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1 Department of Philosophy (Zhuhai), Sun Yat-sen University, Zhuhai, China
ynw@xixilogic.org

2 University of Bergen, Bergen, Norway
3 Southwest University, Chongqing, China

Thomas.Agotnes@uib.no

Abstract. There has been a significant interest in modal logics with
intersection, prominent examples including epistemic and doxastic log-
ics with distributed knowledge, propositional dynamic logic with inter-
section, and description logics with concept intersection. Completeness
proofs for such logics tend to be complicated, in particular on model
classes such as S5 used, e.g., in standard epistemic logic, mainly due to
the undefinability of intersection of modalities in standard modal logic.
A standard proof method for the S5 case uses an “unraveling-folding”
technique to achieve a treelike model to deal with the problem of unde-
finability. This method, however, is not easily adapted to other logics,
due to its reliance on S5 in a number of steps. In this paper we demon-
strate a simpler and more general proof technique by building a treelike
canonical model directly, which avoids the complications in the processes
of unraveling and folding. We illustrate the technique by showing com-
pleteness of the normal modal logics K, D, T, B, S4 and S5 extended
with intersection modalities. Furthermore, these treelike canonical mod-
els are compatible with Fischer-Ladner-style closures, and we combine
the methods to show the completeness of the mentioned logics further
extended with transitive closure of union modalities known from PDL or
epistemic logic. Some of these completeness results are new.

Keywords: Modal logic · Intersection modality · Transitive closure of
union modality · Completeness · Epistemic logic · Distributed
knowledge

1 Introduction

Intersection plays a role in several areas of modal logic, including epistemic logics
with distributed knowledge [11,15], propositional dynamic logic with intersection
of programs [13], description logics with concept intersection [3,4], and coalition
logic [1]. It is well-known that relational intersection in Kripke models is not
modally definable and that standard logics with intersection are not canonical
(cf., e.g., [14]).
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A method for proving completeness for certain modal logics with intersec-
tion was developed in [11,12,14–16] for various (static) epistemic logics with
distributed knowledge, and later explicated and extended in [17–19] as the
unraveling-folding method which is applicable to various static or dynamic epis-
temic S5 logics with distributed knowledge with or without common knowledge.

Let us take a closer look at this technique for epistemic logic with distributed
knowledge (S5D). It is known that the canonical S5 model built in the standard
way is not a model for the classical axiomatization for this logic. This is because
the accessibility relation RG (where G is a set) that is (implicitly) used to inter-
pret the intersection (distributed knowledge) modality is not necessarily the
intersection of individual accessibility relations Ra (a ∈ G). In the canonical S5
model we can ensure that RG ⊆ ⋂

a∈G Ra, but not that RG ⊇ ⋂
a∈G Ra.

The unraveling-folding method is carried out in the following way. A pre-
model is a standard S5 model where RG is treated as a primitive relation for each
group G. A pseudo model is a pre-model satisfying the following two constraints:

1. R{a} = Ra for every agent a, and
2. RG ⊆ ⋂

a∈G Ra for every agent a and group G

A (proper) S5D model is then a pseudo model that satisfies also a third con-
straint:

3. RG ⊇ ⋂
a∈G Ra for every agent a and group G

A canonical pseudo model can be truth-preservingly translated to a treelike pre-
model using an unraveling technique, and then folded to an S5D model while
also preserving the truth of all formulas (for details of the two processes see
[18]). Completeness is achieved by first building a canonical pseudo model for a
given consistent set Φ of formulas, and then translating it to an S5D model for
Φ using the unraveling-folding method.

There are many subtleties not mentioned in this simplified overview, which
in particular makes the method cumbersome to adapt to extensions of basic
epistemic logic or to non-S5 based logics.

In this paper we demonstrate a simpler way to prove completeness for modal
logics with intersection. Since we know that a treelike model typically works for
such logics, the idea is to build a treelike model directly for a given consistent set
of formulas. We call such a model a standard model. This eliminates having to
deal with the details of the unraveling and folding processes, and dramatically
simplifies proofs.

We illustrate the technique by building the standard model for each of the
modal logics, K, D, T, B, S4 and S5, extended with intersection. We furthermore
demonstrate that the method is useful by showing that it is compatible with
finitary methods based on Fischer-Ladner-style closures, and introduce finitary
standard models for the mentioned logics further extended with the transitive
closure of the union, used in, e.g., PDL and epistemic logic (common knowledge),
as well. Some of these completeness results have been stated in the literature
before, often without proof.
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The rest of the paper is structured as follows. In the next section we introduce
basic definitions and conventions. In Sect. 3 we give a taste of the proof technique
by demonstrating it on a well-known case: S5∩ with intersection. The reader who
wants to immediately see what the technique looks like can jump directly to that
section. In Sect. 4 we systematically consider a class of well-known modal logics
extended with intersection. For each of them we introduce an axiomatization
and show its completeness. We then extend the logics, proofs and results further
with a modality for the transitive closure of union in Sect. refsec:logiccd. We
conclude in Sect. 6.

2 Preliminaries

In this paper we study modal logics over multi-modal languages with countably
many standard unary modal operators: �0, �1, �2, etc. On top of these we
focus on two types of modal operators, each indexed by a finite nonempty set I
of natural numbers:

– Intersection modalities, denoted ∩I ;
– Transitive closure of union modalities, henceforth referred to as union+

modalities for brevity, denoted �I .

We mention some applications of these modalities below.
The languages are parameterized by a countably infinite set pr of proposi-

tions, and a countable set I of primitive types. A finite non-empty subset I ⊆ I
is called an Index. We are interested in the following languages.

Definition 1 (languages).

(L) ϕ ::= p | ¬ϕ | (ϕ → ϕ) | �iϕ
(L∩) ϕ ::= p | ¬ϕ | (ϕ → ϕ) | �iϕ | ∩Iϕ
(L∩�) ϕ ::= p | ¬ϕ | (ϕ → ϕ) | �iϕ | ∩Iϕ | �Iϕ

where p ∈ pr, i ∈ I and I is an index. Boolean connectives are defined as usual.

