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Abstract. Default Logic refers to a family of formalisms designed to
carry out non-monotonic reasoning over a monotonic logic (in general,
Classical First-Order or Propositional Logic). Traditionally, default logics
have been defined and dealt with via syntactic consequence relations.
Here, we introduce a family of default logics defined over modal logics.
First, we present these default logics syntactically. Then, we elaborate
on an algebraic counterpart. We do the latter by extending the notion
of a modal algebra to acommodate for the main elements of default
logics: defaults and extensions. Our algebraic treatment of default logics
concludes with an algebraic completeness result. To our knowledge, our
approach is novel, and it lays the groundwork for studying default logics
from a dynamic logic perspective.

1 Introduction

Default Logic refers to a family of non-monotonic formalisms tailored to reason-
ing with incomplete knowledge, and to dealing with contradictory information.
The main features of a default logic DL are defaults and extensions. Defaults are
used as a tool to handle reasoning from incomplete knowledge. In turn, exten-
sions are a mechanism for reasoning in the presence of contradictory information
(via consistent alternatives). Intuitively, defaults can be seen as defeasible rules
of inference, i.e., rules of inference whose conclusions are subject to annulment;
whereas extensions can be understood as sets of formulas closed under the appli-
cation of defaults.

The history of Default Logic traces back to Reiter’s seminal work [21]. Since
then, many variants of Reiter’s original ideas have been proposed – with each
variant giving rise to a different default logic (see [2] for a comprehensive sum-
mary). For the most part, these variants have focused their attention on what
is meant by an extension. In particular, the emphasis has been on how differ-
ent interactions between defaults, and the rules of inference of the underlying
proof calculus,1 concoct different notions of an extension satisfying one or more
1 Typically the underlying proof calculi is one for Classical First-Order Logic (FOL)

(see, e.g., [21]) or for Classical Propositional Logic (CPL) (see, e.g., [6,17,19,22]).
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properties of interest. This treatment of extensions carries with it the definition
and analysis of a default logic from a syntactic perspective. The other side of
the coin is missing. In studying a logic (of any kind), we also wish to address
it from a semantic perspective via a model theory and/or a class of algebras.
This yields interesting completeness results, interpolation properties, bisimula-
tions, etc. This semantic perspective on default logics is mostly absent, making
it difficult to investigate their logical properties using standard semantic tools.

Our Work. Following the tradition in Default Logic, we start with a formulation
of default logics over modal logics via deducibility (i.e., syntactical consequence
in the proof calculus). We rely on the notion of global deducibility for modal log-
ics [10]. Our formulation of a default logic is parametric, and can be instantiated
with any modal system from K to S5 extended with the universal modality [4].

For each default modal logic, we make explicit how defaults interact with the
rules of inference of the underlying proof calculus by integrating the use of the
former into the notion of deducibility of the latter. In addition, we show how we
can parametrically define for each default modal system an algebraic counter-
part. We do this by extending modal algebras to accommodate for defaults and
extensions. Modal algebras are Boolean algebras with additional operators for
modalities, and they make up the algebraic counterpart of modal systems [12,28].

The algebraic treatment of defaults and extensions is done as follows. We
carry out a Lindenbaum-Tarski construction that acts as an algebraic canonical
model for a set of permisses. We enrich this construction with an operator to deal
with defaults. This operator can be thought of as “updating” the Lindenbaum-
Tarski algebra w.r.t. the application of a default. The result of the update is
the algebraic counterpart of an extension. On this basis we prove an algebraic
completeness result.

Related Work. Our treatment of defaults and extensions enables us to think of
default logics as algebraic “model changing” logics; in the sense of, e.g., public
announcement logic [20].

In our case, a model update corresponds to the application of a default (a
sort of inference step). The idea of updating a model dynamically to represent
syntactic steps of inference can be found in several places in the literature on
dynamic logics. For instance, the problem of logical omniscience in epistemic
logic (see, e.g., [26]) has been thought of as a property to be achieved after the
application of a dynamic operation. In [1,7,16,23], omniscience is achieved by
updating models containing sets of formulas. In [15,25] the updates are per-
formed over awareness relational models. Dynamics of evidence are presented
in [24,27] over neighbourhood models. Finally, dynamic modalities allowing to
achieve introspective states over Kripke models are introduced in [8,9].

Closer to our work is the algebraic treatment of public announcements intro-
duced in [18]. Therein, the algebraic submodel relation induced by the announce-
ment of a formula ψ is represented by taking the quotient algebra modulo an
equivalence relation given by ψ. We show that the application of a default δ can
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be captured in a similar way, i.e., by taking the quotient algebra modulo the
equivalence relation given by the conclusion of δ.

Motivation. Our choice of defining default logics over modal logics is not arbi-
trary. Modal logics provide a wide spectrum of logics which are more expressive
than CPL, with better computational properties than FOL. Moreover, these log-
ics have a well-developed algebraic theory in terms of modal algebras. In our
constructions we exploit the combination of these two features. As we will see,
defaults are better modeled by means of a global consequence relation, which
will be captured by the use of the universal modality. While not pursued on here,
building default logics on modal logics is also interesting if one has applications
of the developed formalism in mind. This is particularly true in the setting of
description logics – wherein it is possible to think of defaults as a way of captur-
ing exceptions to a taxonomy of concepts modeled in a knowledge base (see [3]).

