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Abstract. Since the traditional relational database systems are not
capable of following the contemporary requirements on Big Data pro-
cessing, a family of NoSQL databases emerged. It is not an exception for
such systems not to require an explicit schema for the data they store.
Nevertheless, application developers must maintain at least the so-called
implicit schema. In certain situations, however, the presence of an explicit
schema is still necessary, and so it makes sense to propose methods capa-
ble of schema inference just from the structure of the available data. In
the context of document NoSQL databases, namely those assuming the
JSON data format, we focus on several representatives of the existing
inference approaches and provide their thorough comparison. Although
they are often based on similar principles, their features, support for the
detection of references, union types, or required and optional properties
differ greatly. We believe that without adequately tackling their disad-
vantages we identified, uniform schema inference and modeling of the
multi-model data simply cannot be pursued straightforwardly.
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1 Introduction

An interesting feature of the majority of NoSQL databases, a newly emerged
family of database systems, is the absence of an explicit schema for the stored
data, which allows for greater flexibility and simplicity. Nevertheless, various
situations still require the knowledge of the schema when performing operations
such as data querying, migration, or evolution, and so there is a growing inter-
est in schema inference approaches that allow us to create a schema when the
explicit one simply does not exist.

In particular, there already exist several schema inference approaches for the
aggregate-oriented group of NoSQL databases, i.e., databases based on the key-
value, wide-column or document models. However, the inference process itself
is nontrivial, and the resulting schemas often suffer from various issues. For
example, derived entities may contain a large number of properties, including
properties of the same name having different data types, as well as various kinds
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of references between the documents (aggregates). The inferred schemas may
be complicated even from the point of view of data modeling when commonly
available tools and modeling languages would most likely be used (e.g., UML [18]
is not capable of dealing with the mentioned properties of the same name but
different types). Another obstacle also arises when querying the data. When
a property data type or property content interpretation changes over time, it
is difficult to properly construct an evolved query expression that returns the
originally intended result.

In this paper, we focus on several existing representatives of the schema
inference approaches dealing with collections of JSON [13] documents, namely
the following ones: 1) approach proposed by Sevilla et al. [19] working with a
concept of distinct versions of entities, 2) approach by Klettke et al. [15] utilizing
a graph structure for the schema representation, capable of the detection of
outliers, 3) approach by Baazizi et al. [2] that introduces compact yet complex
and massively parallelizable schema inference method, 4) approach by Cánovas
et al. [6] capable of inferring a schema from multiple collections of documents,
and, finally, 5) recent approach by Frozza et al. [10] that is able to infer schemas
including data types as they are introduced in BSON (Binary JSON ) [5].

Our main goal is to provide a static analysis of these approaches to find
and identify their strengths and weaknesses, compare them with each other, and
verify how each individual approach copes with specific characteristics of JSON
documents and non-uniform semi-structured data in general. We compare these
approaches based on their capabilities to i) handle properties of the same name
but different types, ii) distinguish required and optional properties based on their
frequency of occurrences, iii) distinguish reference relationships between docu-
ments and nested documents, iv) work with arrays, v) represent the resulting
schemas using proprietary or widely used means, respectively, and vi) scale.

The paper is organized as follows. In Sect. 2, we briefly summarize the JSON
data format and show the constructs we are dealing with. Section 3 describes
the actual schema inference process for the selected existing approaches and
illustrates their differences on a simple running example and the corresponding
inferred schemas. We then mutually compare these approaches in Sect. 4, present
the related work in Sect. 5, and conclude in Sect. 6.

2 JSON Data Format and JSON Schema

JavaScript Object Notation (JSON) [13] is a widely used human-readable textual
data format suitable for representing semi-structured, schema-less, often non-
uniform data. From the logical point of view, it is based on trees.

The unit of data stored in a JSON document database is a document and
corresponds to a single JSON object. An object consists of an unordered set of
name-value pairs called properties. Property name is a string, while value can be
atomic of any primitive type string, number, and boolean, or structured in a form
of an embedded object or array. If no value is to be assigned, a property may be
present and bound to the null meta-value. Although property names should be
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unique, we actually expect they must be (in accordance to the existing systems
such as MongoDB1). Finally, an array is an ordered collection of items, which
can be either atomic values or nested objects or arrays, possibly with duplicates.

