
Dealing with Unreliable Agents
in Dynamic Gossip

Line van den Berg1(B) and Malvin Gattinger2

1 Univ. Grenoble Alpes, Inria, CNRS, Saint-Martin-d’Hères, France
line.van-den-berg@inria.fr

2 University of Groningen, Groningen, The Netherlands
malvin@w4eg.eu

Abstract. Gossip describes the spread of information throughout a net-
work of agents. It investigates how agents, each starting with a unique
secret, can efficiently make peer-to-peer calls so that ultimately every-
one knows all secrets. In Dynamic Gossip, agents share phone numbers
in addition to secrets, which allows the network to grow at run-time.

Most gossip protocols assume that all agents are reliable, but this is
not given for many practical applications. We drop this assumption and
study Dynamic Gossip with unreliable agents. The aim is then for agents
to learn all secrets of the reliable agents and to identify the unreliable
agents.

We show that with unreliable agents classic results on Dynamic Gos-
sip no longer hold. Specifically, the Learn New Secrets protocol is no
longer characterised by the same class of graphs, so-called sun graphs. In
addition, we show that unreliable agents that do not initiate communi-
cation are harder to identify than agents that do. This has paradoxical
consequences for measures against unreliability, for example to combat
the spread of fake news in social networks.

1 Introduction

The internet has led to great changes in the distribution of news. Recently, ‘fake
news’ received attention, possibly having influenced the 2016 US presidential
election [1]. Besides the challenge to identify fake news, a question is how to
treat it: should false information be removed or is marking it as false sufficient?

Dynamic Gossip is a formal model how information can spread throughout a
changing network of agents. It investigates how agents, each with a unique secret,
decide, based on their own knowledge about the network, what calls to make so
that ultimately everyone knows all the secrets. A gossip protocol can help agents
to decide on a call sequence to perform. Examples from the literature are ANY
(“call any agent”), CMO (“call me once”) and LNS (“learn new secrets”) [7]. In
a dynamic setting, additional to secrets, agents share phone numbers, allowing
the network to grow at run-time.

Traditionally these systems assume that everybody is reliable, but this
assumption is not justified for many practical applications. Therefore, we adapt
c© Springer Nature Switzerland AG 2020
M. A. Martins and I. Sedlár (Eds.): DaĹı 2020, LNCS 12569, pp. 51–67, 2020.
https://doi.org/10.1007/978-3-030-65840-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65840-3_4&domain=pdf
http://orcid.org/0000-0002-8920-0142
http://orcid.org/0000-0002-2498-5073
https://doi.org/10.1007/978-3-030-65840-3_4

52 L. van den Berg and M. Gattinger

Dynamic Gossip to account for unreliable agents. Of course, the possibilities for
agents to be unreliable are numerous: agents can lie about their own secret or
about secrets of others, agents can have a memory of whom they have lied to
or not, agents can always lie or with a certain probability, and agents can lie
merely about secrets or also about phone numbers, etc. With any such form of
unreliability, the aim of the reliable agents should still be to learn all the secrets
(of the reliable agents) and, in addition, to identify the unreliable agents.

We show that, already with relatively simple unreliable agent a known result
in Dynamic Gossip from [7] breaks down. Specifically, the Learn New Secrets
protocol is no longer characterised by sun graphs. This emphasises the need to
discard the assumption that everyone is reliable for any practical application.
In addition, we show that unreliable agents that do not initiate communication
are harder to identify than those that do. This has seemingly paradoxical conse-
quences for security measures taken against unreliable agents: blocking as a mea-
sure against false information has the adverse effect of securing the anonymity of
the unreliable agents. New protocols are needed to properly cope with unreliable
agents in Dynamic Gossip.

Our article is structured as follows. We give a short summary of related work
in Sect. 2. In Sect. 3 we recall the definitions of Dynamic Gossip. We then define
Unreliable Gossip and unreliable agents in Sect. 4 and 5, respectively. The new
setting then motivates a new notion of success which we define and examine in
Sect. 6. We conclude with future work ideas and a discussion the relevance of
Unreliable Gossip for social networks in Sect. 7.

2 Related Work

Gossip has first been studied in combinatorics and graph-theory [11]. The clas-
sical question, also known as the “telephone problem” is: Given n agents who
each start with a unique secret, how many phone calls are needed to spread all
secrets? For n > 3 agents that all have the phone number of all other agents,
2n − 4 calls are necessary and sufficient to make everyone learn all secrets [15].
For networks in which not every agent has the phone number of all other agents,
these numbers are naturally higher [10]. Besides communication networks, gossip
has also been used for the study of epidemics [9], power grids [17] and neural
networks [17].

Most results on classical gossip assume a central and all-knowing scheduler
deciding who should call whom and when. This is not realistic for practical
applications in which agents have to decide autonomously what (communication)
action to take. Hence, distributed gossip has been studied in which agents decide
autonomously, on their own, whom to call using epistemic protocols [2,3].

More recently, another assumption has been lifted, namely the assumption
that the graph representing who can call whom is constant, i.e. agents have a
static phone book or contact list. In dynamic gossip agents also exchange phone
numbers, adding edges in the reachability graph [7]. This means that the network
may grow at run-time. This is the setting which we use and extend here.

Dealing with Unreliable Agents in Dynamic Gossip 53

Most work on the classical telephone problem and on Dynamic Gossip
assumes that all agents are reliable and follow the same protocol. However, gossip
with unreliability has been studied extensively in other areas. One direction of
research is about settings where communication links are unreliable, as studied
in [14] and [16]. In contrast, here we assume that communication works perfectly
but that agents are unreliable. Our setting is thus more comparable to having
faulty or malicious agents, as in distributed storage [6] or consensus protocols [4].

