
Georg Grossmann
Sudha Ram (Eds.)

LN
CS

 1
25

84

ER 2020 Workshops CMAI, CMLS,
CMOMM4FAIR, CoMoNoS, EmpER
Vienna, Austria, November 3–6, 2020
Proceedings

Advances in
Conceptual Modeling

Lecture Notes in Computer Science 12584

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Georg Grossmann • Sudha Ram (Eds.)

Advances in
Conceptual Modeling
ER 2020 Workshops CMAI, CMLS,
CMOMM4FAIR, CoMoNoS, EmpER
Vienna, Austria, November 3–6, 2020
Proceedings

123

Editors
Georg Grossmann
University of South Australia
Adelaide, SA, Australia

Sudha Ram
University of Arizona
Tucson, AZ, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-65846-5 ISBN 978-3-030-65847-2 (eBook)
https://doi.org/10.1007/978-3-030-65847-2

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4415-2228
https://orcid.org/0000-0001-6053-1311
https://doi.org/10.1007/978-3-030-65847-2

Preface

Nobody would have expected at the beginning of 2020 what kind of impact COVID-19
would have on academic events like conferences and workshops. Especially on
international events like the Conference on Conceptual Modeling (ER) which every
year attracts researchers from all over the world to come together and discuss emerging
and exciting topics in modeling concepts. Like many other international conferences,
the ER conference became an online event so that it could still take place in a safe
environment. A number of satellite events were also held online for the first time in
its 39-year history. The local organizers at the Vienna University of Technology
(TU Wien), Austria, and the Business Informatics Group chaired by Prof. Gerti Kappel
quickly responded to the challenges of showcasing an online conference. While the
attendees did not have a chance to experience the Vienna flair in person, the organizers
prepared an excellent online event that allowed everyone to experience the state of the
art in conceptual modelling and exchange ideas for future development of ER-related
topics.

This volume contains the proceedings of a number of satellite events held in con-
junction with the 39th International Conference on Conceptual Modeling (ER 2020).
Given the long tradition and broad scope of ER as a key conference in the area of
conceptual modeling, the workshops organized therein play an important role, such as
being a forum for: very interactive debates about emerging ideas; broadening the scope
of what conceptual modeling is about; bridging conceptual modeling and other com-
plementary communities; and reflecting on the scope and nature of the area itself. In
that respect, this volume contains papers that were accepted for publication and pre-
sentation in the following five workshops: First Workshop on Conceptual Modeling
Meets Artificial Intelligence and Data-Driven Decision Making (CMAI 2020), First
Workshop on Conceptual Modeling for Life Sciences (CMLS 2020), Second Work-
shop on Conceptual Modeling, Ontologies and (Meta)data Management for Findable,
Accessible, Interoperable and Reusable (FAIR) Data (CMOMM4FAIR 2020), First
Workshop on Conceptual Modeling for NoSQL Data Stores (CoMoNoS 2020), and
Third Workshop on Empirical Methods in Conceptual Modeling (EmpER 2020).

A sixth satellite event was the Workshop on Conceptual Modeling for Digital Twins
(CoMoDiTy 2020). This workshop invited a number of interesting speakers to discuss
various topics around the digitalization of industry and was organized by Markus
Stumptner (University of South Australia, Australia), Manuel Wimmer (Johannes
Kepler University Linz, Austria), and Andreas Wortmann (RWTH Aachen University,
Germany).

The CMAI 2020 workshop combined the interesting topics AI and data-driven
decision making in the context of conceptual modeling. This workshop was founded by

Dominik Bork (TU Wien, Austria), Peter Fettke (German Research Center for Artificial
Intelligence, Germany), Wolfgang Maass (German Research Center for Artificial
Intelligence, Germany), Ulrich Reimer (University of Applied Sciences St. Gallen,
Switzerland), Christoph G. Schütz (Johannes Kepler University Linz, Austria), Marina
Tropmann-Frick (University of Applied Sciences Hamburg, Germany), and Eric S.
K. Yu (University of Toronto, Canada). Four papers were accepted for presentation in
the workshop.

CMLS 2020 was organized by Anna Bernasconi (Politecnico di Milano, Italy), Arif
Canakoglu (Politecnico di Milano, Italy), Ana León Palacio (Universitat Politècnica de
València, Spain), and José Fabián Reyes Román (Universitat Politècnica de València,
Spain). The proceedings of CMLS included six interesting papers and organizers also
secured a special issue to publish extended versions of the best papers.

The FAIR data movement has been gaining a lot of attention in the past years, with
awareness and endorsement ranging from research institutions and funding agencies to
international organizations such as the G7 and G20. The second edition of
CMOMM4FAIR was organized by Luiz Olavo Bonino (GO FAIR, University of
Twente, The Netherlands), Barbara Magagna (Environment Agency Austria and
University of Twente, The Netherlands), João Moreira (University of Twente, The
Netherlands), Maria Luiza Machado Campos (Federal University of Rio de Janeiro and
GO FAIR, Brazil), Peter Mutschke (GESIS - Leibniz Institute for the Social Sciences,
Germany), and Robert Pergl (Technical University of Prague, Czech Republic). In this
edition, three full papers were accepted for publication and presentation.

CoMoNoS 2020 explored opportunities for conceptual modeling to address
real-world problems that arise with NoSQL data stores. The workshop was organized
by Meike Klettke (University of Rostock, Germany), Stefanie Scherzinger (University
of Passau, Germany), and Uta Störl (Darmstadt University of Applied Sciences,
Germany) and accepted three papers for publication and presentation. Further, the
workshop included an invited industry talk by Pascal Desmarets, founder and CEO of
Hackolade, on “NoSQL Data Modelling in Practice.”

EmpER 2020 was organized by Dominik Bork (TU Wien, Austria) and Miguel
Goulao (Universidade Nova de Lisboa, Portugal). It included five papers with topics
ranging from schema evolution in embedded databases to measuring the comprehen-
sibility of modeling constructs.

We would like to thank all the workshop chairs for the organization of the afore-
mentioned high-quality and inspiring events. These events significantly increased the
value of ER 2020. We are also indebted to the authors and numerous reviewers for their
time and expertise ensuring the quality of the workshops. Additionally, we express our
gratitude to the general chairs of the conference Gerti Kappel and Heinrich C. Mayr as
well as Manuel Wimmer and Dominik Bork for their continuous support.

October 2020 Georg Grossmann
Sudha Ram

vi Preface

ER 2020 Conference Organization

General Chairs

Gerti Kappel TU Wien, Austria
Heinrich C. Mayr Alpen-Adria University Klagenfurt, Austria

Program Committee Chairs

Gillian Dobbie The University of Auckland, New Zealand
Ulrich Frank University of Duisburg-Essen, Germany
Stephen W. Liddle Brigham Young University, USA

Workshop Chairs

Georg Grossmann University of South Australia, Australia
Sudha Ram University of Arizona, USA

Tutorial Chairs

João Paulo A. Almeida Federal University of Espírito Santo, Brazil
Michael Schrefl Johannes Kepler University Linz, Austria

Panel Chairs

Micahel Grossniklaus University of Konstanz, Germany
Maurizio Lenzerini Università di Roma La Sapienza, Italy

Forum/Demo/Poster Chairs

Judith Michael RWTH Aachen University, Germany
Victoria Torres Bosch Polytechnic University of Valencia, Spain

Sponsoring and Industry Chairs

Reinhold Plösch Johannes Kepler University Linz, Austria
Manuel Wimmer Johannes Kepler University Linz, Austria

Publicity and Social Media Chair

Dominik Bork TU Wien, Austria

Web Chairs

Bernhard Wally Austrian Council for Research and Technology
Development, Austria

Micahel Vierhauser Johannes Kepler University Linz, Austria

ERSC Liaison

Matthias Jarke RWTH Aachen University, Germany

Organization Chair

Claudia Habersack TU Wien, Austria

Steering Committee

Silvana Castano KU Leuven, Belgium
Peter P. Chen McMaster University, Canada
Isabelle Comyn-Wattiau Harvard University, USA
Valeria De Antonellis Ritsumeikan University, Japan
Karen Davis University of Porto, Portugal
Lois Delcambre University of the Aegean, Greece
Giancarlo Guizzardi Free University of Bozen-Bolzano, Italy
Matthias Jarke RWTH Aachen University, Germany
Paul Johannesson Stockholm University, Sweden
Alberto Laender Federal University of Minas Gerais, Brazil
Stephen Liddle Brigham Young University, USA
Tok Wang Ling National University of Singapore, Singapore
Hui Ma Victoria University of Wellington, New Zealand
Heinrich Mayr Alpen-Adria University Klagenfurt, Austria
Antoni Olivé Universitat Polytécnica de Catalunya, Spain
José Palazzo Moreira de

Oliveira
Federal University of Rio Grande do Sul, Brazil

Jeffrey Parsons Memorial University of Newfoundland, Canada
Oscar Pastor Universidad Polytécnica de Valencia, Spain
Sudha Ram University of Arizona, USA
Motoshi Saeki Tokyo Institute of Technology, Japan
Peretz Shoval Ben-Gurion University, Israel
Il-Yeol Song Drexel University, USA
Veda Storey Georgia State University, USA
Juan Carlos Trujillo University of Alicante, Spain
Yair Wand University of British Columbia, Canada
Carson Woo University of British Columbia, Canada
Eric Yu University of Toronto, Canada

viii ER 2020 Conference Organization

ER 2020 Workshop Organization

Conceptual Modeling Meets Artificial Intelligence and Data-Driven
Decision Making (CMAI) 2020 Co-chairs

Dominik Bork TU Wien, Austria
Peter Fettke German Research Center for Artificial Intelligence (DFKI),

Germany
Wolfgang Maass German Research Center for Artificial Intelligence (DFKI),

Germany
Ulrich Reimer University of Applied Sciences St. Gallen, Switzerland
Christoph G. Schuetz Johannes Kepler University Linz, Austria
Marina

Tropmann-Frick
University of Applied Sciences Hamburg, Germany

Eric S. K. Yu University of Toronto, Canada

Conceptual Modeling for Life Sciences (CMLS) 2020 Co-chairs

Anna Bernasconi Politecnico di Milano, Italy
Arif Canakoglu Politecnico di Milano, Italy
Ana León Palacio Universitat Politécnica de Valéencia, Spain
José Fabiáan Reyes Rom Universitat Politécnica de Valéncia, Spain

Conceptual Modeling, Ontologies and (Meta)Data Management
for Findable, Accessible, Interoperable and Reusable (FAIR)
Data (CMOMM4FAIR) 2020 Co-chairs

João Moreira University of Twente, The Netherlands
Luiz Olavo Bonino da Silva

Santos
University of Twente, The Netherlands

Maria Luiza Machado Campos Federal University of Rio de Janeiro, Brazil
Barbara Magagna Environment Agency, Austria
Peter Mutschke Leibniz Institute for the Social Sciences, Germany
Robert Pergl Czech Technical University in Prague, Czech

Republic

Conceptual Modeling for Digital Twins (CoMoDiTy) 2020
Co-chairs

Markus Stumptner University of South Australia, Australia
Manuel Wimmer Johannes-Kepler University Linz, Austria
Andreas Wortmann RWTH Aachen University, Germany

Conceptual Modeling for NoSQL Data Stores (CoMoNoS)
2020 Co-chairs

Meike Klettke University of Rostock, Germany
Stefanie Scherzinger University of Passau, Germany
Uta Störl Darmstadt University of Applied Sciences, Germany

Empirical Methods in Conceptual Modeling (EmpER)
2020 Co-chairs

Dominik Bork TU Wien, Austria
Miguel Goulao Universidade NOVA de Lisboa, Portugal

x ER 2020 Workshop Organization

ER 2020 Workshop Program Committees

CMAI 2020 Program Committee

Klaus-Dieter Althoff University of Hildesheim, Germany
Kerstin Bach Norwegian University of Science and Technology, Norway
Ralph Bergmann University of Trier, Germany
Loris Bozzato Fondazione Bruno Kessler, Italy
I. Comyn-Wattiau ESSEC and CNAM, France
Ernesto Damiani University of Milan, Italy
Tatiana Endrjukaite NTT, Latvia
Michael Fellmann University of Rostock, Germany
Hans-Georg Fill University of Fribourg, Switzerland
Aditya Ghosh University of Wollongong, Australia
Knut Hinkelmann FHNW University of Applied Sciences and Arts Northwestern

Switzerland, Switzerland
Kamalakar

Karlapalem
IIIT Hyderabad, India

Josef Küng Johannes Kepler University Linz, Austria
Julio Cesar Leite PUC-Rio, Brazil
Bernd Neumayr Johannes Kepler University Linz, Austria
Jeffrey Parsons University of Newfoundland, Canada
Barbara Re University of Camerino, Italy
Oscar Romero Universitat Politècnica de Catalunya, Spain
Matt Selway University of South Australia, Australia
Bernhard Thalheim University of Kiel, Germany
Stefan Thalmann University of Graz, Austria
Rosina Weber Drexel University, USA
Tatjana Welzer University of Maribor, Slovenia
Mathias Weske University of Potsdam, Germany
N. Wickramasinghe Swinburne University, Australia
Takahira

Yamaguchi
Keio University, Japan

CMLS 2020 Program Committee

Raffaele Calogero Università di Torino, Italy
Mario Cannataro Università Magna Graecia di Catanzaro, Italy
Davide Chicco Krembil Research Institute, Canada
Johann Eder Alpen-Adria University Klagenfurt, Austria
Jose Luis Garrido University of Granada, Spain
Giancarlo Guizzardi Free University of Bozen-Bolzano, Italy

Sergio Lifschitz Pontifícia Universidade Católica do Rio de Janeiro, Brazil
Paolo Missier Newcastle University, UK
José Palazzo Universidad Federal do Río Grande do Sul, Brazil
Ignacio Panach University of Valencia, Spain
Pietro Pinoli Politecnico di Milano, Italy
Rosario Michael Piro Politecnico di Milano, Italy
Maria Rodriguez

Martinez
IBM Zürich Research Laboratory, Switzerland

CMOMM4FAIR 2020 Program Committee

Luiz Olavo Bonino University of Twente, The Netherlands
Barbara Magagna University of Twente, The Netherlands
João Moreira University of Twente, The Netherlands
Maria Luiza Machado Campos Federal University of Rio de Janeiro, Brazil
Peter Mutschke Leibniz Institute for the Social Sciences, Germany
Robert Pergl Technical University of Prague, Czech Republic
Yann Le Franc eScience Factory, France
Tobias Kuhn VU Amsterdam, The Netherlands
Giancarlo Guizzardi Free University of Bozen-Bolzano, Italy
João Paulo Almeida Federal University of Espirito Santo, Brazil
Tiago Prince Sales Free University of Bozen-Bolzano, Italy

CoMoDiTy 2020 Program Committee

Loli Burgueño Open University of Catalonia, Spain
Jordi Cabot Internet Interdisciplinary Institute, Spain
Benoit Combemale University of Toulouse and Inria, France
Manuela Dalibor RWTH Aachen University, Germany
Romina Eramo University of L’Aquila, Italy
A. Mazak-Huemer Johannes Kepler University Linz, Austria
Bran Selic Malina Software Corp., Canada
Michael Weyrich University of Stuttgart, Germany
Mark van den Brand Eindhoven University of Technology, The Netherlands

CoMoNoS 2020 Program Committee

Md.-A. Baazizi Sorbonne University Paris, France
Angela Bonifati University of Lyon, France
Dario Colazzo Paris Dauphine University, France
I. Comyn-Wattiau ESSEC Business School, France
E. C. de Almeida UFPR, Brazil
Jesús García Molina University of Murcia, Spain
Sven Hartmann University of Clausthal, Germany
Irena Holubova Charles University, Czech Republic
Jiaheng Lu University of Helsinki, Finland

xii ER 2020 Workshop Program Committees

Michael Mior Rochester Institute of Technology, USA
Norbert Ritter University of Hamburg, Germany
Diego Sevilla Ruiz University of Murcia, Spain
Carlo Sartiani University of Pisa, Italy
Johannes Schildgen OTH Regensburg, Germany
Heiko Schuldt University of Basel, Switzerland
Lena Wiese Fraunhofer Institute ITEM Hannover, Germany
Wolfram Wingerath Baqend, Germany

EmpER 2020 Program Committee

João Araújo Universidade NOVA de Lisboa, Portugal
Robert Buchmann Babeş-Bolyai University, Romania
Javier Cánovas Universitat Oberta de Catalunya, Spain
Michel Chaudron University of Gothenburg, Sweden
N. Condori-Fernandez VU Amsterdam, The Netherlands
Marian Daun Universität Duisburg-Essen, Germany
Sepideh Ghanavati University of Maine, USA
Catarina Gralha Universidade NOVA de Lisboa, Portugal
Jens Gulden Utrecht University, The Netherlands
Irit Hadar University of Haifa, Israel
Jennifer Horkoff University of Gothenburg, Sweden
Katsiaryna Labunets TU Delft, The Netherlands
Sotirios Liaskos York University, Canada
Judith Michael RWTH Aachen University, Germany
Geert Poels Ghent University, Belgium
Iris Reinhartz-Berger University of Haifa, Israel
Ben Roelens Open University of the Netherlands, The Netherlands
Zahra Shakeri University of Calgary, Canada
Manuel Wimmer Johannes Kepler University Linz, Austria

ER 2020 Workshop Program Committees xiii

Contents

Conceptual Modeling Meets Artificial Intelligence and Data-Driven
Decision Making (CMAI) 2020

How to Induce Trust in Medical AI Systems . 5
Ulrich Reimer, Beat Tödtli, and Edith Maier

Towards Automated Support for Conceptual Model Diagnosis and Repair . . . 15
Mattia Fumagalli, Tiago Prince Sales, and Giancarlo Guizzardi

Superimposition: Augmenting Machine Learning Outputs with Conceptual
Models for Explainable AI . 26

Roman Lukyanenko, Arturo Castellanos, Veda C. Storey, Alfred Castillo,
Monica Chiarini Tremblay, and Jeffrey Parsons

Evaluating Tree Explanation Methods for Anomaly Reasoning:
A Case Study of SHAP TreeExplainer and TreeInterpreter 35

Pulkit Sharma, Shezan Rohinton Mirzan, Apurva Bhandari,
Anish Pimpley, Abhiram Eswaran, Soundar Srinivasan, and Liqun Shao

Conceptual Modeling for Life Sciences (CMLS) 2020

The Importance of the Temporal Dimension in Identifying Relevant
Genomic Variants: A Case Study . 51

Mireia Costa, Ana León, and Óscar Pastor

Towards the Generation of a Species-Independent Conceptual Schema
of the Genome . 61

Alberto García S. and Juan Carlos Casamayor

Conceptual Human Emotion Modeling (HEM) . 71
Mohammed R. Elkobaisi, Heinrich C. Mayr,
and Vladimir A. Shekhovtsov

Towards an Ontology for Tertiary Bioinformatics Research Process. 82
Pietro Crovari, Sara Pidò, and Franca Garzotto

Using BioPAX-Parser (BiP) to Annotate Lists of Biological Entities
with Pathway Data . 92

Giuseppe Agapito and Mario Cannataro

Relational Text-Type for Biological Sequences . 102
Cristian Tristão, Antonio Basilio de Miranda,
Edward Hermann Haeusler, and Sergio Lifschitz

Conceptual Modeling, Ontologies and (Meta)data Management
for Findable, Accessible, Interoperable and Reusable (FAIR)
Data (CMOMM4FAIR) 2020

Mapping the Web Ontology Language to the OpenAPI Specification. 117
Paola Espinoza-Arias, Daniel Garijo, and Oscar Corcho

Evaluating FAIRness of Genomic Databases. 128
Matheus Pedra Puime Feijoó, Rodrigo Jardim,
Sergio Manuel S. da Cruz, and Maria Luiza M. Campos

Reusable FAIR Implementation Profiles as Accelerators
of FAIR Convergence . 138

Erik Schultes, Barbara Magagna, Kristina Maria Hettne,
Robert Pergl, Marek Suchánek, and Tobias Kuhn

Conceptual Modeling for NoSQL Data Stores (CoMoNoS) 2020

Deimos: A Model-Based NoSQL Data Generation Language 151
Alberto Hernández Chillón, Diego Sevilla Ruiz,
and Jesús García Molina

Managing Physical Schemas in MongoDB Stores . 162
Pablo D. Muñoz-Sánchez, Carlos Javier Fernández Candel,
Jesús García Molina, and Diego Sevilla Ruiz

JSON Schema Inference Approaches . 173
Pavel Čontoš and Martin Svoboda

Empirical Methods in Conceptual Modeling (EmpER) 2020

Empirical Evaluation of a New DEMO Modelling Tool that Facilitates
Model Transformations . 189

Thomas Gray and Marné De Vries

Acquiring and Sharing the Monopoly of Legitimate Naming
in Organizations, an Application in Conceptual Modeling 200

Samuel Desguin and Wim Laurier

Replicability and Reproducibility of a Schema Evolution Study
in Embedded Databases . 210

Dimitri Braininger, Wolfgang Mauerer, and Stefanie Scherzinger

Challenges in Checking JSON Schema Containment over Evolving
Real-World Schemas . 220

Michael Fruth, Mohamed-Amine Baazizi, Dario Colazzo,
Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger

xvi Contents

Experimental Practices for Measuring the Intuitive Comprehensibility
of Modeling Constructs: An Example Design . 231

Sotirios Liaskos, Mehrnaz Zhian, and Ibrahim Jaouhar

Author Index . 243

Contents xvii

Conceptual Modeling Meets Artificial
Intelligence and Data-Driven Decision

Making (CMAI) 2020

Preface

Dominik Bork1 , Peter Fettke2,3 , Wolfgang Maass2,
Ulrich Reimer4, Christoph G. Schuetz5 , Marina Tropmann-Frick6,

and Eric S. K. Yu7

1 Business Informatics Group, TU Wien, Vienna, Austria
dominik.bork@tuwien.ac.at

2 German Research Center for Artificial Intelligence (DFKI),
Saarbrücken, Germany

peter.fettke@dfki.de,

wolfgang.maass@iss.uni-saarland.de
3 Saarland University, Saarbrücken, Germany

4 University of Applied Sciences St. Gallen, St. Gallen, Switzerland
ulrich.reimer@acm.org

5 Johannes Kepler University Linz, Linz, Austria
schuetz@dke.uni-linz.ac.at

6 University of Applied Sciences Hamburg, Hamburg, Germany
marina.tropmann-frick@haw-hamburg.de

7 University of Toronto, Toronto, Canada
eric.yu@utoronto.ca

Artificial Intelligence (AI) is front and center in the data-driven revolution that has been
taking place in the last couple of years with the increasing availability of large amounts
of data (big data) in virtually every domain. The now dominant paradigm of data-
driven AI, powered by sophisticated machine learning algorithms, employs big data to
build intelligent applications and support fact-based decision making. The focus of
data-driven AI is on learning (domain) models and keeping those models up-to-date by
using statistical methods and machine learning over big data, in contrast to the manual
modeling approach prevalent in traditional, knowledge-based AI.

While data-driven AI has led to significant breakthroughs, it also comes with a
number of disadvantages. First, models generated by machine learning algorithms often
cannot be inspected and comprehended by a human being, thus lacking explainability.
Furthermore, integration of preexisting domain knowledge into learned models – prior
to or after learning – is difficult. Finally, appropriate application of data-driven AI
depends on the domain, problem, and organizational context. Conceptual modeling can
be the key to applying data-driven AI in a meaningful and time-efficient way. Con-
ceptual modeling can also improve maintainability, usability, and explainability of AI
systems.

The Workshop on Conceptual Modeling Meets AI and Data Driven Decision
Making (CMAI) provides a forum for researchers and practitioners working at the
intersection of AI and data-driven decision making on the one hand and conceptual
modeling on the other hand. For this first edition of the workshop we accepted four
high-quality papers. The first paper describes an approach to increase trust in medical
AI systems. The second paper investigates methods for explaining the results of
machine learning. The third paper aims to provide support for automated diagnosis and

https://orcid.org/0000-0001-8259-2297
https://orcid.org/0000-0002-0624-4431
https://orcid.org/0000-0002-0955-8647

repair of conceptual models. Finally, the fourth paper describes how machine-learning
outputs can be augmented with conceptual models in striving for explainable AI.

We thank all authors who submitted papers for consideration and members of the
Program Committee, whose effort and dedication in the review process made this
workshop possible. We also thank the ER workshop chairs and the other members of
the Organizing Committee for their trust and support.

Preface 3

How to Induce Trust in Medical AI
Systems

Ulrich Reimer(B) , Beat Tödtli , and Edith Maier

Institute for Information and Process Management,
Eastern Switzerland University of Applied Sciences, St. Gallen, Switzerland

{ulrich.reimer,beat.toedtli,edith.maier}@ost.ch

Abstract. Trust is an important prerequisite for the acceptance of an
Artificial Intelligence (AI) system, in particular in the medical domain.
Explainability is currently discussed as the key approach to induce trust.
Since a medical AI system is considered a medical device, it also has to
be formally certified by an officially recognised agency. The paper argues
that neither explainability nor certification suffice to tackle the trust
problem. Instead, we propose an alternative approach aimed at showing
the physician how well a patient is represented in the original training
data set. We operationalize this approach by developing formal indicators
and illustrate their usefulness with a real-world medical data set.

Keywords: Trust · Machine learning · AI · Medical device ·
Explainability · Certification · Sampling bias

1 Medical AI Systems

Artificial Intelligence (AI) systems are beginning to have an impact in the med-
ical domain [8,15]. Current systems tend to focus on quite specific aspects, for
example on image interpretation [7,13], or the analysis of huge numbers of tex-
tual sources as is the case with IBM Watson Health. Its cancer algorithm, for
instance, is used in hospitals to find the most appropriate treatment for a patient
[18]. Other approaches based on text analysis help diagnose rare diseases by
suggesting differential diagnoses [2,12]. AI systems with a broader focus will
eventually find their way into practical use, raising the question what will make
physicians and patients trust such a system. Since trust between patient and
physician does not usually depend on the tools the physician is using, we are
primarily concerned with how a physician comes to trust an AI. An analysis
of trust-influencing features of automated systems in general is given by Chien
et al. [1]. Among the categories suggested by the authors are understandability,
reliability, perceived usefulness and certification. According to [5], even if these
features are present human intelligence will still be required for effective medical
decision-making.

Understandability of AI systems in general is currently widely discussed
under the heading of explainability [3,4,9,11]. It might seem reasonable to con-
sider explainability as an essential feature of a medical AI system. Otherwise,
c© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 5–14, 2020.
https://doi.org/10.1007/978-3-030-65847-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_1&domain=pdf
http://orcid.org/0000-0003-3146-1662
http://orcid.org/0000-0003-3674-2340
http://orcid.org/0000-0002-4015-8975
https://doi.org/10.1007/978-3-030-65847-2_1

6 U. Reimer et al.

a physician either just has to trust the conclusions of the system or has to go
through a subsequent verification process, which may well be costly and time-
consuming and thus nullify any potential efficiency benefits of the AI system. At
the same time, he or she may not be willing to go through a lengthy explanation
to understand the decision offered by the system. Neither approach is desirable
or practicable (see the detailed discussion in [10]).

Since medical AI systems are considered medical devices they need to be cer-
tified by an officially recognised agency or regulatory body such as the Food and
Drug Administration (FDA). By assuming responsibility for the adequacy of the
medical AI system, regulatory bodies provide an established source of trust, free-
ing the physicians to establish trust themselves. Depending on its complexity,
the certification of an AI system can require a huge effort. Furthermore, cer-
tification amounts to model testing, meaning that the absence of errors (wrong
diagnoses, wrong therapies) cannot be shown. Even worse, when the certification
process uses a sample with a similar bias as the sample used for developing the AI
system, existing fundamental flaws might not be uncovered during certification.

Sampling bias refers to the bias incurred due to the data set chosen to train
an AI system. The resulting system extrapolates from the training data to the
general case. If the training set is skewed the system does not generalize well. For
example, if a medical AI system is trained on data from Asian people it might not
work well for Africans or Europeans. While the bias concerning gender and ethnic
group can be controlled relatively easily [17] other, less obvious biases may exist
that neither the developer nor the certification agency are aware of. The problem
is that we usually do not know the effect of a feature on the generated model
and how its values should be distributed to provide a representative sample.

We can conclude that even after a medical AI has successfully passed cer-
tification there might still be cases when it gives inadequate advice. As a con-
sequence the physician and possibly the patient as well might hesitate to fully
trust the system. Since we have also ruled out an explanation component to be
of practical benefit in the medical domain, the question remains what can be
done to enhance trust.

In the following section we will propose an approach to help a physician
better estimate the reliability of an AI system’s advice and provide indicators
for its trustworthiness on a case-by-case basis.

2 Formal Measures for Estimating How Well a Patient Is
Covered by an AI System

When using medical AI systems a patient may rightfully ask how well she or he
is represented in the training data. In the following we introduce an approach to
inspire trust in the decision of an AI system, which we consider more useful than
the focus on explainability. The basic idea can be described as follows: When
a medical AI system comes up with a diagnosis or treatment suggestion for a
specific patient, a critical question is how well that patient is covered by the
input data from which the AI system was generated – is the patient typical for

How to Induce Trust in Medical AI Systems 7

Fig. 1. Two example cases (left and right) of how a patient (black star) is embedded
in the original input data.

that data set, i.e. similar to most patients, or is the patient an outlier? In the
former case the physician can assume that the system’s suggestion is appropriate
while in the latter case the physician would be reluctant to accept it.

While there exist approaches that audit the reliability of a classifier after
training, e.g. by detecting inaccurate predictions [14], our approach aims at
giving a physician a tool to estimate reliability for a specific patient. In the
following, we formalize our ideas.

Let p0 be a patient who was classified by the AI system as belonging to one
of two classes – usually being ill or healthy with respect to a particular disease
but, of course, any other labels such as “receive a specific therapy” vs. “therapy
not appropriate” are possible. To estimate how well p0 is covered by the original
input data used for training the AI system, we introduce a distance metric on the
space of patients, distance(p0, p), indicating the distance between two patients
p0 and p. Given such a metric we can state several criteria for estimating a
patient’s coverage by the input data:

a) Is p0 in the midst of a cluster of similar patients?
b) How dense is that cluster, i.e. how close are those patients to p0?
c) Does that cluster comprise a significant number of patients?
d) How many of them belong to the same class as p0?
e) How close does the class boundary run to p0?

For example, in the situation in the right half of Fig. 1 the patient identified by
the black star is much better covered than in the situation shown in the left half
according to the criteria a) to c) (cf. the density criterion in [6]). Criteria d) and
e) are not yet considered in Fig. 1.

We now operationalize these criteria and derive three indicators that help
a physician to estimate how well an AI system’s decision for a given patient is
supported by the data used to train the AI system. The first indicator opera-
tionalizes criteria a) to c) by estimating how big the radius r0 of a sphere around

8 U. Reimer et al.

p0 needs to be so that it includes a sufficient fraction x of all patients in the input
data. The smaller the size of r0 the more tightly packed the space around p0 and
the better p0 is represented in the input data. The second indicator adds crite-
rion d) by considering only patients in the vicinity of p0 with the same label as
p0. The third indicator focuses on criterion e). To prepare the formal definitions
of the indicators we introduce several definitions.

1. Let P = Ph ∪Ps be the set of all healthy and sick patients from which the AI
system was trained. We define a function for giving the number of patients
inside an n-dimensional hypersphere of radius r around a given patient p:

N(p, r) .= |{p′ ∈ P : distance(p′, p) ≤ r}| (1)

Similarly, we define the number Nh(p, r) of healthy and N s(p, r) of sick
patients within a distance r. We have N(p, r) = Nh(p, r) + N s(p, r).

2. Let p0 be a patient for which the AI system has generated a suggestion to the
physician. We then determine the minimal radius r0 of a hypersphere around
p0 such that a given fraction x of all patients is inside the hypersphere. The
function R gives us that radius:

r0 = R(p0, x, P) .= min({r : N(p0, r) ≥ x · |P |}), (2)

where |P | is the number of patients in the set P . We set the radii rh0 =
R(p0, x, Ph) and rs0 = R(p0, x, Ps).

3. The medians of the correspondingly determined radii (for the same fraction
x) over all patients in the sample data serve as a reference to how well a given
patient is covered by the sample:

r̄ = median({R(p, x, P) : p ∈ P})

r̄h = median({R(p, x, Ph) : p ∈ Ph})
r̄s = median({R(p, x, Ps) : p ∈ Ps})

We use medians instead of averages because the latter are not robust against
outlier patients, which may distort the reference values significantly.

Based on these definitions we can now define two coverage indicators.

Definition of Coverage Indicator 1
If r0 = R(p0, x, P) is smaller than r̄ then patient p0 is better covered than the
average patient in the input data. A good value for x could e.g. be 3% (see
Sect. 3).

Definition of Coverage Indicator 2
Let p0 be a healthy patient. If rh0 = R(p0, x, Ph) is smaller than r̄h then patient
p0 is better covered than the average patient with the same label in the input
data. Accordingly, if p0 is sick.

At present, the indicators are binary and can be used to give a physician a
green or red light for trusting the AI’s advice for the patient p0.

How to Induce Trust in Medical AI Systems 9

Fig. 2. Two situations of how differently close to a given patient (black star) the class
boundary might run while giving the same results for Indicators 1 and 2.

A third indicator is based on the idea that even if Indicators 1 and 2 give
good results it might still be the case that the class boundary runs close to p0.
For example, in the situation shown in the left half of Fig. 2 about 20% of the
data points in the radius around p0 (indicated by a black star) belong to the
other class. The same holds for the right half of Fig. 2, giving the same results
for Indicators 1 and 2, but being clearly worse than the situation in the left
because p0 is much closer to the class boundary and might actually belong to
the other class. We introduce Indicator 3 to take into account how close the class
boundary is to p0. For that purpose we introduce a few auxiliary functions.

1. Let us assume patient p0 is healthy. Take rh0 = R(p0, x, Ph) as determined by
Indicator 2 and set the radius rc ≤ rh0 such that at least the fraction y of the
data points within it belong to the same class as p0. We define

˜R(p, r, y) .=

⎧

⎪

⎨

⎪

⎩

max({r′ : r′ ≤ r ∧ Nh(p,r′)+1
N(p,r′)+1 ≥ y}), if class(p) = h

max({r′ : r′ ≤ r ∧ Ns(p,r′)+1
N(p,r′)+1 ≥ y}), if class(p) = s

(3)

We can then set
rc = ˜R(p0, rh0 , y)

We then calculate the quotient rc/r
h
0 (since p0 was assumed to be healthy),

or more exactly:

q(p0, y) =

{

˜R(p0, R(p0, x, Ph), y)/R(p0, x, Ph), if class(p0) = h
˜R(p0, R(p0, x, Ps), y)/R(p0, x, Ps), if class(p0) = s

(4)

We proceed in the same way if p0 is sick.
The quotient q(p0, y) indicates how much the sphere around a patient p0 has
to shrink in order to include a sufficient fraction y of data points of the same

10 U. Reimer et al.

class as p0. It is thus an indicator for how close the class boundary runs to p0.
If it is too close q(p0, y) can become 0; if there is no patient from the other
class already within rh0 (resp. rs0) then q(p0, y) is 1.

2. Calculate q(p, y) for each object p in the input data with the same label as
p0. Determine the median over all these values, e.g. in case p0 is healthy:

q̄ = median({q(p, y) : p ∈ Ph})

Definition of Coverage Indicator 3
If q(p0, y) is greater than q̄ then p0 is better embedded in the class it is associated
with than the average patient in the input data. A good value for y could e.g.
be 80% (see Sect. 3).

Please note that the definitions of all indicators avoid any reference to abso-
lute values because physicians would not be able to make sense of them. Instead
we compare the calculated values with the median of the corresponding values
over all the other patients in the input data. This gives physicians an idea of
how typical a patient is with respect to the original input data of the AI system.

To estimate the feasibility of our approach and what would be appropriate
values for x (Indicators 1 and 2) and y (Indicator 3) we have conducted some
experiments on a real data set that are presented in the following section.

3 Experiments

We next illustrate the indicators introduced above on a publicly available data
set for cardiovascular disease [16]. The data set consists of 70,000 patients with
12 attributes, of which five are ratio-scaled, five are binary (including the tar-
get variable) and two are ordinal. The target feature indicates the presence or
absence of a cardiovascular disease. 1,239 patients were eliminated from the data
set because their systolic and diastolic blood pressures were outside the ranges
30 to 150 and 50 to 250, respectively. A training subset of 32,993 patients was
then selected, with an ill-to-healthy patient ratio of 49.5%. Feature engineering
consisted of adding the body-mass-index feature. By training a random forest,
a support vector classifier and even a k-nearest-Neighbour classifier, accuracy
values of 70 to 73% were achieved.

Due to the mixed nature of the features, defining an appropriate distance
measure for the function N (formula (1)) is somewhat challenging. The numerical
features are approximately normally distributed, such that a euclidean distance
measure after standardisation is quite natural. The binary and ordinal features
have been mapped to integer numerical coordinates in {0, 1} and {1, 2, 3}, respec-
tively. This we considered the most natural choice but will have to be analyzed
in more detail.

Figure 3 shows the number of ill patients N s(p, r), inside a sphere as a func-
tion of its radius r. The dashed and dashed-dotted lines show N s(p, r) for two
ill patients. They should be compared to the median (thin solid line) and the
90%-confidence bound (shaded area around the median line), both taken over a

How to Induce Trust in Medical AI Systems 11

Fig. 3. Indicator 2: number of patients within a given radius (Eq. (1)).

Fig. 4. Indicator 3: class ratios underlying the definition of ˜R (Eq. (3)).

population of 16,331 ill patients. The vertical dashed lines intersect these curves
at 3% of the total number of patients and indicate R(p, 3%, P) on the abscissa
for the two highlighted ill patients 5554 and 5125. The left ordinate axis gives
the absolute number of ill patients inside r, the right ordinate axis gives the
fraction of ill patients (between 0 and 1). Note that patient 5125 (dashed line) is
rather close to the 90%-confidence border, indicating that this patient is among
the top 5% of ill patients with respect to his coverage in the training data. In
contrast, patient 5554 has a much larger value of r0 = R(5554, 3%, P) which
indicates that an AI trained on this data set might be less accurate for her.

12 U. Reimer et al.

Fig. 5. Indicator 3: distribution of q values for y = 0.8 (Eq. (4)).

Figure 4 shows the medians and the 10% and 90%-confidence bands of the
class ratios underlying the definition of ˜R in Eq. (3). The population consists of
a random training subset of 16,662 healthy and 16,331 ill patients. The sharp
rise around r ∼ 0.5 is due to the total number of patients within r becoming
small, such that more patients with few neighbours receive a class ratio value of
1 according to our definition of ˜R.

Figure 5 shows the distributions of the q(p, 80%) values (cf. (4)) for healthy
and ill patients, with the medians indicated by vertical lines. Both populations
have a large variation, with all histogram bins being occupied by a significant
number of patients. The medians are in the 0.4–0.5-range so that a reduction
of the radius from r0 to half its radius is often necessary to reach a class ratio
above y = 80%. A significant fraction (19% of healthy and 17% of ill patients)
is in the q = 1.0 bins, indicating that for x = 3%, the y = 80% class ratio is
often already present so that there is no need to shrink r0 to avoid a near-by
class boundary.

The experiments show that, at least for the selected data set, the distribu-
tions of the values underlying our indicators tend to be distributed around their
median. We conclude that the indicators have a discriminating effect as intended.

4 Discussion and Outlook

The indicators we have introduced in this paper compare an individual patient
with various subpopulations of the training set of patients, in particular the
same-class patients and the fraction x of nearest patients (see formula (2)). The
indicators are independent of the internal workings of an AI system, but take
into account the feature engineering performed to build the AI. Moreover, the

How to Induce Trust in Medical AI Systems 13

indicators avoid any reference to absolute values because they would not make
sense for a physician. Instead we compare the calculated values with the median
of the corresponding values across all the other patients in the input data.

Our experiments in Sect. 3 are predicated on an approximately normal distri-
bution of the numerical features. This has allowed us to standardize all features
and use them as coordinates in a multi-dimensional euclidean space. If outliers
are present, they must be handled with care as they might significantly dis-
tort standardization. Furthermore, the choice of an appropriate distance metric
requires further investigation in the case of categorical and ordinal features. For
the sake of simplicity, we have treated all features as equally important. In future
work we intend to assign different weights to features in the distance metric to
reflect their domain-specific importance.

The results will have to be visualised in a way that makes it easy to under-
stand if a person is well represented in the training data or not, e.g. by translating
them into a traffic light system. A red colour would signal that he/she is not well
represented in the data set, in which case a doctor might want to reassess the
relevance of an AI’s prediction. How to present indicator results to a physician
as well as the evaluation of the proposed indicators are issues for future work.

The indicators rely on the hyperparameters x and y and a binary class label.
The hyperparameter values chosen have proven meaningful and useful for this
data set, but this might not be true of other data sets. We expect experiments
with further data sets to give us insights on how to properly set these parameters,
how to extend our approach to multi-class settings, and how to deal with the
currently high computational complexity.

An interesting aspect raised by one of the reviewers refers to cases where
only one or two features are responsible for the weak coverage of a patient by
the input data. In such cases a physician might want to double-check if those
features have been properly measured (e.g. high blood pressure) or are influenced
by interacting factors such as medication.

We see our contribution as complementary to inducing trust via explain-
ability and certification. We expect our approach to facilitate a physician-AI
partnership, where the doctor can assess the AI’s advice and decide if to follow
it or back it up with additional evidence or tests. In this way, human intelligence
remains in the loop, as requested by Korot et al. [5].

Acknowledgement. We would like to thank the reviewers for their helpful comments
to an earlier version of the paper.

References

1. Chien, S.-Y., Lewis, M., Semnani-Azad, Z., Sycara, K.: An empirical model of
cultural factors on trust in automation. In: Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, vol. 58, pp. 859–863, October 2014

2. Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J.: Doctor AI: pre-
dicting clinical events via recurrent neural networks. In: Machine Learning for
Healthcare Conference, pp. 301–318 (2016)

14 U. Reimer et al.

3. Došilović, F.K., Brčić, M., Hlupić, N.: Explainable artificial intelligence: a survey.
In: 2018 41st International Convention on Information and Communication Tech-
nology, Electronics and Microelectronics (MIPRO), pp. 0210–0215. IEEE (2018)

4. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining
explanations: an overview of interpretability of machine learning. In: Proceedings of
2018 IEEE 5th International Conference on Data Science and Advanced Analytics,
pp. 80–89, October 2018

5. Korot, E., et al.: Will AI replace ophthalmologists? Transl. Vis. Sci. Technol. 9(2),
1–5 (2020)

6. Leonard, J.A., Kramer, M.A., Ungar, L.H.: A neural network architecture that
computes its own reliability. Comput. Chem. Eng. 16(9), 819–835 (1992)

7. Mandal, S., Greenblatt, A.B., An, J.: Imaging intelligence: AI is transforming med-
ical imaging across the imaging spectrum. IEEE Pulse 9(5), 16–24 (2018)

8. Matheny, M., Israni, S.T., Ahmed, M., Whicher, D.: Artificial intelligence in health
care: the hope, the hype, the promise, the peril. Natl. Acad. Med. 94–97 (2020)

9. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

10. Reimer, U., Maier, E., Tödtli, B.: Going beyond explainability in medical AI sys-
tems. In: Proceedings of Modellierung 2020 Short Papers, Workshop Papers, and
Tools & Demo Papers, vol. 2542, pp. 185–191. CEUR-WS.org (2020)

11. Ribeiro, M.T., Singh, S., Guestrin, C.: why should i trust you?: explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM
(2016)

12. Ronicke, S., Hirsch, M.C., Türk, E., Larionov, K., Tientcheu, D., Wagner, A.D.:
Thu0564 could a probabilistic reasoning AI accelerate rare disease diagnosis? Eval-
uating the potential impact of a diagnostic decision support system in a retrospec-
tive study. Ann. Rheum. Dis. 78(Suppl 2), 572–574 (2019)

13. Savadjiev, P., et al.: Demystification of AI-driven medical image interpretation:
past, present and future. Eur. Radiol. 29(3), 1616–1624 (2019)

14. Schulam, P., Saria, S.: Can you trust this prediction? Auditing pointwise reliabil-
ity after learning. In: Proceedings of 22nd International Conference on Artificial
Intelligence and Statistics, pp. 1022–1031 (2019)

15. Topol, E.J.: High-performance medicine: the convergence of human and artificial
intelligence. Nat. Med. 25(1), 44–56 (2019)

16. Ulianova, S.: Cardiovascular disease dataset. https://www.kaggle.com/sulianova/
cardiovascular-disease-dataset. Accessed 17 Oct 2019

17. Zafar, M.B., Valera, I., Gomez-Rodriguez, M., Gummadi, K.P.: Fairness con-
straints: a flexible approach for fair classification. J. Mach. Learn. Res. 20(75),
1–42 (2019)

18. Zhou, N., et al.: Concordance study between IBM watson for oncology and clinical
practice for patients with cancer in China. Oncologist 24(6), 812 (2019)

https://www.kaggle.com/sulianova/cardiovascular-disease-dataset
https://www.kaggle.com/sulianova/cardiovascular-disease-dataset

Towards Automated Support
for Conceptual Model Diagnosis

and Repair

Mattia Fumagalli(B), Tiago Prince Sales(B), and Giancarlo Guizzardi(B)

Conceptual and Cognitive Modeling Research Group (CORE),
Free University of Bozen-Bolzano, Bolzano, Italy

{mattia.fumagalli,tiago.princesales,giancarlo.guizzardi}@unibz.it

Abstract. Validating and debugging conceptual models is a very time-
consuming task. Though separate software tools for model validation and
machine learning are available, their integration for an automated sup-
port of the debugging-validation process still needs to be explored. The
synergy between model validation for finding intended/unintended con-
ceptual models instances and machine learning for suggesting repairs
promises to be a fruitful relationship. This paper provides a preliminary
description of a framework for an adequate automatic support to engi-
neers and domain experts in the proper design of a conceptual model. By
means of a running example, the analysis will focus on two main aspects:
i) the process by which formal, tool-supported methods can be effectively
used to generate negative and positive examples, given an input concep-
tual model; ii) the key role of a learning system in uncovering error-prone
structures and suggesting conceptual modeling repairs.

Keywords: Conceptual models · Model simulation · Inductive
learning

1 Introduction

The complexity of building conceptual models is a widely recognized research
issue. Works like [9] and [7] underline the limitations of human cognitive capabili-
ties in managing the huge and difficult activities involved in conceptual modeling.
This is the main reason why, over the years, multiple solutions aimed at sup-
porting conceptual model design have been provided by different communities.
Most of these solutions can be categorized as complexity management engineer-
ing tools, and they offer semi-automated or fully-automated support facilities for
model design, validation, or verification [8].

To adequately support the engineering of complex conceptual models, besides
these tools, we have seen, in the last decade, an increasing interest in the use
of ontology-driven conceptual modeling languages [16]. These languages mainly
seek to offer a reference layer for conceptual modeling construction, validation,

c© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 15–25, 2020.
https://doi.org/10.1007/978-3-030-65847-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-65847-2_2

16 M. Fumagalli et al.

and code generation. In this spirit, the recent work presented in [14] describes
a novel validation strategy using visual model finding [10], that can be used for
eliciting anti-patterns in conceptual models. The empirically-elicited research
output in [14] offers a concrete example of how error-prone modeling decisions
can be uncovered and made explicit, thus offering a methodology to diagnosis
and repair of conceptual models.

In approaches such as [14], however, anti-pattern detection as well as the
construction of rectification plans is done manually, i.e., the authors have man-
ually validated dozens of models, manually detected these emerging error-prone
structures, and have manually proposed effective rectification plans. As shown
therein, with this process, they have managed to propose a catalog containing
dozens of anti-patterns. Manually conducting this process, however, is a difficult
and time-consuming task, which, as consequence, limits the number of models
that can be analyzed and, hence, the number of structures that can be discovered.
To address this limitation, we are interested in identifying how, by using model
finding and machine learning (ML), the design activities of this approach can be
supported. In other words, we want to reduce the effort to uncover error-prone
structures in conceptual models and identify repairs suggestion, by automating
these tasks as much as possible.

Though separate software tools for model finding and machine learning are
available, their integration for automating the debugging-validation process still
needs to be explored. Inspired by the work of Alrajeh and colleagues [2,3], who
proposed an approach to automatically diagnose and repair temporal logic soft-
ware specifications based on the integration of model checking and machine
learning, we seek to develop an approach for conceptual modeling, which in
turn, leverages on model finding1 and machine learning techniques.

The contributions of this paper are three-fold. Firstly, we propose a frame-
work to implement the aforementioned synergy between model finding and
machine learning for conceptual modeling diagnosis and repair. Secondly, we con-
tribute to the identification of how formal, tool-supported methods can be effec-
tively used to generate a data set of negative and positive examples of instances
for a given conceptual model. We do this by carrying out an empirical simulation
over a simple example conceptual model. In particular, we adopt the Alloy Ana-
lyzer [10] to generate multiple simulations of the input conceptual model and
we propose a series of steps to encode information about intended/unintended
models. Thirdly, once the data set of negative and positive examples has been
elicited, we show how this data can be given as input to a learning system, which
can be used to automatically uncover error-prone structures and suggest repairs
to the modeler.

The remainder of this paper is organized as follows. In Sect. 2, we briefly intro-
duce our running example. Section 3 introduces the framework, by describing the
main steps, agents, and components involved. Section 4 shows how to go from
model finding, through annotation, to example set generation. Section 5 describes
the role of a learning system in identifying error-prone structures and suggesting

1 For a detailed analysis of model checking and model finding see [10].

Towards Automated Support for Conceptual Model Diagnosis and Repair 17

repairs. Finally, Sect. 6 presents some final considerations and describes future
work.

2 Conceptual Modeling: Learning by Feedback

We take here the general methodological practice employed in natural sciences
[5] of starting with simple models to explore a fuller extent of the ideas at hand
before making progress to complex ones. In that spirit, although the ultimate
goal of this research program is to develop a framework target at ontology-driven
conceptual modeling languages (in particular, OntoUML [7]), we start here with
standard UML and with the toy model depicted in Fig. 1 below.

Fig. 1. A toy example in UML.

Now suppose that we can run simulations (or configurations) of the given
example model with at most 2 instances per configuration2. The list of possible
configurations of this model is depicted in Fig. 2, in which solid arrows mean
direct instantiation and dashed arrows indirect instantiation.

By looking at these possible outputs, the modeler may identify some unin-
tended configurations, namely instances that she does not want her model to
allow. Now suppose that by looking at these outputs, the modeler can annotate
what are the intended/unintended configurations. From these annotated configu-
rations, what can we learn as the most general rules? Looking at the super-simple
model above the modeler may want to avoid all the cases in which ‘Person’ has
direct instances (e.g, ‘c’ and ‘e’ in Fig. 2) and where an instance is both a ‘Man’
and a ‘Woman’ (e.g, ‘i’ and ‘m’ in Fig. 2). If this is the case, the simple rule to
be inferred can be informally expressed as “Every person is either a man or a
woman and no person is both a man and a woman”. To repair the input concep-
tual model, a knowledge engineer would simply have to add a constraint that
forbids these two generic configurations represented in Fig. 3. In UML, this could
be achieved with a generalization set that is complete (isCovering = true) and
disjoint (isDisjoint = true).
2 From now on we use the terms “simulation run” and “configuration” interchangeably,

where a simulation run is the result of an interpretation function satisfying the
conceptual model. In other words: if we take the UML diagram as a M1-model (in
the MDA-sense), a configuration is a M0-model that could instantiate that M1-
model; if we take the UML diagram as a logical specification, then a configuration
is a logical model of that specification. Finding these valid configurations given a
specification is the classical task performed by a model finder.

18 M. Fumagalli et al.

Fig. 2. List of simulations for the model of Fig. 1.

Fig. 3. Simulations of the model in Fig. 1 allowing for unintended instances.

From this example, we make two main observations. Firstly, consider a much
more complex model than the one in Fig. 1. The activity of debugging the model
by checking all the intended/unintended configurations is very time consuming
and it may not be easy for the modeler to understand where the errors come from,
how to repair the model, and what rules need to be added (if any). Secondly,
consider a scenario where several people simulate the same model and people
diverge on what they assign as intended and unintended configurations. We can
then offer to the modelers possible options giving them an indication of how often
people chose each of the options. This is about repairing a particular model by

Towards Automated Support for Conceptual Model Diagnosis and Repair 19

learning from a collective judgment (in this case, a type of meaning negotiation
activity).

In summary, from the marriage between model validation, for finding faults,
and machine learning, for suggesting repairs, a fruitful synergy emerges, which
can support knowledge engineers in understanding how to design and refine
rigorous models.

3 From Model Validation to Repairs Suggestion

The framework we envision should be able to produce, from a given conceptual
model, a set of rules that forbid the occurrence of configurations marked as
unintended by knowledge engineers. The key idea here is to combine and exploit
model validation and learning technologies in order to: i) automatically generate
a set of configurations of the input conceptual model and identify unexpected
outputs; ii) carry out diagnosis and repair tasks by learning from the identified
errors and suggesting rules to adjust the model accordingly.

Fig. 4. Automated support for conceptual modeling diagnosis and repair: the proposed
framework.

This framework comprises four steps explained in the sequel (see Fig. 4),
which can be executed iteratively:

Step 1. Validation. This step consists in automatically generating possible con-
figurations from an input conceptual model and asserting whether these should
indeed be allowed by it. If no unintended configurations are identified, the pro-
cess terminates, otherwise it proceeds to step 2. The generational part of this
step requires feeding the input model to a model finder.3 The assertional part
requires one or more knowledge engineers to decide on its validity. Considering
the example in Fig. 2, an unintended configuration could be represented by ‘i’,
where an instance is both ‘Man’ and ‘Woman’). If unintended models are found,
the process continues to the next step.
3 This step may require a previous conversion step, from the language used to design

the conceptual model (e.g. UML, OntoUML) to the model finder specifications as
in, e.g., [4].

20 M. Fumagalli et al.

Step 2. Elicitation. At this point, the model configurations generated by the
model finder and annotated by knowledge engineers do not specify why they are
intended or unintended. In an unintended configuration, indeed, we may have
both allowed and forbidden instances (i.e. particular individuals that instantiate
a class in the model). For example, in Fig. 2, configuration ‘f’, the instance ‘6’
is forbidden, while ‘7’ is allowed. Step 2 allows the modelers to mark which
instances represent negative or positive examples. Once negative and positive
examples are produced, they are ready to be given as input, along with the
structure of the original conceptual model, to the learning system.

Step 3. Learning. Having identified the negative and positive examples that make
the configurations unintended or intended, a learning system software carries
out the diagnosis process automatically. The goal of this step is to identify the
structures of the model that are “error-prone” [14]. The output of the learning
process, considering the super-simple model introduced above, can be exactly the
negation of the two configurations represented in Fig. 3. This, of course, depends
on the information collected with the modeler annotation.

Step 4. Selection. The learning system may produce multiple examples of “error-
prone” structures for the same model. For the repair task, a selection step for
deciding among the possible repairs options is required. This selection step is
always application dependent (i.e., it depends on the final purpose of the concep-
tual model) and requires inputs from the knowledge engineer. Once the selection
is made, the update of the original input conceptual model can be addressed.
Considering the two examples in Fig. 3, if both of them are selected, the sug-
gested repairs would be a negation of direct instantiation of ‘Person’ and the
disjointness between ‘Woman’ and ‘Man’.

The presented combination of model finding and (logic-based) learning is
intended to support an iterative process for evolving and repairing conceptual
models by adding constraints that prevent unintended configurations. The iter-
ative aspect of the process is relevant because there is no guarantee that a single
application of the four steps will ensure the correctness of the model. Thus, it
should be repeated until no unintended configurations can be found.

4 Highlighting Possibly Erroneous Decisions

Let us now consider model validation more formally. In the proposed framework,
following the strategy in [14], the input conceptual model is translated into
Alloy [10], a logic language based on set theory, which offers a powerful model
analysis service that, given a context, generates possible instances for a given
specification (it can also allow model checking and counterexamples generation).
For example, once the conceptual model of Fig. 1 is converted into an Alloy
specification, multiple configurations of the model (for two instances) can be
produced. Figure 5 below presents the full list of possible configurations, covering

Towards Automated Support for Conceptual Model Diagnosis and Repair 21

also the example diagrams provided in Fig. 2.4 Notice that “this/...” refers to
a class, and the values within curly brackets refer to its generated instances. So
if this/Person contains Person3 and this/Woman contains Person3, it means
the individual Person3 is a ‘Person’ and a ‘Woman’ at the same time.

'Toy' model Alloy configurations
'a' this/Person={Person0}, this/Man={Person0}, this/Woman={}
'b' this/Person={Person1}, this/Man={Person1}, this/Woman={Person1}
'c' this/Person={Person2}, this/Man={}, this/Woman={}
'd' this/Person={Person3}, this/Man={}, this/Woman={Person3}
'e' this/Person={Person4, Person5}, this/Man={}, this/Woman={}
'f' this/Person={Person6, Person7}, this/Man={Person7}, this/Woman={}
'g' this/Person={Person8, Person9}, this/Man={Person9}, this/Woman={Person8}
'h' this/Person={Person10, Person11}, this/Man={Person11}, this/Woman={Person11}
'i' this/Person={Person12, Person13}, this/Man={Person13}, this/Woman={Person12, Person13}
'j' this/Person={Person14, Person15}, this/Man={}, this/Woman={Person15}
'k' this/Person={Person16, Person17}, this/Man={Person16, Person17}, this/Woman={}
'l' this/Person={Person18, Person19}, this/Man={}, this/Woman={Person18, Person19}
'm' this/Person={Person20, Person21}, this/Man={Person20, Person21}, this/Woman={Person21}
'n' this/Person={Person22, Person23}, this/Man={Person22, Person23}, this/Woman={Person22,

Person23}↪→

Fig. 5. Configurations generated by Alloy (empty model excluded). Each individual,
e.g., Person0, maps into the corresponding instance in Fig. 2, e.g., #0.

At this point, as a first task, the modeler should annotate those configurations
that are intended or unintended. Following the super-simple model example the
annotation can be represented as from Fig. 6 below, where the red cross marks
the unintended simulation.

Fig. 6. Examples of simulations annotated as intended/unintended.

The further step here is to convert the above annotation into an example
set collecting information about the input conceptual model and the annotation
provided by the modeler. This will involve an additional input from the modeler,
namely the annotation of what instance in the simulation makes the configura-
tion intended or unintended. For instance, looking at Fig. 6 the two instances to
be marked as “negative” are ‘#22’ and ‘#23’.

4 Notice that Alloy produces ‘0’ and ‘1’ instances only, we numbered the instances
considering the full list of possible configurations.

22 M. Fumagalli et al.

Notice that, the plan is to use an ad hoc editor to support the annotation
process and the example set generation step. In particular, we will employ the
capabilities embedded in the OntoUML editor [6], which will play a key role
along the process, with some additional features (some of them already imple-
mented), such as: a) exploration of Alloy simulations; b) simulations annotation;
c) negative/positive example set generation.

The overall phase from the input conceptual model, through the genera-
tion of multiple simulations, to the annotation and the generation of the nega-
tive/positive examples set, can be formalized as a composed function fa, where:

fa : fb ◦ fc (1)

fb : M → (AM × S+/−
AM

) (2)

fc : (AM × S+/−
AM

) → E+/− (3)

With M being the conceptual model. AM being the conceptual model con-
verted into Alloy specifications. S+/−

AM
being a set of simulations generated

through Alloy, annotated as intended/unintended, given AM . E+/− being a data
set collecting negative and positive examples. The output of fb is an Alloy model
associated to a list of intended/unintended simulations. The output of fa is an
example set that can be given as input to the learning system.

As a final remark, fa can be seen as a semi-automatic process. If the con-
version steps (e.g., from the conceptual model to the Alloy specifications, or the
generation of E+/−) can be easily automatized, some manual work from the
modelers, which need to provide feedback within the loop, is still required.

Table 1. Embedding knowledge engineers input into neg/pos examples matrix.

5 Uncovering Error-Prone Structures

The output of the phase described in the previous sections should be as rep-
resented by Table 1. In order to generate the above matrix we adopted a stan-
dard propositionalization process [12], where: i) we converted the conceptual
model and the related instances (e.g., ‘#1’, ‘#2’, ‘#3’, etc.) into a logical knowl-
edge base specification (KB) (i.e., the combination of the so-called TBOX and
ABOX); ii) we gave the reference KB as input of a script to generate a matrix
of patterns; iii) we extended the matrix with the information about positive

Towards Automated Support for Conceptual Model Diagnosis and Repair 23

and negative examples (see the ‘label’ attribute). From this input, there may
be multiple ways to set-up the learning step and automatically extract repairs
suggestions. For instances, the learning system can be used to implement an
Association Rule Mining (ARM) [1] approach, or to implement relational learn-
ing based on Inductive Logic Programming (ILP) [13].

//Rule1
if { ?x <#type> <#Man> } = false and { ?x <#type> <#Woman> } = false then false
//Rule2
if { ?x <#type> <#Man> } = false and { ?x <#type> <#Woman> } = true then true
//Rule3
if { ?x <#type> <#Man> } = true and { ?x <#type> <#Woman> } = false then true
//Rule4
if { ?x <#type> <#Man> } = true and { ?x <#type> <#Woman> } = true then false

Fig. 7. Rules extracted from the annotation of the output presented in Fig. 5.

In this paper, we adopted a standard approach. We derived the rules by using
a simple Decision Tree model, where the attributes for splitting are selected
according to the gain ratio criterion [11], and we run subgroups discovery to
induce an exhaustive rule set plus a list of insights to better explain the results.
Notice that the role of ML statistical techniques to extract rules and insights
from the modelers’ feedback becomes more useful as the complexity of the model
increases and the number of feedback increases. For instance, having multiple
(and possibly inconsistent) feedback for the same simulation, the labels for each
instance may have multiple values encoding weights, instead of binary values,
such as ‘0’ and ‘1’, like in the example of Fig. 1.

‘Rule 1’ and ‘Rule 4’, in Fig. 7, represent the rules accounting for the unin-
tended configurations, namely: i) when instances of ‘Person’ are neither instances
of ‘Man’ nor ‘Woman’ (‘1’); ii) when instances of ‘Person’ are both ‘Woman’ and
‘Man’ (‘4’). The following formulas represent a First Order Logic (FOL) formal-
ization of the derived ‘negative’ rules.

∃xPerson(x) ∧ ¬(Woman(x) ∨ Man(x)) (4)

∃xPerson(x) ∧ (Woman(x) ∧ Man(x)) (5)

A further analysis can be run by checking the results provided by the sub-
group discovery implementation, as from Table 2 below, where we grouped the
most ‘precise’ rules.

Table 2. Extracted rules: some additional insights.

24 M. Fumagalli et al.

Besides collecting information about the Size (i.e., how many instances are
involved), the Length (i.e., how many predicates are involved) and the Coverage
(i.e., how many instances covered over the total instances), a ranking of the
rules can be provided in terms of, for instance, Precision and Lift. The Precision
value explains the ratio of different values (‘Pos’ and ‘Neg’, for a certain rule)
for the same instance (in the example we have precision ‘1’, meaning that values
are only ‘Pos’ or ‘Neg’). The Lift value measures the value of a certain rule
considering the ratio of premises and consequences in the given data set (see
[15] for further details). Given the above derived ‘negative’ rules, the repairs
that can be selected by the modelers would be quite straightforward. The input
conceptual model (assuming here a FOL formalization of that model) can be
then constrained as follows:

M = {∀xWoman(x) → Person(x),∀xMan(x) → Person(x)} (6)

MR = {M, ∀xPerson(x) → (Woman(x) ∨ Man(x)),∀xMan(x) → ¬Woman(x)} (7)

Where M represents the original conceptual model and MR represents the
new repaired (i.e., constrained) version of the conceptual model.

6 Conclusion and Perspectives

This paper presents preliminary results towards a framework for diagnosing and
repairing faulty structures in conceptual models. In particular, our objective is
to combine, on one hand, the model finding techniques for generating positive
(intended) and negative (unintended) model configurations and, on the other
hand, use this curated base of positive/negative examples for feeding a learn-
ing process. Our overall research program, aims at addressing the full ontolog-
ical semantics of the OntoUML. In that sense, it will leverage on the existing
OntoUML support for model validation via visual simulation in Alloy [4,14]. A
further objective is learning from the configurations structures that are recurrent
in several OntoUML models (i.e., anti-patterns) as well as reusable cross-model
rules that could rectify them. Addressing these objectives for a particular model
with a subset of the semantics of that language is a first step in that direction.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: 1993 ACM SIGMOD, pp. 207–216 (1993)

2. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Elaborating requirements using
model checking and inductive learning. IEEE TSE 39(3), 361–383 (2013)

3. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Automated support for diagnosis
and repair. Commun. ACM 58(2), 65–72 (2015)

4. Braga, B.F., Almeida, J.P.A., Guizzardi, G., Benevides, A.B.: Transforming
OntoUML into Alloy: towards conceptual model validation using a lightweight
formal method. Innovat. Syst. Softw. Eng. 6(1–2), 55–63 (2010)

Towards Automated Support for Conceptual Model Diagnosis and Repair 25

5. Cairns-Smith, A.G.: The Life Puzzle: On Crystals and Organisms and on the Pos-
sibility of a Crystal as an Ancestor. University of Toronto Press, Toronto (1971)

6. Guerson, J., Sales, T.P., Guizzardi, G., Almeida, J.P.A.: Ontouml lightweight edi-
tor: a model-based environment to build, evaluate and implement reference ontolo-
gies. In: 19th IEEE EDOC (2015)

7. Guizzardi, G.: Ontological foundations for structural conceptual models. Telemat-
ica Instituut/CTIT (2005)

8. Guizzardi, G.: Theoretical foundations and engineering tools for building ontologies
as reference conceptual models. Semant. Web 1(1, 2), 3–10 (2010)

9. Guizzardi, G., Sales, T.P.: Detection, simulation and elimination of semantic anti-
patterns in ontology-driven conceptual models. In: Yu, E., Dobbie, G., Jarke, M.,
Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 363–376. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-12206-9 30

10. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2012)

11. Karegowda, A.G., Manjunath, A., Jayaram, M.: Comparative study of attribute
selection using gain ratio and correlation based feature selection. Int. J. Inf. Tech-
nol. Knowl. Manage. 2(2), 271–277 (2010)

12. Kramer, S., Lavrač, N., Flach, P.: Propositionalization approaches to relational
data mining. In: DŽeroski, S., Lavrač, N. (eds.) Relational Data Mining, pp. 262–
291. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04599-2 11

13. Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods.
J. Log. Program. 19, 629–679 (1994)

14. Sales, T.P., Guizzardi, G.: Ontological anti-patterns: empirically uncovered error-
prone structures in ontology-driven conceptual models. Data Knowl. Eng. 99, 72–
104 (2015)

15. Tufféry, S.: Data Mining and Statistics for Decision Making. Wiley, Hoboken (2011)
16. Verdonck, M., Gailly, F.: Insights on the use and application of ontology and con-

ceptual modeling languages in ontology-driven conceptual modeling. In: Comyn-
Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016.
LNCS, vol. 9974, pp. 83–97. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-46397-1 7

https://doi.org/10.1007/978-3-319-12206-9_30
https://doi.org/10.1007/978-3-662-04599-2_11
https://doi.org/10.1007/978-3-319-46397-1_7
https://doi.org/10.1007/978-3-319-46397-1_7

Superimposition: Augmenting Machine
Learning Outputs with Conceptual Models

for Explainable AI

Roman Lukyanenko1(B), Arturo Castellanos2, Veda C. Storey3, Alfred Castillo4,
Monica Chiarini Tremblay5, and Jeffrey Parsons6

1 HEC Montreal, Montreal, QC, Canada
roman.lukyanenko@hec.ca

2 Baruch College, CUNY, New York, NY, USA
arturo.castellanos@baruch.cuny.edu

3 Georgia State University, Altanta, GA, USA
vstorey@gsu.edu

4 CalPoly, San Luis Obispo, CA, USA
acasti63@calpoly.edu

5 William and Mary, Williamsburg, VA, USA
monica.tremblay@mason.wm.edu

6 Memorial University of Newfoundland, St. John’s, NL, Canada
jeffreyp@mun.ca

Abstract. Machine learning has become almost synonymouswithArtificial Intel-
ligence (AI). However, it has many challenges with one of the most important
being explainable AI; that is, providing human-understandable accounts of why a
machine learning model produces specific outputs. To address this challenge, we
propose superimposition as a concept which uses conceptual models to improve
explainability by mapping the features that are important to a machine learning
model’s decision outcomes to a conceptualmodel of an application domain. Super-
imposition is a design method for supplementing machine learning models with
structural elements that are used by humans to reason about reality and generate
explanations. To illustrate the potential of superimposition, we present the method
and apply it to a churn prediction problem.

