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2.1	 �Introduction

Radiomics as a medical image analysis technol-
ogy is coming of age in the realms of clinical 
practice and clinical development. Quantitative 
image analysis has been used as a methodology 
to evaluate disease processes using medical 
images for a few decades now; radiomics is a 
newer approach that involves intricate feature 
extraction and classification techniques and 
leverage sophisticated statistical approaches, 
such as machine learning (ML). Standard struc-
tural imaging modalities, such as computed 
tomography (CT) and magnetic resonance imag-
ing (MRI), were first to be used for radiomic 
analysis efforts and still comprise the majority of 
scientific work being done  in this space.  More 
recently, a significant body of scientific literature 
has been accumulating for radiomics performed 
on positron emission tomography (PET) images.
Meta-analysis of these early PET studies has 
shown that radiomic analysis lacked in reproduc-
ibility given its high sensitivity to variations in 
voxel size, segmentation and reconstruction algo-
rithms used, which is why standardized uptake 
value (SUV) still remains the gold standard for 

PET signal measurement [1]. Single photon 
emission computed tomography (SPECT) is 
another functional imaging modality where 
radiomics can play a role in extracting more 
information than what meets the eye. However, 
there are concerns with the reproducibility and 
reliability of SPECT-based radiomic analysis 
similar to those seen with PET.  This is both a 
challenge and an opportunity. And while 
AI-driven approaches, of which radiomics is one, 
can be very promising for all imaging, including 
SPECT, the challenges related to data availabil-
ity, annotation, and medicolegal considerations 
thereof need to be addressed for the application 
of radiomics to become mainstream [2]. In this 
chapter, we review the landscape of the recent 
efforts in SPECT radiomics and discuss the chal-
lenges and opportunities that abound its applica-
tions in clinical practice and development.

2.2	 �Radiomics as a Methodology

Conceptually, radiomics is an analytical process 
of using medical images to extract microstructural 
or “microfuncitional” information by extracting 
data from each boxes, which may then be useful 
for disease classification, stratification, therapy 
response assessment, and prognostication. In that 
sense, it is a non-invasive alternative to molecular 
and other histopathology-based disease assess-
ments. Developing imaging-based biomarkers for 
these purposes is a sophisticated process that 
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involves choosing the right medical images and 
employing adequate ML approaches that deliver 
useful radiomic signatures of clinical significance. 
Typically, these radiomic signatures are based on 
the morphology and tissue heterogeneity, but 
when using functional modalities, such as PET 
and SPECT, these signatures provide insights into 
the physiologic or biochemical processes and per-
turbations there of [3]. AI/ML models developed 
for radiomic analysis are improving in their accu-
racy and predictive power when compared to con-
ventional interpretive approaches. Radiomics is 
being considered as a potential quantitative analy-
sis methodology to be applied to SPECT imaging 
in the realm of neurologic, cardiac, oncologic, 
and immunologic diseases [4].

The basic steps involved in the radiomics 
methodology (see Fig. 2.1) are as follows:

•	 Image acquisition: This is the first step in this 
process. In most settings, radiomic analysis 
can be performed on medical images acquired 
as per standard clinical protocols. However, 
modified protocols that render higher spatial 

resolution or “richer” raw data can be useful. 
The main concern is to have a standardized 
acquisition protocol across the cohort in order 
to minimize variations in the feature extrac-
tion process [1]. Furthermore, post-acquisition 
processing, including filtering techniques and 
iterative reconstruction, should also be stan-
dardized in order to minimize inter- and even 
intra-centre variability. Filtering techniques 
are used to improve results [1].

