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Abstract. The idealizations resulting from the use of Kripke semantics
in Epistemic Logic are inherited by formalizations of group epistemic
notions. For example, distributed knowledge (DK) is often taken to reflect
the potential knowledge of a group: what agents would know if they had
unbounded means of communication and deductive ability. However, this
does not specify whether/how this potential can be actualized, especially
since real people are not unbounded reasoners. Inspired by experiments
on group reasoning, we identify two dimensions of actualizing DK: com-
munication and inference. We build a dynamic framework with effortful
actions accounting for both, combining impossible-worlds semantics and
action models, and we provide a method for extracting a sound and com-
plete axiomatization.

1 Introduction

Epistemic Logic (EL), seen as a normal modal logic (usually S5), has been used in
the study of multi-agent systems, modelling not only the individual knowledge of
each agent, but also collective epistemic notions. For example, a group is said to
have common knowledge (CK) of φ whenever everybody knows that everybody
knows (ad infinitum) that φ, and distributed knowledge (DK) of φ whenever
agents can deduce φ by pooling their knowledge together. With the tools of
Dynamic Epistemic Logic (DEL), we can further capture the communicative
actions giving rise to them, e.g. actions actualizing DK and converting it into
CK.

However, EL is often criticized on grounds of idealization: its predictions
are practically unattainable by real agents. This has implications for collective
notions. It can well be that members of a group do not know all logical con-
sequences of their knowledge (e.g. because of memory overload) or do not take
all necessary communicative actions (e.g. because of time pressure). The same
constraints apply to higher-order reasoning as agents cannot ascribe knowledge
to others to an infinite modal depth. Group reasoning is a dynamic, mixed task
that requires actions of both inference and communication. These are not always
affordable by human agents, given their cognitive limitations. Therefore, the
evolution of reasoning is bounded by agents’ resources. Even from a normative
viewpoint, it makes sense to study what can be feasibly asked of them.
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This is corroborated by empirical findings. In deductive reasoning tasks peo-
ple often have trouble applying certain inference rules. Perhaps the best known
task is the Wason selection task [34]:

Four cards are given to the participants. Each card has a number on one
side and a letter on the other. The visible sides of the cards read A, K, 4,
and 7. The participants are asked which cards need to be turned to check
whether the following holds: if a card has a vowel on one side, it has an
even number on the other.

Individuals do notoriously bad in the task, although it involves just applications
of Modus Ponens and Modus Tollens. This has given rise to theories in psychol-
ogy of reasoning, explaining the asymmetry between the cognitive difficulty of
different inferences [24,28]. Other findings study the difficulty of reasoning about
others [32]. Group variants of deductive tasks similarly reveal limits in group rea-
soning. Nonetheless, they also allow us to track which actions underlie successful
performance and the effort they require. Its distribution among members often
yields better performance compared to the individual case [21,30].

In light of this, we can revisit group epistemic notions from the perspective
of non-ideal agents. Using DEL, we can specify the intertwined effortful actions
(communicative and inferential) that refine group knowledge, in accord with
empirical facts. Revisiting DK is a first step because of the implicit flavour
underlying its understanding as what would be known, if the agents were to
pool their knowledge and deduce information on its basis. In revisiting DK, we
need to specify (i) which actions may “actualize” it, i.e. turn it into (explicit)
mutual knowledge of the group, and (ii) to what extent these can be undertaken,
given that agents are bounded.

The first type of actions is communicative actions. Subtleties underpinning
the understanding of DK as the outcome of some (unlimited) communication
among group members have been discussed in [18,29,36]. The latter consider the
formula p∧ ¬Ka1p: p is true but a1 does not know it. The formula DG(p∧ ¬Ka1p),
where G is a group including a1, is consistent in extensions of EL with DG

operators standing for DK. Yet no communication could render this mutual
knowledge of G. The problem lies in that the formula is evaluated in a model
that does not explicitly encode the effect of information pooling taking place.
The operation introduced by the authors to fill this gap is called resolution and
it is similar to operations in [6,11].

Since our goal is to do justice to non-ideal agents, we should further account
for the extent to which resolution can be undertaken. This has implications
for the second type of actions too, namely inferential actions. There is more
than pooling information together that occurs in group deliberations, but unlike
communication, the deductive reasoning of group members is usually neglected
in multi-agent EL, whereby agents automatically know all consequences of their
knowledge. As with communication, we want to encode explicitly the inferential
actions of group members, and the extent to which these can be undertaken.
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Outline. In Sect. 2, we present our framework accounting for how agents actu-
alize DK under resource-bounds, using a novel combination of impossible-worlds
semantics [12] and action models [5]. We illustrate its workings in Sect. 3 and
provide a method for the extraction of a sound and complete axiomatization in
Sect. 4.

2 The Framework

2.1 Syntax

The logical language of our framework extends that of standard multi-agent
epistemic logics. Given a non-empty set of agents Ag, it includes:

i Quantitative comparisons between terms that are introduced to capture cog-
nitive costs of actions (communicative, inferential) with the cognitive capac-
ities of agents.

ii Operators DG, standing for the distributed knowledge of group G ⊆ Ag.
iii Operators Aj , where j ∈ Ag, that indicate the inference rules that agent j

has acknowledged as truth-preserving (similar to [16,31,35]).
iv Operators 〈RG〉, standing for resolution of group G, i.e. actions of communi-

cation through which members pool their knowledge together (in the spirit
of operations appearing in [6,11,36]).

v Operators of the form 〈C, e〉, where e is an event in action model C designed
to capture applications of inference rules in a multi-agent setting.

In order to define the language formally we need the following two prerequisites.
Given the propositional language LP based on a set of atoms P :

Definition 2.1 (Rule). An inference rule ρ is of the form {φ1, . . . , φn} � ψ
where φ1, . . . , φn, ψ ∈ LP .