Similar to our work is also the proposal of ‘corrected gossip’ in [12]. The
authors study failing nodes and define a gossip protocol which tries to reduce
latency of the total group communication. A big difference to our setting is that
their networks are static and no links are added at run-time.

3 Dynamic Gossip

We now give a short introduction to Dynamic Gossip, following [7]. We assume
a finite set of agents, A. Initially, each agent knows only their own secret and
some set of phone numbers including their own. If an agent a has the phone
number of an agent b, then the phone call ab can take place. During a call, the
two agents exchange secrets and phone numbers — including those they learned
in previous calls. One might wonder what else agents learn in such a call, but
for all results we discuss here higher-order knowledge such as “a knows that b
knows the secret of c” is irrelevant, hence we will not model it and refer to [8].

Example 1. Suppose agent a knows the number of b, and agents b and c know
each other’s number and no other numbers are known. We draw this situation
below. Note that we use dashed arrows for the binary relation of knowing the
number of someone (N). Now if a calls b then a and b learn each other’s secret,
which we draw with solid arrows (S). We also add another dashed arrow: in the
call ab agent a also learns the number of c.

a b c ab→ a b c

We formally define gossip graphs, calls and sequences as follows.

Definition 1 (Gossip Graph). For any set A, let IA := {(a, a) | a ∈ A}.
A gossip graph is a triple G = (A, N, S) where A is a finite set of agents,
N ⊆ A × A and S ⊆ A × A such that IA ⊆ N and IA ⊆ S. Given any G, let
Sa := {b ∈ A | (a, b) ∈ S} and Na := {b ∈ A | (a, b) ∈ N}.

A graph is initial iff S = IA. A graph is complete iff S = A × A.
An agent a is an expert iff Sa = A. An agent a is terminal iff Na = {a}.
We say that “agent a knows the number of agent b” iff (a, b) ∈ N . Similarly,

we say “agent a knows the secret of agent b” iff (a, b) ∈ S.
We now define calls ab, in which agent a and b share all their information.

54 L. van den Berg and M. Gattinger

Definition 2 (Call). Suppose G = (A, N, S), a, b ∈ A and (a, b) ∈ N . The
call ab maps G to Gab := (A, Nab, Sab) where

Nab
c :=

{
Na ∪ Nb if c ∈ {a, b}
Nc otherwise

and Sab
c :=

{
Sa ∪ Sb if c ∈ {a, b}
Sc otherwise

Definition 3 (Call sequences). A call sequence σ is a sequence of calls. We
use the following notation: ε is the empty sequence and σ; τ is the concatenation
of two sequences σ and τ ; Moreover, σ � τ denotes that σ is a prefix of τ .

We say that call ab is possible on a graph G = (A, N, S) iff (a, b) ∈ N . The
call sequence ε is possible on any graph, and a call sequence ab;σ is possible on
G iff the call ab is possible on G and σ is possible on Gab. If a call sequence σ
is possible on a graph G, then Gσ is defined by: Gε := G and Gab;σ := (Gab)σ.

It is an easy exercise to show by induction on σ that “if a knows the secret
of b, then a also knows the number of b” is an invariant when making calls.

Lemma 1. For any initial graph G = (A, N, S) and any call sequence σ that is
possible on G, we have in the resulting graph Gσ = (A, Nσ, Sσ) that Sσ ⊆ Nσ.

A protocol for Dynamic Gossip is a rule how agents decide whom they should
call. The goal of a gossip protocol is to reach a complete graph, where everybody
knows all secrets. Moreover, good protocols will use fewer calls and avoid super-
fluous or redundant calls. Here we will focus on the LNS protocol from [7]. For
a general definition of protocols in a formal language, see [8].

Definition 4 (LNS Protocol). A call ab is LNS-permitted iff (a, b) ∈ N and
(a, b) �∈ S.

We now define when a protocol is successful on a graph. Intuitively, this
means all possible executions of the protocol lead to a complete graph.

Definition 5 (Success). Let PG bet the set of all call sequences possible on G
and permitted by protocol P . We also call such call sequences P -permitted.

Let a graph G = (A, N, S) and a protocol P be given. A finite call sequence
σ ∈ PG is successful iff Gσ is complete. A sequence σ is P -maximal on G iff σ
is P -permitted on G and there is no call P -permitted on Gσ, i.e. no call ab can
be added to σ such that σ; ab is still P -permitted.

– P is strongly successful on G if all P -maximal σ ∈ PG are successful.
– P is weakly successful on G if there is a σ ∈ PG that is successful.
– P is unsuccessful on G if there is no σ ∈ PG that is successful.

Given a certain class G of networks (graphs) and a protocol P , we can ask
the question: is P (strongly, weakly, un-) successful on G. That is, does P lead to
a complete network? This question, the gossip problem, is used to characterise
networks both by their graph-theoretical properties and by the protocols that
are (strongly, weakly, un-) successful on them.

It is easy to see that on any graph that consists of disconnected parts no
protocol is successful. Hence, graphs need to be weakly connected to allow any
of the protocols to be successful [7].

Dealing with Unreliable Agents in Dynamic Gossip 55

Definition 6. A graph G = (A, N, S) is weakly connected iff for all agents
a, b ∈ A there is a undirected N -path between a and b. We say that G is strongly
connected iff for all agents a, b ∈ A there is an N -path from a to b.

A graph G = (A, N, S) is a sun graph iff N is strongly connected on s(G),
where s(G) is the result of removing all terminal agents from G.

Informally, one can think of sun graphs as ‘almost’ strongly connected graphs.

Example 2. The following graph is a sun graph: if we remove the only terminal
agent a, then we obtain a strongly connected graph (consisting of b and c).

a b c

Theorem 1 (Theorem 13 in [7]). Suppose G is an initial gossip graph. Then
LNS is strongly successful on G iff G is a sun graph.