A Kripke model M (over pr and I) is a triple (S,R, V ), where S is a
nonempty set of states, R : I → ℘(S × S) assigns to every modality �i a
binary relation Ri on S, and V : pr → S is a valuation which associates with
every propositional variable a set of states where it is true.

Definition 2 (satisfaction). For a given formula α, the truth of it in, or
its satisfaction by, a model M = (S,R, V ) with a designated state s, denoted
M, s |= α, is defined inductively as follows.

M, s |= p iff s ∈ V (p)
M, s |= ¬ϕ iff not (M, s) |= ϕ
M, s |= (ϕ → ψ) iff M, s |= ϕ implies M, s |= ψ
M, s |= �iϕ iff for all t ∈ S, if (s, t) ∈ Ri then M, t |= ϕ

M, s |= ∩Iϕ iff for all t ∈ S, if (s, t) ∈ ⋂
i∈I Ri then M, t |= ϕ

M, s |= �Iϕ iff for all t ∈ S, if (s, t) ∈ ⊎
i∈I Ri then M, t |= ϕ
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where1
⊎

i∈I Ri is the transitive closure of
⋃

i∈I Ri.

Thus, the intersection modalities are interpreted by taking the intersection,
and the union+ modalities by taking the transitive closure of the union.

Given a formula ϕ and a class C of models, we say ϕ is valid (|= ϕ) in C iff ϕ
is true in all states in all models of C . A formula ϕ is a logical consequence of a
set of formulas Φ (Φ |= ϕ) if ϕ is true in a given state in a given model whenever
all formulas in Φ are. We are interested in certain classes of models, in particular
those defined by well-known frame conditions. In this paper we are going to
focus on some of the most well known frame conditions (see, e.g., [9]). These are
seriality, reflexivity, symmetry, transitivity and Euclidicity. It is well known that
these frame conditions are characterized by the formulas D (�iϕ → ¬�i¬ϕ), T
(�iϕ → ϕ), B (¬ϕ → �i¬�iϕ), 4 (�iϕ → �i�iϕ) and 5 (¬�iϕ → �i¬�iϕ),
respectively. With respect to different combinations of these frame conditions,
normal modal logics K, D (also known as KD), ¡(also known as KT), B (also
known as KTB), S4 (also known as KT4) and S5 (also known as KT5) based on
the language L are well studied in the literature. We shall refer an “S5 model”
to a Kripke model in which the binary relation is an equivalence relation, and
likewise for a D, T, B or S4 model.

In this paper we will focus on the corresponding logics over the languages
L∩ and L∩�, and they will be named in a comprehensive way as follows:

K∩, D∩, T∩, B∩, S4∩, S5∩,
K∩�, D∩�, T∩�, B∩�, S4∩�, S5∩�.

There are well known applications of these logics, for example are S5∩ and
S5∩� (under the restriction that I is finite) well known as S5D (multi-agent
S5 with distributed knowledge) and S5CD (multi-agent S5 with distributed and
common knowledge) respectively in the area of epistemic logic. The logics K∩ and
S4∩ are known as ALC(∩) (i.e., ALC with role intersection) and S(∩) (where
S is ALC with role transitivity) respectively in the area of description logic
[3,4].2 The logic K∩� is close to propositional dynamic logic with intersection
(IPDL) [13] or the description logic ALC(∩,∪, ∗), and similarly, S4∩� is close to
S(∩,∪, ∗).3

1 Although the symbol
⊎

is sometimes used for disjoint union, we repurpose it here
for transitive closure of the union.

2 The subscript i of a unary modal operator �i typically stands for an agent in epis-
temic logic or a role in description logic. In epistemic logic, a finite number of agents
is assumed, and the intersection modality (i.e., a distributed knowledge operator)
is an arbitrary intersection over a finite domain. In description logic, the number
of roles are typically unbounded, but the intersection is binary, which is in effect
equivalent to finite intersection.

3 There are two major differences however. First, the Kleene star in both logics are the
reflexive-transitive closure, and we consider the transitive closure which is denoted
by a “+” in the symbol �. Second, �I is a compound modality (union and then take
the transitive closure), while in those logics the Kleene star is separated from the
union, and as a result, the Kleene star applies to the intersection as well, which we
do not consider here.
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The minimal logic K can be axiomatized by the system K composed of the
following axiom (schemes) and rules (where ϕ,ψ ∈ L and i ∈ I):

(PC) all instances of all propositional tautologies
(MP) from (ϕ → ψ) and ϕ infer ψ

(K) �i(ϕ → ψ) → (�iϕ → �iψ)
(N) from ϕ infer �iϕ.

Axiomatizations for D, T, B , S4 and S5, which are named D, T, B, S4 and S5
respectively, can be obtained by adding characterization axioms to K. In more
detail, D = K⊕D, T = K⊕T, B = T⊕B, S4 = T⊕4 and S5 = T⊕5, where the
symbol ⊕ means combining the axioms and rules of the two parts. Details can be
found in standard modal logic textbooks (see, e.g., [8,9]). Given an axiomatization
L, we use “ �L ϕ ” to denote that ϕ is derivable inL, and when Φ is a set of formulas
“ Φ �L ϕ ” means that �L (ψ0 ∧ · · · ∧ ψn) → ϕ for some ψ0, . . . , ψn ∈ Φ.

A logic extended with the intersection modality is typically axiomatized by
adding axioms and rules to the corresponding logic without intersection. The
axioms and rules to be added are in total called the characterization of intersec-
tion, and depends on which logic we are dealing with. Similarly we can define
the characterization of the transitive closure of union, which can be made inde-
pendent to the concrete logic (will be made clearer in Sect. 5).