Inference rules should be read as whenever every formula in {φ1, . . . , φn} is
true, so is ψ (as in [31, Chapter 2]). We use pr(ρ) and con(ρ) to abbreviate,
respectively, the set of premises and the conclusion of ρ. The set of rules is
denoted by LR.

Definition 2.2 (Terms). The set of terms T is defined as T := {cρ | ρ ∈
LR} ∪ {cG | G ⊆ Ag} ∪ {cpj | j ∈ Ag}. It contains elements for (i) the cognitive
costs of rule applications (of the form cρ), (ii) cognitive costs of resolution among
members of groups (of the form cG), (iii) cognitive capacities of agents (of the
form cpj).

Definition 2.3 (Language). With the above in place, language L is given by:

φ ::= p | z1s1 + . . . + znsn ≥ z | ¬φ | φ ∧ ψ | Ajρ | DGφ | 〈RG〉φ | 〈C, e〉φ

where p ∈ P , z1, . . . , zn ∈ Z, z ∈ Z
r, s1, . . . , sn ∈ T , ρ ∈ LR. The dynamic oper-

ators are, 〈RG〉 for resolution, and 〈C, e〉, where C is an action model and e an
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event of C. We will specify the effect of dynamic operators later when presenting
the semantics; for now they should be thought as operators for communication
and inference respectively.1

Examples of Formulas. The formula (cpj ≥ cρ)∧ Ajρ says that (i) the cogni-
tive capacity of agent j (to which the term cpj corresponds) is greater or equal
than the cognitive cost of a rule ρ (to which the term cρ corresponds), and (ii)
the agent j has acknowledged rule ρ as truth-preserving. Individual knowledge
of an agent j is defined in terms of DK as Kj := D{j}. A formula like 〈C, e〉Kjφ
says that after the event e of the action model C takes place, the agent j knows
that φ.

2.2 Resource-Sensitive Epistemic Models

In order to interpret these formulas, we define a resource-sensitive epistemic
model and suitable model updates, induced by actions of resolution and infer-
ence, corresponding to the effect of our dynamic operators 〈RG〉 and 〈C, e〉.

Our models supplement Kripke models with impossible worlds and cognitive
components. Impossible worlds, unlike possible ones, are not closed under logical
consequence, to do justice to the fallibility of agents as real people might enter-
tain some inconsistent/incomplete scenarios. Yet by taking reasoning steps, to
the extent they can cognitively afford them, they can gradually eliminate some
of them. To start with, we impose Minimal Consistency : we rule out explicit
contradictions, in line with the literature on Minimal Rationality [14].

For the other components, we first need to parameterize our models by Res ,
denoting the set of resources (time, memory, attention etc.) we want to consider.
Then r := |Res| is the number of these resources. Another parameter concerns
the cognitive effort of the agents w.r.t. each resource. The cost function c :
LR ∪ P(Ag) → N

r assigns a cognitive cost to (i) each inference rule, (ii) each
group, w.r.t. each resource. That is, cost is a vector (as in [2]), used to indicate
the units consumed per resource for actions of inference and resolution. We use
the notation ck, k = 1, . . . , r to refer to the value of the k-th element of the
vector and we assume that the first resource, hence the first element of the
vector, concerns time. Concrete assignments of costs rely on empirical research.
This is because the cognitive difficulty of reasoning tasks is often explained in

1 The choice of number r is discussed in the next subsection. Formulas involving
∨, →, ≤, =, − can be defined in terms of the rest. This is why formulas like cpj ≥ cρ

or cpj ≥ cG are well-formed in this language.
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terms of the number and the kind of the rules that have to be applied, also
considering the different response times of people in different inferences [28] and
memory constraints [15].2

With the above fixed, we introduce cognitive capacity to the model to capture
the agents’ available power w.r.t. each resource. As resources are depleted while
reasoning evolves, capacity will not remain constant, but it may change as a
result of actions of inference or resolution, that require effort by agents uncover-
ing new information. This is because cognitive capacity w.r.t. certain resources,
like memory, is correlated with deductive reasoning performance [7]. Overall:

Definition 2.4 (Resource-sensitive model (RSM)). Given parameters
Res and c, a RSM is a tuple M := 〈WP ,W I , {∼j}j∈Ag, VP , VI , R, {cpj}j∈Ag〉
where:

– WP and W I are sets of possible and impossible worlds, respectively.
– Each ∼j is an epistemic accessibility relation imposed on W := WP ∪ W I ,

that is, a binary relation on W .
– VP : WP → P(P ) is a valuation function assigning to each possible world,

the propositional atoms that are true there.
– VI : W I → P(L) is a valuation function assigning to each impossible world,

the formulas (atomic or complex) that are true there.
– R : W × Ag → P(LR) is a function that assigns to each pair of a world and

an agent the rules that the agent has acknowledged there.
– cpj ∈ Z

r stands for the cognitive capacity of each agent, i.e. what j can afford
w.r.t. each resource. As a convention, we will consider that time is always a
resource and the first component of the vector of cpj refers to it.

Each RSM comes parameterized by Res and c, yet we will not explicitly write
them down as components of the model. This is to serve simplicity of notation
but also to emphasize that these, unlike cp, are not meant to be modified in the
aftermath of our actions.

Model Conditions. To fulfill Minimal Consistency we ask: {φ,¬φ} �⊆ VI(w),
for any w ∈ W I and φ ∈ L. To ensure that acknowledged inference rules are
truth-preserving, we impose Soundness of inference rules: for w ∈ WP , j ∈ Ag:
ρ ∈ R(w, j) implies M,w |= tr(ρ) where tr(ρ) :=

∧

φ∈pr(ρ)

φ → con(ρ).3

2 Notice that different schools (e.g. Mental Logic [28], Mental Models [24]) point at
different “measures” for the difficulty of deductive tasks; still, the very observation
that not all inferences require equal effort is uncontroversial. Since this debate is
not settled in the empirical realm, we have not committed to any view on cost
assignments. Instead, we focus on providing the machinery to embed such features
in formal logical modelling.