Keywords: Artificial intelligence ·Machine learning · Superimposition ·
Conceptual modeling · Explainable AI · Human categorization

1 Introduction

Machine learning (ML), which is now almost synonymous with Artificial intelligence
(AI), has become a key driver of innovation and change in organizational and daily life
[1]. Machine learning consists of methods that use data and algorithms to build models
that make inferences on new data and perform specific tasks without being explicitly
programmed [2–4]. Growing numbers of organizations are turning to machine learning

© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 26–34, 2020.
https://doi.org/10.1007/978-3-030-65847-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-65847-2_3

Superimposition: Augmenting Machine Learning Outputs 27

as part of their drive to make data-driven decisions and seek new efficiencies [5–7].
However, decision makers and the public remain skeptical of relying on ML for their
decisions and actions [8–12]. Given its focus on data and algorithms, an important
challenge in using ML is being able to understand how and why models make their
decisions – a challenge known as Explainable AI (XAI) [13, 14].

Explainable AI refers to “systems that can explain their rationale to a human user,
characterize their strengths and weaknesses, and convey an understanding of how they
will behave in the future” [15]. The problem of machine learning explainability is urgent
as societal reliance on machine learning grows. At the same time, the tendency in
machine learning practice is to employ more powerful and sophisticated algorithms
that are increasingly opaque and difficult to explain. Many are considered “black box”
models, such as deep learning networks, that are difficult to understand. The inability
to understand why machine learning models make certain decisions makes it difficult
to detect and mitigate biases, and prevent discriminatory practices embedded inside
machine learning models, thus limiting adoption by organizations, especially in highly
regulated fields. The rush to open the black box of AI is further fueled by calls from the
public and policy makers to treat the ¨right to explanation¨ as a new basic human right
[16].

There are many approaches to XAI. Most rely on calculating importance weights to
reflect the contributions of features to the decision made by a ML model. None appear
to consider using domain knowledge to contextualize the importance of features with
respect to the entities or objects they describe.

Conceptual models (CM) are (semi-)formal diagrammatic representations of domain
knowledge developed to support information systems development [17–20]. The con-
ceptual modeling community has a rich research tradition of using conceptual modeling
to improve various aspects of information systems development. Typical uses include
database design, process reengineering, and software development. However, concep-
tual modeling has only recently been considered within the context of machine learning
[21, 22], and has not been applied to the problem of explainable AI. We propose using
conceptual models to improve explainability by superimposing the features used in the
development of machine learning models to the conceptual models of the domain. We
illustrate the use of this superimposition method by applying it to predicting customer
churn and discuss the implications of doing so.

2 Background: The Problem of Explainable AI

Historically, artificial intelligence focused on symbolic representation using logical for-
malisms [23]. For example, some approaches developed an AI application by first
engineering requisite rules in the domain (e.g., by using ontologies or semantic net-
works typically created manually). The resulting models were, thus, relatively easy to
understand.

With the increased availability of data and advances in computing and hardware, the
AI field shifted its focus from developing rule-based domain models to computation-
ally intensive data-driven (machine learning) approaches [3, 24]. The power of modern
machine learning rests on its ability to make thousands, if not millions, of iterations

28 R. Lukyanenko et al.

over the training data to detect complex relationships among the input variables (i.e.,
feature engineering) and the target variable. These approaches are generally not easily
understood by humans, leading to the need for work on XAI.

XAI research includes methods that weight the importance of input features in
contributing to a model’s decision. Such techniques include local interpretable model-
agnostic explanations (LIME) [25], game theoretic approaches to compute explanations
of model predictions (SHAP) [26] and use of counterfactuals to understand how remov-
ing features changes a decision [27]. These approaches focus on specific features and
fail to abstract to higher-level concepts.

In this research, we propose a new approach to explainable AI based on concepts
from conceptual modeling. We focus on ML-model agnostic approaches that contribute
to explainability of any ML model. Popular techniques include explanations by sim-
plification (e.g., creating a decision tree in addition to a neural network) [28]. Others
seek to reduce model complexity by grouping features, making it easier to follow the
logic of the model [29]. Work also considers making the marginal contribution of each
feature more explicit [26]. However, there does not appear to be research that consid-
ers superimposing the features onto domain models. Such an approach can complement
existing approaches by combining the logic derived from amachine learning model with
knowledge about the application domain. It can provide cognitive benefits that facilitate
explanation and understanding.

3 Superimposition Method

Superimposition compensates for the absence of structural semantic information about
the real-world domain in a dataset used for machine learning, which, we argue, impedes
explainability. Although this information is absent in current ML practice, it is routinely
employed by humans to understand their day-to-day experiences. The design idea of
superimposition has theoretical roots in cognitive psychology, which argues that humans
are continuously subjected to diverse sensory experience. To cope with the sensory
input, humans actively employ conceptual structures to filter, interpret, and assimilate
the information they receive [30–32]. Such structures are category-based and relational
in nature, as we discuss below.

First, a fundamental tenet of modern psychology is that much of sensory and mental
experience of humans are organized into categories or concepts. The categories group
related (typically similar) individual objects or events, such as trees and birds. Grouping
sensory and mental experiences into categories provide many benefits (e.g., cognitive
economy, ability to draw inferences, communicative efficiency), leading to nearly auto-
matic imposition of categories onto sensory input [30]. Categories are fundamental units
of attention, perception and thought. Human understanding and explanation of phenom-
ena invariably utilizes categories. A set of categories and relationships among them can
be viewed as a theory of a domain [33].

Second, human knowledge organization and the mechanisms used to understand
and interpret phenomena are also relational. To cope with the large number of acquired
categories, humans organize them into higher order structures, such as hierarchies, tax-
onomies, or networks [34, 35]. These structures are based on some type of relationships
among the categories (e.g., type of, part of, similar to).

Superimposition: Augmenting Machine Learning Outputs 29

Taken together, categories and relationships provide the fundamental structuring that
facilitates reasoning, understanding and explanation. However, these elements are either
absent from the typical output of machine learning models or inaccessible to the naked
eye. For example, a model built using a deep learning algorithm is comprised of features,
path coefficients, bias, and activation functions [2]. The categories and higher order cat-
egorical structures (e.g., hierarchies) are absent, whereas the relational elements, such
as path coefficients between features are opaque and difficult to understand, especially
in large models. Even a relatively simple decision tree, while containing interpretable
relationships among features, lacks categories. Considering the preponderance of cate-
gories and relationships for human interpretation and explanation, we assume the lack
of such mechanisms undermines explainability in machine learning models.

We propose superimposition as a designmethod for supplementing existingmachine
learning models with conceptual models. Specifically, we observe that any machine
learning model is a model of some domain (e.g., credit card fraud, image classification,
online auctions). The model itself is a set of rules for estimating a value of interest or dis-
criminating among the cases of interest based on previously provided domain examples.
Most commonly, these rules, through a series of mathematical transformations, describe
patterns of relationships among variables of the domain and a target.

Based on the arguments above, we reason that, to support the understanding of a
machine learning model in a domain, we can leverage the knowledge about the cate-
gories and the relationships within that domain. Such knowledge can be obtained from
conceptual data models [36].

Major conceptual modeling grammars, such as the Entity-Relationship Diagrams or
Class Diagrams in UML, rely on entity types or classes (i.e., categories) to represent
domains. Classes distill essential features of objects for storage and use in an informa-
tion system [37, 38]. Identifying classes has traditionally been viewed as one of the most
important steps in systems development [39]. Likewise, relationships are also seen as
fundamental to modeling, because they capture structural connections among the classes
[40]. Research on conceptual modeling, has focused on facilitating accurate (and com-
plete from the point of view of a predefined purpose) representation of domains using
classes and relationships [20].

Superimpositionmaps the output of machine learningmodels (i.e., the features, rules
and transformation functions) onto a conceptual model of the domain. First, the method
assumes a conceptual model of the domain needs to be available or prepared in the form
of an Extended Entity Relationship (EER) diagram. We assume the availability of a
typical EER diagram containing entity types and their corresponding sets of attributes,
which are the fields for the variables used in the machine learning. The entity types are
connected through the relationship types.

Second, once a machine learning model from the same domain is developed, its out-
put needs to be mapped to the related constructs of the conceptual model. The execution
of this step depends on the type of the machine learning model. In all cases, a machine
learning model includes features that are related to attributes in a conceptual model.
These variables can be mapped to attributes in the conceptual model. However, as it is
common to conduct feature engineering and transform variables (e.g., by merging them,

30 R. Lukyanenko et al.

or engineering new variables from the existing ones), this step may not be straightfor-
ward in all applications. The method is intended to provide traceability between the final
variables used and the original source attributes in the conceptual model. This can be
done, for example, by using graphical elements and comments inside the conceptual
model to show transformations from the original features to their final form [25].

Third, themethod suggests indicating inside the conceptual model information about
the rules of the machine learning models. This step depends on the type of machine
learningmodel. For example, if a regressionmodel is used, these rules can be represented
as feature weights or feature coefficients. These coefficients can be appended to the
attributes in the conceptual model, or the attributes can be highlighted differently to
indicate the different relative importance of each attribute.

The final step of the superimposition method involves analyzing the resulting con-
ceptual model to gain a clearer understanding of the underlying rules machine learning
models use to makes its decisions, and to identify opportunities to improve the machine
learning model further.

4 Illustration: Superimposition Using EERD

We illustrate superimposition using a churnmodel on a publicly available dataset1, Telco
Customer Churn. The dataset includes information about customers who left (churned)
within the last month. Each row represents a different customer. A customer may have
signed up for different services such as a phone, multiple lines, internet, online security,
online backup, device protection, tech support, or streaming service. In addition, the
data contains demographic information (e.g., sex, age, gender) and information about
the customer’s account (e.g., tenure, contracts, payment method, monthly charges, and
total charges).

For simplicity, we assume that the conceptual model already exists and is available to
the analyst (see Fig. 1). Entity types represent the categories of interest in a domain, such
as CUSTOMER, CONTRACT, PHONE, INTERNET, or SENIORCITIZEN. Relation-
ships (e.g., isBilled, subscribes) in a conceptual model represent associations among
entity types. Relationships also capture some constraints on the interactions among
entities of different types. For example, a CUSTOMER isBilled through multiple CON-
TRACTS. In a typical ML process, information about relationships among entities is
not explicit, and must be learned, requiring sufficient training data.

In this illustration the machine learning task is a classification task (i.e., the target
variable is the binary variable Churn). The goal is to develop a predictive model that
maps the input features to this target variable. Each customer can subscribe to many
services such as phone, internet, online security, online backup, device protection, tech
support, and streaming through different contracts. The contracts have information such
as payment method, paperless billing, monthly charges, and total charges. Finally, there
is information about customers, such as gender and age.

We construct amachine learningmodel using a general-purpose CPU compute Ama-
zon AWS cloud instance with an Intel Xeon E5-2676 v3 (Haswell) processor, 16 Gb

1 https://www.kaggle.com/blastchar/telco-customer-churn.

https://www.kaggle.com/blastchar/telco-customer-churn

Superimposition: Augmenting Machine Learning Outputs 31

Fig. 1. Superimposed EER model for the telecom. Churn Dataset

Fig. 2. Feature importance random forest (surrogate model)

RAM, and h2oai-driverless-ai-1.8.5 AMI (Amazon Linux). To build a machine learning
model, we used random forest – a popular machine learning model. In Fig. 2, we retrieve
the feature importance from the random forest model by weight in descending order.

32 R. Lukyanenko et al.

We then followed the steps of the superimposition method. We color-code these weights
which are then overlaid in the ER diagram in Fig. 1.

Compared to the traditional features shown in Fig. 2, following the superimposition
(in Fig. 1) provide some insightful patterns for interpreting model results. For instance,
Customers withmonth-to-month contracts (ContractType) had a higher chance of churn-
ing or, after 18 months of having the service (CustomerTenure), the likelihood of churn
decreases. The sharp increase in the likelihood of churning occurs for customers who
pay more than $65.86 a month. Considering that internet subscriptions has all features
detected as important, there also may be opportunity for strategic bundling of internet
service features in order to better serve existing customer needs. Note that we focus on
the feature importance (absolute value). However, we can generate different represen-
tations in Fig. 1 by choosing different layers: Meaningful entities (e.g., aggregating the
explained variance of all the features within an entity), missing values (e.g., potentially
identify any structural issues in the data collection process), and irrelevant attributes
(i.e., not relevant for our purpose) can help in feature selection. In each case, we provide
more information to the decision makers to explain what the machine learning model is
doing.

5 Discussion and Future Work

Our work contributes a method called superimposition to improve explainability of AI
by using conceptual modeling. Although this is work-in-progress, it has potential to
contribute to both conceptual modeling and machine leaning research and practice. The
ML context expands the scope of conceptual modeling beyond traditional information
systems development, process modeling, and database design [41]. The application of
conceptual modeling to ML can create a bridge between the conceptual modeling and
ML communities, foster interdisciplinary connections, and underscore the continued
importance and value of conceptual modeling research [41].

The superimpositionmethod can help increaseMLexplainability. Themethodmakes
it possible to indicate which entities contribute to an ML model’s predictions and how
these entities are related. It also allows the expression of the relationships between
predictors and the target as the relationship between entities and the target. Such infor-
mation is helpful for humans to make sense of phenomena; its absence from current
XAI approaches inhibits their effectiveness. While the method cannot provide an expla-
nation or justification why the model makes a certain prediction, it might aid humans in
reasoning about the logic behind an ML model.

To better support ourmethod, grammar extensions or newmodeling grammarsmight
be needed. For example, as complex ML models require translation of decision rules
and path coefficients into conceptual modeling grammars, new conceptual modeling
constructs may be needed to accommodate this. As we illustrate, grammars could allow
color-coding of attributes included in the ML process as inputs and, perhaps, use one
color to indicate a target attribute and a different color for attributes that cannot be
used in a predictive model due to compliance to regulations (e.g., gender or race).
Furthermore, the method can be applied to other representational artifacts (not just EER,
as we showed here), and, for example, it could superimpose onto domain ontologies or

Superimposition: Augmenting Machine Learning Outputs 33

semantic networks. We thus call on research to extend the method in response to the
need to improve XAI.

We plan to experimentally evaluate the superimposition method by comparing it
with current approaches to XAI based on feature weights as well as other approaches
to explainability. We will expand the method by superimposing the outputs of more
opaque models such as neural networks. Future work should study how to interpret
abstract and complex engineered features using conceptual modeling, particularly when
the underlying features are not from related or adjacent entities. Moreover, future work
should extend the concept of superimposition beyond EER to more general ontologies.

References

1. Marr, B.: The top 10 AI and machine learning use cases everyone should know about. Forbes
(2016)

2. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
3. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
4. Maass, W., Parsons, J., Purao, S., Storey, V.C., Woo, C.: Data-driven meets theory-driven

research in the era of big data: opportunities and challenges for information systems research.
J. Assoc. Inf. Syst. 19, 1253–1273 (2018)

5. Chen, H., Chiang, R.H., Storey, V.C.: Business intelligence and analytics: from big data to
big impact. MIS Q. 36, 1165–1188 (2012)

6. Davenport, T., Harris, J.: Competing on Analytics: Updated, with a New Introduction: The
New Science of Winning. Harvard Business Press, Cambridge (2017)

7. Khatri, V., Samuel, B.: Analytics for managerial work. Commun. ACM 62, 100–108 (2019)
8. Akbilgic, O., Davis, R.L.: The promise of machine learning: when will it be delivered? J.

Cardiac Fail. 25, 484–485 (2019)
9. Bailetti, T., Gad, M., Shah, A.: Intrusion learning: an overview of an emergent discipline.

Technol. Innov. Manage. Rev. 6 (2016)
10. Holzinger, A., Kieseberg, P., Weippl, E., Tjoa, A.M.: Current advances, trends and challenges

of machine learning and knowledge extraction: from machine learning to explainable AI. In:
Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2018. LNCS, vol.
11015, pp. 1–8. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99740-7_1

11. Ransbotham, S., Kiron, D., Prentice, P.K.: Beyond the hype: the hard work behind analytics
success. MIT Sloan Manage. Rev. 57, 3–15 (2016)

12. Sun, T.Q., Medaglia, R.: Mapping the challenges of artificial intelligence in the public sector:
evidence from public healthcare. Govern. Inf. Q. 36, 368–383 (2019)

13. Castelvecchi, D.: Can we open the black box of AI? Nat. News 538, 20 (2016)
14. Gunning, D.: Explainable artificial intelligence (XAI). Defense Advanced Research Projects

agency. Defense Advanced Research Projects Agency (DARPA), nd Web, 2 (2016)
15. Gunning, D., Aha, D.W.: DARPA’s explainable artificial intelligence program. AI Mag. 40,

44–58 (2019)
16. Wachter, S., Mittelstadt, B., Floridi, L.: Why a right to explanation of automated decision-

making does not exist in the general data protection regulation. Int. Data Priv. Law 7, 76–99
(2017)

17. Bubenko, J.A.: On the role of ‘understanding models’ in conceptual schema design. In:
Presented at the Fifth International Conference on Very Large Data Bases 1979 (1979)

18. Mylopoulos, J.: Information modeling in the time of the revolution. Inf. Syst. 23, 127–155
(1998)

https://doi.org/10.1007/978-3-319-99740-7_1

34 R. Lukyanenko et al.

19. Pastor, O.: Conceptual modeling of life: beyond the homo sapiens. In: Comyn-Wattiau, I.,
Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki,M. (eds.) ER 2016. LNCS, vol. 9974, pp. 18–31.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_2

20. Wand, Y., Weber, R.: Research commentary: information systems and conceptual modeling
- a research agenda. Inf. Syst. Res. 13, 363–376 (2002)

21. Lukyanenko, R., Castellanos, A., Parsons, J., Chiarini Tremblay, M., Storey, V.C.: Using
conceptual modeling to support machine learning. In: Cappiello, C., Ruiz, M. (eds.) Infor-
mation Systems Engineering in Responsible Information Systems, pp. 170–181. Springer
International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-21297-1_15

22. Nalchigar, S., Yu, E.: Conceptual modeling for business analytics: a framework and potential
benefits. Presented at the 2017 IEEE 19th Conference on Business Informatics (CBI) (2017)

23. Crevier, D.: AI: TheTumultuousHistory of the Search forArtificial Intelligence. Basic Books,
New York (1993)

24. Cerf, V.G.: AI is not an excuse! Commun. ACM 62, 7–9 (2019)
25. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: explaining the predictions

of any classifier. Presented at the Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2016)

26. Lundberg, S.M., Lee, S.-I.: A unified approach to interpretingmodel predictions. In:Advances
in Neural Information Processing Systems, pp. 4765–4774 (2017)

27. Martens, D., Provost, F.: Explaining data-driven document classifications. Mis Q. 38, 73–100
(2014)

28. Rai, A.: Explainable AI: from black box to glass box. J. Acad. Mark. Sci. 48, 137–141 (2020)
29. Henelius, A., Puolamäki, K., Boström, H., Asker, L., Papapetrou, P.: A peek into the black

box: exploring classifiers by randomization. DataMin. Knowl. Discov. 28, 1503–1529 (2014).
https://doi.org/10.1007/s10618-014-0368-8

30. Harnad, S.: To cognize is to categorize: cognition is categorization. Presented at the,
Amsterdam (2005)

31. Murphy, G.: The Big Book of Concepts. MIT Press, Cambridge (2004)
32. Palmeri, T.J., Blalock, C.: The role of background knowledge in speeded perceptual

categorization. Cognition 77, B45–B57 (2000)
33. Parsons, J., Wand, Y.: Extending classification principles from information modeling to other

disciplines. J. Assoc. Inf. Syst. 14, 2 (2012)
34. Collins, A.M., Quillian, M.R.: Retrieval time from semantic memory. J. Verbal Learn. Verbal

Behav. 8, 240–247 (1969)
35. Hutchinson, J., Lockhead, G.: Similarity as distance: a structural principle for semantic

memory. J. Exp. Psychol. Hum. Learn. Mem. 3, 660 (1977)
36. Burton-Jones, A., Weber, R.: Building conceptual modeling on the foundation of ontology.

In: Computing handbook: information systems and information technology, Boca Raton, FL,
USA, pp. 15.1–15.24 (2014)

37. Borgida, A.: Features of languages for the development of information systems at the
conceptual level. IEEE Softw. 2, 63 (1985)

38. Parsons, J., Wand, Y.: Choosing classes in conceptual modeling. Commun. ACM 40, 63–69
(1997)

39. Sowa, J.F.: Top-level ontological categories. Int. J. Hum Comput Stud. 43, 669–685 (1995)
40. Chen, P.: The entity-relationship model - toward a unified view of data. ACMTrans. Database

Syst. 1, 9–36 (1976)
41. Recker, J., Lukyanenko, R., Jabbari, M.A., Samuel, B.M., Castellanos, A.: From representa-

tion to mediation: a new agenda for conceptual modeling research in a digital world. MIS Q.
(2021)

https://doi.org/10.1007/978-3-319-46397-1_2
https://doi.org/10.1007/978-3-030-21297-1_15
https://doi.org/10.1007/s10618-014-0368-8

Evaluating Tree Explanation Methods
for Anomaly Reasoning: A Case Study

of SHAP TreeExplainer
and TreeInterpreter

Pulkit Sharma1(B), Shezan Rohinton Mirzan1, Apurva Bhandari1,
Anish Pimpley2, Abhiram Eswaran2, Soundar Srinivasan2, and Liqun Shao2(B)

1 University of Massachusetts, Amherst, MA 01002, USA
{psharma,smirzan,apurvabhanda}@umass.edu
2 Microsoft Corp., Cambridge, MA 02142, USA

{anpimple,abeswara,sosrini,lishao}@microsoft.com

Abstract. Understanding predictions made by Machine Learning mod-
els is critical in many applications. In this work, we investigate the perfor-
mance of two methods for explaining tree-based models: ‘Tree Interpreter
(TI)’ and ‘SHapley Additive exPlanations TreeExplainer (SHAP-TE)’.
Using a case study on detecting anomalies in job runtimes of applications
that utilize cloud-computing platforms, we compare these approaches
using a variety of metrics, including computation time, significance of
attribution value, and explanation accuracy. We find that, although the
SHAP-TE offers consistency guarantees over TI, at the cost of increased
computation, consistency does not necessarily improve the explanation
performance in our case study.

Keywords: Explanation · Feature attribution · Interventional
evaluation · Tree interpreter · SHAP TreeExplainer

1 Introduction

Machine learning-based approaches have become popular in automatically
detecting and predicting anomalies in a variety of applications. Anomaly Detec-
tion (AD) [2] has been applied to various domains, such as tracking anomalous
events in traffic surveillance videos [18] and tracking irregular patterns in elec-
trocardiographs of a patient [20]. AD has also become popular in the computing
industry to detect system failures both in multi-server distributed systems [10]
and in embedded systems [3]. A sister domain closely related to AD is Anomaly
Reasoning (AR) that comprises delineating the causal factors associated with an
anomaly. A robust system would not just predict the anomalous events, but also
identify the root causes of a failure or an anomaly. In these applications, AR is
crucial for an efficient analysis of faults, thereby reducing significantly, the time
needed for manual investigation and the required computing resources.
c© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 35–45, 2020.
https://doi.org/10.1007/978-3-030-65847-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-65847-2_4

36 P. Sharma et al.

Interpreting machine learning models correctly has been a challenging task.
Although linear models are easy to interpret, they fail to generalize in real-world
scenarios with predominantly non-linear behavior. This leads to the adoption of
more accurate models at the cost of them being less interpretable. Hence, there
has been a significant recent research emphasis on developing techniques that
could add interpretability to these complex ‘black-box models’.

The LIME [12] algorithm interprets the predictions of any given model by
utilizing explainable analogues that are valid in “local” regions. Another popu-
lar apporach, DeepLIFT [15,16], is used for interpreting Neural Network-based
models by assigning contribution scores to each neuron based on the difference
in its activation to its “reference” activation. Other techniques [7,9,17] take
a game-theoretic approach towards computing feature contributions to model
explanations. Although, all three are primarily based on Shapley values [6], they
calculate and further approximate the values differently to derive feature contri-
butions.

In this paper, we compare the interpretation performance of two popular tree-
explanation methods: the SHapley Additive exPlanation TreeExplainer (SHAP-
TE) [8] for model-agnostic interpretations and the TreeInterpreter (TI) [13].
Specifically, we conduct a case study on the task of reasoning about anomalies
in computing jobs that run in cloud platforms. An example of a recent effort
in this domain is Griffon [14] - Microsoft’s Reasoning infrastructure deployed
on Azure clusters. SHAP-TE averages out contributions of each possible fea-
ture set to obtain the final feature attribution values. This helps in reducing the
bias added to the computation of feature attribution values when only a spe-
cific ordering is considered. However, TI only considers one ordering of features
depending on how the tree was formed. This makes TreeInterpreter as essen-
tially an approximation of SHAP-TE. Hence, we examine the performance of
SHAP-TE using Griffon’s AD algorithm and investigate if the TreeInterpreter’s
approximation-based approach used in Griffon could be generalized to other
datasets or scenarios.

We conduct experiments under a variety of conditions on the recently intro-
duced PostgreSQL dataset [5] and compare the above methods across a variety
of metrics. Our major contributions are summarized as follows:

– Scale Comparison. We compare, empirically, the scaling property of both
methods, in terms of time-complexity, with respect to increasing data size
and depth of trees.

– Performance Comparison. We analyze their trade-offs and provide a novel
analysis of the two methods in ranking features according to their contribu-
tions and attribution accuracy, and also experimentally evaluate the variance
among the contribution values generated by the two methods to measure the
significance of produced ordering of FAs1.

1 Feature Attribution (FA) is defined as the contribution each independent variable or
a “feature” made to the final prediction of a model.

Evaluating Tree Explanation Methods for Anomaly Reasoning 37

– Critique of TI and SHAP-TE. We investigate whether the consistency2

property of SHAP-TE is crucial to making it a preferred method over TI in
this domain on publicly available data, which would facilitate replication by
the research community.

2 Background Work

Unlike linear models, Decision Tree models cannot be represented as sum of
linear contributions of each features for the whole model. Hence, they are difficult
to interpret on the model level. However, individual predictions of a decision
tree can be explained by decomposing the decision path into one component per
feature. One can track a decision by traversing the tree and explain a prediction
(y) by the additive contributions at each decision node as,

y = bias +
M∑

m=1

feature contribution{m,x} (1)

where bias is the contribution of root node and feature contribution{m,x} is
the contribution of feature m in predicting the outcome corresponding to an
input x. Equation (1) forms the basis of TI Package [13], which is available for
interpreting scikit-learn’s decision tree and random forest predictions.

SHAP-TE [8] is another tree-based FAM3 that uses Shapley values from
game theory to make tree-based models interpretable. The feature values of an
input data instance act as players in a coalition. These values essentially dis-
tribute the prediction result among different features. SHapley Additive exPla-
nation (SHAP) [9] value for a particular feature is the weighted average of all the
marginal contributions to the prediction over all possible combinations of fea-
tures. Using SHAP is inherently beneficial in terms of consistency. From [9], a
FAM is consistent if a feature’s attribution value does not decrease on increasing
the true impact of that feature in the model.

Griffon [14], introduced in Sect. 1, uses the notion of delta feature contri-
bution between two different instances of a job type to predict features that
impacted the most to the difference in their runtimes. FA values for both the
jobs are simply subtracted to compute how much each feature contributes to the
deviation in the predictions for both jobs.

Work on the evaluation of Causal Models in [5] discusses the design of inter-
ventional and observational data to analyze the performance of model explana-
tion paradigms. Motivated by their approach, we also adopt the postgreSQL data
presented in their work in the experiments presented in this paper. This dataset
is a collection of SQL queries submitted to stackoverflow server’s database (large-
scale software system) that enables the experimenter to run the same experiment

2 See Sect. 2 for the definition of consistency.
3 Feature Attribution Method (FAM), referred to as the explanation method that cal-

culates FAs to interpret each prediction generated by a model.

38 P. Sharma et al.

multiple times under different, controlled conditions. The conditions are deter-
mined by setting few key configuration parameters, called treatment variables.
The effect of change in one configuration is observed in the output variables such
as Runtime. Using background, domain knowledge, the dependence between the
runtime and the “treatment” variables is established. The features that describe
a job are termed as covariates. Inspired by this work, we adopt the interven-
tional data setting within the scope of Griffon; design of these experiments is
discussed in Sect. 4.

3 Evaluation Approach

In order to group similar data points together, we split the entire data set into
smaller subgroups termed as templates. A template is a group of data points in
which the covariate input features are kept nearly constant4 while the treatment
feature variables are allowed to change for each data point. This approach allows
us to easily establish a relationship between the prediction and the treatment
feature variable for any two datapoints belonging to the same template. Hence, if
we choose a pair of datapoints from a template such that both differ with respect
to some m treatment feature variables, then the deviation in their predictions
can be easily attributed to these m features.

For the case of anomaly detection, we consider pairs of data points from a
particular template. FAM will calculate FA values for both these data points.
These obtained FA values can then be used to reason about the output. In order
to explain the difference in their predictions, we compute the difference in the
computed FA values (See Fig. 1). This is motivated from the delta feature contri-
bution technique used in Griffon. Using the obtained delta feature contributions,
we create an ordered list that ranks all the features from the most important
to the least important feature. From this list of ranked features, we compute
a Rank Biased overlap (RBO) metric [19]5 to measure the similarity of ranked
results produced by both the attribution methods. Motivated by the differences
in RBO values observed Table 1, we further investigate the differences brought
out by lower RBO values in terms of attribution accuracy. We define attribution
accuracy as the fraction of times a FAM is able to correctly identify the cause of
an anomaly. To assess the trade-off between using SHAP-TE and TI, we measure
the attribution accuracy on interventional PostgreSQL data set using proposed
Implicit and Explicit Interventional Measures.

3.1 Implicit Interventional Measure

We use the “Interventional Data” setup proposed by [5] to establish the attribu-
tion accuracy of a particular method of explanation. We refer to this approach as

4 Some of the covariate variables in postgreSQL dataset are continuous, which when
grouped reduces the number of data points per cluster.

5 RBO implementation: https://github.com/changyaochen/rbo.

https://github.com/changyaochen/rbo.

Evaluating Tree Explanation Methods for Anomaly Reasoning 39

an “Implicit Interventional approach” due to the presence of pre-existing treat-
ment variables in our evaluation data and contrast it with a manually manipu-
lated “Explicit Interventional approach” that we will introduce in Sect. 3.2.

We first divide the data set into a set of templates and then choose a pair
of data points from within each template. In this pair, one point acts as an
anomaly, while the other as the base line. We obtain a ranked feature list after
processing this pair of points through an explanation method. The attribution
is deemed to be correct, if the top attributed feature matches the treatment
variable (see Sect. 4). This gives us the Top-1 measure of attribution accuracy.
Similarly by considering the first k elements of the ranked list, we obtain the
Top-k attribution accuracy.

Fig. 1. Overview of the proposed evaluation approach. (x, y) and (x′, y′) are the input,
output pairs for original and intervened data points, respectively. Explainer (e) refers
to one of the explanation methods considered in our work and produces the FA values
corresponding to a prediction. A ranked list is obtained based on their differences and
then check whether the top attributed feature is the same as the intervened one.

3.2 Explicit Interventional Measure

This measure helps us in evaluating correctness of each explanation method
irrespective of deployment. We design this experiment by manually intervening
in the data set to change the value of a treatment variable. Let d be the dimension
of feature space in data set and i represent the index of treatment variable that
was intervened. When we change the ith index for a data point x, we obtain a
new intervened point, x′ (Shown in Fig. 1). Let e(·, F) represent the operator to
produce FA values for a data point under a trained Random Forest model F . The
most important feature is then considered to be the one with highest difference
in attribution value between the original and manually-intervened data point.
Here, our assumption is that this feature should be the same as the manually-
or explicitly-intervened feature i.

i = argmax |e(x′, F) − e(x, F)| (2)

Every data point that satisfies the above relation for a particular explanation
method, contributes as a positive sample for that explanation method. For Post-
greSQL data set used in our experiments described in Sect. 4, we apply the

40 P. Sharma et al.

following two interventions on all the data points for all three treatment vari-
ables,

xi ← (xi ± 1) mod 3 (3)

Since the range of each treatment variable is 0–2, the above operation cov-
ers the domain of each variable. As discussed earlier, change in the values of
treatment variables would affect the run-time of the job as these variables corre-
spond to system settings while running a query. Results for this experiment are
discussed in Sect. 4.5.

4 Experiments and Results

4.1 Experiment and Data Settings

We perform our experiments on the PostgreSQL6 data set that is a sample
of the data from user generated queries on Stack Overflow7. It contains the
execution information for 11, 252 queries run corresponding to 90, 016 different
covariate-treatment combinations on Postgres. Treatment variables for this data
set are three system parameters, namely (i) MemoryLevel: the amount of sys-
tem memory available, (ii) IndexLevel: the type of indexing used for accessing
a query in database and (iii) PageCost: the type of disk page access. Various
outputs of each query are recorded. We choose query Runtime output to analyse
our results.

The PostgreSQL dataset is a large dataset with nearly 1.5 million data
points. Training a Random Forest model on the complete data generates a large
model and this in turn increases the time for computing feature attributions, as
explained in Sect. 4.2. To keep computation times tractable, we sample a subset
from the entire data set ensuring that these samples preserve most of the unique
samples in the original data set. After sampling, we have about 70, 000 data
points, which are further sub-sampled into 60%–20%–20% train-val-test splits.
We run our experiments on a cluster system with Xeon E5-2680 v4 @ 2.40 GHz
processor and 128 GB of RAM.

SHAP-TE and TI can be compared using any tree-based models includ-
ing Decision Trees, GBMs, and Random Forest. However, among these options,
Random Forest models have empirically been shown to have higher accuracy,
especially for high-dimensional data in most real world scenarios [1]. Apart from
Griffon, other anomaly detection research [4,11] also use Random Forests as
their base model. Hence, we choose to use Random Forest for comparing results.

4.2 Runtime Comparison

We train a Random Forest Regression model to predict job runtime in millisec-
onds with a hyper-parameter setting of 200 estimators and a maximum depth 20.

6 Dataset can be found at https://groups.cs.umass.edu/kdl/causal-eval-data.
7 This data is collected in the work by [5].

https://groups.cs.umass.edu/kdl/causal-eval-data

Evaluating Tree Explanation Methods for Anomaly Reasoning 41

As running times are generally log-normally distributed, we use logarithm of
Runtime as the output target.

With large number of jobs in a given computing cluster, the ability to detect
and interpret anomalies in real time becomes crucial. SHAP-TE and TI both
have an amortized computation-time complexity of O(TLD2) where T is the
number of individual estimators, L is the maximum number of leaves in any
tree and D is the maximum depth of any tree. Although the amortized time
complexity is the same for both, their practical running times differ significantly.

0 10 20 30 40 50 6010−4

10−3

10−2

10−1

100
101

MaxDepth

lo
g(
R
un

T
im

e)
(s
)

TreeInterpreter
SHAP-TE

Fig. 2. Comparison of running time vs
MaxDepth. SHAP-TE scales much faster
than TreeInterpreter

First, we compare the scaling
of FAM computation time per data
instance. We observe that TI scales
at 0.058 s per data instance while
SHAP-TE takes 3.44 s per data
instance which is significantly higher.
Second, red lines in Fig. 2 show the
scaling of both methods with the
depth of tree parameter of the Ran-
dom Forest. We observe that both
methods follow a square dependence,
but SHAP-TE again scales worse
that TI. The reason is that SHAP-
TE averages out the contributions for
each decision path while TI just con-
siders the one decision path resulting
in shorter computation time. This indicates that in a practical deployment sce-
nario with large number of data cases and larger tree depth, TI can be more
efficient compared to the SHAP-TE, in terms of computation times.

4.3 Rank List Similarity

We now report results using the rank biased overlap (RBO) measure to bring out
the difference in the feature rankings between the two methods. RBO measures
the set overlap of top selected elements in two lists. We run SHAP-TE and TI
on the entire test set and obtain a list of FAs corresponding to each test point.
We then compute the RBO corresponding to the ranked feature list of each test
data point. Since the top ranked features are more relevant in explaining the
output, we report RBO by considering different number of top elements from
each ranked list. Table 1 shows the median RBO values for different values of
k. As observed, SHAP-TE and TI begin to differ significantly in rankings if we
consider Top-3 and Top-5 ranked features. A median value of 0.61 implies that
for more than 50% of the data points, only 1 feature out of top 3 is the same for
these methods. This motivates us to investigate the differences in their behaviour
in more detail, as described below.

42 P. Sharma et al.

Table 1. Median Rank biased Overlap val-
ues of SHAP-TE and TI.

k RBO

All 0.77

Top-5 0.65

Top-3 0.61

Table 2. Median Variance of attribution
values on test set.

k SHAP-TE TI

All 4.9 × 10−4 6.8 × 10−4

Top-5 5.4 × 10−4 7.8 × 10−4

Top-3 3.6 × 10−4 5.6 × 10−4

4.4 Significance of Attribution Ranking

Since we are using the FA values to generate an ordered ranking of features, it
is necessary to note the the amount of variation in attribution values to inter-
pret the significance of obtained orderings. Higher variance in attribution val-
ues would imply a more significant ordering of features.8 For each data point,
we measure the variance in the magnitude of Top k FA values and report the
median for complete data set. From Table 2, we observe that TI captures nearly
50% more variance in the attribution values than SHAP-TE. This implies that
rankings obtained from TI are more significant than from SHAP-TE.

4.5 Attribution Accuracy: How Correctly Are the Right Features
Attributed

Figure 1 describes the outline of experiment to evaluate the correctness of feature
attribution. To establish feature association, we apply SHAP-TE and TI to the
trained Random Forest model to produce FA values of each feature for every test
data point. These values represent the contribution of each feature in producing
an output. If we have two data points which are almost same, except for changes
across a few feature values, we expect to see change in the output to be attributed
to these differing features. As proposed by Griffon [14], contribution of features
for deviation in outputs can be computed by taking a difference of FA values.

Implicit Interventional Measure. In this scenario, we consider all the data
points where only one of the treatment variable differs and all other variables
including covariates remain the same. We believe this subset of data essentially
emulates the real world scenario where one system parameter is controlled and
remaining query variables are the same.

From the results in Table 3, we see that TI outperforms SHAP-TE for 2 out of
3 Treatment variables for both Top-1 and Top-3 measures. It is worth noting that
the performance of SHAP-TE improves significantly from Top-1 to Top-3. This
is because SHAP-TE always prefers IndexLevel over the other two treatment
variables However, PageCost or MemoryLevel do appear in the attributions at
Rank 2 or 3.
8 For eg, consider 2 lists of attribution values S1 = [1, 1.1, 1.3] and S2 = [1, 3, 5]. The

ranking obtained from values in S2 is more reliable than S1.

Evaluating Tree Explanation Methods for Anomaly Reasoning 43

Table 3. Implicit Interventional Attribu-
tion Accuracy (S-TE stands for SHAP-
TE).

Treatment Top-1 Top-3

S-TE TI S-TE TI

IndexLevel 85% 68% 94% 91%

PageCost 46% 82% 84% 99%

MemoryLevel 62% 79% 86% 98%

Average 64% 76% 88% 96%

Table 4. Explicit Intervention Attribu-
tion Accuracy (S-TE stands for SHAP-
TE).

Treatment Top-1 Top-3
S-TE TI S-TE TI

IndexLevel 81% 80% 92% 97%
PageCost 55% 82% 83% 96%
MemoryLevel 46% 83% 84% 97%

Average 61% 82% 86% 97%

Explicit Interventional Measure. This measure enables us to use the whole
test set for evaluating performance for each treatment variable. We compute the
explicit interventional attribution accuracy of both FAMs on the whole test set.
Table 3 shows attribution accuracy measure when the true feature was among
the top-1 or top-3 attributed features. We observe that average attribution accu-
racy of TI is better than that of SHAP-TE in both cases. Even for individual
treatment variables, TI is significantly better in all cases except for Top-1 in
IndexLevel (Table 4).

5 Conclusion

We evaluated two prominent feature attribution methods for explaining tree-
based models. The results show that the two methods differ in various aspects
of efficacy and efficiency. In our case study, we observe that the amount of time
that SHAP-TE takes to compute attribution values is nearly 60× higher than
that of TI. This could be a potential constraint in certain large-scale computing
applications.

We also compared the performance accuracy of these methods using two dif-
ferent interventional approaches and observe that, on average, TI outperforms
SHAP-TE. Based on these results, we conclude that despite the consistency guar-
antees, SHAP-TE does not provide benefits, in terms of attribution accuracy, in
our case study of explaining job anomalies in cloud-computing applications. In
addition, we have found that using TI provides high quality results at a lower
computational footprint.

We invite the research community to build on our findings. The code used
for obtaining these results is available publicly9.

Acknowledgements. We thank our mentors, Javier Burroni and Prof. Andrew
McCallum, for their guidance. We also thank Minsoo Thigpen for organizational sup-
port, as well as Scott Lundberg for providing insightful suggestions on a earlier draft.
Finally, we thank anonymous reviewers for their feedback.

9 https://github.com/sharmapulkit/TreeInterpretability AnomalyExplanation.

https://github.com/sharmapulkit/TreeInterpretability_AnomalyExplanation

44 P. Sharma et al.

References

1. Caruana, R., Karampatziakis, N., Yessenalina, A.: An empirical evaluation of
supervised learning in high dimensions. In: Proceedings of the 25th International
Conference on Machine Learning, ICML 2008, pp. 96–103 (2008)

2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. 41, 1–58 (2009)

3. Cuzzocrea, A., Mumolo, E., Cecolin, R.: Runtime anomaly detection in embedded
systems by binary tracing and hidden Markov models. In 2015 IEEE 39th Annual
Computer Software and Applications Conference, vol. 2, pp. 15–22 (2015)

4. Duque Anton, S., Sinha, S., Schotten, H.: Anomaly-based intrusion detection in
industrial data with SVM and random forests, pp. 1–6 (2019)

5. Gentzel, A., Garant, D., Jensen, D.: The case for evaluating causal models
using interventional measures and empirical data. In: Wallach, H., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural
Information Processing Systems, vol. 32, pp. 11722–11732. Curran Associates Inc.
(2019)

6. Kuhn, H.W., Tucker, A.W.: Contributions to the Theory of Games, vol. 2. Prince-
ton University Press, Princeton (1953)

7. Lipovetsky, S., Conklin, M.: Analysis of regression in game theory approach. Appl.
Stochast. Models Bus. Ind. 17, 319–330 (2001)

8. Lundberg, S.M., et al.: From local explanations to global understanding with
explainable AI for trees. Nat. Mach. Intell. 2(1), 2522–5839 (2020)

9. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems, vol. 30 (2017)

10. Peiris, M., Hill, J.H., Thelin, J., Bykov, S., Kliot, G., Konig, C.: PAD: perfor-
mance anomaly detection in multi-server distributed systems. In: 2014 IEEE 7th
International Conference on Cloud Computing, pp. 769–776 (2014)

11. Primartha, R., Tama, B.A.: Anomaly detection using random forest: a performance
revisited. In: 2017 International Conference on Data and Software Engineering
(ICoDSE), pp. 1–6 (2017)

12. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should I trust you?”: explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, 13–17 August 2016, pp. 1135–1144 (2016)

13. Saabas, A.: Treeinterpreter. https://github.com/andosa/treeinterpreter
14. Shao, L., et al.: Griffon. In: Proceedings of the ACM Symposium on Cloud Com-

puting - SoCC 2019 (2019)
15. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through

propagating activation differences. CoRR abs/1704.02685 (2017)
16. Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not just a black

box: learning important features through propagating activation differences. CoRR
abs/1605.01713 (2016)

17. Štrumbelj, E., Kononenko, I.: Explaining prediction models and individual predic-
tions with feature contributions. Knowl. Inf. Syst. 41, 647–665 (2013)

18. Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance
videos. In: The IEEE Conference on Computer Vision and Pattern Recognition
(2018)

https://github.com/andosa/treeinterpreter

Evaluating Tree Explanation Methods for Anomaly Reasoning 45

19. Webber, W., Moffat, A., Zobel, J.: A similarity measure for indefinite rankings.
ACM Trans. Inf. Syst. 28, 4 (2010)

20. Wulsin, D., Blanco, J., Mani, R., Litt, B.: Semi-supervised anomaly detection for
EEG waveforms using deep belief nets. In: 2010 Ninth International Conference on
Machine Learning and Applications, pp. 436–441 (2010)

Conceptual Modeling for Life Sciences
(CMLS) 2020

Preface

Anna Bernascon1 , Arif Canakoglu1 , Ana León Palacio2 ,
and José Fabián Reyes Román2

1 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico
di Milano, 20133 Milano, Italy

{anna.bernasconi,arif.canakoglu}@polimi.it
2 PROS Research Center, Universitat Politécnica de Valéncia, Camino de

Vera s/n, 46022 Valencia, Spain
{aleon,jreyes}@pros.upv.es

The recent advances in unraveling the secrets of human conditions and diseases have
encouraged new paradigms for their prevention, diagnosis, and treatment. As the
information is increasing at an unprecedented rate, it directly impacts the design and
future development of information and data management pipelines; thus, new ways of
processing data, information, and knowledge in health care environments are strongly
needed.

The International Workshop on Conceptual Modeling for Life Sciences (CMLS)
was held in 2020 for the first time. Its objective is to be, both, a starting meeting point
for Information Systems (IS), Conceptual Modeling (CM), and Data Management
(DM) researchers working on health care and life science problems, and an opportunity
to share, discuss, and find new approaches to improve promising fields, with a special
focus on Genomic Data Management – how to use the information from the genome to
better understand biological and clinical features – and Precision Medicine – giving
each patient an individualized treatment by understanding the peculiar aspects of the
disease. From the precise ontological characterization of the components involved in
complex biological systems, to the modeling of the operational processes and decision
support methods used in the diagnosis and prevention of disease, the joined research
communities of IS, CM, and DM have an important role to play; they must help in
providing feasible solutions for a high-quality and efficient health care.

This first edition of CMLS has attracted high quality submissions centered around
the modeling of data, systems, and processes of the life sciences domain. Six papers
were selected after a blind review process that involved at least two experts from the
field for each submission. All of them provide significant insights related to the
problem under investigation, and they confirm an interesting technical program to
stimulate discussion, which is complemented with an invited keynote by Paolo Missier
on workflow representation for genomic variants data. We expect a growing interest in
this area in the coming years; this was one of the motivations for planning the
workshop in conjunction with the ER 2020 conference.

Acknowledgements. We would like to express our gratitude to Stefano Ceri and Oscar
Pastor who suggested the organization of this workshop and shared important insights
along the way. We also thank the Program Committee members for their hard work in
reviewing papers, the authors for submitting their works, and the ER 2020 Organizing

http://orcid.org/0000-0001-8016-5750
http://orcid.org/0000-0003-4528-6586
http://orcid.org/0000-0003-3516-8893
https://orcid.org/0000-0002-9598-1301

Committee for supporting our workshop. We also thank ER 2020 workshop chairs
Georg Grossmann and Sudha Ram for their direction and guidance. CMLS 2020 was
organized within the framework of the projects ERC Advanced Grant 693174 “data-
driven Genomic Computing” and DataMe – Spanish State Research Agency
(TIN2016-80811-P).

Preface 49

The Importance of the Temporal Dimension
in Identifying Relevant Genomic Variants:

A Case Study

Mireia Costa(B), Ana León , and Óscar Pastor

Universitat Politècnica de València, 46022 Valencia, Spain
micossan@etsii.upv.es, {aleon,opastor}@pros.upv.es

Abstract. The identification of relevant genomic variants is key for providing a
more reliable and precise diagnosis of diseases with a known genetic component.
Nevertheless, this is a complex and time-consuming process that is affected by
multiple factors such as the quality of the information and the heterogeneity of
the data sources. Another characteristic of genomic knowledge is its evolution,
which may cause the number of known relevant variants to change over time. This
forces the experts to repeat the process multiple times to keep the information and
the affected diagnosis correctly updated. For a particular disease, new relevant
variants can be identified, while old ones may not be as significant as initially
considered. The SILE method aims to systematize and facilitate the variant iden-
tification process, reducing the time required for the analysis and allowing the
experts to repeat it as many times as needed in order to keep up to date with new
knowledge. To highlight the importance of the temporal dimension and the need
for such methods, SILE has been applied to a case study at two different time
points to compare how the number of variants initially considered to be relevant
has evolved during a short period of time. The results obtained demonstrate the
need for considering the temporal dimension in the development of methods such
as SILE in order to provide a more accurate and up-to-date genetic diagnosis.

Keywords: Information systems · SILE method · Case study

1 Introduction

The identification of relevant genomic variants is key for providing a more reliable and
precise diagnosis of diseases with a known genetic component such as Early Onset
Alzheimer’s Disease (EOAD) [1], which was selected as a case study. Nevertheless, this
is a complex and time-consuming process that is affected by multiple factors such as the
quality of the information and the heterogeneity of the data sources.

The information related to the genomic variants and their role in the development
of the disease is stored in specialized databases and repositories such as ClinVar [2],
Ensembl [3], GWAS Catalog [4], and SNPedia [5]. In order to select the clinically
actionable variants that are required to provide a genetic diagnosis from these data
sources, the valuable information must be adequately identified, integrated, analyzed,

© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 51–60, 2020.
https://doi.org/10.1007/978-3-030-65847-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_5&domain=pdf
http://orcid.org/0000-0003-3516-8893
http://orcid.org/0000-0002-1320-8471
https://doi.org/10.1007/978-3-030-65847-2_5

52 M. Costa et al.

and interpreted. In clinical care and precisionmedicine, clinically actionable variants are
changes in DNA that are clinically significant (commonly pathogenic, likely pathogenic,
and risk factors) and that can be acted upon by health care providers (actionable) with
their patients. However, this is a complex and time-consuming process for two main
reasons. First, not all the information is valid to be applied in a clinical domain due to
the following: the absence of information about its clinical relevance; the presence of
discrepancies (conflicts) between experts when interpreting the clinical significance of
the variants (e.g., one expert interprets the variant as pathogenic and other as benign); the
absence of specification of the criteria (assertion criteria) used to make the interpretation
(e.g., the thresholds used for allele frequencies or statistical measures; the type of studies
considered, etc.); and the presence of outdated information in the genomic repositories.
Second, the information associated with genomic variants is dynamic and in constant
growth associated to the accumulated human genome knowledge that is under constant
evolution which means that the number of known relevant genomic variants may change
over time.

Because of these problems, it is necessary to define standardized processes for sys-
tematizing the relevant genomic variant selection. However, after doing a thorough
review of the literature, we did not find any systematic approach for selecting the relevant
variants from diverse, heterogenous databases and repositories. Some interesting works
are oriented to evaluating the reliability of the variant interpretation [6–8], but none of
them evaluates the quality of the information that can be obtained from the stored data.
To meet these needs, the Research Center on Software Production Methods (PROS)
from the Universitat Politècnica de València has developed the SILE method [9], which
assists the experts in the identification process and allows the process to be repeated as
many time as needed, thus reducing the effort required. The SILE method is explained
in further detail in Sect. 2.

The SILEmethod provides a solution to the problem of identifying relevant genomic
variants. However, even when using the same data sources, the application of SILE at
different time points may produce different results, which is cumbersome when talking
about information that is to be used in clinical, genome-based diagnosis. In this paper, we
assess the impact of the temporal dimension of the genomic data, by applying the SILE
method to a specific case study (EOAD) at two different time points. As is highlighted
throughout the paper, confirming the fact that results change over time has two important
implications: i) the importance of performing a continuous assessment of what is to be
considered relevant information; and ii) the importance of tracking what information is
changing over time in order to delimit how this can affect clinical reports that were done
in the past.

The paper is structured as follows: after the introduction, Sect. 2 presents the SILE
method as the methodological background. In Sect. 3, the workflow is applied to the
EOAD case at two different time points. Finally, Sect. 4 discusses conclusions and future
work.

2 Methodological Background: The SILE Method

The PROS R&D center has developed the SILE method [9] in order to define a strategy
to systematize the process of identifying genomic variants with sufficient evidence and

The Importance of the Temporal Dimension 53

quality to be applied in the clinical field. The SILEmethodmakes it possible to efficiently
manage genomic data, which allows experts to easily identify a valuable and useful set
of relevant genomic variants for diagnostic purposes. Thus, thanks to the SILE method,
the experts can make a faster and more accurate genomic diagnosis, which also benefits
the patients.

The name of the SILE method refers to the four stages that are necessary to achieve
the proposed objective (see Fig. 1):

S
•Search of data sources that meet: believability, relevance, reputation, currency, and
accessibility.

I
•Identification of variants with sufficient evidence to be useful for their application in
the clinical domain.

L
•Load the variants identified as relevant in a repository suitable for its following
exploitation.

E
•Extract knowledge from the repository for diagnostic purposes, using the information
stored in the previous stage.

Fig. 1. Stages of SILE method

The goal of the identification stage of the SILEmethod is to obtain quality results for
any disease by determining clinically significant variants. Figure 2 shows the different
steps that make up the workflow used for the identification of those relevant variants.

This workflow is made up of 13 Steps (F1 to F13). Steps F1 and F2 evaluate the
clinical significance of the variants. Specifically, Step F1 evaluates whether the clinical
significance of the variant has been interpreted, and Step F2 evaluates if the signifi-
cance is clinically relevant (pathogenic, likely pathogenic, or risk factor). These vari-
ants are known as “clinically actionable” because they can be used to suggest medical
recommendations for health care.

Steps F3 and F7 are introduced to select the variants according to the relevance of the
source where the interpretation comes from. First, Step F3 checks whether the source is
a practice guideline or if the interpretation has been done by an expert panel (the most
trustworthy type of sources); the variants with clinically actionable significance that
come from these sources will be classified as Accepted with Strong Evidence. Second,
to assess other levels of relevance or reputation, Step F7 checks the expertise of the
experts that perform the interpretation, i.e., if the expert has at least 200 submissions in
the database. Experts that have more experience in this task are considered to be more
reliable.

Step F4 checks if the gene considered by the experts to be affected by the variant
(e.g., located in a coding region or in a regulatory region) is a gene of interest for the
disease (i.e., with a documented association to the development of the disease). It is
important to remark that the consideration of a gene as being affected by a variant is
information that is provided by the experts that perform the interpretation based on their
expertise in the field.

54 M. Costa et al.

Fig. 2. The workflow used for identifying the relevant variants in the identification stage of the
SILE method. Diamonds represent the steps where the quality of each variant is evaluated and
have two different outputs (the variants that pass and those that do not). Rectangles indicate inputs
and outputs from the workflow (list of variants). Rounded rectangles indicate actions to be taken.

The analysis continues with Step F5, which evaluates whether the method used to
assess the association of the variant with the development of the disease is from clinical
testing. This means that the variants have been found in studies that involve the analysis
of samples coming from patients that are affected by the disease.

Steps F6 and F8 evaluate the assertion criteria (the criteria used by the expert
to assign the variant its clinical significance). First, Step F6 checks if the assertion
criteria are provided. Second, Step F8 checks if the American College of Medical
Genomics/Association forMolecular Pathology (ACMG/AMP) guidelines are the asser-
tion criteria used. As an internationally accepted, widely used criteria, the use of
ACMG/AMP guidelines is a guarantee of the interpretation’s quality. If Step F8 is ful-
filled (along with Steps F2-F4-F5-F6-F7), the variant will be classified as Accepted with
Moderate Evidence.

If Step F8 is not fulfilled, Step F9 evaluates if the last interpretation of the clinical
significance was made in the last three years, ensuring that even when the criteria used
are not the desirable ones, at least the information is updated. If this step fulfilled the
variant will be classified as Accepted with Limited Evidence; otherwise, the variant will
be classified as Rejected.

Steps F10 to F12 evaluate the presence of conflicts among experts regarding the
clinical significance assigned to the variant. When there are conflicts, databases such as
ClinVar assign the term“conflicting interpretation” as clinical significance.Nevertheless,
a variant can be pathogenic for one disease and benign for another. This is not considered
by ClinVar when assigning conflicts, which can lead to misclassifications. To ensure that
no relevant variant is incorrectly rejected, Steps F10 to F12 verify whether there is a

The Importance of the Temporal Dimension 55

real conflict in a variant’s clinical significance. First, Step F10 selects the variant with
conflictive interpretations. Then, Step F11 evaluates whether the conflicts affect the same
phenotype. If the conflict occurs in the same phenotype, Step F12 evaluates if there is
agreement among at least 75% of the experts. If so, the interpretation of the variant will
be reassigned.

Finally, there is an evaluation (Steps F4 and F13) of the variants that do not have
an associated clinical significance because sometimes they could have information that
supports their relationshipwith the disease. Step F13 analyzes the relevance of the related
studies (in terms of their statistical relevance), and Step F4 analyzes whether the variants
are located in a gene of interest, as explained above. If these steps are fulfilled, the variant
will be classified as “To Follow Up”, which is a classification given to the variants that
do not have enough quality to be considered relevant right now but that could be relevant
in the near future.

As mentioned above, depending on the criteria fulfilled by the variants, they can
be classified into five different types: Rejected, To Follow Up, Accepted with Strong
Evidence, Accepted with Moderate Evidence, and Accepted with Limited Evidence.

3 Case Study: Variant Identification in Early Onset Alzheimer’s
Disease

Alzheimer’s disease (AD) is the most common type of dementia in the elderly [10],
but a small percentage (2–10% of all cases of AD) appears in patients younger than 65
years old [11]. That form of the disease is known as Early Onset Alzheimer’s Disease
(EOAD).

Since the most significant factor for the development of this disease is the genetic
component (92–100% of heritability) [1], determining relevant genomic variants is
important to be able to achieve a more reliable and precise diagnosis. Nevertheless,
due to the large amount of information and its heterogeneity, determining these variants
is not easy. The data quality problems require the use of methods like SILE to simplify
the identification of relevant variants.

The identification starts with a list of variants that are initially related to EOAD.
These variants have been extracted from ClinVar [2], which is a well-known and widely
used database. Clinvar has been chosen as the source of information because: i) it makes
a previous validation of all of the information that is submitted into the database (as a
previous verification of the information’s quality); ii) it is continuously updated (at least
once a month); and iii) it fulfills all of the requirements defined in the Search Stage of
the SILE method (believability, relevance, reputation, currency, and accessibility) [12,
13].

In this case study, we have obtained and compared the results of the SILE method
application at two different time points. As time points, we have selected May 18, 2020
and July 9, 2020 to determine whether different results are obtained even considering
such a short amount of time. Our intention was to confirm that using such a minimum
distance between the time points was sufficient to get results that are significant enough
to allow us to make a valuable comparison. The objective was to determine how fast

56 M. Costa et al.

knowledge evolves and to evaluate the impact of the temporal dimension in providing
accurate and reliable genomic diagnosis.

The list of variants to be analyzed was obtained by using the following query in the
ClinVar website:

((alzheimer[Disease/Phenotype] AND “early onset” [Disease/Phenotype])) OR
((alzheimer[Disease/Phenotype] AND (“type 1” [Disease/Phenotype] OR “type
3”[Disease/Phenotype] OR “type 4” [Disease/Phenotype]))

Only the variants related to Early Onset Alzheimer’s Disease and the corresponding
Alzheimer’s subtypes (type 1, type 3, and type 4) were selected with the query. The
results were downloaded in tabular format. By repeating the same process, in July 40
new variants associatedwith the disease have been added to the database, resulting in 316
variants. These first results clearly indicate that genomic information increases rapidly
and changes over time.

A detailed analysis of the differences between the two lists of variants shows the
number of variants grouped by clinical significance of both time points (Fig. 3).

58

13 3 0

121

37

7
18 19

57

12 4 2

143

10 15
35 38

0
20
40
60
80

100
120
140
160

May July

Fig. 3. Number of variants grouped by clinical significance

Figure 3 shows the differences between the distribution of the variants between
May and July and the number of variants (grouped by their clinical significance) in
the selected time points. First, one Pathogenic variant (rs63750450) is missing in July
compared to May. Upon further analysis, we noticed that this variant is classified in July
as pathogenic/likely pathogenic because a new submission that interprets the variant as
likely pathogenic led to this change in clinical significance. The remaining 57 variants
did not change in July sinceMay. The case of this pathogenic variant is also a justification
for the increase in pathogenic/likely pathogenic variants. There were no other changes
on the pathogenic/likely pathogenic list of variants in July with respect to May. Second,

The Importance of the Temporal Dimension 57

when comparing the lists of likely pathogenic variants, we found that a likely pathogenic
variant (rs1566630791) was also missing in July. In this case, the variant changed its
clinical significance to conflicting interpretation.Theother 12variants remain unchanged
in May and July.

Another difference to take into consideration is the two new risk factor variants.
These two variants (rs1800562 and rs547447016) were classified in May as conflicting
interpretation, but by July their clinical significance had changed to risk factor.

Finally, the main difference between the two lists is in benign, likely benign,
benign/likely benign, and conflicting interpretation variants. In the benign/likely benign
and the benign variants there are differences because new variants have appeared. In
likely benign variants, the differences can mostly be justified as being misclassified as
conflicting interpretation. The differences found in likely benign variants and conflicting
interpretation variants are interrelated.

All of these differences are a clear sign that the knowledge in the genetic domain
evolves and grows quickly. It is also an indicator that the temporal dimension could have
an important impact on the number of variants considered to be relevant. Let us see the
results of the identification stage in order to study the impact of this temporal dimension.

In the first workflow steps, Steps (F1–F2), the clinically actionable variants
(pathogenic, likely pathogenic, pathogenic/likely pathogenic, and risk factor) are
selected. The results presented in Fig. 3. show that 74 variants in May and 75 variants in
July would pass the filters. But these results do not take into account the variants that are
incorrectly classified as conflicting interpretation, which is something that commonly
occurs in databases and repositories such as ClinVar.

When analyzing the conflicting interpretationvariants inStepsF10 toF12,wenoticed
that some clinically actionable variants had been misclassified as conflicting interpre-
tation. Specifically, 4 variants in May and 3 variants in July that ClinVar classifies as
conflicting interpretation were considered as clinically actionable for the studied phe-
notype. In the two cases, the misclassification of the variants is explained by the way
in which ClinVar treats the conflicts. This supports the need for a careful review of the
interpretations to identify these situations. When added to those that had been correctly
classified the misclassified variants, yield 78 variants from May and 78 variants from
July which fulfills the requirements of Step F2.

The misclassification as conflicting interpretation also explains the great increase
in these variants and the decrease in likely benign variants. After applying the Steps
F10 to F12, in July, we noticed that 20 likely benign variants had been misclassified as
conflicting interpretation. Also, 2 benign variants and 3 benign/likely benign variants had
also been misclassified. These results indicate that the decrease in the number of likely
benign variants is highly related to the misclassification of these variants as conflicting
interpretation.

For clinically actionable variants (up to 78 at each lists), at the end of the identifi-
cation, these 78 variants were classified as Accepted with Limited Evidence, Accepted
with Moderate Evidence, Rejected, or To Follow Up. Figure 4 shows the number of
variants for each classification:

First, a new variant appeared as classified To Follow Up (rs63750687). Second,
the variants classified as Accepted with Limited Evidence coincide in both months.

58 M. Costa et al.

245

2
25

4

283

3
25

5
0

50

100

150

200

250

300

Rejected To Follow Up Accepted with
Limited Evidence

Accepted with
Moderate Evidence

May July

Fig. 4. Results obtained after the identification stage of the SILE method

The most important finding is that a new variant classified as Accepted with Moderate
Evidence (rs63750687) appeared in July. This variant also appeared on the May list but
was classified as Rejected. After studying the information available for this variant by
analyzing the method used in the two different submissions, we noticed a mistake in
ClinVar’s own filters: the variant did not appear in May if we filtered the variants by the
clinical testing method, but the variant actually did have a submission that has a method
clinical testing. This is an unclear situation that is related to an undetected mistake in
ClinVar’s engine, which justifies the absence of this variant on the May list and serves
as an example of the importance of reviewing the results periodically.

It is also noteworthy that at each time point most of the variants were classified as
Rejected. Either way, most of the variants were rejected because they have no clinically
actionable interpretations (e.g., benign variants, likely benign variants, and uncertain
significance variants). The aim of ClinVar is to determine the clinical significance of
variants, whatever may be, in order to have evidence about the role of variants in the
development of disease. Databases such as ClinVar allow variants from studies that
have been previously found to be unrelated to the disease of interest to be quickly
discarded. The reduced number of interesting variants for clinical purposes highlights
the complexity of the biological processes associated with disease. Figure 3 shows that
202 variants in May and 203 variants in July are not clinically actionable. This justifies
the high number of rejected variants, together with the number of clinically actionable
variants that are not classified as accepted because they do not have enough quality to
be considered in a clinical setting.

All of the results presented highlight how the number of relevant variants to be
considered in a genomic diagnosis had changed in a short period (two months). Since
these variants are oriented to facilitating the diagnosis of EOAD (and other diseases),
experts must be able to understand how the variants on which they base their diagnose
change over time and why. The SILE method easily lets us compare and understand the
evolution of the information, because the changes in the variants’ classification can be
easily tracked and justified. The transparency of the process provides clear explanations

The Importance of the Temporal Dimension 59

about the results obtained. This increases the trust of the users in the method and helps
to evolve its accuracy as new knowledge and diseases are explored.

These results clearly support the need for taking into account the temporal dimension
in the development of methods such as SILE in order to provide support for a more
accurate and up-to-date genomic diagnosis. When we talk about clinical information
that affects genomic diagnosis, keeping track of changes over time and allowing these
differences in the obtained results to be automatically displayed becomes a must. This
work shows that these changes exist and can be concretized, which is a first step in
designing a software platform that can provide a general solution to this problem.

4 Conclusions and Future Work

One important dimension of genomic data is its growth and evolution over time [14].
As the results of the workflow application in Sect. 3 show, a new To Follow Up variant
and a new Accepted with Moderate Evidence variant appeared just two months apart.
Other changes, such as the number of variants found in the database and changes in
the variants’ classification and interpretation also appeared. This demonstrate that this
dimension of the genomic data should be considered when using this information for
clinical diagnosis.

If a diagnosis is made in July based on the results obtained in May, important infor-
mation could be missing. This could crucially affect the goal of providing a reliable
diagnosis. Because the SILE method provides a clear explanation for whether or not a
variant should be considered for genomic diagnosis, the results and their evolution over
time can be easily compared. The results presented in this work support this claim since
all of the differences detected on the lists of May and July variants have been easily
explained and justified.

A clearer view of this data evolution over time must be included in the identification
stage. Further work associated with the SILE method must study new features related
to the temporal evolution of genomic data such as reporting changes in the clinical
significance of the variants over time (not only the current significance). To do this, the
workflow in this work has been automatized and is ready to be incorporated into a future
software platform that will exploit the results obtained by the workflow application in an
understandable, traceable way. This will facilitate the automatic display of the results of
the differences found over time. We plan to apply the method at different time points to
other diseases in order to gain a more accurate perspective of how information evolves
in different contexts.

Acknowledgements. This work has been developed with the financial support of the Spanish
State Research Agency and the Generalidad Valenciana under the projects TIN2016-80811-P and
PROMETEO/2018/176, co-financed with ERDF.