Main Contributions. We provide a syntactic and algebraic treatment of default
logics built over modal logics and study their properties. Syntactically, our con-
struction of a default modal system is parametric on a modal system and a set
of defaults. We make precise how defaults interact with the rules of inference of
the underlying modal system. Algebraically, we address defaults and extensions
via modal algebras. This enables us to obtain an algebraic completeness result.
Moreover, it enables us the use of standard algebraic tools to study metalogical
properties of default modal systems. We view this work as a first step towards
an algebraization of default logic, and towards a better understanding of default
systems from a logical perspective. Finally, the algebraic construction for default
logics over modal logics lays the groundwork to study default systems from a
dynamic logic perspective.

Structure of the Article. Section 2 covers background material. Section 3 con-
tains our main results. Section 3.1 introduces default modal systems. Section 3.2
presents default deducibility. Section 4 provides our algebraic characterization
of defaults and extensions, and a completeness theorem. In Sect. 4 we discuss
default modal systems from a dynamic logic perspective. In Sect. 5 we offer some
final remarks.

2 Background

2.1 Boolean Algebra in a Nutshell

We introduce some definitions and notation for Boolean algebras (see, e.g., [13]
for details).

Definition 1. A Boolean Algebra (BA) is a structure A = 〈A, ∗,−, 1〉 satis-
fying a well-known set of equations. A is also denoted as |A|. Occasionally, we
consider operations + and 0 defined as a + b = −(−a ∗ −b), and 0 = −1.
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Definition 2. Every BA A brings in a partial order �A defined as x �A y
iff x = x ∗ y (sometimes we omit the subindex A and write just �). We write
↑X = { y | there is x ∈ X s.t. x � y }. A filter is a non-empty subset F ⊆ |A|
s.t.: F = ↑F and for all x, y ∈ F , (x ∗ y) ∈ F . A filter is principal if it is of the
form ↑{a} for a ∈ |A|. A filter F is proper if 0 /∈ F .

2.2 Modal Systems

We begin by making precise the set Form of well formed formulas we work with.

Definition 3. Let Prop = { pi | i ∈ N } be a denumerable set of proposition
symbols; the set Form of well formed formulas (wffs, or simply formulas) is
determined by the grammar

ϕ,ψ ::= pi | 	 | ¬ϕ | ϕ ∧ ψ | �ϕ | u�ϕ.

We use ⊥, ϕ ∨ ψ, ϕ → ψ, ϕ ↔ ψ, ♦ϕ and u♦ϕ as abbreviations defined in the
usual way.

The set Form can be seen as an enrichment of the basic modal language with
the universal modality u�. We use the universal modality as a technical tool to
internalize a global consequence relation.

A modal system is determined by a subset of Form, called axioms, and the
rules of inference in Definition 4.

Definition 4. The set of rules of inference of a modal system consists of

ϕ ϕ → ψ

ψ
(mp)

ϕ
u�ϕ

(u).

The modal system K u� is determined by the axioms in Definition 5.

Definition 5. The axioms of K u� is the smallest set of formulas which contains
all instances of propositional tautologies and the schemas:

1. �(ϕ → ψ) → (�ϕ → �ψ); 3. u�ϕ → ϕ; 5. u�ϕ → u� u�ϕ;
2. u�(ϕ → ψ) → ( u�ϕ → u�ψ); 4. ϕ → u� u♦ϕ; 6. u�ϕ → �ϕ.

We take K u� as our basic modal system. The rest of the modal systems we
consider are constructed by enlarging the set of axioms of K u� with (all instances
of) any of the schemas below, or any combination thereof, as additional axioms.

(4) �ϕ → ��ϕ (5) ♦ϕ → �♦ϕ (B) ϕ → �♦ϕ (D) �ϕ → ♦ϕ (T) �ϕ → ϕ

E.g., the system D u� is obtained by adding to the axioms of K u� all instances
of the schema D as further axioms. Similarly, the systems S4

u� and S5
u� are

obtained by adding the schemas T and 4, and T and 5, respectively.
For each modal system M, we define a consequence relation �M between sets

of formulas and formulas. This relation is made precise in Definition 6.
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Definition 6. Let M be a modal system; an M-deduction of ϕ from Φ is a finite
sequence ψ1 . . . ψn of formulas such that ψn = ϕ, and for each k < n at least
one of the following conditions hold:

1. ψk is an axiom of M;
2. ψk is a premiss, i.e., ψk ∈ Φ;
3. ψk is obtained from two earlier formulas using mp, i.e., there are i, j < k s.t.

ψj = ψi → ψk;
4. ψk is obtained from an earlier formula using u, i.e., there is j < k s.t. ψk =

u�ψj.

We write Φ �M ϕ iff there is an M-deduction of ϕ from Φ. The relation �M is
commonly referred to as global consequence.

If there is no need to distinguish between modal systems, we simply speak
of a relation � and of a deduction.

We end this section by taking note of the following properties of �M. Notice
that the first item refers to the necessitation property in modal logics, whereas
the second item refers to a version of the deduction theorem.

Proposition 1. The following properties hold:

1. If �M ϕ, then, �M �ϕ.
2. If Φ ∪ {ϕ} �M ψ, then, Φ �M u�ϕ → ψ.

2.3 Algebraizing Modal Systems

We present the semantics of a modal system from an algebraic perspective.
Following [28], and borrowing ideas and results from [12,14], we associate with
any modal system M a suitable class of algebras in a way such that the properties
of M are in correspondence to the properties of this class.