Characterizations of intersection and transitive closure of union can be found
in the literature for some of the logics, including K∩, T∩, S4∩, S5∩ and S5∩� in
epistemic logic (see [11,15,17]). For base logic S5, intersection in S5∩ and S5∩�

is characterized by the following axioms and rules:

– (K∩) ∩I(ϕ → ψ) → (∩Iϕ → ∩Iψ)
– (D∩) ∩Iϕ → ¬ ∩I ¬ϕ
– (T∩) ∩Iϕ → ϕ
– (4∩) ∩Iϕ → ∩I∩Iϕ
– (B∩) ¬ϕ → ∩I¬∩Iϕ
– (5∩) ¬∩Iϕ → ∩I¬∩Iϕ
– (N∩) from ϕ infer ∩Iϕ
– (∩1) �iϕ ↔ ∩{i}ϕ
– (∩2) ∩Iϕ → ∩Jϕ, if I ⊆ J

Transitive closure of union in S5∩� is characterized by the following:

– (K�) �I(ϕ → ψ) → (�Iϕ → �Iψ)
– (D�) �Iϕ → ¬�I¬ϕ
– (T�) �Iϕ → ϕ
– (4�) �Iϕ → �I�Iϕ
– (B�) ¬ϕ → �I¬�Iϕ
– (5�) ¬�Iϕ → �I¬�Iϕ
– (N�) from ϕ infer �Iϕ
– (�1) �Iϕ → �i(ϕ ∧ �Iϕ), if i ∈ I
– (�2) from ϕ → ∧

i∈I �i(ϕ ∧ ψ) infer ϕ → �Iψ
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It is known that the axiomatization S5∩ = S5⊕{K∩,T∩, 5∩,∩1,∩2} is sound
and complete4 for the logic S5∩, and S5∩� = S5∩ ⊕ {K�,�1,�2} is sound and
complete5 for the logic S5∩� (see, e.g., [11]), in the case that I is finite. However,
since the intersection and union+ modalities are interpreted as operations over
relations for standard box operators, their properties change in accordance with
those for standard boxes. As a result, the characterization axioms and rules vary
for weaker logics. We shall look into this in the following sections. First we define
some basic terminology that will be useful.

Definition 3 (paths, (proper) initial segments, rest, tail). Given a model
M = (S,R, V ), a path of M is a finite nonempty sequence 〈s0, I1, . . . , In, sn〉
where: (i) s0, . . . , sn ∈ S, (ii) I1, . . . , In are indices, and (iii) for all x = 1, . . . , n,
(sx−1, sx) ∈ ⋂

i∈Ix
Ri.

For paths s = 〈s0, I1, . . . , Im, sm〉 and t = 〈t0, J1, . . . , Jn, tn〉 of a model,

– We say that s is an initial segment of t, denoted s � t, if m ≤ n, sx = tx
for all x = 0, . . . ,m, and Iy = Jy for all y = 1, . . . ,m, and then we say that
t extends s with 〈Jm+1, tm+1, . . . , Jn, tn〉;

– We say s is a proper initial segment of t, denoted s ≺ t, if the former is an
initial segment of the latter and m < n;

– We write tail(s) for sm, and similarly tail(t) for tn;
– When s is an initial segment of t, we write t \ s to stand for the path

〈tm, Jm+1, . . . , Jn, tn〉. Note that tail(s) is kept in t \ s, and when s = t,
we have t \ s = 〈tn〉.

Given a natural number i, a path s = 〈s0, I1, . . . , In, sn〉 is called:

– An i-path, if i appears in all the indices of the path, i.e., i ∈ ⋂n
x=1 Ix (note

that a path of length 1, such as 〈s0〉, is trivially an i-path).
– An I-path, where I is an index, if I ⊆ ⋂n

x=1 Ix.

3 A Simple Completeness Proof for S5∩

To illustrate the new technique we now give a proof, omitting some details, for
the particular case of S5∩, assuming familiarity with the canonical model method
for classical modal logics. In the next section we demonstrate the generality of
the technique and provide all details.

Let MCS be the set of all maximal S5∩-consistent sets of L∩-formulas. For
a given index I, the canonical relation �I is a binary relation on MCS, such
that Φ �I Ψ iff for all ϕ, ∩Iϕ ∈ Φ implies ϕ ∈ Ψ . It is easy to see that �I is an
equivalence relation. A canonical path is a sequence 〈Φ0, I1, . . . , In, Φn〉 such that:
(i) Φ0, . . . , Φn ∈ MCS, (ii) I1, . . . , In are indices, and (iii) for all x = 1, . . . , n,
(sx−1, sx) ∈ �Ix . We use similar terminology and notation for canonical paths
as for paths in a model (Definition 3).

4 D∩, 4∩, B∩ and N∩ are not needed in the sense that they are derivable.
5 D�, T�, 4�, B�, 5� and N� are not needed in the sense that they are derivable.
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Definition 4. The standard model for S5∩ is a tuple M = (S,R,V) such that:

– S is the set of all canonical paths;
– For all i ∈ I, Ri ⊆ S × S such that (s, t) ∈Ri iff (i) s and t have a common

initial segment u, and (ii) both s \ u and t \ u are i-paths.
– For any propositional variable p, V(p) = {s ∈ S | p ∈ tail(s)}.
Lemma 5. The standard model for S5∩ is an S5 model.

Proof. An easy verification of the definition of the standard model.

Lemma 6 (truth). For any ϕ ∈ L∩ and a state s of M, M, s |= ϕ iff ϕ ∈ tail(s).

Proof. By induction on ϕ. The atomic and Boolean cases are easy to show.
Interesting cases are for the modalities �i (i ∈ I) and ∩I (I is an index), the
former following easily from the latter.

M, s |= ∩Iψ
⇔ for all t, if (s, t) ∈ ⋂

i∈I Ri then ML, t |= ψ
⇔ for all t, if (s, t) ∈ ⋂

i∈I Ri then ψ ∈ tail(t) ⇔ ∩Iψ ∈ tail(s)

where the last step needs an argument.
Suppose ∩Iψ /∈ tail(s), we get ¬∩I ψ ∈ tail(s). Let Φ− = {¬ψ}∪{ψ′ | ∩Iψ

′ ∈
tail(s)}. We can show that Φ− is S5∩-consistent just as in a classical proof of the
existence lemma. Use the Lindenbaum construction to extend Φ− into Φ ∈ MCS.
Since ¬ψ ∈ Φ, ψ /∈ Φ. Let t be s extended with 〈I, Φ〉. Clearly, ψ /∈ tail(t) and
(s, t) ∈ ⋂

i∈I Ri (since s Ri t for all i ∈ I).
Suppose ∩Iψ ∈ tail(s) and assume towards a contradiction that there is a

state t such that (s, t) ∈ ⋂
i∈I Ri and ψ /∈ tail(t). By definition, s and t have a

common initial segment u, and s \ u and t \ u are both I-paths. There are three
cases: (i) s � t, (ii) t � s, and (iii) s and t fork (i.e., neither (i) or (ii)). Since �I

is an equivalence relation, in all cases it is easy to verify that tail(s) �I tail(t).

