
Inquisitive Dynamic Epistemic Logic
in a Non-classical Setting

Vı́t Punčochář(B)
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Abstract. This paper studies the operations of public announcement
of statements and public utterance of questions in the context of sub-
structutral inquisitive epistemic logic. It was shown elsewhere that the
logical laws governing the modalities of knowing and entertaining from
standard inquisitive epistemic logic generalize smoothly to substructural
logics. In this paper we show that the situation is different with the
reduction axioms that in the standard setting govern the modality of
public announcement/utterance. The standard reduction axioms depend
on some features of classical logic that are not preserved in substructural
logics. Using an additional auxiliary modality, we show how to overcome
this obstacle and formulate an alternative set of reduction axioms for the
public announcement/utterance modality that can be used even in the
context of our general non-classical setting.

Keywords: Dynamic logic · Epistemic logic · Inquisitive logic ·
Substructural logic · Public announcement · Reduction axioms

1 Introduction

Public announcement logic (PAL, see, e.g. [9]), as a particular form of dynamic
epistemic logic, aims at capturing the logical structure of public communication
and reasoning about agents, and their changing believes and knowledge. In other
words, it is concerned with reasoning involving information about the dynamics
of information accessible to other agents. Inquisitive dynamic epistemic logic
(IDEL, see [3,4]) enriches PAL with the realm of questions. Agents are equipped
not only with information states but also with issues and not only statements
but also questions may be publicly announced/uttered.

The standard dynamic epistemic logic, as well as its inquisitive extension, are
based on classical logic. The aim of this paper is to present a general semantic
framework that can serve as a basis for non-classical inquisitive dynamic epis-
temic logics. It incorporates public announcement logic based on substructural
logic but at the same time applies to a language involving questions.
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Our approach relies significantly on the static framework for substructural
inquisitive epistemic logics developed in [5]. The main contribution of this paper
is an extension of this particular framework with an extra layer that allows
one to capture the dynamics of publicly announcing statements and raising
issues. The resulting semantics can be seen as a generalization of the seman-
tics of IDEL. However, we will see that the reduction axioms for the public
announcement/utterance modality used in [4] to syntactically characterize IDEL
are not valid in our more general setting. Our solution to this problem is that
we add to the language an auxiliary modality for which simple and elegant
reduction axioms can be formulated, and we will reduce the public announce-
ment/utterance modality to this additional modality.

2 The Object Language

The object language we will work with involves atomic formulas and the follow-
ing logical symbols: (a) standard logical symbols used in propositional substruc-
tural logics, namely the constant for contradiction (⊥), the constant for logical
truth (t), negation (¬), implication (→), extensional conjunction (∧), intensional
conjunction (⊗), declarative disjunction (∨); (b) a binary connective

�

that is
called inquisitive disjunction and that allows one to form disjunctive and polar
(yes/no) questions so that p

�

q amounts to the disjunctive question whether p
or q, and p

� ¬p to the polar question whether p (see, e.g., [2]); (c) two epis-
temic modalities, Ia and Ea (where a represents an agent); (d) a dynamic public
utterance modality [ϕ];1 (e) an auxiliary dynamic modality {ϕ}. We will also use
equivalence as a defined symbol: ϕ ↔ ψ =def (ϕ → ψ) ∧ (ψ → ϕ). The result-
ing language will be called LSIDEL (the language of Substructural Inquisitive
Dynamic Epistemic Logic). It can be defined in the following compact way:

ϕ ::= p | ⊥ | t | ¬ϕ | ϕ → ϕ | ϕ∧ϕ | ϕ⊗ϕ | ϕ∨ϕ | ϕ

�

ϕ | Iaϕ | Eaϕ | [ϕ]ϕ | {ϕ}ϕ

The modality Ia is interpreted as meaning: according to a’s information. This
modality can be applied to statements as well as to questions. In particular, we
have the following basic cases:2

1 It is common to interpret the modality [ϕ] as public announcement of ϕ. However, we
will follow [4] in using the term “public utterance” instead of “public announcement”.
The reason is that ϕ may represent a question, e.g. the question whether p or q, and
it seems that there is an intuitive difference between announcing whether p or q
and uttering whether p or q. The former indicates that an answer to the question
is uttered, while the latter means only that the question itself is uttered, which
corresponds better to what the modality [ϕ] is supposed to model.

2 In the standard inquisitive epistemic logic, the letter K, instead of I, is used for
this modality since it is interpreted as knowing that/whether. However, in our more
general framework, we will not assume the specific features of knowledge, as for
example factivity (the agent can know only what is true) so the letter I seems to be
more appropriate.
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The formula Represents
Iap According to a’s information, p holds
Ia(p

�

q) a’s information resolves the question whether p or q

The modality Ea is called an entertaining modality. When applied to state-
ments this modality is assumed to behave just like Ia but its behavior differs
when it is applied to questions. This modality does not have a direct counterpart
in natural language but its meaning can be illustrated as follows. Assume, for
example, that an agent would like to have the information whether there are
two or three apples on a table. We also say that this is the agent’s issue. This
presupposes that the agent already has the information that at least one of these
numbers is correct and she wants to know which one it is. In that case we say
that the agent entertains the question whether there are two or three apples on
the table but also, for example, that she entertains the question whether there
is an even or odd number of apples on the table because every information that
resolves the former issue (two or three?), resolves also the latter one (even or
odd?).

In the standard framework of inquisitive epistemic logic the entertaining
modality serves mainly as a mean to define a more common wondering modality
in this way: Waϕ =df Eaϕ ∧ ¬Iaϕ. In our example, the agent for instance also
entertains the question whether there are less or more than five apples on the
table because every information that resolves her issue (two or three?) trivially
resolves also this question (less or more than five?). However, the agent does not
wonder whether there are less or more than five apples on the table because this
question is already resolved by her information that there are either two or three
apples on the table.