4 Unreliable Gossip

It is easy to define reliable agents: they do exactly what they are expected to
do. In particular, reliable agents communicate truthfully about their own secret,
about secrets of others and share all the phone numbers they have.

However, when unreliability is allowed, there are numerous different options.
There may be noise on the communication channel causing the communication
between agents to fail; agents may (intentionally or unintentionally) follow a
different protocol; agents may actively spread lies, either about their own secret,
about other agents’ secrets or both; agents may sabotage connections between
other agents; unreliable agents may form coalitions to manipulate the network;
the degree of unreliability may evolve over time, via peer pressure or other mech-
anisms; unreliable agents might have a memory of whom they have lied to; etc.
This gives rise to many different types of unreliable behaviour.

In this article we only consider a basic form of unreliability: unreliability in
the form of unintended random memoryless noise. A real-world example for this
kind of unreliability could be a network of sensors that communicate with each
other, but where one or more of the sensors are faulty. We therefore assume:

– Agents all follow the same protocol;
– Unreliable agents only lie about their own secret;
– Connections are not sabotaged;
– Unreliability does not evolve;
– Unreliable agents do not remember to whom they lied;
– Agents consider all new information as true until proven otherwise.

In the standard model of (dynamic) gossip, an agent either knows a secret
or not. For settings with unreliable agents we need more: agents can also have
obtained a wrong secret and thus have a false belief.

To model this, we let secrets be bits and replace the former set of secrets Sa

with two sets: Xa for agents of which a received secret 1, and Ya for agents of

56 L. van den Berg and M. Gattinger

which a received secret 0. When an agent is in either Xa or Ya, then a considers
that agent to be reliable. But when an agent is both in Xa and Ya, then a will
consider that agent unreliable.

Definition 7 (UG Graph). A gossip graph with unreliable agents, short Unre-
liable Gossip graph or UG graph, is a quadruple G = (A, R,N, S) where A is a
finite set of agents, R ⊆ A is the set of reliable agents, N ⊆ A×A is the network
relation and S : A → P(A) × P(A) assigns to each agent a ∈ A a pair (Xa, Ya).
We say that a has a positive secret of b iff b ∈ Xa, that a has a negative secret
of b iff b ∈ Ya, and that a knows that b is unreliable iff b ∈ Xa ∩ Ya.

We also write Sa for Xa ∪ Ya, which intuitively is the set of all agents of
which a knows any secret. When all agents are reliable (R = A), a UG graph
can be identified with a gossip graph by setting Sa := Xa ∪ Ya for each a ∈ A.

Definition 8 (Initial UG Graph). A UG graph G = (A, R,N, S) is initial
iff for all a ∈ A we have Xa ∪ Ya = {a}.

In a regular call ab, where both agents speak the truth, information is shared
as follows. This means that both agents update their contact lists (Na and Nb,
respectively) and update their sets X, Y by taking unions. In particular, if before
the call agent a had a positive and secret agent b had a negative secret of some
agent c, then after the call both a and b know that agent c is unreliable.

Definition 9 (UG Call between reliable agents). Let G = (A, R,N, S)
be a UG Graph and let a, b ∈ A such that (a, b) ∈ N . The call ab maps G to
Gab = (A, R,Nab, Sab) where Nab is as in Definition 2 and

Sab
c :=

{
(Xa ∪ Xb, Ya ∪ Yb) if c ∈ {a, b}
(Xc, Yc) otherwise

Analogous to Definition 3 we write Gσ for the result of executing a sequence of
calls σ on a UG graph G.

Note that in the definition of a call, agents are naive: they consider all new
information completely trustworthy and update their knowledge accordingly. In
other settings where unreliable agents may lie about secrets of other agents, one
can imagine that agents would adopt a more sceptic approach or prefer first hand
information (an agent sharing their own secret) over second hand information
(and agent sharing a secret of another agent).

5 Unreliable Agents

We now formally define unreliable agents that satisfy the constraints given in
Sect. 4. An unreliable agent may report a wrong value of their own secret in
a call. We do not assume any rules about when and how often an unreliable

Dealing with Unreliable Agents in Dynamic Gossip 57

agent reports the wrong value of their secret, only that the probability to lie is
non-zero (for when the probability is zero, it is a reliable agent).

In addition to the call ab from Definition 9, we now define three calls Ab, aB
or AB in which respectively a, b or both agents report the wrong value of their
own secret. That is, the agents denoted with a capital letter are lying about
their own secrets in this call. For example, in a call Ab all secrets are shared
normally, apart from agent a’s secret. More specifically, if a ∈ Xa then the new
set of secrets for b is not given by merging Xa with Xb, and Ya with Yb, but
by merging Xa \ {a} with Xb, and Ya ∪ {a} with Yb. The lying of agent a is
thus represented by acting as if her own secret was in Ya and not in Xa (or vice
versa).

Note that Ab, Ba and AB can only occur if, respectively, a, b or both agents
do not belong to the set of reliable agents R. On the other hand, note that in the
call Ab agent b does not necessarily belong to R, but might still be unreliable
and just happen to speak the truth in this call.

Definition 10 (UG Call with unreliable agents). Let G = (A, R,N, S) be
a UG Graph and let a, b ∈ A such that (a, b) ∈ N . We define four calls.

ababab The call ab maps G to Gab = (A, R,Nab, Sab) from Definition 2.
AbAbAb Suppose a �∈ R. The call Ab maps G to GAb = (A, R,NAb, SAb) where

NAb := Nab from Definition 2, and for agents a and b:

SAb
a := (Xa ∪ Xb, Ya ∪ Yb) (1)

SAb
b :=

⎧⎪⎨
⎪⎩

((Xa \ {a}) ∪ Xb, Ya ∪ {a} ∪ Yb) if a ∈ Xa \ Ya

(Xa ∪ {a} ∪ Xb, (Ya \ {a}) ∪ Yb) if a ∈ Ya \ Xa

(Xa ∪ Xb, Ya ∪ Yb) if a ∈ Xa ∩ Ya

(2)

and SAb
c := (Xc, Yc) for all other agents c /∈ {a, b}.

aBaBaB Vice versa, suppose b �∈ R. The call aB maps G to GaB which is defined
symmetrically, i.e. the same as GBa.

