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Preface

Building on the pioneer intuitions of Floyd-Hoare logic, dynamic logic was introduced
in the 1970s as a suitable logic to reason about, and verify, classic imperative programs.
Since then, the original intuitions grew to an entire family of logics, which became
increasingly popular for assertional reasoning about a wide range of computational
systems. Simultaneously, their object (i.e. the very notion of a program) evolved in
unexpected ways. This led to dynamic logics tailored to specific programming para-
digms and extended to new computing domains, including probabilistic, continuous,
and quantum computation. Variants of dynamic logic also became popular in for-
malizing epistemic events involving change of information available to cognitive
agents. Both its theoretical relevance and practical potential make dynamic logic a topic
of interest in a number of scientific venues, from wide-scope software engineering
conferences to modal logic specific events. However, no specific event is exclusively
dedicated to it. The DaLí workshop series aims at filling this gap and creating a
heterogeneous community of colleagues, from academia to industry, from mathematics
to computer science.

The third edition of the DaLí workshop was held online, due to the COVID-19
pandemic, during October 9–10, 2020, and organized by the Institute of Computer
Science and the Institute of Philosophy of the Czech Academy of Sciences, Czech
Republic. In comparison to the previous two editions, held in Brasília in 2017 and in
Porto in 2019, the third edition offered a two-day program with two invited speakers.
The workshop series clearly reached a state of maturity and DaLí 2020 attracted a
number of submissions from different groups and trends in the dynamic logic
community.

The Program Committee (PC) received 31 submissions, from which 17 were
accepted for regular presentation and publication in the proceedings volume and 6 were
accepted for short presentation. The decisions were made based on single-blind peer
review by at least two reviewers. Conflicts of interest within the PC were dealt with
using conflict of interest declarations. Invited lectures were given by Natasha Alechina
(Utrecht University, The Netherlands) and Johan van Benthem (University of Ams-
terdam, The Netherlands, Stanford University, USA, and Tsinghua University, China).

Organization of the workshop was supported by the grant no. 18-19162Y of the
Czech Science Foundation.

The editors would like to express their sincere gratitude to all authors who submitted
their work to DaLí 2020, all authors of papers published in these proceedings for their
cooperation during the editorial process, and to all members of the PC and additional
reviewers for their time. This volume would not have been possible without their effort
and commitment.

November 2020 Manuel A. Martins
Igor Sedlár
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Expedition in the Update Universe

Guillaume Aucher(B)

Univ Rennes, CNRS, IRISA,
263, Avenue du Général Leclerc, 35042 Rennes Cedex, France

guillaume.aucher@irisa.fr

Abstract. Dynamic epistemic logic (DEL) is a logic dealing with knowl-
edge and belief change based on the concepts of event model and product
update. The product update accounts for the way we update our knowl-
edge and beliefs about situations when events occur. However, DEL does
not account for the way we update our knowledge and beliefs about
events when other events occur. Indeed, events are assumed to occur
instantaneously in DEL and this idealization precludes to study this
kind of update. We provide a logical analysis of updates without this
assumption. It leads us to identify a graph structure for events based on
their relative dependence of occurence and to introduce a generic prod-
uct update. The DEL product update is a specific instance of this generic
product update.

1 Introduction

It is commonly believed that only our knowledge and beliefs about situations
can be updated, whereas our knowledge and beliefs about events cannot. This
common belief implies that what we represent has always a manichean nature:
on the one hand we have situations and on the other hand we have events, and
the occurrence of events update our knowledge and beliefs about situations. The
most prominent logical formalisms of knowledge representation and reasoning
are all based on this approach [13,14].

As we shall see, this manichean distinction is not fine enough to account for
the dynamics of knowledge and beliefs. In fact, our knowledge and beliefs about
events can also be updated and this can be demonstrated by the following sce-
nario. Assume that there are two barrels of wine: barrel 1 and barrel 2. Barrel 1
is being filled with wine but Ann and Bob do not know which of these barrels is
being filled. Clearly, this filling of barrel 1 with wine is an event, perceived iden-
tically by Ann and Bob. Now, assume that the wine waiter privately announces
to Bob that it is actually barrel 1 which is being filled. Again, clearly, this
announcement is another event, perceived differently by Ann and Bob. Then, as
a result of this second event, Bob knows that barrel 1 is being filled but Ann
still does not know which barrel is being filled. So, Bob’s knowledge and beliefs
of the first event (the filling with wine) has been updated by his perception of
the second event (the announcement).

c© Springer Nature Switzerland AG 2020
M. A. Martins and I. Sedlár (Eds.): DaĹı 2020, LNCS 12569, pp. 1–16, 2020.
https://doi.org/10.1007/978-3-030-65840-3_1
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This scenario cannot be directly represented in DEL because only situations,
and not events, can be updated by events. This stems from the assumption that
events are implicitly assumed to be instantaneous in DEL, thus leading to a new
situation, and our perception of an event can be updated only if this event lasts
long enough, obviously. Hence, this idealization precludes the study of important
logical dynamics like the one of the barrel example. However, this assumption
can be perfectly removed from the DEL framework. Once we remove it, we realize
that the fact that events and not only situations can be updated by other events
is only the ‘tip of the iceberg’ and many other logical dynamics start to appear.
In particular, we realize that events have an internal and rich structure based
on their relative dependence of occurrence. Moreover, this structure constrains
and determines the updates which are possible and a generic kind of product
updates can then be identified. A contribution of this article is to provide a
formal account of these logical dynamics by eliciting a series of principles. These
principles will guide us for defining our formal framework.

Organization of the Article. In Sect. 2, we briefly recall DEL. In Sect. 3, we
analyze the structure of events by means of various examples and we elicit a
number of intuitive principles about events. We use them in Sect. 4 for motivating
our formal definitions of event structures and generic product updates. We end
Sect. 4 by providing an example of scenario which cannot (or hardly) be modeled
in DEL. We conclude and discuss our approach in Sect. 5.

2 Dynamic Epistemic Logic

Dynamic epistemic logic (DEL) is a relatively recent non-classical logic intro-
duced by [4]. It extends ordinary modal epistemic logic [11] by the inclusion of
event models to describe actions/events, and a product update operator that
defines how epistemic models are updated as the consequence of executing
actions described through event models. For more details about DEL, see [3,14].

2.1 Epistemic Models

In the rest of this article, A := {1, . . . , N} is a finite set of indices called agents
and P0 is a set of propositional letters called atomic facts which describe static
situations.

Definition 1 (Language L (P)). Let P be a set of propositional letters. We
define the language L (P) inductively by the following grammar in BNF:

L (P) : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �jϕ

where p ranges over P and j over A. When P = P0, L (P0) is called the epistemic
language. We will use the following abbreviations: ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) and
ϕ → ψ := ¬ϕ ∨ ψ. To save parenthesis, we use the following ranking of binding
strength: �j ,¬,∧,∨,→ ( i.e., �j binds stronger than ¬, which binds stronger
than ∧, etc.). For example, �j¬p ∧ q → r ∨ s means ((�j(¬p)) ∧ q) → (r ∨ s).
If E = {ϕ1, . . . , ϕn}, we write

∧
E := ϕ1 ∧ . . . ∧ ϕn and

∨
E := ϕ1 ∨ . . . ∨ ϕn.
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A (pointed) epistemic model (M, w) represents how the actual world repre-
sented by w is perceived by the agents. Atomic facts are used to state properties
of this actual world. Intuitively, wRjv means that in world w agent j considers
that world v might be the actual world w.

Definition 2 (P–model and epistemic model). Let P be a set of proposi-
tional letters. A P–model is a tuple M = (W,R, V ) where:

– W is a non-empty set;
– R : A → 2W×W assigns an accessibility relation to each agent;
– V : P → 2W is a valuation which assigns a subset of W to each atomic event

of P.

If w, v ∈ W , we write wRjv for (w, v) ∈ R(j), and Rj(w) denotes {v ∈
W | wRjv}. We write w ∈ M for w ∈ W and (M, w) is called a pointed P–
model. When P = P0, M is called an epistemic model and (M, w) is called
a pointed epistemic model (w often represents the actual world). The class of
pointed P–models is denoted C(P).

As one can easily notice, a P–model is an ‘ordinary’ Kripke model. Then,
the epistemic language can be used to describe and state properties of epistemic
models.

Definition 3 (Epistemic logic). Let P be a set of propositional letters. We
define the satisfaction relation ⊆ C(P) × L (P) inductively as follows. In the
truth conditions below, (M, w) ∈ C(P) is any pointed P–model and ϕ,ψ ∈ L (P).

M, w p iff w ∈ V (p)
M, w ¬ψ iff it is not the case that M, w ψ

M, w ϕ ∧ ψ iff M, w ϕ and M, w ψ

M, w �jϕ iff for all v ∈ Rj(w), we have M, v ϕ

We write M ϕ when M, w ϕ for all w ∈ M. If S ⊆ L (P), we write
M, w S (M S) when for all ϕ ∈ S, M, w ϕ (resp. M ϕ). The triple(L (P) , C(P),

)
is a logic called the epistemic logic based on P.

The formula �jϕ reads as “agent j believes ϕ”. Its truth conditions are
defined in such a way that agent j believes ϕ holds in a possible world when ϕ
holds in all the worlds agent j considers possible in this possible world.

Example 1 (‘Barrel’ example). Assume that there are two agents Ann and Bob
and that there are two barrels of wine: barrel 1 and barrel 2. So, we have
A := {A,B} with A standing for Ann and B standing for Bob, and P0 := {p0, q0}
with p0 standing for ‘barrel 1 is full’ and q0 for ‘barrel 2 is full’. The situation
is such that barrel 1 is not full and barrel 2 is full, but Ann and Bob do not
know which one is full. This situation is depicted in the pointed epistemic model
(M0, w0) = (W,R, V,w0) of Fig. 1 (left). We have W = {w0, v0} and the circled
world w represents the actual world. Possible worlds are labeled by the proposi-
tional letters of P0 that are true at these worlds. The accessibility relations are
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represented by arrows indexed by A or B: an arrow indexed by A (or B) from
a world u to a world u′ means that (u, u′) ∈ RA (resp. (u, u′) ∈ RB). So, we
have M0, w0 �A(p0 ∨ q0)∧�B(p0 ∨ q0): ‘Ann and Bob both know that one of
the two barrels is full’. The situation where both barrels are full and both Ann
and Bob know it is represented in the pointed epistemic model (N0, u0) of Fig. 1
(right).

Fig. 1. Pointed epistemic models (M0, w0) and (N0, u0)

2.2 Event Models

A pointed event model (E , e) represents how the actual event represented by e is
perceived by the agents. Intuitively, eRα

j f means that while the possible event
represented by e is occurring, agent j considers possible that the possible event
represented by f is actually occurring.

Definition 4 (Event model). An event model is a tuple E = (Wα, Rα,Pre,
Post) where:

– Wα is a finite and non-empty set of possible events;
– Rα : A → 2W α×W α

assigns an accessibility relation to each agent;
– Pre : Wα → L (P0) is a precondition function which assigns to each possible

event a formula of L (P0);
– Post : Wα → (P0 → L (P0)) is a postcondition function which assigns to

each possible event a function from P0 to L (P0).

If e, f ∈ Wα, we write eRα
j f for (e, f) ∈ Rα(j), and Rα

j (e) denotes {f ∈ Wα |
eRα

j f}. We write e ∈ E for e ∈ Wα, and (E , e) is called a pointed event model
(e often represents the actual event).

Our definition of event models corresponds to the definition of [16]. It embeds
the definition of [15] based on the notion of substitutions.

Example 2 (‘barrel’ example). Assume that barrel 1 is being filled with wine.
Ann and Bob do not know whether it is barrel 1 or barrel 2 which is being filled.
This event and its perception by the agents Ann and Bob is represented in Fig.
2 (left). We use the same notations for the possible events and the accessibility
relations as in Fig. 1. The preconditions are such that Pre(e) = ¬p0 (and
Pre(f) = ¬q0): barrel 1 (resp. barrel 2) is not full when barrel 1 (resp. barrel
2) is being filled with wine. The postconditions are such that Post(e)(p0) = �
and Post(e)(q0) = q0 (and Post(f)(p0) = p0 and Post(f)(q0) = �): when the
filling of barrel 1 (resp. barrel 2) terminates, barrel 1 (resp. barrel 2) is full, the
other barrel remaining in the same state.



Expedition in the Update Universe 5

Fig. 2. Pointed event models (E , e) and (F , g)

2.3 Product Update

The DEL product update of [4] is defined as follows. This update yields a new
epistemic model M ⊗ E representing how the new situation which was previously
represented by M is perceived by the agents after the occurrence of the event
represented by E .

Definition 5 (Product update). Let M = (W,R, V ) be an epistemic model
and let E = (Wα, Rα

1 , . . . , Rα
N ,Pre,Post) be an event model. We define the

epistemic model M ⊗ E = (W⊗, R⊗, V ⊗) as follows (with the proviso that W⊗

is not empty): for all p ∈ P0 and all j ∈ A,

– W⊗ :=
{
(w, e) ∈ W × Wα | M, w Pre(e)

}
;

– (v, f) ∈ R⊗
j (w, e) iff v ∈ Rj(w) and f ∈ Rα

j (e);
– (w, e) ∈ V ⊗(p) iff M, w Post(e)(p).

If (M, w) and (E , e) are pointed epistemic and event models. If M, w Pre(e),
we define the pointed epistemic model (M, w) ⊗ (E , e) = (M ⊗ E , (w, e)).

Example 3. The product update of (M0, w0) by (E , e) results in the epistemic
model represented on the extreme right of Fig. 3. This epistemic model is in fact
bisimilar to the epistemic model (N0, u0) of Fig. 1. In this epistemic model, we
have that N0, u0 (p0 ∧ q0) ∧ �A(p0 ∧ q0) ∧ �B(p0 ∧ q0): ‘both barrels are full
and Ann and Bob both know it’.

2.4 DEL

Definition 6 ([4]). We define the language Ldel inductively by the following
grammar in BNF:

Ldel : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �jϕ | [E , e]ϕ

where p ranges over P0, j over A and (E , e) over Cα.

Fig. 3. Product update of (M0, w0) by (E , e)



6 G. Aucher

Intuitively, [E , e]ϕ reads as ‘ϕ will hold after the occurence of the event repre-
sented by (E , e)’ and 〈E , e〉ϕ reads as ‘the event represented by (E , e) is executable
in the current situation and ϕ will hold after its execution’.

Definition 7 (Dynamic epistemic logic). We define the satisfaction rela-
tion ⊆ C(P0) × Ldel inductively as follows. In the truth conditions below,
(M, w) ∈ C(P) is any pointed P–model and ϕ ∈ L (P).

M, w [E , e]ϕ iff if M, w Pre(e) then (M, w) ⊗ (E , e) ϕ

The other truth conditions for the Boolean and modal cases are identical to those
of Definition 3. The triple

(Ldel, C (P0) ,
)

is a logic called dynamic epistemic
logic (DEL).

Proposition 1 ([4]). DEL is as expressive as the epistemic logic based on P0.

3 Analyzing the Structure of Events

In this section, we discuss and analyze two examples from which we elicit a series
of principles about events. These principles, whose some of them are obvious,
are introduced to motivate the formal definitions of Sect. 4. They will allow us
to show that the dependence graph of Definition 8 can be any directed graph,
and not necessarily a tree or a bipartite graph for example.

In philosophy, the exact definition of an event is a moot topic [17] and we do
not intend to take any stance in this debate. Here, we are not so much interested
in the nature of events but rather in their logical and internal structure. Our
examples will always be chosen so that events are indisputable events.

3.1 The ‘Barrel’ Example

Assume at time t1 that there are two barrels of wine: barrel 1 and barrel 2.
Barrel 2 is full and barrel 1 is being filled with wine, but Ann and Bob do not
know which of these barrels is being filled. However, they know that one of them
is full (and therefore cannot be filled) but they do not know which one. Clearly,
this filling of barrel 1 with wine is an event, perceived identically by Ann and
Bob. We consider two Scenarios from which we are going to elicit a series of
principles.

Scenario 1. Assume that during barrel 1 is filled the wine waiter privately
announces to Bob that it is actually barrel 1 which is being filled. Again, clearly,
this announcement is another event, perceived differently by Ann and Bob. Then,
as a result of this second event, Bob knows that barrel 1 is being filled but Ann
still does not know which barrel is being filled. So, Bob’s knowledge and beliefs
of the first event (the filling with wine) has been updated by his perception of
the second event (the announcement).

It is important to modify the event model while it is being executed, as
opposed to modifying the Kripke model that is obtained by applying the event
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model because if we sever the relation between (w, e1) and (w, e2) after the
update, this means that the event modeled by e1 has already ended and therefore
the update is on the resulting situation and not on the perception of the event.
What we want to model is an update about the perception of the event itself
while this event is occuring, not after. This example leads us to state the following
principle:

Principle 1: Our knowledge about ongoing events can be updated by the per-
ception of other events.

Moreover, this announcement depends on the fact that barrel 1 is being filled
and not on the precondition of this event, i.e. the fact that barrel 1 is not full.
In this scenario, the nature of the event is “barrel 1 is being filled with wine”,
its precondition is “barrel 1 is not full” and its postcondition is “barrel 1 is full”.
This example entails that the very nature of events has to be taken into account
when knowledge of events is updated by the perception of other events. This is
captured by the following principle:

Principle 2: The occurrence of events sometimes depends on the nature of
other events and not on their preconditions.

Scenario 2. Assume at time t2 that the wine waiter publicly announces that
barrel 1 is not full. As a result of this announcement, at time t3, Ann and Bob
both know that barrel 2 is full. From this new piece of information, they can
infer at time t5 that it is barrel 1 which is being filled and not barrel 2 (since the
latter is full). Hence, from this example, we can state the following principle:

Principle 3: Our knowledge about a situation or an event can update our
knowledge of another event while this other event is occuring.

Moreover, Ann and Bob may not make immediately the inference that it is
barrel 1 which is being filled, but only as an afterthought at time t4. Hence,

Principle 4: After learning a new piece of information, we do not always update
immediately our knowledge to take it into account.

Note that Principle 4 is very much related to well-known problems in
epistemic logic dealing with bounded rationality and logical omniscience (for
more details on these problems, see [7, Chap. 9], [8, p. 157–168] or [9]). In fact,
for some time, Ann and Bob may entertain the inconsistent possibility that
barrel 2 is full and that at the same time it is being filled. So,

Principle 5: We may consider possible at the same time that some event is
occurring and that its precondition does not hold.

Formalizing the ‘Barrel’ Example. We can formalize the example by introducing
the following sets of propositional letters:

– P0 := {p0, q0}, where p0 stands for “Barrel 1 is full” and q0 for “Barrel 2 is
full”.
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– P1 := {p1}, where p1 stands for “The wine waiter truthfully announces that
barrel 1 is not full”.

– P2 := {p2, q2}, where p2 stands for “Barrel 1 is being filled” and q2 for “Barrel
2 is being filled”.

– P3 := {p3}, where p3 stands for “The wine waiter truthfully announces that
barrel 1 is being filled”.

Then, we can represent the dependence between these sets of propositional
letters by the graph (P,S) of Fig. 4 (where P := {P0,P1,P2,P3} and S ⊆ P ×P
is defined in Fig. 4). An edge (Pi,Pj) ∈ S means that the events described by Pi

depend on the events/situations described by Pj . More precisely, an edge is set
from Pi to Pj when the preconditions for the occurrence of any atomic event of
Pi depends on the truth value of formula(s) of L (Pj) or that the occurrence of
the atomic events of Pi will affect in some way or another the occurrence of the
atomic events of Pj or their knowledge and beliefs (to be more concrete, see all
subsequent examples, and in particular the ‘traffic lights’ example).

Note that we have an arrow from P0 to P2. This arrow is motivated by
the example that we used to introduce Principle 3: our knowledge about a
situation can also update our perception/knowledge about an ongoing event.

Fig. 4. Dependence graph for the ‘barrel’ example

For each edge (P′,P) ∈ S, we can define (P′,P)–preconditions functions
PreP′,P : P

′ → 2L(P) and (P′,P)–postconditions functions PostP′,P : P
′ →(

P− > 2L(P)
)
. The reading of PreP′,P(p) := ϕ is ‘the precondition of the atomic

event p is ϕ’; the reading of PostP′,P(q)(p) := ϕ is ‘p holds after the occurrence
of the atomic event q if, and only if, ϕ held before this occurrence’.

– PreP1,P0(p1) := ¬p0: the wine waiter can truthfully announce that barrel 1
is not full only if it is indeed not full.
PostP1,P0(p1)(p) := p for all p ∈ P0: the announcement of the wine waiter
does not change the actual state of the world.

– PreP2,P0(p2) := ¬p0 and PreP2,P0(q2) := ¬q0: barrel 1 and barrel 2 can be
filled only if they are not full.
PostP2,P0(p2)(p0) := � and PostP2,P0(p2)(q0) := q0: after the filling of barrel
1, it is full, the status of barrel 2 remains unchanged.
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PostP2,P0(q2)(p0) := p0 and PostP2,P0(q2)(q0) := �: after the filling of barrel
2, it is full, the status of barrel 1 remains unchanged.

– PreP3,P2(p3) := p2: the wine waiter can truthfully announce that barrel 1 is
being filled only if it is indeed being filled.
PostP3,P2(p3)(p) := p for all p ∈ P2: the announcement of the wine waiter
does not change the actual state of the world.

– PreP3,P0(p3) := ¬p0: the wine waiter can truthfully announce that barrel 1
is being filled only if it is not full (so that it can indeed be filled).
PostP3,P0(p3)(p) := p for all p ∈ P0: the announcement of the wine waiter
does not change the actual state of the world.

– PreP0,P2(p0) := ¬p2 and PreP0,P2(q0) := ¬q2: if one of the barrels is full, it
is not possible that it is being filled.
PostP0,P2(p

′)(p) := p for all p ∈ P2 and p′ ∈ P0.

Note that there is no arrows towards P1 nor P3. This is because these
announcements are instantaneous, and therefore it is not possible that the agents’
beliefs about them change while they are occurring, unlike the filling event of
P2. This said, we could add arrows from, say, P0 to P1 if we considered that
the agents can assess the truthfulness of the announcement, which can be a lie,
before applying the product update on the event model, and may then revise it
beforehand, based on their beliefs about the barrels.

3.2 The ‘Traffic Lights’ Example

We consider a näıve representation of a traffic lights system on a road. This
example would be classically modeled by means of timed–automata [2], but we
follow here the modeling approach of DEL to investigate what this example
implies in term of representational requirements (formalized by our principles)
for a DEL style modeling approach based on event models and product updates.

Assume that there are n traffic lights on a road. Each traffic light can be
either ‘green’, ‘yellow’ or ‘red’ and only one of them at the same time. The color
changes and goes from green via yellow to red and then back to green. Between
any two of these states, a timer counts the time that elapses and eventually
changes the traffic light from one state to the next after a certain amount of
time. Then, each time the state of a light changes (from ‘green’ to ‘yellow’, from
‘yellow’ to ‘red’, or from ‘red’ to ‘green’), the corresponding timer starts (timer
‘yellow’, timer ‘red’ or timer ‘green’). Multiple timers run at the same time and
they can be arbitrarily many. So,

Principle 6: Arbitrary many events can occur at the same time and in parallel.

Moreover, we assume that there is a synchronization between the different
traffic lights: when the ‘red’ timer of light k starts, the ‘green’ timer of traffic
light k + 1 ends and the traffic light k + 1 goes to state ‘yellow’ (and then the
yellow timer of traffic light k + 1 starts). This synchronization is set in order to
ease the flow of cars on the road so that cars do not stop at each traffic light.
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When a pedestrian comes at traffic light k and presses the ‘crossing button’,
the ‘green’ timer changes its timer mode and goes to another mode in order to
shorten the amount of time that the pedestrian will have to wait. As a result,
and in order to synchronize the other traffic lights on the road, the timer mode
of traffic light k+1 also changes mode if its timer is currently in its usual ‘green’
mode, so as to keep the synchronization between the different traffic lights. (To
be really precise, this change of timer mode of traffic light k should also affect the
timer mode of traffic light k − 1 in order to keep the system fully synchronized.)
Hence,

Principle 7: There can be an arbitrarily long chain of events, each event
depending on the occurrence of the previous one.

Moreover, if the pedestrian presses the ‘crossing button’ of traffic light k
when it is green, the new green timer mode will affect not only the green timer
mode of traffic light k + 1 but also the color of traffic light k (when the new
green timer of traffic light k ends). Therefore,

Principle 8: The occurrence of an event can have effects on multiple situations
or types of events.

Formalizing the ‘Traffic Lights’ Example. We can formalize the example by
introducing the following sets of propositional letters: for all k ∈ {1, . . . , n},

– Pk :=
{
gTimerk,yTimerk,rTimerk,gTimer

′
k

}
,

where gTimerk (resp. yTimerk, rTimerk, gTimer
′
k) stands for “the green

(resp. yellow, red, modified green) timer of traffic light k is running”.
– Pn+k := {Pressk},

where Pressk stands for “a pedestrian is pressing the crossing button of
traffic light k while it is green”.

– P0 := {greenk,yellowk,redk | k ∈ {1, . . . , n}},
where greenk (resp. yellowk, redk) stands for “traffic light k is green (resp.
yellow, red)”.

Then, we can represent the dependence between these sets of propositional
letters by the graph (P,S) of Fig. 5 (where P := {Pi | i ∈ {0, . . . , 2n}} and
S ⊆ P × P is defined in Fig. 5). An edge (P′,P) ∈ S means that the events
described by P

′ depend on the events/situations described by P. We spell out
the precondition and postcondition functions. We only do it for the edges of the
form (Pk,P0) and (P0,Pk), where k ∈ {1, . . . , n}. We define (P′,P)–preconditions
functions PreP′,P : P′ → 2L(P) and (P′,P)–postconditions functions PostP′,P :
P

′ → (
P− > 2L(P)

)
as follows: for all k ∈ {1, . . . , n},

– PrePk,P0(gTimerk) := greenk,
PrePk,P0(yTimerk) := yellowk,
PrePk,P0(rTimerk) := redk,
PrePk,P0(gTimer

′
k) := greenk,
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Fig. 5. Dependence graph for the ‘Traffic lights’ example

PostPk,P0(x)(p0) :=

{
� if p0 = y

⊥ otherwise
for all (x, y) ∈ {(gTimerk,yellowk), (yTimerk,redk), (rTimerk,
greenk)} and for all p0 ∈ P0.

– PreP0,Pk
(greenk) := gTimerk ∨ gTimer

′
k,

PreP0,Pk
(yellowk) := yTimerk,

PreP0,Pk
(redk) := rTimerk,

PostP0,Pk
(x)(pk) :=

{
� if pk = y

⊥ otherwise
for all (x, y) ∈ {(greenk,gTimerk), (yellowk,yTimerk), (redk,
rTimerk)} and for all pk ∈ Pk.

4 The Update Universe

The principles that we have elicited in Sect. 3 lead us to define what we call an
event structure and a generic product update. An event structure captures the
dependence relation between different types of events, based on their relative
pre/postconditions, while the generic product update deals with the dynamics
of knowledge and beliefs within the frame of a given event structure.

4.1 Event Structure

Because of Principle 2, the very nature of events plays a role in the dynamics
of knowledge and beliefs. Our idea is to define formally an ‘event’ model com-
pletely identically to the way we define an epistemic model. The propositional
letters for ‘event’ models will determine the factual nature of events, just as
they determine the factual nature of situations in epistemic models. Also, we
‘externalize’ the precondition and postcondition functions that were fused with
the event model in DEL. So, on the one hand, we have event types represented
by nodes in the dependence graph and on the other hand we have the differ-
ent pre/postconditions between these events. These relative pre/postconditions
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determine in general the different edges of the dependence graph: an edge is set
from a node P

′ to a node P when the preconditions for the occurrence of any
atomic event of P′ depends on the truth value of formulas of L (P) or when the
occurrence of the atomic events of P

′ will affect in some way or another the
occurrence of the atomic events of P. This leads us to the following definition.

Definition 8 (Dependence graph, event structure). A dependence graph
is an irreflexive directed graph (P,S) such that P is a family of disjoint sets of
propositional letters. These sets are called event types and their elements atomic
events or facts. Let (P,S) be a dependence graph. If (P′,P) ∈ S,

– a (P′,P)–precondition function is a mapping PreP′,P : P′ → 2L(P). We denote
by PREP′,P the set of all (P′,P)–precondition functions;

– a (P′,P)–postcondition function is a mapping PostP′,P : P′ → (
P → 2L(P)

)
.

We denote by POSTP′,P the set of all (P′,P)–postcondition functions.

An event structure (P,S,PRE,POST) is a dependence graph (P,S)
together with two sets of precondition and postcondition functions PRE :=
{PreP′,P ∈ PREP′,P | (P′,P) ∈ S} and POST := {PostP′,P ∈ POSTP′,P |
(P′,P) ∈ S}.

A dependence graph is a directed graph without specific constraint except
its irreflexivity. It seems natural to wonder whether it is in fact a specific kind
of graph: a tree, a chain, a clique, . . . The other principles can help us answering
this question. Indeed, we learn from Principle 1 that there can be more than
three event types. In fact, Principle 7 even indicates us that the number of
nodes in the dependence graph can be arbitrary. Moreover, from Principle 3,
we infer that there can be cycles in the dependence graph and it turns out that
our two examples illustrate this phenomenon. Hence, the dependence graph is in
general not a tree. Finally, we learn from Principle 8 that there can be multiple
outgoing edges from a given node of the dependence graph. Therefore, it is not
a chain either in general. So, from this analysis, we conclude that we cannot
impose any particular constraint on the definition of this dependence graph and
we state that it can be any kind of directed graph.

4.2 A Generic Product Update

In this section, (P,S,PRE,POST) is an event structure and (P′,P) ∈ S. Each
edge of an event structure induces a product update. To define it, we first need
to recover the pre/postconditions for each world of a P

′–model from the (P′,P)–
pre/postcondition functions associated to an event structure.

Definition 9 ((P′,P)–precondition and postcondition functions of a P
′–

model). Let M′ := (W ′, R′, V ′) be a P
′–model.

– The (P′,P)–precondition function of M′, PreM′
P′,P : W ′ → 2L(P), is such that

for all w′ ∈ W ′,

Pre
M′
P′,P(w

′) :=
⋃

p′∈P′
{PreP′,P(p′) | w′ ∈ V ′(p′)}
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– The (P′,P)–postcondition function of M′, PostM′
P′,P : W ′ → (

P → 2L(P)
)
, is

such that for all w′ ∈ W ′, all p ∈ P,

Post
M′
P′,P(w

′)(p) :=
⋃

p′∈P′
{PostP′,P(p′)(p) | w′ ∈ V ′(p′)} (1)

Note that the range of our precondition and postcondition functions are sets
of formulas, and not single formulas like for event models (see Definition 4). This
generalization of the DEL framework is meaningful. Indeed, there is no particular
reason that the occurrence of an event depends on a property definable in modal
logic by a single formula. The precondition of an event is implicitly determined
by the class of pointed epistemic models in which this event can occur.1 This
class of epistemic models is often infinite and there is no reason that it should
be definable by a single formula. In general, and especially in an infinite setting,
it is quite possible that an event occurs in a class of epistemic models which is
only definable by an infinite set of formulas [6, Sect. 2.6–3.3].

Definition 10 (Generic product update). Let M = (W,R, V ) be a P–
model and let M′ = (W ′, R′, V ′) be a P

′–model. The (P′,P)–product update of
M and M′ is the P–model M � M′ = (W�, R�, V �) defined as follows (with
the proviso that W� is not empty): for all p ∈ P0 and all j ∈ A,

– W� :=
{

(w,w′) ∈ W × W ′ | M, w Pre
M′
P′,P(w

′)
}
;

– (v, v′) ∈ R�
j (w,w′) iff v ∈ Rj(w) and v′ ∈ Rj(w′);

– (w,w′) ∈ V �(p) iff M, w ϕ for some ϕ ∈ Post
M′
P′,P(w

′)(p).

The following example is a concrete example that the standard event update
cannot account for: if everything was put on the same level, we could not account
for the update of events by other events and then subsequently the update of
events by the situation. This example will be discussed once again in the next
section.

Example 4 (‘Barrel’ example). In Fig. 6 we represent the generic product update
that occurred in Scenario 1 of Sect. 3.1, whereby Ann and Bob’s perception of
the ongoing event was updated by their perception of another event (namely the
fully private announcement to Bob that barrel 1 is being filled). In Fig. 7, we
represent the Scenario 2 of Sect. 3.1. At each line, we represent the situations
and the events that occur at the corresponding time stamp as they are defined in
Scenario 2. To simplify notations, edges are represented without arrows, so the
reader must assume that all arrows are bidirectional and that there are reflexive
arrows indexed by all agents at each node. When there are no arrows, this means
that edges are bidirectional and reflexive. We start at time t1 with two models,
one showing knowledge and beliefs concerning q0, p0, the other one concerning
p2 and q2 (which actually represent events). Then an announcement is added

1 [5] defined independently from the DEL community a variant of the DEL framework
where preconditions are replaced by classes of pointed epistemic models.
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Fig. 6. Barrel example: Scenario 1

(represented by w1 : p1) such that in the system state at time t2 we have three
models. Then two of the models “amalgamate” by a product update leading
to the next system state at time t3 with two models. At time t4, the situation
updates in a backward fashion the perception of the event, leading to the final
situation at time t5.

Fig. 7. Barrel example: Scenario 2

5 Discussion

One may still argue that DEL can already handle our examples. Because we deal
with lasting events, what seems to be needed are propositions stating the status
of events in the epistemic models, such as “(the filling of barrel 1) has ended”,
“(the filling of barrel 2) is still happening” together with constraints such as
“(the filling of barrel 2) is still happening” → “barrel 2 is not full”. Then, the
standard DEL setting can also handle the updates of knowledge of events by the
perception of other events. In our approach, the uncertainty of the occurrences



Expedition in the Update Universe 15

of the events and the uncertainty of basic facts are captured in separate models
initially and the updates are on each model separately. However, they can be
put in the same model if the propositions about the events can be expressed
in the language. In a sense, our whole framework and the event structure that
we have elicited could simply be ‘flattened’ by adding some sort of predicates
about events that would be formalized by specific propositional letters. Even if
that would work out from a formal point of view, this ad hoc solution is very
far to be satisfactory from a conceptual and modeling point of view. Indeed,
the intuitive insights that we have elicited by means of our principles would
then be disguised under the form of (meta-)predicates and constraints between
propositional letters. These predicates in disguise and constraints would actually
encode our dependence graphs and event structures.

One may then argue that our examples could be dealt with by existing exten-
sions of DEL such as temporal DEL with past. In particular, Scenario 2 of the
‘barrel’ example could be reformulated in terms of uncertainty about which
actual event history the agents are in. This kind of modeling is however subject
to problems which are inherent to any state–based models such as all dynamic
and process logics [10,12]. It is hardly possible to express in these logics that
“barrel 1 is being filled” and to model Scenario 1. One could express it in an
ad hoc way by adding the propositional letter “barrel 1 is being filled” in the
language, but we would need to also update its truth value when the filling ends
and we would need another specific update to formalize this ending of the filling
event. Likewise, Scenario 1 would be possible in temporal DEL with past only
if we had that propositional letter in our model and language. In fact, we would
need again to somehow encode our event structure. Moreover, the kind of mod-
ular reasoning with bounded rationality which occurs in Scenario 2 at time t4
would not be really captured with this type of state–based and history–based
logic.

One may then argue that it is not clear exactly how specific scenarios are sup-
posed to be modeled with dependence graphs and event structures. The answer
is that this problem is not inherent to our approach but applies to any mod-
eling approach of epistemic scenarios and in particular already with epistemic
and event models. There is no procedure or algorithm for constructing neither
epistemic or event models nor dependence graphs or event structure. So it is a
general problem of epistemic modeling. We have striven to give some guidelines
that would help modelers to build their models and dependency graphs, but the
general problem of how to model epistemic situations is still more at the stage
of an art than a science for the moment.

We have demonstrated that the current modeling approach of DEL is not
adequate enough to account for certain information dynamics. This defect should
not be ignored and dismissed, even if the examples that we have chosen to
illustrate it were, intentionally, extreme, borderline and different from the usual
examples encountered in DEL.

Extending [1], we identified various principles that events fulfill, by means of
examples. They led us to motivate the formal definitions of dependence graph
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and event structure. These should be the main ingredients for a genuine logical
framework. Yet, before defining this general framework, the preliminary logical
analysis presented so far was necessary to be carried out in order to identify the
key features that needed to be formalized and included as well as highlight the
weaknesses of the current application of the DEL modeling approach, based on
event models and product updates.

Acknowledgments. I thank Johan van Benthem and two anonymous referees for
helpful comments. I thank Sabine Frittella for a discussion which enabled to find out
a defect.
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Abstract. In this paper we propose a formal framework for modeling the inter-
action of causal and (qualitative) epistemic reasoning. To this purpose, we extend
the notion of a causal model [11,16,17,26] with a representation of the epistemic
state of an agent. On the side of the object language, we add operators to express
knowledge and the act of observing new information. We provide a sound and
complete axiomatization of the logic, and discuss the relation of this framework
to causal team semantics.
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semantics · Dependence

1 Introduction

In recent years a lot of effort has been put in the development of formal models of
causal reasoning. A central motivation behind this is the importance of causal reason-
ing for AI. Making computers take into account causal information is currently one of
the central challenges of AI research [9,27]. There has also been tremendous progress
in this direction after the earlier groundbreaking work in [23] and [28]. Advanced for-
mal and computational tools have been developed for modelling causal reasoning and
learning causal information, with applications in many different scientific areas. In this
paper we want to extend this work further. The direction we want to explore is that of
developing formal models of the interaction between causal and epistemic reasoning.

Even though the standard logical approach to causal reasoning [17,18,23] can
model epistemic uncertainty1, it does not permit reasoning about the interaction
between causal and epistemic reasoning in the object language. Although recently there
have been proposals adding probabilistic expressions to the object language (e.g., [21]),
very little has been done on combining causal and qualitative epistemic reasoning.2

1 E.g., by adding a probability distribution over a causal model’s exogenous variables.
2 See [5] for an exception, though the epistemic element is not made fully explicit in the lan-

guage. We will come back to this approach in Sect. 6.
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However, this kind of reasoning occurs frequently in our daily life, especially in con-
nection with counterfactual thinking.

Example 1. In front of Billie there is a button, which is connected to a circuit breaker
and a sprinkler. If the circuit is closed, the sprinkler works if and only if the button
is pushed. If the circuit is not closed, the sprinkler won’t work, independently of the
state of the button. Billie knows these causal laws. She can also see the button and the
sprinkler, but she does not know the state of the circuit breaker. Suppose that at the
moment the circuit is closed and the button is not pushed; as a result, the sprinkler is
not working.

We want to derive that Billie is not sure that if the button had been pushed, the
sprinkler would have been working. Thus, we want to make inferences involving epis-
temic attitudes towards counterfactuals, which in turn explore causal dependencies. We
also want to reason counterfactually about such epistemic attitudes. For instance, in the
example, we also want to infer that if Billie had pushed the button and saw that the
sprinkler works, then she would have known that the circuit is closed. To formalize this
type of reasoning, we need a framework that combines causal reasoning with a model
of epistemic attitudes.

Given the vast literature on epistemic logic, there is a lot of work that we can build
on. This paper makes a start on combining the standard approach to causal reason-
ing [17,18,23] with tools from Dynamic Epistemic Logic (DEL; [4,8,13]). The main
motivation for this choice is the dynamic character of both systems, even though this
aspect will not be explored at depth here. For now we will only consider a very sim-
ple extension of the standard system of causal reasoning. But, as we will show, this
basic extension already allows us to formalise some interesting concepts and formulate
concrete questions for further research.

Outline. Section 2 introduces the standard approach to causal reasoning, and then
Sect. 3 motivates in more detail the extension proposed here. Section 4 extends the stan-
dard causal modeling with means to express knowledge and external communication,
and Sect. 5 provides a sound and complete axiomatization for the new system. Section 6
concludes the paper discussing the relationship with Causal Team Semantics [5,6]. For
space reasons, some proofs have been omitted; they can be found in the paper’s full
version.3

2 The Standard Causal Modelling Approach

What we refer to as the standard logic of causal reasoning was presented on [24],
extended in [16], and then further developed in, among others, [11,17,25]. This section
recall briefly the most important concepts and tools. The starting point is a formal repre-
sentation of causal dependencies. This is done through causal models, which represent
the causal relationships between a finite set of variables. These variables as well as their
ranges of values are given by a signature. Throughout this text, let S = 〈U,V,R〉 be
the finite signature where

3 arXiv:2010.16217 [cs.AI].
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• U = {U1, . . . ,Um} is a finite set of exogenous variables (those whose value is
causally independent from the value of every other variable in the system),
• V = {V1, . . . ,Vn} is a finite set of endogenous variables (those whose value is com-

pletely determined by the value of other variables in the system), and
• R(X) is the finite non-empty range of the variable X ∈ U ∪V.4

A causal model is formally defined as follows.

Definition 1 (Causal model). A causal model is a triple 〈S,F ,A〉 where

• S = 〈U,V,R〉 is the model’s signature,
• F = { fV j | Vj ∈ V} assigns, to each endogenous variable Vj, a map

fVj : R(U1, . . . ,Um,V1, . . . ,Vj−1,Vj+1, . . . ,Vn)→ R(Vj).

The map fV is sometimes called V’s structural function, and the set F is called a set
of structural functions forV.
• A is the valuation function, assigning to every X ∈ U∪V a valueA(X) ∈ R(X). For

each endogenous variable, the valuation should comply with the variable’s struc-
tural function. In other words, for every Vj ∈ V, the following should hold:

A(Vj) = fV j

(
A(U1), . . . ,A(Um),A(V1), . . . ,A(Vj−1),A(Vj+1), . . . ,A(Vn)

)
.

In a causal model 〈S,F ,A〉, the functions in F describe the causal relationship
between the variables. Using these functional dependencies, we can define what it
means for a variable to directly causally affect another variable.5

Definition 2 (Causal dependency). Let F be a set of structural functions for V.
Given an endogenous variable Vj ∈ V, rename each other variable in S, the variables
U1, . . . ,Um,V1, . . . ,Vj−1,Vj+1, . . . ,Vn, as X1, . . . , Xm+n−1, respectively.

We say that, under the structural functions in F , an endogenous variable Vj ∈ V is
directly causally affected by a variable Xi ∈ (U ∪V) \ {Vj} (in symbols, Xi ↪→F Vj) if
and only if there is a tuple

(x1, . . . , xi−1, xi+1, . . . , xm+n−1) ∈ R(X1, . . . , Xi−1, Xi+1, . . . , Xm+n−1)

and there are x′i � x′′i ∈ R(Xi) such that

fVj (x1, . . . , x
′
i , . . . , xm+n−1) � fV j (x1, . . . , x

′′
i , . . . , xm+n−1).

When Xi ↪→F Vj, we will also say that Xi is a causal parent of Vj. The relation ↪→+F is
the transitive closure of ↪→F .

4 Given (X1, . . . , Xk) ∈ (U ∪V)k, abbreviate R(X1) × · · · × R(Xk) as R(X1, . . . , Xk).
5 This notion of a direct cause is adopted from [16]; it is related to the notion of a variable having

a direct effect on another, as discussed in [23] in the context of Causal Bayes Nets. The notions
defined here differ from Halpern’s notion of affect [17], and this affects the axiomatization:
axiom HP6 (Table 1) has the same function as C6 in [17] (ensuring that the canonical model is
recursive), but does so in a slightly different way.
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As it is common in the literature, we restrict ourselves to causal models in which
circular causal dependencies do not occur.6

Definition 3 (Recursive causal model). A set of structural functions F is recursive if
and only if ↪→+F is a strict partial order (i.e., an asymmetric [hence irreflexive] and
transitive relation, so there are no cycles). A causal model 〈S,F ,A〉 is recursive if and
only if F is recursive. In this text, a recursive causal model will be called simply a
causal model.

The most important notion of this formalisation of causal reasoning is that of an
intervention. This notion refers to the action of changing the values of variables in the
system. Before we define an intervention formally, let us first introduce the notion of
assignment.

Definition 4 (Assignment). Let S = 〈U,V,R〉 be a signature. An assignment on S
is an expression

#—
X= #—x where

#—
X is a tuple of different variables in U ∪ V (that is,

#—
X = (X1, . . . , Xk) ∈ (U ∪V)k for some k ∈ N, with Xi � Xj for i � j), and #—x ∈ R(

#—
X ).

Now, an intervention that sets a variable X to the value x can be defined as an oper-
ation that maps a given model M to a new model MX=x, which is the same except that
the function determining the value of X is replaced by the constant function mapping X
to x. In other words, X is cut off from all its causal dependencies and fixed to the value
x.

Definition 5 (Intervention). Let M = 〈S,F ,A〉 be a causal model; let
#—
X= #—x be an

assignment on S. The causal model M #—
X = #—x = 〈S,F #—

X = #—x ,AF#—X = #—x 〉, resulting from an

intervention setting the values of variables in
#—
X to #—x , is such that

• F #—
X = #—x is as F except that, for each endogenous variable Xi in

#—
X, the function fXi is

replaced by a constant function f ′Xi
that returns the value xi regardless of the values

of all other variables.
• AF#—

X = #—x
is the unique valuation where (i) the value of each exogenous variable not in

#—
X is exactly as in A, (ii) the value of each each exogenous variable Xi in

#—
X is the

provided xi, and (iii) the value of each endogenous variable complies with its new
structural function (that in F #—

X = #—x ).7

Building on the notion of intervention, we can now extend a propositional language
with a new type of sentence. The expression [

#—
X= #—x ]γ should be read as the counter-

factual conditional if the variables in
#—
X were set to the values #—x , respectively, then γ

would be the case.
6 The reason behind this restriction is that only acyclic relations are thought to have a causal

interpretation (see [29] for an argument). The counterfactuals satisfy different logical laws if
cyclic dependencies are allowed (see [17]).

7 Note that, since F is recursive, the valuation AF#—
X = #—x

is uniquely determined. First, the value

of every exogenous variable U is uniquely determined, either from #—x (if U occurs in
#—
X ) or

else from A (if U does not occur in
#—
X ). Second, the value of every endogenous variable V is

also uniquely determined, either from #—x (if V occurs in
#—
X , as V’s new structural function is a

constant) or else from the (recall: recursive) structural functions in F #—
X = #—x (if V does not occur

in
#—
X ).
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Definition 6. Formulas φ of the language LC based on the signature S are given by

γ ::= Z = z | ¬γ | γ ∧ γ for Z ∈ U ∪V and z ∈ R(Z)
φ ::= Z = z | ¬φ | φ ∧ φ | [ #—X= #—x ]γ for

#—
X= #—x an assignment on S

The language makes free use of Boolean operators, but it forbids the nesting of
intervention operators [

#—
X= #—x ] (see [11] for a way to extend the system with nested

interventions). Formulas of LC are evaluated in causal models 〈S,F ,A〉. The semantic
interpretation for Boolean operators is the usual; for the rest,

〈S,F ,A〉 |= Z=z iff A(Z) = z
〈S,F ,A〉 |= [

#—
X= #—x ]γ iff 〈S,F #—

X = #—x ,AF#—X = #—x 〉 |= γ

3 Limitations of the Standard System

The notion of a causal model contains an incredible amount of extra information com-
pared to classical models. Not only does it tell us which variables depend causally on
which other variables, but it also determines the exact character of this dependence. On
the side of the language this wealth of information is then explored in terms of coun-
terfactual conditionals using the concept of an intervention. This is where the actual
causal reasoning happens. The standard logic of causal reasoning is in fact a logic of
counterfactual reasoning. This is no accident: Judea Pearl, founder of the approach to
causal reasoning introduced above, sees both concepts as intimately related. He argues
that only when an agent can evaluate counterfactual conditionals does she fully engage
with causal reasoning [26,27]. Counterfactual reasoning is the highest level of causal
reasoning – a level that even the most advanced AI technology doesn’t reach.8

Still, the basic causal framework has some limitations. An important one is that
causal (or counterfactual) reasoning does not stand on its own: it does interact with
other forms of reasoning. For instance, and as we illustrated in the introduction, coun-
terfactual reasoning also considers the effect interventions have on the epistemic state
of (observing) agents. We can reason that If Peter had pushed the button, he would have
known that his flashlight is broken, which involves thinking about Peter’s epistemic
state after observing a causal intervention. This type of reasoning allows us to plan our
actions (try out a flashlight before we take it for a night walk), and also influences our
interaction with other agents (if you want Peter to come back from his walk, you should
tell him to test his flashlight before he leaves). Therefore, a full account of the logic of
causal reasoning needs to model its interaction with epistemic reasoning as well. The
next section takes a first step in this direction: it adds a representation of the epistemic
state of an agent to the model, extending the language with expressions that can talk
about knowledge and knowledge-update in the context of causal reasoning.

8 The other two levels that Pearl distinguishes are the level of association, which is based on
observation, and the level of intervention, which is based on doing. Modern AI technology
is for him still at the first level: association. Counterfactual reasoning is not possible without
a true understanding of why things happen – in our terminology, it is not possible without
knowing the causal relationships as determined by F .
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There is another perspective from which such an epistemic extension of the stan-
dard framework can be motivated. In recent years there has been growing interest in the
logic of dependence/determinacy. For instance, the IF logic of [22] expresses depen-
dence by decorations of the quantifiers. Then, [30] and [2] use a primitive expression
indicating that the value of one variable depends on that of another. In all these cases,
the discussed notion of dependence/determinacy relies on considering a multiplicity of
valuations in the model: the variable Y depends on (it is determined by) the variables
X1, . . . , Xn when, in all valuations that are being considered, fixing the value of the latter
also fixes the value of the former. This gives rise to the question of how the notion of
causal dependence modelled by the just introduced framework interacts with the notions
of dependence/determinacy modelled by these alternative frameworks, and how causal
dependence fits into a general picture of reasoning with and about dependencies. Inter-
estingly, extending the standard causal reasoning approach with basic epistemic notions
gives us another way to express the same notion of dependence as studied in the works
just cited. This, then, allows us to compare different notions of dependency within one
logical system. We will come back to this connection in Sect. 6.

4 Epistemic Causal Models

The first step towards a framework that combines causal with epistemic reasoning is
adding a representation of the epistemic state of an agent to the causal model. This is
done by adding a set of valuations T , representing the alternatives the agent considers
possible.

Definition 7 (Epistemic causal model). An epistemic (note: recursive) causal model
is a tuple 〈S,F ,T〉 where S = 〈U,V,R〉 is a signature, F is a (note: recursive) set of
structural functions forV, and T is a non-empty set of valuation functions forU ∪V,
each one of them complying with F .

Example 1 can now be modelled as follows. We define an epistemic causal model
E = 〈S,F ,T〉 whose signature S has three variables: the exogenous B for the button
and C for the circuit breaker, and the endogenous S for the sprinkler. All three variables
can take two values, 0 or 1. The set of functions F contains only one element: the
function mapping S to 1 iff both B and C also have value 1. Because the agent can
observe the value of the variables B and S , the set T contains the assignment A1 that
maps C to 0, B to 0 and S to 0, and the assignment A2 that maps C to 1, B to 0
and S to 0. Note how T cannot contain the assignment C = 1, B = 1 and S = 0,
for instance, because this assignment does not comply with the causal law in F . This
observation highlights an important feature of this notion of epistemic model: it cannot
model uncertainty about the causal dependencies. Investigating the consequences of
lifting this restriction is left for future research. The next step is to extend the notion of
an intervention to epistemic causal models.

Definition 8 (Intervention). Let E = 〈S,F ,T〉 be an epistemic causal model; let
#—
X= #—x be an assignment on S. The epistemic causal model E #—

X = #—x = 〈S,F #—
X = #—x ,TF#—X = #—x 〉,

resulting from an intervention setting the values of variables in
#—
X to #—x , is such that
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• F #—
X = #—x is defined from F just as in Definition 5,

• TF#—
X = #—x

:= {A′F#—
X = #—x

| A′ ∈ T } (see Definition 5).

Note how 〈S,F #—
X = #—x ,TF#—X = #—x 〉 is indeed an epistemic causal model, as F #—

X = #—x is recursive

and all valuations in TF#—
X = #—x

comply with it.

In the just introduced model E for Example 1, we can now calculate the effects of
considering the intervention that sets B = 1. According to Definition 8, an interven-
tion on an epistemic causal model amounts to intervening on each of the assignments
contained in the epistemic state. Thus, for our concrete example, we need to calculate
the effects of an intervention with B = 1 on the assignments A1 and A2 that make up
the epistemic state T . The new epistemic state TFB=1 will now contain the assignment
AF1,B=1 that maps C to 0, B to 1 and S to 0 and the assignment AF2,B=1 that maps C to
1, B to 1 and S to 1. Thus, the consequences of the intervention are calculated for all
epistemic possibilities the agent considers. In other words, Definition 8 assumes that
the agent has full epistemic access to the effect of the intervention on the model. In
particular, she knows that the intervention takes place (in the counterfactual scenario
considered). This makes a lot of sense if you think of the agent whose epistemic state is
modelled as the one engaging in the counterfactual thinking. It is less plausible in con-
nection to counterfactual thinking about the knowledge states of other agents. But this
is something that we can leave for now, as we will not consider epistemic causal models
for multiple agents in this paper. Based on these changes on the semantic side, we can
now extend the object language with expressions that talk about the epistemic state of
the agent. More specifically, we add the operator K for knowledge and “!” for informa-
tion update. In other words, we understand “!” as expressing the action of observing or
receiving information.

Definition 9. Formulas φ of the language LPAKC based on S are given by

γ ::= Z = z | ¬γ | γ ∧ γ | Kγ | [γ!]γ for Z ∈ U ∪V and z ∈ R(Z)
φ ::= Z = z | ¬φ | φ ∧ φ | Kφ | [φ!]φ | [ #—X= #—x ]γ for

#—
X= #—x an assignment on S

Other Boolean operators (∨,→,↔) can be defined as usual. Note how, although the
language makes free use of Boolean, epistemic and announcement operators (K and
[φ!], for the latter two), nested intervention is again not allowed.9 Note also how the
tuple vector

#—
X can be empty, in which case [

#—
X= #—x ]γ becomes γ. The semantics for this

extended language is straightforward.

Definition 10. Formulas of LPAKC are evaluated in a pairs (E,A) with E = 〈S,F ,T〉
an epistemic causal model and A ∈ T . The semantic interpretation for Boolean oper-
ators is the usual; for the rest,

(E,A) |= Z=z iff A(Z) = z
(E,A) |= Kφ iff (E,A′) |= φ for everyA′ ∈ T
(E,A) |= [ψ!]φ iff (E,A) |= ψ implies (Eψ,A) |= φ
(E,A) |= [

#—
X= #—x ]γ iff (E #—

X = #—x ,AF#—X = #—x ) |= γ
9 However, notice that the semantics already allows for nested occurrences of all dynamic oper-

ators. We will extend the proofs of sound- and completeness to the unrestricted language in
the future.
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with Eψ = 〈S,F ,T ψ〉 such that T ψ := {A′ ∈ T | (E,A′) |= ψ}. Note how Eψ is an
epistemic causal model: F is recursive, and all valuations in T ψ comply with it.

Let us illustrate this definition with the help of the epistemic model E we introduced
for Example 1. In order to evaluate a concrete formula with respect to this model we
need to select, next to E, an assignment representing the actual world. In the example
this is assignmentA2: in the actual world, the circuit breaker is closed, but because the
button has not been pushed, the sprinkler is not working. We can calculate that the coun-
terfactual [B = 1]S = 1 comes out as true given E andA2, just as in the non-epistemic
approach discussed in Sect. 2. But because we now also have a representation of the
epistemic state of some agent, we can additionally consider epistemic attitudes the agent
has towards this counterfactual. For instance, we can check that K([B = 1]S = 1) is not
true given E andA2. For the sentence to be true, the formula [B = 1]S = 1 needs to be
true over both (E,A1) and (E,A2), becauseA1 andA2 are the two elements ofT . Thus,
we need both (EB=1,AF1,B=1) |= S = 1 and (EB=1,AF2,B=1) |= S = 1. We already calcu-

lated TB=1 above: TB=1 = {AF1,B=1,A
F
2,B=1}. But the content of TB=1 does not matter for

the truth of the consequent S = 1 of the counterfactual that we are considering here,
since this consequent does not contain epistemic operators. However, while in AF1,B=1

the sprinkler is still off, inAF2,B=1 it is on. This means that (EB=1,AF1,B=1) �|= S = 1, while

(EB=1,AF2,B=1) |= S = 1. Thus, the agent cannot predict the outcome of the intervention,
just as intended in this case.

Finally, we define an operator � in terms of the existing vocabulary as a way to
express causal dependency in the object language.

Definition 11. Take X and Z inU ∪V. The formula X � Z is defined as
∨

#—w ∈ R((U ∪V) \ {X,Z}),
{x1, x2} ⊆ R(X), x1 � x2,

{z1, z2} ⊆ R(Z), z1 � z2

[
#—
W= #—w , X=x1]Z = z1 ∧ [

#—
W= #—w , X=x2]Z = z2,

A formula X � Z should be read as “X has a direct causal effect on Z”. It holds
when there is a vector #—w of values for variables in R(U ∪V \ {X,V}) and two different
values x1, x2 for X that produce two different values z1, z2 for Z (cf. [17]). When Z ∈ V,
it is clear that� is the syntactic counterpart of the relation “↪→” of Definition 2.

5 Axiomatization

The axiom system LPAKC is presented in Table 1. The intervention axioms, HP1-HP6,
RH1 and RH2, are the standard axiomatization for the intervention operator over recur-
sive causal models, with EX an additional axiom indicating that an exogenous variable
is immune to interventions to any other variables. Then, the epistemic part contains the
standard modal S5 axiomatization for truthful knowledge with positive and negative
introspection.
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Axiom CM indicates that what the agent will know after an intervention
([
#—
X= #—x ]Kφ) is exactly what she knows now about the effects of the intervention

(K[
#—
X= #—x ]φ). Although maybe novel in the literature on causal models, the axiom is

simply an instance of the more general DEL pattern of interaction between knowledge
and a deterministic action without precondition. Axiom KR states that the agent knows
how each endogenous variable Y ∈ V is affected when all other variables are inter-
vened. Finally, axioms RP1-RP4 and rule RE in the announcement part are a reduction-
based axiomatisation for public announcements in the DEL style. Here, axioms RP4
and RP1 are the most important. The first, RP4, is the well-known reduction axiom for
announcement and knowledge, stating that knowing φ after an announcement of ψ is
equivalent to knowing, conditionally on ψ, that the announcement of ψ would make φ
true.10 The second, RP1, establishes the reduction for ‘atoms’ of the form [

#—
X= #—x ]Z = z;

when
#—
X is not empty, it states that a public announcement does not change the causal

rules in the model.