The formula Represents
Ea(p

�

q) a entertains the question whether p or q
Wa(p

�

q) a wonders whether p or q

For a statement α the formula [ϕ]α means: after a public utterance of ϕ, α
would be established. For example, assume that the agent a has the information
that if there are not two apples on the table then there are three apples there,
which is formalized as Ia(¬p → q). Then it holds that after a public utterance
that there are not two apples on the table, the agent will have the information
that there are three apples there, which is formalized as [¬p]Iaq. However, if [ϕ]
is applied to a question (e.g. a question of the form α

�

β) the result is typically
again a question. For instance, [ϕ](α

�

β) amounts to: after a public utterance of
ϕ, would α or β be established? More concretely, in the example above, [¬p](Iaq

�

¬Iaq) would encode the following question: after a public utterance that there
are not two apples on the table, would the agent a have the information that
there are three apples on the table?

The modality {ϕ} is auxiliary. It will help us to characterize syntactically
the logic of [ϕ]. There is a subtle difference between [ϕ] and {ϕ} which will be
clear after the semantics of these operators is introduced in Sect. 4.
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3 Substructural Inquisitive Epistemic Logic

In this section, we will focus on the static fragment of LSIDEL basically recapit-
ulating the framework of [5]. The proofs of the results presented in this section
are also worked out in [5]. The new contribution of this paper, which concerns
the treatment of the dynamic modality [ϕ] with the help of the modality {ϕ},
will be presented in the next section. The language LSIDEL without the two
dynamic modalities will be denoted as LSIEL.

Our semantics of LSIEL is based on the idea of information states as points
with respect to which formulas are evaluated. In standard semantic frameworks
of epistemic logic, as well as in the standard inquisitive semantics, an information
state is modeled as a set of possible worlds. Information states thus form a
complete atomic Boolean algebra (the algebra of all sets of possible worlds). In
our more general setting, more general algebraic structures will be employed and
information states will be regarded as primitive entities characterized by their
role within such structures.

In the semantics of standard inquisitive epistemic logic there is a crucial
interplay between the layer of possible worlds and the layer of information states.
In our generalization we need to have an analogue of these two layers. However,
since we intend to base the framework on non-classical logics we will need to
employ on the “lower layer” a notion that is more general than the notion of
a possible world. Inspired by situation semantics [1], the generalized possible
worlds will be called situations.

If we look just at the Boolean algebra of information states in the standard
framework, possible worlds correspond to the atoms in the algebra, i.e. to the
singleton states. From the lattice-theoretic point of view, a characteristic feature
of singletons is that they are completely join-irreducible elements in the algebra
of information state. This will be also the definitory feature of situations, the
analogues of worlds in our general setting.

Moreover, in the standard setting, where information states are represented
by sets of possible worlds, every information state can be viewed as union (i.e.
set-theoretic join) of a set of singletons (i.e. completely join-irreducible states).
We will need to preserve also this feature. So, in our framework, we will require
that every information state can be expressed as the join of a set of situations
(completely join-irreducible elements).

We will also need a formal notion of an issue. An issue will be represented
by a set of information states that can be intuitively viewed as those states
that resolve the issue. Like in the standard inquisitive semantics, we will require
that such a set must be downward closed and nonempty. The former condition
is motivated by interpreting s � t (where � is the lattice ordering) as saying
that s is informationally stronger than t.3 The latter condition is motivated
by interpreting the bottom element of the lattice as the absolutely inconsistent
state in which everything holds. A more detailed explanation of how particular

3 In the standard setting s � t reduces to s ⊆ t. In that case, the set of worlds s is
informationally stronger than t since it excludes more possibilities.
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features of the framework are motivated is contained in [5]. Let us summarize
the definition of situations and issues.

Definition 1. Let L = 〈S,�〉 be a complete lattice (of information states),
where

⊔
X denotes the join of X w.r.t. �. An element s ∈ S is called a sit-

uation in L iff it is completely join-irreducible, i.e. s =
⊔

X only if s = t,
for some t ∈ X. For any s ∈ S, the set of situations below s, i.e. the set
{i ∈ S | i is a situation such that i � s} will be denoted as Sit(s). An issue in
L is any nonempty downward closed subset of S.

We will denote situations by the letters i, j, . . . and arbitrary states by s, t, . . .
The models of our semantics also involve a compatibility relation C among

states, a binary operation · representing fusion of two states, the logical state
1, and, for each agent, an inquisitive state map assigning to each situation an
issue interpreted as the issue of the agent in the situation. A valuation will be a
function that assigns to every atomic formula an information state.

Definition 2. An abstract epistemic information model (AEI-model, for short)
is a structure M = 〈S,�, C, ·, 1, {Σa}a∈A, V 〉 such that (a) 〈S,�〉 is a complete
lattice; (b) every state from S is identical to the join of a set of situations, that
is, for any s ∈ S, s =

⊔
Sit(s); (c) 1 is a left-identity with respect to fusion, i.e.

1 · s = s; (d) � and · distribute over arbitrary joins from both directions; (e) C
is symmetric; (f) sC(

⊔
X) iff there is t ∈ X such that sCt; (g) for each agent

a ∈ A, Σa is a function assigning issues to situations and satisfying: if i, j are
situations such that i � j then Σa(i) ⊆ Σa(j); (h) V (p) ∈ S.

In accordance with the standard framework of inquisitive epistemic logic we
will denote the information state of the agent a in the situation i (in a given
AEI-model M) as σa(i) and we define:

σa(i) =
⊔

Σa(i).

Note that each AEI-model is based on a complete lattice and so it is bounded
and has the least element (the meet of all states). We will denote this special
state as 0. This state will represent an absolutely inconsistent state that supports
every piece of information (see Theorem 1(a)).