ABABAB Finally, suppose a �∈ R and b �∈ R. The call AB maps G to GAB =
(A, R,NAB , SAB) where NAB := Nab from Definition 2 and for a and b:

SAB
a :=

⎧⎪⎨
⎪⎩

(Xa ∪ (Xb \ {b}), Ya ∪ Yb ∪ {b}) if b ∈ Xb \ Yb

(Xa ∪ Xb ∪ {b}, Ya ∪ (Yb \ {b})) if b ∈ Yb \ Xb

(Xa ∪ Xb, Ya ∪ Yb) if b ∈ Xb ∩ Yb

(3)

SAB
b :=

⎧⎪⎨
⎪⎩

((Xa \ {a}) ∪ Xb, Ya ∪ {a} ∪ Yb) if a ∈ Xa \ Ya

(Xa ∪ {a} ∪ Xb, (Ya \ {a}) ∪ Yb) if a ∈ Ya \ Xa

(Xa ∪ Xb, Ya ∪ Yb) if a ∈ Xa ∩ Ya

(4)

and SAB
c := (Xc, Yc) for all other agents c /∈ {a, b}.

Analogous to Definition 3 we write Gσ for the result of executing a sequence of
reliable or unreliable calls σ on a UG graph G.

58 L. van den Berg and M. Gattinger

We stress that an unreliable agent will not always report the wrong value. In
fact, then it would be the same as a reliable agent with the opposite secret value,
and the other agents would never find out that the unreliable agent is lying.

To illustrate the different types of calls, consider the following example.

Example 3. Consider the UG graph G = (A, R,N, S) where A = {a, b, c, d},
R = {c, d}, N = A × A and Sx = (Xx, Yx) = ({x}, ∅) for each x ∈ A. The
(LNS-permitted) call sequence AB; ac;Ad; cd; bc changes G as follows:

(Xa, Ya) (Xb, Yb) (Xc, Yc) (Xd, Yd)

({a}, ∅) ({b}, ∅) ({c}, ∅) ({d}, ∅)
AB→ ({a}, {b}) ({b}, {a}) ({c}, ∅) ({d}, ∅)
ac→ ({a, c}, {b}) ({b}, {a}) ({a, c}, {b}) ({d}, ∅)
Ad→ ({a, c, d}, {b}) ({b}, {a}) ({a, c}, {b}) ({c, d}, {a, b})
cd→ ({a, c, d}, {b}) ({b}, {a}) ({a, c, d}, {a, b}) ({a, c, d}, {a, b})
bc→ ({a, c, d}, {b}) ({a, b, c, d}, {a, b}) ({a, b, c, d}, {a, b}) ({a, c, d}, {a, b})

In particular, after the fourth call cd the agents c and d learn that a is unreliable.
However, even after the last call, agent d does not know this about b and no more
call is permitted according to the LNS protocol.

Interestingly, a consequence of Definition 10 is that agents may find out them-
selves that they are unreliable. This is what happens after the call bc in Example 3
for agent b: after this call, b ∈ Xb ∩ Yb, hence she considers herself unreliable.
But this also informs her that she is uncovered by agent c, who learns the same
information about the unreliability of b. If now another agent e enters the net-
work and the call be (or Be) takes place, e will be informed by agent b of her own
unreliability. This results from Definition 10: the last clauses of Eqs. 2, 3 and 4
enforce that, in a call between a and b, whenever a is uncovered, i.e. a ∈ Xa ∩Ya,
the sets Xa and Xb and Ya and Yb are merged without adjustments. Hence
afterwards a ∈ Xb ∩ Yb, i.e. b learns that a is unreliable.

In our setting where unreliability is unintended random memoryless noise
this definition is not problematic, but in fact can help the network to perform
better. In a network of sensors for instance, the unreliable sensor could then give
a signal that it needs to be fixed.

If agents are intentionally unreliable, it might be more realistic to change
their behavior once they learn they are uncovered. To model this we could easily
change the last clauses of Eqs. 2, 3 and 4 in Definition 10 to

(Xa ∪ Xb, Ya \ {a} ∪ Yb) (2’)

(Xa ∪ Xb, Ya \ {a} ∪ Yb) (3’)

(Xa ∪ Xb, Ya ∪ Yb \ {b}) (4’)

Dealing with Unreliable Agents in Dynamic Gossip 59

respectively. Similarly, we could do the same but remove a (resp. b) from Xa

(resp. Xb) instead of Ya (resp. Yb), but the effect would be analogous. In that
situation, an uncovered agent will only continue to communicate one value of her
secret (here Xa). In other words, once uncovered she will change her behavior.

A simple example of an unreliable agent is an alternating bluffer that “lies”
in every second call. It provides a first approach to random unintended noise,
but it is deterministic and thus easier to simulate and reason about. We note
that agent a in Example 3 behaves as an alternating bluffer.

In our model there is no “curing” or “going back” from unreliability. Once
an agent is unreliable and consequently (possibly) uncovered, there is no way
for agents to change their behavior. This is sufficient to introduce unreliability
into Dynamic Gossip and explore whether the known results continue to hold.
But of course, for practical applications, it would be desirable to enable agents
to be cured. For example for the application of this framework to the spread of
diseases [9]. An important question is then how agents can convince others that
they have improved their behavior, from unreliable to reliable.

6 Unreliable Success

We now define what it means to be successful in Unreliable Gossip. Completeness
on UG graphs is reached when all agents know all secrets, now in the sense that
each agent knows at least one secret of each other agent. We note that this
is equivalent to completeness on gossip graphs as defined in Definition 1 with
Sa = Xa ∪ Ya.