3 We focus on truth-preserving rules because we accept the factivity of knowledge.
Besides, this is one of the features distinguishing knowledge from belief, according
to most theories of knowledge. However, notice that other notions, like belief, could
be developed through non-truth-preserving inferences as well.
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It is common in EL to ask that epistemic relations are reflexive, symmetric
and transitive, properties that correspond to properties of knowledge: factivity,
positive and negative introspection. In what follows, we will impose reflexivity
(and thus factivity); still, we abstain from assuming unlimited introspection,
thus from asking that relations are symmetric and transitive. In the context of
resource-bounded agents, it is reasonable to extend considerations of non-ideal
performance to higher-order reasoning as well.

Before we proceed to model updates, we define the truth clauses for the static
fragment, i.e. L without 〈RG〉 and 〈C, e〉 operators. To do that, we first need
to interpret the terms in T . The intuition is that those of the form cρ and cG

correspond to the cognitive costs of rules and group resolution (respectively),
and those of the form cpj to the cognitive capacities of agents. This is why cpj

is used both as a model component and as a term of the language. The use can
be understood from the context. Notice that our intended reading of ≥ is that
s ≥ t iff every k-th component of s is greater or equal than the k-th component
of t.

Definition 2.5 (Interpretation of terms). Given a model M , the terms of
T are interpreted as follows: cM

ρ = c(ρ), cM
G = c(G) and cpM

j = cpj.

Definition 2.6 (Static truth clauses). Take ∼G:= ∩j∈G ∼j, for G ⊆ Ag.

For w ∈ WP :

M,w |= p iff p ∈ VP (w)
M,w |= z1s1 + . . . + znsn ≥ z iff z1s

M
1 + . . . + znsM

n ≥ z
M,w |= ¬φ iff M,w �|= φ
M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ
M,w |= Ajρ iff ρ ∈ R(w, j)
M,w |= DGφ iff M,u |= φ for all u : w ∼G u

For w ∈ W I : M,w |= φ iff φ ∈ VI(w)

In impossible worlds, formulas are evaluated directly (i.e. not recursively) by the
valuation function. Notice that the clause for DG is given through the intersec-
tion of relations of G members (as in DEL), but it now quantifies over possible
and impossible worlds, hence leaving room for deductively imperfect agents and
groups. A formula is said to be valid in a model iff it is true at all possible worlds.

2.3 Resolution

We use resolution as the action that captures how information is pooled by
group members, thereby enhancing the group’s knowledge. As in [36], resolution
is understood as publicly known private communication among members.4 The
resolution of group G induces a model update such that an epistemic relation

4 There are alternative understandings compatible with our framework, e.g. general-
izations where agents share all they know with different sets of agents [6]. This might
allow to break down the effect of resolution into the incremental sharing actions of
the members and study their possibly asymmetrical contribution in actualizing DK.
This is left for future work.
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for a member of G is the intersection of relations of the members of G, and it
remains intact for the rest. Moreover resolution might come at a cost. It can
be that “pooling” is effortless, e.g. because information is shared within the
group for “free”. However, it can be that adopting a piece of private information
through a publicly known action requires effort, e.g. because the group is too
big.5 One way to formally account for this effort is as follows: resolution incurs
a non-zero cost on cognitive capacity for members of G, but also a cost w.r.t.
time (and only time) for agents outside G (as time passes while G deliberates).
The model update of resolution is below:

Definition 2.7 (Resolution). Given RSM M = 〈WP ,W I ,∼j , VP , VI ,
R, cpj〉, the resolution of group G produces a new RSM MG := 〈WP ,W I ,∼′

j ,
VP , VI , R, cp′

j〉 where:

∼′
j=

{
∩i∈G ∼i, if j ∈ G

∼j , otherwise
cp′

j =

{
cpj − c(G), for j ∈ G

cpj − (c1(G), . . . , 0), otherwise

The conditions of RSMs are preserved by this definition. Resolution formulas
are interpreted as follows. For w ∈ W :

M,w |= 〈RG〉φ iff M,w |= (cpi ≥ cG) for all i ∈ G and MG, w |= φ

i.e. the “precondition” of resolving knowledge among the group G is that the
action is cognitively affordable to everyone in the group.

2.4 Inference

Action Models. Action models are used in DEL to represent complex infor-
mational actions [5]. They usually include (i) a set of events E, (ii) a binary
relation ≈j on E for each agent, representing her uncertainty regarding events
taking place, (iii) a precondition function pre assigning a formula to each event,
to indicate what is required for the event to occur. A common example is (semi-)
private announcements, whereby only some agents find out something while the
rest do not. In this attempt, we design novel action models to represent the infer-
ential steps of agents in a multi-agent context. For example, the events in our
action models can represent rule applications. They will too contain relations ≈j

and a precondition function pre : E → L. However, we need additional compo-
nents to capture the effect of inferential actions on RSMs, since the latter also
have additional components compared to plain Kripke models. More specifically:

� a second type of precondition pre imp : E → P(L) that indicates which
formulas should be represented by the impossible worlds entertained by the
agent(s) acting in an event e. The rough idea is to impose a “measure” on the
impossibilities they may entertain in order to qualify for a rule-application.