It might be useful to see in which sense AEI-models generalize structures that
naturally arise from the standard Kripke models for epistemic logic. An epistemic
Kripke model is a structure 〈W, {Ra}a∈A, V 〉, where W is a nonempty set (of
possible worlds); for each agent a ∈ A, Ra is a binary (accessibility) relation on
W such that Ra(w) represents the information state of the agent a in the world
w, i.e. the set of those worlds that are compatible with a’s information in w; and
V is a valuation function such that V (p) ⊆ W . We will not assume any special
properties of the accessibility relations such as “factivity” (w ∈ Ra(w)).

Every Kripke model K = 〈W, {Ra}a∈A, V 〉 determines a particular AEI-
model MK = 〈S,�, C, ·, 1, {Σa}a∈A, V 〉, where S = P(W ) (i.e. the power set of
W ); � is identical with ⊆ (so that situations are singletons); sCt iff s ∩ t �= ∅;
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s · t = s∩ t; 1 = W ; and s ∈ Σa({w}) iff s ⊆ Ra(w). V is a valuation in K as well
as in MK. It can be easily verified that every structure MK that arises in this
way from a Kripke model K satisfies all the conditions required in Definition 2
and thus is an example of an AEI-model.

Formulas of the language LSIDEL are evaluated with respect to states of
AEI-models. The support conditions fixing the semantic behaviour of the logi-
cal symbols from LSIEL are defined as follows (the support conditions for the
dynamic modalities from LSIDEL will be defined in the next section):

– M, s � p iff s � V (p),
– M, s � ⊥ iff s = 0,
– M, s � t iff s � 1,
– M, s � ¬ϕ iff for any t ∈ S, if tCs then M, t � ϕ,
– M, s � ϕ → ψ iff for any t ∈ S, if M, t � ϕ, then M, s · t � ψ,
– M, s � ϕ ∧ ψ iff M, s � ϕ and M, s � ψ,
– M, s � ϕ ⊗ ψ iff for some t, u ∈ S, s � t · u, M, t � ϕ and M, u � ψ,
– M, s � ϕ ∨ ψ iff for some t, u ∈ S, s � t � u, M, t � ϕ and M, u � ψ,
– M, s � ϕ

�

ψ iff M, s � ϕ or M, s � ψ,
– M, s � Iaϕ iff for any i ∈ Sit(s), M, σa(i) � ϕ,
– M, s � Eaϕ iff for any i ∈ Sit(s) and for any t ∈ Σa(i), M, t � ϕ.

We say that ϕ is valid in M if ϕ is supported by the state 1 in M. The set
of states that support ϕ in M will be denoted as ||ϕ||M (where the subscript
M will be usually omitted) and it will be called the proposition expressed by ϕ
in M. The logic of all AEI-models for the language LSIEL will be called SIEL
(Substructural Inquisitive Epistemic Logic). We say that ϕ is SIEL-valid if it is
valid in every AEI-model. We say that two formulas are SIEL-equivalent if in all
AEI-models they are supported by the same states.

In the particular cases of AEI-models generated by Kripke models the above
support conditions are intimately related to standard truth conditions. Let
us consider only the logical symbols ¬,→,∧,∨, Ia with their standard truth
conditions:

– K, w � p iff w ∈ V (p),
– K, w � ¬α iff K, w � α,
– K, w � α ∧ β iff K, w � α and K, w � β,
– K, w � α ∨ β iff K, w � α or K, w � β,
– K, w � α → β iff K, w � α or K, w � β,
– K, w � Iaα iff for all v ∈ Ra(w), K, v � α.

Then the support conditions above correspond to truth conditions in the fol-
lowing sense. For any Kripke model K, any s ⊆ W , and any formula α in the
simplified language for which the truth conditions were just introduced, it holds
that

MK, s � ϕ iff K, w � ϕ , for all w ∈ s.

Let us continue with the description of the most important general features of
our semantics. Note that an implication ϕ → ψ is valid in a model M iff for
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any state s in M, if M, s � ϕ then M, s � ψ. It is also useful to observe
that at situations, the support conditions for the modalities Ia and Ea may be
significantly simplified. Assume that i is a situation of a given AEI-model M.
Then it holds:

(a) M, i � Iaϕ iff M, σa(i) � ϕ,
(b) M, i � Eaϕ iff for any t ∈ Σa(i), M, t � ϕ.

Let us define the set of declarative LSIEL-formulas as the smallest set containing
all atomic formulas, ⊥, t, containing all LSIEL-formulas of the form Iaϕ, Eaϕ
and closed under the connectives ¬,→,∧,⊗,∨. Declarative formulas represent
statements (note that even if ϕ represents a question, Iaϕ and Eaϕ are always
statements). The following theorem expresses the most crucial features of the
support relation.

Theorem 1. In every AEI-model: (a) every LSIEL-formula is supported by the
state 0; (b) the support of LSIEL-formulas is downward persistent, i.e., if a
LSIEL-formula is supported by a state s and t � s then it is also supported
by the state t; (c) the support of declarative LSIEL-formulas is closed under
arbitrary joins, i.e., if a declarative LSIEL-formula is supported by each state
s ∈ X, then it is also supported by the state

⊔
X.

It follows from (a) and (b) of Theorem1 that every LSIEL-formula expresses
an issue. For any LSIEL-formula ϕ we define the informational content of ϕ,
denoted as info(ϕ), as follows:

info(ϕ) =
⊔

||ϕ||.

If ϕ represents a question, info(ϕ) captures the information presupposed by the
question. (For example, the question whether p or q presupposes the information
that p or q.) Now, the meaning of Theorem 1(c) can be interpreted as stating
that declarative formulas express a special kind of issues, namely those issues
that contain their own informational content (info(ϕ) ∈ ||ϕ||). Let us call the
issues that are already resolved by their own presuppositions, i.e. that contain
their own join, declarative propositions. Declarative propositions are semantic
counterparts of statements.