References

1. Cacace, R., et al.: Molecular genetics of early-onset Alzheimer’s disease revisited.
Alzheimer’s Dement 12(6), 733–748 (2016)

60 M. Costa et al.

2. Landrum, M.J., et al.: ClinVar: improving access to variant interpretations and supporting
evidence. Nucleic Acids Res. 46(D1), D1062–D1067 (2018)

3. Hunt, S.E., et al.: Ensembl variation resources. Database 2018, 1–12 (2018)
4. Buniello, A., et al.: The NHGRI-EBI GWAS catalog of published genome-wide association

studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47(D1), D1005–
D1012 (2019)

5. Cariaso, M., et al.: SNPedia: a wiki supporting personal genome annotation, interpretation
and analysis. Nucleic Acids Res. 40(D1), D1308 (2012)

6. Duzkale, H., et al.: A systematic approach to assessing the clinical significance of genetic
variants. Clin. Genet. 84(5), 453–463 (2013)

7. Sefid Dashti, M.J., et al.: A practical guide to filtering and prioritizing genetic variants.
Biotechniques 62(1), 18–30 (2017)

8. Panoutsopoulou, K., Walter, K.: Quality control of common and rare variants. In: Evangelou,
E. (ed.) Genetic Epidemiology. MMB, vol. 1793, pp. 25–36. Springer, New York (2018).
https://doi.org/10.1007/978-1-4939-7868-7_3

9. León Palacio, A., et al.: Smart data for genomic information systems: the SILE method.
Complex Syst. Inf. Model. Q. (17) 1–23 (2018)

10. Lane, C.A., et al.: Alzheimer’s disease. Eur. J. Neurol. 25, 59–70 (2018)
11. Van Cauwenberghe, C., et al.: The genetic landscape of Alzheimer disease: clinical

implications and perspectives. Genet. Med. 18(5), 421–430 (2016)
12. León Palacio, A., et al.: Genomic information systems applied to precisionmedicine: genomic

data management for alzheimer’s disease treatment. Int. Conf. Inf. Syst. Dev. (2018)
13. León Palacio, A., Pastor López, Ó., Casamayor Ródenas, J.C.: A method to identify relevant

genome data: conceptual modeling for the medicine of precision. In: Trujillo, J.C., Davis,
K.C., Du, X., Li, Z., Ling, T.W., Li, G., Lee, M.L. (eds.) ER 2018. LNCS, vol. 11157,
pp. 597–609. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_44

14. Pastor, O.: Conceptual modeling meets the human genome. In: Li, Q., Spaccapietra, S., Yu,
E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 1–11. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-87877-3_1

https://doi.org/10.1007/978-1-4939-7868-7_3
https://doi.org/10.1007/978-3-030-00847-5_44
https://doi.org/10.1007/978-3-540-87877-3_1

Towards the Generation
of a Species-Independent Conceptual

Schema of the Genome

Alberto Garćıa S.(B) and Juan Carlos Casamayor

PROS Research Center, Universitat Politècnica de València, Valencia, Spain
{algarsi3,jcarlos}@pros.upv.es

Abstract. Understanding the genome, with all of its components and
intrinsic relationships, is a great challenge. Conceptual modeling tech-
niques have been used as a means to face this challenge, leading to
the generation of conceptual schemes whose intent is to provide a pre-
cise ontological characterization of the components involved in biological
processes. However, the heterogeneity and idiosyncrasy of genomic use
cases mean that, although the genome and its internal processes remain
the same among eukaryote species, conceptual modeling techniques are
used to generate conceptual schemes that focus on particular scenarios
(i.e., they are species-specific conceptual schemes). We claim that instead
of having different, species-specific conceptual schemes, it is feasible to
provide a holistic conceptual schema valid to work with every eukaryote
species by generating conceptual views that are inferred from that global
conceptual schema. We report our preliminary work towards the possi-
bility of generating such a conceptual schema by ontologically comparing
two existing, species-specific conceptual schemes. Those changes that are
necessary to provide an expanded conceptual schema that is suitable for
both use cases are identified and discussed.

Keywords: Conceptual Modeling · Genomics · Conceptual Schema

1 Introduction

Conceptual Modeling (CM) is the activity of describing aspects of the world for
the purpose of understanding and communication [12]. It answers fundamen-
tal questions regardless of the research area by identifying what concepts are
relevant and the relationships among them. Conceptual models make mental
representations of the world explicit, which helps to establish common ontolog-
ical frameworks that facilitate both communication and knowledge evolution in
complex domains [4].

An example of such a convoluted and vast domain is genomics, where under-
standing the genome with all the intrinsic relationships that should allow to deci-
pher the code of life conforms a huge challenge. The complexity of the genomic
domain has two main reasons. The first one is the existence of relevant concepts
c© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 61–70, 2020.
https://doi.org/10.1007/978-3-030-65847-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_6&domain=pdf
http://orcid.org/0000-0001-5910-4363
http://orcid.org/0000-0001-5160-9092
https://doi.org/10.1007/978-3-030-65847-2_6

62 A. Garćıa S. and J. C. Casamayor

that are not clearly defined. Even the definition of the most elemental concepts,
like the concept of “gene”, are open to discussion [15]. The second one is that
it is an ever-changing domain, with new knowledge emerging continuously [18].
Therefore, the genomic domain is a particularly good candidate to apply CM
techniques.

In the last years, our research group has developed the Conceptual Schema
of the Human Genome (CSHG) as proof of how CM can help improving domain
understanding and communication. Our main research line has focused on the
human case, and the CSHG has been intended to provide a more explicit and
precise understanding of the human genome. Moreover, the CSHG has probed
to be valid and useful for its purpose in multiple real-world use cases [13,14,17].

The genome is what explains what we -humans- understand by life on our
planet. Sharing a common conceptual background, genome representation is a
problem that affects any species of living beings. However, having a Conceptual
Schema (CS) that only focuses on the human genome can be seen as a limitation
in this context. Facing a study of any different species could mean that a new
CS has to be created, or adapted, to cover its particularities adequately. We
encountered this problem when working with geneticists that focus on the study
of citrus, having to consider a particular CS of the Citrus Genome. As a result,
our research group ended up having two conceptual schemes: the CSHG and the
Conceptual Schema of the Citrus Genome (CSCG) [6], even if in both cases we
are talking about “genome”, and their conceptual background is supposed to be
the same.

Although the scenarios that has motivated the generation of these schemes
were different, with their particularities, a question prowled our mind: Does each
species need a specific CS adapted to the problem under investigation, or is it
possible to have a single, holistic CS that works for every species, adequately
adapted to the idiosyncrasy of individual studies? Our work has been constrained
to the particularities of the selected working domains (human genome, citrus
genome,...) where different genome components have been taken as relevant
depending on the corresponding data analytics purpose. Nevertheless, we have
always kept in mind that the genome is the same for every eukaryote species, and
we have been convinced that it should be possible to design a holistic conceptual
schema of the genome (CSG). To move in that direction is the main goal of this
work, with the final intention of facilitating that any particular working domain
could have its own conceptual view that is inferred from that global CSG.

This paper reports our preliminary work towards the possibility of generat-
ing a CS that is not species-specific: the CSG. To do so, the CSHG has been
compared with the CSCG to identify their similarities and differences. Those
changes that are needed to provide an expanded, more generic version of the
CSHG are analyzed. The final goal is to design a holistic CSG that is ready to
be adapted to any particular working genome-based context (corresponding to
studies affecting different species of what we mean by life on our planet). To
achieve this goal, the identification of those different pieces of genome informa-
tion used in different genomic cases of study, becomes an essential task.

Towards the Generation of a Species-Independent CS of the Genome 63

The rest of this work is described as follows: Sect. 2 describes the evolution
of the CSHG since its creation and how it is structured. Section 3 reports the
use case that motivated the need for a new CS when a new working domain
was explored (the citrus genome), which led us to the generation of the CSCG.
Section 4 discusses the needed changes that would allow us to design a holis-
tic CSG that, at the same time, i) is built on the experience accumulated with
the CSHG, extending it accordingly, and ii) can be adapted to be used in the
citrus use case, creating the corresponding conceptual view. Furthermore, this
CSG could be seen as a universal conceptualization of the relevant genome prop-
erties, not exclusively linked to any particular species, but with the capability
of providing any required conceptual view to be applied to any genome-based
study. Lastly, Sect. 5 addresses conclusions and future work.

2 Conceptual Schema of the Human Genome

For years, the creation of a CSHG has been the main goal and a fundamental
tool for our work [16]. The result has been a CS divided into multiple views
that provided us with a foundational tool to communicate more effectively with
domain experts and develop Model-Driven Development (MDD) Genome Infor-
mation Systems (GeIS). As more knowledge about the genomic fundamentals of
life is accumulated, the CSHG has evolved in parallel, with two major updates:

1. From version 1 to 1.1: The first update added phenotypic information to the
CSHG in a new view called “phenotype view”. This addition increased the
consistency and completeness of the existing concepts.

2. From version 1.1 to 2: The second update changed how the genome sequence
is comprehended and represented. While version 1 focused on structuring the
genome sequence in genes, version 2 structured it in “chromosome elements”.
Consequently, not only genes but any relevant genome component can be
modeled.

This last version of the CSHG is divided into five views: i) the “structural
view” describes the structural parts that determines the sequence of the genome,
ii) the “transcription view” models the elements that take part in the protein-
coding process, iii) the “variation view” focuses on the structural changes in
the genome sequence, iv) the “pathway view” breaks down metabolic pathways
into their fundamental events, specifying the entities that take part in them, v)
the “bibliography and databank view” provides with information regarding the
origin of the data.

3 Conceptual Schema of the Citrus Genome

Unlike the CSHG, which has been developed as generic as possible to serve mul-
tiple use cases, the CSCG has been developed for a specific use-case. Because of
that, the modeling process and the philosophy of the resulting CS differ notably.

64 A. Garćıa S. and J. C. Casamayor

The use case that motivated the generation of the CSCG consists of establishing
reliable links between variations and phenotypes of interest, which is significantly
different from how human genomic studies are performed. The human genomic
studies we faced focused on identifying relevant variations (i.e., variations that
are known to cause a given condition) in populations, especially with clinical
purposes in a medicine of precision context, where early diagnosis and selection
of the right treatment become the main goals. But the experts of the citrus
domain focus on identifying which variations are relevant (i.e., which variations
cause a given condition). The identification process is composed of four tasks:

1. Plant genome sequencing. The genome sequence of citrus plants of interest is
obtained and compared to a reference sequence. A set of identified variations
are obtained for each citrus variety.

2. Identification of variations of interest. Those variations that have feasible
links with phenotypes of interest are identified through orthology prediction
and statistical methods.

3. Characterization of genes of interest. Genes of the sequenced citrus varieties
that have their expression, efficiency, or functionality modified in a disrup-
tive way by variations of interest, are identified and analyzed. As a result,
assumptions regarding potential genes of interest that require experimental
validation emerge. Genes of interest are those that have a significant role in
a phenotype of interest.

4. Application of genetic modifications. The previously obtained assumptions
are validated by applying genetic modification through molecular techniques.

A secondary aspect is to study the implications of relevant variations in
citrus varieties (i.e., different species) at an evolutionary level (i.e., how and
when relevant variations were originated). It is the first time that we have to
consider the existence of more than one species, pertaining to the same genus,
and how they are related at an evolutionary level.

Citrus domain experts also work with more technological-oriented data rather
than purely biological data. For instance, they rely on the use of variant anno-
tations and functional effect prediction software. This data mixes biological
and non-biological information, being much more format-file oriented. Thus, the
information is tied to the used technologies and their limitations. Consequently,
there is a loss of the semantics that difficults domain understanding.

We are perfectly aware that -generally speaking- the genome provides the
common, holistic knowledge to understand life as we perceive it in the Earth, our
planet, independently of any particular species. At the same time, our experience
in the real working domains of human genome-based applications (in a medicine
of precision context) in the CSHG case, and in the case of analyzing links between
genome variations and their associated phenotypes in the CSCG case, has clearly
shown us that the conceptual views that are used in these different working
environments are different. Depending on the peculiarities of the problem under
investigation, the relevant data that must be considered changes, hiding the
conceptual homogeneity of the whole genome concepts.

Towards the Generation of a Species-Independent CS of the Genome 65

In the citrus case, to deal with these particularities the CSCG has been
developed following a CM method that emphasizes to explicitly separate bio-
logical and non-biological data by adopting a multi-model oriented approach. It
proposes to start with a purely-biological CS to which append additional non-
biological conceptual schemes. The resulting CS takes into account the intricate
relationships between these two types of data, allowing us to recover the pre-
viously hidden semantics of the data. A full view of the CSCG can be seen in
[5].

The experience accumulated with the analysis of both human genome data
and citrus genome data has lead to enter the problem of designing an unified con-
ceptual schema of the genome, intended to capture the essentials of the genome
structure by identifying all the relevant conceptual concepts that could represent
the holistic knowledge associated to the genome, in a species-independent way.
We envision this Conceptual Schema of the Genome (CSG) as a holistic artifact
intended to provide a common conceptual background that could be projected
into any particular species by creating the conceptual view projection that sat-
isfies the needs of any working domains (as in particular the ones supported by
our CSHG and CSCG that we refer to in this paper).

4 Conceptual Schema of the Genome: A New Horizon

A new horizon opens when considering having a CSG that could be used for
any species. So far, we have identified and detailed our two existing conceptual
schemes: the CSHG to work with humans and the CSCG to work with citrus.
Being the CSHG the most mature of both, it has been used as a basis to identify
which parts need to be improved (i.e., generalized or specialized) to transform
it into a potentially species-independent CSG. To do so, the CSHG has been
compared with the CSCG, and the findings are reported on a per-view basis (as
preserving the view structure facilitates to manage the diversity and complexity
of the involved data). To conclude the section, additional considerations are
addressed.

Structural View
The CSHG offers an abstraction mechanism that allows modeling any existing
element contained in the genome sequence, like genes or intergenic regions. This
approach equals the one used in the CSCG as the “chromosome element” concept
of the CSHG corresponds to the “sequence part” concept of the CSCG. This
approach allows us to include any eventual species-specific genomic element. It
is a generic enough approach to achieve our goal and does not need any change.
But we have identified a significant difference: the CSHG misses two relevant
concepts of the CSCG, the scaffold and the ortholog group.

It is important to note two points regarding the concept of scaffold in the
CSHG. The first one is that the existence of this concept is the result of the cur-
rent sequencing technology limitations. Real-life sequencing is far from perfect,

66 A. Garćıa S. and J. C. Casamayor

and it is not possible to correctly obtain the whole genome sequence at once.
Sequencing machines break the genome sequence into many smaller sequences
that are read multiple times and then joined. The result is a genome sequence
that has gaps of known length. The second one is that every species has scaf-
folds that compose their genome sequence. This concept is an example of how
core concept definitions can be fuzzy and hard to model. The scaffold concept
is a conflicting one even between geneticists: some define it as the sequence of a
chromosome while others define it as a part of it with gaps of known length.

An ortholog group, the second concept that the CSHG misses, is defined
as a set of genes that are presupposed to have evolved from a single gene in
a common ancestral species. Contrary to paralogue groups, which are genes
created by duplication events, ortholog groups are created by speciation events.
The CSCG models the concept of the orthologous group as a collection of genes
that are evolutionary related and, optionally, a set of the enzymes coded by
these genes. For example, an ortholog group can contain a set of genes from
three different citrus varieties and the enzyme that these genes produce.

We conclude that the CSHG should incorporate: i) the concept of scaffold
because some genomic domains rely on analyzing specific scaffold sequences [9]
and ii) the ortholog group concept, as orthologous gene identification is funda-
mental to all aspects of biology [11] and allows to study hundreds of years of
evolution by applying phylogenetics and comparative analysis [19].

Transcription View
When the genomic components that structure the transcription view of both
the CSHG and the CSCG are compared, we concluded that they share a high
degree of similarity. But the identified genomic components are more detailed
regarding transcription regulators in the CSHG case. In the citrus case, the level
of knowledge associated to the study of transcription regulator elements is less
strong than in the human case.

However, three elements that exist in the CSCG do not exist in the CSHG
and need further clarification. The first one is the concept of intron. The concept
of intron was present in the first version of the CSHG but, as geneticists started
using it, we found that this concept was never used, and we decided to remove it.
However, in the case of citrus, intron-located variations are much more relevant
and studied.

The second one is the concept of domain. A domain is defined as the basic,
independent unit of protein folding, evolution, and function [2]. The CSHG rep-
resents proteins as a unique block with a given functionality, ignoring that they
are composed of multiple smaller, interconnected parts. Domains are included
in the CSCG because they are compared to infer evolutionary closeness of citrus
species.

The third concept is the mRNA concept. The CSHG models the transcription
process so that genes produce transcripts, with “protein-coding” being a type
of transcript that produces proteins. This way, only those transcripts that are
“protein-coding” produce proteins and transcripts that do not produce proteins

Towards the Generation of a Species-Independent CS of the Genome 67

can exist. The CSCG modes the transcription so that genes produce mRNAs
and mRNAs produce proteins. Consequently, those transcripts that do not pro-
duce proteins cannot be modeled. The “protein-coding” concept in the CSHG
is ontologically equivalent to the mRNA concept of the CSCG. We determined
that this concept should be renamed to mRNA to explicit its representations in
the CSHG. Besides, the CSCG also defines the structure of the mRNA because
variations located in these regions are particularly studied in this domain. An
mRNA is composed of three elements: the 5’ untranslated region (5’ UTR), the
coding sequence (CDS), and the 3’ untranslated region (3’ UTR). On the one
hand, the CSHG is a more generalizable solution because it allows us to model
transcripts that do not produce proteins. On the other hand, the CSCG models
the concept of mRNA in a more detailed way because it specifies the structural
parts that compose it.

Consequently, the CSHG should include i) the concept of intron to perform
analysis that specifically studies structural changes in introns [7], ii) the concept
of domain because decomposing each protein into modular domains is a basic
prerequisite for accurate functional classification of biological molecules [8], and
iii) the concepts of 5’ UTR, CDS, and 3’ UTR to be able to locate structural
changes in these regions and study their consequences [20].

Variation View
The CSHG represents variations with an appropriate level of genericity, but we
identified two limitations after comparing it to how the CSCG represents vari-
ations. The first one is that the CSHG has been used in genomic studies that
focus on studying genotype frequencies of SNP variations. As a result, the mod-
eling process of the CSHG prioritized representing genotype frequencies of SNP
variations over other type of variations. On the contrary, the citrus use case
focuses on studying both the genotype frequency of SNP and INDEL variations.
The reason is that the study of genotype frequencies of INDEL variations is rel-
evant because their high degree of heterozygosity is used to establish taxonomic
relationships [10].

Our approach consisted of identifying what parts of the CSHG are candidates
to be improved (i.e., extend, generalize, or specialize) and discuss the potential
benefits of improving them. We have identified three potential improvements.
The first one is the identification of eight genomic components that can extend
the CSHG: scaffolds, ortholog groups, introns, protein domains, and the struc-
tural components of the mRNA (5’ UTR, CDS, and 3’ UTR). The second one
is the generalization of the genotype frequency, from being a property of SNP
variations only, to be a property of every type of variation. The third one is
the specialization of the concept of variation, which is represented at two dif-
ferent levels (general and population), into a third level so that it can represent
information regarding its appearance in individuals.

As a side note, this exercise also allowed us to discover elements that are
relevant in the citrus domain but were not initially considered because they are
not studied in the working use case. An example is the concept of haplotype,

68 A. Garćıa S. and J. C. Casamayor

which is defined as a set of variations that statistically appear together [1]. The
identification of haplotypes in citrus is an important topic that is being studied
[3] and should be included in the CSCG for future studies.

As a result, i) the concept of genotype frequency should be generalized so
that it is represented for every type of variation, and ii) the CSHG should include
the individual level when representing variations.

Pathway View
The CSHG has a highly generic and flexible representation of pathways and
their inner processes. It allows representing the specific events that occur on
each pathway, how they are related, and the biological entities that take part
in them. The CSCG represents entire pathways as indivisible blocks, ignoring
their internal processes. Instead of any biological entity, the CSCG only allows
specifying what enzymes take part in a pathway, and only at a general level
rather than at a pathway-specific process level. We conclude that, in this case,
no changes in this view are required.

Bilbiography and Databank View
The CSHG allows us to represent both bibliography of the represented genomic
components and how they are identified in external data sources. The CSCG
includes neither information regarding the bibliography of the data nor their
origin. Therefore, No changes in the CSHG are needed.

Additional Considerations
We want to emphasize that one of the main strengths of the CSCG is how well
it integrates technological-oriented data since the citrus use case relies much
more upon these data than the human genomic studies that we have faced.
The CSCG has been modeled using a methodological approach that explicitly
separates technological-related data into independent conceptual schemes that
can be assembled like puzzle pieces depending on the needs of specific use cases.
The main benefits of this approach are that data integration is straightforward
and automated, there is a direct mapping between biological and technological-
oriented concepts, and the final CS has a more complete was of representing those
elements whose significance is biased by technological-oriented data. Apart from
the changes proposed, reformulating the CSHG so that its generation process
uses this approach can be a rightful approach to gain the benefits previously
mentioned.

5 Conclusions

Our reported experience shows that the genomic domain is complex, and some
of their core concept definitions are fuzzy. Although the genomic cases that
we have worked with share a common ontological background, their specific

Towards the Generation of a Species-Independent CS of the Genome 69

particularities result in too diverse data analytic purposes. This fact has been
illustrated with the generation of multiple species-specific conceptual schemes
where different genomic components have been identified as relevant, depending
on the working context.

However, we claim that it is feasible to have a single, holistic CS (CSG)
that is valid to work with every eukaryotic species because, even if they are
unique and diverse, their genome and how it behaves is the same. This CSG
could work as a global, generic element from which conceptual views to work
with any particular domain can be inferred. Herein, we reported the first steps
towards this direction by intersecting two conceptual schemes that have been
developed to work with different species: the CSHG for working with humans,
and the CSCG for working with citrus.

Our approach has been to identify what parts of the CSHG have to be
improved (i.e., extend, generalize, or specialize) and discuss the potential ben-
efits of applying them. Eight genomic components that can extend the CSHG
have been identified: scaffolds, ortholog groups, introns, protein domains, and
the structural components of the mRNA (5’ UTR, CDS, and 3’ UTR). A con-
cept that can be generalized: the genotype frequency, from being related to a
specific type of variation to be related to every type of variation. A concept
that can be specialized: the variation, which is represented at two different lev-
els (general and population), can be represented in a third level so that it can
represent information regarding its appearance in individuals.

These results, being preliminary, are a useful starting point so that the CSHG
can be a candidate to be used in the citrus use case and, potentially, in more use
cases that work with other species. Future works include working towards the
obtaining of the so-wanted species independent CS and its reformulation so that
it explicitly separates purely biological data from technological-oriented data.

Acknowledgment. This work was supported by the Spanish Ministry of Science
and Innovation through Project DataME (ref: TIN2016-80811-P) and the Generali-
tat Valenciana through project GISPRO (PROMETEO/2018/176).

References

1. Belmont, J.W., et al.: A haplotype map of the human genome. Nature 437(7063),
1299–1320 (2005). https://doi.org/10.1038/nature04226

2. Campbell, P.N.P.N., Smith, A.D.A.D., Peters, T.J.: Biochemistry Illustrated: Bio-
chemistry and Molecular Biology in the Post-genomic Era, 5th edn. Elsevier
Churchill Livingstone, Edinburgh (2005). https://searchworks.stanford.edu/view/
5961093

3. Chen, C., Gmitter, F.G.: Mining of haplotype-based expressed sequence tag single
nucleotide polymorphismsin citrus. BMC Genom. 14(1) (2013). https://doi.org/
10.1186/1471-2164-14-746

4. Delcambre, L., Liddle, S., Pastor, O., Storey, V.: A reference framework for concep-
tual modeling: focusing on conceptual modeling research. Technical report, Novem-
ber 2018. https://doi.org/10.13140/RG.2.2.33041.07521

https://doi.org/10.1038/nature04226
https://searchworks.stanford.edu/view/5961093
https://searchworks.stanford.edu/view/5961093
https://doi.org/10.1186/1471-2164-14-746
https://doi.org/10.1186/1471-2164-14-746
https://doi.org/10.13140/RG.2.2.33041.07521

70 A. Garćıa S. and J. C. Casamayor

5. Garćıa S., A., Pastor, O.: CSCG: conceptual schema of the citrus genome. Technical
report (2020). http://hdl.handle.net/10251/144234

6. Garćıa S., A., Reyes Román, J.F., Casamayor, J.C., Pastor, O.: Towards an effec-
tive and efficient management of genome data: an information systems engineering
perspective. In: Cappiello, C., Ruiz, M. (eds.) CAiSE 2019. LNBIP, vol. 350, pp.
99–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21297-1 9

7. Ghada, B., Amel, O., Aymen, M., Aymen, A., Amel, S.H.: Phylogenetic patterns
and molecular evolution among ‘True citrus fruit trees’ group (Rutaceae family
and Aurantioideae subfamily). Scientia Horticulturae 253, 87–98 (2019). https://
doi.org/10.1016/j.scienta.2019.04.011

8. Heger, A., Holm, L.: Exhaustive enumeration of protein domain families. J. Mol.
Biol. 328(3), 749–767 (2003). https://doi.org/10.1016/S0022-2836(03)00269-9

9. Heinzelmann, R., et al.: Chromosomal assembly and analyses of genome-wide
recombination rates in the forest pathogenic fungus Armillaria ostoyae. Heredity
124(6), 699–713 (2020). https://doi.org/10.1038/s41437-020-0306-z

10. Janzen, G.M., Wang, L., Hufford, M.B.: The extent of adaptive wild introgression
in crops (2019). https://doi.org/10.1111/nph.15457

11. Miller, J.B., Pickett, B.D., Ridge, P.G.: JustOrthologs: a fast, accurate and user-
friendly ortholog identification algorithm. Bioinformatics 35(4), 546–552 (2019).
https://doi.org/10.1093/bioinformatics/bty669

12. Mylopoulos, J.: Conceptual modelling and Telos, pp. 49–68 (1992)
13. Palacio, A.L., Fernández, I.P., López, O.P.: Genomic information systems applied

to precision medicine: genomic data management for Alzheimer’s disease treat-
ment. In: International Conference on Information Systems Development (ISD),
October 2018. https://aisel.aisnet.org/isd2014/proceedings2018/eHealth/6

14. Palacio, A.L., López, Ó.P.: Towards an effective medicine of precision by using
conceptual modelling of the genome. In: Proceedings - International Conference on
Software Engineering, pp. 14–17. IEEE Computer Society, New York, May 2018.
https://doi.org/10.1145/3194696.3194700

15. Pearson, H.: What is a gene?, May 2006. https://doi.org/10.1038/441398a
16. Reyes Román, J.F.: Diseño y Desarrollo de un Sistema de Información Genómica

Basado en un Modelo Conceptual Hoĺıstico del Genoma Humano. Ph.D. thesis,
Universitat Politècnica de València (2018). https://riunet.upv.es/handle/10251/
99565

17. Reyes Román, J.F., Mart́ınez, D.R., Simón, A.G., Rueda, U., Pastor, Ó.:
VarSearch: annotating variations using an e-genomics framework. In: Pro-
ceedings of the 13th International Conference on Evaluation of Novel
Approaches to Software Engineering, ENASE 2018, vol. 2018-March, pp. 328–350.
SCITEPRESS - Science and Technology Publications (2018). https://doi.org/10.
5220/0006781103280334

18. Smirnov, A., Schneider, C., Hör, J., Vogel, J.: Discovery of new RNA classes and
global RNA-binding proteins, October 2017. https://doi.org/10.1016/j.mib.2017.
11.016

19. Train, C.M., Glover, N.M., Gonnet, G.H., Altenhoff, A.M., Dessimoz, C.: Orthol-
ogous matrix (OMA) algorithm 2.0: more robust to asymmetric evolutionary rates
and more scalable hierarchical orthologous group inference. Bioinformatics 33(14),
i75–i82 (2017). https://doi.org/10.1093/bioinformatics/btx229

20. Whiffin, N., et al.: Characterising the loss-of-function impact of 5’ untranslated
region variants in 15,708 individuals. Nat. Commun. 11(1), 1–12 (2020). https://
doi.org/10.1038/s41467-019-10717-9

http://hdl.handle.net/10251/144234
https://doi.org/10.1007/978-3-030-21297-1_9
https://doi.org/10.1016/j.scienta.2019.04.011
https://doi.org/10.1016/j.scienta.2019.04.011
https://doi.org/10.1016/S0022-2836(03)00269-9
https://doi.org/10.1038/s41437-020-0306-z
https://doi.org/10.1111/nph.15457
https://doi.org/10.1093/bioinformatics/bty669
https://aisel.aisnet.org/isd2014/proceedings2018/eHealth/6
https://doi.org/10.1145/3194696.3194700
https://doi.org/10.1038/441398a
https://riunet.upv.es/handle/10251/99565
https://riunet.upv.es/handle/10251/99565
https://doi.org/10.5220/0006781103280334
https://doi.org/10.5220/0006781103280334
https://doi.org/10.1016/j.mib.2017.11.016
https://doi.org/10.1016/j.mib.2017.11.016
https://doi.org/10.1093/bioinformatics/btx229
https://doi.org/10.1038/s41467-019-10717-9
https://doi.org/10.1038/s41467-019-10717-9

Conceptual Human Emotion Modeling
(HEM)

Mohammed R. Elkobaisi(B) , Heinrich C. Mayr ,
and Vladimir A. Shekhovtsov

Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria
M3mohammed@edu.aau.at, {Heinrich.Mayr,Volodymyr.Shekhovtsov}@aau.at

Abstract. Human emotions are considered as decision factors in spe-
cific knowledge-based systems. However, there is neither a consolidated
conceptualization of the emotion domain nor a widely used modeling lan-
guage, let alone a method. To close this gap, this paper presents such a
language and first steps to a method. An essential aspect is that we have
not conceived this language as a “stand-alone” one. Rather, it is designed
for being embedded into other modeling standard or domain specific lan-
guages. For illustration purposes we use the Active and Assisted Living
(AAL) domain as a running example. We conducted a first evaluation
of our approach by implementing a modeling tool using the ADOxx R©
metamodeling framework.

Keywords: Domain-specific modeling language · Human emotion ·
Metamodeling · Aspect-Oriented Metamodeling

1 Introduction

In this paper we present a conceptualization and a domain-specific modeling
language for the description of human emotions and related aspects. This lan-
guage is designed to be embedded in both contextual description and interface
modeling languages defined for domains where emotions play a role.

Human emotion is a biological state influenced by a situation and associ-
ated with behaviour, thought, and feeling. Emotions affect human activities in
a significant way: from evoking a significant cognitive boost (feeling ‘inspired’
and/or empowered) that even can strengthen physical capabilities to the oppo-
site (feeling ‘depressed’), making usual routines very difficult or impossible to
perform.

In the domain of cognitive psychology, the term emotion refers to “specific
sets of physiological and mental dispositions triggered by the brain in response to
the perceived significance of a situation or object” [6]. Emotions and behavior of
an individual are influenced by the individual’s interpretation of a given situa-
tion [16]: guided by their beliefs, different people may interpret the same events
differently. Emotional expression is also an important part of emotional func-
tion, as human emotions can influence a person’s physical reactions [24]. These
c© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 71–81, 2020.
https://doi.org/10.1007/978-3-030-65847-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_7&domain=pdf
http://orcid.org/0000-0002-6745-0298
http://orcid.org/0000-0001-5770-8091
http://orcid.org/0000-0003-0227-5000
https://doi.org/10.1007/978-3-030-65847-2_7

72 M. R. Elkobaisi et al.

emotional reactions are mediated by speech, facial expressions, body gestures or
physiological signals [29].

In addition to cognitive psychology, also other domains deal with the recogni-
tion and assessment of emotions and appropriate reactions to them. For instance,
think of the domains of Recommender Systems, Monitoring of Public Places, or
Active and Assisted Living (AAL). We call them “emotion-influenced domains”.
Common to all these domains is the need of a comprehensive conceptualization of
emotions and their “context”, i.e. related phenomena like environmental condi-
tions, social interaction etc. For it is only on the basis of such conceptualizations
that emotion models and suitable representations can be systematically created
allowing to deal with them in digital systems: based on these models, the emo-
tions can be recognized, analyzed and understood, the emotion information can
be processed, stored, and used in decision making or other activities.

Such an approach consequently leads to the development of a domain-specific
modeling language (DSML) and method (DSMM) [13,22], where semantics are
defined by the underlying conceptualisations of the language elements and not
only by element names borrowed from natural language, as is the case with
the use of general purpose languages. (Think, for example, of a domain specific
concept “person” versus a UML class named “person”). DSMLs thus allow the
user to specify a domain of discourse directly in concepts related to the given
application domain [32]. Consequently, when specifying software solutions, the
user can focus on the problem from the application perspective instead of being
confronted with technical details from outside his field [5].

Regardless of the domain, handling (obtaining, understanding, and record-
ing) the specific emotions which were felt by a person while performing a domain-
specific activity could allow to provide better support for such activity. To illus-
trate our considerations, in this paper we use AAL as running example domain
and discuss the embedding of our emotion modeling language in a DSML for the
area of human behaviour modeling and support.

Studying emotion modeling in the field of AAL is promising because emotions
have a particularly strong influence on the daily activities of people who have
cognitive or other age- or capacity-related problems [31]. The support of such
persons in their daily activities [15] using AAL technologies should therefore be
‘emotion-aware’, i.e. taking into account the respective emotional state of the
person concerned. Within this context we aim to achieve two objectives: (1)
conceptualizing the emotions of the supported persons caused by situations, and
(2) conceptualizing the interface to external emotion sources (e.g., recognition
systems).

The paper is organized as follows: In Sect. 2 we discuss some considerations
for designing an human emotion modeling method. Section 3 introduces the
essential aspects of such method. In Sect. 4 we outline a mechanism for embed-
ding our modeling language into other DSMLs. Section 5 analyzes some related
work, motivating the need for Human Emotion Modeling. Section 6 concludes
the paper and gives some hints on future work.

Conceptual Human Emotion Modeling (HEM) 73

2 Design Considerations

To be usable in practice, a DSML must be embedded in a domain-specific mod-
eling method (DSMM). Such a method must provide, among other things, a
process model for the use of the modeling language and suitable mechanisms for
the analysis, management and further processing of the created models. Accord-
ing to [13,22], the development of a DSMM can be done in the following steps,
which are only roughly outlined here:

1. Preparation: clarification of scope and purpose of the language, require-
ments analysis to reveal the focal aspects to be potentially modeled, and
context analysis;

2. Modeling Language Design: creating a meta-model that comprises all rel-
evant conceptualizations for the given domain, language specification, design
of the notation, definition of the representation language for the instance level
(see below);

3. Modeling Process: defining a step-wise procedure for modelers of how to
act when creating models (i.e., what aspects should be modeled first);

4. Modeling Tool: tool requirements elicitation and specification, framework
and meta-modeling language selection, view definition, tool implementation
and completion by framework dependent add-ons;

5. Evaluation.

We have driven the development of our human emotion modeling language
HEM-L and method in these steps, of course with iterations. Figure 1 shows, in
accordance with the OMG Meta Object Facility [25] and the Model Centered
Architecture (MCA) Paradigm [19], the model and language hierarchies that
need to be taken into account in such an endeavor.

For developing the modeling tool we decided to use the ADOxx R© metamod-
eling framework [1,12].

In order to make it easier to embed HEM-L in other modeling languages,
we have kept the meta model very lean. For the embedding itself, we propose
to inject the fragments of the HEM-L metamodel into the respective target
metamodel, thus complementing the target language. This approach is described
in Sect. 4 together with the example of embedding HEM-L into an DSML for
the AAL domain, namely, HCM-L [18] which is a language describing personal
and social, spatial and environmental aspects of a user’s behavior (this includes
the context information).

3 Human Emotion Modeling: Metamodel and Language

In this section we briefly describe the essential elements of the method we pro-
pose for Human Emotion Modeling according to the metamodeling and language
definition hierarchy depicted in Fig. 5. The description follows the method devel-
opment steps outlined in Sect. 2 without going into detail, as there is not enough
space available for this.

74 M. R. Elkobaisi et al.

Fig. 1. Model and Language Definition Hierarchies (adapted from [20]).

Preparation. In order to identify the aspects to be considered in our model-
ing method, we conducted a comprehensive and in-depth literature and source
analysis of ontologies, models and data sets in this area [10]. As a result of this
analysis, we delimited the HEM-L scope within which we then defined the con-
cepts for our metamodel. We found that the emotional aspects to be considered
include capability situations involving people: Emotions can have a positive or
negative influence on the ability to perform certain actions. Conversely, how well
or badly a person is able to perform a certain action can have an effect on their
emotional state.

Metamodel. Figure 2 shows the core concepts/elements of the HEM metamodel
(for space reasons without the properties assigned to them). As is usual in litera-
ture, we present meta-classes with boxes and meta-relationships with diamonds.
There are two almost symmetrical meta-relationships that conceptualize Emo-
tional Situations on the one hand and Capability Situations on the other.

These situations consist in the association of the core meta-classes: Emotion
conceptualizes emotion itself. Context conceptualizes the environmental vari-
ables related to a situation, e.g. time, weather, location, companion, occasions,
etc. Operation conceptualizes actions that influence the respective emotional
situation or are influenced by it, respectively. For example, a person might per-
form a certain action only in a negative emotional state, but conversely such an
action might improve her/his emotional state. Operations can be composed of
other Operations. Thing conceptualizes things involved in a situation such as a
TV set, a room, an instrument. Person, a specialization of Thing, conceptualizes

Conceptual Human Emotion Modeling (HEM) 75

Fig. 2. HEM metamodel; due to lack of space we have omitted the attributes/properties
of the metamodel elements.

the person(s) for whom the emotional and capability situations are to be mod-
eled. Capability conceptualizes the capabilities of a Person to perform a certain
Operation, which is expressed by the toExecute meta-relationship.

Modeling Language. In accordance with concepts in the metamodel, we
designed the (graphical) elements of our modeling language as shown in Fig. 3. Of
course, this notation can be changed at will and according to your taste - which
does not involve any technical challenges, especially when using a metamodeling
framework to generate the modeling tool. Note that ES stands for Emotional
Situation, and CS for Capability Situation.

Fig. 3. Elements of the HEM-L graphical notation.

Figure 4(a) shows a simple HEM-L model (level M1) of an example situation
in the AAL domain. This model has been developed using the HEM-L modeling
tool (see below). It describes emotional situations in which observed persons in
a certain context see something on television (within the limits of their ability to
do so). Clearly, the model elements are instances of the respective meta-classes

76 M. R. Elkobaisi et al.

Fig. 4. a) HEM-L model, b) HEM-IL representation of an instance, c) list of emotional
situations actually modeled using the HEM-L Modeler

of the metamodel. The model does (for saving space) not visualize the properties
attached to the model elements, for instance time, location, and companion for
Watching context, emotion dimensions (anger, fear, happiness) for Watching
Emotion, name for TV, pre- and post-conditions, start and end time for Watch,
or the precondition for the Capability to watch. For lack of space, we have also
decided not to model an operator hierarchy here.

Data Level Representation Language. The Model Centered Architecture
paradigm [19] treats each component of a digital ecosystem as a “model handler”.
Accordingly, in addition to the modeling language for Level M1, an instance rep-
resentation language HEM-IL for Level M0 had to be defined. Figure 4(b) shows
a possible instance of the model in Fig. 4(a), this time including the values of
the associated properties: it represents a concrete emotional situation that may
have been recognized with an appropriate combination of an activity recognition
system and an emotion recognition system. The data is subdivided into sections
corresponding to the M2 metamodel elements (Context, Emotion etc.), every
section contains subsections for the M1 model elements (Watching Context,
Watching Emotion etc.) each holding the instance values of their parameters.
As an example, the subsection for Watching Emotion contains the values for all
its dimensions. HEM-IL can be used to store emotion data in the knowledge base
of an AAL system, as a means for transferring emotion data from and to external
systems, or for documenting specific emotional situations (as it was designed to
be as human-readable as possible without losing efficiency).

Modeling Tool. We implemented the modeling tool (HEM-L Modeler) by
means of the metamodeling framework ADOxx R© based on the metamodel as
explained before. The Modeler allows to create, modify and manage HEM-L
models as well as performing consistency checks. Figure 4(a) and Fig. 4(c) are

Conceptual Human Emotion Modeling (HEM) 77

screenshots from the Modeler, the latter showing a list of models designed within
an AAL scenario.

4 Towards Embedding HEM-L into DSMLs

As stated in Sect. 2, one of the design goals for HEM-L is to make it an “embed-
dable DSML” [9]. This will allow it to be combined with other DSMLs to extend
these with means for emotion modeling.

We observe that the relationship between the emotion domain and other
domains, where emotions play a role, fits the aspect-oriented paradigm in the
form defined in the body of work on Early Aspects [4]. For, the emotions could
be considered as a crosscutting concern, i.e., as an area of interest appearing in
various non-related contexts, belonging to the same or different domains [27].

Based on this observation, in defining the process of embedding HEM-L we
propose to follow the paradigm of Aspect-Oriented Metamodeling [8] by treating
the HEM-L metamodel as a crosscutting one: its elements are injected into the
target metamodels through a metamodel weaving process. This process follows a
weaving specification, i.e. a set of rules which define the injection points within
the target metamodel, and control the process of extending the target metamodel
by the elements of the crosscutting metamodel at the injection points.

For a small example we take a look at the weaving of elements of the HEM-
L metamodel into the metamodel of the Human Cognitive Modeling Language
HCM-L [21]. The goal is to expand the HCM-L to support emotions. This
should enable the Human Behavior Monitoring and Support System HBMS [23]
to deal with emotions (HBMS aims at assisting people with cognitive impair-
ments to live independently at home.) For this purpose, the HCM-L metamodel
[18] is extended, and the graphical notation for the corresponding emotion con-
ceptualization constructs become a part of HCM-L Modeler (tool). Figure 5
shows only a small part of this, and only the involved fragments of the meta-
models are shown: the “Emotion Weaving specification” defines the rule to
inject the HEM-L meta-class Operation into the HCM-L target meta-class
OperationInBehavioralUnit (representing an activity in a behavioral scenario)
to reflect the fact that such activities are affected by emotions. As a result the
relations involving HEM-L Operation are copied and, iteratively, the Emotion
meta-class is copied as well.

Currently, we are developing a tool supporting this process in the sense of
metamodel composition [11] using the ADOxx R© ALL API library [2].

The advantage of this approach is that no changes of the involved metamodels
are necessary. This way, it is possible to extend a legacy metamodel defined
without knowledge of future extensions. A set of more advanced name-matching
or content-matching rules is a topic for a separate publication.

After weaving the metamodels, the next step is to weave the models (M1-
level weaving), and then to merge the data (M0-level weaving). Implementing
such steps is a target for future research.

78 M. R. Elkobaisi et al.

Fig. 5. Injecting HEM-L metamodel elements into HCM-L metamodel

5 Related Work

Recent research and industrial projects resulted in a number of languages to rep-
resent emotions. This section describes some of such languages and the purpose
behind their development.

We start with two projects focusing on the emotion domain. Emotion Markup
language (EmotionML) [7] is a general-purpose XML-based language for emotion
description. Emotion Annotation and Representation Language (EARL) [28] is
designed specifically for representing emotions in technological contexts such as
speech synthesizers or embodied conversational agents [26].

Other projects implement emotion support within languages defined in other
domains. Such support is available for (1) Extensible Multi-Modal Annotation
Language (EMMA) [14] - a markup language for annotating the user input,
(2) Virtual Human Markup Language (VHML) [17] - a markup language for
human-computer interaction scenarios, and (3) Speech Synthesis Markup Lan-
guage (SSML) [3] - an XML-based language for speech synthesis.

The existing emotion languages have limitations: i) most of them encode raw
emotion data with XML markup, without offering higher level semantic concepts
or a graphical representation; as a result, they are not suitable for modeling
emotional situations on the conceptual level; ii) they cannot be extended with
custom emotion properties: this lack of flexibility can be critical as the languages
do not cover all emotion properties (e.g. type, label, intensity, etc.) by default;
iii) they lack the notions of context or capability of the person, which limits their
applicability for describing context- or capability-related situations.

HEM-L addresses the above-mentioned shortcomings by enabling tool-sup-
ported conceptual modeling of emotional situations, by its extensibility to
include user-defined properties and by supporting contextual and personal capa-
bilities.

Besides using emotion languages, it is possible to use general-purpose mod-
eling tools (e.g. UML-supporting tools such as Visual Paradigm or Visio) to
model emotions by exploiting the wide availability of such tools and their sup-
port for conceptual modeling. However, such approach has limitations as well:
i) general-purpose tools cannot properly express all emotion properties; ii) they
are based on general-purpose metamodels (such as the UML metamodel) lack-
ing support for specific emotion concepts, as a result, the modelers cannot use

Conceptual Human Emotion Modeling (HEM) 79

notions specific to the emotion domain, and the models cannot be properly val-
idated. As a result, modeling of human emotions with such tools may produce
invalid or poor quality results, and be error-prone and time-consuming.

HEM-L addresses the shortcomings of general-purpose tools by being based
on a metamodel representing key concepts and abstractions from the human
emotion domain. As a result, it provides a set of modeling constructs specific
to this domain, and allows for validating the models to conform to a domain-
specific metamodel containing proper conceptualizations. Of course, field tests
must be carried out to determine whether our modeling language is complete
and detailed enough.

6 Conclusions and Future Work

In this paper, we proposed HEM-L, a domain specific modeling language for
modeling human emotions. Following a systematic development procedure, we
defined the language scope, designed the set of concepts for its metamodel, elab-
orated their graphical representation in the models, and implemented its tool
support. We also defined the ways of representing the instances of emotion sit-
uations by means of a text-based language. Furthermore, we outlined how to
embed HEM-L into other DSMLs.

What we reported on here is work in progress. Consequently, a comprehensive
evaluation of the proposed approach is pending. However, we can rely on the
experience we have gained in our laboratory with successfully completed projects
and will apply the evaluation procedures used to the project in question. For now,
we performed an initial evaluation of our modeling method by implementing the
HEM-L Modeler, and using it to build models covering emotional situations in a
set of common AAL scenarios collected within our Human Behavior Monitoring
and Support project [23] and from the available literature.

For future research, we first plan to evaluate the proposed modeling language
with more complex emotional situations and to complete the means for weaving
HEM-L and HCM-L (see Sect. 4) on three levels of the metamodeling hierarchy
(i.e. including model weaving and data merging).

Further, we plan to address the issue of obtaining emotion information from
external emotion recognition systems. As such systems are heterogeneous, inter-
facing with them in a flexible manner requires defining an emotion interface
description language on the conceptual and implementation levels. As the infor-
mation about the emotional response itself, and its context can come from dif-
ferent sources (e.g. the context can be recognized by means of Human Activity
Recognition systems), it is also required to combine the interface description
language and existing DSMLs for interfacing with context recognition systems.
This requirement may lead to applying the aspect-oriented approach in a way
described in Sect. 4. We plan to elaborate the means for weaving the interface
description language metamodel and a metamodel for a DSML that describes
the interfaces to external human activity recognition systems [30].

80 M. R. Elkobaisi et al.

References

1. ADOxx R© metamodeling framework. https://www.adoxx.org
2. ADOxx R© ALL Java API. https://www.adoxx.org/live/adoxx-java
3. Baggia, P., et al.: Speech synthesis markup language (SSML) version 1.1 (2010)
4. Baniassad, E., Clements, P.C., et al.: Discovering early aspects. IEEE Softw. 23(1),

61–70 (2006)
5. Bock, A., Frank, U.: Multi-perspective enterprise modeling—conceptual foundation

and implementation with ADOxx. In: Karagiannis, D., Mayr, H., Mylopoulos, J.
(eds.) Domain-Specific Conceptual Modeling, pp. 241–267. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-39417-6 11

6. Brader, T.: Campaigning for Hearts and Minds: How Emotional Appeals in Polit-
ical Ads Work. University of Chicago Press (2006)

7. Burkhardt, F., et al.: W3C Emotion Markup Language (EmotionML) (2014)
8. Clark, T., Evans, A., Kent, S.: Aspect-oriented metamodeling. Comput. J. 46(5),

566–577 (2003)
9. Dinkelaker, T., Eichberg, M., Mezini, M.: An architecture for composing embedded

domain-specific languages. In: Proceedings of the AOSD 2010, pp. 49–60 (2010)
10. Elkobaisi, M.R., Machot, F.A., Mayr, H.C.: Human Emotion Recognition - A Sur-

vey focusing on Ontologies, Datasets, and Systems, under revision
11. Estublier, J., Vega, G., Ionita, A.D.: Composing domain-specific languages for

wide-scope software engineering applications. In: Briand, L., Williams, C. (eds.)
MODELS 2005. LNCS, vol. 3713, pp. 69–83. Springer, Heidelberg (2005). https://
doi.org/10.1007/11557432 6

12. Fill, H.G., Karagiannis, D.: On the conceptualisation of modelling methods using
the ADOxx meta modelling platform. EMISAJ 8(1), 4–25 (2013)

13. Frank, U.: Domain-specific modeling languages: requirements analysis and design
guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J.
(eds.) Domain Engineering, pp. 133–157. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-36654-3 6

14. Froumentin, M.: Extensible multimodal annotation markup language (EMMA):
invited talk. In: NLPXML 2004, p. 33 (2004)

15. Katz, S.: Assessing self-maintenance: activities of daily living, mobility, and instru-
mental activities of daily living. Journal (JAGS) 31(12), 721-7 (1983)

16. Lench, H.C., Darbor, K.E., Berg, L.A.: Functional perspectives on emotion, behav-
ior, and cognition. Behav. Sci. 3, 536–540 (2013)

17. Marriott, A.: VHML-virtual human markup language. In: Talking Head Technol-
ogy Workshop, at OzCHI Conference, pp. 252–264 (2001)

18. Mayr, H.C., et al.: HCM-L: domain-specific modeling for active and assisted liv-
ing. In: Karagiannis, D., Mayr, H., Mylopoulos, J. (eds.) Domain-Specific Concep-
tual Modeling, pp. 527–552. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-39417-6 24

19. Mayr, H.C., Michael, J., Ranasinghe, S., Shekhovtsov, V.A., Steinberger, C.: Model
centered architecture. In: Cabot, J., Gómez, C., Pastor, O., Sancho, M., Teniente,
E. (eds.) Conceptual Modeling Perspectives, pp. 85–104. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67271-7 7

20. Mayr, H.C., et al.: A model centered perspective on software-intensive systems. In:
EMISA, pp. 58–64 (2018)

21. Michael, J., Mayr, H.C.: Conceptual modeling for ambient assistance. In: Ng, W.,
Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 403–413. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41924-9 33

https://www.adoxx.org
https://www.adoxx.org/live/adoxx-java
https://doi.org/10.1007/978-3-319-39417-6_11
https://doi.org/10.1007/11557432_6
https://doi.org/10.1007/11557432_6
https://doi.org/10.1007/978-3-642-36654-3_6
https://doi.org/10.1007/978-3-642-36654-3_6
https://doi.org/10.1007/978-3-319-39417-6_24
https://doi.org/10.1007/978-3-319-39417-6_24
https://doi.org/10.1007/978-3-319-67271-7_7
https://doi.org/10.1007/978-3-642-41924-9_33

Conceptual Human Emotion Modeling (HEM) 81

22. Michael, J., Mayr, H.C.: Creating a domain specific modelling method for ambient
assistance. In: ICTer 2015, pp. 119–124. IEEE (2015)

23. Michael, J., et al.: The HBMS story. EMISAJ 13, 345–370 (2018)
24. Nummenmaa, L., Glerean, E., Hari, R., Hietanen, J.K.: Bodily maps of emotions.

Proc. Natl. Acad. Sci. 111(2), 646–651 (2014)
25. Object Management Group: Meta Object Facility (MOF) Specification. www.omg.

org/cgi-bin/doc/?formal/02-04-03.pdf
26. Prendinger, H., Ishizuka, M.: Life-Like Characters: Tools, Affective Functions,

and Applications. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-
08373-4

27. Rashid, A., Moreira, A.: Domain models are NOT aspect free. In: Nierstrasz, O.,
Whittle, J., Harel, D., Reggio, G. (eds.) MODELS 2006. LNCS, vol. 4199, pp.
155–169. Springer, Heidelberg (2006). https://doi.org/10.1007/11880240 12

28. Schröder, M., et al.: First suggestions for an emotion annotation and representation
language. In: Proceedings of LREC, vol. 6, pp. 88–92 (2006)

29. Sebe, N., et al.: Multimodal approaches for emotion recognition: a survey. In:
Internet Imaging VI, vol. 5670, pp. 56–67 (2005)

30. Shekhovtsov, V.A., Ranasinghe, S., Mayr, H.C., Michael, J.: Domain specific mod-
els as system links. In: Woo, C., Lu, J., Li, Z., Ling, T.W., Li, G., Lee, M.L. (eds.)
ER 2018. LNCS, vol. 11158, pp. 330–340. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-01391-2 37

31. Williams, B.: Consideration of Function & Functional Decline, Current Diagnosis
and Treatment: Geriatrics, 2nd edn., pp. 3–4 (2014)

32. Wolf, M.: Cyber-physical systems. In: High-Performance Embedded Computing,
pp. 391–413. Newnes (2014)

www.omg.org/cgi-bin/doc/?formal/02-04-03.pdf
www.omg.org/cgi-bin/doc/?formal/02-04-03.pdf
https://doi.org/10.1007/978-3-662-08373-4
https://doi.org/10.1007/978-3-662-08373-4
https://doi.org/10.1007/11880240_12
https://doi.org/10.1007/978-3-030-01391-2_37
https://doi.org/10.1007/978-3-030-01391-2_37

Towards an Ontology for Tertiary
Bioinformatics Research Process

Pietro Crovari(B) , Sara Pidò , and Franca Garzotto

Department of Electronics, Information and Bioengineering, Politecnico di Milano,
via Ponzio 34/5, 20133 Milan, Italy

{pietro.crovari,sara.pido,franca.garzotto}@polimi.it

Abstract. Next-generation sequencing techniques made possible enor-
mous steps in the sequencing of genomic material. These advancements
were not supported by similar progress in developing of tools for extract-
ing knowledge from these data: interfaces used to analyze genomic data
require high Computer Science expertise, being not suitable for most
researchers with a biological or clinical background. As a consequence,
these tools impose cognitive barriers to bioinformatics research. An ontol-
ogy of the research process has to be used as a reference during the devel-
opment of new tools to overcome these barriers. In this work, we run a
user study to elicit a hierarchical task tree of the tertiary bioinformatics
research process. Then, we show how such a model can be exploited to
design interfaces that are not only focused on the data treated but keep
in consideration both the research workflow and the researchers’ require-
ments. Our work has profound implications on designing new, accessible
bioinformatics tools that can enhance genomic research.

Keywords: Ontology · Bioinformatics · Tertiary analysis ·
Hierarchical task analysis · Hierarchical task tree

1 Introduction

Due to the large amount of genomic data that has been generated in recent years,
storing and processing biological information has created new challenges. In this
context, bioinformatics and computational biology have tried to overcome such
challenges [9]. Bioinformatics has been defined as “the application of computa-
tional tools to organize, analyze, understand, visualize, and store information
associated with biological macromolecules” [14].

Typically, bioinformatics can be subdivided into primary, secondary, and ter-
tiary analysis [21]. The primary data analysis consists of identifying and evalu-
ating raw data, focusing on generating readable sequencing reads (base calling),
and ranking the basis’s consistency. The outputs are usually FASTQ files (Illu-
mina) that are inputs of the secondary analysis, consisting of aligning the reads
against the human genome and variant calling [21]. Finally, tertiary analysis is

P. Crovari and S. Pidò—These authors contributed equally to this work.

c© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 82–91, 2020.
https://doi.org/10.1007/978-3-030-65847-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_8&domain=pdf
http://orcid.org/0000-0002-6436-4431
http://orcid.org/0000-0003-1425-1719
https://doi.org/10.1007/978-3-030-65847-2_8

Towards an Ontology for Tertiary Bioinformatics Research Process 83

considered the most challenging step since it allows us to study the sequencing
results. More in detail, it focuses on understanding the raw data using statistical
algorithms, machine learning, and data mining ones [16].

Today, there exist many different bioinformatics tools that allow us to per-
form these three types of analysis. Though, the vast majority of these tools are
designed, keeping in consideration exclusively constraints arising from data pro-
cessing but neglecting the ones coming from the user and the ones regarding the
interaction design. In the tertiary analysis, this problem is amplified, since data
and operations become even more complex. The resulting design of the interface
requires a deep understanding of Computer Science concepts to process data
correctly.

As a consequence, the usability is a severe issue. As Bolchini states, prob-
lems that current bioinformatics tools suffer from severely impact advancements
in this discipline [5]. In fact, in today’s panorama, researchers must spend a
tremendous cognitive effort interacting with the platform, being distracted from
the interaction’s goal: the biological interpretation of the data processed. In other
cases, researchers are also discouraged from using the tools because of their lack
of computer science skills.

For these reasons, bioinformatics research must tackle the challenge of cre-
ating tools that result usable for the final users. It is necessary to start thinking
about these tools from the researcher’s perspective, keeping into consideration
user requirements in the software’s design and development phases. Thus, it is
necessary to have a deep understanding of the bioinformatics research process:
this can give a clearer idea of the operative pipeline, where to insert the devel-
oped tools, and, consequently a clearer understanding of the user requirements.
Even if many designers understood the importance of basing the design of such
tools on ontologies of the process [6], to the best of our knowledge, no studies
focused on the elicitation of such a process.

In this context, our research takes place. We want to elicit the complete
tertiary analysis process to create an explicit model of the pipeline. To do so, we
run a user study to gather information on the process and then conceptualize
it using the hierarchical task analysis framework. Our work brings two major
contributions:

1. an ontology, in the form of a hierarchical task tree, representing the complete
bioinformatics tertiary process, and

2. a concrete example of the application of the elicited ontology to design a tool
for data retrieval and extraction.

2 State of the Art

In the beginning, bioinformaticians analyze and study genomic data through
command lines. Due to bioinformatics research progress, many tools have been
developed to help bioinformaticians during the analysis.

Particularly, it is possible to identify two main types of interfaces used for
bioinformatics analysis: the traditional graphical user interfaces and, recently,

84 P. Crovari et al.

the conversational ones that have started to be developed. Among all the avail-
able GUI, some worth mentioning are Galaxy [2], OrangeBioLab [8], UCSC
Xena [11], Globus Genomics [15] or GenePattern [24]. Galaxy [2] is a scien-
tific workflow, data integration, and data analysis platform focused on the sec-
ondary bioinformatics analysis. It provides a quite simple graphical user inter-
face. OrangeBioLab [8] is a data visualization tool that allows us to analyze
the uploaded data using data mining, machine learning, predictive modeling,
feature scoring. UCSC Xena [11] or Globus Genomics [15] are two visual pro-
gramming interfaces to analyze genomic data. GenePattern [24] is a powerful
scientific workflow system that provides access to hundreds of genomic analysis
tools: it is composed of many modules that allow the bioinformatics analysis
through both a web interface or a command-line one.

While it is a lot of years that graphical interfaces have been used to make
bioinformatics more user-friendly, conversational interfaces have recently become
more and more employed.

To make some examples, we can mention Ava [13] and Iris [10], two chatbots
developed to help data scientists to compose data analytic pipelines. Both can
build the workflow through the dialogue and transform it into an executable
Jupyter Python notebook. The first one guides the user through the execution
of a pre-defined work pipeline. At each step, it invites the user to choose the
desired operations and their parameters. Whereas, Iris acts as a conversational
wrapper for data science functions that allows users to combine them as they
like.

Even if in bioinformatics, conversational agents are not yet common, there
are some first attempts to use them for retrieval of biological data through
natural language processing. Some examples are Maggie [20], BioGraphBot [18]
and Ok DNA! [7]. Particularly, Maggie is a conversational interface to extract
data from BioCatalog. The interaction in natural language facilitates users, but
the agent does not actively support them. BioGraphBot is instead a chatbot
that allows users to translate queries in natural language to Gremlin queries to
extract biological data from BioGraphDB. The last one, Ok DNA! has the idea
of helping biologists and clinicians in extracting genomic data without knowing
querying languages.

In order to design usable and efficient platforms, it is fundamental to have
a clear idea of the tasks to support [3]. Human-Computer Interaction research
spent a considerable effort to produce many frameworks for task model elicita-
tion [1]. The GOMS framework is one of the most known and adopted ones [12].
GOMS have been designed to describe task analysis in User Interaction through
the means of four fundamental elements of the interaction: Goals, Operators,
Methods, and Selection Rules. In the years, many variants have been developed.
MECANO [22], MOBI-B [23], TRIDENT [4] and TADEUS [25] are other spread
framework; in these cases, though, the models preclude the integration of the
knowledge of the user [1].

Among the available framework, a considerable number adopted a tree-based
representation for the elicited model. Most of them follow the assumption that

Towards an Ontology for Tertiary Bioinformatics Research Process 85

tasks are not atomic and individuals but can be decomposed into sub-tasks, there-
fore originating a hierarchy. This representation facilitates the elicitation process;
on top of that, produced trees enable the comparison of different approaches used
to support the same task, both in terms of the types and the number of steps the
approaches require. One of the most popular tree-based frameworks is Concur-
TaskTree [19], which is capable embeds inside the topology of the model also the
temporal dependencies of the tasks. To the scope of this paper, we will use Hier-
archical Task Analysis, given its suitability for being adopted in user studies [26].

3 Empirical Study

In order to construct the conceptual model of the bioinformatics tertiary anal-
ysis research process, we ran a user study to understand researchers’ work rou-
tines. We conducted interview sessions that terminated in the construction of a
hierarchical task tree. Then, we confronted and integrated the various sessions’
outcomes to create a unique tree able to generalize all the individuals’ research
process.

Population. We interviewed eight bioinformatics expert, recruited on a vol-
unteer basis. The population was balanced in gender (4M, 4F) and heteroge-
neous in Academia’s role (3 Ph.D. students, 2 research assistants, 2 postdoctoral
researchers, and 1 assistant professor). All the volunteers were recruited through
emails. No sensitive information of the participants was stored to guarantee the
anonymity of the collected data.

Setting. The study took place in a room where the participants and the inter-
viewer could sit around a table. Both the interviewed and the researcher had
their personal computer in front of them. Due to the current pandemic emer-
gency outbreak, some of the interviews were held with the same protocol and
online through a video conferencing software.

Protocol. The study consisted of a semi-structured individual interview, divided
into three phases. During the whole process, the volunteers could use a virtual
whiteboard to help themselves with sketches.

In the beginning, the participants had to describe the steps that constitute
their typical research process. No constraints were given about the granularity
of the steps, neither on their number. The researcher intervened to ask for a
description of the steps or to ask for any clarification. Once formulated the
pipeline, the volunteers had to classify the process elements according to their
abstraction level. Finally, participants had to create a hierarchical task tree
starting from the elicited actions and integrating them with parents and child
tasks to complete the hierarchy.

86 P. Crovari et al.

Results. All the participants successfully concluded the interview session. Com-
paring the first phase outcomes, we notice that the research flow is similar for
most participants. Despite different abstraction levels that the interviewed peo-
ple adopted, a comparison of the results shows that similar actions have the
same ordering in the different pipelines. In particular, four typical macro-phases
results: the retrieval of the data, their exploration, the data analysis, and the
visualization and validation of the results, both from a computational and bio-
logical perspective. On the other hand, different participants focused more on
different workflow sections, therefore providing complementary perspectives on
the tertiary analysis.

During the second phase, the volunteers’ classification was very similar, show-
ing similar perceptions on the abstraction of the various operations.

The final phase resulted in a set of trees with very similar topology. Compar-
ing the trees created few conflicts, all of them in the deepest nodes, showing how
the researchers implicitly agree on how the research process is carried out. As in
the first phase, different areas of the trees were stressed during the interviews.

4 Ontology

We create a hierarchical task tree as an ontology to describe the bioinformatics
tertiary research process from user study outcomes.

The tree-based representation has many advantages. First, the research pro-
cess can be analyzed at different abstraction levels according to the need for
specificity. Consequently, a unique hierarchical structure can describe tools that
operate at a different level. Simultaneously, the hierarchy embeds essential infor-
mation, like the part of relationship, useful for the design and the specification
of a tool functionalities. For example, if a tool predicates on a task, it must allow
the user to perform all the children operations.

To elicit the ontology, we iteratively integrated the trees described by the
study participants in a unique structure. When conflicts arose, we opted for the
solution adopted by the majority of the participants. In the case of a tie, we
asked an expert bioinformatician not involved in the interviews to resolve the
conflict, providing his perspective.

The Fig. 1 illustrates the final tree. From the interviews, it comes out that the
main phases that compose a tertiary bioinformatics analysis are shared with most
data science applications. Indeed, they are: defining objectives, data extraction,
data analysis, and results analysis. The peculiar task of bioinformatics research
emerges going in-depth in the tree, that means looking at the process more in
detail.

Defining objectives is the first step computed by every interviewed person. It
is characterized by the definition of the research question, followed by a state of
the art analysis to understand related advancements and existing procedures. In
this step, a bioinformatician also wants to understand which are the deliverables
needed to answer to the research question; for example, which are the data,
tables, or plots necessary to verify the research hypothesis.

Towards an Ontology for Tertiary Bioinformatics Research Process 87

After having defined the goal of the research, bioinformatics analysis pro-
ceeds with the data extraction. This phase is, in turn, composed of three parts.
The first one is the data retrieval: after looking at the different public available
biological data, a bioinformatician selects the datasets of interest. The chosen
data are explored: first, their format and meaning are studied, then there is a
first preprocessing. The data are analyzed to assess their quality, clean them,
remove the noisy or wrong ones, and then normalize them according to the most
suitable metric. Sometimes, a user selects more than one dataset, thus, the data
needs to be integrated.

The third phase is the core of the process. Data analysis is the part in which
the extracted data are studied and passed through the algorithm selected to
answer the biological question. First, some preliminary analyses are computed
to choose the algorithm. Then the data has to be prepared and organized into
training and test sets to be passed to the chosen algorithm. Eventually, the
analysis is executed with a parameter tuning, and, if needed, it is optimized.

Finally, the last step is the analysis of the results. The results of a com-
putational biology analysis are divided into computational and biological ones.
The first ones are evaluated through performances and robustness. Furthermore,
comparative analysis and testing is computed on them. The biological results are
instead validated through commonly used analysis, such as enrichment analysis.

Even if we represent the tertiary analysis as a streamlined process, we do
not have to forget that this process is a continuous iteration between the phases.
Indeed, researcher iteratively refines their hypothesis to draw scientifically sig-
nificant conclusions.

5 Example Application

From our research process ontology, it is possible to develop tools that can be
easily used by bioinformaticians and biologists. For example, we would like to
build a conversational agent that allows us to extract the required genomic data,
i.e., the Data Extraction task. As the ontology suggests, the tool must allow
users to perform three macro operations, retrieving the datasets, exploring the
retrieved data, and, if necessary, their integration. Consequently, we design a
conversation formed by three main moments that represent the three macro
operations. The same reasoning must be applied iteratively at every part of the
conversation, breaking each operation in its sub-tasks, until the leaves of the
ontology are reached and mapped to dialogue units.

Following the Data Extraction branch, the resulting agent starts by providing
all the publicly available data, and the user decides which datasets to select.
Users can apply filtering operations to refine the research. Then, the chatbot
allows us to explore the data starting from providing the user the data meaning
and format and proceeding with asking if the user wants to compute some quality
assessment, data cleaning, and normalization. In particular, for this last part,
the agent must ask the user which metrics she would like to use. The agent is

88 P. Crovari et al.

Fig. 1. Resulting tree that represents the ontology of the typical bioinformatics tertiary
analysis.

able to create the workflow for the Data Retrieval from the conversation with the
user, and it allows the user to download the datasets for the following analysis.

Figure 2 shows an instance of the conversation. Knowing the underlying pro-
cess flow, the agent does not limit itself to execute the requested operations
requested, but actively support and guide them through the pipeline. In fact, at
every moment, the chatbot exactly knows what the user is doing in that specific
moment and what they will have to do to accomplish their goals.

The output of one operation must be the input accepted by the following
one, to allow users to pass from an operation to the other smoothly. Indeed, the
selected datasets in the Data Retrieval phase are passed to the Data Exploration
and, after the cleaning and normalization to the Data Integration one.