Theorem 7. S5∩ is a strongly complete axiomatization of S5∩.

4 Logics over L∩

In this section we study the logics over the language L∩, namely, K∩, D∩, T∩,
B∩, S4∩ and S5∩, which means that in this section a “formula” stands for a
formula of L∩, and a “logic” without further explanation refers to one of the six.
We shall provide a general method for proving completeness for these logics.

The axiomatization L we will provide for a logic L is an extension of the
axiomatization for the corresponding logic without intersection, with the char-
acterization of intersection. The characterization of intersection depends on the
frame conditions. For a given class of models, the characterization of intersection
is listed below:
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Int(K) = {K∩,∩1,∩2}
Int(D) = {K∩,∩1,∩2}
Int(T) = {K∩,T∩,∩1,∩2}
Int(B) = {K∩,T∩,B∩,∩1,∩2}
Int(S4) = {K∩,T∩, 4∩,∩1,∩2}
Int(S5) = {K∩,T∩, 5∩,∩1,∩2},

where Int(K) is the characterization of intersection for the class of all models,
Int(D) for the class of all D models, Int(T) for the class of all T models, and
so on. Note that D∩ is not included in Int(D): it is in fact invalid in D∩ [2].

By adding the characterization of intersection to the axiomatization of a logic,
we get an axiomatization for the corresponding logic over L∩. To be precise, we
list the axiomatizations as follows:

K∩ = K⊕ Int(K)
D∩ = D⊕ Int(D)
T∩ = T⊕ Int(T)
B∩ = B⊕ Int(B)
S4∩ = S4⊕ Int(S4)
S5∩ = S5⊕ Int(S5).

It is not hard to verify that all the above axiomatizations are sound in their
corresponding logics, respectively.

Some of the above axiomatizations, in particular, K∩, T∩, S4∩ and S5∩,
are given in [11]. An outline of a completeness proof is also found there, without
details. Similarly, equivalent axiomatizations for some of the cases are also found
in [5], with proof of completeness only for the K∩ case. For logics extending K∩

detailed proofs can be found for certain cases, such as the S5∩ with only a single
intersection modality for the set of all agents (which is assumed to be finite) [10].
A more general and detailed proof based on this technique for the S5 case can
be found in [18] (still for the S5 case). The proof goes through an unraveling-
folding procedure, mentioned in the introduction. Due to the subtleties in the
unraveling and folding processes, it is difficult to apply this technique directly
to new logics, as it has to be adapted from the beginning (for example, even the
definition of a path depends on the underlying logic) through several steps all
the way to the very end of the procedure.

We introduce a simpler method for proving completeness, that can easily be
adapted to a range of different logics. This is a relatively straightforward variant
of the canonical model method. For each of the logics L mentioned above, with
corresponding axiomatization L, we show that L is a complete axiomatization
of L, which is equivalent to finding an L model for every L-consistent set of
formulas. The model we are going to build is called a standard model.

Let MCSL be the set of all maximal L-consistent sets of L∩-formulas.6 Given
L, given an index I, we shall write �I to stand for the binary relation on MCSL,
such that Φ �I Ψ iff for all ϕ, ∩Iϕ ∈ Φ implies ϕ ∈ Ψ . This type of relations is
6 We refer to a modal logic textbook, say [8], for a definition of a (maximal) consistent
set of formulas.
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typically used in the definition of a canonical model, and are sometimes called
canonical relations. We easily get the following proposition.

Proposition 8. For any index I, the canonical relation �I on MCSL is:

1. serial, if I is singleton and L is D∩;
2. reflexive, if L is T∩;
3. reflexive and symmetric, if L is B∩;
4. reflexive and transitive, if L is S4∩;
5. an equivalence relation, if L is S5∩;
6. s.t. �J ⊆ �I , for any index J ⊇ I.

Definition 9 (canonical paths). Given an axiomatization L, a canonical
path for L is a sequence 〈Φ0, I1, . . . , In, Φn〉 such that:

(i) Φ0, . . . , Φn ∈ MCSL,
(ii) I1, . . . , In are indices, and
(iii) for all x = 1, . . . , n, (Φx−1, Φx) ∈ �Ix .

Initial segments, tail(s), (“canonical”) i-paths, I-paths, and so on, are defined
exactly like for paths in a model (Definition 3).

The standard models we will define for these logics are a bit different from
the canonical model for a standard modal logic. As mentioned existing proofs
are based on transforming the canonical model to a treelike model. We will
construct a treelike model directly: in the standard model for a logic L, a state
will be a canonical path for L. However, the binary relations in a standard model
is dependent on the concrete logic we focus on. We now first define these binary
relations and then introduce the definition of a standard model.

Definition 10 (standard relations). Given a logic L with its axiomatization
L, we define RL as follows. For any i ∈ I, RL

i is the binary relation on the set
of canonical paths for L, called the standard relation for i, such that:

– When L is K∩ or D∩: for all canonical paths s and t for L, (s, t) ∈RL
i iff t

extends s with 〈I, Φ〉 for some I � i and Φ ∈ MCSL;
– When L is T∩: for all canonical paths s and t for T∩, (s, t) ∈RT∩

i iff t = s

or t extends s with 〈I, Φ〉 for some I � i and Φ ∈ MCST∩
;

– When L is B∩: for all canonical paths s and t for B∩, (s, t) ∈RB∩
i iff one of

the following holds for some I � i and Φ ∈ MCSB∩
:

(i) t = s
(ii) s extends t with 〈I, Φ〉
(iii) t extends s with 〈I, Φ〉;

– When L is S4∩: for all canonical paths s and t for S4∩, (s, t) ∈RS4∩
i iff s is

an initial segment of t and t \ s is a canonical i-path;
– When L is S5∩: for all canonical paths s and t for S5∩, (s, t) ∈RS5∩

i iff
(i) s and t have a common initial segment u, and
(ii) both s \ u and t \ u are canonical i-paths.
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Definition 11 (standard models). Given a logic L, the standard model for
L is a tuple ML = (S,R,V) such that:

– S is the set of all canonical paths for L;
– R = RL;
– For any propositional variable p, V(p) = {s ∈ S | p ∈ tail(s)}.
Lemma 12 (standardness). The following hold:

1. MK∩
is a Kripke model;

2. MD∩
is a D model;

3. MT∩
is a T model;

4. MB∩
is a B model;

5. MS4∩
is an S4 model;

6. MS5∩
is an S5 model.

Lemma 13 (existence). For any logic L, state s of ML, and index I, if ∩Iϕ /∈
tail(s) then there is a state t of ML such that (s, t) ∈ ⋂

i∈I RL
i and ϕ /∈ tail(t).