,"ı́žardáNéksvohcı́mS":"eman"{
"location": { "latitude": "50.0608367N", "longitude": "14.4093753E" },
"timetable": [

{ "line": "B",
"departure": [ "10:10", "10:20", "10:30", "10:40", "10:50" ]

} ] }

{ "_id": "SMN_E",
,"ı́žardáNéksvohcı́mS":"eman"

"location": { "latitude": "50.0597611N", "longitude": "14.4092244E" },
"timetable": [

{ "line": 190,
"stop_id": "NBE_0",
"departure": [ "10:00", "10:15", "10:30" ] },

{ "line": 125,
"stop_id": "SKA_A",
"departure": [ "10:05" ] } ] }

Fig. 1. Collection of two sample JSON documents

In order to illustrate the mutual differences of the selected schema infer-
ence approaches, we will use a collection of two sample JSON documents, each
describing a public transport stop in Prague. They are depicted in Fig. 1.

We believe we can omit a detailed description of the involved properties
(as their meaning is self-explanatory) and only focus on parts that will become
important in relation to the schema inference: i) data type of property line is
a string in case of the first document while in the second one it is a number,
ii) properties such as id and stop id appear only in the second document,
iii) property id may be treated as a document identifier while property stop id
as a reference, iv) property departure has a different number of elements across
the documents, and v) some document databases allow us to use extended data
types defined in BSON, thus we could easily assume that id would be a property
of type ObjectID instead of an ordinary string.

To validate the structure of JSON documents, JSON Schema [14] was pro-
posed as a human and machine-readable format. It takes into account the evo-
lution of JSON documents and features of schema-free databases. E.g., JSON
Schema introduces i) union types, ii) distinguishes between required and optional
properties, and iii) allows us to use extended data types, i.e. ObjectID.

3 JSON Schema Inference Approaches

In this section, we describe basic principles of the selected approaches. For each
one of them, we also present the resulting inferred schemas for our sample input
JSON collection so that these techniques can easily be compared together.
1 https://www.mongodb.com/.

https://www.mongodb.com/
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Let us start with an approach proposed by Sevilla et al. [19]. Within three
steps and using MapReduce [7], their algorithm i) reduces an input collection
of JSON documents into a set of structurally different documents, ii) discovers
various versions of entities and their properties, and iii) identifies relationships
between these entities, including references.

Versioned schema inferred by this approach is illustrated using JSON format
in Fig. 2. The algorithm detects all the entities and properties while entities are
further divided into versions that differ by the existence of such a property, its
data type, or reference. The approach is able to detect references between the
documents (property stop id refers to entity Stop). The existence of versioned
entities avoids the necessity of having union types, and the approach also dis-
tinguishes between the required and optional properties (intersection or union
of properties across versions of the same entity need to be calculated). The only
inferred data types are standard types defined by JSON.

{ "entities":
{ "Location":

{ "Location_1": { "latitude": "String", "longitude": "String" } },
"Stop":

{ "Stop_1":
{ "name": "String", "location": "Location_1",

"timetable": [ "Timetable_1" ] },
"Stop_2":

{ "_id": "String", "name": "String", "location": "Location_1",
"timetable": [ "Timetable_2" ] } },

"Timetable": {
"Timetable_1": { "line": "String", "departure": [ "String" ] },
"Timetable_2": { "line": "String", "stop_id": "ref(Stop)",

"departure": [ "String" ] } } } }

Fig. 2. Sample inferred schema for the Sevilla et al. algorithm [19]

Klettke et al. [15] proposed a schema inference algorithm for JSON docu-
ment collections in MongoDB. The approach works with a so-called Structure
Identification Graph (SIG) containing everything needed for the inference.