Now, we can present a syntactic characterization of SIEL-validity. We say
that an LSIEL-formula is SIEL-provable if it is provable in the axiomatic sys-
tem formulated in Table 1.4 The system is a basic substructural logic that can be
characterized as non-associative, distributive Full Lambek Logic with a paracon-
sistent negation and with only one implication (of course the second implication
← that is normally present in Full Lambek Logic could be easily added), and
extended with inquisitive disjunction and the epistemic modalities Ia, Ea.5

Theorem 2. For every LSIEL-formula ϕ, ϕ is SIEL-valid if and only if ϕ is
SIEL-provable.
4 In [5], the logic generated by this system is called InqSE.
5 It is discussed in detail in [5] why the distributivity axiom D1 is needed.
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Table 1. Axiomatization of the substructural inquisitive epistemic logic SIEL

Non-modal axioms:

A1 ϕ → ϕ A2 ⊥ → ϕ
A3 (ϕ ∧ ψ) → ϕ A4 (ϕ ∧ ψ) → ψ
A5 ϕ → (ϕ ∨ ψ) A6 ψ → (ϕ ∨ ψ)
A7 (ϕ ∨ ψ) → (ψ ∨ ϕ) A8 (α ∨ α) → α (for declarative α)
A9 ϕ → (ϕ

�

ψ) A10 ψ → (ϕ

�

ψ)

Modal axioms:

ID Ia(ϕ

�

ψ) ↔ (Iaϕ ∨ Iaψ)
IE Iaα ↔ Eaα (for declarative α)

Distributive axioms:

D1 (ϕ ∧ (ψ ∨ χ)) → ((ϕ ∧ ψ) ∨ (ϕ ∧ χ))
D2 (ϕ ⊗ (ψ ∨ χ)) → ((ϕ ⊗ ψ) ∨ (ϕ ⊗ χ))
D3 (ϕ ∧ (ψ

�

χ)) → ((ϕ ∧ ψ)

�

(ϕ ∧ χ))
D4 (ϕ ⊗ (ψ

�

χ)) → ((ϕ ⊗ ψ)

�

(ϕ ⊗ χ))
D5 (ϕ ∨ (ψ

�

χ)) → ((ϕ ∨ ψ)

�

(ϕ ∨ χ))
D6 (α → (ψ

�
χ)) → ((α → ψ)

�

(α → χ)) (for declarative α)

Non-modal rules:

R1 ϕ, ϕ → ψ/ψ R2 ϕ → ψ/(ψ → χ) → (ϕ → χ)
R3 χ → ϕ, χ → ψ/χ → (ϕ ∧ ψ) R4 ϕ → χ, ψ → ϑ/(ϕ ∨ ψ) → (χ ∨ ϑ)
R5 ϕ → (ψ → χ)/(ϕ ⊗ ψ) → χ R6 (ϕ ⊗ ψ) → χ/ϕ → (ψ → χ)
R7 t → ϕ/ϕ R8 ϕ/t → ϕ
R9 ϕ → ¬ψ/ψ → ¬ϕ R10 ϕ → χ, ψ → χ/(ϕ

�

ψ) → χ

Modal rules:

MR1 ϕ → ψ/Eaϕ → Eaψ MR2 Eaϕ ∧ Eaψ/Ea(ϕ ∧ ψ)
MR3 ϕ → ψ/Iaϕ → Iaψ MR4 Iaϕ ∧ Iaψ/Ia(ϕ ∧ ψ)

The following two results express crucial features of SIEL-validity. The first one
is a disjunctive normal form theorem.

Theorem 3. For every LSIEL-formula ϕ there is a finite set of declarative
LSIEL-formulas R(ϕ) = {α1, . . . , αn} s.t. ϕ is SIEL-equivalent to α1

�

. . .

�

αn.

Note that it follows from Theorem 3 that if an LSIEL-formula expresses a declar-
ative proposition it must be SIEL-equivalent to a declarative LSIEL-formula.
Another crucial feature of SIEL-validity is the disjunction property of the inquis-
itive disjunction.
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Theorem 4. The logic SIEL has the inquisitive disjunction property, that is,
ϕ

�

ψ is SIEL-valid only if ϕ or ψ is SIEL-valid.

Theorem 3 shows that every question in the language corresponds to a disjunctive
question. The set R(ϕ) can be seen as an exhaustive set of direct answers. Theo-
rems 3 and 4 together imply that a question is SIEL-valid iff a direct answer to the
question is SIEL-valid, i.e., iff the question can be resolved by logical means.

4 The Dynamics

The main goal of this paper is to extend the framework presented in the previous
section with the semantics of the dynamic modality [ϕ]. Our treatment of the
dynamic modality is motivated by the framework developed in [4]. As in [4], we
will attempt to characterize the logical behaviour of this modality by reduction
axioms. However, in the substructural setting, we will face some obstacles that
are not present in the classical setting of [4]. To overcome these obstacles we will
employ the auxiliary modality {ϕ}.

Take an arbitrary AEI-model M = 〈S,�, C, ·, 1, {Σa}a∈A, V 〉. Given two
nonempty sets of states X and Y in M, one can define their fusion in the
following way:

X ◦ Y = {u ∈ S | for some s ∈ X, t ∈ Y, u � s · t}.

The result of this operation is always an issue. Assume that the support condi-
tions for a LSIDEL-formula ϕ are already defined so that the set ||ϕ|| of states
supporting the formula in M is determined. We now assume that ϕ might be
publicly uttered. Such a public utterance updates the issues of the agents. The
updated model is defined as follows:

Mϕ = 〈S,�, C, ·, 1, {Σϕ
a }a∈A, V 〉,

where for any situation i we have:

Σϕ
a (i) = Σa(i) ◦ ||ϕ||.

Later on, we will use the following proposition.

Proposition 1. Let M be an AEI-model, i one of its situations, and ϕ any
LSIDEL-formula. Then

⊔
Σϕ

a (i) = σa(i) · info(ϕ).