•	 Lesion detection and segmentation: This is a 
key requisite step in this methodology. It is 
critical to identify the right lesion(s) and seg-
ment them in a way to include the whole lesion 
while removing the surrounding or background 
tissue [5]. The process of segmentation may be 
manual, whereby a radiologist  identifies the 
lesion and drawing a region/volume of interest 
(ROI/VOI). Alternatively, it may be semiauto-
mated, whereby the lesion is manually selected 
and the algorithm identifies its boundaries and 
draws a VOI. There are also fully automated 
segmentation software programs that can iden-
tify the lesion and draw an ROI/VOI. All these 

Fig. 2.1  Typical radiomics workflow. The basic steps 
include image sequestration and preacquisition data sal-
vage, data transfer and repository maintenance, image 
segmentation, feature extraction and classification, cova-
riance matrices and data modelling, integration into clini-
cal decision support systems, and biostatistic and outcome 
analysis. ROI, region of interest. (Used under CC license 

from Technical Challenges in the Clinical Application of 
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methods allow for manual readjustment to 
ensure correct lesion demarcation with human 
oversight. Whichever method adopted, precise, 
consistent, and accurate segmentation of all 
lesions is critical for a reliable and reproduc-
ible delta radiomics assessment.

•	 Feature extraction: This is the core step of the 
radiomics technique in which a large set of fea-
tures (which are mathematically determined 
based on the values within a voxel) are 
extracted from these images. The size of the 
feature set depends on the modality, and there 
are a variety of libraries available for each. The 
radiomic signatures can be created using fea-
tures extracted in a “pre-engineered” or “hand-
crafted”  fashion or through a “black-box” 
approach that depends on ML [6–8]. Radiomic 
features are based on the morphology, histo-
gram, or texture analysis. These features may 
be semantic (providing description about 
shape, size, tissue relation to surrounding 
material, surface area and volume) or agnostic 
(providing histograms and texture-based fea-
tures). These extracted features are highly vari-
able, and feature reduction is applied to reduce 
redundancy. LASSO (least absolute shrinkage 

and selection operator) is a regression analysis 
technique that performs variable selection and 
regularization to improve prediction and accu-
racy and can be employed in this step to extract 
a smaller subset of features that is more likely 
to yield the radiomic signature of interest [8].
Second-order radiomic analysis has been most 
commonly applied across all modalities as it 
provides valuable information regarding the 
local spatial distribution of voxel values, cal-
culating local features at each voxel within the 
in-plane image and deriving parameters from 
the distributions of the local features. A num-
ber of texture features can be derived that pro-
vide a measure of intralesional heterogeneity.

•	 Feature classification and model develop-
ment: The extracted radiomic features are 
“raw data” that needs to be classified into sig-
natures of statistical value. These signatures 
are critical in the development of non-inva-
sive biomarkers that can quantify tissue-level 
changes otherwise not visualized in the medi-
cal image. Correlation heat maps of the 
extracted radiomic features are created and 
those with high variance are used (see 
Fig. 2.2). Feature classification is performed 

Fig. 2.2  Correlation analysis heatmap showing blocks of 
highly correlated radiomic features (black frames on the 
left and positive with red color or negative correlation 
with blue color on the right). When identifying such 
groups of highly correlated features, all but the one with 
the highest variance are removed from further analysis. In 

this case, the correlation coefficient was set to 95%. (Used 
under the creative commons license from Papanikolaou 
N, Matos C, Koh DM.  How to develop a meaningful 
radiomic signature for clinical use in oncologic patients. 
Cancer Imaging. 2020;20:33.)
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using computational techniques that can 
involve machine learning approaches, such as 
random forest (RF) or support vector machine 
(SVM). In scenarios with complex data (from 
radiomics and other non-radiological 
sources), more complex techniques, such as 
convolutional neural network (CNN) or deep 
learning neural network (DLNN), may be 
employed to derive insights for important go/
no-go decisions or predict/assess therapy 
response [9]. These algorithms need to have 
high accuracy rates when tested using a test 
set. The true “test” of a radiomic model is the 
assessment of its performance across various 
centers in a clinical trial or practice. While 
radiomic models cannot be fully transferable 
to all types of populations and disease sub-
types, it should have reasonable applicability 
in similar clinical settings, using similar 
equipment and protocols, and in relatable 
cohorts.

2.3	 �Clinical Application 
of Radiomics Using SPECT

2.3.1	 �Oncologic SPECT Radiomics

While still niche, the most salient application of 
SPECT radiomics has been in the field of oncol-
ogy. This trend follows the momentum seen in 
the realm of PET radiomics. As SPECT plays an 
important role in the clinical management of a 
number of malignant diseases, radiomics-based 
studies have been performed with encouraging 
results in this space. The main areas of potential 
application of SPECT radiomics in oncology 
would be:

•	 Disease detection and classification.
•	 Clinical course prediction and 

prognostication.
•	 Therapy response prediction/assessment.
•	 Complimenting or as an alternative to nonim-

aging biomarkers.
•	 Pharmacokinetic and pharmacodynamic 

assessment for the clinical development of 
novel therapeutics.