Nodes in this graph represent JSON properties (one node for each distinct
property name), while edges model the hierarchical structure of the documents
for which the schema is being constructed. Besides other metadata, each node
is associated with a so-called nodeList describing the detected occurrences of a
given property in the input documents. Similarly, each edge is associated with a
so-called edgeList describing where these occurrences are structurally located.

The sample inferred schema, provided in Fig. 3, is described using JSON
Schema. The algorithm is able to detect all the entities, including properties
that may be assigned by multiple data types. This union type is used, e.g.,
in case of a property line. The approach does not detect references and uses
only data types known by JSON, i.e., it does not use any extended data type.
The approach also detects required properties (e.g., properties latitude and
longitude in location).
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{ "type": "object", "properties":
{ "_id": { "type": "string" }, "name": { "type": "string" },

"location":
{ "type": "object", "properties":

{ "latitude": { "type": "string" }, "longitude": { "type": "string" } },
"required": [ "latitude", "longitude" ] },

"timetable":
{ "type": "array", "items":

{ "type": "object", "properties":
{ "line": { "oneOf": [ { "type": "string" }, { "type": "integer" } ] },

"stop_id": { "type": "string" },
"departure": { "type": "array", "items": { "type": "string" } } },

"required": [ "line", "departure" ] } } },
"required": [ "name", "location", "timetable" ] }

Fig. 3. Sample inferred schema for the Klettke et al. algorithm [15]

Baazizi et al. [2] proposed yet another inference algorithm, in this case con-
sisting of two phases only. Based on Apache Spark2, the input collection of JSON
documents is first processed by the Map function, so that during the Reduce
phase the union types, as well as required, optional, and repeated elements are
identified.

Schema inferred by this approach, as illustrated in Fig. 4, is represented using
a compact proprietary language. The optional properties are marked by a ques-
tion mark symbol ? (e.g. properties id and stop id), union types by + (property
line may be either Str or Num), and repeated items of arrays by an asterisk *
(array departure contains elements of type Str). Extended data types nor ref-
erences between the documents are discovered by this approach.

{ _id: Str?,
name: Str,
location: { latitude: Str, longitude: Str },
timetable: [ { line: (Str+Num), stop_id: Str?, departure: [ (Str)* ] } ] }

Fig. 4. Sample inferred schema for the Baazizi et al. algorithm [2]

Another approach, proposed by Cánovas et al. [6], is deployed in the envi-
ronment of web services providing collections of JSON documents, where each
collection is expected to contain documents with similar but not necessarily the
same structure. The approach is based on an iterative process in which each
JSON document contributes to the extension of an already generated schema.
This process consists of three parts: i) extraction of a schema for every docu-
ment, ii) creation of a schema for each collection, and iii) merging of the schemas
of individual collections together into a single resulting schema.

Schema inferred by this approach, illustrated in Fig. 5, is visualized by UML.
The approach does not detect references between documents, so the relationships

2 http://spark.apache.org/.

http://spark.apache.org/
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are only modeled through nested documents. The algorithm does not recognize
union types nor optional properties. In order to simplify the visualization, it
uses the most generic data types (e.g., property line is of a type EString). The
approach also does not detect arrays (property departure is of a simple type
EString instead of an array of strings). No extended data types are discovered.

Fig. 5. Sample inferred schema for the Cánovas et al. algorithm [6]

The last representative approach we covered in this paper is the one proposed
by Frozza et al. [10], allowing for the inference of a schema for just one collection
of JSON documents. Since it also supports the extraction of particular data
types from a broader set of atomic types as they are introduced in BSON, it is
therefore suitable especially when working with MongoDB database system. The
inference process consists of the following four steps: i) creation of a raw schema
for individual input documents, ii) grouping of the same raw schemas together,
iii) unification of these schemas, and iv) construction of the final global JSON
schema.

Schema inferred by this approach, materialized in Fig. 6, is described by
JSON Schema. The approach is able to detect union types (e.g., property line
may be either string or number). It also distinguishes between the required
and optional properties (as every discovered entity may always contain a list of
required properties), yet no references are discovered by this approach. In our
sample data, we could easily derive the property id to be an instance of the
ObjectID type if that property was originally set to, e.g., ObjectID("SMN E")
instead of an ordinary string.