For the case of the modal systems we consider we will use u�-modal algebras.
We use this algebraic treatment of modal systems to perform default reasoning
from a semantic point of view. This algebraic treatment is also instrumental
to viewing default reasoning as a logic of updates over algebras. But this is us
getting ahead of ourselves. For now, we focus on introducing some basic concepts
and results regarding u�-modal algebras.

Definition 7. The formula algebra corresponding to the set Form of formulas
is the structure F = 〈Form,∧,¬,	,�, u�〉 where: ¬, �, u� are unary functions
on Form, and ∧ is a binary function on Form, such that ¬ applied to ϕ ∈ Form
returns ¬ϕ ∈ Form, � applied to ϕ ∈ Form returns �ϕ ∈ Form, u� applied to ϕ ∈
Form returns u�ϕ ∈ Form, and ∧ applied to ϕ,ψ ∈ Form returns ϕ ∧ ψ ∈ Form.

Just as Boolean algebras (as interpretation structures) and filters (as the
semantic counterpart of deducibility) are fundamental for the algebraization of
Classical Propositional Logic, u�-modal algebras and open filters are fundamental
for the algebraization of modal systems.
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Definition 8. A u�-modal algebra is a structure M = 〈B, ∗,−, 1, f�, f u�〉 where:
〈B, ∗,−, 1〉 is a Boolean algebra; and f� and f u� are unary functions on B
satisfying the following equations

f�(1) = 1 f u�(b1) � b1

f�(b1 ∗ b2) = f�(b1) ∗ f�(b2) f u�(b1) � f u�(−f u�(−b1))

f u�(1) = 1 f u�(b1) � f u�f u�(b1)

f u�(b1 ∗ b2) = f u�(b1) ∗ f u�(b2) f u�(b1) � f�(b1).

An open filter is a subset F ⊆ B such that F is a filter in 〈B, ∗,−, 1〉, and for
all b ∈ F , f u�(b) ∈ F .

Definition 9. An interpretation of the formula algebra F on a u�-modal algebra
M = 〈B, ∗,−, 0, f�, f u�〉, a.k.a. an interpretation on M, is a homomorphism
v : F → M such that:

v(	) = 1 v(¬ϕ) = −v(ϕ) v(�ϕ) = f�(v(ϕ))

v(ϕ ∧ ψ) = v(ϕ) ∗ v(ψ) v( u�ϕ) = f u�(v(ϕ)).

Proposition 2. Every interpretation v on M is uniquely determined by an
assignment v0 : Prop → |M|.
Definition 10. Let M be a u�-modal algebra; we define:

1. an equation is a member of Form2; we write an equation (ϕ,ψ) as ϕ ≈ ψ;
2. an equation ϕ ≈ ψ is valid under an interpretation v on M iff v(ϕ) = v(ψ);

we write M, v � ϕ ≈ ψ if ϕ ≈ ψ is valid under v;
3. an equation ϕ ≈ ψ is valid in M iff M, v � ϕ ≈ ψ for all interpretations v

on M; we write M � ϕ ≈ ψ if ϕ ≈ ψ is valid in v.

We are now in a position to connect u�-modal algebras and modal systems.

Proposition 3. Let M be a modal system; the relation ∼=Φ
M defined as: ϕ ∼=Φ

M ψ
iff Φ �M ϕ ↔ ψ yields a congruence on F.

Definition 11. Let M be a modal system; the M-Lindenbaum-Tarski algebra of
a set Φ of wffs is the structure LΦ

M = 〈Form/∼=Φ
M
, ∗∼=Φ

M
,−∼=Φ

M
, 1∼=Φ

M
, f�∼=Φ

M
, f u�∼=Φ

M
〉 where:

Form/∼=Φ
M

= { [ϕ]∼=Φ
M

| ϕ ∈ Form }; and

1∼=Φ
M

= [	]∼=Φ
M

−∼=Φ
M
([ϕ]∼=Φ

M
) = [¬ϕ]∼=Φ

M
f�∼=Φ

M
([ϕ]∼=Φ

M
) = [�ϕ]∼=Φ

M

[ϕ]∼=Φ
M

∗∼=Φ
M

[ψ]∼=Φ
M

= [ϕ ∧ ψ]∼=Φ
M

f u�∼=Φ
M
([ϕ]∼=Φ

M
) = [ u�ϕ]∼=Φ

M
.

The canonical interpretation v on LΦ
M is defined as v(ϕ) = [ϕ]∼=Φ

M
.

Proposition 4. Every M-Lindenbaum-Tarski algebra is a u�-modal algebra.

Theorem 1. For every modal system M, Φ �M ϕ iff LΦ
M � ϕ ≈ 	.
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The algebraic completeness of a modal system M w.r.t. a corresponding sub-
class of u�-modal algebras is obtained as a corollary of Theorem 1. In other
words, an M-Lindenbaum-Tarski u�-modal algebra acts as an ‘algebraic canon-
ical model’ for a set of formulas in the modal system M, i.e., they provide a
witness for Φ ��M ϕ. We make full use of M-Lindenbaum-Tarski u�-modal alge-
bras in Sect. 3.3.