Table 1. Axiom system LPAKC

Propositional:

P � φ for φ an instance of a tautology MP From φ→ ψ and φ derive ψ

Intervention:

HP1 � [
#—
X =#—x ]Z = z → ¬[

#—
X =#—x ]Z = z′ for z � z′ ∈ R(Z)

HP2 � ∨z∈R(Z)[
#—
X =#—x ]Z = z

HP3 �
(
[
#—
X =#—x ]Z = z ∧ [

#—
X =#—x ]W = w

)
→ [

#—
X =#—x , Z=z]W = w

HP4 � [
#—
X =#—x , Z=z]Z = z

HP5 �
(
[
#—
X =#—x , Z=z]W = w ∧ [

#—
X =#—x ,W=w]Z = z

)
→ [

#—
X =#—x ]W = w for W � Z

HP6 � (Z0 � Z1 ∧ · · · ∧ Zk−1 � Zk) → ¬(Zk � Z0)

RH1 � [
#—
X =#—x ](γ1 ∧ γ2) ↔ ([

#—
X =#—x ]γ1 ∧ [

#—
X =#—x ]γ2)

RH2 � [
#—
X =#—x ]¬γ ↔ ¬[

#—
X =#—x ]γ

EX � U = u↔ [
#—
X =#—x ]U = u for U ∈ U with U �

#—
X

Epistemic:

K � K(φ→ ψ)→ (Kφ→ Kψ) T � Kφ→ φ
N From � φ derive � Kφ 4 � Kφ→ KKφ

5 � ¬Kφ→ K¬Kφ

Epistemic+Intervention:

CM � [
#—
X =#—x ]Kγ ↔ K[

#—
X =#—x ]γ

KR � [
#—
X =#—x ]Y=y → K[

#—
X =#—x ]Y=y for Y ∈ V and

#—
X = (U ∪V) \ {Y}

Announcement:

RP1 � [ψ!][
#—
X =#—x ]Z = z ↔ (ψ→ [

#—
X =#—x ]Z = z) RP3 � [ψ!](φ ∧ χ) ↔ ([ψ!]φ ∧ [ψ!]χ)

RP2 � [ψ!]¬φ ↔ (ψ→ ¬[ψ!]φ) RP4 � [ψ!]Kφ ↔ (ψ→ K(ψ→ [ψ!]φ))

RE If � ψ1 ↔ ψ2 and φ[ψ2/ψ1] ∈ LPAKC , then � φ ↔ φ[ψ2/ψ1], where φ[ψ2/ψ1] is a formula
obtained by replacing one or more non-announcement occurrences of ψ1 in φ with ψ2.a

A non-announcement occurrence of ψ in φ is an occurrence of ψ in φ where ψ is not inside the brackets of an
announcement operator.

The axiom system LPAKC is sound and complete for LPAKC in epistemic causal mod-
els. Here is the argument for soundness.

Theorem 1. The axiom system LPAKC is sound for LPAKC in epistemic causal models.

10 Note how the announcement of ψ is a deterministic action with precondition ψ. Hence the
similarities and differences between RP4 and CM.
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Proof. For the soundness of HP1-HP6, RH1 and RH2 on causal models (enough for
soundness on epistemic causal models, as evaluating the formulas does not require a
change in valuation), see [17]. For the soundness of K, N, T, 4, and 5 on relational
structures with an equivalence relation (equivalent to having a simple set of epistemic
alternatives, as epistemic causal models have), see [10,15]. For the soundness of RP1-
RP4 when [ψ!] describes the effect of a deterministic domain-reducing model operation,
see [31].

For axioms EX, CM and KR, take any (〈S,F ,T〉,A). For EX note how, for any
#—
X = #—x , the valuations A and AF#—

X = #—x
assign the same value to exogenous vari-

ables not occurring in
#—
X (Definition 5). For CM, note how (i) K[

#—
X= #—x ]φ holds at

(〈S,F ,T〉,A) iff φ holds at (〈S,F #—
X = #—x ,TF#—X = #—x 〉,A

′F
#—
X = #—x

) for every A′ ∈ T , and (ii)

[
#—
X= #—x ]Kφ holds at (〈S,F ,T〉,A) iff φ holds at (〈S,F #—

X = #—x ,TF#—X = #—x 〉, (A
F
#—
X = #—x

)′) for

every (AF#—
X = #—x

)′ ∈ T F#—
X = #—x

. Then it is enough to notice how, by Definition 8, the set

of relevant valuations for the second, TF#—
X = #—x

, is exactly the set of relevant valuations

for the first, {A′F#—
X = #—x

| A′ ∈ T }. For KR, simply recall that all valuations in T comply
with the same structural functions. Finally, soundness of RE follows from two facts: the
truth-value of every formula depends on the truth-value of its subformulas, and model
operations (intervention and announcements) produce epistemic causal models. Thus,
substituting a non-announcement subformula for a formula that is semantically equiva-
lent in the given class of structures does not affect the final result. ��

The argument for completeness uses two steps. (i) First, using the reduction axioms
technique, we show that LPAKC allow us to translate any formula in LPAKC into a logi-
cally equivalent one without public announcements.11 (ii) Then, relying on the canon-
ical model construction for both causal models [17] and epistemic models [15, Chap.
3], we argue that LPAKC is complete for the language without public announcements.

Theorem 2. The axiom system LPAKC is complete forLPAKC in epistemic causal models.

6 Discussion

In this section we will compare our proposal to the Causal Team Semantics developed
in [5–7]. Causal Team Semantics was proposed with the intention of supporting lan-
guages that discuss both accidental and causal dependencies. This is a topic that has
gained quite some interest in recent years (see, e.g., [12,21]). Causal Team Semantics
was developed along the lines of a non-modal tradition of logics of dependence and
independence (e.g. [22,30]) by extending the so-called team semantics [20] with ele-
ments taken from causal inference. Even though the focus there is not on combining

11 Readers familiar with DEL might have noticed that LPAKC does not have a reduction axiom
for nested announcements [φ1!][φ2!]φ. There are (at least) two strategies for dealing with such
formulas. The first follows an ‘outside-in’ approach, reducing two announcements in a row
into a single one. This requires an axiom for nested announcements. The second follows an
‘inside-out’ strategy, applying the reduction over the innermost announcement operator in the
formula until the operator disappears, and then proceeding to the next. For this, the rule of
substitution of equivalents (our rule RE) is enough [31, Theorem 11].
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causal with epistemic reasoning, this framework bears many similarities to the one we
are using, which is why we will discuss it here in detail. Furthermore, this also allows
us to say a bit more on the topic of dependence from the perspective of our proposal.

Let us quickly introduce the central notions of Causal Team Semantics to facilitate
a comparison of the two frameworks. A causal team12 is a tuple T = 〈T ,F 〉 where
F is defined similarly as in our paper13 and T is a possibly empty set of valuations
that comply with F . Papers on Causal Team Semantics consider a variety of languages.
The focus here is the one we shall call LCOD, which is similar to the standard causal
language (thus allowing to express various notions of causal dependence in terms of
counterfactuals) except for the additional dependence atoms “=(X1, ..., Xn; Y)”, which
expresses (accidental) dependency of the variable Y on the variables X1 to Xn. A sen-
tence =(X1, ..., Xn; Y) is interpreted as the claim that any two states s and s′ that agree on
the valuation of the variables X1, ..., Xn also have to agree on the value they assign to Y .
Let us describe the syntax of LCOD in more detail. The signatures used in [5] are pairs
of the form 〈Dom,Ran〉, where Dom is a set of variables (not encoding the distinction
between exogenous and endogenous variables) and Ran is defined analogously as the R
used in this paper. For any such fixed signature S, the language LCOD is defined as

for Z,Y,
#—
X ∈ Dom and z ∈ Ran(Z); and where the expression

#—
X = #—x is an abbreviation

for a conjunction of the form X1 = x1∧· · ·∧Xn = xn.14 Below the complete semantics of
LCOD is given, using the notation of this manuscript. Notice that formulas are evaluated
on a causal team globally: no valuation in T is isolated as being ‘the actual world’.
At the atomic level, this is done by means of a universal quantification. Indeed, while
formulas of the form Z = z and Z�z indicate, semantically, that Z’s value is (different
from) z in all valuations in T , a dependence atom =(X1, ..., Xn; Y) indicates, as stated,
that all pairs of valuations agreeing on the values of all Xi also agree on the value of
Y . To keep the global perspective through the rest of the formulas, the interpretation
of some connectives (∨ and ⊃) differs from the traditional one (and, in particular, from
that given on epistemic causal models). However, these connectives behave classically
if applied to subformulas without occurrences of dependence atoms, and also when T
is a singleton (the quantification plays no relevant role).

12 We are presenting here the definition from [7], which, save for implementation details, cor-
responds to what are called fully defined causal teams in [5] (where a more general notion is
considered).

13 With some additional machinery, which is not worth exploring here.
14 Notice that the syntax allows negation only at the atomic level. Adding contradictory negation

(defined by T |= ∼ψ iff T �|= ψ) would lead to a more expressive language and to an unintended
reading of negation. As observed in [6], the language can be extended – without changes in
expressivity – with a dual negation, defined by the clause: (T ,F ) |= ¬ψ iff, for all s ∈ T ,
(s,F ) �|= ψ. The dual negation has the intended reading on formulas without dependence
atoms. Neither negation allows the usual interdefinability of ∧ and ∨ via the De Morgan laws;
for this reason, both ∧ and ∨ are included in the syntax.
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From their definitions, it is clear that an epistemic causal model and a causal team
are identical objects; the only difference is that, for evaluating formulas, the former
requires an ‘actual world’. On the syntactic side, even though the truth clauses of
the logical operators differ in various respects, we can find several equivalences. For
instance, the notion of dependence from team semantics can be expressed in our formal
language as well.15 Indeed, interpret the object T of a causal team as the epistemic state
of some agent. Then, the statement Y = y of causal team semantics can be understood
as a claim about the knowledge of the agent, written in our language as K(Y = y).
Building on this translation, we can express that variable Y depends on the variables

#—
X

as the following claim: for all possible valuations #—x of
#—
X there is some value y of Y

such that the agent knows that if she would observe
#—
X = #—x , she would know that Y has

value y.
∧

#—x ∈R(
#—
X )

∨

y∈R(Y)

[(X1 = x1 ∧ · · · ∧ Xn = xn)!]K(Y = y).

With this idea in mind we can define a translation of the non-nested formulas of
LCOD.16 Setting aside for a moment the case of the operator ⊃, and using A to denote
the set of all possible valuations for U ∪ V, the translation is given by the following
clauses.

A short note on the not-so-intuitive translation clause for ∨. First note that, in the
semantic clause for∨, the setsT1 andT2 can equivalently be required to form a partition

15 As far as we know, this has been first observed, independently, in [14] and [1], in the context
of epistemic languages with modalities for the knowledge of values.

16 A formula is non-nested if, in every subformula of the form , no occurs inside
φ. Providing a translation for these formulas is sufficient, since every formula of the causal
team language is provably equivalent to a non-nested one.
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of T , i.e. to be disjoint. The translation clause uses the fact that a partition of T (say,
T ∩S and T \S ) can be characterized by the pair of formulas

∨
#—
Y = #—y ∈S

#—
Y = #—y (defining

T ∩ S as a subset of T ) and ¬∨ #—
Y = #—y ∈S

#—
Y = #—y (defining T \ S ). The conjunction

[(
∨

#—
Y = #—y ∈S

#—
Y = #—y )!]tr(φ) ∧ [(¬∨ #—

Y = #—y ∈S
#—
Y = #—y )!]tr(ψ) then ensures that the current

assignment either is in S and satisfies the translation of φ, or it is in T \ S and satisfies
the translation of ψ. The K operator, placed after the disjunction

∨
S⊆A, ensures that,

fixing a partition, this property holds for all the assignments (i.e. the partition is not
picked out as a function of the assignment). Notice also that this translation clause – as
well as that for dependence atoms – is well-defined relative to a fixed, finite signature,
since the translation uses an enumeration of the variables and of their corresponding
allowed values.

Formulas of the form α ⊃ ψ translate into public announcement formulas. How-
ever, in order to play the role of announcement, α cannot be translated using tr, as
announcements are evaluated according to the classical meaning. We need instead a
simpler translation e which just replaces logical operators with their counterparts in

LPAKC (X�x is replaced by ¬(X = x); β ⊃ γ by β → γ; by [
#—
X = #—x ]φ; ∧

and ∨ are left unaltered, or, more precisely, β ∨ γ is replaced by ¬(¬β ∧ ¬γ)). Then we
can define tr for ⊃ as follows:

tr(α ⊃ φ) := [e(α)!]tr(φ)

This translation satisfies the following.

Proposition 1 (Global translation). For any causal team 〈T ,F 〉 over a finite signa-
ture S and any formula φ ∈ LCOD, we have 〈T ,F 〉 |= φ if and only if, for all A ∈ T ,
we have (〈S,F ,T〉,A) |= tr(φ).

This result compares truth on a causal team with validity over an epistemic causal
model. On the other hand, a different translation of the dependence atom from [1,14]
suggests an alternative, “local” translation. Let tr∗ be as tr, except for the following
clauses (notice the additional K operator in both clauses):

tr∗(=(X1, ..., Xn; Y)) :=
∧

#—x ∈R(
#—
X )

∨

y∈R(Y)

K[(X1 = x1 ∧ · · · ∧ Xn = xn)!]K(Y = y)

tr∗(α ⊃ φ) := K[e(α)!]tr(φ)

Now we have the following result.

Proposition 2 (Local translation). For any causal team 〈T ,F 〉 over a finite signature
S and any formula φ ∈ LCOD, we have:

(i) If 〈T ,F 〉 |= φ, then, for allA ∈ T , (〈S,F ,T〉,A) |= tr(φ).
(ii) If there is anA ∈ T such that (〈S,F ,T〉,A) |= tr(φ), then 〈T ,F 〉 |= φ.
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This result shows that, in the finite case, LPAKC is at least as expressive as LCOD.
Despite this, the way the notion of (accidental) dependence is spelled out in the two lan-
guages differs in an interesting way. While it is a primitive element in the language of
Causal Team Semantics, the way it is definable in our epistemic framework emphasises
what we can do with such a concept of dependence: we can make predictions based
on what we observe. Furthermore, it is interesting to notice the similarity between this
translation of (accidental) dependence and the way causal dependence is expressed. It
is also not defined as a primitive in the language, but can be expressed using counterfac-
tuals, which work based on the concept of intervention. These counterfactuals, in turn,
focus on what you can do with causal information: prediction based on intervention.

Based on the counterfactual expression, various notions of causal dependence can
be defined. We saw one already in Sect. 4, Definition 11: X � Z, which expresses
that X is a causal parent of Z (if Z is an endogenous variable). The local translation of
the notion of dependence from Causal Team Semantics into our framework suggests a
different notion of causal dependence. We repeat the local translation below under the
name of e-dependence. C-dependence defines the corresponding causal notion.17

• Y e-depends on X in (E,A) iff (E,A) |= ∧x∈R(X)
∨

y∈R(Y) K([(X = x)!]K(Y = y))
• Y c-depends on Y in (E,A) iff (E,A) |= ∧x∈R(X)

∨
y∈R(Y)[X = x]K(Y = y)

Given an epistemic causal model, C-dependence holds between a list of vari-
ables X1, . . . , Xn and a variable Y if any intervention fixing the value of the variables
X1, . . . , Xn also determines the value of Y within the epistemic state of the agent. While
this notion is certainly more robust than the notion of e-dependence, it still takes into
account the epistemic state of the agent. The less the agent knows about the values of
the variables, the more variables she needs to control to make sure that a variable Y is in
a particular state. If the agent knows more about the actual causal history of Y , she can
predict the state of Y already from smaller interventions. These kind of hybrid notions
between causal and epistemic dependence that our framework allows to define deserve
certainly some attention in future research.

7 Conclusions

In this paper we have moved some steps towards the integration of causal and epis-
temic reasoning, providing an adequate semantics, a language combining intervention-
ist counterfactuals with (dynamic) epistemic operators and a sound and complete sys-
tem of inference. Our deductive system models the thought of an agent reasoning about
the consequences of hypothetical interventions and observations. It describes what the
agent may deduce from her/his a priori pool of knowledge about a system of variables.
It is therefore a logic of thought experiments. Going back to Example 1 from the intro-
duction, the approach allows us to account for the inference that Billie is not sure that

17 The additional K operator in the definition of e-dependence is needed to deal with the fact that
information update always checks first whether the information that the information state is
updated with is true. This problem disappears in the case of interventions, because the formula
you intervene with is made true in the hypothetical scenario you consider.
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if the button had been pushed, the sprinkler would have been working. However, the
logic is not yet able to also model the second inference discussed in connection with
this example: if Billie had pushed the button and saw that the sprinkler works, then she
would have known that the circuit is closed. In order to account for this kind of rea-
soning we need to model how an agent may reason about (from her perspective) actual
experiments. Things change significantly in such a setting: because of unobserved fac-
tors, the agent may fail to predict the outcome of an experiment; yet the outcome may
sometimes be recovered from direct observation of the consequences of the experiment.
The development of a such a framework will involve a more careful distinction between
observable and unobservable variables. The resulting logic must necessarily abandon
the right-to-left implication of axiom CM ([

#—
X= #—x ]Kφ → K[

#—
X= #—x ]φ), which expresses

the fact that interventions cannot increase the knowledge of the agent.
Our framework has many points in common with the earlier causal team semantics,

and we provided a translation between the two approaches. For the purpose of mod-
eling causal reasoning, our semantics has the advantage, over causal team semantics,
of encoding explicitly a notion of actual state of the world (and in particular, of actual
value of variables). Actual values seem to be crucial for the attempt of defining notions
of token causation [18,19,32], i.e. causation between events. In order to fully appreciate
this advantage, though, we will need to consider richer languages with hybrid features
that allow to explicitly refer to the actual values of variables.

Finally, in future work we plan to extend the setting to a multi-agent system. This
involves considering not only different agents with potentially different knowledge, but
also epistemic attitudes for groups (e.g., distributed and common knowledge) and the
effect of inter-agent communication. One advantage this will bring is the potential to
contribute to the discussion about causal agency and the role of causation in the study
of responsibility within AI (f.i. [3]).
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Abstract. Heifetz, Meier & Schipper (HMS) present a lattice model
of awareness. The HMS model is syntax-free, which precludes the sim-
ple option to rely on formal language to induce lattices, and represents
uncertainty and unawareness with one entangled construct, making it
difficult to assess the properties of either. Here, we present a model
based on a lattice of Kripke models, induced by atom subset inclusion, in
which uncertainty and unawareness are separate. We show the models to
be equivalent by defining transformations between them which preserve
formula satisfaction, and obtain completeness through our and HMS’
results.

1 Introduction

Awareness has been studied with vigor in logic and game theory since its first
formal treatment by Halpern and Fagin in [8]. In these fields, awareness is added
as a complement to uncertainty in models for knowledge and rational interaction.
In short, where uncertainty concerns an agent’s ability to distinguish possible
states of the world based on its available information, awareness concerns the
agent’s ability to even contemplate aspects of a state, where such inability stems
from the unawareness of the concepts that constitute said aspects. Thereby,
models that include awareness avoid problems of logical omniscience (at least
partially) and allows modeling game theoretic scenarios where the possibility of
some action may come as an utter surprise.

To model awareness, the seminal [8] introduces the Logic of General Aware-
ness (LGA), taking a syntax-based approach: an agent a’s awareness in state w is
given by an awareness function assigning (a,w) a set of formulas. This approach
has since been inherited by a multitude of models.

In contrast, Heifetz, Meier and Schipper (HMS) construct a syntax-free
framework [15], which is the main topic of this paper. In their unawareness
frames, both “atomic” and epistemic events are defined without any appeal to
atomic propositions or other syntax.

The backbone of an unawareness frame is a complete lattice of state-spaces
(S,�), with the intuition that the higher a space is, the richer the “vocabulary”
c© Springer Nature Switzerland AG 2020
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it has to describe its states. Since the approach is syntax-free, this intuition is
not modeled using a formal language. It is represented using � and a family of
maps rS′

S which projects state-space S′ down to S, with rS′
S (s) interpreted as the

representation of s in the more limited vocabulary available in S. Uncertainty
and unawareness are represented jointly by a possibility correspondence Πa for
each a ∈ Ag, which maps a state weakly downwards to the set of states the
agent considers possible. If the mapped-to space is strictly less expressive, this
represents that the agent does not have full awareness of the mapped-from state.

That HMS keep their model syntax-free is motivated in part by its applicabil-
ity among economists [15, p. 79]. We think their lattice-based conceptualization
of awareness is both elegant, interesting and intuitive—but we also find its for-
malization cumbersome. Exactly the choice to go fully syntax-free robs the model
of the option to rely on formal language to induce lattices and to specify events,
resulting in constructions which we find less than very easy to follow. This may,
of course, be an artifact of us being accustomed to non-syntax-free models used
widely in epistemic logic.

Another artifact of our familiarity with epistemic logic models is that we find
HMS’ joint definition of uncertainty and unawareness difficult to relate to other
formalizations of knowledge. When HMS propose properties of their Πa maps, it
is not clear to us which aspects concern knowledge and which concern awareness.
They merge two dimensions which, to us, would be clearer if left separated.1

With these two motivations, this paper proposes a non-syntax-free, Kripke
model-based rendition of the HMS model. Roughly, we suggest to start from a
Kripke model K for a set of atoms At, spawn a lattice containing restrictions of
K to subsets of At, and finally add maps πa on the lattice that take a world to
a copy of itself in a restricted model. This keeps the epistemic and awareness
dimensions separate: accessibility relations Ra of K encode epistemics while maps
πa encode awareness. We show that under three assumptions on πa and when
each Ra is an equivalence relation, the result is equivalent to the HMS model, in
the sense that the two satisfy the same formulas of the language of knowledge
and awareness, defined below.

Defining an equivalent model, we do not aim to generalize that of HMS,
but we do include an additional perspective. [15,20] argue that the HMS model
allows agents to reason about their unawareness, as possibility correspondences
Πa provide them a subjective perspective, while LGA-based approaches only
present an outside perspective, as the full model must be taken into account
when assigning knowledge and awareness.2 Oppositely, Halpern and Rêgo [13]
point out that the HMS model includes no objective state, and so no outside

1 As a reviewer points out, then HMS take explicit knowledge as foundational, and
derive awareness from it. This makes the one-dimensional representation justified,
if not even desirable. In contrast, epistemic logic models are standardly interpreted
as taking implicit knowledge as foundational. We think along the second line, and
add awareness as a second dimension. We are not taking a stand on whether one
interpretation is superior, but provide results to move between them.

2 [13] argues that this boils down to a difference in philosophical interpretation.



Awareness Logic 35

perspective. The present model has both: the starting Kripke model provides an
outsider perspective on agents’ knowledge, while the submodel obtained by fol-
lowing πa presents the subjective perspective. We remark further on this below.

The paper progresses as follows. Sects. 2 and 3 present respectively the HMS
model and our rendition. Sections 4 and 5 contain our main technical results:
Sect. 4 introduces transformations between the two models classes, while Sect.
5 shows that they preserve formula satisfaction. Section 6 presents a logic due
to HMS [14], and shows, as a corollary to our results, that it is complete with
respect to our rendition. Section 7 holds concluding remarks.

Throughout the paper, we assume that Ag is a finite, non-empty set of agents,
and that At is a countable, non-empty set of atoms.

2 The HMS Model

This section presents HMS unawareness frames [15], their syntax-free notions of
knowledge and awareness, and their augmentation with HMS valuations, produc-
ing HMS models [14]. For context, the HMS model is a multi-agent generalization
of the Modica-Rustichini model [19] which is equivalent to Halpern’s model in
[10], generalized by Halpern and Rêgo to multiple agents [13], resulting in a
model equivalent to the HMS model, cf. [14]. See [20] for an extensive review.

The following definition introduces the basic structure underlying the HMS
model, as well as the properties of the Πa map that controls the to-be-defined
notions of knowledge and awareness. The properties are described after Defi-
nition 1. Following Definition 4 of HMS models, Fig. 1 illustrates a full HMS
model, including its unawareness frame.

Definition 1. An unawareness frame is a tuple F = (S,�,R,Π) where
(S,�) is a complete lattice with S = {S, S′, ...} a set of disjoint, non-empty
state-spaces S = {s, s′, ...} s.t. S � S′ implies |S| ≤ |S′|. Let ΩF :=

⋃
S∈S S be

the disjoint union of state-spaces in S. For X ⊆ ΩF, let S(X) be the state-space
containing X, if such exists (else S(X) is undefined). Let S(s) be S({s}).
R = {rS′

S : S, S′ ∈ S, S � S′} is a family of projections rS′
S : S′ → S. Each rS′

S

is surjective, rS
S is Id, and S � S′ � S′′ implies commutativity: rS′′

S = rS′
S ◦ rS′′

S′ .
Denote rT

S (w) also by wS.
D↑ =

⋃
S′�S(r

S′
S )−1(D) is the upwards closure of D ⊆ S ∈ S.3

Π assigns each a ∈ Ag a possibility correspondence Πa : ΩF → 2ΩF satisfying

Conf (Confinement) If w ∈ S′, then Πa(w) ⊆ S for some S � S′.
Gref (Generalized Reflexivity) w ∈ (Πa(w))↑ for every w ∈ ΩF.
Stat (Stationarity) w′ ∈ Πa(w) implies Πa(w′) = Πa(w).
PPI (Projections Preserve Ignorance) If w ∈ S′ and S � S′, then

(Πa(w))↑ ⊆ (Πa(rS′
S (w)))↑.

3 To avoid confusion, note that for d ∈ S, (rS′
S )−1(d) = {s′ ∈ S′ : rS′

S (s′) = d} and for
D ⊆ S, (rS′

S )−1(D) =
⋃

d∈D(rS′
S )−1(d).
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PPK (Projections Preserve Knowledge) If S � S′ � S′′, w ∈ S′′ and
Πa(w) ⊆ S′, then rS′

S (Πa(w)) = Πa(rS′′
S (w)).

Jointly call these five properties of Πa the HMS properties.

Conf ensures that agents only consider possibilities within one fixed “vocabu-
lary”; Gref induces factivity of knowledge and Stat yields introspection for knowl-
edge and awareness. PPI entails that at down-projected states, agents neither
“miraculously” know or become aware of something new, while PPK implies that
at down-projected states, the agent can still “recall” all events she knew before,
if they are still expressible. Jointly PPI and PPK imply that agents preserve
awareness of all events at down-projected states, if they are still expressible.

Remark 2. Unawareness frames include no objective perspective, as agents do
not—unless they are fully aware—have a range of uncertainty defined for the
maximal state-space. Taking the maximal state-space to contain a designated
‘actual world’ and as providing a full and objective description of states, one can
still not evaluate agents “true” uncertainty/implicit knowledge. See e.g. Fig. 1
below: In (¬i, �), the dashed agent’s “true” uncertainty about � is not determined.

2.1 Syntax-Free Unawareness

Unawareness frames provide sufficient structure to define syntax-free notions of
knowledge and awareness. These are defined directly as events on ΩF.

Definition 3. Let F = (S,�,R,Π) be an unawareness frame. An event in F
is any pair (D↑, S) with D ⊆ S ∈ S with S also denoted S(D↑). Let ΣF be the
set of events of F.

The negation of the event (D↑, S) is ¬(D↑, S) = ((S\D)↑, S).
The conjunction of events {(D↑

i , Si)}i∈I is ((
⋂

i∈I D↑
i ), supi∈I Si).

The events that a knows event (D↑, S) and where a is aware of it are

Ka((D
↑, S)) =

{
({w ∈ ΩF : Πa(w) ⊆ D↑}, S(D)) if ∃w ∈ ΩF.Πa(w) ⊆ D↑

(∅, S(D)) else

Aa((D
↑, S)) =

{
({w ∈ ΩF : Πa(w) ⊆ S(D↑)↑}, S(D)) if ∃w ∈ ΩF.Πa(w) ⊆ S(D↑)↑

(∅, S(D)) else

Negation, conjunction, knowledge and awareness events are well-defined [15,20].
To illustrate the definitions, some intuitions behind them: i) an event modeled
as a pair (D↑, S) captures that a) if the event is expressible in S, then it is also
expressible in any S′ � S, hence D↑ is the set of all states where the event
is expressible and occurs, and b) the event is expressible in the“vocabulary” of
S, but not the “vocabulary” of lower state-spaces: D ⊆ S are the states with
the lowest “vocabulary” where the event is expressible and occurs. [20] remarks
that for (D↑, S), if D 	= ∅, then S is uniquely determined by D↑. ii) Events
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are given a non-binary understanding: an event (D↑, S) and it’s negation does
not partition ΩF, as s ∈ S′ ≺ S is in neither, but they do partition every
S′′ � S. iii) Conjunction defined using supremum captures that the state-space
required to express the conjunction of two events is the least expressive state-
space that can express both events. iv) Knowledge events are essentially defined
as in Aumann structures/state-space models: the agent knows an event if its
“information cell” is a subset of the event’s states. v) Awareness events captures
that “an agent is aware of an event if she considers possible states in which this
event is “expressible”.” [20, p. 97]

2.2 HMS Models

Though unawareness frames provide a syntax-free framework adequate for defin-
ing awareness, HMS [14] use them as a semantics for a formal language in order
to identify their logic. The language and logic are topics of Sects. 5 and 6.

Instead, the models we will later define are not syntax-free. As Kripke models,
they include a valuation of atomic propositions. Therefore, they do not corre-

Fig. 1. An HMS model with four state-spaces (gray rectangles), ordered spatially as
a lattice. States (smallest rectangles) are labeled with their true literals, over the set
At = {i, �}. Thin lines between states show projections. There are two possibility
correspondences (dashed and dotted): arrow-to-rectangle shows a mapping from state
to set (information cell). Omitted arrows go to S∅ and are irrelevant to the story.

Story: Buyer (dashed) and Owner (dotted) consider trading a firm, the price
influenced by whether i (a value-raising innovation) and � (a value-lowering lawsuit)
occurs. Assume both occur and take (i, �) as actual. Then Buyer has full information,
while Owner has factual uncertainty and uncertainty about Buyer’s awareness and
higher-order information, ultimately considering it possible that Buyer holds Owner
fully unaware. In detail: Buyer’s (i, �) information cell has both i and � defined (and
is also singleton), so Buyer is aware of them (and also knows everything). Owner is
also aware of i and �, but their (i, �) information cell contains also ¬i and ¬� states,
so Owner knows neither. Owner is also uncertain about Buyer’s information: Owner
knows that either Buyer knows i and � (cf. Buyer’s (i, �) information cell), or Buyer
knows ¬i, but is unaware of � (cf. the dashed arrows from ¬i states to the less expressive
state space S{i}) and then only holds it possible that Owner is unaware of both i and
� (cf. the dotted map to S∅). See also Remark 6 concerning S{�}.
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spond to unawareness frames directly, but to the models that result by augment-
ing such frames with valuations. To compare the two model classes, we define
such valuations here, postponing HMS syntax and semantics to Sect. 5. Figure 1
illustrates an HMS model, using an example inspired by [15, p. 87]

Definition 4. Let F = (S,�,R,Π) be an unawareness frame with events ΣF.
An HMS valuation for At and F is a map VM : At → ΣF, assigning to every
atom from At an event in F. An HMS model is an unawareness frame aug-
mented with an HMS valuation, denoted M = (S,�,R,Π, VM).

Remark 5. HMS valuations only partially respect the intuitive interpretation of
state-spaces lattices, where S � S′ represents that S′ is at least as expressive
as S. If S � S′, then p ∈ At having defined truth value at S entails that it has
defined truth value at S′, but if S is strictly less expressive than S′, then this
does not entail that there is some atom q with defined truth value in S′, but
undefined truth value in S. Hence, there can exist two spaces defined for the same
set of atoms, but where one is still “strictly more expressive” than the other.

Remark 6. Concerning Fig. 1, then the state-space S{�} is, in a sense, redundant:
its presence does not affect the knowledge or awareness of agents in the state
(i, �), and it presence is not required by definition. This stands in contrast with
the corresponding Kripke lattice model in Fig. 2, cf. Remark 12.

3 Kripke Lattice Models

The models for awareness we construct starts from Kripke models:

Definition 7. A Kripke model for At′ ⊆ At is a tuple K = (W,R, V ) where
W is a non-empty set of worlds, R : Ag → P(W 2) assigns to each agent a ∈ Ag
an accessibility relation denoted Ra, and V : At′ → P(W ) is a valuation.

The information cell of a ∈ Ag at w ∈ W is Ia(w) = {v ∈ W : wRav}.
The term ‘information cell’ hints at an epistemic interpretation. For generality, R
may assign non-equivalence relations. Some results explicitly assume otherwise.

As counterpart to the HMS state-space lattice, we build a lattice of restricted
models. The below definition of the set of worlds WX ensures that for any X,Y ⊆
At, X 	= Y , the sets WX and WY are disjoint, mimicking the same requirement
for state-spaces. In the restriction KX of K, it is required that (wX , vX) ∈ RaX

iff (w, v) ∈ Ra. Each direction bears similarity to an HMS property: left-to-right
to PPK and right-to-left to PPI. They also remind us, resp., of the No Miracles
and Perfect Recall properties from Epistemic Temporal Logic, cf. e.g., [3,17].

Definition 8. Let K = (W,R, V ) be a Kripke model for At. The restriction of
K to X ⊆ At is the Kripke model KX = (WX , RX , VX) for X where

WX = {wX : w ∈ W} where wX is the ordered pair (w,X),
RXa = {(wX , vX) : (w, v) ∈ Ra} and
VX : X → P(WX) such that, for all p ∈ X,wX ∈ VX(p) iff w ∈ V (p).

For the RXa information cell of a at wX , write Ia(wX).
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To construct a lattice of restricted models, we simply order them in accor-
dance with subset inclusion of the atoms. This produces a complete lattice.

Definition 9. Let K be a Kripke model for At. The restriction lattice of K is
(K(K),�) where K(K) = {KX}X⊆At is the set of restrictions of K, and KX � KY

iff X ⊆ Y .

Projections in unawareness frames are informally interpreted as mapping
states to alternates of themselves in less expressive spaces. Restriction lattices
offer the same, but implemented w.r.t. At: if Y ⊆ X ⊆ At, then wY is the
alternate of wX formally described by the smaller vocabulary of atoms, Y .

The accessibility relations of the Kripke models in a restriction lattice
accounts for the epistemic dimension of the HMS possibility correspondence
Πa. For the awareness dimension, each agent a ∈ Ag is assigned an awareness
map πa that maps a world wX down to πa(wX) = wY for some Y ⊆ X. We
think of πa(wX) as a’s awareness image of wX—i.e., wX as it occurs to a given
her (un)awareness; the submodel from πa(wX) is thus a’s subjective perspective.

In the following definition, we introduce three properties of awareness maps,
which we will assume. Intuitions follow the definition.

Definition 10. With L = (K(K),�) a restriction lattice, let ΩL =
⋃ K(K) and

let π assign to each agent a ∈ Ag an awareness map πa : ΩL → ΩL satisfying

D (Downwards) For all wX ∈ ΩL, πa(wX) = wY for some Y ⊆ X.
I I (Introspective Idempotence) If πa(wX) = wY , then for all vY ∈ Ia(wY ),

πa(vY ) = uY for some uY ∈ Ia(wY ).
NS (No Surprises) If πa(wX) = wZ , then for all Y ⊆ X, πa(wY ) = wY ∩Z .

Call K = (K(K),�, π) the Kripke lattice model of K.

Fig. 2. A Kripke lattice model of the Fig. 1 example. See four restrictions (gray rectan-
gles), ordered spatially as a lattice. States (smallest rectangles) are labeled with their
true literals, over the set At = {i, �}. Horizontal dashed and dotted lines inside restric-
tions represent Buyer and Owner’s accessibility relations (omitted are links obtainable
by reflexive-transitive closure), while dotted and dashed arrows between restrictions
represent their awareness maps (some arrows are omitted: they go to states’ alternates
in K∅, and are irrelevant from (i, l)). Thin lines connect states with their alternate in
lower restrictions. See also Remark 12 concerning K{�}.
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D ensures that an agent’s awareness image of a world is a restricted represen-
tation of that same world. Hence the awareness image does not conflate worlds,
and does not allow the agent to be aware of a more expressive vocabulary than
that which describes the world she views from. With I I and accessibility assumed
reflexive, it entails that πa is idempotent: for all wX , πa(πa(wX)) = πa(wX).
Alone, I I states that in her awareness image, the agent knows, and is aware of,
the atoms that she is aware of. Given that accessibility is distributed by inher-
itance through the Kripke models in restriction lattices, the property implies
that the same holds for every such model. NS guarantees that awareness remains
“consistent” down the lattice, so that awareness of an atom does not appear or
disappear without reason. Consider the consequent πa(wY ) = wY ∩Z and its two
subcases πa(wY ) = wY ∗ with Y ∗ ⊆ Y ∩ Z and Y ∗ ⊇ Y ∩ Z. Colloquially, the
first states that if atoms are removed from the description of the world from
which the agent views, then they are also removed from her awareness. Oppo-
sitely, the second states that if atoms are removed from the description of the
world from which the agent views, then no more than these should be removed
from her awareness. Jointly, no awareness should “miraculously” appear, and all
awareness should be “recalled”.4

Remark 11. Contrary to HMS models (cf. Remark 2), Kripke lattice models
have an objective perspective: designating an ‘actual world’ in KAt allows one to
check agents’ uncertainty about the possible states of the world described by the
maximal language, i.e., from KAt we can read off their “actual implicit knowledge”.
See e.g. Fig. 2: In the (¬i, �) state, the dashed agent’s “true” uncertainty about
� is determined, contrary to the same state in the HMS model of Fig. 1.

Remark 12. In Remark 6, we mentioned that the HMS state-space S{�} of Fig. 1
is redundant. Similarly, K{�} is redundant in Fig. 2 (from (i, �), K{�} is unreach-
able.) However, contrary to the HMS case, it is here required by definition, as a
restriction lattice contains all restrictions of the original Kripke model. For sim-
plicity of constructions, we have not here attempted to prune away redundant
restrictions. A more general model class may be obtained by letting models be
based on sub-orders of the restriction lattice. See also the concluding remarks.

4 Moving Between HMS Models and Kripke Lattices

To clarify the relationship between HMS models and Kripke lattice models, we
introduce transformations between the two model classes, showing that a model
from one class encodes the structure of a model from the other. The core idea
is to think of a possibility correspondence Πa as the composition of Ia and πa:
Πa(w) is the information cell of the awareness image of w.

The propositions of this section show that the transformations produce mod-
els of the desired class. Additionally, their proofs shed partial light on the rela-
tionship between the HMS properties and those assumed for awareness maps πa

and accessibility relations Ra: we discuss this shortly in the concluding remarks.
4 Again, we are reminded of No Miracles and Perfect Recall.
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4.1 From HMS Models to Kripke Lattice Models

Moving from HMS models to Kripke lattice models requires a somewhat involved
construction as it must tease apart unawareness and uncertainty from the possi-
bility correspondences, and track the distribution of atoms and their relationship
to awareness. For an example, then the Kripke lattice model in Fig. 2 is the HMS
model of Fig. 1 transformed.

Definition 13. Let M = (S,�,R,Π, VM) be an HMS model with maximal state-
space T . For any O ⊆ ΩM, let At(O) = {p ∈ At : O ⊆ VM (p) ∪ ¬VM (p)}.5
The L-transform model of M is L(M) = (K(K),�, π) where the Kripke model
K = (W,R, V ) for At given by

W = T ;
R maps each a ∈ Ag to Ra ⊆ W 2 s.t. (w, v) ∈ Ra iff rT

S(Πa(w))(v) ∈ Πa(w);
V : At → P(W ), defined by V (p) � w iff w ∈ VM(p), for every p ∈ At;

π assigns each a ∈ Ag a map πa : ΩL(M) → ΩL(M) s.t. for all wX ∈ ΩL(M),
πa(wX) = wY where Y = At(SY ) for the SY ∈ S with SY ⊇ Πa(rT

SX
(w))

where SX = min{S ∈ S : At(S) = X}.
The state correspondence between M and L(M) is the map � : ΩM → 2ΩL(M)

s.t. for all s ∈ ΩM

�(s) = {wX ∈ WX : w ∈ (rT
S(s))

−1(s) for X = At(S(s))}.

Intuitively, in the L-transform model, a world v ∈ W is accessible from a
world w ∈ W for an agent if, and only if, v’s restriction to the agent’s vocabulary
at w is one of the possibilities she entertains.6 In addition, the awareness map
πa of agent a relates a world wX to its less expressive counterpart wY if, and
only if, Y is the vocabulary agent a adopts when describing what she considers
possible.

Remark 14. The L-transform model L(M) of M is well-defined as the object
K = (W,R, V ) is in fact a Kripke model for At: i) By def. of HMS models,
W = T ∈ S is non-empty; ii) for each a, Ra ⊆ W 2 is well-defined: if w ∈ T = W ,
then by Conf, Πa(w) ⊆ S, for some S ∈ S. Hence, U = {v ∈ T : rT

S (v) ∈ Πa(w)}
is well-defined, and so is {(w, v) ∈ T 2 : v ∈ U} = Ra; iii) As VM is an HMS
valuation VM : At → Σ for At, clearly V is valuation for At. Hence K = (W,R, V )
is a Kripke model for At.

Remark 15. The min used in defining SX is due to the issue of Remark 5.

Remark 16. The state correspondence map � is also well-defined. That it maps
each state in ΩM to a set of worlds in ΩL(M) points to a construction difference
between HMS models and Kripke lattice models: in the former, the downwards
projections of two states may ‘merge’ them, so state-spaces may shrink when
moving down the lattice; in the latter, distinct worlds remain distinct, so all
world sets in a restriction lattice share cardinality.
5 At(O) contains the atoms that have a defined truth value in every s ∈ O.
6 We thank a reviewer for this wording.
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As unawareness and uncertainty are separated in Kripke lattice models, we
show two results about L-transforms. The first shows that the Conf, Stat and
PPK entail that πa assigns awareness maps, and the second that the five HMS
properties entail that R assigns equivalence relations. In showing the first, we
make use of the following lemma, which intuitively shows that the information
cell of an agent contains a state described with a certain vocabulary if, and only
if, the agent considers possible the corresponding state described with the same
vocabulary:

Lemma 17. For every wY ∈ ΩK, if Πa(w) ⊆ S and At(S) = Y , then vY ∈
Ia(wY ) iff vS ∈ Πa(w).

Proof. Let wY ∈ ΩL(M). Consider the respective w ∈ T = W and let Πa(w) ⊆ S,
with At(S) = Y . Assume that vY ∈ Ia(wY ). This is the case iff (def. of Ia)
(wY , vY ) ∈ RY a iff (def. of restriction lattice) (w, v) ∈ Ra iff (Definition 13)
vS ∈ Πa(w).

Proposition 18. For any HMS model M, its L-transform L(M) is a Kripke
lattice model.

Proof. Let M = (S,�,R,Π, VM) be an HMS model with maximal state-space
T . We show that L(M) = (K(K),�, π) is a Kripke lattice model by showing that
πa satisfies the three properties of an awareness map:

D: Consider an arbitrary wX ∈ ΩL(M). By def. of L-transform, X = At(S)
for some S ∈ S. Let SX = min{S ∈ S : At(S) = X}. If wX ∈ WX then for some
w ∈ W = T , wSX

∈ SX . By Conf, Πa(wSX
) ⊆ SY , for some SY � SX . Let

Y = At(SY ). Then, by def. of πa, πa(wX) = wY and Y ⊆ X.
I I: Let πa(wX) = wY . By def. of πa, it holds that Πa(rT

SX
(w)) ⊆ SY with

At(SY ) = Y and SX = min{S ∈ S : At(S) = X}. For a contradiction, sup-
pose there exists a vY ∈ Ia(wY ) s.t. for all uY ∈ Ia(wY ), πa(vY ) 	= uY . Then
πa(vY ) = tZ for some Z ⊆ Y and tZ 	∈ Ia(wY ). By def. of πa, πa(vY ) = tZ
iff Πa(rT

SY
(v)) ⊆ SZ , where Z = At(SZ). Then, by Lemma 17, tZ ∈ Ia(vZ) iff

tSZ
∈ Πa(rT

SY
(v)). Moreover, as Πa(rT

SX
(w)) ⊆ SY and At(SX) = X, by Lemma

17, it also follows that vY ∈ Ia(wY ) iff vSY
∈ Πa(rT

SX
(w)). Since vY ∈ Ia(wY )

then vSY
∈ Πa(rT

SX
(w)). Hence, by Stat, Πa(rT

SX
(w)) = Πa(rT

SY
(v)), which

implies tSZ
∈ Πa(rT

SX
(w)). But then tZ ∈ Ia(vZ), contradicting the assump-

tion that tZ 	∈ Ia(wY ). Thus, for all vY ∈ Ia(wY ), πa(vY ) = uY for some
uY ∈ Ia(wY ).

NS: Let πa(wX) = wY . By D (cf. item 1. above), Y ⊆ X. Consider an
arbitrary Z ⊆ X. We have two cases: either i) Z ⊆ Y or ii) Y ⊆ Z. i): then
Z ⊆ Y ⊆ X. Let Z = At(SZ), Y = At(SY ), and X = At(SX). Then SZ �
SY � SX . By PPK,

(
Πa(rT

SX
(w))

)
Z

= Πa(rT
SZ

(w)). As πa(wX) = wY , by
def. of πa, Πa(rT

SX
(w)) ⊆ SY . Then

(
Πa(rT

SX
(w))

)
Z

= rSY

SZ

(
Πa(rT

SX
(w))

) ⊆
SZ . Hence Πa(rT

SZ
(w)) ⊆ SZ , and by def. of πa, πa(wZ) = wZ . As Z ⊆ Y ,

πa(wZ) = wZ = wZ∩Y . ii): then Y ⊆ Z ⊆ X. By analogous reasoning, we have
πa(wY ) = wY = wY ∩Z as Y ⊆ Z. We can conclude that if πa(wX) = wY , then
for all Z ⊆ X, πa(wZ) = wZ∩X .
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Proposition 19. If L(M) = (K(K = (W,R, V )),�, π) is the L-transform of an
HMS model M, then for every a ∈ Ag, Ra is an equivalence relation.

Proof. Let M = (S,�,R,Π, VM) have maximal state-space T .

Reflexivity: Let w ∈ T and Πa(w) ⊆ S, for some S ∈ S. By def. of upwards
closure, (Πa(w))↑ =

⋃
S′�S(r

S′
S )−1(Πa(w)), and by Gref, w ∈ (Πa(w))↑ =

⋃
S′�S(r

S′
S )−1(Πa(w)). Since T � S, then rT

S (w) ∈ Πa(w). Thus, (w,w) ∈ Ra,
by def. L-transform. By def. of restriction lattices, this holds for all A ⊆ At, i.e.
(wA, wA) ∈ RAa.

Transitivity: Let w, v, u be in T . By Conf, there are S, S′ ∈ S such that
Πa(w) ⊆ S and Πa(v) ⊆ S′. Assume that (w, v) ∈ Ra and (v, u) ∈ Ra. By def.
of Ra, then rT

S (v) ∈ Πa(w) and rT
S′(u) ∈ Πa(v). By Stat, Πa(w) = Πa(rT

S (v))
and Πa(v) = Πa(rT

S′(u)). As v ∈ T and S � T , by PPI, Πa(v)↑ ⊆ Πa(rT
S (v))

↑ =
Πa(w)↑. Hence, as rT

S′(u) ∈ Πa(v)↑, also rT
S′(u) ∈ Πa(w)↑. By def. of upwards

closure, rT
S (u) ∈ Πa(w). Finally, (w, u) ∈ Ra by def. of Ra.

Symmetry: Let w, v ∈ T be in T . Assume that (w, v) ∈ Ra. By Conf, there
are S, S′ ∈ S such that Πa(w) ⊆ S and Πa(v) ⊆ S′. Then rT

S (v) ∈ Πa(w) (def.
of L-transform), and by Stat, Πa(w) = Πa(rT

S (v)). As v ∈ T and T � S, by
PPI, by Πa(v)↑ ⊆ Πa(rT

S (v))
↑. Then, by def. of upwards closure, T� S′ � S.

As v ∈ T , by PPK, rS′
S (Πa(v)) = Πa(rT

S (v)). By Gref, x ∈ Πa(w)↑, and since
Πa(w) ⊆ S then rT

S (w) ∈ Πa(w), by def. of upward closure. Then rT
S (w) ∈

Πa(w) = Πa(rT
S (v)) = rS′

S (Πa(v)). So rT
S (w) ∈ rS′

S (Πa(v)), i.e. rT
S′(w) ∈ Πa(v),

by def. of r. Hence, (v, w) ∈ Ra, by def. of Ra.

4.2 From Kripke Lattice Models to HMS Models

Moving from Kripke lattice models to HMS models requires a less involved con-
struction, as the restriction lattice almost encode projections, and unawareness
and uncertainty are simply composed to form possibility correspondences:

Definition 20. Let K = (K(K = (W,R, V )),�, π) be a Kripke lattice model for
At. The H-transform of K is H(K) = (S,�,R,Π, VH(K)) where
S = {WX ⊆ ΩK : KX ∈ K(K)};
WX � WY iff KX � KY ;
R = {rWX

WY
: rWX

WY
(wX) = wY for all w ∈ W, and all X,Y ⊆ At};

Π = {Πa ∈ (2ΩK)ΩK : Πa(wX) = Ia(πa(wX)) for all w ∈ W,X ⊆ At, a ∈ Ag};
VH(K)(p) = {wX ∈ ΩK : X � p and wX ∈ VX(p)} for all p ∈ At.

As HMS models lump together unawareness and uncertainty, we show only
one result in this direction:

Proposition 21. For any Kripke lattice model K = (K(K = (W,R, V )),�, π)
s.t. R assigns equivalence relations, the H-transform H(K) is an HMS model.

Proof. Let K be as stated and let H(K) = (S,�,R,Π, VH(K)) be its H-transform.
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S = {WX ,WY , ...} is composed of non-empty disjoint sets by construction and
(S,�) is a complete lattice as (K(K),�) is so. R is clearly a family of well-
defined, surjective and commutative projections. As Π assigns to each a ∈ Ag,
Πa(wX) = Ia(πa(wX)), for all w ∈ W , X ⊆ At, it assigns a a map Πa : ΩH(K) →
2ΩH(K) , which is a possibility correspondence as it satisfies the HMS properties:

Conf : For wX ∈ WX , Πa(wX) = Ia(πa(wX)), by Definition 20. By D,
πa(wX) = wY for some Y ⊆ X, and Ia(πa(wX)) = Ia(wY ). So, Πa(wX) ⊆ WY

for some Y ⊆ X.
Gref : Let wX ∈ ΩK, X ⊆ At. By D, πa(wX) = wY for some Y ⊆ X. By

def. of Πa and Ia, Πa(wX) = Ia(wY ) = {vY ∈ ΩK : (wY , vY ) ∈ RY a}. Hence
Πa(wX) ⊆ WY . By def. of upward closure, (Πa(wX))↑ = (Ia(wY ))↑ = {uZ ∈
ΩK : Y ⊆ Z and uY ∈ {vY ∈ ΩK : (wY , vY ) ∈ RY a}}, with the last identity
given by the def. of rWZ

WY
. As Ra is an equivalence relation, so is RY a, by def. So

wY ∈ {vY ∈ ΩK : (wY , vY ) ∈ RY a}, and since Y ⊆ X, then wX ∈ (Πa(wX))↑.
Stat: For wX ∈ ΩK, assume v ∈ Πa(wX) = Ia(πa(wX)). By D, v ∈ Ia(wY ),

for some Y ⊆ X. With RY a an equivalence relation, v ∈ Ia(wY ) iff wY ∈ Ia(v),
i.e., Ia(v) = Ia(wB). I I and D entails that for all uY ∈ Ia(wY ), πa(uY ) = uY ,
so πa(v) = v. Therefore Πa(v) = Ia(πa(v)) = Ia(v) = Ia(wY ) = Ia(πa(wX)) =
Πa(wX). Thus, if v ∈ Πa(wX), then Πa(v) = Πa(wX).

PPI: Let wX ∈ WX and WY � WX , i.e. Y ⊆ X ⊆ At. Let qQ ∈ (Πa(wX))↑

with Q ⊆ At. By def. of Πa and D, Πa(wX) = Ia(πa(wX)) = Ia(wZ) for some
Z ⊆ X. By def. of upwards closure, it follows that qZ ∈ Ia(wZ) = Πa(wX).
Now let πa(wY ) = wP for some P ⊆ Y . Then, by NS, P = Z ∩ Y , so P ⊆
Z. As qZ ∈ Ia(wZ), then qP ∈ Ia(wP ) = Ia(πa(wY )) = Πa(wY ), by def. of
restriction lattice. Since qQ ∈ (Πa(wX))↑ = (Ia(wZ))↑, then Z ⊆ Q. It follows
that P ⊆ Z ⊆ Q, which implies qQ ∈ (Πa(wY ))↑. Hence, if qQ ∈ (Πa(wX))↑,
then qQ ∈ (Πa(wY ))↑, i.e., (Πa(wX))↑ ⊆ (Πa(wY ))↑.

PPK: Suppose that WZ � WY � WX , wX ∈ WX and Πa(wX) ⊆ WY , i.e.
Πa(wX) = Ia(wY ) and πa(wX) = wY . As Z ⊆ Y ⊆ X, NS implies πa(wZ) =
wZ∩Y = wZ . Hence, Πa(wZ) = Ia(wZ) ⊆ WZ . Hence PPK is established if
(Ia(wY ))Z = Ia(wZ). As (Ia(wY ))Z = {xZ ∈ ΩK : xY ∈ Ia(wY )}, then clearly
(Ia(wY ))Z = Ia(wZ). Thus, (Πa(wX))Z = Πa(wZ).

Finally, VH(K) is an HMS valuation as for each p ∈ At, VH(K)(p) is an event
(D↑, S) with D = {w{p} ∈ W{p} : w{p} ∈ V{p}(p)} and S = W{p}.

5 Language for Awareness and Model Equivalence

Multiple languages for knowledge and awareness exist. The Logic of General
Awareness (LGA, [8]) takes implicit knowledge and awareness as primitives, and
define explicit knowledge as ‘implicit knowledge ∧ awareness’; other combina-
tions are discussed in [4]. Variations of LGA include quantification over objects
[5], formulas [1,11,12], and even unawareness [7], alternative operators informed
through cognitive science [2], and dynamic extensions [4,7,9,16].
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HMS [14] follow instead Modica and Rustichini [18,19] and take explicit
knowledge as primitive and awareness as defined: an agent is aware of ϕ iff she
either explicitly knows ϕ, or explicitly knows that she does not explicitly know ϕ.

Definition 22. Let Ag be a finite, non-empty set of agents and At a countable,
non-empty set of atoms. With a ∈ Ag and p ∈ At, define the language L by

ϕ ::=� | p | ¬ϕ | ϕ ∧ ϕ | Kaϕ

and define Aaϕ := Kaϕ ∨ Ka¬Kaϕ.
Let At(ϕ) = {p ∈ At : p is a subformula of ϕ}, for all ϕ ∈ L.

5.1 HMS Models as a Semantics

The satisfaction of formulas over HMS models is defined as follows. The seman-
tics are three-valued, so formulas may have undefined truth value: there may
exist a w ∈ ΩM such that neither M, w � ϕ nor M, w � ¬ϕ. This happens if and
only if ϕ contains atoms with undefined truth value in w.

Definition 23. Let M = (S,�,R,Π, VM) be an HMS model and let w ∈ ΩM.
Satisfaction of L formulas is given by

M, w � � for all w ∈ ΩM

M, w � p iff w ∈ VM(p) M, w � ϕ ∧ ψ iff w ∈ �ϕ� ∩ �ψ�

M, w � ¬ϕ iff w ∈ ¬�ϕ� M, w � Kaϕ iff w ∈ Ka(�ϕ�)

where �ϕ� = {v ∈ ΩM : M, v � ϕ} for all ϕ ∈ L.

With the HMS semantics being three-valued, they adopt a non-standard
notion of validity which requires only that a formula be always satisfied if its
has a defined truth value. The below is equivalent to the definition in [14], but
is stated so that it also works for Kripke lattice models:

Definition 24. A formula ϕ ∈ L is valid over a class of models C iff for all
models M ∈ C, for all states w of M which satisfy p or ¬p for all p ∈ At(ϕ), w
also satisfies ϕ.

5.2 Kripke Lattice Models as a Semantics

We define semantics for L over Kripke lattice models. Like the HMS semantics,
the semantics are three-valued, as it is possible that a pointed Kripke lattice
model (M,wX) satisfies neither ϕ nor ¬ϕ. This happens exactly when ϕ contains
atoms not in X.

Definition 25. Let K = (K(K = (W,R, V )),�, π) be a Kripke lattice model
with wX ∈ ΩK. Satisfaction of L formulas is given by
K, wX � � for all wX ∈ ΩK

K, wX � p iff wX ∈ VX(p) and p ∈ X
K, wX � ¬ϕ iff not K, wX � ϕ and At(ϕ) ⊆ X
K, wX � ϕ ∧ ψ iff K, wX � ϕ and K, wX � ψ and At(ϕ∧ψ) ⊆ X
K, wX � Kaϕ iff πa(wX)RY avY implies K, vY � ϕ,

for Y ⊆ At s.t. πa(wX) ∈ WY and At(ϕ) ∈ X
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5.3 The Equivalence of HMS and Kripke Lattice Models

L- and H-transforms not only produce models of the correct class, but also
preserve finer details, as any model and its transform satisfy the same formulas.

Proposition 26. For any HMS model M with L-transform L(M), for all ϕ ∈ L,
for all w ∈ ΩM, and for all v ∈ �(w), M, w � ϕ iff L(M), v � ϕ.

Proof. Let ΣM be the events of M = (S,�,R,Π, VM) with maximal state-space
T and let L(M) = (K(K = (W,R, V )),�, π). The proof is by induction on formula
complexity. Let ϕ ∈ L and let w ∈ ΩM with At(S(w)) = X.

Base: i) ϕ := p ∈ At or ii) ϕ := �. i) M, w � p iff w ∈ VM(p). As VM(p) ∈ ΣM,
(rT

S(w))
−1(w) ⊆ VM(p). By def. of L(M), if v ∈ T = W , then v ∈ VM(p) iff

v ∈ V (p), so v ∈ (rT
S(w))

−1(w) iff v ∈ V (p) iff vX ∈ VX(p), with p ∈ X (def.
of Kripke lattice models). Hence, by def. of �, v ∈ �(w) = {uX ∈ WX : u ∈
(rT

S(w))
−1(w) for X = At(S(w))} iff v ∈ VX(p), i.e., iff L(M), v � p for all

v ∈ �(w). ii) is trivial.
Step. Assume ψ, χ ∈ L satisfy Proposition 26.
ϕ := ¬ψ. There are two cases: i) At(ψ) ⊆ At(S(w)) or ii) At(ψ) 	⊆ At(S(w)).

i) M, w � ¬ψ iff (def. of �) w ∈ ¬�ψ� iff (def. of VM) (rT
S(w))

−1(w) ⊆ ¬�ψ�

iff (def. of �ψ�) for all v ∈ (rT
S(w))

−1(w), M, v 	� ψ iff (Definition 13) for all
v ∈ (rT

S(w))
−1(w), not L(M), v � ψ iff (def. of �(w)) for all vX ∈ �(w), not

L(M), vX � ψ, with At(ψ) ⊆ X iff (def. of �) for all vX ∈ �(w), L(M), vX � ¬ψ.
ii) is trivial: ϕ is undefined in (M, w) iff it is so in (L(M), wX).

