SWQD 2021, LNBIP 404, pp. 43–53, 2021.
https://doi.org/10.1007/978-3-030-65854-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65854-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-65854-0_4

44 V. Lenarduzzi et al.

technologies to adopt in their system in a later stage and it becomes hard to
anticipate if a system, or if a data pipeline is used for Machine-Learning (ML)
produces high-quality models [23].

The need for considering the quality of AI-enabled systems was highlighted
already even more than 30 years ago [26,31]. For the time being, different
approaches have been proposed to evaluate the quality of the AI-models but
little in the way of AI code quality itself (e.g. [15] and [8]).

Conversely, as already mentioned, the overall quality of the AI-enabled sys-
tems, and in particular the ML code has never been investigated systematically
so far if not anecdotally. For example, a report from Informatics Europe1 and the
ACM Europe Council2, as well as the Networked European Software and Ser-
vices Initiative3, highlighted the importance of assessing the quality of AI-related
code [16,23]. The EU has also proposed a whitepaper discussing a high-level app-
roach to the regulatory compliance of AI, but did not focus on code quality issues
at all [12].

AI code needs to be maintained. Therefore, developers need to take care of
the quality of their code, and keep the technical debt [6] under control [28].

The goal of this paper is to highlight the quality-related issues of AI software,
as well as possible solutions that can be adopted to solve them. The identification
of such quality issues is based on the experience of our four research groups: (1)
the Software Engineering group of the LUT University, (2) the Machine Learn-
ing and (3) Software Engineering groups of the Tampere University, and the
(4) Jheronimus Academy Data and Engineering (JADE) lab of the Jheronimus
Academy of Data Science.

The insights in this paper enable researchers to understand possible problems
on the quality of AI-enabled systems opening new research topics and allows
companies to understand how to better address quality issues in their systems.

The remainder of this paper is structured as follows. Section 2 presents
Related works. Section 3 described the current issues on code quality of AI-
enabled systems, Sect. 4 proposes our shared road map while Sect. 5 draws con-
clusions.

2 Related Work

As any software system, AI-enabled software, and in general ML code, require
to pay attention to quality assurance, and in particular to the code quality.
Current development processes, and in particular agile models, enable companies
to decide the technologies to adopt in their system in a later stage. Therefore, it
is hard to anticipate if a system, or if a data pipeline used for ML will produce
high-quality models [23].

1 Informatics Europe https://www.informatics-europe.org.
2 ACM Europe Council https://europe.acm.org.
3 The Networked European Software and Services Initiative - NESSI http://www.

nessi-europe.com.

https://www.informatics-europe.org
https://europe.acm.org
http://www.nessi-europe.com
http://www.nessi-europe.com

Software Quality for AI: Where Are We Now? 45

A limited number of peer-reviewed works highlighted the quality issue in
AI-enabled software.

Murphy et al. [22] proposed a testing framework for Machine Learning (ML),
introducing the concept of regression testing and an approach for ranking the
correctness of new versions of ML algorithms. Besides the proposed model,
they also highlighted conflicting technical terms with very different meanings
to machine learning experts than they do to software engineers (e.g. “testing”,
“regression”, “validation”, “model”). Moreover, they raised the problem of code
quality, reporting that future works should address it. Related to the matter of
ML testing, Zhang et al. provided a comprehensive survey research [30]. In this
work with the term ML testing, they refer to “any activity aimed at detecting dif-
ferences between existing and required behaviors of machine learning systems.”
The work comprehends a section related to fundamental terminology in ML
which will be referred to in Table 1.

Nakajima, in his invited talk, call the attention the product quality of ML-
based systems, identifying new challenges for quality assurance methods. He
proposed to identify new testing methods for ML-based systems, proposing to
adopt Metamorphic testing [10] is a pseudo oracle approach and uses golden
outputs as testing values.

Pimentel et al. [10] investigated the reproducibility of Jupyter notebooks,
showing that less than 50% of notebooks are reproducible, opening new ques-
tions to our community to propose advanced approaches for analyzing Jupyter
notebooks. Wang et al. [29] analyzed 2.5 Million of Jupiter notebooks investigat-
ing their code quality reporting that notebooks are inundated with poor quality
code, e.g., not respecting recommended coding practices, or containing unused
variables and deprecated functions. They also report that poor coding practices,
as well as the lack of quality control, might be propagated into the next gen-
eration of developers. Hence, they argue that there is a strong need to identify
quality practices, but especially a quality culture in the ML community.

The vast majority of grey literature also focuses on the quality of the ML
models or on the data. Only a limited number of authors raised the problem
of the overall product quality or of the quality of the ML code. Vignesh [24]
proposed to continuously validate the quality of ML models considering black
boxes techniques and evaluating the performance of model post-deployment on
test data sets and new data from production scenarios. He also proposes to adopt
metamorphic testing, involving data mutation to augment test data sets used
for evaluating model performance and accuracy.

It is interesting to note that Vignesh recommends exposing models being
tested as RESTful service, instead of testing internally or manually. As for the
quality of the code of ML Models, Dhaval [20] proposes to introduce code review
processes for ML developers, adopting code reviewing techniques traditionally
adopted in SW Engineering.

Besides the model itself, the essence of a good machine learning-based soft-
ware relies on the data used to train the network. It is therefore vital to take
into account the characteristics and features that mark a specific application and

46 V. Lenarduzzi et al.

meet such qualities in the data used to develop it. Hence, some of the require-
ments that the data needs to meet are: context compatibility, incorruptibility,
and completeness. In a data-driven software scenario, it is not rare to find to
encounter a situation in which the same data set is used to train networks with
different goals. As an example, most of the networks generated in computer
vision are fine-tuned over a first tuning on ImageNET [13]. In such a situation
it is very important to take into account the compatibility between the context
for which the data has been created and the one we are trying to use the data
for. With incorruptibility we define the quality of a data set to be resistant to
external factors that might generate errors, or undesired changes, during writing,
reading, storage, transmission, or processing.

A data set is complete, related to a specific application when it is capable of
describing and defining specific information (in the form of mono or multidimen-
sional variables) in its entirety. Related to a Machine Learning-based approach
we say that the data set is complete when it is capable of tuning the weights
to generate the desired result without any requirement for fine-tuning. As an
example, we take the MNIST data set [17] which is complete if we are training
a network to understand handwritten digits, but not in the case when we want
to train a network to understand handwriting as it does not include letters. To
this matter, an ulterior data set has been created, known as EMNIST [11].

Lwakatare et al. performed the work closest to this work [19]. They discussed
software engineering challenges based on a survey conducted on four companies.
The result is a taxonomy of challenges that consider the life-cycle activities of ML
code (such as assemble data set, create model, (re)train and evaluate, deploy).
However, differently than in our work, they did not identify clear issues and
possible solutions.

3 AI Software Quality: Key Issues and Comments

Based on the collective experience of our groups and through simple self-
ethnography [9], we elicited different code quality issues commonly faced by
all sorts of stakeholders (e.g., our research assistant working for consultancy
projects in AI, our colleagues, and our students as developers of AI Software)
working with AI software. In this Section, we describe the aforementioned elic-
itation, also discussing possible solutions that might be adopted to solve the
emerged issues.

– Developers Skills and Training. Once the suitable data has been chosen
and proven to be compliant with our requirements the next step involves
coding. The machine learning engineer profession was born less than a decade
ago and therefore, no training guidelines have been outlined yet. Most of the
professionals that occupy this position have been moving from a similar field
such as mathematics, physics, or computer vision. This grouping of different
backgrounds generated “communication problems” which reflected in the way
the code was written. We identify four open problems nested in this macro
area: code understandability, code quality guidelines, training problems, and

Software Quality for AI: Where Are We Now? 47

the absence of tools for software quality improvement. One of the main issues
of AI Developers is the lack of skills in software engineering, and especially
the lack of skills in software quality and maintenance. The reason is that AI
developers are often experts borrowed from other fields such as physics or
mathematics. The lack of skills in software quality is then reflected in their
code. Moreover, as highlighted by Wang et al. [29], the AI code examples
often provided online by AI experts and teachers are of low quality, mainly
because they lack in software engineering skills. As a result, these poor coding
practices may further be propagated into the next generation of developers.
For these reasons, there has been a rise in the number of courses created to
instruct specific approaches related to AI in different fields [14].

– Development Processes. Because of the aforementioned lack of skills and
training in software engineering, AI developers often lack knowledge of devel-
opment processes. As a result, in our experience, it is often hard to introduce
them into running agile processes, while it is much easier to introduce them
into a waterfall process. The main reason is their problem in segmenting
the work into smaller units or user stories, and to incrementally deliver the
results, as usually done in agile processes.

– Testing Processes. Testing AI code is usually considered for AI developers
as testing and training the machine learning algorithms. The introduction of
unit and integration testing is of paramount importance to ensure the correct
execution of software systems. However, the different testing practices, usually
applied in software engineering, are not commonly applied to the AI-related
code, but only to the overall systems including them, and the AI-specific
function is not commonly part of the CI/CD pipeline. The reason might be
in the complexity of running tests, and the problem of the non-deterministic
results of the AI-algorithms. Metamorphic testing can be a good solution, at
least to run unit testing.

– Deployment confidence. Developers commonly prefer to manually test
their AI-models, and then to manually deploy the systems in production,
mainly because they are not confident in releasing every change automatically.
The reason is still connected to the lack of clear testing processes and the last
of integration of unit and integration tests.

– Code Quality. AI-code is often of very low quality, mainly because of the
lack of quality guidelines, quality checks, and standards. We might expect the
IDEs to highlight possible “code smells” in the code, or to highlight possible
styling issues. However, the current support from IDEs is very limited.
Specific libraries, such as Tensorflow, refer to the document PEP-8 [25], which
is the official style guide for Python code. However, the latter does not take
into account the specific pipeline which involves the different stages of devel-
oping AI-code. An interesting initiative is conducted by Pytorch, which relies
on Pytorch [4], a wrapper developed to organize the code in sections and
separates the research code (dataloader, optimizer, training step) from the
engineering code (i.e. training process). Even if Pytorch does not provide
clear styling guidelines, it pushes developers to adopt clear guidelines for
structuring the code.

48 V. Lenarduzzi et al.

– Incompatibility of new version of ML libraries. A well known problem
in ML, is the necessity of installing a specific version of libraries as most of
those might not be compatible with their future releases mining the success of
the final project. This often creates inconsistency and incompatibility of the
old version of the system with newer versions [1,2,5]. A possible workaround is
to use microservices, adopting a specific version of a library on a service, and
eventually another version of the same library on another service. However,
when the existing code needs to be executed on a newer version of the same
library, migration issues need to be considered.

– Code Portability. The rise of multiple libraries for ML training together
with the different background of the engineers generated a new “Babel tower”
for coding. Libraries such as Pytorch or Tensorflow have a different backbone
which makes the same application look very different from one another. There-
fore, to understand and port the code from one library to the other, it is often
nontrivial.

– Terminology. AI and Software Engineering usually adopts the same terms
for different purposes. This issue usually creates misunderstandings between
developers with different backgrounds. In order to clarify the terms adopted
by both domain, in Table 1 we present and describe the most common mis-
leading terms together with their meaning in AI and in SW Engineering.
Some terms have a totally different meaning in the two domains, while others
might be used for the same purpose in different contexts. As an example, the
term “parameter”, besides the different definitions proposed in Table 1, is in
both cases used to describe inputs or properties of objects for configuration.
As another example, the term “code” can be also used in AI to describe the
set of instructions to build the different layers, to recall the input dataset,
and to perform training, test (and when necessary validation).

– Communication between AI Developers and other developers.
Because of the different terminology adopted, we commonly experienced com-
munication challenges between AI and other developers. As an example, we
often had communication issues with AI developers without a software engi-
neering background, especially when discussing scalability, architectural, or
development processes related issues.

4 Research Roadmap

In order to address the issues reported in Sect. 3, we would like to share a collab-
orative research road map, that we are aiming at investigating in collaboration
with different groups.

– Identify the most common quality issues in AI code using traditional SW
Engineering methodologies. In this step, we are aiming at conducting a set
of empirical studies among AI-developers and end-users of AI-based systems,
intending to elicit the most important internal quality issues experienced by
the developers and the external issues perceived by the users of the same
systems.

Software Quality for AI: Where Are We Now? 49

Table 1. The terminology adopted in AI and in SW engineering

Term Machine learning Software engineering

Class “One of a set of enumerated target value
for a label” resulted from a classification
model [3]

An extensible template
definition for instantiating
objects in object-oriented
programming

Code The possible values of a field (variable),
also known as “category”

The source code

Distribution Probability distribution (from statistics).
Sometimes also referred to distributed
computing or parallelism

Distributed computing. In
testing, refers to the
testing of distributed
systems

Example An entry from a dataset, composed of at
least one features and a label, that can
be used in model training and/or after
training during inference. (also known as
Observation)

An example system or
piece of software often
found in software
documentation

Execution
Environ-
ment

The set of all the libraries which are
installed, and lately imported in the
compiler. Specifically, in reinforcement
learning, is the observable world exposed
to a learning agent [3]

A system comprised of
hardware and software
tools used by the
developers to build/deploy
software

Feature A characterizing variable found in the
input data to a machine learning model.
Predictions about the data can be made
after gaining insight from these features
(training)

A distinguishing
characteristic of a software
item

Function A mathematical function, mapping
parameters to a domain

In principle the same, in
practice refers to the
implementation in the
source code

Label In supervised learning: expected output
for a training case. For example, an email
message may be labeled as SPAM or
non-SPAM [3]

A label refers to the name
of a text field in a form or
user interface (e.g the
label of a button)

Layer A set of neurons in a neural network that
operates on input data (possibly from
previous layers) and provides inputs to
the next layer(s) as their outputs [3]

A layer in a multilayered
software solution, e.g. data
access layer, business logic
layer, presentation layer

Model Output of a ML algorithm after it has
been trained from the training data, the
learning program, and frameworks [30]

Different meaning,
depending on the context:
Development Model
(process), Data Model
(Database schema), ...

Network Usually assuming Neural Network Usually assuming
Computer Network

(continued)

50 V. Lenarduzzi et al.

Table 1. (continued)

Term Machine learning Software engineering

Parameter A variable in a model that is adjusted
during training to minimize loss. E.g.
weights or normalization parameters

A variable that holds a
piece of data provided to a
function as an input
argument

Pattern Detecting patterns in a dataset Design patterns or
architectural patterns

Performance How well a certain model performs
according to the selected metrics, e.g.
precision, recall, or false positives, after
training [21]

How fast a certain piece of
software executes and/or
how efficient it is

Quality See performance Software quality, including
internal (e.g. code quality)
and external quality (e.g.
usability, performance, ...)

Reference The baseline category used to compare
with other categories

The variable that points
to a memory address of
another variable

Regression Estimate numerical values, identifying
relationships, and correlations between
different types of data [30]

Regression (Testing) is a
full or partial selection of
already executed test
cases which are
re-executed to ensure that
a recent program or code
change has not adversely
affected existing features

Testing The process of evaluating a network over
a set of data which has not been used for
training and/or validation

Check whether the actual
results match the
expected results and to
ensure that the software
system is Defect free

Training The process of tuning the weights and
biased of a network recursively by
making use of labeled examples

Developer’s training

Validation The process of using data outside the
training set, known as the validation set,
to evaluate the model quality. Important
to ensure the generalization of the model
outside the training set [3]

Verification and validation
is the process of checking
that a software system
meets specifications and
that it fulfills its intended
purpose (requirements)

– Identify a set of testing techniques applicable to AI-enabled systems, to allow
their execution into the CI/CD pipeline, and increase their confidence in the
deployment.

Software Quality for AI: Where Are We Now? 51

– Identify a set of quality rules for the code and develop a linter for detecting
code-level issues for the most common libraries and languages, starting from
widely used tools for static code analysis [18] and technical debt analysis [7].

– Integrate into our master courses of Machine Learning a course on software
engineering, with a special focus on the maintenance and testing of the AI-
enabled applications.

5 Conclusion

In this work, we highlighted the most common quality issues that our developers
face during the development of AI-enabled systems, based on the experience of
our three research groups.

Overall, the training of developers is one of the biggest lacks in AI, which
usually brings several issues related to low code quality of AI-code as well as low
long-term maintenance.

Acknowledgement. We would like to thank the software engineering and AI com-
munity and in particular Taher Ahmed Ghaleb, Steffen Herbold, Idan Huji, Marcos
Kalinowski, Christian Kästner, Janet Siegmund and Daniel Strüber for helping us on
the definition of the glossary of AI and SW Engineering terms4.

References

1. TensorFlow version compatibility. https://www.tensorflow.org/guide/versions
2. Compatible Versions of PyTorch/Libtorch with Cuda 10.0 (2019). https://discuss.

pytorch.org/t/compatible-versions-of-pytorch-libtorch-with-cuda-10-0/58506.
Accessed 11 July 2020

3. Machine Learning Glossary, Google Developers (2019). https://developers.google.
com/machine-learning/glossary. Accessed 28 Aug 2020

4. Pytorch Lightning. The lightweight PyTorch wrapper for ML researchers (2019).
https://github.com/PyTorchLightning/pytorch-lightning. Accessed 11 July 2020

5. Tensorflow 1.11.0 incompatible with keras2.2.2? (2019). https://github.com/
tensorflow/tensorflow/issues/22601. Accessed 11 July 2020

6. Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C.: Managing technical debt in
software engineering (Dagstuhl seminar 16162). Dagstuhl Reports 6 (2016)

7. Avgeriou, P., et al.: An overview and comparison of technical debt measurement
tools. IEEE Softw. (2021)

8. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)

9. Britten, N., Campbell, R., Pope, C., Donovan, J., Morgan, M., Pill, R.: Using meta
ethnography to synthesise qualitative research: a worked example. J. Health Serv.
Res. Policy 7(4), 209–215 (2002). http://www.ncbi.nlm.nih.gov/pubmed/12425780

10. Chen, T.Y.: Metamorphic testing: a simple method for alleviating the test oracle
problem. In: Proceedings of the 10th International Workshop on Automation of
Software Test, AST 2015, pp. 53–54. IEEE Press (2015)

4 https://twitter.com/vale lenarduzzi/status/1295055334264975360. Last access: 28
August 2020.

https://www.tensorflow.org/guide/versions
https://discuss.pytorch.org/t/compatible-versions-of-pytorch-libtorch-with-cuda-10-0/58506
https://discuss.pytorch.org/t/compatible-versions-of-pytorch-libtorch-with-cuda-10-0/58506
https://developers.google.com/machine-learning/glossary
https://developers.google.com/machine-learning/glossary
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/tensorflow/tensorflow/issues/22601
https://github.com/tensorflow/tensorflow/issues/22601
http://www.ncbi.nlm.nih.gov/pubmed/12425780
https://twitter.com/vale_lenarduzzi/status/1295055334264975360

52 V. Lenarduzzi et al.

11. Cohen, G., Afshar, S., Tapson, J., Van Schaik, A.: EMNIST: extending MNIST to
handwritten letters. In: 2017 International Joint Conference on Neural Networks
(IJCNN), pp. 2921–2926. IEEE (2017)

12. Commission, E.: WHITE PAPER On Artificial Intelligence - A Euro-
pean approach to excellence and trust (2020). https://ec.europa.eu/info/
sites/info/files/commission-white-paper-artificial-intelligence-feb2020 en.
pdf?utm source=CleverReach&utm medium=email&utm campaign=23-02-
2020+Instituts-Journal+07%2F20%3A+Wo+waren+Sie%3F+Es+ging+um+Sie
%21&utm content=Mailing 11823061. Accessed 09 July 2020

13. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. IEEE (2009)

14. Kästner, C., Kang, E.: Teaching software engineering for AI-enabled systems. arXiv
preprint arXiv:2001.06691 (2020)

15. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. In: Proceedings of the 14th International Joint Conference
on Artificial Intelligence, IJCAI 1995, vol. 2, pp. 1137–1143. Morgan Kaufmann
Publishers Inc., San Francisco (1995)

16. Larus, J., et al.: When computers decide: European recommendations on machine-
learned automated decision making (2018)

17. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

18. Lenarduzzi, V., Sillitti, A., Taibi, D.: A survey on code analysis tools for software
maintenance prediction. In: Ciancarini, P., Mazzara, M., Messina, A., Sillitti, A.,
Succi, G. (eds.) SEDA 2018. AISC, vol. 925, pp. 165–175. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-14687-0 15

19. Lwakatare, L.E., Raj, A., Bosch, J., Olsson, H.H., Crnkovic, I.: A taxonomy of
software engineering challenges for machine learning systems: an empirical investi-
gation. In: Kruchten, P., Fraser, S., Coallier, F. (eds.) XP 2019. LNBIP, vol. 355, pp.
227–243. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19034-7 14

20. Dhaval, M.: How to perform Quality Assurance for Machine Learn-
ing models? (2018). https://medium.com/datadriveninvestor/how-to-perform-
quality-assurance-for-ml-models-cef77bbbcfb. Accessed 09 July 2020

21. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (2010). [u.a.].
http://www.amazon.com/Machine-Learning-Tom-M-Mitchell/dp/0070428077

22. Murphy, C., Kaiser, G.E., Arias, M.: A framework for quality assurance of machine
learning applications. Columbia University Computer Science Technical reports,
CUCS-034-06 (2006)

23. NESSI: Software and Artificial Intelligence (2019). http://www.nessi-europe.com/
files/NESSI%20-%20Software%20and%20AI%20-%20issue%201.pdf. Accessed 09
July 2020

24. Radhakrishnan, V.: How to perform Quality Assurance for Machine Learning
models? (2019). https://blog.sasken.com/quality-assurance-for-machine-learning-
models-part-1-why-quality-assurance-is-critical-for-machine-learning-models.
Accessed 09 July 2020

25. van Rossum, G., Warsaw, B., Coghlan, N.: PEP 8 - Style Guide for Python Code.
https://www.python.org/dev/peps/pep-0008/

26. Rushby, J.: Quality measures and assurance for AI (artificial intelligence) software.
Technical report (1988)

https://ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf?utm_source=CleverReach&utm_medium=email&utm_campaign=23-02-2020+Instituts-Journal+07%2F20%3A+Wo+waren+Sie%3F+Es+ging+um+Sie%21&utm_content=Mailing_11823061
https://ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf?utm_source=CleverReach&utm_medium=email&utm_campaign=23-02-2020+Instituts-Journal+07%2F20%3A+Wo+waren+Sie%3F+Es+ging+um+Sie%21&utm_content=Mailing_11823061
https://ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf?utm_source=CleverReach&utm_medium=email&utm_campaign=23-02-2020+Instituts-Journal+07%2F20%3A+Wo+waren+Sie%3F+Es+ging+um+Sie%21&utm_content=Mailing_11823061
https://ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf?utm_source=CleverReach&utm_medium=email&utm_campaign=23-02-2020+Instituts-Journal+07%2F20%3A+Wo+waren+Sie%3F+Es+ging+um+Sie%21&utm_content=Mailing_11823061
https://ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf?utm_source=CleverReach&utm_medium=email&utm_campaign=23-02-2020+Instituts-Journal+07%2F20%3A+Wo+waren+Sie%3F+Es+ging+um+Sie%21&utm_content=Mailing_11823061
http://arxiv.org/abs/2001.06691
https://doi.org/10.1007/978-3-030-14687-0_15
https://doi.org/10.1007/978-3-030-19034-7_14
https://medium.com/datadriveninvestor/how-to-perform-quality-assurance-for-ml-models-cef77bbbcfb
https://medium.com/datadriveninvestor/how-to-perform-quality-assurance-for-ml-models-cef77bbbcfb
http://www.amazon.com/Machine-Learning-Tom-M-Mitchell/dp/0070428077
http://www.nessi-europe.com/files/NESSI%20-%20Software%20and%20AI%20-%20issue%201.pdf
http://www.nessi-europe.com/files/NESSI%20-%20Software%20and%20AI%20-%20issue%201.pdf
https://blog.sasken.com/quality-assurance-for-machine-learning-models-part-1-why-quality-assurance-is-critical-for-machine-learning-models
https://blog.sasken.com/quality-assurance-for-machine-learning-models-part-1-why-quality-assurance-is-critical-for-machine-learning-models
https://www.python.org/dev/peps/pep-0008/

Software Quality for AI: Where Are We Now? 53

27. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach: The Intel-
ligent Agent Book. Prentice Hall Series in Artificial Intelligence. Prentice Hall,
Upper Saddle River (1995)

28. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Advances
in Neural Information Processing Systems, pp. 2503–2511 (2015)

29. Wang, J., Li, L., Zeller, A.: Better code, better sharing: on the need of analyzing
Jupyter notebooks (2019)

30. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: survey, land-
scapes and horizons. IEEE Trans. Softw. Eng. PP, 1 (2020)

31. Ören, T.I.: Quality assurance paradigms for artificial intelligence in modelling and
simulation. Simulation 48(4), 149–151 (1987)

Hidden Feedback Loops in Machine
Learning Systems: A Simulation Model

and Preliminary Results

Anton Khritankov(B)

Moscow Institute of Physics and Technology, Dolgoprudny,
Moscow Region, Russian Federation

anton.khritankov@acm.org

Abstract. In this concept paper, we explore some of the aspects of qual-
ity of continuous learning artificial intelligence systems as they interact
with and influence their environment. We study an important problem of
implicit feedback loops that occurs in recommendation systems, web bul-
letins and price estimation systems. We demonstrate how feedback loops
intervene with user behavior on an exemplary housing prices prediction
system. Based on a preliminary model, we highlight sufficient existence
conditions when such feedback loops arise and discuss possible solution
approaches.

Keywords: Machine Learning · Continuous machine learning ·
Software quality · Feedback loop

1 Introduction

Definition of quality and requirements specification are important practices in
information systems development. While in software engineering there are estab-
lished quality standards like ISO 25000 series [21], machine learning (ML) engi-
neering lacks any comparable documents. Machine learning system quality defi-
nition and evaluation is a new and active area of research.

In this paper, we consider closed loop machine learning systems - that is
information systems, which behavior depends on statistical models, parameters
of which are inferred from the data influenced by the system itself. These are,
for example, an e-commerce web site with product recommendations, a digital
library with embedded search, job postings and other digital bulletins with con-
tent search or recommendation capabilities. In contrast, web-scale search engines
are not typically considered closed loop (see also [17]) because their response
depends on the data out of direct control of the system, unless search personal-
ization is employed. Non-closed loop systems also include any systems that do
not use data they produce for changing their behavior, like weather forecasting
systems.

The problem we study is somewhat related to the concept drift phenomenon
[13]. The concept drift is an observable change in the distribution of input data
c© Springer Nature Switzerland AG 2021
D. Winkler et al. (Eds.): SWQD 2021, LNBIP 404, pp. 54–65, 2021.
https://doi.org/10.1007/978-3-030-65854-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65854-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-65854-0_5

Feedback Loops in Machine Learning 55

that occurs over time. For closed loop systems such drift may occur as a result
of changes in the user behavior due to social and cultural reasons, or because of
user interaction with the system. The latter effect is called a feedback loop.

The difference is that concept drift usually assumes that data distribution is
stationary, changes are unexpected and shall be detected and taken into account.
While if a feedback loops exist, then the distribution of input data changes as a
result of using the system, therefore changes are expected.

There are reasons why discovering these feedback loops is important. First,
the effect of a feedback loop is not immediate and may not exhibit itself dur-
ing system testing. Second, in case of continuous and lifelong machine learning
systems their algorithms are able to learn from the data with little or no supervi-
sion from developers. Changes learnt from the data often constitute themselves
in internal parameters and may not be directly observable nor interpretable even
if shown to developers. The latter - non-observability - distinguishes feedback
loops in machine learning systems from similar loops, for example, in the ordi-
nary software-only or technical systems. What is visible and observable about
feedback loops are their effects on user behavior.

Main contributions of this paper are as follows. First, we provide a simple
model of a continuous machine learning system with a positive feedback loop,
which is easier to study than real-world systems. Second, we propose a simulation
experiment that reflects the evolution of the system being modeled. Third, based
on the results from the simulation we propose a technique to detect feedback
loops in industry systems and provide directions for further research.

The rest of the paper is organized as follows. In the next section we provide
more background on the problem of feedback loops in machine learning systems
and connect our study with related research. In Sect. 3 we demonstrate a feed-
back loop effect in an experiment with a housing pricing estimation system. In
Sect. 4 we discuss conditions when such feedback loops may occur and how they
can be discovered. Section 5 provides possible future research directions.

2 Background and Related Work

Machine Learning (ML) is an area of research in artificial intelligence (AI) that
studies complex statistical models and algorithms that infer parameters of these
models from the data. This process is called model training. Usually, the param-
eters of the model are tuned in such a way to best reflect the underlying data.

A machine learning system relies on these models with tuned parameters to
provide useful functionality, for example, to make predictions or take appropriate
actions. This implies that quality of such systems highly depends on the data
used to train the model.

If the data is known and fixed in any given time, then it is called offline
machine learning, and the available data is called a dataset. Datasets are usually
split into training, development (or validation) and testing (or evaluation) parts.
Training and development parts are used to infer model and training algorithm
parameters correspondingly. In some cases, training and development parts may

56 A. Khritankov

be chosen dynamically at training time, while the testing part is usually held
out and is only used to evaluate the quality of the resulting model.

If the data is not fixed and comes as a stream, then it is called online or
continuous machine learning. In this case, separation of incoming data is still
possible but training, development and testing parts may need to be updated
continuously with new data.