3 Default Modal Logic

In this section we integrate the elements of Default Logic, defaults and exten-
sions, into modal systems. This integration yields what we call a default modal
system. For each default modal system, we introduce an associated notion of
default consequence and show how defaults interact with the rules of the Hilbert-
style notion of deduction for the underlying modal system. Moreover, we present
how a default modal system can be viewed from an algebraic perspective, and
prove a completeness result using algebraic tools. Later on, we discuss how the
algebraic treatment of default modal systems can be seen as an update opera-
tion on algebraic structures. This opens up the door to thinking about default
systems from a dynamic logic perspective (akin to public announcements).

3.1 Default Modal Systems

The main elements of Default Logic, i.e., defaults and extensions, are given in
Definitions 12 and 13, respectively. These definitions are adapted from [21]. For
the rest of this section we assume that M is an arbitrary but fixed modal system.

Definition 12. A default is a triple (π, ρ, χ) of formulas written as π : ρ / χ.
The formulas π, ρ, and χ, are called prerequisite, justification, and consequent.

Definition 13. Let Φ be a set of formulas and Δ a set of defaults. Let EΦ
ΔM be a

function s.t. for all sets of formulas Ψ , EΦ
ΔM(Ψ) is the ⊆-smallest set of formulas

which satisfies:

(a) Φ ⊆ EΦ
ΔM(Ψ);

(b) EΦ
ΔM(Ψ) = { ψ | EΦ

ΔM(Ψ) �M ψ };
(c) for all π : ρ / χ ∈ Δ, if π ∈ EΦ

ΔM(Ψ) and ¬ρ /∈ Ψ , then, χ ∈ EΦ
ΔM(Ψ).

A set Ε ⊆ Form is an M-extension of Φ under Δ iff it is a fixed point of EΦ
Δ,

i.e., iff Ε = EΦ
Δ(Ε). We write E Φ

ΔM for the set of all M-extensions of Φ under Δ.

Intuitively, an M-extension can be thought of as a set of formulas which
contains Φ, is closed under �M, and is saturated under the application of the
defaults in Δ. When it can be clearly understood from the context, we will drop
the prefix M and refer to an M-extension as an extension.

In the literature on Default Logic, defaults are intuitively understood as
defeasible rules of inference, i.e., rules of inference whose conclusions are sub-
ject to annulment, or rules which allow us to “jump” to conclusions. In turn,



110 V. Cassano et al.

extensions are intuitively understood as sets of formulas closed under the appli-
cation of defaults. The next two examples illustrate two properties of extensions:
multiplicity and absence of extensions.

Example 1. Let Φ = {♦p} and Δ = {♦p : ♦¬p / ♦¬p,♦p : �p / �p}; the set
E Φ

ΔM of extensions of Φ under Δ consists of exactly two extensions: (1) the set
Ε1 = { ϕ | {♦p,♦¬p} �M ϕ }; and (2) the set Ε2 = { ϕ | {♦p,�p} �M ϕ }.

Each of the extensions in Example 1 corresponds to the application of each
default in Δ. Once one default has been applied, the application of the other one
is blocked. This example illustrates how to handle contradictory information.

Example 2. Let Φ = {♦p} and Δ = {♦p : ♦q / �¬q}; the set E Φ
ΔM of extensions

of Φ under Δ is empty, i.e., E Φ
ΔM = ∅, i.e., there are no extensions of Φ under Δ.

Example 2 highlights a subtletly in thinking of extensions as being con-
structed by the successive application of defaults: applying a default may result
in its own annulment. To make this point clear, w.l.o.g., notice that plausible
candidates for extensions are: the set Ε1 = { ϕ | {♦p} �M ϕ } (i.e., not applying
the default); or the set Ε2 = { ϕ | {♦p,�¬q} �M ϕ } (i.e., result of applying the
default to Ε1).Neither of these sets is a fixed point of EΦ

Δ, i.e., EΦ
Δ(Ε1) = Ε2 and

EΦ
Δ(Ε2) = Ε1. This results in E Φ

ΔM = ∅.
We are now in a position to define what we mean by a default modal system.

This definition arises as a natural construction over a modal system M.

Definition 14. A default modal system is a tuple ΔM = 〈Δ,M〉 where Δ is a
set of defaults and M is a modal system.

In analogy with the case in modal systems, we associate with each default
modal system ΔM a relation ‖∼ΔM between sets of formulas and formulas. This
relation is based on the relation �M and it can be understood as its default
version. This is made clear in Definition 15.

Definition 15. Let ΔM be a default modal system; define

Φ ‖∼ΔM ϕ iff ϕ ∈ Ε for some Ε ∈ E Φ
ΔM.

We use ‖∼ΔM ϕ as a shorthand for ∅ ‖∼ΔM ϕ. The relation ‖∼ΔM is called
credulous in the literature on Default Logic, because the existence of just one
extension is enough to grant the inference (see [2]). The principle of monotonicity
fails for ‖∼ΔM. In other words: it is not necessarily the case that if Φ ‖∼ΔM ϕ,
then Φ ∪ Ψ ‖∼ΔM ϕ (for an arbitrary Ψ).

Building the relation ‖∼ΔM on the underlying relation �M raises the question
of which properties of �M are preserved at the level of ‖∼ΔM. Definition 16 sets
a basis on which to start answering this question.