Proof. Let s be a state of ML and ∩Iϕ /∈ tail(s). So ¬ ∩I ϕ ∈ tail(s). Consider
the set Φ− = {¬ϕ}∪{ψ | ∩Iψ ∈ tail(s)}. We can show Φ− is L consistent just as
in a classical proof of the existence lemma (see, e.g., [8]). We can then extend it
into a maximal consistent set Φ of formulas using the Lindenbaum construction.
Since ¬ϕ ∈ Φ, ϕ /∈ Φ. Let t be s extended with 〈I, Φ〉. By definition it is clear
that ϕ /∈ tail(t) and for all L, (s, t) ∈ ⋂

i∈I RL
i (since s RL

i t for all i ∈ I).

Lemma 14 (truth). Given a logic L, a formula ϕ, and a state s of ML, it
holds that: ML, s |= ϕ if and only if ϕ ∈ tail(s).

Proof. The proof is by induction on ϕ. The atomic case is by definition. Boolean
cases are easy to show. Interesting cases are for the modalities �i (i ∈ I) and
∩I (I is an index). We start with the case for ∩Iψ.

ML, s |= ∩Iψ
⇔ for all t, if (s, t) ∈ ⋂

i∈I RL
i then ML, t |= ψ

⇔ for all t, if (s, t) ∈ ⋂
i∈I RL

i then ψ ∈ tail(t)
⇒ ∩Iψ ∈ tail(s) (existence lemma)

For the converse of the last step, suppose ∩Iψ ∈ tail(s) and assume towards a
contradiction that there is a state t such that (s, t) ∈ ⋂

i∈I RL
i and ψ /∈ tail(t).

– If L is K∩ or D∩, it must be that t extends s with 〈J, Φ〉 for J ⊇ I and
Φ ∈ MCSL. By definition tail(s) �J tail(t), and by Proposition 8.6, we have
tail(s) �I tail(t). Therefore ψ ∈ tail(t), which leads to a contradiction.

– If L is T∩, we face an extra case compared with the above, namely s = t. A
contradiction can be reached by applying the axiom T∩.
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– If L is B∩, then (i) t = s or (ii) s = 〈t, J, Φ〉 or (iii) t = 〈s, J, Φ〉 where
J ⊇ I and Φ ∈ MCSB. Case (i) can be shown similarly to the case when
L is T∩, and case (iii) to the case when L is K∩ or D∩. For case (ii), it is
important to observe that �I is symmetric (Proposition 8.3) and �J ⊆ �I

(Proposition 8.6).
– If L is S4∩, s must be an initial segment of t and t \ s is an I-path. We get
tail(s) �I tail(t) by Proposition 8.6 and the reflexivity and transitivity of �I

(Proposition 8.4). Therefore ψ ∈ tail(t) which leads to a contradiction.
– If L is S5∩, s and t have a common initial segment u, and s \ u and t \ u are

both I-paths. When one of s and t is an initial segment of the other, it can
be shown like in the case when L is S4∩. The interesting case is when s and t
really fork, in this case we can show both tail(s)�I tail(u) and tail(u)�I tail(t)
by transitivity and symmetry of �I (Proposition 8.5) and Proposition 8.6, so
that tail(s)�Itail(t). Then ψ ∈ tail(t), which leads to a contradiction.

Finally, the case for �iψ: ML, s |= �iψ ⇐⇒ ML, s |= ∩{i}ψ (validity of ∩1)
⇐⇒ ∩{i}ψ ∈ tail(s) (special case of ∩Iψ) ⇐⇒ �iψ ∈ tail(s) (axiom ∩1).

Theorem 15 (strong completeness). Given L ∈ {K∩,D∩,T∩,B∩,S4∩,S5∩}
and its axiomatization L, for any Φ ⊆ L∩ and ϕ ∈ L∩, if Φ |= ϕ, then Φ �L ϕ.

Proof. Suppose Φ �L ϕ. It follows that Φ∪{¬ϕ} is L consistent. Extend it to be
a maximal consistent set Ψ , then 〈Ψ〉 is a canonical path. By the truth lemma,
for any formula ψ, we have M, 〈Ψ〉 |= ψ iff ψ ∈ Ψ . It follows that Ψ is satisfiable,
which leads to Φ �|= ϕ.

5 Logics over L∩�

In this section we study the logics with both the intersection and union+ modal-
ities. The language is set to be L∩� in this section, and by a “logic” without
further explanation we mean one of K∩�, D∩�, T∩�, B∩�, S4∩� or S5∩�.

Compared with the characterization of intersection, that of transitive closure
of union is more straightforward:

Un(K) = Un(D) = Un(T) = Un(B) = Un(S4) = Un(S5) = {K�,�1,�2}.

These axioms are not new, see, e.g., [11], although as far as we know they have
not been studied in combination with D and B in the literature. For simplicity we
write Un for this set of axioms. Additional validities for union+ corresponding
to specific frame conditions can be derived in specific logic systems. For instance,
D� is a theorem of D ⊕ Un.

By adding to the axiomatization of a logic over L∩ the characterization of
union+, we get a sound axiomatization for the corresponding logic over L∩�. To
be precise, we list the axiomatizations as follows:
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K∩� = K∩ ⊕Un
D∩� = D∩ ⊕Un
T∩� = T∩ ⊕Un
B∩� = B∩ ⊕Un
S4∩� = S4∩ ⊕Un
S5∩� = S5∩ ⊕Un.