ϕ := ψ ∧ χ. The case follows by tracing iff s through the definitions of �, VM,
�·�, (

rT
S(w)

)−1, L-transform, �, and �.
ϕ := Kaψ. M, w � Kaψ iff (def. of �) w ∈ Ka(�ψ�) iff (def. of Ka) Πa(w) ⊆

�ψ�. Let Πa(w) ⊆ S, for some S ∈ S, and let X = At(S(w)) and Y = At(S).
Then vS ∈ Πa(w) ⊆ �ψ� iff (def. of �ψ�) for all vS ∈ Πa(w), M, vS � ψ iff (def.
of VM) for all (rT

S )
−1(vS) with vS ∈ Πa(w), M, vT � ψ iff (def. of L-transform)

for all vAt with rT
S (v) ∈ Πa(w), L(M), vAt � ψ and At(ψ) ⊆ At iff (def. of L-

transform) for all vAt with (wAt, vAt) ∈ RAta, L(M), vAt � ψ and At(ψ) ⊆ At
iff (def. of restriction lattice) for all vY with (wY , vY ) ∈ RY a, L(M), vY � ψ and
At(ψ) ⊆ Y iff (def. of πa and πa(wX) = wY ), for all vY with (πa(wX), vY ) ∈ RY a,
L(M), vY � ψ and At(ψ) ⊆ Y iff (def. of �) L(M), wX � Kaψ and At(ψ) ⊆ Y .

Proposition 27. For any Kripke lattice model K with H-transform H(K), for
all ϕ ∈ L, for all wX ∈ ΩK, K, wX � ϕ iff H(K), wX � ϕ.

Proof. Let K = (K(K = (W,R, V )),�, π) with wX ∈ ΩK, πa(wX) ∈ WY with
Y ⊆ At, and let H(K) = (S,�,R,Π, VH(K)). Let ϕ ∈ L and proceed by induction
on formula complexity.

Base: i) ϕ := p ∈ At or ii) ϕ := �. i) K, wX � p iff (def. of �) wX ∈ VX(p)
with p ∈ X iff (def. of H-transform) wX ∈ VH(K)(p) iff (def. of �) H(K), wX � p.
ii) is trivial.
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Step. Assume ψ, χ ∈ L satisfy Proposition 27.
ϕ := ¬ψ. There are two cases: i) At(ψ) ⊆ X or ii) At(ψ) 	⊆ X. i) K, wX � ¬ψ

iff (def. of �) not K, wX � ψ iff (def. of �ψ�) wX 	∈ �ψ� iff (def. of �ψ� and
At(ψ) ⊆ X) wX ∈ ¬�ψ� iff (def. of �) H(K), wX � ¬ψ. ii) is trivial: ϕ is
undefined in (K, wX) iff it is so in (H(M), wX).

ϕ := ψ ∧ χ. The case follows by tracing iff s through the definitions of �,
H-transform, and �.

ϕ := Kaψ. K, wX � Kaψ iff (def. of �) πa(wX)RY avY implies K, vY � ϕ iff
(def. of πa, i.e. πa(wX) = wY and def. of Ia), for all vY s.t. (wY , vY ) ∈ RY a,
i.e. for all vY ∈ Ia(wY ), K, vY � ϕ iff (def. of Πa, i.e. Πa(wX) = Ia(πa(wX) =
Ia(wY )) Πa(wX) ⊆ �ψ� iff (def. of Ka) w ∈ Ka(�ψ�) iff (def. of �) H(K), wX �
Kaψ.

6 The HMS Logic of Kripke Lattice Models
with Equivalence Relations

As we may transition back-and-forth between HMS models and Kripke lattice
models with equivalence relations in a manner that preserve satisfaction of for-
mula of L, soundness and completeness of a L-logic is also transferable between
the model classes. We thereby show such results for Kripke lattice models with
equivalence relations as a corollary to results by HMS [14].

Definition 28. The logic ΛHMS is the smallest set of L formulas that contain
the axioms in, and is closed under the inference rules of, Table 1.

Table 1. Axioms and inference rules of the HMS logic of unawareness, ΛHMS .

All substitution instances of propositional logic, including the formula �
Aa¬ϕ ↔ Aaϕ (Symmetry)
Aa(ϕ ∧ ψ) ↔ Aaϕ ∧ Aaψ (Awareness Conjunction)
Aaϕ ↔ AaKbϕ, for all b ∈ Ag (Awareness Knowledge Reflection)
Kaϕ → ϕ (T, Axiom of Truth)
Kaϕ → KaKaϕ (4, Positive Introspection Axiom)
From ϕ and ϕ → ψ, infer ψ (Modus Ponens)
For ϕ1, ϕ2, ..., ϕn, ϕ that satisfy At(ϕ) ⊆ ⋃n

i=1 At(ϕi),
from

∧n
i=1 ϕi → ϕ, infer

∧n
i=1 Kaϕi → Kaϕ (RK-Inference)

As the L-transform of an HMS model has equivalence relations, one may be
surprised by the lack of the standard negative introspection axiom 5 : (¬Kaϕ →
Ka¬Kaϕ) among the axioms of ΛHMS . However, including 5 would make col-
lapse awareness [18]. In [14], HMS remarks that ΛHMS imply the weakened
version Ka¬Ka¬Kaϕ → (Kaϕ ∨ Ka¬Kaϕ), which by the Modici-Rustichini
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definition of awareness is Ka¬Ka¬Kaϕ → Aaϕ. Defining unawareness by
Uaϕ := ¬Aaϕ, this again equates Uaϕ → ¬Ka¬Ka¬Kaϕ. Additionally, HMS
notes that if ϕ is a theorem, then Aaϕ → Kaϕ is a theorem, that 4 implies
introspection of awareness (Aaϕ → KaAaϕ), while ΛHMS entails that aware-
ness is generated by primitives propositions, i.e., that Aaϕ ↔ ∧

p∈At(ϕ) Aap is a
theorem. The latter two properties entails that HMS awareness is propositionally
determined, in the terminology of [13].

Using the above given notion of validity and standard notions of proof, sound-
ness and strong completeness, HMS [14] state that, as standard,

Lemma 29. The logic ΛHMS is strongly complete with respect to a class of
structures S iff every set of ΛHMS consistent formulas is satisfied in some s ∈ S.

Let M be the class of HMS modes. Using a canonical model, HMS show:

Theorem 30 ([14]). ΛHMS is sound and strongly complete with respect to M .

Let KLMEQ be the class of Kripke lattice models where all accessibility
relations are equivalence relations. As a corollary to Theorem 30 and our trans-
formation and equivalence results, we obtain

Theorem 31. ΛHMS is sound and strongly complete with respect to KLMEQ.

Proof. Soundness: The axioms of ΛHMS are valid KLMEQ. We show the con-
trapositive. Let ϕ ∈ L. If ϕ is not valid in KLMEQ, then for some K ∈ KLMEQ

and some w from K, K, w � ¬ϕ. Then its H-transform H(K) is an HMS model
cf. Proposition 21, and H(K), w � ¬ϕ cf. Proposition 27. Hence ϕ is not valid in
the class of HMS models. The same reasoning implies that the ΛHMS inference
rules preserve validity.

Completeness: Assume Φ ⊆ L is a consistent set, and let M be the canonical
model of HMS, with w a state in M that satisfies Φ. This exists, cf. [14]. By
Propositions 18 and 19, L(M) is in KLMEQ. By Proposition 26, for all v ∈ �(w),
L(M), v � Φ. By Lemma 29, ΛHMS is thus strongly complete w.r.t. KLMEQ.

7 Concluding Remarks

This paper has presented a Kripke model-based rendition of the HMS model of
awareness, and shown the two model classes equally general w.r.t. L, by defining
transformations between the two that preserve formula satisfaction. A corollary
to this result is completeness of the HMS logic for the introduced model class.

There are several issues we would like to study in future work:
In recasting the HMS model, we teased apart the epistemic and awareness

dimensions merged in the HMS possibility correspondences, and Propositions 18,
19 and 21 about L- and H-transforms show that the HMS properties are satisfied
iff each πa satisfies D, I I and NS, and each Ra is an equivalence relation. For a
more fine-grained property correspondence, the propositions’ proofs show that
each property of one model is entailed by a strict subset of the properties of
the other. In some cases, the picture emerging is fairly clear: e.g., HMS’ Conf
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is shown only using the restrictions lattice construction (RLC) plus D and vice
versa; PPK uses only NS and RLC, while PPK and Conf entail NS. In other
cases, the picture is more murky, e.g., when we use Stat, PPI and PPK to
show the seemingly simple symmetry of Ra. We think it would be interesting to
decompose properties on both sides to see if clearer relationships arise.

There are two issues with redundant states in Kripke lattice models. One
concerns redundant restrictions, cf. Remark 12, which may be solved by working
with a more general model class, where models may also be based on sub-orders
of the restriction lattice. A second one concerns redundant states. For example,
in Fig. 2, K∅ contains three ‘identical’ states where no atoms have defined truth
values—K∅ is bisimilar to a one-state Kripke model. As bisimulation contracting
each KX may collapse states from which awareness maps differ, one must define
a notion of bisimulation that takes awareness maps into consideration (notions
of bisimulation for other awareness models exists, e.g. [6]). Together with a more
general modal class definition, this could hopefully solve the redundancy issues.

Though [13,14,20] provide comparisons of the HMS and LGA [8,13] models,
we would like to make a direct comparison with the latter to understand Kripke
lattice models from an awareness function perspective. It would then be natural
to use the LGA language with awareness and implicit knowledge as primitives
over Kripke lattice models, which is possible as they include objective states.

The HMS logic is complete for HMS models and Kripke lattice models with
equivalence relations. [13] prove completeness for HMS models using a standard
validity notion, a ‘ϕ is at least as expressive as ψ’ operator and variants of axioms
T , 4 and 5. We are very interested in considering this system and its weaker
variants for Kripke lattice models, also with less assumptions on the relations.

Finally, issues of dynamics spring forth: first, whether existing aware-
ness dynamics may be understood on Kripke lattice models; second, whether
DEL action models may be applied lattice-wide with reasonable results; and
third, whether the πa maps may be thought in dynamic terms, as they map
between models.
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Abstract. Gossip describes the spread of information throughout a net-
work of agents. It investigates how agents, each starting with a unique
secret, can efficiently make peer-to-peer calls so that ultimately every-
one knows all secrets. In Dynamic Gossip, agents share phone numbers
in addition to secrets, which allows the network to grow at run-time.

Most gossip protocols assume that all agents are reliable, but this is
not given for many practical applications. We drop this assumption and
study Dynamic Gossip with unreliable agents. The aim is then for agents
to learn all secrets of the reliable agents and to identify the unreliable
agents.

We show that with unreliable agents classic results on Dynamic Gos-
sip no longer hold. Specifically, the Learn New Secrets protocol is no
longer characterised by the same class of graphs, so-called sun graphs. In
addition, we show that unreliable agents that do not initiate communi-
cation are harder to identify than agents that do. This has paradoxical
consequences for measures against unreliability, for example to combat
the spread of fake news in social networks.

1 Introduction

The internet has led to great changes in the distribution of news. Recently, ‘fake
news’ received attention, possibly having influenced the 2016 US presidential
election [1]. Besides the challenge to identify fake news, a question is how to
treat it: should false information be removed or is marking it as false sufficient?

Dynamic Gossip is a formal model how information can spread throughout a
changing network of agents. It investigates how agents, each with a unique secret,
decide, based on their own knowledge about the network, what calls to make so
that ultimately everyone knows all the secrets. A gossip protocol can help agents
to decide on a call sequence to perform. Examples from the literature are ANY
(“call any agent”), CMO (“call me once”) and LNS (“learn new secrets”) [7]. In
a dynamic setting, additional to secrets, agents share phone numbers, allowing
the network to grow at run-time.

Traditionally these systems assume that everybody is reliable, but this
assumption is not justified for many practical applications. Therefore, we adapt
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Dynamic Gossip to account for unreliable agents. Of course, the possibilities for
agents to be unreliable are numerous: agents can lie about their own secret or
about secrets of others, agents can have a memory of whom they have lied to
or not, agents can always lie or with a certain probability, and agents can lie
merely about secrets or also about phone numbers, etc. With any such form of
unreliability, the aim of the reliable agents should still be to learn all the secrets
(of the reliable agents) and, in addition, to identify the unreliable agents.

We show that, already with relatively simple unreliable agent a known result
in Dynamic Gossip from [7] breaks down. Specifically, the Learn New Secrets
protocol is no longer characterised by sun graphs. This emphasises the need to
discard the assumption that everyone is reliable for any practical application.
In addition, we show that unreliable agents that do not initiate communication
are harder to identify than those that do. This has seemingly paradoxical conse-
quences for security measures taken against unreliable agents: blocking as a mea-
sure against false information has the adverse effect of securing the anonymity of
the unreliable agents. New protocols are needed to properly cope with unreliable
agents in Dynamic Gossip.

Our article is structured as follows. We give a short summary of related work
in Sect. 2. In Sect. 3 we recall the definitions of Dynamic Gossip. We then define
Unreliable Gossip and unreliable agents in Sect. 4 and 5, respectively. The new
setting then motivates a new notion of success which we define and examine in
Sect. 6. We conclude with future work ideas and a discussion the relevance of
Unreliable Gossip for social networks in Sect. 7.

2 Related Work

Gossip has first been studied in combinatorics and graph-theory [11]. The clas-
sical question, also known as the “telephone problem” is: Given n agents who
each start with a unique secret, how many phone calls are needed to spread all
secrets? For n > 3 agents that all have the phone number of all other agents,
2n − 4 calls are necessary and sufficient to make everyone learn all secrets [15].
For networks in which not every agent has the phone number of all other agents,
these numbers are naturally higher [10]. Besides communication networks, gossip
has also been used for the study of epidemics [9], power grids [17] and neural
networks [17].

Most results on classical gossip assume a central and all-knowing scheduler
deciding who should call whom and when. This is not realistic for practical
applications in which agents have to decide autonomously what (communication)
action to take. Hence, distributed gossip has been studied in which agents decide
autonomously, on their own, whom to call using epistemic protocols [2,3].

More recently, another assumption has been lifted, namely the assumption
that the graph representing who can call whom is constant, i.e. agents have a
static phone book or contact list. In dynamic gossip agents also exchange phone
numbers, adding edges in the reachability graph [7]. This means that the network
may grow at run-time. This is the setting which we use and extend here.
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Most work on the classical telephone problem and on Dynamic Gossip
assumes that all agents are reliable and follow the same protocol. However, gossip
with unreliability has been studied extensively in other areas. One direction of
research is about settings where communication links are unreliable, as studied
in [14] and [16]. In contrast, here we assume that communication works perfectly
but that agents are unreliable. Our setting is thus more comparable to having
faulty or malicious agents, as in distributed storage [6] or consensus protocols [4].

Similar to our work is also the proposal of ‘corrected gossip’ in [12]. The
authors study failing nodes and define a gossip protocol which tries to reduce
latency of the total group communication. A big difference to our setting is that
their networks are static and no links are added at run-time.

3 Dynamic Gossip

We now give a short introduction to Dynamic Gossip, following [7]. We assume
a finite set of agents, A. Initially, each agent knows only their own secret and
some set of phone numbers including their own. If an agent a has the phone
number of an agent b, then the phone call ab can take place. During a call, the
two agents exchange secrets and phone numbers — including those they learned
in previous calls. One might wonder what else agents learn in such a call, but
for all results we discuss here higher-order knowledge such as “a knows that b
knows the secret of c” is irrelevant, hence we will not model it and refer to [8].

Example 1. Suppose agent a knows the number of b, and agents b and c know
each other’s number and no other numbers are known. We draw this situation
below. Note that we use dashed arrows for the binary relation of knowing the
number of someone (N). Now if a calls b then a and b learn each other’s secret,
which we draw with solid arrows (S). We also add another dashed arrow: in the
call ab agent a also learns the number of c.

a b c ab→ a b c

We formally define gossip graphs, calls and sequences as follows.

Definition 1 (Gossip Graph). For any set A, let IA := {(a, a) | a ∈ A}.
A gossip graph is a triple G = (A, N, S) where A is a finite set of agents,
N ⊆ A × A and S ⊆ A × A such that IA ⊆ N and IA ⊆ S. Given any G, let
Sa := {b ∈ A | (a, b) ∈ S} and Na := {b ∈ A | (a, b) ∈ N}.

A graph is initial iff S = IA. A graph is complete iff S = A × A.
An agent a is an expert iff Sa = A. An agent a is terminal iff Na = {a}.
We say that “agent a knows the number of agent b” iff (a, b) ∈ N . Similarly,

we say “agent a knows the secret of agent b” iff (a, b) ∈ S.
We now define calls ab, in which agent a and b share all their information.
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Definition 2 (Call). Suppose G = (A, N, S), a, b ∈ A and (a, b) ∈ N . The
call ab maps G to Gab := (A, Nab, Sab) where

Nab
c :=

{
Na ∪ Nb if c ∈ {a, b}
Nc otherwise

and Sab
c :=

{
Sa ∪ Sb if c ∈ {a, b}
Sc otherwise

Definition 3 (Call sequences). A call sequence σ is a sequence of calls. We
use the following notation: ε is the empty sequence and σ; τ is the concatenation
of two sequences σ and τ ; Moreover, σ � τ denotes that σ is a prefix of τ .

We say that call ab is possible on a graph G = (A, N, S) iff (a, b) ∈ N . The
call sequence ε is possible on any graph, and a call sequence ab;σ is possible on
G iff the call ab is possible on G and σ is possible on Gab. If a call sequence σ
is possible on a graph G, then Gσ is defined by: Gε := G and Gab;σ := (Gab)σ.

It is an easy exercise to show by induction on σ that “if a knows the secret
of b, then a also knows the number of b” is an invariant when making calls.

Lemma 1. For any initial graph G = (A, N, S) and any call sequence σ that is
possible on G, we have in the resulting graph Gσ = (A, Nσ, Sσ) that Sσ ⊆ Nσ.

A protocol for Dynamic Gossip is a rule how agents decide whom they should
call. The goal of a gossip protocol is to reach a complete graph, where everybody
knows all secrets. Moreover, good protocols will use fewer calls and avoid super-
fluous or redundant calls. Here we will focus on the LNS protocol from [7]. For
a general definition of protocols in a formal language, see [8].

Definition 4 (LNS Protocol). A call ab is LNS-permitted iff (a, b) ∈ N and
(a, b) �∈ S.

We now define when a protocol is successful on a graph. Intuitively, this
means all possible executions of the protocol lead to a complete graph.

Definition 5 (Success). Let PG bet the set of all call sequences possible on G
and permitted by protocol P . We also call such call sequences P -permitted.

Let a graph G = (A, N, S) and a protocol P be given. A finite call sequence
σ ∈ PG is successful iff Gσ is complete. A sequence σ is P -maximal on G iff σ
is P -permitted on G and there is no call P -permitted on Gσ, i.e. no call ab can
be added to σ such that σ; ab is still P -permitted.

– P is strongly successful on G if all P -maximal σ ∈ PG are successful.
– P is weakly successful on G if there is a σ ∈ PG that is successful.
– P is unsuccessful on G if there is no σ ∈ PG that is successful.

Given a certain class G of networks (graphs) and a protocol P , we can ask
the question: is P (strongly, weakly, un-) successful on G. That is, does P lead to
a complete network? This question, the gossip problem, is used to characterise
networks both by their graph-theoretical properties and by the protocols that
are (strongly, weakly, un-) successful on them.

It is easy to see that on any graph that consists of disconnected parts no
protocol is successful. Hence, graphs need to be weakly connected to allow any
of the protocols to be successful [7].
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Definition 6. A graph G = (A, N, S) is weakly connected iff for all agents
a, b ∈ A there is a undirected N -path between a and b. We say that G is strongly
connected iff for all agents a, b ∈ A there is an N -path from a to b.

A graph G = (A, N, S) is a sun graph iff N is strongly connected on s(G),
where s(G) is the result of removing all terminal agents from G.

Informally, one can think of sun graphs as ‘almost’ strongly connected graphs.

Example 2. The following graph is a sun graph: if we remove the only terminal
agent a, then we obtain a strongly connected graph (consisting of b and c).

a b c

Theorem 1 (Theorem 13 in [7]). Suppose G is an initial gossip graph. Then
LNS is strongly successful on G iff G is a sun graph.

4 Unreliable Gossip

It is easy to define reliable agents: they do exactly what they are expected to
do. In particular, reliable agents communicate truthfully about their own secret,
about secrets of others and share all the phone numbers they have.

However, when unreliability is allowed, there are numerous different options.
There may be noise on the communication channel causing the communication
between agents to fail; agents may (intentionally or unintentionally) follow a
different protocol; agents may actively spread lies, either about their own secret,
about other agents’ secrets or both; agents may sabotage connections between
other agents; unreliable agents may form coalitions to manipulate the network;
the degree of unreliability may evolve over time, via peer pressure or other mech-
anisms; unreliable agents might have a memory of whom they have lied to; etc.
This gives rise to many different types of unreliable behaviour.

In this article we only consider a basic form of unreliability: unreliability in
the form of unintended random memoryless noise. A real-world example for this
kind of unreliability could be a network of sensors that communicate with each
other, but where one or more of the sensors are faulty. We therefore assume:

– Agents all follow the same protocol;
– Unreliable agents only lie about their own secret;
– Connections are not sabotaged;
– Unreliability does not evolve;
– Unreliable agents do not remember to whom they lied;
– Agents consider all new information as true until proven otherwise.

In the standard model of (dynamic) gossip, an agent either knows a secret
or not. For settings with unreliable agents we need more: agents can also have
obtained a wrong secret and thus have a false belief.

To model this, we let secrets be bits and replace the former set of secrets Sa

with two sets: Xa for agents of which a received secret 1, and Ya for agents of
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which a received secret 0. When an agent is in either Xa or Ya, then a considers
that agent to be reliable. But when an agent is both in Xa and Ya, then a will
consider that agent unreliable.

Definition 7 (UG Graph). A gossip graph with unreliable agents, short Unre-
liable Gossip graph or UG graph, is a quadruple G = (A, R,N, S) where A is a
finite set of agents, R ⊆ A is the set of reliable agents, N ⊆ A×A is the network
relation and S : A → P(A) × P(A) assigns to each agent a ∈ A a pair (Xa, Ya).
We say that a has a positive secret of b iff b ∈ Xa, that a has a negative secret
of b iff b ∈ Ya, and that a knows that b is unreliable iff b ∈ Xa ∩ Ya.

We also write Sa for Xa ∪ Ya, which intuitively is the set of all agents of
which a knows any secret. When all agents are reliable (R = A), a UG graph
can be identified with a gossip graph by setting Sa := Xa ∪ Ya for each a ∈ A.

Definition 8 (Initial UG Graph). A UG graph G = (A, R,N, S) is initial
iff for all a ∈ A we have Xa ∪ Ya = {a}.

In a regular call ab, where both agents speak the truth, information is shared
as follows. This means that both agents update their contact lists (Na and Nb,
respectively) and update their sets X, Y by taking unions. In particular, if before
the call agent a had a positive and secret agent b had a negative secret of some
agent c, then after the call both a and b know that agent c is unreliable.

Definition 9 (UG Call between reliable agents). Let G = (A, R,N, S)
be a UG Graph and let a, b ∈ A such that (a, b) ∈ N . The call ab maps G to
Gab = (A, R,Nab, Sab) where Nab is as in Definition 2 and

Sab
c :=

{
(Xa ∪ Xb, Ya ∪ Yb) if c ∈ {a, b}
(Xc, Yc) otherwise

Analogous to Definition 3 we write Gσ for the result of executing a sequence of
calls σ on a UG graph G.

Note that in the definition of a call, agents are naive: they consider all new
information completely trustworthy and update their knowledge accordingly. In
other settings where unreliable agents may lie about secrets of other agents, one
can imagine that agents would adopt a more sceptic approach or prefer first hand
information (an agent sharing their own secret) over second hand information
(and agent sharing a secret of another agent).

5 Unreliable Agents

We now formally define unreliable agents that satisfy the constraints given in
Sect. 4. An unreliable agent may report a wrong value of their own secret in
a call. We do not assume any rules about when and how often an unreliable
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agent reports the wrong value of their secret, only that the probability to lie is
non-zero (for when the probability is zero, it is a reliable agent).

In addition to the call ab from Definition 9, we now define three calls Ab, aB
or AB in which respectively a, b or both agents report the wrong value of their
own secret. That is, the agents denoted with a capital letter are lying about
their own secrets in this call. For example, in a call Ab all secrets are shared
normally, apart from agent a’s secret. More specifically, if a ∈ Xa then the new
set of secrets for b is not given by merging Xa with Xb, and Ya with Yb, but
by merging Xa \ {a} with Xb, and Ya ∪ {a} with Yb. The lying of agent a is
thus represented by acting as if her own secret was in Ya and not in Xa (or vice
versa).

Note that Ab, Ba and AB can only occur if, respectively, a, b or both agents
do not belong to the set of reliable agents R. On the other hand, note that in the
call Ab agent b does not necessarily belong to R, but might still be unreliable
and just happen to speak the truth in this call.

Definition 10 (UG Call with unreliable agents). Let G = (A, R,N, S) be
a UG Graph and let a, b ∈ A such that (a, b) ∈ N . We define four calls.

ababab The call ab maps G to Gab = (A, R,Nab, Sab) from Definition 2.
AbAbAb Suppose a �∈ R. The call Ab maps G to GAb = (A, R,NAb, SAb) where

NAb := Nab from Definition 2, and for agents a and b:

SAb
a := (Xa ∪ Xb, Ya ∪ Yb) (1)

SAb
b :=

⎧⎪⎨
⎪⎩

((Xa \ {a}) ∪ Xb, Ya ∪ {a} ∪ Yb) if a ∈ Xa \ Ya

(Xa ∪ {a} ∪ Xb, (Ya \ {a}) ∪ Yb) if a ∈ Ya \ Xa

(Xa ∪ Xb, Ya ∪ Yb) if a ∈ Xa ∩ Ya

(2)

and SAb
c := (Xc, Yc) for all other agents c /∈ {a, b}.

aBaBaB Vice versa, suppose b �∈ R. The call aB maps G to GaB which is defined
symmetrically, i.e. the same as GBa.

ABABAB Finally, suppose a �∈ R and b �∈ R. The call AB maps G to GAB =
(A, R,NAB , SAB) where NAB := Nab from Definition 2 and for a and b:

SAB
a :=

⎧⎪⎨
⎪⎩

(Xa ∪ (Xb \ {b}), Ya ∪ Yb ∪ {b}) if b ∈ Xb \ Yb

(Xa ∪ Xb ∪ {b}, Ya ∪ (Yb \ {b})) if b ∈ Yb \ Xb

(Xa ∪ Xb, Ya ∪ Yb) if b ∈ Xb ∩ Yb

(3)

SAB
b :=

⎧⎪⎨
⎪⎩

((Xa \ {a}) ∪ Xb, Ya ∪ {a} ∪ Yb) if a ∈ Xa \ Ya

(Xa ∪ {a} ∪ Xb, (Ya \ {a}) ∪ Yb) if a ∈ Ya \ Xa

(Xa ∪ Xb, Ya ∪ Yb) if a ∈ Xa ∩ Ya

(4)

and SAB
c := (Xc, Yc) for all other agents c /∈ {a, b}.

Analogous to Definition 3 we write Gσ for the result of executing a sequence of
reliable or unreliable calls σ on a UG graph G.
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We stress that an unreliable agent will not always report the wrong value. In
fact, then it would be the same as a reliable agent with the opposite secret value,
and the other agents would never find out that the unreliable agent is lying.

To illustrate the different types of calls, consider the following example.

Example 3. Consider the UG graph G = (A, R,N, S) where A = {a, b, c, d},
R = {c, d}, N = A × A and Sx = (Xx, Yx) = ({x}, ∅) for each x ∈ A. The
(LNS-permitted) call sequence AB; ac;Ad; cd; bc changes G as follows:

(Xa, Ya) (Xb, Yb) (Xc, Yc) (Xd, Yd)

({a}, ∅) ({b}, ∅) ({c}, ∅) ({d}, ∅)
AB→ ({a}, {b}) ({b}, {a}) ({c}, ∅) ({d}, ∅)
ac→ ({a, c}, {b}) ({b}, {a}) ({a, c}, {b}) ({d}, ∅)
Ad→ ({a, c, d}, {b}) ({b}, {a}) ({a, c}, {b}) ({c, d}, {a, b})
cd→ ({a, c, d}, {b}) ({b}, {a}) ({a, c, d}, {a, b}) ({a, c, d}, {a, b})
bc→ ({a, c, d}, {b}) ({a, b, c, d}, {a, b}) ({a, b, c, d}, {a, b}) ({a, c, d}, {a, b})

In particular, after the fourth call cd the agents c and d learn that a is unreliable.
However, even after the last call, agent d does not know this about b and no more
call is permitted according to the LNS protocol.

Interestingly, a consequence of Definition 10 is that agents may find out them-
selves that they are unreliable. This is what happens after the call bc in Example 3
for agent b: after this call, b ∈ Xb ∩ Yb, hence she considers herself unreliable.
But this also informs her that she is uncovered by agent c, who learns the same
information about the unreliability of b. If now another agent e enters the net-
work and the call be (or Be) takes place, e will be informed by agent b of her own
unreliability. This results from Definition 10: the last clauses of Eqs. 2, 3 and 4
enforce that, in a call between a and b, whenever a is uncovered, i.e. a ∈ Xa ∩Ya,
the sets Xa and Xb and Ya and Yb are merged without adjustments. Hence
afterwards a ∈ Xb ∩ Yb, i.e. b learns that a is unreliable.

In our setting where unreliability is unintended random memoryless noise
this definition is not problematic, but in fact can help the network to perform
better. In a network of sensors for instance, the unreliable sensor could then give
a signal that it needs to be fixed.

If agents are intentionally unreliable, it might be more realistic to change
their behavior once they learn they are uncovered. To model this we could easily
change the last clauses of Eqs. 2, 3 and 4 in Definition 10 to

(Xa ∪ Xb, Ya \ {a} ∪ Yb) (2’)

(Xa ∪ Xb, Ya \ {a} ∪ Yb) (3’)

(Xa ∪ Xb, Ya ∪ Yb \ {b}) (4’)
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respectively. Similarly, we could do the same but remove a (resp. b) from Xa

(resp. Xb) instead of Ya (resp. Yb), but the effect would be analogous. In that
situation, an uncovered agent will only continue to communicate one value of her
secret (here Xa). In other words, once uncovered she will change her behavior.

A simple example of an unreliable agent is an alternating bluffer that “lies”
in every second call. It provides a first approach to random unintended noise,
but it is deterministic and thus easier to simulate and reason about. We note
that agent a in Example 3 behaves as an alternating bluffer.

In our model there is no “curing” or “going back” from unreliability. Once
an agent is unreliable and consequently (possibly) uncovered, there is no way
for agents to change their behavior. This is sufficient to introduce unreliability
into Dynamic Gossip and explore whether the known results continue to hold.
But of course, for practical applications, it would be desirable to enable agents
to be cured. For example for the application of this framework to the spread of
diseases [9]. An important question is then how agents can convince others that
they have improved their behavior, from unreliable to reliable.

6 Unreliable Success

We now define what it means to be successful in Unreliable Gossip. Completeness
on UG graphs is reached when all agents know all secrets, now in the sense that
each agent knows at least one secret of each other agent. We note that this
is equivalent to completeness on gossip graphs as defined in Definition 1 with
Sa = Xa ∪ Ya.

Definition 11. A UG graph G = (A, R,N, S) is complete iff for all agents
a ∈ A we have Xa ∪ Ya = A.

However, for Unreliable Gossip this kind of completeness and success accord-
ing to Definition 5 is not a useful goal. Instead, the aim of the reliable agents
should be to reach completeness among themselves and to identify all unreliable
agents. We now define reliable completeness formally and argue that it is a more
intuitive goal in the setting of Unreliable Gossip than (mere) completeness.

Definition 12. A UG graph G = (A, R,N, S) is reliably complete iff for all
a ∈ R we have (i) Xa ∪ Ya \ (Xa ∩ Ya) = R, and (ii) Xa ∩ Ya = A \ R.

That is, a graph is reliably complete iff each reliable agent (i) knows the
secrets of all reliable agents and (ii) knows for all unreliable agents that they are
unreliable. We note that in the presence of (ii) the condition (i) is equivalent to
Xa ∪ Ya = A. To make it easier to refer to the second condition we also say that
an agent a identifies the unreliable agents iff Xa ∩ Ya = A \ R.

Note that reliably complete does not imply complete, because in a reliably
complete graph the unreliable agents do not have to know all secrets. Reliable
agents should learn all secrets and identify all unreliable agents, but we do not
care at all about what unreliable agents learn. Also vice versa, completeness
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does not imply reliable completeness, because completeness says nothing about
knowing which other agents are unreliable.

In order to compare completeness on unreliable networks to completeness on
normal networks, we define reliable counter-graphs and reliable subgraphs.

Definition 13. Let G = (A, R,N, S) be a UG Graph. Then we define its reliable
counter-graph G∗ := (A, N, S∗) where S∗

a := (Xa ∪ Ya) \ (Xa ∩ Ya). And we
define its reliable subgraph G|R := (A|R, N |R, S|R) where A|R := R, N |R :=
N ∩ (R × R) and (S|R)a := (Xa ∪ Ya) ∩ R.

A sanity check shows that indeed both G∗ and G|R are gossip graphs. Def-
inition 13 allows us to rephrase the definition of reliable completeness: a graph
G is reliably complete if and only if the reliable subgraph of G is complete and
all reliable agents identify the unreliable agents.

To conclude this section, we define success for Unreliable Gossip, both for
the original notion of completeness and reliable completeness.

Definition 14. Suppose we have a UG graph G and a call sequence σ which
can be executed on G. We say that σ is successful on G iff Gσ is complete and
we say that σ is reliably successful on G iff Gσ is reliably complete.

A protocol is (reliably) weakly/strongly/un-successful on a graph G iff
all/some/no sequences permitted by the protocol and executable on G are (reli-
ably) successful on G.

6.1 LNS Is Not Reliably Successful on Sun Graphs

Here we show that, already with a small amount of unreliability, for example in
the form of the alternating bluffer, a known result about LNS [7] fails to hold.
Specifically, we show that on UG graphs that are sun graphs with only terminal
unreliable agents, LNS fails to identify the unreliable agents in the sense that it
is not reliably successful as defined in the previous section. Before the general
result we give an example where the classification of LNS fails to hold.

Example 4. Consider again the sun graph from Example 2 and suppose a is unre-
liable. Now consider the sequence bc; ba; cA. This is an LNS sequence resulting
in a complete graph. However, if a is an alternating bluffer, then b will learn
one value of the secret of a and c the other. Formally, in the resulting graph
Gbc;ba;cA we have a ∈ Xc \ Yc and a ∈ Yb \ Xb. Unfortunately, LNS allows no
further calls. Hence b and c may no longer communicate and will not notice that
a is unreliable.

Consider ba;Ac; bc. This is also an LNS sequence which can be executed on
the graph above. But in this case b and c talk to each other after having learned
different values from a and will thus find out that a is unreliable. Formally, in
the resulting graph Gba;Ac;bc we have a ∈ (Xb ∩ Yb) and a ∈ (Zc ∩ Yc).

Hence, whether b and c find out that a is unreliable depends on the sequence.
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Example 4 already suffices to show that LNS is not reliably successful on all
sun graphs when we have unreliable agents. However, we now prove something
slightly stronger, namely that for all graphs of a similar shape there is a maximal
sequence which is not successful.

Theorem 2. Consider any initial UG graph with at least one unreliable agent.
If all unreliable agents are terminal then LNS is not reliably strongly successful.

Intuitively, Theorem2 holds because there are call sequences in which the
unreliable agents are called too late, so that the reliable agents cannot verify the
secrets of these unreliable agents with each other. This is the case in Example 4:
the reliable agents b and c first learn each others’ secrets before calling the
unreliable agent a. But then b and c cannot call each other again in LNS and
hence cannot verify the secret of a with each other. That is why they fail to
identify c as unreliable.

We now first prove a lemma.

Lemma 2. Suppose G = (A, R,N, S) is an initial UG graph with at least one
unreliable agent. Moreover, suppose that all unreliable agents in G are terminal.
Then for any LNS-permitted call sequence σ we have: if there is a prefix τ � σ
such that Gτ |R is complete but Gτ is not reliably complete, then also Gσ is not
reliably complete and thus σ is not reliably successful on G.

Lemma 2 states that any LNS sequence cannot become reliably successful
any more as soon as it reaches a complete reliable subgraph. Intuitively, once
the reliable subgraph becomes complete, the reliable agents can no longer call
each other to compare secrets they received from the unreliable agents.

Proof (of Lemma 2). Let G be an initial UG graph with at least one unreliable
agent and where all unreliable agents are terminal. Let σ be an LNS-permitted
call sequence with a prefix τ � σ such that Gτ |R is complete. Then ∀r ∈ R :
Xτ

r ∪Y τ
r ⊇ R and therefore also ∀r ∈ R : Xσ

r ∪Y σ
r ⊇ R because no contradictory

information can be learned about reliable agents.
Now note that after the call sequence τ no more calls from an unreliable

agent to a reliable agent can take place: just after τ the unreliable agents are
still terminal, and in all later calls where they learn the number of a reliable agent
they will also learn the secret of that same agent (because Gτ |R is complete).
Moreover, we can ignore calls between unreliable agents because they do not
affect reliable completeness.

Hence, let ab be the last call to take place in σ from a reliable agent a to an
unreliable agent b. Let σ \ ab denote the sequence without this last call. That
means before the call a knew no secret of b, i.e. b /∈ X

σ\ab
a ∪ Y

σ\ab
a . But then,

because a will not be involved in any later calls, we have that b ∈ Xσ
a ∪ Y σ

a .
Hence agent b will not be identified by agent a and σ is not reliably successful
on G.

Proof (of Theorem 2). Let G = (A, R,N, S) be an initial UG graph that is a sun
graph where all unreliable agents are terminal. Because all unreliable agents are
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terminal, the reliable subgraph G|R of G must be a sun graph too. By Theorem1,
any maximal LNS-permitted call sequence τ consisting of calls ab with a, b ∈ R
will complete G|R, i.e. Gτ |R is complete. Now by Lemma 2, any LNS-permitted
call sequence σ extending τ will fail to identify all unreliable agents and hence
fail to reliably complete the network.

Thus, we cannot extend the sun graph characterisation of LNS to Unreliable
Gossip. This already holds for a small amount of unreliability: one terminal
alternating bluffer. Of course, this is because we now also demand that reliable
agents identify the unreliable agents. If we only care about completeness in the
original sense, then LNS is still strongly successful on UG graphs with respect to
the reliable agents. In particular, even if unreliable agents are involved in earlier
calls (i.e. if there is no τ as in the proof above), the reliable subgraph will still
be completed.

6.2 Blocking Unreliable Agents Hides and Helps Them

How can we “repair” LNS to deal with unreliable agents? Intuitively, blocking
unreliable agents seems a good measure against the spread of false information
in networks because it would prevent unreliable agents from spreading their false
information. This would mean that, when an unreliable agent performs a call to
another agent, her call will be rejected.

By blocking unreliable agents, their communicative power is restricted: they
will not be able to initiate calls – whenever they do, they are rejected. Of course,
conceptually, there is a difference between blocked agents and agents that are
not able to initiate communication. The latter may rather occur whenever their
communicating device is broken. Yet, mathematically, these situations are analo-
gous: in both situations, the unreliable agents cannot successfully make a call to
another agent. Therefore we evaluate the following protocol that limits the unre-
liable agents in their ability to make calls to discuss whether blocking unreliable
agents is indeed a good measure.

Definition 15 (Protocol LNSR). A call ab is LNSR-permitted iff (a, b) ∈ N ,
a ∈ R and (a, b) �∈ S.

But, against the intuition, the protocol LNSR does not only prevent false
information from spreading, it might also prevent unreliable agents from being
detected by the reliable agents. Specifically, we prove that unreliable agents that
are not allowed to initiate any form of communication are harder to identify than
unreliable agents that are. In other words, unreliability can be easier detected
when it is spread more. Therefore the restriction to disable, via blocking, the
unreliable agents from initiating calls is not desirable.

Theorem 3. LNSR is a proper strengthening of LNS in the following sense:

(i) For any UG graph G we have: If LNSR is (reliably) weakly successful on G,
then also LNS is (reliably) weakly successful on G.
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(ii) There is a UG graph G where LNSR is not reliably weakly unsuccessful, but
where LNS is reliably weakly successful.

Proof. (i) Note that any LNSR-permitted call sequence σ is also LNS-permitted.
If LNSR is (reliably) weakly successful on some UG graph G, then there is an
LNSR-permitted call sequence σ such that Gσ is (reliably) complete. But then
σ is also LNS-permitted, and hence LNS is also (reliably) weakly successful on
G.

(ii) Consider the UG graph G = (A, R,N, S) below with A = {a, b, c}, R =
{a, b}, N = {(b, a), (b, c)} and Sx = ({x}, ∅) for all x ∈ A.

a b c

Then the following are all the LNS-permitted call sequences on G. For each
sequence we list four variants, depending on where c is lying.

1. ba; ac; bc or ba; aC; bc or ba; ac; bC or ba; aC; bC
2. ba; bc; ac or ba; bC; ac or ba; bc; aC or ba; bC; aC
3. bc; ca; ba or bC; ca; ba (∗) or bc;Ca; ba or bC;Ca; ba
4. bc; ba; ca or bC; ba; ca or bc; ba;Ca or bC; ba;Ca

Only the call sequences under 1 and 2 are LNSR-permitted. But only the
sequence marked with ∗ reliably completes the network: first the agents a and b
need to learn different values from agent c and after that they should communi-
cate with each other to learn that c is unreliable. None of the other sequences
reliably complete the network and in particular no LNSR-permitted call sequence
reliably completes G. Hence LNS is reliably weakly successful on G, but LNSR
is not.

It is crucial in part (ii) of Theorem 3 that reliable agents are the last to
communicate in order to identify the unreliable agent as such. Thus the success of
the protocol is dependent on the call sequence, and in particular on the position
of calls between reliable agents: they need to verify the secrets of the unreliable
agents. But, agents do not know which agents are the unreliable agents (this
is the goal of the protocol), hence they do not know which secrets need to be
verified nor with whom to verify this.

This problem of verification is similar to the Byzantine Generals Problem [13]
developed to describe a situation in which agents must agree on a joint strategy
to avoid catastrophic failure of the system, but where some of the agents or some
are unreliable. In a simple form, multiple generals are threatened by a common
enemy and they each have to decide whether to attack or to retreat with a pre-
ferred outcome of a coordinated attack or coordinated retreat. A good solution
to the problem is an algorithm that can both guarantee that all reliable generals
decide upon the same plan and that a small number of unreliable generals can-
not cause the reliable generals to adopt a bad strategy. Such solutions have been
studied in the literature under the name of Byzantine Fault Tolerance, starting
with [6] and more recently including [4].
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Theorem 3 illustrates that there are networks on which unreliable agents
remain unidentified when they are not allowed to initiate calls, but can be iden-
tified when they do initiate calls. This has direct consequences for the security
measure to block unreliable agents and raises questions about their effectiveness
for real-life applications and gossip-like settings. For example, a faulty sensor
should not be shut down immediately but continue to communicate such that
it will be identified as faulty by a larger number of other sensors. As another
example, fake news articles shared in social networks will be easier to uncover
and identify if they are not removed or blocked, but instead marked as fake and
continued to be actively shared.

Formally, we define the ideas of blocking and deleting as follows. Deleting
means that an agent removes those agents she knows to be unreliable from her
own phone book. Blocking means that, in addition to deleting, the agent removes
her own number from the phone book of agents she knows to be unreliable.

Definition 16 (Delete and Block). Let G = (A, R,N, S) be a UG graph and
let a ∈ A. The delete action λa maps G to Gλa = (A, R,Nλa , S) and the block
action μa maps G to Gμa = (A, R,Nμa , S), which are defined by

Nλa
c :=

{
Nc if c �= a

Nc \ (Xc ∩ Yc) if c = a

Nμa
c =

⎧⎪⎨
⎪⎩

Nc if c �= a and c /∈ Xa ∩ Ya

Nc \ {a} if c �= a and c ∈ Xa ∩ Ya

Nc \ (Xc ∩ Yc) if c = a

As Theorem 3 shows, blocking unreliable agents, though seemingly a good
approach to prevent the spread of false information, comes at a cost. Block-
ing unreliable agents seems analogous to restricting their communicative power
because the effects are the same: unreliable agents will not be able to initi-
ate communication. This is exactly what has been shown to help them remain
unidentified.

However, in contrast to LNSR, let us now assume that agents only block
other agents once they have identified them as unreliable. They will then be able
to forward the information that agents are unreliable to others. The following
example illustrates how this can prevent the unwanted effect of hiding unreliable
agents.

Example 5. Consider the following network of four agents with one unreliable
agent, agent b, i.e. A = {a, b, c, d} and R = {a, c, d}:

a b c d

Suppose that the reliable agents block the unreliable agents as soon as they
identify them. Consider the LNS-permitted call sequence ab; cB; ac; cd. After
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the subsequence ab; cB; ac the agents a and c will identify agent b as unreliable
and this will then be communicated to agent d in the final call cd. Hence also
agent d will block b after this and the whole sequence is reliably successful.

A disadvantage of both LNSR and blocking known-to-be-unreliable agents is
that it might exclude other reliable agents “behind” unreliable ones. Whenever
there is a reliable agent a that is only able to communicate with an unreliable
agent, blocking this unreliable agent also prevents agent a to contact the rest of
the network. She is therefore excluded from the rest of the network. Consider
the following example.

Example 6. Let G = (A, R,N, S) be the network drawn below where R = A\{b}
and A \ {a, b} forms a complete cluster, i.e. ∀r ∈ A \ {a, b}: Xr ∪ Yr = A \ {b}.
Suppose further that all agents in the cluster consider b unreliable, i.e. ∀r ∈
A \ {a, b} : b ∈ Xr ∩ Yr, and have no information about a, that b has all the
information about A\{a} and that a only has the phone number of b, as drawn
below. Then blocking agent b effectively blocks agent a and the network will not
be reliably completed. We argue that this is a realistic scenario for LNS: the call
ab might come too late in the call sequence. Then, because the other reliable
agents block agent b, agent a is also blocked indirectly.

A \ {a, b} b a

7 Discussion and Conclusion

We extended the formal model of Dynamic Gossip from [7] to include unreliable
agents. To better capture success in Dynamic Gossip with unreliable agents we
defined the notion of reliable success: all reliable agents should learn all secrets
and they should identify the unreliable agents. We have then shown that, already
with a single unreliable agent, we cannot extend the results about the success of
the LNS protocol: LNS is successful in the old sense, but not reliably successful
on sun graphs with unreliable terminal agents. This shows that the assumption
that everybody is reliable is crucial for the success of LNS and that LNS should
be adapted for practical applications where agents might fail.

We then examined a way to counter the spread of false information, namely
to restrict communication of unreliable agents. It turns out that unreliable infor-
mation that is not actively spread is harder to identify than unreliable infor-
mation that is actively spread. This has seemingly paradoxical consequences
for measures against unreliable agents: blocking can have a contrary effect and
help unreliable agents to remain unidentified. Thus, there is a pay-off between
identifying and containing false information.

Our framework and in particular the alternating bluffer are of course simplis-
tic and there are many ways to extend this work: agents can also be unreliable or
(with intent) lie about other agents’ secrets, about phone numbers, about their
own knowledge, etc. Yet, we see this work as a starting point for the discussion
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of reliability and unreliability in dynamic gossip and its real life applications. We
thus end this article with the following open questions.

– What is the class of unreliable gossip graphs characterized by LNS?
– Is there any limitation on the position of unreliable agents in this class?
– Is there an LNS weakening or strengthening (in the sense of [8]) that performs

better in situations with unreliability?

Further research will show how Dynamic Gossip protocols can be adapted to
deal with other forms of unreliability.

Finally, we want to stress that this work is not purely theoretical: social
media and the spread of fake news can be seen as an instance of gossip with
unreliable agents. Some social networks already use hybrid strategies where false
information is not blocked but just marked as such.
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Marta B́ılková1 , Sabine Frittella2(B) , Ondrej Majer3 ,
and Sajad Nazari2

1 The Czech Academy of Sciences, Institute of Computer Science,
Prague, Czech Republic
bilkova@cs.cas.cz

2 INSA Centre Val de Loire, Univ. Orléans, LIFO EA 4022, Bourges, France
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Abstract. A recent line of research has developed around logics of belief
based on evidence [4,6]. The approach of [6] understands belief as based
on information confirmed by a reliable source. We propose a finer analysis
of how belief can be based on information, where the confirmation comes
from multiple possibly conflicting sources and is of a probabilistic nature.
We use Belnap-Dunn logic and its probabilistic extensions to account for
potentially contradictory information on which belief is grounded. We
combine it with an extension of �Lukasiewicz logic, or a bilattice logic,
within a two-layer modal logical framework to account for belief.

Keywords: Epistemic logics · Non-standard probabilities ·
Belnap-Dunn logic · Two-layer modal logic

1 Introduction

To form beliefs about the world, we collect and process data of different origins
to provide us with reliable information concerning particular issues. Information
derived from data typically is of a probabilistic nature, and, as obtained from
multiple sources of different origins, it inevitably is incomplete and often conflict-
ing concerning the issues we wish to resolve. In this context, we propose logics
to formalize how an agent can build beliefs based on information (uncertain,
incomplete, and sometimes inconsistent) provided from the available collected
data, and how to reason with and about such beliefs.

Incompleteness of information alone is ever-present when reasoning about
data. Applications, such as relational databases, often use many-valued logics
to properly account for indefiniteness. Namely, Kleene’s three-valued logic [23]
became the design choice of SQL and similar systems (the use of Kleene’s logic
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in this context was first proposed by [8], and argued optimal in [9].) In [5],
Belnap introduced a four-valued logic with intended database applications (see
e.g. [18]), which extends Kleene’s logic, but also allows to model reasoning with
non-trivial inconsistencies. Further developed by Dunn [13], Belnap-Dunn four-
valued logic BD, also referred to as First Degree Entailment, became a promi-
nent logical framework which encompasses reasoning with both incomplete and
inconsistent information. This logic evaluates formulas to Belnap-Dunn square –
a lattice built over an extended set of truth values {t, f, b, n} (true, false, both,
neither), where b and n correspond to inconsistent and incomplete information
respectively (Fig. 1, middle). One of the underlying ideas of this logic is that
not only truth, but also amount of information that formulas carry (reflected
by the four semantical values) matters. This idea was generalized by introduc-
ing the algebraic notion of bilattices by Ginsberg [17] in the context of AI, and
studied further in [22,26]. Bilattices contain two lattice orders simultaneously:
a truth order, and a knowledge (or an information) order. Belnap-Dunn square,
the smallest interlaced bilattice, can be seen as the product bilattice of the two-
element lattice (Fig. 1, left) where the truth-values are pairs of classical values
which can be naturally interpreted as representing two independent dimensions
of information – positive and negative one1. We can understand them as provid-
ing positive and negative support for statements independently. It was used to
provide the logic with the double-valuation frame semantics by Dunn [13].

The problem of dealing with inconsistency concerns probabilistic information
as well. There are essentially two ways out. One way is to get rid of inconsis-
tencies, the other way is to develop systems with inference rules which can work
with inconsistent premises. While on the logic side there are systems providing
both kinds of solutions, for example belief revision or paraconsistent logics, the
majority of solutions on the probability side go for the first solution – getting
rid of inconsistency (cf. the Dempster–Shafer theory of belief functions [11]) –
and the attempts of the second kind emerged only relatively recently. Zhou [28]
extends the theory of belief functions to the setting of distributive lattices, in
particular bilattices and de Morgan lattices, and provides a complete logic to
reason about belief functions based on BD. Michael Dunn [14] defines a proba-
blistic framework over four-valued logic and studies properties of the resulting
probabilistic entailment. The idea of an independent account for positive and
negative information, underlying the double-valuation semantics of BD, natu-
rally generalizes to probabilistic extensions of Belnap-Dunn four-valued logic
proposed in [24], which we will use in this paper. It generalizes Belnap–Dunn
logic in a similar way as classical probability theory generalizes propositional
logic, and is referred to as theory of non-standard probabilities.

When it comes to management of uncertainty, probability and other measures
of uncertainty can be understood as graded notions, as one tries to quantify the
plausibility of unverified events typically over the interval [0,1]. Graded notions
are one of the subjects traditionally studied by methods of fuzzy logics. As

1 This independence assumption has in fact a support in scientific practice – if an
experiment confirming a hypothesis fails, does not automatically mean it is rejected.
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probability is not truth-functional, it does not admit a straightforward treatment
by logical methods. However, one may deal with probability as a modal operator
in logical systems (cf. [21]), for example in the systems of modal fuzzy logic [19].
There are two main approaches to probabilistic modalities over classical logic:
two-layered and intensional. The two-layered logical formalism introduced in
[15,20] separates the non-modal lower language of events from the modal upper
language of probabilities. The system divides into three parts: lower level of
classical propositional reasoning, reasoning about probabilities consisting of the
axioms that characterize probability measures in finite spaces, and the upper
level of reasoning about (Boolean combinations of) linear inequalities. Hájek
[19] proposed to replace the quantitative reasoning in form of linear inequalities
with many-valued reasoning, namely �Lukasiewicz logic, in such formalism on
the upper level to obtain a fuzzy probability logic for formal reasoning under
uncertainty. The graded modality “probably”, which can be used to model belief
of an agent understood as a kind of subjective probability, is interpreted as a
finitely-additive probability on a Boolean algebra of events with values in the
real unit interval. Consequently, a class of modal logics for dealing with virtually
any uncertainty measure has been covered by the formalism in [7]. In this paper,
we aim at extending the framework to encompass reasoning with inconsistent
probability information.

We look at an agent who considers a set of issues, has access to (multiple)
sources providing positive and negative information on the issues in form of non-
standard probabilities, and builds beliefs based on information aggregated from
these sources. From plethora of possible scenarios we single out two case studies
that we use to illustrate the different concepts at stake.

Example 1 (Aggregating heterogeneous data). A company launching a new car
model needs to decide its selling price and its advertising strategy. Hence, its data
analysts must study the reports on the sells of the previous products launched
by the company and the success or failure of the advertisement campaigns. This
study relies on factual information such as “during the year 2015, the company
sold n items of product Y ”, but also on statement based on statistical analy-
ses such as “the advertisement broadcasted in June 2016 increased the sells of
product Y among the 20–30 years old of 30%”. The second statement is based
on aggregated information about the buyers that might be partial and partly
false. Plus, the company has access to statistical studies about the population
on increase or decrease in expenses for cars.

Example 2 (How to lead an investigation). An investigator needs to know if one
of the suspects was present at the crime scene. She collects information from
various sources: CCTV camera recordings, ATM logs, witnesses’ statements,
etc. No information of this kind is absolutely precise, and typically different
sources of information contradict each other. Sources provide information of a
probabilistic nature: camera recordings are imprecise due to light conditions,
witnesses are not absolutely sure what they have seen. Moreover, the pieces of
evidence confirming investigator’s hypothesis that the suspect was present at
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the place of crime (that is, the positive information) are different from, and
somewhat independent of, those rejecting it (that is, the negative information):
there is a CCTV camera closed to the crime scene vs. ATM in a supermarket
in a different city. For example, a lack of evidence supporting the suspect was
present at the crime scene does not yield a proof she was not there. In the
end, the investigator has to aggregate the available information and form beliefs
about what likely happened.

In many scenarios we can adapt aggregation strategies that have been intro-
duced on classical probabilities: a company that has access to a huge amount
of heterogeneous data from various sources and uses software capable of ana-
lyzing these data. In this case it makes sense to consider aggregation methods
that require a substantial computational power. A natural strategy here is to
evaluate sources with respect to their reliability and aggregate them by taking
their weighted average. Another kind of agent is an investigator of a criminal
case who builds her opinion on the guilt of a suspect based on different pieces of
evidence. We assume that all the sources are equally reliable and the investigator
is very cautious and does not want to draw conclusions hastily. Hence, she relies
on statements as little as all her sources agree on them, and the aggregation
she uses returns the minimum of the positive and the minimum of the negative
probabilities provided by the sources. If on the other hand the investigator con-
siders all the sources being perfectly reliable, she accepts every piece of evidence
and builds her belief using the aggregation maximazing both probabilities.

In what follows, we will propose two-layer modal logics of belief of a single
agent, belief that is grounded on probabilistic information provided (positive and
negative information independently) by multiple sources. The underlying logic
of facts or events is chosen to be BD, the upper logic varies between BD and
logics derived from �Lukasiewicz logic and based on product or bilattice algebras,
to systematically account for positive and negative information independently
(and thus incompleteness and conflict) on both levels.

(0, 1)

(0, 0) (1, 1)

(1, 0)

f

n b
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(0, 1)

(1, 1)

Fig. 1. The product bilattice 2 � 2 (left), which is isomorphic to Dunn-Belnap square
4 (middle), and its continuous probabilistic extension (right). Negation flips the values
along the horizontal line.
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2 Preliminaries

We will first introduce algebraic structures involved as algebras of truth-values in
the resulting two-layer logics of belief presented in Sect. 3, where we also motivate
their choice (namely bilattices of Examples 3, 4, and 6, and the product algebra
of Example 5). Then we briefly describe the Belnap-Dunn logic, and explain the
approach to probability based on Belnap-Dunn logic.

2.1 Some Bilattices and MV Algebras

A bilattice is an algebra B = (B,∧,∨,�,�,¬) such that the reducts (B,∧,∨)
and (B,�,�) are both lattices and the negation ¬ is a unary operation satisfying
that for every a, b ∈ B,

if a ≤t b then ¬b ≤t ¬a, if a ≤k b then ¬a ≤k ¬b, a = ¬¬a,

with ≤t (resp. ≤k) the order on (B,∧,∨) (resp. (B,�,�)) called the truth (resp.
knowledge or information) order. A bilattice is interlaced if each one of the four
operations ∧, ∨, �, � is monotone w.r.t. both orders ≤t and ≤k. Bilattices, as
well as interlaced bilattices, form a variety.