Definition 16. The relation ‖∼ΔM interprets �M iff if Φ �M ϕ then Φ ‖∼ΔM ϕ.
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Interpretability seems to be a natural requirement on ‖∼ΔM. However, as
established in Example 2 (which shows that sometimes extensions do not exist)
this property fails to hold in general. To overcome this problem we can go down
two possible paths: (i) modify Definition 13 to guarantee the existence of exten-
sions; or (ii) single out defaults for which extensions are guaranteed to exist.
Among the most popular modifications of Definition 13 which guarantee the
existence of extensions we have: justified extensions (see [17]); and constrained
extensions (see [6]). For option (ii), we have the set of well-behaved2 defaults
as a very large and natural set which guarantees the existence of extensions
(see [21]). Going down path (i) overburdens the definition of an extension with
additional machinery which departs from the purposes of our work here. For
this reason, we choose to go down path (ii); i.e., we restrict ourselves to well-
behaved defaults. Interestingly, the notions of extensions, justified extensions,
and constrained extensions, coincide for well-behaved defaults (see [5,11]).

Definition 17. A default π : ρ / χ is well-behaved, written π/χ, iff ρ = χ. A
set of defaults Δ is well-behaved iff all defaults in Δ are well-behaved. A default
modal system ΔM is well-behaved iff Δ is well-behaved.

Proposition 5. Let ΔM be a default modal system; if ΔM is well-behaved, then,
‖∼ΔM interprets �M.

We conclude this section by drawing attention to an interesting point regard-
ing necessitation in default modal systems in Proposition 6 (cf. item 1 in Propo-
sition 1).

Proposition 6. If ‖∼ΔM ϕ, then ‖∼ΔM �ϕ.

Proof. Suppose that ‖∼ΔM ϕ; by definition, there is an M-extension Ε ∈ E Φ
ΔM s.t.

Ε �M ϕ. It follows that Ε �M �ϕ. Thus, ‖∼ΔM �ϕ.

The analogous to item 2 in Proposition 1, a form of the deduction theorem,
i.e., if Φ ∪ {ϕ} ‖∼ΔM ψ, then, Φ ‖∼ΔM u�ϕ → ψ fails to hold for an arbitrary ΔM
(even with the presense of u�).

3.2 Deducibility in Default Modal Systems

We formulate a notion of ΔM-deduction for an arbitrary but fixed well-behaved
default modal system ΔM. This notion of a ΔM-deduction extends that of an
M-deduction by incorporating defaults in a natural way.

Definition 18. A ΔM-deduction of ϕ from Φ is a finite sequence ψ1 . . . ψn of
formulas s.t. ψn = ϕ, and for each k < n at least one of the following conditions
hold:

2 In the literature on Default Logic well-behaved defaults are called normal. We avoid
using this terminology here to avoid any confusion with normality in Modal Logic.
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1. ψk is an axiom of M;
2. ψk is a premiss, i.e., ψk ∈ Φ;
3. ψk is obtained from two earlier formulas using mp, i.e., there are i, j < k s.t.

ψj = ψi → ψk;
4. ψk is obtained from an earlier formula using u, i.e., there is j < k s.t. ψk =

u�ψj.
5. ψk is obtained from an earlier formula using Δ-detachment, i.e., there is

j < k s.t. ψj/ψk ∈ Δ;

A ΔM-deduction is credulous whenever:

(Φ ∪ {ψi | 1 ≤ i ≤ n }) �M ⊥ iff Φ �M ⊥. (1)

We define Φ |∼ΔM ϕ iff there is a credulous ΔM-deduction of ϕ from Φ.

The notion of a credulous ΔM-deduction extends the notion of M-deduction
with a rule of default detachment and the condition of being credulous. The
rule of default detachment shows how defaults interact with the rules of the
underlying proof system. The condition of being credulous in Eq. (1) captures
the fact that defaults cannot be a source of inconsistency. Intuitively, a credulous
ΔM-deduction of ϕ from Φ internalizes the construction of (part of) an extension
containing ϕ together with the M-deduction which witnesses this containment.
This is made precise in the following result.

Theorem 2. Φ |∼ΔM ϕ iff Φ ‖∼ΔM ϕ.

3.3 Towards an Algebraic Treatment of Default Modal Systems

We turn now our attention to a characterization of defaults and extensions
by means of Lindenbaum-Tarski u�-modal algebras. This algebraic treatment
of defaults and extensions reveals how default modal systems may be thought
of as updates on u�-modal algebras. For the rest of this section, we assume
that ΔM is an arbitrary but fixed well-behaved default modal system. We
use L to indicate the class of Lindenbaum-Tarski u�-modal algebras of M, i.e.,
L = {LΦ

M | Φ ⊆ Form }. We drop the sub-index M and use Φ instead of ∼=Φ
M as

a way of further simplifying the notation. We construct this section around the
following definition.

Definition 19. Let δ = π/χ ∈ Δ; the function δ̂ : L → L is defined as:

δ̂(LΦ) =

{
LΦ∪{χ} if [π]Φ = 1Φ and 0Φ /∈ ↑{[ u�χ]Φ}

LΦ otherwise.