It is well known that logics with both a basic modality and a modality for the
transitive closure of the basic modality is not semantically compact ; we will thus
be concerned only with weak rather than strong completeness in this section.
We will make extensive references to the names of logics and axiomatizations,
and for simplicity we shall call a tuple σ = (L,L, α, ι) a signature, when L is
one of the logics K∩�, D∩�, T∩�, B∩�, S4∩� and S5∩�, L is the corresponding
axiomatization for L, α is a formula of L∩�, and ι is an index such that (i) i ∈ ι
for every �i occurring in α, and (ii) every index occurring in α is a subset of ι.

Definition 16 (closure). Given a signature σ = (L,L, α, ι), the σ-closure,
denoted cl(σ), is the minimal set of formulas satisfying the following conditions:

1. α ∈ cl(σ);
2. If ϕ ∈ cl(σ), then all the subformulas of ϕ are also in cl(σ);
3. If ϕ does not start with a negation symbol and ϕ ∈ cl(σ), then ¬ϕ ∈ cl(σ);
4. For any i ∈ ι,

(i) If ∩{i}ϕ ∈ cl(σ) then �iϕ ∈ cl(σ), and
(ii) If �iϕ ∈ cl(σ) then ∩{i}ϕ ∈ cl(σ);

5. For indices I and J with I ⊂ J ⊆ ι, if ∩Iϕ ∈ cl(σ) then ∩Jϕ ∈ cl(σ);
6. For indices I, J ⊆ ι, if �Iϕ ∈ cl(σ) and I ∩ J �= ∅ then ∩J�Iϕ ∈ cl(σ).7

It is not hard to verify that cl(σ) is finite and nonempty for any signature
σ. Given σ = (L,L, α, ι), a set of formulas is said to be maximal L-consistent
in cl(σ), if it is (i) a subset of cl(σ), (ii) L-consistent and (iii) maximal in cl(σ)
(i.e., any proper superset which is a subset of cl(σ) is inconsistent). We write
MCSσ for the set of all maximal L-consistent sets of formulas in cl(σ).

Now we adapt the canonical relations to the finitary case. Given a signature
σ and an index I, we may try to define a canonical relation �I to be a binary
relation on MCSσ, such that Φ �I Ψ iff for all ϕ, ∩Iϕ ∈ Φ implies ϕ ∈ Ψ , like we
did for the logics over L∩. But there are subtleties here. For example, transitivity
may be lost for S4∩�, if ∩Iϕ ∈ Φ but ∩I∩Iϕ /∈ Φ in case the latter is not included
in the closure. We introduce the formal definition below.

Definition 17 (finitary canonical relation). For a signature σ = (L,L, α, ι)
and an index I ⊆ ι, the canonical relation �I for σ is the binary relation on
MCSσ, such that the following hold for all Φ, Ψ ∈ MCSσ:

7 This is the place where the use of ι is essential to make sure that a closure is finite.
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– If L is K∩�, D∩� or T∩�: Φ �I Ψ iff {ϕ | ∩Iϕ ∈ Φ} ⊆ Ψ ;
– If L is B∩�: Φ �I Ψ iff {ϕ | ∩Iϕ ∈ Φ} ⊆ Ψ and {ϕ | ∩Iϕ ∈ Ψ} ⊆ Φ;
– If L is S4∩�: Φ �I Ψ iff {∩Iϕ | ∩Iϕ ∈ Φ} ⊆ {∩Iϕ | ∩Iϕ ∈ Ψ};
– If L is S5∩�: Φ �I Ψ iff {∩Iϕ | ∩Iϕ ∈ Ψ} = {∩Iϕ | ∩Iϕ ∈ Ψ}.

Note that for all the logics, from Φ �I Ψ we still get that ∩Iϕ ∈ Φ implies
ϕ ∈ Ψ , as the criteria above are at least not weaker. We get the following
proposition that is similar to Proposition 8.

Proposition 18. For any signature σ = (L,L, α, ι) and any index I ⊆ ι, the
canonical relation �I for σ is:

1. Serial, if I is singleton and L is D∩�;
2. Reflexive, if L is T∩�;
3. Reflexive and symmetric, if L is B∩�;
4. Reflexive and transitive, if L is S4∩�;
5. An equivalence relation, if L is S5∩�.
6. �J ⊆ �I , for any index J such that I ⊆ J ⊆ ι.

Proof. For seriality when I = {i}: given Φ ∈ MCSσ and a formula ϕ such that
∩{i}ϕ ∈ Φ, it suffices to show the existence of a Ψ ∈ MCSσ such that ϕ ∈ Ψ . This
is easy, take ϕ and extend it to be L-maximal in cl(σ) (note that ϕ ∈ cl(σ)).

For reflexivity, we make use of the axiom T∩ and the fact that cl(σ) is closed
under subformulas.

For the combinations of frame conditions for B∩�, S4∩� and S5∩�, we can
see that they are enforced by the definition of the canonical relation.

Definition 19 (finitary canonical paths). Given a signature σ = (L,L, α, ι),
a canonical path for L in cl(σ) is a sequence 〈Φ0, I1, . . . , In, Φn〉 such that:

(i) Φ0, . . . , Φn ∈ MCSσ,
(ii) I1, . . . , In ⊆ ι are indices, and
(iii) for all x = 1, . . . , n, (Φx−1, Φx) ∈ �Ix .

Initial segments, tails of paths, (“canonical”) i-paths, I-paths, and so on, are
defined like for paths in a model (Definition 3).

Definition 20 (standard relation). Given a signature σ = (L,L, α, ι), for
any i ∈ ι, the standard relation Rσ

i is the binary relation on the canonical paths
for L in cl(σ), such that:

– If L is K∩� or D∩�: for all canonical paths s and t for L in cl(σ), (s, t) ∈Rσ
i

iff t extends s with 〈I, Φ〉 for Φ ∈ MCSσ and some index I such that i ∈ I ⊆ ι;
– If L is T∩�: for all canonical paths s and t for T∩� in cl(σ), (s, t) ∈Rσ

i iff
t = s or t extends s with 〈I, Φ〉 for Φ ∈ MCSσ and some index I s.t. i ∈ I ⊆ ι;

– If L is B∩�: for all canonical paths s and t for B∩� in cl(σ), (s, t) ∈Rσ
i iff

(i) t = s or (ii) s = 〈t, I, Φ〉 or (iii) t = 〈s, I, Φ〉 for Φ ∈ MCSσ and some
index I such that i ∈ I ⊆ ι;
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– If L is S4∩�: for all canonical paths s and t for S4∩� in cl(σ), (s, t) ∈Rσ
i iff

s is an initial segment of t and t \ s is a canonical i-path;
– If L is S5∩�: for all canonical paths s and t for S5∩� in cl(σ), (s, t) ∈Rσ

i iff
(i) s and t have a common initial segment u, and (ii) both s \ u and t \ u are
canonical i-paths.