In supervised machine learning, the data contains expected or correct values
that the model should learn to predict. In this case the quality of the model can
be derived by comparing predictions with the expected values, for example, as
the number of errors or empirical loss.

Prediction error can be decomposed into variance and bias. Suppose we train
our model many times using different randomly chosen parts (or samples) in
training and development data. A low variance model is the model that provides
approximately the same predictions when trained on different parts of data, and
low bias model means is the model which predictions are close to the correct
values.

In the unsupervised case, the data does not contain the answers, therefore the
quality is measured using relations between the model parameters or between
parameters and predictions themselves.

In recent years, machine learning systems have become wide-spread and most
of computer users interact with several of them every day. There is a recent sur-
vey on common problems and challenges to be solved when deploying models
into production. Wan et al. [22] provide a survey on how software engineering
practices differ for ML versus non-ML systems and between ML libraries and
ML applications. They discover differences in requirements elicitation and soft-
ware development processes that originate from uncertainty inherent to machine
learning and from its dependency on available data.

Experience with developing machine learning systems in a large software com-
pany is reported in [1], emphasising 1) data management 2) model customization
and reuse 3) unpredictable and non-monotonic error behavior of AI components.
A recent review in [24] discusses challenges with quality and testing of machine
learning systems and highlights research trends. Authors suggest more research
is needed in testing for machine learning systems including testing of more tasks
and algorithms, adding benchmarks and new approaches to testing.

In [3] authors describe seven projects that demonstrate challenges associated
with the software engineering for machine learning systems. They identify twelve
main challenges in experiment management, testing and debugging, monitoring
and dependency management, privacy and ethical issues. They also include unin-
tended feedback loops as one of the production challenges.

Another paper on challenges in machine learning systems development con-
nects the challenges with a hidden technical debt [19]. Among other challenges,
authors signify that hidden feedback loops shall be identified and removed when-
ever possible. Monitoring and restricting system actions are also recommended
to limit the impact.

Feedback Loops in Machine Learning 57

A recent review of case studies in [14] explore the development of machine
learning systems from six different companies. Authors identify main challenges
and map them to a taxonomy they propose that shows evaluation of how ML
components are used in software-intensive system in industrial settings. Fol-
lowing [19] they indicate hidden feedback loops as one of the challenges when
deploying models.

Positive and negative feedback loops have been also considered as a mecha-
nism used in design of self-adaptive systems [5]. The paper signifies that studying
feedback loops is important for understanding self-adaptive systems and identi-
fies challenges that need be addressed.

In [4] authors study effects of feedback loops in complex interactions between
users and advertisers during an ads auction in an online advertising system. They
notice that temporarily popular ads may get permanent dominance because of
positive feedback loops. Another paper [2] considers feedback loops in a context
of AI systems safety, signifying instabilities and undesired side-effects associated
with uncontrolled feedback loops.

In social sciences and online communication, echo chambers and filter bubbles
are a similar effect produced by feedback loops in content recommendation and
search systems [7,8,17]. Ensign et al. [9] describe a positive feedback loop effect
in a predictive policing. Authors consider how the predictive policy system that
assigns police patrols influences the city crimes data that is collected back and
affects the system itself.

Results of the fairness in machine learning workshop [6] show that uncon-
trolled hidden feedback loops lead to decision bias. They confirm concerns put
forward by [9] that if not taken into account, feedback loops effects in socio-
technical systems may result in undesired behavior affecting social communities.
Authors also identify that studying dynamic and evolutionary behavior of soft-
ware systems is a frontier research area.

A study of feedback loops in recommendation systems [20] suggests that for
a specific class of algorithms, namely collaboration filtering, it could be possible
to compensate for feedback loop effects and obtain intrinsic user preferences that
are not affected by their interaction with the recommendation system.

3 Problem Statement

3.1 Motivating Example

Let us consider a website with a rental prices calculator1. When in use, such
website would provide users with estimates of a housing or rental prices given
features of the property. Some of the features may be obtained from publicly
available sources and depend on house location, while others are specific to the
property itself. As both buyers and sellers see the same estimate, they would
consider the price as unbiased and treat it as a sort of market average price.

1 Such as openrent.co.uk or zillow.com or any other similar website.

58 A. Khritankov

We argue that if users of such system adhere to the provided prices and choose
to rent or buy a property based on the predicted price, there can be a positive
feedback loop that significantly affects system and user behavior. Indeed, the
possibility of the effect in an estate price prediction system (EST) was indicated
in [3].

3.2 Formal Statement

As studying real world data is out of scope of this paper and may come with
unrelated difficulties, let us instead consider an exemplary problem that reflects
main features of the real world situation. For this purpose, we chose a well-known
housing prices prediction problem on the Boston dataset [11]. Partly, because it
is well-known and publicly available, and our results could be easily verified.

In order to demonstrate the feedback loop effect in a machine learning system
we replicate a real-life problem in a simulation experiment.

The formal statement is as follows. We define a supervised learning regression
problem [16]. Given features xi of house i we need to predict its price y′ = f(xi; θ)
so that empirical loss on a given dataset (X, y), where X = {x1, ..xn}, y =
{y1, ..yn}, is minimized with regards to θ, that is

L(y, f(X; θ)) → min
θ

. (1)

4 Methods

4.1 Simulation Experiment

The simulation experiment is going to replicate the evolution of a real system
over a period of time2. We aim for as simple experiment as possible to highlight
the nature of the feedback loop effect and reduce the design choices.

There design choices are as follows.

– Solution to the regression problem. We study two different families
of ML models to solve the regression problem (1): linear models and non-
linear models based on ensembles of decision-trees. The choice of these is
first, because of their different properties in variance and bias, and second,
because they are widely applied in machine learning systems.

– Model of user behavior. Motivated by the housing prices problem in which
users take decisions occasionally and may not return for a long time, we
assume that users behave independently of each other at random and distri-
bution of their decisions is conditioned [16] only on the predicted price and
does not change over time. In a real system, users may abandon the system
or stop following suggested prices thus violating the assumption.

2 The source code for the experiment is available at https://github.com/prog-autom/
hidden-demo.

https://github.com/prog-autom/hidden-demo
https://github.com/prog-autom/hidden-demo

Feedback Loops in Machine Learning 59

– Evolution of the system. We assume that the model is retrained on sched-
ule using the dataset that includes all user pricing decisions, whether a user
followed the prediction or not.

– Quality definition. Quality of the predictions is measured with a widely
used metric that reflects similarity of predictions with provided correct values.

Another approach could be to perform a statistical study instead of simula-
tion. In this case, rigorous modeling of data would be required, which could be
complicated considering complex data and model dependencies.

A theoretical discussion of the effect is covered in Sect. 5, where we apply the-
ory of contractive mappings and define sufficient existence criteria for feedback
loops.

4.2 Experiment Setup

The linear model y′ = X θ + b is solved as Ridge regression with mean squared
error loss function L(y, y′). The non-linear model is a stochastic gradient boosted
decision tree for regression (GBR) algorithm (both as of scikit-learn implemen-
tation [18]) with Huber loss function and mean absolute error (MAE) splitting
criterion, which have shown better quality and stability compared to more com-
mon squared loss function and mean-squared error (MSE) splitting criterion on
this dataset.

Following a recommended practice, we perform cross-validation for hyper-
parameter tuning for Ridge regression and evaluate both models on held-out
data. We use coefficient of determination R2 as a measure of the model quality.

We use a simple heuristic that helps improve quality of predictions of the
models. Notice that price y distribution in the dataset is not symmetric, that is,
there can usually be no negative prices, y ≥ 0. It is known from other domains
that relative variation in the price is seen by consumers as more important
than absolute change. That is, it is more common to see “market grew 1.5%
yesterday”, than “market grew 100 points”. Therefore, we transform y ← log y.

For the linear model we also transform the source data to zero mean and
unit variance before training, which is the recommended practice.

In order to simulate different levels of closedness of the system, we assume
that a user either ignores the predicted price with probability 1 − p, either uses
the prediction with p. If uses the prediction, a user chooses a logarithm of the
price log zi (recall the transform) randomly by sampling it from the Normal
distribution N(f(xi; θ), s σ2

f), where σ2
f is the model’s mean squared error on

held-out data and s > 0 is an experiment parameter that indicates adherence.
Because of logarithmic scaling of target variable y, in order to get actual

prices, we need to exponentiate the predicted values.
The experiment starts with 30% of original data at round r = 1. The first

model is trained with cross-validation on the 80% part of the starting data giving
θ[r=1] and evaluated on the rest held-out 20% of the data. Then on each step
t ≥ 0 a user takes a prediction y′

k = f(xk; θ[r]), k = 0.3n+ t from the model and
decides on the price zk as specified above.

60 A. Khritankov

Fig. 1. Feedback loop experiment setup

The actual price zk that a user has decided upon and features xk are
appended to the current data and the first item is removed so overall size of
current data remains constant. This is equivalent to using a sliding window
of the most recent 30% of data with some of original prices yk in the dataset
replaced with user decisions zk.

After each T steps the round increments r ← r+1 and the model is retrained
with cross-validation on current data, which is again split on training 80% and
held-out 20% parts giving θ[r].

The procedure repeats while there are unseen points available 0.3n + t ≤ n.
Thus, at each round we know the coefficient of determination R2(r) for both
models.

4.3 Results and Observations

We repeated the experiment several times for specific parameter values and
provide the aggregated results below.

The representative results are shown at Fig. 2 and Fig. 3. In both cases the
model starts getting higher R2(r) score on held-out data as the number of rounds
increases, and tends to R2 = 1.0. Despite the linear regression model having
lower quality score in the beginning, it starts outperforming the gradient boost-
ing tree regression (GBR) algorithm after several rounds.

If all users adhere to predictions of the system, that is, the usage parameter
p gets closer to 1.0, the sequence R2(r) tends to 1.0 faster. When adherence
p < 0.5 the R2 may not get to 1.0 and even decrease as a result of users random
sampling of zk, which are added to the current data.

When adherence parameter s is close to 0.0 and the model has high initial
R2 the sequence proceeds faster to 1.0. Large values of s > 0.5 may lead to a lot
of noise being added to current data over rounds. Experimentally, s < 1.25 at
p = 0.75 is needed for R2(r) to converge close to 1.0 with the linear model, and
s < 0.5 with the GBR algorithm.

Feedback Loops in Machine Learning 61

When the number of steps between rounds T gets closer to 1.0 the R2(r) of
the GBR algorithm fluctuates and does not grow to 1.0. Contrary to the linear
model, for which R2(r) tends to 1.0 for a much wider range of parameters.

For reference, in a completely closed loop system, we would have p = 1.0 and
p = 0.0 for a completely open loop system.

Fig. 2. Positive feedback loop on prediction quality. Model: GBR, steps before retrain-
ing T = 20, usage p = 0.75 and adherence s = 0.2

Fig. 3. Positive feedback loop on prediction quality. Model: Ridge, steps before retrain-
ing T = 20, usage p = 0.75 and adherence s = 0.2

5 Analysis and Discussion

5.1 Existence Conditions for a Positive Feedback Loop

It looks like that convergence of the R2(r) or other quality metrics when round
r → ∞ requires that the deviation of the observed data from model predictions
should decrease as the number of rounds grows. If it is so, then the deviation
would converge to zero and the corresponding model would provide for the min-
imum possible error with probability equals to one.

Let us consider a probabilistic space of datasets X. A closed-loop system
can the be represented as a mapping T that transforms any dataset x ∈ X to
another dataset x′ ∈ X. That is a mapping T : X → X defines a single user
interaction with the system. Then we can draft the following.

62 A. Khritankov

Conjecture 1 (sufficient condition for existence of a positive feedback loop). A
positive feedback loop in a system T : X → X exists if

∀x, y ∈ X : d(Rf (T (x)), Rf (T (y))) ≤ A · d(Rf (x), Rf (y)), a.s. (2)

where 0 < A < 1 is a constant, and d(r1, r2) is a distance metric defined
on prediction quality measures Rf (x) of model f over probabilistic space of
datasets X.

We have not found any similar proven statements for lifelong or continuous
machine learning systems or feedback loops in particular. However, there are
related results in the related field of stochastic nonlinear dynamics [10,12].

The conjecture can be used to directly test closed-loop machine learning
systems for existence of feedback loop at design or test time. One may use a
variation of Monte-Carlo method [16] to sample pairs x, y of datasets from X
and check whether condition (2) holds.

5.2 Checklist for Detecting Feedback Loops

Following from our findings, we suggest that requirements analysis and review
for machine learning systems shall include studies for feedback loops. If such loop
is possible, then system requirements should include implementation of measures
for detecting and measuring the effect. Therefore, making it observable.

In order to determine whether a machine learning system may be affected by
feedback loops the following checks may be performed:

1. Check data flows
Look at the problem statement and where the system receives data from. One
may apply methods of system dynamics to discover causal loops [15]. If the
system receives data from the same users that rely on predictions of the model
or environment affected by the user behavior, then there is an indication of
possible feedback loop.

2. Check usage scenarios
Check the expected impact of the system on user behavior and the data
received from users and the environment. If usage p and adherence s param-
eters may get p > 0.5 and s < 1.0 then there is a possibility of feedback
loop.

3. Check sufficient conditions for feedback loop
Given an indication of a possible feedback loop, we can use Conjecture 1 to
check for existence of feedback loops at system test time using a Monte-Carlo
method. For the experiment, select a baseline model and training algorithm,
preferably with low variance. Then sample a series of dataset pairs from the
environment as described in the previous section. If conditions (2) hold then
there will be a feedback loop when the system is implemented and deployed.

Another option is to check for feedback loops at run-time. Consider selecting
a baseline model, which parameters are learnt from the data once and remain

Feedback Loops in Machine Learning 63

fixed. According to the No Free Lunch theorem [23], the quality of predictions
of the baseline model shall not improve over time. And if it does improve, this
indicates a presence of a positive feedback loop.

In addition, a range of concept drift detection methods may be used [13].

6 Future Research

Solution to the problem of detection of hidden feedback loops would contribute
to more reliable and fair decisions made by machine learning systems [6].

Future research may include formal proof of Conjecture 1 on the existence
of feedback loops. Suggestions given in this paper will need to be confirmed
empirically on real-life closed loop systems.

As a recent survey shows [24] a study of feedback loops is not usually per-
formed during machine learning system design and quality evaluation. We pro-
pose to include observability of feedback loops in the quality criteria for machine
learning systems.

Additional guidelines on satisfying the quality criteria and checking feedback
loop existence conditions should be developed as well as supporting software
tools.

It should be investigated further, what properties of the model or algorithms
lead to feedback loops. For example, if we have a 100% accurate algorithm, it
can be shown not to produce the feedback loop. Some variance and bias are
needed for a model to be able to influence the data.

Despite being reported in several real-world systems [2–4,7–9,17] more empir-
ical studies are needed that further specify conditions for existence of feedback
loops and test whether proposed detection techniques are effective.

7 Conclusion

Machine learning systems constitute a growing part on the software systems
landscape. Being able to continuously learn models from available data with-
out participation or supervision of engineers and researchers such systems are
susceptible to hidden feedback loops.

In this paper we studied a feedback loop problem in closed loop continuous
learning systems. We demonstrated and quantified the effect on an exemplary
housing prices recommendation system. Based on preliminary findings and anal-
ysis of the experiment results, we propose specific measures to check for and
detect feedback loops in machine learning systems.

Further research could be directed towards practical evaluation of the pro-
posed design and test-time checklist for existence of feedback loops and deter-
mining properties of algorithms that make them susceptible to feedback loops.

Acknowledgments. Authors are thankful to the anonymous reviewers whose useful
feedback helped to improve the paper.

64 A. Khritankov

References

1. Amershi, S., et al.: Software engineering for machine learning: a case study. In:
Proceedings of the IEEE/ACM 41st International Conference on Software Engi-
neering: Software Engineering in Practice (ICSE-SEIP 2019), pp. 291–300. IEEE
(2019)

2. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Con-
crete problems in AI safety. arXiv preprint arXiv:1606.06565 (2016)

3. Arpteg, A., Brinne, B., Crnkovic-Friis, L., Bosch, J.: Software engineering chal-
lenges of deep learning. In: Proceedings of the 44th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA 2018), pp. 50–59. IEEE
(2018)

4. Bottou, L., et al.: Counterfactual reasoning and learning systems: the example of
computational advertising. J. Mach. Learn. Res. 14(1), 3207–3260 (2013)

5. Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In:
Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software
Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-02161-9 3

6. Chouldechova, A., Roth, A.: The frontiers of fairness in machine learning. arXiv
preprint arXiv:1810.08810 (2018)

7. Colleoni, E., Rozza, A., Arvidsson, A.: Echo chamber or public sphere? predicting
political orientation and measuring political homophily in twitter using big data.
J. Commun. 64(2), 317–332 (2014)

8. DiFranzo, D., Gloria-Garcia, K.: Filter bubbles and fake news. XRDS Crossroads
ACM Mag. Students 23(3), 32–35 (2017)

9. Ensign, D., Friedler, S.A., Neville, S., Scheidegger, C., Venkatasubramanian, S.:
Runaway feedback loops in predictive policing (2017)

10. Hadzic, O., Pap, E.: Fixed Point Theory in Probabilistic Metric Spaces, vol. 536.
Springer Science & Business Media, Dordrecht (2013)

11. Harrison Jr., D., Rubinfeld, D.L.: Hedonic housing prices and the demand for clean
air. J. Environ. Econ. Manage. 5, 81–102 (1978)

12. Joshi, M.C., Bose, R.K.: Some Topics in Nonlinear Functional Analysis. John Wiley
& Sons, New York (1985)

13. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept
drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2018)

14. Lwakatare, L.E., Raj, A., Bosch, J., Olsson, H.H., Crnkovic, I.: A taxonomy of
software engineering challenges for machine learning systems: an empirical investi-
gation. In: Kruchten, P., Fraser, S., Coallier, F. (eds.) XP 2019. LNBIP, vol. 355, pp.
227–243. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19034-7 14

15. Martin Jr, D., Prabhakaran, V., Kuhlberg, J., Smart, A., Isaac, W.S.: Participatory
problem formulation for fairer machine learning through community based system
dynamics. arXiv preprint arXiv:2005.07572 (2020)

16. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cam-
bridge (2012)

17. Pariser, E.: The Filter Bubble: What the Internet is Hiding from You. Penguin,
New York (2011)

18. Pedregosa, F., et al.: Scikit-learn: Machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

19. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Advances
in Neural Information Processing Systems, pp. 2503–2511 (2015)

http://arxiv.org/abs/1606.06565
https://doi.org/10.1007/978-3-642-02161-9_3
http://arxiv.org/abs/1810.08810
https://doi.org/10.1007/978-3-030-19034-7_14
http://arxiv.org/abs/2005.07572

Feedback Loops in Machine Learning 65

20. Sinha, A., Gleich, D.F., Ramani, K.: Deconvolving feedback loops in recommender
systems. In: Advances in Neural Information Processing Systems, pp. 3243–3251
(2016)

21. Suryn, W., Abran, A., April, A.: ISO/IEC SQuaRE: the second generation of
standards for software product quality (2003)

22. Wan, Z., Xia, X., Lo, D., Murphy, G.C.: How does machine learning change software
development practices? IEEE Trans. Softw. Eng. 9, 4492–4500 (2019)

23. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997)

24. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: survey, land-
scapes and horizons. IEEE Trans. Softw. Eng. (2020). https://doi.org/10.1109/
TSE.2019.2962027

https://doi.org/10.1109/TSE.2019.2962027
https://doi.org/10.1109/TSE.2019.2962027

The AIQ Meta-Testbed: Pragmatically
Bridging Academic AI Testing

and Industrial Q Needs

Markus Borg1,2(B)

1 RISE Research Institutes of Sweden AB, Lund, Sweden
markus.borg@ri.se

2 Department of Computer Science, Lund University, Lund, Sweden

Abstract. AI solutions seem to appear in any and all application
domains. As AI becomes more pervasive, the importance of quality assur-
ance increases. Unfortunately, there is no consensus on what artificial intel-
ligence means and interpretations range from simple statistical analysis
to sentient humanoid robots. On top of that, quality is a notoriously hard
concept to pinpoint. What does this mean for AI quality? In this paper, we
share our working definition and a pragmatic approach to address the cor-
responding quality assurance with a focus on testing. Finally, we present
our ongoing work on establishing the AIQ Meta-Testbed.

Keywords: Artificial intelligence · Machine learning · Quality
assurance · Software testing · Testbed

1 Introduction

The number of AI applications is constantly growing. Across diverse domains,
enterprises want to harness AI technology to explore the lucrative promises
expressed by AI advocates. As AI becomes pervasive, there is inevitably a need
to build trust in this type of software. Furthermore, critical AI is on the rise,
i.e., applications will not be restricted to entertainment and games. AI is already
fundamental in many business-critical applications such as ad optimization and
recommendation systems. As the technology further evolves, many believe that
safety-critical AI will soon become commonplace in the automotive [1] and medi-
cal domains [2]. Other examples of critical AI, with other types of quality require-
ments, will be found in the finance industry and the public sector. Unfortunately,
how to best approach Quality Assurance (QA) for AI applications remains an
open question.

A fundamental issue originates already in the terminology, i.e., the concept
of “AI quality”. First, there are several different definitions of AI, and their
interpretations range from simple statistical analysis to the sentient humanoid
robotics of the science fiction literature. Furthermore, AI appears to be a moving
target, as what was considered AI when the term was coined in the 1950s would
c© Springer Nature Switzerland AG 2021
D. Winkler et al. (Eds.): SWQD 2021, LNBIP 404, pp. 66–77, 2021.
https://doi.org/10.1007/978-3-030-65854-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65854-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-65854-0_6

The AIQ Meta-Testbed 67

hardly qualify as AI today. Second, in the same vein, quality is a notoriously
difficult aspect to pinpoint [3]. Quality is a multi-dimensional patchwork of dif-
ferent product aspects that influences the user’s experience. Moreover, quality is
highly subjective and largely lies in the eye of the beholder. Taken together, AI
quality is a truly challenging concept to approach, i.e., a subjective mishmash of
user experience regarding a type of technology with unclear boundaries that also
change over time. There is a need for pragmatic interpretations to help advance
research and practice related to AI quality – we provide ours in Sect. 3.

Contemporary AI solutions are dominated by Machine Learning (ML) and in
particular supervised learning. A pragmatic first step would be to initially focus
QA accordingly. As development of systems that rely on supervised learning
introduces new challenges, QA must inevitably adapt. No longer is all logic
expressed by programmers in source code instructions, instead ML models are
trained on large sets of annotated data. Andrej Karpathy, AI Director at Tesla,
refers to this paradigm of solution development as “Software 2.0” and claims that
for many applications that require a mapping from input to output, it is easier
to collect and annotate appropriate data than to explicitly write the mapping
function.1 As we embark on the AI quality journey, we argue that methods for
QA of “Software 2.0” should evolve first – we refer to this as MLware.

The rest of this paper is organized as follows. Section 2 motivates the impor-
tance of MLware QA, elaborates on the intrinsic challenges, and presents closely
related work. Section 3 introduces the working definitions used in our work on
establishing the AIQ Meta-Testbed, which is further described in Sect. 4. Finally,
Sect. 5 concludes our position paper.

2 Background and Related Work

Fueled by Internet-scale data and enabled by massive compute, ML using Deep
Neural Networks (DNN), i.e., neural networks with several layers, has revolu-
tionized several application areas. Success stories include computer vision, speech
recognition, and machine translation. We will focus the discussion on DNNs, but
many of the involved QA issues apply also to other families of ML, e.g., support
vector machines, logistic regression, and random forests – software that is not
only coded, but also trained.

From a QA perspective, developing systems based on DNNs constitutes a
paradigm shift compared to conventional systems [4]. No longer do human engi-
neers explicitly express all logic in source code, instead DNNs are trained using
enormous amounts of historical data. A state-of-the-art DNN might be com-
posed of hundreds of millions of parameter weights that is neither applicable
for code review nor code coverage testing [5] – best practices in industry and
also mandated by contemporary safety standards. As long as ML applications
are restricted to non-critical entertainment applications (e.g., video games and
smartphone camera effects) this might not be an issue. However, when ML appli-
cations are integrated into critical systems, they must be trustworthy.
1 bit.ly/3dKeUEH.

68 M. Borg

The automotive domain is currently spearheading work on dependable ML,
reflected by work on the emerging safety standard ISO/PAS 21448. DNNs are
key enablers for vehicle environmental perception, which is a prerequisite for
autonomous features such as lane departure detection, path planning, and vehicle
tracking. While DNNs have been reported to outperform human classification
accuracy for specific tasks, they will occasionally misclassify new input. Recent
work shows that DNNs trained for perception can drastically change their output
if only a few pixels change [6]. The last decade resulted in many beaten ML
benchmarks, but as illustrated by this example, there is a pressing need to close
the gap between ML application development and its corresponding QA.

There are established approaches to QA for conventional software, i.e., soft-
ware expressed in source code. Best practices have been captured in numerous
textbooks over the years, e.g., by Schulmeyer [7], Galin [8], Mistrik et al. [9], and
Walkinshaw [3]. Developers write source code that can be inspected by others as
part of QA. As a complement, static code analysis tools can be used to support
source code quality. Unfortunately, the logic encapsulated in a trained ML model
cannot be targeted by QA approaches that work on the source code level. ML
models in general, and DNN models in particular, are treated as black boxes.
While there is growing interest in research on explainable AI [10], interpreting
the inner workings of ML is still an open problem. This is a substantial issue
when explainability is fundamental, e.g., when safety certification is required [11]
or when demonstrating legal compliance [12] (such as GDPR or absence of illegal
discrimination in the trained model).

On the other hand, source code inspection and analysis are also not sufficient
tools to perform QA of conventional software systems. During development, soft-
ware solutions rapidly grow into highly complex systems whose QA rarely can be
restricted to analysis – although substantial research effort has been dedicated
to formal methods [13] including formal verification in model-driven engineer-
ing [14]. In practice, software QA revolves around well-defined processes [15,16]
and a backbone of software testing. Software testing, i.e., learning about the
system by executing it, is the quintessential approach to software QA [17–19].

In the software engineering community, there is momentum on evolving prac-
tices to replace ad-hoc development of AI-enabled systems by systematic engi-
neering approaches. A textbook by Hulten on “Building Intelligent Systems” [20]
is recommended reading in related courses by Kästner at Carnegie Mellon Uni-
versity [21] and Jamshidi at University of South Carolina. Kästner also provides
an annotated bibliography of related academic research2, as does the SE4ML
group at Leiden Institute of Advanced Computer Science3, recently summarized
in an academic paper [22]. Bosch et al. recently presented a research agenda for
engineering of AI systems [23], sharing what they consider the most important
activities to reach production-quality AI systems.

In recent years, numerous papers proposed novel testing techniques tailored
for ML. Zhang et al. conducted a comprehensive survey of 144 papers on ML

2 https://github.com/ckaestne/seaibib.
3 https://github.com/SE-ML/awesome-seml.

https://github.com/ckaestne/seaibib
https://github.com/SE-ML/awesome-seml

The AIQ Meta-Testbed 69

testing [24], defined as “any activities designed to reveal ML bugs” where an
ML bug is “any imperfection in a machine learning item that causes a discor-
dance between the existing and the required conditions.” Riccio et al. conducted
another secondary study, analyzing 70 primary studies on functional testing of
ML-based systems [25]. The authors do not use the term “bug” for misclassifica-
tions, as any ML component will sometimes fail to generalize. We agree with this
view, and avoid terms such as ML bugs, model bugs and the like when referring
to functional inefficiencies of MLware.

3 AI Quality Assurance – Working Definitions

As discussed in Sect. 1, AI quality is a challenging concept to define. Conse-
quently, QA for AI is at least as hard to specify. Still, we need a working defini-
tion to initiate efforts in this direction. In this section, we present the rationale
behind our working definition of AI quality and AI quality assurance. More-
over, we introduce several related terms we use in collaborations with industry
partners.

The original definition of AI from the 1950s is “the science and engineering
of making intelligent machines”. Unfortunately, this definition turns AI into a
moving target, as expectations on what constitutes an intelligent machine change
over time – a computer program for logistics optimization in a warehouse would
have been considered intelligent in the 1950s whereas it now could be part of an
undergraduate computer science course. Since the term AI was introduced, it has
often been used to refer to software solutions of the future, displaying increasingly
human-like capabilities. The notation of “intelligence” is still common when
referring to the gist of AI/ML applications, as in Hulten’s textbook [20], but
ideally we want a definition that remains the same over time.

We argue that the most useful view on AI is to consider it as the next
wave of automation in the digital society. Extrapolating from the sequence 1)
digitization, 2) digitalization, and 3) digital transformation [26], we consider AI
as the next enabling wave in the same direction – allowing automation of more
complex tasks than before. Our working definition of AI is “software that enables
automation of tasks that normally would require human intelligence”. While still
imprecise, the definition is good enough for us to later define a delimited subset
of AI that deserves our research focus.

Consulting the well-known textbook on AI by Russell and Norvig is one
approach to explore the scope of AI [27]. The table of contents lists concepts
such as searching, game playing, logic, planning, probabilistic reasoning, natural
language processing, perception, robotics, and, of course, learning – all important
components when mimicking human intelligence. The textbook clearly shows
that AI is more than ML. On the other hand, we argue that conventional software
QA and testing can be applied to all AI techniques that are implemented in
source code. Supervised and unsupervised learning, however, involves a transfer
of control from source code to data. Research efforts on QA tailored for this new
paradigm are what now would provide the highest return-on-investment. We
need to focus on ML-enabled software – we refer to this as MLware for short.