Given an arbitrary lattice L = (L,∧L,∨L), we can construct the product
bilattice L�L = (L×L,∧,∨,�,�,¬) as follows: for all (a1, a2), (b1, b2) ∈ L×L,

(a1, a2) ≤t (b1, b2) iff a1 ≤ b1 and b2 ≤ a1

¬(a1, a2) := (a2, a1)
(a1, a2) ∧ (b1, b2) := (a1 ∧L b1, a2 ∨L b2)
(a1, a2) ∨ (b1, b2) := (a1 ∨L b1, a2 ∧L b2)
(a1, a2) � (b1, b2) := (a1 ∧L b1, a2 ∧L b2)
(a1, a2) � (b1, b2) := (a1 ∨L b1, a2 ∨L b2)

L � L is always an interlaced bilattice, and any interlaced bilattice can be rep-
resented as a product billatice: a bilattice B is interlaced if and only if there is
a lattice L such that B ∼= L � L [2].

Example 3. The smallest interlaced bilattice is the product bilattice of the two-
element lattice 2�2 (Fig. 1 left). It is isomorphic to Dunn-Belnap square 4 used
as a matrix of truth values for Belnap-Dunn logic (Fig. 1 middle), with {t, b}
being the designated values.

Example 4. A probabilistic extension of Dunn-Belnap square (Fig. 1 right)
can be seen as based on the product bilattice L[0,1] � L[0,1], where L[0,1] =
([0, 1],min,max).

A residuated lattice is an algebra L = (L,∧L,∨L, ·, \, /), where the reduct
(L,∧L,∨L) is a lattice, (L, ·) is a semi-group (i.e. the operation · is associative)
and the residuation properties hold: for all a, b, c ∈ L:

a · b ≤ c iff b ≤ a \ c iff a ≤ c/b.
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Example 5. 1. [0, 1]�L = ([0, 1],∧,∨,&�L,→�L), the standard algebra of �Luka-
siewicz logic, is a residuated lattice, an MV algebra2, and it generates the
variety of MV algebras. (As &�L is commutative, the two implications coin-
cide.) For all a, b ∈ [0, 1], we define a negation ∼�La := a →�L 0 := 1 − a, and
the standard operations

a ∧ b := min{a, b}, a&�Lb := max{0, a + b − 1},

a ∨ b := max{a, b}, a →�L b := min{1, 1 − a + b)}.

2. [0, 1]op
�L = ([0, 1]op,∨,∧,⊕�L,��L) arises turning the standard algebra upside

down, and is isomorphic to the original one. Here, we have ∼�La := 1 ��L a,

a ⊕�L b ≈ ∼a →�L b = min{1, a + b} a ��L b ≈ ∼(a →�L b) = max{0, a − b}.

3. Finally, we will consider the product MV algebra [0, 1]�L × [0, 1]op
�L = ([0, 1] ×

[0, 1]op,∧,∨,&,→) with operations defined pointwise, ∼(a1, a2) := a →
(0, 1) = (∼a1,∼a2), and:

(a1, a2)&(b1, b2) := (a1&�Lb1, a2 ⊕�L b2)
(a1, a2) → (b1, b2) := (a1 →�L b1, b2 ��L a2) = (a1 →�L b1,∼a2&�Lb2).

As both the projections are surjective homomorphisms of MV algebras, this
algebra also generates the variety of MV algebras.

Given a residuated lattice L = (L,∧L,∨L, ·, \, /) the product residuated bilat-
tice [22] L � L = (L × L,∧,∨,�,�,⊃,⊂,¬) is defined as follows: the reduct
(L × L,∧,∨,�,�) is the product bilattice (L,∧L,∨L) � (L,∧L,∨L) and, for all
(a1, a2), (b1, b2) ∈ L × L,

(a1, a2) ⊃ (b1, b2) := (a1 \ b1, b2 · a1), (a1, a2) ⊂ (b1, b2) := (a1/b1, b1 · a2).

One can then define the following operations: for all a, b ∈ L × L,

a → b := (a ⊃ b) ∧ (¬a ⊂ ¬b), a ← b := ¬a → ¬b, a ∗ b := ¬(b → ¬a).

For any product residuated bilattice, the structure (L × L,∧,∨, ∗,→,←,¬) is
a residuated bilattice endowed with an involutive negation. If · is commutative
(associative), so is ∗.

Example 6. The product residuated bilattice arising from the standard MV alge-
bra is the structure [0, 1]�L � [0, 1]�L = ([0, 1] × [0, 1],∧,∨,�,�,⊃,¬, (0, 0)) where:

(a1, a2) ∗ (b1, b2) := (a1&�Lb1, (a1 →�L b2) ∧ (b1 →�L a2))
(a1, a2) → (b1, b2) := ((a1 →�L b1) ∧ (b2 →�L a2), a1&�Lb2),

and (1, 1) acts as the unit of the ∗: (1, 1) ∗ a = a ∗ (1, 1) = a.3 We define
2 For more on �Lukasiewicz logic and MV algebras (in particular finite standard com-

pleteness w.r.t. [0, 1]�L) see e.g. [12].
3 Definitions of →, ∗ match those used in [10] for interval based fuzzy logics, via a

transformation given by (x1, x2) �→ (x1, 1 − x2) (symmetry across the (0, 0.5)(1, 0.5)
line).



74 M. B́ılková et al.

∼a := (a ⊃ (0, 0)) � ¬(¬a ⊃ (0, 0)) = (∼�La1,∼�La2)
a ⊕ b := (∼a ⊃ b) � ¬(∼¬a ⊃ ¬b) = (a1 ⊕�L b1, a2 ⊕�L b2)
a � b := ∼(a ⊃ b) � ¬∼(¬a ⊃ ¬b) = (a1 ��L b1, a2 ��L b2).

From [22], we know that the (isomorphic copies of) product residuated bilat-
tices obtained from MV algebras form a variety, and its axiomatization can be
obtained by translating the one of MV algebras (in the language of residuated
lattices)4.

2.2 Belnap-Dunn Logic

Belnap-Dunn four-valued logic BD, in the propositional language LBD built from
a (countable) set Prop of propositional variables using connectives {∧,∨,¬},
evaluates formulas to Belnap-Dunn square – the (de Morgan) lattice 4 built
over an extended set of truth values {t, f, b, n} (Fig. 1, middle).

The consequence relation of logic BD is given, based on the logical matrix
(4, F ) with F = {t, b} being the designated values, as

Γ �BD ϕ iff ∀e (e[Γ ] ⊆ F → e(ϕ) ∈ F ).

A frame semantics can also be given for BD, in two ways. Belnap-Dunn four-
valued model is a tuple 〈W,4, e〉 where W is a set of states and e is a valuation
of atomic formulas e : Prop × W → 4. The valuation is extended to formulas of
LBD using the algebraic operations on 4 in the expected way.

Following Dunn’s approach [13], we adopt a double valuation model M =
〈W,�+,�−〉, giving the positive and negative support of atomic formulas in the
states, extending in the following way:

s �+ ϕ ∨ ψ iff s �+ ϕ or s �+ ψ, s �+ ϕ ∧ ψ iff s �+ ϕ and s �+ ψ,
s �− ϕ ∨ ψ iff s �− ϕ and s �− ψ, s �− ϕ ∧ ψ iff s �− ϕ or s �− ψ.
s �+ ¬ϕ iff s �− ϕ s �− ¬ϕ iff s �+ ϕ

It can be seen as locally evaluating formulas in the product bilattice 2�2 (Fig. 1
left), and thus in 4 (Fig. 1, middle), connecting it with the four-valued frame
semantics above. BD is completely axiomatized using the following axioms and
rules:

ϕ ∧ ψ � ϕ ϕ ∧ ψ � ψ ϕ � ψ ∨ ϕ ϕ � ϕ ∨ ψ
ϕ � ¬¬ϕ ¬¬ϕ � ϕ ϕ ∧ (ψ ∨ χ) � (ϕ ∧ ψ) ∨ (ϕ ∧ χ)
ϕ � ψ,ψ � χ

ϕ � χ

ϕ � ψ,ϕ � χ

ϕ � ψ ∧ χ

ϕ � χ, ψ � χ

ϕ ∨ ψ � χ

ϕ � ψ

¬ψ � ¬ϕ

4 [22] hints at the correspondence between subvarieties of residuated lattices and resid-
uated bilattices being categorial. This would mean that the mentioned variety is in
fact generated by the product bilattice of the standard MV algebra. One could then
use the translation from [22] to obtain axiomatics of the logic introduced at the end
of Subsect. 3.1.
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It is known to be (strongly) complete w.r.t. the algebraic and the double valua-
tion (or 4-valued) frame semantics. BD is also known to be locally finite.5

We will use BD in the two-layer formalism mainly to capture the underlying
information states on which sources of probabilistic information are based.

2.3 Non-standard Probabilities

The idea of independence of positive and negative information naturally gene-
ralizes to probabilistic extensions of BD logic as follows. A probabilistic Belnap-
Dunn (BD) model [24] is a double valuation BD model extended with a classical
probability measure on the power set of states P (W ) generated by a mass func-
tion on the set of states W .6 The positive and negative probabilities of a formula
are defined as (classical) measures of its positive and negative extensions:

p+(ϕ) :=
∑

s �+ϕ

m(s) and p−(ϕ) :=
∑

s �−ϕ

m(s).

The probabilities satisfy the following axioms (see [24, Lemma 1]):

(A1) normalization 0 ≤ p(ϕ) ≤ 1
(A2) monotonicity if ϕ �BD ψ then p+(ϕ) ≤ p+(ψ) and p−(ψ) ≤ p−(ϕ)
(A3) import-export p(ϕ ∧ ψ) + p(ϕ ∨ ψ) = p(ϕ) + p(ψ).

These axioms are weaker than classical Kolmogorovian ones. In particular, axiom
A3 can be derived from Kolmogorovian axioms of additivity and normaliza-
tion, but additivity is strictly stronger and cannot be derived from A1-A3 7. As
p(¬ϕ) �= 1 − p(ϕ) in general, this account of probability admits positive prob-
ability of classical contradictions and thus allows for a non-trivial treatment of
classically inconsistent information. When defined as above, the positive and
negative probabilities are mutually definable via negation as p−(ϕ) = p+(¬ϕ).
It has been shown in [24, Theorem 4] that any non-standard probability assign-
ment (i.e., positive and negative probability satisfying the four axioms) arises
from a classical probability measure on a BD double-valuation model as described
above.

We can diagrammatically represent non-standard probabilities on a contin-
uous extension of Belnap-Dunn square (Fig. 1, right), which we can see as a
product bilattice L[0,1] � L[0,1]. For example, the point (0, 0) corresponds to no
information being provided (neither ϕ nor ¬ϕ is supported by any state with
positive measure in the underlying model), while (1, 1) is the point of maximally
conflicting information (both ϕ and ¬ϕ are “certain” - supported by every state
with positive measure). The left-hand triangle (1, 0), (0, 0), (0, 1) corresponds to
5 It means there are only finitely many (up to inter-derivability) formulas in a fixed

finite set of propositional variables. It affects the completeness of the logic in Sub-
sect. 3.1. More on BD and its properties can be found e.g. in the thesis [25].

6 The probability of a set X ⊆ W is defined as the sum of masses of its elements.
7 Considering just the inequality p(ϕ ∨ ψ) ≥ p(ϕ)+ p(ψ)− p(ϕ ∧ ψ) in place of A3, we

obtain belief functions on (finite) distributive lattices [20,28].
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the cases of incomplete information, the right-hand triangle (1, 0), (1, 1), (0, 1)
corresponds to the cases of conflicting information. The vertical dashed line
corresponds to the “classical” probabilities when positive and negative support
sum up to 1. The horizontal line represents situations where we have as much
information supporting ϕ as contradicting it.

Example 7 (Consulting a panel). The company assembles a panel to which they
ask whether a word describes the car well or not. That is, they ask how much
they agree with the statements: “the car has property φ (e.g. being a family
car)?” and “the car does not have property φ?” If humans were classical agents,
every person would answer with a probability p that belongs to the vertical line
of the probabilistic extension of the Belnap-Dunn square. However, experience
has shown that often people don’t reason classically [1]. When a person answers
(p+(φ), p−(φ)), if p+(φ) + p−(φ) > 1, then she is conflicted about whether the
property φ describes the car, if p+(φ) + p−(φ) < 1, then there might be some
uncertainty on how to judge whether the car has property φ.

2.4 Aggregating Probabilities

We model an agent that considers a set of topics listed by the atomic variables
in Prop, has access to sources giving information within the framework of non-
standard probabilities (which we will call simply probabilities) and builds beliefs
based on these sources using a so-called aggregation strategy. We focus on cases
where the agent has no prior beliefs about the topics at stake. Depending on the
context, the aggregation strategy should satisfy different properties.

A source s is a probability assignment over the set of formulas s : LBD →
[0, 1] × [0, 1]. In particular, we will later identify a source with a mass function
on the BD states of a double-valuation model. An aggregation strategy Agg is
a function that takes in input a set of sources S = {si}i∈I and returns a map
AggS : LBD → [0, 1] × [0, 1]. For every ϕ ∈ LBD, we denote AggS(ϕ)+ (resp.
AggS(ϕ)−) the positive (resp. negative) support assigned to ϕ.

Agg is monotone if ϕ � ψ implies AggS(ϕ) ≤ AggS(ψ) for all ϕ,ψ ∈ LBD and
for every S. Agg is ¬-compatible if AggS(ϕ)− = AggS(¬ϕ)+ for every ϕ ∈ LBD

and for every S. Agg preserves probabilities if AggS is a probability for every S.
Many aggregation strategies have been introduced on classical probabilities.

Some of them, such as the (weighted) average, straightforwardly generalize to
non-standard probabilities. In the following, we present aggregation strategies
for our two case studies.

Weighted Average. In Example 1, a company has access to a huge amount of
heterogeneous data from various sources and to software to analyse these data.
A natural proposal is to grade every source si with respect to its reliability wi

and to take the weighted average of the probabilities. The aggregation is then
the map WA : LBD → [0, 1] × [0, 1] such that, for every ϕ ∈ LBD,

WA+(ϕ) :=

∑
1≤i≤n wi · p+

i (ϕ)
∑

1≤i≤n wi
and WA−(ϕ) :=

∑
1≤i≤n wi · p−

i (ϕ)
∑

1≤i≤n wi
.
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One can easily prove that WA preserves probabilities, it is monotone, and ¬-
compatible. This aggregation strategy is however not feasible when modelling
human reasoning.

A Very Cautious Investigator. In Example 2, an investigator builds her opinion
on the suspect based on different sources. We assume all the sources are equally
reliable and the investigator does not want to draw conclusions hastily. Hence,
she relies only on statements all her sources agree on. The aggregation is then
the map Min : LBD → [0, 1] × [0, 1] such that

Min(ϕ) := �1≤i≤n pi(ϕ) =
(

min
1≤i≤n

p+
i (ϕ), min

1≤i≤n
p−

i (ϕ)
)

.

Reasoning with Trusted Sources. Staying in Example 2, we now assume all the
sources are perfectly reliable. Hence, the investigator builds her belief on every
statement supported by at least one source. The aggregation is then the map
Max : LBD → [0, 1] × [0, 1] such that

Max(ϕ) := �1≤i≤n pi(ϕ) =
(

max
1≤i≤n

p+
i (ϕ), max

1≤i≤n
p−

i (ϕ)
)

.

Here, one has high chances of reaching contradiction. In a scientific analyses, if
one gets experiments or information that is contradictory, there are two options.
Either the information is incorrect or there is a mistake in the interpretation of
the data. Here, if the sources are 100% reliable, reaching a contradiction state
will simply indicate to our investigator that there is a flaw in her analysis of the
problem and she needs to change perspective to resolve the conflict.

The two latter aggregation strategies are monotone and ¬-compatible, and
they in general do not preserve probabilities.

3 Two-Layer Logics

To make a clear distinction between the level of events or facts, information on
which the agent bases her beliefs, and the level of reasoning about her beliefs,
we use a two-layer logical framework. The formalism originated with [15,19],
and was further developed in [3,7] into an abstract algebraic framework with
a general theory of syntax, semantics and completeness (we will employ this
framework to derive completeness of the logics we define).

Syntax (Le,M,Lu) of a two layer logic L consists of a lower language Le of
events or facts (we denote formulas of Le by ϕ,ψ, . . .), an upper language Lu (we
denote formulas of Lu by α, β, . . .), and a set of unary modalities M which can
only be applied to a non-modal formula of Le, forming a modal atomic formula
of Lu (in particular, no nesting of modalities can occur).

Semantics of a two layer logic L is, in the abstract approach of [7], based on
frames of the form F = (W,E,U, 〈μ♥〉♥∈M), where W is a set of states, E is
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a local algebra of evaluation of the lower language Le within the states8, U is
an upper-level algebra interpreting the modal formulas, and for each modality
its semantics is given by a map μ♥ :

∏
s∈W E → U , returning a value in the

upper-level algebra for a tuple of values from the lower algebra (assigned to an
argument formula within the states). We write algebras, but often we need to use
matrices to evaluate formulas, i.e. algebras with a set of designated values. Such
a frame is called E-based and U -measured. A model is a frame equipped with
valuations of Le in E (the values of atomic modal formulas are then computed
by μ, and values of modal formulas are computed in U in an expected way). A
non-modal formula ϕ is valid in a model iff it is assigned a designated value in E
by all the states, a modal formula α is valid in a model iff its value is designated
in U . A consequence relation is defined via preserving validity in every model.
It is of the sorted form Ψ, Γ � ξ where Ψ ⊆ Le, Γ ⊆ Lu, ξ ∈ Le ∪ Lu.

The resulting logic as an axiomatic system L = (Le,M,Lu) consists of an
axiomatics of the lower logic Le, modal rules (i.e. rules with non-modal premises
and modal conclusion) and modal axioms (modal rules with zero premises) M ,
and an axiomatics of the upper logic Lu. Proofs can be defined in the expected
way. We can see that Ψ, Γ � ϕ iff Ψ �Le

ϕ, and Ψ, Γ � α iff ΨMR, Γ �Lu
α,

where ΨMR consists of conclusions of modal rules whose premises are derivable
from Ψ in Le (for more detail see [3, Proposition 3]).

3.1 Logic of Probabilistic Belief

In scenarios like that of Example 1, it is reasonable to represent agents beliefs as
probabilities. In such two-layer logics, the bottom layer is that of events or facts,
represented by BD-information states. A source provides probabilistic informa-
tion given as a mass function on the states, multiple sources are to be aggregated
with an aggregation strategy preserving probabilities. The modality is that of
probabilistic belief. For the upper-layer – the logic of thus formed beliefs – we
propose two logics derived from �Lukasiewicz logic. The main reason to choose
�Lukasiewicz logic as a starting point is that it can express the probability axioms,
and contains a well-behaved (continuous) implication. We however also aim at
a formalism that allows us to separate the positive and negative dimensions of
information or support also on the level of beliefs (just like BD does on the
lower level). This motivates the use of product or bilattice algebras (those of
Examples 5 and 6) on the upper level.

I. An extension of �Lukasiewicz logic with bilattice negation. Consider the product
of the standard algebra of �Lukasiewicz logic [0, 1]�L = ([0, 1],∧,∨,&�L,→�L) with
the algebra [0, 1]op

�L = ([0, 1]op,∨,∧,⊕�L,��L), as introduced in Example 5(3.), with
only (1, 0) as the designated value. The logic of this product algebra (understood
as the set of theorems - formulas always evaluated at (1, 0) - or as a consequence
relation preserving the value (1, 0)) is �Lukasiewicz logic �L. It can be axiomatized

8 For this paper, we always consider the lower algebras be the same for all states. But
different algebras can be later used when modelling heterogeneous information.
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in the (complete) language {→,∼} by axioms of weakening, suffixing, commu-
tativity of disjunction, and contraposition, and the rule of Modus Ponens (see
the axioms below). To be able to operate the pairs of values as a positive and
negative support of formulas, we extend the signature of the algebra with the
bilattice negation ¬(a1, a2) = (a2, a1), and extend the language to {→,∼,¬}
(notice in particular, that ⊕ and � can be defined as in Example 5). We obtain
the following axioms and rules, and denote the resulting consequence relation
��L(¬):

α → (β → α) ¬¬α ↔ α

(α → β) → ((β → γ) → (α → γ)) ¬∼α ↔ ∼¬α

((α → β) → β) → ((β → α) → α) (∼¬α → ∼¬β) ↔ ∼¬(α → β)
(∼β → ∼α) → (α → β) α, α → β/β α/∼¬α

The ¬ negations can be pushed to the atomic formulas, and we can thus consider
formulas up to provable equivalence in a negation normal form (nnf), i.e. formu-
las built using {→,∼} from literals of the form p,¬p. It is easy to see, because
we have ¬∼α ↔ ∼¬α and ¬(α → β) ↔ ∼∼¬(α → β) ↔ ∼(∼¬α → ∼¬β) prov-
able. A procedure can be defined which turns each α into α¬ in nnf, so that we
can prove, by induction, that (∼α)¬ ↔ ∼α¬ and (α → β)¬ ↔ ∼(∼α¬ → ∼β¬).
We denote �Γ := ∼¬Γ ∪ Γ .

Lemma 1. For any finite set of formulas Γ, α in a nnf,

Γ ��L(¬) α iff for some finite Δ : �Γ,Δ ��L α,

where Δ contains instances of ¬-axioms.

Proof. The right-left direction is almost trivial: �L is a subsystem of �L(¬), and all
the axioms in Δ are provable in �L(¬), and, thanks to the ∼¬-rule, Γ ��L(¬) �γ
for each γ ∈ Γ .

For the other direction, we proceed in a few steps. First, we denote by ��L(¬)−

provability in �L(¬) without the ∼¬-rule. By routine induction on proofs (and
using that ∼¬ distributes from/to implications and negations), we can see that

Γ ��L(¬) α iff �Γ ��L(¬)− α.

Then we can list all the instances of ¬-axioms in the proof in Δ, and obtain:

�Γ ��L(¬)− α iff �Γ,Δ ��L α.

First, note that we can list in Δ all instances of ¬-axioms for all subformulas
of Γ, α as well and still keep the Lemma valid. This will come handy in the
following proof. Second, we stress that in the final proof �Γ,Δ ��L α in �L, we
still use language of �L(¬), where formulas starting with ¬ are seen from the
point of view of �L as atomic. �
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Lemma 1 provides a translation of provability in �L(¬) to provability in �L and
allows us to observe that the extension of �L by ¬ is conservative. Now, using
finite completeness of �L, we can see that �L(¬) is finitely strongly complete w.r.t.
[0, 1]�L × [0, 1]op

�L :

Lemma 2 (Finite strong standard completeness of �L(¬)). For a finite set
of formulas Γ ,

Γ ��L(¬) α iff ∀e : L → [0, 1]�L × [0, 1]op
�L (e[Γ ] ⊆ {(1, 0)} → e(α) = (1, 0)).

Proof. The left-right direction is soundness, and consists of checking that the
axioms are valid and the rules sound. We only do some cases:

First the ∼¬-rule: assume that e is given and e(α) = (1, 0). Then e(∼¬α) =
∼¬(1, 0) = ∼(0, 1) = (1, 0).

Next, for any e, e(∼¬(α → β)) = ∼¬(e(α) → e(β)) = ∼¬(e(α)1 →�L

e(β)1,∼�L(e(β)2 →�L e(α)2)) = ((e(β)2 →�L e(α)2),∼�L(e(α)1 →�L e(β)1)),
and, e(∼¬α → ∼¬β) = ∼¬e(α) → ∼¬e(β) = (∼�Le(α)2,∼�Le(α)1) →

(∼�Le(β)2,∼�Le(β)1) = (∼�Le(α)2 →�L ∼�Le(β)2, e(α)1&�L∼�Le(β)1) = ((e(β)2 →�L

e(α)2),∼�L(e(α)1 →�L e(β)1)).
Last, for any e, e(¬∼α) = ¬∼e(α) = (∼�Le(α)2,∼�Le(α)1) = ∼¬e(α) =

e(∼¬α).
For the other direction, let us assume that Γ ��L(¬) α. Then for some finite Δ

containing instances of ¬-axioms (in particular those for subformulas of Γ, α), we
have �Γ,Δ ��L α. Because �L is finitely standard complete, there is an evaluation
e : At → [0, 1]�L sending all formulas in �Γ,Δ to 1, while e(α) < 1. Here,
At contains literals from Γ, α of the form p,¬p, and atoms and formulas of
the form ¬δ from �Γ,Δ. We define e′ : Prop → [0, 1]�L × [0, 1]op

�L by e′(p) =
(e(p), e(¬p)). We can then prove, by routine induction, that for each formula
e′(β) = (e(β), e(β¬)). We use the fact that e[Δ] ⊆ {1}, and Δ contains all
instances of ¬-axioms for all subformulas of Γ, α.

We now immediately see that e′(α) < (1, 0), because e(α) < 1. To prove
that indeed e′[Γ ] ⊆ {(1, 0)}, we use the fact that e[�Γ ] ⊆ {1}: as for all γ ∈ Γ ,
e(∼¬γ) = 1, e(¬γ) = e(γ¬) = 0. For the latter, we again need to use the fact
that e[Δ] ⊆ {1}, and Δ contains all instances of ¬-axioms for all subformulas of
Γ , as they prove, by means of �L, that ¬γ ↔ γ¬, and e has to respect that. Now
we conclude, that for all γ ∈ Γ , e′(γ) = (e(γ), e(γ¬)) = (1, 0). �

We can now put together the two-layer syntax of the first two-layer logic to be

– Le = {∧,∨,¬} language of BD,
– M = {B} a belief modality,
– Lu = {→,∼,¬} language of �L(¬).

The intended models can be described as follows: the lower layer is a double-
valuation model of BD (W,�+,�−) (a set of states W , and the two support
relations, which in fact can be seen as arising from an evaluation of formulas of
BD locally in the states in the product bilattice 2 � 2, which is isomorphic to
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4, as noted in Subsect. 2.2). A source is given by a mass function on the states
mi : W → [0, 1], we assume there are n sources, and each source comes with a
weight wi ∈ [0, 1]. For a non-modal formula ϕ ∈ Le, we obtain the value ||Bϕ|| ∈
[0, 1]�L×[0, 1]op

�L as a pair of its positive and negative probabilities as follows. First,
for each source mi, we have (

∑
v �+ϕ mi(v),

∑
v �−ϕ mi(v)) = (p+

i (ϕ), p−
i (ϕ)).

Now, applying the weighted average aggregation strategy we obtain

||Bϕ|| =

(∑
1≤i≤n wi · p+

i (ϕ)
∑

1≤i≤n wi
,

∑
1≤i≤n wi · p−

i (ϕ)
∑

1≤i≤n wi

)
.

The modal part M of the two-layer logic consists of two axioms and a rule
reflecting directly the axioms of probabilities listed in Subsect. 2.3:9

B(ϕ ∨ ψ) ↔ (Bϕ � B(ϕ ∧ ψ)) ⊕ Bψ B¬ϕ ↔ ¬Bϕ
ϕ �BD ψ/ ��L(¬) Bϕ → Bψ

The resulting logic is (BD,M, �L(¬)). As BD is locally finite and strongly complete
w.r.t. 4, and �L(¬) is finitely strongly complete w.r.t. [0, 1]�L×[0, 1]op

�L , we can apply
[7, Theorems 1 and 2] directly to obtain finite strong completeness (soundness
of the modal axioms and rules is easy to see). But first, we need to observe that
the frames as we have described them can be seen within the framework of [7]:

The frames, seen in the format of [7], are F = (W,4, [0, 1]�L × [0, 1]op
�L , μB),

formulas of Le are evaluated locally in the states of W using 4, as in the four-
valued models for BD (which we can see as equivalent to the double-valuation
models). The interpretation of modalities μB is computed as follows. A source
is given by a mass function on the states m : W → [0, 1]. Each source comes
with a weight wi ∈ [0, 1]. Given e ∈ ∏

v∈W 4, we obtain, for each source mi, first
the following sums of weights over states: (

∑
ev∈{t,b} mi(v),

∑
ev∈{f,b} mi(v)) =

(p+
i (e), p−

i (e)). The assignment μB now computes the weighted average of those
as follows:

μB(e) = WA(e) =

(∑
1≤i≤n wi · p+

i (e)
∑

1≤i≤n wi
,

∑
1≤i≤n wi · p−

i (e)
∑

1≤i≤n wi

)
.

Thus, for a non-modal formula ϕ ∈ Le, applying μB to the tuple of its
values in the states (which we denote by ||φ||), we obtain the value of Bϕ as
||Bϕ|| ∈ [0, 1]�L × [0, 1]op

�L as a pair of its positive and negative probabilities as
follows: First, for each source we have10

⎛

⎝
∑

v �+ϕ

mi(v),
∑

v �−ϕ

mi(v)

⎞

⎠ = (p+
i (ϕ), p−

i (ϕ)).

9 Considering just the right-left implication in the first axiom, we can express belief
functions.

10 The value of ϕ in v being among {t, b} means it is positively supported in v, i.e.
v �+ ϕ. Similarly {f, b} means negative support.
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Now, applying the weighted average aggregation we obtain

||Bϕ|| = μB(||φ||) = WA(||φ||) =

(∑
1≤i≤n wi · p+

i (ϕ)
∑

1≤i≤n wi
,

∑
1≤i≤n wi · p−

i (ϕ)
∑

1≤i≤n wi

)
.

We can now conclude the completeness as follows:

Corollary 1. (BD,M, �L(¬)) is finitely strongly complete w.r.t. 4 based, [0, 1]�L×
[0, 1]op

�L -measured frames validating M .

In such frames, μB interprets B as a probability: For a frame to validate the
axioms in M means they are sent to (1, 0), by an evaluation in [0, 1]�L × [0, 1]op

�L

induced by μB over the lower state valuations (which determines values of modal
atomic formulas). An equivalence α ↔ β is evaluated at (1, 0) iff the values of α
and β are equal. B(ϕ)M = μB(ϕM ) = (p+(ϕ), p−(ϕ)). Therefore, the first two
axioms say that

p+(ϕ ∨ ψ) = (p+(ϕ) − p+(ϕ ∧ ψ)) + p+(ψ) and p+(¬ϕ) = ¬p−(ϕ)

p−(ϕ ∨ ψ) = (p−(ϕ) − p−(ϕ ∧ ψ)) + p−(ψ) and p−(¬ϕ) = ¬p+(ϕ).

Similarly, the fact that the frame validates the rule say that p+ (p−) are mono-
tone (antitone) w.r.t. ϕ �BD ψ. Analogous observation holds for the case the
upper logic is the bilattice one.

From [24, Theorem 4], we know that it is the induced probability function
of exactly one mass function on the BD canonical model, which in fact yields
completeness w.r.t. the intended frames described above (with a single source).

II. A bilattice �Lukasiewicz logic. Alternatively, if we wish to use full expressiv-
ity of a bilattice language, we can take in the upper layer Lu = {∧,∨,�,�,⊂
,¬, 0} to be the language of the product residuated bilattice [0, 1]�L � [0, 1]�L =
([0, 1] × [0, 1],∧,∨,�,�,⊃,¬, (0, 0)), defined in the spirit of [22] in Example 6.
We evaluate formulas of the upper logic in the matrix ([0, 1]�L � [0, 1]�L, F ) with
F = {(1, a) | a ∈ [0, 1]} as the designated values, so that we send 0 to (0, 0). The
constants and connectives �,⊥, 1, ∗,→,∼,⊕,� are definable as follows:

∼α := (α ⊃ 0) � ¬(¬α ⊃ 0) � := 0 ⊃ 0 ⊥ := ¬� 1 := ∼0
α → β := (α ⊃ β) ∧ (¬β ⊃ ¬α) α ⊕ β := (∼α ⊃ β) � ¬(∼¬α ⊃ ¬β)
α ∗ β := ¬(β → ¬α) α � β := ∼(α ⊃ β) � ¬∼(¬α ⊃ ¬β)

For an evaluation e, it holds that e(α → β) ∈ F iff e(α → β) ≥t (1, 1) iff
e(α) ≤t e(β). The upper logic Lu as a consequence relation is defined to be

Γ ��L��L α iff ∀e(e[Γ ] ⊆ F → e(α) ∈ F ).

The intended frames now use [0, 1]�L � [0, 1]�L as the upper algebra, otherwise
semantics of atomic modal formulas is computed (from multiple sources) as
in the previous logic. We also obtain literally the same modal axioms M as
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above. Only here, apart from a very generic completeness w.r.t. 4 based frames,
where the upper algebra is an algebra (in fact the Lindenbaum-Tarski algebra)
of the upper logic, we cannot provide a better insight at the moment and leave
axiomatization of Lu, and completeness w.r.t [0, 1]�L � [0, 1]�L-measured frames to
further investigations (cf. footnote 4).

3.2 Logic of Monotone Coherent Belief

The simplest logic we propose to deal with scenarios like the one of Example 2
is of the form (BD,M,BD). Both lower and upper languages are the language of
BD, M consists of a single belief modality B. The intended frames are based on
double-valuation semantics of BD as before, only now we evaluate formulas of
the upper logic in the bilattice L[0,1] � L[0,1] on Fig. 1 (right). A source is given
by a mass function on the states mi : W → [0, 1], we again assume there are n
sources. For a non-modal formula ϕ, we obtain the value ||Bϕ|| ∈ L[0,1] � L[0,1]

as follows. First, for each source mi, we have (
∑

v �+ϕ mi(v),
∑

v �−ϕ mi(v)) =
(p+

i (ϕ), p−
i (ϕ)). Now, applying the Min aggregation strategy we obtain

||Bϕ|| =
(

min
1≤i≤n

p+
i (ϕ), min

1≤i≤n
p−

i (ϕ)
)

.

Similarly, we may use the Max aggregation strategy when reasoning with trusted
sources. As before, we can see the frames inside the framework of [7] to derive
completeness: frames are of the form F = (W,4,L[0,1] � L[0,1], μ

B) where
μB :

∏
v∈W 4 → L[0,1] � L[0,1] computes the Min (Max) aggregation of the

probabilities given by the individual sources. In general this aggregation strat-
egy does not yield a probability, but it is monotone and ¬-compatible. This
motivates considering logic (BD,M,BD), where the modal part M consists of
the following two axioms and a rule

B¬ϕ ��BDu ¬Bϕ ϕ �BDe ψ/Bϕ �BDu Bψ.

As BD is strongly complete w.r.t. both 4 and L[0,1] � L[0,1]
11, we can apply [7,

Theorem 1] to conclude that (BD,M,BD) is strongly complete w.r.t. 4-based
L[0,1] � L[0,1]-measured frames validating M . In such frames, μB interprets B
as a monotone and ¬-compatible assignment (not necessarily a probability). We
cannot in general see it as coming from a measure, or a set of measures12, on the
lower states (to recover sources), and connect it with the intended semantics.

One could however replace the upper language with the full bilattice lan-
guage, consider modalities indexed by sources, and express the Min (Max) aggre-
gations explicitly using �,� connectives.

11 Because it has (2 � 2, {(1, 0), (1, 1)}) as a sub-matrix: the obvious embedding is a
strict homomorphism of de Morgan matrices - it preserves and reflects the filters.

12 It is not hard to provide an example of such assignment which cannot be obtained
by Min (Max) aggregation of probabilities.
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4 Conclusion and Further Directions

We have proposed two-layer logics of belief based on potentially inconsistent
probabilistic information coming from multiple sources. The framework keeps
positive and negative aspect of information (support, evidence, belief) separate,
though inter-linked, in both layers of the semantics, and thus allows for rea-
soning with inconsistencies, in contrast to getting rid of them. Doing so, we
believe we have laid groundwork to a modular framework to model reasoning
with inconsistent probabilistic information.

We see our contribution in the following: to see how Belnap-Dunn’s logic
BD (on the lower layer, and behind the non-standard probabilities) can be com-
bined with many-valued reasoning on the upper layer provides a novel example
of two-layer logics for reasoning under uncertainty. The only examples consid-
ered so far used either classical logic [15], or quantitative reasoning in form of
linear inequalities on the upper layer [28]. The logic �L(¬), extending �Lukasiewicz
logic with bi-lattice negation, we introduced in Subsect. 3.1 and proved its finite
strong standard completeness, is to our best knowledge new and might be of
independent interest. (The same can be said about the bi-lattice �Lukasiewicz
logic, which however remains to be axiomatized and its completeness studied.)

The project is subject to ongoing work. Apart from investigating further the
logics proposed in this paper, we are pursuing the following research directions:

In the continuation of [16] that generalises Dempster-Shafer theory [27] to
finite lattices, we are currently working on adapting the theory to the BD-based
setting, and putting it in context of existing literature on belief functions. This
would allow us to consider Dempster-Shafer combination rule as another aggre-
gation strategy.

To cover cases when a source does not give an opinion about each formula of
the language, we need to account for sources providing partial probability maps.
Also cases where sources provide heterogeneous information need to be included.

An important direction to move further is to capture dynamics of informa-
tion and belief given by updates on the level of sources, and to generalize the
framework to the multi agent setting involving group modalities and dynamics of
belief. Specifically, forming group belief, like common and distributed belief, will
involve communication and sharing or pooling of sources. It might call for a use
of various upper-layer languages, among those we see the ones with additional
(nestable) modalities inside the upper logic to account for reflected, higher-order
beliefs, in contrast to the beliefs grounded directly in the sources.
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Abstract. Dynamic Belief Update (DBU) is a model checking problem
in Dynamic Epistemic Logic (DEL) concerning the effect of applying a
number of epistemic actions on an initial epistemic model. It can also
be considered as a plan verification problem in epistemic planning. The
problem is known to be PSPACE-hard. To better understand the source
of complexity of the problem, previous research has investigated the com-
plexity of 128 parameterized versions of the problem with parameters
such as number of agents and size of actions. The complexity of many
parameter combinations has been determined, but previous research left
a few combinations as open problems. In this paper, we solve most of the
remaining open problems by proving all of them to be fixed-parameter
intractable. Only two parameter combinations are still left as open prob-
lem for future research.

Keywords: Parameterized complexity · Model checking · Dynamic
Epistemic Logic · Plan verification

1 Introduction

In the fields of psychology, ecology, economy, and various areas of computer
science like automated planning and distributed systems, the need often arises
to model multi-agent systems and reason about the knowledge of the involved
agents. Indeed, situations where multiple human or artificial agents interact with
their environment, and have to update their knowledge accordingly, are ubiqui-
tous. Dynamic Epistemic Logic (DEL) is a well-suited framework to model such
situations, as it is a family of modal logics that allow not only to reason about
(higher-order) knowledge, but also to represent how such knowledge is dynam-
ically updated through the occurrence of events. Unfortunately, many decision
problems associated with DEL are provably hard [7,12]. Despite that, in real-
life situations humans manage to reason fairly effectively about the knowledge of
themselves and other agents (at least to modest depths of reasoning). Moreover,
certain tasks involving DEL can be carried out fairly easily [12].

In this paper, we study the Dynamic Belief Update (DBU) problem, which
boils down to verifying whether an epistemic formula holds in a model after a
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series of epistemic updates, i.e., whether a certain epistemic fact holds after a
sequence of (epistemic) events have occurred in an initial (epistemic) situation.
The events can also be thought of as actions executed by agents, and hence DBU
can equivalently be thought of as a plan verification problem in an epistemic
setting. We extend the efforts of van de Pol et al. [12] to identify which aspects
of DBU make it intractable. Of the set of sub-problems of DBU identified by
van de Pol et al., we manage to settle the tractability question of most problems
previously left open, leaving only two undecided.

In Sect. 2, we present the DEL framework of this paper, and after recalling
notions of parameterized complexity, we present DBU and its parameters. In
Sect. 3, we prove our new fixed-parameter intractability results of DBU.

2 Background

2.1 Dynamic Epistemic Logic

Dynamic Epistemic Logic (DEL) is a modal logic focused on reasoning about
knowledge, which can be revised according to the evolution of the situation [7].
In this paper, we use a variant of DEL that allows multi-pointed epistemic
models and has propositional postconditions [3]. While various other variants
of DEL exist, we present here a simple version, that can be readily extended
into a version of DEL with more general preconditions, postconditions, or frame
conditions. As we only present intractability results, our work still holds for more
complex versions of DEL.

The language LK(P,A) of multi-agent epistemic logic is defined as follows,
where p ranges over a finite set of propositional variables P , and i over a finite
set of agents A:

ϕ := � | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ,

The intended meaning of Kiϕ is “agent i knows ϕ”. We will often use the abbre-
viated notation K̂iϕ = ¬Ki¬ϕ, which reads “agent i considers ϕ possible”. Other
symbols such as ∨ and → can be defined by abbreviation as usual. The semantic
of the language is defined through epistemic models (Kripke models).

Definition 1. (Pointed Epistemic Model) A pointed epistemic model for the
language LK(P,A) is a pair (M,Wd) where M = (W,R, V ) and:

– W is a finite, non-empty set of worlds
– Wd ⊆ W is the non-empty set of the designated worlds
– R : A → 2W×W is a function assigning an equivalence relation Ri to every

agent i, called the indistinguishability relation for agent i
– V : P → 2W is a valuation function that assigns to every propositional vari-

able the set of worlds in which it is true

Definition 2. (Truth in a pointed epistemic model) Let (M,Wd) be a pointed
epistemic model, where M = (W,R, V ), and let ϕ ∈ LK(P,A), and w ∈ W . The
truth conditions for ϕ are the standard propositional ones plus:

(M, {w}) |= Kiϕ iff for all w′ s.t. Ri(w,w′), (M, {w′}) |= ϕ
(M,Wd) |= ϕ iff for all w ∈ Wd, (M, {w}) |= ϕ
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Fig. 1. A pointed epistemic model
(M, {w1}) for LK({p, q}, {i}) with
M = (W, R, V ), W = {w1, w2}, Ri =
{(w1, w1), (w1, w2), (w2, w1), (w2, w2)}
and V (p) = {w1}, V (q) = {w1, w2}.
Reflexive edges are generally omitted.

Fig. 2. A pointed event model
(E , {e1}) for LK({p, q}, {i}) with E =
(E, Q, pre, post), E = {e1, e2}, Qi =
{(e1, e1), (e1, e2), (e2, e1), (e2, e2)},
pre(e1) = p, pre(e2) = Kip,
post(e1) = ¬q and post(e2) = �.

Example 1. Figure 1 shows an epistemic model where agent i can not make the
distinction between worlds w1 and w2. Thus, it does not know whether p is true
or not, as it holds in the “actual” world w1, but not in w2. As such, (M, {w1}) �|=
Kip, although (M, {w1}) |= p. As q is true in both worlds, (M, {w1}) |= Kiq.

Event models, defined next, represent changes to the situation, which lead agents
to update their knowledge.

Definition 3. (Pointed Event Model) A pointed event model for LK(P,A) is
a pair (E , Ed) where E is a tuple E = (E,Q, pre, post), such that

– E is a non-empty finite set of events
– Ed ⊆ E is a non-empty set of designated events
– Q : A → 2E×E is a function assigning an equivalence relation Qi to every

agent i, called the indistinguishability relation for agent i
– pre : E → LK(P,A) is a function assigning to each event a precondition
– post : E → LK(P,A) is a function assigning to each event a postcondition,

which is a conjunction of literals (propositional variables and their negations,
including �)

One could also define a precondition as a formula of the language LDK(P,A),
which extends LK(P,A) with the modality [E ′, E′

d]ϕ, where (E ′, E′
d) is a pointed

event model and ϕ a formula of LDK(P,A). Intuitively, this new modality means
that, after the (applicable) events of (E ′, E′

d) occurred, ϕ is true. In this paper,
we do not consider this modality, even though our results would still apply, as
we only show intractability results.

When no confusion can arise, we will use the abbreviated notation M for
pointed epistemic models (M,Wd), and similarly for pointed event models. Epis-
temic models can be updated with the application of event models through prod-
uct updates, defined as follows.

Definition 4. The product update of the (pointed) epistemic model (M,Wd)
with the (pointed) event model (E , Ed) is the (pointed) epistemic model
(M,Wd) ⊗ (E , Ed) = (M′,W ′

d), such that M′ = (W ′, R′, V ′) and

– W ′ = {(w, e) ∈ W × E | M, w |= pre(e)}
– R′

i = {((w, e), (v, f)) ∈ W ′ × W ′ | Ri(w, v) and Qi(e, f)}
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– V ′(p) = ({(w, e) ∈ W ′ | M, w |= p}∪{(w, e) ∈ W ′ | post(e) |= p})−{(w, e) ∈
W ′ | post(e) |= ¬p}

– W ′
d = {(w, e) ∈ W ′ | w ∈ Wd and e ∈ Ed}

Example 2. Figure 2 shows an event model where event e1 or e2 can occur, and
agent i cannot distinguish which event actually happens. Event e1 can only occur
in worlds where p is true, and updates them by making q false. Event e2 can
only occur in worlds where agent i knows p, and does not change the truth
value of any variable. If we take the product update (M, {w1}) ⊗ (E , {e1}) of
the epistemic model of Fig. 1 with the event model of Fig. 2, we get a model
containing only a single world satisfying p ∧ ¬q: the only world satisfying any
of the event preconditions is w1 and it only satisfies the precondition of e1.
So only the world-event pair (w1, e1) “survives” the product update, and the
postcondition of e1 enforces q to become false (but otherwise preserves the truth-
values from w1).

2.2 Parameterized Complexity

In this section, we recall some notions of parameterized complexity. Parame-
terized complexity is a branch of complexity theory whose aim is to offer a
finer-grained analysis of a computational problem, taking into account some
characteristics of each instance. It studies parameterized problems, which resem-
ble classical decision problems. Given an alphabet Σ, a parameterized problem
L is a subset of Σ∗ × N. Given an instance 〈x, k〉 of L, we call x the main part
and k the parameter. The parameter k is a metric that gauges one dimension of
x. For instance, if our problem is to model-check formulas of LK(P,A), then x
consists of a formula φ and a model M, while k can e.g. be the modal depth of
φ or the number of agents mentioned in φ and M.

In classical complexity theory, the class of tractable problems is P. The corre-
sponding class in parameterized complexity theory is the class of fixed-parameter
tractable problems, which is denoted FPT. It encompasses all parameterized
problems that can be solved by an fpt-algorithm, defined as follows.

Definition 5. (Fpt-algorithm) Let L be a parameterized problem. An algorithm
A is an fpt-algorithm for problem L if it solves L, and there exists a computable
function f : N → N and a polynomial P, such that the running time of A on any
instance 〈x, k〉 ∈ L is at most

f(k) · P(|x|)

For instance, the problem SAT is notoriously intractable [6]. However, its param-
eterized variant p-SAT, where p is the number of propositional variables, is
fixed-parameter tractable. Indeed, checking all 2p assignments of the p variables
against a formula ϕ can be done in time 2p · P(|ϕ|), for some polynomial P.
Intuitively, this means that a set of instances of SAT, where all formulas have a
number of variables bounded by some constant p, forms a tractable problem.
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Proving that a parameterized problem is not fixed-parameter tractable can be
done through fpt-reductions, defined next. They can be seen as the parameterized
complexity counterpart of classical polynomial-time reductions, and are useful
for proving membership and hardness results for parameterized problems.

Definition 6. (Fpt-reduction) Let L and L′ be two parameterized problems. An
fpt-reduction from L to L′ is a mapping R : L −→ L′ such that:

– 〈x, k〉 ∈ L iff 〈x′, k′〉 = R(〈x, k〉) ∈ L′.
– R is computable by an fpt-algorithm, i.e., there is a computable function f

and a polynomial P such that R(〈x, k〉) can be computed in time f(k) ·P(|x|).
– There exists a polynomial g such that, if 〈x, k〉 ∈ L and 〈x′, k′〉 = R(〈x, k〉) ∈

L′, then k′ ≤ g(k).

When there exists an fpt-reduction from L to L′, we write L ≤fpt L′.

It follows from the way fpt-reductions are defined that FPT is closed by fpt-
reduction. More specifically, suppose L ≤fpt L′. Then if L′ belongs to FPT, then
so does L. Hence, to prove that a problem L′ is not fixed-parameter tractable,
it suffices to find an fpt-reduction to L′ from a problem L known to be not
fixed-parameter tractable (we call such problems fixed-parameter intractable). In
this paper, we consider two complexity classes that are deemed fixed-parameter
intractable, namely W[1] and para-NP [8]. W[1] is the class of problems that can
be fpt-reduced to k-W2SAT, which is the problem where, given a 2CNF formula
ϕ and a parameter k, one has to decide if there exists a valuation satisfying ϕ
in which at most k variables are true. Para-NP is the class of parameterized
problems that can be solved by a nondeterministic fpt-algorithm. Para-NP-hard
problems are deemed fixed-parameter intractable, as W[1] ⊆ para-NP [9].

In the remaining of this paper, we will allow problems to have multiple param-
eters. If a problem L has a set of parameters {k1, . . . , kn}, then its instance are
of the form 〈x, k1 + · · ·+ kn〉. A problem L with parameters {k1, . . . , kn} is often
denoted {k1, . . . , kn}-L. When adding further parameters to a parameterized
problem, we of course make it more constrained. That is, for any problem L and
parameter sets X and Y , the problem (X ∪ Y )-L is at least as constrained as
X-L. Hence the following is easily proved.

Proposition 1. Let X and Y be sets of parameters of a decision problem L.
Then (X ∪ Y )-L ≤fpt X-L.

2.3 Dynamic Belief Update

The decision problem considered in this paper is presented in Fig. 3, following van
de Pol et al. [12]. It is the problem of checking whether a certain epistemic for-
mula is true after having updated an initial epistemic situation (epistemic model)
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Fig. 3. The decision problem DBU considered in this paper

Table 1. Parameters for DBU

Param. Description

a Number of agents

c Max. length of event preconditions

e Max. no. of events per event model

f Length of goal formula

Param. Description

o Goal formula’s modal depth

p Number of prop. variables

u Number of event models

with a sequence of epistemic actions (event models).1 So it is about the complex-
ity of keeping track of “who knows what” when observing a sequence of actions
taking place, where these actions can both change ontic facts and what the differ-
ent agents know. Such problems occur e.g. in the coordinated attack problem, the
consecutive number puzzle, the muddy children puzzle, board games like Hanabi
and Clue and the false-belief tasks studied in cognitive psychology [1,2,4]. We
can also think of the problem as the plan verification problem in epistemic plan-
ning [3]: Given an initial state (epistemic model), a sequence of actions (event
models) and a goal formula, does the action sequence achieve the goal from the
initial state?

DBU is PSPACE-complete, as proven by van de Pol et al. [12]. Their paper
proposes various parameters as an attempt to identify the mechanisms that
make DBU hard. Those parameters are given in Table 1, and any combination
of those form a parameterized version of DBU. This leads us to the class of
problems of the form X-DBU, where X is a subset of the 7 parameters. For
instance, {a, c, p}-DBU is the dynamic belief update problem where the param-
eters are the number of agents, the length of the preconditions and the number
of propositional variables. There are 27 = 128 problems of this form. Prior to
our work, the (fixed-parameter) tractability or intractability of 114 of them was
already known [12]. We show intractability results for an additional 12 prob-
lems, thus leaving only 2 (closely related) problems unsettled. Table 2 summa-
rizes the known results, including the new ones of this paper. It only mentions

1 A better name would probably be “Dynamic Knowledge Update” as we are here
only considering models where the underlying accessibility relations are equivalence
relations (i.e., S5). However, since all our results are intractability results, these still
hold if we generalise to arbitrary accessibility relations, including ones representing
beliefs.
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Table 2. Complexity results for the most general parameterized variants of DBU, from
which all other results for our set of parameters can be immediately deduced. Results
on the left table originate from [12], while results on the right table constitute the
original contributions of this paper.

Param. for DBU Complexity

{a, c, f, o, u} W[1]-hard

{a, f, o, p, u} W[1]-hard

{e, u} FPT

Earlier known results [12]

Param. for DBU Complexity

{a, c, e, f, o, p} para-NP-hard

{c, f, o, p, u} W[1]-hard

{a, c, o, p, u} W[1]-hard

New results of this paper

the strongest ones, as all other results can be immediately deduced from them
through Proposition 1, and the observation that, for any set of parameters X of
DBU, (X ∪ {f})-DBU ≤fpt (X ∪ {f, o})-DBU (if we constrain the length of the
goal formula, we are also constraining its modal depth).

It can be hard to keep track of 128 different versions of the same prob-
lem. However, many are obviously interdependent in the sense that the
(in)tractability of one immediately implies the (in)tractability of the other, e.g.
through Proposition 1. To keep track of dependency and which problems are
still open, we developed a small script, which can be found at https://github.
com/arnaudlequen/dbuproblemfinder. The script allowed us to find the open
problems that would solve most other open problems, and keeping track of the
remaining open problems as we gradually settled more cases.

3 Complexity Results

Theorem 1. {a, c, e, f, o, p}-DBU is fixed-parameter intractable (more precisely,
para-NP-hard). In other words, the Dynamic Belief Update problem is intractable
even when restricting the number of propositional variables and agents (p,a), the
maximum number of events in event models (e), the maximum length of event
preconditions (c), and the length and modal depth of the goal formula (f,o).

Proof. In this proof, we build an fpt-reduction from an NP-hard problem to an
instance of {a, c, e, f, o, p}-DBU with fixed values of a, c, e, f, o and p, thus prov-
ing para-NP-hardness of the latter (since the NP-hard problem doesn’t have any
parameter, the reduction is also a regular polynomial reduction). The construc-
tion used in the proof is an adaptation of the proof of Theorem 19 of Bolander
et al. [3]. The general idea is to simulate, through an instance of DBU, the
execution of a fixed nondeterministic Turing machine M that solves a given
NP-hard problem (any NP-hard problem will do). We begin by encoding the
initial configuration of the machine (i.e., its tape, the position of its head and its
internal state) into the initial epistemic model. Then, we build a series of event
model updates, such that the epistemic model after n product updates contains
the representation of every configuration of M that can be reached in exactly

https://github.com/arnaudlequen/dbuproblemfinder
https://github.com/arnaudlequen/dbuproblemfinder
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Fig. 4. Two information cells for agent k, both representing the ID
x1 · · · xn−1qsxn · · · xm of the Turing machine M = (S, Γ, q0, δ, qf ), where xi ∈ Γ
and qs ∈ S. This ID represents the configuration of M where the word on the tape is
x1 · · · xm, where M is in state qs, and the head is at the nth symbol xn of the word
on the tape. Recall that Rk = Ri ∪ Rj and Rg = W × W is implicitly assumed, where
W is the set of all worlds.

Fig. 5. The initial epistemic model M0 for the Turing machine M with input word
ω = x1 · · · xm. It consists of the represented ID of the initial configuration of M plus
an additional designated world wt only accessible from the other worlds by the Rg

relation (recall that Rk = Ri ∪ Rj and Rg = W × W is implicitly assumed).

n transitions (computation steps). Finally, we build a goal formula that checks
whether an accepting configuration was encountered in the process or not. Thus,
the DBU instance is positive if and only if M accepts the word in the input.

Let M = (S,Γ, q0, δ, qf ) be any nondeterministic Turing machine that solves
an NP-hard problem in polynomial time, with states S = {q0, q1, . . . , qf}, where
q0 is the only initial state, qf is the only accepting state, Γ is the set of tape
symbols including the blank symbol # and δ is the transition function [11].

The DBU instance we build has agents A = {i, j, k, g} and propositional
variables P = Γ∪S ∪{ri, rj , t}. Information cells for agent k (i.e., sets Wk ⊆ W
of maximum size that are closed under Rk) are used to encode configurations of
M , and agents i and j are used to distinguish the right and the left of each cell
of the tape that we encode. We will in all epistemic models enforce Rk = Ri ∪Rj

by having Rk = Ri ∪ Rj in the initial model, and Qk = Qi ∪ Qj in all event
models. We will similarly enforce Rg to be the universal relation—i.e., make
any two worlds indistinguishable—by making all pairs of worlds in the initial
model indistinguishable, and by making all pairs of events of all event models
indistinguishable. For simplicity, the Rk and Rg indistinguishability relations
will not be explicitly drawn. Furthermore, the reflexive and transitive closure of
all indistinguishability relations drawn is implicitly assumed.

A configuration of the machine can be represented by an Instantaneous
Description (ID) [11]. Following Bolander et al. [3], we represent IDs by epistemic
models as illustrated in Fig. 4. This pair of information cells for agent k offers
two unique representations of an ID [3], and we call represented ID an informa-
tion cell for k that has the form of either (4.1) or (4.2). Each world represents
one cell of the tape of the machine, and is marked with a propositional variable



Parameterized Complexity of Dynamic Belief Updates 95

Fig. 6. The transition component τ i
l , for a transition l of the form δ(qs, xn) = (qt, y, R),

where xn �= y.

representing the symbol in the cell. One world is marked with two additional
propositions: one for the current state of the machine (qs), as well as either ri

or rj . This world represents the current position of the head and is called the
current world. The propositions ri and rj are used to distinguish between the
right and the left of the current cell. If ri (resp. rj) is true, then the cell at the
right of the current one is reachable through an i-edge (resp. j-edge).

We proceed to show how to build the initial epistemic model and event
models. Suppose that in its initial configuration, M is in state q0 and with
the word ω = x1 · · · xm on its tape. Then the initial epistemic model M0 is the
represented ID of the initial configuration of M , as shown in Fig. 5. In addition
to that, we add a designated world wt only labeled by the prop. variable t. Its
purpose is to make sure the model doesn’t end up being empty, which could
otherwise happen if at some point no transition can be applied to any ID.

The next step consists in building the series of event models, which are all
copies of a single model Etrans. The aim of Etrans is to simulate one step of M ,
by applying all applicable transitions to each represented ID of the previous
epistemic model. The event model mainly consists in a disjoint union of sev-
eral sub-event models, that we call transition components, whose purpose is to
attempt to apply a transition of the Turing machine M to a represented ID.

For each transition l, i.e., each element of the transition function δ, we con-
struct an i-transition component τ i

l and a j-transition component τ j
l . We con-

struct these transition components such that given an ID s and valid transition
l for s, applying τ i

l (resp. τ j
l ) to the represented ID of s, of the form (4.1) (resp.

(4.2)), will result in the represented ID of the successor of s after l was applied.
Applying to an ID s a transition component whose form does not match the
represented ID of s, or whose transition is not applicable to s, will yield no
worlds.

Figure 6 shows an example of an i-transition component. The j-transition
component can be obtained by swapping i and j everywhere. Other transitions,
such as δ(qs, xn) = (qt, y, L) or transitions satisfying xn = y, can be handled
similarly. Let us try to explain the intuition behind this construction. It is very
similar to the construction of Bolander et al. [3]. Event e1 makes sure that, after
the update, worlds that represent cells of the tape that are unaffected by the
transition are left unchanged. It copies into the updated model every world of
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Fig. 7. Event model σ. The purpose of ef is to carry to the updated model any world
marked with qf , as it means that an accepting configuration has been reached. Event
et copies the world wt, as the only designated event.

the represented ID, except the world representing the current head position and
the one at its right. Event e2 copies the current world, noted w, but removes the
propositional variables that mark the head of the machine. It also updates the
tape symbol. If the cell on the right of the current position of the head is not
blank, then there exists a world w′ on the right of the current world w, i.e., such
that Ri(w,w′). Event e3 adds on w′ the propositional variables that make it the
current world of the updated model. It updates as well the current state of the
machine, from qs to qt. If the cell on the right of the current position of the head
is blank, then no world is on the right of the current world. Event e4 creates it
with a blank symbol, and sets it to be the current world of the updated model.
Applying the i-transition component of Fig. 6 to a represented ID s of the form
(4.2) results in no world. Indeed, in s, the current world is instead labeled by rj ,
and thus, no world verifies ri. Therefore, no event has its precondition satisfied,
as each of the four events e1, . . . , e4 has a precondition requiring ri to hold in at
least one world. Similarly, if the transition is not applicable to the ID represented
by s, then the current world of s is labeled by q′

s �= qs and/or x′
n �= xn, and thus

does not satisfy qs ∧ xn. And as before, each of the four events e1, . . . , e4 has a
precondition requiring qs ∧ xn to hold in at least one world.