Towards an Ontology for Tertiary Bioinformatics Research Process 89

Fig. 2. Example of a dialogue built using our ontology.

6 Conclusion

In this work, we ran a user study to elicit an ontology of the bioinformatics
tertiary analysis process systematically. With our research, we bring two major
contributions:

– an ontology of the bioinformatics research process, and
– an example of exploitation of the elicited ontology for the design and devel-

opment of a new tool

Even if the elicited ontology is still at an embryonic level, since it does not
fully exploit the potentialities ontologies modeling languages, it paves the ground
to profound implications for the bioinformatics research panorama. Such a model
allows tools designers to have a complete overview of the process in which the
tool is inserted, therefore seeing the tools not as stand-alone pieces of software,
but as part of a broader pipeline. In this way, the ontology can provide the
platform requirements from a functional perspective (such as input data format,
expected output, and required operations) and facilitate the integration of tools
with complementary capabilities. A tree-based model has the advantage of being
usable at every level of abstraction, resulting in more flexibility for its adoption.
Keeping in mind the pipeline, the designer can truly understand the problem
from the users’ point of view and have a complete overview of the motivations
that drive a user to use such a method.

90 P. Crovari et al.

A clear model of the research process provides a clear way of stating tool
capabilities, improving the clarity of the software specifications. Simultaneously,
a standard nomenclature can support the description of the platform capabilities,
removing any ambiguity in the terminology.

Even if promising, our work is not exempt from limitations. The current
pandemic emergency prevented us from interviewing bioinformatics researchers
on a larger scale. On the other hand, the similarity of the collected responses
allowed us to converge to a unified model.

In the future, we aim at validating our ontology through a bottom-up analysis
of existing tools. Then we will proceed to the formulation of the ontology through
standard notations, such as OWL [17].

References

1. Abed, M., Tabary, D., Kolski, C.: Using formal specification techniques for the
modelling of tasks and generation of HCI specifications. In: The Handbook of
Task Analysis for Human Computer Interaction, pp. 503–529 (2003)

2. Afgan, E., et al.: The galaxy platform for accessible, reproducible and collaborative
biomedical analyses: 2018 update. Nucleic Acids Res. 46(W1), W537–W544 (2018)

3. Benyon, D., Murray, D.: Applying user modeling to human-computer interaction
design. Artif. Intell. Rev. 7(3–4), 199–225 (1993)

4. Bodar, F., Hennebert, A.M., Leheureux, J.M., Provot, I., Vanderdonckt, J.,
Zucchinetti, G.: Key activities for a development methodology of interactive appli-
cations. In: Benyon, D., Palanque, P. (eds.) Critical Issues in User Interface Systems
Engineering, pp. 109–134. Springer, London (1996). https://doi.org/10.1007/978-
1-4471-1001-9 7

5. Bolchini, D., Finkelstein, A., Perrone, V., Nagl, S.: Better bioinformatics through
usability analysis. Bioinformatics 25(3), 406–412 (2009)

6. Cannataro, M., Veltri, P.: MS-analyzer: preprocessing and data mining services
for proteomics applications on the grid. Concurr. Comput. Pract. Exp. 19(15),
2047–2066 (2007)

7. Crovari, P., et al.: Ok, DNA!: a conversational interface to explore genomic data. In:
Proceedings of the 2st International Conference on Conversational User Interfaces,
to be published

8. Demšar, J., et al.: Orange: data mining toolbox in python. J. Mach. Learn. Res.
14, 2349–2353 (2013). http://jmlr.org/papers/v14/demsar13a.html

9. Diniz, W., Canduri, F.: Bioinformatics: an overview and its applications. Genet.
Mol. Res. 16(1) (2017)

10. Fast, E., Chen, B., Mendelsohn, J., Bassen, J., Bernstein, M.S.: Iris: a conversa-
tional agent for complex tasks. In: Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, pp. 1–12 (2018)

11. Goldman, M.J., et al.: Visualizing and interpreting cancer genomics data via the
Xena platform. Nat. Biotechnol. 1–4 (2020)

12. John, B.E., Kieras, D.E.: The GOMS family of user interface analysis techniques:
comparison and contrast. ACM Trans. Comput.-Hum. Interact. (TOCHI) 3(4),
320–351 (1996)

13. John, R.J.L., Potti, N., Patel, J.M.: Ava: from data to insights through conversa-
tions. In: CIDR (2017)

https://doi.org/10.1007/978-1-4471-1001-9_7
https://doi.org/10.1007/978-1-4471-1001-9_7
http://jmlr.org/papers/v14/demsar13a.html

Towards an Ontology for Tertiary Bioinformatics Research Process 91

14. Luscombe, N.M., Greenbaum, D., Gerstein, M.: What is bioinformatics? A pro-
posed definition and overview of the field. Methods Inf. Med. 40(04), 346–358
(2001)

15. Madduri, R.K., et al.: Experiences building Globus Genomics: a next-generation
sequencing analysis service using Galaxy, Globus, and Amazon web services. Con-
curr. Comput.: Pract. Exp. 26(13), 2266–2279 (2014)

16. Masseroli, M., et al.: Processing of big heterogeneous genomic datasets for tertiary
analysis of next generation sequencing data. Bioinformatics 35(5), 729–736 (2019)

17. McGuinness, D.L., Van Harmelen, F., et al.: Owl web ontology language overview.
W3C Recomm. 10(10), 2004 (2004)

18. Messina, A., Augello, A., Pilato, G., Rizzo, R.: BioGraphBot: a conversational
assistant for bioinformatics graph databases. In: Barolli, L., Enokido, T. (eds.)
IMIS 2017. AISC, vol. 612, pp. 135–146. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-61542-4 12

19. Mori, G., Paternò, F., Santoro, C.: CTTE: support for developing and analyzing
task models for interactive system design. IEEE Trans. Softw. Eng. 28(8), 797–813
(2002)

20. Paixão-Côrtes, W.R., Paixão-Côrtes, V.S.M., Ellwanger, C., de Souza, O.N.: Devel-
opment and usability evaluation of a prototype conversational interface for biolog-
ical information retrieval via bioinformatics. In: Yamamoto, S., Mori, H. (eds.)
HCII 2019. LNCS, vol. 11569, pp. 575–593. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-22660-2 43

21. Pereira, R., Oliveira, J., Sousa, M.: Bioinformatics and computational tools for
next-generation sequencing analysis in clinical genetics. J. Clin. Med. 9(1), 132
(2020)

22. Puerta, A.R.: The Mecano project: enabling user-task automation during interface
development. In: Proceedings of AAAI, vol. 96, pp. 117–121 (1996)

23. Puerta, A.R., Maulsby, D.: Management of interface design knowledge with MOBI-
D. In: Proceedings of the 2nd International Conference on Intelligent User Inter-
faces, pp. 249–252 (1997)

24. Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., Mesirov, J.P.: GenePattern
2.0. Nat. Genet. 38(5), 500–501 (2006)

25. Schlungbaum, E.: Support of task-based user interface design in TADEUS. Uni-
versitat Rostock (1998)

26. Stanton, N.A.: Hierarchical task analysis: developments, applications, and exten-
sions. Appl. Ergon. 37(1), 55–79 (2006)

https://doi.org/10.1007/978-3-319-61542-4_12
https://doi.org/10.1007/978-3-319-61542-4_12
https://doi.org/10.1007/978-3-030-22660-2_43
https://doi.org/10.1007/978-3-030-22660-2_43

Using BioPAX-Parser (BiP) to Annotate
Lists of Biological Entities with Pathway

Data

Giuseppe Agapito1,2(B) and Mario Cannataro2,3

1 Department of Legal, Economic and Social Sciences,
University “Magna Graecia” of Catanzaro, Catanzaro, Italy

agapito@unicz.it
2 Data Analytics Research Center,

University “Magna Graecia” of Catanzaro, Catanzaro, Italy
cannataro@unicz.it

3 Department of Medical and Surgical Sciences,

University “Magna Graecia” of Catanzaro, Catanzaro, Italy

Abstract. Proteins and genes are widely involved in activation or inhi-
bition of the communication flow between a receptor and a transcription
factor within a biological pathway. The key to fully understand proteins’
functional roles is the deduction of the relationship between pathways
and proteins. To facilitate the understanding of the complex flow of inter-
actions characterizing biological pathways, in the last years, several pub-
lic and private databases have been built to store, represent, visualize,
and share pathways information. Pathway Enrichment Analysis (PEA)
makes it possible to take advantage of the pathway databases informa-
tion to discover connections with biological mechanisms. PEA methods
help researchers to overcome the problem of interpreting gene lists, or
other biological entity lists of interest, disconnected from the biological
context, facilitating and validating their findings. Here, we introduce the
BioPAX-Parser (BiP), an automatic and graphics-based tool aimed at
performing PEA by using pathways data encoded in BioPAX format. BiP
is fully developed using Java 8, and it helps the researcher to perform
pathways enrichment analysis, merely loading a list of proteins/genes of
interest. Enrichment in BiP has been performed by implementing Hyper-
geometric test, along with False Discovery Rate (FDR) and Bonferroni
multiple-test statistical correctors. A case study of using BiP to annotate
endometrial cancer gene list is also presented.

Keywords: Pathway Enrichment Analysis · Biological pathway ·
Statistical analysis · BioPAX

1 Introduction

Main experimental high throughput (HT) technologies such as Single Nucleotide
Polymorphisms (SNPs) and gene expression microarrays, Next Generation
c© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 92–101, 2020.
https://doi.org/10.1007/978-3-030-65847-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_9&domain=pdf
http://orcid.org/0000-0003-2868-7732
http://orcid.org/0000-0003-1502-2387
https://doi.org/10.1007/978-3-030-65847-2_9

Using BiP to Perform Pathway Enrichment 93

Sequencing (NGS), Genome Wide association Studies (GWAS), having made
it possible to study thousands or hundreds thousands biological entities in the
same experiments. HT assays brought up the complex molecular interactions
network among the involved biological entities such as proteins, small molecules
or microRNAs connected by interactions such as activation or synthesis, produc-
ing huge amount of data per single experiment.

Although the capacity of HT assays to produce data is advancing rapidly, the
biological interpretation of those data remains a challenge, especially when inter-
pretation regards connecting genetic discovery with known biological processes.
Regardless of the HT assays used, they commonly yield a list of entities e.g., dif-
ferentially expressed genes, proteins, SNPs, or microRNAs. This list is remark-
ably useful in recognising genes that may have roles in a given phenomenon or
phenotype.

Complex diseases, such as cancers, or Alzheimer are due to the effects of
the complex interaction among multiple genes, proteins, and other molecules,
and are not due to the impact of a single mutated gene, for example. Biological
pathways play an essential role in understanding the flow of multiple actions
among molecules in a cell leading to a specific product or a variation in the cell.
To facilitate the understanding of the complex flow of interactions characteriz-
ing biological pathways, in the last years several public and private databases
have been built to store, represent, visualize and share pathways information.
Pathway databases comprise KEGG [10], MetaCyc [2], PantherDB [8], Pathway-
Commons [3], Reactome [6], and WikiPathways [11]. MetaCyc and KEGG pro-
vide information about metabolic pathways from several organisms, Reactome
and Panther collect and share signaling and metabolic pathways information
including human, WikiPathways contains information about metabolic, signal-
ing, and regulatory pathways from multiple species. Finally, PathwayCommons
is a collection of publicly available pathway data from multiple organisms.

Pathway Enrichment Analysis (PEA) makes it possible to take advantage of
the pathway database information and the data yielded by HT assays, to dis-
cover connections with biological mechanisms. PEA methods can be classified
into three classes: (1) Over Represented Analysis (ORA); (2) Gene Set Enrich-
ment Analysis (GSEA); and (3) Topological Enrichment Analysis (TEA). The
first two categories of methods perform enrichment analysis using as input a list
of genes, proteins, SNPs, or mRNA. Whereas, the third class takes into account
the topology information available from the pathways. PEA methods attempt
to help researchers to overcome the problem of interpreting gene list or other
biological entity lists of interest disconnected from the biological context, facili-
tating and validating their findings. Analyzing lists of genes, proteins, SNPs, or
microRNAs at the functional pathway level, can provide more descriptive power
than analyzing a list of disconnected entities.

We developed BioPAX-Parser (BiP) [1], a novel software tool able to compute
PEA from a list of genes or proteins. BiP allows researchers to graphically dig
with information from biological pathways represented in BioPAX (Biological
Pathway Exchange) Level 3 format. The proposed approach is based on the fol-

94 G. Agapito and M. Cannataro

lowing steps: (i) initially we load the input list containing the biological entities
of interest; (ii) then, we compute enrichment by using a customized version of
Hypergeometric test, along with the False Discovery Rate (FDR) and Bonferroni
correctors, to correct the p-value from errors due to multiple statistical tests. BiP
is freely available at https://gitlab.com/giuseppeagapito/bip, where users may
download the software user guide and some toy datasets to familiarize with the
BiP functions. To execute PEA, BiP integrates several pathways databases that
are preliminary loaded into the system.

The remainder part of the paper is structured as follows: Sect. 2 describes
PEA approaches and the main pathway databases. Section 3 discusses BiP
methodology and implementation, Sect. 4 presents a case study of PEA and
discusses the results of the application of BiP on a genes list of interest using
different pathway databases. Finally Sect. 5 concludes the paper and outlines
future work.

2 Background

This section presents main concepts related to the pathway databases and PEA
approaches.

2.1 Pathway DataBases

The number of pathway databases is growing quickly in recent years. This is
advantageous because biologists often need to use information from many sources
to support their research. Here we report a short list of well-known pathway
databases.

– KEGG1 (Kyoto Encyclopedia of Genes and Genomes) is a collection of 19
databases, including genomic, chemical, pathway, and phenotypic information
[7]. KEGG collects pathways in classes, including metabolic pathways, genetic
information pathways, and signaling pathways. KEGG stores pathways from
several organisms, including human. KEGG provides significant coverage for
the human with 7, 217 annotated proteins. Pathways are manually curated
from the experts through the literature. KEGG data can be accessed using
the KEGG API or KEGG FTP, allowing users to download each pathway in
KGML, the KEGG XML format used to encode the pathways. KEGG also
provides a web interface to browse each pathway.

– MetaCyc2 [2] is a curated database of experimentally elucidated metabolic
pathways from all domains of life. MetaCyc contains 2, 847 pathways from
3, 161 different organisms. MetaCyc data can be accessed in several ways
by searching pathways, enzymes, reactions, and metabolites, and by brows-
ing MetaCyc metabolic pathways. Data can be downloaded in the following

1 https://www.kegg.jp.
2 https://metacyc.org.

https://gitlab.com/giuseppeagapito/bip
https://www.kegg.jp
https://metacyc.org

Using BiP to Perform Pathway Enrichment 95

formats: BioPAX, Pathway Tools attribute-value format, Pathway Tools tab-
ular format, SBML format and Gene Ontology annotations. To access and
download data, MetaCyc requires a paid subscription.

– Panther3 (Protein Analysis Through Evolutionary Relationships Classifica-
tion System) was designed to classify proteins (and their genes) in order
to facilitate high-throughput analysis. The Panther Classifications are the
result of human curation through the literature. Panther database includes
protein sequencing, evolutionary information, metabolic and signaling path-
ways information. Panther in the current version [9] stores pathways from
several organisms, including human, for a total of 177 pathways. Data can
be accessed using the Panther API, or users may download pathways in the
BioPAX, SBML and Protein Sequence Association data format.

– PathwayCommons4 [3] is a collection of public pathway databases such as
Reactome, PID and Cancer Cell Map as well as protein-protein interaction
databases, such as HPRD, HumanCyc, IntAct, and MINT. The main goal
of PathwayCommons is to provide an access point for a collection of public
databases and includes technology for integrating pathway information. Path-
way creation, extension, and curation remain the duty of the source pathway
databases. PathwayCommons provides a web interface to browse pathways,
as well as a web service API for automatic access to the data. Also, PSI-MI
and BioPAX formats are supported for the data download. Furthermore, the
complete PathwayCommons database can be automatically accessed using
the PathwayCommons plugin.

– Reactome5 is an open source, open access, manually curated, and peer-
reviewed pathway database of human pathways, biological processes and bio-
chemical reactions [4,5]. Reactome is the result of the joint efforts among
several international research institutes. In the current version, Reactome con-
tains the whole known pathways coming from 22 different organisms including
the human. Reactome includes 2, 324 pathways, and 10, 923 annotated pro-
teins for the Homo sapiens. Reactome allows to browse pathways through
the graphical web interface, as well as to download the data in different for-
mats comprising SBML Level 2, and BioPAX Level 2 and Level 3 and other
graphical formats, for local analysis using other tools.

– WikiPathways6 [11] is an open, collaborative platform dedicated to the
curation of biological pathways. WikiPathways is a new model of pathway
databases that improves and complements ongoing efforts, such as KEGG,
Reactome and PathwayCommons. WikiPathways has a dedicated web page,
displaying diagrams, description, references, download options, version his-
tory, and component gene and protein lists. Any pathway can be edited from
the embedded pathway editor. WikiPathways data are freely available for
download as image, and in GPML, a custom XML format. In addition, data
can be accessed programmatically by using the available Webservice/API.

3 http://www.pantherdb.org/.
4 https://www.pathwaycommons.org.
5 https://www.reactome.org.
6 https://www.wikipathways.org/index.php/Help:Contents.

http://www.pantherdb.org/
https://www.pathwaycommons.org
https://www.reactome.org
https://www.wikipathways.org/index.php/Help:Contents

96 G. Agapito and M. Cannataro

2.2 Pathway Enrichment Analysis Approaches

Pathway Enrichment Analysis approaches can be broadly divided in three dif-
ferent types:

– Over Representation Analysis (ORA): it is the easiest PEA method because
it can be used to analyze gene expressions, SNPs, or additional data. ORA
methods perform statistical evaluation of the fraction of pathway components
found among a user-selected list of biological components. They statistically
evaluate the portion of genes in a particular pathway found among the set of
genes. The enrichment is accomplished through an iterative methodology. It
counts, for each pathway, the input genes that belong to the current pathway,
repeating this process for the whole gene list, and each pathway into the
database. The most used tests are based on the hypergeometric, chi-square,
Fisher’s Test, or Binomial distribution. The final results from an ORA method
generally consist of a list of relevant pathways, ordered according to a P -value
or multiple hypothesis tests corrected P -value.

– Gene Set Enrichment Analysis (GSEA): such methods exploit the hypothe-
sis that significant change has a considerable effect on the pathway’s genes.
As well as, weaker but simultaneous changes in pathways’ genes impact the
general functioning. GSEA methods compute pathway enrichment analysis
using a three steps methodology. i) The first step regards the computation
of gene’s statistical significance by using molecular measurement, e.g., the
gene expression values. Gene statistics are assessed using the following meth-
ods: ANOVA, fold change, t-statistic, log-likelihood ratio, t-test, and Z-score.
ii) The second step consists of aggregating each genes’ statistics into path-
way statistics. Pathway statistic is estimated using the Kolmogorov-Smirnov,
Wilcoxon sum rank, and Chi-squared tests, respectively. iii) The last step
regards the computing of the statistical relevance of the pathway. Statistical
pathway relevance is assessed according to the selected null hypothesis. That
can be done by permuting only genes’ class labels (e.g., phenotype) into the
pathway or permuting all the genes’ class labels for each pathway.

– Topological Enrichment Analysis (TEA): it takes into account the connec-
tions/interactions among the entities, e.g., proteins, genes, or small molecules.
Pathways are represented as a graph, where nodes represent pathway’s com-
ponent, e.g., genes, proteins, small molecules, and gene products; and edges
provide information about the interactions among components, the type
of interaction (e.g., activation, inhibition, and topological information) and
where components interact, e.g., nucleus, membrane, etc. The main differ-
ence between ORA and GSEA methods, compared with TEA methods, is
that TEA uses topological knowledge as additional information to calculate
the enrichment value.

3 The BiP Algorithm and its Implementation

Here we discuss the BiP pathway enrichment analysis algorithm and the related
software architecture.

Using BiP to Perform Pathway Enrichment 97

3.1 BiP Algorithm

In this section, we briefly describe the BiP algorithm, developed to perform
pathway enrichment analysis by using a gene or protein list of interest.

Algorithm 1 is a summary of the main phases of the BiP algorithm. The first
step of BiP algorithm consists in loading the input pathway database (PD) and
the transformation of each RDF-triple in Attribute A, to be indexed and stored
into the Attributes-Container AC, making it possible to represent the RDF-
triples in a graph-like mode. Concurrently to the loading and conversion phase,
the input list of biological entities L is loaded and converted in gene name or
UniprotID. Subsequently, as a results of the PEA calculation, the ranked list of
enriched pathways EP is visualized to the user. Currently BiP loads the following
pathways databases: Humancyc, KEGG, Netpath, Panther, PID, Reactome, and
WikiPathways.

Algorithm 1. BiP Pathway Enrichment Analysis Algorithm
Require: Pathway Data PD, Entities List L
Ensure: Ranked List of Enriched Pathways EP
1: Data Structure initialization: AC, A, EP

2: PD ←loadBioPAXdata()
3: L ←loadEntities()

4: for all rt ∈ PD do
5: A ← convertRDF (rt)
6: AC ← A
7: end for

8: EP ← computePEA(AC,L)

9: visualizeEnrichment(EP)
10: end.

3.2 BiP Implementation

BiP has a layered architecture as depicted in Fig. 1 which is composed of 5
modules.

The BiP-Core module receives the user requests e.g., the biological entities’
list of interest, the pathway datasets, and in addition it acts as controller for
the other modules. The Input Reader module is composed of two submodules,
the BioPAX Reader and the Biological Entities List Reader. The Input Reader
module is implemented using the Master-Slave approach that is realized by
using the Java Threads package, to achieve better performance in loading input
files. The submodule BioPAX Reader is internally implemented by using the
RDF-Reader component available within the Jena library version 3.1.0, that
allows to load the rdf-statements represented in the form of ontological triples:

98 G. Agapito and M. Cannataro

subject, predicate and object, used to define the pathway’s features, making BiP
independent from the pathway data source, as well as to speed-up the loading and
extraction process from BioPAX files. Characteristic that allows BiP to perform
PEA by using any pathway database compliant with the BioPAX format.

The Biological Entities List Reader submodule loads and translates the pro-
vided biological entities list using gene name, or Uniprot identifier.

The RDFTripleHandler module is responsible for improving the triples’ han-
dling. RDF triples in BioPAX are used to represent the complex biological inter-
actions among the involved biological entities, e.g., genes, small molecules and
mRNAs. Internally in BiP we have developed two customized data structures
called Attribute and Attributes-Container. An Attribute stores in a compact way
the rdf-triples through a hash function providing a twofold advantage: first it
allows to compress the data saving space both in central and secondary mem-
ory; second, Attributes are indexed by the Attributes-Container data structure,
allowing to get better performance in loading and handling flat BioPAX data, for
the subsequent analysis. Attributes-Container indexes and stores the Attribute
elements using a linked data structure emulating a graph-based representation,
taking advantage from the graph structure encoded in the BioPAX format to rep-
resent the pathway’s elements. Linking data such as a graph, let the algorithm to
take advantage of the Depth First Search (DFS) or Breadth First Search (BFS),
allowing to recursively scan the graph making it more efficient to go across the
pathway and to improve the information handling.

The PEA module provides the calculation of the enrichment for each gene,
protein, or microRNA loaded. It uses a customized version of the Hypergeo-
metric test implemented in Java. The GUI module is based on Java Swing
Technology (http://docs.oracle.com/javase/tutorial/uiswing/) and provides to
the user transparent access to all the implemented functionalities. BiP is fully
developed using Java 8, and it is available for download at https://gitlab.com/
giuseppeagapito/bip.

Fig. 1. BiP’s modular architecture.

http://docs.oracle.com/javase/tutorial/uiswing/
https://gitlab.com/giuseppeagapito/bip
https://gitlab.com/giuseppeagapito/bip

Using BiP to Perform Pathway Enrichment 99

4 Case Study Results

Here we compare the enrichment results of BiP with respect to the pathDIP
PEA software tool. pathDIP7 is an annotated database of signaling cascades in
human and non-human organisms, comprising core pathways from major curated
pathways databases, allowing user to perform pathway enrichment analysis [12].
Conversely from pathDIP, BiP, in addition to PEA, allows to retrieve information
enclosed in pathways compatible with the BioPAX format. For instance, users
can automatically select proteins and genes enclosed in the pathway under anal-
ysis, and automatically annotate them with information from Uniprot database.

The gene list of interest were downloaded from the TCGA database available
online at https://portal.gdc.cancer.gov/projects/TCGA-UCEC. We downloaded
the Endometrial cancer mutated genes list that contains about 7, 443 mutated
genes. To perform pathway enrichment we used the pathway data from KEGG
and Reactome databases.

BiP enriched 266 Reactome pathways, and 73 KEGG pathways, whereas
pathDIP enriched 225 Reactome pathways, and 232 KEGG pathways. The com-
parison between the first 10 enriched pathways considering p-value lower than
0.05 from both databases using BiP and pathDIP provided the results dis-
cussed in the following. Figure 2 shows the enrichment overlap between BiP
and pathDIP using Reactome and the endometrial genes list. Both tools show
an enrichment overlap of 40% for pathways related to the cell activities such
as, Extracellular matrix organization, Ion channel transport, Gene expression
(Transcription), and RNA Polymerase II Transcription pathways well known to
contribute in endometrial cancer.

Fig. 2. The overlap between the first 10 enriched pathways obtained by BiP and
pathDIP, by using Reactome pathways database.

Figure 3 shows the enrichment overlap between BiP and pathDIP using
KEGG and the endometrial genes list. The enrichment results obtained by using
KEGG database does not provide any overlap between the two tools. The non-
overlap between the pathways enriched by the two tools requires further analysis
7 http://ophid.utoronto.ca/pathDIP/.

https://portal.gdc.cancer.gov/projects/TCGA-UCEC
http://ophid.utoronto.ca/pathDIP/

100 G. Agapito and M. Cannataro

to identify whether all the enriched pathways are involved in endometrial can-
cer (maybe, this can be due to the use of different versions of KEGG pathway
database).

The obtained results show good performance in term of the number of rele-
vant enriched pathways, and specificity. In particular, BiP enriched more path-
ways than pathDIP respect computing PEA by using Reactome database. In
particular, BiP enriched 266 pathways with a mean p-value less than E−22,
whereas pathDIP enriched 224 pathways with a mean p-value less than E−15.
On the other hand, pathDIP enriched more pathways than BiP by using KEGG
database. In particular, pathDIP enriched 232 pathways with a mean p-value
less than E−24, whereas BiP enriched 72 pathways with a mean p-value less
than E−16.

Fig. 3. The overlap between the first 10 enriched pathways obtained by BiP and
pathDIP, by using KEGG pathways database.

5 Conclusion and Future Work

In this work we presented a Java application called BioPAX Parser (BiP), with
which users can simply and quickly perform PEA, as well as retrieve information
from BioPAX files encoded in Level 3. The main advantage of BiP in pathway
enrichment is the possibility to perform enrichment from different databases
compatible with the BioPAX Level 3 format. The obtained results show good
performance in term of the number of relevant enriched pathways, and specificity.
As future work, we are extending BiP in order to make it possible to compute
enrichment by using as additional information the pathway topology.

In addition, we plan to extend BiP to deal with the majority of the available
files format employed to represent pathway data, such as XML, SBML, GMTL.

References

1. Agapito, G., Pastrello, C., Guzzi, P.H., Jurisica, I., Cannataro, M.: BioPAX-Parser:
parsing and enrichment analysis of BioPAX pathways. Bioinformatics (2020).
https://doi.org/10.1093/bioinformatics/btaa529

https://doi.org/10.1093/bioinformatics/btaa529

Using BiP to Perform Pathway Enrichment 101

2. Caspi, R., et al.: The MetaCyc database of metabolic pathways and enzymes and
the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 36(Suppl.
1), D623–D631 (2007)

3. Cerami, E.G., et al.: Pathway commons, a web resource for biological pathway
data. Nucleic Acids Res. 39(Suppl. 1), D685–D690 (2010)

4. Fabregat, A., et al.: The reactome pathway knowledgebase. Nucleic Acids Res.
46(D1), D649–D655 (2017)

5. Fabregat, A., et al.: Reactome pathway analysis: a high-performance in-memory
approach. BMC Bioinform. 18(1), 142 (2017). https://doi.org/10.1186/s12859-
017-1559-2

6. Joshi-Tope, G., et al.: Reactome: a knowledgebase of biological pathways. Nucleic
Acids Res. 33(Suppl. 1), D428–D432 (2005)

7. Kanehisa, M., Goto, S.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic
Acids Res. 28(1), 27–30 (2000)

8. Mi, H., et al.: The panther database of protein families, subfamilies, functions and
pathways. Nucleic Acids Res. 33(Suppl. 1), D284–D288 (2005)

9. Mi, H., Muruganujan, A., Ebert, D., Huang, X., Thomas, P.D.: Panther version 14:
more genomes, a new panther go-slim and improvements in enrichment analysis
tools. Nucleic Acids Res. 47(D1), D419–D426 (2019)

10. Ogata, H., Goto, S., Fujibuchi, W., Kanehisa, M.: Computation with the KEGG
pathway database. Biosystems 47(1–2), 119–128 (1998)

11. Pico, A.R., Kelder, T., Van Iersel, M.P., Hanspers, K., Conklin, B.R., Evelo, C.:
WikiPathways: pathway editing for the people. PLoS Biol. 6(7), e184 (2008)

12. Rahmati, S., et al.: pathDIP 4: an extended pathway annotations and enrichment
analysis resource for human, model organisms and domesticated species. Nucleic
Acids Res. 48(D1), D479–D488 (2019). https://doi.org/10.1093/nar/gkz989

https://doi.org/10.1186/s12859-017-1559-2
https://doi.org/10.1186/s12859-017-1559-2
https://doi.org/10.1093/nar/gkz989

Relational Text-Type for Biological
Sequences

Cristian Tristão1 , Antonio Basilio de Miranda2 , Edward Hermann
Haeusler1 , and Sergio Lifschitz1(B)

1 Dep. Informática - (PUC-Rio), Rio de Janeiro, Brazil
sergio@inf.puc-rio.br

2 Lab. Genética Molecular de Microrganismos, Fundação Oswaldo Cruz (FIOCRUZ),
Rio de Janeiro, Brazil

Abstract. DNA sequencers output very long biological data strings that
we should persist in a database system. In this paper, we first propose a
conceptual schema for representing the core biological information, which
may be inferred from biological data and necessary function manipula-
tions. We also present a possible extension of the relational text data
type-specific to manipulate biological sequences and their derivatives.

1 Introduction and Motivation

One of the relevant open problems concerns the way to store and manipulate
biological sequence data. Information inherent to this domain, such as nucleotide
and its derivatives and relations (central dogma of molecular biology), are cur-
rently represented as simple character strings with no concern for their meaning.
To access the data, some index structures for manipulating sequences have been
proposed, especially the suffix tree [4,5]. It is a versatile and very efficient data
structure that can be built in linear time if it can be stored in main memory [3].

We claim that there is no standard to represent, store and manipulate appro-
priately a biological sequence. Moreover, even the derived information, such as
the relationship between the sequences that are part of the central dogma of
molecular biology and protein alignment are not appropriately considered.

Also, there is still no specific structure for the storage and manipulation
of biological data. Most systems persist data in files in text format, e.g. the
BLAST family [2] and SSEARCH [6]. Systems that use a relational database
persist sequences in structures of type string or BLOBs (Binary Large OBjects),
in its original form. This practice facilitates loading of repositories from text
files. However access to data is limited to traditional operators.

It is natural to use a DBMS such as relational ones to manage large volumes
of data. However, the available data structures are not suitable for managing
biological sequences. The problem with treating a biological sequence as a word
(string) or BLOB, used to store any data, files in general, is the loss of semantic
information. A “biological string” has well-defined interpretations, e.g. amino
acids, proteins, coding regions, etc., and specific characteristics that differ from
c© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 102–112, 2020.
https://doi.org/10.1007/978-3-030-65847-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_10&domain=pdf
http://orcid.org/0000-0002-8164-9965
http://orcid.org/0000-0002-4977-7350
http://orcid.org/0000-0002-4999-7476
http://orcid.org/0000-0003-3073-3734
https://doi.org/10.1007/978-3-030-65847-2_10

Relational Text-Type for Biological Sequences 103

a word string, e.g. comparison and similarity are not simple pattern matching.
Just to mention a few examples, there are no appropriate mechanisms to answer
queries related to the identification homologous (analogues and orthologs) genes.

This paper proposes a biological conceptual schema to represent information
related to the central dogma of molecular biology, as well as an abstract data
type (ADT) specific to the manipulation of biological sequences and their deriva-
tives. We have been inspired by dedicated system already adopted in Temporal
Databases [7].

Section 2 brings our proposal comprising a conceptual schema of biological
sequences and some common requirements for accessing and manipulating them.
Section 3 we discuss the use of the relational string-type that, together with a
relational schema with specific functions, may add semantics to our data. Finally,
Sect. 4 is dedicated to the conclusions and future work.

2 Conceptual Modeling and Initial Data Manipulation

The great difficulty in representing and manipulating biological sequences is
related to its origin. Everything we know today about molecular biology is
abstractions of how things are. Second, a biological sequence, taken in isola-
tion, has no meaning of its own. The information is “hidden” in the set of letters
that make up the sequence, requiring a manipulation on it to extract such infor-
mation.

We represent all the genetic information of a living organism in its linear
sequence of the four bases. Therefore, a four-letter alphabet (A, T, C, G) must
encode the primary structure (i.e., the number and sequence of the 20 amino
acids) of all proteins. We may realize that representing biological sequences,
quite simply, as a blob or string relational database type, does not make sense.
Every set of information contained in a nature-based sequence is lost.

Furthermore, analyzing the behavior and some phenomena (manipulation),
represented by the central dogma of molecular biology, that a biological sequence
can suffer, we can define some rules (R) and functions (F) that an abstract type
of data must consider.

In nature, there are two types of nucleic acids: DNA (deoxyribonucleic acid)
and RNA (ribonucleic acid). Analogously to a communication system, this infor-
mation is kept inside the cell in what we call a genetic code. In their primary
structure, we see both DNA and RNA as a linear chain composed of simple
chemical units called nucleotides. A nucleotide is a chemical compound with
three parts: a phosphate group, a pentose (five-carbon sugar molecule), and an
organic base. In DNA molecules, pentose is deoxyribose, while in RNA molecules,
pentose is ribose. The organic base, also known as the nitrogenous base, char-
acterizes each nucleotide. We may either refer to a nucleotide or base sequence.
The bases are Adenine, Guanine, Cytosine, Timine, and Uracil, the first two are
purines, and the last three are pyrimidines. In DNA, we find bases A, G, C, and
T. In RNA, base U is observed instead of base T. Our first rule R1 states that
biological sequences are stored as nucleotides.

104 C. Tristão et al.

DNA molecules are made up of two strands, which bond together, forming
a helical structure, known as a double helix. The two tapes are merged by the
stable connection of their nucleotide bases. Base A always binds base T, and
base G binds base C. Thus, the nucleotide sequence in one strand ultimately
determines the DNA molecule. It is precisely this property that allows for DNA
self-duplication.

Each strand of DNA has two ends, called 3′ and 5′, in an allusion to the
carbon atoms free in the sugar that make up each nucleotide. The two tapes are
antiparallel; that is, the tapes have a 5′ 3′ orientation opposite each other. The
convention adopted worldwide to represent DNA molecules is to write only one
of the strips in the 5′ 3′ direction. Therefore, our rule R2 states that we will
represent every nucleotide sequence in the 5′ 3′ direction. In this case, another
function might be useful to obtain both directions:

Although the base composition varies from one species to another, the ade-
nine amount is always equal to that of thymine (A = T). The number of guanine
and cytosine bases is also the same (G = C). Consequently, the total amount of
purines is equivalent to pyrimidine (i.e., A + G = C + T). On the other hand,
the AT/GC ratio varies considerably between species.

In the DNA nucleotide chain, a set of 3 nucleotides corresponds to an
amino acid: they are the triplets. Through the transcription process, the DNA
triplets are converted into RNA codons. These codons are, like triplets, sets of
3 nucleotides in the messenger RNA chain.

It migrates to the cell’s cytoplasm, where it binds to a ribosome and a carrier
RNA molecule. Through the translation process and using the genetic informa-
tion of the individual’s DNA with the RNA molecule, the ribosome produces the
amino acids to form the proteins.

Relational Text-Type for Biological Sequences 105

ORF (Open Reading Frame) is a nucleotide sequence in a DNA molecule
that can encode a peptide or a protein. Every protein originates from an ORF,
but not every ORF originates from a protein.

An ORF is bounded by the AUG initiation codon, which encodes the amino
acid Methionine (Met), indicating where the protein’s amino acid sequence
encoding begins. Also, the termination codons (UAA, UGA, and UAG) sug-
gest that the amino acid sequence destined for that protein ends there. In this
way, all proteins begin with the amino acid Met. ORF that does not have the
identified protein product is called URF (unidentified reading frame).

This set of two rules and six functions is enough to generate an enormous
amount of information. Besides, it facilitates users who do not have a domain,
both in the database area and in the biology area. In the next section, we will
discuss its implementation into a relational database.

A protein is generated from a gene, which is a region in a genomic sequence. A
gene that encodes a protein produces a primary transcript that, after some pro-
cessing, generates a mature transcript containing the protein-coding sequences
(CDS). This mature transcript is formed by concatenating substrings containing
information for proteins (exons) and untranslated regions (RTUs). An ORF is
a series of nucleotides with a start codon (AUG) and extends to the first ter-
minal codon (UAA, UGA, or UAG). ORFs may not be encoded in proteins. In
this way, all coding sequences (CDS) are ORFs, but not every ORF encodes a
protein.

The protein entity represents the amino acid sequence of a protein with the
nucleotide sequence of a CDS and the CDS with the gene and the genomic
sequence that contains it, maintaining only an external reference to its tran-
scription. Thus, the CDS is an entity whose primary property is to keep the
relationship between the protein, gene, and genomic sequence entities. This is
done by placing a given gene coding region (exons) in the coordinate system of
the genomic sequence that contains it. Each exon in a gene corresponds to a sub-
sequence CDS, defined by a starting and ending position mapped in a genomic
sequence coordinate system.

The nucleotide sequence of a gene that encodes a protein is part of a genomic
sequence having sub-regions of codons (exons) and non-codons (introns and
untranslated regions). The reading and transcription of a gene generate the

106 C. Tristão et al.

mRNA, which in the future will be processed and transcribed into an amino
acid sequence, which occurs in a specific direction in vivo (5′ to 3′).

The gene entity has an identifier, and we will use the NCBI identifier - Entrez
Gene [Entrez Gene 2010], the geneId. We may define its corresponding region
in the genomic sequence by a start and stop position, a sense of reading, a
transcription identifier (from RefSeq), and the GC content. An ORFT amino acid
sequence is analogous. It relates to the genomic nucleotide sequence through an
ORFregion delimited by a start and stop position within the genomic sequence,
with the RefSeq identifier of the genomic sequence, the reading direction, its
position concerning its neighboring gene, and the sequence itself.

A genomic nucleotide sequence (derived from a RefSeq) refers to the genes
containing CDSs that code for the protein amino acid sequence. These genomic
sequences have a status, which refers to the current stage of the sequencing
project. The possible values for this property are:

– Complete, which typically means that each chromosome is represented by a
single scaffold of a very high-quality sequence;

– Assembly, which typically means that scaffolds have been built not at the
chromosome level or are of a low-quality sequencing project; and

– In Progress indicates that both the sequencing project is in the pre-assembly
or the completed (assembled fragments) strings have not yet been submitted
to public databases as the GenBank or EMBL.

The Genomic Sequence entity has a RefSeq identifier, definition and the
length of the sequence, the type of organic molecule (DNA or RNA), status,
type of sequence (chromosome, organelle, plasmid), an optional identifier of the
respective genome project, GC content and an identifier of the original taxon.

The taxonomy of organisms is an essential organizing principle in the study
of biological systems. Inheritance, homology by common descent, and the con-
servation of sequence and structure in determining function are all central ideas
of biology directly related to the evolutionary history of any group of organisms.
Taxonomic classification follows a hierarchy structure. We call this path from
the root node to any other particular taxon a “lineage.”

Regarding similarity information, there are three possible combinations of
hits involving translated ORFs and proteins: (1) ORFs x ORFs; (2) proteins x
ORFs; and (3) proteins x proteins. The minimum cardinality for all relation-
ships is zero if the comparison does not generate significant hits. The maximum
cardinality is n, as there may be several significant hits between the comparisons.

The translated amino acid sequences (ORF) are represented by another entity
- ORFT - because they do not have a previous identifier. Information about these
strings includes the reference to the original organism, location, and size. There
are three distinct types of relationships between hits, proteins, and translated
ORFs.

Relational Text-Type for Biological Sequences 107

– hitOO - result of the comparison between translated ORFs;
– hitOP - result of the comparison between ORFs translated with proteins

derived from SwissProt. Proteins derived from RefSeq were not used in the
comparison process with the translated ORFs;

– hitPP - result of the comparison of RefSeq proteins with RefSeq and Swis-
sProt proteins.

These relationships have attributes that specify the comparison process’s
result, based on the information obtained using the Smith-Waterman algorithm.
These are query gi, subject gi, SW score (gross score of the comparison), bit score
(score normalized), e-value (alignment significance), % identity, alignment length
(alignment size), query start, query end, subject beginning, subject end, query
gaps, subject gaps. Figure 1 presents an overview of the proposed conceptual
schema based on the entity-relationship model.

Fig. 1. A conceptual biological data schema

3 Sequences as Relational Text-Type

Once one has a conceptual schema, we must think about a corresponding logical
schema looking forward to actual manipulations for biological applications and
users. We claim that a straightforward mapping from our conceptual schema
may quickly be obtained considering standard rules for transformations to the

108 C. Tristão et al.

logical-relational model due to space limitations. Therefore, we might focus on
the significant problem of representing biological sequences.

We will show that our data and functional requirements can be modeled
directly in a robust and well-known relational system. However, there is no direct
correspondence from very long biological sequences to relational data types.
Moreover, those very long strings and sub-strings actually carry some semantics
with them, and ideally, this should be taken into account.

Concerning any possible Abstract Data Type (ADT), we usually have two
alternatives: (i) the creation of a new data structure that addresses all require-
ments and defines a new way of storing and manipulating the data, or (ii) the
extension of an existing data type, enforcing the list of requirements to match
only the user needs. If we think in terms of implementation, both alternatives
have their pros and cons. On the one hand, creating a new type has the advantage
of thinking and generating an appropriate structure and mechanisms for this new
data type, which may have superior performance compared to an extended type.
On the other hand, the effort to generate this new type is considerably higher.
We need to create all the structures and mechanisms involved for storage and
manipulation, which must run within an existing system. For the extended type,
the scenario is reversed. Depending on the type used, the adaptation can be
simplified, using any base already defined and developed. On the other hand, in
terms of performance, the result may not be as satisfactory.

We claim that it may not be a problem to manage biological sequences in
the relational model but, instead, the lack of semantics in the existing data
structures. We propose and discuss in this paper the idea of a bio-string type,
which is an extension of the text or string type. The main reason is the complexity
of storing and representing biological sequences in BLOB structures concerning
expressiveness. As BLOBs are designed to hold any possible data, there are no
appropriate access and manipulation mechanisms.

The string type structure has a well-defined storage pattern and mechanisms
for accessing and manipulating data. Nevertheless, if we use the string storage
structure for biological sequences, we must create or rewrite functions or opera-
tors specific to the molecular biology domain. Common string functions such as
lower, upper and convert do not make any sense for a biological applications.

A straightforward case study was carried out using the DBMS PostgreSQL
[1], in its version 9.1, for prototyping of the solutions presented. The imple-
mented functions proposed here, concerning explicitly biological data, are the
only functions and operators available in the core DBMS implementation. The
idea is to simulate an actual ADT.

As stipulated in Sect. 2, biological sequences will be stored as nucleotides
(Rule R1). Besides, any nucleotide sequence will be considered in the 5’3’ direc-
tion (Rule R2). In order to validate Rule 1, we need a function that verifies that
the character set reported as a sequence of nucleotides is composed only of bases
A, C, G, and T. For this, we may define the function isDNA (sequence), which it
takes as a parameter a sequence of characters and returns TRUE if the sequence
is formed only by nucleotides, FALSE otherwise.

Relational Text-Type for Biological Sequences 109

The complement function returns a new nucleotide sequence, which corre-
sponds to the other strand of the DNA molecule. This function’s construction is
based on the principle of ligands and base pairs: base A always connects to base
T, and base G always attaches to base C and vice versa. Therefore, we must
go through the input sequence, replacing each base with its pair. The reverse
function returns the reverse sequence of an input nucleotide sequence. It makes
it possible to read a DNA sequence in the 3′ 5′ direction. The basic idea for the
construction of this function is to traverse the chain of nucleotide sequences by
inverting the nucleotide bases’ position.

Knowledge about the GC content of a DNA sequence is vital for determining
the physical properties of DNA. The function for obtaining the GC content
returns the number of bases G and C of a given input sequence. Unlike the other
functions, which had to go through the nucleotide sequence to obtain the desired
information, the getGCcontent function had its implementation simplified using
predefined functions in the relational TEXT type, such as the replace function.

For the construction of the getGCcontent function, we use the replace func-
tion to return the occurrences of bases A and T with an empty character (“ ”),
eliminating the sequence’s bases. Subsequently, to obtain the GC content from
the biological sequence, we must only get the resulting sequence’s size, which
now has only bases G and C (Fig. 2).

Fig. 2. GC content relational function

The function that transforms a DNA sequence into an mRNA sequence is the
transcript function. Its implementation is based on the getGCcontent function,
requiring minor changes.

110 C. Tristão et al.

Fig. 3. Search ORF function

Relational Text-Type for Biological Sequences 111

To carry out the translation function, we must go through the nucleotide
sequence of an mRNA molecule and convert them into an amino acid at each
sequence of three bases. The translation function depends on a translation table
of the genetic code. Two approaches are possible: (1) storing the translation
table information in an auxiliary storage structure, or (2) inserting the mapping
of nucleotide sequences into amino acids directly into the function body. For
simplification, we have used the first alternative.

The transcribed DNA region is called an ORF (Open Read Frame). The main
characteristic of an ORF is that it is a subsequence of transcribed DNA delimited
by the initiation (AUG) and termination (UAA, UGA, and UAG) codons. As
with the translation function, we must inform the starting position for reading
(1, 2, or 3) to identify codons. Another parameter is the minimum size of the
ORF. Like translation, the search for ORFs is performed on an RNA sequence.
To avoid user errors (e.g., use a DNA sequence instead of RNA), the function
transcribes the input sequence before actually performing the search. Figure 3
illustrates this function.

4 Conclusions

We have proposed a conceptual schema and extended data type structure for
the representation of biological data. We have also presented a set of functions
that manipulate and extract biological information from sequences based on
information from molecular biology’s central dogma.

The idea of proposing a generic biological conceptual schema helps reinforce
some biological concepts, regardless of specific research projects. We have shown
that an actual implementation of sequence-oriented functions on bio-strings type
is feasible and effective. The set of proposed rules and functions maps the intrin-
sic semantic information from the very long character sequence representing
biological concepts.

Our implementation also shows that it is quite feasible to deal with biological
data within a relational database system. The relational model is not a problem
but, rather, the lack of semantics in existing data structures and types. Our
next steps include the idea of creating an actual Abstract Data Type for the
biological domain. We look forward to enabling this extension as a PostgreSQL
DBMS contrib publicly available.

References

1. PostgreSQL. http://postgresql.org
2. Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment

search tool. J. Mol. Biol. 215(3), 403–410 (1990)
3. Cheung, C.F., Yu, J.X., Lu, H.: Constructing suffix tree for gigabyte sequences with

megabyte memory. IEEE Trans. Knowl. Data Eng. 17(1), 90–105 (2005)
4. Hunt, E., Atkinson, M., Irving, R.: A database index to large biological sequences.

In: Proceedings of the International Conference on Very Large Databases, pp. 139–
148 (2001)

http://postgresql.org

112 C. Tristão et al.

5. Hunt, E., Atkinson, M., Irving, R.: Database indexing for large DNA and protein
sequence collections. VLDB J. 11(3), 256–271 (2002)

6. Pearson, W.: SSearch. Genomics 11, 635–650 (1991)
7. Simonetto, E., Ruiz, D.: A proposal model to incorporation of temporal aspects

to the relational DBMS using active databases concept. In: Proceedings IEEE 4th
International Workshop on DBs and IS, pp. 52–59 (2000)

Conceptual Modeling, Ontologies and
(Meta)data Management for Findable,
Accessible, Interoperable and Reusable
(FAIR) Data (CMOMM4FAIR) 2020

Preface

João Moreira1, Luiz Olavo Bonino da Silva Santos1,
Maria Luiza Machado Campos2, Barbara Magagna3, Peter Mutschke4,

and Robert Pergl5

1 University of Twente, The Netherlands
j.luizrebelomoreira@utwente.nl
2 Federal University of Rio de Janeiro, Brazil

3 Environment Agency, Austria
4 Leibniz Institute for the Social Sciences, Germany
5 Technical University of Prague, Czech Republic

The FAIR principles condense decades of work and challenges on data usage into four
main aspects. The guidance provided by the principles on how to make data, or any
other digital object findable, accessible, interoperable, and reusable is being seen as the
basis on how organizations are tackling their modern informational challenges. The
goal of FAIR is to promote optimal reusability of digital assets, mainly through the use
of machines. A common expression is that “in FAIR, the machine knows what I mean.”
In other words, we would like to have computation systems that can properly interpret
information found in their self-guided exploration of the data ecosystem.

Before machines are able to “know what we mean,” the meaning in our informa-
tional artefacts should also be clear for us, thus, addressing semantic interoperability.
Here enters conceptual modeling as a means to improve semantic interoperability by
capturing knowledge about a particular universe of discourse in terms of various
semantic artefacts such as ontologies, semantic data models, and semantic metadata
models. The workshop on Conceptual Modeling, Ontologies and (Meta)Data Man-
agement for Findable, Accessible, Interoperable, and Reusable Data (CMOMM4FAIR)
aims at investigating, discussing, and improving conceptual modeling practices
towards improved FAIRness.

In this 2nd edition of the CMOMM4FAIR workshop, co-located with the 39th
International Conference on Conceptual Modeling (ER 2020), we accepted the papers
“Evaluating FAIRness of Genomic Databases,” “Mapping the Web Ontology Lan-
guage to the OpenAPI Specification” and “Reusable FAIR Implementation Profiles as
Accelerators of FAIR Convergence.” These papers discuss methods to evaluate
adherence to the FAIR principles of genetics data repositories, an approach to map
OWL ontologies and OpenAPI Specification facilitating the exploration of semantic-
rich services by web developers, and a conceptual model for profiling FAIR imple-
mentation choices made by communities on how to realize the FAIR principles,
respectively.

Apart from the paper presentations, the program includes invited talks to steer the
discussions on FAIR and conceptual modeling. We would like to express our deepest

appreciation to the authors of the submitted papers and to all Program Committee
members for their diligence in the paper review and selection process. We would also
like to thank the Organizing Committee of ER 2020, in particular the workshop chairs
for all their support.

Preface 115

Mapping the Web Ontology Language
to the OpenAPI Specification

Paola Espinoza-Arias1(B) , Daniel Garijo2 , and Oscar Corcho1

1 Ontology Engineering Group, Universidad Politécnica de Madrid, Madrid, Spain
{pespinoza,ocorcho}@fi.upm.es

2 Information Sciences Institute, University of Southern California, Los Angeles, USA
dgarijo@isi.edu

Abstract. Many organizations maintain knowledge graphs that are
organized according to ontologies. However, these ontologies are imple-
mented in languages (e.g. OWL) that are difficult to understand by users
who are not familiar with knowledge representation techniques. In par-
ticular, this affects web developers who want to develop ontology-based
applications but may find challenging accessing ontology-based data in
knowledge graphs through SPARQL queries. To address this problem, we
propose an accessible layer for ontology-based knowledge graphs through
REST APIs. We define a mapping specification between the Web Ontol-
ogy Language (OWL) and the OpenAPI Specification (OAS) to provide
ontology-based API definitions in a language well-known to web develop-
ers. Our mapping specification identifies key similarities between OWL
and OAS and provides implementation guidelines and examples. We also
developed a reference mapping implementation that automatically trans-
forms OWL ontologies into OpenAPI specifications in a matter of sec-
onds.

Keywords: OWL · OpenAPI · REST API · Ontologies

1 Introduction

Many public and private organizations have adopted a knowledge-driven app-
roach to make publicly available their knowledge graphs. Ontologies [10] play a
crucial role in this approach, as they describe the knowledge about a domain in
an agreed and unambiguous manner; and they allow organizing data, ease its
reusability, and facilitate its interoperability. Ontologies are usually formalized
in the Web Ontology Language (OWL) [6], a W3C recommendation to represent
the semantics of a domain in a machine-readable way. However, OWL has a steep
learning curve due its inherent complexity [12], and newcomers may get confused
with the meaning of constraints, axioms or the Open World Assumption.

This problem has become evident in the case of developers who have an
interest in taking advantage of the data available in existing knowledge graphs
but are not used to Semantic Web technologies. Instead, developers are famil-
iar with REST APIs as a resource-access way which hides details about the
c© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 117–127, 2020.
https://doi.org/10.1007/978-3-030-65847-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_11&domain=pdf
http://orcid.org/0000-0002-3938-2064
http://orcid.org/0000-0003-0454-7145
http://orcid.org/0000-0002-9260-0753
https://doi.org/10.1007/978-3-030-65847-2_11

118 P. Espinoza-Arias et al.

implementation of operations for resource management or how such resources
have been described according to the data models. To describe APIs, several
Interface Description Languages have been defined to document their domain,
functional and non-functional aspects. The OpenAPI Specification1 (OAS) is a
broadly adopted de facto standard for describing REST APIs in a programming
language-agnostic interface. OAS allows both humans and computers to under-
stand and interact with a remote service. Due to its wide adoption, OAS has a
big community behind, wich has provided tools to allow developers to generate
API documentation, server generation, mockup design, etc.

In this paper we describe additional work in the direction of making ontology-
based data available though REST APIs. We define a mapping specification
between OWL and OAS to facilitate the work of those who are interested in
using data represented by semantic technologies and have to face the challeng-
ing task of developing ontology-based applications. Our mapping also aims to
enhance adherence to the FAIR data principles [13] by facilitating: Findability,
as it provides a template for finding types of available resources in knowledge
graphs; Accessibility because it allows translating the ontology to an interface
that developers are used to; Interoperability because the mapping matches two
recommendations, the OWL W3C recommendation and OAS de facto standard;
and Reusability because the mapping also translates explicit and understand-
able data definitions available in the ontology and generates an HTML document
with the API details that may be published on the Web.

Our work has the following contributions: 1) A mapping specification between
OWL and OAS to provide ontology-based API definitions (Sect. 2); and 2) A
reference implementation to automatically transform OWL ontologies into an
OAS document according to our mapping specification (Sect. 3). We also present
work related to our approach in Sect. 4 and discuss conclusions and future work
in Sect. 5.

2 Mapping OWL to OAS

In this section we provide the details about our mapping specification. First, we
explain the methodology followed to generate the mapping. Then, we present a
summarized description of the main characteristics of the specification. Finally,
we give an example on how an OWL ontology is translated into OAS according
to our mapping specification.

2.1 Method for Mapping Generation

The method followed to generate the mapping included the following steps:

1. Manual analysis of the OWL constructs. We analyzed the constructs from
the OWL 2 Web Ontology Language [4]. We also analyzed the RDFS [1]
constructs and the XSD datatypes [8] that are used in OWL 2.

1 https://github.com/OAI/OpenAPI-Specification.

https://github.com/OAI/OpenAPI-Specification

Mapping the Web Ontology Language to the OpenAPI Specification 119

2. Manual analysis of the OAS definitions. We analyzed the definitions provided
by the OpenAPI specification v3.0.3.2

3. Manual generation of the mapping specification. Once the analysis of OWL
and OAS constructs and definitions had been completed, we selected the OAS
definitions which allow representing the OWL constructs. Then, we wrote a
specification document to describe the equivalences found. To show how these
equivalences could be implemented, we developed a sample OWL ontology
and its corresponding OAS representation. The mapping specification and
the examples are available online.3

2.2 Mapping Definitions

We summarize below the main concepts of OAS that we use in this mapping:

1. A Schema Object allows defining input and output data types. For example,
we may specify objects such as Person, or any concept that has its own
attributes, primitives, or any expression to specify types of values.

2. A Component Object holds a set of reusable definitions of schemas, param-
eters, responses, etc. that may be referenced from somewhere in the API
definition. For example, a component may hold a Person schema definition.

3. A Reference Object allows linking to other components in the specification
instead of defining them inline. For example, to reuse the Person schema def-
inition we reference it from its definition specified in the Component Object.

4. A Path Object holds the resources exposed in an API. For example, the path
of the Person resource may be /persons. It contains Path Item Objects.

5. A Path Item Object describes the available operations (HTTP methods to
manage the resource) on a single path. For example, we may specify that the
/persons path allows the GET method.

Figure 1 illustrates these concepts with an example of a Person schema.
Each number in the figure corresponds to the number shown in the enumera-
tion list presented above. Table 1 describes the prefixes that we use throughout
this paper. Regarding the mapping specification details, we present them in three
main sets corresponding to classes and properties, restrictions, and boolean com-
binations. Table 2 shows the similarities between OWL classes and properties
and OAS definitions.

In general, OWL classes are similar to a Schema Object that must be defined
as an object type. OWL object and data properties are similar to the Schema
Object’s properties and depending on the property type its value can be a data
type or an object. Also, when a property is functional it must be defined as
an array with 1 as the maximum number of array items. Additional details
about similarities between OWL and OAS data types are provided in our online
specification,4 including a naming strategy for Schema Objects and Paths. Each

2 http://spec.openapis.org/oas/v3.0.3.
3 https://w3id.org/OWLToOAS.
4 https://owl-to-oas.readthedocs.io/en/latest/mapping/#data-types 1.

http://spec.openapis.org/oas/v3.0.3
https://w3id.org/OWLToOAS
https://owl-to-oas.readthedocs.io/en/latest/mapping/#data-types_1

120 P. Espinoza-Arias et al.

Fig. 1. Example of OAS definitions: a) A Component Object which contains some
Schema Object definitions; b) A Path Object which includes some Path Item

Objects.

Table 1. Prefixes used in this document

Prefix Namespace

owl http://www.w3.org/2002/07/owl#

rdfs http://www.w3.org/2000/01/rdf-schema#

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

xsd http://www.w3.org/2001/XMLSchema#

ex https://w3id.org/example#

OWL class has a Path Item Object (as shown in Fig. 1). Depending on the
method used (GET, POST, PUT or DELETE), a class may be referenced as
part of the Response or Request Body.

Table 3 shows the similarities between OWL restrictions and OAS. In general,
properties must be defined as an array, except for properties with a specific value
restriction (owl:hasValue). If that is the case, the property must be defined as
default and it must specify its corresponding literal (for data properties) or its
individual URI value (for object properties). When a property is restricted to
owl:someValuesFrom or owl:allValuesFrom, a type of value must define the
type of array items as a data type or as a Reference Object . When a property
has a cardinality restriction, the maximum or minimum number of array items
should be adjusted accordingly. Note that we used a Close World Assumption
for translating the existential constructs because it is what developers expect
when inserting and retrieving instances from an API.

Table 4 presents the translation of OWL boolean combinations into OAS. In
general, these combinations may be applied to the Schema Object’s properties.
Depending on the combination, it is allowed to represent that a property value
must be compliant with all or any schema type, or that it must not be valid
against a certain schema. Also, a property may have one value included in an
enumeration list.

http://www.w3.org/2002/07/owl#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2001/XMLSchema#
https://w3id.org/example#

Mapping the Web Ontology Language to the OpenAPI Specification 121

Table 2. Classes and properties mapping

OWL OAS Implementation details

Classes

owl:Class Schema

Object

The Schema Object must be defined
as a type: object in the Component

Object

rdfs:subClassOf Schema

Object and
allOf

The Schema Object must be defined
in the same manner as the
owl:Class. The allOf field must
also be included referencing to the
parent class defined as a Reference

Object

Properties

owl:DatatypeProperty properties Defined as a Schema Object’s
property

owl:ObjectProperty properties Defined as a Schema Object’s
property

rdfs:domain Schema

Object

Defined as the Schema Object where
the property should be defined

rdfs:range type Defined as the property type value

owl:FunctionalProperty maxItems The property must be defined as a
type: array with 1 as the maximum
number of items (maxItems: 1)

Table 5 summarizes the coverage of our mapping specification in terms of
SROIQ expressiveness, the description logic underlying OWL 2 DL. The map-
ping covers functional properties (F), concept negation (C), hierarchies (H), nom-
inal values (O), cardinality (N) and qualified cardinality restrictions (Q), and data
types (D). Role disjointness (R) and inverse properties (I) are not covered because
OAS does not have a similar definition to represent them. OAS can represent
unions (U), but we consider to be partially covered, as OWL allows defining
complex combinations that are not possible in OAS, like the union of the inter-
section between concepts. Similarly, the existential qualification expression (E)
is also partially covered in our mapping, except when complex combinations are
included in OWL.

2.3 Mapping Example

To showcase our mapping, we provide a code snippet of an example ontology
and its OAS representation. The OAS definitions are provided in YAML and
the OWL constructs in Turtle. Listing 1.1 presents an ontology snippet with the
Professor class and its data and object properties, e.g. Professor has a degree
(hasDegree) from a list of values. Professor is subclass of Person, thus it inherits
all the restrictions from the Person. Restrictions defined over properties, e.g. a
Professor belongsTo a Department, must be also taken into account as part of
the Professor class definition.

122 P. Espinoza-Arias et al.

Table 3. Restrictions mapping

OWL OAS Implementation details

owl:onProperty properties The restriction must refer to the
property name where it is applied

owl:onClass Schema

Object

The restriction must refer to the
schema name where it is applied

owl:hasValue default The restriction must be defined as
a default property. Depending on
whether it is on a data or object
property, it will be a literal or an
indvidual URI value

owl:someValuesFrom type,
nullable

The property must be defined as a
not nullable (nullable: false)
array (type: array). Depending
on whether it is on a data or
object property the item’s type
value will be the restricted data
type or Reference Object

owl:allValuesFrom type,
nullable

The property must be defined as a
nullable (nullable: true) array
(type: array). Depending on
whether it is on a data or object
property the item’s type value will
be the restricted data type or
Reference Object

owl:minCardinality minItems The restriction must be defined as
the minimum number of array
items (minItems)

owl:maxCardinality maxItems The restriction must be defined as
the maximum number of array
items (maxItems)

owl:cardinality minItems

and
maxItems

The restriction must be defined as
the same minimum (minItems)
and maximum (maxItems) number
of array items

owl:minQualifiedCardinality minItems The restriction must be defined as
the minimum number of array
items (minItems)

owl:maxQualifiedCardinality maxItems The restriction must be defined as
the maximum number of array
items (maxItems)

owl:qualifiedCardinality minItems

and
maxItems

The restriction must be defined as
the same minimum (minItems)
and maximum (maxItems) number
of array items

Mapping the Web Ontology Language to the OpenAPI Specification 123

Table 4. Boolean combinations

OWL OAS Implementation details

owl:intersectionOf allOf The combination must be defined
as allOf which validates the
property value against all the
schemas

owl:unionOf anyOf The combination must be defined
as anyOf which validates the
property value against any (one or
more) of the schemas

owl:complementOf not The combination must be defined
as not which validates that the
property value is not valid against
the specified schema

owl:oneOf enum The combination must be defined
as enum which holds the possible
property values

Table 5. Mapping OWLToOAS specification coverage (� = covered, – = partially cov-
ered, and x = not covered)

Expressivity Coverage Expressivity Coverage

F � O �
E – I x

U – N �
C � Q �
H � D �
R x

1 ex : P ro f e s s o r rd f : type owl : Class ;
2 r d f s : subClassOf : Person ,
3 [r d f : type owl : R e s t r i c t i o n ;
4 owl : onProperty : hasDegree ;
5 owl : someValuesFrom [rd f : type owl : Class ;
6 owl : oneOf (<https :// w3id . org /example/ r e sou r c e /Degree/MS>
7 <https :// w3id . org /example/ r e sou r c e /Degree/PhD>)]] .
8 ex : Person rd f : type owl : Class ;
9 r d f s : subClassOf [rd f : type owl : R e s t r i c t i o n ;

10 owl : onProperty : address ;
11 owl : maxQual i f i edCard ina l i ty ”1”ˆˆxsd : nonNegat iveInteger ;
12 owl : onDataRange xsd : s t r i n g] ;
13 r d f s : comment ”A human being regarded as an i nd i v i dua l . ”@en ;
14 r d f s : l a b e l ”Person”@en .
15 ex : belongsTo rd f : type owl : ObjectProperty ;
16 r d f s : domain : P ro f e s s o r ;
17 r d f s : range : Department ;
18 r d f s : l a b e l ” be longs to ”@en .

Listing 1.1. Ontology code excerpt

124 P. Espinoza-Arias et al.

Listing 1.2 shows the OAS definitions corresponding to the previous ontology.
This snippet was obtained from the YAML generated by our mapping imple-
mentation (described in Sect. 3). The Component Object includes the Professor
schema (a Schema Object) which represents the Professor class including its
own properties and those inherited from the Person.
1 components :
2 schemas :
3 Pro f e s s o r :
4 type : ob j e c t
5 de s c r i p t i o n : A un i v e r s i t y academic .
6 p r op e r t i e s :
7 address :
8 i tems :
9 type : s t r i n g

10 maxItems : 1
11 nu l l a b l e : t rue
12 type : array
13 belongsTo :
14 i tems :
15 $ r e f : ’#/components/schemas/Department ’
16 nu l l a b l e : t rue
17 type : array
18 hasDegree :
19 i tems :
20 enum :
21 − <https :// w3id . org /example/ r e sou r c e /Degree/MS>
22 − <https :// w3id . org /example/ r e sou r c e /Degree/PhD>
23 format : u r i
24 type : s t r i n g
25 type : array

Listing 1.2. OAS snippet of a Component Object that includes the Profesor schema

Listing 1.3 shows the path assigned to Professor in the API. This Path
Item defines a GET operation, including a successful response which delivers a
Professor schema:
1 paths :
2 / p r o f e s s o r s :
3 get :
4 de s c r i p t i o n : Gets a l i s t o f a l l i n s t an c e s o f P ro f e s s o r
5 r e sponse s :
6 200 :
7 content :
8 app l i c a t i on / j son :
9 schema :

10 i tems :
11 $ r e f : ’#/components/schemas/ Pro fe s so r ’
12 type : array

Listing 1.3. OAS snippet of a Path Item Object generated from the OWL ontology

3 Mapping Implementation

We implemented our mapping specification by extending the Ontology Based
APIs Framework (OBA) [3], an existing tool for helping users create REST
APIs from ontologies. OBA generates a server with a REST API based on an
OpenAPI specification, and includes the automated management of SPARQL
query templates for common operations; but has a limited support for OWL
constructs (mostly limited to rdfs:Class, rdfs:domain and rdfs:range).

Mapping the Web Ontology Language to the OpenAPI Specification 125

We extended the OBA Specification Generator module, which takes the
ontology code and generates the OAS document in YAML, to support our map-
ping specification. It is worth mentioning that OBA does not check for consis-
tency or syntactic correctness of an ontology, assuming that it has been evaluated
before. The implementation release is available at the OBA’s GitHub repository.5

Our implementation allows generating API definitions for ontologies of differ-
ent sizes with a reasonable overhead. We tested our implementation in an average
laptop (Intel Core i7 2.6 Ghz with 16 GB of RAM) with the example ontology we
defined to illustrate our mapping specification,6 an ontology which contains 119
logical axioms, including 36 class axioms, 42 object property axioms, and 37 data
property axioms. The corresponding OAS was generated in 6 s. We also tested
the DBPedia ontology,7 which contains over 6000 logical axioms, including over
700 class axioms, over 2000 object property axioms, and over 2000 data property
axioms. The DBpedia OAS took 64 s to build. In both cases, we generated only
GET operation for each path in the specification.