Technetium-99 m albumin nanoparticle stud-
ies are performed for the evaluation of primary 
and secondary hepatic malignancies in clinical 
practice. Radiomic analysis of these scans has 
been performed that  yielded signatures consist-
ing of skewness, kurtosis, and distribution histo-
grams to study the intra-tumoral tissue 
heterogeneity [10] (see Fig.  2.3). This enables 
qualitative and quantitative assessment of patho-
physiologic processes, such as fibrosis, necrosis, 
metaplasia, and vasculogenesis. This, in turn, 
allows for quantification of the extent of cirrho-
sis, metastatic potential, or response to therapy. 
The hepatic tissue density changes detected 
through radiomic analysis can prove to be a har-
binger of liver tumors that would be otherwise 
detected at a later stage through conventional 
imaging methods. In small animal studies, 
radiomic approaches have been used to study the 
varying patterns of radiotracer distribution, 
which can help distinguish between healthy and 
tumoral livers, which can be helpful to assess the 
extent of invisible tumor burden in a patient [10]. 
Other related approaches in this domain include 
the radiomic analysis of Tc-99 m sulfur colloid 
SPECT to predict the Child-Pugh class in hepato-
cellular carcinoma (HCC) patients [11, 12].

These approaches have yielded promising 
results in animal models and can be potentially 
translated for clinical use eventually. In humans, a 
biomarker that quantifies hidden tumor burden in 
the liver can be a tremendously useful endpoint 
for patients with HCC as well as metastatic liver 
disease. Skewness is a direct imaging-based 
parameter that correlates with the inhomogeneous 
distribution of macrophage cells and can be quan-
tified to show the altered tissue function even 
before the visual manifestation of liver tumor foci 
on standard imaging. This can be developed as a 
prognostic biomarker of malignant disease pro-
gression in HCC patients [10, 11].

Novel AI approaches have been introduced 
that use SPECT data in oncologic imaging inter-
pretation. One such example is that of PSMA-AI 
that uses DLNN to anaylze and interpret PSMA-
targeted Tc99m-MIP-1404 SPECT/CT images 
[13]. The results shows that PSMA-AI generated 
reproducible results and could compliment 
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human interpretation. Radiomic analysis can be 
added in this approach as an additional layer of 
rich data generation that the PSMA-AI can use to 
improve its predictive values as compared to 
human interpretation.

Tc99m-Sestamibi SPECT/CT has been used 
to differentiate between oncocytomas (hot 
lesions) and renal cell carcinoma (cold lesions). 
Radiomic analysis of these cold spots has been 
performed in an attempt to differentiate between 

various subtypes of RCC [14]. While there were 
challenges related to mis-segmentation and high 
variation, this approach highlights the potential 
of radiomics for clinically performed SPECT 
studies.

SPECT imaging plays a critical role in the 
successful planning and monitoring of antibody-
targeted radionuclide imaging and therapy (radio-
immunotherapy). 111In-ibritumomab tiuxetan is a 
SPECT agent that is used prior to the administra-
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Fig. 2.3  The result of 99mTc-protein nanoparticle 
whole-body SPECT scan. b–e Selected projections of the 
segmented liver in control, obese, metastatic, and primary 
tumor groups, respectively, from top to bot (Used under 

Creative Commons license from Veres DS, Máthé D, 
Hegedűs N. et  al. Radiomic detection of microscopic 
tumorous lesions in small animal liver SPECT imaging. 
EJNMMI Res. 2019;9:67.)
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tion of 90Y-ibritumomab tiuxetan radioimmuno-
therapy to determine eligibility for its treatment 
by determining whether there is sufficient and 
uniform antibody retention within the tumor. 
Features extracted using radiomic texture analy-
sis that describe the relationships between gray-
level intensity and position of pixels from these 
images can help assess the underlying biological 
complexity and tissue heterogeneity.