In order to build Etrans, we need to introduce another component σ, which
consists of two events, ef and et. Those events, as depicted in Fig. 7, carry to the
updated model the information that will eventually allow the goal formula to
check whether the instance is positive or not. Building Etrans is then straightfor-
ward. In addition to σ, it consists in the disjoint union of the i- and j-transition
components τ i

l and τ j
l associated to every transition l of M . Recall again that

we implicitly assume to also add a g-edge between any pair of events. Applying
Etrans to an epistemic model that contains the representations of all IDs reach-
able in n transitions results in a model containing the representations of all IDs
reachable in n + 1 transitions. If the model contained any world where qf was
true, then in the updated model, there is also a world where qf if true.

By assumption, there exists a polynomial P such that, for any word ω′, M
accepts ω′ iff M accepts it in at most P(|ω′|) steps. Then, for our given input ω,
we only need to simulate P(|ω|) steps of M , and thus create a series of P(|ω|)
product updates of M0 with the event model Etrans. In the final model, the only
designated world is wt, which is linked by a g-edge to every other remaining
world. The goal formula K̂gqf must thus be true in the final model iff a world
verifying qf has been reach after some initial sequence of product updates, i.e.,
if M can reach an accepting state in at most P(|ω|) steps. Thus, M accepts
input ω iff the instance of DBU with initial state M0, with P(|ω|) copies of
the event model Etrans and with goal formula K̂gqf is positive. We have now



Parameterized Complexity of Dynamic Belief Updates 97

fpt-reduced the problem “Does M accept input ω?”, where M is fixed and ω is
the input, to the problem {a, c, e, f, o, p}-DBU. We comply with the conditions
of Definition 6: we respectively satisfy the second and third conditions as the
reduction is polynomial, and all parameters of {a, c, e, f, o, p}-DBU are constants,
by construction. In particular, p and e are constants as they only depend on
M , which is fixed and not part of the input. Finally, as M solves an NP-hard
problem, {a, c, e, f, o, p}-DBU is para-NP-hard.

Corollary 1. {a, c, p}-DBU, {a, c, p, e}-DBU and {a, c, p, f}-DBU are all fixed-
parameter intractable.

The corollary is by Proposition 1. In addition to settling those four open prob-
lems, Theorem 1 shows a stronger result, which is that all parameterized versions
of DBU that do not have u as a parameter are fixed-parameter intractable. This
settles in itself the fixed-parameter intractability of 64 problems, out of the 128
total. It also constitutes an alternative proof of the intractability of three different
problems shown separately by van de Pol et al. [12], which are {a, c, e, f, o}-DBU,
{c, e, f, o, p}-DBU and {a, e, f, o, p}-DBU.

We now prove fixed-parameter intractability of two further problems that
were left open by van de Pol et al. [12]: {c, f, o, p, u}-DBU and {a, c, p, u}-DBU.
We here show that both are fixed-parameter intractable, which implies the
fixed-parameter intractability of {c, f, p, u}-DBU and {a, c, p}-DBU. Our proofs
of both theorems are adaptations of the fixed-parameter intractability proof of
{c, o, p, u}-DBU by van de Pol et al. [12]. In addition to strengthening their con-
struction to be able to generalize their intractability results, we also simplify
their construction in a few places. The general point is to show W[1]-hardness
by a reduction from the earlier mentioned W[1]-complete problem k-W2SAT:
Given a 2CNF input formula ϕ and a parameter k, decide whether there exists
a valuation satisfying ϕ in which at most k variables are true.

In the following we assume the variables of ϕ are named x1, . . . , xm. The
general trick in constructing an fpt-reduction from k-W2SAT to a parameterized
DBU problem is as follows. First we define epistemic (sub)models that can be
used to encode propositional valuations over {x1, . . . , xm}. We call these valua-
tion gadgets and use Mv to denote the valuation gadget encoding the valuation
v. The initial model of the DBU instance is then the model M0 where 0 denotes
the valuation with 0(xi) = 0 for all i (the valuation that sets every variable false).
We then construct an event model that can take any set of valuation gadgets
and for each gadget Mv it constructs m new gadgets Mv[x1 �→1], . . . , Mv[xm �→1]

(where v[x �→ t] is the mapping that is as v except v(x) = t). After updating
k times with this event model, we are guaranteed to have gadgets representing
all valuations where at most k variables are true. If we have no bound on f,
we can now directly use the goal formula of the DBU instance to check that
there exists a gadget making ϕ true. This is what we do for the intractability
proof of {a, c, p, u}-DBU. If we have a bound on f, as in the intractability proof
of {c, f, o, p, u}-DBU, we need to perform product updates with additional event
models that mark the gadgets making ϕ true.
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Fig. 8. Left: A valuation gadget for
m = 4 representing the valuation 0
in which all xi, i = 1, . . . , m, are
false. Right: The gadget for the valu-
ation where x2 and x4 are true (since
the outgoing 2- and 4-edges have been
deleted).

Fig. 9. The pointed event model E for
m = 4. The unlabelled events are
implicitly labelled 〈�, �〉.

Theorem 2. {c, f, o, p, u}-DBU is fixed-parameter intractable (W[1]-hard). In
other words, the Dynamic Belief Update problem is intractable even when
restricting the number of propositional variables (p), the number of event models
(u), the maximum length of event preconditions (c), and the length and modal
depth of the goal formula (f,o).

Proof. The main contribution of this proof over the proof of the fixed-parameter
intractability of {c, o, p, u}-DBU by van de Pol et al. [12] is the construction
of an additional event model (Eϕ) that allow us to only consider a goal for-
mula of fixed length (while still preserving the fixed bound on the event pre-
conditions). Let ϕ and k be given (an instance of k-W2SAT), where ϕ has vari-
ables var(φ) = {x1, . . . , xm}. We will now create an instance of DBU that can
decide the k-W2SAT instance, i.e., whether there exists a valuation satisfying
φ and setting at most k variables true. The DBU instance will be using agents
A = {1, . . . ,m, a, b}. For each valuation v over var(ϕ), we define the gadget Mv

as the star-shaped model with a single root world satisfying proposition r, and
for each xi with v(xi) = 0 it has an outgoing i-edge to a unique world satisfying
no propositions. The construction is illustrated for m = 4 in Fig. 8. Now consider
the event model E illustrated for m = 4 in Fig. 9. The events with no label are
implicitly labelled 〈�,�〉, i.e., they are events that preserve any world to which
they are applied. The events labelled 〈r,�〉 only apply to the roots of gadgets.
When E is applied to a gadget Mv, it creates m copies of the gadget, where in
the first gadget x1 is made true (by removing the outgoing 1-edge), in the sec-
ond x2 is made true (by removing the outgoing 2-edge), etc. These gadgets are
furthermore connected by a-edges via their root worlds. When this event model
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is applied k times to the initial gadget model M0, we achieve a model with mk

gadgets connected by a-edges via their root worlds. Each gadget is obtained by
starting with the initial gadget representing the valuation 0, and then making at
most k variables true by consecutively removing k edges from the gadget model.
Since we might attempt to remove the same edge multiple times, this construc-
tion gives us a representation of all valuations where at most k variables are true
(except the valuation 0 that can be checked separately). Hence the final model
M0 ⊗ Ek contains a gadget for each valuation with at most k variables set true
(except the valuation 0).

Note that a clause (¬)xi ∨ (¬)xj is true in a valuation v iff the formula
(¬)Kir ∨ (¬)Kjr is true at the root of the gadget Mv. We now construct an
additional event model Eϕ as follows. It has a single designated event labelled
〈r,�〉. For each clause (¬)xi ∨ (¬)xj of ϕ, it has an additional event labelled
〈r ∧ ¬((¬)Kir ∨ (¬)Kjr), f〉, where f is a new propositional variable denoting
“failure”. All events of Eϕ are connected by b-edges. Each event with postcon-
dition f checks whether a particular clause of ϕ is false in the gadget to which
it is applied. If it is, a b-accessible world satisfying f is created. When Eϕ is
applied to a valuation gadget, it will hence preserve the root (due to the event
〈r,�〉), and additionally it will add a b-accessible f -world for each unsatisfied
clause. If there are no unsatisfied clauses, it will only preserve the root. Hence,
if we apply Eϕ to the model M0 ⊗ Ek containing gadgets for all the relevant
valuations, the resulting model M0 ⊗ Ek ⊗ Eϕ will contain an r-world with no
b-accessible f -worlds iff ϕ is true in one of the valuations. Hence, we can check
whether ϕ is true in one of the relevant valuations by checking the goal formula
ϕg := K̂a(r ∧ Kb¬f) in the model M0 ⊗ Ek ⊗ Eϕ.

To sum up, given a k-W2SAT instance ϕ with parameter k, we reduce it to
the DBU instance with initial model M0, with k copies of the event model E
followed by the event model Eϕ and with goal formula ϕg. We now only have to
verify that the reduction is an fpt-reduction from k-W2SAT to {c, f, o, p, u}-DBU.
Building the epistemic model M0 and the k copies of the event model E is clearly
polynomial in m and k and hence in the input size of the k-W2SAT instance.
Building Eϕ is polynomial in the formula ϕ and hence also in the input size of
the k-W2SAT instance. Finally, the goal formula has a fixed length. This shows
that the reduction is computable by an fpt-algorithm. We then only need to
show that the parameters of the translated {c, f, o, p, u}-DBU instance can be
bound by a computable function in k. The parameters c, f, o, p all have a fixed
value independent of the k-W2SAT instance, and u is k + 1. So the parameters
are clearly bound by a computable function in k, and the proof is complete.

Theorem 3. {a, c, o, p, u}-DBU is fixed-parameter intractable (W [1]-hard).

Proof. The main contribution of this proof over the proof of the fixed-parameter
intractability of {c, o, p, u}-DBU by van de Pol et al. [12] is that we show how to
create gadgets that encode the truth value of the different variables via worlds
at different depths of the model rather than via different agents. This is neces-
sary since we have a as a parameter, so we need to put a bound on the number
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Fig. 10. Left: A valuation gadget for
m = 4 representing the valuation 0 in
which all xi, i = 1, . . . , m, are false.
Right: The gadget for the valuation
where x2 and x4 are true (since the
worlds in distance 2 and 4 from the root
have label t).

Fig. 11. The pointed event model E
for m = 4. The unlabelled events are
implicitly labelled 〈�, �〉.

of agents. When referring to worlds at different depths of a model, and with no
bound on the depth of a model, we usually also need preconditions of unbounded
length. But our construction shows that it is possible to still do with only pre-
conditions of bounded length. In our proof, in order to encode a valuation, we
use chains of worlds linked by alternating agents. This trick, central to our proof,
resembles a trick used by de Haan and van de Pol [10]. The main difference is
that they encode the truth-value of a single variable as a chain, and create as
many chains as there are true propositional variables in the encoded valuation,
whereas we encode an entire valuation in a single chain.

Essentially, the structure of this proof is as the previous, except we need a
different type of gadgets. Let ϕ and k be given with var(ϕ) = {x1, . . . , xm}. Let
A = {1, 2, a}. For each valuation v, we define the gadget Mv as an alternating
1, 2-chain of worlds with a root world satisfying r, and where the world at dis-
tance i from the root makes t true iff v(xi) = 1. The construction is illustrated
for m = 4 in Fig. 10. Now consider the event model E illustrated for m = 4 in
Fig. 11. As in the previous proof, when this event model is applied to a gadget
Mv, it creates m copies of the gadget, where in the first gadget x1 is made true
(by adding t to the world at distance 1 from the root), in the second x2 is made
true (by adding t to the world at distance 2 from the root), etc. As before, these
gadgets will be connected by a-edges via their root worlds. Also as before, when
this event model is applied k times to the initial gadget model M0, we achieve a
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model with mk gadgets containing at least one gadget for each valuation making
at most k variables true (again except the valuation 0 that can be treated sepa-
rately). The only essential difference is that instead of making use of agents to
encode the truth value of the different variables, we use the depth of the event
model. This means we can use a as a parameter in our reduction (the number
of agents is fixed independently of the input).

Let ψ1 := K̂1t, ψ2 := K̂1K̂2t, ψ3 := K̂1K̂2K̂1t, etc. Then note that ϕ is true
in the valuation v iff the formula ϕ[ψi/xi] is true in the root of the gadget Mv.
Hence, to check whether ϕ is true in a valuation making at most k variables
true, we can check whether the formula ϕg := K̂aϕ[ψi/xi] is true in M0 ⊗ Ek.
To sum up, given a k-W2SAT instance ϕ with parameter k, we reduce it to
the DBU instance with initial model M0, with k copies of the event model E
and with goal formula ϕg. Building M0 and the k copies of E is polynomial in
m and k, and building ϕg is polynomial in m and the length of ϕ. Hence the
DBU instance can be computed in polynomial time in the size of the k-W2SAT
instance, and is hence computable by an fpt-algorithm. We then only need to
show that the parameters of the translated {a, c, o, p, u}-DBU instance can be
bound by a computable function in k. This trivially holds, as the parameters a,
c, o, p all have fixed value independent of the k-W2SAT instance, and u is k.

4 Discussion and Future Work

We managed to solve most of the open tractability problems for the dynamic
belief update problem. In all cases, our results were negative, i.e., we proved
fixed-parameter intractability. When entering the new results into our previously
mentioned tool, we get that tractability of the following parameter combinations
is still open: {a, c, f, p, u} and {a, c, f, o, p, u}.

The short Turing machine acceptance problem (STMA) is the acceptance
problem of single-tape nondeterministic Turing machines with bound k on the
number of computation steps. It is a parameterized problem with parameter k
known to be W[1]-complete, i.e., fixed-parameter intractable [5]. The proof of
Theorem 1 gives us a construction allowing us to encode an instance of STMA as
a DBU instance. Since the parameter k is the number of computation steps, which
translates into the parameter u in the DBU instance, we can do an fpt-reduction
from STMA to {a, c, f, o, u}-DBU, i.e., we can replace e, p by u in the fixed-
parameter intractability result of Theorem1. We have to drop the parameters
e and p as their sizes depend on the alphabet of the Turing machine. This
reduction then immediately gives W[1]-hardness of {a, c, f, o, u}-DBU. This result
was already established by van de Pol et al. [12], but with our Turing machine
construction in Theorem1, we get this additional result essentially for free.

In the proof of Theorem 2, we introduced the trick of checking each clause of
the 2CNF formula with a single event model, hence allowing us to put a bound
on the length of the goal formula. One might be tempted to try out the same
trick in the proof of Theorem3, however that would blow up the length and
modal depth of the preconditions, since we need a formula of modal depth i to
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check whether xi is true in a valuation gadget. If we found a way to preserve
the bound on c, we would achieve a proof of the fixed-parameter intractability
of {a, c, f, o, p, u}-DBU.

As future work, we hope to extend our results to epistemic planning, i.e, the
problem of plan synthesis rather than plan verification as considered here, and
we would at the same time consider additional relevant parameters.

Acknowledgement. The authors would like to thank the anonymous reviewers for
their meticulous reading of our paper, as well as for their numerous and valuable
suggestions that helped improve this manuscript.
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Abstract. Default Logic refers to a family of formalisms designed to
carry out non-monotonic reasoning over a monotonic logic (in general,
Classical First-Order or Propositional Logic). Traditionally, default logics
have been defined and dealt with via syntactic consequence relations.
Here, we introduce a family of default logics defined over modal logics.
First, we present these default logics syntactically. Then, we elaborate
on an algebraic counterpart. We do the latter by extending the notion
of a modal algebra to acommodate for the main elements of default
logics: defaults and extensions. Our algebraic treatment of default logics
concludes with an algebraic completeness result. To our knowledge, our
approach is novel, and it lays the groundwork for studying default logics
from a dynamic logic perspective.

1 Introduction

Default Logic refers to a family of non-monotonic formalisms tailored to reason-
ing with incomplete knowledge, and to dealing with contradictory information.
The main features of a default logic DL are defaults and extensions. Defaults are
used as a tool to handle reasoning from incomplete knowledge. In turn, exten-
sions are a mechanism for reasoning in the presence of contradictory information
(via consistent alternatives). Intuitively, defaults can be seen as defeasible rules
of inference, i.e., rules of inference whose conclusions are subject to annulment;
whereas extensions can be understood as sets of formulas closed under the appli-
cation of defaults.

The history of Default Logic traces back to Reiter’s seminal work [21]. Since
then, many variants of Reiter’s original ideas have been proposed – with each
variant giving rise to a different default logic (see [2] for a comprehensive sum-
mary). For the most part, these variants have focused their attention on what
is meant by an extension. In particular, the emphasis has been on how differ-
ent interactions between defaults, and the rules of inference of the underlying
proof calculus,1 concoct different notions of an extension satisfying one or more
1 Typically the underlying proof calculi is one for Classical First-Order Logic (FOL)

(see, e.g., [21]) or for Classical Propositional Logic (CPL) (see, e.g., [6,17,19,22]).
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properties of interest. This treatment of extensions carries with it the definition
and analysis of a default logic from a syntactic perspective. The other side of
the coin is missing. In studying a logic (of any kind), we also wish to address
it from a semantic perspective via a model theory and/or a class of algebras.
This yields interesting completeness results, interpolation properties, bisimula-
tions, etc. This semantic perspective on default logics is mostly absent, making
it difficult to investigate their logical properties using standard semantic tools.

Our Work. Following the tradition in Default Logic, we start with a formulation
of default logics over modal logics via deducibility (i.e., syntactical consequence
in the proof calculus). We rely on the notion of global deducibility for modal log-
ics [10]. Our formulation of a default logic is parametric, and can be instantiated
with any modal system from K to S5 extended with the universal modality [4].

For each default modal logic, we make explicit how defaults interact with the
rules of inference of the underlying proof calculus by integrating the use of the
former into the notion of deducibility of the latter. In addition, we show how we
can parametrically define for each default modal system an algebraic counter-
part. We do this by extending modal algebras to accommodate for defaults and
extensions. Modal algebras are Boolean algebras with additional operators for
modalities, and they make up the algebraic counterpart of modal systems [12,28].

The algebraic treatment of defaults and extensions is done as follows. We
carry out a Lindenbaum-Tarski construction that acts as an algebraic canonical
model for a set of permisses. We enrich this construction with an operator to deal
with defaults. This operator can be thought of as “updating” the Lindenbaum-
Tarski algebra w.r.t. the application of a default. The result of the update is
the algebraic counterpart of an extension. On this basis we prove an algebraic
completeness result.

Related Work. Our treatment of defaults and extensions enables us to think of
default logics as algebraic “model changing” logics; in the sense of, e.g., public
announcement logic [20].

In our case, a model update corresponds to the application of a default (a
sort of inference step). The idea of updating a model dynamically to represent
syntactic steps of inference can be found in several places in the literature on
dynamic logics. For instance, the problem of logical omniscience in epistemic
logic (see, e.g., [26]) has been thought of as a property to be achieved after the
application of a dynamic operation. In [1,7,16,23], omniscience is achieved by
updating models containing sets of formulas. In [15,25] the updates are per-
formed over awareness relational models. Dynamics of evidence are presented
in [24,27] over neighbourhood models. Finally, dynamic modalities allowing to
achieve introspective states over Kripke models are introduced in [8,9].

Closer to our work is the algebraic treatment of public announcements intro-
duced in [18]. Therein, the algebraic submodel relation induced by the announce-
ment of a formula ψ is represented by taking the quotient algebra modulo an
equivalence relation given by ψ. We show that the application of a default δ can
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be captured in a similar way, i.e., by taking the quotient algebra modulo the
equivalence relation given by the conclusion of δ.

Motivation. Our choice of defining default logics over modal logics is not arbi-
trary. Modal logics provide a wide spectrum of logics which are more expressive
than CPL, with better computational properties than FOL. Moreover, these log-
ics have a well-developed algebraic theory in terms of modal algebras. In our
constructions we exploit the combination of these two features. As we will see,
defaults are better modeled by means of a global consequence relation, which
will be captured by the use of the universal modality. While not pursued on here,
building default logics on modal logics is also interesting if one has applications
of the developed formalism in mind. This is particularly true in the setting of
description logics – wherein it is possible to think of defaults as a way of captur-
ing exceptions to a taxonomy of concepts modeled in a knowledge base (see [3]).

Main Contributions. We provide a syntactic and algebraic treatment of default
logics built over modal logics and study their properties. Syntactically, our con-
struction of a default modal system is parametric on a modal system and a set
of defaults. We make precise how defaults interact with the rules of inference of
the underlying modal system. Algebraically, we address defaults and extensions
via modal algebras. This enables us to obtain an algebraic completeness result.
Moreover, it enables us the use of standard algebraic tools to study metalogical
properties of default modal systems. We view this work as a first step towards
an algebraization of default logic, and towards a better understanding of default
systems from a logical perspective. Finally, the algebraic construction for default
logics over modal logics lays the groundwork to study default systems from a
dynamic logic perspective.

Structure of the Article. Section 2 covers background material. Section 3 con-
tains our main results. Section 3.1 introduces default modal systems. Section 3.2
presents default deducibility. Section 4 provides our algebraic characterization
of defaults and extensions, and a completeness theorem. In Sect. 4 we discuss
default modal systems from a dynamic logic perspective. In Sect. 5 we offer some
final remarks.

2 Background

2.1 Boolean Algebra in a Nutshell

We introduce some definitions and notation for Boolean algebras (see, e.g., [13]
for details).

Definition 1. A Boolean Algebra (BA) is a structure A = 〈A, ∗,−, 1〉 satis-
fying a well-known set of equations. A is also denoted as |A|. Occasionally, we
consider operations + and 0 defined as a + b = −(−a ∗ −b), and 0 = −1.
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Definition 2. Every BA A brings in a partial order �A defined as x �A y
iff x = x ∗ y (sometimes we omit the subindex A and write just �). We write
↑X = { y | there is x ∈ X s.t. x � y }. A filter is a non-empty subset F ⊆ |A|
s.t.: F = ↑F and for all x, y ∈ F , (x ∗ y) ∈ F . A filter is principal if it is of the
form ↑{a} for a ∈ |A|. A filter F is proper if 0 /∈ F .

2.2 Modal Systems

We begin by making precise the set Form of well formed formulas we work with.

Definition 3. Let Prop = { pi | i ∈ N } be a denumerable set of proposition
symbols; the set Form of well formed formulas (wffs, or simply formulas) is
determined by the grammar

ϕ,ψ ::= pi | 	 | ¬ϕ | ϕ ∧ ψ | �ϕ | u�ϕ.

We use ⊥, ϕ ∨ ψ, ϕ → ψ, ϕ ↔ ψ, ♦ϕ and u♦ϕ as abbreviations defined in the
usual way.

The set Form can be seen as an enrichment of the basic modal language with
the universal modality u�. We use the universal modality as a technical tool to
internalize a global consequence relation.

A modal system is determined by a subset of Form, called axioms, and the
rules of inference in Definition 4.

Definition 4. The set of rules of inference of a modal system consists of

ϕ ϕ → ψ

ψ
(mp)

ϕ
u�ϕ

(u).

The modal system K u� is determined by the axioms in Definition 5.

Definition 5. The axioms of K u� is the smallest set of formulas which contains
all instances of propositional tautologies and the schemas:

1. �(ϕ → ψ) → (�ϕ → �ψ); 3. u�ϕ → ϕ; 5. u�ϕ → u� u�ϕ;
2. u�(ϕ → ψ) → ( u�ϕ → u�ψ); 4. ϕ → u� u♦ϕ; 6. u�ϕ → �ϕ.

We take K u� as our basic modal system. The rest of the modal systems we
consider are constructed by enlarging the set of axioms of K u� with (all instances
of) any of the schemas below, or any combination thereof, as additional axioms.

(4) �ϕ → ��ϕ (5) ♦ϕ → �♦ϕ (B) ϕ → �♦ϕ (D) �ϕ → ♦ϕ (T) �ϕ → ϕ

E.g., the system D u� is obtained by adding to the axioms of K u� all instances
of the schema D as further axioms. Similarly, the systems S4

u� and S5
u� are

obtained by adding the schemas T and 4, and T and 5, respectively.
For each modal system M, we define a consequence relation �M between sets

of formulas and formulas. This relation is made precise in Definition 6.
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Definition 6. Let M be a modal system; an M-deduction of ϕ from Φ is a finite
sequence ψ1 . . . ψn of formulas such that ψn = ϕ, and for each k < n at least
one of the following conditions hold:

1. ψk is an axiom of M;
2. ψk is a premiss, i.e., ψk ∈ Φ;
3. ψk is obtained from two earlier formulas using mp, i.e., there are i, j < k s.t.

ψj = ψi → ψk;
4. ψk is obtained from an earlier formula using u, i.e., there is j < k s.t. ψk =

u�ψj.

We write Φ �M ϕ iff there is an M-deduction of ϕ from Φ. The relation �M is
commonly referred to as global consequence.

If there is no need to distinguish between modal systems, we simply speak
of a relation � and of a deduction.

We end this section by taking note of the following properties of �M. Notice
that the first item refers to the necessitation property in modal logics, whereas
the second item refers to a version of the deduction theorem.

Proposition 1. The following properties hold:

1. If �M ϕ, then, �M �ϕ.
2. If Φ ∪ {ϕ} �M ψ, then, Φ �M u�ϕ → ψ.

2.3 Algebraizing Modal Systems

We present the semantics of a modal system from an algebraic perspective.
Following [28], and borrowing ideas and results from [12,14], we associate with
any modal system M a suitable class of algebras in a way such that the properties
of M are in correspondence to the properties of this class.

For the case of the modal systems we consider we will use u�-modal algebras.
We use this algebraic treatment of modal systems to perform default reasoning
from a semantic point of view. This algebraic treatment is also instrumental
to viewing default reasoning as a logic of updates over algebras. But this is us
getting ahead of ourselves. For now, we focus on introducing some basic concepts
and results regarding u�-modal algebras.

Definition 7. The formula algebra corresponding to the set Form of formulas
is the structure F = 〈Form,∧,¬,	,�, u�〉 where: ¬, �, u� are unary functions
on Form, and ∧ is a binary function on Form, such that ¬ applied to ϕ ∈ Form
returns ¬ϕ ∈ Form, � applied to ϕ ∈ Form returns �ϕ ∈ Form, u� applied to ϕ ∈
Form returns u�ϕ ∈ Form, and ∧ applied to ϕ,ψ ∈ Form returns ϕ ∧ ψ ∈ Form.

Just as Boolean algebras (as interpretation structures) and filters (as the
semantic counterpart of deducibility) are fundamental for the algebraization of
Classical Propositional Logic, u�-modal algebras and open filters are fundamental
for the algebraization of modal systems.
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Definition 8. A u�-modal algebra is a structure M = 〈B, ∗,−, 1, f�, f u�〉 where:
〈B, ∗,−, 1〉 is a Boolean algebra; and f� and f u� are unary functions on B
satisfying the following equations

f�(1) = 1 f u�(b1) � b1

f�(b1 ∗ b2) = f�(b1) ∗ f�(b2) f u�(b1) � f u�(−f u�(−b1))

f u�(1) = 1 f u�(b1) � f u�f u�(b1)

f u�(b1 ∗ b2) = f u�(b1) ∗ f u�(b2) f u�(b1) � f�(b1).

An open filter is a subset F ⊆ B such that F is a filter in 〈B, ∗,−, 1〉, and for
all b ∈ F , f u�(b) ∈ F .

Definition 9. An interpretation of the formula algebra F on a u�-modal algebra
M = 〈B, ∗,−, 0, f�, f u�〉, a.k.a. an interpretation on M, is a homomorphism
v : F → M such that:

v(	) = 1 v(¬ϕ) = −v(ϕ) v(�ϕ) = f�(v(ϕ))

v(ϕ ∧ ψ) = v(ϕ) ∗ v(ψ) v( u�ϕ) = f u�(v(ϕ)).

Proposition 2. Every interpretation v on M is uniquely determined by an
assignment v0 : Prop → |M|.
Definition 10. Let M be a u�-modal algebra; we define:

1. an equation is a member of Form2; we write an equation (ϕ,ψ) as ϕ ≈ ψ;
2. an equation ϕ ≈ ψ is valid under an interpretation v on M iff v(ϕ) = v(ψ);

we write M, v � ϕ ≈ ψ if ϕ ≈ ψ is valid under v;
3. an equation ϕ ≈ ψ is valid in M iff M, v � ϕ ≈ ψ for all interpretations v

on M; we write M � ϕ ≈ ψ if ϕ ≈ ψ is valid in v.

We are now in a position to connect u�-modal algebras and modal systems.

Proposition 3. Let M be a modal system; the relation ∼=Φ
M defined as: ϕ ∼=Φ

M ψ
iff Φ �M ϕ ↔ ψ yields a congruence on F.

Definition 11. Let M be a modal system; the M-Lindenbaum-Tarski algebra of
a set Φ of wffs is the structure LΦ

M = 〈Form/∼=Φ
M
, ∗∼=Φ

M
,−∼=Φ

M
, 1∼=Φ

M
, f�∼=Φ

M
, f u�∼=Φ

M
〉 where:

Form/∼=Φ
M

= { [ϕ]∼=Φ
M

| ϕ ∈ Form }; and

1∼=Φ
M

= [	]∼=Φ
M

−∼=Φ
M
([ϕ]∼=Φ

M
) = [¬ϕ]∼=Φ

M
f�∼=Φ

M
([ϕ]∼=Φ

M
) = [�ϕ]∼=Φ

M

[ϕ]∼=Φ
M

∗∼=Φ
M

[ψ]∼=Φ
M

= [ϕ ∧ ψ]∼=Φ
M

f u�∼=Φ
M
([ϕ]∼=Φ

M
) = [ u�ϕ]∼=Φ

M
.

The canonical interpretation v on LΦ
M is defined as v(ϕ) = [ϕ]∼=Φ

M
.

Proposition 4. Every M-Lindenbaum-Tarski algebra is a u�-modal algebra.

Theorem 1. For every modal system M, Φ �M ϕ iff LΦ
M � ϕ ≈ 	.
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The algebraic completeness of a modal system M w.r.t. a corresponding sub-
class of u�-modal algebras is obtained as a corollary of Theorem 1. In other
words, an M-Lindenbaum-Tarski u�-modal algebra acts as an ‘algebraic canon-
ical model’ for a set of formulas in the modal system M, i.e., they provide a
witness for Φ ��M ϕ. We make full use of M-Lindenbaum-Tarski u�-modal alge-
bras in Sect. 3.3.

3 Default Modal Logic

In this section we integrate the elements of Default Logic, defaults and exten-
sions, into modal systems. This integration yields what we call a default modal
system. For each default modal system, we introduce an associated notion of
default consequence and show how defaults interact with the rules of the Hilbert-
style notion of deduction for the underlying modal system. Moreover, we present
how a default modal system can be viewed from an algebraic perspective, and
prove a completeness result using algebraic tools. Later on, we discuss how the
algebraic treatment of default modal systems can be seen as an update opera-
tion on algebraic structures. This opens up the door to thinking about default
systems from a dynamic logic perspective (akin to public announcements).

3.1 Default Modal Systems

The main elements of Default Logic, i.e., defaults and extensions, are given in
Definitions 12 and 13, respectively. These definitions are adapted from [21]. For
the rest of this section we assume that M is an arbitrary but fixed modal system.

Definition 12. A default is a triple (π, ρ, χ) of formulas written as π : ρ / χ.
The formulas π, ρ, and χ, are called prerequisite, justification, and consequent.

Definition 13. Let Φ be a set of formulas and Δ a set of defaults. Let EΦ
ΔM be a

function s.t. for all sets of formulas Ψ , EΦ
ΔM(Ψ) is the ⊆-smallest set of formulas

which satisfies:

(a) Φ ⊆ EΦ
ΔM(Ψ);

(b) EΦ
ΔM(Ψ) = { ψ | EΦ

ΔM(Ψ) �M ψ };
(c) for all π : ρ / χ ∈ Δ, if π ∈ EΦ

ΔM(Ψ) and ¬ρ /∈ Ψ , then, χ ∈ EΦ
ΔM(Ψ).

A set Ε ⊆ Form is an M-extension of Φ under Δ iff it is a fixed point of EΦ
Δ,

i.e., iff Ε = EΦ
Δ(Ε). We write E Φ

ΔM for the set of all M-extensions of Φ under Δ.

Intuitively, an M-extension can be thought of as a set of formulas which
contains Φ, is closed under �M, and is saturated under the application of the
defaults in Δ. When it can be clearly understood from the context, we will drop
the prefix M and refer to an M-extension as an extension.

In the literature on Default Logic, defaults are intuitively understood as
defeasible rules of inference, i.e., rules of inference whose conclusions are sub-
ject to annulment, or rules which allow us to “jump” to conclusions. In turn,
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extensions are intuitively understood as sets of formulas closed under the appli-
cation of defaults. The next two examples illustrate two properties of extensions:
multiplicity and absence of extensions.

Example 1. Let Φ = {♦p} and Δ = {♦p : ♦¬p / ♦¬p,♦p : �p / �p}; the set
E Φ

ΔM of extensions of Φ under Δ consists of exactly two extensions: (1) the set
Ε1 = { ϕ | {♦p,♦¬p} �M ϕ }; and (2) the set Ε2 = { ϕ | {♦p,�p} �M ϕ }.

Each of the extensions in Example 1 corresponds to the application of each
default in Δ. Once one default has been applied, the application of the other one
is blocked. This example illustrates how to handle contradictory information.

Example 2. Let Φ = {♦p} and Δ = {♦p : ♦q / �¬q}; the set E Φ
ΔM of extensions

of Φ under Δ is empty, i.e., E Φ
ΔM = ∅, i.e., there are no extensions of Φ under Δ.

Example 2 highlights a subtletly in thinking of extensions as being con-
structed by the successive application of defaults: applying a default may result
in its own annulment. To make this point clear, w.l.o.g., notice that plausible
candidates for extensions are: the set Ε1 = { ϕ | {♦p} �M ϕ } (i.e., not applying
the default); or the set Ε2 = { ϕ | {♦p,�¬q} �M ϕ } (i.e., result of applying the
default to Ε1).Neither of these sets is a fixed point of EΦ

Δ, i.e., EΦ
Δ(Ε1) = Ε2 and

EΦ
Δ(Ε2) = Ε1. This results in E Φ

ΔM = ∅.
We are now in a position to define what we mean by a default modal system.

This definition arises as a natural construction over a modal system M.

Definition 14. A default modal system is a tuple ΔM = 〈Δ,M〉 where Δ is a
set of defaults and M is a modal system.

In analogy with the case in modal systems, we associate with each default
modal system ΔM a relation ‖∼ΔM between sets of formulas and formulas. This
relation is based on the relation �M and it can be understood as its default
version. This is made clear in Definition 15.

Definition 15. Let ΔM be a default modal system; define

Φ ‖∼ΔM ϕ iff ϕ ∈ Ε for some Ε ∈ E Φ
ΔM.

We use ‖∼ΔM ϕ as a shorthand for ∅ ‖∼ΔM ϕ. The relation ‖∼ΔM is called
credulous in the literature on Default Logic, because the existence of just one
extension is enough to grant the inference (see [2]). The principle of monotonicity
fails for ‖∼ΔM. In other words: it is not necessarily the case that if Φ ‖∼ΔM ϕ,
then Φ ∪ Ψ ‖∼ΔM ϕ (for an arbitrary Ψ).

Building the relation ‖∼ΔM on the underlying relation �M raises the question
of which properties of �M are preserved at the level of ‖∼ΔM. Definition 16 sets
a basis on which to start answering this question.

Definition 16. The relation ‖∼ΔM interprets �M iff if Φ �M ϕ then Φ ‖∼ΔM ϕ.
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Interpretability seems to be a natural requirement on ‖∼ΔM. However, as
established in Example 2 (which shows that sometimes extensions do not exist)
this property fails to hold in general. To overcome this problem we can go down
two possible paths: (i) modify Definition 13 to guarantee the existence of exten-
sions; or (ii) single out defaults for which extensions are guaranteed to exist.
Among the most popular modifications of Definition 13 which guarantee the
existence of extensions we have: justified extensions (see [17]); and constrained
extensions (see [6]). For option (ii), we have the set of well-behaved2 defaults
as a very large and natural set which guarantees the existence of extensions
(see [21]). Going down path (i) overburdens the definition of an extension with
additional machinery which departs from the purposes of our work here. For
this reason, we choose to go down path (ii); i.e., we restrict ourselves to well-
behaved defaults. Interestingly, the notions of extensions, justified extensions,
and constrained extensions, coincide for well-behaved defaults (see [5,11]).

Definition 17. A default π : ρ / χ is well-behaved, written π/χ, iff ρ = χ. A
set of defaults Δ is well-behaved iff all defaults in Δ are well-behaved. A default
modal system ΔM is well-behaved iff Δ is well-behaved.

Proposition 5. Let ΔM be a default modal system; if ΔM is well-behaved, then,
‖∼ΔM interprets �M.

We conclude this section by drawing attention to an interesting point regard-
ing necessitation in default modal systems in Proposition 6 (cf. item 1 in Propo-
sition 1).

Proposition 6. If ‖∼ΔM ϕ, then ‖∼ΔM �ϕ.

Proof. Suppose that ‖∼ΔM ϕ; by definition, there is an M-extension Ε ∈ E Φ
ΔM s.t.

Ε �M ϕ. It follows that Ε �M �ϕ. Thus, ‖∼ΔM �ϕ.

The analogous to item 2 in Proposition 1, a form of the deduction theorem,
i.e., if Φ ∪ {ϕ} ‖∼ΔM ψ, then, Φ ‖∼ΔM u�ϕ → ψ fails to hold for an arbitrary ΔM
(even with the presense of u�).

3.2 Deducibility in Default Modal Systems

We formulate a notion of ΔM-deduction for an arbitrary but fixed well-behaved
default modal system ΔM. This notion of a ΔM-deduction extends that of an
M-deduction by incorporating defaults in a natural way.

Definition 18. A ΔM-deduction of ϕ from Φ is a finite sequence ψ1 . . . ψn of
formulas s.t. ψn = ϕ, and for each k < n at least one of the following conditions
hold:

2 In the literature on Default Logic well-behaved defaults are called normal. We avoid
using this terminology here to avoid any confusion with normality in Modal Logic.
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1. ψk is an axiom of M;
2. ψk is a premiss, i.e., ψk ∈ Φ;
3. ψk is obtained from two earlier formulas using mp, i.e., there are i, j < k s.t.

ψj = ψi → ψk;
4. ψk is obtained from an earlier formula using u, i.e., there is j < k s.t. ψk =

u�ψj.
5. ψk is obtained from an earlier formula using Δ-detachment, i.e., there is

j < k s.t. ψj/ψk ∈ Δ;

A ΔM-deduction is credulous whenever:

(Φ ∪ {ψi | 1 ≤ i ≤ n }) �M ⊥ iff Φ �M ⊥. (1)

We define Φ |∼ΔM ϕ iff there is a credulous ΔM-deduction of ϕ from Φ.

The notion of a credulous ΔM-deduction extends the notion of M-deduction
with a rule of default detachment and the condition of being credulous. The
rule of default detachment shows how defaults interact with the rules of the
underlying proof system. The condition of being credulous in Eq. (1) captures
the fact that defaults cannot be a source of inconsistency. Intuitively, a credulous
ΔM-deduction of ϕ from Φ internalizes the construction of (part of) an extension
containing ϕ together with the M-deduction which witnesses this containment.
This is made precise in the following result.

Theorem 2. Φ |∼ΔM ϕ iff Φ ‖∼ΔM ϕ.

3.3 Towards an Algebraic Treatment of Default Modal Systems

We turn now our attention to a characterization of defaults and extensions
by means of Lindenbaum-Tarski u�-modal algebras. This algebraic treatment
of defaults and extensions reveals how default modal systems may be thought
of as updates on u�-modal algebras. For the rest of this section, we assume
that ΔM is an arbitrary but fixed well-behaved default modal system. We
use L to indicate the class of Lindenbaum-Tarski u�-modal algebras of M, i.e.,
L = {LΦ

M | Φ ⊆ Form }. We drop the sub-index M and use Φ instead of ∼=Φ
M as

a way of further simplifying the notation. We construct this section around the
following definition.

Definition 19. Let δ = π/χ ∈ Δ; the function δ̂ : L → L is defined as:

δ̂(LΦ) =

{
LΦ∪{χ} if [π]Φ = 1Φ and 0Φ /∈ ↑{[ u�χ]Φ}

LΦ otherwise.

(2a)

(2b)

Definition 19 is the algebraic counterpart of the application of a default w.r.t.
a set of sentences. More precisely, δ = π/χ is applicable w.r.t. a set Φ satisfying
Φ = { ϕ | Φ � ϕ } if: (a) π ∈ Φ; and (b) Φ ∪ {χ} �� ⊥. Applying the default
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δ results in { ϕ | Φ ∪ {χ} � ϕ }. On the algebraic side, we capture the appli-
cation of a default as a transformation between Lindenbaum-Tarski u�-modal
algebras. More precisely, consider the Lindenbaum-Tarski u�-modal algebra for
Φ, i.e., LΦ. The condition (a) of applicability of δ = π/χ w.r.t. LΦ is captured
in (2a) as [π]Φ = 1Φ; and the condition (b) of applicability is captured in (2a) as
0Φ /∈ ↑{[ u�χ]Φ}. In other words, the equivalence class of 1Φ captures the deducibil-
ity of π from Φ, i.e., π ∈ Φ, alt., Φ � π. In turn, the condition of being proper
on the (open) filter generated by [ u�χ]Φ captures the consistency of χ w.r.t. Φ,
i.e., Φ ∪ {χ} �� ⊥. Notice that if the default is applicable, the return value of δ̂

incorporates χ to LΦ, i.e., it results in LΦ∪{χ}. Otherwise, δ̂ has no effect on LΦ.
When seen in this light, the operator δ̂ performs an update reflecting the appli-
cation of δ on its input. The situation with δ̂ is similar to the case in dynamic
logics such as Public Announcement Logic [20] (in particular, in relation to the
approach proposed in [18]). We retake this discussion in Sect. 4.

Having dealt with defaults we turn our attention to extensions. For well-
behaved defaults, extensions can be seen as being constructed in a step-wise
fashion applying defaults one at a time. From a syntactic perspective, this con-
struction of an extension starts with a closed set Φ, and applies the defaults
δ ∈ Δ one by one until we obtain a closed set of formulas that is saturated
under the application of defaults. From the perspective of Lindenbaum-Tarski
u�-modal algebras we obtain the following.

Proposition 7. Each function δ̂ induces a function δ̄ : |L| → |δ̂(L)| defined as:
δ̄([ϕ]Φ) = [ϕ]Φ∪{χ} if Eq. (2a) holds; or δ̄([ϕ]Φ) = [ϕ]Φ if Eq. (2b) holds. The
function δ̄ is a homomorphism from L to δ̂(L).

Proof. That δ̄ is a function is trivial. The proof that δ̄ is a homomorphism is by
cases. If Eq. (2b) holds, then, the result is obtained immediately. Otherwise:

δ̄(f�
Φ ([ϕ]Φ)) = δ̄([�ϕ]Φ) = [�ϕ]Φ∪{χ} = f�

Φ∪{χ}([ϕ]Φ∪{χ}) = f�
Φ∪{χ}(δ̄([ϕ]Φ)).

The remaining cases are similar.

The following are some immediate properties of default operators.

Definition 20. Let L1,L2 ∈ L; we write L1 ≤ L2 iff there is a homomorphism
h : L1 → L2; and L1 < L2 iff L1 ≤ L2 and L1, L2 are not isomorphic.

Proposition 8. Every δ̂ is extensive and idempotent, i.e., it satisfies L ≤ δ̂(L)
and δ̂(L) = δ̂(δ̂(L)), resp. An arbitrary δ̂ needs not satisfy monotonicity, i.e.,
there are δ = π/χ s.t. L1 ≤ L2 and δ̂(L1) � δ̂(L2).

Proof. Extensivity follows from Proposition 7. Idempotence is proven by cases.
If Eq. (2b) holds, then, the result is obtained immediately. Otherwise, Eq. (2a)
holds. In this case, δ̂(LΦ) = LΦ∪{χ}. Trivially, δ̂(LΦ∪{χ}) = LΦ∪{χ}. For a
counter-example to monotonicity consider L∅

K u� and L{�p}
K u� , and δ = 	/♦¬p.
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The set Δ of defaults leads naturally to a set { δ̂ : L → L | δ ∈ Δ }. Each δ̂
in this set can be seen as “taking a step” in the construction of the algebraic
counterpart of an extension. To carry out this construction, we would need to
compose such steps. This leads to the formulation of Definition 21.

Definition 21. The default monoid associated to ΔM is the monoid D∗ freely
generated by { δ̂ | δ ∈ Δ }, i.e., D∗ = 〈D,−;−, id〉 where:

1. D is the ⊆-smallest set s.t.: { δ̂ : L → L | δ ∈ Δ } ⊆ D; id : L → L ∈ D; and
if {d1 : L → L, d2 : L → L} ⊆ D, then (d1;d2) : L → L ∈ D;

2. id and −;− satisfy: id(L) = L; and (d1;d2)(L) = d2(d1(L)).

Proposition 9. Every d ∈ |D∗| is either: the identity, i.e., d = id; or a compo-
sition of the form d = (δ̂1; . . . ;δ̂n), where δi ∈ Δ.

We define id([ϕ]Φ) = [ϕ]Φ; and (δ̂1; . . . ;δ̂n) = (δ̄1; . . . ;δ̄n).

Definition 22. Let L be a Lindenbaum-Tarski u�-modal algebra in L, and v be
an assignment on L; for an equation ϕ ≈ ψ, define:

D∗,L, v |≈ ϕ ≈ ψ iff d(L), (v;d̄) � ϕ ≈ ψ for some d ∈ |D∗|.
We write D∗,L |≈ ϕ ≈ ψ iff D∗,L, v |≈ ϕ ≈ ψ for all assignments v.

Intuitively, the Lindenbaum-Tarski u�-modal algebra d(L) in Definition 22 is
the algebraic counterpart of the concept of an extension. This is made clear in
Theorem 3.

Theorem 3. Φ |∼ ϕ iff D∗,LΦ |≈ ϕ ≈ 	.

Proof. The interesting part is the right-to-left implication: if D∗,LΦ |≈ ϕ ≈ 	,
then, Φ |∼ ϕ. We prove the contrapositive: if Φ �|∼ ϕ, then, D∗,LΦ �|≈ ϕ ≈ 	. Let
Φ �|∼ ϕ, the proof is concluded if for all d ∈ |D∗|, d(LΦ) �� ϕ ≈ 	. We continue by
induction on d. Let d = id; we must have id(LΦ) �� ϕ ≈ 	; otherwise we would
obtain Φ � ϕ (from Theorem 1); and so that Φ |∼ ϕ (which contradicts our
assumption). For the next case, let d = δ̂ for δ = π/χ ∈ Δ; either Eq. (2b) holds
or Eq. (2a) holds. If Eq. (2b) holds, δ̂ behaves like id (and we are back to the
previous case). If Eq. (2a) holds, δ̂(LΦ) = LΦ∪{χ}. Assuming (i) LΦ∪{χ} � ϕ ≈ 	
leads to a contradiction. More precisely, if Eq. (2a) holds, from Theorem 1, we
obtain Φ � π and Φ ∪ {χ} �� ⊥. From (i) and Theorem 1, we obtain Φ ∪ {χ} � ϕ.
If we place the M-deduction of π from Φ in front of the M-deduction of ϕ from
Φ∪{χ}, we obtain Φ |∼ ϕ. This yields the contradiction. For the inductive step, let
d = (δ̂1; . . . ;δ̂n;δ̂(n+1)). Suppose that (δ̂1; . . . ;δ̂n)(LΦ) = LΦ′

. From the inductive
hypothesis, we obtain LΦ′ �� ϕ ≈ 	. Assuming that δ̂(n+1)(LΦ′

) � ϕ ≈ ψ leads
to a contradiction using the same argument as in (i).

We conclude this section by taking some steps beyond dealing with defaults
and extensions in the context of Lindenbaum-Tarski u�-modal algebras. In par-
ticular, we show how some of the constructions used in Sect. 3.3 can be extended
to a more abstract setting via suitable congruences.
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Definition 23. Let LΦ be a Lindenbaum-Tarski u�-modal algebra and χ a for-
mula; define [ϕ1]Φ ≡χ [ϕ2]Φ iff [ϕ1]Φ ∗Φ [ u�χ]Φ = [ϕ2]Φ ∗Φ [ u�χ]Φ.

Definition 23 is a step towards treating the application of default as a device
for obtaining a u�-modal algebra M updated by the element [χ]Φ in LΦ. The
updated u�-modal algebra M is meant to be obtained as a quotient algebra
modulo the congruence ≡χ. Proposition 10 shows that ≡χ indeed is a congruence.

Proposition 10. The relation ≡χ is a congruence on LΦ.

Proof. That ≡χ is an equivalence relation is immediate. To improve notation we
drop the subscript Φ. We need to show that: if [ϕ1] ≡χ [ϕ2] and [ϕ3] ≡χ [ϕ4],
then, [ϕ1] ∗ [ϕ3] ≡χ [ϕ2] ∗ [ϕ4]; −[ϕ1] ≡χ −[ϕ2]; f�([ϕ1]) ≡χ f�([ϕ2]); and
f u�([ϕ1]) ≡χ f u�([ϕ2]). The proof continues by cases (we only show the cases f�

and f u�, the rest are routine):

f�([ϕ1]) ∗ [ u�χ]
≥ f�([ϕ1] ∗ [ u�χ]) ∗ [ u�χ]
= f�([ϕ2] ∗ [ u�χ]) ∗ [ u�χ]
= f�([ϕ2]) ∗ (f�([ u�χ]) ∗ [ u�χ])
≥ f�([ϕ2]) ∗ [ u�χ]

f u�([ϕ1]) ∗ [ u�χ]
= f u�([ϕ1]) ∗ [ u� u�χ]
= f u�([ϕ1]) ∗ f u�([ u�χ])
= f u�([ϕ1] ∗ [ u�χ])
= f u�([ϕ2] ∗ [ u�χ])
= f u�([ϕ2]) ∗ f u�([ u�χ])
= f u�([ϕ2]) ∗ [ u� u�χ]
= f u�([ϕ2]) ∗ [ u�χ].

Proposition 11. The quotient algebra LΦ/≡χ
is isomorphic to LΦ∪{χ}.

Proof (sketch).
Observe that Φ ∪ {χ} � (ϕ1 ↔ ϕ2) iff Φ � (ϕ1 ∧ u�χ ↔ ϕ2 ∧ u�χ). The isomor-
phism between LΦ/≡χ

and LΦ∪{χ} is given by mappings ι1 and ι2 defined as:
ι1([[ϕ]Φ]≡χ

) = [ϕ]Φ∪{χ}; and ι2([ϕ]Φ∪{χ}) = [[ϕ]Φ]≡χ
.

The isomorphism in Proposition 11 shows that the relation ≡χ yields the
“correct” congruence if the application of a default is to be seen as an update on
a u�-modal algebra. Moreover, it is possible to define a function ε : LΦ/≡χ

→ LΦ

defined by ε([[ϕ]Φ]≡χ
) = [ϕ]Φ ∗Φ [χ]Φ. The image of ε is also isomorphic to

LΦ∪{χ}. The results discussed in this paragraph open a pathway on how to lift
the constructions in Definitions 19 and 21 to the setting of arbitrary u�-modal
algebras.

4 On Defaults as Model Updates

We are now in a position to establish a connection between our algebraic app-
roach for default modal systems and the algebraic treatment of Public Announce-
ment Logic (PAL) in [18]. To set up context for discussion, we briefly introduce
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some basic notions of PAL (see, e.g., [20] for details). As a modal logic, PAL
extends the modal logic S5 (seen as the logic of knowledge) with a new modality
〈!ψ〉 of announcement. Intuitively, a formula 〈!ψ〉ϕ states that after the truthful
announcement of ψ, ϕ holds. Model theoretically, the interpretation of announc-
ing ψ relativizes the model in which ψ is announced to the submodel in which ψ
holds. The formula ϕ is then evaluated on the relativized model. It is important
to remark that the announcement of ψ must be truthful: it occurs only if ψ is
true. Otherwise, the announcement fails and 〈!ψ〉ϕ evaluates to false.

There are some interesting similarities between announcements in PAL and
defaults. From an algebraic perspective, an announcement may be understood as
a homomorphism between the modal algebra in which the announcement occurs
and the modal algebra corresponding to the submodel in which the announced
formula holds. The algebraic machinery introduced in Sect. 3.3 sets the basis
for thinking about the application of defaults as a logic of updates between par-
ticular modal algebras (Lindenbaum-Tarski u�-modal algebras). In other words,
we may construe the algebraic semantics of a default as an update from the
Lindenbaum-Tarski u�-modal algebra in which the default is considered, and the
one updated with the consequent of the default (if the default is applicable).
Notice that a default update takes place only if the prerequisite of the default
is provable and its justification does not yield an inconsistency. The situation
here is similar to the case of announcements, where the update takes place only
if the formula being announced is true. In both cases, that of an announcement
and that of the algebraic application of a default, the update is captured by
a homomorphism from the original modal algebra to an updated modal alge-
bra (obtained as a quotient construction). There is, however, subtle difference
between announcements and defaults: if the announcement of ψ is not truthful
the whole formula 〈!ψ〉ϕ amounts to a falsity; whereas if the prerequisite of a
default is not provable, or its justification is inconsistent in the modal algebra,
the application of the default has no effect.

The similarities between announcements in PAL and defaults are even more
apparent when contrasted with the proposal presented in [18]. This proposal
exploits the duality between models and algebras in order to algebraize PAL. In
particular, in [18], a formula ψ is interpreted as an element b in an S5 modal
algebra M = 〈B, ∗,−, f�〉. The result of announcing this formula is a modal
algebra constructed as a quotient modulo a congruence ≡b defined as b1 ≡b b2 iff
b1 ∗ b = b2 ∗ b. This congruence bears a close resemblance to the one we presented
in Sect. 3.3. The main difference between this congruence and ours rests on the
fact that the former is presented in the setting of S5, whereas ours is presented
in a setting where global modal consequence is taken as the basis on which to
build default modal systems. This said, the approach in [18] is more abstract
than ours; since it considers arbitrary modal algebras and not just Lindenbaum-
Tarski modal algebras.

The discussion above offers only some first steps in understanding the rela-
tionship between defaults and updates: both in terms of a full algebraization of
default modal systems, and in terms of establishing a tight connection with logics
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of updates. In working towards a full algebraization of default modal systems,
we would like to interpret the application of a default over arbitrary modal alge-
bras, and not only as an update over Lindenbaum-Tarski u�-modal algebras. In
this regard, the main challenge is how to generalize the way in which we capture
the application of one default to the application of a sequence of defaults needed
to build an extension. Moreover, it would also be interesting to know whether it
is possible to develop a class of algebraic structures for default modal systems
parallel to the class of modal algebras for modal systems. This would require
an internalization of defaults as algebraic operators. In turn, in what refers to
establishing a tight connection with logics of updates, it would be interesting to
be able to prove a reduction result between a default modal system and a logic
of announcement (or establishing a difference in expressive power between one
and the other). In this case, the challenge is deciding on an adequate logic of
announcement and in finding whether it is possible to faithfully translate the
application of a default as a form of update in this logic. Finally, upon defining
the semantics of defaults as updates, we would like to study defaults as dynamic
epistemic operators. In particular, we would like to explore whether defaults can
be used to represent some novel form of communication in a multi-agent setting.

5 Final Remarks

We presented a family of default logics built over modal logics and studied some
properties.

First, we presented default logics syntactically as a default modal system.
For each default modal system we formulated a notion of default deducibility
to make explicit how defaults interact with the rules of the underlying proof
calculus. Then, we offered an algebraic treatment of defaults and extensions.
The algebraic treatment enabled us to obtain an algebraic completeness result.
To our knowledge, this is the first work addressing default logic algebraically.

Moreover, we discussed a connection between default modal systems and
modal logics with updates. In particular, our algebraic treatment of defaults
is inspired by the ideas introduced in [18] for PAL. We believe that considering
default modal systems as logics of updates is an interesting pathway to the study
of the meta-logical properties of such systems from a semantic perspective.
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Abstract. Arbitrary public announcement logic (APAL) is a logic of
change of knowledge with modalities representing quantification over
announcements. We present two rather different versions of APAL
wherein this quantification is restricted to formulas only containing a sub-
set of all propositional variables: FSAPAL and SCAPAL; and another
version quantifying over all announcements implied by or implying a
given formula: IPAL. We then determine the relative expressivity of these
logics and APAL. The IPAL quantifier promises to provide a novel per-
spective on substructural implication as dynamic consequence.

Keywords: Dynamic epistemic logic · Expressivity · Modal logic

1 Introduction

The modal logic of knowledge was originally proposed to give a relational seman-
tics for the perceived properties of knowledge, such as that what you know is
true, and that you know what you know, and to contrast this with the proper-
ties of other epistemic notions such as belief [26]. Already in [26] the analysis of
paradoxical phenomena that you cannot be informed of factual ignorance while
‘losing’ that ignorance, so-called Moorean phenomena [28], played an important
role. On the heels of the logic of (single agent) knowledge came the multi-agent
logics of knowledge, wherein similar phenomena are not so paradoxical: there is
no issue with my knowledge of your ignorance. This led on the one hand to the
development of group epistemic notions such as common knowledge [6,27] and
distributed knowledge [25], topics that we will bypass in this contribution. On
the other hand this led to increased interest in the analysis of multiple agents
informing each other of their ignorance and knowledge, often inspired by logic
puzzles [27,29]. This culminated in Plaza’s public announcement logic (PAL)
[30], wherein such informative actions became full members of the logical lan-
guage besides the knowledge modalities; parallel developments of dynamic but
not epistemic logics of information change are [11,21].

PAL contains a dynamic operator representing the consequences of infor-
mation change that is similarly observed by all agents, so-called public (and
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truthful) announcement. We let [ψ]ϕ stand for ‘after truthful public announce-
ment of ψ, ϕ (is true). Every PAL formula is equivalent to a formula without
public announcements, so that PAL is as expressive as epistemic logic EL (a.k.a.
the logic S5) [30].

From PAL there were various directions for further generalization. One could
consider public announcements in the presence of group epistemic operators such
as common knowledge, or non-public information change such as private or secret
announcements to some agents while other agents do not or only partially observe
that. Both were simultaneously realized in action model logic [9]; parallel, now
lesser known, developments are [24].