Proof. The following equations hold:

σa(i) · info(ϕ) =
⊔

Σa(i) · ⊔ ||ϕ|| =
=

⊔{⊔
Σa(i) · t | t ∈ ||ϕ||} =

=
⊔{⊔{s · t | s ∈ Σa(i)} | t ∈ ||ϕ||} =

=
⊔{s · t | s ∈ Σa(i), t ∈ ||ϕ||} =

=
⊔{u ∈ S | for some s ∈ Σa(i), t ∈ ||ϕ||, u � s · t} =

=
⊔

(Σa(i) ◦ ||ϕ||) =
⊔

Σϕ
a (i).
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A public utterance of ϕ modifies the point of evaluation as well as the issues of
the agents so that the semantic clause for [ϕ] can be specified as follows:

M, s � [ϕ]ψ iff Mϕ, s · info(ϕ) � ψ.

This clause generalizes the semantics of the standard public announcement oper-
ator. To see this, take again any epistemic Kripke model K = 〈W, {Ra}a∈A, V 〉.
Consider again the simplified language based on ¬,→,∧,∨, Ia, now also extended
with the public announcement operator [α]. An update of K by a formula α of
this language can be defined as Kα = 〈W, {Rα

a }a∈A, V 〉, where

Rα
a (w) = Ra(w) ∩ info(α).

In this equation, info(α) is just the set of all worlds in which α is true in K. Given
the correspondence between truth and support this is completely in accordance
with the notation introduce above, for the set of all worlds in which α is true in
K is identical to union of all states in MK that support α, i.e. to

⊔ ||α||, which
is exactly how we defined info(α).

The update of a Kripke model is usually defined so that also the set of
worlds W and the valuation V are updated. But this is not an essential aspect of
the semantics. One can easily obtain an equivalent semantics without updating
these two components. Now consider the standard truth condition for public
announcement:

K, w � [α]β iff K, w � α or Kα, w � β,

Now the corresponding support condition in MK is

MK, s � [α]β iff Mα
K, s ∩ info(α) � β.

Under this condition support by a state is still equivalent to truth in all the
worlds of the state. Since fusion · and intersection coincide in MK, this condition
corresponds to our general condition for support of public utterance introduced
above. This reasoning shows that our general semantics of public utterance can
be viewed as a generalization of the standard semantics of public announcement.

The formula {ϕ}ψ behaves like [ϕ]ψ with the difference that the point of eval-
uation is not updated, only the issues of the agents are. The support condition
for this modality is:

M, s � {ϕ}ψ iff Mϕ, s � ψ.

The logic of all AEI-models for the language LSIDEL will be called SIDEL
(Substructural Inquisitive Dynamic Epistemic Logic). We say that ϕ is SIDEL-
valid if it is valid in every AEI-model. Our main goal is to provide an axiomatic
characterization of SIDEL-validity. But first, it will be useful to formulate the
following observation concerning AEI-models.
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Proposition 2. For states s, t, u, v of any AEI-model it holds:

(a) 0 · s = s · 0 = 0,
(b) if s � t and u � v then s · u � t · v.

Proof. (a) It holds that 0 =
⊔ ∅. So, 0 ·s = (

⊔ ∅) ·s =
⊔{x ·s | x ∈ ∅} =

⊔ ∅ = 0.
The case of s · 0 is analogous.

(b) Assume s � t and u � v. Then (s·u)�(t·v) � (s·u)�(t·u)�(s·v)�(t·v) =
(s � t) · (u � v) = t · v.

Let us define the set of declarative LSIDEL-formulas as the smallest set contain-
ing all atomic formulas, the constants ⊥, t, containing all LSIDEL-formulas of
the forms Iaϕ, Eaϕ, closed under the connectives ¬,→,∧,⊗,∨, and closed under
the application of any [ϕ] and any {ϕ}, that is, if ϕ is any LSIDEL-formula and
α a declarative LSIDEL-formula then [ϕ]α and {ϕ}α are declarative LSIDEL-
formulas. From now on, we will use the letters ϕ,ψ, χ, ϑ as variables for arbitrary
LSIDEL-formulas, and α, β as variables for declarative LSIDEL-formulas. Now
we can extend Theorem 1 to the language LSIDEL.

Theorem 5. In every AEI-model: (a) every LSIDEL-formula is supported by
the state 0; (b) the support of LSIDEL-formulas is downward persistent, i.e., if
a LSIDEL-formula is supported by a state s and t � s then it is also supported
by the state t; (c) the support of declarative LSIDEL-formulas is closed under
arbitrary joins, i.e., if a declarative LSIDEL-formula is supported by each state
s ∈ X, then it is supported also by the state

⊔
X.

Proof. The theorem can be proved by induction. The inductive steps for the
logical symbols from LSIEL are as in the proof of Theorem 1. We need to go
through the inductive steps concerning the dynamic modalities. The inductive
steps for {ϕ} are straightforward. We will consider only the steps for [ϕ]. Take
an AEI-model M and assume that the claims (a)-(c) generally hold for some
arbitrary LSIDEL-formulas ϕ,ψ, and some declarative LSIDEL-formula α.

(a) We assume that Mϕ, 0 � ψ. So, due to Proposition 2(a), we have also
Mϕ, 0 · info(ϕ) � ψ, i.e. M, 0 � [ϕ]ψ.

(b) Assume that M, s � [ϕ]ψ and t � s. The former assumption amounts
to Mϕ, s · info(ϕ) � ψ. The inductive assumption and monotonicity of fusion
(Proposition 2(b)) imply Mϕ, t · info(ϕ) � ψ, and hence M, t � [ϕ]ψ.

(c) Assume M, s � [ϕ]α, for every s ∈ X. That is, Mϕ, s · info(ϕ) � α,
for every s ∈ X, and thus it follows from the inductive assumption for α that
Mϕ,

⊔
s∈X(s · info(ϕ)) � α. Due to distributivity of fusion over arbitrary joins,

Mϕ, (
⊔

X) · info(ϕ) � α, and hence M,
⊔

X � [ϕ]α.

We will often use the following proposition that shows that the support condition
for implication can be significantly simplified if the consequent of the implication
is declarative.