70 M. Borg

Figure 1 illustrates our view on MLware. The future of systems engineering
will combine hardware and software components, but the software part needs to
be differentiated. A subset of software represents the fuzzy area of AI. We accept
that this subset is neither clear-cut nor consistent over time. MLware is a subset
of AI that rely on supervised and/or unsupervised learning. All MLware is not
made the same. From a QA perspective, we need to distinguish between trained
MLware that does not learn post deployment and learning MLware that keeps
improving as new experience is collected post deployment. Learning MLware
can be further divided into offline learning (triggered re-training in batches) and
online learning (continuous update of trained models).

Fig. 1. MLware in context.

One might wonder where Reinforcement Learning (RL) fits in our working
definition of MLware. Currently, we exclude RL from MLware. The rationale is
that in RL, the exploration and exploitation of the learning agent is implemented
in source code. RL shares characteristics of both searching and automatic control.
We posit that software testing approaches proposed for self-adaptive systems
could be generalized to RL [28,29], and thus the best use of research resources
is to focus on supervised and unsupervised learning – the dominating types of
ML in practical applications.

A well-cited experience report by Sculley and his Google colleagues presents
the vast and complex infrastructure required for successful MLware [30]. The
authors describe this in terms of hidden technical debt of ML (cf. the lower
part of Fig. 2). Building on this discussion, and the expression that “data is the
new oil”, our view is that data indeed fuels ML, but conventional source code is
still in the driving seat, i.e., MLware is fueled by data and driven by code (cf.
the upper part of Fig. 2). From this standpoint, it is obvious that conventional
approaches to software QA remain essential in the new data-intensive paradigm
of MLware. Moreover, just as software QA is dominated by software testing, we
expect MLware QA to be dominated by MLware testing.

The phenomenon of software quality has been addressed in plentiful publi-
cations. Among other things, this has resulted in standardized software quality
models such as ISO/IEC 25010. As MLware still is software, and certainly driven
by source code, the existing quality models remain foundational. The sister stan-
dard, ISO/IEC 25012 Data Quality Model, adds a complementary data dimen-
sion to the quality discussion. As MLware is fueled by data, this standard is also

The AIQ Meta-Testbed 71

highly relevant. Our working definition of AI quality is largely an amalgamation
of the definitions provided by these two standards in the ISO/IEC 25000 series.

As mentioned in Sect. 2, there is no consensus in how to refer to issues result-
ing in MLware misclassifications. Bug is not a suitable term to cover all functional
insufficiencies, given its strong connotation to source code defects. Still, we need
a new similarly succinct term in the context of MLware. We propose snag to
refer to the difference between existing and required behaviors of MLware inter-
woven of data and source code. The root cause of a snag can be a bug either in
the learning code or the infrastructure [24], but it is often related to inadequate
training data – we call the latter phenomenon a dug.

Figure 2 presents an overview of our perspective on issues detected in
MLware. In the upper left, MLware is illustrated as a type of software that
interweaves data (the fuel) and source code (at the helm) to produce output. If
a discordance is observed, we call for a snag in the MLware fabric. Assuming
that the requirements are valid and the observer interprets them correctly, root
causes of snags include bugs and dugs as well as environment issues. The lower
part of the figure illustrates the technical debt in machine learning as described
by Sculley et al. [30]. Bugs can reside in the ML code (the white box), e.g.,
calling deprecated API methods or incorrect use of tensor shapes [31]. On the
other hand, there might also be bugs in the rest of the infrastructure. While the
illustrated technical debt revolves around data, all gray boxes will also depend
on source code, from small exploratory scripts to mature open source libraries –
and the large systems enabling MLware operations [20].

To summarize this section, our position is that research on QA for AI would
benefit from adhering to the definitions presented in Table 1.

4 AIQ – An AI Meta-Testbed

Based on the working definitions in Sect. 3, we plan to support AI QA by estab-
lishing an AI meta-testbed. A testbed is a venue that provides a controlled
environment to evaluate technical concepts. Under current circumstances, in the
middle of the ongoing AI boom4, we believe that the establishment of a testbed
for testing MLware testing would be the most valuable contribution to AI QA.
Assessing the effectiveness of different testing techniques in a controlled setting
is not a new idea [34], neither is the concept of testing test cases [35] – but a
testbed dedicated to MLware testing is novel. We call it the AIQ Meta-Testbed5.

Successful MLware development requires a close connection to the opera-
tional environment. The same need has shaped software development at Inter-
net companies, resulting in DevOps – a combination of philosophies, practices,
and tools to reduce the time between development and operations while pre-
serving quality [36]. Key enablers are Continuous Integration and Deployment
(CI/CD). DevOps that emphasize MLware development is often referred to as
4 Well aware of the two previous “AI winters”, periods with less interest and funding

due to inflated expectations.
5 metatest.ai.

72 M. Borg

Table 1. Working definitions of key terms related to the AIQ Meta-Testbed.

Term Definition Comments

AI A subset of software that auto-

mates tasks that normally would

require human intelligence

MLware, interwoven by data and

source code, is the most precise

term to describe our research inter-

est. On the other hand, AI is a

dominant term in industry and

news media. We propose a prag-

matic sacrifice of scientific pre-

ciseness in favour of industrial

and societal relevance. In practice,

we treat AI as synonymous with

MLware in discussions with clients

MLware A subset of AI that, fueled

by data, realizes functionality

through supervised and/or unsu-

pervised learning

MLware

Testing

Any activity that aims to learn

about MLware by executing it

The typical goal of testing is

detecting differences between

existing and required behav-

ior [32]. Other possible testing

goals include exploratory testing

and compliance testing

AI Quality The capability of MLware to sat-

isfy stated and implied needs

under specified conditions while

the underlying data satisfy the

requirements specific to the appli-

cation and its context

MLware combines data and con-

ventional source code, thus we pro-

pose the amalgamation of corre-

sponding quality definitions from

the IEC/ISO 25000 series. Our

proposal is in line with discussions

by Felderer et al. in the context of

testing data-intensive systems [33]

AI Quality

Assurance

Any systematic process to pro-

vide confidence that the desired AI

Quality is maintained

QA encompasses many activities

throughout the product lifecycle.

However, in current AI discussions

with clients, we primarily interpret

it as MLware testing

Snag Any imperfection in MLware that

causes a discordance between the

existing and the required condi-

tions

There is an ongoing discussion

in the research community about

how to refer to MLware misclas-

sifications [25]. We argue against

using the term bug whenever there

is unexpected output. Instead, we

propose calling it a snag in the

MLware fabric

Bug A source code defect that causes

a discordance between the existing

and the required conditions

The term bug has a firmly estab-

lished meaning, thus we suggest

restricting its use to source code.

As MLware is driven by code, bugs

can cause snags

Dug A data inadequacy that causes a

discordance between the existing

and the required conditions

With bugs reserved for source code

defects, we need a novel expression

for the data counterpart. The new

term must be a worthy match for

the succinct “bug”. Currently, we

call them “dugs”

The AIQ Meta-Testbed 73

Fig. 2. MLware interwoven by data and code. Observed discordances in the output
(snags) can originate in source code defects (bugs) or data inadequacies (dugs).

MLOps [37], effectively adding Continuous Training (CT) to the mix. The focus
on continuousness is stressed in illustrations by the infinity symbol.

Trust is fundamental for a successful product or service embedding MLware.
In 2019, an expert group set up by the European Commission published ethics
guidelines for trustworthy AI6. As part of the guidelines, seven key requirements
are introduced. Table 2 shows a mapping between the EU requirements and the
testing properties identified in the survey by Zhang et al. [24]. Our preliminary
analysis indicates that all but one requirement has (to some extent) been targeted
by academic research. Thus, we believe the time is right for systematic meta-
testing in an MLOps context.

Figure 3 presents an overview of the AIQ Meta-Testbed in the MLOps con-
text. We will set up a contemporary MLOps pipeline to allow controlled experi-
ments in the lab while still providing an environment relevant to industry prac-
tice. Test automation is the backbone of MLOps, and MLware testing occurs in
several phases during the MLware engineering lifecycle [24] (cf. the textboxes in
Fig. 3). First, the standard practice during model training is to split data into
training, validation, and test subsets. We refer to this type of ML model testing

6 ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai.

74 M. Borg

Table 2. Mapping the EU requirements for trustworthy AI and the testing properties
targeted by publications on MLware testing as identified by Zhang et al. [24]. Gray
cells show functional testing, i.e., the scope of Riccio et al.’s secondary study [25]

as evaluation. Second, offline MLware testing occurs prior to deployment – con-
ducted on different testing levels (input data, ML model, integration, system)
and with varying access levels of the MLware under test (white-box, data-box,
black-box) as defined by Riccio et al. [25]. Third, online MLware testing occurs
after deployment. Common examples include A/B testing and runtime monitor-
ing to detect distributional shifts.

The AIQ Meta-Testbed will primarily focus on offline MLware testing (the
solid-border textbox in Fig. 3). We plan to enable meta-testing by providing
a control panel for toggling testing techniques (C) in Fig. 3) corresponding to
the testing properties in Table 2, controlled fault-injection (A) (e.g., bug/dug
injection, hyperparameter changes, mutation operators) and state-of-the-art test
input generation (B) (e.g., search-based testing, GAN-based synthesis, metamor-
phic relations, and adequacy-driven generation). The results from both MLware
testing and meta-testing will be presented in dashboards (D).

Extrapolating from the publication trends reported in the recent secondary
studies [24,25], there will be an avalanche of MLware testing papers in the next
years. Staying on top of the research will become a considerable challenge and
for practitioners with limited experience in reading academic papers, the chal-
lenge will be insurmountable – motivating the need to create an overview and
shortlisting the most promising techniques.

Activities at the AIQ Meta-Testbed will include external replications of stud-
ies on MLware testing. By performing controlled meta-testing of the shortlisted
techniques, we will be able to provide evidence-based recommendations on what

The AIQ Meta-Testbed 75

Fig. 3. The AIQ Meta-Testbed in the MLOps context. We will focus on providing
A) fault-injection, B) test input generation for offline testing, C) a control panel for
toggling offline testing techniques, and D) presenting the results in dashboards.

techniques to use and in which contexts. The controlled environment of the AIQ
Meta-Testbed will enable exploration of applied research questions, such as:

– Which contextual factors influence the MLware test effectiveness the most?
– Which proposed MLware testing techniques scale to very large DNNs?
– How to best integrate MLware testing in an MLOps pipeline?
– What should be done to limit test maintenance in an MLware testing context?
– After observing a snag, how to support the subsequent root cause analysis?

5 Summary and Concluding Remarks

AI is becoming a pervasive subset of software, thus the elusive concepts of AI
quality and QA are increasingly important. We argue that pragmatic interpre-
tations are needed to advance the field, and introduce a working definition of
MLware as a subset of software within AI that realizes functionality through
machine learning by interweaving data and source code. Furthermore, we define
AI quality as “the capability of MLware to satisfy stated and implied needs
under specified conditions while the underlying data satisfy the requirements
specific to the application and its context”. We recommend that AI QA first
and foremost should be interpreted as MLware testing and that the term bug
shall be reserved for source code defects – instead we propose “snag” to refer to
observed discordances in the MLware fabric. Finally, we present the AIQ Meta-
Testbed – bridging academic research on MLware testing and industrial needs

76 M. Borg

for quality by providing evidence-based recommendations based on replication
studies in a controlled environment.

Acknowledgments. This work was funded by Plattformen at Campus Helsingborg,
Lund University.

References

1. Lipson, H., Kurman, M.: Driverless: Intelligent Cars and the Road Ahead. MIT
Press, Cambridge (2016)

2. Jiang, F., et al.: Artificial intelligence in healthcare: past, present and future. Stroke
Vasc. Neurol. 2(4), 230–243 (2017)

3. Walkinshaw, N.: Software Quality Assurance: Consistency in the Face of Complex-
ity and Change. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-
64822-4

4. Borg, M., et al.: Safely entering the deep: a review of verification and validation for
machine learning and a challenge elicitation in the automotive industry. J. Autom.
Softw. Eng. 1(1), 1–19 (2019)

5. Salay, R., Queiroz, R., Czarnecki, K.: An Analysis of ISO 26262: Machine Learning
and Safety in Automotive Software. SAE Technical Paper 2018–01-1075 (2018)

6. Azulay, A., Weiss, Y.: Why do deep convolutional networks generalize so poorly
to small image transformations? J. Mach. Learn. Res. 20, 25 (2019)

7. Schulmeyer, G.: Handbook Of Software Quality Assurance, 1st edn. Prentice Hall,
Upper Saddle River (1987)

8. Galin, D.: Software Quality Assurance: From Theory to Implementation. Pearson,
Harlow (2003)

9. Mistrik, I., Soley, R.M., Ali, N., Grundy, J., Tekinerdogan, B. (eds.): Software Qual-
ity Assurance: In Large Scale and Complex Software-Intensive Systems. Morgan
Kaufmann, Waltham (2016)

10. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

11. Borg, M.: Explainability first! Cousteauing the depths of neural networks to argue
safety. In: Greenyer, J., Lochau, M., Vogel, T., (eds.) Explainable Software for
Cyber-Physical Systems (ES4CPS): Report from the GI Dagstuhl Seminar 19023,
pp. 26–27 (2019)

12. Vogelsang, A., Borg, M.: Requirements engineering for machine learning: perspec-
tives from data scientists. In: Proceedings of the 27th International Requirements
Engineering Conference Workshops, pp. 245–251 (2019)

13. Weyns, D., et al.: A survey of formal methods in self-adaptive systems. In: Pro-
ceedings of the 5th International Conference on Computer Science and Software
Engineering, pp. 67–79 (2012)

14. Gonzalez, C.A., Cabot, J.: Formal verification of static software models in MDE:
a systematic review. Inf. Softw. Tech. 56(8), 821–838 (2014)

15. Herbsleb, J., et al.: Software quality and the capability maturity model. Commun.
ACM 40(6), 30–40 (1997)

16. Ashrafi, N.: The impact of software process improvement on quality: theory and
practice. Inf. Manag. 40(7), 677–690 (2003)

17. Gelperin, D., Hetzel, B.: The growth of software testing. Commun. ACM 31(6),
687–695 (1988)

https://doi.org/10.1007/978-3-319-64822-4
https://doi.org/10.1007/978-3-319-64822-4

The AIQ Meta-Testbed 77

18. Orso, A., Rothermel, G.: Software testing: a research travelogue (2000–2014). In:
Future of Software Engineering Proceedings, pp. 117–132 (2014)

19. Kassab, M., DeFranco, J.F., Laplante, P.A.: Software testing: the state of the
practice. IEEE Softw. 34(5), 46–52 (2017)

20. Hulten, G.: Building Intelligent Systems: A Guide to Machine Learning Engineer-
ing, 1st edn. Apress, New York (2018)

21. Kästner, C., Kang, E.: Teaching Software Engineering for AI-Enabled Systems.
arXiv:2001.06691 [cs], January 2020

22. Serban, A., van der Blom, K., Hoos, H., Visser, J.: Adoption and effects of soft-
ware engineering best practices in machine learning. In: Proceedings of the 14th
International Symposium on Empirical Software Engineering and Measurement
(2020)

23. Bosch, J., Crnkovic, I., Olsson, H.H.: Engineering AI Systems: A Research Agenda.
arXiv:2001.07522 [cs], January 2020

24. Zhang, J.M., et al.: Machine learning testing: survey, landscapes and horizons.
IEEE Trans. Softw. Eng. (2020). (Early Access)

25. Vincenzo, R., Jahangirova, G., Stocco, A., Humbatova, N., Weiss, M., Tonella, P.:
Testing machine learning based systems: a systematic mapping. Empirical Softw.
Eng. 25, 5193–5254 (2020)

26. Schallmo, D.R.A., Williams, C.A.: History of digital transformation. Digital Trans-
formation Now!. SB, pp. 3–8. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-72844-5 2

27. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pear-
son, Upper Saddle River (2009)

28. Cai, K.Y.: Optimal software testing and adaptive software testing in the context
of software cybernetics. Inf. Softw. Technol. 44(14), 841–855 (2002)

29. Mahdavi-Hezavehi, S., et al.: A systematic literature review on methods that han-
dle multiple quality attributes in architecture-based self-adaptive systems. Inf.
Softw. Technol. 90, 1–26 (2017)

30. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Pro-
ceedings of the 28th International Conference on Neural Information Processing
Systems, pp. 2503–2511 (2015)

31. Humbatova, N., Jahangirova, G., Bavota, G., Riccio, V., Stocco, A., Tonella, P.:
Taxonomy of real faults in deep learning systems. In: Proceedings of the 42nd
International Conference on Software Engineering (2020)

32. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press, Cambridge (2016)

33. Felderer, M., Russo, B., Auer, F.: On testing data-intensive software systems. Secu-
rity and Quality in Cyber-Physical Systems Engineering, pp. 129–148. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25312-7 6

34. Basili, V., Selby, R.: Comparing the effectiveness of software testing strategies.
IEEE Trans. Softw. Eng. SE–13(12), 1278–1296 (1987)

35. Zhu, Q., Panichella, A., Zaidman, A.: A systematic literature review of how muta-
tion testing supports quality assurance processes. Softw. Test. Verif. Reliab. 28(6),
e1675 (2018)

36. Erich, F., Amrit, C., Daneva, M.: A qualitative study of DevOps usage in practice.
J. Softw. Evol. Process 29(6), e1885 (2017)

37. Karamitsos, I., Albarhami, S., Apostolopoulos, C.: Applying DevOps practices of
continuous automation for machine learning. Information 11(7), 363 (2020)

http://arxiv.org/abs/2001.06691
http://arxiv.org/abs/2001.07522
https://doi.org/10.1007/978-3-319-72844-5_2
https://doi.org/10.1007/978-3-319-72844-5_2
https://doi.org/10.1007/978-3-030-25312-7_6

Machine Learning Applications

Improving Quality of Code Review
Datasets – Token-Based Feature

Extraction Method

Miroslaw Staron1(B) , Wilhelm Meding2, Ola Söder3,
and Miroslaw Ochodek4

1 Chalmers — University of Gothenburg, Gothenburg, Sweden
miroslaw.staron@gu.se

2 Ericsson AB, Stockholm, Sweden
wilhelm.meding@ericsson.com

3 Axis Communications, Lund, Sweden
ola.soder@axis.com

4 Institute of Computing Science, Poznan University of Technology, Poznan, Poland
miroslaw.ochodek@cs.put.poznan.pl

Abstract. Machine learning is used increasingly frequent in software
engineering to automate tasks and improve the speed and quality of
software products. One of the areas where machine learning starts to be
used is the analysis of software code. The goal of this paper is to evaluate
a new method for creating machine learning feature vectors, based on the
content of a line of code. We designed a new feature extraction algorithm
and evaluated it in an industrial case study. Our results show that using
the new feature extraction technique improves the overall performance in
terms of MCC (Matthews Correlation Coefficient) by 0.39 – from 0.31 to
0.70, while reducing the precision by 0.05. The implications of this is that
we can improve overall prediction accuracy for both true positives and
true negatives significantly. This increases the trust in the predictions by
the practitioners and contributes to its deeper adoption in practice.

1 Introduction

Machine learning algorithms are based on data in order to make predictions, rec-
ommendations and quantifications of entities. One of the areas where these tech-
niques are used are source code analyses [17,29] or defect removal recommenda-
tions [10,21]. In this context, machine learning provides the possibility to process
large amount of data (e.g. source code) without significant manual effort [22].

In our previous work, we used a novel way of characterizing software code –
using the content of the lines of code or the code fragment (e.g. presence of vari-
able declaration) rather than typical metrics (e.g. Chidamber-Kamerer Object-
Oriented metrics [7,28]). This way of characterizing the code provides the pos-
sibility to capture the meaning of the code, which can be conceptually linked to
classifications of the code, such as fault-proneness or coding guidelines’ violations.

c© Springer Nature Switzerland AG 2021
D. Winkler et al. (Eds.): SWQD 2021, LNBIP 404, pp. 81–93, 2021.
https://doi.org/10.1007/978-3-030-65854-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65854-0_7&domain=pdf
http://orcid.org/0000-0002-9052-0864
http://orcid.org/0000-0002-9103-717X
https://doi.org/10.1007/978-3-030-65854-0_7

82 M. Staron et al.

However, the major challenges in extracting feature vectors from small frag-
ments of code are that we cannot guarantee that the feature tranformation
preserves the important aspects of the code fragment. In particular, that the
extraction process results in an injective, but not surjective transformation, i.e.
that two different lines have the same feature vector representation. An exam-
ple of this situation is presented in Fig. 1 presents a situation when a software
designer commented one line of code which contains a programming mistake. The
comment is an important information in code classification as commented code
is not relevant for the compiler and therefore not relevant for fault-proneness or
code guidelines evaluation.

Fig. 1. Example of a typical feature extraction method, where two different lines have
the same feature vector (lines 3 and 4).

The current ways of addressing this problem are to use predefined set of
keywords or using statistic-based methods like Bag-of-Words [33] or even more
advanced word embedding [9]. However, the statistical methods do not provide a
guarantee that two different lines will have two different vector representations.
Although in many cases this distinction is not required, there are applications
where it is essential, for example when we want to predict which source code
fragment violated a specific coding guideline, predicting which line can cause a
specific test case to fail [2] or even counting lines based on specific patterns [18].

Therefore, in this paper, we address the following research question: How
to create a feature vector which quantifies software code based on its content
preserving the equality relation between distinct code fragments?

We search for an algorithm that can extract features based on the content of
the code fragment (in this study it is a line), and that is an injective surjective
transformation [8]. This property is important as the non-optimal quantifica-
tion has a negative impact on the machine learning algorithms – if we cannot
distinguish between two lines that are different, but have the same feature vec-
tors, then we cannot guarantee that the data set is consistent. Two lines can be
classified differently (e.g. one could be classified as violation and the other as
non-violation), which can make the training of the machine learning algorithms
difficult. The algorithms may not converge to an accurate model.

Improving Quality of Code Review Datasets 83

In order to create an algorithm that can be used in practice, we evaluate
it in a case study of our industrial partner. At the company (Company A)
we can analyze their proprietary software, developed and quality assured in a
professional way. We used a similar approach as validating methods using design
science or action research [3].

The results show that the new feature extraction method improves the per-
formance of machine learning algorithms, in particular the Mathews Correlation
Coefficient (MCC) from 0.31 to 0.70.

The remaining of the paper is structured as follows. Section 2 presents the
most important related work. Section 3 presents the new feature extraction
method. Section 4 describes our research design and Sect. 5 presents the results.
Finally, Sect. 6 presents our conclusions, discussion and the further work.

2 Related Work

Traditionally, predicting the number of defects, their location or test case failures
from source code properties is based on two different approaches. The first one
is the usage of structural source code metrics and the second is based on static
analysis of source code. There are meta-studies on defect predictions and the
metrics used in the models [23,26], showing that the field is still actively searching
for the right metrics.

The use of structural code metrics has been studied extensively since the
design of the object-oriented metric suite by Chidamber and Kemerer [6]. Stud-
ies by Basili et al. [4] presented evidence that these metrics are important in
predictors for software defects, which was confirmed by later studies like Subra-
manyam and Krishnan [30]. Even recent advances in this field show that these
metrics have effect on the software defects [19].

Although there are multiple studies where the structural metrics are used as
predictors, there is no conclusive evidence which of these metrics are important
and which are not. For example, a study by Tahir et al. [32] could not estab-
lish the relation between size, object-oriented metrics and software defects. The
existing meta-analyses show that the size effect is an important confounding
factor in all analyses – the larger the software, the more fault-prone it is (but
also the larger the values of the metrics) [1].

In the area of static analysis, Nagappan and Ball [16] studied the use of
static analysis metrics and tools as predictors for pre-release defects. The results
showed that these kind of metrics can separate components into high and low
quality ones. Studies in other domains show the same trend [12], which indicates
that there is a relation between the properties of software code and the external
properties of software, like its quality measured by the various defect-related
metrics.

Schnappinger et al. [24] presented a study on the use of static analysis to
predict maintainability of software, which our study builds on. We use similar
methods for designing the machine learning classifier.

In addition to using different metrics to predict external properties of soft-
ware, our work builds upon the advances of using machine learning in software

84 M. Staron et al.

analysis. Sultanow et al. [31] proposed a neural network to prioritize static anal-
ysis warnings in the context of continuous integration. We use a very similar
classifier (neural network) in our work in order to minimize the confounding
factors related to the choice of evaluation methods. In our previous studies we
also established that using text analysis (Bag of Words) can successfully mimic
static analysis [17].

Our study is a complement to the existing body of research as we use a
novel way of analyzing the software code – we view the software code as a
set of lines and tokens which have meanings that can be captured as feature
vectors. We used a similar approach in our previous studies [2,18]. A similar
approach was adopted by Shippey et al. [25], who used the information from the
abstract syntax trees for as features. In our case, we use languages where the
AST (Abstract Syntax Tree) is not available due to proprietary compilers and
we focus on code fragments which are used in continuous integration. In that
context, the fragments are often parts of functions, methods or classes and they
cannot be compiled.

Finally, our work is important for the line of research of using textual features
for source code analyses for maintainability and readability. For example Mi et al.
[14] presented a study of how to improve readability of code using convolutional
neural networks (although of a more complex architecture than ours). Xiao et al.
[34] showed the use of word embeddings for finding the localization of defects in
source code using LSTM models (Long-Short Term Memory), which is where we
used the inspiration for including the LSTM layers in the design of our neural
network. Although quite recent, this line of research has been shown to be quite
promizing (e.g. [13]).

3 New Feature Extraction Method

The feature extraction algorithm is presented in Fig. 21. It can be summarized
in the following way. For each line, create a feature vector, check if the feature
vector has already been found and check if the lines are the same. If not, then
find which tokens differ these two lines and add one of these tokens to the set of
features and start the process again. In this way, we have a guarantee that the
feature vector representation of two distinct lines are different.

The algorithm starts with the initialization of the empty list and analyzing
one line at a time (step 1 and 2). The analysis of the line, in step 3, uses an
algorithm that creates a list of token based on the content from the file. The
function that tokenizes the line uses whitespaces, commas, full stops and brackets
as separators. We found that the following set of separators is optimal for such
programming languages as C, C++, Python and Java: [, , /,(, |, ,),], {, }. In
step 4 and 5 the algorithm adds a new token from the list and if there is no
new token, then it takes one more line and looks for new tokens there. In step
6, the algorithm uses the list of features to check for features for each the each
1 The full code of the featurizer can be found at: https://github.com/miroslawstaron/

code featurizer.

https://github.com/miroslawstaron/code_featurizer
https://github.com/miroslawstaron/code_featurizer

Improving Quality of Code Review Datasets 85

Fig. 2. Activity diagram presenting the algorithm for the new featurizer.

lines analyzed so far. Then it checks whether there are feature vectors that are
identical and whether the corresponding lines are identical (step 8). In Fig. 2,
the exit condition in step 9 is two fold – either the set of lines to featurize is
empty or there are no new tokens to be added. The first condition is given, but
the second is needed when the algorithm encounters lines that differ only in the
number of whitespaces – e.g. “x = x + 1;” and “x = x+1” (spaces between x
and 1).

Figure 3 presents the results of applying the new featurizer to the same code
as in Fig. 1.

In the example in Fig. 3, lines 3 and 4 have different feature vectors. However,
lines which contain only whitespaces or separators ({ and }), have feature vectors
equal to all zeros, since we do not need this kind of lines in the analyses of the
source code.

Although the size of the example is small, the full potential of the new fea-
turizer is observed on larger data sets – code bases of over 10,000 lines of code. In
these data sets, we need to find the right number of features as typical approaches
result in the same feature vectors for two different lines.

86 M. Staron et al.

Fig. 3. Example of the result of applying the new featurizer to the code from the
example in Fig. 1. The lines that are different have different feature vectors.

4 Research Design

The research question of How to create a feature vector which quantifies software
code based on its content preserving the equality relation between distinct code
fragments? requires investigation in a professional context in order to study a
source code base that is of non-trivial size and at the same time professionally
developed and quality assured. Since the understanding of the code is important,
we need to have access to the professionals who can answer our questions about
the code and its purpose. The ability to work with the professionals provides
us with the possibility to access high quality code review data. Therefore, we
settled for action research as our methodology [27].

4.1 Case Selection

In our case study we chose one company which develops embedded software
products for the commercial market. The products are matured and the devel-
opment team has over a decade of experience of agile software development and
have been using continuous integration for over five years. We chose the com-
pany as it provided us with the possibility to analyze their code for software
integration. The code is a mixture of Python and a proprietary integration lan-
guage. This means that the code needs several pre-processing steps before it can
be combined, which renders the static analysis and compiler-based approaches
unusable in this context. From that perspective, we see the analysis of this code
as the hardest scenario for automated analysis, which means that the we can
generalize the results to the contexts which are simpler.

To evaluate the method, we benchmarked it to Bag-of-Words (BOW) feature
extraction. Bag-of-words uses a vocabulary that can be either automatically
extracted from the training examples or predefined. When the vocabulary is
extracted from the training code it has to be passed as an input to the filter
extracting features using BOW on the code to be evaluated. BOW counts the
occurrences of tokens in the code that are in the vocabulary (the code is tok-
enized). Also, it can count occurrences of sequences of tokens called n-grams

Improving Quality of Code Review Datasets 87

(e.g., bi-gram or tri-grams). N-grams are a valuable source of information for
finding code guidelines violations since it is often important to understand the
context in which a given token appears (e.g., int a vs. class a).