4 Related Work

Several efforts have attempted to promote and facilitate Semantic Web tech-
nology adoption by web developers, providing Web APIs to allow developers
accessing and managing data from knowledge graphs. Specifications like the
Linked Data API8 (LDA), the Linked Data Platform (LDP) [9], and the Triple
Pattern Fragments (TPF) [11] have been proposed to describe how to define
such interfaces. LDA details how to define read-only interfaces to Linked Data,
LDP describes how to design read/write HTTP interfaces to RDF data, and
TFP defines read-only interfaces to specific triples from a dataset to provide
an efficient client-side querying execution. However, they do not use ontologies
as templates for the API generation, hence developers have to deal with them
to manage APIs. Works like BASIL [2] and GRLC [7] have been proposed to
generate Web APIs on top of SPARQL endpoints; both generate Swagger speci-
fications for the resulting APIs. However, these specifications are generated from
the SPARQL queries, GitHub query repositories and SPARQL decorator nota-
tion which have to be defined manually by developers. Thanks to our mapping
implementation, a full OAS can be generated from an ontology without human
intervention.

Other recent approaches focus on generating API definitions from ontolo-
gies. In this regard, two efforts have recently appeared: the Ontology Based
APIs Framework (OBA) [3] (which we extended with our mapping implemen-
tation) and the OWL2OAS Converter.9 Both efforts generate OAS documents
from OWL, and were efforts developed in parallel. The main differences between
them and our implementation are summarized in Table 6. On the one hand, OBA

5 https://github.com/KnowledgeCaptureAndDiscovery/OBA/releases/tag/3.4.0.
6 http://tiny.cc/3eyjsz.
7 https://wiki.dbpedia.org/services-resources/ontology.
8 https://code.google.com/archive/p/linked-data-api.
9 https://dev.realestatecore.io/OWL2OAS.

https://github.com/KnowledgeCaptureAndDiscovery/OBA/releases/tag/3.4.0
http://tiny.cc/3eyjsz
https://wiki.dbpedia.org/services-resources/ontology
https://code.google.com/archive/p/linked-data-api
https://dev.realestatecore.io/OWL2OAS

126 P. Espinoza-Arias et al.

Table 6. Comparison ontology-based APIs approaches (� = included, x = not included,
– = less coverage, and + = more coverage of OWL constructs)

Proposal OWL2OAS OBA Our approach

OWL to OAS mapping available X � �
Expressiveness + – ++

REST Server X � �

provides an initial mapping to describe details on translation of OWL constructs
into OAS. However, the expressiveness covered by OBA is basic; restricted to
the translation of classes, subclasses, object and data properties with singleton
ranges. Despite its basic expressiveness, OBA provides extra functionality for
implementing the API as a REST API server which allows validating requests
from users, generating tests for API calls, etc. On the other hand, OWL2OAS
does not include a specification of its coverage from OWL into OAS. By man-
ually inspecting the OWL2OAS’s code repository we can see that, in addition
to OBA’s coverage, it includes support for functional properties, class and prop-
erty restrictions (owl:onClass, owl:onProperty), existential and some cardi-
nality restrictions. However, it does not support specific values (owl:hasValue)
and boolean combinations (owl:oneOf, owl:unionOf, owl:intersectionOf,
owl:complementOf) which we cover (partially) in our mapping.

Our contribution proposes a detailed mapping between OWL and OAS,
aimed at facilitating a specification, including examples on how to transform
an ontology into an API definition, and an implementation to automatically
generate an OAS document based on this mapping. Our mapping and its imple-
mentation have been built on top of OBA, reusing the work previously done.

5 Conclusions and Future Work

In this work, we proposed a mapping specification to translate OWL ontologies
into OAS. This specification facilitates the creation of REST APIs that enables
developers to access ontology-based data. Our mapping includes examples and
details on how to define each OWL construct as an OAS definition using a Close
World Assumption. Since manually editing OAS definitions can be tedious, time
consuming, and error-prone, we extended the Ontology Based API framework
to automatically translate OWL constructs into OAS. However, not all OWL
constructs are covered in our specification, because they do not have an equiv-
alent OAS definition. For example we cannot represent the equivalence between
classes or restrictions that include complex unions and intersections.

As future work, we plan to extend OBA to improve the schema and path
naming strategy used in the API. We would like to generate these names from
the ontology class and property labels instead of the URI fragments as OBA
currently does. We also plan to use the smartAPI specification [14], an extended
version of OAS for defining key API metatada, to annotate our resulting APIs to
maximize their FAIRness. This way, API providers may publish their APIs into

Mapping the Web Ontology Language to the OpenAPI Specification 127

the smartAPI registry to make them more discoverable, connected and reusable.
Finally, given the limitations of OAS to represent some OWL constructs, we
will explore how to combine our API definitions with the Shapes Constraint
Language (SHACL) [5]. SHACL was created for data validation and therefore
allows defining the restrictions that data from knowledge graphs must fulfill.
With SHACL, those OWL constructs that are not covered in our mapping may
be defined as shapes to validate the requests received by an API.

Acknowledgments. This work has been supported by a Predoctoral grant from the
I+D+i program of the Universidad Politécnica de Madrid and the Spanish project
DATOS 4.0: RETOS Y SOLUCIONES (TIN2016-78011-C4-4-R).

References

1. Brickley, D., Guha, R.V., McBride, B.: RDF Schema 1.1. W3C recommendation
(2014)

2. Daga, E., Panziera, L., Pedrinaci, C.: A BASILar approach for building web APIs
on top of SPARQL endpoints. In: CEUR Workshop Proceedings, vol. 1359, pp.
22–32 (2015)

3. Garijo, D., Osorio, M.: OBA: An Ontology-Based Framework for Creating REST
APIs for Knowledge Graphs, July 2020. https://arxiv.org/abs/2007.09206

4. Hitzler, P., et al.: OWL web ontology language primer. WC Recommendation 27,
123 (2009)

5. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL). W3C Rec-
ommendation (2017)

6. McGuinness, D.L., et al.: OWL web ontology language overview. W3C Recommen-
dation 10(10), 2004 (2004)

7. Meroño-Peñuela, A., Hoekstra, R.: grlc makes GitHub taste like linked data APIs.
In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.)
ESWC 2016. LNCS, vol. 9989, pp. 342–353. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47602-5 48

8. Peterson, D., Gao, S., Malhotra, A., Sperberg-McQueen, C.M., Thompson, H.S.,
Biron, P.: W3C XML schema definition language (XSD) 1.1 part 2: datatypes.
W3C Recommendation 5 (2012)

9. Speicher, S., Arwe, J., Malhotra, A.: Linked data platform 1.0. W3C Recommen-
dation (2015)

10. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and
methods. Data Knowl. Eng. 25(1–2), 161–197 (1998)

11. Verborgh, R., et al.: Triple pattern fragments: a low-cost knowledge graph interface
for the web. J. Web Semant. 37, 184–206 (2016)

12. Vigo, M., Bail, S., Jay, C., Stevens, R.: Overcoming the pitfalls of ontology author-
ing: Strategies and implications for tool design. Int. J. Hum.-Comput. Stud. 72(12),
835–845 (2014)

13. Wilkinson, M.D., et al.: The FAIR Guiding Principles for scientific data manage-
ment and stewardship. Sci. Data 3, 1–9 (2016)

14. Zaveri, A., et al.: smartAPI: towards a more intelligent network of web APIs.
In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig,
O. (eds.) ESWC 2017. LNCS, vol. 10250, pp. 154–169. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-58451-5 11

https://arxiv.org/abs/2007.09206
https://doi.org/10.1007/978-3-319-47602-5_48
https://doi.org/10.1007/978-3-319-47602-5_48
https://doi.org/10.1007/978-3-319-58451-5_11

Evaluating FAIRness of Genomic Databases

Matheus Pedra Puime Feijoó1(B) , Rodrigo Jardim3 ,
Sergio Manuel S. da Cruz1,2 , and Maria Luiza M. Campos1

1 Federal University of Rio de Janeiro (PPGI/UFRJ), Rio de Janeiro, Brazil
feijoo@ufrj.com, {serra,mluiza}@ppgi.ufrj.br

2 Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, Brazil
3 Oswaldo Cruz Foundation (LBCS/IOC), Rio de Janeiro, Brazil

Abstract. Several studies show the difficulty experienced for the reuse of the ever
increasing amount of genomic data. Initiatives are being created to mitigate this
concern; one of the most well-known is the FAIR Data Principles. Nonetheless,
the related works are too generic and do not describe simultaneously and prop-
erly the human and machine perspectives of the FAIRness of databases. Hence,
in order to bridge this gap, our paper introduces an approach named the Bio
FAIR Evaluator Framework, a semiautomated tool aimed to analyze the FAIR-
ness of genomic databases. Furthermore, we performed experiments that analyzed
selected genomic databases according to two orthogonal and complementary per-
spectives (human and machine). The approach uses standardized FAIR metrics
and generates recommendation reports to researchers indicating how to enhance
the FAIRness of databases. Our findings, when comparedwith relatedworks, show
the feasibility of the approach, indicating that the current genomic databases are
poorly compliant with FAIR Principles.

Keywords: Genomics · Data compliance · FAIRness · FAIR

1 Introduction

Nowadays, the ever-increasing volume of research data is widely debated in the scientific
fields. Today, managing, sharing, and reusing scientific data are among the main issues
addressed by the research community, mainly because of the complexity and lack of
general governance rules [1, 2]. One of the areas facing these problems is bioinformat-
ics, and, more specifically, genomics, which is concerned with the study of genes and
their function, applying the techniques of genetics and molecular biology to the genetic
mapping sequencing of sets of genes or the complete genomes of selected organisms.
The results are organized in databases, with rich applications in medicine, pharmaceutic
industry, and biology, among others [3].

Genomics is in the midst of a datacentric revolution, which is causing an escala-
tion in the size and number of genomic datasets [4]. Many archives, as highlighted by
[5], are hard to be found, shared, or reused due to the lack of precise semantics and
provenance. These problems are like those addressed by the FAIR data principles [6]
introduced in 2016 [6]. The FAIR principles (and their 15 sub principles) were stated

© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 128–137, 2020.
https://doi.org/10.1007/978-3-030-65847-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_12&domain=pdf
http://orcid.org/0000-0001-9582-4595
http://orcid.org/0000-0002-0943-5356
http://orcid.org/0000-0002-0792-8157
http://orcid.org/0000-0002-7930-612X
https://doi.org/10.1007/978-3-030-65847-2_12

Evaluating FAIRness of Genomic Databases 129

as goals aiming to provide guidelines for creating digital resources such as datasets,
databases, code, workflows, and research objects, in a way that makes them (F)indable,
(A)ccessible, (I)nteroperable, and (R)eusable, strongly relying on metadata publication
and management.

However, the sole existence of the FAIR principles is not enough to aid the researcher
in evaluating the FAIRness of genomic databases. We advocate that it should be con-
ducted under two orthogonal and complementary perspectives (human and machine)
because humans and machines deal with distinct obstacles when attempting to find and
access data on the databases [6]. As far as we are concerned, the human perspective
is about the upper level of abstraction and the diffuse sense of “semantics”. Humans
can identify and interpret a wide variety of signs and make intuitive decisions on the
selection of useful data. On the other hand, the machine perspective is more self-guided,
accurate, and even more reproducible. It concentrates on the ability to evaluate de data
in the scope, scale, and speed necessity that the genomic research requires [6].

In this work, we evaluated the FAIRness of seven well known genomic databases,
analyzing how close these databases are to achieve FAIRness. To do that, we developed
a semi-automated tool named Bio FAIR Evaluator Framework to support researchers
to evaluate the databases, considering metrics and criteria based on the interpretation
of the FAIR principles. Furthermore, we discuss the tool usage performing two sets
of experiments and analyzes focused on the orthogonal perspectives mentioned above.
Besides, our tool additionally offers a series of recommendations about the improvements
that can be made in the genomic databases.

This article is structured as follows: Sect. 2 presents the background of the genomic
databases and FAIR principles; in Sect. 3 we present the core features of our contribution
named Bio FAIR Evaluator Framework; Sect. 4 presents the two sets of complementary
experiments and its results, showing the FAIRness of the database according to the two
perspectives; Sect. 5 shows the related works; and, finally, Sect. 6 presents concluding
remarks and topics for further investigation.

2 Background

2.1 Genomic Databases

Most genomic datasets are derived from legacy sequencing projects,which are frequently
openly accessible to the public. This practice is evidenced by the fact that most journals
require a public accession identifier for any dataset associated with a publication. Thus,
to attain a broad distribution of open datasets, all subfields of genomics have also adopted
the use of central, large-scale public databases [7].

The early adoption of these databases to host large amounts of all sorts of genetic
data has allowed researchers to efficiently query data and promote the reuse of datasets
produced by others [7, 9]. Genbank1, EBI2, UniProt3, and KEGG4 are some of the most

1 https://www.ncbi.nlm.nih.gov/genbank/.
2 https://www.ebi.ac.uk/.
3 https://www.uniprot.org/.
4 https://www.genome.jp/kegg/.

https://www.ncbi.nlm.nih.gov/genbank/
https://www.ebi.ac.uk/
https://www.uniprot.org/
https://www.genome.jp/kegg/

130 M. P. P. Feijoó et al.

well-known databases in the area. However, they represent a small part of a group of
more than 1,364 databases linked to the life sciences area [10]. Many of these archives
are highly consolidated and have a long history, but it is also highly recognized in the
academy that these same databases present issues of the most varied types [5, 11–13].

When analyzing in-depth these concerns, several inconsistencies in data and meta-
data are evident. In some cases, there is a lack of control in the (meta)data vocabularies,
reduced use of semantic-related concepts, and even simple fields are filled with different
data [13]. It is noticeable that these problems are closely addressed by the FAIR prin-
ciples, where reuse is one of the main target goals. It is also natural that some of those
works cite FAIR as a potential for circumventing these problems.

2.2 FAIR Principles and FAIRness

Sharing and reusing research data is not an easy task. Considering the researchers’
point of view, data preservation is a critical role that supports data reuse. Data reuse
can be executed either by humans or machines (a.k.a data reusers), which need time
and resources to understand the data to identify whether it has value to be reused in a
given context [8]. Reuse by some means focuses on the ability to understand the reuser
perspective, but the main question ends up being how the data is stored, how the data
producers classified it, or even how the data archive presents their data [1].

The problem of reusability is being worsened by the escalating volume of ever-
increasing genomic data being produced worldwide even before the COVID-19 pan-
demics. To mitigate the reuse problem, in 2016, the FAIR data principles were estab-
lished byWilkinson et al. [6]. A set of stakeholders devised these principles to stress the
role of Open Science with a focus on the ‘(meta)data’, where the authors use this term in
cases that must be applied to metadata and data [6]. The FAIR principles are composed
of 15 sub principles (See Fig. 1), where each of these goals aims to maximize the value
of digital research objects either for humans or machines.

Fig. 1. The FAIR data principles

The FAIRness of digital resources (like a genomic database) is the degree to which
it is Findable, Accessible, Interoperable, and Reusable not only in the Web, but in
other contexts as well. Thus, increasing the FAIRness of a genomic database might
maximize their reuse. Nevertheless, to evaluate its FAIRness, we need to use metrics

Evaluating FAIRness of Genomic Databases 131

(a.k.a criteria) to obtain an assessment that provides feedback to content creators about
the resulting degree of findability, accessibility, interoperability, and reusability. This
means that genomic communities should not only understand how to access the genomic
data stored in these databases but also be aware that they can monitor the FAIRness of
these databases, realistically and quantitatively.

3 Bio FAIR Evaluator Framework

After conducting a systematic review of the literature (not discussed in this paper due
to lack of space), it has been perceived that there were no computational frameworks
that aid researchers in evaluating genomic databases considering the FAIR principles
according to these two orthogonal perspectives (human and machine).

We aim to contribute with the Bio FAIR Evaluator framework. Differently from
previous works, described in Sect. 5, it is a semi-automated modular tool that helps
scientists to check the FAIRness of databases by walking through assessments related
to each of the four groups of FAIR principles [14]. The framework is composed of two
self-contained and independent modules: Researcher Compliance Evaluator (RaCE) and
Machine Compliance Evaluator (MaCE). RaCE is related to the human perspective; it
holds a list of questions related to the process of genomic data discovery and reuse. A
researcher performs the RaCE bymanually answering each question based on the human
perspective using pre-specified reference criteria in order to delve into the FAIRness con-
formity. MaCE is a Python script that dynamically loads a set of preestablish questions
that were automatically answered after checking the genomic database to evaluate the
FAIRness of the database.

The evaluation of the FAIRness of the databases is achieved through the execution of
both modules; they check the structure of the genomic databases using several metrics
(criteria) to assess compliance with each one of the FAIR sub-principles of the genomic
databases.

We stress that our approach allowed us to evaluate databases FAIRness through
compliance experiments according to the two orthogonal perspectives. In short, the
compliance experiments represent an evaluation considering either scenarios involving
humans or machines regarding the acceptance of data reuse from autonomous computer
applications. Our metrics, evaluation criteria, and experiments are described in the fol-
lowing subsections, and all reports created to carry out this analysis are available in a
GitHub repository5.

3.1 Metrics and Criteria of FAIRness Evaluation

The development of the framework allowed us to test the alignment of genomic databases
with the FAIR principles. Hence, we outlined standardized metrics to generate quanti-
tative outputs considering the execution of compliance experiments with the assistance
of RaCe and MaCE modules.

For the sake of clarity, the traffic-light colour system was chosen to categorize the
scores of the two modules. We use four levels: green for exemplary databases that meet

5 doi: https://doi.org/10.5281/zenodo.3949344

https://doi.org/10.5281/zenodo.3949344

132 M. P. P. Feijoó et al.

the compliance criteria (score= 3), yellow for average databases that partially meet the
criteria (score= 2), red for poor databases that not meet the criteria (score= 1) and grey
for cases that cannot be tested (score= 0). Extra attention is deserved to MaCe because
the output of the script returns two types of results: green for databases that meet the
criteria (score = 3) and red for those that do not meet (score = 1).

To structure the criteria, we scrutinized previous genomics analyses databases works
[5, 11, 12], and also the FAIRsharing6 and re3data7 portals, in order to extract what is
a trustworthy genomic database according to RaCE and MaCE. We developed the three
levels of criteria that focus on how close a genomic database is to FAIR principles and
linked to the metric score already described. The metrics and criteria aided then the
reinforcement of the recommendation stage that is presented after the evaluation.

3.2 RaCE Module

RaCE module aims to analyze the databases considering human needs, for example, the
necessities during the search of a use license or finding the last release of a (meta)data,
taking as a starting point the 15 FAIR sub principles. By this, each principle is analyzed
and linked with the necessities of the genomic data human reuser.

The questions of RaCE can be subdivided into two modules: the first one describes
the module and its relation to the FAIR principles; the second is a set of precondition
steps to be taken during the evaluation and a follow-up questionnaire linked to the
aforementioned metrics and criteria.

3.3 MaCE Module

The MaCE module focuses on analyses according to a machine perspective. Differently
from RaCE that uses only manual assessments, it was necessary to develop a compu-
tational environment explicitly focused on this scenario. The automated module was
elaborated following previous research [13], where the FAIR principles are extended to
machine vision-oriented maturity indicators called FAIRMetrics Gen2 (FM-Gen2). We
adopted the same metrics, proposed by the FAIR principles developers, which will be
included and discussed during the presentation of the results.

To support MaCE module, we developed Python scripts, based on the objectives
of each FM-Gen2 metric, and also reformulated some of them in the view of genomic
databases analysis, to evaluate genomics specific concerns and better understand the
outputs results. Correspondingly to the description of the RaCE module, we developed
the same analysis structure in MaCE. First, describing the module and the relation to
FAIR, outlining the precondition steps, how the module should be analyzed considering
the metrics and criteria, and how the support script will execute the evaluation.

4 Results and Discussion

To evaluate the FAIRness of the genomic databases, we designed and executed experi-
ments with RaCE and MaCE. Both considered seven popular resources widely adopted
by the genomics community.

Evaluating FAIRness of Genomic Databases 133

The requirements for choosing these databases and repositories were to be the most
representative in the genomics area and consider the use of the FAIR principles in
their (meta)data. The evaluated databases were: Genbank (www.ncbi.nlm.nih.gov/gen
bank/), KEGG (www.genome.jp), EBI (www.ebi.ac.uk), UniProt/Swiss-Prot (www.uni
prot.org), EuPathDB (www.eupathdb.org), VirusDB (www.viprbrc.org) andMaizeGDB
(www.maizegdb.com). On the follow-up section, the results of FAIRness experiments
are grouped by the FAIR principle related name, as cited on Fig. 1, in addition, theMaCE
receive the FM-Gen2 acronym cited before. All experimental data, tables, statistics, and
graphs, accompanied by the documentation, can be accessed via the GitHub repository
(See footnote 5).

4.1 FAIRness Experiments

The (F)indableRaCEmodulewas the first executed.As a result,most of the data holdings
met the requirements criteria (Fig. 2 (a)). Despite that, the F2 experiment has the most
non-exemplary databases; thismodule evaluates if data is richly describedwithmetadata,
and perhaps this can be considered a subjective principle. Nonetheless, it is noticeable
that the same databases have in common the absence of required fields or the use of
incoherent/incorrect metadata.

Fig. 2. Findable module results

In turn, the MaCE module (Fig. 2 (b)) have higher compliance rates concentrated
on FM-Gen2 F1.1 and F4 analysis. FM-Gen2 F1.1 evaluates if there are any unique
identifiers in the databases, as a Uniform Resource Identifier (URI). FM-Gen 2 F1.2
and F1.3 experiments identify the existence of standardization in persistence identifiers
and obtained a result below 42.86% for poor databases. For instance, the guarantee of
persistence is a problematic point for all FAIR principles; its use adds greater control and

Fig. 3. Accessible module results

http://www.ncbi.nlm.nih.gov/genbank/
http://www.genome.jp
http://www.ebi.ac.uk
http://www.uniprot.org
http://www.eupathdb.org
http://www.viprbrc.org
http://www.maizegdb.com

134 M. P. P. Feijoó et al.

reusability over (meta)data. Interestingly, Genbank had lower results on these modules,
which substantiates previous findings in the literature [5, 12].

FM-Gen2 F2.1 and F2.2 appraise the identification of structured language related to
richly describedmetadata accessed bymachines, and obtained 57.14%of poor databases,
because they do not use a standardized structured language. Besides, FM-Gen2 F3.1
and F3.2 found the lowest compliance rate in the (F)indable MaCEmodule, only around
28.57% as exemplary. These evaluations refer to the explicit use of identifiers in meta-
data about the data and for other metadata. Consequently, non-compliance generates an
obstacle for scraping data tools. However, the FM-Gen2 F4 performs the search for the
(meta)data on search engines, and only one database was poor, as it does not authorize
search engines to perform the scraping.

With the (A)ccessible RaCE module, the databases achieved 100% compliance on
A1,A1.1, andA1.2 (see Fig. 2(a)). This result occurred because these experiments search
for the use of standardized communication protocols and the use of non-proprietary
software. A2 RaCE experiment obtained 42.86% of average or poor databases due to
the non-use or non-specification of policies for persistence/versioning of (meta)data.
The results of (A)ccessible MaCE module (see Fig. 2(b)) ended up being satisfactory in
the FM-Gen2 A1.1.1, A1.1.2, A2.1.1, and A2.1.2 with 85.71% of compliance, checking
if they use open free protocols and if there are authentication/authorization for access
(meta)data. However, FM-Gen2 A2 revealed that all databases are non-compliant to the
existence of persistence policy keys.

The most remarkable compliance rate was in (I)nteroperable module, RaCE com-
pliance was below 42.86% (Fig. 3(a)), mainly in I2 experiment, where the (meta)data
vocabularies must follow the FAIR principles. Even the data holdings that cite the use
of FAIR also failed this test. Regarding I1 and I3 experiments, non-compliance comes
from not using knowledge representation languages and qualified references (Fig. 4).

Fig. 4. Interoperable module results

Correspondingly, the same scenario is noticeable in the MaCE, with 100% of non-
compliance in FM-Gen2 I2.2, because the databases do not use linked data on metadata.
Nevertheless, FM-Gen2 I1.1 had 85.71% of compliance. It verifies if metadata uses
knowledge representation in the most basic form, using any type of structured data,
being readily accepted even for HTML. Conversely, the FM-Gen2 I1.2 has greater rigor
in the analysis where only knowledge representation languages are accepted.

Evaluating FAIRness of Genomic Databases 135

Fig. 5. Reusable module results

On the reusable module, general non-compliance is seen. In RaCE, two points stand
out, and the first is R1.1, where 100%were average. Referring to the use of licenses, some
databases contained the license. However, they were not complete or were hard to find.
The second highlighted is the R1.3 experiment, where there is a need for certification by
the data domain community. Even creating criteria for analysis, there are no documents
yet or FAIR guidelines that assist this. Likewise, MaCE experiments obtained non-
compliance between 57.14% and 85.71% due to the non-indexing of user licenses for
automatic identification. In addition to that, there are no experiments for R1.2 and R1.3
FAIR principles because it is hard to measure from the machine point of view.

The results of RaCE and MaCE experiments were grouped to analyze compliance
in general (See Fig. 5). This is because, as mentioned before, we are dealing with two
complementary and orthogonal perspectives (Fig. 6).

Fig. 6. Final compliance result of the seven genomic databases

By this final results, interesting points can be highlighted. From the three with the
highest score, only UniProt mentions the use of FAIR principles in its (meta)data. On
the other hand, MaizeGDB cites the use of FAIR but ended up being the fourth in
compliance. Genbank is one of the most popular genomic databases. However, it is the
one that has smaller compliance with the FAIR principles.

4.2 Recommendations

After the analysis was carried out, a referenced document (See footnote 5) was made
with possible recommendations that could be made for each compliance experiment’s
results. Among the most important recommendations, one can cite the use of persistent
identifiers, the use of knowledge representation languages, and the provision of policies
for the (meta)data.

136 M. P. P. Feijoó et al.

These three points can be summarized as the main improvements of following the
FAIR principles. Some end up being simpler to be implemented, such as the provision
of policies for the use of (meta)data. Although the use of knowledge representation lan-
guages, turn out to be even more complicated in existing databases due to the need to
readapt all (meta)data to the chosen language. We should not see the FAIR as a guide
that must be followed thoroughly [14], but reaching all the principles can generate many
benefits. However, non-completeness does not result in an ‘unFAIR’ database. FAIRness
must be adapted in each of the realities but the principles can certainly improve reusabil-
ity. Based on the compliance recommendations, it is possible to make the principles
more concrete.

5 Related Work

There are some works aimed at evaluating compliance concerning the FAIR principles.
Dunning, Smale, and Bohmer [16], clearly inspired our work, as they proposed a series
of compliance experiments on the FAIR principles, although focused on different areas.
They perform experiments from a human point of view and quoted that some of the prin-
ciples are too vague. At the same time, others are more complicated to verify adherence,
especially Interoperable and Reusable.

The FM-Gen2 [15] is very important as providing a view on the analysis focused on
machines, due to its automatic reuse. However, it ends up not carrying out experiments
on all principles, such as principles R1.2 and R1.3. The Research Data Alliance [17]
gathered and compared 12 FAIR analysis tools, contemplating compliance indicators.
During these analyses, the tools were grouped, considering the different FAIR principles.
Comparing these tools, we noticed some interesting facts. Some have restrictions to use,
in others not all the principles were analyzed (like principle A2 that was only analyzed
by three tools). Some tools contemplate either the human vision or the machine vision.

All these works were essential to the development of our research, but mainly the
FM-Gen2 that we used on our compliance experiments. Different from the relatedworks,
we focus on the compliance of a specific area, make compliance experiments to map all
the FAIR principles, and ended up providing analysis from two points of view (human
and machine).

6 Conclusions

Reusability of genomic data is utterly necessary. However, several databases face var-
ious types of shortcomings related to FAIRness. In this investigation, we presented an
approach to evaluate the genomic databases, considering two orthogonal perspectives
(human and machine). Bio FAIR Evaluator Framework allows researchers to perform
complementary manual and automated experiments to evaluate FAIRness of genomic
databases. Our results show that seven of them are poorly compliant with the FAIR
principles. Besides the compliance checks, the evaluation also generated a series of rec-
ommendations to increase the FAIRness of genomic databases. Our frameworkmay also
benefit data reusers and database administrators. As future work, we intend to develop
further investigations to improve the quality of compliance experiments to evaluate other
fields of bioinformatics like proteomics as well as other domains.

Evaluating FAIRness of Genomic Databases 137

Acknowledgements. This study was financed in part by the National Council for Scientific and
Technological Development (CNPq), Programa de Educação Tutorial (PET) and Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

References

1. Paquetto, I., Ranfles, B., Borgman, C.: On the reuse of scientific data. Data Sci. J. 16, 8 (2017)
2. Hey, T., Trefethen, A.: The Data Deluge: an e-science Perspective. Grid Computing: Making

the Global Infrastructure a Reality, pp. 809–824. Wiley-Blackwell (2003)
3. Bayat, A.: Bioinformatics: science, medicine, and the future: bioinformatics. Br. Med. J.

324(7344), 1018–1022 (2002)
4. Cook, C., Bergman, M., Finn, R., Cochrane, G., et al.: The European bioinformatics institute

in 2016: data growth and integration. Nucl. Acids Res. 44(D1), D20–D26 (2016)
5. Gonçalves, R., Musen, M.: The variable quality of metadata about biological samples used

in biomedical experiments. Sci. Data 6, 190021 (2019)
6. Wilkinson,M., Dumontier,M., Aalbersberg, I., Apleton, G., Axt,M., et al.: The FAIR guiding

principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016)
7. Navarro, F., Mohsen, H., Yan, C., Li, S., Gu, M., Meyerson, W.: Genomics and data science:

an application within an umbrella. Genome Biol. 20, 109 (2019)
8. Wallis, J.: Data producers courting data reusers: two cases from modeling communities. Int.

J. Digit. Curation 9(1) (2014)
9. Stephens, Z., Lee, S., Faghri, F., Campbell, R., Zhai, C., Efron, M., et al.: Big data:

astronomical or genomical. PLoS Biol. 13(7), e1002195 (2015)
10. Re3Data. https://www.re3data.org. Last accessed 06 June 2020
11. Bouadjenek, M., Verspoor, K., Zobel, Z.: Automated detection of records in biological

sequence databases that are inconsistent with the literature. J. Biomed. Inform. 71, 229–240
(2017)

12. Miron, L., Gonçalves, R., Musen, M.: Obstacles to the Reuse of Study Metadata in Clini-
calTrials.gov. BioRxiv (2020)

13. Gonçalves, R., Connor, M., Romero, M., Graybeal, J., Musen, M.: Metadata in the biosample
online repository are impaired by numerous anomalies. In: 1st Workshop on Enabling Open
Semantic Science, pp. 39–46 (2017)

14. Mons, B., Cameron, N., et al.: Cloudy, increasingly FAIR: revisiting the FAIR data guiding
principles for the European open science cloud. Info. Serv. Use 37(1), 49–56 (2017)

15. Wilkinson, M., Dumontier, M., Sansone, S., Santos, B., et al.: Evaluating FAIR maturity
through a scalable, automated, community-governed framework. Sci. Data 6(174), 1–12
(2019)

16. Dunning, A., Smaele, M., Bohmer, J.: Are the fair data principles fair? Int. J. Digit. Curation
12(2), 177–195 (2017)

17. Bahim, C., Dekkers, M., Wyns, B.: Results of an Analysis of existing FAIR assessment tools.
RDA (2019)

https://www.re3data.org

Reusable FAIR Implementation Profiles
as Accelerators of FAIR Convergence

Erik Schultes1 , Barbara Magagna2,3(B) , Kristina Maria Hettne4 ,
Robert Pergl5 , Marek Suchánek5 , and Tobias Kuhn6

1 GO FAIR International Support and Coordination Office, Leiden, The Netherlands
erik.schultes@go-fair.org

2 Umweltbundesamt GmbH, Vienna, Austria
barbara.magagna@umweltbundesamt.at
3 University of Twente, Enschede, The Netherlands

4 Centre for Digital Scholarship, Leiden University Libraries, Leiden, The Netherlands
k.m.hettne@library.leidenuniv.nl

5 Faculty of Information Technology, Czech Technical
University in Prague, Prague, Czech Republic
{perglr,suchama4}@fit.cvut.cz

6 Department of Computer Science, Vrije Universiteit
Amsterdam, Amsterdam, The Netherlands

t.kuhn@vu.nl

Abstract. Powerful incentives are driving the adoption of FAIR practices among
a broad cross-section of stakeholders. This adoption process must factor in numer-
ous considerations regarding the use of both domain-specific and infrastructural
resources. These considerations must be made for each of the FAIR Guiding Prin-
ciples and include supra-domain objectives such as themaximum reuse of existing
resources (i.e., minimised reinvention of the wheel) or maximum interoperation
with existing FAIR data and services. Despite the complexity of this task, it is
likely that the majority of the decisions will be repeated across communities and
that communities can expedite their own FAIR adoption process by judiciously
reusing the implementation choices already made by others. To leverage these
redundancies and accelerate convergence onto widespread reuse of FAIR imple-
mentations, we have developed the concept of FAIR Implementation Profile (FIP)
that captures the comprehensive set of implementation choices made at the discre-
tion of individual communities of practice. The collection of community-specific
FIPs compose an online resource called the FIP ConvergenceMatrix which can be
used to track the evolving landscape of FAIR implementations and inform optimi-
sation around reuse and interoperation. Ready-made and well-tested FIPs created
by trusted communities will find widespread reuse among other communities and
could vastly accelerate decision making on well-informed implementations of the
FAIR Principles within and particularly between domains.

Keywords: FAIR principles · Convergence · FAIR-Enabling resource · FAIR
implementation community · FAIR implementation considerations · FAIR
implementation choices · FAIR implementation challenges · FAIR
implementation profile

© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 138–147, 2020.
https://doi.org/10.1007/978-3-030-65847-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_13&domain=pdf
http://orcid.org/0000-0001-8888-635X
http://orcid.org/0000-0003-2195-3997
http://orcid.org/0000-0002-4182-7560
http://orcid.org/0000-0003-2980-4400
http://orcid.org/0000-0001-7525-9218
http://orcid.org/0000-0002-1267-0234
https://doi.org/10.1007/978-3-030-65847-2_13

Reusable FAIR Implementation Profiles as Accelerators 139

1 Introduction

The FAIR Guiding Principles articulate the behaviors expected from digital artifacts
that are Findable, Accessible, Interoperable and Reusable by machines [1]. Although
arguably an established term already, the FAIR Principles do not explicitly consider
actual implementation choices enabling FAIR behaviors [2]. For example,

• Principle F2 states that data should be described with rich metadata, but leaves the
definition of “rich” and other findability requirements to the discretion of the domain
community (which varies from one stakeholder, domain, and application to another,
e.g. CERIF, DataCite Metadata Schema or ISO 19115/ISO 19139);

• Principle I1 requests that a formal, accessible, shared, and broadly applicable language
for knowledge representation be used to embed machine-actionable semantics (e.g.,
RDF/OWL, RuleML, CycL) but it gives no recommendation on how to select the best
option in any particular use case;

• Principle R1.1 requests that data and metadata be released with clear and accessible
usage licenses, but does not specify which of the many digital licensing schemes
should actually be applied (e.g., Creative Commons Attribution 4.0 International
Public License or Open Data Commons Public Domain Dedication and License).

In each case, the FAIR Principles leave implementation choices to the communities
of practice, permitting maximum freedom to operate while at the same time ensuring
a high degree of automated Findability, Accessibility, Interoperability, and Reusability.
This freedom to operate, while necessary and desirable, has led to the development
of a variety of technical solutions which hold the inherent risk of reducing compat-
ibility between stakeholder communities. For example, although initiatives like the
European Strategy Forum on Research Infrastructures (ESFRI) or the Research Data
Alliance (RDA) are driving the adoption of FAIR practices, different domain commu-
nities nonetheless have their own, often well-established implementation preferences
and priorities for data reuse. Hence, coordinating a broadly accepted, widely used FAIR
implementation approach still remains a global challenge.

In an effort to accelerate broad community convergence [3] on FAIR implementation
options, the GO FAIR FIP Working Group [4] launched the development of the FAIR
Convergence Matrix, a collaborative online resource consisting of all the FAIR imple-
mentation choices made by different domain communities [5]. This ongoing activity
aims to create a machine-actionable description of the emerging FAIR implementa-
tion landscape. This will enable stakeholders to systematically optimise implementation
choices with respect to, for example, more streamlined FAIR deployments while at the
same time securing some guarantees on the FAIR maturity levels of those deployments
and the degree of interoperation that can be expected with Resources created by other
communities.

In this paper we first describe the different components of the FAIR Implementa-
tion Conceptual Model and the workflow for the creation of community-specific FAIR
Implementation Profiles (Sect. 2). In Sect. 3 we discuss the potential benefits of this
approach and how the FAIR Implementation Profile relates to the FAIR Principle R1.3

140 E. Schultes et al.

and why this contribution is novel in relation to previous work. In Sect. 4 we conclude
by describing upcoming activities and planned improvements to the ongoing work.

2 The FAIR Implementation Profile Conceptual Model and Its
Supporting Components

2.1 FAIR Implementation Profiles

The FAIR Implementation Profile (FIP) conceptual model [6] is based on the developing
GOFAIROntology [7] and is composed of twoprincipal concepts: FAIR Implementation
Community and the FAIR-Enabling Digital Resource.

By FAIR Implementation Community (Community) we mean a self-identified orga-
nization (composed of more than one person) sharing a common interest that aspires to
the creation of FAIR data and services. Typically, a Community forms around a knowl-
edge domain or in the participation in a research infrastructure, or in the commitment to a
policy jurisdiction such as those found in a university, a hospital, a province or a county.
As such, Communities can be formal (e.g., scholarly society) or informal (e.g., working
groups), large or small, influential or not, long-lived (industry associations) or tempo-
rary (e.g., funded projects). It may also be useful to identify sub-communities that may
be related to specific repositories when dealing with different types of resources (e.g.,
sensors). In any case, a Community must itself be represented with FAIR (meta)data, by
procuring a globally unique and persistent resolvable identifier (GUPRI) usually via a
registration process. Every Community registers a Community Data Steward (a single
person representing data stewards of the Community who provides a contact point for
FIP creation and who likely works in a team of experts coordinating FIP development).

By FAIR-Enabling Digital Resource (Resource) wemean any digital object that pro-
vides a function needed to achieve some aspect of FAIRness and is explicitly linked to
one or more FAIR Principles. Resources include for instance datasets, metadata, code,
protocols, compute resources, computed work units, data policies, data management
plans, identifier mechanisms, standards, FAIRification processes, FAIRness assessment
criteria and methods, data repositories and/or supporting tools. We define an Imple-
mentation Choice as the decision of a Community to reuse a Resource from among
existing implementations. If, however, none of these appear suitable, the Community
may then accept the Implementation Challenge to create and implement a new solution
to solve the identified gap (note that every Resource that forms a Choice, was itself
once a Challenge). Choices and Challenges are made on the basis of Considerations
that involve numerous Community-specific factors including FAIR Requirements and
various sources of Constraints endemic to the Community.

Since early 2019, prototype FIPs have been created for roughly 50 communities
(includingESFRIs [8] and projects like ENVRI-FAIR [9]) as ameans to achieve practical
development of the conceptual model and its representation. An advanced example of
a FIP created by the GO FAIR Virus Outbreak Data Network can be found in both
human-readable (PDF) [10] and machine-actionable (JSON) formats [11].

Reusable FAIR Implementation Profiles as Accelerators 141

2.2 FAIR Implementation Questionnaire

Although Community Data Stewards may build a FIP de novo, in practice the task can
be facilitated and standardized when they are prompted via a questionnaire to system-
atically list the implementation choices that correspond to each of the FAIR Principles.
These choices are drawn from an accumulated listing of existing or proposed Resources.
The GO FAIR FIP Working Group has developed the FIP questionnaire in a series of
hackathons since January 2019, carefully aligning questions and accommodating the
complex space of potential answers with the aim to ensure machine-actionable FIPs.
The current version 4.0 questionnaire (with 21 questions covering the FAIR Principles)
is accessible on GitHub [12].

A tool in which the FIP questionnaire is currently implemented is the Data Stew-
ardship Wizard (DSW) [13]. The DSW platform provides an efficient means to capture
implementation Choices and Challenges by directly linking to canonical references for
Resources issued in public registries, such as FAIRsharing.org (see Fig. 1). In turn, the
DSW tool enables the FIP to be output in various file formats, both human and machine-
readable including the development of custom export templates. In this case, the DSW
has been repurposed from its original application as a data management/stewardship
planning tool into a FIP capture tool by substituting the data stewardship knowledge
model (i.e., extensible and evolvable definition of a questionnaire) with a newly created
one corresponding to the FIP questionnaire. As such, we refer to the new knowledge
model and interface as the “FIP Wizard” which is publicly accessible [14].

Fig. 1. An implementation choice of the VODAN Community in the FIP Wizard for F1

2.3 FIPs as FAIR Digital Objects

FIPs created in the FIP Wizard can be represented as collections of assertions having
the form <Community><Chooses to reuse><Resource> or <Community><accepts
the Challenge to build><Resource>. All assertions having the same Community as the
subject compose the FIP for that Community. This graph structure where a single subject
has multiple predicate-object pairs is called a Knowlet [15]. The Knowlet structure of

142 E. Schultes et al.

the FIP can itself be encapsulated as a FAIR Digital Object (FDO) having GUPRIs, type
specifications and other FAIR metadata components [16]. As new FIPs are created, and
existing FIPs are revised with alternative choices or extended when novel technologies
are introduced, the FIP FDO is updated and versioned with provenance trails. These fea-
tures allow FIPs to have ownership/authorship, to be cited, andwill therefore accumulate
value to its creators. This will incentivise the ongoing curation and maintenance of the
FIP by its Community and garner reputation and trust that engenders reuse by others
when making their own FAIR implementation choices. Moreover, applications that per-
form automated inference overKnowlets will open a range of potential analyses assisting
in the optimization of FIPs or clusters of FIPs with respect to well-defined convergence
objectives. Because the FIP Wizard captures and outputs Community-specific FIPs as
JSON, we have written custom pipelines to convert the FIP Wizard format to nanop-
ublications [17] that can then be permanently published on the decentralized, federated
nanopublication server network [18].

2.4 The FIP Convergence Matrix

Over time, as numerous Communities independently create FIPs (whether manually or
via tools such as the FIPWizard) it will be possible to accumulate a comprehensive listing
of FAIR-Enabling Resources reflecting the current technology landscape supporting
FAIR data and services. Based on patterns of use and reuse of existing Resources,
transparent strategies for optimal coordination in the revision of existing, or the creation
of novel FIPs could be derived.

For example, Fig. 2 depicts an idealized repository of FIPs, each column representing
aCommunity, each rowaResource linked to the appropriate FAIRPrinciple(s). The list of
implementation choices for each principle might be tediously long but will be filterable
on a variety of criteria including the frequency of its use in other research domains,
its FAIR maturity level, or its endorsement by trusted organizations such as funding
agencies.

FIPs may be similar or divergent, but in any case, are likely to compose a unique
‘signature’ for each Community. In its simplest formulation, for each Resource listed in
rows, a Community may choose to either use (1) or not use (0) that Resource. In this
idealized ‘binary’ limit the FIP could be represented as a bit string (for example, the FIP
for Community C in Fig. 2 would be represented as {0,1,0,1,0,1,0,1}). In this binary
vector representation, the FIP composes a community-specific ‘fingerprint’ that can be
used to map the similarity distribution of FAIR implementation decisions (using for
example, vector matching techniques). As depicted here, Communities A-D have each
created distinct FIPs. In contrast, Communities E-H have chosen to reuse the profile
of Community C (red arrows). Community I has also adopted the FIP of Community
C but in this case, with 2 modifications (red circles for Resource 3 and Resource 5).
Community J has adopted the exact FIP of Community 4 (blue arrow). FIP reuse leads
to increasing similarity among FIPs in the Matrix which can be taken as a metric for
convergence. In amanner similar to the Knowlet representation of the FIP, the fingerprint
can itself be treated as FAIR data, including its representation as a FAIR Digital Object.

However, in practice, responses to the questionnaire are more nuanced than binary
‘use/do not use’ and require additional codes or in some cases even free-text responses

Reusable FAIR Implementation Profiles as Accelerators 143

Fig. 2. FIP Convergence Matrix with registered Community Choices regarding the use of FAIR-
Enabling Resources, which are made available for reuse by other Communities. (Color figure
online)

(for example, from preliminary results working with roughly 50 research communities
throughout Europe, it is clear that Community Data Stewards often wish to declare
“we do not use this Resource yet, but have a project to implement in the next year”).
Furthermore, alongside the FIP as a digital fingerprint it is vital to also publish the
Considerations (captured as free text) as a separate referenceable record in order to
make the reasons for the implementation choices and challenges intelligible to others
and thereby making FIP reuse better fit for purpose.

The ultimate goal of this analysis is to align FIPs fromdifferent Communities in order
to achieve convergence on the reuse of existing Resources and interoperation between
the FAIR data and services of each Community. Hence, we refer to a FIP repository as
the FIP Convergence Matrix. Although we can be confident that the FIP Wizard and the
Nanopublication Server Network which currently store FIPs are reliable repositories,
the FIP Convergence Matrix should eventually be sustained by a global and trusted
data-mandated organization as an Open and FAIR resource, whether it be a centralized
registry or a distributed network of repositories.

2.5 An Emerging FIP Architecture and Workflow

TheFIP conceptualmodel and its various supporting components that are in development
by the GO FAIR FIP Working Group compose a workflow for FIP creation and reuse.

The process of FIP creation begins by defining the Community description itself
as a Resource. This includes the creation of a corresponding GUPRI and designation
of a Community Data Steward. This minimal Community template has been used in
the Nanobench tool [19] to mint nanopublications for a Community with a GUPRI and
metadata like its research domain, time/date and versioning information [20].

144 E. Schultes et al.

Following the completion of the FIP questionnaire in the FIPWizard, all FAIR imple-
mentation choices can be linked to the Community, creating an unambiguous machine-
actionable FIP. FIPs can then be exposed as FAIR Digital Objects which in turn can be
collected in the FIP Convergence Matrix repository yielding an overview of the FAIR
implementation landscape. The FIP Convergence Matrix composed of FIP fingerprints
facilitates systematic analyses over these landscapes leading to FIP optimization.

3 Discussion

3.1 FIPs and FAIR Convergence

Entering the FIPWizard, confronting a complicated questionnaire that is likely to exceed
the expertise of any single person, and then researching and declaring FAIR implemen-
tation decisions is a tedious and costly investment. However, once made, the FIP FDOs
are reusable and can be shared with others in a number of important ways. This has the
potential to lead to the rapid convergence and scaling required to realise the Internet of
FAIR data and services in short time frames. This is especially true for FIPs authored or
sanctioned by trusted domain authorities such as scholarly societies, scientific unions,
GO FAIR Implementation Networks, or industry associations. Shareable and reusable
FIPs can be used as a ‘default setting’ to kick-start FIP creation by other communities
that aspire to adopt FAIR practices. However, organizations having cross-disciplinary or
administrative mandates - such as repositories and national archives, funding agencies or
publishers - may also define FIPs that would be seen as target implementation profiles by
data producers. Likewise, data-related organizations, such as the GO FAIR Foundation,
the Research Data Alliance, CODATA, and theWorld Data System could also create and
endorse FIPs as they do for other best practices. As more FIPs accumulate, it should be
possible to harness positive feedback where FIPs can inform the creation of other FIPs,
leading potentially to easily reusable solutions and rapid convergence in this otherwise
complex space. The reuse of carefully crafted FIPs has at least two important, and deeply
related applications:

First, Trusted FIPs as Defaults in the FIP Convergence Matrix: The optimized FIPs
composed, maintained and endorsed by trusted authorities can be offered in the Conver-
gence Matrix as ‘one-click’ defaults for other communities to adopt and reuse, in whole
or in part, as they see fit.

Second, Trusted FIPs as Defaults in Data Stewardship Plans: Once a FIP has been
published in the FIP Convergence Matrix, it can be seen as the FAIR component of
any data management/stewardship plan. The FIP could even inform community-specific
‘autocomplete’ functions in data management/stewardship planning tools assisting the
data steward.

Community declared FIPs can be objectively evaluated on the basis of different
attributes. For example, by inspecting each Resource listed in the FIP, it will be possible
to calculate the degree to which the FIP maximises the reuse of existing Resources or
the degree to which the FIP ensures interoperability. In addition, FIPs can be evaluated

Reusable FAIR Implementation Profiles as Accelerators 145

against various maturity indicators, while taking into account actual cost estimates for
implementation.

As such, the FIP can itself be systematically optimized through judicious consider-
ation and revision of implementation choices. Given the potential economic impact of
“going FAIR” [21], there will likely emerge sophisticated FIP optimisation applications
that could even include machine learning approaches that offer “suggestions” on how to
improve a FIP for a given purpose. Advanced stages of FIP analysis will eventually lead
to the identification and examination of FAIR technology ‘gaps’, spurring innovation of
next-generation FAIR technologies.

The FAIR Principle R1.3 states that “(Meta)data meet domain-relevant Community
standards”. This is the only explicit reference in the FAIR Principles to the role played
by domain-specific communities in FAIR. It is interesting to note that an advanced,
online, automated, FAIR maturity evaluation system [22] did not attempt to implement
a maturity indicator for FAIR Principle R1.3. It was not obvious during the development
of the evaluator system how to test for “domain-relevant Community standards” as
there exists, in general, no venue where communities publicly and in machine-readable
formats declare data and metadata standards, and other FAIR practices. We propose the
existence of a valid, machine-actionable FIP be adopted as a maturity indicator for FAIR
Principle R1.3.

3.2 Related Work

Although the FAIR Guiding Principles are numerously cited (~3000 citations of [1])
and strongly supported by the EOSC initiative to push Europe towards a culture of open
research, there are currently no broadly accepted FAIR solutions.Most of the work today
is on the topic of FAIR data assessment approaches, be it quantitativemeasurements with
Maturity Indicator tests [22] or qualitative assessment tools like those from DANS [23],
CSIRO [24] or from the RDA FAIRDataMaturityModelWorking Group [25]. Relevant
work on the uptake of good FAIR practices is being driven by the FAIRsFAIR project
that issued FAIR semantic recommendations recently [26]. Also, standardization efforts
such as the CoreTrustSeal certification procedures [27] will leverage the adoption of
FAIR data management practices for trustworthy data repositories. As for the tools, in
[28], the authors analysed and commented on the current trends and convergence in data
management tools with respect to FAIR data stewardship and machine-actionability.

Other attempts are trying to foster harmonisation on specific aspects of the FAIR
Principles, or focus on a specific domain. The project ENVRI-FAIR emphasizes the
need to implement common FAIR policies and interoperability solutions across envi-
ronmental research infrastructures. Oneway to foster convergence is to provide technical
demonstrators for research infrastructures that adopt FAIR implementations offered by
others [29]. The RDA I-ADOPT WG is developing on Interoperability Framework for
seamless cross-domain terminology alignment for observable property descriptions [30].
In an effort to support and harmonise metadata applications toward FAIR, the GO FAIR
initiative has launched a systematic and scalable approach to the creation of machine-
actionable metadata calledMetadata forMachines (M4M)Workshops [31]. As such, the
FIP approach is novel in the sense that it offers a transparent vehicle for very specific,
yet open and flexible Community-based solutions for each of the FAIR Principles.

146 E. Schultes et al.

4 Conclusion

FIP creation is not a goal in itself. The ultimate objective is to accelerate convergence
onto widespread FAIR implementations. This calls also for a coordinated effort to create
an agreed compilation of FAIR-Enabling Resources. The practical testing and uptake of
the FIP conceptual model and its supporting tools signals promising applications across
a broad spectrum of knowledge domains: from environmental sciences, like in ENVRI-
FAIR using the FIP approach in its recurring FAIR assessment evaluation [9] to life
sciences with the GO FAIR Virus Outbreak Data Network (VODAN Implementation
Network),which has nowpublished its version 1.0 FIP [10, 11]. FIP creation also features
prominently in a series of hackathons leading up to theGOFAIR/CODATAConvergence
Symposium 2020 [32] where five diverse communities attempt to demonstrate FIP-
mediated FAIR convergence.

Acknowledgements. This work was carried out in the context of the GO FAIR VODAN Imple-
mentation Network (supported also by the GO FAIR Foundation) and ENVRI-FAIR. ENVRI-
FAIR has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 824068.

References

1. Wilkinson, M., Dumontier, M., Aalbersberg, I., et al.: The FAIR guiding principles for scien-
tific data management and stewardship. Sci. Data 3, 160018 (2016). https://doi.org/10.1038/
sdata.2016.18

2. Jacobsen, A., et al.: FAIR principles: interpretations and implementation considerations. Data
Intell. 2(1–2), 10–29 (2020). https://doi.org/10.1162/dint_r_00024

3. Wittenburg, P., Strawn, G.: Common Patterns in Revolutionary Infrastructures and
Data (2018). https://www.rd-alliance.org/sites/default/files/Common_Patterns_in_Revolutio
nising_Infrastructures-final.pdf. Accessed 10 Aug 2020

4. FAIR Implementation Profile. https://www.go-fair.org/how-to-go-fair/fair-implementation-
profile/. Accessed 10 Aug 2020

5. Sustkova, H.P., et al.: FAIR convergencematrix: optimizing the reuse of existing FAIR-related
resources. Data Intell. 2(1–2), 158–170 (2019)

6. FAIR Implementation Profile Conceptual Model. https://github.com/go-fair-ins/GO-FAIR-
Ontology/tree/master/Models/FIP. Accessed 10 Aug 2020

7. GO FAIR ontology. https://github.com/go-fair-ins/GO-FAIR-Ontology. Accessed 10 Aug
2020

8. GEDE-IN Survey and Analysis. https://osf.io/jd5fp/. Accessed 10 Aug 2020
9. Magagna, B., Adamaki, A., Liao, X., Rabissoni, R., Zhao, Z.: ENVRI-FAIR D5.1 Require-

ment analysis, technology review and gap analysis of environmental RIs (2020). https://doi.
org/10.5281/ZENODO.3884998

10. Human Readable VODAN FIP. https://doi.org/10.17605/OSF.IO/P2X7M
11. Machine Actionable VODAN FIP. https://doi.org/10.17605/OSF.IO/P2X7M
12. FIP questions. https://github.com/go-fair-ins/GO-FAIR-Ontology/blob/master/Models/FIP/

FIP-MM.pdf. Accessed 10 Aug 2020
13. Pergl, R., Hooft, R., Suchánek,M.,Knaisl, V., Slifka, J.: Data stewardshipwizard: a tool bring-

ing together researchers, data stewards, and data experts around data management planning.
Data Sci. J. 18(1), 59 (2019). https://doi.org/10.5334/dsj-2019-059

https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1162/dint_r_00024
https://www.rd-alliance.org/sites/default/files/Common_Patterns_in_Revolutionising_Infrastructures-final.pdf
https://www.go-fair.org/how-to-go-fair/fair-implementation-profile/
https://github.com/go-fair-ins/GO-FAIR-Ontology/tree/master/Models/FIP
https://github.com/go-fair-ins/GO-FAIR-Ontology
https://osf.io/jd5fp/
https://doi.org/10.5281/ZENODO.3884998
https://doi.org/10.17605/OSF.IO/P2X7M
https://doi.org/10.17605/OSF.IO/P2X7M
https://github.com/go-fair-ins/GO-FAIR-Ontology/blob/master/Models/FIP/FIP-MM.pdf
https://doi.org/10.5334/dsj-2019-059

Reusable FAIR Implementation Profiles as Accelerators 147

14. FIP Wizard: fip-wizard.ds-wizard.org, Email: guest@example.com, Password: “guest”
15. Mons, B.: FAIR science for social machines: let’s share metadata knowlets in the Internet of

FAIR data and services. Data Intell. 1(1), 1–15 (2018)
16. Wittenburg, P., Strawn, G., Mons, B., Bonino, L., Schultes, E.: Digital objects as drivers

towards convergence in data infrastructures (2019). http://doi.org/10.23728/b2share.b605d8
5809ca45679b110719b6c6cb11

17. Kuhn, T., et al.: Nanopublications: a growing resource of provenance-centric scientific linked
data. In: 2018 IEEE 14th International Conference on e-Science (e-404Science) (2018).
https://doi.org/10.1109/escience.2018.00024405

18. Kuhn, T., Chichester, C., Krauthammer, M., Dumontier, M.: Publishing without publishers:
a decentralized approach to dissemination, retrieval, and archiving of data. In: Arenas, M.,
et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 656–672. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-25007-6_38

19. Nanobench. https://github.com/peta-pico/nanobench. Accessed 10 Aug 2020
20. VODAN Community nanopublication. http://purl.org/np/RAdDKjIGPt_2mE9oJtB3YQX6

wGGdCC8ZWpkxEIoHsxOjE. Accessed 10 Aug 2020
21. Directorate-General for Research and Innovation (European Commission): Cost-benefit anal-

ysis for FAIR research data, PwC EU Services, 16 January 2019. https://doi.org/10.2777/
02999

22. Wilkinson,M.D., et al.: Evaluating FAIRmaturity through a scalable, automated, community-
governed framework. Sci. Data 6, 174 (2019). https://doi.org/10.1038/s41597-019-0184-5,
FAIR Evaluation Services. http://w3id.org/AmIFAIR

23. DANS: FAIR enough? Checklist. https://docs.google.com/forms/d/e/1FAIpQLSf7t1Z9IOBo
j5GgWqik8KnhtH3B819Ch6lD5KuAz7yn0I0Opw/viewform. Accessed 10 Aug 2020

24. CSIRO: 5 Star Data Rating Tool. https://research.csiro.au/oznome/tools/oznome-5-star-data/.
Accessed 10 Aug 2020

25. RDA FAIR Data Maturity Model Working Group: FAIR Data Maturity Model: specification
and guidelines. Res. Data Alliance (2020). http://doi.org/10.15497/RDA00045

26. Le Franc, Y., et al.: D2.2 FAIR Semantics: First recommendations (Version 1.0). FAIRsFAIR
(2020)

27. CoreTrustSeal Data Repository Requirements. https://www.coretrustseal.org/why-certifica
tion/requirements/. Accessed 10 Aug 2020

28. Jones, S., et al.: Data management planning: how requirements and solutions are beginning
to converge. Data Intell. 2(1–2), 208–219 (2019)

29. ENVRI FAIR Gap Analysis and Demonstrators. https://envri-fair.github.io/knowledge-bas
e-ui/. Accessed 10 Aug 2020

30. Magagna, B., Moncoiffe, G., Devaraju, A., Buttigieg, P. L., Stoica, M., Schindler, S.: Towards
an interoperability framework for observable property terminologies, EGUGeneral Assembly
(2020), Accessed 4–8 May 2020, EGU2020-19895. https://doi.org/10.5194/egusphere-egu
2020-19895

31. Metadata for Machines Workshops. https://www.go-fair.org/today/making-fair-metadata/
32. CODATA GO FAIR Convergence Symposium 2020. https://conference.codata.org/FAIRco

nvergence2020/. Accessed 10 Aug 2020

http://doi.org/10.23728/b2share.b605d85809ca45679b110719b6c6cb11
https://doi.org/10.1109/escience.2018.00024405
https://doi.org/10.1007/978-3-319-25007-6_38
https://github.com/peta-pico/nanobench
http://purl.org/np/RAdDKjIGPt_2mE9oJtB3YQX6wGGdCC8ZWpkxEIoHsxOjE
https://doi.org/10.2777/02999
https://doi.org/10.1038/s41597-019-0184-5
http://w3id.org/AmIFAIR
https://docs.google.com/forms/d/e/1FAIpQLSf7t1Z9IOBoj5GgWqik8KnhtH3B819Ch6lD5KuAz7yn0I0Opw/viewform
https://research.csiro.au/oznome/tools/oznome-5-star-data/
http://doi.org/10.15497/RDA00045
https://www.coretrustseal.org/why-certification/requirements/
https://envri-fair.github.io/knowledge-base-ui/
https://doi.org/10.5194/egusphere-egu2020-19895
https://www.go-fair.org/today/making-fair-metadata/
https://conference.codata.org/FAIRconvergence2020/

Conceptual Modeling for NoSQL Data
Stores (CoMoNoS) 2020

Preface

Meike Klettke1 , Stefanie Scherzinger2, and Uta Störl3

1 University of Rostock, Rostock, Germany
meike.klettke@uni-rostock.de
2 University of Passau, Passau, Germany

stefanie.scherzinger@uni-passau.de
3 Darmstadt University of Applied Sciences, Darmstadt, Germany

uta.stoerl@h-da.de

The objective of the First Workshop on Conceptual Modeling for NoSQL Data Stores
(CoMoNoS 2020) is to explore opportunities for conceptual modeling applied to real-
world problems that arise with NoSQL data stores (such as MongoDB, Couchbase,
Cassandra, Neo4J, or Google Cloud Datastore). In designing an application backed by
a NoSQL data store, developers face specific challenges that match the strengths of the
ER community. The purpose of this workshop is to grow a community of researchers
and industry practitioners working on conceptual modeling for NoSQL data stores. The
workshop provides a forum for researchers to learn about the actual pain points faced
by practitioners. Equally, it is our aim that practitioners benefit from the experience of
the ER research community at large, and the authors of the workshop articles in
particular.

Among eight submissions, the Program Committee selected three research articles.
Main topics of the workshop are schema reverse engineering methods, approaches for
model-based NoSQL data generation, and an overview on the current state of NoSQL
modeling in industry, presented by keynote speaker Pascal Desmarets (Hackolade).

Acknowledgements. We would like to thank the members of our Program Commitee.
This workshop was further supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation), grant #385808805.

http://orcid.org/0000-0003-0551-8389
http://orcid.org/0000-0003-2771-142X

Deimos: A Model-Based NoSQL Data
Generation Language

Alberto Hernández Chillón(B) , Diego Sevilla Ruiz ,
and Jesús Garćıa Molina

Faculty of Computer Science, University of Murcia, Murcia, Spain
{alberto.hernandez1,dsevilla,jmolina}@um.es

Abstract. Synthetic data generation is of great interest when test-
ing applications using databases. Some research and tools have been
developed for relational systems. However there has been little atten-
tion to this problem for NoSQL systems. This work introduces Deimos,
a prototype of a model-based language developed to generate syn-
thetic data from NoSQL schemas represented as models conforming the
NoSQLSchema metamodel. Requirements for the language–that become
its design forces–are stated. The language is described, the generation
process is analyzed, and future lines of work are outlined.

Keywords: NoSQL · Synthetic data · Data injection · Data
generation

1 Introduction

Testing database applications is often difficult because of the lack of datasets
wide and varied enough to test each and every desired aspect. It is difficult to
work with existing datasets because they usually are of an inadequate size or
variability for the purposes of testing. For example, load or performance tests of
MapReduce operations require large databases. Also, usually it is not possible
to work only with a fragment of the datasets, since referential integrity and
statistic properties cannot be assured, and capturing every variation of the data
is unlikely. Finally, existing datasets tend to be curated, with errors removed,
and lack of an evolution history as a consequence of being mere database dumps.

The generation of synthetic datasets is then a topic of great interest for val-
idating research results in data engineering, testing data intensive applications,
deciding querying strategies, and testing a data schema and its physical layout.
Past research has been focused in relational systems, and some solutions have
been proposed, such as the use of restriction languages [4,14] and several other
techniques described in [2].

This work was supported in part by the Spanish Ministry of Science, Innovation and
Universities, under Grant TIN2017-86853-P.

c© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 151–161, 2020.
https://doi.org/10.1007/978-3-030-65847-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_14&domain=pdf
http://orcid.org/0000-0002-1154-9192
http://orcid.org/0000-0001-9313-008X
http://orcid.org/0000-0003-4685-6659
https://doi.org/10.1007/978-3-030-65847-2_14

152 A. Hernández Chillón et al.

Conversely, when generating NoSQL data, current approaches and exist-
ing tools have some significant limitations. They are only applicable to specific
domains, or they obviate some specifics of NoSQL such as support for references
among objects, referential integrity, and structural variations in entity types.

In this paper, we present an approach to tackle the issue of generating syn-
thetic data. Our contribution is the Deimos language, aimed to specify, in a
declarative way, what data should be generated. Deimos is platform-independent,
but here we will focus on NoSQL data and show how we approach the limita-
tions mentioned above. This work is defined in the Model-based NoSQL data
engineering research line of our group [7,8,13]. Data generation will be defined
based upon models that conform to the NoSQLSchema metamodel created to
represent NoSQL schemas [13].

This article has been organized in the following sections: The next Section
is used to discuss related work and tools on this research area and list their
limitations. Section 3 is used to introduce requirements that led to the design of
the language, and introduce the metamodel it is based upon. In Sect. 4 we detail
the designed language and show how all the required functionality is covered.
Section 5 describes the generation process. Finally, in Sect. 6, some conclusions
are drawn and future work is outlined.

2 Related Work

Several research works and commercial tools have been devised to generate syn-
thetic data. We discuss them in the field of NoSQL systems.

An approach to generate NoSQL datasets has been presented in [12]. The
proposal is based on the dataset generation from JSON samples. Given an input
sample, its implicit schema is inferred and the possible values to be generated
are identified. With this analysis, datasets of arbitrary size can be generated,
mimicking the given sample. Some limitations of this strategy are: (i) references
between objects and structural variations are not supported; (ii) it needs to be
provided with a sample descriptive enough; (iii) each generation only considers
an entity type, and (iv) generated data values are not as realistic as desired.

Strategies to pollute existing datasets normally include a two step process as
shown in [1,6,9]. A dataset is received as an input, some statistical analysis is
performed, and invalid and duplicated tuples are generated to corrupt the input
dataset. The quantity, type, and probability of the errors introduced can be con-
figured, and some strategies require to apply a manual pre-processing. Another
approach oriented to a particular domain is described in [5], where synthetic
data are generated to evaluate context-aware recommendation algorithms. These
works add to the limitations of the previous approach the following: (i) They
are designed to be applied on a specific domain, and thus cannot be applied by
supplying a generic schema, and (ii) a starting dataset is expected in order to
pollute or refine it, something that cannot always be assured.

The commercial tools available to generate random data are usually designed
to create data volumes against which software can be tested. They are focused

Deimos: A Model-Based NoSQL Data Generation Language 153

on providing data generators from realistic pre-created dictionaries. One of the
most popular tools is Mockaroo [3]. Mockaroo has a variety of pre-generated
dictionaries where a primitive value can be taken from. This allows the user to
test its code against certain predefined and expected values. Mockaroo supports
a complete set of output formats: CSV, JSON, SQL, and XML, among others.

Generate-data [11] is similar to Mockaroo. It allows to define tuples by spec-
ifying a name and a data type, and then giving certain guidelines that map
to a pre-generated dictionary from which values are taken at random. Its main
advantages are that it supports exporting generated data by using several pro-
gramming languages, and saving configurations for later reuse.

These tools offer little flexibility when specifying restrictions on the generated
data, do not allow integrating existing datasets as parts of the output, do not take
into account the introduction of random errors, or they simply do not consider
the specifics of NoSQL as well as the existence of structural variations.

3 Rationale Behind Deimos

Deimos is a declarative textual language aimed to generate synthetic data. In
this paper, we will show how Deimos can be used to generate aggregation-based
NoSQL data (e.g. MongoDB datasets).

Hildebrandt et al. [9] list five items as desirable by any synthetic data gener-
ation tool: (i) efficiency and scalability, (ii) schema independence, (iii) realistic
data values and patterns, (iv) realistic and variable error patterns, and (v) sim-
ple but adaptable configuration. These five items have been kept in mind as
requirements to be fulfilled by the design of Deimos.

From our domain analysis through the study of published works and available
tools, as well the recommendations shown before, we have designed the Deimos
language meeting a set of requirements:

– The language is complete, that is, it allows to generate data for all of the
elements of the model, and supports all its variability (entity types, variations,
data types, references, and aggregations.)