(2a)

(2b)

Definition 19 is the algebraic counterpart of the application of a default w.r.t.
a set of sentences. More precisely, δ = π/χ is applicable w.r.t. a set Φ satisfying
Φ = { ϕ | Φ � ϕ } if: (a) π ∈ Φ; and (b) Φ ∪ {χ} �� ⊥. Applying the default
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δ results in { ϕ | Φ ∪ {χ} � ϕ }. On the algebraic side, we capture the appli-
cation of a default as a transformation between Lindenbaum-Tarski u�-modal
algebras. More precisely, consider the Lindenbaum-Tarski u�-modal algebra for
Φ, i.e., LΦ. The condition (a) of applicability of δ = π/χ w.r.t. LΦ is captured
in (2a) as [π]Φ = 1Φ; and the condition (b) of applicability is captured in (2a) as
0Φ /∈ ↑{[ u�χ]Φ}. In other words, the equivalence class of 1Φ captures the deducibil-
ity of π from Φ, i.e., π ∈ Φ, alt., Φ � π. In turn, the condition of being proper
on the (open) filter generated by [ u�χ]Φ captures the consistency of χ w.r.t. Φ,
i.e., Φ ∪ {χ} �� ⊥. Notice that if the default is applicable, the return value of δ̂

incorporates χ to LΦ, i.e., it results in LΦ∪{χ}. Otherwise, δ̂ has no effect on LΦ.
When seen in this light, the operator δ̂ performs an update reflecting the appli-
cation of δ on its input. The situation with δ̂ is similar to the case in dynamic
logics such as Public Announcement Logic [20] (in particular, in relation to the
approach proposed in [18]). We retake this discussion in Sect. 4.

Having dealt with defaults we turn our attention to extensions. For well-
behaved defaults, extensions can be seen as being constructed in a step-wise
fashion applying defaults one at a time. From a syntactic perspective, this con-
struction of an extension starts with a closed set Φ, and applies the defaults
δ ∈ Δ one by one until we obtain a closed set of formulas that is saturated
under the application of defaults. From the perspective of Lindenbaum-Tarski
u�-modal algebras we obtain the following.

Proposition 7. Each function δ̂ induces a function δ̄ : |L| → |δ̂(L)| defined as:
δ̄([ϕ]Φ) = [ϕ]Φ∪{χ} if Eq. (2a) holds; or δ̄([ϕ]Φ) = [ϕ]Φ if Eq. (2b) holds. The
function δ̄ is a homomorphism from L to δ̂(L).

Proof. That δ̄ is a function is trivial. The proof that δ̄ is a homomorphism is by
cases. If Eq. (2b) holds, then, the result is obtained immediately. Otherwise:

δ̄(f�
Φ ([ϕ]Φ)) = δ̄([�ϕ]Φ) = [�ϕ]Φ∪{χ} = f�

Φ∪{χ}([ϕ]Φ∪{χ}) = f�
Φ∪{χ}(δ̄([ϕ]Φ)).

The remaining cases are similar.

The following are some immediate properties of default operators.

Definition 20. Let L1,L2 ∈ L; we write L1 ≤ L2 iff there is a homomorphism
h : L1 → L2; and L1 < L2 iff L1 ≤ L2 and L1, L2 are not isomorphic.

Proposition 8. Every δ̂ is extensive and idempotent, i.e., it satisfies L ≤ δ̂(L)
and δ̂(L) = δ̂(δ̂(L)), resp. An arbitrary δ̂ needs not satisfy monotonicity, i.e.,
there are δ = π/χ s.t. L1 ≤ L2 and δ̂(L1) � δ̂(L2).

Proof. Extensivity follows from Proposition 7. Idempotence is proven by cases.
If Eq. (2b) holds, then, the result is obtained immediately. Otherwise, Eq. (2a)
holds. In this case, δ̂(LΦ) = LΦ∪{χ}. Trivially, δ̂(LΦ∪{χ}) = LΦ∪{χ}. For a
counter-example to monotonicity consider L∅

K u� and L{�p}
K u� , and δ = 	/♦¬p.
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The set Δ of defaults leads naturally to a set { δ̂ : L → L | δ ∈ Δ }. Each δ̂
in this set can be seen as “taking a step” in the construction of the algebraic
counterpart of an extension. To carry out this construction, we would need to
compose such steps. This leads to the formulation of Definition 21.

Definition 21. The default monoid associated to ΔM is the monoid D∗ freely
generated by { δ̂ | δ ∈ Δ }, i.e., D∗ = 〈D,−;−, id〉 where:

1. D is the ⊆-smallest set s.t.: { δ̂ : L → L | δ ∈ Δ } ⊆ D; id : L → L ∈ D; and
if {d1 : L → L, d2 : L → L} ⊆ D, then (d1;d2) : L → L ∈ D;

2. id and −;− satisfy: id(L) = L; and (d1;d2)(L) = d2(d1(L)).

Proposition 9. Every d ∈ |D∗| is either: the identity, i.e., d = id; or a compo-
sition of the form d = (δ̂1; . . . ;δ̂n), where δi ∈ Δ.

We define id([ϕ]Φ) = [ϕ]Φ; and (δ̂1; . . . ;δ̂n) = (δ̄1; . . . ;δ̄n).

Definition 22. Let L be a Lindenbaum-Tarski u�-modal algebra in L, and v be
an assignment on L; for an equation ϕ ≈ ψ, define:

D∗,L, v |≈ ϕ ≈ ψ iff d(L), (v;d̄) � ϕ ≈ ψ for some d ∈ |D∗|.
We write D∗,L |≈ ϕ ≈ ψ iff D∗,L, v |≈ ϕ ≈ ψ for all assignments v.