4 Comparison

Having described all the selected schema inference approaches, we can now mutu-
ally compare their main characteristics, as well as advantages and disadvantages.
In particular, we focus on i) basic principles and scalability of the involved algo-
rithms, i.e., ways how schemas are inferred and proprietary data structures uti-
lized, ii) output formats, i.e., means how the inferred schemas are represented,
iii) eventual support for data types beyond the JSON format itself, iv) dis-
tinction of required and optional properties in the inferred schemas, v) dealing
with properties of the same name but different data types, i.e., distinguishing
between simple and union types, and vi) discovering references between docu-
ments. Table 1 summarizes the identified differences and observations.
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{ "$schema": "http://json-schema.org/draft-06/schema",
"type": "object", "properties":
{ "_id": { "type": "string" }, "name": { "type": "string" },

"location": {
"type": "object", "properties":

{ "latitude": { "type": "string" }, "longitude": { "type": "string" } },
"required": [ "latitude", "longitude" ], "additionalProperties": false },

"timetable":
{ "type": "array", "items":

{ "type": "object", "properties":
{ "line": { "anyOf": [ "string", "number" ] },

"stop_id": { "type": "string" },
"departure":

{ "type": "array", "items": { "type": "string" }, "minItems": 1,
"additionalItems": true } },

"required": [ "line", "departure" ], "additionalProperties": false },
"minItems": 1, "additionalItems": true } },

"required": [ "name", "location", "timetable" ], "additionalProperties": false }

Fig. 6. Sample inferred schema for the Frozza et al. algorithm [10]

Basic Principles and Scalability. The majority of approaches extract schema
information from all the documents stored in the input collection without ini-
tially reducing its size, i.e., the number of documents. Exceptions include the
approaches by Sevilla et al. and Frozza et al., which initially select just sort of
a minimal collection of mutually distinct documents such that it can still be
correctly used to derive the schema for all the input documents. A common fea-
ture of all the approaches is the replacement of values of properties by names
of the primitive types encountered. In addition, this step is usually parallelized
using distributed solutions such as MapReduce or Apache Spark, which greatly
improves the scalability. Up to our knowledge, the only approach that is not
parallelized, so scalability is limited, is Frozza et al.

Output Format. The textual JSON Schema format is used for the inferred schema
description by the majority of the approaches, yet they differ in the details.
Baazizi et al. use their own and minimalistic proprietary language based on the
JSON Schema. Baazizi et al. support the repeating type to describe repeated
types in arrays, too. Sevilla et al. represent schema as a model that conforms to
a schema metamodel [19], which can be textually described by JSON. Finally,
Cánovas et al. represent schemas visually as class diagrams.

Table 1. Comparison of the selected approaches

Sevilla et al. Klettke et al. Baazizi et al. Cánovas et al. Frozza et al.

Scalability Yes Yes Yes Yes No

Output Model JSON Schema Proprietary Class diagram JSON Schema

Data Types JSON JSON JSON JSON BSON

Optional Yes Yes Yes No Yes

Union Type No Yes Yes No Yes

References Yes No No No No



180 P. Čontoš and M. Svoboda

Additional Data Types. All the approaches support the basic set of primitive
types (string, number, and boolean), as well as complex types, i.e., nested objects
and arrays, as they are defined by JSON itself. In addition, and as the only
approach, Frozza et al. support extended data types introduced by BSON.

Optional Properties. All properties that are contained in all the input docu-
ments in a collection are marked as required. Otherwise, when a property does
not appear in at least one of them, it is marked as optional. Apparently, a
set of required properties forms the skeleton of all the documents. Therefore,
the visualization of a schema containing only these required properties can be
significantly more comfortable for the users to grasp, especially when these doc-
uments contain a large number of different optional features that would occur
only rarely. Furthermore, this visualization gives the users a very good idea of
the structure of the documents. The majority of approaches we covered can dis-
tinguish between these two kinds of properties. They only differ in the way of
their detection. In particular, approaches by Klettke et al. and Frozza et al. cal-
culate the differences in occurrences of individual properties versus occurrences
of their parental properties. When a parental property occurs more frequently,
the property is marked as optional. Sevilla et al. is able to detect optional prop-
erties by the set operations over versions of entities. Baazizi et al. detect the
optional properties during the fuse of types. Finally, the approache by Cánovas
et al. is not capable of distinguishing the required and optional properties at all.
Thus, all the properties in these cases must then be considered as required.