5 It has been argued that there are two different kinds of such informational events,
“implicit” and “explicit” [9,10]. This fits well with distinctions in the philosophical
and linguistic literature [8] between bare seeing (“naked infinitives”) and seeing-that,
which additionally implies epistemic awareness of the fact described.
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� a postcondition function pos : Ag × P(L) × E → P(L) that will allow us
to capture the effect of each event on the valuation of impossible worlds.
� a cognitive capacity postcondition, of the form pos cp : Ag ×Z

r → Z
r, that

will allow us to capture the effect of actions on cognitive capacities of agents.
� for notational convenience, a label function assigning to each event which
rule, if any, is applied and who the “actors” are. For example, if event e1 stands
for an application of ρ only by agent a1, its label is (ρ, {a1}) indicating that
the applied rule is ρ and its actor is a1. If the event represents that nothing
happens, its label is (∅, ∅): no inferential step occurs and (naturally) no one
undertakes it. The label function is of the form lab : E → (LR ∪{∅})×P(Ag).

Definition 2.8 (Action model for inference). An action model C is a tuple
〈E,≈j , pre, pre imp, pos, pos cp, lab〉, with the components as above.

Consider the group selection task; Modus Ponens is applied by all agents,
as evinced by the reported dialogues of participants, e.g. in [21, p. 237], [30, p.
15–17]. We capture this type of inferential action with the action model below:

Inference by all (CALL). This action model captures that all agents per-
form the same reasoning step, the application of a rule ρ, e.g. a Modus Ponens
instance. It comprises one event e1, and clearly lab(e1) = {ρ,Ag}. The precondi-
tion is that everybody knows the premises of ρ, has it available and has enough
cognitive capacity to apply it. The precondition of impossibility is such that
impossible worlds should at least represent the premises of ρ. The postcondi-
tion is used to show that agents can add the conclusion in their epistemic state
through this rule-application, while the postcondition on capacity reduces it by
the cost of ρ (Fig. 1).

Fig. 1. The action model for an inference of ρ performed by all.

But back to the group selection task: not all agents apply Modus Tollens.
In many groups, only one member applies it and figures out that 7 should be
turned [21, p. 238, 241]. In [30, p. 18–20], some dyads succeed because there is a
member with background in logic who has the rule available and affordable and
thus applies it. This is captured by another type of action model:

Inference by some (CSOME). It is not uncommon that only some agents (G ⊂
Ag) perform a rule unbeknownst to agents in Ag \ G who do not. For simplicity,
we design the action model in the case where one agent applies a rule ρ, but the
design can be generalized to other subsets of Ag. The action model comprises two
events, e1 to represent the application of the rule by a (hence, lab(e1) = (ρ, {a}))
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and e0 to represent that nothing happens (hence, lab(e0) = (∅, ∅)). The latter is
needed to capture that agents other than a are uncertain about the content of their
peer’s action (the rule-application). The precondition for e1 is that a knows the
premises of the rule, has the rule available and has enough cognitive capacity to
apply it. For e0 it is just �, as nothing happens. The precondition of impossibility
in e1 is such that impossible worlds should at least represent the premises of the
rule ρ, while for e0 it is the empty set. The postcondition will be used to show that
the actor can add the conclusion of ρ in her epistemic state, while nothing changes
for the other agents. The cognitive postcondition is such that only the cognitive
capacity of the actor is reduced by the cognitive cost of applying ρ, while for the
non-actors only time is consumed (Fig. 2).

Fig. 2. The action model for an inference of ρ performed by a unbeknownst to the
rest.

Product Models. We now define product models, i.e. the model updates
induced by the inferential actions. Our RSMs have additional components com-
pared to simple Kripke models, like the set of impossible worlds and the cognitive
capacity, which should be also modified according to the effect of the actions.
Roughly, impossible worlds entertained by actors of inference rules can be elim-
inated – if their inconsistency is uncovered by applying the rule – or become
enriched because, through rule applications, actors come to know the conclusion
of the rule. Moreover, cognitive capacities of agents are reduced by the suitable
cost. We will describe the model transformations by actions of inference, i.e. the
product models, component by component. First we need certain abbreviations:

Abbreviations. Given a RSM M and a world w in WP we take:

[∼j (w)] := {u ∈ W I | w ∼j u} [∼ (w)]G =
⋃

j∈G

[∼j (w)] [∼]G =
⋃

u∈WP

[∼ (u)]G

These abbreviations capture, respectively, which impossible worlds are accessi-
ble from w for agent j, for group G, and the ones overall entertained by G.
Given a model M and a rule ρ we also need an abbreviation to talk about
impossible worlds that will become inadmissible, given Minimal Consistency,



248 A. Solaki

once ρ is applied: [MC]ρ := {w ∈ W I | ¬con(ρ) ∈ VI(w) or con(ρ) =
¬φ, for some φ ∈ VI(w)} . Next, given a model M and an action model C:

[MC]e =

{
[MC]ρ ∩ [∼]lab2(e), if lab1(e) = ρ

∅, otherwise
.

This allows us to talk about the impossible worlds that will be uncovered
as inadmissible by an occurrence of e. For example, if the event represents a
ρ-application, then this set of worlds will contain those worlds susceptible to
Minimal Consistency that are also entertained by the actors (those who do apply
the rule).6 The components of the product model are then built as follows:

� the new set (WP )′ consists of pairs of possible worlds and events, such that
the world satisfies the precondition of the event.
� the new set (W I)′ consists of pairs of impossible worlds and events, such
that the world satisfies the precondition of impossibility and it is not ruled out
by Minimal Consistency. That is, if an event e represents a rule-application,
the impossible worlds which are paired with it are the ones that survive the
rule-application. If an impossible world lies in the epistemic state of an actor
who by applying the rule unveils that she initially entertained an inconsis-
tency, then that world will not give rise to such a pair.
� The valuation V ′

P is simply VP restricted to the surviving possible worlds.
� The valuation V ′

I is given as follows with the help of the postcondition
function: if the pair (w, e) ∈ (W I)′ lies in the epistemic state of an actor,
who applies ρ, then its valuation is extended by the conclusion of ρ: the
agent came to know the conclusion via the rule-application. Otherwise, the
valuation should not be extended, since the epistemic states of non-acting
agents should not change: they do not come to know the conclusion.
� R′ is simply R restricted to the surviving worlds.
� The new cognitive capacity is given through the capacity postcondition.
That is, the capacities of non-actors remain unchanged as they did not make
any cognitive effort, with the exception of time (which is consumed anyway).
However, actors’ capacity is reduced by the cost of the rule-application.