Longitudinal SPECT imaging is also used to 
monitor antibody biodistribution and dosimetry 
in patients. This has been performed in patients 
receiving anti-carcinoembryonic antigen (CEA) 
131I-A5B7 antibody in combination with the vas-
cular disrupting agent (VDA), combretastatin 
A4-phosphate for gastrointestinal carcinoma 
[15]. Performing texture analysis on these SPECT 
images would allow the quantification of the het-
erogeneity of antigen distribution noninvasively, 
before and after therapy. This strategy can be use-
ful in the clinical trials as it can speak to the resis-
tance of some tumors to antigen-targeted therapy. 
It has been demonstrated in animal studies that 
texture analysis (using gray-level co-occurrence 
matrix feature extraction) of 125I-A5B7 SPECT 
can show spatial heterogeneity variations of anti-
body distribution between well- and poorly dif-
ferentiated liver metastases before antivascular 
treatment [16].

For radionuclide therapies of cancer, the con-
cept of intra-tumoral heterogeneity is important 
as it can determine the treatment response to 
radionuclide therapy, especially when the 
bystander effect is required to kill neighboring 
cells that do not express the target. In a study 
using preclinical colon tumor models that express 
carcinoembryonic antigen (CEA), treatment 
response to 131I-labeled anti-CEA antibody has 
been shown to depend on the vascular supply and 
CEA distribution [17].

2.3.2	 �Neurologic SPECT Radiomics

SPECT imaging has a number of applications in 
the management of neurologic diseases. For the 
radiomic analysis of neurologic SPECT images, 

the lesion identification and segmentation are 
performed on the MR images co-registered with 
the SPECT images.

Imaging of the dopaminergic system with 
123I-ioflupane-dopamine transporter (DAT) is a 
widely used SPECT study in the clinical workup 
for Parkinson’s disease. DAT SPECT images are 
typically assessed visually; however, adding 
radiomics can provide a new set of information 
that can help predict clinical outcomes (see 
Fig.  2.4) [18]. Such a noninvasive biomarker 
could be useful for the purposes of prognostic 
assessment and would be crucial  in designing 
clinical trials [19]. Radiomic models can provide 
a more accurate and objective alternative to the 
clinical metrics, such as (i)  the UPDRS (part 
III—motor) score, disease duration as measured 
from (ii) time of diagnosis (DD-diag.) and (iii) 
time of appearance of symptoms (DD-sympt.), or 
(iv) the Montreal Cognitive Assessment (MoCA) 
score [19]. However, in order to do that, the 
radiomic models will require reference regions 
for normalization.

The radiomic features extracted from the cau-
date, putamen, and ventral striatum of DaTscan 
images at different timepoints of disease evolu-
tion could serve to quantify heterogeneity and 
texture in radiotracer uptake [20]. Quantifying 
feature eccentricity from the more affected ven-
tral striatum may provide a useful predictor [20]. 
Thus, a combined approach involving standard 
SPECT interpretation and radiomic analysis per-
formed on DAT SPECT imaging can improve the 
overall prediction of clinical outcomes.

Radiomics-based Haralick texture metrics 
extracted from striatal DAT SPECT have been 
shown to have a greater sensitivity to PD 
symptoms as compared to the routine mean 
uptake analysis [21]. These metrics may serve as 
a noninvasive imaging biomarker for disease 
progression.

These efforts in DAT SPECT radiomics are 
consistent with the aims of the Parkinson’s 
Progressive Marker Initiative (PPMI), which 
emphasizes on  the promotion of quantitative 
measurement and analysis of imaging used in the 
management of Parkinson’s disease.
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2.3.3	 �Cardiac SPECT Radiomics

Myocardial perfusion imaging (MPI) using 
SPECT is an established diagnostic test for 
patients suspected with coronary artery disease 
(CAD). 99mTc-Sestamibi is one of the preferred 
radiotracers used for this indication. Clinically, 
these studies are analyzed and interpreted manu-
ally with some support from a computer-aided 
diagnosis (CAD) program. Radiomics has the 
potential to improve the diagnostic and prognos-
tic yield of MPI SPECT by way of providing bio-
markers that correlate with perfusion 
heterogeneity [22].