A different direction of generalizing PAL is to consider quantifying over
announcements. Arbitrary public announcement logic APAL was proposed in [7]
and contains a construct [!]ϕ standing for ‘after any truthful public announce-
ment, ϕ (is true)’, i.e., for all ψ, [ψ]ϕ. In order to avoid circularity, the APAL
quantifier is only over announcements not containing [!] modalities. There is
an infinitary (not RE) axiomatization for the logic [8], where an open ques-
tion remains whether there is a finitary (RE) axiomatization. APAL is undecid-
able [22], and the complexity of model checking is PSPACE-complete [1]. There
are versions of APAL with finitary axiomatizations or decidable satisfiability
problems [10,16,17], or that model aspects of agency [1,2,23]. APAL is more
expressive than PAL [7]. The relative expressivity of versions of APAL is rather
intricate, and most relevant in view of potential applications. For example, group
announcement logic GAL and APAL are incomparable in expressivity [23], and
in GAL we can formalize goal reachability in finite two-principal security proto-
cols [1].

In this contribution we investigate some novel versions of APAL. If we quan-
tify over announcements only using atoms in subsets Q ⊆ P we obtain the logic
SAPAL, and if these subsets are required to be finite we get FSAPAL. If we
quantify over announcements only using atoms occurring in the formula under
the scope of the quantifier, we obtain the logic SCAPAL. If we quantify over
announcements implying a given formula ψ or implied by a given formula ψ and
if such ψ may also contain quantifiers we obtain logic QIPAL and if they are not
allowed to contain quantifiers we obtain IPAL.

Our investigations are motivated by the search for ‘tameable’ versions of
APAL, which would be useful in view of applications. The different kinds of
taming we have in mind are, first and foremost, decidability, and also finitary
(RE) axiomatizations and lower model checking complexity. Unfortunately we
do not expect any of the investigated logics to be decidable or to have a fini-
tary axiomatization. We did not consider whether model checking complexity is
below that of APAL (PSPACE-complete). Our expressivity results, the principal
focus of our contribution, can be seen as sanity checks that might point towards
likely application areas (similarly as for GAL, as observed above). Concerning
applications, when modelling dynamics of a multi-agent system it seems often
the case that the vocabulary is finite. In particular, that only a finite number of
atomic propositions are considered relevant for each given subtask of a problem
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to solve, where this vocabulary might vary between interdependent subtasks.
In such cases, the logics SAPAL and even more FSAPAL (SAPAL for finite
subsets of atoms), and also SCAPAL, might be more suitable modelling tools
than ‘generic’ APAL. Note that there is a strong, but not well-known, relation
between quantification over public announcements and epistemic planning [15].
In the latter, we wish to satisfy some epistemic goal ϕ by finding a sequence of
actions, that could be public announcements, successively transforming multi-
agent models for the system until ultimately leading to a model satisfying goal
ϕ. In the former, we wish to satisfy ♦ϕ (for ‘there is an announcement, or a
sequence of announcements, after which ϕ’) by finding a sequence of announce-
ments (successively transforming multi-agent models) after which ϕ. In both,
undecidability can only be tamed by restricting what can be announced; for
epistemic planning, this is e.g. discussed in [4]. For the logics IPAL and QIPAL
we are additionally motivated by substructural logic, and how the quantifier
there can be seen as the condition for a substructural implication, as will be
discussed in some detail in our contribution.

PAL/EL

SCAPAL APAL

FSAPAL IPAL

Fig. 1. Expressivity hierarchy of logics presented in this work. An arrow means larger
expressivity. Assume transitivity. Absence of an arrow means incomparability.

In Sect. 2 we introduce their syntax and semantics, in Sect. 3 we prove some
modal properties of these quantifiers. Section 4 determines the expressivity hier-
archy for the reported logics. This section contains our main results. They are
depicted in Fig. 1. Let ≺ mean ‘(strictly) less expressive’ and � ‘incomparable’,
then the results are that PAL is less expressive than any of the logics with quan-
tifiers, and that SCAPAL ≺ FSAPAL, APAL � SCAPAL, APAL � FSAPAL,
IPAL � SCAPAL, IPAL � FSAPAL, and APAL ≺ IPAL (proof omitted for lack
of space and therefore called a conjecture). The complete axiomatizations and
the undecidability of satisfiability of our APAL versions all promise to be the
same as for APAL. We conclude with Sect. 5 reinterpreting dynamic consequence
in the IPAL setting.

2 Syntax and Semantics: SAPAL, SCAPAL, QIPAL

Throughout this contribution, let a countable set P of propositional atoms and
a finite set A of agents be given.

Definition 1 (Language). The logical language L is defined inductively as:

ϕ ::= � | p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [ϕ]ϕ | [!]ϕ | [Q]ϕ | [⊆]ϕ | [ϕ↓]ϕ | [ϕ↑]ϕ
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where p ∈ P , a ∈ A, and Q ⊆ P . The propositional sublanguage is LPL, with
additionally the modalities Ka we get the epistemic formulas LEL, with addi-
tionally the construct [ϕ]ϕ it is LPAL, and adding one of the quantifiers [!], [Q],
[⊆], [ϕ↓]ψ and [ϕ↑]ψ we obtain, respectively, LAPAL, LSAPAL and LSCAPAL,
LQIPAL↓ and LQIPAL↑ . Adding both [ϕ↓]ψ and [ϕ↑]ψ we obtain LQIPAL, and if
the ϕ in [ϕ↓]ψ and [ϕ↑]ψ is restricted to LPAL, we get LIPAL. If the Q in [Q]ϕ
are (always) finite we get LFSAPAL.

The meaning of all constructs will be explained after defining the semantics. The
dual modalities for [!], [Q], [⊆], [ϕ↓], and [ϕ↑] are, respectively, 〈!〉, 〈Q〉, 〈⊆〉, 〈ϕ↓〉,
and 〈ϕ↑〉. Instead of ϕ ∈ LX we also say that ϕ is an X formula. For any language
L, L|Q is the sublanguage only containing atoms in Q ⊆ P . Given ϕ ∈ L,
P (ϕ) denotes the set of atoms occurring in ϕ. For [{p1, . . . , pn}]ϕ we may write
[p1 . . . pn]ϕ. The modal depth d(ϕ) of a formula is the maximum stack of epistemic
modalities; it is defined as: d(⊥) = d(p) = 0, d(ϕ ∧ ψ) = max{d(ϕ), d(ψ)},
d(Kaϕ) = d(ϕ) + 1, d([ϕ]ψ) = d([ϕ↓]ψ) = d([ϕ↑]ψ) = d(ϕ) + d(ψ), and d([!]ϕ) =
d([⊆]ϕ) = d([Q]ϕ) = d(¬ϕ) = d(ϕ).

Definition 2 (Structures). An epistemic model (or model) is a triple M =
(S,∼, V ) where S is a domain of states, ∼ is a set of binary relations ∼a ⊆ S × S
that are all equivalence relations, and V : P → P(S) maps each atom p ∈ P to
its denotation V (p).

Given a model M , we may refer to its domain, relations, and valuation as SM ,
∼M

a , and V M respectively, and we also refer to the domain of M as D(M).
Bisimulation to compare models will be defined later. A model N is a submodel
of M , notation N ⊆ M , if SN ⊆ SM , for all a ∈ A, ∼N

a = ∼M
a ∩ (SN × SN ),

and for all p ∈ P , V N (p) = V M (p) ∩ SN .

Definition 3 (Semantics). Given model M = (S,∼, V ), s ∈ S and ϕ ∈ L we
inductively define M, s |= ϕ (ϕ is true in state s of model M) as:

M, s |= p iff s ∈ V (p)
M, s |= ¬ϕ iff M, s |= ϕ
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ
M, s |= Kaϕ iff for all t ∈ S, s ∼a t implies M, t |= ϕ
M, s |= [ψ]ϕ iff M, s |= ψ implies M |ψ, s |= ϕ
M, s |= [!]ϕ iff for any ψ ∈ LPAL : M, s |= [ψ]ϕ
M, s |= [Q]ϕ iff for any ψ ∈ LPAL|Q : M, s |= [ψ]ϕ
M, s |= [⊆]ϕ iff for any ψ ∈ LPAL|P (ϕ) : M, s |= [ψ]ϕ
M, s |= [χ↓]ϕ iff for any ψ ∈ LPAL implying χ : M, s |= [ψ]ϕ
M, s |= [χ↑]ϕ iff for any ψ ∈ LPAL implied by χ : M, s |= [ψ]ϕ

where M |ϕ = (S′,∼′, V ′) is such that S′ = �ϕ�M = {s ∈ S | M, s |= ϕ},
∼′

a = ∼a ∩ (�ϕ�M × �ϕ�M ), and V ′(p) = V (p) ∩ �ϕ�M .
A formula ϕ is valid on model M , notation M |= ϕ, iff for all s ∈ S,

M, s |= ϕ, and ϕ is valid, notation |= ϕ, iff ϕ is valid on all models M . A formula
ϕ is a distinguishing formula of a subset S′ ⊆ S of M (or S′ is definable by ϕ)
if for all t ∈ S′, M, t |= ϕ and for all t /∈ S′, M, t �|= ϕ.
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In the dual existential reading of the semantics of the quantifiers, the ψ in ‘there
is a ψ ∈ LPAL’ is the witness of the quantifier. In the semantics of the last two,
‘ψ implies χ’ means |= ψ → χ and ‘ψ is implied by χ’ means |= χ → ψ.

PAL and APAL. Public announcement logic PAL and arbitrary public
announcement logic APAL were already introduced.

SAPAL and FSAPAL. The logic with construct [Q]ϕ, for ‘after any announce-
ment only containing atoms in Q ⊆ P ’, is called SAPAL, for APAL with quan-
tification over formulas restricted to subsets of variables. If those subsets are
required to be finite we get FSAPAL.

SCAPAL. The logic with construct [⊆]ϕ, for ‘after any announcement only
containing atoms occurring in ϕ’, is called SCAPAL (where ϕ is the formula
under the scope of the quantifier [⊆]).

QIPAL. The logic with constructs [ψ↓]ϕ and [ψ↑]ϕ is called QIPAL; where
[ψ↓]ϕ stands for ‘after every announcement implying ψ, ϕ is true’, and [ψ↑]ϕ
stands for ‘after every announcement implied by ψ, ϕ is true’. In QIPAL we can
reason over restrictions of a given model M that are submodels of M |ψ, or over
restrictions that contain M |ψ as a submodel.

Bisimulation. We define several notions of bisimulation between models and
obtain some elementary invariance results for our logics. They will be used much
in the expressivity Sect. 4.

Definition 4 (Bisimulation). Let M and N be epistemic models. A non-
empty relation Z ⊆ SM × SN is a bisimulation between M and N if for all
Zst, p ∈ P and a ∈ A:
— atoms: s ∈ V M (p) iff t ∈ V N (p).
— forth: if s ∼M

a s′, then there is a t′ ∈ SN such that t ∼N
a t′ and Zs′t′.

— back: if t ∼N
a t′, then there is a s′ ∈ SM such that s ∼M

a s′ and Zs′t′.
If there exists a bisimulation Z between M and N we write M ↔ N (or Z :
M ↔ N , to indicate the relation), and if it contains pair (s, t), we write (M, s) ↔
(N, t). If the atoms clause is only satisfied for atoms Q ⊆ P , we write M ↔Q N
and Z is called a Q-bisimulation or a (Q-)restricted bisimulation.

Definition 5 (Bounded bisimulation). Let M and N be epistemic models.
For n ∈ N we define a sequence Z0 ⊇ · · · ⊇ Zn of relations on SM × SN .
A non-empty relation Z0 is a 0-bisimulation if for all Z0st and p ∈ P :
— atoms: s ∈ V M (p) iff t ∈ V N (p).
A non-empty relation Zn+1 is an (n + 1)-bisimulation if for all Zn+1st, a ∈ A:
— (n + 1)-forth: if s ∼M

a s′, then there is a t′ ∈ SN s.t. t ∼N
a t′ and Zns′t′.

— (n + 1)-back: if t ∼N
a t′, then there is a s′ ∈ SM s.t. s ∼M

a s′ and Zns′t′.
If there exists a n-bisimulation Zn between M and N we write M ↔n N . (We
also combine the notations ↔Q and ↔n in the obvious way, writing ↔Q,n.)

Given pointed models (M, s) and (N, t) and a logic L with language LL,
(M, s) ≡L (N, t) (for ‘(M, s) and (N, t) are modally equivalent’) denotes: for
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all ϕ ∈ LL, M, s |= ϕ iff N, t |= ϕ. Given Q ⊆ P and n ∈ N, annotations
≡n

L and ≡Q
L restrict the evaluated formulas ϕ ∈ LL to those of modal depth

d(ϕ) ≤ n and (resp.) to ϕ ∈ LL|Q. APAL is invariant for bisimilarity, but
not for restricted bisimilarity or bounded bisimilarity: (M, s) ↔ (N, t) implies
(M, s) ≡APAL (N, t), whereas (M, s) ↔n (N, t) may not imply (M, s) ≡n

APAL

(N, t), and (M, s) ↔Q (N, t) may not imply (M, s) ≡Q
APAL (N, t) [7,18]. This is

because the APAL modality [!] implicitly quantifies over formulas of arbitrarily
large modal depth and over infinitely many atoms. All logics we consider in this
paper are invariant for bisimilarity.

Lemma 1. For any L considered, (M, s) ↔ (N, t) implies (M, s) ≡L (N, t).

Proof. For L = EL, PAL, this is known from the literature [14] for EL, and for
PAL because EL and PAL are equally expressive [30]. For the other logics, let
us for example consider SAPAL; the proof for all remaining logics is similar. By
induction on the structure of ϕ we show that

For all ϕ ∈ LSAPAL and for all pointed models (M, s), (N, t):
(M, s) ↔ (N, t) implies M, s |= ϕ iff N, t |= ϕ.

All inductive cases are elementary except ‘public announcement’ and ‘quantifier’.

Case Quantifier
M, s |= [Q]ψ, iff M, s |= [ϕ]ψ for all ϕ ∈ LPAL|Q, iff M, s |= ϕ implies M |ϕ, s |=
ψ for all ϕ ∈ LPAL|Q, iff (*) N, t |= ϕN, t |= ϕN, t |= ϕ implies M |ϕ, s |= ψ for all ϕ ∈ LPAL|Q,
iff (**) N, t |= ϕ implies N |ϕ, t |= ψN |ϕ, t |= ψN |ϕ, t |= ψ for all ϕ ∈ LPAL|Q, iff N, t |= [ϕ]ψ for all
ϕ ∈ LPAL|Q, iff N, t |= [Q]ψ.

(*): By bisimulation invariance of PAL, we obtain M, s |= ϕ iff N, t |= ϕ.
(**): Let Z : (M, s) ↔ (N, t). Define Z ′ beween M |ϕ and N |ϕ as follows:

Z ′uv iff (Zuv and M,u |= ϕ). By bisimulation invariance for ϕ ∈ LPAL it follows
that also N, v |= ϕ, so that Z ′ is indeed a relation between M |ϕ and N |ϕ. We
now show that Z ′ : (M |ϕ, s) ↔ (N |ϕ, t). The clause atoms is obviously satisfied.
Concerning forth for some agent a, take any pair (v, v′) such that Z ′vv′ and
let u in the domain of M |ϕ be such that v ∼a u. As u is in the domain of
M |ϕ, M,u |= ϕ. From Z ′vv′ follows Zvv′. As v ∼a u in M |ϕ, also v ∼a u in
M . From Zvv′, v ∼a u in M , and forth (for Z) it follows that there is u′ in
the domain of N such that Zuu′ and v′ ∼a u′. From Zuu′, M,u |= ϕ, and
bisimulation invariance for ϕ ∈ LPAL it follows that N,u′ |= ϕ, i.e., u′ is also
in the domain of N |ϕ. From Zuu′, M,u |= ϕ, and the fact the u′ is in the
domain of M |ϕ it follows that Z ′uu′, as required. This proves forth. The step
back is shown similarly. Note that in particular Z ′st. This therefore establishes
that Z ′ : (M |ϕ, s) ↔ (N |ϕ, t), so that by definition (M |ϕ, s) ↔ (N |ϕ, t). By
induction for ψ it now follows that M |ϕ, s |= ψ iff N |ϕ, t |= ψ, as desired.

Case Public Announcement
The case public announcement, wherein we show that M, s |= [ϕ]ψ iff N, t |=
[ϕ]ψ, is shown fairly similarly to the case quantifier, except that in step (∗)
we do not use bisimulation invariance for ϕ ∈ LPAL but we use the inductive
hypothesis for ϕ ∈ LSAPAL, and similarly on two occasions in step (∗∗).
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Corollary 1.
Let ϕ ∈ LL and M, s |= ϕ. Then (M, s) ↔ (N, t) implies (M |ϕ, s) ↔ (N |ϕ, t).

For bounded bisimilarity this only holds for L = EL, PAL (a special case of
[14], and given that PAL is as expressive as EL). As we use this result virtu-
ally identically for the inductive case announcement in subsequent proofs in the
expressivity section, we give its full proof.

Lemma 2. Let n ∈ N and ϕ ∈ LPAL with d(ϕ) = k ≤ n, models (M, s) and
(N, t), and M, s |= ϕ be given. If (M, s) ↔n (N, t), then (M |ϕ, s) ↔n−k (N |ϕ, t).

Proof. Let Z0 ⊇ · · · ⊇ Zn be such that Z0 : (M, s) ↔0 (N, t), . . . , Zn :
(M, s) ↔n (N, t). For all i = 0, . . . , n − k, let Zi

ϕ : D(M) → D(N) be defined as:
Zi

ϕst iff Zi+kst and M, s |= ϕ. As d(ϕ) ≤ n, from n-bisimulation invariance for
PAL and M, s |= ϕ also follows that N, t |= ϕ.

By natural induction on n − k we show that Zn : (M, s) ↔n (N, t) implies
Zn−k

ϕ : (M |ϕ, s) ↔n−k (N |ϕ, t), from which the required follows.
Case n − k = 0. We show atoms. We have that Z0

ϕst iff Zkst, where the
latter follows from Zk ⊇ Zn and Znst. Therefore, Z0

ϕ : (M |ϕ, s) ↔0 (N |ϕ, t).
Case n − k > 0. We show (n − k)-forth. Let s ∼a s′ and M, s′ |= ϕ, i.e.,

s ∼a s′ in M |ϕ. From Zn : (M, s) ↔n (N, t) and s ∼a s′ follows that there
is a t′ ∼a t such that Zn−1 : (M, s′) ↔n−1 (N, t′). As n − k = n − d(ϕ) > 0,
d(ϕ) < n, so d(ϕ) ≤ n − 1. From Zn−1 : (M, s′) ↔n−1 (N, t′), M, s′ |= ϕ and
d(ϕ) ≤ n − 1 it follows by bisimulation invariance that N, t′ |= ϕ. Therefore
t′ is in the domain of N |ϕ. By induction, from Zn−1 : (M, s′) ↔n−1 (N, t′)
it follows that Zn−k−1

ϕ : (M |ϕ, s′) ↔n−k−1 (N |ϕ, t′). Therefore, t′ satisfies the
requirement for (n − k)-forth for relation Zn−k

ϕ .
The clause (n − k)-back is shown similarly.

Proposition 1. (M, s) ↔Q (N, t) implies (M, s) ≡Q
SAPAL (N, t) and implies

(M, s) ≡Q
SCAPAL (N, t).

Proof. The proof is by induction on formulas true in (M, s). The crucial case
quantifier is satisfied because (let R ⊆ Q): M, s |= [R]ϕ, iff M, s |= [ψ]ϕ for
all ψ ∈ LPAL|R, iff for all ψ ∈ LPAL|R, M, s |= ψ implies M |ψ, s |= ϕ, iff
(induction, Cor. 1) for all ψ ∈ LPAL|R, N, s |= ψ implies N |ψ, s |= ϕ, iff (. . . )
N, s |= [R]ϕ.

The proof for SCAPAL is similar.

3 Modal Properties of the Quantifiers

We continue by discussing some peculiarities of the semantics, where we focus
on modal properties of the quantifiers. We recall that APAL satisfies: [!]ϕ → ϕ
(T), [!]ϕ → [!][!]ϕ (4), 〈!〉[!]ϕ → [!]〈!〉ϕ (CR), and [!]〈!〉ϕ → 〈!〉[!]ϕ (MK) [7,18].
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3.1 SAPAL and FSAPAL

The logic SAPAL generalizes APAL, as [P ]ϕ is equivalent to [!]ϕ. We also con-
sidered FSAPAL where Q ⊆ P in [Q]ϕ is required to be finite.

Proposition 2. SAPAL-valid are [Q]ϕ → ϕ (T) and [Q ∪ R]ϕ → [Q][R]ϕ (4)

Proof. The validity of [Q]ϕ → ϕ follows from the validity of [�]ϕ ↔ ϕ. Just
as for APAL, [Q ∪ R]ϕ → [Q][R]ϕ is valid because two announcements can be
made into one announcement, as in the PAL validity [ψ][χ]ϕ ↔ [ψ ∧ [ψ]χ]ϕ, and
because P (ψ ∧ [ψ]χ) ⊆ Q ∪ R if P (ψ) ⊆ Q and P (χ) ⊆ R.

Concerning 〈Q〉[R]ϕ → [Q]〈R〉ϕ (CR) and [Q]〈R〉ϕ → 〈Q〉[R]ϕ (MK) the first
is invalid in SAPAL (counterexample omitted) and we do not know whether the
second one is valid, but this seems unlikely. The proof of their APAL validity
consists in first announcing the value of all variables occurring in the formula ϕ,
and then using that ϕ is true in the subsequent model restriction iff it is valid
on that restriction. This announcement cannot be made if Q ∪ R ⊂ P (ϕ).

3.2 SCAPAL

The SCAPAL quantifier does not distribute over conjunction: [⊆]ϕ∧ [⊆]ψ is not
equivalent to [⊆](ϕ ∧ ψ). This is easily demonstrated by an example.

Fig. 2. Model (N, 1) on the left, (M, 10) in the middle, (M |(p ∨ q), 10) on the right.

Example 1. Consider model (M, 10) in Fig. 2 (pq: p is true and q is false). Then:

M, 10 �|= [⊆]((Kap → KbKap) ∧ ¬q)
M, 10 |= [⊆](Kap → KbKap)
M, 10 |= [⊆]¬q

The first is false because, as depicted:

M, 10 |= 〈p ∨ q〉(Kap ∧ ¬KbKap), so
M, 10 |= 〈p ∨ q〉((Kap ∧ ¬KbKap) ∨ q), and therefore
M, 10 |= 〈⊆〉((Kap ∧ ¬KbKap) ∨ q), which is equivalent to
M, 10 �|= [⊆]((Kap → KbKap) ∧ ¬q).

The second is true because the only model restrictions containing 10 that we
can obtain with formulas involving p are {10, 11} and {10, 11, 00, 01}. The third
is true because q is false in state 10.

Therefore, [⊆]ϕ ∧ [⊆]ψ is not equivalent to [⊆](ϕ ∧ ψ).



128 H. van Ditmarsch et al.

Proposition 3. Valid in SCAPAL are: [⊆]ϕ → ϕ (T), [⊆]ϕ → [⊆][⊆]ϕ (F),
[⊆]〈⊆〉ϕ → 〈⊆〉[⊆]ϕ (MK) and 〈⊆〉[⊆]ϕ → [⊆]〈⊆〉ϕ (CR).

Proof. T and 4 are valid for the same reason as in SAPAL. For CR and MK we
can now (unlike for SAPAL) use the same method as in APAL, as in any state
of a model we can announce the value of all variables occurring in ϕ. A proof
of CR is found in [18, Prop. 3.10] (for the similar logic APAL+), which corrects
the incorrect proof of CR for APAL in [7]). A proof of MK it is found in [7].

3.3 QIPAL and IPAL

We recall that in APAL the quantification is over ϕ ∈ LPAL. Fairly complex
counterexamples demonstrate that [!]ϕ → [ψ]ϕ is invalid for certain ψ ∈ LAPAL

containing quantifiers. Now in [ψ↓]ϕ, ψ ∈ LQIPAL may also contain quantifiers.
This makes the relation to [!] unclear. In LIPAL, that ψ must be in LPAL and
the relation is clearer.

Proposition 4. Let ψ ∈ LPAL, χ ∈ LIPAL and pointed model (M, s) be given.
The following are equivalent:

1. M, s |= 〈ψ↓〉χ
2. there is a ϕ ∈ LPAL such that |= ϕ → ψ and M, s |= 〈ϕ〉χ,
3. there is a ϕ ∈ LPAL such that M |= ϕ → ψ and M, s |= 〈ϕ〉χ,
4. there is a ϕ ∈ LPAL such that M, s |= 〈ϕ ∧ ψ〉χ.

Proof.
1 ⇔ 2 This is the semantics of the 〈ψ↓〉 quantifier (in dual form).
2 ⇒ 3 From |= ϕ → ψ it trivially follows that M |= ϕ → ψ.
3 ⇒ 4 Suppose that there is a ϕ ∈ LPAL such that M |= ϕ → ψ and M, s |=

〈ϕ〉χ. Because M |= ϕ → ψ, we have M |= ϕ ↔ (ϕ ∧ ψ), and therefore
M |ϕ = M |(ϕ ∧ ψ). From M, s |= 〈ϕ〉χ then follows that M, s |= 〈ϕ∧ψ〉χ.

4 ⇒ 2 Suppose that there is a ϕ ∈ LPAL such that M, s |= 〈ϕ ∧ ψ〉χ. Let ϕ′ =
ϕ ∧ ψ, and note that ϕ′ ∈ LPAL. We have |= ϕ′ → ψ and M, s |= 〈ϕ′〉χ.

The positive formulas L+
PAL are the PAL-fragment p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Kaϕ |

[¬ϕ]ϕ. The truth of positive formulas (corresponding to the universal fragment
in first-order logic) is preserved after update [19].

Corollary 2. Let ψ ∈ L+
PAL. Then 〈ψ↓〉χ is equivalent to 〈!〉〈ψ〉χ.

Proof. Let M, s |= 〈ψ↓〉χ. From Proposition 4.4. we obtain that there is ϕ ∈
LPAL such that M, s |= 〈ϕ ∧ ψ〉χ. As ψ is positive, from that we obtain M, s |=
〈ϕ〉〈ψ〉χ. By the definition of the APAL quantifier, it follows that M, s |= 〈!〉〈ψ〉χ.

Proposition 5. Let ϕ ∈ LIPAL. Then [�↓]ϕ and [⊥↑]ϕ are equivalent to [!]ϕ.

Proof. Let model (M, s) and ϕ ∈ LQIPAL be given. Then: M, s |= [�↓]ϕ, iff
M, s |= [ψ]ϕ for all ψ ∈ LPAL with |= ψ → �, iff M, s |= [ψ]ϕ for all ψ ∈ LPAL,
iff M, s |= [!]ϕ.

Similarly, M, s |= [⊥↑]ϕ, iff M, s |= [ψ]ϕ for all ψ ∈ LPAL with |= ⊥ → ψ, iff
M, s |= [ψ]ϕ for all ψ ∈ LPAL, iff M, s |= [!]ϕ.
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Proposition 6. Valid in QIPAL are [ψ↑]ϕ → ϕ (T) and also [ψ↑]ϕ → [ψ↑][χ↑]ϕ
and [ψ↓]ϕ → [ψ↓][χ↓]ϕ (4)

Proof. All proofs are as in Prop. 2 and 3.

However, [ψ↓]ϕ → ϕ (T) is invalid. Whenever M |ψ is a proper submodel of a
given model M , the trivial announcement is not allowed. Also, [ψ↑]ϕ → [χ↑][ψ↑]ϕ
and [ψ↓]ϕ → [χ↓][ψ↓]ϕ are invalid because of Moorean phenomena.

We envisage similar results for the more general QIPAL quantifier in future.

4 Expressivity

We now address the relative expressivity of APAL, FSAPAL and SCAPAL and
IPAL. Given logics L and L′ with languages LL and LL′ , L is at least as expres-
sive as L′, notation L′ � L, iff for ϕ ∈ LL there is a ϕ′ ∈ LL′ such that ϕ is
equivalent to ϕ′. Logics L and L′ are equally expressive iff L � L′ and L′ � L,
L is less expressive than L′, notation L ≺ L′, iff L � L′ but L′ �� L; L and L′

are incomparable (in expressivity), notation L � L′, iff L �� L′ and L′ �� L.

4.1 APAL �� FSAPAL and APAL �� SCAPAL

We show that there is an APAL-formula that can distinguish two pointed models
that cannot be distinguished by any FSAPAL-formula. We use that APAL, unlike
FSAPAL, quantifies over arbitrarily many atoms. The proof is similar to the
proof that APAL �� PAL in [7].

Proposition 7. APAL � FSAPAL and APAL � SCAPAL.

Proof. Consider APAL formula 〈!〉(Kap ∧ ¬KbKap), and assume towards a con-
tradiction that ψ is an equivalent FSAPAL formula. Let q /∈ P (ψ). Now consider
models (M, 10) and (N, 1) in Fig. 2 (where the value of q in states 0 and 1 of N
is irrelevant). These models are p-bisimilar. We now have that:

1. M, 10 |= 〈!〉(Kap ∧ ¬KbKap) (observe M |(p ∨ q) in Fig. 2)
2. N, 1 �|= 〈!〉(Kap ∧ ¬KbKap)
3. M, 10 |= ψ iff N, 1 |= ψ ((M, 10) ↔p (N, 1) implies (M, 10) ≡p

FSAPAL (N, 1)
by Proposition 1)

This is a contradiction. Therefore APAL �� FSAPAL.
As Proposition 1 also applies to SCAPAL, this also proves that APAL ��

SCAPAL.
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4.2 SCAPAL �� APAL and FSAPAL �� APAL

The proof is similar to that of the previous section, but more involved. We
now show that the assumption that there is an APAL formula ψ equivalent to
SCAPAL formula 〈⊆〉(¬q ∧ Kap ∧ ¬KbKap) leads to a contradiction. Prior to
that we present models and lemmas used in the proof.

Consider models Mn and Nn as follows, where n ∈ N is odd. Model Mn =
(S,∼, V ) is such that (i) S = [0, 2n − 1], (ii) for any i < n, 2i ∼b (2i + 1) and,
except for i = 0, (2i − 1) ∼a 2i and also (2n − 1) ∼a 0, and (iii) for any i < n,
variable p is true in states 2i, variable q is only true in state n and variable r is
always false. Model Nn is like model Mn except that variable r is only true in n
and variable q is always false. Figure 3 depicts M3 and N3.

Fig. 3. The models M3 and N3

Lemma 3. Let M ⊆ Mn, N ⊆ Nn, i, j, k ∈ N, with i ∈ D(M) and j ∈ D(N). If
(M, i) �k (N, j), then for all χ ∈ LPAL such that M, i |= χ there is a χ′ ∈ LPAL

such that N, j |= χ′ and M |χ �k N |χ′.

Proof. All subsets of Mn and all subsets of Nn are distinguishable in LEL (where
we use that PAL is as expressive as EL), using the distance from the q-state
respectively r-state.1 Also, any proper submodel of Mn or Nn, where without
loss of generality we only consider connected submodels containing the evaluation
point, is a finite chain of alternating a-links and b-links of which all subsets are
distinguishable, using that both edges of the chain are distinguishable: either a
or b knows either p or ¬p in one edge but not in the other edge, except for the
singleton model that however is a trivial case.

Lemma 4. Let M ⊆ Mn, N ⊆ Nn and i, j, k ∈ N, with i ∈ D(M) and j ∈
D(N). If (M, i) �k (N, j), then (M, i) ≡k

APAL (N, j).

Proof. We show the equivalent formulation:

1 For example, state 0 is M3 is distinguished by K̂bK̂aK̂bq ∧ ¬K̂aK̂bq; 0 is the unique
state where we can get with three steps but not with two.
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For all ϕ ∈ LAPAL, M ⊆ Mn, N ⊆ Nn and i, j, k ∈ N with i ∈ D(M) and
j ∈ D(N): if (M, i) �k (N, j) and d(ϕ) ≤ k, then M, i |= ϕ iff N, j |= ϕ.

The proof is by induction on the structure of ϕ. The cases of interest are Kbϕ,
[ψ]ϕ, and [!]ϕ. As k-bisimilarity is a symmetric relation, it suffices to show only
one direction of the equivalence.

Case Kaϕ: Suppose d(Kaϕ) ≤ k. We have M, i |= Kaϕ iff for all i′ ∼a i,
M, i′ |= ϕ. As (M, i) �n (N, j), for all j′ ∼a j there is some i′ ∼a i such that
(M, i′) �k−1 (N, j′). As d(Kaϕ) ≤ n, d(ϕ) ≤ k − 1. Therefore, by induction,
N, j′ |= ϕ. And therefore N, j |= Kaϕ.

Case [ψ]ϕ: Suppose d([ψ]ϕ) ≤ k, and M, i |= [ψ]ϕ. Let d(ψ) = x and
d(ϕ) = y, then x+ y = d(ψ)+d(ϕ) = d([ψ]ϕ) ≤ k. By definition, M, i |= [ψ]ϕ iff
M, i |= ψ implies M |ψ, i |= ϕ. From M, i |= ψ, (M, i) �k (N, j) and d(ψ) = x ≤ k
and induction we obtain N, j |= ψ. From (M, i) �k (N, j), M, i |= ψ, d(ψ) =
x ≤ k − y, a part identical to that of Lemma 2 except that where bisimulation
invariance for PAL is used on ψ ∈ LPAL we now use induction on ψ ∈ LAPAL,
we obtain that (M |ψ, i) �y (N |ψ, j). From that, M |ψ, i |= ϕ, d(ϕ) = y and
induction we obtain N |ψ, j |= ϕ. Then, N, j |= ψ implies N |ψ, j |= ϕ is by
definition N, j |= [ψ]ϕ.

Case [!]ϕ:
M, i |= [!]ϕ, iff
M, i |= [ψ]ϕ for all ψ ∈ LPAL, iff
M, i |= ψ implies M |ψ, i |= ϕ for all ψ ∈ LPAL, iff (Lemma 3)
N, j |= ψ′ implies N |ψ′, i |= ϕ for all ψ′ ∈ LPAL, iff
N, j |= [ψ′]ϕ for all ψ′ ∈ LPAL, iff
N, j |= [!]ϕ.

Proposition 8. SCAPAL �� APAL.

Proof. Consider LSCAPAL formula ϕ = 〈⊆〉(¬q ∧ Kap ∧ ¬KbKap). Let ψ be the
supposedly equivalent LAPAL formula. Take n > d(ψ). We now show that:

1. Mn, 0 |= 〈⊆〉(¬q ∧ Kap ∧ ¬KbKap)
2. Nn, 0 �|= 〈⊆〉(¬q ∧ Kap ∧ ¬KbKap)
3. Mn, 0 |= ψ iff Nn, 0 |= ψ

These items are proved by the following arguments:

1. The state n is distinguished by formula q. This allows us to distinguish each
finite subset of the domain, in the usual way, in LEL (note that there is no
mirror symmetry along the 0—n ‘diameter’ of the circular models Mn and
Nn). Thus there is a formula η ∈ LEL|q that distinguishes the set of states
{0, 1}. We now have that:

Mn, 0 |= η
Mn|η, 0 |= ¬q ∧ Kap ∧ ¬KbKap
Mn, 0 |= 〈η〉(¬q ∧ Kap ∧ ¬KbKap)
Mn, 0 |= 〈⊆〉(¬q ∧ Kap ∧ ¬KbKap)
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2. On the other hand, Nn, 0 �|= 〈⊆〉(¬q ∧ Kap ∧ ¬KbKap). This is because we
cannot use that r is only true in n, as r �∈ P (¬q ∧ Kap ∧ ¬KbKap), and
because (Nn, 0) �pq (O, 0). Clearly O, 0 �|= 〈⊆〉(¬q ∧ Kap ∧ ¬KbKap).

3. However, Mn, 0 |= ψ iff Nn, 0 |= ψ. This follows from Lemma 4, as n > d(ψ)
and (Mn, 0) ↔d(ψ) (Nn, 0).

Proposition 9. FSAPAL �� APAL.

Proof. As Proposition 8, but we now take FSAPAL formula 〈q〉(¬q ∧ Kap ∧
¬KbKap) instead of SCAPAL formula 〈⊆〉(¬q ∧ Kap ∧ ¬KbKap).

As [!]ϕ is equivalent to [P ]ϕ we rather trivially have that APAL � SAPAL, so
that with Proposition 9 and its consequence SAPAL �� APAL we immediately
obtain:

Corollary 3. APAL ≺ SAPAL.

4.3 SCAPAL ≺ FSAPAL

Proposition 10. SCAPAL � FSAPAL.

Proof. It is trivial that SCAPAL � FSAPAL, since |= [⊆]ϕ ↔ [P (ϕ)]ϕ. Formally,
we inductively define a translation function f from SCAPAL to FSAPAL by

f(p) = p f(ϕ ∨ ψ) = f(ϕ) ∨ f(ψ) f([ϕ]ψ) = [f(ϕ)]f(ψ)
f(¬ϕ) = ¬f(ϕ) f(Kaϕ) = Kaf(ϕ) f([⊆]ϕ) = [P (ϕ)]f(ϕ)

In the final line we could equivalently have written f([⊆]ϕ) = [P (f(ϕ))]f(ϕ),
as f does not affect the set of atoms that occur in a formula. We then have
|= ϕ ↔ f(ϕ) (which is shown by induction), and therefore SCAPAL � FSAPAL.

We now show SCAPAL ≺ FSAPAL. In the proof we use models M−n,n and
N−n,n similar to Mn and Nn used in the previous subsection. They are depicted
in Fig. 4 for n = 3, compare to Fig. 3. (Imagine ‘cutting open’ M3 and N3 at
the q resp. r state, and remove r as we can now use the distinguishing power of
p on the edges of the chain.) Similarly to Lemma 4, we first show a Lemma 5.

Fig. 4. The models M−3,3 and N−3,3

Lemma 5. Let M ⊆ M−n,n, N ⊆ N−n,n and i, j, k ∈ N, with i ∈ D(M) and
j ∈ D(N). If (M, i) �k (N, j), then (M, i) ≡k

SCAPAL (N, j).
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Proof. We show by formula induction that M, i |= ϕ iff N, j |= ϕ for any ϕ ∈
LSCAPAL with d(ϕ) ≤ k. Cases Kaψ and [χ]ψ are the same. The case quantifier
[⊆]ψ is different and shown as follows.

First, suppose that q �∈ P (ψ). Then from (M, i) ↔P (ψ) (N, j) and Lemma 1
it directly follows that M, i |= [⊆]ψ iff N, j |= [⊆]ψ.

Next, suppose that q ∈ P (ψ); w.l.o.g. we may also assume that p ∈ P (ψ). By
assumption, (M, i) ↔k (N, j). Just as for Lemma 3, every M ′ ⊆ M is definable
in M by a formula in LPAL|pq, and every N ′ ⊆ N is definable in N by a
formula in LPAL|pq. It follows that for every χ ∈ LPAL|pq with M, i |= χ there
is a ξ ∈ LPAL|pq such that (M |χ, i) ↔k (N |ξ, j), and vice versa. Therefore,
M, i |= [⊆]ψ iff N, j |= [⊆]ψ.

Proposition 11. SCAPAL ≺ FSAPAL.

Proof. We proceed as usual, however, with distinguishing FSAPAL formula
〈q〉(Kap ∧ ¬KbKap). Let ψ be the supposedly equivalent LSCAPAL formula.
Take n > d(ψ). Then:

1. M−n,n, 0 |= 〈q〉(Kap ∧ ¬KbKap)
2. N−n,n, 0 �|= 〈q〉(Kap ∧ ¬KbKap) (obvious)
3. M−n,n, 0 |= ψ iff N−n,n, 0 |= ψ (use (M−n,n, 0) ↔d(ψ) (N−n,n, 0) & Lemma 5)

4.4 IPAL

Proposition 12. APAL � IPAL.

Proof. This follows from Prop. 5 that [�↓]ϕ is equivalent to [!]ϕ.

We also obtained strictness, by a rather involved proof that is omitted from the
submission for space constraints and therefore called a conjecture.

Conjecture 1. APAL ≺ IPAL.

The relative expressivity between IPAL and FSAPAL/SCAPAL mirrors the
results already obtained between APAL and FSAPAL/SCAPAL.

Proposition 13. IPAL � FSAPAL and IPAL � SCAPAL.

Proof. FSAPAL �� IPAL and SCAPAL �� IPAL are shown as FSAPAL �� APAL
(Proposition 9) and SCAPAL �� APAL (Proposition 8), except that in the induc-
tive case for the quantifier of the proof of Lemma 4 we do not consider all wit-
nesses ψ for the quantifier 〈!〉 but only those that imply the given χ in 〈χ↓〉 or
that are implied by the given χ in 〈χ↓〉.

From APAL � IPAL, APAL �� FSAPAL and APAL �� SCAPAL (Prop. 7),
we immediately obtain IPAL �� FSAPAL and IPAL �� SCAPAL.



134 H. van Ditmarsch et al.

5 Substructural Implication, PAL and IPAL

The satisfaction clause for IPAL announcements [ϕ↓]ψ is loosely inspired by
the satisfaction clause for substructural implication ϕ ⇒ ψ in the relational
semantics for substructural logics [32,33] and the informational interpretation of
the semantics. Relational models for substructural logics comprise a set of states
S and a ternary accessibility relation R on S. The substructural implication is
a box-like binary modal operator with the following satisfaction clause:

x � ϕ ⇒ ψ ⇐⇒ (∀y, z ∈ S)(Rxyz & y � ϕ =⇒ z � ψ)

Dunn and Restall point out that “perhaps the best reading [of Rxyz] is to say
that the combination of the pieces of information x and y (not necessarily the
union) is a piece of information in z” [20, p. 67]. Restall adds that “a body of
information warrants ϕ ⇒ ψ if and only if whenever you update that information
with new information which warrants ϕ, the resulting (perhaps new) body of
information warrants ψ” [31, p. 362] (notation adjusted).

On the informational reading, substructural implication clearly resembles an
information update operator. It is therefore natural to inquire into the simi-
larities and differences between substructural implication and epistemic update
operators such as public announcements. Similarities between substructural logic
and information update have been noted before. Van Benthem [12,13] observes
that various dynamic consequence relations, arising from defining consequence in
terms of the effects of successive updates (such that ϕ ⇒ ψ roughly corresponds
to [ϕ]ψ), lack most of the standard structural properties. Aucher [3,5] observes
that dynamic epistemic logic can be seen as a two-sorted substructural logic and
that the product update is a special case of the ternary accessibility relation.

Differences between substructural logics and PAL are plentiful. For exam-
ple, the former are closed under substitution and the latter contains Boolean
negation and conservatively extends classical propositional logic. The aspect of
substructural implication that directly influenced our formulation of the IPAL↓

announcement is that multiple bodies of information y supporting ϕ are taken
into account when evaluating ϕ ⇒ ψ. This aspect is easily incorporated in PAL
by requiring that, in evaluating “after announcing ϕ, ψ is the case” in (M, s), we
have to look at multiple submodels N of M containing s such that ϕ is satisfied
in all states in N . This is precisely what the satisfaction clause for [ϕ↓]ψ requires.
This new [ϕ↓] operator has interesting properties that we wish to explore later.
For example, Proposition 6 established [ψ↓]ϕ → [ψ↓][χ↓]ϕ which translates into
the substructural property of right weakening ‘from ψ ⇒ ϕ infer ψ, χ ⇒ ϕ’;
whereas ‘van Benthem’ dynamic consequence does not satisfy right weakening.

6 Conclusions and Further Research

We investigated the expressivity of the logics FSAPAL, SCAPAL and IPAL. Let
us finally also observe that their axiomatizations promise to be very similar to
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that of APAL, and we also expect these logics still to have undecidable satisfia-
bility problems. The use of the IPAL quantification [ϕ↓]ψ to model substructural
implication ϕ ⇒ ψ clearly needs further research.
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Abstract. This paper proposes an intuitionistic generalization of van
Benthem and Liu’s dynamic logic of relation changers, where relation
changers are dynamic operators which rewrite each agent’s accessibility
relation. We employ Nishimura’s Kripke semantics for a constructive
propositional dynamic logic to define the semantics of relation changers.
A sound and complete axiomatization of the constructive dynamic logic
of relation changers is provided. Moreover, we follow Hatano et al.’s
approach to provide a different semantics for dynamic logic of relation
changers, where relation changers are regarded as bounded morphisms.
This alternative semantics leads us to a semantic completeness proof of
the axiomatization for the original semantics, which does not require a
reduction strategy based on recursion axioms.
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1 Introduction

Dynamic epistemic logic [7] is a family of expansions of a modal logic (in par-
ticular, epistemic logic) by dynamic operators, which often represent the knowl-
edge change of an intelligent agent. In a standard setting, the agent’s knowledge
is defined in terms of a relational structure called Kripke model, and his/her
knowledge change (or update) is defined as a model transformation triggered by
a dynamic operator in dynamic epistemic logic. Although a well-known example
of dynamic epistemic logic is a public announcement logic (PAL) [9,19], this
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paper focuses on dynamic logic of relation changers (DLRC) proposed by van
Benthem and Liu [4,15].

The logic DLRC is an expansion of an iteration-free propositional dynamic
logic [8] with a dynamic operator [r], called a relation changer, which updates
each atomic program by a new program. As is well-known, propositional dynamic
logic (PDL) is an expansion of modal logic that allows us to represent structured
actions of programs by program constructors. In PDL, each atomic program a
is regarded as a (primitive) computer program in information systems, and it is
interpreted as a binary relation Ra. Intuitively, wRav means that state v is reach-
able from state w by executing atomic program a. In DLRC, such an atomic
program is regarded as representing knowledge (or, belief or preference) of an
agent and relation changers rewrite each agent’s atomic program by a new (pos-
sibly compounded) program of the iteration-free propositional dynamic logic.
Examples of relation changers include a public update [4,9,13,15], an introspec-
tive announcement [7, p.58] or an eliminative command [29], a suggestion [4,15]
and a radical upgrade [4,15].

Although there are several studies [4,11,12,15] on DLRC, all of them are
based on the classical logic. Hence, the main purpose of this paper is to provide
an intuitionistic (or constructive) generalization of the dynamic logic of relation
changers. As far as the authors know, an intuitionistic generalization of DLRC
has never been proposed, and the research area of non-classical generalization
of DLRC has room for further investigation. This is in contrast to the study
of non-classical generalizations of the public announcement logic and the logic
of epistemic actions and knowledge, e.g., in [1,2,16]. In an intuitionistic gener-
alization of DLRC, we regard an atomic program as an agent’s (constructive)
knowledge (or we restrict the agent to use only constructive inference). That
is, an agent might have to deduce consequences from partial information about
their world, e.g., he/she is not allowed to use the law of excluded middle for
deriving possible consequences.

In a Kripke model of the (classical) propositional dynamic logic, it is assumed
that a state has the complete information, i.e., for any formula A, A is true or ¬A
is true there (the law of excluded middle holds). That is, it is not allowed that
neither A nor ¬A holds at some state. This implies that we are allowed to use
the truth of arbitrary formulas (or statement) at arbitrary states instantly in all
programs (cf. [27, p.5]). In order to relax this assumption, it is desirable to have
a non-classical generalization of the propositional dynamic logic that restricts
us to deduce consequences of partial information about information systems
(cf. [27]). Constructive variants of PDL were proposed since Leivant [14] and
Nishimura [18].1 Then, many non-classical dynamic logics for a wide-range of
applications have been proposed, e.g., paraconsistent four-valued propositional
dynamic logic [21], substructural propositional dynamic logic [22] and construc-

1 As a part of the study to show the Craig interpolation theorem for PDL, Leivant
mentioned a proof system of “simplified” constructive PDL which is based on logical
connectives →, ¬ and [α] and program constructors of PDL. We owe this point to
Malvin Gattinger.
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tive concurrent dynamic logic [27]. To define the semantics of our intuitionistic
generalization of DLRC, this paper employs Nishimura [18]’s Kripke semantics
for a constructive PDL where we focus on an iteration-free fragment for the
sake of simplicity.

Our main contribution consists of providing a sound and complete axioma-
tization of an intuitionistic generalization of DLRC and establishing the com-
pleteness of the axiomatization with and without a reduction strategy by recur-
sion axioms. Let us comment on the completeness proof without a reduction
strategy (cf. [3,25,26]). We follow Hatano et al.’s approach [11] (the core seman-
tic idea is: “relation changers are bounded morphisms”) to provide an alternative
semantics for an intuitionistic generalization of DLRC. This alternative seman-
tics leads us to a direct proof of a semantic completeness of the axiomatization
for the original semantics, which does not require the reduction strategy.

The rest of the paper is organized as follows. Section 2 provides background
of DLRC. Section 3 proposes our intuitionistic generalization of DLRC and
presents a Hilbert-style axiomatization of the logic based on the iteration-free
constructive PDL. Section 4 shows the semantic completeness of our axioma-
tization by the well-known reduction strategy (cf. [7]). Section 5 proposes an
alternative semantics for our intuitionistic generalization of DLRC and pro-
vides a direct proof of the semantic completeness of our axiomatization, which
implies we can still keep the semantic idea of “relation changers are bounded
morphisms” [11] in the intuitionistic setting. Finally, Section 6 concludes this
paper with further remarks.

2 Dynamic Logic of Relation Changers

2.1 Syntax and Kripke Semantics

Let PROP = { p, q, . . . } be a countably infinite set of propositional variables and
AP = { a, b, . . . } a finite set of atomic programs. Let us denote by L the syntax
of the iteration-free propositional dynamic logic. We define the set FORML of
all formulas of the syntax L and the set PRL of all programs of the syntax L
simultaneously by:

FORML � A ::= p | ⊥ | A ∧ A | A ∨ A | A → A | [α]A,
PRL � α ::= a | α ∪ α | α;α |?A.

where p ∈ PROP and a ∈ AP. We add the relation changer [r] to our syntax L to
define the expanded syntax L+. We define the sets FORML+ , PRL+ and RCL+

of all formulas, programs and relation changers, respectively, by simultaneous
induction as follows.

FORML+ � A ::= p | ⊥ | A ∧ A | A ∨ A | A → A | [α]A | [r]A,
PRL+ � α ::= a | α ∪ α | α;α |?A,
RCL+ � r ::= (a := α)a∈AP.

We can regard a relation changer r = (a := αa)a∈AP (which rewrites each atomic
program a with a (new possibly compounded) program αa) as a function from AP
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to PRL+ , so we may use the notation r(a) to mean αa. We also define the following
abbreviations: ¬A := A → ⊥, 	 := ¬⊥, A ↔ B := (A → B) ∧ (B → A). Let Γ
and Δ be sets of formulas and � ∈ { [α], [r] }. We define �−1Γ := {A |�A ∈ Γ}
and �Γ := {�A |A ∈ Γ}, where it is remarked that �−1Γ ⊆ Δ iff Γ ⊆ �Δ.

We follow the standard reading of formulas involving programs from [10]. We
read a formula [α]A as “after executing α, it is necessary that A,” a program
α ∪ β “choose either α or β non-deterministically and execute the chosen one,”
a program α;β “execute α, then execute β” and a program ?A “test A, proceed
if A is true, fail otherwise,” respectively. A formula of the form [r]A stands for
“after changing an accessibility relation for each program a by αa, A holds”
when r = (a := αa)a∈AP.

Let us move to Kripke semantics. A Kripke model M is a tuple
(W, (Ra)a∈AP, V ) if W is a non-empty set of possible worlds (or states), Ra ⊆
W × W is an accessibility relation (a ∈ AP), and V is a valuation from PROP
to the powerset of W . For (w, v) ∈ Ra, we also use the infix notation wRav.
We define the satisfaction relation M, w |= A and the interpretation wRαv of
programs α by simultaneous induction, as usual, except:

M, w |= [α]A iff for all v ∈ W (wRαv implies M, v |= A),
wRα∪βv iff wRαv or wRβv,
wRα;βv iff for some u ∈ W (wRαu and uRβv),
wR?Av iff w = v and M, v |= A,
M, w |= [r]A iff Mr, w |= A,

where Mr = (W, (Rr
a)a∈AP, V ) and Rr

a is defined by:

Rr
a := Rr(a) = Rαa

if r = (a := αa)a∈AP.

Intuitively, a relation changer r only updates (or rewrites) an accessibility rela-
tion Ra of M by a (new) program r(a) (= αa). We define the truth set [[A]]M of
a formula A in a model M by [[A]]M := {w ∈ W | M, w |= A }. When the under-
lying model M is clear from the context, we simply write [[A]] instead of writing
[[A]]M. We say that A is valid on a model M (notation: M |= A) if [[A]]M = W
or M, w |= A for all possible worlds w ∈ W .

By the notion of programs of iteration-free propositional dynamic logic,
we can define many types of dynamic operators that only update accessibil-
ity relation of a given model. For example, a link-cutting public update opera-
tor [4,9,13,15] is defined as follows: r†A = (a := (?A; a; ?A)∪(?¬A; a; ?¬A))a∈AP.
Intuitively, this relation changer eliminates all links between A-worlds and non-A
worlds from a given model. In the following example, let us demonstrate a rela-
tion changer of an introspective announcement [7] (or an eliminative command
which captures the acts of commanding in the context of deontic logic proposed
by Yamada [29]).

Example 1. For the sake of simplicity, let us fix AP = { a } and consider a model
M = (W,Ra, V ) where W = {w, v }, Ra = W × W,V (p) = { v } (see the left-
hand-side of Fig. 1). Then, a relation changer r!p = (a := a; ?p) amounts to
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an introspective announcement (eliminative command) with respect to p (cf. [7,
29]), i.e., r!p eliminates all links of an accessibility relation of a to not p-worlds.
If we update the model M by this relation changer, the updated accessibility
relation becomes R

r!p
a = { (w, v), (v, v) } (see the right-hand-side of Fig. 1). Let

us also consider a relation changer r!(p∨¬p) = (a := a; ?(p ∨ ¬p)) of introspective
announcement with respect to p ∨ ¬p. Since p ∨ ¬p holds at every world in the
model, r!(p∨¬p) does not update anything in the model, i.e., Ra is the same as
R

r!(p∨¬p)
a in Mr!(p∨¬p) .

Fig. 1. Model update by introspective announcement r!p

2.2 Hilbert-style Axiomatization

Table 1 provides a Hilbert system HDLRC of dynamic logic of relation chang-
ers. Let us denote by HPDL− a Hilbert system consisting of axioms and rules of
propositional logic and additional axioms and rules of the iteration-free proposi-
tional dynamic logic in Table 1. To define HDLRC, we add the set of six recur-
sion axioms together with the necessitation rule for [r] to the axiomatization
HPDL−. These recursion axioms allow us to reduce the semantic completeness
of HDLRC to that of the iteration-free propositional dynamic logic.

Table 1. Hilbert-style Axiomatizations HPDL− and HDLRC

Axioms and Rules for Classical Logic

(Taut) All instances of propositional tautologies

(MP) From A and A → B, infer B

Additional Axioms and Rules for HPDL−

(K[α]) [α](A → B) → ([α]A → [α]B) ([∪]) [α ∪ β]A ↔ [α]A ∧ [β]A

([; ]) [α; β]A ↔ [α][β]A ([?]) [?B]A ↔ (B → A)

(Nec[α]) From A, infer [α]A

Additional Axioms and Rules to HPDL− for HDLRC

([r]at) [r]p ↔ p ([r]⊥) [r]⊥ ↔ ⊥
([r]∧) [r](A ∧ B) ↔ ([r]A ∧ [r]B) ([r]∨) [r](A ∨ B) ↔ ([r]A ∨ [r]B)

([r] →) [r](A → B) ↔ ([r]A → [r]B) ([r][a]) [r][a]A ↔ [r(a)][r]A

(Nec[r]) From A, infer [r]A
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Fact 1 ([4,15]). For any formula A, A is valid in all models iff �HDLRC A.

The proof in [4,15] of Fact 1 employed a reduction strategy based on recursion
axioms. To be more specific, we start rewriting one of the innermost occurrences
of [r] (this is called the inside-out strategy) to reduce the semantic complete-
ness of HDLRC to Hilbert system HPDL− of the iteration-free propositional
dynamic logic. In contrast, Hatano et al. [11] provided an alternative proof of
the semantic completeness of HDLRC which does not employ such a reduction
strategy. Following the same spirit as in [3,26] for the public announcement logic,
they provided an alternative semantics for DLRC, where the key idea is that
relation changers correspond to bounded morphisms in one big Kripke model.
Based on this semantic idea, they showed a semantic completeness of HDLRC
for the alternative semantics by the canonical model construction, which in turn
implies the semantic completeness of HDLRC for the original semantics. The
alternative semantics has an advantage over the original Kripke semantics in
that it reveals the “meaning” of recursion axioms as bounded morphisms.

3 Constructive Dynamic Logic of Relation Changers

This section extends the idea of relation changers to Nishimura’s construc-
tive propositional dynamic logic [18]. To define an intuitionistic generalization
of DLRC, we employ exactly the same syntax L+ as the one provided in
Section 2.1. In what follows, let us denote by CDLRC our intuitionistic gener-
alization of DLRC.

Let � be a preorder on a non-empty set W . We say that X ⊆ W is �-closed
(or monotone) if X is closed under taking �-successors, i.e., w � v and w ∈ X
jointly imply v ∈ X, for any w, v ∈ W . Given a preorder (W,�), a binary
relation R ⊆ W × W is stable if it satisfies �;R ⊆ R where ; is the relational
composition. 2 An intuitionistic (Kripke) model is a tuple (W,�, (Ra)a∈AP, V ) if
W is a non-empty set of possible worlds, � is a preorder on W , Ra ⊆ W × W
is a stable relation (a ∈ AP), and V is a valuation from PROP to the set of all
�-closed sets on W .

Given any intuitionistic model M = (W,�, (Ra)a∈AP, V ) and any possible
worlds w, v ∈ W , we define the satisfaction relation M, w |= A and the interpre-
tation of wRαv of programs α by simultaneous induction as follows:

2 We may follow [28] to require that R satisfies �; R; �⊆ R, which is equivalent to
�; R; �= R. It is noted that this is a stronger condition than Nishimura [18]’s one.
But, this is not a crucial difference.
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M, w |= p iff w ∈ V (p),
M, w |= ⊥,
M, w |= A ∧ B iff M, w |= A and M, w |= B,
M, w |= A ∨ B iff M, w |= A or M, w |= B,
M, w |= A → B iff for all v ∈ W (w � v and M, v |= A imply M, v |= B),
M, w |= [α]A iff for all v ∈ W (wRαv implies M, v |= A),
wRα∪βv iff wRαv or wRβv,
wRα;βv iff for some u ∈ W (wRαu and uRβv),
wR?Av iff w � v and M, v |= A,
M, w |= [r]A iff Mr, w |= A,

where Mr = (W,�, (Rr
a)a∈AP, V ) and Rr

a is defined as:

Rr
a := Rr(a) = Rαa

when r = (a := αa)a∈AP.