Definition 11. A UG graph G = (A, R,N, S) is complete iff for all agents
a ∈ A we have Xa ∪ Ya = A.

However, for Unreliable Gossip this kind of completeness and success accord-
ing to Definition 5 is not a useful goal. Instead, the aim of the reliable agents
should be to reach completeness among themselves and to identify all unreliable
agents. We now define reliable completeness formally and argue that it is a more
intuitive goal in the setting of Unreliable Gossip than (mere) completeness.

Definition 12. A UG graph G = (A, R,N, S) is reliably complete iff for all
a ∈ R we have (i) Xa ∪ Ya \ (Xa ∩ Ya) = R, and (ii) Xa ∩ Ya = A \ R.

That is, a graph is reliably complete iff each reliable agent (i) knows the
secrets of all reliable agents and (ii) knows for all unreliable agents that they are
unreliable. We note that in the presence of (ii) the condition (i) is equivalent to
Xa ∪ Ya = A. To make it easier to refer to the second condition we also say that
an agent a identifies the unreliable agents iff Xa ∩ Ya = A \ R.

Note that reliably complete does not imply complete, because in a reliably
complete graph the unreliable agents do not have to know all secrets. Reliable
agents should learn all secrets and identify all unreliable agents, but we do not
care at all about what unreliable agents learn. Also vice versa, completeness

60 L. van den Berg and M. Gattinger

does not imply reliable completeness, because completeness says nothing about
knowing which other agents are unreliable.

In order to compare completeness on unreliable networks to completeness on
normal networks, we define reliable counter-graphs and reliable subgraphs.

Definition 13. Let G = (A, R,N, S) be a UG Graph. Then we define its reliable
counter-graph G∗ := (A, N, S∗) where S∗

a := (Xa ∪ Ya) \ (Xa ∩ Ya). And we
define its reliable subgraph G|R := (A|R, N |R, S|R) where A|R := R, N |R :=
N ∩ (R × R) and (S|R)a := (Xa ∪ Ya) ∩ R.

A sanity check shows that indeed both G∗ and G|R are gossip graphs. Def-
inition 13 allows us to rephrase the definition of reliable completeness: a graph
G is reliably complete if and only if the reliable subgraph of G is complete and
all reliable agents identify the unreliable agents.

To conclude this section, we define success for Unreliable Gossip, both for
the original notion of completeness and reliable completeness.

Definition 14. Suppose we have a UG graph G and a call sequence σ which
can be executed on G. We say that σ is successful on G iff Gσ is complete and
we say that σ is reliably successful on G iff Gσ is reliably complete.

A protocol is (reliably) weakly/strongly/un-successful on a graph G iff
all/some/no sequences permitted by the protocol and executable on G are (reli-
ably) successful on G.

6.1 LNS Is Not Reliably Successful on Sun Graphs

Here we show that, already with a small amount of unreliability, for example in
the form of the alternating bluffer, a known result about LNS [7] fails to hold.
Specifically, we show that on UG graphs that are sun graphs with only terminal
unreliable agents, LNS fails to identify the unreliable agents in the sense that it
is not reliably successful as defined in the previous section. Before the general
result we give an example where the classification of LNS fails to hold.

Example 4. Consider again the sun graph from Example 2 and suppose a is unre-
liable. Now consider the sequence bc; ba; cA. This is an LNS sequence resulting
in a complete graph. However, if a is an alternating bluffer, then b will learn
one value of the secret of a and c the other. Formally, in the resulting graph
Gbc;ba;cA we have a ∈ Xc \ Yc and a ∈ Yb \ Xb. Unfortunately, LNS allows no
further calls. Hence b and c may no longer communicate and will not notice that
a is unreliable.

Consider ba;Ac; bc. This is also an LNS sequence which can be executed on
the graph above. But in this case b and c talk to each other after having learned
different values from a and will thus find out that a is unreliable. Formally, in
the resulting graph Gba;Ac;bc we have a ∈ (Xb ∩ Yb) and a ∈ (Zc ∩ Yc).

Hence, whether b and c find out that a is unreliable depends on the sequence.

Dealing with Unreliable Agents in Dynamic Gossip 61

Example 4 already suffices to show that LNS is not reliably successful on all
sun graphs when we have unreliable agents. However, we now prove something
slightly stronger, namely that for all graphs of a similar shape there is a maximal
sequence which is not successful.

Theorem 2. Consider any initial UG graph with at least one unreliable agent.
If all unreliable agents are terminal then LNS is not reliably strongly successful.

Intuitively, Theorem2 holds because there are call sequences in which the
unreliable agents are called too late, so that the reliable agents cannot verify the
secrets of these unreliable agents with each other. This is the case in Example 4:
the reliable agents b and c first learn each others’ secrets before calling the
unreliable agent a. But then b and c cannot call each other again in LNS and
hence cannot verify the secret of a with each other. That is why they fail to
identify c as unreliable.

We now first prove a lemma.

Lemma 2. Suppose G = (A, R,N, S) is an initial UG graph with at least one
unreliable agent. Moreover, suppose that all unreliable agents in G are terminal.
Then for any LNS-permitted call sequence σ we have: if there is a prefix τ � σ
such that Gτ |R is complete but Gτ is not reliably complete, then also Gσ is not
reliably complete and thus σ is not reliably successful on G.

Lemma 2 states that any LNS sequence cannot become reliably successful
any more as soon as it reaches a complete reliable subgraph. Intuitively, once
the reliable subgraph becomes complete, the reliable agents can no longer call
each other to compare secrets they received from the unreliable agents.