Definition 2.9 (Product model). Let M be a RSM and C an action model.
The product model M ⊗ C is a tuple 〈(WP )′, (W I)′,∼′

j , V
′
P , V ′

I , R′, cp′
j〉 where:

(W P )′ = {(w, e) ∈ W P × E | M, w |= pre(e)}
(W I)′ = {(w, e) ∈ W I × E | pre imp(e) ⊆ VI(w) and w ∈ [MC]e}
(w, e) ∼′

j (w′, e′) iff w ∼j w′ and e ≈j e′)
V ′

P (w, e) = VP (w), for (w, e) ∈ (W P )′

V ′
I (w, e) =

⎧⎨
⎩

pos(j, VI(w), e) with j ∈ lab2(e), if w ∈ ⋃
(u,x)∈(WP )′

[∼ (u)]lab2(e)

pos(j, VI(w), e), with j ∈ lab2(e), otherwise
,for (w, e) ∈ (W I)′

R′((w, e), j) = R(w, j), for (w, e) ∈ W ′ where W ′ = (W P )′ ∪ (W I)′

cp′
j = pos cp(j, cpj)

6 For example, if an impossible world w represents p, p → q, ¬q and is entertained
by all agents, and event e1 represents the application of MP = {p, p → q} � q,
then w will be contained in [MC]e1 . This world will become inadmissible by an e1
occurrence, because its inconsistency is uncovered by the application of the rule.
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Then the semantic interpretation for operators 〈C, e〉 is given below. For w ∈ W :

M,w |= 〈C, e〉φ iff M,w |= pre(e) and M ⊗ C, (w, e) |= φ

3 Discussion

We now see these constructions in action and discuss features of the framework.

Example 3.1 (Dyad selection task). For this variant of the task, we focus
on two agents, each knowing the visible side of one card. The first (a1) sees the
letter card A, and the second (a2) sees the number card 7.7

Language. Denote “card 1 has a vowel” with v1 and “card 1 has an even
number” with e1. Likewise, v2 (respectively, e2) stand for “card 2 has a vowel
(even number)”. Abbreviate the formulas vi → ei for i = 1, 2 with COND . Also,
MP := {v1 → e1, v1} � e1 and MT := {v2 → e2,¬e2} � ¬v2.

Initial Model. The model representing that a1 knows the content of the letter
card and a2 knows that of the number card is Fig. 3 (left). The formulas of
COND are true throughout all worlds. Since agents are fallible, at the beginning
they only know what they see (the visible sides) – they have not immediately
put their observations together nor have they inferred immediately what lies
in the back of the cards. The impossible (incomplete) worlds representing the
combinations of letter and number on the first and the second card are:

� w2: the first card depicts a vowel and the second card an even number.
� w3: the first card depicts a vowel and the second card an odd number.
� w4: the first card depicts a consonant and the second card an even number.
� w5: the first card depicts a consonant and the second card an odd number.

We draw these worlds as rectangles and write down all formulas true there, to dis-
tinguish them from the real (possible) world (w1), where we write the atoms that
are true there, namely v1, e1 (thus ¬e2,¬v2 are also true as possible worlds are
maximal consistent alternatives). The epistemic relations represent the uncer-
tainty of agents w.r.t. the card they have not seen. There are also reflexive and
transitive arrows, not drawn for simplicity. Moreover, for Res = {time,memory},
take cp(a1) = (6, 6), cp(a2) = (6, 4). Both agents have acknowledged MP , but
only a1 has acknowledged MT . Finally, c(MP ) = (1, 2), c(MT ) = (3, 2) as MT
is provably more difficult than MP, and c(G) = (1, 1), for the cost of resolution
of G = {a1, a2}.

7 The framework can also be applied to the Shadow-Box experiment [23], investigating
the synthesis of disparate points of view. For example, [1] sees learning as a social
process of belief revision of interacting agents and draws connections between the
Shadow-Box and variants of selection tasks whereby agents have access to different
part of the world (set of cards).
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Fig. 3. The initial model M and the updated pointed model (Mfin, ((w1, e1), e
′
1))

Actions. Afterwards, both agents share their observations. This is captured via
resolution. This can be undertaken because cp(ai) ≥ c(G), for i = 1, 2. However,
it reduces capacities to (5, 5) and (5, 3) respectively. Then, all agents apply MP
(captured by an action model C1), since they both have the rule available and
affordable, in accord with the experimental dialogues [21,30]. Their capacities
become (4, 3) and (4, 1). However, only a1 applies MT , having the rule available
and affordable. This is in accord with the dialogues and captured by an action
model C2. Her capacity becomes (1, 1), while a2’s becomes (1, 1) too.

Final Model. The final pointed model is depicted in Fig. 3. We have Mfin :=
(MG ⊗C1)⊗C2, resulting from a resolution update (MG) and then from product
updates with C1 amd C2. As a result, Mfin, ((w1.e1).e′

1) |= Ka1e1 ∧ Ka1¬v2 ∧
Ka2e1 ∧ ¬Ka2¬v2, so M,w1 |= 〈RG〉〈C1, e1〉〈C2, e

′
1〉(Ka1e1 ∧ Ka1¬v2 ∧ Ka2e1 ∧

¬Ka2¬v2).