– It is a declarative specification of what to generate. As so, it is reproducible
with respect to statistic properties (seen below). This is very important to test
how different query strategies, different data layouts, or distribution strate-
gies (sharding, replication, etc.) in a given installation affect performance.
Note that NoSQL technology is tightly linked to the physical deployment
of the data. By simply changing the input data schema (e.g. converting an
aggregation into a reference) the queries can be tested against the generated
data to decide the best schema.

– It is capable of integrating several data sources to produce a resulting data
set. This is crucial in a world where data is collected from different sources.
The language supports specifying which parts of existing Internet datasets
(or databases) are used as source for the generation.

154 A. Hernández Chillón et al.

– It is flexible enough to specify restrictions to the data types generated as well
as to the identifiers of data elements. Applications often require for identifiers
of entity elements to follow a given pattern, or that correct referential integrity
is maintained within the dataset. This is guaranteed by Deimos.

– When generating many values, it is necessary to maintain some statistic prop-
erties of the data. For a given dataset, developers might know the relations
between the number of data elements of one entity with respect to others
(e.g. a user has, in mean, three favourite albums), so these relations must
be maintained regardless of database size. Deimos allows the specification of
these parameters, maintained when varying the output dataset size.

– Introduction of errors, nulls, and duplicates is possible for the generated out-
put. These errors happen due to coding or user errors, and the applications
must tolerate them, and be able to recover or fill the missing data.

– The generation must be efficient and parallelizable. It has to be able to gener-
ate batches at the same time that the previous batch is being bulk-inserted in
the database. As data may depend on identifiers generated in previous batches
(for instance, in references), mechanisms such as consistent hashing [10] are
used to track the identifiers already generated for each entity.

A Deimos specification is based on a data schema that defines how data are
structured. These schemas are defined according to the NoSQLSchema meta-
model presented in [13]. They can be either inferred from a given database,
or defined using a dedicated schema description language. The NoSQLSchema
metamodel is shown in Fig. 1, slightly improved from the original by adding
some new classes to the Type hierarchy, enriching the type a Property can have.

Fig. 1. The NoSQLSchema metamodel.

A NoSQLSchema model is formed by a set of entity types which can have one
or more structural variations (entity variations). Each variation is defined by a set
of properties or fields that can be attributes (if its value is a scalar or a collection)

Deimos: A Model-Based NoSQL Data Generation Language 155

or associations (aggregations or references). Attributes are represented as a pair
formed by a name and a data type. Aggregates and References are the basic
building blocks of the relationships among entity data elements in aggregation-
based data. They model, respectively, that a (sub)entity is aggregated under a
given field name, and that a field is holding a reference to other entity data
element. A more detailed description can be found in the original paper [13].

4 Designing the Deimos Language

A Deimos specification has four basic elements, that constitute its main four
blocks: (i) The input elements, including the schema describing how data are
organized, (ii) a set of data generation rules, (iii) a set of mappings, each of
which bind an element of the schema to a rule, and (iv) the kind of output of
the generation process.

An input block must indicate the schema against which the generation is
being performed. This block can also include one or more data source declara-
tions. A data source declaration associates a variable to the location of a data
resource. A data source can be a URL of data in different formats (JSON, CSV,
and plain text are supported), a relational database or even an external script
or function. The type of source must be indicated in the declaration. The vari-
ables declared can be used later on to define rules. Sources may be sequentially
traversed or either values can be obtained by means of a random access. In the
case of relational databases, SQL queries can be specified to retrieve values.

Listing 1.1 shows an example of an input block in which a schema named
MongoSongs is referenced, and several variables are declared. Note that in the
case of complex content (CSV or queries), it is possible to map a column to an
inner variable name. In the example, the first and second columns of csvFile
would be mapped to the variables csvFile.names and csvFile.phones, respec-
tively. Also the variable pyFunc refers to a Python script that uses the Faker
library to generate numbers. For each data source it can be specified how should
that data source be accessed: In a random order or sequentially.

Input:
schema: MongoSongs
wordsFile: text ("file://./config/txt/words.txt", order: random)
namesFile: csv ("https://github.com/jbencina/facebook -

news/blob/master/fb_news_pagenames.csv", order: cycle)
jsonFile: json ("config/json/surnames.json ")
csvFile: csv ("config/csv/phoneNumbers.csv", { names: $1, phones: $2 }

)
pyFunc: python ("scripts/fakerYears.py")

Listing 1.1. Example of an input block.

Rules determine how the elements of the NoSQLSchema metamodel (e.g.
entity types, variations, or values of a primitive type) are generated. Two types
of rules can be defined: Default and Specific. Each rule refers to a metamodel
element. Unlike default ones, specific rules are identified by a name. Default
rules are automatically applied to all the instances of the metamodel elements

156 A. Hernández Chillón et al.

that are part of the input schema for which a specific rule has not been defined.
Instead, specific rules can be applied in the mapping block to any element of the
schema that is an instance of the metamodel element specified in the rule. In
the example shown in Listing 1.2, default rules have been defined for Reference
and Number, and specific rules for EntityType and the String and Double types.
Rules:

default: Reference { strange: 0.01 }
default: Number { null: 0.01, distr: { poisson, mean: 3 } }
etypeRange: EntityType { range: [1000..2000],

duplicate: 0.05, idpattern: "album_%d"}
simpleString: String { src: namesFile, null: 0.02, length: [1..10] }
enumString: String { enum: ["Value 1", "Value 2", "Value 3"] }
doubleFirst: Double { range: [0..1] }
doubleSecond::doubleFirst:{ precision: 2 }

Listing 1.2. Example of a rule block.

A rule declaration includes one or more modifiers. Each modifier sets a restric-
tion over the generation of the metamodel element specified in the declaration.
In Listing 1.2, modifiers src, null and length have been defined for rule sim-
pleString, and for the default rule applied to numbers, modifiers null and distri-
bution have been configured. Rule inheritance is supported for specific rules in
order to extend the set of modifiers of an existing rule. For example, doubleSecond
extends doubleFirst with the precision modifier.

Modifiers applicable to elements are shown in Tables 1 and 2. On each table
there is a column for each primitive type, collection type, or other NoSQLSchema
element, a row for each modifier, and a check mark (�) to show whether a certain
modifier is applicable to the corresponding element or not.

Table 1. Modifiers applicable to primitive types and collection types.

Modifiers Primitive types Collection types

String Number Double Boolean Timestamp PList PSet PMap PTuple

Fixed � � � � � – – – –

Source � � � � � – – – –

Regex � – – – – – – – –

Range – � � – – – – – –

Distribution – � � – – – – – –

Enum � � � – � – – – –

IdPattern � – – – – – – – –

Null prob. � � � � � � � � �
Strange prob. � � � � � � � � �
Duplicate prob. – – – – – – – – –

Precision – – � – – – – – –

Length � – – – – � � � �
Starting date – – – – � – – – –

Format – – – – � – – – –

Interval – – – – � – – – –

Deimos: A Model-Based NoSQL Data Generation Language 157

Table 2. Modifiers applicable to other NoSQLSchema elements.

Modifiers NoSQLSchema element
Entity type Entity variation Reference Aggregate

Fixed – – – –
Source – – – –
Regex – – – –
Range � � – –
Distribution – – – –
Enum – – – –
IdPattern � � � –
Null prob. – – � �
Strange prob. – – � �
Duplicate prob. � � – –
Precision – – – –
Length – – � �
Starting date – – – –
Format – – – –
Interval – – – –

The currently defined modifiers can be divided into three families depending
on what use they are intended: (i) to generate a value, (ii) to replace a value,
or (iii) to alter an already generated value.

Modifiers Fixed, Source, Regex, Range, Distribution, Enum, and IdPattern
belong to the first family. Fixed sets a static value to be generated. Source
extracts the values from a defined source in the Input block. Regex specifies
the generator regular expression for the values. Range limits the range of the
generated elements. Distribution uses a predefined distribution (such as normal,
geometric, or poisson) to generate values. Enum generates a value only from
among the given values. Finally, IdPattern shows a pattern in C printf format
defining how IDs will be generated for a given entity type. Each rule must contain
one, and only one, of these modifiers. These modifiers may be divided into two
groups, depending on the quantitative or qualitative approach they follow to
generate data. Deimos permits modifiers for both approaches in order to allow for
each developer profile to choose the most suitable approach for each generation.

The second family is composed by modifiers Null prob. and Strange prob.
Null prob. defines a probability by which a null value is generated instead of
the expected value, and modifier Strange prob. defines a probability by which a
value whose type is different than the expected one is generated. Each rule can
define zero, one, or both of these modifiers.

158 A. Hernández Chillón et al.

The last family includes modifiers: Duplicate prob., Precision, Length, Start-
ing date, Format, and Interval. Duplicate prob. defines a probability of generat-
ing a duplicated entry (with different identifiers). Precision limits the number of
decimals to be generated for Double values. Length limits the size of collections
and Strings. Starting date, Format, and Interval are used to generate realistic
Timestamps. A rule may include any number of modifiers from this family.

Mapping declarations associate a specific rule to an element of the input
schema. Such an element must be an instance of the metamodel element specified
in the rule declaration. These declarations are part of the mapping block. This
block is ordered in a JSON-like structure for each entity type of the schema,
and, by using the syntax <property name>: <rule> for each element, a rule can
be associated. In Listing 1.3 a mapping for the entity type Album (belonging
to the MongoSongs schema specified in the input block) is shown. The rule
etypeRange is associated to Album, altering the number of objects generated for
this entity type and defining how identifiers will be generated. Then, properties
name, popularity, score, and genre are associated to a defined rule (simpleString,
doubleSecond, doubleFirst, and enumString, respectively). Finally for releaseYear
an inline rule can be created, which will not be reused later on. Those properties
in Album without a specific rule associated, or those entity types without an
entry in this block will be using the default rules already defined.
Mappings:

Album
{

etypeRange,
name: simpleString,
popularity: doubleSecond,
score: doubleFirst,
genre: enumString,
releaseYear: { src: pyFunc }

}

Listing 1.3. Example of a mapping block.

The data generated can be registered in several kinds of output: (i) the
standard output (console), (ii) CSV or JSON files (folder), and (iii) a database.
As shown in Listing 1.4, several output declarations can be included in the output
block. In the example, the data generated will be shown in the console, stored in
a MongoDB database, and recorded in a folder named results in JSON format.
Output:

name: generated_MongoSongs
console
database: mongodb (localhost:7777)
folder: json ("../../results/")

Listing 1.4. Example of an output block.

5 The Generation Process

In this section we will describe the generation process, which is shown in Fig. 2.
The process receives as inputs a Deimos model, a NoSQLSchema model detailing
the schema to which the generation is being done, and a dataset output size.

Deimos: A Model-Based NoSQL Data Generation Language 159

Fig. 2. Overview of the proposed process to generate data from a NoSQLSchema.

The first step makes use of the input block. It reads the NoSQLSchema
model, solves the given references to dictionary files and queries to databases,
and maps those inputs to variables, in order to be able to use them later on. At
the end of this step several mapping variables have been produced.

The second step involves the rules block. For each defined rule, the process
creates a data generator for the corresponding element and configures it accord-
ing to each defined modifier. If no rules are provided for a certain element, then
a basic default generator is created. At the end of this step several configured
generators have been created.

The third step uses the output block. For each declared output type, an
output handler is created and configured. Each handler is responsible for creating
the needed structure for it to be used properly.

The fourth step focuses on the mapping block, and uses the previous map-
ping variables and configured generators to generate the synthetic data. For each
entity type on the schema and for each property, a generation is performed by
applying the corresponding configured generator. For each entity type and prop-
erty to be generated without rule, a basic default generator of the corresponding
type will be applied. At the end of this step generated data has been created.

The fifth and last step is not bound to any block. It receives the generated
data from the last step, and the already created output handlers, and it applies
each handler to store the data. Each handler will transform the data to a suitable
format and store it. Output handlers are reused between steps.

As can be seen in Fig. 2, the process repeats the fourth and fifth generation
steps for each entity type defined in the NoSQLSchema model. At the end of the
process each handler is closed and resources are released.

160 A. Hernández Chillón et al.

6 Conclusions and Future Work

This work proposes Deimos, a domain specific language able to define
rules for generating synthetic data. Deimos has been designed so that it
overcomes the main disadvantages of existing approaches, offering, among
other things: (i) Complete support of the variability inherent to NoSQL
data: structural variations, aggregations, and references with referential
integrity, (ii) a declarative language with expressiveness to specify restrictions to
the data, (iii) the possibility of reusing parts of existing, remote datasets, (iv) it
maintains the statistical properties of data, leading to reproducibility, etc.

Future work is going to be focused on introducing improvements at several
levels: (i) We intend to extend the Deimos language with more modifiers, in
order to fully support functionality of any database paradigm, (ii) we plan to
implement a reuse mechanism so a configuration block can be reused into several
Deimos specifications, (iii) we will work on the outputs section so more databases
are supported as well as other kinds of outputs such as Apache Spark Stream-
ing, (iv) we will implement an efficiency study to check if any bottlenecks exist
and we will implement parallelization mechanisms on the process, (v) finally, we
plan to create a validation process of the generation, in which starting from an
inferred NoSQLSchema model we plan to generate data to a new database and
infer a new schema, comparing this newly inferred schema to the original.

References

1. Bachteler, T., Reiher, J.: TDGen: A Test Data Generator for Evaluating Record
Linkage Methods. Technical Report, German Record Linkage Center, NO. WP-
GRLC-2012-01 (2012)

2. Binnig, C., Kossmann, D., Lo, E.: Towards automatic test database generation.
IEEE Data Eng. Bull. 31(1), 28–35 (2008)

3. Brocato, M.: Mockaroo Webpage. https://www.mockaroo.com/. Accessed June
2020

4. Bruno, N., Chaudhuri, S.: Flexible database generators. In: 31st International Con-
ference on VLDB, pp. 1097–1107 (2005)

5. del Carmen Rodŕıguez-Hernández, M., Ilarri, S., Hermoso, R., Trillo-Lado, R.:
DataGenCARS: a generator of synthetic data for the evaluation of context-aware
recommendation systems. Pervasive Mob. Comput. 3(8), 516–541 (2017). https://
doi.org/10.1016/j.pmcj.2016.09.020

6. Christen, P., Vatsalan, D.: Flexible and extensible generation and corruption of
personal data. In: CIKM 2013: Proceedings of the 22nd ACM International Con-
ference on Information and Knowledge Management, pp. 1165–1168, October 2013.
https://doi.org/10.1145/2505515.2507815

7. Hernández, A., Feliciano, S., Sevilla, D., Garćıa Molina, J.: Exploring the visual-
ization of schemas for aggregate-oriented NoSQL databases. In: 36th International
Conference on Conceptual Modelling (ER) ER Forum 2017, pp. 72–85 (2017)

8. Hernández Chillón, A., Sevilla Ruiz, D., Garćıa Molina, J., Feliciano Morales, S.: A
model-driven approach to generate schemas for object-document mappers. IEEE
Access 7, 59126–59142 (2019)

https://www.mockaroo.com/
https://doi.org/10.1016/j.pmcj.2016.09.020
https://doi.org/10.1016/j.pmcj.2016.09.020
https://doi.org/10.1145/2505515.2507815

Deimos: A Model-Based NoSQL Data Generation Language 161

9. Hildebrandt, K., Panse, F., Wilcke, N., Ritter, N.: Large-Scale Data Pollution with
Apache Spark. IEEE Trans. Big Data 6, 396–411 (2017)

10. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Con-
sistent hashing and random trees: distributed caching protocols for relieving hot
spots on the world wide web. In: Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, STOC 1997, pp. 654–663. ACM (1997).
https://doi.org/10.1145/258533.258660

11. Keen, B.: Generate-data Webpage. http://www.generatedata.com. Accessed July
2020

12. Hasan Mahmud: Towards a Data Generation Tool for NoSQL Data Stores. Master’s
thesis, Media Informatics, RWTH Aachen University, Aachen, Germany (2018)

13. Sevilla Ruiz, D., Morales, S.F., Garćıa Molina, J.: Inferring versioned schemas from
NoSQL databases and its applications. In: Johannesson, P., Lee, M.L., Liddle,
S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 467–480.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25264-3 35

14. Smaragdakis, Y., et al.: Scalable satisfiability checking and test data generation
from modeling diagrams. Autom. Softw. Eng. 16(1), 73 (2009)

https://doi.org/10.1145/258533.258660
http://www.generatedata.com
https://doi.org/10.1007/978-3-319-25264-3_35

Managing Physical Schemas in MongoDB
Stores

Pablo D. Muñoz-Sánchez(B) , Carlos Javier Fernández Candel ,
Jesús Garćıa Molina , and Diego Sevilla Ruiz

Faculty of Computer Science, University of Murcia, Campus Espinardo, Murcia, Spain
{pablodavid.munoz,cjferna,jmolina,dsevilla}@um.es

Abstract. Being schemaless is a common feature of most NoSQL sys-
tems. It accommodates the change and non-uniformity of stored data,
and allows fast deployment of databases. However, the lack of database
schemas makes it difficult to develop database applications and tools.
Therefore, explicit schemas should be produced, either inferred from
NoSQL data, code, or both, to facilitate the work of developers and sup-
port the functionality of database tools. Strategies published to discover
NoSQL schemas focus on the extraction of the entity types but physi-
cal schemas have received very little attention. Our group recently pre-
sented an approach to infer logical schemas from aggregate-based NoSQL
stores. Because the inferred schemas do not capture physical information
on the underlying database, they can not help with the implementation
of some typical database tasks, like database migrations, optimization,
and schema evolution. In this paper we extend our previous approach by
proposing a physical metamodel targeted to MongoDB databases, which
captures characteristics such as existing indexes, data organization, and
statistical features (e.g. cardinality of values.) We also explain the pro-
cess of retrieving the physical model from an existing database, and the
bidirectional transformations between logical and physical models.

Keywords: Physical schema · Logical schema · Schema mappings ·
NoSQL stores · Schemaless · Reverse engineering · Metamodel ·
MongoDB

1 Introduction

Data models are formalisms intended to represent the structure of the data
managed by an information system. A schema is a database representation (i.e. a
model) expressed by means of a data model. Schemas can be defined at three
levels of abstraction: conceptual, logical, and physical. This paper focuses on
issues related to the management of physical schemas in NoSQL stores.

Most NoSQL systems are schemaless: Data can be stored without a previous
formal definition of its structure (i.e. its schema.) This favors the agile evolution

This work has been funded by the Spanish Ministry of Science, Innovation and Uni-
versities (project grant TIN2017-86853-P).

c© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 162–172, 2020.
https://doi.org/10.1007/978-3-030-65847-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_15&domain=pdf
http://orcid.org/0000-0002-1576-4316
http://orcid.org/0000-0002-3835-9428
http://orcid.org/0000-0003-4685-6659
http://orcid.org/0000-0001-9313-008X
https://doi.org/10.1007/978-3-030-65847-2_15

Managing Physical Schemas in MongoDB Stores 163

but the advantages offered by explicit schemas are lost, such as validating input
data. Therefore, several approaches have been proposed to discover schemas
from stored data [10,13,15], and some commercial tools provides utilities to
visualize inferred schemas [4,5]. None of these proposals addresses the separation
between the physical and logical models, unlike similar works in the relational
data engineering field [6,9]. In fact, NoSQL physical models have received very
little attention in the emerging NoSQL data engineering field: as far as we know,
only the works of Michael Mior for columnar and document stores [11,12].

In this paper, we present our initial work on the management of NoSQL
physical schemas. In particular, we propose a physical schema metamodel for
the document database MongoDB,1 and we show (i) how physical schemas can
be directly extracted from stored data, and (ii) the bidirectional transformation
between physical schemas and the logical schemas described in [13]. Schema map-
pings are useful to obtain database views of interest for different stakeholders.
The bidirectional conceptual-logical mapping is out of the scope of this paper.
A third contribution of this work is a discussion on some NoSQL database tasks
that could be automated by means of physical schemas.

This paper is organized as follows. First, the logical metamodel is presented.
Then, the physical metamodel proposed is shown, and the extraction process
from document databases is explained. Once the two kinds of schemas are intro-
duced, the bidirectional mapping between them is described. Then, some related
works are discussed. Finally, potential scenarios which could benefit from our
contribution are highlighted and new ideas are proposed as future work.

2 Logical Model

Of the four categories in which NoSQL stores are usually classified (document,
columnar, key-value, and graph), in the former three, aggregation relation-
ships prevail over references to structure data. Previous work of our research
group focuses on extracting logical schemas from data stored in aggregate-based
systems [13]. Figure 1 shows the NoSQLSchema metamodel defined to repre-
sent the extracted schemas. This metamodel was created with the Ecore2 lan-
guage. Therefore, schemas are represented as models of the EMF technological
space [14].

In schemaless systems, an entity can have multiple structural variations,
as they lack of a schema imposing a structure for the stored data. Extracting
the entity variations and the relationships (references and aggregations) among
database objects are characteristics that differentiate the extraction approach
exposed in [13] from the rest of proposals. In [15], variations are also inferred for
MongoDB stores in [15], but not relationships.

Given two database objects o1 and o2 of the same entity E, and let A and B
be the sets of attributes of o1 and o2, respectively, o1 and o2 are said to belong
to the same structural variation if and only if:
1 MongoDB Webpage www.mongodb.com.
2 Ecore Webpage http://wiki.eclipse.org/ecore.

www.mongodb.com
http://wiki.eclipse.org/ecore

164 P. D. Muñoz-Sánchez et al.

Fig. 1. NoSQLSchema logical metamodel adapted from Fig. 3 in [13].

size(A)=size(B) ∧ ∀a∈A,∃b∈B|(name(a)=name(b) ∧ type(a)= type(b)) (1)

Type equality is trivial for primitive types. For nested documents, Formula 1 is
also valid, and can be recursively applied. For arrays, the equality of types is
given by the following formula, being a∈A and b∈B two array attributes:

size(types(a)) = size(types(b)) ∧ ∀ta∈ types(a),∃tb∈ types(b)|ta = tb (2)

A NoSQLSchema logical model is formed by a set of entity types (Entity
class in Fig. 1). Each Entity contains one or more structural variations
(EntityVariation), characterized by a set of properties (Property) that can
be either attributes (Attribute) or relationships (Association). An attribute
holds a value of a scalar type (PrimitiveType) or an array of scalar types
(Tuple). Relationships can be either aggregations (Aggregate) or references
(Reference). Attributes are key-value pairs. In the case of aggregations, the
property denotes an embedded (or nested) object of another target entity type,
whereas references are links to objects of a target entity type.

3 Physical Model

Extracted NoSQL logical schemas have proved useful for visualizing schemas [7],
generating code for object-document mappers [8], and generating test data [2],
among other utilities. However, offering other typical functionalities (e.g.
database migration, and design pattern discovery) requires to manage informa-
tion on physical aspects of databases, such as indexes, sharding, or deployment.

Managing Physical Schemas in MongoDB Stores 165

Physical models are required then in order to offer an integral set of database
tools.

Our first step was to define a metamodel to represent physical schemas for
MongoDB stores. It was chosen for being the most widely used NoSQL store.3

A MongoDB store contains a set of collections that store documents of a given
entity. Each collection can contain several entity variations. Documents have
a JSON-like structure and they are stored internally using a compact binary
representation called BSON,4 with a type system which is a superset of JSON,
adding some utility types. Several kinds of indexes can be defined for collections
to improve performance of regular and geospatial queries, and text searches.
Additionally, it provides high availability through automatic replication of data
and scalability through partitioning of collections among the nodes in a cluster.

3.1 Physical Metamodel

An excerpt of the MongoDB physical metamodel is shown in Fig. 2. This meta-
model represents structural and performance features of the deployed database:
existing collections, structural variations in each collection, embedding and refer-
ence between variations, indexes for query optimization, and statistics collected
for existing data types. For brevity, database topology modeled by Deployments,
Hosts, ReplicaSets and Shards is not covered in this paper.

Fig. 2. Physical metamodel.

The root element, MongoInstance, models an existing MongoDB database,
composed of a set of Collections. Each Collection contains a number of
DocumentVariations and Indexes. A DocumentVariation corresponds to the
StructuralVariation notion of the logical model. Given a particular collection,
it represents a set of documents that have the same Fields, and it can contain
3 Fifth position in the DB-Engines ranking, July 2020. db-engines.com/en/ranking.
4 BSON specification: www.bsonspec.org.

https://db-engines.com/en/ranking
www.bsonspec.org

166 P. D. Muñoz-Sánchez et al.

references (DocumentReference) to documents in other collections. Each Field
has a name and a Type, and can optionally store the cardinality of their val-
ues and their minimum and maximum frequencies. Types can be either a nested
object (DocumentVariation), an Array or a SimpleType and record their min-
imum, maximum and average size as well as their number of occurrences. The
Array type depicts a set of MongoDB arrays whose contained Types are the
same, regardless of their order, and records the minimum, maximum, and aver-
age number of elements it can contain. Other valid BSON Types5 are modeled
as SimpleTypes. Indexes contain the set of fields on which data retrieval is
optimized, and unique and sparse constraints are also registered.

3.2 Obtaining Physical Models from MongoDB

The strategy applied to extract physical schemas is based on the one previously
defined for logical schemas [13]. Some changes were made due to the different
structure of the extracted data, and others due to the new information inferred,
such as indexes, deployment, and statistical data. The extraction process now
consists of four stages, as shown in Fig. 3: a MapReduce operation, obtaining
indexes, building the physical model, and finally statistical information retrieval.

Fig. 3. Inference of physical models. The process is repeated for each collection.

In the map step, the documents are parsed in parallel for each collection
to obtain a raw schema of each document. A raw schema is a canonical rep-
resentation of a document, which results from recursively traversing its nested
structure replacing each primitive value with their corresponding BSON type,
and each array with the set of contained simplified types. Then, a reduce step is
performed for each set of documents whose raw schema is the same, and their
occurrences, sizes, and cardinality of arrays are aggregated to gather statistics.
The set of documents with the same raw schema will then be reduced to a single
DocumentVariation, that is added to the corresponding Collection.

Once the physical structure of a collection is extracted, Indexes are queried,
their values captured as IndexParameters, and the fields they refer to as
FieldReferences. These elements are also added to the current Collection.

5 MongoDB BSON types: docs.mongodb.com/manual/reference/bson-types.

https://docs.mongodb.com/manual/reference/bson-types/

Managing Physical Schemas in MongoDB Stores 167

The stage of building physical model integrates the variation and index infor-
mation obtained in the two previous stages.

An optional statistic retrieval step could then be performed to track the num-
ber of distinct values and their minimum and maximum frequencies of their fields
for each DocumentVariation. A final step is performed on all inferred collections
to detect whether a given field is a potential reference (DocumentReference) to
an existing collection. As described in [13], it is analyzed if the field name is
derived from the collection name by adding certain suffixes or prefixes or by sin-
gularization or pluralization, among other heuristics. Figure 4 shows an example
of the described extraction process, implemented with Apache Spark.6

Fig. 4. Inferring a physical model from a given collection (statistics calculation and
the detection of the address DocumentReference are omitted.)

4 Mapping Between Logical and Physical Models

A bidirectional mapping between physical and logical metamodels has been
implemented through two model-to-model transformations: physical→logical,
and logical→physical. Table 1 shows the mapping between the elements existing
in both metamodels. Note that the logical→physical transformation preserves
information recorded in the logical model, but represented at a lower level of
abstraction. However, some information is lost in the physical→logical transfor-
mation, such as indexes, shards, array cardinality, or field frequency, because
6 Spark Webpage: http://spark.apache.org.

http://spark.apache.org

168 P. D. Muñoz-Sánchez et al.

is not present in the logical view. When translating the logical model into the
physical one, developers may want to augment the obtained model to include
such information. For this, a domain-specific language could be used (e.g. [12]).

Table 1. Physical–Logical models mappings.

Physical Model Logical Model

Collection Entity

DocumentVariation EntityVariation (& Entity)

Field Attribute—Aggregate

DocumentReference Reference

SimpleType PrimitiveType

Array Tuple—Aggregate

4.1 Obtaining Logical Models from Physical Models

While in [13] NoSQLSchema logical schemas are extracted from data, here we
will show how they can be obtained from physical schemas. The transformation
that implements that mapping traverses the set of Collections in the input
model, creating, for each one, an Entity with the root attribute set. Then, an
EntityVariation is also created for each DocumentVariation of a collection,
which is attached to the entity. A recursive process is applied to all the nested
variations of each variation. Dealing with this nested structure, a new Entity is
created to attach the newly created EntityVariation when it does not exist.

Next, the set of Fields of each document variation is iterated to gener-
ate the set Properties for the corresponding EntityVariation. The gener-
ated property depends on the field type: an Attribute if it is a SimpleType
or Array of SimpleTypes, an Aggregate for DocumentVariation or Array of
DocumentVariations, and a Reference for the DocumentReference type. In
the case of attributes, it is also generated a PrimitiveType or Tuple depending
on whether the field type is SimpleType or Array. In the case of generating a
reference, the refsTo relationship is filled with the target Entity obtained from
target relationships of the physical model.

Figure 5 shows two examples of exercising the mapping. The Project entity
is generated from the Projects collection of the physical model. On the left, the
entity variations Manager and Address are generated from the two embedded
DocumentVariations with the same name. On the right, an Employee aggre-
gated entity is generated from the array of EmployeeVariation, a reference (to
Project) from the hasProjects field, and a tuple from the comments field.

Managing Physical Schemas in MongoDB Stores 169

Fig. 5. Two examples of inference between physical and logical models.

4.2 Obtaining Physical Models from Logical Models

The logical→physical transformation generates a partial physical schema from a
logical schema. Now, mappings from Table 1 are applied in reverse to recreate the
initial physical model. EntityVariations are mapped to DocumentVariations,
and containment relationships between them are rebuilt; Inferred Tuples,
References and Aggregates with a upperBound greater than one will be
mapped back to Arrays; Entities with root = true will be translated into
Collections.

We implemented this logical→physical transformation to validate that the
original physical model is correctly reconstructed, except for the information
not mapped in the previous transformation (e.g. indexes, cardinalities, etc.).
However, physical models are meant to be obtained directly from the database,
if possible.

5 Related Work

We will only consider works that have addressed database schema mappings
involving physical schemas or have inferred physical models for any purpose.

A great effort to define transformational approaches for database schemas
was carried on at the database group led by Jean Luc Hainaut at Namur Uni-
versity [6]. In [9], J.M. Hick and J.L. Hainaut proposed a CASE tool for database
evolution, which is based on the Generic Entity/Relationship metamodel. This
metamodel is used to represent physical, logical, and conceptual schemas, and
allows specifying a list of schema transformations to obtain new representations
(e.g. another schema or code). The transformations are recorded in a history
and the differential analysis of their stages allows the deployment of changes
in the database and related programs. This approach showed the importance

170 P. D. Muñoz-Sánchez et al.

of having an abstraction of the physical level in the context of schema evolu-
tion. Our group is working on a similar research line, but considering specific
issues of modern databases such as NoSQL and NewSQL. For example, we are
tackling NoSQL store evolution and database migration. Instead of building our
tooling from scratch, we are using the EMF/Eclipse framework [14] to create
metamodels and transformations.

In the NoSQL realm, the most relevant work on physical schemas has been
done in Michael Mior’s PhD [11]. Two approaches and tools involving physi-
cal schemas were proposed: (i) Given a conceptual schema, the NoSE [12] tool
generates a recommended schema and query implementation plans, as well as a
description of the workload; and (ii) ESON is a strategy for extracting a nor-
malized conceptual schema from a denormalized database through the inference
of a generic physical schema and a set of functional and inclusion dependencies.

Unlike done in ESON, we currently do not provide an automatic normaliza-
tion algorithm when performing physical→logical mapping. However, Mior only
takes into account columnar and document stores, and our aim is to develop
database-paradigm agnostic tools through the definition of generic logical and
physical metamodels. Note that no physical metamodel was defined by Mior,
but physical structures are directly created.

In [3], a reverse engineering method is applied on relational databases to
discover the conceptual schema. For this, DDL and DML scripts are analyzed,
and data mining is performed. Firstly, the physical schema is extracted; then,
it is de-optimized to facilitate the inference of entities, relationships, and car-
dinalities; and the conceptual schema is finally obtained. Here, we have dis-
cussed the bidirectional logical-physical mapping, but we have not addressed
how conceptual schemas can be derived from logical schemas and we also did not
perform a de-optimization phase when applying the physical→logical mapping.
Representing logical schemas as Extended Entity-Relationship models (EER),
the logical-conceptual mapping is simple, as both models are at the same level
of abstraction, and entity variations do not have to be considered.

A design methodology for aggregation-based stores is introduced in [1], which
proposes the definition of both a conceptual and a logical schema prior to the
implementation phase. Database designs are mapped to system-independent
NoAM models. This methodology could take advantage of the definition of a
physical schema to facilitate the implementation. The logical→physical trans-
formation could tune the NoAM model taking into account the target database.

6 Final Discussion

The physical model presented in this paper covers specific features of a MongoDB
database. It captures data organization, structures for optimizing data access,
and statistical information of interest about the stored data. Due to its low-level
nature, the proposed solution may prove useful in typical database scenarios
such as: (i) modeling the existing source and the desired target as part of a
database optimization or a migration, (ii) capture the evolution of a database

Managing Physical Schemas in MongoDB Stores 171

over time, (iii) wizards and viewers can be implemented on top of this physical
model to provide database administrators with an overview of the current state
of the database and to give possible maintenance suggestions, and (iv) as a basis
for query models to measure their effectiveness and suggest optimizations.

However, further improvements can be made to our metamodel. A more
generic document-oriented physical metamodel is in the works, integrating the
specifics from other well-known document stores such as CouchBase or Ori-
entDB. This document physical metamodel could be extended even to include
details from stores of other database categories (columnar, key-value, and graph),
thus defining a unified physical metamodel. Additionally, a domain-specific lan-
guage could be developed to allow the end user to specify structural features
that were not inferred from the underlying database (such as field dependen-
cies and references that are not explicit). Finally, it could also be integrated
with change notification mechanisms implemented in some NoSQL databases to
provide real-time snapshots of the physical model.

Extracting physical schemas from data could be combined with a code anal-
ysis of database applications. The application level provides additional infor-
mation about the data stored in NoSQL databases, and can be used to find
reference relationships between stored entities, suggest new indexes for more
efficient queries, propose changes to application code to exploit the underlying
schema, and suggest changes to the schema, among other operations.

References

1. Atzeni, P., Bugiotti, F., Cabibbo, L., Torlone, R.: Data modeling in the NoSQL
world. Comput. Stand. Interfaces 67, 103149 (2020)

2. Chillon, A.H., Sevilla, D., Garcia-Molina, J.: Deimos: a model-based NoSQL data
generation language. In: 1st CoMoNoS Workshop in 39th International Conference
on Conceptual Modeling (2020)

3. Comyn-Wattiau, I., Akoka, J.: Reverse engineering of relational database physical
schemas. In: Thalheim, B. (ed.) ER 1996. LNCS, vol. 1157, pp. 372–391. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0019935

4. ER-Studio Webpage. https://www.idera.com/er-studio-enterprise-data-modeling-
and-architecture-tools. Accessed April 2019

5. CA ERwin Web Page. http://erwin.com/products/data-modeler. April 2019
6. Hainaut, J.: The transformational approach to database engineering. In: GTTSE,

International Summer School, Portugal, pp. 95–143 (2005)
7. Hernández, A., Feliciano, S., Sevilla, D., Garćıa Molina, J.: Exploring the visual-

ization of schemas for aggregate-oriented NoSQL databases. In: 36th International
Conference on Conceptual Modeling on ER Forum, pp. 72–85 (2017)

8. Hernández, A., Sevilla, D., Garćıa Molina, J., Feliciano, S.: A model-driven app-
roach to generate schemas for object-document mappers. IEEE Access 7, 59126–
59142 (2019)

9. Hick, J.M., Hainaut, J.L.: Strategy for database application evolution: the DB-
main approach. In: 22nd International Conference on Conceptual Modeling, pp.
291–306 (2003)

https://doi.org/10.1007/BFb0019935
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
https://www.idera.com/er-studio-enterprise-data-modeling-and-architecture-tools
http://erwin.com/products/data-modeler

172 P. D. Muñoz-Sánchez et al.

10. Klettke, M., Störl, U., Scherzinger, S.: Schema extraction and structural outlier
detection for JSON-based NoSQL data stores. In: Conference on Database Systems
for Business, Technology, and Web, pp. 425–444 (2015)

11. Mior, M.J.: Physical Design for Non-relational Data Systems. Ph.D. thesis, Uni-
versity of Waterloo, Ontario, Canada (2018)

12. Mior, M.J., Salem, K., Aboulnaga, A., Liu, R.: Nose: schema design for NoSQL
applications. In: Proceedings of 32nd IEEE International Conference on Data Engi-
neering, pp. 181–192 (2016)

13. Sevilla Ruiz, D., Morales, S.F., Garćıa Molina, J.: Inferring versioned schemas from
NoSQL databases and its applications. In: Johannesson, P., Lee, M.L., Liddle,
S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 467–480.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25264-3 35

14. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley Professional (2009)

15. Wang, L., Zhang, S., Shi, J., Jiao, L., Hassanzadeh, O., Zou, J., Wangz, C.: Schema
management for document stores. In: VLDB Endowment, vol. 8 (2015)

https://doi.org/10.1007/978-3-319-25264-3_35

JSON Schema Inference Approaches

Pavel Čontoš and Martin Svoboda(B)

Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
{contos,svoboda}@ksi.mff.cuni.cz

Abstract. Since the traditional relational database systems are not
capable of following the contemporary requirements on Big Data pro-
cessing, a family of NoSQL databases emerged. It is not an exception for
such systems not to require an explicit schema for the data they store.
Nevertheless, application developers must maintain at least the so-called
implicit schema. In certain situations, however, the presence of an explicit
schema is still necessary, and so it makes sense to propose methods capa-
ble of schema inference just from the structure of the available data. In
the context of document NoSQL databases, namely those assuming the
JSON data format, we focus on several representatives of the existing
inference approaches and provide their thorough comparison. Although
they are often based on similar principles, their features, support for the
detection of references, union types, or required and optional properties
differ greatly. We believe that without adequately tackling their disad-
vantages we identified, uniform schema inference and modeling of the
multi-model data simply cannot be pursued straightforwardly.

Keywords: NoSQL databases · Schema inference · JSON

1 Introduction

An interesting feature of the majority of NoSQL databases, a newly emerged
family of database systems, is the absence of an explicit schema for the stored
data, which allows for greater flexibility and simplicity. Nevertheless, various
situations still require the knowledge of the schema when performing operations
such as data querying, migration, or evolution, and so there is a growing inter-
est in schema inference approaches that allow us to create a schema when the
explicit one simply does not exist.

In particular, there already exist several schema inference approaches for the
aggregate-oriented group of NoSQL databases, i.e., databases based on the key-
value, wide-column or document models. However, the inference process itself
is nontrivial, and the resulting schemas often suffer from various issues. For
example, derived entities may contain a large number of properties, including
properties of the same name having different data types, as well as various kinds

This work was supported by Czech Science Foundation project 20-22276S and Charles
University SVV project 260451.

c© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 173–183, 2020.
https://doi.org/10.1007/978-3-030-65847-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_16&domain=pdf
http://orcid.org/0000-0003-3332-3503
http://orcid.org/0000-0003-4694-6806
https://doi.org/10.1007/978-3-030-65847-2_16

174 P. Čontoš and M. Svoboda

of references between the documents (aggregates). The inferred schemas may
be complicated even from the point of view of data modeling when commonly
available tools and modeling languages would most likely be used (e.g., UML [18]
is not capable of dealing with the mentioned properties of the same name but
different types). Another obstacle also arises when querying the data. When
a property data type or property content interpretation changes over time, it
is difficult to properly construct an evolved query expression that returns the
originally intended result.

In this paper, we focus on several existing representatives of the schema
inference approaches dealing with collections of JSON [13] documents, namely
the following ones: 1) approach proposed by Sevilla et al. [19] working with a
concept of distinct versions of entities, 2) approach by Klettke et al. [15] utilizing
a graph structure for the schema representation, capable of the detection of
outliers, 3) approach by Baazizi et al. [2] that introduces compact yet complex
and massively parallelizable schema inference method, 4) approach by Cánovas
et al. [6] capable of inferring a schema from multiple collections of documents,
and, finally, 5) recent approach by Frozza et al. [10] that is able to infer schemas
including data types as they are introduced in BSON (Binary JSON) [5].

Our main goal is to provide a static analysis of these approaches to find
and identify their strengths and weaknesses, compare them with each other, and
verify how each individual approach copes with specific characteristics of JSON
documents and non-uniform semi-structured data in general. We compare these
approaches based on their capabilities to i) handle properties of the same name
but different types, ii) distinguish required and optional properties based on their
frequency of occurrences, iii) distinguish reference relationships between docu-
ments and nested documents, iv) work with arrays, v) represent the resulting
schemas using proprietary or widely used means, respectively, and vi) scale.

The paper is organized as follows. In Sect. 2, we briefly summarize the JSON
data format and show the constructs we are dealing with. Section 3 describes
the actual schema inference process for the selected existing approaches and
illustrates their differences on a simple running example and the corresponding
inferred schemas. We then mutually compare these approaches in Sect. 4, present
the related work in Sect. 5, and conclude in Sect. 6.

2 JSON Data Format and JSON Schema

JavaScript Object Notation (JSON) [13] is a widely used human-readable textual
data format suitable for representing semi-structured, schema-less, often non-
uniform data. From the logical point of view, it is based on trees.

The unit of data stored in a JSON document database is a document and
corresponds to a single JSON object. An object consists of an unordered set of
name-value pairs called properties. Property name is a string, while value can be
atomic of any primitive type string, number, and boolean, or structured in a form
of an embedded object or array. If no value is to be assigned, a property may be
present and bound to the null meta-value. Although property names should be

JSON Schema Inference Approaches 175

unique, we actually expect they must be (in accordance to the existing systems
such as MongoDB1). Finally, an array is an ordered collection of items, which
can be either atomic values or nested objects or arrays, possibly with duplicates.

,"ı́žardáNéksvohcı́mS":"eman"{
"location": { "latitude": "50.0608367N", "longitude": "14.4093753E" },
"timetable": [

{ "line": "B",
"departure": ["10:10", "10:20", "10:30", "10:40", "10:50"]

}] }

{ "_id": "SMN_E",
,"ı́žardáNéksvohcı́mS":"eman"

"location": { "latitude": "50.0597611N", "longitude": "14.4092244E" },
"timetable": [

{ "line": 190,
"stop_id": "NBE_0",
"departure": ["10:00", "10:15", "10:30"] },

{ "line": 125,
"stop_id": "SKA_A",
"departure": ["10:05"] }] }

Fig. 1. Collection of two sample JSON documents

In order to illustrate the mutual differences of the selected schema infer-
ence approaches, we will use a collection of two sample JSON documents, each
describing a public transport stop in Prague. They are depicted in Fig. 1.

We believe we can omit a detailed description of the involved properties
(as their meaning is self-explanatory) and only focus on parts that will become
important in relation to the schema inference: i) data type of property line is
a string in case of the first document while in the second one it is a number,
ii) properties such as id and stop id appear only in the second document,
iii) property id may be treated as a document identifier while property stop id
as a reference, iv) property departure has a different number of elements across
the documents, and v) some document databases allow us to use extended data
types defined in BSON, thus we could easily assume that id would be a property
of type ObjectID instead of an ordinary string.

To validate the structure of JSON documents, JSON Schema [14] was pro-
posed as a human and machine-readable format. It takes into account the evo-
lution of JSON documents and features of schema-free databases. E.g., JSON
Schema introduces i) union types, ii) distinguishes between required and optional
properties, and iii) allows us to use extended data types, i.e. ObjectID.

3 JSON Schema Inference Approaches

In this section, we describe basic principles of the selected approaches. For each
one of them, we also present the resulting inferred schemas for our sample input
JSON collection so that these techniques can easily be compared together.
1 https://www.mongodb.com/.

https://www.mongodb.com/

176 P. Čontoš and M. Svoboda

Let us start with an approach proposed by Sevilla et al. [19]. Within three
steps and using MapReduce [7], their algorithm i) reduces an input collection
of JSON documents into a set of structurally different documents, ii) discovers
various versions of entities and their properties, and iii) identifies relationships
between these entities, including references.

Versioned schema inferred by this approach is illustrated using JSON format
in Fig. 2. The algorithm detects all the entities and properties while entities are
further divided into versions that differ by the existence of such a property, its
data type, or reference. The approach is able to detect references between the
documents (property stop id refers to entity Stop). The existence of versioned
entities avoids the necessity of having union types, and the approach also dis-
tinguishes between the required and optional properties (intersection or union
of properties across versions of the same entity need to be calculated). The only
inferred data types are standard types defined by JSON.

{ "entities":
{ "Location":

{ "Location_1": { "latitude": "String", "longitude": "String" } },
"Stop":

{ "Stop_1":
{ "name": "String", "location": "Location_1",

"timetable": ["Timetable_1"] },
"Stop_2":

{ "_id": "String", "name": "String", "location": "Location_1",
"timetable": ["Timetable_2"] } },

"Timetable": {
"Timetable_1": { "line": "String", "departure": ["String"] },
"Timetable_2": { "line": "String", "stop_id": "ref(Stop)",

"departure": ["String"] } } } }

Fig. 2. Sample inferred schema for the Sevilla et al. algorithm [19]

Klettke et al. [15] proposed a schema inference algorithm for JSON docu-
ment collections in MongoDB. The approach works with a so-called Structure
Identification Graph (SIG) containing everything needed for the inference.

Nodes in this graph represent JSON properties (one node for each distinct
property name), while edges model the hierarchical structure of the documents
for which the schema is being constructed. Besides other metadata, each node
is associated with a so-called nodeList describing the detected occurrences of a
given property in the input documents. Similarly, each edge is associated with a
so-called edgeList describing where these occurrences are structurally located.

The sample inferred schema, provided in Fig. 3, is described using JSON
Schema. The algorithm is able to detect all the entities, including properties
that may be assigned by multiple data types. This union type is used, e.g.,
in case of a property line. The approach does not detect references and uses
only data types known by JSON, i.e., it does not use any extended data type.
The approach also detects required properties (e.g., properties latitude and
longitude in location).

JSON Schema Inference Approaches 177

{ "type": "object", "properties":
{ "_id": { "type": "string" }, "name": { "type": "string" },

"location":
{ "type": "object", "properties":

{ "latitude": { "type": "string" }, "longitude": { "type": "string" } },
"required": ["latitude", "longitude"] },

"timetable":
{ "type": "array", "items":

{ "type": "object", "properties":
{ "line": { "oneOf": [{ "type": "string" }, { "type": "integer" }] },

"stop_id": { "type": "string" },
"departure": { "type": "array", "items": { "type": "string" } } },

"required": ["line", "departure"] } } },
"required": ["name", "location", "timetable"] }

Fig. 3. Sample inferred schema for the Klettke et al. algorithm [15]

Baazizi et al. [2] proposed yet another inference algorithm, in this case con-
sisting of two phases only. Based on Apache Spark2, the input collection of JSON
documents is first processed by the Map function, so that during the Reduce
phase the union types, as well as required, optional, and repeated elements are
identified.

Schema inferred by this approach, as illustrated in Fig. 4, is represented using
a compact proprietary language. The optional properties are marked by a ques-
tion mark symbol ? (e.g. properties id and stop id), union types by + (property
line may be either Str or Num), and repeated items of arrays by an asterisk *
(array departure contains elements of type Str). Extended data types nor ref-
erences between the documents are discovered by this approach.

{ _id: Str?,
name: Str,
location: { latitude: Str, longitude: Str },
timetable: [{ line: (Str+Num), stop_id: Str?, departure: [(Str)*] }] }

Fig. 4. Sample inferred schema for the Baazizi et al. algorithm [2]

Another approach, proposed by Cánovas et al. [6], is deployed in the envi-
ronment of web services providing collections of JSON documents, where each
collection is expected to contain documents with similar but not necessarily the
same structure. The approach is based on an iterative process in which each
JSON document contributes to the extension of an already generated schema.
This process consists of three parts: i) extraction of a schema for every docu-
ment, ii) creation of a schema for each collection, and iii) merging of the schemas
of individual collections together into a single resulting schema.

Schema inferred by this approach, illustrated in Fig. 5, is visualized by UML.
The approach does not detect references between documents, so the relationships

2 http://spark.apache.org/.

http://spark.apache.org/

178 P. Čontoš and M. Svoboda

are only modeled through nested documents. The algorithm does not recognize
union types nor optional properties. In order to simplify the visualization, it
uses the most generic data types (e.g., property line is of a type EString). The
approach also does not detect arrays (property departure is of a simple type
EString instead of an array of strings). No extended data types are discovered.

Fig. 5. Sample inferred schema for the Cánovas et al. algorithm [6]

The last representative approach we covered in this paper is the one proposed
by Frozza et al. [10], allowing for the inference of a schema for just one collection
of JSON documents. Since it also supports the extraction of particular data
types from a broader set of atomic types as they are introduced in BSON, it is
therefore suitable especially when working with MongoDB database system. The
inference process consists of the following four steps: i) creation of a raw schema
for individual input documents, ii) grouping of the same raw schemas together,
iii) unification of these schemas, and iv) construction of the final global JSON
schema.

Schema inferred by this approach, materialized in Fig. 6, is described by
JSON Schema. The approach is able to detect union types (e.g., property line
may be either string or number). It also distinguishes between the required
and optional properties (as every discovered entity may always contain a list of
required properties), yet no references are discovered by this approach. In our
sample data, we could easily derive the property id to be an instance of the
ObjectID type if that property was originally set to, e.g., ObjectID("SMN E")
instead of an ordinary string.

4 Comparison

Having described all the selected schema inference approaches, we can now mutu-
ally compare their main characteristics, as well as advantages and disadvantages.
In particular, we focus on i) basic principles and scalability of the involved algo-
rithms, i.e., ways how schemas are inferred and proprietary data structures uti-
lized, ii) output formats, i.e., means how the inferred schemas are represented,
iii) eventual support for data types beyond the JSON format itself, iv) dis-
tinction of required and optional properties in the inferred schemas, v) dealing
with properties of the same name but different data types, i.e., distinguishing
between simple and union types, and vi) discovering references between docu-
ments. Table 1 summarizes the identified differences and observations.

JSON Schema Inference Approaches 179

{ "$schema": "http://json-schema.org/draft-06/schema",
"type": "object", "properties":
{ "_id": { "type": "string" }, "name": { "type": "string" },

"location": {
"type": "object", "properties":

{ "latitude": { "type": "string" }, "longitude": { "type": "string" } },
"required": ["latitude", "longitude"], "additionalProperties": false },

"timetable":
{ "type": "array", "items":

{ "type": "object", "properties":
{ "line": { "anyOf": ["string", "number"] },

"stop_id": { "type": "string" },
"departure":

{ "type": "array", "items": { "type": "string" }, "minItems": 1,
"additionalItems": true } },

"required": ["line", "departure"], "additionalProperties": false },
"minItems": 1, "additionalItems": true } },

"required": ["name", "location", "timetable"], "additionalProperties": false }

Fig. 6. Sample inferred schema for the Frozza et al. algorithm [10]

Basic Principles and Scalability. The majority of approaches extract schema
information from all the documents stored in the input collection without ini-
tially reducing its size, i.e., the number of documents. Exceptions include the
approaches by Sevilla et al. and Frozza et al., which initially select just sort of
a minimal collection of mutually distinct documents such that it can still be
correctly used to derive the schema for all the input documents. A common fea-
ture of all the approaches is the replacement of values of properties by names
of the primitive types encountered. In addition, this step is usually parallelized
using distributed solutions such as MapReduce or Apache Spark, which greatly
improves the scalability. Up to our knowledge, the only approach that is not
parallelized, so scalability is limited, is Frozza et al.

Output Format. The textual JSON Schema format is used for the inferred schema
description by the majority of the approaches, yet they differ in the details.
Baazizi et al. use their own and minimalistic proprietary language based on the
JSON Schema. Baazizi et al. support the repeating type to describe repeated
types in arrays, too. Sevilla et al. represent schema as a model that conforms to
a schema metamodel [19], which can be textually described by JSON. Finally,
Cánovas et al. represent schemas visually as class diagrams.

Table 1. Comparison of the selected approaches

Sevilla et al. Klettke et al. Baazizi et al. Cánovas et al. Frozza et al.

Scalability Yes Yes Yes Yes No

Output Model JSON Schema Proprietary Class diagram JSON Schema

Data Types JSON JSON JSON JSON BSON

Optional Yes Yes Yes No Yes

Union Type No Yes Yes No Yes

References Yes No No No No

180 P. Čontoš and M. Svoboda

Additional Data Types. All the approaches support the basic set of primitive
types (string, number, and boolean), as well as complex types, i.e., nested objects
and arrays, as they are defined by JSON itself. In addition, and as the only
approach, Frozza et al. support extended data types introduced by BSON.

Optional Properties. All properties that are contained in all the input docu-
ments in a collection are marked as required. Otherwise, when a property does
not appear in at least one of them, it is marked as optional. Apparently, a
set of required properties forms the skeleton of all the documents. Therefore,
the visualization of a schema containing only these required properties can be
significantly more comfortable for the users to grasp, especially when these doc-
uments contain a large number of different optional features that would occur
only rarely. Furthermore, this visualization gives the users a very good idea of
the structure of the documents. The majority of approaches we covered can dis-
tinguish between these two kinds of properties. They only differ in the way of
their detection. In particular, approaches by Klettke et al. and Frozza et al. cal-
culate the differences in occurrences of individual properties versus occurrences
of their parental properties. When a parental property occurs more frequently,
the property is marked as optional. Sevilla et al. is able to detect optional prop-
erties by the set operations over versions of entities. Baazizi et al. detect the
optional properties during the fuse of types. Finally, the approache by Cánovas
et al. is not capable of distinguishing the required and optional properties at all.
Thus, all the properties in these cases must then be considered as required.

Union Type. The JSON format natively allows for the data evolution, e.g., a situ-
ation when properties of newly added objects may have different types compared
to the older ones. Schema inference approaches must, therefore, deal with differ-
ent types occurring within just one property. Most of the examined approaches
work with the concept of the union type, where a property may contain several
different types at once. In contrast, the approaches by Sevilla et al. and Cánovas
et al. use just the most generic of the detected types in such cases. The advan-
tage of the union type is accuracy, simply because we do not lose information
about the involved data types. On the other hand, the principle of the most
generic type is better visualizable and programmable, because we are able to
perform (de)serialization through just a single data type, the generic one. For
the purpose of the schema visualization, the widely used models, namely UML
and ER, cannot associate properties with more than one type at a time, and,
thus, it is better to use the most generic type in this case, but at the expense of
the loss of the information accuracy, as outlined.

References. The only approach that detects relationships between the docu-
ments, i.e., references, is Sevilla et al. When a JSON property is named following
the entityName id suffix convention, then the entity named entityName is ref-
erenced (if it exists). It means that a reference relationship is created between
the referring and referenced entities in the inferred schema.

JSON Schema Inference Approaches 181

5 Related Work

To a certain extent, several existing JSON schema inference approaches were
experimentally compared in works by Frozza et al. [10] and Feliciano [9]. How-
ever, they considered different aspects, worked with not that many approaches,
and, most importantly, did not assume the multi-model context. Moreover,
schema inference is desirable not only for collections of JSON documents but
for semi-structured and non-uniform data in general.

In case of mature XML [21], there are a number of heuristic-based [16] and
grammar-inferred approaches [3]. Although both JSON and XML are semi-
structured hierarchical formats, inference approaches for XML documents are
not directly applicable to JSON because of the significant differences between
the two formats. While elements in XML are ordered, names of these elements
can appear repeatedly, and elements may contain attributes, properties in JSON
objects are unordered and without duplicates as for their names.

Although not that many, there are also approaches dealing with other logical
models and formats used within the family of NoSQL databases. Wang et al. [20]
suggested a schema management approach for document databases, where fre-
quently occurring structures are grouped using hierarchical structures. The app-
roach proposed by DiScala and Abadi [8] solves the problem of transforming
JSON documents from key-value repositories into flat relational structures. The
inference of schemas for RDF documents is discussed by Gallinucci et al. [11],
where aggregate hierarchies are identified. Bouhamoun et al. [4] then focus on
the scalable processing of large amounts of RDF data by extracting patterns for
existing combinations of individual properties.

JSON Schema is often used to describe an inferred schema from JSON doc-
ument collections. The formal model of this language is dealt with by Pezoa et
al. [17]. Description of the type system of JSON is designed by Baazizi et al. [1].

6 Conclusion

In this paper, we provided a mutual comparison of five selected representative
JSON schema inference approaches, each of which solves a different subset of
issues arising from the usage of the document NoSQL databases. As observed,
especially the detection of references between the individual documents seems to
be a challenging issue, not just since only one of the examined approaches actu-
ally recognizes such references, however, only to a very limited and questionable
extent. Another open area lies in the visualization and modeling of the inferred
schemas because the existing tools do not allow us to visualize all the derived
constructs, namely, the union type.

We believe that in order to be able to infer schemas even for the non-uniform
data maintained within the family of multi-model databases, the identified draw-
backs of the existing approaches first need to be sufficiently tackled. Only then
the acquired knowledge can be exploited, and the individual existing solutions
extended to the unified inference of truly multi-model schemas. This step is

182 P. Čontoš and M. Svoboda

apparently not straightforward, as it is envisioned by Holubová et al. [12], where
several open and challenging areas of multi-model data processing are outlined.

References

1. Baazizi, M.A., Colazzo, D., Ghelli, G., Sartiani, C.: A type system for interactive
JSON schema inference. In: ICALP 2019. LIPIcs, vol. 132, pp. 101:1–101:13 (2019).
https://doi.org/10.4230/LIPIcs.ICALP.2019.101

2. Baazizi, M.-A., Colazzo, D., Ghelli, G., Sartiani, C.: Parametric schema inference
for massive JSON datasets. VLDB J. 28(4), 497–521 (2019). https://doi.org/10.
1007/s00778-018-0532-7

3. Bex, G.J., Neven, F., Schwentick, T., Vansummeren, S.: Inference of concise regular
expressions and DTDs. ACM Trans. Database Syst. 35(2), 1–47 (2010). https://
doi.org/10.1145/1735886.1735890

4. Bouhamoum, R., Kellou-Menouer, K., Lopes, S., Kedad, Z.: Scaling up schema
discovery for RDF datasets. In: ICDEW 2018, pp. 84–89. IEEE (2018). https://
doi.org/10.1109/ICDEW.2018.00021

5. BSON: Binary JSON (2012). http://bsonspec.org/spec.html
6. Cánovas Izquierdo, J.L., Cabot, J.: Discovering implicit schemas in JSON data.

In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 68–83.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39200-9 8

7. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008). https://doi.org/10.1145/1327452.1327492

8. DiScala, M., Abadi, D.J.: Automatic generation of normalized relational schemas
from nested key-value data. In: SIGMOD 2016, pp. 295–310. ACM (2016). https://
doi.org/10.1145/2882903.2882924

9. Feliciano Morales, S.: Inferring NoSQL data schemas with model-driven engineer-
ing techniques. Ph.D. thesis, Universidad de Murcia (2017)

10. Frozza, A.A., dos Santos Mello, R., da Costa, F.d.S.: An approach for schema
extraction of JSON and extended JSON document collections. In: IRI 2018, pp.
356–363 (2018). https://doi.org/10.1109/IRI.2018.00060

11. Gallinucci, E., Golfarelli, M., Rizzi, S., Abelló, A., Romero, O.: Interactive multi-
dimensional modeling of linked data for exploratory OLAP. Inf. Syst. 77, 86–104
(2018). https://doi.org/10.1016/j.is.2018.06.004

12. Holubová, I., Svoboda, M., Lu, J.: Unified management of multi-model data. In:
Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS,
vol. 11788, pp. 439–447. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-33223-5 36

13. JavaScript Object Notation (JSON) (2013). http://www.json.org/
14. JSON Schema (2019). https://json-schema.org/
15. Klettke, M., Störl, U., Scherzinger, S.: Schema extraction and structural outlier

detection for JSON-based NoSQL data stores. In: Datenbanksysteme für Business,
Technologie und Web (BTW 2015), pp. 425–444 (2015)

16. Mlýnková, I., Nečaský, M.: Heuristic methods for inference of XML schemas:
lessons learned and open issues. Informatica 24(4), 577–602 (2013)

17. Pezoa, F., Reutter, J.L., Suarez, F., Ugarte, M., Vrgoč, D.: Foundations of JSON
schema. In: Proceedings of the 25th International Conference on World Wide Web,
pp. 263–273 (2016). https://doi.org/10.1145/2872427.2883029

https://doi.org/10.4230/LIPIcs.ICALP.2019.101
https://doi.org/10.1007/s00778-018-0532-7
https://doi.org/10.1007/s00778-018-0532-7
https://doi.org/10.1145/1735886.1735890
https://doi.org/10.1145/1735886.1735890
https://doi.org/10.1109/ICDEW.2018.00021
https://doi.org/10.1109/ICDEW.2018.00021
http://bsonspec.org/spec.html
https://doi.org/10.1007/978-3-642-39200-9_8
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/2882903.2882924
https://doi.org/10.1145/2882903.2882924
https://doi.org/10.1109/IRI.2018.00060
https://doi.org/10.1016/j.is.2018.06.004
https://doi.org/10.1007/978-3-030-33223-5_36
https://doi.org/10.1007/978-3-030-33223-5_36
http://www.json.org/
https://json-schema.org/
https://doi.org/10.1145/2872427.2883029

JSON Schema Inference Approaches 183

18. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Pearson Higher Education (2004)

19. Sevilla Ruiz, D., Morales, S.F., Garćıa Molina, J.: Inferring versioned schemas from
NoSQL databases and its applications. In: Johannesson, P., Lee, M.L., Liddle,
S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 467–480.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25264-3 35

20. Wang, L.: Schema management for document stores. Proc. VLDB Endow. 8(9),
922–933 (2015). https://doi.org/10.14778/2777598.2777601

21. Extensible Markup Language (XML) 1.0 (Fifth Edition) (2013). https://www.w3.
org/TR/REC-xml/

https://doi.org/10.1007/978-3-319-25264-3_35
https://doi.org/10.14778/2777598.2777601
https://www.w3.org/TR/REC-xml/
https://www.w3.org/TR/REC-xml/

Empirical Methods in Conceptual
Modeling (EmpER) 2020

Preface

Dominik Bork1 and Miguel Goulão2

1 TU Wien, Business Informatics Group, Vienna, Austria
dominik.bork@tuwien.ac.at

2 Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal
mgoul@fct.unl.pt

Conceptual modeling has enjoyed substantial growth over the past decades in diverse
fields such as Information Systems Analysis, Software Engineering, Enterprise
Architecture, Business Analysis, and Business Process Engineering. A plethora of
conceptual modeling languages, frameworks, and systems have been proposed
promising to facilitate activities such as communication, design, documentation or
decision-making. Success in designing a conceptual modeling system is, however,
predicated on demonstrably attaining such goals through observing their use in prac-
tical scenarios. At the same time, the way individuals and groups produce and consume
models gives raise to cognitive, behavioral, organizational or other phenomena, whose
systematic observation may help us better understand how models are used in practice
and how we can make them more effective.

The EmpER workshop series is dedicated to bringing together researchers and
practitioners with an interest in the empirical investigation of conceptual modeling
systems and practices. Following successful workshops in Xi’an, China (2018) and
Salvador, Brazil (2019), this year, the 3rd International Workshop on Empirical
Methods in Conceptual Modeling was virtually held from Vienna, Austria. As with
previous editions, the objective of the workshop was to provide a unique opportunity
for researchers in the area to exchange ideas, compare notes, and forge new collabo-
rations. This year, the workshop was in conjunction with the 39th International Con-
ference on Conceptual Modeling (ER 2020), benefiting from our common themes and
interests shared by the two events.

The Program Committee (PC) members reviewed a total of nine submissions, both
original ones and fast-tracked ER main conference papers, in this edition. Each sub-
mission was reviewed by at least three PC members. Of the submitted papers, we
accepted five for presentation on the workshop and inclusion in the ER companion
proceedings. The following papers were selected:

– “Replicability and Reproducibility of a Schema Evolution Study in Embedded
Databases”
by Dimitri Braininger, Wolfgang Mauerer, and Stefanie Scherzinger

– “Acquiring and sharing the monopoly of legitimate naming in organizations, an
application in conceptual modeling”
by Samuel Desguin and Wim Laurier

– “Challenges in Checking JSON Schema Containment over Evolving Real-World
Schemas”

https://orcid.org/0000-0001-8259-2297
https://orcid.org/0000-0002-5356-5203

by Michael Fruth, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo
Sartiani, and Stefanie Scherzinger

– “Empirical evaluation of a new DEMO modelling tool that facilitates model
transformations”
by Thomas Gray and Marne De Vries

– “Experimental practices for measuring the intuitive comprehensibility of modeling
constructs: an example design”
by Sotirios Liaskos, Mehrnaz Zhian, and Ibrahim Jaouhar

We would like to thank all the members of the Program Committee for providing
their expertise and suggesting constructive advice to improve the quality of the sub-
missions. Last but not least, we thank the ER conference Steering Committee, con-
ference chairs, and workshop chairs for accepting the EmpER 2020 workshop.

Preface 187

Empirical Evaluation of a New DEMO
Modelling Tool that Facilitates Model

Transformations

Thomas Gray and Marné De Vries(B)

Department of Industrial and Systems Engineering, University of Pretoria, Pretoria, South Africa
{Thomas.Gray,Marne.DeVries}@up.ac.za

Abstract. The engineering methodology for organizations (DEMO) incorporates
an organization construction diagram (OCD) and transaction product table (TPT)
to depict a consolidated representation of the enterprise in terms of actor roles
that coordinate in consistent patterns on different transaction kinds. Although
managers find the OCD useful due to its high level of abstraction, enterprise
implementers and operators prefer detailed flow-chart-like models to guide their
operations, such as business process model and notation (BPMN) models. BPMN
models are prevalent in industry and offer modeling flexibility, but the models
are often incomplete, since they are not derived from theoretically-based, con-
sistent coordination patterns. This study addresses the need to develop a DEMO
modeling tool that incorporates the novel feature of transforming user-selected
parts of a validated OCD, consistently and in a semi-automated way, into BPMN
collaboration diagrams. The contribution of this article is two-fold: (1) to demon-
strate the utility of the new DEMO-ADOxx modelling tool, including its model
transformation ability; and (2) to empirically evaluate the usability of the tool.

Keywords: DEMO · BPMN · ADOxx ·Model transformation · Software
modelling ·Multi-view modelling

1 Introduction

Domain-specific languages are created to provide insight and understanding within a
particular domain context and stakeholder group. As an example, the design and engi-
neering methodology for organizations (DEMO) provides models that represent the
organization domain of an enterprise [1]. DEMO offers a unique design perspective,
since its four aspect models represent organization design domain knowledge in a con-
cise and consistent way, removing technological realization and implementation details
[1].One ofDEMO’s aspectmodels, the constructionmodel, incorporates an organization
construction diagram (OCD) that provides a concise representation of enterprise oper-
ation. Managers find the OCD useful due to its high level of abstraction. Yet, enterprise
implementers and operators prefer detailed flow-chart-like models to guide their opera-
tions, such as business process model and notation (BPMN) models. BPMNmodels are
prevalent in industry and offer modeling flexibility, but the models are often incomplete,

© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 189–199, 2020.
https://doi.org/10.1007/978-3-030-65847-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_17&domain=pdf
http://orcid.org/0000-0002-1715-0430
https://doi.org/10.1007/978-3-030-65847-2_17

190 T. Gray and M. De Vries

since they are not derived from theoretically-based, consistent coordination patterns [2].
Others [3] identified the need to generate BPMNmodels from DEMOmodels, based on
transformation specifications. Yet, the specifications did not consider the complexity of
hierarchical structures in DEMOmodels. In addition, their transformation specifications
were not supported by tooling to automate DEMO-BPMN transformations [4].