Intuitively, the Lindenbaum-Tarski u�-modal algebra d(L) in Definition 22 is
the algebraic counterpart of the concept of an extension. This is made clear in
Theorem 3.

Theorem 3. Φ |∼ ϕ iff D∗,LΦ |≈ ϕ ≈ 	.

Proof. The interesting part is the right-to-left implication: if D∗,LΦ |≈ ϕ ≈ 	,
then, Φ |∼ ϕ. We prove the contrapositive: if Φ �|∼ ϕ, then, D∗,LΦ �|≈ ϕ ≈ 	. Let
Φ �|∼ ϕ, the proof is concluded if for all d ∈ |D∗|, d(LΦ) �� ϕ ≈ 	. We continue by
induction on d. Let d = id; we must have id(LΦ) �� ϕ ≈ 	; otherwise we would
obtain Φ � ϕ (from Theorem 1); and so that Φ |∼ ϕ (which contradicts our
assumption). For the next case, let d = δ̂ for δ = π/χ ∈ Δ; either Eq. (2b) holds
or Eq. (2a) holds. If Eq. (2b) holds, δ̂ behaves like id (and we are back to the
previous case). If Eq. (2a) holds, δ̂(LΦ) = LΦ∪{χ}. Assuming (i) LΦ∪{χ} � ϕ ≈ 	
leads to a contradiction. More precisely, if Eq. (2a) holds, from Theorem 1, we
obtain Φ � π and Φ ∪ {χ} �� ⊥. From (i) and Theorem 1, we obtain Φ ∪ {χ} � ϕ.
If we place the M-deduction of π from Φ in front of the M-deduction of ϕ from
Φ∪{χ}, we obtain Φ |∼ ϕ. This yields the contradiction. For the inductive step, let
d = (δ̂1; . . . ;δ̂n;δ̂(n+1)). Suppose that (δ̂1; . . . ;δ̂n)(LΦ) = LΦ′

. From the inductive
hypothesis, we obtain LΦ′ �� ϕ ≈ 	. Assuming that δ̂(n+1)(LΦ′

) � ϕ ≈ ψ leads
to a contradiction using the same argument as in (i).

We conclude this section by taking some steps beyond dealing with defaults
and extensions in the context of Lindenbaum-Tarski u�-modal algebras. In par-
ticular, we show how some of the constructions used in Sect. 3.3 can be extended
to a more abstract setting via suitable congruences.
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Definition 23. Let LΦ be a Lindenbaum-Tarski u�-modal algebra and χ a for-
mula; define [ϕ1]Φ ≡χ [ϕ2]Φ iff [ϕ1]Φ ∗Φ [ u�χ]Φ = [ϕ2]Φ ∗Φ [ u�χ]Φ.

Definition 23 is a step towards treating the application of default as a device
for obtaining a u�-modal algebra M updated by the element [χ]Φ in LΦ. The
updated u�-modal algebra M is meant to be obtained as a quotient algebra
modulo the congruence ≡χ. Proposition 10 shows that ≡χ indeed is a congruence.

Proposition 10. The relation ≡χ is a congruence on LΦ.

Proof. That ≡χ is an equivalence relation is immediate. To improve notation we
drop the subscript Φ. We need to show that: if [ϕ1] ≡χ [ϕ2] and [ϕ3] ≡χ [ϕ4],
then, [ϕ1] ∗ [ϕ3] ≡χ [ϕ2] ∗ [ϕ4]; −[ϕ1] ≡χ −[ϕ2]; f�([ϕ1]) ≡χ f�([ϕ2]); and
f u�([ϕ1]) ≡χ f u�([ϕ2]). The proof continues by cases (we only show the cases f�

and f u�, the rest are routine):

f�([ϕ1]) ∗ [ u�χ]
≥ f�([ϕ1] ∗ [ u�χ]) ∗ [ u�χ]
= f�([ϕ2] ∗ [ u�χ]) ∗ [ u�χ]
= f�([ϕ2]) ∗ (f�([ u�χ]) ∗ [ u�χ])
≥ f�([ϕ2]) ∗ [ u�χ]

f u�([ϕ1]) ∗ [ u�χ]
= f u�([ϕ1]) ∗ [ u� u�χ]
= f u�([ϕ1]) ∗ f u�([ u�χ])
= f u�([ϕ1] ∗ [ u�χ])
= f u�([ϕ2] ∗ [ u�χ])
= f u�([ϕ2]) ∗ f u�([ u�χ])
= f u�([ϕ2]) ∗ [ u� u�χ]
= f u�([ϕ2]) ∗ [ u�χ].

Proposition 11. The quotient algebra LΦ/≡χ
is isomorphic to LΦ∪{χ}.

Proof (sketch).
Observe that Φ ∪ {χ} � (ϕ1 ↔ ϕ2) iff Φ � (ϕ1 ∧ u�χ ↔ ϕ2 ∧ u�χ). The isomor-
phism between LΦ/≡χ

and LΦ∪{χ} is given by mappings ι1 and ι2 defined as:
ι1([[ϕ]Φ]≡χ

) = [ϕ]Φ∪{χ}; and ι2([ϕ]Φ∪{χ}) = [[ϕ]Φ]≡χ
.