In a standard MPI SPECT study, most features 
are not reproducible due to the low resolution. In 
studies where radiomic analysis was performed 
on MPI SPECT, it was observed that the most 

significant features were the intensity skewness 
and GLCM cluster shade for the right coronary 
artery (RCA), and intensity at 90% volume histo-
gram for left circumflex artery (LCX). It has also 
been shown that left anterior descending artery 
(LAD) and RCA extracted from the vascular plot 
had more significant correlation than bull’s eye 
plot, while LCX from the latter plot was noted to 
be more significant [23].

Radiomic analysis, regardless of the modality 
and indication, is highly sensitive to these fac-
tors, which impact the results even more pro-
foundly in case of MPI SPECT.  It is critically 
important to assess the robustness of cardiac 
SPECT radiomics features against variations in 
image acquisition and reconstruction parameters. 
For this purpose, the coefficient of variation 
(COV), which is a widely adopted metric, needs 

Fig. 2.4  3D volume rendering of six segmentations (cau-
date, putamen and VS; both right and left) for a typical 
study, as well as trans axial, coronal, and sagittal slices 
through the DAT SPECT image with superimposed seg-
mentations. (Used under the Creative commons license 

from Rahmim A, Huang P, Shenkov N, Fotouhi S, 
Davoodi-Bojd E, Lu L, Mari Z, Soltanian-Zadeh, H, Sossi 
V. Improved prediction of outcome in Parkinson’s disease 
using radiomics analysis of longitudinal DAT SPECT 
images. NeuroImage: Clinical. 2017 Jan 1;16:539–44.)
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to be measured for each of the radiomic features 
for all imaging settings. It has been noted that the 
repeatability and reproducibility of SPECT/CT 
cardiac radiomic features under different imag-
ing settings are feature-dependent. The radiomic 
features that exhibited low COV against changes 
in all imaging settings included the Inverse 
Difference Moment Normalized (IDMN) and 
Inverse Difference Normalized (IDN) features 
from the Gray Level Co-occurrence Matrix 
(GLCM), Run Percentage (RP) from the Gray 
Level Co-occurrence Matrix (GLRLM), Zone 
Entropy (ZE) from the Gray Level Size Zone 
Matrix (GLSZM), and Dependence Entropy 
(DE) from the Gray Level Dependence Matrix 
(GLDM) [24]. Of these image acquisition param-
eters, matrix size has been found to have the larg-
est impact on feature variability [24].

123-iodine meta-iodobenzylguanidine 
(123I-mMIBG) SPECT imaging is a study per-
formed clinically in the management of cardio-
myopathy, and its interpretation is largely 
manual. However, texture analysis performed to 
study regional washout from non-infarcted tissue 
can improve the predictive capability of cardiac 
events using multivariate analysis of regional 
washout associated with territories adjacent to 
myocardial infarction [25]. In a study by Currie 
et  al., artificial neural network (ANN)-based 
analysis was performed on the 123I-MIBG images, 
and the calculated planar global washout of 
>30% was shown to be the best indicator for risk 
of cardiac event when accompanied by a decline 
in left ventricular ejection fraction of >10% [25]. 
This is encouraging for new ML-driven 
efforts (such as radiomics) for automated feature 
extraction from raw image datasets in nuclear 
cardiology.

2.3.4	 �Other Applications of SPECT 
Radiomics

Preclinical studies have demonstrated that 
changes in opacity in SPECT/CT with 
Tc-99 m-MDP can be used for the assessment of 
bone remodeling. One such study compared the 
increase of bone opacity and decrease of 

Tc-99 m-MDP activity variables [26]. Radiomics 
can be applied here to study bone healing, bone 
grafting, and bone replacement, which can 
improve the prognostic value of these studies 
(see Fig. 2.5).