It is noted that the above interpretation of R?A is originally proposed by [18]
and this is a key to obtain the monotonicity of a formula (if we replace w � v
with w = v in the interpretation of R?A, we lose the monotonicity, see [5]). We
also use the similar definition of the truth set and the validity as provided in
Section 2.1. A formula A is said to be valid in a class M of models if M |= A for
all M ∈ M. We denote the class of all models by Mall.

Proposition 2. Given any intuitionistic model M = (W,�, (Ra)a∈AP, V ), any
formula A and any program α, (i) [[A]]M is �-closed and (ii) Rα is stable, i.e.,
�;Rα ⊆ Rα.

Example 2. Let us consider AP = { a } and an intuitionistic model M =
(W,�, Ra, V ) where W = {w, v }, � = { (w,w), (v, v), (w, v) }, Ra = W × W ,
V (p) = { v }, as depicted in the left-hand-side of Fig. 2 where the dotted arrow
from w to v indicates the link of the preorder from w to v and the reflexive
links of the preorder for w and v are omitted from the figure. For this model,
one can easily check that Ra is stable and V (p) is �-closed. Since the law of
excluded middle p ∨ ¬p does not hold at w in M, M, w |= [a](p ∨ ¬p). Now, let
us consider an intuitionistic model update by relation changers r!p and r!(p∨¬p).
If we update the model M by the relation changer r!p, then we get a new model
Mr!p = (W,�, (Rr!p

a )a∈AP, V ) and R
r!p
a = { (w, v), (v, v) } (see the right-hand-side

of Fig. 2) where Mr!p , w |= [a](p ∨ ¬p) holds. It is noted that Mr!(p∨¬p) and Mr!p

are the same.

Fig. 2. Intuitionistic model update by introspective announcement r!p

Given a set Γ ∪ {A } of formulas in FORML+ , we say that A is a semantic
consequence of Γ (notation: Γ |= A) if, for any intuitionistic model M and any
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w ∈ W , whenever M, w |= B for all B ∈ Γ , M, w |= A holds. If Γ is an empty
set, we simply write |= A instead of ∅ |= A.

Let us move to proof theory. While Nishimura [18] provided a sequent calcu-
lus for the constructive propositional dynamic logic (with the Kleene star), this
paper proposes a Hilbert system for the iteration-free constructive propositional
dynamic logic. Table 2 provides Hilbert-style axiomatization HCDLRC of our
intuitionistic generalization CDLRC of dynamic logic of relation changers. We
also denote by HCPDL− a Hilbert system consisting of axioms and rules of intu-
itionistic logic and additional axioms and rules of the iteration-free constructive
propositional dynamic logic in Table 2. Similarly to the definition of HDLRC,
we add the set of six recursion axioms together with the necessitation rule for
[r] to the axiomatization HCPDL− to define HCDLRC. The notion of theorem
for these systems is defined as usual.

Given a finite set Γ of formulas, we write the conjunction of all formulas in
Γ as

∧
Γ where

∧ ∅ := 	. Given a set Γ ∪ {A } of formulas in FORML+ , we
say that A is provable from Γ in HCDLRC (notation: Γ �HCDLRC A) if there
exists a finite set Γ ′ ⊆ Γ such that

∧
Γ ′ → A is a theorem of HCDLRC. The

notion of provability for HCPDL− is also similarly defined.

Table 2. Hilbert-style Axiomatizations HCPDL− and HCDLRC

Axioms and Rules for Intuitionistic Logic

(k) A → (B → A) (∧e1) (A ∧ B) → A

(s) (A → (B → C)) → ((A → B) → (A → C)) (∧e2) (A ∧ B) → B

(∨i1) A → (A ∨ B) (∧i) A → (B → (A ∧ B))

(∨i2) B → (A ∨ B) (⊥) ⊥ → A

(∨e) (A → C) → ((B → C) → ((A ∨ B) → C)) (MP) From A and A → B, infer B

Additional Axioms and Rules for HCPDL−

(K[α]) [α](A → B) → ([α]A → [α]B) ([∪]) [α ∪ β]A ↔ [α]A ∧ [β]A

([; ]) [α;β]A ↔ [α][β]A ([?]) [?B]A ↔ (B → A)

(Nec[α]) From A, infer [α]A

Additional Axioms and Rules to HCPDL− for HCDLRC

([r]at) [r]p ↔ p ([r]⊥) [r]⊥ ↔ ⊥
([r]∧) [r](A ∧ B) ↔ ([r]A ∧ [r]B) ([r]∨) [r](A ∨ B) ↔ ([r]A ∨ [r]B)

([r] →) [r](A → B) ↔ ([r]A → [r]B) ([r][a]) [r][a]A ↔ [r(a)][r]A

(Nec[r]) From A, infer [r]A

With the help of Proposition 2, we can establish the soundness of HCDLRC
(and HCPDL−) for the standard Kripke semantics.

Proposition 3. (i) If �HCPDL− A, then Mall |= A, for any formula A. (ii) If
�HCDLRC A, then Mall |= A, for any formula A.

Proof. We only show the validity of the axiom of ([?]). It suffices to show that
M, w |= [?B]A iff M, w |= B → A for every w ∈ W . This is shown by: M, w |=
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[?B]A iff for all v ∈ W (wR?Bv implies M, v |= A) iff for all v ∈ W (w � v
and M, v |= B jointly imply M, v |= A) iff M, w |= B → A. ��

4 Completeness of Constructive Dynamic Logic
of Relation Changers with Recursion Strategy

Since Nishimura [18] considered the constructive propositional dynamic logic
with the Kleene star, his completeness proof of the sequent calculus is finitary,
i.e., he used Fischer-Ladner closure in the intuitionistic setting. In this section,
however, we first establish the semantic completeness of HCPDL− by the canon-
ical model construction. Second, we show the relative semantic completeness of
HCDLRC to HCPDL− with the help of the recursion axioms.

4.1 Completeness of HCPDL− by Canonical Model Construction

Definition 4. Given a finite set Γ of formulas, we write the disjunction of all
formulas in Γ as

∨
Γ where

∨ ∅ := ⊥. Let (Γ,Δ) be a pair of sets of formulas
in FORML. We say that (Γ,Δ) is provable (in HCPDL−) if Γ �HCPDL−

∨
Δ′

for some finite Δ′ ⊆ Δ and that (Γ,Δ) is unprovable (in HCPDL−) if it is not
provable. We say that (Γ,Δ) is complete if Γ ∪ Δ = FORML.

Lemma 5. Let (Γ,Δ) be a complete and unprovable pair.

(i) Γ �HCPDL− A iff A ∈ Γ .
(ii) If {A,A → B } ⊆ Γ then B ∈ Γ .
(iii) ⊥ ∈ Γ .
(iv) A ∧ B ∈ Γ iff A ∈ Γ and B ∈ Γ .

(v) A ∨ B ∈ Γ iff A ∈ Γ or B ∈ Γ .
(vi) [α∪β]A ∈ Γ iff { [α]A, [β]A }⊆ Γ .
(vii) [α;β]A ∈ Γ iff [α][β]A ∈ Γ .
(viii) [?B]A ∈ Γ iff B → A ∈ Γ .

Lemma 6. Given any unprovable pair (Γ,Δ) of formulas in FORML, there
exists a complete and unprovable pair (Γ+,Δ+) such that Γ ⊆ Γ+ and Δ ⊆ Δ+.

Definition 7. The canonical model Mc = (W c,�c, (Rc
a)a∈AP, V c) is defined as:

– W c := { (Γ,Δ) | (Γ,Δ) is a complete and unprovable pair },
– (Γ1,Δ1) �c (Γ2,Δ2) iff Γ1 ⊆ Γ2,
– (Γ1,Δ1)Rc

a(Γ2,Δ2) iff [a]−1Γ1 ⊆ Γ2, i.e., { A | [a]A ∈ Γ1 } ⊆ Γ2.
– (Γ,Δ) ∈ V c(p) iff p ∈ Γ .

Lemma 8. The canonical model Mc is an intuitionistic model.

Lemma 9. Let (Γ,Δ) be any complete and unprovable pair.

(i) If A → B ∈ Γ , then a pair ({A } ∪ Γ, {B }) is unprovable.
(ii) If [α]A ∈ Γ , then a pair ([α]−1Γ, {A }) is unprovable.
(iii) Let (Γ ′,Δ′) be a complete and unprovable pair such that [α1;α2]−1Γ ⊆
Γ ′. Then, a pair ([α1]−1Γ, [α2]Δ′) = ({B | [α1]B ∈ Γ }, { [α2]B | B ∈ Δ′ }) is
unprovable.
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Lemma 10 (Truth Lemma). Let A be a formula, α a program, (Γ,Δ) and
(Γ ′,Δ′) complete and unprovable pairs. Then, the following equivalences hold:

(i) A ∈ Γ iff Mc, (Γ,Δ) |= A,
(ii) (Γ,Δ)Rc

α(Γ ′,Δ′) iff [α]−1Γ ⊆ Γ ′, i.e., { B ∈ FORML | [α]B ∈ Γ } ⊆ Γ ′.

Proof. By simultaneous induction on a formula A and a program α. Most of
the cases can be shown by Lemma 5. The cases where A is of the form B → C
and the form [α]B in (i), and α is of the form β1;β2 in (ii) can be shown by
Lemmas 6 and 9. In what follows, we prove the case when α is of the form ?A in
(ii). We show that (Γ,Δ)Rc

?A(Γ ′,Δ′) iff for all B ∈ FORML ([?A]B ∈ Γ implies
B ∈ Γ ′). Since the left-to-right direction is straightforward by Lemma 5 (viii), we
only show the right-to-left direction. Suppose that [?A]B ∈ Γ implies B ∈ Γ ′ for
all B ∈ FORML. Our goal is to show (Γ,Δ)Rc

?A(Γ ′,Δ′), i.e., (Γ,Δ) �c (Γ ′,Δ′)
and Mc, (Γ ′,Δ′) |= A. To show (Γ,Δ) �c (Γ ′,Δ′), fix any formula C ∈ Γ . Our
goal is to show C ∈ Γ ′. Since C ∈ Γ , we get A → C ∈ Γ hence [?A]C ∈ Γ by
axiom ([?]). By our supposition, we conclude C ∈ Γ ′. Next, in order to show
Mc, (Γ ′,Δ′) |= A, it suffices to show A ∈ Γ ′ by induction hypothesis. We deduce
from �HCPDL− A → A that A → A ∈ Γ , which implies [?A]A ∈ Γ holds by
axiom ([?]). By this and our supposition, we obtain A ∈ Γ ′, as desired. ��
Theorem 1. Given any set Γ ∪{A } ⊆ FORML, Γ |= A implies Γ �HCPDL− A.

Proof. By the contrapositive implication. Suppose that Γ �HCPDL− A, which
implies (Γ, {A }) is unprovable. By Lemma 6, we can get a complete and unprov-
able pair (Γ+,Δ+) such that Γ ⊆ Γ+ and {A } ⊆ Δ+. By A ∈ Δ+ and the
unprovability of (Γ+,Δ+), it is noted that A /∈ Γ+. It follows from Lemma 10
that Mc, (Γ+,Δ+) |= B for all B ∈ Γ+ ⊇ Γ and that Mc, (Γ+,Δ+) |= A. There-
fore, we conclude Γ |= A, because Mc is an intuitionistic model by Lemma 8. ��

4.2 Relative Completeness of HCDLRC to HCPDL− by Recursion
Axioms

Now, we have the semantic completeness of HCPDL−. In what follows of this
section, we proceed to show the semantic completeness of HCDLRC.

Definition 11. The translation t : FORML+ → FORML is defined by:

t(p) = p, t([r]p) = p,
t(⊥) = ⊥, t([r]⊥) = ⊥,

t(A ∧ B) = t(A) ∧ t(B), t([r](A ∧ B)) = t([r]A) ∧ t([r]B),
t(A ∨ B) = t(A) ∨ t(B), t([r](A ∨ B)) = t([r]A) ∨ t([r]B),

t(A → B) = t(A) → t(B), t([r](A → B)) = t([r]A) → t([r]B),
t([a]A) = [a]t(A), t([r][a]A) = [r(a)]t([r]A),

t([α ∪ β]A) = t([α]A) ∧ t([β]A), t([r][α ∪ β]A) = t([r][α]A) ∧ t([r][α]B),
t([α;β]A) = t([α][β]A), t([r][α;β]A) = t([r][α][β]A),
t([?B]A) = t(B) → t(A), t([r][?B]A) = t([r]B) → t([r]A),

t([r][r′]A) = t([r]t([r′]A)).
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The definition of this translation reflects the idea of ‘inside-out’ strategy, i.e., we
start rewriting a formula from one of the innermost occurrences of [r].

Lemma 12. For any formula A, �HCDLRC A ↔ t(A).

Theorem 2. Given any set Γ ∪{A } ⊆ FormL+ , Γ |= A implies Γ �HCDLRC A.

Proof. Similarly to the proof of Fact 1, we can reduce the strong completeness
of HCDLRC to that of HCPDL−. Suppose that Γ |= A. By Propositions 3
and Lemma 12, B ↔ t(B) is valid in all models, for any formula B ∈ Γ ∪ {A }.
It follows that t[Γ ] |= t(A). Since HCPDL− is strongly complete (Theorem 1),
t[Γ ] �HCPDL− t(A). This implies that t[Γ ] �HCDLRC t(A) because HCDLRC
is an axiomatic extension of HCPDL−. Finally, again by Lemma 12, we obtain
Γ �HCDLRC A, as desired. ��

5 Completeness of Constructive Dynamic Logic
of Relation Changers without Recursion Strategy

In what follows, we present a direct proof of the semantic completeness of
HCDLRC for the standard semantics. To achieve the goal, we provide CDLRC
with an alternative semantics and connect it with the standard semantics via
the notion of bounded morphism (or p-morphism), which was originally pro-
posed by [23]. It is remarked that our semantics for [r] in the extended semantics
below is similar to the semantics of the next time operator © over intuitionistic
logic in [6].

5.1 Bounded Morphisms and Extended Models

Definition 13 (Bounded Morphism). Given any (standard) intuitionistic
models M = (W,�, (Ra)a∈AP, V ) and M′ = (W ′,�′, (R′

a)a∈AP, V ′), a mapping
f : W → W ′ is a bounded morphism (notation: f : M → M′) if it enjoys the
following properties:

(Atom) w ∈ V (p) iff f(w) ∈ V ′(p), for any w ∈ W (p ∈ PROP).
(Forth) If wRav, then f(w)R′

af(v), for any w, v ∈ W (a ∈ AP).
(Back) If f(w)R′

av′, then there exists some v ∈ W such that wRav and f(v) =
v′, for any w ∈ W and v′ ∈ W ′ (a ∈ AP).

(�-Forth) If w � v, then f(w) �′ f(v), for any w, v ∈ W .
(�-Back) If f(w) �′ v′, then there exists some v ∈ W such that w � v and

f(v) = v′, for any w ∈ W and v′ ∈ W ′.

Proposition 14. Given any intuitionistic models M = (W,�, (Ra)a∈AP, V ) and
M′ = (W ′,�′, (R′

a)a∈AP, V ′), a bounded morphism f : M → M′, any formula
A ∈ FORML+ and any program α ∈ PRL+ , the following hold:

(i) M, w |= A iff M′, f(w) |= A, for any w ∈ W .
(ii) If wRαv, then f(w)R′

αf(v), for any w, v ∈ W .
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(iii) If f(w)R′
αv′, then there exists some v ∈ W such that wRαv and f(v) = v′,

for any w ∈ W and v′ ∈ W ′.
f is also a bounded morphism from Mr to (M′)r.

Definition 15. (Extended Model and Extended Semantics). An
extended intuitionistic model M is a tuple (W,�, (Ra)a∈AP, (fr)r∈RC, V ) where
(W,�, (Ra)a∈AP, V ) is a standard intuitionistic model for CDLRC (notation:
M−), and fr : W → W is a function for relation changer r such that w � v
implies fr(w) � fr(v) for any w, v ∈ W , i.e., fr satisfies (�-Forth) condition.

Given any extended intuitionistic model M = (W,�, (Ra)a∈AP, (fr)r∈RC, V )
and any possible worlds w, v ∈ W , the extended satisfaction relation M, w � A
and the extended interpretation w‖α‖v of programs are defined by simultaneous
induction, as follows:

M, w � p iff w ∈ V (p),
M, w � ⊥,
M, w � A ∧ B iff M, w � A and M, w � B,
M, w � A ∨ B iff M, w � A or M, w � B,
M, w � A → B iff for all v ∈ W (w � v and M, v � A imply M, v � B),
M, w � [α]A iff for all v ∈ W (w‖α‖v implies M, v � A),
w‖a‖v iff wRav,
w‖α ∪ β‖v iff w‖α‖v or w‖β‖v,
w‖α;β‖v iff for some u ∈ W (w‖α‖u and u‖β‖v),
w‖?A‖v iff w � v and M, v � A,
M, w � [r]A iff M, fr(w) � A.

We define the truth set ‖A‖M of a formula A in an extended intuitionistic model
M by ‖A‖M := {w ∈ W | M, w � A }. Given a class X of extended intuitionistic
models, we say that a formula A is valid in X with respect to the extended
semantics (notation: X � A) if M, w � A for any extended intuitionistic models
M ∈ X and any possible worlds w ∈ W .

It is remarked that an essential difference between the extended semantics and
the standard semantics in Sect. 3 is merely the clause for relation changer r.

Example 3. Let AP = { a }. Here, we demonstrate a partial description of an
extended intuitionistic model N where two models M and Mr!p of Example 2
are embedded. In Fig. 3, the dotted arrow from w (or w′) to v (or v′, respectively)
indicates the link of the preorder from w to v and the double arrows from w to
w′ and v to v′ indicate the links for the relation changer r!p of the introspective
announcement !p. One can also check that N, w � [a](p ∨ ¬p) by N, w � p ∨ ¬p
and wRaw, and verify that N, w � [r!p][a](p ∨ ¬p), since N, v′ � p ∨ ¬p and v′ is
the unique ‖r!p(a)‖-successor of w′ = fr!p(w).

Proposition 16. Given any extended intuitionistic model M, any formula A
and any program α, (i) ‖A‖M is �-closed, and (ii) ‖α‖ is stable, i.e., �; ‖α‖ ⊆
‖α‖.
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Fig. 3. Partial description of a function fr!p by introspective announcement r!p

Proof. It suffices to check that ‖[r]B‖ is �-closed. Fix any w, v ∈ W such that
w � v and M, w � [r]B hence M, fr(w) � B. Since fr satisfies (�-forth) con-
dition, w � v implies fr(w) � fr(v). By induction hypothesis, we conclude that
M, fr(v) � B hence M, v � [r]B. ��
Definition 17. An extended intuitionistic model M = (W,�, (Ra)a∈AP,
(fr)r∈RC, V ) is r-normal if the following properties hold:

(r-Atom) w ∈ V (p) iff fr(w) ∈ V (p), for any w ∈ W (p ∈ PROP).
(r-Forth) If w‖r(a)‖v, then fr(w)Rafr(v), for any w, v ∈ W (a ∈ AP).
(r-Back) If fr(w)Rav, then there exists some u ∈ W such that w‖r(a)‖u and

fr(u) = v, for any w, v ∈ W (a ∈ AP).
(�-Back) If fr(w) � v, then there exists some u ∈ W such that w � u and

fr(u) = v, for any w, v ∈ W .

We say that an extended intuitionistic model is normal if it is r-normal for any
r ∈ RC. We define NXall to be the class of all normal extended intuitionistic
models.

Recall that a function fr satisfies (�-Forth) condition. Hence, the four
conditions (r-Atom), (r-Forth), (r-Back) and (� -Back) for the function fr
are equivalent to the condition that fr is a bounded morphism from a model
(W,�, (‖r(a)‖)a∈AP, V ) to a model (W,�, (Ra)a∈AP, V ). This observation implies
the following lemma.

Lemma 18. Let M = (W,�, (Ra)a∈AP, (fr)r∈RC, V ) be any normal extended
intuitionistic model. Then, all mappings fr : W → W are bounded morphisms
from (W,�, (‖r(a)‖)a∈AP, V ) to M− iff the extended model (W,�, (Ra)a∈AP,
(fr)r∈RC, V ) is normal, where recall that M− := (W,�, (Ra)a∈AP, V ).

Lemma 19. For any formula A, �HCDLRC A implies NXall � A.

Proof. It suffices to check the validity of the axioms for [r]. The axioms ([r]⊥),
([r]∧), and ([r]∨) are easily shown to be valid, since fr is a function. It is easy to
see that ([r]at) is valid in all normal extended models by (r-Atom) condition.

The validity of ([r] →) is shown by (�-Forth) and (�-Back). Let us see the
detail. It suffices to show that M, w � [r](A → B) iff M, w � [r]A → [r]B for
all w ∈ W . First, we establish the left-to-right direction. Suppose that M, w �
[r](A → B), i.e., M, fr(w) � A → B. To show that M, w � [r]A → [r]B, let us fix
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any v such that w � v and M, v � [r]A, i.e., M, fr(v) � A. Our goal is to show
that M, fr(v) � B. It follows from (�-forth) that fr(w) � fr(v). By M, fr(v) � A
and M, fr(w) � A → B, we can conclude that M, fr(v) � B. Second, we establish
the right-to-left direction. Suppose that M, w � [r]A → [r]B. Our goal is to show
M, w � [r](A → B), i.e., M, fr(w) � A → B. Let us fix any v such that fr(w) � v
and M, v � A. By (�-back), there exists a state u ∈ W such that fr(u) = v
and w � u. It follows that M, fr(u) � A hence M, u � [r]A. By w � u and our
supposition, we get M, u � [r]B, i.e., M, v � B by fr(u) = v.

The validity of ([r][a]) can be checked with the help of (r-Forth) and (r-Back)
as follows. It suffices to show that M, w � [r][a]A iff M, w � [r(a)][r]A for all
w ∈ W . First, we show the left-to-right direction. Suppose that M, w � [r][a]A,
i.e., M, fr(w) � [a]A. To show that M, w � [r(a)][r]A, let us fix any u ∈ W
such that w‖r(a)‖u. Our goal is to show that M, fr(u) � A. It follows from (r-
Forth) that fr(w)Rafr(u). Since fr(w)Rafr(u) holds, we obtain M, fr(u) � A
by our initial supposition. Second, we show the right-to-left direction. Suppose
that M, w � [r(a)][r]A. Our goal is to show M, w � [r][a]A, i.e., M, fr(w) � [a]A.
Let us fix any v ∈ W such that fr(w)Rav. Our goal is to show M, v � A. By
(r-Back), there exists a state u ∈ W such that w‖r(a)‖u and fr(u) = v. Then,
it follows from M, w � [r(a)][r]A that M, fr(u) � A, which implies M, v � A. ��
The following theorem connects the extended semantics with the original seman-
tics. Moreover, this theorem is a key component of a semantic completeness proof
of the axiomatization HCDLRC for the original semantics without the reduc-
tion strategy.

Theorem 3. Given any formula A, any program α and any normal extended
intuitionistic model M, (i) M, w � A iff M−, w |= A, and (ii) ‖α‖ = Rα.

Proof. By simultaneous induction on α and A. It suffices to check the case where
A is of the form [r]B. We proceed as follows: M, w � [r]B iff M, fr(w) � B iff
M−, fr(w) |= B (by induction hypothesis) iff (M−)r, w |= B (by Proposition 14,
Lemma 18 and induction hypothesis) iff M−, w |= [r]B, as required. ��
Definition 20. Given a set Γ ∪ {A } of formulas in FORML+ , we say that A is
a semantic consequence of Γ with respect to a class X of extended intuitionistic
models (notation: Γ �X A) if, for every extended model M in X and state w in
M , when M, w � B for all B ∈ Γ , M, w � A holds.

By Theorem 3, we can obtain the following corollary.

Corollary 1. For any formula set Γ ∪ {A }, Γ |= A implies Γ �NXall A.

5.2 Completeness of HCDLRC via Extended Canonical Model

To show the semantic completeness of HCDLRC by the canonical model con-
struction, we employ the similar definitions of the provability (in HCDLRC)
and the completeness for a pair (Γ,Δ) of formulas in FORML+ , as we did in
Sect. 4.1.
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Lemma 21. Given any unprovable pair (Γ,Δ) of formulas in FORML+ , there
exists a complete and unprovable pair (Γ+,Δ+) such that Γ ⊆ Γ+ and Δ ⊆ Δ+.

Definition 22. Define Mc := (W c,�c, (Rc
a)a∈AP, (fc

r )r∈RC, V c) as the extended
canonical intuitionistic model by

– W c := { (Γ,Δ) | (Γ,Δ) is a complete and unprovable pair },
– (Γ1,Δ1) �c (Γ2,Δ2) iff Γ1 ⊆ Γ2,
– (Γ1,Δ1)Rc

a(Γ2,Δ2) iff [a]−1Γ1 ⊆ Γ2.
– fc

r (Γ1,Δ1) = ([r]−1Γ1, [r]−1Δ1).
– (Γ,Δ) ∈ V c(p) iff p ∈ Γ .

Lemma 23. The map fc
r of the extended canonical intuitionistic model is a

function and it satisfies the ( �-Forth) condition. Moreover, the extended canon-
ical intuitionistic model Mc is an intuitionistic model.

Proof. Let (Γ,Δ) be a complete and unprovable pair. First, we show that
([r]−1Γ, [r]−1Δ) is also a complete and unprovable pair. This implies that fc

r is a
function. Since the completeness of the pair is easy to establish, we focus on the
unprovability of ([r]−1Γ, [r]−1Δ). Suppose not. There exists finite families (Ai)i∈I

and (Bj)j∈J such that [r]Ai ∈ Γ and [r]Bj ∈ Δ and � ∧
i∈I Ai → ∨

j∈J Bj . By
the necessitation law of [r], we get � [r](

∧
i∈I Ai → ∨

j∈J Bj). It follows from the
axioms for [r], we have � ∧

i∈I [r]Ai → ∨
j∈J [r]Bj , which implies a contradiction

with the unprovability of (Γ,Δ). Therefore, ([r]−1Γ, [r]−1Δ) is unprovable. As
for the forth condition of �c, suppose that (Γ,Δ) �c (Γ ′,Δ′), i.e., Γ ⊆ Γ ′. In
order to show fc

r (Γ,Δ) �c fc
r (Γ ′,Δ′), it suffices to establish [r]−1Γ ⊆ [r]−1Γ ′.

Fix any formula B such that [r]B ∈ Γ . Since Γ ⊆ Γ ′, we obtain [r]B ∈ Γ ′ hence
B ∈ [r]−1Γ ′. ��
Lemma 24 (Truth lemma for �). Let A ∈ FORML+ , α ∈ PRL+ ,
(Γ,Δ), (Γ ′,Δ′) ∈ W c. Then, the following equivalences hold: (i) A ∈ Γ iff
Mc, (Γ,Δ) � A; (ii) (Γ,Δ)‖α‖(Γ ′,Δ′) iff [α]−1Γ ⊆ Γ ′.

Proof. It suffices for us to check the case where A is of the form [r]B. We need
to establish the equivalence [r]B ∈ Γ iff Mc, fc

r ((Γ,Δ)) � B. By induction
hypothesis, this is trivial, since [r]B ∈ Γ iff B ∈ [r]−1Γ . ��
Lemma 25. Let (Γ1,Δ1) and (Γ ′

2,Δ
′
2) be any complete and unprovable pairs.

(i) If fc
r (Γ1,Δ1)Rc

a(Γ ′
2,Δ

′
2), then ([r(a)]−1Γ1 ∪ [r]Γ ′

2, [r]Δ
′
2) is unprovable.

(ii) If fc
r (Γ1,Δ1) �c (Γ ′

2,Δ
′
2), then (Γ1 ∪ [r]Γ ′

2, [r]Δ
′
2) is unprovable.

Proof. We prove (i) alone because we can prove (ii) similarly to the proof of
(i). Suppose that fc

r (Γ1,Δ1)Rc
a(Γ ′

2,Δ
′
2), i.e., [a]−1([r]−1Γ1) ⊆ Γ ′

2. It follows that
{ B | [r][a]B ∈ Γ1 } ⊆ Γ ′

2. Assume for contradiction that ([r(a)]−1Γ1 ∪ [r]Γ ′
2, [r]Δ

′
2)

is provable in HCDLRC. Thus, there exists finite families (Ai)i∈I , (Bj)j∈J

and (Ck)k∈K of formulas such that � (
∧

i∈I Ai ∧ ∧
j∈J [r]Bj) → ∨

k∈K [r]Ck,
[r(a)]Ai ∈ Γ1, Bj ∈ Γ ′

2, and Ck ∈ Δ′
2. It follows from the axioms for [r] that
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� ∧
i∈I Ai → [r](

∧
j∈J Bj → ∨

k∈K Ck). By the necessitation law for [r(a)] and
the axiom K[α], we have � (

∧
i∈I [r(a)]Ai) → [r(a)][r](

∧
j∈J Bj → ∨

k∈K Ck). By
[r(a)]Ai ∈ Γ1 for all indices i ∈ I, we have

∧
i∈I [r(a)]Ai ∈ Γ1. It follows that

[r(a)][r](
∧

j∈J Bj → ∨
k∈K Ck) ∈ Γ1 hence [r][a](

∧
j∈J Bj → ∨

k∈K Ck) ∈ Γ1 by
the axiom ([r][a]). By the initial supposition, we get

∧
j∈J Bj → ∨

k∈K Ck ∈ Γ ′
2.

Since Bj ∈ Γ ′
2 (j ∈ J) and Ck ∈ Δ′

2 (k ∈ K), we can conclude that (Γ ′
2,Δ

′
2) is

provable in HCDLRC. We get the desired contradiction. ��
Lemma 26. The extended canonical intuitionistic model Mc is normal.

Proof. Since the space is limited, we show that Mc satisfies the conditions of
(r-Forth), (r-Back) and (�-Back).

(r-Forth) Suppose that (Γ1,Δ1)‖r(a)‖(Γ2,Δ2), i.e., [r(a)]B ∈ Γ1 implies B ∈
Γ2 for all B ∈ FORML+ . Our goal is to show fr((Γ1,Δ1))Rc

afr((Γ2,Δ2)),
i.e., ([r]−1Γ1, [r]−1Δ1)Rc

a([r]−1Γ2, [r]−1Δ2). Thus, fix any formula A such that
[a]A ∈ [r]−1Γ1 hence [r][a] ∈ Γ1. Our goal is to show that A ∈ [r]−1Γ2. It
follows from the axiom ([r][a]) that [r(a)][r]A ∈ Γ1. By the initial supposition,
this implies that [r]A ∈ Γ2, which implies our goal.

(r-Back) Suppose that fc
r (Γ1,Δ1)Rc

a(Γ ′
2,Δ

′
2). This implies [a]−1([r]−1Γ1) ⊆ Γ ′

2,
i.e., { B | [r][a]B ∈ Γ1 } ⊆ Γ ′

2. Our goal is to find some (Γ2,Δ2) ∈ W c such
that (Γ1,Δ1)‖r(a)‖(Γ2,Δ2) and fc

r (Γ2,Δ2) = (Γ ′
2,Δ

′
2), or equivalently, to

find some pair (Γ2,Δ2) ∈ W c such that [r(a)]Γ1 ∪ [r]Γ ′
2 ⊆ Γ2 and [r]Δ′

2 ⊆ Δ2.
By Lemmas 21 and 25 (i), we can find such a pair. ��

(�-Back) Suppose that fc
r (Γ1,Δ1) �c (Γ ′

2,Δ
′
2). This implies [r]−1Γ1 ⊆ Γ ′

2. Our
goal is to find a (Γ2,Δ2) ∈ W c such that Our goal is to find a (Γ2,Δ2) ∈ W c

such that (Γ1,Δ1) �c (Γ2,Δ2) and fc
r (Γ2,Δ2) = (Γ ′

2,Δ
′
2), or equivalently, a

pair (Γ2,Δ2) ∈ W c such that Γ1 ∪ [r]Γ ′
2 ⊆ Γ2 and [r]Δ′

2 ⊆ Δ2. By Lemmas 21
and 25(i), we can find such a pair.

By Lemmas 21, 23, 24, and 26, we obtain the following.

Theorem 4. For any formula set Γ ∪{A }, Γ �NXall A implies Γ �HCDLRC A.

By Theorem 4 and Corollary 1, we can provide an alternative proof of The-
orem 2: Γ |= A implies Γ �HCDLRC A, for any set Γ ∪ {A } of formulas. This
finishes establishing the strong completeness of HCDLRC without the reduction
strategy.

6 Conclusion

Let us explain possible directions of further research. First of all, let us com-
ment on the decidability of CPDL−. Since it is easy to see that our Hilbert
system HCPDL− and the iteration-free fragment of Nishimura’s sequent cal-
culus for CPDL [18] are equipollent, Nishimura’s argument for the semantic
completeness of CPDL with respect to the finite models implies the finite model
property of CPDL− hence the decidability of CPDL−. The second direction
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is on a proof theory of CDLRC. While Hatano et al. [11,12] defined a labelled
sequent calculus for the classical DLRC, Nishimura [18] provided non-labelled
sequent calculus for constructive propositional dynamic logic (with the Kleene
star), which is not cut-free. But, if we drop the Kleene star from the calculus, we
may obtain a cut-free calculus of CPDL−, which is the iteration-free fragment of
Nishimura’s sequent calculus for CPDL [18]. It would be interesting to consider
non-labelled sequent calculus for CDLRC. This may also be a proof-theoretic
basis for considering a substructural generalization of CDLRC. The third direc-
tion is to add the backward diamond for each atomic program a to talk about
backtracking. While Nishimura [17] considered the converse operator − for pro-
gram α, he kept the syntax simpler for the constructive propositional dynamic
logic [18]. We may follow the idea of bi-intuitionistic stable tense logic by [20,24]
to realize this direction. The fourth direction is to consider the strong complete-
ness proof of the other non-classical dynamic epistemic logics (e.g., in [1,2,16])
without reduction strategy. For example, an intuitionistic public announcement
logic proposed in [2,16] is a promising candidate.
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Abstract. We consider commutative infinitary action logic, that is, the
equational theory of commutative *-continuous action lattices, and show
that its derivability problem is Π0

1 -complete. Thus, we obtain a commu-
tative version of Π0

1 -completeness for non-commutative infinitary action
logic by Buszkowski and Palka (2007). The proof of the upper bound
is more or less the same as Palka’s argument. For the lower bound, we
encode non-terminating behaviour of two-counter Minsky machines.

Keywords: Complexity · Infinitary action logic · Commutative action
lattices

1 Introduction

Action logic is the equational theory (algebraic logic) for action lattices, that
is, Kleene lattices with residuals. The concept of action lattice, introduced
by Pratt [17] and Kozen [8], combines several algebraic structures: a partially
ordered monoid with residuals (“multiplicative structure”), a lattice (“additive
structure”) sharing the same partial order, and Kleene star. (Pratt introduced
the notion of action algebra, which bears only a semi-lattice structure with join,
but not meet. Action lattices are due to Kozen.)

Definition 1. An action lattice is a structure 〈A;�, ·,0,1,�,

�

,∨,∧, ∗〉,
where:

1. � is a partial order on A;
2. 0 is the smallest element for �, that is, 0 � a for any a ∈ A;
3. 〈A; ·,1〉 is a monoid;
4. � and �are residuals of the product (·) w.r.t. �, that is:

b � a � c ⇐⇒ a · b � c ⇐⇒ a � c

�

b;

5. 〈A;�,∨,∧〉 is a lattice;
6. for each a ∈ A, a∗ = min�{b | 1 � b and a · b � b}.

An important subclass of action lattices is formed by *-continuous action
lattices.
c© Springer Nature Switzerland AG 2020
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Definition 2. Action lattice A is *-continuous, if for any a ∈ A we have a∗ =
sup�{an | n ≥ 0}, where an = a · . . . · a (n times) and a0 = 1.

Interesting examples of action lattices are mostly *-continuous; non-*-conti-
nuous action lattices also exist, but are constructed artificially.

The equational theory for the class of action lattices or its subclass (e.g.,
the class of *-continuous action lattices) is the set of all statements of the form
A � B, where A and B are formulae (terms) built from variables and constants
0 and 1 using action lattice operations, which are true in any action lattice from
the given class under any valuation of variables. More precisely, the previous
sentence defines the inequational theory, but in the presence of lattice operations
it is equivalent to the equational one: A � B can be equivalently represented as
A ∨ B = B.

In a different terminology, equational theories of classes of action lattices
are seen as algebraic logics. These logics are substructural, extending the multi-
plicative-additive (“full”) Lambek calculus [6,13], which is a non-commutative
intuitionstic variant of Girard’s linear logic [4].

The equational theory of all action lattices is called action logic and denoted
by ACT. For the subclass of *-continuous action lattices, the equational theory
is infinitary action logic ACTω, introduced by Buszkowski and Palka [2,3,16].

The interest to such a weak language—only (in)equations—is motivated by
complexity considerations. Namely, for the next more expressible language, the
language of Horn theories, the corresponding theory of the class of *-continuous
action lattices is already Π1

1 -complete [9], that is, has a non-arithmetical com-
plexity level. In contrast, ACTω is Π0

1 -complete, as shown by Buszkowski and
Palka [2,16]. For the general case, ACT is Σ0

1 -complete [10,11], which is already
the maximal possible complexity: iteration in action lattices in general allows a
finite axiomatization, unlike the *-continuous situation, which requires infinitary
mechanisms.

Kleene algebras and their extensions are used in computer science for reason-
ing about program correctness. In particular, elements of an action lattice are
intended to represent types of actions performed by a computing system (say,
transitions in a finite automaton). Multiplication corresponds to composition of
actions, Kleene star is iteration (perform an action several times, maybe zero).
Residuals represent conditional types of actions. An action of type a � b, being
preceded by an action of type a, gives an action of type b. Dually, b �a is the
type of actions which require to be followed by an action of type a to achieve b.

The monoid operation (multiplication) in action lattices is in general non-
commutative, since so is, in general, composition of actions. However, in his
original paper Pratt designates the subclass of commutative action algebras:

“A commutative action algebra is an action algebra satisfying ab = ba.
Whereas action logic in general is neutral as to whether ab combines a and
b sequentially or concurrently, commutative action logic in effect commits
to concurrency”. [17]

Later on, however, commutative action algebras (lattices) were not studied sys-
tematically. Concurrent computations are usually treated using a more flexible
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approach, using a specific parallel execution connective, ‖, in the framework of
concurrent Kleene algebras, CKA [5], and its extensions. In particular, the author
is not aware of a study of equational theories (algebraic logics) for commutative
action lattices.

In this paper, we focus on *-continuous commutative action lattices and
their equational theory, which we denote by CommACTω. The general, non-
*-continuous case is left for further research. For CommACTω, we present
(Sect. 2) an infinitary cut-free sequent calculus and using this calculus prove
an upper Π0

1 complexity bound. This is a commutative adaptation of Palka’s
reasoning on the non-commutative ACTω. Next (Sect. 3), we establish the com-
mutative counter-part of Buszkowski’s [2] lower complexity bound, which is also
Π0

1 . Thus, in short, the result of our paper can be formulated as follows:

CommACTω is Π0
1 -complete.

The present work is based, on one side, on the work of Palka [16] and, on
the other side, on the work of Lincoln et al. [14]. Palka’s approach is used for
constructing a cut-free infinitary sequent calculus for CommACTω and prov-
ing the Π0

1 lower complexity bound. These proofs basically copy Palka’s ones;
commutativity does not add anything significantly new here.

In contrast, for proving Π0
1 -hardness (lower bound) we could not have used

Buszkowski’s argument [2], since it uses a reduction from the totality problem for
context-free grammars, which is intrinsically non-commutative. Instead, we use
an encoding of two-counter Minsky machines, which are commutative-friendly.
The encoding of Minsky instructions and configurations is taken from the work
of Lincoln et al. [14], with minor modifications.

The principal difference from [14], however, is the usage of Kleene star to
model non-halting behaviour of Minsky machines (while Lincoln et al. use the
exponential modality of linear logic for modelling halting computations). This
gives Π0

1 -hardness for CommACTω, dual to Σ0
1 -hardness of propositional lin-

ear logic [14]. Also, in succedents of our sequents we now have to represent an
arbitrary configuration of the Minsky machine being encoded, as opposed to
representing only the final configuration in [14]. This is also implemented using
Kleene star.

2 Proof Theory for CommACTω

We present an infinitary sequent calculus for CommACTω, which is a commu-
tative version of Palka’s system for ACTω. Formulae of CommACTω are built
from a countable set of variables Var = {p, q, r, . . .} and constant 1 using four
binary connectives, �, ·, ∨, and ∧, and one unary connective, ∗. (Due to com-
mutativity, B �A is always equivalent to A � B, so we have only one residual
here.) Sequents are expressions of the form Γ � A, where Γ is a multiset of
formulae (that is, the number of occurrences matters, while the order does not)
and A is a formula. In our notations, capital Greek letters denote multisets of
formulae and capital Latin letters denote formulae.
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Axioms and inference rules of CommACTω are as follows:

A � A
Id

Γ,0 � C
0L

Γ � C
Γ,1 � C

1L � 1 1R

Π � A Γ,B � C

Γ,Π,A � B � C
� L

A,Π � B

Π � A � B
� R

Γ,A,B � C

Γ,A · B � C
·L Π � A Δ � B

Π,Δ � A · B
·R

Γ,A � C Γ,B � C

Γ,A ∨ B � C
∨L

Π � A
Π � A ∨ B

∨R
Π � B

Π � A ∨ B
∨R

Γ,A � C

Γ,A ∧ B � C
∧L

Γ,B � C

Γ,A ∧ B � C
∧L

Π � A Π � B
Π � A ∧ B

∧R

(
Γ,An � C

)∞
n=0

Γ,A∗ � C
∗L

Π1 � A . . . Πn � A

Π1, . . . , Πn � A∗ ∗R, n ≥ 0

Π � A Γ,A � C

Γ,Π � C
Cut

The set of derivable sequents (theorems) is the smallest set which includes all
instances of axioms and which is closed under inference rules. Thus, derivation
trees in CommACTω may have infinite branching (at instances of ∗L, which is
an ω-rule), but are required to be well-founded (infinite paths are forbidden).

Let us formulate several properties of CommACTω and give proof sketches,
following Palka [16], but in the commutative setting. The proofs are essentially
the same as Palka’s ones; we give their sketches here in order to make this paper
logically self-contained.

The sequents of CommACTω presented above enjoy a natural algebraic
interpretation on commutative action lattices. Namely, given an action lattice
A, we intepret variables as arbitrary elements of A, by a valuation function
v : Var → A, and then propagate this interpretation to formulae. Let us denote
the interpretation of formula A under valuation v by v̄(A). A sequent of the form
A1, . . . , An � B (n ≥ 1) is true under this interpretation if v̄(A1) · . . . · v̄(An) �
v̄(B) (due to commutativity of ·, the order of Ai’s does not matter). For n = 0,
the sequent � B is declared true if 1 � v̄(B). A soundness-and-completeness
theorem holds:

Theorem 1. A sequent is derivable in CommACTω if and only if it is true in
all commutative *-continuous action lattices under all valuations of variables.

Proof. The “only if” part (soundness) is proved by (transfinite) induction on the
structure of derivation. For the “if” part (completeness), we use the standard
Lindenbaum – Tarski canonical model construction. ��
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Thus, CommACTω is indeed an axiomatization for the equational theory
of commutative *-continuous action lattices.

In order to facilitate induction on derivation in the infinitary setting, we
define the depth of a derivable sequent in the following way. For an ordinal α,
let us define the set Sα by transfinite recursion:

S0 = ∅;
Sα+1 = {Γ � A | Γ � A is derivable by one rule application from Sα};

Sλ =
⋃

α<λ

Sα for λ ∈ Lim.

(In particular, S1 is the set of all axioms of CommACTω.) For a derivable
sequent Γ � A let d(Γ � A) = min{α | (Γ � A) ∈ Sα} be its depth.

The complexity of a formula A is defined as the total number of subformula
occurrences in it.

Theorem 2. The calculus CommACTω enjoys cut elimination, that is, any
derivable sequent can be derived without using Cut.

Proof. First we eliminate one cut on the bottom of a derivation, that is, show
that if Π � A and Γ,A � C are cut-free derivable, then so is Γ,Π � C. This
is established by triple induction on the following parameters: (1) complexity of
A; (2) depth of Π � A; (3) depth of Γ,Π � C. See [16, Theorem 3.1] for details.

Next, let a sequent Γ � B be derivable using cuts. Let d(Γ � B) be its depth,
counted for the calculus with cut as an official rule. Let us show that Γ � B is
cut-free derivable by induction on α = d(Γ � B). Notice that α is not a limit
ordinal: otherwise, (Γ � B) ∈ Sβ for some β < α. Also α �= 0. Thus, α = β + 1.
The sequent Γ � B is immediately derivable, by one rule application, from a
set of sequents from Sβ , that is, of smaller depth. By the induction hypothesis,
these sequents are cut-free derivable. Now consider the rule which was used to
derive Γ � B. If it is not cut, then Γ � B is also cut-free derivable. If it is cut,
we apply the reasoning from the beginning of this proof and establish cut-free
derivability of Γ � B. ��

In order to prove that CommACTω belongs to the Π0
1 complexity class,

we use Palka’s *-elimination technique. For each sequent, we define its n-
th approximation. Informally, we replace each negative occurrence of A∗ with
A≤n = 1∨A∨A2∨. . .∨An. The n-th approximation of a sequent A1, . . . , Am � B
is defined as Nn(A1), . . . , Nn(Am) � Pn(B), where mappings Nn and Pn are
defined by joint recursion:
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Nn(α) = Pn(α) = α, α ∈ Var ∪ {0,1}
Nn(A � B) = Pn(A) � Nn(B) Pn(A � B) = Nn(A) � Pn(B)
Nn(A · B) = Nn(A) · Nn(B) Pn(A · B) = Pn(A) · Pn(B)
Nn(A ∨ B) = Nn(A) ∨ Nn(B) Pn(A ∨ B) = Pn(A) ∨ Pn(B)
Nn(A ∧ B) = Nn(A) ∧ Nn(B) Pn(A ∧ B) = Pn(A) ∧ Pn(B)
Nn(A∗) = 1 ∨ Nn(A) ∨ (Nn(A))2 ∨ . . . ∨ (Nn(A))n

Pn(A∗) = (Pn(A))∗

(In Palka’s notation, N and P are inverted.)
The *-elimination theorem, resembling Palka’s [16] Theorem 5.1, is now for-

mulated as follows:

Theorem 3. A sequent is derivable in CommACTω if and only if its n-th
approximation is derivable in CommACTω for any n.

Proof. The “only if” part is easier. We establish by induction that A � Pn(A)
and Nn(A) � A are derivable for any A: see [16, Lemma 4.3] for ACTω; com-
mutativity does not alter this part of the prove. Next, we apply cut several
times:

Nn(A1) � A1 . . . Nn(Am) � Am A1, . . . , Am � B B � Pn(B)
Nn(A1), . . . , Nn(Am) � Pn(B)

For the “if” part, a specific induction parameter is introduced. This param-
eter is called the rank of a formula and is represented by a sequence of natural
numbers. These sequences are formally infinite, but include only zeroes start-
ing from some point. For a sequent Γ � A its rank ρ(Γ � A) is the sequence
(c0, c1, c2, . . .), where ci is the number of subformulae of complexity i in Γ � A.

The order on ranks is anti-lexicographical: (c0, c1, c2, . . .) ≺ (c′
0, c

′
1, c

′
2, . . .),

if there exists a natural number i such that ci < c′
i and for any j > i we have

cj = c′
j . In any rank (c0, c1, c2, . . .) of a sequent there exists such a k0 that ck = 0

for all k > k0 (k0 is the maximal complexity of a subformula in Γ � A). Hence,
any two ranks are comparable. Moreover, the order on ranks is well-founded.
Thus, we can perform induction on ranks.

The rules of CommACTω enjoy the following property: each premise has
a smaller rank than the conclusion. In particular, this holds for ∗L: despite A
is copied n times, its complexity is smaller, than that of A∗. Thus, when going
from conclusion to premise, we reduce some ci by one and increase ci−1 (where
i is the complexity of A∗). The rank gets reduced.

Now we prove the “if” part by contraposition. Suppose a sequent Π � B
is not derivable in CommACTω. We shall prove that for some n the n-th
approximation of this sequent is also not derivable. We proceed by induction on
ρ(Π � B). Consider two cases.
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Case 1: one of the formulae in Π is of the form A∗. Then Π = Π ′, A∗

and for some m the sequent Π ′, Am � B is not derivable (otherwise Π � B
would be derivable by ∗L). Since ρ(Π ′, Am � B) ≺ ρ(Π ′, A∗ � B), we can
apply the induction hypothesis and conclude that for some k the sequent
Nk(Π ′), (Nk(A))m � Pk(B) is not derivable. Here Nk(Π ′), for Π ′ = C1, . . . , Cs,
is defined as Nk(C1), . . ., Nk(Cs).

Now take n = max{m, k}. We claim that Nn(Π ′), Nn(A∗) � Pn(B) is not
derivable. This is indeed the case, because otherwise we could derive the sequent
Nk(Π ′), (Nk(A))m � Pk(B) using cut. The sequents used in cut are Nk(Cj) �
Nn(Cj), for each Cj in Π ′, (Nk(A))m � Nn(A)∗, and Pn(B) � Pk(B), which are
derivable (see [16, Lemma 4.4]).

Case 2: no formula of Π is of the form A∗. Thus, our sequent cannot be
derived using (immediately) the ∗L rule. All other rules are finitary, and there
is only a finite number of possible applications of these rules (for example, for
� L there is a finite number of possible splittings of the context to Γ and Π).
For each of these possible rule applications, at least one of its premises should
be non-derivable (otherwise we derive the original sequent Π � B).

The premises have smaller ranks than Π � B, so we can apply the induction
hypothesis. This gives, for each premise, non-derivability of its k-th approxima-
tion for some k. Let n be the maximum of these k’s. Increasing k keeps each
approximation non-derivable, and we get non-derivability of the n-th approxi-
mation of the original sequent. ��

The *-elimination technique yields the upper complexity bound:

Theorem 4. The derivability problem in CommACTω belongs to the Π0
1 com-

plexity class.

Proof. By Theorem 3, derivability of a sequent is reduced to derivability of all its
n-th approximations. Each n-th approximation, in its turn, is a sequent without
negative occurrences of ∗, that is, its derivation in CommACTω is always finite
(does not use ∗L). For such sequents, the derivability problem is decidable by
exhausting proof search, since all rules, except ∗L, reduce the complexity of the
sequent (when looking upwards). The “∀n” quantifier yields Π0

1 . ��

3 Π0
1 -hardness of CommACTω

In this section we prove Π0
1 -hardness for CommACTω by reducing the non-

halting problem for deterministic two-counter Minsky machines [15] to deriv-
ability in CommACTω. The halting problem for such machines is equivalent
to that for Turing machines [15, Theorem Ia] and therefore Σ0

1 -complete. The
dual problem of non-halting is Π0

1 -complete.
Our approach is in a sense dual to the undecidability proof for (commuta-

tive) propositional linear logic by Lincoln et al. [14]. Unlike Turing machines or
semi-Thue systems, Minsky machines keep only integers in their memory. Thus,
Minsky machine configurations can be encoded by formulae of a commutative
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substructural logic (see below). For linear logic, Lincoln et al. [14] use a reduction
from the halting problem of Minsky machines to derivability in linear logic. They
use the exponential modality, !A, which is expanded to An, for some n, using
the contraction rule. This encodes termination of Minsky computation after n
steps. Here A encodes the instruction set of our Minsky machine. Dually, we use
A∗, which is expanded using the ω-rule, ∗L, to an infinite series of sequents with
An for any n. This corresponds to an infinite run of the Minsky machine: it can
perform arbitrarily many steps.

Notice that, as in [14], we essentially use commutativity. It is needed to deliver
the instruction to the correct place in the formula encoding the machine configu-
ration. In the non-commutative setting, this is a separate issue, and Buszkowski’s
Π0

1 -hardness proof for ACTω [2] uses an indirect reduction from non-halting of
Turing machines, via totality for context-free grammars.

A Minsky machine M has two registers (counters), denoted by a and b, and
a finite memory represented by a finite set of states Q. Each register keeps a
natural number (possibly zero), thus, a configuration of M is represented by a
triple of the form 〈q, a, b〉, where q ∈ Q and a, b ∈ N.

Instructions of M are of the following forms (here r ∈ {a, b}, p, q, q0, q1 ∈ Q):

inc(p, r, q) being in state p, increase register r by 1
and move to state q;

jzdec(p, r, q0, q1) being in state p, check whether the value of r is 0:
if yes, move to state q0,
if no, decrease r by 1 and move to state q1.

The machine M is required to be deterministic, that is, enjoy only one pos-
sible way of execution. This means that for any p ∈ Q there is no more than one
instruction with this p as the first parameter.

In CommACTω, configurations of M are encoded as follows. Let {a, b} ∪
Q ⊂ Var and encode configuration 〈q, a, b〉 as

a, . . . , a
︸ ︷︷ ︸
a times

, b, . . . , b
︸ ︷︷ ︸
b times

, q.

This encoding will appear in antecedents of CommACTω sequents, thus, it is
considered as a multiset. This keeps the numbers of a’s and b’s, which is crucial
for representing Minsky configurations.

Each instruction I is encoded by a specific CommACTω formula AI . For
inc, the encoding is straightforward:

Ainc(p,r,q) = p � (q · r).

For jzdec, the encoding is more involved. We introduce two extra variables, za
and zb, and encode jzdec(p, r, q0, q1) by the following formula:

Ajzdec(p,r,q0,q1) = ((p · r) � q1) ∧ (p � (q0 ∨ zr)).
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Moreover, we introduce two extra formulae, Na = za � za and Nb = zb � zb.
Let us first explain the informal idea behind this encoding. In our derivations,

formulae of the form AI are going to appear in left-hand sides of sequents (along
with the code of the configuration), instantiated using Kleene star. For inc, when
the formula Ainc(p,r,q) gets introduced by � L, we replace p with q · r (looking
from bottom to top). This corresponds to changing the state from p to q and
increasing register r.

For jzdec, we use additive connectives, ∧ and ∨. Being in the negative posi-
tion (in the left-hand side of the sequent), ∧ implements choice and ∨ implements
branching (parallel computations). In jzdec, the choice is as follows. If there is
at least one copy of variable r (i.e., the value of register r is not zero), we can
choose (p · r) � q1 which changes the state from p to q1 and decreases r. We
could also choose p � (q0 ∨ zr), for the zero case. This operation continues the
main execution thread by changing to state q0, but also forks a new thread with
a “state” zr. This new thread is designed to check whether r is actually zero.
Since the thread was forked in the middle of the execution, say, after k steps,
it still has to perform (n − k) steps of execution. They get replaced by dummy
instructions, encoded by Nr = zr � zr.

The set of instructions (including “dummies”) is encoded by the formula

E = Na ∧ Nb ∧
∧

I

AI ,

which is going to be copied using Kleene star.
The key feature of our encoding is the right-hand side of the sequent, which

is going to be
D =

(
a∗ · b∗ ·

∨

q∈Q

q
) ∨ (b∗ · za) ∨ (a∗ · zb).

This formula represents constraints on the configuration after performing n steps
of computation. For the main execution thread, it just says that it should reach
a correctly encoded configuration of the form 〈q, a, b〉, q ∈ Q. For zero-checking
thread, with “state” zr, D enforces register r to be zero.

The encoding lemma, for a given finite number of steps, is as follows:

Lemma 1. Minsky machine M can perform n steps of execution starting from
configuration 〈qS , 0, 0〉 if and only if the sequent En, qS � D is derivable in
CommACTω.

This lemma immediately yields the necessary reduction:

Theorem 5. Deterministic Minsky machine M runs forever if and only if the
sequent E∗, qS � D is derivable in CommACTω. Therefore, CommACTω is
Π0

1 -hard.

Indeed, E∗, qS � D is derivable from
(
En, qS � D

)∞
n=0

by ∗L, and the oppo-
site implication is by cut with En � E∗.
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Proof (of Lemma 1). The “only if” part, from computation to derivation, is
easier. We prove the following statement by induction on k: if M can perform
k steps starting from configuration 〈p, a, b〉, then Ek, aa, bb, p � D is derivable.
The base case is k = 0. In this case we derive the necessary sequent aa, bb, p � D
by ∨R (twice) from aa, bb, p � a∗ · b∗ · ∨

q∈Q q. The latter is derived using ∗R,
∨R, and ·R.

For the induction step, consider the first M instruction executed. If it is
inc(p, a, q), we perform the following derivation:

p � p

Ek−1, aa+1, bb, q � D

Ek−1, aa, bb, q · a � D
·L

Ek−1, Ainc(p,a,q), a
a, bb, p � D

� L (Ainc(p,a,q) = p � (q · a))

Ek, aa, bb, p � D
∧L several times

The topmost sequent Ek−1, aa+1, bb, q � D is derivable by inductive hypothesis,
since M can perform k − 1 execution steps starting from the next configuration
〈q, a + 1, b〉. The case of inc(p, b, q) is considered similarly.

For jzdec(p, a, q0, q1), we consider two cases. If a �= 0, then the derivation is
similar to the one for inc:

p � p a � a

p, a � p · a ·R
Ek−1, aa−1, bb, q1 � D

Ek−1, (p · a) � q1, a
a, bb, p � D

� L

Ek−1, Ajzdec(p,a,q0,q1), a
a, bb, p � D

∧L

Ek, aa, bb, p � D
∧L several times

Here Ek−1, aa−1, bb, q1 � D is derivable by the induction hypothesis.
The interesting part is the zero test. Let a = 0 and perform the following

derivation:

p � p

Ek−1, bb, q0 � D Ek−1, bb, za � D

Ek−1, q0 ∨ za, b
b � D

∨L

Ek−1, p � (q0 ∨ za), bb, p � D
� L

Ek−1, Ajzdec(p,a,q0,q1), b
b, p � D

∧L

Ek, bb, p � D
∧L several times

On the left branch, we have Ek−1, bb, q0 � D, which is derivable by the induction
hypothesis: 〈q0, 0, b〉 is the successor for 〈p, 0, b〉 after applying jzdec(p, a, q0, q1).

The sequent on the right branch, Ek−1, bb, za � D, can be derived using ∧L
and ∨R from (za � za)k−1, bb, za � b∗ · za. Indeed, E is a conjunction which
includes Na = za � za, and D is a disjunction which includes b∗ · za. The latter
sequent, (za � za)k−1, bb, za � b∗ · za, is derivable.

The case of jzdec(p, b, q0, q1) is similar.
For the “if” part (from derivation to computation), we are going to perform

an analysis of cut-free derivations and establish the following statements by
induction on the natural parameter k:
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1. if Ek, aa, bb, za � D is derivable, then a = 0;
2. if Ek, aa, bb, zb � D is derivable, then b = 0;
3. if Ek, aa, bb, p � D is derivable, then M can perform k steps of computation

starting from configuration 〈p, a, b〉.
Let us first perform some transformations of derivations. These transforma-

tions are closely related to focusing [1,7] of linear logic derivations. Notice that
sequents in our statements do not include negative occurrences of Kleene star, so
their derivations are finite. The only rules which can be used in cut-free deriva-
tions of the sequents in these statements are: ∧L, ∨L, � L, ·L; ∨R, ·R, ∗R.