A new DEMO-ADOxx tool, called DMT, addresses the need to compile a DEMO
construction model, in accordance with the specifications stated in [5] and [6]. In addi-
tion, the tool incorporates the novel feature of transforming user-selected parts of a
validated OCD, consistently and in a semi-automated way, into BPMN collaboration
diagrams [4].

This article has two main objectives: (1) demonstrating a main feature of the new
DEMO-ADOxx tool, i.e. transforming OCD parts into BPMN collaboration diagrams
for a complex scenario; and (2) empirically evaluating the usability of the tool.

The article is structured as follows. Section 2 provides background onDEMOmodels
and the development of the DMT. Section 3 suggests a research method to evaluate the
DMT, whereas Sect. 4 presents the evaluation results, concluding in Sect. 5 with future
research directions.

2 Background

In this section we provide background theory on DEMO, present a demonstration case
with sufficient complexity to validate the DMT against specifications for DMT in the
form of: (1) a meta-model for the OCD and TPT, and (2) OCD-BPMN transformation
specifications.

DEMO uses four linguistically based aspect models to represent the ontological
model of the organisation domain of the enterprise, namely the construction model
(CM), process model (PM), action model (AM), and fact model (FM) that exclude
technology implementation details [5]. A qualitative analysis on DEMO aspect models,
indicate that the CM, detailed by the PM, is useful for assigning responsibilities and
duties to individuals [7]. According to a study byDecosse et al. [7], the AM and FM “are
necessary if you are going to develop or select applications”. The conceptual knowledge
embedded in the PM is similar to the BPMN collaboration diagram [3]. Yet, BPMN is
widely adopted by industry [8] and facilitates simulation and workflow automation, as
demonstrated by BPMN-based industrial tools, such as ADONIS, Camunda and Bizagi.
Our initial DEMO-ADOxx tool thus focused on representing the CM. Rather than using
a PM as the next step of modelling, our tool incorporates a user-interface to capture
parent-part structures from the modeler that would normally be indicated on a PM,
bridging the gap from the CM to detailed and consistent BPMN diagrams.

Empirical Evaluation of a New DEMO Modelling Tool 191

TheCMis expressedusing three diagrams: (1) theorganisation construction diagram
(OCD); (2) the transaction product table (TPT) and (3) the bank contents table (BCT).
We incorporated specifications regarding the OCD and TPT, as stated in [5] and [6], as
well as BPMN 2.0 [9] for the first version of the DMT. The way of modelling in [10],
indicates that a modeller has to validate the definition of each transaction kind (TK) by
defining an associated product kind (PK). Due to their tight coupling, the OCD and TPT
were incorporated in the first version of our tool. We excluded the BCT, since the “BCT
can only be completed when the FM is produced” [1, p 272].

2.1 The Demonstration Case

The demonstration case had to be of such complexity that a modeler would be able to
construct a TPT (a list of TKs and PKs - not shown here due to space restrictions) and
an OCD (illustrated in Fig. 1). The case represents the universe of discourse and some
operations at a fictitious college. In accordance with the guidelines presented in [10],
our demonstrating OCD, portrayed in Fig. 1, only includes TKs that are of the original
transaction sort. Bold style indicates the type of construct whereas italics refers to an
instance of the construct (see Fig. 1).

Scope of Interest (SoI) indicates that the modeler analyses a particular scope of
operations, namely some operations at a college. Given the SoI, Fig. 1 indicates that
three environmental actor roles are defined, see the grey-shaded constructs student,
project sponsor and HR of project sponsor that form part of the environment. Within
the SoI, multiple transaction kinds (TKs) are linked to different types of actor roles
via initiation links or executor links. As an example, supervisor allocation (T01) is
a TK that is initiated (via an initiation link) by the environmental actor role student
(CA01). In accordance with [10], the student (CA01) is by default also regarded to be a
composite actor role “of which one does not know (or want to know) the details”. Since
T01 is linked to an environmental actor role, it is also called a border transaction
kind. T01 is executed (via the executor link) by the elementary actor role named
supervisor allocator (A01).

All the other actor roles in Fig. 1 within the SoI are elementary actor roles, since
each of them is only responsible for executing one transaction kind. A special case is
where an elementary actor role is both the initiator and executor of a transaction
kind, also called a self-activating actor role. Figure 1 exemplifies the self-activating
actor role with module reviser (A04) and project controller (A05). Since actor roles
need to use facts created and stored in transaction banks, an information link is used
to indicate access to facts. As an example, Fig. 1 indicates that project controller (A05)
has an information link to transaction kind module revision (T04), indicating that the
project controller (A05) uses facts in the transaction bank of module revision (T04). It
is also possible that actor roles within the SoI need to use facts that are created via
transaction kinds that are outside the SoI. As an example, Fig. 1 indicates that actor

192 T. Gray and M. De Vries

roles within the SoI (called, some operations at a college) need to use facts that are
created outside the SoI and stored in the transaction banks of aggregate transaction
kinds, namely person facts of AT01, college facts of AT02, accreditation facts of AT03,
timetable facts of AT04 and student enrollment facts of AT05. According to Fig. 1, the
student enrollment facts of aggregate transaction kind AT05 are not accessed by any
actor roles, which should be possible (according to the meta-model depicted in [5]).

Fig. 1. The OCD for a college, based on [5]

Even thoughFig. 1 only includes elementary actor roleswithin the SoI, it is possible
to consolidate elementary actor roleswithin a composite actor role, where a composite
actor role “is a network of transaction kinds and (elementary) actor roles” [10]. Figure 1
illustrates two composite actor roles within the SoI, namely College (CA0) and Con-
troller (CA01). Both CA00 and CA01 encapsulate a number of transaction kinds and
elementary actor roles.

2.2 General DEMO Tool Requirements, Specifications and the New DMT

Previouswork [4] highlightedfiveminimum requirements froma tertiary educational per-
spective for a DEMO modelling tool and compared existing tools against these require-
ments. The requirements indicated that a DEMO modelling tool should be comprehen-
sive, supporting all four DEMO aspect models (R1). The tool should support the most
recent language specification and facilitate future upgrades of theDEMO language (R2).
The tool should facilitate model transformations to other modelling languages, such as

Empirical Evaluation of a New DEMO Modelling Tool 193

BPMN (R3). The tool should be available at low cost for educational purposes (R4), and
it should be usable (R5).

A comparison of existing tools indicated that existing tools do not fulfil theminimum
requirements. None of the tools, except the new DMT, facilitated model transformations
[4]. The main objective of the new DMT was to demonstrate the transformation feature,
but also allow for future development of the tool. Even though the DMT addressed the
minimum requirements and initial usability tests on DMT were positive [4], additional
evaluationwas needed, especially in terms of its utility (R2 andR3) and usability (R5). In
terms of R2, the DMT had to address the existence rules encapsulated in the meta-model
of the OCD and TPT (see [4]). For R3, the DMT had to address all four transformation
scenarios, depicted in [11]. This article demonstrates the most complex scenario of the
four, where one TK has multiple parts, i.e. the actor role that executes the user-selected
TK, is also initiating one or more other TKs. Referring to Fig. 1 the TK labelled T05
(project control) is executed by actor role A05 (project controller). The same actor
role A05 (project controller) also initiates multiple other TKs, namely T02 (project
sponsoring), T03 (IP clearance), and T06 (internal project sponsoring). The DMT was
realized as an OMiLAB project which enables free download: https://austria.omilab.org/
psm/content/demo [4].

3 Research Method

According to Bagozzi [12] the unified theory of acceptance and use of technology
(UTAUT) exemplifies the complexity of technology assessment with UTAUT including
multiple variables for predicting intentions and predicting behaviour. For this article, our
aim was not to perform a comprehensive assessment of DMT, but to prioritise two key
variables to guide our decision-making in pursuing further development of the DMT.
Empirical evaluation of two critical variables were needed: utility and usability.

The utility tests were performed internally, categorized as existence rules tests and
transformation tests. The existence rules tests had to ensure that the DMT facilitated
creation of a sound OCD and TPT in accordance with the meta-model. We used the
demonstration case presented in Sect. 2.1 to compile valid tests. As an example, one of
the existence rules state: 1..* TK is contained in CAR 0..*, meaning that a transaction
kind is contained in zero-to-many composite actor roles, and a composite actor role
contains one-to-many transaction kinds. Using the case study presented in Fig. 1, two
test cases were compiled: (1) It should be possible to create T01 that is not contained
within the CAR CA00 (College) and (2) It should also be possible to create T06 as a part
within CAR CA00 (College). The transformation tests tested the tool’s ability to semi-
automate four main OCD-BPMN transformations, associated with the demonstration
case presented in Sect. 2.1.

The DMTwas empirically validated from a user perspective for usability, i.e. using a
survey-based approach tomeasure the DMT’s ease ofmodelling and validating the OCD
and TPT; and generating a BPMN diagram, based on a user-selected TK on the OCD.
Survey modelling methods are often used to gather opinions, impressions and beliefs of
human subjects via questionnaires [13]. Organisations and individuals will only adopt
a new tool if the perceived usefulness is high. We have used a standardized question-
naire due to several advantages stated by [14]: objectivity, replicability, quantification,

https://austria.omilab.org/psm/content/demo

194 T. Gray and M. De Vries

economy, communication and scientific generalization. The SUMI (Software Usabil-
ity Measurement Inventory) questionnaire, developed by the Human Factors Research
Group (HFRG) at the University College Cork, is widely used and cited in national an
international standards with a global reliability of 92% [14]. The 50-item questionnaire
has five subscales for efficiency, affect, helpfulness, control, and learnability, with a
three-point Likert scale to rate each item as disagree, undecided and agree. The results
of the five subscales are consolidated into a global scale that provides an indication of
the software’s general usability [14]. The questionnaire would be useful to evaluate the
overall usability of the DMT for its current scope.

A laboratory experiment (in accordance with [15]) was conducted with 34 post grad-
uate students as participants. The participants all attended a post-graduate module on
enterprise design. One of the module components incorporated training on DEMO. Par-
ticipants also received training on the demonstration case depicted in Sect. 2.1 before they
modelled the OCD and TPT, using the DMT, also experimenting with the OCD-BPMN
transformation feature. Afterwards, participants had to complete the SUMI question-
naire, availed via the SUMI online form [16]. We also documented all comments or
questions posed by the participants during the experiment.

4 Evaluation Results

For the first utility evaluation objective we tested whether the DMT-created models
comply with the existence rules that are specified for the OCD and TPT between the fol-
lowing concepts: (1) aggregate transaction kind (ATK); (2) composite actor role (CAR);
(3) elementary actor role (EAR); (4) fact kind (FK); (5) independent P-fact kind (IFK);
and (6) transaction kind (TK) (see [4]). Table 1 presents the existence rule (grey shaded),
test cases and test results. We only elaborate on the test results if additional explanation
is needed. The results indicate that the DMT addressed all the existence rules that apply
to the OCD and TPT.

For the second utility evaluation objective we tested whether a DMT model, gen-
erated via DMT’s transformation feature, could address the complexity of a TK that
has multiple parts. When a modeler selects the TK labelled T05 (project control) on
the OCD presented in Fig. 1, a BPMN collaboration diagram is generated, presented in
Fig. 2. Addressing threats to validity on the transformation-abilities of DMT, we have
also used a second demonstration case, i.e. the Rent-a-car case from [10] to validate
the transformation abilities in terms of all four transformation scenarios. Due to space
limitations, we could only include one demonstration case (in Sect. 2.1) in this paper.
The second demonstration case highlighted shortcomings in the transformation speci-
fications of [11], indicating that the four transformation scenarios had to be extended
further.

Empirical Evaluation of a New DEMO Modelling Tool 195

Table 1. Existence rules, test cases and results

From TK: 1..1 the product kind of TK is IFK 1..1
Forward: When T01 is defined, it should be linked to one product kind. When viewing the
TPT, the single product kind should be displayed for the TK.
Reverse: When defining the product kind P02, it should be for one TK.
Forward Results: The Model Analysis/Validation feature highlights production kinds with
no product kind defined. Thus mandatory 1..1 is not enforced.
Reverse Results: The product kind ID is automatically generated and not editable. The
system also blocks any attempt to duplicate product kind names.
From TK: 1..* TK is contained in ATK 0..*
Forward: Outside SoI: For DEMOSL 3.7 it should not be possible to indicate the parent-
part relationship. Inside SoI: It should be possible to create T01 in accordance with Fig. 1
where T01 is not contained in an ATK. It should be possible to create T02, where T02 is
contained in the ATK T05. T05 is an ATK with multiple parts (i.e. T02, T03, T06, T07).
Reverse: Outside SoI: For DEMOSL 3.7 it should not be possible to indicate the parent-part
relationship. Inside SoI: It should not be possible to initially model T05 as an ATK, grey-
shading T05, without indicating the parts, i.e. without modelling the parts T02, T03, T06,
T07). The software should only allow T05 as a composite (without parts) if created outside
the SoI.
Reverse Results: An ATK placed within the SOI is colored red to indicate non-validity. The
Model Analysis/Validation feature also highlights it as an error.
From TK: 1..* TK is contained in CAR 0..*
Forward: It should be possible to create T01 that is not contained within the CAR CA00
(College). It should also be possible to create T06 as a part within CAR CA00 (College).
Reverse Results: It should be possible to create CAR CA00 (College) with multiple TKs,
namely T04, T05 and T06.
From EAR: 1..* EAR is an initiator role of TK 0..*
Forward: It should be possible to create A01 as per Fig. 1 where A01 is not initiating other
TKs. It should be possible to create A05, initiating T02, T03 and T06.
Reverse: It should be possible to create T06, initiated by A05 as per Fig. 1. In addition, it
should also be possible to create T06, also initiated by A01 (i.e. A01 is also initiating T06),
even though this scenario is not evident on Fig. 1.
From EAR: 1..1 EAR is the executor role of TK 1..1
Forward: When A01 is modelled as an elementary actor role without any execution link
attached, a validation message should be shown when validating the model. When A01 is
modelled as an elementary actor role, it should not be possible to connect both A1 as the
executor for T01 and A01 as the executor for another TK, say T08 (supervision). Note that
T08 is not displayed on Fig. 1, but has to be created temporarily to do this test.
Reverse: When T01 is modelled as a TK without any execution link attached, a validation
message should be shown when validating the model. When T01 is linked via an execution
link to A01 and T01 is linked to another EAR, say A08 (supervisor), an error message
should appear to indicate that a TK may only have one executor.
Reverse Results: A warning message is displayed and the second connection is not possible.
From EAR: 0..* EAR may inspect the contents of bank TK 0..*
Forward: When A01 is created without any inspection links, no validation rules should
appear when saving the model. It should also be possible to link A01 to T02 via an
inspection link, as well as A01 to T06, with no validation errors appearing when the model is
saved.
Reverse: It should be possible to create the TK T03 with no inspection links attached. It
should also be possible to create an inspection link between T02 and A01, as well as an
inspection link from T02 to A06.

(continued)

196 T. Gray and M. De Vries

Table 1. (continued)

From EAR: 0..* EAR is contained in CAR 0..*
Forward: It should be possible to create an actor role, say A08 (supervisor) within the SoI,
but outside the CAR CA00 (College), without displaying validation errors when saving the
model. It should be possible to create A06 as an EAR embedded in the CAR CA00
(College), also embedded in the CAR CA01 (Controller).
Reverse: It should be possible to create the CAR CA00 (College) without embedding any
TKs, linking it via an execution link to T01. It should be possible to create the CAR CA00
(College) with multiple embedded EARs, i.e. A01, A04, A05 and A06.
From EAR: 0..* EAR has access to the bank of ATK 0..*
Forward: It should be possible to create the EAR A1 with no inspection links to AT01 and
AT02, i.e. no validation errors on saving. It should also be possible to create EAR A4 with
inspection links to AT03 and AT04 without validation errors on saving.
Reverse: It should be possible to create AT05 without any inspection links attached, with no
validation errors on saving. It should be possible to create both an inspection link from AT04
to A04, as well as an inspection link from AT04 to A06, without validation errors on saving.
From CAR: CAR is a specialization of EAR
The relations of the EAR should also be available for the CAR [6]. Hence, when creating
CAR CA00 (College) without any embedded detail, it should be possible to link the CA00
via an execution link to T01, link CA0 via an initiation link to T07, link CA00 via an
initiation link to T02, link CA00 via an initiation link to T03, and link CA00 via an
inspection link to AT04.
From CAR: CAR is a part of CAR
As explained by [6], the SoI is a special case of a CAR. It should be possible to create a
CAR, i.e. CA00 (College) within the SoI without any validation errors when saving the
model.

The usability results are summarised in Table 2. The results draw a very positive
picture, especially considering the prototypical nature of the DMT. The tool is evalu-
ated positive in all five sub-categories and in the global scale. The highest value was
found in the category affect which measures the participants emotional feeling mentally
stimulated and pleasant, or the opposite: stressed and frustrated as a result of interacting
with the tool. The results indicate that 31 out of 34 participants perceived the DMT
as being important or extremely important for supporting their task. Most noted things
to improve: Link Usage (7), Menu (3), General Usage (5), Error Handling (4). Nine
participants did not mention any necessary improvements. Most noted positive things:
Ease of use (15), Intuitivity (7), Model Transformation (7), Interface (6), and Drag &
Drop (4).

Based on the qualitative feedback on their questionnaire and interactive feedback
during the experiment, we have already incorporated the suggestions within the DMT.

Empirical Evaluation of a New DEMO Modelling Tool 197

Fig. 2. A BPMN collaboration diagram, generated from T05 (project control)

Table 2. Results of the SUMI questionnaire

G
lo
ba

l

Ef
fic

ie
nc
y

A
ffe

ct

H
el
pf
ul
ne
ss

C
on

tr
ol
la
bi
lit
y

L
ea
rn
ab

ili
ty

Mean 56.5 54.0 60.8 54.9 55.4 54.6
Std.
Dev.

10.8 13.5 10.6 10.9 10.3 11.4

Median 56.5 54.5 64.5 55.0 54.5 57.0

198 T. Gray and M. De Vries

5 Conclusions and Future Research Directions

The main objective of this paper was to empirically evaluate the new DMT in terms
of utility and usability. The utility tests were performed internally as follows: (1) The
existence rules associatedwith themeta-model for theOCDandTPT,were translated into
test cases, based on the demonstration case presented in Sect. 2.1; and (2) Conformance
to OCD-BPMN transformation specifications, tested the tool’s ability to semi-automate
four main transformations, of which be presented the most complex transformation in
Fig. 2. For usability, we used the SUMI questionnaire to evaluate the ease-of-use of the
DMT.

Our evaluation results are positive regarding both utility and usability. Since we
empirically evaluated the DEMO tool within a laboratory setting, future work is envis-
aged to evaluate the tool within a real-world enterprise setting. Sauro & Lewis [14] also
suggest comparative usability tests, e.g. comparing the new DMT with another existing
DEMO modelling tool.

The DMT was developed and evaluated, based on DEMOSL 3.7 (see [5]) as well
as extensions (see [6]). Yet, a newer version, DEMOSL 4.5 has been published recently
(see [1]). Modelling languages evolve and enforce the evolution of associated models.
Realizing the tool as an open source project, using the ADOxx platform within the
OMiLAB digital ecosystem, ensures that not only the authors, but also the OMiLAB
community, can contribute towards future tool enhancements [17].

Acknowledgements. We would like to thank Dominik Bork for his continued support and
collaboration on the DMT project.

References

1. Dietz, J.L.G., Mulder, H.B.F.: Enterprise Ontology: A Human-Centric Approach to Under-
standing the Essence of Organisation. Springer, Heidelberg (2020). https://doi.org/10.1007/
978-3-030-38854-6

2. Caetano, A., Assis, A., Tribolet, J.: Using DEMO to analyse the consistency of business pro-
cess models. In: Moller, C., Chaudhry, S. (eds.) Advances in Enterprise Information Systems
II, pp. 133–146. Taylor & Francis Group, London (2012). https://doi.org/10.1201/b12295-17

3. Mráz, O., Náplava, P., Pergl, R., Skotnica, M.: Converting DEMOPSI transaction pattern into
BPMN: a completemethod. In: Aveiro, D., Pergl, R., Guizzardi, G., Almeida, J.P.,Magalhães,
R., Lekkerkerk, H. (eds.) EEWC 2017. LNBIP, vol. 284, pp. 85–98. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57955-9_7

4. Gray, T., Bork, D., De Vries, M.: A new DEMO modelling tool that facilitates model
transformations. In: Nurcan, S., Reinhartz-Berger, I., Soffer, P., Zdravkovic, J. (eds.)
BPMDS/EMMSAD -2020. LNBIP, vol. 387, pp. 359–374. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-49418-6_25

5. Dietz, J.L.G., Mulder, M.A.T.: DEMOSL-3: DEMO specification language version 3.7.
SAPIO (2017)

6. Mulder, M.A.T.: Towards a complete metamodel for DEMO CM. In: Debruyne, C., Panetto,
H., Guédria, W., Bollen, P., Ciuciu, I., Meersman, R. (eds.) OTM 2018. LNCS, vol. 11231,
pp. 97–106. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11683-5_10

https://doi.org/10.1007/978-3-030-38854-6
https://doi.org/10.1201/b12295-17
https://doi.org/10.1007/978-3-319-57955-9_7
https://doi.org/10.1007/978-3-030-49418-6_25
https://doi.org/10.1007/978-3-030-11683-5_10

Empirical Evaluation of a New DEMO Modelling Tool 199

7. Décosse, C., Molnar, Wolfgang A., Proper, Henderik A.: What does DEMO do? A qualitative
analysis about DEMO in practice: founders, modellers and beneficiaries. In: Aveiro, D.,
Tribolet, J., Gouveia, D. (eds.) EEWC 2014. LNBIP, vol. 174, pp. 16–30. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06505-2_2

8. Grigorova, K., Mironov, K.: Comparison of business process modeling standards. Int. J. Eng.
Sci. Manag. Res. 1(3), 1–8 (2014)

9. ObjectManagementGroup:Business processmodel¬ation. https://www.omg.org/bpmn/.
Accessed 30 May 2019

10. Perinforma, A.P.C.: The Essence of Organisation, 3rd ed. Sapio (2017). www.sapio.nl
11. De Vries, M., Bork, D.: Bridging organization design knowledge and executable business

processes: a model transformation approach based on DEMO and BPMN (in review)
12. Bagozzi, R.: The legacy of the technology acceptance model and a proposal for a paradigm

shift. J. Assoc. Inf. Syst. 8(4), (2007). https://doi.org/10.17705/1jais.00122
13. Siau, K., Rossi,M.: Evaluation techniques for systems analysis and designmodellingmethods

– a review and comparative analysis. Inf. Syst. J. 21(3), 249–268 (2011). https://doi.org/10.
1111/j.1365-2575.2007.00255.x

14. Sauro, J., Lewis, J.R.: Quantifying theUser Experience: Practical Statistics for User Research.
Elsevier Inc., Waltham (2012)

15. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29044-2

16. HFRG: Software Usability Measurement Inventory. http://sumi.uxp.ie/en/index.php.
Accessed 17 Jan 2020

17. Bork, D., Buchmann, R.A., Karagiannis, D., Lee, M., Miron, E.-T.: An open platform for
modeling method conceptualisation: the OMiLAB digital ecosystem. Commun. AIS 44(32),
673–697 (2019). https://doi.org/10.17705/1CAIS.04432

https://doi.org/10.1007/978-3-319-06505-2_2
https://www.omg.org/bpmn/
http://www.sapio.nl
https://doi.org/10.17705/1jais.00122
https://doi.org/10.1111/j.1365-2575.2007.00255.x
https://doi.org/10.1007/978-3-642-29044-2
http://sumi.uxp.ie/en/index.php
https://doi.org/10.17705/1CAIS.04432

Acquiring and Sharing the Monopoly
of Legitimate Naming in Organizations,
an Application in Conceptual Modeling

Samuel Desguin(&) and Wim Laurier

Université Saint-Louis Bruxelles (USL-B), Brussels, Belgium
samuel.desguin@usaintlouis.be

Abstract. In 2018, one of the biggest cooperatives of autonomous workers
(CAW) in Europe, strong of more than 30.000 members, started the develop-
ment of a unified lexicon as an informal conceptual model of the organization.
Researchers participated in this ambitious project, following an action-design-
research method. Democratic and egalitarian values are essential at CAW, but
the literature on how to account for these values when developing a conceptual
model is scarce. This paper argues that defining a common vocabulary, which
can be a first step to building a conceptual model for an organization, is not a
politically neutral activity and should be executed transparently and fairly,
especially in democratic organizations such as CAW. Based on the classic
literature on language and power, this contribution presents five postulates to
help modelers to account for power and influence when developing conceptual
models in organizations, either when trying to acquire the monopoly of legiti-
mate naming in a field, or when sharing the power he or she possesses, having
acquired such a monopoly.

Keywords: Conceptual modeling � Ontological politics � Power in
organizations

1 Introduction

In organizations, conceptual models and ontologies play a major role in knowledge
transfer, developing domain understanding, or simulating the subject matter they
represent, thereby supporting both humans and computer in their tasks [1]. In most use
cases of conceptual modelling, the resulting ontology is considered a neutral tool built
by experts to help a well-defined group of people; however, as Sect. 3 shows, mod-
elling an ontology in an organization gives the modeler significant power over lan-
guage and communication in that organization, which translates into power and
influence.

In this contribution, we describe the case of one of the biggest cooperative of
autonomous workers (CAW) in Europe, strong of more than 30.000 members in 9
European countries. A CAW is an organization that enables its members to work
autonomously on their entrepreneurial activity while benefiting from services of the
cooperative. CAW feature two main services: (1) the access to an employee status
(instead of freelancer or independent statuses), which gives workers an extended access

© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 200–209, 2020.
https://doi.org/10.1007/978-3-030-65847-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-65847-2_18

to social rights such as unemployment, illness or retirement benefits and (2) the ability
to invoice clients and recover expenses from suppliers, using the cooperative’s VAT
number. CAW can also offer miscellaneous services such as an access to rooms,
training, counselling or machines. Through those services, the CAW increases
autonomous workers’ security while safeguarding their autonomy [2] – thereby, CAW
had a particularly crucial role in helping autonomous workers deal with the fallout of
the Covid-19 lockdown, as they were twice as likely to lose some income and six times
more likely to lose all of their income, in comparison with salaried workers [3]. CAW
have a long tradition of democracy and transparency: members are co-operators, which
means that they own a share of the organization and have formal voting and repre-
sentation rights in all decision-making bodies. In addition, there is a social and psy-
chological contract that leads members to expect that they will be informed of and
involved in any major decision [4].

In the CAW featured in this contribution, misunderstanding had long been an issue
hindering effective coordination and communication, especially when it started
expanding internationally [2]. Clarifying the conceptual model – and in particular the
lexicon, which is the least formal type of conceptual model – has therefore been
recognized as a major strategic objective at the general assembly of 2018. At the time
of the encounter with the authors of this paper, several attempts had been made to
develop such a unified lexicon, but none of them had been successfully rolled out,
mainly due to the lack of popularity that the lexicon had gained from end-users when it
was delivered. In short, the issue was political, rather than technical. When looking for
guidelines on how to address political issues in developing a conceptual model, the
researchers found little insights in existing literature (see Sect. 2), and therefore decided
to tackle this issue in this piece. The study of this case led to the following research
question: what is the impact of power in the development of a lexicon in
organizations?

This research question points to two important considerations. First, the power and
influence by the modeler needs for members of the organization to accept the lexicon
and use words and concepts in compliance with it, leading to the first sub-question:
what should the modeler do to acquire the monopoly of legitimate naming in an
organization? The notion of monopoly of legitimate naming is inspired by Bourdieu, as
described in Sect. 2. The second consideration is the caution that organizations and
modelers should pay to the subtle, invisible power that modelers can acquire by gaining
control over the language in an organization. The modeler should be conscious of the
power that modelers obtain by developing lexicons, in order to avoid hidden conflicts
of interest or abuses of power. This consideration lead to the second sub-question:
what should the modeler do to distribute the power given by the monopoly of legitimate
naming in an organization?

Section 2 describes the method that the researchers used to support this organi-
zation in its project. Section 3 reviews the literature on conceptual modelling, language
and power in organizations. Section 4 discusses early findings in light of the literature
and presents postulates to help modelers address power issues in organizations.

Acquiring and Sharing the Monopoly of Legitimate Naming in Organizations 201

2 Method

The researchers applied the Action-design-research (ADR) method [5], which aims at
solving a real-life issue identified within a domain by developing an artifact. The
artifact is the result of iterations between the modeling team and the field, each iteration
leading to incremental improvements, until the artifact is sufficiently developed. Each
iteration encompasses three steps: Building an artifact using modelling techniques,
Intervention, rolling out the artifact in the field and Evaluation of the usefulness of
the artifact with regards to the identified issues. This contribution was a case of an
organization-dominant process, since the primary source of innovation is organiza-
tional intervention. As is suited for organization-dominant ADR, the main source of
information to build the artifact was the field.

In this paper, the researchers focus on the “build” step of the process, showing how
the first version of the artifact was developed. The specific artifact that was built was a
lexicon, i.e. a “list of words in a language (i.e. a vocabulary) along with some
knowledge of how each word is used” [7, p. 1] (see Sect. 3.1). To build it, the
researchers collected information via a dozen of focus groups and interviews with two
types of respondents: the upper management and the front-office workers who manage
members activity and services directly. Interviews were used to collected on how
individual users describe key concepts of the business model of CAW, and focus
groups were organized to resolve the discrepancies on the understanding of specific
definitions. When needed, the upper management settled on disagreements, on basis of
arguments from the research team and the end-users. At this stage, members were not
yet involved because researchers were seeking to get a broad, transversal view, but
member are expected to play a critical role in the upcoming roll-out and evaluation
phases.

3 Literature Review

This section discusses two bodies of literature that could help investigate the issue of
developing a lexicon within a CAW – conceptual modelling, and language & power –
as well as the application of those two bodies to an organization. Below is a repre-
sentation of those bodies of literature in interaction with each other (Fig. 1).

Fig. 1. Literature overview and gaps

202 S. Desguin and W. Laurier

3.1 Conceptual Modelling

Roa et al. [1] define an ontology as “conceptualizations of reality, as agreed to by a
group of experts, defined specifically and with varying levels of generality, varying
representations and varying levels of formality” (p. 214). Conceptual modeling entails
an instantiation of an ontology within a non-software specific representation [6]. This
piece focuses on an informal type of human-readable ontology called a lexicon.
Lexicons are important for human uses since they serve as the basis for natural lan-
guage, thereby facilitating human interaction [1]. Further, lexicon can also constitute a
first step towards building a formal ontology that will ultimately serve human-to-
computer or computer-to-computer interaction (see for instance [8]).

3.2 Ontology Usefulness

In organizations, the usefulness of conceptual models and ontologies has been largely
documented and demonstrated. They play a major role in knowledge transfer, devel-
oping domain understanding, or simulating the subject matter they represent, thereby
supporting both humans and computer in their tasks and reducing variance in the
understanding of a domain [1]; they help improve the interoperability, specification,
reliability and reusability of information systems [9]; they facilitate conceptual mod-
eling by providing a more rigorous framework to capture and represent knowledge
[10]; they improve the requirements engineering process by facilitating the user vali-
dation of conceptual schemas produced by analysts [11].

3.3 Ontological Politics

The notion of “ontological politics” has been coined by Annemarie Mol [12] to
describe the impact that the shaping of knowledge – or “ontologies” – has on reality
and the decisions that are taken. Her first application was in health care, but her
contribution also sparked the debate in organizational studies [13], social sciences [14],
educational sciences [15] and even geography [16]. What scientists present as facts are
often tainted with the author’s subjectivity, which can undermine the trust of the public
in scientific expertise – these events are referred to as “knowledge controversies” [16].
In the aforementioned publications, the authors invite researchers to be mindful of the
consequences of their actions.

3.4 Language and Power

The importance of language has been largely underestimated “in the production,
maintenance, and change of social relations of power” [17, p. 1], especially outside of
the field of linguistics [17]. This section presents briefly the work of some influential
philosophers and sociologists on language and power. A full literature review of this
topic would fall outside the scope of this paper, as our purpose is limited to high-
lighting major principles and insights that link power and language, and to applying
them to the field of conceptual modelling. In this paper, the discussion is limited to
three authors which we found to be the most prolific, influential and broad on the topic

Acquiring and Sharing the Monopoly of Legitimate Naming in Organizations 203

of language and power: Wittgenstein, Bourdieu and Foucault. We selected authors
from the 20th century, because their work often builds on and encompass earlier works
on the topic.

Wittgenstein and Language. In the Philosophical Investigations [18], Austrian
philosopher Wittgenstein states that unresolved debates and disputes are often the
consequence of language issues as people argue about the true meaning of words. Yet,
arguing about the meaning of words is a pointless endeavor as there is not a single true
meaning of a word. Rather than a reflection of reality, the meaning of words is the
result of an agreed upon way of talking and carrying out activities. In Tractatus logico-
philosophicus Wittgenstein [19] makes the point that language only covers a part of
reality, and that something that cannot be expressed through language also cannot be
expressed in the consciousness of the speaker. Because of this, there can be “unspoken
truths” in areas, which elude debate and discourse because of the lack of words to
speak about them.

Bourdieu and Language. In Ce que parler veut dire (translated as “What Speaking
Means”) [20] and Language et pouvoir symbolique (translated as “Language and
symbolic power”) [21], French sociologist Bourdieu describes how the social world
can be perceived differently depending on the observer’s mental construct, and how
language plays a major role in forming this mental construct as it bridges the gap
between the mental consciousness and the reality of the world. The intrinsically
political nature of language is explicit in Bourdieu [22]: “the knowledge of the social
world and, more precisely, the categories that make it possible, are the ideal stakes of
political struggle, both practically and theoretically, as one struggles to maintain or
transform the social world by maintaining or transforming the categories of perception
of the world” (translated from [22, p. 6]). Thereby, “one of the elementary forms of
political power consists of the almost-magical power of naming things and thereby,
making them real … going from implicit to explicit” (translated from [22, p. 6]). In
Raisons Pratiques (translated as “Practical Reasons”), Bourdieu [23] synthesizes
previous works arguing that the monopoly of legitimate naming is the result of a
struggle, and the winners of this struggle are those with the most symbolic capital – i.e.
prestige, reputation or fame, that gives them the capacity to define and legitimize
cultural values. This capital can be explicit (written in law, for instance) or not, but has
to be earned and recognized within the field in order to impose a certain language.

Foucault and Language. In Les Mots et les Choses (translated as “The Order of
Things”), French philosopher Foucault [25] describes how institutions that are seem-
ingly neutral – such as medicine or justice – are in fact places where power struggles
occur, more or less overtly. Since language is the tool of formalization of knowledge in
those fields, it can be broken down and analyzed to logically demonstrate its incon-
sistencies and manipulations of reality. In Surveiller et Punir (translated as“Discipline
and Punish”), Foucault [24] discusses his observations in French and reflects upon the
ways of exercising coercion. In his discussion of the relationship between knowledge
and power, he states that to the observer, it is not the experience of a subject that creates
knowledge and its possible forms and domain, but rather the processes and struggles
with the subject. Further, the author distinguishes between directly coercive power –

204 S. Desguin and W. Laurier

such as threats and physical punishment – and more subtle ways of exerting power –
such as the control of the recipient’s vision of himself and the world through the
influence of the language. According to Foucault, exercising control indirectly through
language is more effective when there is no visible conflict.

3.5 Language and Organizational Control

The study of power and language has long been the focus of linguists, in a research
body called critical language study [17] and has also been an important topic for
philosophers and sociologists, but it has been underwhelmingly adopted in other fields
such as conceptual modelling, or in the context of organizations. The role of language
as a tool for control in organization has been shown by [26], where the authors show
that control can be exercised directly and coercively, but also more subtly “through
language and the construction and use of knowledge … [to] encourage managers and
employees to conform to organizational expectations” [26, p. 2]. Similarly, in [27,
p. 192], “Objects for management control are decreasingly labor power and behavior
and increasingly the mindpower and subjectivities of employees.” – objects for man-
agement control are thus more and more often symbolic items, such as language.

3.6 Literature Gap

This section establishes how language has a strong impact on the field it seeks to
describe, and that it is both an object of power struggle and a tool for domination. The
case described in this paper seeks to apply these insights to the development of a
lexicon within an organization, but we were not able to find publications that binds all
those issues together.

4 Early Findings and Discussion

This section formulates five postulates based on the literature over language and power
adapted to the context of developing a lexicon in an organization. It further discusses
the relevance of these postulates in the context of our case. For each postulate, we
describe how it was taken into account by the modelling team.

4.1 Postulate 1: Modelers Should Focus on the Pragmatic Convenience
of the Concepts They Define, Rather Than Debating the “Truth”
of Concepts

This postulate is based on Wittgenstein’s Philosophical Investigations [18]. In our case,
we noticed that in defining the most important concepts in the organization’s domain,
respondents’ main focus point was to avoid complications and future problems, rather
than seek the true meaning of a word. For instance, there is an ongoing discussion
about a new name to define an activity, which is a unit of production within the
cooperative autonomously managed by a member, just like his or her own “quasi-
enterprise”. Two main candidates are the unit (in reference to the business unit) and

Acquiring and Sharing the Monopoly of Legitimate Naming in Organizations 205

the enterprise. Both could correctly define what an activity is, but the former
conveys the idea that an activity is part of a whole (in this case the CAW) and could not
exist without it, while the latter implies that the activity could exist by itself. We
discovered that the second understanding could induce severe complications when
members wish to withdraw their activity from the CAW, for instance in terms of
ownership of the assets of the activity.

The team took this postulate into account by explicitly identifying the potential
issues that could arise from choosing each concept. In the aforementioned case, for the
sake of pragmatism, the team preferred the term unit over enterprise.

4.2 Postulates 2: Modelers Should Spot Unspoken Areas and Concepts –
Concepts for Which Words Are Lacking and Therefore, Are
Not Present in the Consciousness of the Speaker

This postulate is based on Wittgenstein’s Tractatus logico-philosophicus [19], and is
also related to the concept of construct incompleteness [28]. A language is said to be
complete “if every concept in a domain conceptualization is covered by at least one
modeling construct of the language” [28, p. 6].

In the case of the CAW we studied, we found that the adequate vocabulary was
unable to express some realities. For instance, the vocabulary mostly assumes that an
activity (which we described earlier as an autonomous business unit managed by a
member) is managed by a sole member. As a result, there is no adequate vocabulary to
distinguish between a member and his activity. This issue has been documented in
other CAW in France, where “the person and the activity are one”, [29, p. 66] such that
“the ‘activity’ itself is unthought [un impensé]” [29, p. 57]. This lack of vocabulary to
distinguish between the member and his activity has made it harder to conceive
more complex activities, in which multiple members participate. For instance, today, it
is possible to assign multiple members to an activity, but all revenues of that
activity are necessarily attributed to the activity holder, and there are no words or
concepts to name the relationship between the activity holder and the other members.

The team took this postulate into account by explicitly identifying some areas as tacit
and proposing words and concepts that fill these gaps. In the example mentioned pre-
viously, the researchers imposed a clear separation between members and activities;
accordingly, they coined two new concepts: personal services (i.e. service to
members, regarding pay or employment status), and economic services (i.e. ser-
vices to activities, including business advise and leasing assets). This allowed the team
to start describe the rights and obligations of members towards their activities,
which is a relationship that had not been thought of before per lack of vocabulary.

4.3 Postulate 3: In Order to Gain the Monopoly of Legitimate Naming
in a Field, Modelers Must First Earn Sufficient Prestige, Reputation
or Fame Within the Field

This postulate is based on Bourdieu’s Raisons pratique [23]. As we mentioned above,
other attempts had been made to develop a lexicon at the CAW before, and all had been
stopped as the teams had lost the confidence of the upper management along the way.

206 S. Desguin and W. Laurier

The team took this postulate into account by taking the time to earn legitimacy
within all influence groups within the CAW. Receiving an official mission order from
the upper management was but a first step and did not guarantee that all stakeholders
would adopt the new unified lexicon and change their way of speaking about the CAW.
Actions taken to acquire legitimacy included frequent interaction and communication,
showing expertise by demonstrating, with the help of scientific literature, the usefulness
of the project and most of all, hearing and incorporating the vision of each stakeholder
in the final artifact.

4.4 Postulates 4: Language Is not a Neutral Object and Is Intimately Tied
to Power Struggles

This postulate is based on Bourdieu’s Language and symbolic power [21]. In CAW
just like in any organization, members can have conflicting interests, leading to power
struggles, and language is one of the places where such a struggle can be observed.
CAW are not immune to this, and we identified two types of power struggles in which
language plays a major role. On the one hand, power struggles can oppose CAW to
external forces such as worker unions who fear CAW represent an alternative to
ordinary salaried work, with globally lower stability and worker protection; and gov-
ernment agencies who suspect CAW to give its members access to more social pro-
tection than they would otherwise have access to with a traditional freelancer status.
This power struggle appeared very clearly in the discussions on naming members.
Alternative terms that are considered included salaried entrepreneur – which
is the term coined in law for French CAW but does not depict the reality of most
members as they do not have an entrepreneurial activity, but rather work in subordi-
nation of an organization. On the other hand, internal power struggles can occur, for
instance over the name given to the front-office workers. Calling them employees
would be confusing, as the members of CAW also have an employee status from the
CAW. The upper management tends to push for a term that would entail more
involvement and commitment from the front-office workers, such as mutualized
team – which would encourage these employees to become themselves co-operators
of the CAW and commit voluntarily to tasks that exceed their boundaries, whereas
front-office workers themselves tend to rather see themselves as regular employees with
clear boundaries to their tasks, which would be more clearly conveyed in terms such as
workers of the mutualized services.

The team took this postulate into account by explicitly formulating the conse-
quences of the choosing of each term for each interest group within the CAW before
settling on a specific concept.

4.5 Postulate 5: Control Over Language Can Be a Non-conflictual,
Indirect Way to Exert Control Over a Group of People

This postulate is based on Foucault’s Surveiller et punir [24], as well as authors that
described the importance of language in the context of power in organizations, such as
[26]. This postulate can effectively be illustrated in the case of the CAW. Hitherto, the
front-office workers spend a major part of their time on administrative tasks related to

Acquiring and Sharing the Monopoly of Legitimate Naming in Organizations 207

billing, invoicing and fiscal obligations of activities and members. Yet, the upper
management has long been pushing for front-office workers to also take up a consulting
role and act as economic advisors to members. To support this objective, as well as
applying the postulate 2 (see above), we coined the terms personal services and
economic services – the earlier being related to administrative and the second to
advisory tasks. Distinguishing these services allowed us to effectively monitor the time
spent on each task, but also allowed us to complexify the description of the task sheet
of front-office workers and change their vision of their own job.

5 Conclusion

The use of language as a tool for control and influence has long been described and
discussed by philosophers, sociologists and linguists. However, it was sparsely con-
sidered as such in the field of conceptual modelling – rather, informal models such as a
lexicon, which serve as basis for language, are seen as neutral objects, and potential
first steps to developing formal ontologies.

Our work in a particularly democratic and egalitarian organization such as a CAW
showed us the importance of being mindful of the political nature of language when
developing a conceptual model. In doing so, we laid down some insights to answer the
questions that we raised in the introduction. To the question: what should the modeler
do to acquire the monopoly of legitimate naming in an organization?, we suggest to
pursue pragmatic convenience rather than the truth of a concept (postulate 1), to unveil
unspoken areas and concepts (postulate 2) and transparently make the effort of hearing
and incorporating the vision of each stakeholder in the final artifact (postulate 3). To
the question: what should the modeler do to distribute the power given by the monopoly
of legitimate naming in an organization?, we suggest to explicitly and transparently
describe the consequences of naming a concept for each interest groups (postulate 4),
and being mindful of the strategic orientations that are conveyed by the chosen terms
and of the influence those terms can have on the recipients’ view of their missions.

With this paper, we hope to share some insights in how modelers can integrate
those aspects, not only in democratic organizations, but in any organization for which
transparency and fairness is important. Future area for research on the topic could
include an empirical evaluation of transparent, fair and democratic methods of con-
ceptual modelling in organization, based on a full roll-out of the artifact in an
organization.

References

1. Roa, H.N., Sadiq, S., Indulska, M.: Ontology Usefulness in Human Tasks: Seeking
Evidence, p. 11, New Zealand (2014)

2. Desguin, S., Laurier, W.: Modelling services of cooperatives of autonomous workers to
create a space for autonomy and security, p. 233, Brussels (2020)

3. Charles, J., Desguin, S.: Aux confins – Travail et foyer à l’heure du (dé)confinement,
CESEP, UCLouvain, USL-B (2020)

208 S. Desguin and W. Laurier

4. Sadi, N.-E., Moulin, F.: Gouvernance coopérative : un éclairage théorique, Rev. Int.
Léconomie Soc. Recma, no 333, p. 43–58 (2014)

5. Sein, M., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R.: Action Design Research,
MIS Q. vol. 35, no 1, p. 37 (2011)

6. Robinson, S.: Conceptual modelling for simulation Part I: definition and requirements.
J. Oper. Res. Soc. 59(3), 278–290 (2008)

7. Hirst, G.: Ontology and the Lexicon. Springer (2009)
8. Scheidgen, M., Fischer, J.: Human comprehensible and machine processable specifications

of operational semantics. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA
2007. LNCS, vol. 4530, pp. 157–171. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72901-3_12

9. Jasper, R., Uschold, M.: A Framework for understanding and classifying ontology
applications. In: Proceeding of the 12th International Workshop on Knowledge Acquisition,
Modelling, and Management KAW, p. 20 (1999)

10. Wand, Y., Storey, V.C., Weber, R.: An ontological analysis of the relationship construct in
conceptual modeling. ACM Trans. Database Syst. 24(4), 494–528 (1999)

11. Poels, G., Maes, A., Gailly, F., Paemeleire, R.: The pragmatic quality of resources-events-
agents diagrams: an experimental evaluation: the pragmatic quality of REA diagrams. Inf.
Syst. J. 21(1), 63–89 (2011)

12. Mol, A.: Ontological politics a word and some questions. Soc. Rev. 47, 74–89 (1999)
13. Clegg, S.R., Courpasson, D., Phillips, N.: Power and Organizations. Pine Forge Press (2006)
14. Law, J., Urry, J.: Enacting the social. Econ. Soc. 33, 390–410 (2004)
15. Sørensen, E.: The Materiality of Learning: Technology and Knowledge in Educational

Practice. Cambridge University Press, Cambridge (2009)
16. Whatmore, S.J.: Mapping knowledge controversies: science, democracy and the redistribu-

tion of expertise. Prog. Hum. Geogr. 33, 587–598 (2009)
17. Fairclough, N.: Language and Power. Pearson Education (2001)
18. Wittgenstein, L.: Philosophical Investigations (1953)
19. Wittgenstein, L., Logico-Philosophicus, T.: Annalen der Naturphilosophie (1921)
20. Bourdieu, P.: Ce que parler veut dire: L’économie des échanges linguistiques. Fayard, Paris

(1982)
21. Bourdieu, P.: Langage et pouvoir symbolique. Le seuil, Paris (1991)
22. Bourdieu, P.: Espace social et genèse des “classes”, in Actes de la recherche en sciences

sociales, Le travail politique., Paris (1984)
23. Bourdieu, P.: Raisons pratiques. Le Seuil, Paris (1994)
24. Foucault, M.: Surveiller et punir. Gallimard, Paris (1975)
25. Foucault, M.: Les mots et les choses, vol. 42, Gallimard, Paris (1966)
26. Oakes, L.S., Townley, B., Cooper, D.J.: Business planning as pedagogy: language and

control in a changing institutional field. Adm. Sci. Q. 43(2), 257–292 (1998)
27. Alvesson, M., Deetz, S.: Critical theory and postmodernism approaches to organizational

studies. In: Handbook of Organization Studies, pp. 191–217, Sage, Thousand Oaks (1996)
28. Guizzardi, G., Ferreira Pires, L., van Sinderen, M.: An ontology-based approach for

evaluating the domain appropriateness and comprehensibility appropriateness of modeling
languages. In: Briand, L., Williams, C. (eds.) MODELS 2005. LNCS, vol. 3713, pp. 691–
705. Springer, Heidelberg (2005). https://doi.org/10.1007/11557432_51

29. Veyer, S., Sangiorgio, J.: Les parts congrues de la coopération : penser la question de la
propriété dans les Coopératives d’activités et d’emploi. L’exemple de la Scop Coopaname,
RECMA, vol. N° 350, no 4, pp. 55–69, October 2018

Acquiring and Sharing the Monopoly of Legitimate Naming in Organizations 209

https://doi.org/10.1007/978-3-540-72901-3_12
https://doi.org/10.1007/978-3-540-72901-3_12
https://doi.org/10.1007/11557432_51

Replicability and Reproducibility
of a Schema Evolution Study

in Embedded Databases

Dimitri Braininger1, Wolfgang Mauerer1,2, and Stefanie Scherzinger3(B)

1 Technical University of Applied Sciences Regensburg, Regensburg, Germany
d.braininger@yandex.com

2 Siemens AG, Corporate Research, Munich, Germany
wolfgang.mauerer@othr.de

3 University of Passau, Passau, Germany
stefanie.scherzinger@uni-passau.de

Abstract. Ascertaining the feasibility of independent falsification or
repetition of published results is vital to the scientific process, and repli-
cation or reproduction experiments are routinely performed in many
disciplines. Unfortunately, such studies are only scarcely available in
database research, with few papers dedicated to re-evaluating published
results. In this paper, we conduct a case study on replicating and repro-
ducing a study on schema evolution in embedded databases. We can
exactly repeat the outcome for one out of four database applications
studied, and come close in two further cases. By reporting results, efforts,
and obstacles encountered, we hope to increase appreciation for the sub-
stantial efforts required to ensure reproducibility. By discussing minu-
tiae details required to ascertain reproducible work, we argue that such
important, but often ignored aspects of scientific work should receive
more credit in the evaluation of future research.

Keywords: Schema evolution · Replicability · Reproducibility

1 Introduction

Experiments are at the heart of the scientific process. According to the ACM
reproducibility guidelines (see “ACM review and badging”, hyperlink available
in the PDF), experiments are expected to be repeatable: Essentially, the same
team with the same experimental setup can reliably achieve identical results in
subsequent trials. Moreover, experiments should be replicable, so that using the
same experimental setup operated by a different team achieves the same results.
Ideally, experiments are even reproducible, and a different team with a different
experimental setup can confirm the results.

Such properties are acknowledged to be fundamental, but reproducibility
is far from universally permeating most published research. This discrepancy
has become an academic topic of debate, and dedicated research evaluates the
c© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 210–219, 2020.
https://doi.org/10.1007/978-3-030-65847-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_19&domain=pdf
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1007/978-3-030-65847-2_19

Examining Replicability and Reproducibility 211

(oftentimes wanting) state of affairs in computer science research in general (see,
e.g., Refs. [1,5,9,12]), but also in data management research1.

In this paper, we examine the state of replicability, and efforts required
to achieve reproducibility, for an empirical case study on schema evolution in
embedded databases by S. Wu and I. Neamtiu [16] that predates the aforemen-
tioned discussions. There is a long-standing tradition of schema evolution case
studies in real-world database applications, e.g., [7,13–15]. It used to be difficult
to get access to real-world database applications for study, so earlier studies are
generally conducted on closed-source systems, for instance [14]. Yet the prolifer-
ation of open source software, and the access to code repositories (e.g., GitHub)
enables a whole new line of research on open source application code [4]. Most
schema evolution studies focus on applications backed by relational database
management systems, typically tracking the growth of the schema (counting the
number of tables and their columns), and the distribution of schema modification
operations (a term coined by Curino et al. in [6]).

The authors in the original case study are the first to focus on an important
subfamily of database products, namely that of embedded (and therefore server-
less) databases, such as SQLite. While there are independent schema evolution
studies targeting the same open source projects, such as MediaWiki (the software
powering Wikipedia), they consider different time frames (such as 4.5 years in [7]
and 10 years in [13]), and implement different methodologies. This even leads to
partly contradictory results. However, a dedicated replicability and reproducibil-
ity study has not yet been conducted so far.

Contributions. This paper makes the following contributions:

– We conduct a replicability and reproducibility study on a well-received, pub-
lished paper on schema evolution [16]. While there is a long history of schema
evolution case studies, to the best of our knowledge, ours is the first effort to
ascertain published results on this class of publications.

– Our study is mainly based on the information provided in the original paper.
However, we were also provided (incomplete) code artefacts by the authors
of the original study. This blurs the line between conducting a replicability
and reproducibility study. For simplification, we restrict ourselves to the term
reproducibility in the remainder of this paper.

– We carefully re-engineer the authors’ experiments and present our results.
Overall, we achieve a high degree of accordance, albeit at the expense of
substantial manual effort. For one out of four applications studied in [16], we
even obtain identical results. We document and discuss where our numbers
agree, and where they deviate.

– We lay out which instructions were helpful, and which left too much leeway.
– We discuss the threats to the validity of our results (e.g., where we may have

erred), and contrast this with the original threats stated in [16]. Doing so, we
re-calibrate the level of risk involved with each originally reported threat.

1 Such as in the VLDB (“pVLDB Reproducibility”) and SIGMOD communities
(“ACM SIGMOD 2019 Reproducibility”, clickable links available in PDF).

https://github.com/
https://www.sqlite.org/index.html
https://www.mediawiki.org/wiki/MediaWiki
https://vldb-repro.com/
http://db-reproducibility.seas.harvard.edu/

212 D. Braininger et al.

res = logged_sqlite3_exec(sql, "CREATE TABLE file_deltas\n"
"\t(\n"
"\tid not null, -- strong hash of file contents\n"
"\tbase not null, -- joins with files.id or file_deltas.id\n"
"\tdelta not null, -- compressed [...]\n"
"\tunique(id, base)\n"
"\t)", NULL, NULL, errmsg);

(a) Excerpt from the C++ code in Monotone.

CREATE TABLE file_deltas
(
id integer not null,
base integer not null,
delta integer not null,
unique(id, base)

);

(b) Extracted stmt.

Fig. 1. (a) A CREATE TABLE statement, embedded as string constants within Mono-
tone C++ code (source can be inspected online, “[...]” denotes a shortened comment).
The statement must be automatically parsed and translated to the MySQL dialect (b).

Our experience underlines that achieving full reproducibility remains a chal-
lenge even with well-designed, well-documented studies, and requires consider-
able extra effort. We feel that such efforts are not yet universally appreciated,
albeit it is in our joint interest that research become reproducible.

Structure. The remainder of this paper is organized as follows. We next sum-
marize the original study. Section 3 states our methodology. Section 4 describes
the main part of the reproduction work, as well as the detailed results. Section 5
discusses the overall results, followed by Sect. 6 with a description of threats to
validity. Finally, Sect. 7 focuses on related work. Section 8 concludes.

2 Original Study

We briefly summarize the original study. Neamtiu et al. analyze four database
applications, all of which are based on SQLite, and provide public development
histories by virtue of being available as open source software (OSS): BiblioteQ ,
Monotone, Mozilla Firefox , and Vienna:

– BiblioteQ (C++), analyzed in the time frame 03/15/2008–02/19/2010, is a
library management system.

– Monotone (C++), analyzed in the time frame 04/06/2003–06/13/2010, is a
distributed version control system.

– Mozilla Firefox (C, C++), analyzed in the time frame 10/02/2004–
11/21/2008, is a popular web browser.

– Vienna (Objective-C), analyzed in the time frame 06/29/2005–09/03/2010,
is an RSS newsreader for MacOS.

The original study uses a custom data processing pipeline for retrieving the
source code history, extracting schema declarations embedded in application
code, and computing differences between schema revisions. Extracting schema
declarations requires careful engineering: Fig. 1(a) shows a CREATE TABLE
statement embedded in the program code as a multi-line string constant.

https://github.com/brdd3v/repro/blob/master/monotone/input/cc/schema_migration_026.cc
https://textbrowser.github.io/biblioteq/
https://www.monotone.ca/
https://www.mozilla.org/de/firefox/
https://www.vienna-rss.com/

Examining Replicability and Reproducibility 213

Table 1. Evolution time frames and schema change details (as absolute numbers and
percentages) given in the original study [16].

App
segnahcetubirttAsegnahcelbaT

CREATE
TABLE

DROP
TABLE

ADD
COLUMN

DROP
COLUMN

Type
change

Init
change

Key
change

Firefox 5 (4.2%) 26(21.7%) 57(47.5%) 28(23.3%) 0 (0.0%) 3 (2.5%) 1 (0.7%)
Monotone 11(20.4%) 17(31.5%) 14(25.9%) 10(18.5%) 0 (0.0%) 0 (0.0%) 2 (3.7%)
BiblioteQ 4 (2.6%) 8 (5.2%) 27(17.5%) 28(18.2%) 83(53.9%) 0 (0.0%) 4 (2.6%)
Vienna 1 (7.1%) 0 (0.0%) 13(92.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Total 21 (6.1%) 51(14.9%) 111(32.5%) 66(19.3%) 83(24.3%) 3 (0.9%) 7 (2.0%)

We compare different schema versions with utility to derive mysqldiff (ver-
sion 0.30), a utility to derive schema modification operations (SMOs) that trans-
form a predecessor schema into the successor schema. mysqldiff only han-
dles MySQL schema declarations, but SQLite uses a custom SQL dialect2. For
instance, let us again consider the code example from Fig. 1(a). The extracted
CREATE TABLE statement is shown in Fig. 1(b). Note that the original state-
ment does not declare attribute types, which is permissible when using SQLite.
Since MySQL requires all attributes to be typed, we add a default attribute type
in preparation for processing the schemas with mysqldiff.

mysqldiff generates SMOs for creating or dropping a table, adding or remov-
ing a table column, and changing the type or initial value of a column. It also
recognizes changes to the table primary key. With this sequence of SMOs, the
predecessor schema can be transformed into its successor schema. Further SMOs,
such as renaming a table or an attribute, cannot be reliably derived based on
automated analysis alone, and would require sophisticated schema matching and
mapping solutions [3].

The statistics in the study by Neamtiu et al. derive from mysqldiff results;
Table 1 provides the number of SMOs for each project. Studies on schema evolu-
tion in server-based (non-embedded) DBMS, especially [13], show that attribute
type changes are frequent in many projects. In the study by Neamtiu et al., this
holds only for BiblioteQ, so no type changes were recorded for the other projects.
This is a finding that we will revisit at a later point. The original study finds that
the shares of CREATE TABLE and ADD COLUMN SMOs are comparable to
the observations of related studies on schema evolution in non-embedded DBMS.
The observation that changes to initial values and primary keys are uncommon
has also been observed in the later study of Qiu et al. [13].

3 Methodology of This Study

We conducted our reproducibility study as follows. Our code, as well as mate-
rial made available to us by the original authors, is available on Zenodo
2 The SQL dialects reference at https://en.wikibooks.org/wiki/SQL Dialects Refer

ence illustrates the richness of proprietary language constructs.

https://github.com/aspiers/mysqldiff
http://doi.org/10.5281/zenodo.4012776
https://en.wikibooks.org/wiki/SQL_Dialects_Reference
https://en.wikibooks.org/wiki/SQL_Dialects_Reference

214 D. Braininger et al.

(doi.org/10.5281/zenodo.4012776) to ascertain long-term availability. In partic-
ular, we publish all interim results computed by our analysis scripts (such as the
extracted schemas and the results of schema comparison), for transparency.

We started with identifying the source code repositories for the four database
applications, based on the information given in the original paper. Like in the
original work, we wrote a script to extract the database schema declarations
embedded in the source code. For Vienna, the authors provided us with a par-
tial script that could not be directly made to work (caused by minor syntactic
issues, and some missing components), and was therefore re-implemented by us
in Python. For all other projects, we had no such templates.

The original study used mysqldiff version 0.30 to compare successive schema
declarations. However, we used the newer version 0.60, since the output is more
succinct and also more convenient to parse. A further reason for abandoning the
legacy version is that it sometimes recognizes redundant schema modification
operations (as we also discuss in Sect. 6).

Further, the pairwise comparison of schema versions using mysqldiff is not
very robust: A table declaration that is missing in one version (e.g., due to a
parsing problem), and then re-appears later, is recognized as first dropping and
later re-creating this table. This problem was pointed out in the original study,
and will also be revisited in Sect. 6.

As a summarizing metric, we compute the difference in percentage across all
SMOs observed as ∑

SMO s |p(s) − r(s)|
P

,

where p(s) is the number of changes for SMO s reported in the original publica-
tion and r(s) is the number of changes for SMO s identified in our reproducibility
study. Further, P is the total number of changes in the project reported in [16].

4 Results

Vienna. For Vienna, the authors made their raw input data available to us, so
we could apply our script on the exact same data, with the exact same results.

We further attempted to locate the raw input data ourselves, based only on
information provided in the original study. Unfortunately, the original Source-
forge repository no longer exists, the project is now hosted on GitHub. From
there, we obtained fewer files than expected. Thus, searching for the raw input
data based on the information in the paper alone would have led to a different
baseline, yet the analysis still yields the same results as listed in Table 1.

Monotone. For Monotone, the original paper states that the study was conducted
on 48 archives available from the project website. However, we have reason to
believe that only 41 versions were chosen (specifically, versions 0.1, 0.2, and also
from 0.10 up to and including 0.48), based on the list of available archives, as
well as comments within the material that we obtained from the authors.

Moreover, it is not exactly clear from which files to extract schema declara-
tions: In the initial versions of Monotone, database schemas are only declared

https://github.com/ViennaRSS/vienna-rss

Examining Replicability and Reproducibility 215

11
17 14 10

2

14
9

14 10
2

11
17 14 10

2

16 13 14 10
2 4 8

27 28

83

44 6

26
20

80

4

Monotone (.sql files) Monotone (.sql and C++ files) BiblioteQ

CR
EA

TE
T.

DR
OP

T.

AD
D
C.

DR
OP

C.

Ty
pe

chg
.

Ini
t c
hg
.

Ke
y c

hg
.

CR
EA

TE
T.

DR
OP

T.

AD
D
C.

DR
OP

C.

Ty
pe

chg
.

Ini
t c
hg
.

Ke
y c

hg
.

CR
EA

TE
T.

DR
OP

T.

AD
D
C.

DR
OP

C.

Ty
pe

chg
.

Ini
t c
hg
.

Ke
y c

hg
.

0

25

50

75

#
C
ha

ng
es

Original Study Reproduction Study

Fig. 2. Comparing the number of schema changes for Monotone and BiblioteQ.

in files with suffix .sql. Later, database schemas are also embedded within C++
files (starting with version 10). We therefore explored two approaches, where we
(1) consider only schemas declared in .sql-suffixed files, and (2) also consider
schemas embedded within the program code.

Figure 2 visualizes the results for both approaches. For each type of SMO
analyzed, we compare the number of changes reported in the original study with
the number of changes determined by us. Overall, our results come close. As
pointed out in Sect. 3, problems in parsing SQL statements embedded in pro-
gram code lead to falsely recognizing tables as dropped and later re-introduced.
We suspect that this effect causes the discrepancies observed for CREATE and
DROP TABLE statements.

BiblioteQ. At the time when the original study was performed on BiblioteQ,
all schema declarations were contained in files with suffix .sql (this has mean-
while changed). Schema declarations do thus not have to be laboriously parsed
from strings embedded in the application source code. MySQL, SQLite, and
PostgreSQL were supported as alternative backends. In particular, SQLite was
initially not supported, but was introduced with revision 35, while the original
study spans the time frame from the very beginning of the project (see Sect. 2).
Unfortunately, the original study does not discuss this issue.

We suspect that up to revision 35, the schema declarations of MySQL were
analyzed, and only from then on for SQLite.3 The high number of type changes
reported for BiblioteQ may thus be overemphasized—the switch causes half the
reported type changes. However, this still leaves a significant number of type
changes for BiblioteQ, compared to the other projects (see Table 1).

3 Revision 16 only changes the MySQL schema declaration, and the original study
reports a schema change in this revision. A peak in schema changes is reported for
revision 35 (see Table 2), as switching from MySQL to SQLite schema declarations
causes mysqldiff to recognize type changes. Since revision 35 only adds support
for SQLite, with no schema changes for MySQL or PostgreSQL, we conclude that
starting with revision 35, the authors analyzed the SQLite schema.

216 D. Braininger et al.

Table 2. Pairwise comparison of schema versions, and the number of changes w.r.t. the
previous version. Stating the number of changes reported in the original paper (#C,
original), the number of changes identified in our reproducibility study (#C, repro), as
well as the absolute difference (diff), for BiblioteQ.

Table 3. Comparing of the total number of schema changes across projects.

The results of our reproducibility study on BiblioteQ are visualized in Fig. 2.
While we are confident that we have identified the raw input data, due to liberties
in the data preparation instructions, our results nevertheless deviate.

In Table 2, we list the changes per revision, comparing the results of the orig-
inal study against our own. Revision 35, where SQLite was introduced, clearly
stands out. In processing the extracted schemas (in particular, revisions 4, 5 and
11), we encountered small syntax errors in SQL statements, that we manually
fixed to make the analysis work. Since we can reproduce the exact results of the
original study, we may safely assume that Neamtiu et al. have fixed these same
errors, even though they do not report this.

Mozilla Firefox. The original paper analyzed 308 revisions of Mozilla Firefox in a
specific time interval. From the material provided to us by the authors, we further
know the table names in database schemas. Unfortunately, this information was
not specific enough to identify the exact revisions analyzed. As the original
version control system (CVS) has meanwhile been replaced by Mercurial, we
inspected the CVS archive, the current GitHub repositories, and the Firefox
release website. We searched for the CVS tags mentioned by the authors, and
tried to align them with these sources. Despite independent efforts by all three
authors, we were not able to reliably identify the analyzed project versions.
Consequently, we are not able to report any reproducibility results.

Summary. We summarize our results in Table 3, which reads as follows. For each
project, we state the number of schema changes observed in the original study
and in our reproducibility study. We state the absolute difference in the results,
as well as the relative difference in percent, as introduced in Sect. 3.

https://ftp.mozilla.org/pub/vcs-archive/
https://github.com/mozilla/gecko-dev
https://ftp.mozilla.org/pub/firefox/releases/

Examining Replicability and Reproducibility 217

While we were able to exactly reproduce the results for Vienna, we were not
able to conduct the analysis for Mozilla Firefox. For Monotone and BiblioteQ,
our results deviate to varying degrees. We next discuss these effects.

5 Discussion

Access to the raw input data, sample code and instructions make project Vienna
an almost ideal reproduction case. For the other projects, we found the data
preparation instructions unspecific. For Monotone and Mozilla Firefox, we strug-
gled (and in case of Mozilla Firefox even failed) to locate the raw input data.
Nearly a decade after the original paper has been published in 2011, code reposi-
tories have switched hosting platforms. Therefore, a link is not enough to unam-
biguously identify the raw input data, to quote from the title of a recent repro-
ducibility study [12]. Further, the exact revision ranges must be clearly specified,
beyond (ambiguous) dates.

The ACM reproducibility badge “Artefacts Available” requires artefacts like
the raw input data to be available on an archival repository, identified by a digital
object identifier. Considering our own experience, it is vital to ensure long-term
access to the raw input data. Various efforts (e.g. [2]) try to ensure long-term
availability of OSS repositories. However, without very specific instructions on
data preparation, the reproducibility of the results remains at risk.

To quantify how much our results differ, we calculate the difference in per-
centage across all SMOs. For a more fine grained assessment of the degree of
reproducibility, we would require information on the exact SMOs identified in
the original study. This motivates us to also provide the output of applying
mysqldiff in our reproducibility study in our Zenodo repository (see Sect. 3).

6 Threats to Validity

We now turn evaluate threats to the validity of the original study, and comment
on additional threats discovered during reproduction.

Threats of the Original Study. Three possible threats to validity are pointed out.
Firstly, missing tables in the database schema could arise from using inadequate
text matching patterns. We agree that their correctness affects result quality,
especially if the pattern is used to extract schemas from code that in some
versions or revisions have changed significantly. Inadequate patterns can cause
missing tables, missing columns, and other issues.

Secondly, renamings are another possible source of errors. Following usual
schema history evolution techniques, the authors consider renaming of tables and
columns as a deletion followed by an addition, as implemented by mysqldiff.
Consequently, renamings cannot be correctly recognized.