Theranostics is a molecular imaging tech-
nique that involves specific molecular targeting 
for the purposes of diagnostics and therapy [27]. 
One example of a theranostic approach using 
111In/90Y-ibritumomab tiuxetan has been 
described above (in the oncologic SPECT 
radiomics section). Visualization of the potential 
target for a specific therapeutic is a tremendously 
powerful tool that minimizes untoward effects 
and improves therapeutic efficacy. Radiomics 
approaches can increase the range of information 
revealing the tissue processes that can guide 
treatment and those that reflect changes second-
ary to treatment. This way, radiomics can impact 
both the diagnostic and therapeutic arms of ther-
anostics, respectively. Texture analysis-based 
radiomic features can identify and target activity 
of the theranostic agents and study the cellular- 
and tissue-level changes induced by their action. 
Quantification of involved processes such as 
T-cell recruitment and resulting apoptosis/necro-
sis as features extracted from the SPECT study 
performed as a part of the theranostics can be 
highly useful in patient selection and therapy 
response assessment in clinical studies [28]. 
When using radiomics for such sophisticated 
approaches, which may involve multimodal 
imaging, it is important to implement image-
quality harmonization and perform optimal inte-
grative analysis (by choosing the right ML 
methods) [29].

2.4	 �Challenges 
and Opportunities of SPECT 
Radiomics

While reviewing the current landscape of 
radiomics-related work using SPECT, it becomes 
quite apparent that the field of SPECT radiomics 
is still in its infancy. Most of the studies are pre-
clinical, using animal models. Furthermore, only 
a few indications within each specialty have been 
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the focus of  such efforts. Having said that, the 
initial results are encouraging. Learning from the 
experience with PET radiomics, one can expect 
an expansion of the breadth and scope of such 
studies, both in terms of indications and technical 
advancements that will make SPECT radiomics 
ready for prime time in human studies and even-
tual clinical practice.

The main challenges in this path include the 
availability of high-quality data to develop such 
models. SPECT is not as ubiquitous in clinical 
use the way CT or even PET is. This poses a limi-
tation in the development of ML-based radiomic 
models that require large training and validation 
sets. Another major challenge, which has been 
alluded to above, is that of the robustness of 
SPECT models being affected by the variations 
in the imaging parameters (related to acquisition 
protocol, scanner types, patient preparation, and 
other factors). This limits the way radiomics 
could  be applied as a reproducible and reliable 

methodology across multiple centers with rea-
sonably similar imaging parameters and patient 
populations. One way to address this problem is 
to design large-scale studies in which all vari-
ables are represented. This goes back to our ini-
tial challenge of data paucity for SPECT studies. 
However, smarter trial designs, multicenter col-
laborations, improved data liquidity and avail-
ability, and leveraging the power of AI can help 
overcome this challenge. Furthermore, designing 
radiomic models that address multimodal imag-
ing (SPECT/CT, SPECT/MR) and other -omics 
(genomics, transcriptomics, metabolomics, 
pathomics, etc.) will improve the specificity and 
predictive values of these methods.

Having a well-articulated clinical question 
based on a real-world need and designing a 
radiomic methodology that attempts to answer 
thst question by using a rich data set is critical to 
the success of a radiomics-based application. 
Optimizing each step of the workflow, including 

Fig. 2.5  Tc-99m-MDP activity in caudal vertebrae of 
treated rats after 8 weeks. The C5 vertebrae (down) were 
treated and filled with a bone graft which was selected as 
VOI in SPECT at 8 weeks after surgery. The color inten-
sity shows the activity of Tc-99 m-MDP in the last region 
of vertebra. The upper bones are C4 control vertebrae. 

(Used under the creative commons license from Budán F, 
Szigeti K, Weszl M, et al. Novel radiomics evaluation of 
bone formation utilizing multimodal (SPECT/X-ray CT) 
in  vivo imaging. PLoS One. 2018;13(9):e0204423. 
Published 2018 Sep 25. doi: https://doi.org/10.1371/jour-
nal.pone.0204423.)
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preprocessing the data prior to analysis and 
applying the most suitable statistical/ML strate-
gies, will render high accuracy rates (see Fig. 2.6) 
[30]. Testing these models in real-world is 
another key step that ensures that a radiomic 
model is ready for clinical use.

This is an exciting time to be involved in the 
fields of functional/molecular imaging and infor-
matics, as recent and ongoing advancements have 
enabled us to merge these fields to devise 
advanced quantitative image analysis approaches 
that make help revive and promote modalities, 
such as SPECT in the era of precision medicine.
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