Definition 21 (finitary standard models). Given a signature σ = (L,L,
α, ι), the standard model for σ is a tuple Mσ = (S,R,V) such that:

– S is the set of all canonical paths for L in cl(σ).
– Ri = Rσ

i .
– For any propositional variable p, V(p) = {s ∈ S | p ∈ tail(s)}.
Lemma 22 (standardness). For any signature σ = (L,L, α, ι),

1. Mσ is a Kripke model;
2. Mσ is a D model when L = D∩� and L = D∩�;
3. Mσ is a T model when L = T∩� and L = T∩�;
4. Mσ is a B model when L = B∩� and L = B∩�;
5. Mσ is an S4 model when L = S4∩� and L = S4∩�;
6. Mσ is an S5 model when L = S5∩� and L = S5∩�.

Lemma 23 (existence). For any signature σ, any state s of Mσ, and any
index I ⊆ ι,

1. Given ∩Iϕ ∈ cl(σ), if ∩Iϕ /∈ tail(s), then there is a state t of Mσ such that
(s, t) ∈ ⋂

i∈I Rσ
i and ϕ /∈ tail(t).

2. Given �Iϕ ∈ cl(σ), if �Iϕ /∈ tail(s), then there is a state t of Mσ such that
(s, t) ∈ ⊎

i∈I Rσ
i and ϕ /∈ tail(t).

Proof. Let σ = (L,L, α, ι) and s be a state of Mσ.

(1) Let ∩Iϕ /∈ tail(s). So ¬∩Iϕ ∈ tail(s). Consider the set Φ− = {−ϕ} ∪ {ψ |
∩Iψ ∈ tail(s)} (where −ϕ is ψ if ϕ = ¬ψ, and is ¬ϕ if ϕ does not start with a
negation symbol). Clearly Φ− ⊆ cl(σ) and it is not hard to show that it is L
consistent. We can then extend it into a maximal consistent set Φ of formulas
in cl(σ). Since −ϕ ∈ Φ, ϕ /∈ Φ. Let t be s extended with 〈I, Φ〉. By definition
it is clear that ϕ /∈ tail(t) and (s, t) ∈ ⋂

i∈I Rσ
i (since s Rσ

i t for all i ∈ I).
(2) Let P be the property on the states of Mσ such that for any s, s ∈ P
iff for any t, if (s, t) ∈ ⊎

i∈I Rσ
i then ϕ ∈ tail(t). The equivalent condition

is that for any state s0 of Mσ, s0 ∈ P iff ϕ ∈ tail(sn) holds for any path
〈s0, {i0}, . . . , {in−1}, sn〉 of Mσ with {i0, . . . , in−1} ⊆ I. Let ψ =

∨
s∈P t̂ail(s)

(where t̂ail(s) is the conjunction of all formulas in tail(s)). We get the
following:
(a) For any i ∈ I, �L ψ → �iϕ. First observe that for every s0 ∈ P, any
path 〈s0, {i0}, . . . , {in−1}, sn〉 as described above is such that ϕ ∈ tail(sn). As
a special case, for any state s1, if 〈s0, {i}, s1〉 is a path, namely tail(s0) �{i}
tail(s1), then ϕ ∈ tail(s1). It follows that �iϕ ∈ tail(s0) (for otherwise it
violates the first clause; just treat �i to be ∩{i}). This means that �iϕ is a
conjunct of every disjunct of ψ, and so �L ψ → �iϕ.
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(b) For any i ∈ I, �L ψ → �iψ. Suppose towards a contradiction that
ψ ∧ ¬�iψ is consistent. There must be a disjunct of ψ, say t̂ail(t) (with t ∈
P), such that t̂ail(t) ∧ ¬�iψ is consistent. By properties of MCSσ we have
�L

∨{Φ̂ | Φ ∈ MCSσ} (similarly Φ̂ is the conjunction of formulas in Φ).
So there must be Φ ∈ MCSσ \ {tail(s) | s ∈ P} such that t̂ail(t) ∧ ¬�i¬Φ̂
is consistent. It follows that tail(t) �{i} Φ. The path u which extends t with
〈{i}, Φ〉 is such that (t, u) ∈Rσ

{i}. Since t ∈ P, we have u ∈ P as well. However,
this conflicts with the fact that Φ /∈ {tail(s) | s ∈ P}.

Now suppose s ∈ P, and we must show �Iϕ ∈ tail(s). By (a) and (b),
�L ψ → ∧

i∈I �i(ψ ∧ ϕ), and then by �2 we have �L ψ → �Iϕ. Let ξ = t̂ail(s).
It follows that �L ξ → ψ, as ξ is one of the disjuncts of ψ. We get �L ξ → �Iϕ,
and so �Iϕ ∈ tail(s) for tail(s) is consistent.

Lemma 24 (truth). Given a signature σ, a formula ϕ ∈ cl(σ), and a state s
of Mσ, it holds that: Mσ, s |= ϕ iff ϕ ∈ tail(s).

Proof. The proof is by induction on ϕ. The atomic and Boolean cases are easy
to show. The cases for the modalities �i (i ∈ I) and ∩I (I is an index) are not
much different from those of the proof of Lemma 14 (we need to be careful with
the closure, however; just note that all the i’s and I’s used here are bounded by
an ι). Here we detail the case for �Iψ.

Mσ, s |= �Iψ
⇔ for all t, if (s, t) ∈ ⊎

i∈I Rσ
i then Mσ, t |= ψ

⇔ for all t, if (s, t) ∈ ⊎
i∈I Rσ

i then ψ ∈ tail(t)
⇒ �Iψ ∈ tail(s) (existence lemma)

For the converse direction of the last step, suppose �Iψ ∈ tail(s) and towards a
contradiction that there is a state t such that (s, t) ∈ ⊎

i∈I Rσ
i and ψ /∈ tail(t).