Thirdly, the choice of reference systems is considered an external threat to
validity. The evolution of database schemas for applications with different char-
acteristics might differ.

https://www.acm.org/publications/policies/artifact-review-badging

218 D. Braininger et al.

Threats of the Reproduction Study. The dominant threat to validity of the repro-
duction concerns behavior of mysqldiff:

– Different versions of mysqldiff produce different output, also caused by bugs.
Erroneous statements may be mistaken for actual schema changes.

– Syntax errors in table declarations cause mysqldiff to ignore any subsequent
declarations. This error propagates, since in comparing predecessor and suc-
cessor schemas, mysqldiff will erroneously report additional SMOs, such as
DROP TABLE and CREATE TABLE statements.

– Foreign key constraints require table declarations in topological order. CRE-
ATE TABLE statements extracted from several input files require careful
handling because runtime errors may cause following inputs to be ignored.

mysqldiff relies on a MySQL installation, and the handling of table and
column identifiers in MySQL can be case-sensitive. The subject projects use
lowercase table and column names, so this threat does not materialize.

Finally, incorrectly selected files containing SQL statements are a threat to
validity. For instance, one individual file might be used for a specific DBMS when
multiple DBMS are supported. If the schemas in different files are not properly
synchronized, this leads to deviations. Carefully recording exactly which files
were analyzed is necessary.

7 Related Work

The authors of the original study [8,11] analyze on-the-fly relational schema evo-
lution, as well as collateral evolution of applications and databases. Contrariwise
to the object of our study [16], the former was carried out manually, and risks
differ between manual and programmatic analysis.

From the substantial body of work on empirical schema evolution studies,
Curino et al. [7] study schema evolution on MediaWiki, and consider schema
size growth, lifetime of tables and columns, and per-month revision count. They
analyze schema changes at macro and micro levels. Moon et al. [10] and Curino
et al. [6] test the PRISM and PRIMA systems using the data set addressed in
Ref. [7], as well as SMOs to describe schema evolution. Qiu et al. [13] empirically
analyze the co-evolution of relational database schemas and code in ten popular
database applications. They also discuss disadvantages of using mysqldiff.

Pawlik et al. [12] make a case for reproducibility in the data preparation pro-
cess, and demonstrate the influence of (undocumented) decisions during data
preprocessing on derived results. However, we are not aware of any reproducibil-
ity studies on schema evolution.

8 Conclusion and Future Work

In this paper, we perform a reproducibility study on an analysis of the evolution
of embedded database schemas. For one out of four real-world database appli-
cations, we obtain the exact same results; for two, we come within approx. 20%
of the reported changes, and fail to identify the raw input data in one case.

https://www.perlmonks.org/?node_id=507294
https://dev.mysql.com/doc/refman/8.0/en/identifier-case-sensitivity.html

Examining Replicability and Reproducibility 219

Our study, conducted nearly a decade after the original study, illustrates
just how brittle online resources are. Specifically, we realize the importance of
archiving the input data analyzed, since repositories can move. This not only
changes the URL, but creates further undesirable and previously unforeseeable
effects, for instance that timestamps and tags no longer serve as identifiers.

We hope that sharing our insights, we can contribute to a more robust,
collective science methodology in the data management research community.

Acknowledgements. We thank the authors of [16] for sharing parts of their analysis
code, and their feedback on an earlier version of this report. Stefanie Scherzinger’s
contribution, within the scope of project “NoSQL Schema Evolution und Big Data
Migration at Scale”, is funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation)—grant number 385808805.

References

1. Abadi, D., Ailamaki, A., Andersen, D., Bailis, P., et al.: The seattle report on
database research. SIGMOD Rec. 48(4), 44–53 (2020)

2. Abramatic, J.F., Di Cosmo, R., Zacchiroli, S.: Building the universal archive of
source code. Commun. ACM 61(10), 29–31 (2018)

3. Bellahsene, Z., Bonifati, A., Rahm, E.: Schema Matching and Mapping, 1st edn.
Springer, Cham (2011)

4. Bird, C., Menzies, T., Zimmermann, T.: The Art and Science of Analyzing Software
Data, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2015)

5. Collberg, C., Proebsting, T.A.: Repeatability in computer systems research. Com-
mun. ACM 59(3), 62–69 (2016)

6. Curino, C.A., Moon, H.J., Zaniolo, C.: Graceful database schema evolution: the
prism workbench. VLDB Endow. 1, 761–772 (2008)

7. Curino, C.A., Tanca, L., Moon, H.J., Zaniolo, C.: Schema evolution in Wikipedia:
toward a web information system benchmark. In: Proceedings of ICEIS 2008 (2008)

8. Lin, D.Y., Neamtiu, I.: Collateral evolution of applications and databases. In: Pro-
ceedings of IWPSE-Evol 2009 (2009)

9. Manolescu, I., Afanasiev, L., Arion, A., Dittrich, J., et al.: The repeatability exper-
iment of SIGMOD 2008. SIGMOD Rec. 37(1), 39–45 (2008)

10. Moon, H.J., Curino, C.A., Deutsch, A., Hou, C.Y., Zaniolo, C.: Managing and
querying transaction-time databases under schema evolution. VLDB Endow. 1,
882–895 (2008)

11. Neamtiu, I., Lin, D.Y., Uddin, R.: Safe on-the-fly relational schema evolution.
Technical report (2009)

12. Pawlik, M., Hütter, T., Kocher, D., Mann, W., Augsten, N.: A link is not enough
- reproducibility of data. Datenbank-Spektrum 19(2), 107–115 (2019)

13. Qiu, D., Li, B., Su, Z.: An empirical analysis of the co-evolution of schema and
code in database applications. In: Proceedings of ESEC/FSE 2013 (2013)

14. Sjøberg, D.: Quantifying schema evolution. Inf. Softw. Technol. 35(1), 35–44 (1993)
15. Vassiliadis, P., Zarras, A.V., Skoulis, I.: How is life for a table in an evolving rela-

tional schema? Birth, death and everything in between. In: Johannesson, P., Lee,
M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp.
453–466. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25264-3 34

16. Wu, S., Neamtiu, I.: Schema evolution analysis for embedded databases. In: Pro-
ceedings of ICDE Workshops 2011 (2011)

https://doi.org/10.1007/978-3-319-25264-3_34

Challenges in Checking JSON Schema
Containment over Evolving Real-World

Schemas

Michael Fruth1, Mohamed-Amine Baazizi2, Dario Colazzo3, Giorgio Ghelli4,
Carlo Sartiani5, and Stefanie Scherzinger1(B)

1 University of Passau, Passau, Germany
{michael.fruth,stefanie.scherzinger}@uni-passau.de

2 Sorbonne Université, LIP6 UMR 7606, Paris, France
baazizi@ia.lip6.fr

3 Université Paris-Dauphine, PSL Research University, Paris, France
dario.colazzo@dauphine.fr

4 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
ghelli@di.unipi.it

5 DIMIE, Università della Basilicata, Potenza, Italy
carlo.sartiani@unibas.it

Abstract. JSON Schema is maturing into the de-facto schema language
for JSON documents. When JSON Schema declarations evolve, the ques-
tion arises how the new schema will deal with JSON documents that still
adhere to the legacy schema. This is particularly crucial in the mainte-
nance of software APIs. In this paper, we present the results of our empir-
ical study of the first generation of tools for checking JSON Schema con-
tainment which we apply to a diverse collection of over 230 real-world
schemas and their altogether 1k historic versions. We assess two such
special-purpose tools w.r.t. their applicability to real-world schemas and
identify weak spots. Based on this analysis, we enumerate specific open
research challenges that are based on real-world problems.

Keywords: JSON Schema containment · Empirical study

1 Introduction

With the proliferation of JSON as a data exchange format, there is a need for
a schema language that describes JSON data: By relying on schema languages,
software developers can reduce the burden of defensive programming, since they
can trust their input to adhere to certain constraints [9]. Among various pro-
posals for a JSON schema language (see [1] for an overview), JSON Schema
(link available in the PDF) is on its way to standardization. First results on the
theoretical properties of this language have already been published [4,11].

When schemas evolve as part of larger software projects, the question arises
how the new schema version compares to the previous version. For instance,
c© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 220–230, 2020.
https://doi.org/10.1007/978-3-030-65847-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_20&domain=pdf
https://json-schema.org/
https://doi.org/10.1007/978-3-030-65847-2_20

Challenges in Checking JSON Schema Containment 221

1 { "properties":{
2 "fruit":{
3 "enum":[

4 "apple",

5 - "pear"

6] } } }
7

{ "properties":{
"fruit":{

"enum":[

"apple",

+ "pear",

+ "banana"

] } } }

Fig. 1. JSON Schema document E1 (left) is a sub-schema of E2 (right).

developers will want to know whether the new API (described by a schema)
will still accept input from legacy clients; if not, developers risk runtime errors.
Decisions on JSON Schema containment, e.g., whether the language declared
by one schema is a subset of the other, require tool support. One such tool is
json-schema-diff-validator (link available in PDF). The 1.7k–14k weekly down-
loads from npmjs since 5-Jan-2020 confirm a strong demand. JSON Schema
containment has recently also been explored in academic research [8].

In this paper, we conduct an empirical study on tools for checking JSON
Schema containment, which we refer to as JSC-tools: We apply JSC-tools on
a diverse collection of JSON Schema documents. In particular, we set out to
identify weak spots in these tools which are rooted in genuine research challenges.

Contributions. Our paper makes the following contributions:

– We apply state-of-the-art JSC-tools to schemas hosted on SchemaStore (link
available in the PDF), where developers share real-world JSON Schema doc-
uments for re-use. As of today, SchemaStore is the largest collection of its
kind. From the GitHub repository backing this website, we analyze over 230
schemas, with a total of over 1k historical versions.

– We investigate three research questions: (RQ1) We assess the applicability
on JSC-tools on real-world schemas, i.e., the share of schemas that can be
correctly processed. (RQ2) We ask which real-world language features are dif-
ficult to handle. (RQ3) We further determine the degree of consensus among
JSC-tools applied to the same input, as an indicator whether classification
decisions can be relied upon.

– Based on the insights thus gained, we identify open research challenges.
– We publish our fully automated analysis pipeline, to allow fellow researchers

to build upon and reproduce our results.

Structure. In Sect. 2, we motivate that checking JSON Schema containment is
not trivial. In Sect. 3, we describe our methodology. We address our research
questions and present our results in Sect. 4, with a discussion of research oppor-
tunities in Sect. 5. We cover potential threats to validity in Sect. 6, and discuss
related work in Sect. 7. Section 8 concludes.

https://www.npmjs.com/package/json-schema-diff-validator
https://www.schemastore.org/json/

222 M. Fruth et al.

2 Examples of JSON Schema Containment

We motivate that checking JSON Schema containment is not trivial. Our exam-
ples are based on instances of JSON Schema evolution that we have observed
on SchemaStore. We basic assume familiarity with JSON syntax and otherwise
refer to [4] for an introduction to the JSON data model.

1 { "properties":{
2 "address":{
3 - "type": "string"

4 } } }
5

6

7

{ "properties":{
"address":{

+ "properties":{
+ "street": { "type": "string" },
+ "number": { "type": "integer" },
+ "city": { "type": "string" } }

} } }

Fig. 2. JSON Schema document S1 (left) is a sub-schema of S2 (right).

Conditional Semantics. Let us consider schema E1, shown left in Fig. 1.
The JSON Schema language employs a conditional semantics, demanding that
if a JSON value is an object, and if that object has a property named
fruit, then its value must be either the string "apple" or "pear". Hence,
{"fruit": "banana"} is invalid, yet the raw string value "banana" is valid,
since it is not an object. Objects without a property fruit are also valid, such
as {"vegetable": "potato"}.

Extending Enumerations. Let us assume that the schema is changed to E2, as
shown in Fig. 1 (right). We employ a diff-based notation, showing the original
and the changed schema side-by-side. Removed lines are prefixed with minus,
added lines are prefixed with plus. In line 5, a comma is added at the end of the
line, and item banana is added in line 6. The document {"fruit": "banana"}
is now valid w.r.t. schema E2. We say schema E1 is a sub-schema of E2, since
the language it defines is a subset of the language defined by E2.

Introducing Objects. Schema S1 in Fig. 2 (left) specifies that if a JSON document
is an object with a property named address, then the value of this property is
of type string. Thus, document D : {"address": "Burbank California"} is
valid w.r.t. S1. We now refactor the schema to S2, as shown. Document D is
still valid w.r.t. the new schema S2, as the conditional semantics only imposes
restrictions if the type of the address is an object. On the other hand, a JSON
document with an address structured as an object is not valid w.r.t. schema S1,
which expects a string. Hence, S1 is a sub-schema of S2.

Adding New Properties. We continue with schema S2 and extend the address
properties by "zip": {"type": "integer"} (inserted after line 6 in Fig. 2
on the right), declaring that ZIP codes must be integer values. We refer to
this new schema as S3. Schema S2 allows any type for the ZIP code (e.g.
string: "zip": "1234"), as additional properties are allowed by default. Thus,
schema S3 is more restrictive than S2 and therefore a sub-schema of S2.

Challenges in Checking JSON Schema Containment 223

Summary. Reasoning whether schema containment holds is not trivial, even for
toy examples. With real-world schemas, which can be large and complex [10],
we absolutely need the support of well-principled tools. Assessing the state-of-
the-art in such JSC-tools is the aim of our upcoming empirical study.

3 Methodology

3.1 Context Description

Schema Collection. We target the JSON Schema documents hosted on Schema-
Store, a website backed by GitHub, as of 19-Jun-2020 (commit hash c48c727).

JSC-Tools. The JSC-tool json-schema-diff-validator, mentioned in the Introduc-
tion, only compares syntactic changes: nodes added, removed, and replaced
are considered breaking changes. This can lead to incorrect decisions regard-
ing schema containment, e.g., for the schemas from Fig. 2. We therefore exclude
this tool from our analysis.

Instead, we consider two tools that perform a semantic analysis, one tool
from academia, and another from an open source development project. Since
the tools have rather similar names, we refer to them as Tool A and Tool B:

– Tool A is called jsonsubschema (link available in the PDF) and is an academic
prototype implemented in Python, based on well-principled theory [8]. Based
on the authors’ recommendation (in personal communication), we use the
GitHub version with commit hash 165f893.
Tool A supports JSON Schema Draft 4 without recursion, and has only lim-
ited support for negation (not) and union (anyOf).

– Tool B, is-json-schema-subset (link available in the PDF) is also open source
and implemented in TypeScript. We use the most recent version available
at the time of our analysis (version 1.1.15). Tool B supports JSON Schema
Drafts 5 and higher. No further limitations are stated.

3.2 Analysis Process

Our data analysis pipeline is fully automated. The Python 3.7 scripts for our data
preparation and analysis pipeline, as well as the raw input data, are available for
reproduction analysis.1 We use the Python modules jsonschema (version 3.2.0)
and jsonref (version 0.2) for JSON Schema validation and dereferencing.

Obtaining Schema Versions. We retrieve the historic versions of all JSON
Schema documents hosted on SchemaStore from the master branch of its
GitHub repository (link available in the PDF), provided that they are reach-
able by path src/schemas/json/. This yields 248 schemas. About half of them
have not changed since their initial commit, while some schemas count over 60

1 https://github.com/michaelfruth/jsc-study.

https://bitbucket.org/atlassian/json-schema-diff-validator/
https://github.com/IBM/jsonsubschema
https://www.npmjs.com/package/is-json-schema-subset
https://github.com/Julian/jsonschema
https://github.com/gazpachoking/jsonref
https://github.com/SchemaStore/schemastore
https://github.com/michaelfruth/jsc-study

224 M. Fruth et al.

Table 1. Comparing both JSC-tools in two separate experiments: (a) Table 1a shows
reflexivity of schema equivalence (≡) for all 1,028 schemas (⊥ denotes runtime errors).
Table rows show results for Tool A, columns for Tool B. (b) Table 1b states results of
checking 796 pairs of successive schema versions w.r.t. equivalence, strict containment
(⊂,⊃), incomparability (||), and runtime errors.

(a) Schema reflexivity.

Tool B

T
o
ol

A ≡ ⊥ Σ
≡ 36.9% 0.2% 37.1%
⊥ 48.2% 14.7% 62.9%
Σ 85.1% 14.9% 100.0%

(b) Succeeding schema versions.

Tool B

T
o
ol

A

≡ ⊂ ⊃ ‖ ⊥
≡ 9.5% 0.3% 0.3% 0.4% 0.0%
⊂ 3.0% 2.9% 0.3% 1.6% 0.0%
⊃ 5.7% 0.0% 1.0% 1.1% 0.0%
‖ 3.4% 0.6% 0.5% 2.6% 0.4%
⊥ 25.9% 3.3% 0.5% 17.1% 19.7%

historic versions. In total, we obtain 1,069 historic schema versions which we have
validated to ensure they are syntactically correct JSON Schema documents.

Excluding Schema Versions from Analysis. One practical challenge is that the
JSC-tools considered support non-overlapping drafts of JSON Schema, while
we need to process the same document with both tools. As a workaround, we
determine the subset of documents that are both valid w.r.t. Draft 4, Draft 6,
and Draft 7, thereby excluding four documents.

Regarding drafts, we need to take further care: JSON Schema is designed
as an open standard, which means that a validator will accept/ignore unknown
language elements that are introduced in a future draft. Then, running both tools
on the same schema document constitutes an unfair comparison, since the tools
will have to treat these elements differently. We therefore search for keywords
introduced/changed after Draft 4 (e.g., const or if-then-else). In total, we
thus exclude 41 documents, a choice that we also discuss in Sect. 6.

Overall, we obtain 1,028 JSON Schema documents, where approx. 10% con-
tain recursive references. We count 232 schemas in their latest version and 796
pairs of documents that are two versions of the same schema, ordered by the time
of their commits, where no other commit has changed the schema in between.
In the following, we refer to such pairs as successive schema versions.

4 Detailed Study Results

4.1 RQ1: What Is the Real-World Applicability of JSC-Tools?

We are interested in the share of real-world schemas that the JSC-tools can reli-
ably process. This is an indicator whether these tools are operational in practice.
To this end, we perform a basic check: Given a valid JSON Schema document S,
equivalence is reflexive (S ≡ S). Given this ground truth, we compare each
schema version with itself.

Challenges in Checking JSON Schema Containment 225

0% 20% 40% 60% 80%

Attribute
Recursion

Schema
Other

58.9%
18.4%

10.5%
12.2%

(a) Tool A.

0% 20% 40% 60% 80%

Recursion
JsonRef

Error
Other

77.1%
21.6%

1.3%
0%

(b) Tool B.

Fig. 3. Error distribution (in %) for the experiment from Table 1a.

The results are shown in Table 1a. The first row states the percentage of
documents that Tool A recognizes as equivalent. The second row states the
percentage of documents where Tool A fails (denoted “⊥”). “Σ” shows sums
over rows/columns. The results for Tool B are shown in columns. The top left
entry states that for less than half of the documents, both tools agree they are
equivalent to itself. About 15% of documents cannot be checked by either tool.

Results. We observe a high failure rate for Tool A. In the experiments conducted
by Habib et al. [8], the authors of Tool A, Tool B performs comparatively worse
than Tool A. Further investigations, performing experiments with the exact same
version of Tool B as used in [8], have revealed that the applicability of Tool B
has meanwhile improved. Moreover the experiments in [8] consider a different
schema collection, as we also discuss in Sect. 7.

Since not all real-world language features are supported by Tool A, our first
experiment is evidently setting up Tool A for failure. We next look more closely
into which language features are problematic.

4.2 RQ2: Which Language Features Are Difficult to Handle?

We are interested in which properties of real-world schemas cause JSC-tools to
fail, either because not yet supported or incorrectly handled. As a first step,
we inspect the error messages for documents that cannot be processed in the
first experiment. Figure 3 visualizes the distribution of the top-3 runtime errors.
While the tools use different names in error reporting, it is obvious that recursion
and reference errors are frequent.

To further investigate which operators of JSON Schema are problematic, we
consider subsets of our document collection, where we exclude schemas with
certain language features. In particular, we check pairs of successive schema ver-
sions for containment. We register when a tool decides that the schema versions
are equivalent; if not, whether the language declared by the predecessor version
is a sub-set of the language declared by the successor version, or a super-set. In
all remaining non-error cases, we consider the versions incomparable.

In Fig. 4, we show the relative results for (i) the entire collection, (ii) a subset
where all references are non-recursive, contain only document-internal references
or references to URLs, which can be resolved, (iii) a subset without not, and

226 M. Fruth et al.

EC RF NF RF+NF
0%

20%

40%

60%

80%

100%
X

⊥
‖
⊃
⊂
≡

(a) Tool A.

EC RF NF RF+NF
0%

20%

40%

60%

80%

100%

(b) Tool B.

Fig. 4. Checking pairs of successive schemas on (i) the entire collection (EC: 796 pairs),
(ii) a subset where all references are non-recursive, document-internal or URLs, and can
be resolved (RF: 652 pairs), (iii) without not (NF: 572 pairs), and (iv) the combination
of (ii) and (iii) (RF+NF: 451 pairs). “X” represents excluded schema documents.
Reporting decisions in % of the entire collection.

(iv) the combination of all these restrictions. For Tool A, the classification deci-
sions remain identical throughout, only the error rate decreases. This means
we have indeed excluded the problematic schema documents. With Tool B, the
classification decisions vary slightly, but we see the error rate decrease to ca. 2%.

Results. Recursion and negation are obvious challenges for JSC-tools. While
Tool A explicitly does not support recursion, and negation only to some extent,
Tool B (where no limitations are specified) struggles with these language con-
structs as well. However, recursion and negation do occur in real-world JSON
Schema documents, and we refer to Sect. 5 for a discussion of which use cases
for JSON Schema are affected when these features are not supported.

4.3 RQ3: What Is the Degree of Consensus Among JSC-Tools?

To assess how well both tools agree, we compare successive schema versions
w.r.t. the classification decisions of both tools. Table 1b summarizes the results.
Again, results for Tool A are shown in rows, results for Tool B in columns. In
an ideal world, the JSC-tools completely agree, so we expect a diagonal matrix
(with zeroes in all cells except on the diagonal). However, the tools disagree
considerably. For instance, for 5.7% of the pairs, Tool A claims that the first
schema version declares a super-language of the second, while Tool B regards
both versions as equivalent (row ⊃/column ≡). The tools agree on only approx.
50% of subset of inputs that both tools can process without a runtime error.

Results. Evidently, the degree of consensus is low. Since developers cannot yet
rely on JSC-tools, they are forced to visually compare evolving schemas, near-
impossible for the complex and large schemas encountered in the real world

Challenges in Checking JSON Schema Containment 227

(some schemas on SchemaStore take up over 10MB stored on disk [10]). In the
upcoming discussion, we discuss open research questions in this context.

5 Discussion of Results and Research Opportunities

Summary. Our experiments show that the first generation of JSC-tools is still in
an early stage where recursion and negation in schemas are not yet well covered.

In earlier work [10], we have manually categorized all SchemaStore schemas
depending on their purpose: data schemas use JSON primarily as a data format.
meta schemas define markup for other schemas. For instance, there are JSON
meta schemas for every JSON Schema Draft. conf schemas describe JSON doc-
uments that configure services. app schemas are used for data exchange between
applications.2 This categorization provides a general overview how JSON Schema
is employed in practice. Aligning the documents excluded in the experiments
from Fig. 4 reveals that by ignoring recursive schemas, we primarily exclude conf
and meta schemas. By ignoring schemas with negation, we again mainly exclude
conf schemas. In summary, the JSC-tools best cover data and app schemas,
while on SchemaStore, conf schemas constitute the largest group.

Research Opportunities. Making JSC-tools operable for production is more than
just an engineering effort, and we see several opportunities for impactful research:

– Handling recursion and negation in checking JSON Schema containment is
still unresolved. As recursion combined with negation is a general challenge in
database theory, e.g., when specifying sound semantics for Datalog, we may
expect some concepts to transfer (as also proposed in [4]).

– Not only do practitioners need robust and complete tools for inclusion check-
ing, they also need to understand why containment holds/does not hold:

• This could be done by means of instance generation, i.e., generating a
small example document that captures why the schemas differ. A first
proposal for witness generation is sketched in [2].

• Alternatively, pointing to the positions in the schema declarations that
cause containment checks to fail would also provide some degree of
explainability for developers comparing schemas.

– Having reliable JSC-tools at hand would allow us to build editors that assist
with schema refactoring. Then, a JSC-tool can confirm that the refactored
schema is still equivalent to its original (while the new version may be easier
to comprehend, easier to validate, or simply more succinct).

– We have come to realize that the data management community is in need
of a dedicated micro-benchmark for JSC-tools, with small yet realistic doc-
uments where we know the ground truth w.r.t. schema containment. Such a
benchmark would certainly benefit researchers and practitioners alike.

2 Naturally, such a classification is always subjective, and not necessarily unique, as
also remarked in the original work on DTDs [5] that inspired this categorization.

228 M. Fruth et al.

6 Potential Threats to Validity

Supported JSON Schema Drafts. As stated in Sect. 3, the JCS-tools employed
in this study support different drafts of JSON Schema: Tool A handles Draft 4,
Tool B handles Draft 5+. Due to the open standard policy of JSON Schema, a
keyword introduced in Draft 5+ is ignored by Tool A, but will carry meaning for
Tool B. As discussed, in order to level the playing field, we exclude affected doc-
uments from our analysis: We have diligently checked for keywords, and regard
the risk that we may have overlooked problematic documents as minor.

Recursion in Schemas. We noticed minor differences in reporting recursion errors
in the Python-based Tool A and the TypeScript-based Tool B, which we trace
back to the different programming languages and their libraries. Specifically,
we noticed spurious, non-deterministic behavior in the jsonschema module for
recursive schemas. However, this affects only a handful of JSON Schema docu-
ments and is a minor threat to our results at large.
Renaming Schema Files. In our analysis, we consider all historic versions of a
schema based on git commits. For git to recognize that a file is renamed, the
content of the file must remain the same. Due to (so far) 13 renamings in the
history of SchemaStore, our collection contains 13 duplicate schema versions.
Since this is a small number in the context of over 1k schema versions analyzed,
this again is a minor threat.

Mining git and GitHub. In mining git repositories, we face the usual and well
understood threats [3]. Our analysis is based on a specific schema collection.
One threat to validity is that the historic schema versions in this collection are
skewed: Only eight schemas account for almost one third of all historic schema
versions. Nevertheless, SchemaStore is to date the largest and also most diverse
collection of JSON Schema documents, and thus highly suitable for our purposes.

7 Related Work

There is a mature body of work on schema containment for XML schemas (such
as DTDs and XML Schema), e.g. [9], based on automata as the formal vehicle [7].
Other approaches exist that rather relay on a particular class of constraints to
check inclusion between XML schemas like Extended DTDs featuring regular
expressions with interleaving and counting [6].

First theoretical properties of the JSON Schema language have been stud-
ied recently [4,11]. To the best of our knowledge, the tool by Habib et al. [8]
(“Tool A” in our study) is the first academic exploration of JSON Schema con-
tainment. Their experiments are closest to our work, since they also compare
Tools A and B on real-world JSON Schema documents, but they use a differ-
ent baseline. In particular, the authors choose three sources for JSON Schema
documents, while SchemaStore hosts schemas from over 200 different sources.

It seems plausible that the schema collection studied by us is not only larger
in terms of the number of distinct schemas (each with its historic versions),

Challenges in Checking JSON Schema Containment 229

but overall also more diverse, while skewed towards schemas for configuring ser-
vices [10]. This may explain some of the differences in our respective experiments
regarding the successful applicability to real-world schemas, plus the fact that
Tool B has meanwhile been improved (see our discussion in Sect. 4.1).

In general, checking JSON Schema containment is not a trivial task: As
JSON Schema is not an algebraic language, syntactic and semantic interactions
between different keywords in the same schema object complicate programmatic
handling. In [2], we therefore propose a dedicated algebra for JSON Schema,
which has the potential to serve as a formal foundation for new approaches to
checking JSON Schema containment.

8 Conclusion

In this paper, we evaluate a first generation of tools for checking JSON Schema
containment. Our analysis shows that this is still a very young field, with open
research opportunities that have immediate practical relevance.

In particular, we recognize the need for a micro-benchmark for JSC-tools.
While there is a well-adopted benchmark for JSON Schema validation, the
JSON Schema Test Suite (link available in the PDF), no comparable bench-
mark exists for checking JSON Schema containment, with pairs of documents
for which containment was determined manually, for a particular operator or a
logical group of operators. Such a micro-benchmark could be inspired by real-
world schemas found on SchemaStore. We plan to address this in our future
work.

Acknowledgments. This project was partly supported by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation), grant #385808805.

References

1. Baazizi, M.A., Colazzo, D., Ghelli, G., Sartiani, C.: Schemas and types for JSON
data: from theory to practice. In: Proceedings of the 2019 International Conference
on Management of Data (SIGMOD), pp. 2060–2063 (2019)

2. Baazizi, M.A., Colazzo, D., Ghelli, G., Sartiani, C., Scherzinger, S.: Not elimination
and witness generation for JSON schema. In: BDA 2020 (2020)

3. Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., Germán, D.M., Devanbu, P.T.:
The promises and perils of mining Git. In: Proceedings of the 6th International
Working Conference on Mining Software Repositories (MSR), pp. 1–10 (2009)

4. Bourhis, P., Reutter, J.L., Suárez, F., Vrgoc, D.: JSON: data model, query lan-
guages and schema specification. In: Proceedings of the 36th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS), pp. 123–
135 (2017)

5. Choi, B.: What are real DTDs like? In: Proceedings of the Fifth International
Workshop on the Web and Databases (WebDB), pp. 43–48 (2002)

6. Colazzo, D., Ghelli, G., Pardini, L., Sartiani, C.: Efficient asymmetric inclusion of
regular expressions with interleaving and counting for XML type-checking. Theor.
Comput. Sci. 492, 88–116 (2013)

https://github.com/json-schema-org/JSON-Schema-Test-Suite

230 M. Fruth et al.

7. Comon, H., et al.: Tree Automata Techniques and Applications. http://tata.gforge.
inria.fr/ (2007). Release October, 12th 2007

8. Habib, A., Shinnar, A., Hirzel, M., Pradel, M.: Type Safety with JSON Subschema.
CoRR abs/1911.12651v2 (2020). http://arxiv.org/abs/1911.12651v2

9. Lee, T.Y.T., Cheung, D.W.l.: XML schema computations: schema compatibility
testing and subschema extraction. In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Management (CIKM), pp. 839–848
(2010)

10. Maiwald, B., Riedle, B., Scherzinger, S.: What are real JSON schemas like? In:
Guizzardi, G., Gailly, F., Suzana Pitangueira Maciel, R. (eds.) ER 2019. LNCS,
vol. 11787, pp. 95–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34146-6 9

11. Pezoa, F., Reutter, J.L., Suárez, F., Ugarte, M., Vrgoc, D.: Foundations of JSON
schema. In: Proceedings of the 25th International Conference on World Wide Web
(WWW), pp. 263–273 (2016)

http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/
http://arxiv.org/abs/1911.12651v2
https://doi.org/10.1007/978-3-030-34146-6_9
https://doi.org/10.1007/978-3-030-34146-6_9

Experimental Practices for Measuring
the Intuitive Comprehensibility

of Modeling Constructs: An Example
Design

Sotirios Liaskos(B), Mehrnaz Zhian, and Ibrahim Jaouhar

School of Information Technology, York University,
4700 Keele St., Toronto M3J 1P3, Canada
{liaskos,mzhian,jaouhar}@yorku.ca

Abstract. Conceptual model comprehensibility has attracted the inter-
est of many experimental researchers over the past decades. Several stud-
ies have employed a variety of definitions and operationalizations of the
comprehensibility construct as well as procedures for measuring it on a
variety of model types. Intuitive comprehensibility is a specialization of
the construct, referring to model or language comprehensibility exhib-
ited by partially trained users. We present an experimental design for
measuring the intuitive comprehensibility of a proposed extension to a
goal modeling language as a means for reviewing experimental practices
we have followed for similar studies in the past. Through such review, we
hope to demonstrate the possibility of experimental design and technique
reusability and its role as a motivating factor for more experimentation
within the conceptual modeling research community.

Keywords: Model comprehensibility/understandability · Empirical
conceptual modelling · Goal models

1 Introduction

Experimentally evaluating the quality of conceptual models and conceptual mod-
eling languages has enjoyed substantial attention from researchers over the past
decades. Various studies have explored how users interact with diagrammatic
representations and how they perceive modeling constructs represented in such
ways. Often, the subject of investigation is the comprehensibility of models, and
various interpretations of the meaning of this construct have been utilized both
in theory and in empirical measurement [11].

A specialization of comprehensibility has been put forth that is concerned
with the level of understanding of information appearing in a diagrammatically
presented conceptual model by viewers with limited training in the correspond-
ing conceptual modeling language. The working term intuitiveness has been
proposed for this construct and a number of studies have been performed by
c© Springer Nature Switzerland AG 2020
G. Grossmann and S. Ram (Eds.): ER 2020 Workshops, LNCS 12584, pp. 231–241, 2020.
https://doi.org/10.1007/978-3-030-65847-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65847-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-65847-2_21

232 S. Liaskos et al.

our group for assessing it in requirements goal models [1,14,17,18] and inde-
pendently elsewhere in process and other diagrams [3,12,22]. Our experiments
focussed on the intuitiveness of a specific language construct, namely contribu-
tion links within goal models, and the role thereof in making decisions within
such models. Through these experiments we adopted and/or developed a set
of methodological practices that we found served the purpose of studying the
particular construct and may be applicable to a larger class of studies.

In this paper, we describe these practices and discuss their strengths and
weaknesses, via presentation of an experimental design for a future study on the
intuitiveness of temporal precedence constructs within goal models. We elaborate
on the intuitiveness construct (Sect. 2), offer an introduction to our example
study (Sect. 3) and describe our proposed design as an opportunity to also reflect
on our experimental practices (Sect. 4). We conclude in Sect. 5.

2 Comprehensibility and Intuitiveness

Several efforts to empirically study comprehensibility of conceptual models have
emerged in the literature, albeit with no clear consensus of what exactly the
construct means and how it is to be measured, as reported by Houy et al.
[11]. A possible starting point for understanding the construct may be found
in SEQUAL, a semiotic framework for organizing conceptual model qualities
[13]. There, the concept of (manual) model activation is put forth to describe
the ability of models to guide the actions of human actors. Comprehensibility of
a model is found within the category of pragmatic quality of a conceptual model,
measured by the appropriateness of the model’s activation. In other words, by
being exposed to the model and its information, users (i.e., readers) of the model
act (perform inferences, respond to questions, organize their work, make deci-
sions etc.) in ways that satisfy the model, according to the designers of the latter.
For example, a business process model is comprehensible by process actors, if,
once they read it, said actors, organize their work, communicate with co-workers,
answer process questions, troubleshoot etc. in ways that are compliant with the
model – according to the model developers.

Model comprehensibility is distinct from comprehensibility appropriateness
of language [9,24] which refers to the ability of the language to be the basis
for the building of comprehensible models. From an empirical standpoint, this
would, in principle, be measured by means of evaluating the comprehensibility
of samples of several models developed in accordance to a language, controlling
for factors that may affect model comprehensibility independent of the language,
such as representation medium appropriateness, visual/physical quality [21] or,
otherwise, language use. For such controlling and sample identification to be
tractable, evaluation may take place at the individual construct level (e.g. indi-
vidual elements, visualizations and relationship types) and/or a specific language
feature or structural pattern (e.g. use of models for a specific task).

Intuitive comprehensibility appropriateness of a language, or part thereof or
language/construct intuitive comprehensibility or, simply here, (language/ con-
struct) intuitiveness, refers to comprehensibility appropriateness exhibited by

Practices for Measuring Intuitive Comprehensibility 233

Custodian

Share
Information

With
Consent

Request
Consent

Receive
Consent

Sharing Party
is Custodian

Sharing
is for Provision of

Health Care

Send
Information

pre

Send
Informationpre

pre pre

Patient has
Submitted Blanket

non-Disclosure

npr

Request not
withdrawn

npr

Information
Inaccurate

nprEfficiency

help hurt

A B

pre

A B

npr

A

B

C

D

pre

pre
pre

A

B

C

D

npr

pre
npr

A B

pre

C D

A B

pre

C D
(A) (B)

Class 1 Class 2

Class 4Class 3

Class 5 Class 6

(AND) (OR)

Fig. 1. (A) Goal model with preconditions—(B) Experimental models

users who have had limited previous exposure to the modeling language. The
addition of the intuitiveness requirement is motivated by the need to make lan-
guages usable by users who would not otherwise dedicate effort to receive training
in the language at hand. All else being equal, it is preferable that a language can
be effectively used – i.e., allow models that lead to compliant activation – with
less required training. Note that the definition of intuitiveness is here distinct
from the concept of intuition (versus, e.g., reflection) studied in dual-process
cognitive psychology [6,10], in that the former is agnostic to the exact cognitive
process employed to interpret and make use of the constructs.

Our work – like much other literature, e.g., [8] – has been focussing on the
intuitiveness of the diagrammatic representation choices of the language, i.e.,
whether shapes and symbols that appear on the diagram allow users to instantly
know how to make correct use with the model. In Moody’s terms [21] this is
semantic transparency of the visual constructs, i.e. the ability of notational ele-
ments to communicate their meaning. While intuitiveness can be studied at the
concept level alone [15] when expressed in natural language and, thus, free from
the interference of visualization choices, our discussion here concerns the evalu-
ation of the combination of the concept and its visualization.

3 Example: Preconditions in Diagrammatic Goal Models

To see how a study of intuitiveness appears in the process of language design
we consider an example from the goal modeling domain. Goal models have been
extensively studied with regards to their ability to represent intentional struc-
tures of stakeholders [2,25]. In the latest goal modeling standard, iStar 2.0 [5],
elements such as actors, their goals and ways by which the latter can be decom-
posed into other goals or tasks, through AND-refinements and OR-refinements
are presented. A diagrammatic notation faithful to the tradition of the original
i* language is used to visualize the concepts.

234 S. Liaskos et al.

Such goal diagram appears in Fig. 1(A), representing the ways by which,
according to a jurisdiction, a custodian of health information is allowed to share
such information with another agent. The legal requirement is that the custodian
can share health information without the patient’s consent only as long as the
third party is another custodian, the sharing is for the provision of health care
and that the patient has not submitted a blanket non-disclosure statement. If
any of these conditions are not met, consent must be acquired prior to sharing.

To model constraints such as the above, suppose that we want to extend the
iStar 2.0 language to allow for precondition (resp. negative precondition) links
{B pre−→ A} (resp. {B npr−→ A}). Intuitively, such link shows that a goal/task A
cannot be pursued/performed unless (resp. if) some condition B is met, including
that some other goal/task has been achieved/performed or that some state of
the world is believed to be true – for representing the latter beliefs are added
in the diagram. A rigorous semantics of such or similar links is possible [16]. In
setting up such semantics, however, designers often have flexibility. For example,
what is the rule for combining multiple

pre−→ and
npr−→ arriving at an element such

as Send Information; is it a conjunction, a disjunction, or something else? Most
designers would probably opt for conjunction, but what if users of the diagram
insist to act as if it were a disjunction? Likewise, what does it mean for users
that a goal is “pursued”? Given {Information Inaccurate

npr−→ Share Information}
can I allow interpretations in which some but not all of the subtasks of goal
Share Information are performed if Information Inaccurate holds, pretending
that, e.g., performance of the tasks is for the pursuit of other unmentioned
goals? Most designers would probably say no, but what if users act as if that
was the correct interpretation? Disagreements between designer intent and user
interpretation may imply that either the language features (allowing multiple
incoming preconditions and allowing a precondition to a decomposed goal) or
their visual representation deserve some reexamination.

In what follows, we use the problem of evaluating this hypothetical language
extension to review our past experimental practices and experiences we acquired
by applying such practices in similar problems.

4 Experimental Strategy

Our experimental approach consists of: (a) developing models that exemplify
the construct or feature that we want evaluated and differ based on factors of
interest, (b) identifying a participant sample that can be seen as representative
of a user population, (c) partially training participants, (d) exposing participants
to the models, observing inferences they perform therewith and comparing them
with the ones language designers consider correct. We address these for our
example problem.

Practices for Measuring Intuitive Comprehensibility 235

4.1 Model Sampling

Model Format. When evaluation targets a specific construct or feature, the
sampled models are constructed to exactly exemplify use of the construct or
feature and abstract away other extraneous elements that may interfere with the
measurement. In most of our earlier work [1,14,18], for example, we studied the
intuitiveness of various representations of contribution links in goal models for
the purpose of identifying optimal decisions in such models. Given such narrow
focus, sample models were structurally constrained: one OR-decomposition and
a soft-goal-only sub-graph connected with contributions in a restricted way. No
elements of the language that were extraneous to the research question were
included – e.g. actors or AND-decompositions. Elsewhere [17], our samples were
even simpler, containing two goals and one contribution link.

The advantage of such focused manufacturing of experimental units are (a)
better experimental control and definition of factors (see below), (b) reduced
need for training about unrelated modeling constructs. The disadvantages are:
(a) the generalizability argument relies on showing that the manufactured models
capture the “essence” of the language construct and its use under evaluation,
(b) influential (but unknown) factors that exist in real-world models are absent.

An additional variable is how much context should be added to the example
models. This can come in the form of: (a) real element descriptions in place of
symbolic variables, (b) scenarios that create an even more elaborate context.
In our example, we can use uninterpreted literals as in {B pre−→ A}, refer to
specific goals as in Fig. 1(A), or, do the latter and also add introductory material
on the health information sharing case. While one can argue that such context
information supports external validity by making the model samples more similar
to the respective generalization class (real models), they have the potential of
disturbing internal validity by switching the focus from the modeling construct
to the content. For example, in {Request Consent

pre−→ Receive Consent}, the
precondition relationship is so obvious from the content, that measurement of
the influence of

pre−→ in conveying such relationship is confounded.

Sample Models and Factors. When manufacturing sample models rather
than sampling them in the wild, we have the benefit of introducing model-related
factors of interest with more control. Such factors reflect properties, kinds or
structural patterns of models, as per the research question. Our experience has
shown that such factors are better treated in a within-subjects manner: the same
participant is sequentially exposed to different classes of model structures, each
such class being (part of) a level of the factor. In comparative studies, a between-
subjects factor often emerges as well. In our past studies the comparison of various
ways to represent a construct (e.g. in [14,17]) was arranged in such between-
subjects fashion. The need for different training for each level of the factor in
question is one of the main motivators of the between-subjects choice.

236 S. Liaskos et al.

Example Design. In our example study, we would devise various examples of
precedence links using abstract literals A, B, C, . . . for the origin and destination
goals, as seen in Fig. 1(B). Several examples of each of the six presented classes
can be considered, noticing that: (a) Classes 1 and 3 versus Classes 2 and 4
constitute the two levels of a

npr−→ presence/absence factor, (b) Classes 1 and 2
versus Classes 3 and 4 constitute the two levels of a “complexity” factor. These
factors are crossed allowing the study of interactions. Classes 5 and 6 can further
be compared with each other and with Class 1 as baseline; noting that larger
samples will need to be acquired to allow for meaningful statistical analysis.
Thus, any or all of three within-subjects factors – negative precondition presence
vs. absence, complex vs. simple and AND-decomposed vs. OR-decomposed vs.
non-decomposed – can be studied. A between-subjects factor could be considered
if we were to compare alternative ways to visualize

pre−→ and
npr−→, including adding

comprehension aids, e.g. an AND arc to signify conjunction of
pre−→ links.

4.2 Training

Prior to being exposed to the models, participants are partially trained to the
notation just enough so that the language’s purpose and function is understood
but the solutions to the experimental tasks do not directly follow from the train-
ing. We have extensively used short video presentations for such training. The
benefits of video presentations over live lectures are manifold. Firstly, the exact
training offered to participants is reviewable and reproducible. Secondly, in cases
in which different language/construct versions need to be compared in a between-
subjects manner, careful scripting and editing of the videos allows uniformity
of training between groups. In our past experiments, videos have been fully
recorded from script with only components that differ between groups appropri-
ately video-edited. Thirdly, video presentations allow remote participation and
consideration of on-line participant pools (more below).

As in any training, the threat in preparing video presentation remains that
researcher bias can affect participant training in a way that skews the results
towards one or the other direction. A possible way to address this is third-party
evaluations or even development of training material. Despite such measures
being practically difficult, video instead of in-classroom training removes many
obstacles for such validation efforts.

Example Design. A video presentation can be developed to explain relevant
goal modeling elements (goals, tasks, decomposition links) and the informal
meaning of the

pre−→ and
npr−→ constructs, but would generally not describe specific

uses of the construct for which we want to measure intuitiveness. For example,
the video would not discuss how multiple

pre−→ links targeting the goal should be
interpreted or elaborate on how pursuit of a goal is defined. When comparison
with a baseline is desired such details can however be given in a separate control
group or, less practically, in a within subjects pre-post manner [23].

Practices for Measuring Intuitive Comprehensibility 237

4.3 Tasks

Experimental tasks are geared towards triggering and measuring model activa-
tion i.e. prompting, observing and recording inferences participants make with
the displayed models. Parts of the theory of such inferences may need to be
explained during training. In our study on assessing the intuitive comprehension
of satisfaction propagation rules [17], the notions of partial and full goal satisfac-
tion and denial had to be described in the videos. For the tasks, participants pick
an inference that they think valid based on the model and their training. In our
decision assessment studies [1,14,18], the task was a choice of goal alternative,
while in our propagation rule study [17] it was the specification or choice of the
satisfaction level of a recipient of a contribution link.

Example Design. In our example, the notion of a situation (i.e. a state in
which goals have been achieved, tasks have been performed, or beliefs are held)
satisfying or not the model, needs to be part of the video training. Then, each
model is accompanied by descriptions of situations and participants are asked if
the model satisfies the situations. For example, a model of Class 1 (Fig. 1(B))
can include the question whether {A,¬B} and {¬A,¬B} are situations satisfying
the link – which test whether participants perceive precondition as also a trigger
condition, or whether they think that the presence of a link alone necessitates
some satisfaction, as we actually observed with contribution links [17]. Notice
how factors of interest can also be thus identified at the task level.

4.4 Operationalizations of Language Intuitiveness

The operationalization of the intuitive comprehension construct follows its the-
oretical definition (Sect. 2). The main measure we have used in the past is that
of the level of agreement between participant responses to the experimental
tasks (the model activation) and the normative answers to the questions (the
language designer expectations), which agreement we refer to as accuracy. The
accurate responses are then tallied up into an accuracy score used for the anal-
ysis. Calculation of inter-respondent agreement is also possible in the absence
of a normative response. However, with such measures being aggregates of all
participant responses, statistical inference possibilities are limited.

In some of our experiments we also asked the participants to rate their confi-
dence to their response, using a Likert-type scale. Confidence can also be offered
for the overall task, e.g., through one question in the end [18], which saves from
execution time and perhaps allows for a more thoughtful response, but prevents
analysis over the within-subjects factors. Whenever applicable, response time
can also be relevant to understanding intuitive comprehension. However, both
response time and confidence alone are not indicators of intuitive comprehen-
sion, in that participants may quickly and confidently provide inaccurate answers
in the tasks. Nevertheless, following Jošt et al. [12], the ratio of accuracy over
response time can also be an effective utilization of response time data.

Finally, in some of our experiments we invited participants to type-up a
description of the method they used to make inferences and provide a response,

238 S. Liaskos et al.

as a proxy for a debriefing session. We have found that while some participants’
textual descriptions can be usefully coded, they are often difficult to read and
comprehend in any useful way. Note that both a debriefing sessions and response
time measurements usually necessitate in-person administration.

Example Design. In the example experiment, we could measure accuracy, indi-
vidual response confidence and, when possible, response time. Soliciting textual
descriptions of how participants worked would not be a priority.

4.5 Participant Sampling

The appropriateness of using students as experimental participants is still
debated in software engineering [7], where tasks are often specialized and require
some technical ability. We believe that in conceptual modeling, user populations
are wider and more diverse. Goal models, for instance, are to be used by any
person whose intentions and decisions matter, and such persons can be of arbi-
trary backgrounds and abilities. Furthermore, intuitive comprehension of and
distinction between concepts such as intentions, processes, events etc., is some-
thing that most senior college/University are expected to be able to perform.
Following the same argument, in several instances we have also utilized on-line
work platforms and particularly Mechanical Turk (MT). Such platforms have
been found to be remarkably reliable for psychological experiments [4]. Assum-
ing a commitment that the prospective users of the language under investigation
is not limited to e.g. IT or management backgrounds, for certain simple tasks in
conceptual modeling (e.g. discriminating among common concepts, associating
notational symbols with concepts, making a decision on a daily-life problem via
models) the MT samples appear to be suitable. Future correlation studies similar
to the one performed by Crump et al. [4] would shed more light on the strength
of this assumption.

Example Design. For our example design a mixture of University students
and Mechanical Turk workers can be invited to participate.

4.6 Analysis

A likely approach for analysing data coming from designs such as the above is
analysis of variance (ANOVA) [20]. In our most complex past cases such analysis
included one between-subjects factor (e.g. a comparison of three visualizations)
and one or two repeated-measures factors (e.g. model complexity and type).
One problem we have faced with accuracy measures specifically is that, being
integer values in the interval [1..N], N the number of participant responses,
they often violate normality assumptions – especially for small N , necessitating
robust and/or non-parametric testing.

Further, looking at effect sizes is meaningful in our context. We have found
that looking at a simple difference between means offers an intuitive picture. For
example, that one group scores 1.5 (vs., e.g., 5) out of 20 accuracy points more

Practices for Measuring Intuitive Comprehensibility 239

compared to another is very informative vis-a-vis the practical importance of
the effect, irrespective of statistical significance.

Finally, the generalization class needs to be carefully considered when per-
forming inferences. With instruments such as the ones we described, the simplest
generalization statement concerns the performance that participants in the entire
population would demonstrate. An analytical step, however, needs to be taken
to extend this generalization to the population of models, given that the sample
models are manufactured specifically to find an effect rather than randomly sam-
pled. Similar non-empirical arguments apply to generalizing to different kinds of
activities with the models or in different contexts.

Example Design. In our example, parametric methods for repeated measures
would be applied [20], accompanied with an equivalent robust test, if suspicion
of violation of assumptions presents itself. Presence of a between-subjects factor
entails a split-plot (“mixed”) ANOVA whose likely deviation from assumptions,
however, requires resorting to a complex range of countermeasures from trans-
formations and bootstrapping to robust tests [19].

5 Concluding Remarks

We presented an experimental design for measuring the intuitiveness of a pro-
posed extension to a conceptual modeling language, as a means to also review
experimental practices we have been following to answer similar research ques-
tions in the past. Researchers in conceptual modeling often appear to dread the
time, effort and risk associated with performing such studies. Our long term
goal is to help develop standardized practices, patterns, techniques and tools
that allow systematic, quick and efficient design and conduct of comprehensi-
bility studies for use by researchers who otherwise could not afford the effort.
Our focus so far has been decisively narrow within the constellation of phe-
nomena that surround the development and use of conceptual models and their
languages. However, it has promisingly allowed us to develop re-usable patterns
and ideas within the sampling, measuring, training and analysis aspects that
have substantially reduced required effort to set-up, run and analyse an experi-
ment. Community-wide sharing, acceptance and continuous improvement of such
cost-effective experimental practices, may make conceptual modeling researchers
more eager to incorporate empirical investigation in their research.

References

1. Alothman, N., Zhian, M., Liaskos, S.: User perception of numeric contribution
semantics for goal models: an exploratory experiment. In: Mayr, H.C., Guizzardi,
G., Ma, H., Pastor, O. (eds.) ER 2017. LNCS, vol. 10650, pp. 451–465. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69904-2 34

2. Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the
next ten years (invited paper). J. Softw. 6(5), 747–768 (2011)

https://doi.org/10.1007/978-3-319-69904-2_34

240 S. Liaskos et al.

3. Bork, D., Schrüffer, C., Karagiannis, D.: Intuitive understanding of domain-specific
modeling languages: proposition and application of an evaluation technique. In:
Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS,
vol. 11788, pp. 311–319. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-33223-5 26

4. Crump, M.J.C., McDonnell, J.V., Gureckis, T.M.: Evaluating Amazon’s mech.
Turk as a tool for experimental behavioral research. PLoS One 8(3), 1–18 (2013)

5. Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 language guide. The Computing
Research Repository (CoRR) abs/1605.0 (2016)

6. Evans, J.S.B.T.: Dual-processing accounts of reasoning, judgment, and social cog-
nition. Annu. Rev. Psychol. 59(1), 255–278 (2008)

7. Falessi, D., et al.: Empirical software engineering experts on the use of students and
professionals in experiments. Empir. Softw. Eng. 23(1), 452–489 (2017). https://
doi.org/10.1007/s10664-017-9523-3

8. Gonçalves, E., Almendra, C., Goulão, M., Araújo, J., Castro, J.: Using empirical
studies to mitigate symbol overload in iStar extensions. Softw. Syst. Model. 19(3),
763–784 (2019). https://doi.org/10.1007/s10270-019-00770-9

9. Guizzardi, G.: Ontological foundations for structural conceptual models. Ph.D.
thesis, University of Twente (2005)

10. Hadar, I.: When intuition and logic clash: the case of the object-oriented paradigm.
Sci. Comput. Program. 78(9), 1407–1426 (2013)

11. Houy, C., Fettke, P., Loos, P.: Understanding understandability of conceptual mod-
els – what are we actually talking about? In: Atzeni, P., Cheung, D., Ram, S. (eds.)
ER 2012. LNCS, vol. 7532, pp. 64–77. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34002-4 5

12. Jošt, G., Huber, J., Heričko, M., Polančič, G.: An empirical investigation of intu-
itive understandability of process diagrams. Comput. Stand. Interfaces 48, 90–111
(2016)

13. Krogstie, J., Sindre, G., Jørgensen, H.: Process models representing knowledge for
action: a revised quality framework. Eur. J. Inf. Syst. 15(1), 91–102 (2006)

14. Liaskos, S., Dundjerovic, T., Gabriel, G.: Comparing alternative goal model visu-
alizations for decision making: an exploratory experiment. In: Proceedings of the
33rd ACM Symposium on Applied Computing (SAC 2018), Pau, France, pp. 1272–
1281 (2018)

15. Liaskos, S., Jaouhar, I.: Towards a framework for empirical measurement of concep-
tualization qualities. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr,
H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 512–522. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-62522-1 38

16. Liaskos, S., Khan, S.M., Soutchanski, M., Mylopoulos, J.: Modeling and reasoning
with decision-theoretic goals. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER
2013. LNCS, vol. 8217, pp. 19–32. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41924-9 3

17. Liaskos, S., Ronse, A., Zhian, M.: Assessing the intuitiveness of qualitative contri-
bution relationships in goal models: an exploratory experiment. In: Proceedings of
the 11th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM 2017), Toronto, Ontario, pp. 466–471 (2017)

18. Liaskos, S., Tambosi, W.: Factors affecting comprehension of contribution links
in goal models: an experiment. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de
Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 525–539. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-33223-5 43

https://doi.org/10.1007/978-3-030-33223-5_26
https://doi.org/10.1007/978-3-030-33223-5_26
https://doi.org/10.1007/s10664-017-9523-3
https://doi.org/10.1007/s10664-017-9523-3
https://doi.org/10.1007/s10270-019-00770-9
https://doi.org/10.1007/978-3-642-34002-4_5
https://doi.org/10.1007/978-3-642-34002-4_5
https://doi.org/10.1007/978-3-030-62522-1_38
https://doi.org/10.1007/978-3-642-41924-9_3
https://doi.org/10.1007/978-3-642-41924-9_3
https://doi.org/10.1007/978-3-030-33223-5_43

Practices for Measuring Intuitive Comprehensibility 241

19. Mair, P., Wilcox, R.: Robust statistical methods in R using the WRS2 package.
Behav. Res. Methods 52(2), 464–488 (2019). https://doi.org/10.3758/s13428-019-
01246-w

20. Maxwell, S.E., Delaney, H.D.: Designing Experiments and Analyzing Data, 2nd
edn. Taylor and Francis Group, LLC, New York (2004)

21. Moody, D.L.: The “Physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779
(2009)

22. Roelens, B., Bork, D.: An evaluation of the intuitiveness of the PGA modeling
language notation. In: Nurcan, S., Reinhartz-Berger, I., Soffer, P., Zdravkovic, J.
(eds.) BPMDS/EMMSAD -2020. LNBIP, vol. 387, pp. 395–410. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-49418-6 27

23. Rosnow, R.L., Rosenthal, R.: Beginning Behavioral Research: A Conceptual
Primer, 6th edn. Pearson Prentice Hall, Upper Saddle River (2008)

24. Wand, Y., Weber, R.: On the ontological expressiveness of information systems
analysis and design grammars. Inf. Syst. J. 3(4), 217–237 (1993)

25. Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of the 3rd IEEE International Symposium on Require-
ments Engineering (RE 1997), Annapolis, MD, pp. 226–235 (1997)

https://doi.org/10.3758/s13428-019-01246-w
https://doi.org/10.3758/s13428-019-01246-w
https://doi.org/10.1007/978-3-030-49418-6_27

Author Index

Agapito, Giuseppe 92

Baazizi, Mohamed-Amine 220
Bhandari, Apurva 35
Braininger, Dimitri 210

Campos, Maria Luiza M. 128
Cannataro, Mario 92
Casamayor, Juan Carlos 61
Castellanos, Arturo 26
Castillo, Alfred 26
Colazzo, Dario 220
Čontoš, Pavel 173
Corcho, Oscar 117
Costa, Mireia 51
Crovari, Pietro 82

da Cruz, Sergio Manuel S. 128
de Miranda, Antonio Basilio 102
De Vries, Marné 189
Desguin, Samuel 200

Elkobaisi, Mohammed R. 71
Espinoza-Arias, Paola 117
Eswaran, Abhiram 35

Feijoó, Matheus Pedra Puime 128
Fernández Candel, Carlos Javier 162
Fruth, Michael 220
Fumagalli, Mattia 15

García Molina, Jesús 151, 162
García S., Alberto 61
Garijo, Daniel 117
Garzotto, Franca 82
Ghelli, Giorgio 220
Gray, Thomas 189
Guizzardi, Giancarlo 15

Haeusler, Edward Hermann 102
Hernández Chillón, Alberto 151
Hettne, Kristina Maria 138

Jaouhar, Ibrahim 231
Jardim, Rodrigo 128

Kuhn, Tobias 138

Laurier, Wim 200
León, Ana 51
Liaskos, Sotirios 231
Lifschitz, Sergio 102
Lukyanenko, Roman 26

Magagna, Barbara 138
Maier, Edith 5
Mauerer, Wolfgang 210
Mayr, Heinrich C. 71
Mirzan, Shezan Rohinton 35
Muñoz-Sánchez, Pablo D. 162

Parsons, Jeffrey 26
Pastor, Óscar 51
Pergl, Robert 138
Pidò, Sara 82
Pimpley, Anish 35

Reimer, Ulrich 5

Sales, Tiago Prince 15
Sartiani, Carlo 220
Scherzinger, Stefanie 210, 220
Schultes, Erik 138
Sevilla Ruiz, Diego 151, 162
Shao, Liqun 35
Sharma, Pulkit 35
Shekhovtsov, Vladimir A. 71
Srinivasan, Soundar 35
Storey, Veda C. 26
Suchánek, Marek 138
Svoboda, Martin 173

Tödtli, Beat 5
Tremblay, Monica Chiarini 26
Tristão, Cristian 102

Zhian, Mehrnaz 231

	Preface
	ER 2020 Conference Organization
	ER 2020 Workshop Organization
	Empirical Methods in Conceptual Modeling (EmpER) 2020 Co-chairs
	Contents
	Conceptual Modeling Meets Artificial Intelligence and Data-Driven Decision Making (CMAI) 2020
	En
	How to Induce Trust in Medical AI Systems
	1 Medical AI Systems
	2 Formal Measures for Estimating How Well a Patient Is Covered by an AI System
	3 Experiments
	4 Discussion and Outlook
	References

	Towards Automated Support for Conceptual Model Diagnosis and Repair
	1 Introduction
	2 Conceptual Modeling: Learning by Feedback
	3 From Model Validation to Repairs Suggestion
	4 Highlighting Possibly Erroneous Decisions
	5 Uncovering Error-Prone Structures
	6 Conclusion and Perspectives
	References

	Superimposition: Augmenting Machine Learning Outputs with Conceptual Models for Explainable AI
	1 Introduction
	2 Background: The Problem of Explainable AI
	3 Superimposition Method
	4 Illustration: Superimposition Using EERD
	5 Discussion and Future Work
	References

	Evaluating Tree Explanation Methods for Anomaly Reasoning: A Case Study of SHAP TreeExplainer and TreeInterpreter
	1 Introduction
	2 Background Work
	3 Evaluation Approach
	3.1 Implicit Interventional Measure
	3.2 Explicit Interventional Measure

	4 Experiments and Results
	4.1 Experiment and Data Settings
	4.2 Runtime Comparison
	4.3 Rank List Similarity
	4.4 Significance of Attribution Ranking
	4.5 Attribution Accuracy: How Correctly Are the Right Features Attributed

	5 Conclusion
	References

	Conceptual Modeling for Life Sciences (CMLS) 2020
	En
	The Importance of the Temporal Dimension in Identifying Relevant Genomic Variants: A Case Study
	1 Introduction
	2 Methodological Background: The SILE Method
	3 Case Study: Variant Identification in Early Onset Alzheimer’s Disease
	4 Conclusions and Future Work
	References

	Towards the Generation of a Species-Independent Conceptual Schema of the Genome
	1 Introduction
	2 Conceptual Schema of the Human Genome
	3 Conceptual Schema of the Citrus Genome
	4 Conceptual Schema of the Genome: A New Horizon
	5 Conclusions
	References

	Conceptual Human Emotion Modeling (HEM)
	1 Introduction
	2 Design Considerations
	3 Human Emotion Modeling: Metamodel and Language
	4 Towards Embedding HEM-L into DSMLs
	5 Related Work
	6 Conclusions and Future Work
	References

	Towards an Ontology for Tertiary Bioinformatics Research Process
	1 Introduction
	2 State of the Art
	3 Empirical Study
	4 Ontology
	5 Example Application
	6 Conclusion
	References

	Using BioPAX-Parser (BiP) to Annotate Lists of Biological Entities with Pathway Data
	1 Introduction
	2 Background
	2.1 Pathway DataBases
	2.2 Pathway Enrichment Analysis Approaches

	3 The BiP Algorithm and its Implementation
	3.1 BiP Algorithm
	3.2 BiP Implementation

	4 Case Study Results
	5 Conclusion and Future Work
	References

	Relational Text-Type for Biological Sequences
	1 Introduction and Motivation
	2 Conceptual Modeling and Initial Data Manipulation
	3 Sequences as Relational Text-Type
	4 Conclusions
	References

	Conceptual Modeling, Ontologies and (Meta)data Management for Findable, Accessible, Interoperable and Reusable (FAIR) Data (CMOMM4FAIR) 2020
	En
	Mapping the Web Ontology Language to the OpenAPI Specification
	1 Introduction
	2 Mapping OWL to OAS
	2.1 Method for Mapping Generation
	2.2 Mapping Definitions
	2.3 Mapping Example

	3 Mapping Implementation
	4 Related Work
	5 Conclusions and Future Work
	References

	Evaluating FAIRness of Genomic Databases
	1 Introduction
	2 Background
	2.1 Genomic Databases
	2.2 FAIR Principles and FAIRness

	3 Bio FAIR Evaluator Framework
	3.1 Metrics and Criteria of FAIRness Evaluation
	3.2 RaCE Module
	3.3 MaCE Module

	4 Results and Discussion
	4.1 FAIRness Experiments
	4.2 Recommendations

	5 Related Work
	6 Conclusions
	References

	Reusable FAIR Implementation Profiles as Accelerators of FAIR Convergence
	1 Introduction
	2 The FAIR Implementation Profile Conceptual Model and Its Supporting Components
	2.1 FAIR Implementation Profiles
	2.2 FAIR Implementation Questionnaire
	2.3 FIPs as FAIR Digital Objects
	2.4 The FIP Convergence Matrix
	2.5 An Emerging FIP Architecture and Workflow

	3 Discussion
	3.1 FIPs and FAIR Convergence
	3.2 Related Work

	4 Conclusion
	References

	Conceptual Modeling for NoSQL Data Stores (CoMoNoS) 2020
	En
	Deimos: A Model-Based NoSQL Data Generation Language
	1 Introduction
	2 Related Work
	3 Rationale Behind Deimos
	4 Designing the Deimos Language
	5 The Generation Process
	6 Conclusions and Future Work
	References

	Managing Physical Schemas in MongoDB Stores
	1 Introduction
	2 Logical Model
	3 Physical Model
	3.1 Physical Metamodel
	3.2 Obtaining Physical Models from MongoDB

	4 Mapping Between Logical and Physical Models
	4.1 Obtaining Logical Models from Physical Models
	4.2 Obtaining Physical Models from Logical Models

	5 Related Work
	6 Final Discussion
	References

	JSON Schema Inference Approaches
	1 Introduction
	2 JSON Data Format and JSON Schema
	3 JSON Schema Inference Approaches
	4 Comparison
	5 Related Work
	6 Conclusion
	References

	Empirical Methods in Conceptual Modeling (EmpER) 2020
	En
	Empirical Evaluation of a New DEMO Modelling Tool that Facilitates Model Transformations
	1 Introduction
	2 Background
	2.1 The Demonstration Case
	2.2 General DEMO Tool Requirements, Specifications and the New DMT

	3 Research Method
	4 Evaluation Results
	5 Conclusions and Future Research Directions
	References

	Acquiring and Sharing the Monopoly of Legitimate Naming in Organizations, an Application in Conceptual Modeling
	Abstract
	1 Introduction
	2 Method
	3 Literature Review
	3.1 Conceptual Modelling
	3.2 Ontology Usefulness
	3.3 Ontological Politics
	3.4 Language and Power
	3.5 Language and Organizational Control
	3.6 Literature Gap

	4 Early Findings and Discussion
	4.1 Postulate 1: Modelers Should Focus on the Pragmatic Convenience of the Concepts They Define, Rather Than Debating the “Truth” of Concepts
	4.2 Postulates 2: Modelers Should Spot Unspoken Areas and Concepts – Concepts for Which Words Are Lacking and Therefore, Are Not Present in the Consciousness of the Speaker
	4.3 Postulate 3: In Order to Gain the Monopoly of Legitimate Naming in a Field, Modelers Must First Earn Sufficient Prestige, Reputation or Fame Within the Field
	4.4 Postulates 4: Language Is not a Neutral Object and Is Intimately Tied to Power Struggles
	4.5 Postulate 5: Control Over Language Can Be a Non-conflictual, Indirect Way to Exert Control Over a Group of People

	5 Conclusion
	References

	Replicability and Reproducibility of a Schema Evolution Study in Embedded Databases
	1 Introduction
	2 Original Study
	3 Methodology of This Study
	4 Results
	5 Discussion
	6 Threats to Validity
	7 Related Work
	8 Conclusion and Future Work
	References

	Challenges in Checking JSON Schema Containment over Evolving Real-World Schemas
	1 Introduction
	2 Examples of JSON Schema Containment
	3 Methodology
	3.1 Context Description
	3.2 Analysis Process

	4 Detailed Study Results
	4.1 RQ1: What Is the Real-World Applicability of JSC-Tools?
	4.2 RQ2: Which Language Features Are Difficult to Handle?
	4.3 RQ3: What Is the Degree of Consensus Among JSC-Tools?

	5 Discussion of Results and Research Opportunities
	6 Potential Threats to Validity
	7 Related Work
	8 Conclusion
	References

	Experimental Practices for Measuring the Intuitive Comprehensibility of Modeling Constructs: An Example Design
	1 Introduction
	2 Comprehensibility and Intuitiveness
	3 Example: Preconditions in Diagrammatic Goal Models
	4 Experimental Strategy
	4.1 Model Sampling
	4.2 Training
	4.3 Tasks
	4.4 Operationalizations of Language Intuitiveness
	4.5 Participant Sampling
	4.6 Analysis

	5 Concluding Remarks
	References

	Author Index