4.2 Data Collection

The code used in this study came from a development company for consumer
products with embedded software. The studied organization, within this com-
pany, has over 100 developers who work according to Agile principles. They
develop embedded software product, based on Linux and they adopted continu-
ous integration for over five years ago.

The data for our analyses were collected from a code review system Gerrit
[15]. This code review tool is designed on top of code management tool Git [5].
The tool provides the possibility for software designers to comment on the code
from their peers and stop code of low quality to enter the main code branch. For
our purposes, the tool provided us with the possibility to extract comments and
make a sentiment analysis of the comments in order to classify the lines as “good
quality” and “bad quality” – if a reaction was positive or negative respectively.
Since the sentiment analysis is not the main purpose of this study, we used a
simple, keyword based analysis of the comments. The process of extracting the
lines, their classification and training the model is presented in Fig. 4.

4.3 Data Analysis

The model for the classifying the code to one of the classes was based on a
convolutional neural network. The architecture of the neural network is presented
in Fig. 5. The number of input parameters for the first layer is dependent on the
number of features extracted. In the figure, the number is shown for the Bag-of-
Word technique. The convolutional layers of the network use the window size of
5.

We chose this architecture as it provides the possibility to reduce the feature
vector using convoluions. Since the new feature extraction vector resulted in
large number of features (over 5,000), the convolutional neural network could
reduce that number without the loss of information.

The size of the code base is presented in Fig. 6. The code base is not balanced
when it comes to the two classes – correct code and code that reviewers reacted
on, where the lines which were reacted upon positively are in majority.

In order to mitigate the problems related to the unbalanced classes, we used
upsampling.

88 M. Staron et al.

Fig. 4. Classification workflow.

Fig. 5. Architecture of the neural network used for the classification task.

Improving Quality of Code Review Datasets 89

Fig. 6. Analyzed code bases for Company A and Company B; in each case, this is a
subset of lines which were part of a review in the last few months.

The measures for comparing the performance of the machine learning algo-
rithm for these two data sets are [20]:

1. Precision: the proportion of the predicted positive cases which are the real
positive cases.

2. Recall: the proportion of real positive cases which are predicted as positive.
3. F1-score: the harmonic mean of precision and recall.
4. MCC (Matthews Correlation Coefficient): the measure describing the confu-

sion matrix in a single number for binary classification problems.

The MCC measure is important as it is as close to a mean of the prediction
measures for all classes as possible – both the true positives and true negatives are
used in the calculations (compared to the measures for precision, recall and F1-
score). It is also recommended for the evaluation of machine learning algorithms
in software engineering [11].

5 Results

Figure 7 shows the summary of the evaluation measures for the code from Com-
pany A.

The difference between the two feature extraction techniques shows mostly in
the value of MCC. The Bag-of-Words technique has a higher precision, but the
overall measure (MCC) is worse in comparison with the new featurize extraction
method.

This means that the BOW data set results in the predictors which favors one
of the classes – the true positive cases. The new featurizer method results in the
predictor which balances both the true positives and true negative cases.

90 M. Staron et al.

Fig. 7. Summary of the performance measures for two featurizers. Data set is code for
Company A.

In the domain of the problem, i.e. finding which lines of code cause negative
reactions of the code reviewers, this means that the predictor trained on the new
featurizer data set provides fewer false positives. In comparison to the BOW-
based predictor, the predictor provides a better overall performance.

6 Conclusions

Extracting features from software source code determines the ability to analyze
the code using machine learning algorithms. Techniques available today provide
rudimentary ways of extracting the features, but they are based on techniques
used for either natural language analysis or they require compiling of source code.
However, in the context of continuous integration, when source code is commited
in fragments, the compilation process is not possible during the review of the
source code by software designers.

Therefore, in this paper, we set off to address the research problem of how
to create a feature vector which quantifies software code based on its content
preserving the equality relation between distinct code fragments. We developed
an algorithm which is based on the actual tokens used in the program code that
is analyzed.

We used a neural network to train a predictor for the code quality based on
a real-world scenario of code review analyses in continuous integration flow. The
analyzed code was provided by our partner company and can be seen as one of
the hardest cases as it is a mix of different programming languages and does not
have a static analysis tool provided.

Improving Quality of Code Review Datasets 91

The results from our evaluations show that we could increase the overall accu-
racy of the predictions measured as Matthews Correlation Coefficient (MCC).
The increase was from 0.31 to 0.70, with the reduction of the performance in
precision (by 0.05) and increase in recall (0.01).

References

1. Mamun, M.A.A., Berger, C., Hansson, J.: Effects of measurements on correlations
of software code metrics. Empirical Softw. Eng. 24(4), 2764–2818 (2019). https://
doi.org/10.1007/s10664-019-09714-9

2. Al-Sabbagh, K., Staron, M., Hebig, R., Meding, W.: Predicting test case verdicts
using textual analysis of commited code churns (2019)

3. Antinyan, V., Staron, M., Sandberg, A., Hansson, J.: Validating software mea-
sures using action research a method and industrial experiences. In: Proceedings
of the 20th International Conference on Evaluation and Assessment in Software
Engineering, p. 23. ACM (2016)

4. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design met-
rics as quality indicators. IEEE Trans. Softw. Eng. 22(10), 751–761 (1996)

5. Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., German, D.M., Devanbu, P.:
The promises and perils of mining Git. In: 2009 6th IEEE International Working
Conference on Mining Software Repositories, pp. 1–10. IEEE (2009)

6. Chidamber, S.R., Kemerer, C.F.: Towards a metrics suite for object oriented design
(1991)

7. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

8. Fenton, N., Bieman, J.: Software Metrics: A Rigorous and Practical Approach.
CRC Press, Boca Raton (2014)

9. Goldberg, Y., Levy, O.: word2vec explained: deriving Mikolov et al’.s negative-
sampling word-embedding method. arXiv preprint arXiv:1402.3722 (2014)

10. Halali, S., Staron, M., Ochodek, M., Meding, W.: Improving defect localization
by classifying the affected asset using machine learning. In: Winkler, D., Biffl, S.,
Bergsmann, J. (eds.) SWQD 2019. LNBIP, vol. 338, pp. 106–122. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-05767-1 8

11. Kitchenham, B.A., Pickard, L.M., MacDonell, S.G., Shepperd, M.J.: What accu-
racy statistics really measure. IEE Proc. Softw. 148(3), 81–85 (2001)

12. Lindahl, T., Sagonas, K.: Detecting software defects in telecom applications
through lightweight static analysis: a war story. In: Chin, W.-N. (ed.) APLAS
2004. LNCS, vol. 3302, pp. 91–106. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30477-7 7

13. Liu, G., Lu, Y., Shi, K., Chang, J., Wei, X.: Convolutional neural networks-based
locating relevant buggy code files for bug reports affected by data imbalance. IEEE
Access 7, 131304–131316 (2019)

14. Mi, Q., Keung, J., Xiao, Y., Mensah, S., Gao, Y.: Improving code readability
classification using convolutional neural networks. Inf. Softw. Technol. 104, 60–71
(2018)

15. Mukadam, M., Bird, C., Rigby, P.C.: Gerrit software code review data from
android. In: 2013 10th Working Conference on Mining Software Repositories
(MSR), pp. 45–48. IEEE (2013)

https://doi.org/10.1007/s10664-019-09714-9
https://doi.org/10.1007/s10664-019-09714-9
http://arxiv.org/abs/1402.3722
https://doi.org/10.1007/978-3-030-05767-1_8
https://doi.org/10.1007/978-3-540-30477-7_7
https://doi.org/10.1007/978-3-540-30477-7_7

92 M. Staron et al.

16. Nagappan, N., Ball, T.: Static analysis tools as early indicators of pre-release defect
density. In: Proceedings of the 27th international conference on Software engineer-
ing, pp. 580–586. ACM (2005)

17. Ochodek, M., Hebig, R., Meding, W., Frost, G.: Recognizing lines of code violating
company-specific coding guidelines using machine learning. Empirical Softw. Eng.
25, 220–265 (2019)

18. Ochodek, M., Staron, M., Bargowski, D., Meding, W., Hebig, R.: Using machine
learning to design a flexible loc counter. In: 2017 IEEE Workshop on Machine
Learning Techniques for Software Quality Evaluation (MaLTeSQuE), pp. 14–20.
IEEE (2017)

19. Ouellet, A., Badri, M.: Empirical analysis of object-oriented metrics and centrality
measures for predicting fault-prone classes in object-oriented software. In: Piat-
tini, M., Rupino da Cunha, P., Garćıa Rodŕıguez de Guzmán, I., Pérez-Castillo,
R. (eds.) QUATIC 2019. CCIS, vol. 1010, pp. 129–143. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29238-6 10

20. Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informed-
ness, markedness and correlation (2011)

21. Rana, R., Staron, M.: Machine learning approach for quality assessment and predic-
tion in large software organizations. In: 2015 6th IEEE International Conference on
Software Engineering and Service Science (ICSESS), pp. 1098–1101. IEEE (2015)

22. Rana, R., Staron, M., Hansson, J., Nilsson, M., Meding, W.: A framework for
adoption of machine learning in industry for software defect prediction. In: 2014
9th International Conference on Software Engineering and Applications (ICSOFT-
EA), pp. 383–392. IEEE (2014)

23. Rathore, S.S., Kumar, S.: A study on software fault prediction techniques. Artif.
Intell. Rev. 51(2), 255–327 (2017). https://doi.org/10.1007/s10462-017-9563-5

24. Schnappinger, M., Osman, M.H., Pretschner, A., Fietzke, A.: Learning a classifier
for prediction of maintainability based on static analysis tools. In: Proceedings of
the 27th International Conference on Program Comprehension, pp. 243–248. IEEE
Press (2019)

25. Shippey, T., Bowes, D., Hall, T.: Automatically identifying code features for soft-
ware defect prediction: using AST N-Grams. Inf. Softw. Technol. 106, 142–160
(2019)

26. Son, L.H., et al.: Empirical study of software defect prediction: a systematic map-
ping. Symmetry 11(2), 212 (2019)

27. Staron, M.: Action Research in Software Engineering. Springer, Heidelberg (2020).
https://doi.org/10.1007/978-3-030-32610-4

28. Staron, M., Kuzniarz, L., Thurn, C.: An empirical assessment of using stereotypes
to improve reading techniques in software inspections. ACM SIGSOFT Softw. Eng.
Notes 30(4), 1–7 (2005)

29. Staron, M., Ochodek, M., Meding, W., Söder, O.: Using machine learning to iden-
tify code fragments for manual review. In: International Conference on Software
Engineering and Advanced Applications, pp. 1–20. ACM (2020)

30. Subramanyam, R., Krishnan, M.S.: Empirical analysis of CK metrics for object-
oriented design complexity: implications for software defects. IEEE Trans. Softw.
Eng. 29(4), 297–310 (2003)

31. Sultanow, E., Ullrich, A., Konopik, S., Vladova, G.: Machine learning based static
code analysis for software quality assurance. In: 2018 Thirteenth International Con-
ference on Digital Information Management (ICDIM), pp. 156–161. IEEE (2018)

https://doi.org/10.1007/978-3-030-29238-6_10
https://doi.org/10.1007/s10462-017-9563-5
https://doi.org/10.1007/978-3-030-32610-4

Improving Quality of Code Review Datasets 93

32. Tahir, A., Bennin, K.E., MacDonell, S.G., Marsland, S.: Revisiting the size effect
in software fault prediction models. In: Proceedings of the 12th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, p. 23.
ACM (2018)

33. Wu, L., Hoi, S.C., Yu, N.: Semantics-preserving bag-of-words models and applica-
tions. IEEE Trans. Image Process. 19(7), 1908–1920 (2010)

34. Xiao, Y., Keung, J., Bennin, K.E., Mi, Q.: Improving bug localization with word
embedding and enhanced convolutional neural networks. Inf. Softw. Technol. 105,
17–29 (2019)

Is Machine Learning Software Just
Software: A Maintainability View

Tommi Mikkonen1(B), Jukka K. Nurminen1, Mikko Raatikainen1,
Ilenia Fronza2, Niko Mäkitalo1, and Tomi Männistö1

1 University of Helsinki, Helsinki, Finland
{tommi.mikkonen,jukka.k.nurminen,mikko.raatikainen,

niko.makitalo,tomi.mannisto}@helsinki.fi
2 Free University of Bozen-Bolzano, Bolzano, Italy

Ilenia.Fronza@unibz.it

Abstract. Artificial intelligence (AI) and machine learning (ML) is
becoming commonplace in numerous fields. As they are often embed-
ded in the context of larger software systems, issues that are faced with
software systems in general are also applicable to AI/ML. In this paper,
we address ML systems and their characteristics in the light of soft-
ware maintenance and its attributes, modularity, testability, reusability,
analysability, and modifiability. To achieve this, we pinpoint similarities
and differences between ML software and software as we traditionally
understand it, and draw parallels as well as provide a programmer’s view
to ML at a general level, using the established software design principles
as the starting point.

Keywords: Software engineering · Software maintenance · Artificial
intelligence · Machine learning · Modularity · Reusability ·
Analysability · Modifiability · Testability

1 Introduction

Artificial intelligence (AI) and machine learning (ML) is becoming commonplace
in numerous fields. Such techniques help us to build interactive digital assistants,
plan our route in traffic, or perform stock transactions.

While there are several ways to implement AI features, for the purposes of this
paper, we focus on ML, a flavor of AI where algorithms improve automatically
through experience [12] particularly by approaches based on neural networks.
Very large neural networks, commonly called deep learning, can have billions of
parameters whose values are optimized during the training phase. The resulting
trained networks are able, for example, to detect objects in pictures, understand
natural language, or play games at a superhuman level.

With these ML features, a new challenge has emerged: how to integrate ML
components into a large system? So far, we have found ways to build individual

c© Springer Nature Switzerland AG 2021
D. Winkler et al. (Eds.): SWQD 2021, LNBIP 404, pp. 94–105, 2021.
https://doi.org/10.1007/978-3-030-65854-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65854-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-65854-0_8

Is Machine Learning Software Just Software: A Maintainability View 95

(sub)systems but there is little established engineering support for creating and
maintaining large systems that should be always on, produce reliable and valid
results, have reasonable response time and resource consumption, survive an
extended lifetime, and, in general, always place humans first in the process.
Since ML systems are built using software, we believe that these issues can only
be mitigated by considering both software engineering and data science building
ML software.

There are several overview papers about software engineering of ML appli-
cations. Reporting workshop results [7] discuss the impact of inaccuracy and
imperfections of AI, system testing, issues in ML libraries, models, and frame-
works. Furthermore, Arpteg et al. [1] identified challenges for software design by
analyzing multiple deep learning projects. Some surveys have focused on particu-
lar aspects of software development, such as testing [15]. However, in comparison
to most of the prior overviews, we take a more holistic system view, and struc-
ture the challenges brought by ML to qualities of software design, in particular
in the context of software maintenance.

More specifically, we study ML systems and their features in the light of
maintenance as defined in software product quality model standard ISO/IEC-
25010 [6], and its five subcharacteristices (or attributes) – modularity, reusability,
analysability, modifiability, testability. The work is motivated by our experiences
in developing applications that include ML features as well as observations of
others, in particular Google’s machine learning crash course,1 that points out
that even if ML is at the core of an ML system, only 5% or less of the overall code
of that total ML production system in terms of code lines. Our focus was on the
characteristics of ML themselves; patterns, such as wrappers and harnesses, that
can be used to embed them into bigger systems in a more robust fashion will be
left for future work. Furthermore, in this work we explicitly focused on software
maintainability, and other characteristics addressed by the standard are left for
future work.

The rest of this paper is structured as follows. Section 2 discusses the back-
ground and motivation of this work. Section 3 then continues the discussion by
presenting a programmer’s view to AI. Section 4 studies maintainability of AI
systems, and Sect. 5 provides an extended discussion and summary of our find-
ings. Finally, Sect. 6 draws some final conclusions.

2 Background: ML Explained for Programmers

Machine learning is commonly divided into three separate classes. The most
common is supervised learning where we have access to the data and to the
“right answer” often called a label, e.g., a photo and the objects in the photo. In
unsupervised learning, we just have the data and the ML systems try to find some
common structure in the data, e.g., classify photos of cats and dogs to different
categories. Finally, in reinforcement learning the system learns a sequence of
1 https://developers.google.com/machine-learning/crash-course/production-ml-

systems, accessed Aug. 18, 2020.

https://developers.google.com/machine-learning/crash-course/production-ml-systems
https://developers.google.com/machine-learning/crash-course/production-ml-systems

96 T. Mikkonen et al.

Fig. 1. Illustration of the ML training process and the search for a good model.

steps that leads it to a given goal, e.g., to a winning position in a game of chess.
In this paper, we primarily deal with supervised learning, which is the most
common approach. Many of our examples deal with neural networks although
the ideas apply to other forms of supervised machine learning as well.

Developing an ML model requires multiple steps, which in industrial devel-
opment are more complicated than in academic exploration [4]. Figure 1 gives an
overview of the process. As the starting point, data must be available for train-
ing. There are various somewhat established ways of dividing the data to train-
ing, testing, and cross-validation sets. Then, an ML model has to be selected,
together with the hyperparameters of the model. The hyperparameters define,
e.g., how many and what kind of layers a neural network has and how many
neurons there are in each layer.

Next, the model is trained with the training data. During the training phase,
the weights of the neurons in the network are iteratively adjusted so that the
output of the neural network has a good match with the “right answers” in the
training material.

The trained model can then be validated with different data – although
in software engineering this would more correspond to verification rather than
validation that takes place with end users. If this validation is successful (with
any criteria we decide to use) the model is ready for use. Then, it has to be
embedded with the rest of the software system. Often the model, which can be
the core of the application, is just a small part of the whole software system,
so the interplay between the model and the rest of the software and context is
essential [13].

To summarize, on the surface, the promise of ML systems is tempting for
solving various problems. Based on the data only, the system learns to produce
results without any human involvement or consideration. Internally, however,
ML is just software and one way to think of deep learning is that it is just
a new, yet very powerful, algorithm to the toolbox of the software developers.
Its characteristics, however, are different from engineering tradition – instead
of predefined executions, ML defines its own algorithms based on training data

Is Machine Learning Software Just Software: A Maintainability View 97

that is used to tailor the exact behavior, following the patterns that the system
was able to absorb from the data.

So far, some work on the differences between AI software and “vanilla”
software exist. In particular, Zhang et al. [15] refer to a number of challenges
for AI testing: statistical nature of machine learning; data-driven programming
paradigm with high sensitivity to data; evolving behavior; oracle problem; and
emergent properties when considering the system as a whole. Moreover, the
black-box nature of many ML approaches, especially neural networks, and the
huge input space making the testing of rare cases difficult are common problems
[10].

Next, we will elaborate the above challenges in the context of a real-life
software project, and then we relate them to maintainability in terms of modu-
larity, testability, reusability, analysability, and modifiability, as proposed by the
ISO/IEC-25010 standard [6].

3 Challenges with an ML Component and Experiences
from a Sample Project

In this section, we present a set of practical issues with an ML component that
is concretized by a practical example. In this example research project2 dis-
cussed in this paper, we worked with the Jira3 issues tracking software. The Jira
installation for managing the development and maintenance of a large industrial
system contained over 120,000 Jira issues. Frequently, multiple (Jira) issues are
about the same thing and should be linked : they can be duplicates, or otherwise
related, such as an issue requiring the solution of another issue. As links are
encoded manually in Jira, many may be missing. Because of the large number
of issues, finding potentially missing links is hard. To help users to manage the
links, we studied different natural language processing services based on existing
algorithms and implementations to analyze the textual issue descriptions and to
propose the users potentially missing links between them.

To summarize the experiences from the example, services that were promising
in small scale or during development produced less good outcome in industrial
scale use. There were also several challenges related to deployment, such as con-
tinuous integration and security, which are not covered here. In the end, rather
than having one ML service that would produce the results, we used a design that
combines the best results from different services and adds application-specific
filters and contextualization. For a traditional software application, such design
could have implied design flaws, but for AI software such design seemed a some-
what normal, i.e., things that one must be prepared to deal with.

While the example can be regarded as simple, it allows us to highlight detailed
experiences, listed below in different subsections.

Stochastic Results. An ML model usually reaches certain accuracy, e.g., 98%.
But how do we deal with the cases which are not correct? In classical software
2 https://openreq.eu, accessed Aug. 18, 2020.
3 https://www.atlassian.com/fi/software/jira, accessed Aug. 18, 2020.

https://openreq.eu
https://www.atlassian.com/fi/software/jira

98 T. Mikkonen et al.

we usually do not experience this at all. The problem gets even more complex
when considering the different kinds of errors, for instance false positives against
false negatives. The severity of errors is also system-specific.

Example: The detection of duplicates provides a score that can be used to filter
and order expected true positives. However, users did not consider false positives,
i.e., wrong proposals, a major problem when the results are ordered by the score.
In this case the system only assists users leaving them the final decision and any
help was considered beneficial. False negatives, i.e., not detecting duplicates, are
more problematic.

High Sensitivity to Data. ML results are extremely sensitive to training
data. A very minor change – even such as changing the order of two training
examples – can change the system behavior. Similarly, any new training data will
most likely change the outcome. Furthermore, measures such as accuracy and
precision rely often on incomplete data, resulting in under- or overfitting due to,
e.g., imperfect training data. Furthermore, operating in a dynamic environment
of constantly changing data is challenging, because batch processing of data
causes discontinuity and excessive resource consumption.

Example: Very careful fitting turned out to be unnecessary for the users and
impossible because training data is always incomplete. The missing links, which
we tried to detect, were also naturally largely missing from any available train-
ing data sample. We decided that better solution would be to monitor users’
acceptance and rejection rates for the proposals.

Oracle Problem. In many cases where AI is involved, we do not know what
is the right answer. This oracle problem is also common in the context of some
algorithms, such as in optimization, where we do not know what is the best
answer either. An additional aspect of this, related to AI ethics, is that we may
have difficulty to agree what is the right answer [2]. A commonly used example
of such a case is how a self-driving car should behave in a fatal emergency
situation – to protect the persons inside the car or those around it, or, given a
choice between a baby and an elderly person, which should be sacrificed.

Example: The users differ: one prefers to add many links while another uses links
more scarcely. Likewise, if the issues are already linked indirectly via another
issue, it is a subjective and context-dependent decision whether to add a redun-
dant link. Thus, there are no single answers whether to add a link. Another
challenge is that two issues can be first marked as duplicates but then they are
changed and do not duplicate each other anymore.

Evolving Behavior. Many ML systems are build around the idea that the sys-
tem can learn on-the-fly as it is being used. For instance, so-called reinforcement
learning allows ML to chart the unknown solution space on the fly, aiming to
maximize some utility function. The learning can also take place in operational
use, meaning that the system can adapt to different situations by itself.

Example: All users decisions are anonymously recorded and the decisions can
be used to change the behavior. However, when to change behavior? Changing

Is Machine Learning Software Just Software: A Maintainability View 99

behavior after each user might result in unbalanced behavior because decisions
are subjective. Constant behavior change was also considered computationally
expensive compared to its benefits.

Black Box. Neural networks are to a large degree regarded as black boxes.
Therefore, understanding why they concluded something is difficult. Although
there are new ways to somehow study the node activations in the network, it
is still hard to get an understandable explanation. On one hand, this influences
the trust users have to the system, and on the other hand, also makes debugging
neural networks and their behavior very hard.

Example: Even in our simple case, the proposals do not provide any rational why
a link is proposed so the users are not informed either. Without explanation and
too many false positives – and perhaps even false negatives – users’ trust and
interest in the system in the long term remains a challenge.

Holistic Influences. With ML, it is not possible to pinpoint the error to a
certain location in the software, but a more holistic view must be adopted.
The reason why the classical approach of examining the logic of the computer
execution does not work is that both the quality of entire training data set as well
as the selected model have an influence. Consequently, there is no single location
where to pinpoint the error in the design. As a result, a lot of the development
work is trial-and-error to try to find a way how the system provides good results.

Example: It was not always clear should we improve data, model or software
around it. Testing was largely manual requiring inspection and domain knowl-
edge. We also tested another duplicate detection service but any larger data
(more than 30 issues) crashed the service without explanation of the cause. As
the results were similar with the first service, we quickly disregarded this service.

Unclear Bug/Feature Division. The division between a bug and a feature is
not always clear. While it is possible there is a bug somewhere, a bad outcome
can be a feature of the ML component caused by problems in the data (too little
data, bad quality data, etc.). Some of the data related problems can be very
hard to fix. For instance, if a problem is caused by shortage of training data it
can take months to collect new data items. Moreover, even if the volume of data
is large it can cover wrong cases. For example, in a system monitoring case, we
typically have a lot of examples of the normal operation of a system but very
few examples of those cases where something accidental happens.

Example: The Jira issues use very technical language and terminology, and can
be very short and laconic. This caused sometimes incorrect outcome that is
immediately evident for a user, e.g., by considering the issue, its creation time,
and the part of software the issue concerns.

Huge Input Space. Thorough testing of an ML module is not possible in the
same sense as it is possible to test classical software modules and to measure
coverage. Thorough testing of classical software is as such also difficult but there
are certain established ways, especially if the input space to a function/module is

100 T. Mikkonen et al.

constrained. In an ML system, the input data often has so many different value
combinations that there is no chance to try out them all or even to find border
cases for more careful study. As shown in the adversarial attack examples, a small
carefully planned change in input data can completely change the recognition
of a picture or spoken command. In all cases we do not have nasty adversarial
attackers but those examples show that such situations can happen if the data
randomly happens to have certain characteristics.

Example: The Jira issues are very different from each other: Some of them are
very short and laconic while others contain a lot of details. Sometimes the title
contains the essential information while sometimes the title is very general and
information is in the description. Thorough testing for optimal solutions, and
even finding archetypal cases is hard.

4 ML in the Light of Maintainability

To study software maintenance in relation to ML software, the characteristics of
ML systems were analyzed in the light of the key quality attributes. The analysis
was first performed by two first authors, based on their experience on software
design and ML, and then validated and refined by the rest of the authors.

Modularity. Modularity is the property of computer programs that measures
the extent to which programs have been composed out of separate parts called
modules. Module is generally defined to be a self-contained part of a system,
which has a well-defined interface to the other parts, which do not need to
care what takes place inside the module. The internal design of a module may
be complex, but this is not relevant; once the module exists, it can easily be
connected to or disconnected from the system.

In the sense of modularity, ML modules and classical SW modules coexist.
Dependencies between modules may happen via large amounts of data, and
output of an ML module can be input to another ML module. However, because
the ML module operation is not perfect (e.g., accuracy 97%) modules taking
output from ML modules need to live with partly incorrect data. When an
upstream ML module is learning to be better, it is unclear what happens to
downstream ML modules that have learned to deal with faulty input – when
input now becomes more correct, will the downstream ML module actually give
worse results? Oftentimes this implies that instead of decomposing complex ML
function to simpler ones, the ML system is trained as a self-contained entity.

Another issue is related to interfaces. ML and especially neural networks are
a bit too good to hide information. Therefore, understanding what is happening
in an ML module is challenging and a lot of work on explainable AI is ongoing.
Sometimes – as is the case in our example – dealing with this leads to using
several modules that overlap in features for the best results.

Testability. Testing the software that implements machine learning can be
tested like any other piece of software. Furthermore, the usual tools can be

Is Machine Learning Software Just Software: A Maintainability View 101

used to estimate the coverage and to produce other metrics. Hence, in the sense
of code itself, testing ML software has little special challenges.

In contrast, testing ML systems with respect to features related to data and
learning has several complications. To begin with, the results can be stochastic,
statistical or evolving over time, which means that they, in general, are correct
but there can also be errors. This is not a good match with classical software
testing approaches, such as the V-model [11], where predestined, repeatable exe-
cution paths are expected. Moreover, the problems can be such that we do not
know the correct answer – like in many games – or, worse still, us humans do
not agree on the correct answer [2]. Finally, while many systems are assessed
against accuracy, precision, or F-score using a test data set, there is less effort
on validating that the test data set is correct and produces results that are not
over- or underfitted.

In cases where the ML system mimics the human behavior – such as “find
traffic sign in the picture” in object detection – a well-working AI system should
produce predictable results. Again, most ML systems do not reach 100% accu-
racy so we need ways to deal with also inaccurate results. In some cases, like
in targeted advertisement, it is adequate that the accuracy level is good enough
while in other cases, like in autonomous vehicles, high trust to the results is
necessary.

Reusability. Reusability is a quality characteristic closely associated with
portability; it refers to the ability to use already existing pieces of software
in other contexts. As already mentioned, in ML, the amount of code is relatively
small and readily reusable, but reusing data or learning results is more difficult.

To begin with, there are reuse opportunities within the realm of ML itself. For
instance, models can be reused. In fact, the present practice seems to be to pick a
successful model from the literature and then try to use it – instead of inventing
the models each time from scratch – even in completely different domains and
use cases. Furthermore, the same data set can be used for training in several
services, or one service can combine different data for training. For instance,
in the example presented above, we used a number of different training data.
Moreover, some data can be also quite generic, such as corpus from Wikipedia.

In ML, there is also a form of reuse called transfer learning [9]. In essence,
transfer learning is an act of storing knowledge gained while solving one problem,
and then applying the knowledge to a different but related problem at the level of
trained ML modules. While the initial training often requires massive datasets,
and huge amount of computing, retraining the module for particular data often
requires far less data and computation. However, it may be hard to decide for
sure if the retrained module is behaving well, because starting the training with
a pretrained model can lead to rapid learning results, but this process does not
guarantee much about its correct eventual behavior.