Further Development. After another resolution round, a2 will also come to
know ¬v2, since she can afford that action (pooling information a1 derived ear-
lier). This corresponds naturally to the dialogues in [21, p. 238–240] and [30, p.
16, 19], where the member who figures out that 7 should be turned shares the
newly deduced information. Notice that a2 could use resolution, but not MT ;
at the end, she did not have to apply MT herself, because her teammate did so,
and all she had to do is communicate with her. Had the group not shared their
information they would not have reported the correct solution; had a2 reasoned
alone, her resources would not have allowed her to reach the solution. This illus-
trates one way in which reasoning in groups facilitates performance in tasks that
are more challenging on the individual level.

Our framework models the crucial interplay of resolution and inference, also
evident in tasks like the Shadow-Box experiment or interdisciplinary research
itself. One member might provide input information and another the means (e.g.
a proof strategy) to reach a result that would not have been reached if members
worked alone. Scientific quests largely depend on gathering suitable information
and deriving more on its basis to actualize scientific potential. However, this
process is effortful; resolving and deducing comes with a cognitive cost.
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We present some validities and invalidities, as further basis of discussion. The
full-fledged proofs for all theorems that follow are omitted for brevity.

Theorem 3.1 (Some validities). |= DG〈RG〉φ ↔ 〈RG〉EGφ where EG :=
∧

j∈G

Kj

|= ∧

j∈Ag

∧

φ∈pr(ρ)

Kjφ ∧ ∧

j∈Ag

Ajρ ∧ ∧

j∈Ag

(cpj ≥ cρ) → 〈CALL, e1〉EAgcon(ρ) where lab1(e1) = ρ

|= ∧

φ∈pr(φ)

DG〈RG〉φ ∧ Ajρ ∧ (cpj ≥ cG + cρ) → 〈RG〉〈CSOME , e1〉Kjcon(ρ) where j ∈ G, lab1(e1) = ρ, j ∈ lab2(e1)

|= ∧

φ∈pr(φ)

DAg〈RAg〉φ ∧ ∧

j∈Ag

Ajρ ∧ ∧

j∈Ag

(cpj ≥ cAg + cρ) → 〈RAg〉〈CALL, e1〉EAgcon(ρ) where lab1(e1) = ρ

The first validity pertains to the effect of resolution on the understanding of
DK (as in [36]) showing that after a group resolves their knowledge, φ is known
by its members. The second captures the effect of actions of inference. The
agents do not immediately know all logical consequences of their knowledge: they
have to undertake effortful reasoning steps. The other validities encapsulate the
interplay of communication and inference: once members resolve their knowledge
and come to know the premises, then those who apply the rule, come to know
the conclusion as well. Contrary to these, we escape features of idealized agents:

Theorem 3.2 (Some invalidities).

|= DGφ → 〈RG〉EGφ |= DG〈RG〉φ → 〈RG〉EGEGφ |= ∧
φ∈pr(ρ)

DGφ → DGcon(ρ)

|= ∧
φ∈pr(ρ)

Kjφ ∧ (cpj ≥ cρ) ∧ Ajρ → 〈CSOME , e1〉Kjcon(ρ) where ρ = lab1(e1) and j ∈ lab2(e1)

The first invalidity unveils the problem behind the traditional understanding
of DK (recall Sect. 1) and it is also identified in [36]. The second invalidity
shows that higher orders of knowledge require additional reasoning steps that
might not follow from attaining mutual knowledge alone. This departs from
literature viewing actualizations of DK as CK, because our attempt focuses
on resource-boundedness: higher-order knowledge, and hence CK, need extra
effort that should not be taken for granted. The third invalidity shows that DK
is not logically closed, therefore actualizing knowledge of logical consequences
is not trivial. The fourth invalidity shows that non-acting agents might not
come to know logical consequences, even if some of their peers do. This might
need yet another round of resolution, exemplifying the continuous and resource-
consuming interplay of communication and inference that takes place in reality
when non-ideal groups deliberate.

The theorems illustrate how DK is actualized by non-ideal agents. The use of
impossible worlds as “witnesses” of agents’ fallibility did not result in a trivialized
system where anything goes, due to the dynamics: agents come to know more
via resolution and inference, provided that they can. Specifying these steps,
monitoring their interplay and the effort they require allows us to track to which
extent a group realizes its potential, instead of pre-setting an arbitrary bound.
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This provides the “bridge” between the implicit notion of DK and the explicit
knowledge real groups can achieve.

Related Work. Comparisons with related work concern: (a) the inferen-
tial aspect of knowledge, (b) the communicative aspect of actualizing group
potential.

Consider aspect (a): this approach contributes to impossible-worlds seman-
tics used against omniscience [27] by adding dynamics that avoid the extreme
of trivial logics. Other approaches discern implicit (omniscient) and explicit
(omniscience-free) attitudes through a syntactic “filter” (like an awareness
function [17]). However, forms of the problem may persist and it not clear
how resource-boundedness could fit in this picture. Closer to our view are
[13,16,31,35], yet our elaborate specification of reasoning processes is impor-
tant in bridging logic with empirical facts, because these usually pertain to the
difficulty of individual inference rules [14,24,28]. This also discerns our frame-
work from others with multiple, non-ideal agents [3,4] that too study the effect
of communication and inference in multi-agent settings.