Proof (of Lemma 2). Let G be an initial UG graph with at least one unreliable
agent and where all unreliable agents are terminal. Let σ be an LNS-permitted
call sequence with a prefix τ � σ such that Gτ |R is complete. Then ∀r ∈ R :
Xτ

r ∪Y τ
r ⊇ R and therefore also ∀r ∈ R : Xσ

r ∪Y σ
r ⊇ R because no contradictory

information can be learned about reliable agents.
Now note that after the call sequence τ no more calls from an unreliable

agent to a reliable agent can take place: just after τ the unreliable agents are
still terminal, and in all later calls where they learn the number of a reliable agent
they will also learn the secret of that same agent (because Gτ |R is complete).
Moreover, we can ignore calls between unreliable agents because they do not
affect reliable completeness.

Hence, let ab be the last call to take place in σ from a reliable agent a to an
unreliable agent b. Let σ \ ab denote the sequence without this last call. That
means before the call a knew no secret of b, i.e. b /∈ X

σ\ab
a ∪ Y

σ\ab
a . But then,

because a will not be involved in any later calls, we have that b ∈ Xσ
a ∪ Y σ

a .
Hence agent b will not be identified by agent a and σ is not reliably successful
on G.

Proof (of Theorem 2). Let G = (A, R,N, S) be an initial UG graph that is a sun
graph where all unreliable agents are terminal. Because all unreliable agents are

62 L. van den Berg and M. Gattinger

terminal, the reliable subgraph G|R of G must be a sun graph too. By Theorem1,
any maximal LNS-permitted call sequence τ consisting of calls ab with a, b ∈ R
will complete G|R, i.e. Gτ |R is complete. Now by Lemma 2, any LNS-permitted
call sequence σ extending τ will fail to identify all unreliable agents and hence
fail to reliably complete the network.

Thus, we cannot extend the sun graph characterisation of LNS to Unreliable
Gossip. This already holds for a small amount of unreliability: one terminal
alternating bluffer. Of course, this is because we now also demand that reliable
agents identify the unreliable agents. If we only care about completeness in the
original sense, then LNS is still strongly successful on UG graphs with respect to
the reliable agents. In particular, even if unreliable agents are involved in earlier
calls (i.e. if there is no τ as in the proof above), the reliable subgraph will still
be completed.

6.2 Blocking Unreliable Agents Hides and Helps Them

How can we “repair” LNS to deal with unreliable agents? Intuitively, blocking
unreliable agents seems a good measure against the spread of false information
in networks because it would prevent unreliable agents from spreading their false
information. This would mean that, when an unreliable agent performs a call to
another agent, her call will be rejected.

By blocking unreliable agents, their communicative power is restricted: they
will not be able to initiate calls – whenever they do, they are rejected. Of course,
conceptually, there is a difference between blocked agents and agents that are
not able to initiate communication. The latter may rather occur whenever their
communicating device is broken. Yet, mathematically, these situations are analo-
gous: in both situations, the unreliable agents cannot successfully make a call to
another agent. Therefore we evaluate the following protocol that limits the unre-
liable agents in their ability to make calls to discuss whether blocking unreliable
agents is indeed a good measure.

Definition 15 (Protocol LNSR). A call ab is LNSR-permitted iff (a, b) ∈ N ,
a ∈ R and (a, b) �∈ S.

But, against the intuition, the protocol LNSR does not only prevent false
information from spreading, it might also prevent unreliable agents from being
detected by the reliable agents. Specifically, we prove that unreliable agents that
are not allowed to initiate any form of communication are harder to identify than
unreliable agents that are. In other words, unreliability can be easier detected
when it is spread more. Therefore the restriction to disable, via blocking, the
unreliable agents from initiating calls is not desirable.

Theorem 3. LNSR is a proper strengthening of LNS in the following sense:

(i) For any UG graph G we have: If LNSR is (reliably) weakly successful on G,
then also LNS is (reliably) weakly successful on G.

Dealing with Unreliable Agents in Dynamic Gossip 63

(ii) There is a UG graph G where LNSR is not reliably weakly unsuccessful, but
where LNS is reliably weakly successful.

Proof. (i) Note that any LNSR-permitted call sequence σ is also LNS-permitted.
If LNSR is (reliably) weakly successful on some UG graph G, then there is an
LNSR-permitted call sequence σ such that Gσ is (reliably) complete. But then
σ is also LNS-permitted, and hence LNS is also (reliably) weakly successful on
G.

(ii) Consider the UG graph G = (A, R,N, S) below with A = {a, b, c}, R =
{a, b}, N = {(b, a), (b, c)} and Sx = ({x}, ∅) for all x ∈ A.

a b c

Then the following are all the LNS-permitted call sequences on G. For each
sequence we list four variants, depending on where c is lying.

1. ba; ac; bc or ba; aC; bc or ba; ac; bC or ba; aC; bC
2. ba; bc; ac or ba; bC; ac or ba; bc; aC or ba; bC; aC
3. bc; ca; ba or bC; ca; ba (∗) or bc;Ca; ba or bC;Ca; ba
4. bc; ba; ca or bC; ba; ca or bc; ba;Ca or bC; ba;Ca

Only the call sequences under 1 and 2 are LNSR-permitted. But only the
sequence marked with ∗ reliably completes the network: first the agents a and b
need to learn different values from agent c and after that they should communi-
cate with each other to learn that c is unreliable. None of the other sequences
reliably complete the network and in particular no LNSR-permitted call sequence
reliably completes G. Hence LNS is reliably weakly successful on G, but LNSR
is not.

It is crucial in part (ii) of Theorem 3 that reliable agents are the last to
communicate in order to identify the unreliable agent as such. Thus the success of
the protocol is dependent on the call sequence, and in particular on the position
of calls between reliable agents: they need to verify the secrets of the unreliable
agents. But, agents do not know which agents are the unreliable agents (this
is the goal of the protocol), hence they do not know which secrets need to be
verified nor with whom to verify this.