102 T. Mikkonen et al.

Finally, as ML modules can evolve over time, it is possible that they help to
adapt the software to a new context. This can help reusing the modules in new
applications.

Analysability. Since computer programs are frequently read by programmers
while constructing, debugging, and modifying them, it is important that their
behavior can be easily analyzed. Moreover, the behavior of neural networks can
be studied and recorded for further analysis.

However, in ML, structural information associated with a neural network or
characteristics of individual neurons bear little value in terms of analysability.
Instead, the behavior is intimately related to data. Hence, while we can study
individual neurons, for instance, the decision making process as a whole cannot
be analysed without additional support in the system.

Modifiability. An ML module typically requires very little code. Therefore,
modifying the logic of the ML module does not require much effort, and it seems
that such code is modified somewhat routinely by the developers. There are also
options to prune and shrink pre-trained networks so that they can be run with
less hardware resources [14].

In contrast, modifying data can have dramatic effects. For instance, during
training, a small change in input data – or just the change of the random gener-
ator seed – can change the results. Furthermore, the same training set can gen-
erate totally different neural network structure if we allow the system to search
in an automated fashion – so-called AutoML [5] – for the best hyperparameters
and network structure. As the neural network self-organizes itself, chances are
that different instances trained with the same datasets organize themselves dif-
ferently, so that their structures cannot be compared directly, and, worse still,
produce partially different results.

The fact that different training data produces different results does not only
introduce problems associated with modifiability. There can be cases where the
only modification that is needed for using the same software is training with
different data, and the software can be used intact.

5 Discussion

Above, we have presented a number of ML/AI related challenges to software
maintenance. Table 1 presents the relationships between maintenance related
characteristics and different aspects of machine learning. To summarize, soft-
ware written for implementing ML related features can be treated as any other
software from the maintainability perspective. However, when considering the
data and the machine learning part, chances are that tools and techniques that
are available are not enough. Therefore, in the end, the users should also be
involved in the activities to ensure correct behavior.

Is Machine Learning Software Just Software: A Maintainability View 103

Table 1. Summary of relationships between quality attributes and ML features.

Modularity Testability Reusability Analysability Modifiability

SR Neutral Negative; testing

aims to identify

bugs, whereas

stochastic results

escape discrete

testing

Neutral Negative;

stochastic results

cannot be easily

analyzed

Negative; modi-

fying stochastic

process can pro-

duce results that

are hard to pre-

dict

HSD Neutral Negative; testing

aims to iden-

tify bugs, and

reliance to data

does not lend

itself to discrete

testing.

Mixed; data sets

can be reused,

whereas reusing

trained systems

in different con-

texts can be hard

Negative;

analysing data

centric features

often requires

additional sup-

port from the

infrastructure

Mixed; code

can usually be

modified with

ease, whereas

modifying data

set can introduce

complications

EB Neutral Negative; test-

ing in general

builds on dis-

crete behaviors

and faults, and

has little room

for evolving

behavior

Mixed; evolving

behaviors can

adapt to new sit-

uations, whereas

their validation

and verification

in a new context

can be hard

Negative;

analysing an

evolving behav-

ior is more

complex than

analyzing static

behaviors

Mixed; the

behavior can

evolve to satisfy

new needs, but

triggering this

can be complex

OP Neutral Negative; testing

features whose

output is not

well defined is

hard

Neutral Negative;

analysing an

outcome that is

based on foreseen

results is hard

Neutral

BB Positive; mod-

ules by default

respect modular

boundaries

Mixed; modules

can be tested

separately, but

calculating met-

rics is hard

Positive; mod-

ules can be easily

reused

Negative; the

behavior is invis-

ible and hence

escapes analysis

Negative; black

box behav-

ior cannot be

modified directly

HI Negative; separa-

tion of concerns

does not really

happen as ML

modules may be

intertwined

Negative; test-

ing cannot be

focused but

needs to be

holistic

Negative; units

of reuse are hard

to define

Negative; holistic

behavior is hard

to analyze

Negative; modifi-

cations can have

holistic effect

UD Neutral Negative; it is

unclear when a

test fails for what

reason

Neutral Negative; it is

unclear what to

analyze

Neutral

HIS Negative; module

with arbitrarily

large input inter-

face is difficult

to manage

Negative; testing

large input space

is complex

Neutral Negative; the

larger the input

space, the more

complex analysis

might be needed

Neutral

Legend:

SR: Stochastic results, HSD: High sensitivity to data, EB: Evolving behavior, OP: Oracle prob-

lem, BB: Black box, HI: Holistic influences, UD: Unclear bug/feature division, HIS: Huge input

space

104 T. Mikkonen et al.

Threats to Validity. A key threat to the validity of our observations is that
the study was performed by the authors based on their subjective experience
on software design and maintenance, and ML systems. This can be a source
of bias in the results. To mitigate this, all the results were analyzed by two
or more authors as they were recorded in Table 1. A further threat to external
validity is that there are various approaches to AI/ML, whose characteristics
differ considerably. To mitigate this threat, we have narrowed the scope of this
work to maintainability as defined by the ISO/IEC-25010 standard [6] and ML,
which is only a subset of AI.

Future Work. As for future work, there are obvious directions where we can
extend this work. To begin with, as already mentioned. We plan to perform
a similar analysis of other software quality aspects of ISO/IEC-25010 standard.
These include functional suitability, performance efficiency, compatibility, usabil-
ity, reliability, security, and portability. While some of these are related to main-
tainablity addressed in this paper, these topics open new viewpoints to AI/ML
software.

Furthermore, there are additional considerations, such as ethics [3], which
have emerged in the context of AI. Such topics can also be approached from
the wider software engineering viewpoint, not only from the perspective of novel
techniques.

Finally, running constructive case studies on the impact of the software design
principles in AI/ML software is one of the future paths of research. To dissem-
inate the results, we plan to participate in the work of SO/IEC JTC 1/SC 42,
which just accepted to start working on a working draft on “Software engineer-
ing: Systems and software Quality Requirements and Evaluation (SQuaRE) –
Quality Model for AI-based systems”.

6 Conclusions

In this paper, we have studied ML in the context of software maintainability.
To summarize the results, while ML affects all characteristics of software main-
tenance, one source of complications is testing and testability of ML in general.
Testing builds on the fact that software systems are deterministic, and it has
long been realized that systems where different executions may differ – due to
parallel executions for instance – often escape the traditional testing approaches.
Same concerns arise when modules can have evolving behaviors or which can not
be debugged with the tools we have. Hence, building new verification and vali-
dation tools that take into account the characteristics of ML are an important
direction for future work.

To a degree, concerns that are associated with testability apply to analysabil-
ity, including in particular black box behavior and reliance on large data sets.
Hence, understanding how to measure test coverage or analyze the behavior of
an AI module forms an obvious direction for future work. Moreover, since data
is a key element in many ML systems, its characteristics will require special
attention in the analysis.

Is Machine Learning Software Just Software: A Maintainability View 105

Finally, as already mentioned as well as pointed out, e.g., by Kuwajima et
al. [8], pattern-like solutions, such as wrappers, harnesses and workflows, for
example, that can be used to embed ML related functions into bigger systems in
a more robust fashion form a direction for future software engineering research.

References

1. Arpteg, A., Brinne, B., Crnkovic-Friis, L., Bosch, J.: Software engineering chal-
lenges of deep learning. In: Proceedings - 44th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA 2018. pp. 50–59. IEEE (2018).
https://doi.org/10.1109/SEAA.2018.00018

2. Awad, E., et al.: The moral machine experiment. Nature 563(7729), 59 (2018)
3. Bostrom, N., Yudkowsky, E.: The ethics of artificial intelligence. In: The Cambridge

Handbook of Artificial Intelligence, vol. 1, pp. 316–334 (2014)
4. Breck, E., Polyzotis, N., Roy, S., Whang, S.E., Zinkevich, M.: Data infrastructure

for machine learning. In: SysML Conference (2018)
5. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:

Efficient and robust automated machine learning. In: Advances in Neural Informa-
tion Processing Systems, pp. 2962–2970 (2015)

6. ISO: IEC25010: 2011 systems and software engineering-systems and software qual-
ity requirements and evaluation (SQuaRE)-system and software quality models
(2011)

7. Khomh, F., Adams, B., Cheng, J., Fokaefs, M., Antoniol, G.: Software engineering
for machine-learning applications: the road ahead. IEEE Softw. 35(5), 81–84 (2018)

8. Kuwajima, H., Yasuoka, H., Nakae, T.: Engineering problems in machine learning
systems. Mach. Learn. 109(5), 1103–1126 (2020). https://doi.org/10.1007/s10994-
020-05872-w

9. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2009)

10. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated whitebox testing of
deep learning systems. In: 26th Symposium on Operating Systems Principles, pp.
1–18 (2017)

11. Rook, P.: Controlling software projects. Softw. Eng. J. 1(1), 7–16 (1986)
12. Schapire, R.E., Freund, Y.: Foundations of Machine Learning. MIT Press, Cam-

bridge (2012)
13. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Advances

in Neural Information Processing Systems, pp. 2503–2511 (2015)
14. Wang, H., Zhang, Q., Wang, Y., Hu, H.: Structured probabilistic pruning for con-

volutional neural network acceleration. arXiv:1709.06994 [cs.LG] (2017)
15. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: survey, land-

scapes and horizons. IEEE Trans. Softw. Eng. arXiv:1906.10742 (2020). https://
ieeexplore.ieee.org/document/9000651

https://doi.org/10.1109/SEAA.2018.00018
https://doi.org/10.1007/s10994-020-05872-w
https://doi.org/10.1007/s10994-020-05872-w
http://arxiv.org/abs/1709.06994
http://arxiv.org/abs/1906.10742
https://ieeexplore.ieee.org/document/9000651
https://ieeexplore.ieee.org/document/9000651

Industry-Academia Collaboration

Solving Problems or Enabling
Problem-Solving? from Purity in
Empirical Software Engineering to
Effective Co-production (Invited

Keynote)

Tony Gorschek1(B) and Daniel Mendez1,2

1 Blekinge Institute of Technology, Karlskrona, Sweden
tony.gorschek@bth.se

2 Fortiss GmbH, Munich, Germany

Abstract. Studying and collaborating with any software-intensive orga-
nization demands for excellence in empirical software engineering research.
The ever-growing complexity and context-dependency of software prod-
ucts, however, demands for more pragmatic and solution-focused research.
This is a great opportunitybut it also conflictswith the traditional quest for
“purity” in research and a very narrow focus of the work. In this short posi-
tioning, we elaborate on challenges which emerge from academia-industry
collaborations and discuss touch upon pragmatic ways of approaching
them along the co-production model which emerged from SERL Sweden.

1 Introduction

Software Engineering grew out of computer science-related fields and was bap-
tized as a separate area to give legitimacy as a central discipline to handle
challenges associated with the so-called software crisis becoming evident in the
1960s [8].1 Empirical software engineering emerged in the 1990s and highlighted
the focus on borrowing and adopting various types of empirical methods from
other disciplines to conduct evidence-based research [6]. The aim was to collect
evidence and build the bridge between practice in industry and research activi-
ties [1,8], thus, the discipline meant to increase the practical impact of mostly
academic research contributions. The intent is explicitly stated in the name itself:
“Empirical”, denoting evidence collection and utilization, and “engineering”
(-science) denoting the application of methods, tools, practices, and principles
with the purpose of measuring the impact of said treatments in practice - this is
also why many times the term “experimental” is intertwined with the “empiri-
cal” in empirical software engineering.

1 http://homepages.cs.ncl.ac.uk/brian.randell/NATO/NATOReports/index.html.

c© Springer Nature Switzerland AG 2021
D. Winkler et al. (Eds.): SWQD 2021, LNBIP 404, pp. 109–116, 2021.
https://doi.org/10.1007/978-3-030-65854-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65854-0_9&domain=pdf
http://orcid.org/0000-0002-3646-235X
http://orcid.org/0000-0003-0619-6027
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/NATOReports/index.html
https://doi.org/10.1007/978-3-030-65854-0_9

110 T. Gorschek and D. Mendez

In this position paper, we introduce and discuss some of the main challenges
associated with scientific work in the area of empirical software engineering –
and possible ways forward. This is based on experiences and lessons learned
from the immediate applied research environment of the Software Engineering
Research Lab (SERL Sweden) at Blekinge Institute of Technology, its long-term
research collaborations with industrial partners, as well as through its extended
collaborations with and connections to relevant research and transfer institutes
such as fortiss.

Hence, the context of the discussion in this manuscript, which lays out the
foundation for the keynote at the Software Quality Days 2021, is not the prod-
uct or invention or innovation itself, but it is rather the methods, models, prac-
tices, tools, frameworks, processes, and principles applied as a way to enable the
repeatable engineering of software-intensive products and services – in short,
“ways-of-working”. In terms of engineering, we include the inception of a prod-
uct, through the planning, design, and realization, as well as delivery and evo-
lution until eventual decommissioning.

We will only be able to scratch the surfaces of new ways of working, but hope
with this positioning to foster an overdue debate to challenge the purity of more
“traditional” ways of empirical research in order to allow for a more productive
co-production.

2 The Problem(s) with “Software”

The problems of the development of software-intensive products and services
can be divided, as we argue, into three main categories. These categories in
themselves shed light on the complexity of the field, both from an engineering
perspective, but also from an engineering research perspective:

1. The inception phase is put under the same umbrella as the engineering of the
product.

2. Human-centric activities are very hard to measure objectively.
3. Delivery of product/service is not seen as a cost or effort center as in manu-

facturing centric instances.

2.1 Inception and Engineering

In mechanical or electrical engineering, or in the design of complex systems
studied in the area of systems engineering, the inception phase (where you
would “invent” and conceptualize products with long market exploration or non-
technical prototyping phases) is often not seen as part of the engineering itself.
Think of circuit design, for example, or maybe even more apt, the creation of clay
scale models of cars that are wrapped in foil to explore designs and engineering
decisions by a car manufacturer. This is often seen as “creative” endeavors and
not the engineering or production of the item itself. Further, post inception, there
is a translation phase where the inception meets the reality (and the constraints)
imposed by the engineering and production world – translating a raw concept
into something that can be eventually produced taking into account cost, scale,

Solving Problems or Enabling Problem-Solving? (Invited Keynote) 111

and repeatability of quality. This school of thought treats both engineering and
creativity as two isolated, distinct, and often competing islands.

In software engineering, in contrast, all these parts are seen as “develop-
ment” and more importantly, these parts are counted and measured as part of
the teams’ work – ranging from first product or service ideas over the exploita-
tion of requirements and the development of first prototypes to the develop-
ment, quality assurance, and deployment. Even project management activities
are found under the same umbrella we call software engineering. This has sig-
nificant implications for many reasons, not least when comparing plan-outcome
and looking into the efficiency of the engineering organization as compared to
rather traditional fields [2]. Needless to say that the challenges faced in soft-
ware engineering can often not be found in other engineering activities – simply
because related sub-disciplines are not associated with the engineering itself:
think of challenges in human-centred and inherently volatile sub-disciplines like
requirements engineering or during inherently fuzzy and uncertain tasks such as
effort estimations.

2.2 Human-Centric Activities

Since software is created by humans for humans, any metrics and measure-
ments used are largely dependent on measuring people and measuring them
indirectly via artifacts associated with those people; for instance, by counting
defects and their severity. If we setting aside for a moment the ethical and social
aspects of human-based metrics, measuring humans and their activities remains
a very hard and error-prone task. Is one engineer mentoring another something
really non-productive? In addition, metrics are very seldomly information bear-
ers. Rather, they are indicators for further analyses. To give an example, context
switching and its measurement can be a good tool to gauge, for instance, team
independence and the ability to focus on tasks. However, using the metric as a
stand-alone part can be fraught with peril. For example, trying to push down
context switch might hamper coordination efforts between teams or the abil-
ity for experienced engineers to answer questions by less experienced ones. In
a traditional production environment, you can measure waste (e.g., failures or
material waste); however, what constitutes waste and how this is separated from
overhead in more human-centered activities is complex and very much context-
dependent. In the example with context switch – the “best” solution might not
be to identify the phenomenon as Waste, rather as Overhead and that a balance
of not too much and not too little needs to be found – if the balance is not
maintained, Waste is introduced.

2.3 Delivery

First, most “software” developed is actually not stand-alone. Rather, it is part of
a product or service. The old adage that “software is free to deliver” propagates
the myth that delivering software is without cost. This is of course false.

To illustrate this, let us consider two extreme examples: A purely software-
based product, such as accounting software, and an embedded software product,
such an infotainment software in a car. In both cases, there is a significant cost for

112 T. Gorschek and D. Mendez

both the development company to package and supply (in essence commission-
ing) the product, and more importantly, there is a cost of risk for the customer.
If consumers have accounting software that works well and that they use for
their business, are they risk-averse in willingly updating the software as it might
cause them harm (why fix what works?). On the other hand, the development
company wants to push out a homogenous (and recent) version and variant of
their product – if for no other reason to lessen their support costs and the costs
of maintaining versions in the field. This might seem like a trivial part, but it has
vast implications for development companies as the cost of product evolution,
interoperability of features, but also products are affected by the version spread.
An additional difference from traditional engineering (say a car manufacturer)
is that the “development organization” in the case of software has to not only
evolve the products but also continuously fix issues as they come along, likely
in various versions and releases maintained in parallel (interrupting the work of
evolution activities).

3 Research with and in Industry

The case for empirical software engineering, beyond data-collection activities, is
that the contextual aspects of a company, domain, and development organization
can be taken into consideration during research. This is especially true if the
researcher uses a co-production approach to the research [3,4,10] as exemplified
in Fig. 1.

Figure 1 gives an overview of a co-production model that evolved at SERL
Sweden over the last decades with lessons learned from collaboration with over
50 industrial partners and two dozen research projects. The model should not
be seen as a recipe or a blueprint to follow. It is rather an illustration of possible
steps and aspects to take into consideration to realize close industrial collabora-
tion from a research perspective.

Below, we elaborate each step and connect them to major challenges as well
as opportunities we have experienced in above mentioned contexts. For details,
please follow [4].

Starting the work with any company (industry partner) involves building
trust as well as knowledge about the company and its domain [5], both from
a contextual perspective, and the inner workings (steps 1–2). Finding proper
problems before solving them properly is essential. For a researcher, however,
this is also critical since it allows access and, more fundamentally, the building
of trust, and the ability to identify sources and, more importantly, input as to
how relevant data (to relevant problems) can be efficiently collected and how the
data can and should subsequently be analyzed and interpreted. A critical part
of the initial steps is to set realistic expectations. Especially in new relationships
where companies are not used to researchers, industry partners may often fall
to a default “consultancy” mindset. The main difference between consultancy
and research from a research perspective is quite simply to follow the question
whether there is anything new to accomplish. Research should, in our view, be

Solving Problems or Enabling Problem-Solving? (Invited Keynote) 113

Fig. 1. SERL Co-production model. Adapted from [4].

characterized by that a new and relevant problem is solved, and/or new knowl-
edge created (as the simplification of aiming for practical and/or theoretical
impact). If this is not possible given a task, even partly, it should not be con-
sidered a viable piece of work that is equally relevant to both the participating
researchers and practitioners. That being said, there are many types and flavours
of research contributions. Say, for example, that a researcher aims at introduc-
ing already established (but new to their partner) ways of working. At a first
glance, the researcher might not be creating new models, methods, practices,
or equivalent. There might still be a research contribution as the introduction
itself and the subsequent measurement of the effectiveness and efficiency of the
proposed solution is a contribution. For the researcher, the trade-off is, however,
the “researchabilty” of the work versus the effort put in versus the good-will
created in the collaboration.

The main point here is to differentiate (steps 1–2) symptoms from actual chal-
lenge. “We have too many defects”, as an example, can be a symptom of many
things. Often addressing the symptom offers less researchability than addressing
the underlying cause(es).

One of the main challenges here, in addition to selecting a challenge that is
researchable, is that data collection often goes through people in a company, and
often the measures are based on people. Setting aside ethical implications, which
must be handled professionally, trust is paramount for access and to minimize
the impact of the measurements. In this article, we do not even try to elaborate
on this further to the extent it deserves. What is interesting to observe though
is that the complexity of the case studied is compounded by both the human-
centric part (as one often does not have machines to study), and the wide area of

114 T. Gorschek and D. Mendez

responsibilities of the teams ranging from the inception over the evolution and
delivery to continuous maintenance.

Once a challenge is identified and analyzed (and compared to state-of-the-art
in research), ideas for how to address challenges can be seen as “solutions” (Step
3). This is often not as clear-cut as a 1-to-1 mapping between challenges and
solutions. Rather, identifying “a challenge” often escalates in itself to many dis-
crete sub-challenges during a root cause analysis [7], and any solution proposed
is in itself often a package of items that aim at addressing the challenge.

Thus the relationship is rather (Solution(many-to-many)-to-Challenge
(many-to-many)) to illustrate the complexity of empirical work – at least if
you intend to undertake a co-production style of research work. However, this is
not necessarily something bad but rather, a solution can have unintended con-
sequences, both positive and negative, something to be observant of during the
work. The concept of applying a treatment (as in the traditional notion of exper-
imental software engineering [11]) and taking confounding factors into account
still apply. However, the control of the environment is more complex and the
singular nature of the treatment is often in conflict with the usefulness of it in
the case company.

Steps 4–6 should not be seen as validation only, even if their base purpose is to
measure to what extent a solution impacts the company and solves the challenge(s)
addressed; e.g. through a study where we aim at analyzing the extent to which we
satisfied the original improvement goals. The base idea is to measure the effective-
ness (fit for purpose) and the efficiency (fit for purpose in relation to cost) of a solu-
tion. An important part here which makes measurement more complicated is that
every round of “validation” gives not only efficiency and effectiveness data, but also
input as how the treatment (solution) can be improved to maybe give better effi-
ciencyandeffectiveness. In essence, ifweuse this data to improve the solutionasval-
idation progresses, we make results between measurements harder to compare, and
we potentially introduce confounding factors. So is the solution to keep the solu-
tion singular and pure throughout validation rounds? From a non-co-production
perspective this would be best. However, from a practical perspective – if we want
to continue collaborating with the company – this might not be the best or most
desirable way.

These effects are impossible to remove completely, but they can at least be
partly mitigated. Examples of mitigation are the selection of challenge-solutions.
Smaller and faster iterations and interactions are not going to escalate in com-
plexity as larger ones. In addition, a close collaboration beyond “data collection”
is of utmost importance, in essence by adapting an action research approach [9]
but only from a macro level perspective. That is to say, every step (e.g. a val-
idation) can be conducted using any research method, e.g. via interviews, task
observations, or by measuring results from tasks, just to name a few. Hence, our
experience does not indicate that researchers should be involved in the actual
application of the solution on a daily basis, as it is typically the case in action
research, but, rather, that the close nature of introducing, training, monitor-
ing, and measuring its application on a macro level is close to so called action

Solving Problems or Enabling Problem-Solving? (Invited Keynote) 115

research. This allows the researcher to catch contextual information as to how
the solution is used, which are hard to measure, and/or even being able to catch
if actions during solution validation invalidate measures that from an outside
perspective look valid.

4 Discussion

What do the perspectives of inception-realization, human-centric and, and deliv-
ery have to do with the research? Studying and collaborating with any organi-
zation – (software) engineering research mandates empirical and collaborative
activities – is both qualified and complicated by the contextual factors in ques-
tion.

In this short position paper, we illustrated that not only are software-
intensive companies not simpler than traditional ones, rather more complicated
as the division of responsibilities are often less clear cut. Further, more “tradi-
tional” companies are not a reality anymore as most companies are becoming
more and more software-intensive. Hence, the need for good, pragmatic, solution-
focused research is growing exponentially. This is a great opportunity but also
conflicts with the traditional quest for “purity” in research and a very narrow
focus of the work. This can not be completely solved, but it is a balance that
has to be struck out of necessity for the research to be credible and useful for
the company.

This is important to understand for conveying how empirical work in soft-
ware engineering is generally done, and how co-production style research should
be approached in particular. We illustrated this along our co-production model
which emerged from decades of academia-industry collaborations at SERL Swe-
den.

References

1. Basili, V.R., Selby, R.W., Hutchens, D.H.: Experimentation in software engineer-
ing. IEEE Trans. Softw. Eng. 7, 733–743 (1986)

2. Gorschek, T.: Evolution toward soft(er) products. Commun. ACM 61(3), 78–84
(2018)

3. Gorschek, T., Garre, P., Larsson, S., Wohlin, C.: A model for technology transfer
in practice. IEEE Softw. 23(6), 88–95 (2006)

4. Gorschek, T., Wnuk, K.: Third generation industrial co-production in software
engineering. Contemporary Empirical Methods in Software Engineering, pp. 503–
525. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32489-6 18

5. Junker, M., et al.: Principles and a process for successful industry cooperation-the
case of TUM and Munich Re. In: 2015 IEEE/ACM 2nd International Workshop
on Software Engineering Research and Industrial Practice, pp. 50–53. IEEE (2015)

6. Mendez, D., Passoth, J.H.: Empirical software engineering: from discipline to inter-
discipline. J. Syst. Softw. 148, 170–179 (2019)

7. Pernst̊al, J., Feldt, R., Gorschek, T., Florén, D.: FLEX-RCA: a lean-based method
for root cause analysis in software process improvement. Softw. Qual. J. 27(1),
389–428 (2019)

https://doi.org/10.1007/978-3-030-32489-6_18

116 T. Gorschek and D. Mendez

8. Randell, B.: The 1968/69 NATO Software Engineering Reports. History of Software
Engineering 37 (1996)

9. Wieringa, R., Moralı, A.: Technical action research as a validation method in infor-
mation systems design science. In: Peffers, K., Rothenberger, M., Kuechler, B.
(eds.) DESRIST 2012. LNCS, vol. 7286, pp. 220–238. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29863-9 17

10. Wohlin, C., et al.: The success factors powering industry-academia collaboration.
IEEE Softw. 29(2), 67–73 (2011)

11. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-
mentation in Software Engineering. Springer Science & Business Media, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-642-29863-9_17
https://doi.org/10.1007/978-3-642-29044-2

Experimentation in Software
Engineering

An Empirical Study of User Story
Quality and Its Impact on Open Source

Project Performance

Ezequiel Scott(B), Tanel Tõemets, and Dietmar Pfahl

Institute of Computer Science, University of Tartu, Narva mnt 18,
51009 Tartu, Estonia

{ezequiel.scott,dietmar.pfahl}@ut.ee,
tanel.toemets@gmail.com

Abstract. When software development teams apply Agile Software
Development practices, they commonly express their requirements as
User Stories. We aim to study the quality of User Stories and its evolu-
tion over time. Firstly, we develop a method to automatically monitor the
quality of User Stories. Secondly, we investigate the relationship between
User Story quality and project performance measures such as the number
of reported bugs and the occurrence of rework and delays. We measure
User Story quality with the help of a recently published quality frame-
work and tool, Automatic Quality User Story Artisan (AQUSA). For our
empirical work, we use six agile open source software projects. We apply
time series analysis and use the Windowed Time Lagged Cross Correla-
tion (WTLCC) method. Our results indicate that automatic User Story
quality monitoring is feasible and may result in various distinct dynamic
evolution patterns. In addition, we found the following relationship pat-
terns between User Story quality and the software development aspects.
A decrease/increase in User Story quality scores is associated with (i)
a decrease/increase of the number of bugs after 1–13 weeks in short-
medium projects, and 12weeks in longer ones, (ii) an increase in rework
frequency after 18–28, 8–15, and 1–3 weeks for long, medium, and short
projects, respectively, and (iii) an increase in delayed issues after 7–20,
8–11, and 1–3 weeks for long, medium, and short duration projects.

Keywords: User story · Agile software development · Quality
assurance · Time series analysis · AQUSA · QUS · WTLCC

1 Introduction

Correctly defining and understanding what a software system is supposed to do
is vital to any software project’s success. Poor quality of software requirements
has a severe effect on software projects success. It is widely known that require-
ment errors found in the later phase of the software development process cost

c© Springer Nature Switzerland AG 2021
D. Winkler et al. (Eds.): SWQD 2021, LNBIP 404, pp. 119–138, 2021.
https://doi.org/10.1007/978-3-030-65854-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65854-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-65854-0_10

120 E. Scott et al.

significantly more than faults found early, during the requirements engineering.
Low-quality requirements often cause the projects to exceed deadlines, increase
the amount of rework and product defects [1]. In addition, ensuring high-quality
requirements can be challenging as it is difficult to track and measure automat-
ically [2].

To minimize the risk of communication errors as a potential threat to project
success, requirements may be described using structured natural language (e.g.,
use case descriptions) or formal specifications. The downside of these methods
is their high definition and maintenance cost.

Agile Software Development (ASD) methods recommend writing require-
ments in the form of User Stories as a possible solution that helps to save time
by avoiding excessively detailed requirement documentation and to avoid that
the focus is taken away from the actual software development task [3].

User Stories describe requirements as short texts with a strict structure con-
sisting of three elements: (i) a desired function or property of the software, (ii)
the stakeholder who requires this function or property, (iii) and the benefit of
having this function or property. The most widely known template for writ-
ing User Stories was popularized by Mike Cohn [3] and proposes the following
syntax: “As a <role>, I want <goal>, [so that <benefit>]”.