Consider aspect (b): [6,36] propose actions following the observation in [11]:
it takes more than communication of formulas expressible in the standard lan-
guages to actualize DK. Our resolution action is based on [36]’s, and is similar
to a special case of [6]’s tell-all-you-know actions, and to [11]’s communication
core. While this wider variety of actions is compatible with the framework,8

our dynamics is tailored to bounded agents, explaining how far group reasoning
can go. It is precisely this difference in scope that justifies our divergence from
studying actualizations of DK as CK. It would also be interesting to connect this
resource-sensitive attempt and another generalization of operations for pooling
information given in [26]: the authors provide an epistemic modality relative to
structured communication scenarios as an alternative to distributed knowledge.

Overall, our approach addresses the problem of logical omniscience, in a
multi-agent context and in agreement with experimental results and philosoph-
ical proposals (e.g. towards a theory of feasible inferences [14]). Departing from
this well-known problem, this approach demarcates the communicative and infer-
ential actions underlying whether and how DK is actualized. As [10] argues,
information goes hand in hand with the processes that create, modify, and con-
vey it; this analysis naturally applies to deliberating groups, and importantly,
to resource-bounded ones.

4 Reduction and Axiomatization

In this section, we reduce RSMs to possible-worlds structures with syntactic func-
tions, resembling awareness structures [17]. A reduction from impossible worlds
to syntactic structures follows the converse direction to [33], showing how various

8 Their model transformations could be captured as in the aforementioned attempts
(epistemic relation-wise), accompanied by the incurrence of a cost to those receiving
the information.
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structures, like awareness ones, can be reduced to impossible-worlds models vali-
dating precisely the same formulas (given a fixed background language). Besides,
the division of responses to logical omniscience into syntactic and semantic ones
is common in the literature. Syntactic approaches are claimed to lack the ele-
gance of semantic (impossible-worlds) ones, yet the latter’s semantic rules do not
adequately capture intuitions about knowledge formation [17]. Our framework
is a semantic one, using impossible worlds to do justice to multiple non-ideal
agents but nonetheless preserves explanatory power since agents can engage in
knowledge-refining actions. While the model and its actions accommodate these
intuitions, the reduction is instrumental in providing a sound and complete logic,
as it allows for the use of standard DEL techniques. In this way, we wish to har-
vest both the benefits of impossible-worlds semantics and the more convenient
technical treatment of syntactic approaches.

An outline of the reduction is as follows. First, we focus on the static part and
we show that the effect of impossible worlds in the interpretation of DG can be
captured in a possible-worlds model, provided that suitable syntactic functions
are introduced. Second, we obtain a sound and complete static axiomatization,
through modal logic techniques. Third, we move to the dynamics. We explain
why the common DEL procedure of giving reduction axioms is not straightfor-
ward but also how this issue can still be overcome.

4.1 Reduction and Static Axiomatization

Reduced (Static) Language. We fix an appropriate language Lred as the
“common ground” to show that the reduction is successful, i.e. the same formulas
are valid under the original and the reduced models. Take ∼G (w) := {u ∈
W | w ∼G u}, which denotes the set the truth clause for DG quantifies over.
Auxiliary operators (LDG

, IDG
) are then introduced to the static fragment of L to

discern (syntactically) the effect of quantifying over (im)possible worlds in DG-
interpretations. Their semantic interpretations are given below. For w ∈ WP :

M,w |= LDG
φ iff M,u |= φ for all u ∈ WP ∩ ∼G (w)

M,w |= IDG
φ iff M,u |= φ for all u ∈ W I∩ ∼G (w)

These essentially help us break down the DG operator. We also use ⊥ as an
auxiliary element of Lred , that is never true in any world.

Building the Reduced Model. Towards interpreting the auxiliary operators
IDG

in a reduced model, we construct awareness-like functions:

– IDG
: WP → P(L) such that IDG

(w) =
⋂

v∈W I∩∼G(w)

VI(v). Intuitively, IDG

takes a possible world and yields the set of formulas true at all impossible
worlds in its quantification set (the set of worlds DG quantifies over).

Definition 4.1 (Awareness-like structure (ALS)). Given M = 〈WP ,W I ,
∼j , VP , VI , R, cpj〉, its ALS (reduced model) is M := 〈W,∼r

j ,V,R, cpj , IDG
〉

with:
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W = WP w∼r
ju iff w ∼j u, for w, u ∈ W V(w) = VP (w) for w ∈ W

R(w, j) = R(w, j) for w ∈ W cpj is as in the original IDG
as explained before

The clauses based on ALSs are such that the IDG
-operators are interpreted via

the awareness-like functions. Due to the construction of awareness-like functions,
Minimal Consistency is inherited by the reduced model: for no w ∈ W, G ⊆ Ag,
is it the case that {φ,¬φ} ⊆ IDG

(w). Soundness of inference rules is also clearly
preserved. Moreover, take ∼r

j(w) := {u ∈ W | w∼r
ju} now based on the new

ordering ∼r
j . The interpretation of terms is as in the original, since the values

of capacities and costs are unchanged. The semantic clauses, based on M, are
standard for the boolean connectives. The remaining:

M, w |= p iff p ∈ V(w) M, w |= LDGφ iff M, u |= φ for all u ∈ ⋂
j∈G ∼r

j (w)

M, w |= z1s1 + . . . + znsn ≥ z iff z1s
M
1 + . . . + znsMn ≥ z M, w |= IDGφ iff φ ∈ IDG(w)

M, w |= Ajρ iff ρ ∈ R(w, j) M, w |= DGφ iff M, w |= LDGφ and M, w |= IDGφ

We now show that the definition of the ALSs indeed fulfills its purpose:

Theorem 4.1 (Reduction). Given a RSM M , let M be its ALS. Then M is
a reduction of M , i.e. for any w ∈ WP and formula φ ∈ Lred : M,w |= φ iff
M, w |= φ.

Proof. The proof goes by induction on the complexity of φ.