This problem of verification is similar to the Byzantine Generals Problem [13]
developed to describe a situation in which agents must agree on a joint strategy
to avoid catastrophic failure of the system, but where some of the agents or some
are unreliable. In a simple form, multiple generals are threatened by a common
enemy and they each have to decide whether to attack or to retreat with a pre-
ferred outcome of a coordinated attack or coordinated retreat. A good solution
to the problem is an algorithm that can both guarantee that all reliable generals
decide upon the same plan and that a small number of unreliable generals can-
not cause the reliable generals to adopt a bad strategy. Such solutions have been
studied in the literature under the name of Byzantine Fault Tolerance, starting
with [6] and more recently including [4].

64 L. van den Berg and M. Gattinger

Theorem 3 illustrates that there are networks on which unreliable agents
remain unidentified when they are not allowed to initiate calls, but can be iden-
tified when they do initiate calls. This has direct consequences for the security
measure to block unreliable agents and raises questions about their effectiveness
for real-life applications and gossip-like settings. For example, a faulty sensor
should not be shut down immediately but continue to communicate such that
it will be identified as faulty by a larger number of other sensors. As another
example, fake news articles shared in social networks will be easier to uncover
and identify if they are not removed or blocked, but instead marked as fake and
continued to be actively shared.

Formally, we define the ideas of blocking and deleting as follows. Deleting
means that an agent removes those agents she knows to be unreliable from her
own phone book. Blocking means that, in addition to deleting, the agent removes
her own number from the phone book of agents she knows to be unreliable.

Definition 16 (Delete and Block). Let G = (A, R,N, S) be a UG graph and
let a ∈ A. The delete action λa maps G to Gλa = (A, R,Nλa , S) and the block
action μa maps G to Gμa = (A, R,Nμa , S), which are defined by

Nλa
c :=

{
Nc if c �= a

Nc \ (Xc ∩ Yc) if c = a

Nμa
c =

⎧⎪⎨
⎪⎩

Nc if c �= a and c /∈ Xa ∩ Ya

Nc \ {a} if c �= a and c ∈ Xa ∩ Ya

Nc \ (Xc ∩ Yc) if c = a

As Theorem 3 shows, blocking unreliable agents, though seemingly a good
approach to prevent the spread of false information, comes at a cost. Block-
ing unreliable agents seems analogous to restricting their communicative power
because the effects are the same: unreliable agents will not be able to initi-
ate communication. This is exactly what has been shown to help them remain
unidentified.

However, in contrast to LNSR, let us now assume that agents only block
other agents once they have identified them as unreliable. They will then be able
to forward the information that agents are unreliable to others. The following
example illustrates how this can prevent the unwanted effect of hiding unreliable
agents.

Example 5. Consider the following network of four agents with one unreliable
agent, agent b, i.e. A = {a, b, c, d} and R = {a, c, d}:

a b c d

Suppose that the reliable agents block the unreliable agents as soon as they
identify them. Consider the LNS-permitted call sequence ab; cB; ac; cd. After

Dealing with Unreliable Agents in Dynamic Gossip 65

the subsequence ab; cB; ac the agents a and c will identify agent b as unreliable
and this will then be communicated to agent d in the final call cd. Hence also
agent d will block b after this and the whole sequence is reliably successful.

A disadvantage of both LNSR and blocking known-to-be-unreliable agents is
that it might exclude other reliable agents “behind” unreliable ones. Whenever
there is a reliable agent a that is only able to communicate with an unreliable
agent, blocking this unreliable agent also prevents agent a to contact the rest of
the network. She is therefore excluded from the rest of the network. Consider
the following example.

Example 6. Let G = (A, R,N, S) be the network drawn below where R = A\{b}
and A \ {a, b} forms a complete cluster, i.e. ∀r ∈ A \ {a, b}: Xr ∪ Yr = A \ {b}.
Suppose further that all agents in the cluster consider b unreliable, i.e. ∀r ∈
A \ {a, b} : b ∈ Xr ∩ Yr, and have no information about a, that b has all the
information about A\{a} and that a only has the phone number of b, as drawn
below. Then blocking agent b effectively blocks agent a and the network will not
be reliably completed. We argue that this is a realistic scenario for LNS: the call
ab might come too late in the call sequence. Then, because the other reliable
agents block agent b, agent a is also blocked indirectly.

A \ {a, b} b a

7 Discussion and Conclusion

We extended the formal model of Dynamic Gossip from [7] to include unreliable
agents. To better capture success in Dynamic Gossip with unreliable agents we
defined the notion of reliable success: all reliable agents should learn all secrets
and they should identify the unreliable agents. We have then shown that, already
with a single unreliable agent, we cannot extend the results about the success of
the LNS protocol: LNS is successful in the old sense, but not reliably successful
on sun graphs with unreliable terminal agents. This shows that the assumption
that everybody is reliable is crucial for the success of LNS and that LNS should
be adapted for practical applications where agents might fail.

We then examined a way to counter the spread of false information, namely
to restrict communication of unreliable agents. It turns out that unreliable infor-
mation that is not actively spread is harder to identify than unreliable infor-
mation that is actively spread. This has seemingly paradoxical consequences
for measures against unreliable agents: blocking can have a contrary effect and
help unreliable agents to remain unidentified. Thus, there is a pay-off between
identifying and containing false information.

Our framework and in particular the alternating bluffer are of course simplis-
tic and there are many ways to extend this work: agents can also be unreliable or
(with intent) lie about other agents’ secrets, about phone numbers, about their
own knowledge, etc. Yet, we see this work as a starting point for the discussion

66 L. van den Berg and M. Gattinger

of reliability and unreliability in dynamic gossip and its real life applications. We
thus end this article with the following open questions.

– What is the class of unreliable gossip graphs characterized by LNS?
– Is there any limitation on the position of unreliable agents in this class?
– Is there an LNS weakening or strengthening (in the sense of [8]) that performs

better in situations with unreliability?