Union Type. The JSON format natively allows for the data evolution, e.g., a situ-
ation when properties of newly added objects may have different types compared
to the older ones. Schema inference approaches must, therefore, deal with differ-
ent types occurring within just one property. Most of the examined approaches
work with the concept of the union type, where a property may contain several
different types at once. In contrast, the approaches by Sevilla et al. and Cánovas
et al. use just the most generic of the detected types in such cases. The advan-
tage of the union type is accuracy, simply because we do not lose information
about the involved data types. On the other hand, the principle of the most
generic type is better visualizable and programmable, because we are able to
perform (de)serialization through just a single data type, the generic one. For
the purpose of the schema visualization, the widely used models, namely UML
and ER, cannot associate properties with more than one type at a time, and,
thus, it is better to use the most generic type in this case, but at the expense of
the loss of the information accuracy, as outlined.

References. The only approach that detects relationships between the docu-
ments, i.e., references, is Sevilla et al. When a JSON property is named following
the entityName id suffix convention, then the entity named entityName is ref-
erenced (if it exists). It means that a reference relationship is created between
the referring and referenced entities in the inferred schema.
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5 Related Work

To a certain extent, several existing JSON schema inference approaches were
experimentally compared in works by Frozza et al. [10] and Feliciano [9]. How-
ever, they considered different aspects, worked with not that many approaches,
and, most importantly, did not assume the multi-model context. Moreover,
schema inference is desirable not only for collections of JSON documents but
for semi-structured and non-uniform data in general.

In case of mature XML [21], there are a number of heuristic-based [16] and
grammar-inferred approaches [3]. Although both JSON and XML are semi-
structured hierarchical formats, inference approaches for XML documents are
not directly applicable to JSON because of the significant differences between
the two formats. While elements in XML are ordered, names of these elements
can appear repeatedly, and elements may contain attributes, properties in JSON
objects are unordered and without duplicates as for their names.

Although not that many, there are also approaches dealing with other logical
models and formats used within the family of NoSQL databases. Wang et al. [20]
suggested a schema management approach for document databases, where fre-
quently occurring structures are grouped using hierarchical structures. The app-
roach proposed by DiScala and Abadi [8] solves the problem of transforming
JSON documents from key-value repositories into flat relational structures. The
inference of schemas for RDF documents is discussed by Gallinucci et al. [11],
where aggregate hierarchies are identified. Bouhamoun et al. [4] then focus on
the scalable processing of large amounts of RDF data by extracting patterns for
existing combinations of individual properties.

JSON Schema is often used to describe an inferred schema from JSON doc-
ument collections. The formal model of this language is dealt with by Pezoa et
al. [17]. Description of the type system of JSON is designed by Baazizi et al. [1].

6 Conclusion

In this paper, we provided a mutual comparison of five selected representative
JSON schema inference approaches, each of which solves a different subset of
issues arising from the usage of the document NoSQL databases. As observed,
especially the detection of references between the individual documents seems to
be a challenging issue, not just since only one of the examined approaches actu-
ally recognizes such references, however, only to a very limited and questionable
extent. Another open area lies in the visualization and modeling of the inferred
schemas because the existing tools do not allow us to visualize all the derived
constructs, namely, the union type.

We believe that in order to be able to infer schemas even for the non-uniform
data maintained within the family of multi-model databases, the identified draw-
backs of the existing approaches first need to be sufficiently tackled. Only then
the acquired knowledge can be exploited, and the individual existing solutions
extended to the unified inference of truly multi-model schemas. This step is
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apparently not straightforward, as it is envisioned by Holubová et al. [12], where
several open and challenging areas of multi-model data processing are outlined.
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