The high interest in research on ASD [4] as well as the ever growing popularity
of ASD as the development method of choice among software developers has been
confirmed in several studies [5,6]. Since User Stories were introduced, they have
become a popular method for capturing requirements in ASD projects [5,7,8],
because software developers find them effective and useful [9].

While User Stories have a well-defined structure, they are still written using
natural language and, thus, their quality may vary. The consideration of qual-
ity criteria, such as the INVEST criteria (independent, negotiable, valuable,
estimable, small, testable) seems to have a positive effect on software devel-
opers’ attitudes towards User Stories, as they believe that using User Stories
increases productivity and quality [10]. However, there exists little empirical
evidence confirming the existence of such an effect in practice [9].

Our study aims to shed light on two research questions. Firstly, we analyze the
evolution of User Story quality over time for the purpose of monitoring. Secondly,
we investigate the relationships between User Story quality and characteristics
of the development process, i.e., rework and delay, as well as the product, i.e.,
software quality. We conduct an empirical study on the data collected from six
open-source software projects. To assess the quality of User Stories we apply
the Quality User Story (QUS) framework together with the Automatic Quality
User Story Artisan (AQUSA) open source software tool [11]. We are not only
interested in finding out whether there exists an effect of User Story quality on
process and product properties. We also try to find out whether it is possible to
predict with how much delay a change of User Story quality in one sprint has
an effect on process and product properties in later sprints. Our results indicate
that a decrease in User Story quality scores seems to be associated with an
increase of the number of bugs after 6 and 12 weeks in short and large projects,

Analyzing the Quality of User Stories 121

respectively; an increase in rework frequency after 1 and 8 weeks in short and
large projects, respectively; and an increased number of delayed issues after 1
and 10 days in short and large projects, respectively.

The rest of our paper is structured as follows. In Sect. 2, we present related
work. In Sect. 3, we introduce the research questions and describe the research
design of our study. In Sect. 4, we present the results. In Sect. 5, we discuss our
results and limitations of the study. In Sect. 6, we conclude the paper.

2 Related Work

2.1 Quality of User Stories

Several approaches exist for measuring the quality of User Stories. Literature
covering this field are quite recent which shows the growing interest of the topic
and its relevance in the current software engineering research. As stated in a
recent study by Lucassen et al. [9], proprietary guidelines or the application
of the INVEST criteria [10] are the most popular approaches used for assess-
ing User Stories. Buglione and Abran [12] point out that User Stories without
enough level of detail or incomplete User Stories can be the cause of incorrect
effort estimation. Therefore, they highlight the importance of applying INVEST
guidelines in order to reduce estimation error caused by low-quality User Stories.
While the INVEST characteristics seem to be comprehensive, they are difficult
to measure. Therefore, Lucassen et al. [11] developed the QUS framework sup-
ported by the AQUSA software. Since we used these instruments in our study,
more detail is provided when we describe our research design in Sect. 3.

Lai proposes the User Story Quality Measurement (USQM) model [13]. This
model is more complex than the INVEST model and organizes User Story quality
metrics in three layers. Layer “Discussable and Estimable Quality” consists of
“Clarity Contents”, “Low Complexity”, and “Modularity”. Layer “Controllable
and Manageable Quality” consists of “CM System”, “Version control tools”, and
“Cross-reference Table”. The third and last layer “Confirmable quality” consists
of “Assured Contents”, “Testability”, and “Verifiability”. Since there doesn’t
seem to exist tool support for automatic measurement of criteria in the USQM
model, the model is difficult to apply.

To solve issues originating from the fact that User Stories are written using
natural language, de Souza et al. [14] propose the use of domain ontologies. This
is expected to improve the quality of User Stories as it removes ambiguity. This
approach, however, has not yet been evaluated much in practice.

2.2 Empirical Studies on the Impact of Requirements Quality

Firesmith [1] described twelve requirement engineering problems and their causes
based on practical experience gathered while working with numerous real-life
projects. He states that an increase in the number of defects and delays can be
caused by numerous sub-problems, which in turn might root in problems like

122 E. Scott et al.

poor requirement quality, requirements volatility, or an inadequate requirements
engineering process.

Rodŕıguez-Pérez et al. [15] studied the causes of bugs based on project data.
They propose a model that groups bugs into two categories, intrinsic and extrin-
sic bugs. Intrinsic bugs are introduced by changes in the source code. Extrinsic
bugs are introduced by requirement changes or other issues not recorded in the
source code management system. The authors also state that an important limi-
tation of their model is that it does not cover bugs caused by faulty requirements
in the first place. Therefore, this model is not used in our study.

Sedano et al. [16] conducted a participant-observation study about waste
in software development. The authors observed eight projects and conducted
interviews with project team members. As a result, they established an empirical
waste taxonomy listing nine types of software waste. As a possible cause of rework
waste the authors identified requirement problems, more precisely User Stories
without concrete complete criteria or rejected User Stories.

Tamai et al. [17] examined 32 projects to explore the connection between
requirements quality and project success. A key finding was that requirements
specifications were poor in those projects where significant delays happened.

The creators of the QUS framework and AQUSA tool evaluated their frame-
work in a multi-case study involving three companies [11]. The purpose of the
study was to explore whether their framework and tool affects the work of soft-
ware developers positively. Thirty practitioners used the QUS framework and
AQUSA tool for two months. With the help of surveys and interviews, the
authors collected data for the following metrics at the start and during the case
study: User Story quality, perceived impact on work practice, amount of formal
communication, rework, pre-release defects, post-release defects, and team pro-
ductivity. The authors found that the quality of User Stories improved over time
after introduction of the QUS framework but they were not able to find clear
evidence about an effect on the other metrics. The authors conclude that more
data should be collected and they encourage others to conduct similar studies
to identify the effects of User Story quality on the software development process
and its outcomes.

2.3 Time Series Analysis in Software Engineering

Time series methods have been used for different purposes in software engi-
neering. For example, Jahanshahi et al. [18] conducted time series analysis with
the ARIMA (Auto Regressive Integrated Moving Average) model to predict the
number of anomalies in software. Kai et al. [19] describe the usage of time series
analysis for identifying normal network traffic behaviour. In a paper by Herraiz
et al. [20] time series analysis is used for forecasting the number of changes in
Eclipse projects. A recent paper by Choras et al. [21] explores the possibilities for
predicting software faults and software quality by using time series methods. In
their study, the authors compared the ARIMA, Random walk, and Holt-Winters
forecast models with ARIMA showing the best performance. The models were

Analyzing the Quality of User Stories 123

tested with data on sprint backlog size, number of tasks in progress, and num-
ber of delayed tasks. Choras et al. also state that automated quality analysis is
important for managerial roles like team leaders and product owners as it helps
them make informed decisions regarding project timing, quality prediction, and
other important aspects. For the purpose of correlation analysis between time-
series, the Windowed Time Lagged Cross Correlation (WTLCC) method [22]
has been proposed. This is the method we use in our study.

2.4 Summary

In summary it can be said that poor quality of requirements quality can be
related to various issues such as increased number of defects, and excessive
rework and delay. As stated by Choras et al. [21], automated quality related
analysis is important for team leaders, product owners, and other similar roles
for monitoring the software development process and for making informed deci-
sions. Regarding User Stories various approaches have been used to improve
and measure their quality but these approaches have not yet been applied on
larger data sets to forecast User Story quality for the purpose of monitoring.
In addition, the relationship between User Stories quality the amount of quality
problems, delays, and rework has not yet been studied extensively.

3 Study Design

An overview of our study design is shown in Fig. 1. We start with acquiring data
from several publicly available JIRA server instances. The data is collected from
real-life open source ASD projects. In order to understand the data, a significant
amount of data exploration, data pre-processing and data cleaning steps are
applied to make the data ready for analysis. Once the dataset has been cleaned,
the User Stories are selected and their quality measured with the help of the
AQUSA tool. As a result, a list of defects related to the User Stories is obtained
and the quality score calculated based on those defects. We also calculate the
software development performance measures from the dataset, i.e., number of
issues labeled as “bug”, frequency of rework occurrence, and frequency of delay
occurrence. The quality scores and performance measures are captured as time
series and their correlations analyzed using Window Time Lag Cross Correlation
(WTLCC).

3.1 Research Questions

Our study tackles two research questions, RQ1 and RQ2. RQ1 focuses on explor-
ing how the quality of User Stories changes over time and whether this can be
monitored automatically. RQ1 is formulated as follows:

RQ1: What dynamic patterns can be observed when applying automatic mea-
surement of User Story quality for the purpose of monitoring?

124 E. Scott et al.

Fig. 1. Conceptual scheme of the study design.

To answer RQ1, we rely on the QUS framework along with the AQUSA
tool. In order to express User Story quality with one number, we introduce a
formula that maps the data collected by the AQUSA to a rational number in
the interval [0, 1]. With the automatic monitoring of User Story quality in place,
we study the relationship between User Story quality and three external quality
characteristics of open-source ASD projects, i.e., number of bugs (issues labeled
as “Bug”), rework done (re-opened issues of all types), and delays (issues not
closed on due date). RQ2 is formulated as follows:

RQ2: What is the relationship between the quality of User Stories and other
aspects of software development? The aspects studied are number of bugs, rework
done (re-opened issues), and delays (based on due date).

Regarding the relationship between User Story quality and number of bugs,
we expect that poorly written User Stories affect the understanding of require-
ments negatively and, therefore, increase the number of bugs found in testing or
by end users. Similarly, we expect that poorly written User Stories increase the
amount of rework done and the number of delays.

To answer RQ2, time series data of User Story quality, number of bugs,
rework and delays is collected. In the rare case of missing values we use imputing
methods. For the correlation analysis, we apply the Windowed Time Lagged
Cross Correlation (WTLCC) method [22].

3.2 Initial Dataset

We collected data from open-source projects using JIRA, a popular software
development project management tool. Our initial dataset consisted of issue
reports and their change logs from ten open-source ASD projects. Of them,
eight projects had already been used in previous studies [23–25]. We identified
two additional projects for our study and collected the relevant data.

Analyzing the Quality of User Stories 125

Our initial dataset contained projects from different domains and with vari-
ance regarding the number of issues, developer experience, and development
period. The original dataset had more than 20K issue reports.

3.3 Data Cleaning

We applied several steps for cleaning the collected dataset. First, we kept issue
reports of type “Story” for calculating the quality of user stories, issue reports of
type “Bug” for calculating the number of bugs, and issue reports of type “Task”
for calculating the occurrences of rework and delay. We only considered issue
reports in complete status, indicated by the tags “Closed”, “Done”, “Resolved”,
and “Complete”.

During the exploratory data analysis, we found that projects used different
Jira fields to store the textual description of a User Story. Some projects used the
field “Summary” whereas others used the field “Description”. After evaluating
several alternatives, we opted for keeping both fields and evaluated their quality
separately.

We applied several cleaning steps to remove the noise from the dataset and
avoid misleading conclusions. In total, we applied 16 cleaning steps including the
removal of duplicates, empty data, and the cleaning of textual descriptions by
removing hyperlinks, code snippets, among others. The complete list of cleaning
steps is given in Appendix. After the cleaning, we found that several projects
only have few user stories (less than 30) such as the projects MESOS, SLICE,
NEXUS, and MULE. We excluded these projects from the analysis since these
few data points can not reveal reliable patterns in the data. The resulting dataset
consists of six projects. Table 1 describes the projects (after cleaning) considered
in the analysis. We consider all projects as completed as the data was collected
more than one year after the latest observed activity (24 Aug 2018, project
COMPASS). Two of the projects, i.e., APSTUD and COMPASS have a relatively
short duration (313 and 338 days, respectively). Two other projects, i.e., TIMOB
and TISTUD, have a relatively long duration (1625 and 1295 days, respectively).
The projects DNN and XD are inbetween (869 and 726 days, respectively).

Table 1. Descriptive statistics of the projects in the dataset.

Project Stories Bugs Rework Delays Quality Development period

Mean Std Min Max From To

APSTUD 151 329 160 87 0.90 0.04 0.67 0.92 08.06.2011 14.06.2012

COMPASS 98 427 13 319 0.96 0.05 0.83 1.00 20.09.2017 24.08.2018

DNN 250 1075 524 679 0.90 0.06 0.67 1.00 29.07.2013 15.12.2015

TIMOB 255 1052 399 160 0.88 0.04 0.75 0.92 22.11.2011 05.04.2016

TISTUD 525 1380 792 567 0.90 0.03 0.75 0.92 01.03.2011 21.07.2014

XD 2135 476 124 251 0.90 0.03 0.67 1.00 12.04.2013 30.11.2015

Total 3414 4739 2012 2063 – – – – – –

Median 252.5 764 279.50 285 0.90 0.04 0.71 0.96 – –

Mean 569 789.83 335.33 343.83 0.91 0.04 0.72 0.96 – –

126 E. Scott et al.

Several projects had inactive development periods at the start or end of
the project. We manually inspected the dataset regarding the number of issue
reports created and we kept only the issues created during the active development
periods.

3.4 Measurement

To study the variation of the quality of User Stories over time, we define a
measure that quantifies the quality. To study the correlation between user story
quality and project performance, we measure project performance by counting
the number of bugs reported, the number of occurrences of rework, and the
number of occurrences of delays to study.

Quality of User Stories (Q): For each issue tagged as “Story” we calculated
the quality of the text contained in the fields “Summary” or “Description” based
on the defect report generated by the AQUSA Tool. The tool implements the
quality model QUS proposed by [11] and is publicly available1. The tool ana-
lyzes the descriptions of the User Stories and uses a linguistic parser to detect
violations. As a result, the AQUSA tool reports each violation as a defect along
with its type, i.e., kind and subkind, and its severity. There are three possible
severity values, i.e., high, medium, and minor, and 13 possible defects in total.
Table 2 shows the different types of defects that AQUSA can report.

Table 2. Possible defects from AQUSA

Kind Subkind Severity

well formed no means high

well formed no role high

unique identical high

minimal brackets high

minimal indicator repetition high

atomic conjunctions high

well formed content means medium

well formed content role medium

well formed no ends medium

uniform uniform medium

well formed no ends comma minor

well formed no means comma minor

minimal punctuation minor

We use a local instance of the AQUSA tool to process the user stories in our
dataset. Then, the report generated by AQUSA is processed to quantify the qual-
ity of each user story and get a numeric value between 0 and 1. The quality of a
1 AQUSA Tool repository – https://github.com/gglucass/AQUSA.

https://github.com/gglucass/AQUSA

Analyzing the Quality of User Stories 127

user story Q is calculated as Q = 1−P , where P is a penalty value calculated as
a function of the number of defects and their severity. Equation 1 defines the for-
mula to calculate the quality score of a given user story, where fc is the percent-
age of defects of the user story in a category c ∈ C, C = {high,medium,minor},
and w′

c is the normalized weight for category c. To assign weights that corre-
spond to the level of severity, we set w′ = (0.5, 0.33, 0.16) = (36 , 2

6 , 1
6) as a result

of using w = (3, 2, 1) for high, medium, minor severity, respectively. The total
number of defects possible in a severity category is 6 (high), 4 (medium), and 3
(minor), respectively.

Q = 1−P = 1−
∑

c∈C

w′
cfc with w′

c =
wc∑|C|

j=1 wj

and fc =
#defectsc

#total defectsc
(1)

Number of Bugs (B): Count of the issue reports of a project where the type
is “Bug” and the status is complete (e.g. “Closed”, “Done”, “Resolved”, or
“Complete”).

Rework (R): Count of the issue reports of a project that were re-opened. To
calculate this, we analyze the log of changes of each issue. By default, JIRA
records every change made to the issues along with a timestamp in a changelog.
Therefore, if an issue was in status “Reopened”, it is considered as rework.

Delays (D): Count of issue reports of a project that were completed after their
originally planned date. To calculate this, we compare the issue resolution date
with the end date of the sprint to which the issue was assigned to.

3.5 Data Analysis

We first create a time series representation for the quality of the user stories
Qp for each ASD project p in the dataset. We also create time series for bugs
(Bp), issues with rework (Rp), and delayed issues (Dp). For indexing the time
series, we use the issue creation date for user stories and bugs, the date when
the change was made for rework, and the issue resolution date for delays. The
data is re-sampled over 14 business days by using the mean and missing values
are imputed by interpolation.

RQ1: To study the evolution of the quality of user stories over time, we
present each time series Qp in a separate plot and we describe the evolution of
the quality by visual inspection.

RQ2: To study the relationship between the quality of the user stories Qp

and the variables of interest Bp, Rp, and Dp, we use Windowed Time Lag Cross-
correlation (WTLCC). WTLCC is a method that allows us to study the asso-
ciation between two time series, x(t) and y(t) with t = 1, 2, . . . , T , at different
time lags (τ) and temporal changes in that association along the sample period
[26,27]. Thus, for a window size of W (W < T), a pair of windows Wx and
Wy can be selected for two data vectors x and y respectively, and the cross-
correlation between the windows (WTLCC) at time t for different time lags (τ)

128 E. Scott et al.

is given by Eq. 2, where μ(Wx), μ(Wy), σ(Wx) and σ(Wy) are the means and
standard deviations of the windows Wx and Wy.

rt(Wx,Wy, τ) =
1

W − τ

W−τ∑

i=1

(Wxi − μ(Wx))(Wyi+τ − μ(Wy)
σ(Wx)σ(Wy)

(2)

The calculation of WTLCC involves the selection of the window size. To the
best of our knowledge, there is no method to determine the window size and,
therefore, the window size must be determined based on theoretical considera-
tions or data characteristics. The window size also defines the desired level of
granularity during the analysis. We did a preliminary exploration of the results
using different window sizes such as monthly and quarterly time periods. We
finally opted for splitting the entire development period into four equally-sized
windows. This way, the resulting windows are easy to explain. The first window
(window 0) may correspond to the set up of the project, the next two windows
(window 1 and 2) represent the development phase where most of the features
are developed, and the last window (window 3) refers to the project finalization
phase.

The results are depicted using heatmaps, a visualization technique that helps
us with the inspection of the results at different time lags. We interpret the
correlation values (r) by following Cohen’s guidelines [28], where small, medium,
and large effect sizes are 0.1 ≤ r < 0.3, 0.3 ≤ r < 0.5, and 0.5 ≤ r, respectively.

When analyzing the heatmaps, we are mainly interested in high positive
or negative correlations with positive lags. In general, we expect a negative
correlation between user story quality and the variables of interest since we
assume that an increase (decrease) of user story quality results in a decrease
(increase) of the project performance (i.e., bug/rework/delay count) after some
lag time.

Positive correlations could be difficult to explain. Why would, for example,
an increase in user story quality correspond to an increase in the number of bugs
after some delay? A possible explanation could be that the work triggered by the
content of the user story is complex or difficult by nature and, thus, more prone
to bugs. Another reason could be a technical effect of the choice of window size.

It is also possible to find correlations with negative lags. For example, an
increase (decrease) of the number of bugs yields an increase (decrease) of user
story quality after some lag time (delayed positive correlation). This could indi-
cate that teams have improved the quality of their user stories as a consequence
of a previous increase in the number bugs. Or, in the reaction to less bugs, more
time is spent on creating more user stories less carefully. Additional analyses
would be needed to clarify this situations.

Finally, there is the possibility that, after some lag time, an increase
(decrease) in bug count is followed by a decrease (increase) in user story quality
(delayed negative correlation). This could be interpreted, for example, as a sit-
uation where, due to an increasing number of bugs, more time has to be spent
on bug fixing and, thus, less time is available for writing proper user stories.

Analyzing the Quality of User Stories 129

Conversely, less bugs (and therefore less rework effort) might give more time for
thinking about the requirements resulting in better user story quality.

4 Results

4.1 Study Population

As presented in Table 1, our cleaned dataset contains six projects with 3414
user stories, 4739 bug reports, 2012 rework cases, and 2063 delays. The project
COMPASS has the smallest number of user stories and rework whereas APSTUD
has the smallest number of delays and bug reports. The project XD has the
largest number of user stories. Overall, the median number of user stories, bugs,
rework, and delays is 252, 764, 279, and 285, respectively.

Table 1 also shows the descriptive statistics of the quality of the user sto-
ries. Overall, TIMOB has the lowest quality values whereas COMPASS has the
highest. The projects XD, TISTUD, APSTUD, and DNN also have good qual-
ity values as their mean quality value is 0.9. The projects have a low standard
deviation value regarding their quality values (mean std = 0.04).

4.2 User Stories Quality Monitoring and Evolution Patterns

Figure 2 shows the evolution of the mean quality of user stories over time. These
graphs are useful to show how the quality of user stories can be used for mon-
itoring purposes. A quantitative measure of the quality of the user stories of
each project can be calculated by applying Eq. 1 to the defect report created by
AQUSA tool. Although the quality values remain almost stable due to the low
standard deviation (see Table 1), it can be seen that the overall quality values
vary over time exhibiting different patterns.

Figure 2 shows that project XD is rather stable since it has low variance.
On the other hand, projects such as DNN and COMPASS exhibit an erratic
behavior. Moreover, both projects show a trend of decreasing user story quality
over time as it is shown by the regression line. The remaining projects indicate
a slight increase of user story quality over time as their regression lines have a
positive slope.

4.3 User Story Quality and Project Performance

Bug Count. Figure 3 shows the results of applying WTLCC analysis to the
six projects. The heatmaps associate the quality of user stories with the number
of bugs. In each heatmap, the values on the y-axis represent the labels of the
four windows used in the analysis. The x-axis shows the lag in business days
that is applied before matching user story quality with the number of bugs. The
correlation values are represented by the color scale. The title shows the name
of the project along with the number of business days analyzed (n) on each case
since the correlation analysis requires that the series occur simultaneously and
in similar lengths.

130 E. Scott et al.

Fig. 2. Evolution of quality of user stories over time. A linear interpolation method
was used to impute missing data points (red color) (Color figure online).

Fig. 3. Heatmaps representing the WTLCC results to compare the quality of user
stories with the number of bugs.

Negative Correlations with Positive Lags. The highest negative correlation val-
ues with positives lags are in the range [−0.77,−0.26]. The highest values
are given by APSTUD (r = −0.77, window = 0, lag = 32), and TIMOB
(r = −0.55, window = 2, lag = 122) whereas the remaining projects have cor-
relations with medium effect XD (r = −0.44, window = 3, lag = 68), TISTUD
(r = −0.46, window = 3, lag = 89). The interpretation is that the positive
trend in user story quality pays off after 68 (XD), 89 (TISTUD), 122 (TIMOB)
business days in the form of a decrease in bug count.

Negative Correlations with Negative Lags. Negative high correlations with neg-
ative lags are present in the following projects: XD (r = −0.33, window =

Analyzing the Quality of User Stories 131

1, lag = −75), DNN (r = −0.34, window = 1, lag = −43), TIMOB (r =
−0.30, window = 0, lag = −85), TISTUD (r = −0.47, window = 1, lag =
−60), COMPASS (r = −0.30, window = 1, lag = −13), APSTUD (r =
−0.31, window = 2, lag = −18). A negative correlation with negative lag could
indicate that an increase in the number of bugs creates more rework and, thus,
leaves less time for conducting proper requirements engineering, which decreases
the quality of user stories.

Positive Correlations with Negative Lags. When looking at high positive corre-
lations with negative lags, the results shows correlations in the range [0.15, 0.27]:
XD (r = 0.22, window = 3, lag = −76), TISTUD (r = 0.24, window =
0, lag = −104), DNN (r = 0.15, window = 1, lag = −64), COMPASS (r =
0.24, window = 0, lag = −1), and APSTUD (r = 0.27, window = 0, lag = −11).
TIMOB does not show a relevant correlation (r = 0.09, window = 1, lag = −31).
This can be interpreted as follows: an increase in bug count results in an increase
in user story quality with a lag of 1 to 104 business days. Possibly, the increase
of user story quality was triggered as an attempt to stop a further increase in
bug count.

Positive Correlations with Positive Lags. Positive high correlations with posi-
tive are present in the following projects: XD (r = 0.21, window = 2, lag = 47),
DNN (r = 0.27, window = 0, lag = 19), TISTUD (r = 0.21, window =
2, lag = 21), COMPASS (r = 0.43, window = 1, lag = 22), and APSTUD
(r = 0.47, window = 3, lag = 22). This is difficult to interpret as it seems to
suggest that an increase in user story quality yields an increase of bug count
after 19 to 47 business days. We can speculate that other factors, e.g., increasing
complexity of the system under development, are responsible for the negative
effect on bug count. Only additional information could shed light on this.

Rework Count. Figure 4 shows the results of the WTLCC analysis. In the
following, we present the relevant correlation values. These results can be inter-
preted as we presented in full detail for the correlation between user story quality
and bug count.

Negative Correlations with Negative Lags. We found correlations in the
range [−0.69,−0.22] for the following projects. XD (r = −0.33, window =
1, lag = −74), DNN (r = −0.54, window = 1, lag = −62), TIMOB (r =
−0.22, window = 3, lag = −141), TISTUD (r = −0.40, window = 2, lag =
−98), COMPASS (r = −0.37, window = 2, lag = −13), and APSTUD (r =
−0.69, window = 2, lag = −13).

Negative Correlations with Positive Lags. These type of correlations are present
in 4 out of 6 projects, in the range [−0.40,−0.51]: XD (r = −0.50, window =
3, lag = 41), TIMOB (r = −0.51, window = 2, lag = 134), TISTUD (r =
−0.42, window = 3, lag = 96), COMPASS (r = −0.40, window = 3, lag = 5).

132 E. Scott et al.

Fig. 4. Heatmaps showing the WTLCC results to compare the quality of user stories
with the number of issues with rework done.

Positive Correlations with Negative Lags. We found correlations in the range
[0.22, 0.44] for the following projects: XD (r = 0.22, window = 1, lag = −6),
DNN (r = 0.33, window = 3, lag = −77), TIMOB (r = 0.27, window =
0, lag = −43), TISTUD (r = 0.25, window = 3, lag = −85), and APSTUD
(r = 0.44, window = 2, lag = −27).

Positive Correlations with Positive Lags. We found correlations in the range
[0.22, 0.31] for the following projects: XD (r = 0.24, window = 0, lag = 72), DNN
(r = 0.25, window = 2, lag = 2), TISTUD (r = 0.22, window = 2, lag = 102),
COMPASS (r = 0.31, window = 2, lag = 5), and APSTUD (r = 0.26, window =
0, lag = 23).

Delay Count. Figure 5 shows the results of the WTLCC analysis regarding
delay count. We present the relevant correlation values. These results can be
interpreted as we presented in full detail for the correlation between user story
quality and bug count.

Negative Correlations with Negative Lags. We found correlations in the
range [−0.73,−0.16] for the following projects. XD (r = −0.38, window =
2, lag = −76), DNN (r = −0.73, window = 1, lag = −28), TIMOB (r =
−0.16, window = 3, lag = −83), TISTUD (r = −0.47, window = 0, lag =
−50), COMPASS (r = −0.45, window = 3, lag = −10), and APSTUD (r =
−0.69, window = 3, lag = −6).

Negative Correlations with Positive Lags. These type of correlations are present
in 5 out of 6 projects, in the range [−0.83,−0.37]: XD (r = −0.41, window =
0, lag = 48), TIMOB (r = −0.37, window = 2, lag = 100), TISTUD (r =
−0.49, window = 1, lag = 53), COMPASS (r = −0.83, window = 2, lag = 8),
and APSTUD (r = −0.47, window = 2, lag = 2).

Analyzing the Quality of User Stories 133

Fig. 5. Heatmaps showing the WTLCC results to compare the quality of user stories
with the number of issues with delays.

Positive Correlations with Negative Lags. We found relevant correlations in the
range [0.14, 0.24] for the following projects: XD (r = 0.24, window = 1, lag =
−59), DNN (r = 0.22, window = 2, lag = −6), TIMOB (r = 0.28, window =
0, lag = −31), TISTUD (r = 0.24, window = 2, lag = −58), COMPASS (r =
0.49, window = 1, lag = −13), APSTUD (r = 0.14, window = 1, lag = −7).

Positive Correlations with Positive Lags. We found correlations in the range
[0.19, 0.51] for the following projects: DNN (r = 0.41, window = 3, lag = 51),
TIMOB (r = 0.20, window = 3, lag = 94), TISTUD (r = 0.19, window =
1, lag = 71), COMPASS (r = 0.23, window = 2, lag = 12), and APSTUD
(r = 0.51, window = 2, lag = 12). XD has a correlation close to zero (r =
0.09, window = 2, lag = 65).

5 Discussion

Regarding the first research question, we observed that the projects exhibit dif-
ferent behaviors in terms of their quality of user stories over time. For example,
project XD shows an upward trend in the change of quality. This indicates that
the quality was increasing rather than decreasing. On the other hand, COMPASS
showed an opposite behavior, where the quality of the user stories decreased as
a trend.

The second research question asked about the relationship between User
Story quality and the project performance, which is measured by the number of
bugs, rework done, and delays. The analysis shows that the projects exhibit an
inverse relationship between the quality of user stories and the studied project
performance variables. If the quality of user stories increases (decreases), the
number of bugs decreases (increase).

Interestingly, our results indicate that the events propagate from one variable
to the other at different times (lags), and the lags seem to depend on the whole

134 E. Scott et al.

duration of the project. In short duration projects, the lags where smaller than
in long projects. This can be a consequence of the amount of data to analyze
but, surprisingly, strong correlations were found even in shorter projects where
there are considerable less data points.