Further research will show how Dynamic Gossip protocols can be adapted to
deal with other forms of unreliability.

Finally, we want to stress that this work is not purely theoretical: social
media and the spread of fake news can be seen as an instance of gossip with
unreliable agents. Some social networks already use hybrid strategies where false
information is not blocked but just marked as such.

Acknowledgements. This work is based on the master’s thesis of the first author [5],
supervised by Jan van Eijck. We thank Hans van Ditmarsch and the anonymous review-
ers at the DaĹı workshop for helpful feedback.

References

1. Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ.
Perspect. 31(2), 211–268 (2017). https://doi.org/10.1257/jep.31.2.211

2. Apt, K.R., Grossi, D., van der Hoek, W.: Epistemic protocols for distributed gos-
siping. In: Proceedings TARK 2015. EPTCS, vol. 215, pp. 51–66 (2015). https://
doi.org/10.4204/EPTCS.215.5

3. Attamah, M., van Ditmarsch, H., Grossi, D., van der Hoek, W.: Knowledge and
gossip. In: Proceedings of the Twenty-first European Conference on Artificial Intel-
ligence, pp. 21–26 (2014). https://doi.org/10.3233/978-1-61499-419-0-21

4. Baird, L.: The swirlds hashgraph consensus algorithm: fair, fast, Byzantine fault tol-
erance (2017). https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf

5. van den Berg, L.: Unreliable gossip (2018). https://eprints.illc.uva.nl/1597/, Mas-
ter’s thesis, University of Amsterdam

6. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Proceedings of the
Third Symposium on Operating Systems Design and Implementation, OSDI 1999,
pp. 173–186 (1999). https://www.usenix.org/legacy/events/osdi99/castro.html

7. van Ditmarsch, H., van Eijck, J., Pardo, P., Ramezanian, R., Schwarzentruber, F.:
Dynamic gossip. Bull. Iran. Math. Soc. 45(3), 701–728 (2018). https://doi.org/10.
1007/s41980-018-0160-4

8. van Ditmarsch, H., Gattinger, M., Kuijer, L.B., Pardo, P.: Strengthening gossip
protocols using protocol-dependent knowledge. J. Appl. Logics - IfCoLog J. Logics
Appl. 6(1) (2019). https://arxiv.org/abs/1907.12321

9. Eugster, P.T., Guerraoui, R., Kermarrec, A.M., Massoulié, L.: Epidemic informa-
tion dissemination in distributed systems. Computer 37, 60–67 (2004). https://doi.
org/10.1109/MC.2004.1297243

10. Harary, F., Schwenk, A.J.: The communication problem on graphs and digraphs. J.
Franklin Inst. 297, 491–495 (1974). https://doi.org/10.1016/0016-0032(74)90126-
4

https://doi.org/10.1257/jep.31.2.211
https://doi.org/10.4204/EPTCS.215.5
https://doi.org/10.4204/EPTCS.215.5
https://doi.org/10.3233/978-1-61499-419-0-21
https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
https://eprints.illc.uva.nl/1597/
https://www.usenix.org/legacy/events/osdi99/castro.html
https://doi.org/10.1007/s41980-018-0160-4
https://doi.org/10.1007/s41980-018-0160-4
https://arxiv.org/abs/1907.12321
https://doi.org/10.1109/MC.2004.1297243
https://doi.org/10.1109/MC.2004.1297243
https://doi.org/10.1016/0016-0032(74)90126-4
https://doi.org/10.1016/0016-0032(74)90126-4

Dealing with Unreliable Agents in Dynamic Gossip 67

11. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and
broadcasting in communication networks. Networks 18(4), 319–349 (1988). https://
doi.org/10.1002/net.3230180406

12. Hoefler, T., Barak, A., Shiloh, A., Drezner, Z.: Corrected gossip algorithms for fast
reliable broadcast on unreliable systems. In: 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 357–366 (2017). https://doi.org/
10.1109/IPDPS.2017.36

13. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982). https://doi.org/10.1145/
3335772.3335936

14. Shi, G., Johansson, M., Johansson, K.H.: Randomized gossiping with unreliable
communication: dependent or independent node updates. In: 2012 IEEE 51st IEEE
Conference on Decision and Control (CDC), pp. 4846–4851 (2012). https://doi.org/
10.1109/CDC.2012.6426729

15. Tijdeman, R.: On a telephone problem. Nieuw Archief voor Wiskunde 3(19), 188–
192 (1971)

16. Wang, H., Liao, X., Wang, Z., Huang, T., Chen, G.: Distributed parameter estima-
tion in unreliable sensor networks via broadcast gossip algorithms. Neural Netw.
73, 1–9 (2016). https://doi.org/10.1016/j.neunet.2015.09.008

17. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393(6684), 440–442 (1998). https://doi.org/10.1038/30918

https://doi.org/10.1002/net.3230180406
https://doi.org/10.1002/net.3230180406
https://doi.org/10.1109/IPDPS.2017.36
https://doi.org/10.1109/IPDPS.2017.36
https://doi.org/10.1145/3335772.3335936
https://doi.org/10.1145/3335772.3335936
https://doi.org/10.1109/CDC.2012.6426729
https://doi.org/10.1109/CDC.2012.6426729
https://doi.org/10.1016/j.neunet.2015.09.008
https://doi.org/10.1038/30918

	Dealing with Unreliable Agents in Dynamic Gossip
	1 Introduction
	2 Related Work
	3 Dynamic Gossip
	4 Unreliable Gossip
	5 Unreliable Agents
	6 Unreliable Success
	6.1 LNS Is Not Reliably Successful on Sun Graphs
	6.2 Blocking Unreliable Agents Hides and Helps Them

	7 Discussion and Conclusion
	References