The isomorphism in Proposition 11 shows that the relation ≡χ yields the
“correct” congruence if the application of a default is to be seen as an update on
a u�-modal algebra. Moreover, it is possible to define a function ε : LΦ/≡χ

→ LΦ

defined by ε([[ϕ]Φ]≡χ
) = [ϕ]Φ ∗Φ [χ]Φ. The image of ε is also isomorphic to

LΦ∪{χ}. The results discussed in this paragraph open a pathway on how to lift
the constructions in Definitions 19 and 21 to the setting of arbitrary u�-modal
algebras.

4 On Defaults as Model Updates

We are now in a position to establish a connection between our algebraic app-
roach for default modal systems and the algebraic treatment of Public Announce-
ment Logic (PAL) in [18]. To set up context for discussion, we briefly introduce
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some basic notions of PAL (see, e.g., [20] for details). As a modal logic, PAL
extends the modal logic S5 (seen as the logic of knowledge) with a new modality
〈!ψ〉 of announcement. Intuitively, a formula 〈!ψ〉ϕ states that after the truthful
announcement of ψ, ϕ holds. Model theoretically, the interpretation of announc-
ing ψ relativizes the model in which ψ is announced to the submodel in which ψ
holds. The formula ϕ is then evaluated on the relativized model. It is important
to remark that the announcement of ψ must be truthful: it occurs only if ψ is
true. Otherwise, the announcement fails and 〈!ψ〉ϕ evaluates to false.

There are some interesting similarities between announcements in PAL and
defaults. From an algebraic perspective, an announcement may be understood as
a homomorphism between the modal algebra in which the announcement occurs
and the modal algebra corresponding to the submodel in which the announced
formula holds. The algebraic machinery introduced in Sect. 3.3 sets the basis
for thinking about the application of defaults as a logic of updates between par-
ticular modal algebras (Lindenbaum-Tarski u�-modal algebras). In other words,
we may construe the algebraic semantics of a default as an update from the
Lindenbaum-Tarski u�-modal algebra in which the default is considered, and the
one updated with the consequent of the default (if the default is applicable).
Notice that a default update takes place only if the prerequisite of the default
is provable and its justification does not yield an inconsistency. The situation
here is similar to the case of announcements, where the update takes place only
if the formula being announced is true. In both cases, that of an announcement
and that of the algebraic application of a default, the update is captured by
a homomorphism from the original modal algebra to an updated modal alge-
bra (obtained as a quotient construction). There is, however, subtle difference
between announcements and defaults: if the announcement of ψ is not truthful
the whole formula 〈!ψ〉ϕ amounts to a falsity; whereas if the prerequisite of a
default is not provable, or its justification is inconsistent in the modal algebra,
the application of the default has no effect.

The similarities between announcements in PAL and defaults are even more
apparent when contrasted with the proposal presented in [18]. This proposal
exploits the duality between models and algebras in order to algebraize PAL. In
particular, in [18], a formula ψ is interpreted as an element b in an S5 modal
algebra M = 〈B, ∗,−, f�〉. The result of announcing this formula is a modal
algebra constructed as a quotient modulo a congruence ≡b defined as b1 ≡b b2 iff
b1 ∗ b = b2 ∗ b. This congruence bears a close resemblance to the one we presented
in Sect. 3.3. The main difference between this congruence and ours rests on the
fact that the former is presented in the setting of S5, whereas ours is presented
in a setting where global modal consequence is taken as the basis on which to
build default modal systems. This said, the approach in [18] is more abstract
than ours; since it considers arbitrary modal algebras and not just Lindenbaum-
Tarski modal algebras.

The discussion above offers only some first steps in understanding the rela-
tionship between defaults and updates: both in terms of a full algebraization of
default modal systems, and in terms of establishing a tight connection with logics
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of updates. In working towards a full algebraization of default modal systems,
we would like to interpret the application of a default over arbitrary modal alge-
bras, and not only as an update over Lindenbaum-Tarski u�-modal algebras. In
this regard, the main challenge is how to generalize the way in which we capture
the application of one default to the application of a sequence of defaults needed
to build an extension. Moreover, it would also be interesting to know whether it
is possible to develop a class of algebraic structures for default modal systems
parallel to the class of modal algebras for modal systems. This would require
an internalization of defaults as algebraic operators. In turn, in what refers to
establishing a tight connection with logics of updates, it would be interesting to
be able to prove a reduction result between a default modal system and a logic
of announcement (or establishing a difference in expressive power between one
and the other). In this case, the challenge is deciding on an adequate logic of
announcement and in finding whether it is possible to faithfully translate the
application of a default as a form of update in this logic. Finally, upon defining
the semantics of defaults as updates, we would like to study defaults as dynamic
epistemic operators. In particular, we would like to explore whether defaults can
be used to represent some novel form of communication in a multi-agent setting.

5 Final Remarks

We presented a family of default logics built over modal logics and studied some
properties.

First, we presented default logics syntactically as a default modal system.
For each default modal system we formulated a notion of default deducibility
to make explicit how defaults interact with the rules of the underlying proof
calculus. Then, we offered an algebraic treatment of defaults and extensions.
The algebraic treatment enabled us to obtain an algebraic completeness result.
To our knowledge, this is the first work addressing default logic algebraically.

Moreover, we discussed a connection between default modal systems and
modal logics with updates. In particular, our algebraic treatment of defaults
is inspired by the ideas introduced in [18] for PAL. We believe that considering
default modal systems as logics of updates is an interesting pathway to the study
of the meta-logical properties of such systems from a semantic perspective.
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