Based on this, we provide the static axiomatization:

Definition 4.2 (Static axiomatization). Λ is axiomatized by Table 1 and
the rules Modus Ponens, NecessitationDG

(from φ, infer LDG
φ).

Table 1. The static axiomatization

PC All instances of classical propositional tautologies

Ineq All instances of valid formulas about linear inequalities

D-Distribution LDG
(φ → ψ) → (LDG

φ → LDG
ψ)

D-factivity LDG
φ → φ

D-Monotonicity LDG
φ → LDB

φ, if G ⊆ B

IDG
φ → IDB

φ, if G ⊆ B

Minimal Consistency IDG
⊥ ∨ (¬(IDG

φ ∧ IDG
¬φ))

Soundness of inference rules Ajρ → tr(ρ)

Reducing DG DGφ ↔ LDG
φ ∧ IDG

φ

Ineq , described in [19], is introduced to account for the linear inequalities. The
axioms for LDG

mimic the behaviour of DG-involving axioms in the standard
logics with DK [18,20,22] only now using the auxiliary operator quantifying over
the possible worlds alone. Soundness of inference rules and Minimal Consistency
take care of the respective model conditions. Finally, the last axiom reduces DG

in terms of the corresponding auxiliary operators.
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Theorem 4.2 (Λ soundness/completeness). Λ is sound and complete w.r.t.
ALSs.

Proof. Soundness follows from the validity of axioms. Completeness follows [22,
p. 65], as the crucial difference (auxiliary operators interpreted through syntactic
functions) is accommodated from the construction of a suitable canonical model.

4.2 Dynamic Axiomatization

Moving to the dynamic part, consider a RSM M and its reduced ALS M. If an
update, either of resolution or inference, takes place, then we get an updated
M ′ and thus an updated ALS M′ corresponding to it. We observe that M′ is
such that an updated awareness-like function I′DG

is given in terms of IDG
, i.e

the awareness-like function in M. That is, the new values are set expressions of
the original ones. We present the updated functions below.9

After resolution of G: I′DB
(w) =

⋂

u∈(W I)∩∼′
B(w)

VI(u) =

{
IDG∪B

(w), if G ∩ B �= ∅
IDB

(w), if G ∩ B = ∅

After CALL: I′DG
(w, e1) =

⋂

(w′,e′)∈(W I)′∩∼′
G(w,e1)

V ′
I (w′, e′) =

{
IDG

(w) ∪ {con(ρ)}, if (W I)′ �= ∅
IDG

(w) ∪ IDG
(w), if (W I)′ = ∅

After CSOME , we have the cases below regarding e1 and e0:

I′
DG

(w, e1) =

⎧⎪⎨
⎪⎩

IDG(w), if (W I)′∩ ∼′
G (w, e1) = ∅ and a ∈ G

IDG(w) ∪ {con(ρ)}, if (W I)′∩ ∼′
G (w, e1) = ∅ and a ∈ G

IDG(w) ∪ IDG(w), if (W I)′∩ ∼′
G (w, e1) = ∅

I′
DG

(w, e0) = IDG(w)

In DEL, it is common to provide reduction axioms for the dynamic operators,
in our case, for 〈RG〉 and 〈C, e〉. However, reducing dynamic formulas involving
the auxiliary operator IDG

(thus DG too) cannot be straightforwardly obtained
because the new sets obtained through the update of IDG cannot be described
by means of the static language alone. Similar problems are encountered in [31,
Chapter 5]; in that single-agent framework, there are syntactic functions which
are expanded after certain actions. The focus is on actions that give rise to syn-
tactic functions which are structured expressions of the original ones, in turn
treatable with a specific static language. We follow a similar procedure, tailored
to our syntactic functions IDG

. This is because, as shown above, the updated val-
ues are too given in terms of the original ones, reflecting the refinement induced
by each action. Just to sketch the idea, as in [31], we extend the static language,
essentially re-expressing the auxiliary operators as set-expression operators, and
provide reduction axioms that yield a full sound and complete axiomatization.

For reasons of brevity, we cannot present the full-fledged procedure and the
reduction axioms here. Some remarks to give a flavor of the more important
reduction axioms: for inequalities, they reflect, with the help of abbreviations,
the resource consumption each action induces; for LG operators, they reflect that
these operators behave as DG does in standard DEL; for IG, making crucial use
of the set-expression operators, they reflect that the awareness-like functions are
updated in a principled way: as specific set expressions of the original ones.
9 We get these results using Definition 2.7, Definition 2.9, Definition 4.1.
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5 Conclusions and Future Work

The EL modelling of unbounded agents has repercussions for group reasoning
and DK is instrumental in illustrating this because it presupposes that agents
can undertake unlimited actions of communication and inference. We looked into
actualizations of DK under bounded resources, using RSMs and actions for com-
munication and inference. The combination of impossible-worlds semantics and
action models might be of independent interest given the former’s use in areas
beyond epistemic logic and the latter’s popularity in the study of multi-agent
dynamics. We furthermore showed that our models can be reduced to syntac-
tic structures. In doing so, we confirmed a pattern observed in the omniscience
literature and offered a useful detour for a sound and complete logic.

One direction for future work concerns non-ideal higher-order reasoning, and
hence connections of DK and CK. As with deductive reasoning, we envisage
the introduction of effortful steps for introspection and reasoning about other
agents, and the use of experimental results showing that groups usually act on
a large, but finite, degree of mutual knowledge as if they had CK. On another
note, group reasoning, in this attempt, can be better than individual in ways
that agree with the distribution of skills observed in [21,30] and the view that at
the upper limit groups perform as their best member [25]. However, the former
also emphasize the facilitative effect of dialogue in group performance, which
may be captured via a combination of RSMs with dialogical/inquisitive models.
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