Proposition 3. For any state s of any AEI-model M, any LSIDEL-formula ϕ,
and any declarative LSIDEL-formula α:

M, s � ϕ → α iff M, s · info(ϕ) � α.
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Proof. First, assume M, s � ϕ → α. That means that M, s · t � α, for every t ∈
||ϕ||. Since α is declarative, it follows from Theorem 5(c) that M, s·info(ϕ) � α.

Second, assume M, s · info(ϕ) � α. Take any t such that M, t � ϕ. Then
(by Proposition 2(b)) s · t � s · info(ϕ), and so (by Theorem 5(b)) M, s · t � α.
It follows that M, s � ϕ → α.

In analogy to the standard public announcement logic PAL we would like to
characterize the modality [ϕ] by reduction axioms. However, here we have to
face the problem that the standard reduction axioms rely on some features of
classical logic that are not preserved in our substructural setting. In particular
the standard reduction axioms for implication ([ϕ](ψ → χ) ↔ ([ϕ]ψ → [ϕ]χ))
and negation ([ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ)), are not SIDEL-valid.

For example, as in PAL, [p](q → r) is SIDEL-equivalent to p → (q → r), and
[p]q → [p]r to (p → q) → (p → r). However, in contrast to classical logic on
which PAL is based, p → (q → r) is not SIDEL-equivalent to (p → q) → (p → r),
so the equivalence of [p](q → r) and [p]q → [p]r fails.

To show how the equivalence between p → (q → r) and (p → q) → (p → r)
fails in our semantics consider the following artificial example of an AEI-model
M = 〈S,�, C, ·, 1, {Σa}a∈A, V 〉, where S = P(ω), i.e. states are sets of natural
numbers; � is the subset relation; C is empty; fusion is defined as follows: s · t =
{m+n | m ∈ s, n ∈ t}; 1 = {0}; for any a ∈ A and any situation i , Σa(i) = {∅};
and V is a valuation such that V (p) = V (q) = {1}, and V (r) = {2}. Then it can
be shown that M is indeed an AEI-model. It holds that the state {0} supports
p → (q → r). To show this we can use Proposition 3: M, {0} � p → (q → r) iff
M, ({0} · info(p)) · info(q) � r, iff M, ({0} · {1}) · {1} � r iff M, {2} � r which
holds. Moreover, {0} supports p → q: M, {0} � p → q iff M, {1} � q, which also
holds. But {0} does not support p → r: M, {0} � p → r iff M, {1} � r, which
does not hold.

To show that [ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ) fails, we can consider the following
simple instance: [p]¬q ↔ (p → ¬[p]q). As in PAL, [p]¬q is SIDEL-equivalent to
p → ¬q and p → ¬[p]q to p → ¬(p → q). Of course, p → ¬q and p → ¬(p → q)
are equivalent in classical logic but they are not SIDEL-equivalent. To show a
concrete counterexample, consider the AEI-model M introduced in the previous
paragraph and modify the definition of the compatibility relation C: we now
define sCt iff 0 ∈ s and 1 ∈ t, or 1 ∈ s and 0 ∈ t. Let us denote this modified
structure as N . It can be observed that N is indeed an AEI-model. Moreover,
it can be shown that N , {0} � p → ¬q but N , {0} � p → ¬(p → q).

To overcome the failure of standard reduction axioms, we will exploit the
auxiliary modality {ϕ}. We will use axioms allowing to reduce [ϕ] to {ϕ} and
further axioms allowing to eliminate {ϕ}. Moreover, we will need rules that will
guarantee that provably equivalent formulas are universally replaceable. The
whole system of the extra axioms and rules is formulated in Table 2.

We say that an LSIDEL-formula is SIDEL-provable if it is provable in the
axiomatic system consisting of axioms and rules from Tables 1 and 2. We say
that ϕ and ψ are SIDEL-provably equivalent if ϕ ↔ ψ is SIDEL-provable. We
will need to show that SIDEL-provably equivalent formulas are replaceable. Note
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Table 2. Reduction axioms and rules of SIDEL

Reduction axioms for [ϕ]:

RA1 [ϕ](ψ

�

χ) ↔ ([ϕ]ψ

�

[ϕ]χ)
RA2 [ϕ]α ↔ (ϕ → {ϕ}α) (for declarative α)

Reduction axioms for {ϕ}:

RA3 {ϕ}p ↔ p
RA4 {ϕ}⊥ ↔ ⊥
RA5 {ϕ}t ↔ t
RA6 {ϕ}¬ψ ↔ ¬{ϕ}ψ
RA7 {ϕ}(ψ → χ) ↔ ({ϕ}ψ → {ϕ}χ)
RA8 {ϕ}(ψ ∧ χ) ↔ ({ϕ}ψ ∧ {ϕ}χ)
RA9 {ϕ}(ψ ⊗ χ) ↔ ({ϕ}ψ ⊗ {ϕ}χ)
RA10 {ϕ}(ψ ∨ χ) ↔ ({ϕ}ψ ∨ {ϕ}χ)
RA11 {ϕ}(ψ �

χ) ↔ ({ϕ}ψ

� {ϕ}χ)
RA12 {ϕ}Eaψ ↔ Ea(ϕ → {ϕ}ψ)
RA13 {ϕ}Iaα ↔ Ia(ϕ → {ϕ}α) (for declarative α)

Monotonicity rules for dynamic modalities:

DR1 ϕ → ψ/[χ]ϕ → [χ]ψ DR2 ϕ ↔ ψ/[ϕ]χ ↔ [ψ]χ
DR3 ϕ → ψ/{χ}ϕ → {χ}ψ DR4 ϕ ↔ ψ/{ϕ}χ ↔ {ψ}χ

that an alternative formulation of the axiomatic system would be obtained by
replacing the rules DR1-DR4 with a rule allowing directly the replacement of
equivalents. Nevertheless, with the rules DR1-DR4 we can show that this rule is
admissible in the system.