So there is a path 〈s0, {i0}, . . . , {in−1}, sn〉 of Mσ such that {i0, . . . , in−1} ⊆ I,
s = s0 and t = sn.

– If L is K∩� or D∩�, it must be that t extends s with 〈J0, Φ1, . . . , Jn−1, Φn〉
where ψ /∈ Φn and for each x, ix ∈ Jx and Φx ∈ MCSσ. By definition
tail(s0) �J0 Φ1 �J1 · · · �Jn−1 Φn. By the axioms �1, ∩1 and ∩2 we can get
�L �Iψ → ∩J0�Iψ, and �Iψ ∈ Φ1 for ∩J0�Iψ ∈ cl(σ). Doing this recursively,
we get �Iψ ∈ Φn and so ψ ∈ Φn by T�, which contradicts ψ /∈ tail(t).

– If L is T∩�, we face an extra case compared with the above, namely s = t. A
contradiction can be achieved by applying the axiom T�.

– If L is B∩�, there are three cases: (i) sx+1 = sx or (ii) sx = 〈sx+1, J, Φ〉 or
(iii) sx+1 = 〈sx, J, Φ〉 where J ⊇ I and Φ ∈ MCSσ. In all cases, by similar
reasoning to the above (for case (ii) we use the symmetric condition for �I),
we can show that ψ ∈ tail(sx+1) given �Iψ ∈ tail(sx), and then reach a
contradiction similarly.
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– If L is S4∩�, sx (0 ≤ x < n) must be an initial segment of sx+1 and sx+1\sx is
a finitary canonical ix-path (ix ∈ I). By the axioms �1 and ∩1, �S4∩� �Iψ →
∩J�Iψ (for all ix ∈ J ⊆ ι). So we get ∩J�Iψ ∈ tail(sx+1) (we use T� in the
case when s = t). Recursively carrying this out, we get ∩J�Iψ ∈ tail(t), and
so ψ ∈ tail(t) which leads to a contradiction.

– If L is S5∩�, then sx and sx+1 have a common initial segment u, and sx\u and
sx+1 \u are both finitary canonical ix-paths. Since �S5∩� �Iψ → ∩J�Iψ (for
all ix ∈ J ⊆ ι), ∩J�Iψ ∈ tail(s0), and by the definition of �, ∩J�Iψ ∈ tail(sx),
so ψ ∈ tail(t) which leads to a contradiction as well.

Theorem 25 (weak completeness). Let L be the corresponding axiomati-
zation introduced for a logic L ∈ {K∩�,D∩�,T∩�,B∩�,S4∩�,S5∩�}. For any
ϕ ∈ L∩�, if |= ϕ, then �L ϕ.

Proof. Suppose �L ϕ. It follows that {¬ϕ} is L consistent. Extend it to be a
maximal consistent set Φ in cl((L,L,¬ϕ, ι)) with ι including {i | �i occurs in ϕ}
and all the indices occurring in ϕ, then 〈Φ〉 is a canonical path for L in
cl((L,L,¬ϕ, ι)). By the truth lemma, for any formula ψ in the closure, we have
M(L,L,¬ϕ,ι), 〈Φ〉 |= ψ iff ψ ∈ Φ. It follows that Φ is satisfiable, which leads to
�|= ϕ.

6 Discussion

We focused mainly on the completeness proof for the modal logics, K, D, T, B,
S4 and S5, extended with intersection and with or without the transitive closure
of union. For some of these logics proofs of completeness using the unraveling-
folding technique exist in the literature, for some no or only partial proofs exist.
We have to omit details here, but the method can also be directly applied to
many other canonical multi-modal logics with the intersection modality, includ-
ing popular systems of epistemic and doxastic logics such as S4.2, S4.3, S4.4 –
we have in fact already applied successfully for the KD45 case.8 By avoiding the
model translation processes used in the unraveling-folding method and building
a standard model directly, the proofs we present are dramatically simpler than
those found in the literature for special cases. We believe that the readers who
are familiar with the canonical model method for completeness proofs of modal
logics will find the proofs very familiar and straightforward.

While our approach is inspired by simplifying the existing proof technique,
the standard model we build is not identical to the model produced by the
unraveling-folding processes: it is simpler because we do not have to use so-
called reductions of paths. We emphasize, however, that the unraveling-folding
method was still important for us to arrive at this proof technique: it explains
why we take (finitary) canonical paths to be the states of the standard model.
Further work that could be interesting is to show possible bisimilarity of the
model we build to that by the unraveling-folding processes.

8 In an extension of [2], to appear.
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It is worth mentioning that our results are slightly more general than most
existing proofs from the literature on distributed knowledge in that it allows a
(countably) infinite set of boxes. This slightly complicates the proofs in the cases
with transitive closure of the union, requiring the use of the σ signatures.

Finally, as mentioned the full language of PDL with intersection (IPDL) is
more general than the languages we have considered here: it allows, e.g., transi-
tive closure of intersections. While there are complete axiomatizations of IPDL
with infinitary and/or unorthodox inference rules [7], and complete axiomatiza-
tions with finitary orthodox rules of iteration-free IPDL [6], finitary orthodox
axiomatization of full IPDL is a long-standing open problem. Perhaps the tech-
nique presented in this paper could help shed some new light on that problem.
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12. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics
of knowledge and belief. Artif. Intell. 54(3), 319–379 (1992)

13. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, Cambridge
(2000)

14. van der Hoek, W., Meyer, J.J.C.: Making some issues of implicit knowledge explicit.
Int. J. Found. Comput. Sci. 3(2), 193–224 (1992)

15. Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science.
Cambridge University Press, Cambridge (1995)

16. Sahlqvist, H.: Completeness and correspondence in the first and second order
semantics for modal logic. In: Kanger, S. (ed.) Proceedings of the Third Scan-
dinavian Logic Symposium, Studies in Logic and the Foundations of Mathematics,
vol. 82, pp. 110–143. Elsevier (1975)
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