Regarding bugs, the effect can take 17–30 weeks to propagate from one vari-
able (user story quality) to the other (bug count) in case of long duration projects
whereas it can take 1–13 weeks in the case of medium and short duration ones.
The number of delays can be inversely affected by the user story quality after
7–20 weeks for long projects, 8–11 weeks for medium projects, and 1–3 weeks
for short ones. The occurrence of rework can also be inversely affected by the
user story quality after 18–28, 8–15, and 1–3 weeks for long, medium, and short
projects, respectively. Table 3 summarizes the main findings.

Table 3. Summary of results. The cells show the minimum and maximum lags
expressed in business weeks (5 business days).

Variable r Long duration Medium duration Short duration

lag < 0 lag > 0 lag < 0 lag > 0 lag < 0 lag > 0

Bugs r < 0 [−17.0, −5.8] [17.8, 27.8] [−16.0, −8.0] [2.2, 13.6] [−5.6, −2.6] [0.8, 6.4]

r > 0 [−22.4, −1.0] [4.2, 9.4] [−15.2, −1.2] [3.8, 14.4] [−2.2, −0.2] [2.4, 4.4]

Delays r < 0 [−16.6, −10.0] [7.4, 20.0] [−15.2, −5.6] [8.0, 11.6] [−2.2, −1.2] [0.4, 2.4]

r > 0 [−22.8, −3.6] [10.8, 18.8] [−15.2, −1.2] [4.8, 13.0] [−2.6, 0.0] [2.4, 2.4]

Rework r < 0 [−28.2, −15.8] [18.6, 28.0] [−14.8, −9.6] [8.2, 15.6] [−4.0, −1.2] [1.0, 3.2]

r > 0 [−26.0, −5.4] [20.2, 20.4] [−15.4, −1.2] [0.4, 14.4] [−5.4, −2.2] [1.0, 5.4]

6 Limitations

The current findings are subject to several limitations that must be consid-
ered. It is worth noting that our data-driven approach does not support causal
inference and it is mainly based on the discovering of patterns and correlation
analysis. Controlled experiments are required to gain insights about causality.
Furthermore, the data analysis approach required manual interpretation of visu-
alized results which could have introduced errors. A more systematic approach to
interpret the results could improve the accuracy and reliability of the results in
further studies. More specifically, the selection of the window size in the WTLCC
analyses has a strong influence on the observed results. In our case the window
size varied in relation to the overall project duration. Long projects have wide
windows and short projects have short windows. The results might change if, for
example, uniform window sizes across all analyzed projects are chosen.

Regarding the generalization of the results, they are limited to the data
sample. A larger data sample could produce different results, although it is
difficult to find open-source projects that use ASD practices and track their
process data using publicly available issue trackers. We mitigated this issue by
analyzing a heterogeneous set of projects with different characteristics.

Analyzing the Quality of User Stories 135

Missing values are another threat to validity. The dataset required an exten-
sive amount of data cleaning in order to remove the noise that could have led to
misleading conclusions. The projects also show periods of inactivity and we do
not know the reasons behind this. To mitigate the impact of these missing data
points, we removed the periods of inactivity by manual inspection and we use a
linear interpolation method for imputing the remaining missing data points.

Another limitation is introduced by the AQUSA tool. The current develop-
ment state of the tool is not able to assess the semantics behind the user stories
descriptions as it would require expert domain or using advanced artificial intel-
ligence. The AQUSA tool is only able to detect defects related to syntactic and
pragmatic aspects of user stories.

In summary, although it is possible to monitor the quality of user stories by
using the proposed approach, the process itself is complicated since considerable
amount of work has to be done regarding the pre-processing and data cleaning
of the data. The visual inspection of the heatmaps can be also prone to errors.
Therefore, it can be said that while it is possible to analyze the quality of user
stories, more convenient solutions should be developed in order to make the
monitoring of user stories simple for development teams.

7 Conclusion

The correlation analysis showed several interesting relationships between the
quality of user stories and the project performance measured by the number of
bugs, rework, and delays. The results show an inverse relationship between the
user story quality and the project performance. When the quality of user stories
decreased (increased), the number of bugs increased (decreased) correspondingly.
This effect propagates from one variable to another at different lag times, and the
lags seem to be related to the whole duration of the project. In particular, long-
duration projects exhibit longer propagation time than short-duration projects.

We believe our results shed light on the benefits of writing high-quality user
stories when managing requirements in agile software development. In particu-
lar, we provide empirical evidence that supports one of the most popular agile
practices and the general agile mentors’ advice of writing good user stories. Fur-
thermore, this paper integrates previous research into an approach that can be
easily extended into a monitoring tool (e.g. a dashboard) that allow developers
and stockholders to visualize the overall quality of the written requirements in
an aggregated way and set quality standards during the software development.

Acknowledgments. This work was supported by the Estonian Center of Excellence
in ICT research (EXCITE), ERF project TK148 IT, and by the team grant PRG 887
of the Estonian Research Council.

136 E. Scott et al.

Appendix

During the data cleaning phase, we applied the following steps:

1. Removal of empty rows.
2. Removal of special headings in the description of the user story (e.g., “h2.

Back story”)
3. Removal of hyperlinks to web sites.
4. Removal of mentions to files with extensions such as “.jar”.
5. Removal of code examples.
6. Removal of different types of curly brackets combinations.
7. Removal of paths to files.
8. Removal of word whose length is longer than 19 characters. According to

[29], words with more than 19 characters are very rare in English (less
than 0.1%). In our case, this usually happens when the bod y of a user
story describe part of the program code. For example, the string “Trigger-
SourceOptionsMetadata”

9. Removal of consecutive exclamation marks and the text between them. This
notation is commonly used for adding images (e.g., “!GettingStarted.png!”)

10. Removal of square brackets and everything between them.
11. Removal of non-ASCII characters.
12. Removal of special characters such as “¡”, “¿”, “ ”, and “$”.
13. Removal of different kinds of whitespaces (e.g., tabs, “ ” etc.) and

replacing them with a single whitespace.
14. Removal of duplicated User Stories.
15. Removal of upper outliers (abnormally long User Stories). Upper outliers

are removed based on the description length using Turkey’s fences.
16. Removal of lower outliers (User Stories with less than 3 words). For example,

some User Stories consisted of only the description “See: http://. . .”.

References

1. Firesmith, D.: Common requirements problems, their negative consequences, and
the industry best practices to help solve them. J. Object Technol. 6(1), 17–33
(2007)

2. Wohlin, C., et al.: Engineering and Managing Software Requirements. Springer,
Heidelberg (2005). https://doi.org/10.1007/3-540-28244-0

3. Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley
Professional, Boston (2004)

4. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies.
J. Syst. Softw. 85(6), 1213–1221 (2012)

5. Kassab, M.: The changing landscape of requirements engineering practices over the
past decade. In: 2015 IEEE 5th International Workshop on Empirical Requirements
Engineering (EmpiRE), pp. 1–8. IEEE (2015)

6. CollabNet VersionOne: 13th Annual State of Agile Report (2018)

https://doi.org/10.1007/3-540-28244-0

Analyzing the Quality of User Stories 137

7. Wang, X., Zhao, L., Wang, Y., Sun, J.: The role of requirements engineering prac-
tices in agile development: an empirical study. In: Zowghi, D., Jin, Z. (eds.) Require-
ments Engineering. CCIS, vol. 432, pp. 195–209. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-43610-3 15

8. Kassab, M.: An empirical study on the requirements engineering practices for agile
software development. In: 2014 40th EUROMICRO Conference on Software Engi-
neering and Advanced Applications, pp. 254–261. IEEE (2014)

9. Lucassen, G., Dalpiaz, F., Werf, J.M.E.M., Brinkkemper, S.: The use and effec-
tiveness of user stories in practice. In: Daneva, M., Pastor, O. (eds.) REFSQ 2016.
LNCS, vol. 9619, pp. 205–222. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-30282-9 14

10. Wake, B.: Invest in good stories, and smart tasks (2003)
11. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E., Brinkkemper, S.: Improving agile

requirements: the quality user story framework and tool. Requirements Eng. 21(3),
383–403 (2016)

12. Buglione, L., Abran, A.: Improving the user story agile technique using the invest
criteria. In: 2013 Joint Conference of the 23rd International Workshop on Soft-
ware Measurement and the 8th International Conference on Software Process and
Product Measurement, pp. 49–53 (2013)

13. Lai, S.T.: A user story quality measurement model for reducing agile software
development risk. Int. J. Softw. Eng. Appl 8, 75–86 (2017)

14. de Souza, P.L., do Prado, A.F., de Souza, W.L., dos Santos Forghieri Pereira,
S.M., Pires, L.F.: Improving agile software development with domain ontologies.
In: Latifi, S. (ed.) Information Technology - New Generations. AISC, vol. 738, pp.
267–274. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77028-4 37

15. Rodŕıguez-Pérez, G., Robles, G., Serebrenik, A., Zaidman, A., Germán, D.M.,
Gonzalez-Barahona, J.M.: How bugs are born: a model to identify how bugs are
introduced in software components. Empir Software Eng 25, 1294–1340 (2020)

16. Sedano, T., Ralph, P., Péraire, C.: Software development waste. In: Proceedings
of the 39th International Conference on Software Engineering, ICSE 2017, pp.
130–140. IEEE Press (2017)

17. Tamai, T., Kamata, M.I.: Impact of requirements quality on project success or
failure. In: Lyytinen, K., Loucopoulos, P., Mylopoulos, J., Robinson, B. (eds.)
Design Requirements Engineering: A Ten-Year Perspective. LNBIP, vol. 14, pp.
258–275. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92966-
6 15

18. Jahanshahi, H., Cevik, M., Başar, A.: Predicting the number of reported bugs in
a software repository. In: Goutte, C., Zhu, X. (eds.) Canadian AI 2020. LNCS
(LNAI), vol. 12109, pp. 309–320. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-47358-7 31

19. Kai, H., Zhengwei, Q., Bo, L.: Network anomaly detection based on statistical
approach and time series analysis. In: 2009 International Conference on Advanced
Information Networking and Applications Workshops, pp. 205–211 (2009)

20. Herraiz, I., Gonzalez-Barahona, J.M., Robles, G.: Forecasting the number of
changes in eclipse using time series analysis. In: 4th International Workshop on
Mining Software Repositories, MSR 2007:ICSE Workshops 2007, p. 32 (2007)

21. Choraś, M., Kozik, R., Pawlicki, M., Ho�lubowicz, W., Franch, X.: Software devel-
opment metrics prediction using time series methods. In: Saeed, K., Chaki, R.,
Janev, V. (eds.) CISIM 2019. LNCS, vol. 11703, pp. 311–323. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-28957-7 26

https://doi.org/10.1007/978-3-662-43610-3_15
https://doi.org/10.1007/978-3-319-30282-9_14
https://doi.org/10.1007/978-3-319-30282-9_14
https://doi.org/10.1007/978-3-319-77028-4_37
https://doi.org/10.1007/978-3-540-92966-6_15
https://doi.org/10.1007/978-3-540-92966-6_15
https://doi.org/10.1007/978-3-030-47358-7_31
https://doi.org/10.1007/978-3-030-47358-7_31
https://doi.org/10.1007/978-3-030-28957-7_26

138 E. Scott et al.

22. Roume, C., Almurad, Z., Scotti, M., Ezzina, S., Blain, H., Delignières, D.: Win-
dowed detrended cross-correlation analysis of synchronization processes. Phys. A
503, 1131–1150 (2018)

23. Scott, E., Pfahl, D.: Using developers’ features to estimate story points. In: Pro-
ceedings of the 2018 International Conference on Software and System Process,
pp. 106–110 (2018)

24. Scott, E., Charkie, K.N., Pfahl, D.: Productivity, turnover, and team stability of
agile software development teams in open-source projects. In: 2020 46th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA). IEEE
(2020)

25. Porru, S., Murgia, A., Demeyer, S., Marchesi, M., Tonelli, R.: Estimating story
points from issue reports. In: Proceedings of the 12th International Conference on
Predictive Models and Data Analytics in Software Engineering, pp. 1–10 (2016)

26. Boker, S.M., Rotondo, J.L., Xu, M., King, K.: Windowed cross-correlation and
peak picking for the analysis of variability in the association between behavioral
time series. Psychol. Meth. 7(3), 338 (2002)

27. Jammazi, R., Aloui, C.: Environment degradation, economic growth and energy
consumption nexus: a wavelet-windowed cross correlation approach. Phys. A 436,
110–125 (2015)

28. Cohen, J.: A power primer. Psychol. Bull. 112(1), 155 (1992)
29. Sigurd, B., Eeg-Olofsson, M., Van Weijer, J.: Word length, sentence length and

frequency - Zipf revisited. Studia Linguistica 58(1), 37–52 (2004)

An Approach for Platform-Independent
Online Controlled Experimentation

Florian Auer(B) and Michael Felderer

University of Innsbruck, Innsbruck, Austria
{florian.auer,michael.felderer}@uibk.ac.at

Abstract. Online controlled experimentation is an established tech-
nique to assess ideas for software features. Current approaches to conduct
experimentation are based on experimentation platforms. However, each
experimentation platform has its own explicit properties and implicit
assumptions about an experiment. As a result, experiments are incom-
plete, difficult to repeat, and not comparable across experimentation
platforms or platform versions. Our approach separates the experiment
definition from the experimentation platform. This makes the experimen-
tation infrastructure-less dependent on the experimentation platform.
Requirements on the independent experiment definition are researched
and an architecture to implement the approach is proposed. A proof-of-
concept demonstrates the feasibility and achieved level of independence
from the platform.

Keywords: Online controlled experimentation · Continuous
experimentation · Experimentation platform · Experimentation
infrastructure

1 Introduction

Online controlled experimentation is an established approach commonly used
by organizations to make data-driven decisions about changes in their prod-
uct. Fabijan et al. conducted in [9] a survey in which they observed that most
organizations use in-house built experimentation platforms. Similar in litera-
ture, large organizations report of their self-built experimentation platforms,
like Microsoft [15] or Google [23]. However, the development of an experimen-
tation platform is a resource-intensive and error-prone project [16]. Thus, many
organizations cannot afford to develop a platform. Alternatives are third-party
experimentation platforms. But, these platforms do not support all aspects of
experimentation [5] and focus more on the technical execution of experiments.
For example, not all platforms (proprietary as well as open-source) support the
definition of a hypothesis or criteria to automatically shut down an experiment
based on business-critical metrics. Thus, it seems that organizations have to
choose between high upfront costs of developing an in-house experimentation

c© Springer Nature Switzerland AG 2021
D. Winkler et al. (Eds.): SWQD 2021, LNBIP 404, pp. 139–158, 2021.
https://doi.org/10.1007/978-3-030-65854-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65854-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-65854-0_11

140 F. Auer and M. Felderer

platform or to reduce their requirements on experimentation and use a third-
party experimentation platform. Moreover, the experiment definitions do not
include the implicit assumptions made by the used experimentation platform
(e.g. the segmentation algorithm). Hence, the definitions are incomplete and the
described experiments are difficult to repeat.

The separation of the experiment definition from the experimentation plat-
form could combine the benefits of both approaches. It would allow organizations
to select a cost-effective third-party experimentation platform to execute the
experiment while developing independently of it the remaining infrastructure
to support the organization’s experimentation process. This would, for exam-
ple, allow developing an infrastructure to assure the quality of the experiments
without having to depend on the feature set provided by the experimentation
platform.

This research aims to propose an architecture for platform-independent
online controlled experimentation by releasing the experiment definition from
the experiment platform. As a consequence of the separation, the experiment
definition becomes an independent artifact. Moreover, it allows developing exper-
imentation infrastructure independently of the used experimentation platform.

The remainder of this paper is structured as follows. Section 2 provides back-
ground information on online controlled experimentation. Section 3 describes the
applied research method. Section 4 presents the findings. Then, Sect. 5 presents
the architecture, and Sect. 6 the evaluation of it. Section 7 discusses the study.
Finally, Sect. 8 concludes the paper.

2 Background

In this section, an overview of the research this paper is based on is given. The
overview starts with the general concept of online controlled experimentation.
Next, the research on the characteristics of online controlled experiment defi-
nitions is outlined, and finally, research on domain-specific language (DSL) to
define online controlled experiments is discussed.

2.1 Online Controlled Experimentation

Online controlled experiments are a technique to evaluate software changes based
on data [17]. The change could be a novel feature, a performance optimization,
modified elements in the user interface, and many more. A version of the software
with the change (treatment) is deployed in addition to the unchanged software
(control). Thereafter, requests on the software (e.g. user interaction) are split
between the two versions (segmentation). In addition to the regular processing
of a request, both software versions collect relevant data about the processing
and the request. After a predefined duration or number of requests, the collected
data (telemetry) is used to calculate metrics. Finally, the telemetry is analyzed,
and based on the success criteria that are defined before the execution of the
experiment, the experiment is evaluated.

An Approach for Platform-Independent Online Controlled Experimentation 141

In [2] the authors highlight the technique’s potential to improve software
quality assurance for modern technologies like machine learning or the internet
of things—areas that are challenging for traditional software testing with offline
testing techniques.

The experiment lifecycle by Fabijan et al. [8] gives an overview of the activ-
ities related to an online controlled experiment (see Fig. 1). First, during the
ideation phase, a hypothesis and its implementation are developed. Thereafter,
the design of the experiment is specified. This includes amongst others, the user
segmentation across the different software versions, and calculations about the
size and duration of the experiment. Next, the experiment is executed. Besides
the deployment, the instrumentation and monitoring of the deployed software are
important. Thereafter, the collected data is analyzed and data-driven arguments
for decisions are provided. The last activity is learning, in which the experiment
metadata is captured and institutionalized.

Fig. 1. Experiment lifecycle by Fabijan et al. [8]. It describes the lifecycle of an exper-
iment from its ideation by the generation of a minimal viable hypothesis (MVH) and
the development of a minimal viable product (MVP) over the design, execution and
analysis to the decision making and institutionalization of the learnings.

A more detailed view of experimentation and its process is given by models
for continuous experimentation like the RIGHT model by Fagerholm et al. [13]
or the HYPEX (Hypothesis Experiment Data-Driven Development) model by
Holmström Olsson and Bosch [20]. There is also research about the required
infrastructure [12] and guidelines about experimentation in general [17].

In summary, the process of online controlled experimentation received a lot
of attention in research. Process models of continuous experimentation [8,13],
experimentation platforms [12] and guidelines [17] for experimentation are
researched amongst others.

142 F. Auer and M. Felderer

2.2 Characteristics of Online Controlled Experiments

Although the experimentation process and specifics of it are researched well
[1,21], there is little research explicitly on the experimentation definition and
its characteristics. Nevertheless, the definition of experiments is fundamental for
experimentation. A taxonomy of its characteristics allows experiment owners to
choose the necessary characteristics of it for a concrete experiment. Without such
an overview, experiment owners are at the risk to miss important characteristics
or to define experiments incomplete. Therefore, the authors reviewed in [3] the
literature on characteristics of experiment definitions. It revealed 17 properties
that were grouped by common themes among the properties.

However, the authors expected that there are additional properties used in
practice. Thus, based on the results on the characteristics of experiment defini-
tions, the more detailed study reported in [5] was conducted. The study covers
the analysis of existing open-source as well as proprietary experimentation plat-
forms. In [5] the results are combined to one taxonomy of experiment definition
characteristics. Figure 2 visualizes the identified characteristics for each phase of
an experiment.

Fig. 2. Experiment definition characteristics taxonomy [5]. It enumerates for every
phase of the experimentation lifecycle the characteristics (bold) and their properties
(below each characteristic).

To conclude, the authors presented in [5] a taxonomy of the known charac-
teristics and properties used in the definition of online controlled experiments.

An Approach for Platform-Independent Online Controlled Experimentation 143

However, the application of the taxonomy, or its usefulness to describe experi-
ments was not known.

2.3 Experimentation Definition Language

The taxonomy of experiment definition characteristics [5] represents the charac-
teristics that are used in literature and experimentation platforms. However, it
is not fully clear whether this set of characteristics is useful to define concrete
experiments. Thus, a DSL was developed in [4] that was built on the taxonomy.

The language allows to describe an experiment with the characteristics of
the taxonomy. As the host language, the most commonly used exchange format
observed during the analysis of experimentation platforms, JSON (Javascript
object notation) was selected. Listing 1.1 provides an experiment defined in the
language and shows that the structure follows the taxonomy closely. Each char-
acteristic and its properties can be defined using the JSON syntax.

Listing 1.1. Structure of an experiment written in EDL. It follows closely the structure
of the experimentation characteristics taxonomy (see Fig. 2).
{

"Ideation ":{
"Hypothesis ":... ,
"Owners ":...

},
"Design ":{

"Variants ":... ,
"Segmentation ":...

},
"Execution ":{

"AlertingAndShutdown ":...
},
"Analysis ":{

"SuccessMetrics ":... ,
"GuardrailMetrics ":...

}
}

A technology acceptance study [4] revealed that the language and the idea of
describing an experiment in a structured form, according to the characteristics
were accepted by the majority of participants. Moreover, for most participants,
the language was considered easy to use. However, the data too showed that there
is a relationship between the participant’s assessment of the language’s ease of
use and the participant’s background (i.e. business or software engineering).

As a result, the research on a DSL for the definition of an online controlled
experiment shows that the developed taxonomy with its characteristics and prop-
erties is considered useful. However, the representation of the definition as a DSL
hosted in JSON may not be beneficial for all stakeholders.

3 Research Method

This study aims to propose an architecture for platform-independent online con-
trolled experimentation. It is based on the idea of separating the experiment

144 F. Auer and M. Felderer

definition from the experimentation platform. Therefore it is necessary to study
which elements an experiment definition includes (0.), for what an experiment
definition is used during the experiment lifecycle [8] (1.) and what the qualities
of an experiment definition are to ensure reliable experimentation (2.). Next (3.),
an architecture needs to be designed that meets the identified requirements of
(0.) and (1.). Finally, it is necessary to evaluate whether the approach is feasible
and beneficial (4.).

The first objective (0.) was mentioned for completeness. It is already
researched in [5], in which the authors studied the characteristics specified in
an experiment definition. Moreover, in [4] a DSL for an experiment definition
was proposed and evaluated. The results are summarized in the Background
Section. It follows the objectives researched in this study.

1. Roles of experiment definitions. After having studied what characteristics an
experiment definition describes, it is necessary to identify the roles that an
experiment definition takes in each phase of the experiment lifecycle. The
roles describe the applications of the information stored in the experiment
definition. Moreover, they make visible the requirements of the experiment
definition on the proposed architecture.

2. Qualities of experiment definitions. The qualities of an experiment definition
are requirements that need to be fulfilled to ensure reliable experimenta-
tion. The separation of the experiment definition from the experimentation
platform should not impact the quality of an experiment definition or the
experiment itself.

3. Architecture. An architecture is proposed that separates the experiment def-
inition from the experiment platform. It shows what infrastructure compo-
nents have to be provided to support all requirements imposed by the iden-
tified roles and qualities.

4. Feasibility. Finally, the proposed architecture is evaluated about its feasibility
and its potential to mitigate the dependency on the experimentation plat-
form. Therefore, a prototypical implementation for an experimental scenario
is presented that retains the essence of the problem in an industrial setting.
Additionally, the migration to another experimentation platform in the con-
text of the scenario is discussed to evaluate the architecture’s independence
to the experimentation platform.

The roles and qualities are inferred from the results of the previously con-
ducted literature review [3], observations made during the analysis of open-source
as well as proprietary experimentation platforms in [5] and adjustments made
during the evaluation. Note that the identified qualities and roles constitute our
proposed architecture. However, they are not static nor expected to be com-
plete. Further research on roles and qualities might extend the enumerations
about additional roles and qualities.

An Approach for Platform-Independent Online Controlled Experimentation 145

4 Experiment Definition’s Qualities and Roles

In the following the qualities and roles of experiment definitions that were iden-
tified from the results of the literature review [3] and observations made during
the analysis of experimentation platforms [5] are presented.

4.1 Qualities

Four qualities of experiment definitions were identified.

Knowledge exchange of experimentation results and their implications support
the collaborative optimization of systems [19]. Improving the institutional mem-
ory of experimentation [7] also prevents from accidental repeating already con-
ducted experiments. Therefore, Fabijan et al. [7] suggest building an archive of
executed experiments. It should summarize an experiment with metadata like
its hypothesis, execution date, and results. A requirement to enable knowledge
exchange is that experimentation decisions (like the selection of the learning
component [18]) are explicitly documented.

Reproducibility and replicability are two important qualities of an experiment [6].
Reproducibility means that experiments can be independently replicated by
another experimenter. Therefore, the context of the experiment and a detailed
description of all steps are necessary. Furthermore, Buchert et al. [6] note that
“the description of an experiment has to be independent of the infrastructure
used”. Replicability refers to the act of repeating an experiment under the same
conditions, which will lead to the same results.

Traceability. Experiment iterations allow to gradually improve the system under
experimentation by iterative adjustments of the parameters in order to maximize
a metric of interest [22]. Hence, experiments are commonly part of a series of
iterative evolving experiments. Specifications of experiments should therefore
highlight the relationship between experiments to improve the traceability.

All of these qualities are supported by the experiment definition language
(EDL) [4]. Required characteristics and properties are provided by the language
to define reproducible and replicable experiments. Moreover, the language itself
is based on the data exchange format JSON which ease the information exchange.
Additionally, each characteristic has properties to document the decisions behind
the chosen property values. Finally, properties are included that can be used to
reference to previous versions of an experiment and document the changes made
(see Sect. 2.2).

4.2 Roles

Concerning the roles of an experiment definition, the analysis of the selected
papers [3] and observations among experimentation platforms identified that
the definition serves various purposes throughout an experiment. Each phase
uses the experiment definition in another way (see Fig. 3).

146 F. Auer and M. Felderer

Fig. 3. Main role of the experiment definition in each phase of an experiment. In each
phase of the experiment the definition serves another main role.

Communication. A central purpose of the experiment definition is its usage as
a communication tool between stakeholders. Online controlled experimentation
involves multiple stakeholders that need to exchange information between them.
Fagerholm et al. [13] enumerate various stakeholders that are involved in the pro-
cess of experimentation. The business analysts and product owners that create
ideas for experimentation, the data scientist that ensures rigor experimentation,
software developers that implement the necessary modifications, quality assur-
ance to verify the software changes, DevOps engineers to deploy the changes,
and many more. Although Fig. 3 indicates that communication is used mostly
during the ideation of an experiment, activities in all phases can be found that
use an experiment definition artifact as a communication tool. For example, the
hypothesis made by a business analyst is used by a data scientist to define a
fitting segmentation that is used by a DevOps engineer to adapt environment
variables. To conclude, all stakeholders use the experiment definition as a tool
to manifest and share their decisions on an experiment.

Quality Assurance. The results of an online controlled experiment can have a sig-
nificant impact on the decisions made by an organization. Hence, it is important
to ensure reliable and comprehensible results [19]. Therefore, the quality of exper-
imentation needs to be assured. A structured experiment definition improves the
constructive quality of an experiment. It can, for example, limit the number of
possible values for a property. In addition, analytical quality approaches can
be applied to a definition. Examples are tests to ensure required properties,
or sanity-checks on the respective experiment design (e.g. is a user segment
assigned to every variant). The definition is used in each phase of an experi-
ment to improve the experiment’s quality. For example, in the ideation phase,
constructive quality approaches on the definition ensure a solid definition of an
experiment idea. During the design phase, analytical quality approaches sup-
port the data scientist in the specification of experiment parameters. Moreover,
the quality of the experiment execution benefits from a well-structured defini-
tion that allows automating previous manual steps. Similarly, the analysis and
the learning phase rely on trustworthy information that benefits from a reliable

An Approach for Platform-Independent Online Controlled Experimentation 147

experiment definition. As a result, the experiment definition considerably influ-
ences the quality assurance of experimentation throughout each experimentation
phase.

Plan of Action. The execution of an experiment requires the accurate execution
of a sequence of actions to ensure a trustworthy result. An explicit plan of action
that lists all steps of an experiment supports the execution of an experiment.
Moreover, it improves the experiment’s reproducibility, which is a fundamental
quality aspect for experimentation [6]. The experiment definition is implicitly
used as a plan of action in the execution phase of an experiment. In this phase,
the specified properties are translated into the required actions to set up and
execute the experiment. However, other phases use the definition too as the plan
of action. For example, during the design phase, development might have to
implement changes to the software according to the definition. Similar, analysis,
for example, is directed amongst others by the specified metrics and success
criteria stated in the definition. To conclude, the experiment definition serves
for many activities during an experiment as the plan of action.

Metadata. The definition of an experiment serves as metadata about an exper-
iment [14] during the analysis phase. Data scientists that analyze the collected
data are dependent on complete and trustworthy metadata of an experiment
to draw conclusions about the collected data. Metadata about an experiment is
not only used during the analysis but also, for example, in the ideation phase.
Previous experiments could be searched by properties similar to a planned exper-
iment to find relevant experiments and consult their results and learnings [19].
In summary, the experiment definition serves as metadata about an experiment.

Documentation. The prerequisite to draw lessons learned from an experiment is
to document it. It is the essential difference between a sequence of independent
experiments and continuous experimentation. Although documentation is neces-
sary in each phase of experimentation [14], it is especially relevant for the learn-
ing phase. In this phase, the definition serves as a description of the conducted
experiment, its idea, the decisions made, and the steps taken. Institutional learn-
ing can use this information and draw conclusions from it [10]. For instance, a
series of experiments that explore the user habits may reveal that fundamental
assumptions about users are no longer true. In addition to learning, documenta-
tion can also be useful in other phases of experimentation. For example, during
the analysis of an experiment, the documentation of reasons behind decisions
made in the design or execution of an experiment gives additional insights into
the data. As a result, the experiment definition represents a documentation of an
experiment that gives insights into the executed steps and the reasoning behind
them.