Theorem 6. Assume that ϕ,ψ are SIDEL-provably equivalent LSIDEL-
formulas. Assume that ϑ is a LSIDEL-formula containing ϕ as a subformula
and ϑ[ψ/ϕ] is the result of replacing an occurrence of ϕ in ϑ with ψ. Then ϑ
and ϑ[ψ/ϕ] are SIDEL-provably equivalent.

Proof. It is necessary to show that every operator in the language preserves
provable equivalences. For example, in the case of → that means that if ϕ ↔ ψ
is SIDEL-provable then, for any LSIDEL-formula χ, the formulas (ϕ → χ) ↔
(ψ → χ) and (χ → ϕ) ↔ (χ → ψ) are SIDEL-provable. All operators of the
language LSIEL have this property due to the axioms and rules from Table 1.
For the dynamic operators this property says that if ϕ ↔ ψ is SIDEL-provable
then, for any LSIDEL-formula χ, [χ]ϕ ↔ [χ]ψ, [ψ]χ ↔ [ϕ]χ, {χ}ϕ ↔ {χ}ψ, and
{ψ}χ ↔ {ϕ}χ are SIDEL-provable. This is guaranteed by the rules DR1-DR4.

We will also need the disjunctive normal form theorem for SIDEL-provability.
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Theorem 7. For each LSIDEL-formula ϕ there is a finite set of declarative
LSIDEL-formulas R(ϕ) = {α1, . . . , αn} such that ϕ is SIDEL-provably equivalent
to α1

�

. . .

�

αn.

Proof. This can be proved, like Theorem3, by induction on the complexity of ϕ.
We have to add to the proof of Theorem3 just the inductive steps for [ϕ] and
{ϕ}. But these steps can be obtained using the axioms RA1 and RA11.

Now we can show that the axioms from Table 2 allow us to eliminate the dynamic
modalities.

Theorem 8. For any LSIDEL-formula ϕ there is an LSIEL-formula ϕ∗ such
that ϕ and ϕ∗ are SIDEL-provably equivalent.

Proof. We will proceed in two steps. In the first step, we will find for any LSIDEL-
formula ϕ an SIDEL-provably equivalent LSIDEL-formula ϕ◦ that does not con-
tain any occurrence of the dynamic modality [ψ] (for any ψ). In the second step,
we will transform ϕ◦ into the SIDEL-provably equivalent LSIEL-formula ϕ∗ by
eliminating all occurrences of the modality {ψ}.

Take any subformula of ϕ that is of the form [ψ]χ. According to Theorem 7
there are LSIEL-formulas α1, . . . , αn such that χ is SIDEL-provably equivalent
to α1

�

. . .

�

αn. Hence, [ψ]χ must be SIDEL-provably equivalent to the following:

[ψ](α1

�

. . .
�

αn) (Theorem 7),
[ψ]α1

�

. . .
�

[ψ]αn (RA1),
(ψ → {ψ}α1)

�

. . .

�

(ψ → {ψ}αn) (RA2).

In this way we can, step by step, eliminate all occurrences of the modality [ψ]
from ϕ obtaining the formula ϕ◦.

In the formula ϕ◦ we can recursively eliminate, using the axioms RA3-RA13,
all occurrences of the modality {ψ}. By this elimination we obtain the LSIEL-
formula ϕ∗. The only case that needs to be discussed is the case {ϕ}Iaψ with
non-declarative ψ. Assume that ψ is SIDEL-provably equivalent to β1

�

. . .

�

βm,
and thus {ϕ}Iaψ is SIDEL-provably equivalent to {ϕ}Ia(β1

�

. . .

�

βm). The last
formula is SIDEL-provably equivalent (due to the axiom ID from Table 1 and
RA10 from Table 2) to {ϕ}Iaβ1 ∨ . . . ∨ {ϕ}Iaβm. Now we can apply RA13.

Let us illustrate the elimination with a simple example. Consider the formula
ϕ = [Iap]Ib(q

�

r). In this case the dynamic modality can be eliminated in the
following steps:

1. [Iap]Ib(q

�

r)
2. Iap → {Iap}Ib(q

�

r) (RA2, Table 2)
3. Iap → {Iap}(Ibq ∨ Ibr) (ID, Table 1)
4. Iap → ({Iap}Ibq ∨ {Iap}Ibr) (RA10, Table 2)
5. Iap → (Ib(Iap → {Iap}q) ∨ Ib(Iap → {Iap}r)) (RA13, Table 2)
6. Iap → (Ib(Iap → q) ∨ Ib(Iap → r)) (RA3, Table 2)
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The step 2 corresponds to ϕ◦ in the proof of Theorem8 and the formula in the
step 6 corresponds to ϕ∗ that is already in the language LSIEL.
The following theorem shows that the system is sound with respect to our
semantics.

Theorem 9. All instances of axioms RA1-RA13 are SIDEL-valid. The rules
DR1-DR4 preserve SIDEL-validity.

Proof. We will discuss only some of the cases.
RA1: M, s � [ϕ](ψ

�

χ) iff Mϕ, s · info(ϕ) � ψ
�

χ iff Mϕ, s · info(ϕ) � ψ
or Mϕ, s · info(ϕ) � χ iff M, s � [ϕ]ψ or M, s � [ϕ]χ iff M, s � [ϕ]ψ

�

[ϕ]χ.
RA2: M, s � [ϕ]α iff Mϕ, s · info(ϕ) � α iff M, s · info(ϕ) � {ϕ}α iff

M, s � ϕ → {ϕ}α.
RA3: M, s � {ϕ}p iff Mϕ, s � p iff M, s � p.
RA6: M, s � {ϕ}¬ψ iff Mϕ, s � ¬ψ iff for any t, if sCt then Mϕ, t � ψ iff

for any t, if sCt then M, t � {ϕ}ψ iff M, s � ¬{ϕ}ψ.
RA7: M, s � {ϕ}(ψ → χ) iff Mϕ, s � ψ → χ iff for any t, if Mϕ, t � ψ

then Mϕ, s · t � χ iff for any t, if M, t � {ϕ}ψ then M, s · t � {ϕ}χ iff
M, s � {ϕ}ψ → {ϕ}χ.