148 F. Auer and M. Felderer

5 Platform-Independent Experimentation

In this section, the development of the architecture for experimentation platform-
independent experimentation is presented. First, the requirements resulting from
the roles and qualities identified in the previous sections are discussed. There-
after, the architecture itself is presented.

5.1 Requirements

The requirements are inferred from the previously identified roles and quali-
ties. Figure 4 visualizes the experimentation lifecycle, the related roles and the
requirements on the experiment definition. The definition itself is expected to
describe the characteristics of an experiment according to the taxonomy devel-
oped in [5]. The qualities are considered in the inferred requirements, which
is why they are not explicitly visualized in the figure. In the following, each
requirement is discussed in detail.

Fig. 4. Roles and requirements of the experimentation definition throughout the exper-
iment lifecycle. The experiment definition (center) is surrounded by its qualities in each
phase of the experimentation lifecycle and its main role.

Transformable. The experiment definition not only needs to contain all infor-
mation relevant for each stakeholder (e.g. hypothesis for the product owner, or
segmentation for data scientists) but also be accessible for each stakeholder.
The definition needs to be presented in a form that is interpretable and usable

An Approach for Platform-Independent Online Controlled Experimentation 149

for the respective stakeholder and its professional background. The varying
fields of expertise of the stakeholders (e.g. business, user experience, develop-
ment, . . .) suggest providing the information in different representations with
varying level of detail. For example, developers may prefer a more technical rep-
resentation (e.g. JavaScript Object Notation), whereas business analysts may
prefer a human-readable textual description. Nevertheless, both should work on
the same artifact to ensure a single point of truth.

A technology acceptance model study reported in [4] indicates that it is not
sufficient to provide one DSL for all possible stakeholders. In the study, a DSL
based on the JavaScript Object Notation (JSON) was evaluated. Participants
with a strong business background were not as convinced of the language as
participants with a technical background.

As a result, the architecture is required to provide information about an
experiment in different formats.

Verifiable. Constraints on the structure and the content of the experiment def-
inition are necessary to ensure reliable experimentation. The syntactical veri-
fication of the definition is necessary to assure that the properties and values
specified in the definition are syntactically correct. Without syntactical valid
experiment definitions, the information exchange becomes infeasible. Additional
to the syntactical verification, the semantical verification further improves the
quality assurance of an experiment. Rules that verify the semantic of a defini-
tion complete the verification of an experiment definition. An example of a rule
could be that the sum of the user partitioned upon the variants sum up to all
users available. Another example could be the enforcement of an organizational
rule that for each experiment two owners with emergency contact information
need to be defined. Thus, the architecture is required to provide a syntactical
verification and the capability to define rules on an experiment definition.

Executable. In the execution phase of the experiment lifecycle, it is required of
the experiment definition to provide enough information in a level of detail to
infer the plan of action – the steps necessary to execute the experiment. This
can include activities like the deployment of a software variant, the collection
of data, or the monitoring of shutdown criteria for an experiment (see Fig. 2,
Execution). Hence, the definition is required to provide enough information in
the necessary level of detail and the architecture is required to interpret the
experiment definition and execute the necessary actions to run the experiment.

Processable. The data stored in an experiment definition needs to be in a format
that supports the exchange of data between programs. Given that it is the source
of information about an experiment, the experiment definition is used by many
programs. In order to ease the access of the stored data, the format for the

150 F. Auer and M. Felderer

experiment definition artifact should be commonly supported by programs and
programming languages.

As a result, the architecture is required to provide the artifact in a commonly
supported data exchange format, like XML, JSON, or CSV.

Technology-Independent. The experiment definition should be independent of
the concrete technology used to implement the experiment execution, analysis,
or archival. The separation between the infrastructure and the experiment def-
inition requires the architecture to provide transformations of the definition of
infrastructure specific actions (execution phase) and formats (ideation phase,
analysis phase). Nevertheless, the architecture allows creating a robust experi-
ment definition, that is beneficial to documentation, allows interpreting exper-
iment definitions independently of the technology used to execute them, and
makes experiments even portable across different experimentation infrastruc-
tures.

As a consequence, the architecture is required to define experiments inde-
pendent of the used technology to conduct the experiment.

5.2 Architecture

The architecture is designed to make a clear distinction between the experi-
ment definition and the experimentation infrastructure (e.g. monitoring service,
deployment service). Additionally, it considers all discussed requirements of the
experimentation lifecycle on experiment definitions. Note that it is an architec-
ture and not a description of a concrete implementation of a framework. Thus,
it focuses on the structure of the system’s components it describes. The archi-
tecture is visualized in Fig. 5. In the following, the elements of the architecture
are described.

Fig. 5. Architecture for platform-independent online controlled experimentation. The
four main elements are the experiment definition, the Transform tool, Verify tool and
the Execute tool.

An Approach for Platform-Independent Online Controlled Experimentation 151

Experiment Definition. In the center of the architecture is the experiment defini-
tion artifact. It documents all relevant information of an experiment (e.g. hypoth-
esis, segmentation, or success criteria) according to the taxonomy of experiment
characteristics [5]. Therefore, the artifact stores characteristics and their related
properties in a systematic way to ensure that the artifact allows systematic access
to individual experiment characteristics. Hence, a general data exchange format
or a DSL like [4] is suggested as a data format.

Transform. On the left side in Fig. 5, the components that support the trans-
formation of the definition to application-specific formats can be found. The
component responsible for this is called Transform. It delegates a requested
transformation to the appropriate converter. For example, a data scientist may
request the metadata of an experiment in the CSV-format for the statistical
software R. In this case the Transform component selects among the known con-
verters the appropriate one and executes it. The transformation could also be
from an application-specific format to the experiment definition. For a meeting,
for instance, the experiment is transformed into an interactive form that allows
editing the properties. After the meeting, the form is saved and transformed
back to the experiment definition. Note, that the list of formats is exemplary. It
depends on the concrete experimentation infrastructure in place and the stake-
holders’ needs. As a result, the component is extendable by arbitrary converters.

Verify. On top of the experiment definition in Fig. 5 is the Verify compo-
nent. It consists of two subcomponents, namely Schema and Rulesystem. The
Schema component verifies the structure of the experiment definition. Most data
exchange formats (like XML or JSON) provide a language to describe the struc-
ture and verify a document according to it. This technology can be used by the
component. The other subcomponent is Rulesystem. It is a lightweight, modular
system that allows to register custom rules that verify a document syntactically
or semantically. A rule, for instance, could be that each experiment has to have
a hypothesis following a specific template, like “Based on [qualitative/quanti-
tative] insight, we predict that [change X] will cause [impact Y]” [11]. Rules
are a mechanism provided by the architecture to support an automated quality
assurance of the experiments. Note that the rules allow to verify an experiment
independent of the platform and prior execution of an experiment. Furthermore,
they could be used as quality gates that, for example, enforce organizational
requirements on an experiment.

Execute. On the right side of the experiment definition in Fig. 5 is the Execute
component. It is responsible for the interface between the experiment definition
and the execution of an experiment. The architecture itself does not include com-
ponents for the execution or monitoring of an experiment. These are traditional
tasks in which experimentation platforms excel [5]. The alternative, to develop
custom components that cover tasks like segmentation, is resource-intensive and

152 F. Auer and M. Felderer

error-prone as reported in the literature (e.g. [16]). Therefore, the architecture
delegates these tasks to individual services or platforms that provide the respec-
tive functionality.

6 Evaluation

In this section, a prototypical implementation and an evaluation of the experi-
mentation platform-independent architecture is presented. In the experimental
scenario, first, the feasibility of the architecture is evaluated. Second, the claim
of platform-independence is validated by changing the experimentation plat-
form and discussing the changes necessary. Finally, the result of the experiment
is summarized.

6.1 Scenario

The experimental scenario represents a common infrastructure of an organization
developing an Internet service. Thus, common approaches, tools, and methods
for the development of an Internet service are assumed. The fictional organiza-
tion follows the agile development process and uses the Internet service Trello1

as Kanban board. The developed software is deployed with Docker2. Additional
assumptions about the scenario are not necessary, given that the experiment
focuses on the feasibility and the experimentation platform-independence. Thus,
for the scenario, it is not of importance which programming language, libraries,
or frameworks are used for the development of the Internet service or possible
experiments of it. As experimentation platform the proprietary platform Opti-
mizely3 was selected.

6.2 System Overview

The implementation consists of three tools, namely transform, verify and
execute. For the experiment definition artifact the EDL [4] was selected. It
is a DSL based on JSON, which eases the processing of it. As programming
language python was used, because of the major ecosystem of libraries and soft-
ware development kits for third-party applications. An overview of the developed
system is visualized in Fig. 6.

The transform tool is modular structured and allows adding arbitrary con-
verters in the form of python scripts with the name schema to-<format>.py
that are located at a specific folder. For the experiment, three converters were
implemented that are based on python libraries to convert the information stored
in the experiment definition JSON to the respective format.

The verify tool is based on two submodules namely verifySchema and
verifyRules. The first, verifySchema, provides syntactical verification of the
1 https://trello.com.
2 https://docker.com.
3 https://optimizely.com.

https://trello.com
https://docker.com
https://optimizely.com

An Approach for Platform-Independent Online Controlled Experimentation 153

Fig. 6. System overview of the experimental implementation. It demonstrates concrete
adaptions of the architecture for the exemplary scenario.

experiment definition. Therefore, the JSON schema definition of the EDL is
used to automatically verify the syntax of the definition artifact. The second
submodule, verifyRules verifies the artifact semantically by executing custom
rules against the experiment definition. Rules are python scripts that are located
at a specific folder. They can be specific to the project (e.g. 20% is the mini-
mum allocation of users for the unmodified variant) or organization (e.g. two
experimentation owners at least).

The execute tool is similar implemented as the transform tool. It allows
adding arbitrary scripts that interpret the experiment definition and execute
the related interface calls. In the experimental scenario, three interfaces were
considered. An interface to the experimentation platform Optimizely to deploy
the experiment on the experimentation platform, another to docker to deploy the
software version under experimentation and the third to Trello to create a task
for Operations to monitor the experiment. All three of them are built on SDKs
or REST APIs that are provided by the tools. The prototypical implementation
is available at GitHub4.

6.3 Feasibility

The feasibility is evaluated by the implementation of the described experimental
scenario and the researchers’ observations doing so. Therefore, in the following,
each components’ development is discussed.

Initially, the format and language of the experiment definition artifact had
to be selected. A common data exchange format is beneficial, given that the
information stored in the artifact needs to be processed by multiple programs.
The EDL [4] was selected because it is based on JSON and provides a Schema
with all necessary characteristics and properties of an experiment. Given that
the verification and interpretation of the artifact are delegated to the verify
and execute tool, a generic experiment definition language like EDL can be
used without modifications. Project-specific interpretations or verification rules

4 https://github.com/auerflorian/platform-independent-experimentation-prototype.

https://github.com/auerflorian/platform-independent-experimentation-prototype

154 F. Auer and M. Felderer

can be implemented with the extension of the respective tools. This eases the
decision of the format for the experiment definition.

Next, the tool verify that verifies the definition was implemented. It is
supposed to verify the definition syntactically and semantically. The syntactical
verification is in the case of EDL already provided by the JSON Schema that is
defined for it. For the semantic verification, the rule system was implemented.
It is a lightweight, modular approach to implement reusable rules. Thus, the
verification of experiment definitions can be reused and improved across projects
and for different infrastructures without additional implementation effort.

The transform tool has a modular architecture and calls the appropriate
converter provided as a script within a specific folder. For the implementation of
the specific converters, the selected format of the experiment definition artifact
was beneficial. JSON stores data objects and thus provides a rich structure of the
data, which is used by the EDL to provide the characteristics and properties of
an experiment in a structure of hierarchical objects. The additional information
by the hierarchy of the individual properties ease the conversion. For example,
the hierarchy of the properties could be translated to headings for a report in
an HTML report.

Finally, the execute tool that redirects calls to the appropriate interface was
implemented. For the experimental scenario, an interface to Optimizely, docker,
and Trello was implemented. All three systems provide REST APIs or SDKs.
Thus, the interface’s main complexity was in the interpretation of the experiment
definition and translation of it into system-specific function calls. For example,
for the experimentation platform Optimizely, the initial implementation created
an experiment on the platform according to the experiment definition. In the next
iteration, the interface, first verified that there is not already an experiment wit
the same ID on the platform. A future iteration could consider to update the
experiment specification according to the experiment definition. This demon-
strates that the implementation of an interface to an experimentation platform
is not a trivial task, if all possible states of the experiment definition and the
experimentation platform have to be considered. Note, however, that the pro-
posed architecture does not specify where in the process of experimentation or of
the software development process the tools are executed. Thus, with additional
call arguments and the integration of the tools at the right places within the
development process the complexity of the interfaces could be reduced. Never-
theless, the integration of third-party tools through interfaces introduced the
most complexity in the implementation of the proposed architecture.

6.4 Platform-Independence

The platform-independency of the proposed architecture is evaluated with a
theoretical modification to the experimental scenario. Therefore, the following
addition to the scenario description is assumed:

After a year of experimentation, the organization reevaluates the infrastruc-
ture used to identify possible optimizations. The analysis of the infrastructure

An Approach for Platform-Independent Online Controlled Experimentation 155

components revealed that there is another more cost-effective experimentation
platform available. Thus, the experimentation platform needs to be changed.

This scenario can lead to considerable migration costs without the application
of the proposed platform-independent architecture. All experiment definitions
are stored implicitly within the platform. Moreover, the process of experimenta-
tion is coupled to the platform and its implicit experimentation lifecycle. Thus,
with the change of the platform not only the existing knowledge base of exper-
iments may be lost, but also the process of experimentation, that requires an
expensive adaptation of the process to the new platform. Additionally, verifi-
cation rules that were implicitly in the previous experimentation platform may
no longer exist in the new platform or may have changed. To summarize, the
migration to another experimentation platform has a considerable impact on the
whole experimentation process.

In contrast, with a platform-independent architecture, the migration is
reduced to a new implementation of an experiment platform interface. Metadata
about existing experiments is not affected and would still be “executable”. More-
over, the process of experimentation is not affected. Verification, for example,
follows the same organization-defined rules as with the previous experimentation
platform.

Note, that in both cases the migration to another experimentation platform
may require changes in the software, deployment, or infrastructure. For instance,
the interface for the platform has to be implemented and the related code sec-
tions within the software that request the experimentation platform to decide
which variant to show, have to be adapted. Nevertheless, neither the experi-
ment definition nor the generators or the verification should be affected by the
migration.

6.5 Experimental Result

The experimental scenario of an organization developing an Internet service was
presented. An implementation of the proposed architecture demonstrated the
feasibility of it. The description of the development indicates the implementation
effort of its components and may allow reasoning about the possible return of
investment when compared, for example, to the outlined benefits in the case of
a migration to another experimentation platform.

Finally, the scenario was adapted to portrait the possible impacts of a migra-
tion. Thereby, it was argued that the proposed architecture is experimentation
platform-independent by considering the changes that are necessary in the case
of a migration to another experimentation platform.

7 Discussion

The study identified the roles of an experiment definition throughout the exper-
imentation lifecycle. It shows that in each phase of the lifecycle, the definition
of an experiment plays an important role. Moreover, the described qualities and

156 F. Auer and M. Felderer

requirements on the experiment definition make the strong impact of the defini-
tions on the success of an experiment visible. For example, its appropriateness
as a tool for communication in the ideation phase for each shareholder, the
precise representation of the experiment for verification, or its availability in a
processable form for the analysis of the collected data.

In addition, the study indicated how dependent the experimentation pro-
cess is on the experimentation platform that commonly provides the (implicit)
experiment definition. Furthermore, the implicit experiment definition of third
party experimentation platforms introduces a risk of vendor lock-in. A data-
exchange format for experiment definitions does not exist. Thus all metadata
about experiments is platform-specific and may not always be exportable. Thus,
it is not surprising that most organizations do not use third party experimen-
tation platforms, as the survey [9] among practitioners indicates. However, the
development of a self-built experimentation platform is not feasible for every
organization. The high upfront cost of time and resources to develop a reliable
experimentation platform [16] are not manageable for every organization.

The proposed experimentation platform-independent architecture mitigates
the impact of a platform on the experimentation lifecycle. Despite the use of
a third-party experimentation platform, the organization can define and adjust
its experimentation lifecycle. Moreover, the migration to another experimenta-
tion platform becomes feasible as discussed in the experimental scenario of a
migration.

Limitations. Even though possible threats to validity were considered during
the design and execution of the study, the findings of this experiment have to
be interpreted within their limitations. The main limitation of the study is the
evaluation of the proposed architecture. Although the technical feasibility was
evaluated by a proof-of-concept implementation, the organizational feasibility of
the approach cannot be demonstrated with this method. Thus, the evaluation
does not show whether the approach would also be feasible to be followed by a
team. However, the construction of the architecture that is based on the require-
ments on the experiment definition is expected to have guided the development
of the architecture to be also organizational feasible. The second point of eval-
uation was the platform-independence. This was evaluated by the discussion of
the impacts of a migration to another experimentation platform to stress the
dependency of the architecture to the experimentation platform. Even though
the evaluation was only done by the discussion of the theoretical implications,
the impacts are arguable sufficiently predictable on the architecture to use this
evaluation technique.

8 Conclusions

Organizations that use third-party experimentation platforms are in the risk of
a vendor lock-in. The implicit experimentation lifecycle enforced by the plat-
form and the predefined definition of an experiment requires the organization

An Approach for Platform-Independent Online Controlled Experimentation 157

to adapt its experimentation process to the platform. To mitigate this risk, an
experimentation platform-independent architecture is proposed.

The proposed architecture separates the experiment definition from the
experimentation platform. Therefore, the qualities and roles of experiment def-
initions were studied to develop an architecture that separates the definition
from the platform without mitigating a role or a quality of the definition. The
conducted evaluation suggest that the architecture is feasible and mitigates the
impact of the experimentation platform on experimentation.

Interesting future research directions are the conduction of a case study to
observe the architecture in an industrial setting. This could further improve the
evaluation of the architecture and show the benefits as well as disadvantages of
the approach.

References

1. Auer, F., Felderer, M.: Current state of research on continuous experimentation:
a systematic mapping study. In: 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE (2018)

2. Auer, F., Felderer, M.: Shifting quality assurance of machine learning algorithms
to live systems. In: Software Engineering und Software Management 2018 (2018)

3. Auer, F., Felderer, M.: Characteristics of an online controlled experiment: prelim-
inary results of a literature review. arXiv preprint arXiv:1912.01383 (2019)

4. Auer, F., Felderer, M.: Evaluating the usefulness and ease of use of an experi-
mentation definition language. In: 2020 32th International Conference on Software
Engineering and Knowledge Engineering. KSI Research Inc. and Knowledge Sys-
tems Institute Graduate School (2020)

5. Auer, F., Lee, C.S., Felderer, M.: Continuous experiment definition characteris-
tics. In: 2020 46th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). IEEE (2020)

6. Buchert, T., Ruiz, C., Nussbaum, L., Richard, O.: A survey of general-purpose
experiment management tools for distributed systems. Fut. Gener. Comput. Syst.
45, 1–12 (2015). https://doi.org/10.1016/j.future.2014.10.007

7. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The evolution of continuous
experimentation in software product development: from data to a data-driven orga-
nization at scale. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE (2017). https://doi.org/10.1109/icse.2017.76

8. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The online controlled experiment
lifecycle. IEEE Softw. 37, 60–67 (2018)

9. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: Online controlled experimen-
tation at scale: an empirical survey on the current state of a/b testing. In: 2018
44th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), pp. 68–72. IEEE (2018)

10. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J., Vermeer, L., Lewis, D.: Three key
checklists and remedies for trustworthy analysis of online controlled experiments at
scale. In: 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pp. 1–10. IEEE (2019)

http://arxiv.org/abs/1912.01383
https://doi.org/10.1016/j.future.2014.10.007
https://doi.org/10.1109/icse.2017.76

158 F. Auer and M. Felderer

11. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J., Vermeer, L., Lewis, D.: Three key
checklists and remedies for trustworthy analysis of online controlled experiments at
scale. In: 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE (2019). https://doi.org/10.
1109/icse-seip.2019.00009

12. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: Building blocks for continu-
ous experimentation. In: Proceedings of the 1st International Workshop on Rapid
Continuous Software Engineering, pp. 26–35 (2014)

13. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: The right model for contin-
uous experimentation. J. Syst. Softw. 123, 292–305 (2017)

14. Gupta, S., Ulanova, L., Bhardwaj, S., Dmitriev, P., Raff, P., Fabijan, A.: The
anatomy of a large-scale experimentation platform. In: 2018 IEEE International
Conference on Software Architecture (ICSA), pp. 1–109. IEEE (2018)

15. Kevic, K., Murphy, B., Williams, L., Beckmann, J.: Characterizing experimenta-
tion in continuous deployment: a case study on Bing. In: 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineering in Prac-
tice Track (ICSE-SEIP), pp. 123–132. IEEE (2017)

16. Kohavi, R., Deng, A., Frasca, B., Longbotham, R., Walker, T., Xu, Y.: Trustworthy
online controlled experiments: five puzzling outcomes explained. In: Proceedings
of the 18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 786–794 (2012)

17. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experi-
ments on the web: survey and practical guide. Data Min. Knowl. Discov. 18(1),
140–181 (2008). https://doi.org/10.1007/s10618-008-0114-1

18. Mattos, D.I., Bosch, J., Holmström Olsson, H.: More for less: automated experi-
mentation in software-intensive systems. In: Felderer, M., Méndez Fernández, D.,
Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS,
vol. 10611, pp. 146–161. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69926-4 12

19. Issa Mattos, D., Dmitriev, P., Fabijan, A., Bosch, J., Holmström Olsson, H.: An
activity and metric model for online controlled experiments. In: Kuhrmann, M.,
et al. (eds.) PROFES 2018. LNCS, vol. 11271, pp. 182–198. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03673-7 14

20. Olsson, H.H., Bosch, J.: From opinions to data-driven software R&D: a multi-
case study on how to close the open loop problem. In: 2014 40th EUROMICRO
Conference on Software Engineering and Advanced Applications, pp. 9–16. IEEE
(August 2014). https://doi.org/10.1109/seaa.2014.75

21. Ros, R., Runeson, P.: Continuous experimentation and A/B testing: a mapping
study. In: Proceedings of the 4th International Workshop on Rapid Continuous
Software Engineering (RCoSE), pp. 35–41. ACM (2018). https://doi.org/10.1145/
3194760.3194766

22. Tamburrelli, G., Margara, A.: Towards automated a/b testing. In: Le Goues, C.,
Yoo, S. (eds.) SSBSE 2014. LNCS, vol. 8636, pp. 184–198. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09940-8 13

23. Tang, D., Agarwal, A., O’Brien, D., Meyer, M.: Overlapping experiment infras-
tructure: more, better, faster experimentation. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
17–26 (2010)

https://doi.org/10.1109/icse-seip.2019.00009
https://doi.org/10.1109/icse-seip.2019.00009
https://doi.org/10.1007/s10618-008-0114-1
https://doi.org/10.1007/978-3-319-69926-4_12
https://doi.org/10.1007/978-3-319-69926-4_12
https://doi.org/10.1007/978-3-030-03673-7_14
https://doi.org/10.1109/seaa.2014.75
https://doi.org/10.1145/3194760.3194766
https://doi.org/10.1145/3194760.3194766
https://doi.org/10.1007/978-3-319-09940-8_13

Author Index

Auer, Florian 139

Borg, Markus 66

Felderer, Michael 33, 139
Femmer, Henning 3
Fronza, Ilenia 94

Gorschek, Tony 109

Khritankov, Anton 54
Klammer, Claus 15
Konnerth, Matthias 15

Lenarduzzi, Valentina 43
Lomio, Francesco 43

Mäkitalo, Niko 94
Männistö, Tomi 94
Meding, Wilhelm 81
Mendez, Daniel 109

Mikkonen, Tommi 94
Moreschini, Sergio 43

Nurminen, Jukka K. 94

Ochodek, Miroslaw 81

Pfahl, Dietmar 119
Pfeiffer, Michael 15

Raatikainen, Mikko 94
Ramler, Rudolf 33

Scott, Ezequiel 119
Söder, Ola 81
Staron, Miroslaw 81
Steiner, Thomas 15

Taibi, Davide 43
Tamburri, Damian Andrew 43
Tõemets, Tanel 119

Wetzlmaier, Thomas 15

	Preface
	Message from the Scientific Program Chairs
	Organization
	Contents
	Automation in Software Engineering
	Assisted Requirements Engineering - What Will Remain in the Hands of the Future Requirements Engineer? (Invited Keynote)
	1 Introduction: The World is Changing, RE is Changing, So What Will Remain?
	2 Which Steps Do Automations Take? Some Analogies
	2.1 Driver Assistance
	2.2 Programming

	3 Text Analytics Revisited: What is, Will, and Will Never Be Possible?
	3.1 What Will Not Change Despite of Text Analytics?
	3.2 What Could Change with Text Analytics?

	4 A Look into the Crystal Ball: The Role of a Requirements Engineer in Different Levels of Automation
	4.1 Phase 1: Decoupled Requirements Engineering
	4.2 Phase 2: Assistance Functions in Requirements Engineering
	4.3 Phase 3: Partly Automated Requirements Engineering
	4.4 Phase 4: Fully Automated Requirements Engineering

	5 Summary and Outlook
	References

	Testing Autogenerated OPC UA NodeSet Models for Product Variants in Industry
	1 Introduction
	2 Industrial Context and Related Work
	3 Approach and Implementation
	3.1 Test Project Generator (TPG)
	3.2 Test Metadata Exporter (TME)
	3.3 Test Execution (TE)

	4 Results and Discussion
	4.1 Test Execution Data
	4.2 General Findings

	5 Conclusion and Outlook
	References

	Quality Assurance for AI-Based Systems
	Quality Assurance for AI-Based Systems: Overview and Challenges (Introduction to Interactive Session)
	1 Introduction
	2 Background and Terminology
	3 Challenges
	4 Summary and Conclusions
	References

	Software Quality for AI: Where We Are Now?
	1 Introduction
	2 Related Work
	3 AI Software Quality: Key Issues and Comments
	4 Research Roadmap
	5 Conclusion
	References

	Hidden Feedback Loops in Machine Learning Systems: A Simulation Model and Preliminary Results
	1 Introduction
	2 Background and Related Work
	3 Problem Statement
	3.1 Motivating Example
	3.2 Formal Statement

	4 Methods
	4.1 Simulation Experiment
	4.2 Experiment Setup
	4.3 Results and Observations

	5 Analysis and Discussion
	5.1 Existence Conditions for a Positive Feedback Loop
	5.2 Checklist for Detecting Feedback Loops

	6 Future Research
	7 Conclusion
	References

	The AIQ Meta-Testbed: Pragmatically Bridging Academic AI Testing and Industrial Q Needs
	1 Introduction
	2 Background and Related Work
	3 AI Quality Assurance – Working Definitions
	4 AIQ – An AI Meta-Testbed
	5 Summary and Concluding Remarks
	References

	Machine Learning Applications
	Improving Quality of Code Review Datasets – Token-Based Feature Extraction Method
	1 Introduction
	2 Related Work
	3 New Feature Extraction Method
	4 Research Design
	4.1 Case Selection
	4.2 Data Collection
	4.3 Data Analysis

	5 Results
	6 Conclusions
	References

	Is Machine Learning Software Just Software: A Maintainability View
	1 Introduction
	2 Background: ML Explained for Programmers
	3 Challenges with an ML Component and Experiences from a Sample Project
	4 ML in the Light of Maintainability
	5 Discussion
	6 Conclusions
	References

	Industry-Academia Collaboration
	Solving Problems or Enabling Problem-Solving? from Purity in Empirical Software Engineering to Effective Co-production (Invited Keynote)
	1 Introduction
	2 The Problem(s) with ``Software''
	2.1 Inception and Engineering
	2.2 Human-Centric Activities
	2.3 Delivery

	3 Research with and in Industry
	4 Discussion
	References

	Experimentation in Software Engineering
	An Empirical Study of User Story Quality and Its Impact on Open Source Project Performance
	1 Introduction
	2 Related Work
	2.1 Quality of User Stories
	2.2 Empirical Studies on the Impact of Requirements Quality
	2.3 Time Series Analysis in Software Engineering
	2.4 Summary

	3 Study Design
	3.1 Research Questions
	3.2 Initial Dataset
	3.3 Data Cleaning
	3.4 Measurement
	3.5 Data Analysis

	4 Results
	4.1 Study Population
	4.2 User Stories Quality Monitoring and Evolution Patterns
	4.3 User Story Quality and Project Performance

	5 Discussion
	6 Limitations
	7 Conclusion
	References

	An Approach for Platform-Independent Online Controlled Experimentation
	1 Introduction
	2 Background
	2.1 Online Controlled Experimentation
	2.2 Characteristics of Online Controlled Experiments
	2.3 Experimentation Definition Language

	3 Research Method
	4 Experiment Definition's Qualities and Roles
	4.1 Qualities
	4.2 Roles

	5 Platform-Independent Experimentation
	5.1 Requirements
	5.2 Architecture

	6 Evaluation
	6.1 Scenario
	6.2 System Overview
	6.3 Feasibility
	6.4 Platform-Independence
	6.5 Experimental Result

	7 Discussion
	8 Conclusions
	References

	Author Index