RA12: M, s � {ϕ}Eaψ iff Mϕ, s � Eaψ iff for any i ∈ Sit(s), for any
t ∈ Σa(i) ◦ ||ϕ||, Mϕ, t � ψ iff for any i ∈ Sit(s), for any t ∈ Σa(i) ◦ ||ϕ||,
M, t � {ϕ}ψ iff for any i ∈ Sit(s), for any u ∈ Σa(i) and for any v, if M, v � ϕ
then M, u ·v � {ϕ}ψ iff for any i ∈ Sit(s), for any u ∈ Σa(i), M, u � ϕ → {ϕ}ψ
iff M, s � Ea(ϕ → {ϕ}ψ).

RA13: M, s � {ϕ}Iaα iff Mϕ, s � Iaα iff for any i ∈ Sit(s), Mϕ,
⊔

Σϕ
a (i) �

α iff for any i ∈ Sit(s), M,
⊔

Σϕ
a (i) � {ϕ}α iff (using Proposition 1) for any

i ∈ Sit(s), M, σa(i)·info(ϕ) � {ϕ}α iff for any i ∈ Sit(s), M, σa(i) � ϕ → {ϕ}α
iff M, s � Ia(ϕ → {ϕ}α).

We have explained above that epistemic Kripke models determine particular
AEI-models. Theorem 9 shows that the axioms and rules presented in Table 2
are sound with respect all AEI-models, and thus also with respect to those
AEI-models that are determined by the Kripke models of the standard public
announcement logic PAL. This means that if we take any formula α of the lan-
guage of PAL (it can be a formula using only the operators ¬,→,∧,∨, Ia, [β])
then α is equivalent to α∗ also in PAL. In other words, the procedure of eliminat-
ing the public utterance modality that we introduced in this paper and that is
based on the axioms RA1-RA13 can be used also in the context of PAL, though
it differs from the standardly used procedure based on the standard reduction
axioms.

The following theorem provides a sound and complete syntactic characteri-
zation of SIDEL-validity through SIDEL-provability.

Theorem 10. For every LSIDEL-formula ϕ, ϕ is SIDEL-valid if and only if ϕ
is SIDEL-provable.
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Proof. Soundness, i.e. the right-to-left direction, is given by soundness of the
SIEL-axioms and rules, and by Theorem9. Completeness, i.e. the left-to-right
direction, can be proved as follows: Assume that ϕ is SIDEL-valid. Due to The-
orem 8, ϕ is SIDEL-provably equivalent to the LSIEL-formula ϕ∗. Due to sound-
ness of the system, ϕ∗ must be also SIDEL-valid. Since SIDEL is a conservative
extension of SIEL, ϕ∗ is SIEL-valid and hence SIEL-provable. It follows that ϕ∗,
and thus also ϕ, is SIDEL-provable.

Our next application of the previous results shows that the logic SIDEL has the
inquisitive disjunction property.

Theorem 11. The logic SIDEL has the inquisitive disjunction property, that is,
ϕ

�

ψ is SIDEL-valid only if ϕ or ψ is SIDEL-valid.

Proof. Assume ϕ

�

ψ is SIDEL-valid. Then also ϕ∗ �

ψ∗ is SIDEL-valid, and
thus SIEL-valid. Since SIEL has the inquisitive disjunction property, ϕ∗ or ψ∗ is
SIEL-valid. It follows that ϕ or ψ is SIDEL-valid.

5 Conclusion

To sum up, we have developed a logic SIDEL of public announcement of state-
ments and public utterance of questions based on a basic substructural logic. We
focused on one particular minimal logic but the framework is quite flexible and
can be adapted easily to other substructural logics. It was shown in [6,7] how to
obtain semantics for inquisitive versions of relevant logics, fuzzy logics and other
substructural logics within the framework of information models. These logics
could be further enriched with the epistemic modalities Ia, Ea and the dynamic
modalities [ϕ], {ϕ} using the same reduction axioms and the semantic approach
elaborated in this paper.

The semantics of SIDEL can be viewed as a generalization of the semantics of
the inquisitive dynamic epistemic logic IDEL developed in [4]. This observation
implies that our reduction axioms are valid even in the context IDEL and hence
also in the context of PAL since IDEL just extends PAL with the inquisitive
dimension. In other words, the method of elimination of the dynamic modalities
that we employed could be used also in IDEL and PAL in the sense that for any
formula ϕ from the language of IDEL (or PAL), the corresponding formula ϕ∗,
obtained by our reduction axioms from ϕ, is equivalent to ϕ not only in SIDEL
but also in IDEL (or PAL).

On the other hand, as we showed above, in the context of SIDEL we cannot
use the reduction axioms that are normally used for IDEL (or PAL). To be more
concrete, IDEL uses the reduction axioms from Table 3. From these axioms only
!Atom, !⊥, !∧, !

�

, and !Ia are SIDEL-valid. However, the axioms !→ and !Ea are
invalid in SIDEL.
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Table 3. Reduction axioms of IDEL used in [3]

!Atom [ϕ]p ↔ (ϕ → p)
!⊥ [ϕ]⊥ ↔ (ϕ → ⊥)
!∧ [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ)
!→ [ϕ](ψ → χ) ↔ ([ϕ]ψ → [ϕ]χ)
!

�

[ϕ](ψ

�

χ) ↔ ([ϕ]ψ

�

[ϕ]χ)
!Ea [ϕ]Eaψ ↔ (ϕ → Ea(ϕ → [ϕ]ψ))
!Ia [ϕ]Iaψ ↔ (ϕ → Ia[ϕ]ψ)

In future work we would like to explore whether our framework could be also
seen as a generalization of Dynamic Logic of Questions developed in [8].
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