We formulate our first claim: if a sequent is derivable using this set of rules,
then this sequent enjoys a (cut-free) derivation in which no right rule (∨R, ·R,
or ∗R) appears below a left rule (∧L, ∨L, � L, ·L).

Indeed, each right rule in this list is exchangeable upwards with each of the
left rules. We show exchanging of ·R and ∨L. In this case,

Π ′, E,Π ′′ � A Π ′, F,Π ′′ � A

Π ′, E ∨ F,Π ′′ � A
∨L

Δ � B

Π ′, E ∨ F,Π ′′,Δ � A · B
·R

transforms into
Π ′, E,Π ′′ � A Δ � B

Π ′, E,Π ′′,Δ � A · B
·R Π ′, F,Π ′′ � A Δ � B

Π ′, F,Π ′′,Δ � A · B
·R

Π ′, E ∨ F,Π ′′,Δ � A · B
∨L

Transformations in possible cases are similar. In order to proceed by induction,
let us consider the following parameter. By an incorrect pair of rule applications
let us denote a pair of applications of a left rule and a right rule, where the
right rule appears below the left one. Now let use consider each path from the
goal sequent to an axiom leaf of the derivation tree, and calculate the number
of incorrect pairs on such a path. Next, take the maximum of these numbers.
Proceed by induction on this parameter: take the path on which this maximum
is achieved, take an incorrect pair in which the right rule appears immediately
below the left one. Perform the necessary transformation. The parameter gets
reduced. Our first claim is justified.

Next, we perform the following disbalancing transformations: if the left
premise of � L were derived using a left rule, then this rule can be moved
downwards. For ∧L and ·L, the transformation is as follows:

Π̃ � A
Π � A Γ,B � C

Γ,Π,A � B � C
� L �

Π̃ � A Γ,B � C

Γ, Π̃,A � B � C
� L

Γ,Π,A � B � C

For ∨L,

Π ′, E,Π ′′ � A Π ′, F,Π ′′ � A

Π ′, E ∨ F,Π ′′ � A
∨L

Γ,B � C

Γ,Π ′, E ∨ F,Π ′′, A � B � C
� L
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gets transformed into

Γ,Π ′, E � A Γ,B � C

Γ,Π ′, E,Π ′′, A � B � C
� L

Γ,Π ′, F � A Γ,B � C

Γ,Π ′, F,Π ′′, A � B � C
� L

Γ,Π ′, E ∨ F,Π ′′, A � B � C
∨L

For another instance of � L, we have

Φ � E Π,F � A

Π,Φ,E � F � A
� L

Γ,B � C

Γ,Π,Φ,E � F,A � B � C
� L

which transforms into

Φ � E

Π,F � A Γ,B � C

Γ,Π,F,A � B � C
� L

Γ,Π,Φ,E � F,A � B � C
� L

Now we are ready to prove our second claim: if our sequent is derivable, it
enjoys a derivation in which each left premise of � L is derived using only right
rules.

Again, let us consider paths from the goal sequent to axiom leaves, and at
each path let us calculate the number of incorrect pairs of rule applications, in
which a left rule is used in a derivation of the left premise of � L. The maximum
of these numbers over all paths is our induction parameter, and it gets reduced
by applying an appropriate transformation.

Let us call a derivation which satisfies our second claim a disbalanced one.
Now let us notice that in our antecedents formulae of the form A � B have

either A = p or A = p · r. In a disbalanced derivation, the left premise of � L
trivializes to an axiom or an axiom-like sequent of the form p, r � p · r.

Finally, applications of ∧L can be moved upwards and applied immediately
below the left rule which introduces one of the conjuncts (claim 3). Rules ∨L
and ·L are invertible, so they can always be applied immediately (as low as
possible), which is denoted by claim 4.

Having said that, let us analyze the derivation of Ek, aa, bb, za � D (state-
ment 1). The lowermost rule applications are a series of ∧L decomposing one
of the E’s. Immediately above, by claim 3, we have to decompose the chosen
conjunct using � L. Thanks to disbalancing, the left premise of � L is an
axiom, and it should be za � za. Thus, the conjunct chosen from E is za � za.
Now the right premise of � L is Ek−1, aa, bb, za � D. Decreasing k to zero, we
show derivability of aa, bb, za � D. Now we have to apply ∨R to decompose D,
and the only way is to choose b∗ · za, getting aa, bb, za � b∗ · za. Since there are
no right occurrences of a, there should be no left ones, that is, a = 0.

Statement 2 is established similarly.
Now let us establish the main statement 3. Again, we decompose one of the

E’s. Now we cannot choose za � za or zb � zb, since there is no za or zb freely
available in the left-hand side. Thus, we choose AI for some instruction I.
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If I = inc(p, r, q), then applying � L (in a disbalanced derivation) replaces
p with q · r. Since ·L is invertible, we apply it immediately and get q, r. This
corresponds exactly to application of inc(p, r, q): the state is verified to be p and
changed to q, register r is increased by 1. In the right premise of � L we now
have Ek−1, and proceed further by induction on k.

If I = jzdec(p, r, q0, q1), we have one more choice to make: (p · r) � q1
or p � (q0 ∨ zr). The first choice is available only if the value of register r is
non-zero, and in this case applying a disbalanced � L does the correct step:
changes p to q and decreases the number of r’s by 1. Now consider the second
option. Let r = a (the b case is similar). Applying � L replaces p with q0 ∨ za.
We apply ∨L immediately (claim 4) and get derivability of the following two
sequents:

Ek−1, aa, bb, q0 � D;

Ek−1, aa, bb, za � D.

Derivability of the second sequent ensures the zero-condition, a = 0, by state-
ment 1. Thus, applying jzdec from 〈p, a, b〉 to 〈q0, a, b〉 (that is, from 〈p, 0, b〉 to
〈q0, 0, b〉) is legal. Using the first sequent, we proceed forward by induction on k.

Finally, if k = 0, then we have nothing to prove: any machine, starting from
any configuration, can perform zero steps (do nothing).

Statement 3 immediately yields the “if” direction in Lemma1. ��

4 Concluding Remarks

In this paper, we have established Π0
1 -completeness of infinitary commutative

action logic, CommACTω, that is, the equational theory of commutative *-
continuous action lattices. This result is a commutative counterpart of results
by Buszkowski and Palka [2,16]. The upper bound is proved in the same way as
Palka’s result. For the lower bound (Π0

1 -hardness), in contrast, we had to use
a different encoding, using Minsky machines. This encoding is more straight-
forward, than the one Buszkowski used, as it directly encodes Minsky infinite
computations as infinitary derivations in CommACTω.

This paper only begins the study of action lattices in the commutative situa-
tion. There are many questions are left for further research, below we formulate
some of them.

1. We have commutative action logic CommACT, a weaker system with induc-
tion (Pratt-style) axioms instead of the ω-rule. Our conjecture is that this
system is Σ0

1 -complete, as its non-commutative counterpart [10,11]. It is also
interesting what subclass of infinite Minsky computations can be simulated
in CommACT. Such computations are likely to include circular (looping)
ones, but maybe some more.

2. The complexity question for CommACTω without additive connectives (∧
and ∨) is open. Notice that additives are crucial for encoding the jzdec
instruction; in [14], there is no jzdec, but there are parallel computations,
also simulated using ∨.
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3. It is an open question whether the same complexity results hold for the variant
of CommACTω with distributivity of ∨ over ∧ added.

4. The complexity of the Horn theory for commutative action lattices or even
commutative Kleene algebras is, to the best of the author’s knowledge,
unknown. Comparing with Kozen’s result for non-commutative Kleene alge-
bras [9], we conjecture Π1

1 -completeness, while the proof should again use
Minsky machines instead of Turing ones.

5. It is also interesting to look at the non-associative, but commutative, ver-
sion of infinitary action logic. In the non-associative case, it is problematic to
define iteration, and it gets replaced with so-called iterative division, that is,
compound connectives of the form A∗ � B and B

�

A∗. The interesting phe-
nomenon here is that the corresponding non-commutative system happens to
be algorithmically decidable, at least with the distributivity axiom added [18].
On the other hand, as shown in [12], in the associative case iterative division
is sufficient for Π0

1 -hardness.
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Abstract. We introduce a multi-agent logic of explicit, implicit belief
and awareness with a semantics using belief bases. The novelty of our
approach is that an agent’s awareness is not a primitive but is directly
computed from the agent’s belief base. We prove soundness and com-
pleteness of the logic relative to the belief base semantics. Furthermore,
we provide a polynomial embedding of the logic of propositional aware-
ness into it.

1 Introduction

The notion of awareness was introduced in the area of epistemic logic by Fagin
& Halpern (F&H) [4] to cope with the problem of logical omniscience [10]. Their
approach is syntactic to the extent that they associate a subset of formulas to
each agent at each state, indicating the formulas the agent is aware of. Following
the idea suggested by Levesque [11], F&H make the distinction between explicit
belief and implicit belief, where explicit belief is defined to be implicit belief plus
awareness.

There is another tradition in the formalization of awareness, initiated by
Modica & Rustichini [15,16] and Heifetz et al. [8,9]. They support a semantic
approach by letting possible worlds be associated with a subset of all proposi-
tional variables being defined. Hence, an agent is aware of a formula if and only
if, every atomic proposition occurring in the formula is defined at every epistem-
ically accessible state for the agent. Such a notion of awareness is often called
propositional awareness in opposition to the notion of general awareness, accord-
ing to which an agent can be “primitively” aware not only of atomic propositions
but also of complex formulas. Halpern [5] proves an equivalence result between
the syntactic approach and the semantic approach to propositional awareness in
a single-agent setting. Moreover, Halpern & Rêgo [6] present an analogous equiv-
alence result for multi-agent awareness structures. van Ditmarsch et al. [3] give
a novel notion called speculative knowledge, which is also built on propositional
awareness.

The concept of explicit belief, which is central in the logic of awareness,
is closely related to the concept of belief base [7,14,17,18]. The latter plays an
important role in the AGM approach to belief revision [1] and, more generally, in
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the area of knowledge representation and reasoning (KR). Recently, in [12,13] we
defined a formal semantics for multi-agent epistemic logic exploiting belief bases
which clearly distinguishes explicit from implicit belief. Specifically, according
to this semantics, an agent explicitly believes that a certain fact α is true if α is
a piece of information included in the agent’s belief base. On the contrary, the
agent implicitly believes that α, if α is derivable from the agent’s belief base.
A logic of explicit and implicit belief, called Logic of Doxastic Attitudes (LDA),
was defined on the top of this semantics.

In this paper, we extend the semantics introduced in [12] and the correspond-
ing logic LDA with propositional awareness. We call LDAA the resulting logic.
The novelty of our approach lies in the fact that the notion of awareness is not
primitive but is directly computed from the notion of belief base. In particular,
for an agent to be aware of a proposition p, p has to be included in the agent’s
vocabulary, that is to say, there should exist a formula in the agent’s belief base
which contains p. From this perspective, we offer a minimalistic logic approach
to explicit, implicit belief and awareness in which only the former concept is
primitive, while the other two concepts are defined from it.

The paper is organized as follows. In Sect. 2, we present the language of our
logic of explicit, implicit belief and awareness. In Sect. 3, we first present the
belief base semantics with respect to which the language is interpreted. Then,
we introduce two alternative semantics which are closer in spirit to the standard
semantics for epistemic logic based on multi-relational Kripke structures. We
show that the three semantics are all equivalent with respect to the language
under consideration. Section 4 is devoted to axiomatic results for our logic, while
in Sect. 5 we explore the connection between our logic and Halpern’s logic of
propositional awareness (LPA) [5], by providing a satisfiability-preserving embed-
ding of the latter into the former. Finally, in Sect. 6 we conclude.

2 Language

This section presents the language of the Logic of Doxastic Attitudes with Aware-
ness (LDAA) to represent explicit beliefs, implicit beliefs, and awareness. It
extends the language in [12] by the awareness modality. Let Atm = {p, q, ...}
be a countably infinite set of atomic propositions and let Agt = {1, ..., n} be
a finite set of agents. The language is given by the two levels in the following
definition.

Definition 1. The language L0(Atm,Agt) is defined as follows:

α ::= p | ¬α |α1 ∧ α2 |�iα | ©iα

where p ranges over Atm and i ranges over Agt. The language LLDAA(Atm,Agt)
extends L0(Atm,Agt) by implicit belief operators and is defined as follows:

ϕ ::= α | ¬ϕ |ϕ1 ∧ ϕ2 |�iϕ | ©iϕ

where i ranges over Agt.
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When it is unambiguous from the context, we write L0 instead of
L0(Atm,Agt) and LLDAA instead of LLDAA(Atm,Agt). The other Boolean con-
nectives ∨, →, ↔, � and ⊥ are defined from ¬ and ∧ in the standard way. The
formula �iα is read “agent i explicitly believes that α is true”. The formula ©iα
is read “agent i is aware of α”. The �i-operator can be iterated, which means
that the language contains expressions for higher-order explicit beliefs, such as
�i�jα, which is read “agent i explicitly believes that agent j explicitly believes
that α is true”. The iteration is possibly a mix of explicit belief and awareness,
such as �i ©jα, which is read “agent i explicitly believes that agent j is aware
of α”.

And the formula �iϕ is read “agent i implicitly believes that ϕ is true”. The
dual operator �i is defined as follows:

�iϕ := ¬�i¬ϕ,

where �iϕ is read “ϕ is consistent with agent i’s explicit beliefs”.
Note that the modality ©i appears at both levels of the language, but the

modality �i only appears at the first level. As a result, we can have awareness
operators in the scope of explicit belief operators, but not implicit belief oper-
ators. Moreover, both explicit belief operator and implicit belief operator are
allowed inside the awareness operator. It is for the reason that, the concept of
propositional awareness allows awareness of any formula that is constituted by
atomic propositions that the agent is aware of.

Since we represent a propositional notion of awareness, i.e., being aware of
a formula is equivalent to being aware of every atomic proposition occurring
in it, we need the following inductive definition to represent the set of atomic
propositions occurring in a formula ϕ, denoted by Atm(ϕ):

– Atm(p) := {p},
– Atm(¬ϕ) := Atm(ϕ),
– Atm(ϕ1 ∧ ϕ2) := Atm(ϕ1) ∪ Atm(ϕ2),
– Atm(Xiϕ) := Atm(ϕ), for X ∈ {�,©,�}.

Let Y ⊆ LLDAA be finite, we define Atm(Y ) :=
⋃

ϕ∈Y Atm(ϕ).

3 Semantics

In this section, we present three families of formal semantics for LLDAA. The
first semantics exploits belief bases. An agent’s set of doxastic alternatives and
awareness set are not primitive but computed from them. The second semantics
is a Kripke-style semantics, in which we require each agent’s set of doxastic
alternatives to be equal to the set of worlds in which his explicit beliefs are true,
and the agent’s awareness set to be equal to the set of of atomic propositions
occurring in his explicit beliefs. The third semantics relaxes these requirements,
so that an agent’s set of doxastic alternatives is included in the set of worlds
in which the agent’s explicit beliefs are true, and the set of atomic propositions
occurring in an agent’s explicit beliefs is a subset of the agent’s awareness set.
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3.1 Multi-agent Belief-Awareness Base Semantics

Let us start with the definition of belief-awareness base.

Definition 2. A multi-agent belief-awareness base is a tuple BA = (B1, ..., Bn,
A1, ..., An, V ) where,

– Bi ⊆ L0 is agent i’s belief base for any i ∈ Agt,
– Ai = Atm(Bi) is agent i’s awareness set for any i ∈ Agt,
– V ⊆ Atm is the actual state.

The set of all multi-agent belief-awareness bases is denoted by BA. With the
definition of multi-agent belief-awareness bases, we have the following interpre-
tations for L0.

Definition 3. For any BA = (B1, ..., Bn, A1, ..., An, V ) ∈ BA:

– BA |= p iff p ∈ V ,
– BA |= ¬α iff BA |= α,
– BA |= α1 ∧ α2 iff BA |= α1 and BA |= α2,
– BA |= �iα iff α ∈ Bi,
– BA |= ©iα iff Atm(α) ⊆ Ai.1

By the interpretation, our awareness is propositional, i.e., being aware of a
formula is equivalent to being aware of every atomic proposition occurring in
the formula. Such a notion of awareness is different with the notion of general
awareness according to which an agent can be aware of p∧q without being aware
of p ∨ q.

The following definition introduces the concept of multi-agent belief-
awareness model.

Definition 4. A multi-agent belief-awareness model (MABA) is a pair (BA,
Cxt), where BA ∈ BA and Cxt ⊆ BA.

Cxt is the agents’ context or common ground [19]. It corresponds to the body
of information that the agents share and that they use to make inferences from
their explicit beliefs. Following [12], in the following definition we compute the
agents’ doxastically accessibility relations from their belief bases.

Definition 5. For any i ∈ Agt, Ri is the binary relation on BA such that for
any BA = (B1, ..., Bn, A1, ..., An, V ), BA′ = (B′

1, ..., B
′
n, A′

1, ..., A
′
n, V ′) ∈ BA,

(BA,BA′) ∈ Ri if and only if ∀α ∈ Bi , BA′ |= α.

1 Note that the awareness component of Definition 2 seems unnecessary, as we could
interpret it equivalenty by postulating “BA |= ©iα iff Atm(α) ⊆ Atm(Bi)”. We
keep it for the reason that it has counterparts in NDAM semantics and quasi-NDAM
semantics hereinafter. In quasi-NDAM semantics, an agent’s awareness set is sup-
posed to be a superset of the set of atomic propositions occurring in the agent’s
belief set.
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With the accessibility relation defined, we have the following definition of
interpretations for formulas in LLDAA. The boolean case is defined in the usual
way and omitted.

Definition 6. Let (BA,Cxt) be a MABA with BA = (B1, ..., Bn, A1, ..., An, V ).
Then,

– (BA,Cxt) |= α iff BA |= α,
– (BA,Cxt) |= �iϕ iff ∀BA′ ∈ Cxt, if (BA,BA′) ∈ Ri then (BA′, Cxt) |= ϕ,
– (BA,Cxt) |= ©iϕ iff Atm(ϕ) ⊆ Ai.

The following two definitions specify two interesting properties of MABAs.

Definition 7. The MABA (BA,Cxt) satisfies global consistency (GC) if and
only if, for any i ∈ Agt and for any BA′ ∈ ({BA}∪Cxt), there exists BA′′ ∈ Cxt
such that (BA′, BA′′) ∈ Ri.

Definition 8. The MABA (BA,Cxt) satisfies belief correctness (BC) if and
only if BA ∈ Cxt and, for any i ∈ Agt and for any BA′ ∈ Cxt, (BA′, BA′) ∈ Ri.

For X ⊆ {GC,BC}, MABAX is the class of MABAs satisfying all the con-
ditions in X. MABA∅ is the class of all MABAs, and we write MABA instead
of MABA∅. It is easy to see that MABA{GC,BC} = MABA{BC}.

Let ϕ ∈ LLDAA, we say that ϕ is valid for the class MABAX if and only
if, for every (BA,Cxt) ∈ MABAX we have (BA,Cxt) |= ϕ. We say that ϕ
is satisfiable of the class MABAX if and only if ¬ϕ is not valid for the class
MABAX

3.2 Notional Model Semantics

In this section we introduce an alternative Kripke-style semantics for the lan-
guage LLDAA based on notional doxastic-awareness model which extend notional
doxastic models defined in [12,13] by awareness functions.

Definition 9. A notional doxastic-awareness model (NDAM) is a tuple M =
(W,D,A,N,V) where,

– W is a non-empty set of worlds,
– D: Agt × W −→ 2L0 is a doxastic function,
– A: Agt × W −→ 2Atm is an awareness function,
– N: Agt × W −→ 2W is a notional function,
– V: Atm −→ 2W is a valuation function.

and such that, given the following inductive definition of the semantic interpre-
tation of formulas in LLDAA:

– (M, w) |= p iff w ∈ V(p),
– (M, w) |= ¬ϕ iff (M, w) |= ϕ,
– (M, w) |= ϕ ∧ ψ iff (M, w) |= ϕ and (M, w) |= ψ,
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– (M, w) |= �iα iff α ∈ D(i, w),
– (M, w) |= �iϕ iff ∀u ∈ N(i, w), (M, u) |= ϕ,
– (M, w) |= ©iϕ iff Atm(ϕ) ⊆ A(i, w).

it satisfies the following conditions (C1) and (C2), for all i ∈ Agt and for all
w ∈ W:

(C1) A(i, w) = Atm(D(i, w)),
(C2) N(i, w) =

⋂
α∈D(i,w) ||α||M , where ||α||M = {u ∈ W | (M, u) |= α}.

The following definitions specify global consistency (GC) and belief correct-
ness (BC) for notional models.

Definition 10. The NDAM M = (W,D,A,N,V) satisfies global consistency if
and only if, for any i ∈ Agt and for any w ∈ W, N(i, w) = ∅.

Definition 11. The NDAM M = (W,D,A,N,V) satisfies belief correctness if
and only if, for any i ∈ Agt and for any w ∈ W, w ∈ N(i, w).

For any X ⊆ {GC,BC}, NDAMX is the class of NDAMs satisfying the con-
ditions in X. NDAM∅ is the class of all NDAMs, and we write NDAM instead
of NDAM∅. Analogously to MABAs, we have NDAM{GC,BC} = NDAM{BC}.
A NDAM M = (W,D,A,N,V) is finite if and only if W, D(i, w), and V←(w) are
finite sets for any i ∈ Agt and any w ∈ W, where V←(w) = {p ∈ Atm |w ∈ V(p)}.
As A(i, w) = Atm(D(i, w)), it follows that, if a NDAM M is finite, A(i, w) is
also a finite set for any i ∈ Agt and any w ∈ W. We use finite-NDAMX to
denote the class of finite NDAMs satisfying the conditions in X.

Let ϕ ∈ LLDAA, we say that ϕ is valid for the class NDAMX if and only
if, for every M = (W,D,A,N,V) ∈ NDAMX and for every w ∈ W, we have
(M, w) |= ϕ. We say that ϕ is satisfiable for the class NDAMX if and only if
¬ϕ is not valid for the class NDAMX.

3.3 Quasi-model Semantics

This section provides an alternative semantics for the language LLDAA based on
a more general class of models, called quasi-notional doxastic-awareness models
(quasi-NDAMs) in which the restrictions on the notional and awareness function
are weakened.

Definition 12. A quasi-notional doxastic-awareness model (quasi-NDAM) is a
tuple M = (W,D,A,N,V) where W,D,A,N and V are as in Definition 9 except
that Condition C1 and C2 are replaced by the following weaker conditions, for
all i ∈ Agt and for all w ∈ W:

(C1*) A(i, w) ⊇ Atm(D(i, w)),
(C2*) N(i, w) ⊆

⋂
α∈D(i,w) ||α||M .
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As for NDAMs, for any X ⊆ {GC,BC}, QNDAMX is the class of quasi-
NDAMs satisfying the conditions in X. QNDAM∅ is the class of all quasi-
NDAMs, and we write QNDAM instead of QNDAM∅. As for MABAs and
NDAMs, we have QNDAM{GC,BC} = QNDAM{BC}. A quasi-NDAM M =
(W,D,A,N,V) is finite if W, D(i, w), A(i, w) and V←(w) are finite sets for any
i ∈ Agt and any w ∈ W. We use finite-QNDAMX to denote the class of
finite quasi-NDAMs satisfying the conditions in X. Validity and satisfiability
of formulas for a class QNDAMX are defined in the usual way.

3.4 Equivalence Results

In this section, we present equivalence results between the five different seman-
tics for LLDAA we presented above (i.e., MABA, NDAM, finite-NDAM,
QNDAM, and finite-QNDAM).

Equivalence Between Quasi-NDAMs and Finite Quasi-NDAMs
First of all, we consider the relationship between QNDAM and finite-
QNDAM. Let us define a filtrated model for the proof.

Let M = (W,D,A,N,V) be a (possibly infinite) quasi-NDAM and let Σ ⊆
LLDAA be an arbitrary finite set of formulas which is closed under subformulas.
The equivalence relation ≡Σ on W is defined as follows:

≡Σ = {(w, v) ∈ W × W : ∀ϕ ∈ Σ, (M, w) |= ϕ iff (M, v) |= ϕ}.

Let [w]Σ be the equivalence class of the world w generated by the relation
≡Σ . The model MΣ = (WΣ ,DΣ ,AΣ ,NΣ ,VΣ) is the filtration of M under Σ
where,

– WΣ = {[w]Σ |w ∈ W},
– for any i ∈ Agt and for any [w]Σ ∈ WΣ , DΣ(i, [w]Σ) = (

⋂

w∈[w]Σ

D(i, w)) ∩ Σ,

– for any i ∈ Agt and for any [w]Σ ∈ WΣ , AΣ(i, [w]Σ) = (
⋂

w∈[w]Σ

A(i, w)) ∩ Σ,

– for any i ∈ Agt and for any [w]Σ ∈ WΣ , NΣ(i, [w]Σ) = {[u]Σ ∈ WΣ | ∃w ∈
[w]Σ ,∃u ∈ [u]Σ such that u ∈ N(i, w)},

– for any p ∈ Atm, VΣ(p) = {[w]Σ | (M, w) |= p} if p ∈ Atm(Σ), VΣ(p) = ∅
otherwise.

We have the following filtration lemma showing that the filtrated model is
semantically equivalent with the original model with respect to Σ.

Lemma 1. Let ϕ ∈ Σ and let w ∈ W. Then, (M, w) |= ϕ if and only if
(MΣ , [w]Σ) |= ϕ.

Proof. The proof is by induction on the structure of ϕ. For the cases other than
ϕ = ©iψ, the proof is identical with that of Lemma 4 in the appendix of [12].
So we only need to prove the case when ϕ = ©iψ.
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(⇒) Suppose (M, w) |= ©iψ with ©iψ ∈ Σ. Thus, Atm(ψ) ⊆ A(i, w).
Hence, by the definition of AΣ(i, [w]Σ) and the fact that Σ is closed under
subformulas, we have Atm(ψ) ⊆ AΣ(i, [w]Σ). It follows that (MΣ , [w]Σ) |= ©iψ.

(⇐) For the other direction, suppose (MΣ , [w]Σ) |= ©iψ with ©iψ ∈ Σ.
Thus, Atm(ψ) ⊆ AΣ(i, [w]Σ). Hence, by the definition of AΣ(i, [w]Σ), Atm(ψ) ⊆
A(i, w). ��

The following proposition highlights that MΣ is finite and preserves the
properties of M.

Proposition 1. MΣ = (WΣ ,DΣ ,AΣ ,NΣ ,VΣ) is a finite quasi-NDAM. More-
over, for any X ∈ {GC,BC}, if M satisfies X, then MΣ also satisfies it.

Proof. By the proof of Proposition 12 in the appendix of [12], we have that,
MΣ is finite and satisfies Condition (C2*) in Definition 12, and that, for any X ∈
{GC,BC}, if M satisfies X, then MΣ also satisfies it. Here, we only need to prove
that M satisfies Condition (C1*) in Definition 12. Suppose ϕ ∈ DΣ(i, [w]Σ), we
need to prove that Atm(ϕ) ⊆ AΣ(i, [w]Σ). By the definition of DΣ(i, [w]Σ), we
have ϕ ∈ D(i, w). By Condition (C1*), it follows that, Atm(ϕ) ⊆ A(i, w). By
the definition of AΣ(i, [w]Σ) and the fact that Σ is closed under subformulas, we
have Atm(ϕ) ⊆ AΣ(i, [w]Σ). As a result, AΣ(i, [w]Σ) ⊇ Atm(ϕ ∈ DΣ(i, [w]Σ)).��

The following lemma is a straighforward consequence of Lemma 1 and Propo-
sition 1.

Lemma 2. Let X ∈ {GC,BC} and ϕ ∈ LLDAA. If ϕ is satisfiable for the class
QNDAMX then ϕ is satisfiable for the class finite-QNDAMX.

Equivalence Between Finite NDAMs and Finite Quasi-NDAMs
Our next result concerns the equivalence between finite-NDAM and finite-
QNDAM.

Lemma 3. Let X ∈ {GC,BC} and ϕ ∈ LLDAA. If ϕ is satisfiable for the class
finite-QNDAMX, then ϕ is satisfiable for the class finite-NDAMX.

Proof. We are going to build a finite NDAM from a finite quasi-NDAM without
changing the satisfiability of ϕ. To accomplish this goal, two things are essential
in the construction. Firstly, we enlarge each agent’s belief base with an identifier
proposition to make his set of doxastic alternatives smaller and coincide with his
set of notional worlds. Secondly, we combine the identifier with some tautologies
by conjunctions, so that the set of atomic propositions occurring in his belief
base is equal to his awareness set.

Let M = (W,D,A,N,V) be a finite quasi-NDAM that satisfies ϕ, i.e., there
exists w ∈ W such that (M, w) |= ϕ. We define the set of all atomic propositions
occurring in some belief base of some agent at some world in M as follows:

T (M) =
⋃

w∈W,i∈Agt

Atm(D(i, w)) ∪
⋃

w∈W,i∈Agt

A(i, w).
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Since M is finite, T (M) is also finite.
We have the following injective function which assigns an identifier to each

agent and each world in W.

f : Agt × W −→ Atm\(T (M) ∪ Atm(ϕ)).

As Atm is infinite while W, T (M) and Atm(ϕ) are finite, such an injection
exists.

We define a new model M′ = (W′,D′,A′,N′,V′) with W′ = W, N′ = N and
where D′, V′ and A′ are defined as follows:

– A′(i, w) = A(i, w) ∪ {f(i, w)} for every i ∈ Agt and for every w ∈ W,
– D′(i, w) = D(i, w)∪{f(i, w)∧(

∧
p∈A(i,w)\Atm(D(i,w))(p∨¬p))} for every i ∈ Agt

and for every w ∈ W,
– for every p ∈ Atm,
V′(p) = V(p) if p ∈ T (M) ∪ Atm(ϕ),
V′(p) = N(i, w) if p = f(i, w),
V′(p) = ∅ otherwise.

It is easy to verify that M′ satisfies Condition (C1) and (C2) in Definition 9.
Thus, M′ is a finite NDAM.

The rest of the proof consists in checking that, for every X ∈ {GC,BC},
if M satisfies X then M′ also satisfies X, which is straightforward, and that,
(M, w) |= ϕ iff (M′, w) |= ϕ. We prove the latter by induction on the structure
of ϕ.

The case ϕ = p is immediate from the definition of V′. The boolean cases are
straightforward.

Let us prove the case ϕ = �iα.
(⇒) Suppose (M, w) |= �iα. Then, we have α ∈ D(i, w). Hence, by the

definition of D′, α ∈ D′(i, w). Thus, (M′, w) |= �iα.
(⇐) Suppose (M′, w) |= �iα. Then, we have α ∈ D′(i, w). Since f(i, w) ∈

Atm(�iα), by the definition of D′, we have that,

α = f(i, w) ∧ (
∧

p∈A(i,w)\Atm(D(i,w))

(p ∨ ¬p))

Thus, α ∈ D(i, w) and, consequently, (M, w) |= �iα.
Then let us prove the case ϕi = ©iψ.
(⇒) Suppose (M, w) |= ©iψ. Then, we have Atm(ψ) ⊆ A(i, w). Hence, by

the definition of A′, Atm(ψ) ⊆ A′(i, w). Thus, (M′, w) |= ©iψ.
(⇐) Suppose (M′, w) |= ©iψ. Then, we have Atm(ψ) ⊆ A′(i, w). The defi-

nition of A′ ensures that f(i, w) ∈ Atm(ψ). Thus, Atm(ψ) ⊆ A(i, w) and, con-
sequently, (M, w) |= ©iψ.

At last, let us prove the case ϕ = �iψ. (M, w) |= �iψ means that (M, u) |= ψ
for all u ∈ N(i, w), which is equivalent to (M′, u) |= ψ for all u ∈ N′(i, w) by
the induction hypothesis and the fact that N′(i, w) = N(i, w). The latter means
that (M′, w) |= �iψ.
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Now we have that (M, w) |= ϕ iff (M′, w) |= ϕ. Then, if M satisfies ϕ, M′

satisfies ϕ as well. ��

Equivalence Between MABAs and NDAMs
The following lemma concerns the equivalence between MABA and NDAM
(Fig. 1).

Lemma 4. Let ϕ ∈ LLDAA and X ∈ {GC,BC}. Then, ϕ is satisfiable for the
class MABAX if and only if ϕ is satisfiable for the class NDAMX.

Proof. The proof is almost identical to that of Lemma 7 in the appendix of [12].
We leave it to the reader. ��

Fig. 1. Relations between semantics for the language LLDAA. An arrow means that
satisfiability relative to the first class of structures implies satisfiability relative to the
second class of structures. Full arrows correspond to the results stated in Lemmas 2, 3
and 4. Dotted arrows denote relations that follow straightforwardly given the inclusion
between classes of structures.

Theorem 1. Let ϕ ∈ LLDAA and X ⊆ {GC,BC}. Then, the following five state-
ments are equivalent:

– ϕ is satisfiable for the class MABAX,
– ϕ is satisfiable for the class NDAMX,
– ϕ is satisfiable for the class QNDAMX,
– ϕ is satisfiable for the class finite-QNDAMX,
– ϕ is satisfiable for the class finite-NDAMX.

Proof. The theorem is a direct consequence of Lemmas 2, 3 and 4. ��

4 Axiomatization

In this section, we define some variants of the LDAA logics and prove their
soundness and completeness for their corresponding model classes.

We define the base logic LDAA to be the extension of classical propositional
logic given by the following axioms and rule of inference:

K�. (�iϕ ∧ �i(ϕ → ψ)) → �iψ
Int�,�. �iα → �iα
Int�,©. �iα → ©iα
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AGPP. ©iϕ ↔
∧

p∈Atm(ϕ) ©ip
Nec�. From ϕ infer �iϕ

For X ⊆ {D�,T�}, let LDAAX be the extension of logic LDAA by every axiom
in X, where:

D�. ¬(�iϕ ∧ �i¬ϕ)
T�. �iϕ → ϕ

We first prove completeness relative to the quasi-notional model semantics
by using a canonical model argument. As usual, we have the following property
for maximally consistent sets (MCSs).

Proposition 2. Let Γ be a MCS for LDAAX. Then:

– if ϕ,ϕ → ψ ∈ Γ then ψ ∈ Γ ,
– ϕ ∈ Γ or ¬ϕ ∈ Γ ,
– ϕ ∨ ψ ∈ Γ iff ϕ ∈ Γ or ψ ∈ Γ .

The following is the Lindenbaum’s lemma for our logics. The proof is stan-
dard, so we omit it.

Lemma 5. Let Γ be a consistent set of formulas for LDAAX, then there exists
a MCS Γ ′ for LDAAX such that Γ ⊆ Γ ′.

To prove completeness with respect to the class QNDAMX , we construct a
canonical model as follows.

Definition 13. Let X ⊆ {D�,T�}. Then, the canonical model for LDAAX is
the tuple Mc = (Wc,Dc,Ac,Nc,Vc) such that:

– Wc is the set of maximally consistent sets (MCSs) for LDAAX,
– ∀w ∈ Wc, ∀i ∈ Agt, and ∀α ∈ L0, α ∈ Dc(w, i) iff �iα ∈ w,
– ∀w ∈ Wc, ∀i ∈ Agt, and ∀p ∈ Atm, p ∈ Ac(w, i) iff ©ip ∈ w,
– ∀w, u ∈ Wc and ∀i ∈ Agt, u ∈ Nc(i, w) iff ∀ϕ ∈ LLDAA, if �iϕ ∈ w then

ϕ ∈ u,
– ∀w ∈ Wc and ∀p ∈ Atm, w ∈ Vc(p) iff p ∈ w.

The following existence lemma is necessary for the proof of completeness. We
omit its proof since it is completely standard.

Lemma 6. Let ϕ ∈ LLDAA and let w ∈ Wc. Then, if �iϕ ∈ w then there exists
u ∈ Nc(i, w) such that ϕ ∈ u.

The following is the truth lemma for our logic.

Lemma 7. Let ϕ ∈ LLDAA and let w ∈ Wc. Then, (Mc, w) |= ϕ iff ϕ ∈ w.

Proof. The proof is by induction on the structure of the formula ϕ. For the cases
that ϕ is atomic, Boolean, or of the form �iψ, the proof is standard by means
of Proposition 2 and Lemma 6. The proof for the case ϕ = �iα goes as follows:
�iα ∈ w iff α ∈ Dc(i, w) iff (Mc, w) |= �iα.

For the case ϕ = ©iψ, by the axiom AGPP, ©iψ ∈ w iff ∀p ∈ Atm(ψ),
©ip ∈ w. By the definition of the canonical model, the latter is equivalent to
that, ∀p ∈ Atm(ψ), p ∈ Ac(w, i). The latter is equivalent to Atm(ψ) ⊆ Ac(w, i),
which means (Mc, w) |= ©iψ by our semantics. ��



Grounding Awareness on Belief Bases 181

We have to show that the canonical model satisfies the corresponding seman-
tic properties if each axiom in X ⊆ {D�,T�} is valid in the model. Let us define
the following correspondence function between axioms and semantic properties:

– cf(D�) = GC
– cf(T�) = BC

Proposition 3. Let X ⊆ {D�,T�}. If Mc is the canonical model for LDAAX,
then it belongs to the class QNDAM{cf(x) | x∈X}.

Proof. Firstly, we need to prove that Mc satisfies Condition (C1*) and (C2*) in
Definition 12. For Condition (C1*), we have to prove that if α ∈ Dc(i, w) then
Atm(α) ⊆ Ac(i, w). Suppose α ∈ Dc(i, w). Thus, �iα ∈ w. Hence, by the axiom
Int�,©, ©iα ∈ w. By the axiom AGPP, it follows that, ∀p ∈ Atm(α), ©ip ∈
w. Then, by the definition of Mc, ∀p ∈ Atm(α), p ∈ Ac(i, w), which means
Atm(α) ⊆ Ac(i, w). For Condition (C2*), we have to prove that if α ∈ Dc(i, w)
then Nc(i, w) ⊆ ||α||Mc . Suppose α ∈ Dc(i, w). Thus, �iα ∈ w. Hence, by the
axiom Int�,�, �iα ∈ w. By the definition of Mc, if follows that, ∀u ∈ Nc(i, w),
α ∈ u. Thus, by Lemma 7, we have that, ∀u ∈ Nc(i, w), (Mc, u) |= α. The latter
means that Nc(i, w) ⊆ ||α||Mc .

It is easy to verify that Mc has the corresponding properties in {cf(x) |x ∈
X} using the standard proof. ��

By Lemma 7 and Proposition 3, we are able to prove the following soundness
and completeness theorem. Proving soundness is just a routine exercise.

Theorem 2. Let X ⊆ {D�,T�}. Then, the logic LDAAX is sound and complete
for the class QNDAM{cf(x) | x∈X}.

The following is a corollary of Theorem 1 and Theorem 2.

Corollary 1. Let X ⊆ {D�,T�}. Then,

– LDAAX is sound and complete for the class NDAM{cf(x) | x∈X}, and
– LDAAX is sound and complete for the class MABA{cf(x) | x∈X}.

5 Relationship with Logic of Propositional Awareness

In this section, we build a connection between LDAA and the logic of propo-
sitional awareness (LPA), where the latter, first introduced in [5], is a special
case of the logic of general awareness (LGA) by Fagin & Halpern [4]. Specifically,
we provide a polynomial, satisfiability preserving translation of LPA into LDAA.
The language of LPA, denoted by LLPA, is defined by the following grammar:

ϕ ::= p | ¬ϕ |ϕ1 ∧ ϕ2 |Biϕ |Aiϕ |Xiϕ

where p ranges over Atm and i ranges over Agt. At the semantics level, the logic
of propositional awareness exploits awareness structures in which the awareness
function is assumed to be propositional.
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Definition 14. A propositional awareness model (PAM) is a tuple M =
(S,R, ρ, π) where:

– S is a non-empty set of states,
– R : Agt × S → 2S is a doxastic accessibility function,
– ρ : Agt × S → 2Atm is a propositional awareness function,
– π : Atm → 2S is a valuation function.

The class of propositional awareness models is denoted by PAM.

We have the following semantic interpretation of formulas in LLPA relative to
pointed models.

Definition 15. Given a PAM M and state s in M, formulas in LLPA are inter-
preted relative to (M, s) as follows:

– (M, s) |= p iff s ∈ π(p),
– (M, s) |= ¬ϕ iff (M, s) |= ϕ,
– (M, s) |= ϕ ∧ ψ iff (M, s) |= ϕ and (M, s) |= ψ,
– (M, s) |= Biϕ iff ∀t ∈ R(i, s), (M, t) |= ϕ,
– (M, s) |= Aiϕ iff Atm(ϕ) ⊆ ρ(i, s),
– (M, s) |= Xiϕ iff (M, s) |= Biϕ and (M, s) |= Aiϕ.

We translate formulas of LLPA into formulas of LLDAA via the following trans-
lation function tr : LLPA −→ LLDAA which is defined as follows:

– tr(p) = p for p ∈ Atm
– tr(¬ϕ) = ¬tr(ϕ)
– tr(ϕ1 ∧ ϕ2) = tr(ϕ1) ∧ tr(ϕ2)
– tr(Aiϕ) = ©itr(ϕ)
– tr(Biϕ) = �itr(ϕ)
– tr(Xiϕ) = ©itr(ϕ) ∧ �itr(ϕ)

The interesting aspect of the previous translation is that the LPA notion of
explicit belief is mapped into the combination of implicit belief plus awareness
in our logic LDAA, and not directly into the LDAA notion of explicit belief. This
highlights that the two notions of explicit belief do not capture the same type
of epistemic attitude. While the LDAA notion represents an agent’s actual belief
which is active and accessible in his working memory (we assume an agent’s
belief base to be a rough approximation of his working memory), the LPA notion
is aimed at capturing the agent’s beliefs that are built from his vocabulary and
therefore understandable by him.2

As the following theorem highlights, the translation is satisfiability
preserving.

2 Note that if we defined the translation sending explicit beliefs of LPA into explicit
beliefs of LDAA, satisfiability would be preserved only in the direction from LDAA
to LPA. For the other direction, a formula of the form XiBiϕ in LLPA cannot be
translated into LLDAA with this alternative translation.
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Theorem 3. Let ϕ ∈ LLPA. Then, ϕ is satisfiable for the class PAM if and
only if tr(ϕ) is satisfiable for the class NDAM.

Proof. We first prove a weaker result of the left-to-right direction, i.e., if ϕ is
satisfiable for the class PAM, then tr(ϕ) is satisfiable for the class QNDAM.
Let M = (S,R, ρ, π) be a PAM and let s ∈ S such that (M, s) |= ϕ. We build
the corresponding M′ = (W,D,A,N,V) as follows:

– W = S,
– ∀i ∈ Agt and ∀s ∈ S, D(i, s) = {p ∨ ¬p | (M, s) |= Aip},
– ∀i ∈ Agt and ∀s ∈ S, A(i, s) = ρ(i, s),
– ∀i ∈ Agt and ∀s ∈ S, N(i, s) = R(i, s),
– ∀p ∈ Atm, V(p) = π(p).

We prove that M′ is a quasi-NDAM by showing that it satisfies Condition
(C1*) and (C2*) in Definition 12.

For Condition (C1*), by the semantics of PAM and the definitions of D(i, s)
and A(i, s), it is easy to show that, Atm(D(i, s)) = A(i, s), which implies that,
Atm(D(i, s)) ⊆ A(i, s).

For Condition (C2*), by the definition of D(i, s), there are only tautologies in
it. So we have that

⋂
tr(ϕ)∈D(i,w) ||tr(ϕ)||M = W. Then, clearly, Condition (C2*)

is satisfied.
It is easy to verify that, for every x ∈ {GC,BC}, if M satisfies x then M′

satisfies it as well.
By induction on the structure of ϕ, we prove that, ∀s ∈ S, (M, s) |= ϕ iff

(M′, s) |= tr(ϕ).
For the case ϕ = p and the boolean cases ϕ = ¬ψ and ϕ = ψ1 ∧ ψ2, it is

straightforward.
Now we consider the case ϕ = Aiψ. Suppose (M, s) |= Aiψ. By the semantics

of PAM, it is equivalent to Atm(ψ) ⊆ ρ(i, s). By the definition of A(i, s) and the
function tr, the latter is equivalent to Atm(tr(ψ)) ⊆ A(i, s). And in turn the
latter means (M′, s) |= ©itr(ψ). Then, by the definition of the function tr, the
latter is equivalent to (M′, s) |= tr(Aiψ).

Let us consider the case ϕ = Biψ. Suppose (M, s) |= Biψ. By the induction
hypothesis, we have ||ψ||M = ||tr(ψ)||M′ . (M, s) |= Biψ means that R(i, s) ⊆
||ψ||M. By the definition of N(i, s) and the fact that ||ψ||M = ||tr(ψ)||M′ , the
latter it equivalent to N(i, s) ⊆ ||tr(ψ)||M′ , which is equivalent to (M′, s) |=
�itr(ψ). The latter means (M′, s) |= tr(Biψ) by the definition of the function
tr.

Finally, let us consider the case ϕ = Xiψ. Suppose (M, s) |= Xiψ. Given
the fact that Xiψ is equivalent to Biψ ∧ Aiψ, by the previous cases, it means
that, (M′, s) |= �itr(ψ) ∧ ©itr(ψ). By the function tr, the latter is equivalent
to (M′, s) |= trXiψ.

Thus, we conclude that (M, s) |= ϕ iff (M′, s) |= tr(ϕ) for all s ∈ S. Then
we have that, if ϕ is satisfiable for the class PAM, then tr(ϕ) is satisfiable for
the class QNDAM. By Theorem 1, it follows that, if ϕ is satisfiable for the class
PAM, then tr(ϕ) is satisfiable for the class NDAM.



184 E. Lorini and P. Song

Then we prove the right-to-left direction. Let M = (W,D,A,N,V) be a
NDAM. We build the model M′ = (S,R, ρ, π) as follows:

– S = W,
– ∀i ∈ Agt and ∀w ∈ W, R(i, w) = N(i, w),
– ∀i ∈ Agt and ∀w ∈ W, ρ(i, w) = A(i, w),
– ∀p ∈ Atm, π(p) = V(p).

It is easy to show that M′ is a PAM.
The next step is to prove that for all w ∈ W, (M, w) |= tr(ϕ) iff (M′, w) |= ϕ.
The case ϕ = p and the boolean cases are straightforward.
Let us consider the case ϕ = Aiψ. Suppose (M, w) |= tr(Aiψ). By the

semantics of NDAM and the function tr, it is equivalent to Atm(ψ) ⊆ A(i, w).
By the definition of ρ(i, w), the latter is equivalent to Atm(ψ) ⊆ ρ(i, w). Then
by the semantics of PAM, the latter is equivalent to (M′, w) |= Aiψ.

Let us consider the case ϕ = Biψ. Suppose (M, w) |= tr(Biψ). By the induc-
tion hypothesis, we have ||ψ||M′ = ||tr(ψ)||M. By the function tr, (M, w) |=
tr(Biψ) means (M, w) |= �itr(ψ). By the semantics of NDAM, the latter is
equivalent to N(i, w) ⊆ ||tr(ψ)||M. By the definition of R(i, w) and the fact
||ψ||M′ = ||tr(ψ)||M, the latter is equivalent to R(i, w) ⊆ ||ψ||M′ , which is
equivalent to (M′, w) |= Biψ

Finally, let us consider the case ϕ = Xiψ. Suppose (M, w) |= tr(Xiψ). Given
the fact that Xiψ is equivalent to Biψ∧Aiψ, by the previous cases, it is equivalent
to (M′, w) |= Biψ ∧ Aiψ, which in turn is equivalent to (M′, w) |= Xiψ.

Thus, we conclude that (M, w) |= tr(ϕ) iff (M′, w) |= ϕ for all w ∈ W. Then
we have that, if tr(ϕ) is satisfiable for the class NDAM, then ϕ is satisfiable
for the class PAM. ��

Theorem 3 shows that the translation of any satisfiable LPA-formula is sat-
isfiable relative to NDAM models. This highlights that LLDAA is at least as
expressive as the translated version LLPA with repect to the class NDAM. We
do not know whether the other direction works as well. What we can affirm is
that the formula ¬�i(p∧p)∧�ip∧©ip is satisfiable in the class NDAM, but it
cannot be satisfied in the class PAM, if we translated �i, �i, and ©i into Xi,
Bi, and Ai, respectively. Again this shows that the LPA notion of explicit belief
and the LDAA notion of explicit belief capture epistemic attitudes of different
nature.

6 Conclusion

We have provided a novel investigation of propositional awareness and of its
relationship with explicit and implicit belief. In our approach, explicit belief
is the only primitive concept, and awareness and implicit belief are grounded
on it. Specifically, an agent’s awareness set and set of doxastic alternatives are
directly computed from the agent’s belief base. The main results of the paper
are an axiomatics for our logic of awareness, explicit and implicit belief as well
as a polynomial embedding of Halpern’s logic of propositional awareness into
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our logic. Future work will be devoted to explore more properties of awareness
typically discussed in the literature, such as beliefs of awareness and unawareness
(also known as awareness/unawareness introspection), and the dynamic aspects
of awareness and beliefs. We expect our approach to offer a new foundation
for the dynamics of awareness, alternative to [2], in which awareness change is
anchored in belief base change.
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Abstract. The discussion about how to put together Gentzen’s systems
for classical and intuitionistic logic in a single unified system is back in
fashion. Indeed, recently Prawitz and others have been discussing the so
called ecumenical Systems, where connectives from these logics can co-
exist in peace. In Prawitz’ system, the classical logician and the intuition-
istic logician would share the universal quantifier, conjunction, negation,
and the constant for the absurd, but they would each have their own
existential quantifier, disjunction, and implication, with different mean-
ings. Prawitz’ main idea is that these different meanings are given by a
semantical framework that can be accepted by both parties. In this work
we extend Prawitz’ ecumenical idea to alethic K-modalities.

1 Introduction

In [17] Dag Prawitz proposed a natural deduction system for what was later
called ecumenical logic (EL), where classical and intuitionistic logic could coex-
ist in peace. In this system, the classical logician and the intuitionistic logician
would share the universal quantifier, conjunction, negation, and the constant for
the absurd (the neutral connectives), but they would each have their own exis-
tential quantifier, disjunction, and implication, with different meanings. Prawitz’
main idea is that these different meanings are given by a semantical framework
that can be accepted by both parties. While proof-theoretical aspects were also
considered, his work was more focused on investigating the philosophical signif-
icance of the fact that classical logic can be translated into intuitionistic logic.

Pursuing the idea of having a better understanding of ecumenical systems
under the proof-theoretical point of view, in [15] an ecumenical sequent calculus
(LEci) was proposed. This enabled not only the proof of some important proof
theoretical properties (such as cut-elimination and invertibility of rules), but it
also provided a better understanding of the ecumenical nature of consequence:
it is intrinsically intuitionistic, being classical only in the presence of classical
succedents.
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Ecumenism in logic is interesting for different reasons, and we discuss some
in Sect. 7. But maybe the most compelling argument for considering ecumenical
systems is the analysis of mathematical theories and proofs. In fact, the possibil-
ity of having classical and intuitionistic reasoning in a single framework allows
determining, for example, which parts of a proof can be done constructively, or
which axioms in a theory can be restricted to its intuitionistic formulation. As
a simple example, consider the following statement, where x, y ∈ R:

if x + y = 16 then x ≥ 8 or y ≥ 8.

Of course, this could always be translated into a classical formula, but a finer
analysis shows that the disjunction should definitely be classical, while the
implication does not need to. That is, the statement should be translated as
(x + y = 16) →i x ≥ 8 ∨c y ≥ 8.

In this work, we propose lifting this discussion to modal logics, by presenting
an extension of EL with the alethic modalities of necessity and possibility. There
are many choices to be made and many relevant questions to be asked, e.g.:
what is the ecumenical interpretation of ecumenical modalities? Should we add
classical, intuitionistic, or neutral versions for modal connectives? What is really
behind the difference between the classical and intuitionistic notions of truth?

We propose an answer for these questions in the light of Simpson’s meta-
logical interpretation of modalities [20] by embedding the expected semantical
behavior of the modal operator into the ecumenical first order logic.

We start by highlighting the main proof theoretical aspects of LEci (Sect. 2).
This is vital for understanding how the embedding mentioned above will mold
the behavior of ecumenical modalities, since modal connectives are interpreted
in first order logics using quantifiers. In Sect. 3 and 4, we justify our choices by
following closely Simpson’s script, with the difference that we prove meta-logical
soundness and completeness using proof theoretical methods only. We then pro-
vide an axiomatic and semantical interpretation of ecumenical modalities in
Sect. 5. This makes it possible to extend the discussion, in Sect. 6, to relational
systems with the usual restrictions on the relation in the Kripke model. We end
the paper with a discussion about logical ecumenism in general.

2 The System LEci

The language L used for ecumenical systems is described as follows. We will use
a subscript c for the classical meaning and i for the intuitionistic, dropping such
subscripts when formulae/connectives can have either meaning.

Classical and intuitionistic n-ary predicate symbols (pc, pi, . . .) co-exist in
L but have different meanings. The neutral logical connectives {⊥,¬,∧,∀} are
common for classical and intuitionistic fragments, while {→i,∨i,∃i} and {→c,
∨c,∃c} are restricted to intuitionistic and classical interpretations, respectively.

The sequent system LEci (depicted in Fig. 1) was presented in [15] as the
sequent counterpart of Prawitz’ natural deduction system. Observe that the
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Fig. 1. Ecumenical sequent system LEci. In rules ∀R,∃iL, ∃cL, the eigenvariable y is
fresh.

rules Rc and Lc describe the intended meaning of the predicate pc, from the
intuitionistic predicate pi.

LEci has very interesting proof theoretical properties, together with a Kripke
semantical interpretation, that allowed the proposal of a variety of ecumenical
proof systems, such as multi-conclusion and nested sequent systems, as well as
several fragments of such systems [15].

Denoting by 
S A the fact that the formula A is a theorem in the proof
system S, the following theorems are easily provable in LEci:

1. 
LEci (A →c ⊥) ↔i (A →i ⊥) ↔i (¬A);
2. 
LEci (A ∨c B) ↔i ¬(¬A ∧ ¬B);
3. 
LEci (A →c B) ↔i ¬(A ∧ ¬B);
4. 
LEci (∃cx.A) ↔i ¬(∀x.¬A).

Note that (2) means that the ecumenical system defined in Fig. 1 does not dis-
tinguish between intuitionistic or classical negations, thus they can be called
simply ¬A. We prefer to keep the negation operator in the language since the
calculi presented in this work make heavy use of it.

Theorems (2) to (2) are of interest since they relate the classical and the
neutral operators: the classical connectives can be defined using negation, con-
junction, and the universal quantifier. On the other hand,
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5. 
LEci (A →i B) →i (A →c B) but �
LEci (A →c B) →i (A →i B) in general;
6. 
LEci A ∨c ¬A but �
LEci A ∨i ¬A in general;
7. 
LEci (¬¬A) →c A but �
LEci (¬¬A) →i A in general;
8. 
LEci (A ∧ (A →i B)) →i B but �
LEci (A ∧ (A →c B)) →i B in general;
9. 
LEci ∀x.A →i ¬∃cx.¬A but �
LEci ¬∃cx.¬A →i ∀x.A in general.

Observe that (2) and (2) reveal the asymmetry between definability of quanti-
fiers: while the classical existential can be defined from the universal quantifica-
tion, the other way around is not true, in general. This is closely related with the
fact that, proving ∀x.A from ¬∃cx.¬A depends on A being a classical formula.
We will come back to this in Sect. 3.

On its turn, the following result states that logical consequence in LEci is
intrinsically intuitionistic.

Proposition 1 ([15]). Γ 
 B is provable in LEci iff 
LEci

∧
Γ →i B.

To preserve the “classical behaviour”, i.e., to satisfy all the principles of
classical logic e.g. modus ponens and the classical reductio, it is sufficient that the
main operator of the formula be classical (see [14]). Thus, “hybrid” formulas, i.e.,
formulas that contain classical and intuitionistic operators may have a classical
behaviour. Formally,

Definition 1. A formula B is called externally classical (denoted by Bc) if and
only if B is ⊥, a classical predicate letter, or its root operator is classical (that is:
→c,∨c,∃c). A formula C is classical if it is built from classical atomic predicates
using only the connectives: →c,∨c,∃c,¬,∧,∀, and the unit ⊥.

For externally classical formulas we can now prove the following theorems

10. 
LEci (A →c Bc) →i (A →i Bc).
11. 
LEci (A ∧ (A →c Bc)) →i Bc.
12. 
LEci ¬¬Bc →i Bc.
13. 
LEci ¬∃cx.¬Bc →i ∀x.Bc.

Moreover, notice that all classical right rules as well as the right rules for the
neutral connectives in LEci are invertible. Since invertible rules can be applied
eagerly when proving a sequent, this entails that classical formulas can be eagerly
decomposed. As a consequence, the ecumenical entailment, when restricted to
classical succedents (antecedents having an unrestricted form), is classical.

Theorem 1 ([15]). Let C be a classical formula and Γ be a multiset of ecu-
menical formulas. Then


LEci

∧
Γ →c C iff 
LEci

∧
Γ →i C.

This sums up well, proof theoretically, the ecumenism of Prawitz’ original
proposal.
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3 Ecumenical Modalities

In this section we will propose an ecumenical view for alethic modalities. Since
there are a number of choices to be made, we will construct our proposal step-
by-step.

3.1 Normal Modal Logics

The language of (propositional, normal) modal formulas consists of a denu-
merable set P of propositional symbols and a set of propositional connectives
enhanced with the unary modal operators � and ♦ concerning necessity and
possibility, respectively [3].

The semantics of modal logics is often determined by means of Kripke models.
Here, we will follow the approach in [20], where a modal logic is characterized
by the respective interpretation of the modal model in the meta-theory (called
meta-logical characterization).

Formally, given a variable x, we recall the standard translation [·]x from
modal formulas into first-order formulas with at most one free variable, x, as
follows: if p is atomic, then [p]x = p(x); [⊥]x = ⊥; for any binary connective �,
[A � B]x = [A]x � [B]x; for the modal connectives

[�A]x = ∀y(R(x, y) → [A]y) [♦A]x = ∃y(R(x, y) ∧ [A]y)

where R(x, y) is a binary predicate.
Opening a parenthesis: such a translation has, as underlying justification, the

interpretation of alethic modalities in a Kripke model M = (W,R, V ):

M, w |= �A iff for all v such that wRv,M, v |= A.
M, w |= ♦A iff there exists v such that wRv and M, v |= A.

(1)

R(x, y) then represents the accessibility relation R in a Kripke frame. This intu-
ition can be made formal based on the one-to-one correspondence between classi-
cal/intuitionistic translations and Kripke modal models [20]. We close this paren-
thesis by noting that this justification is only motivational, aiming at introducing
modalities. Models will be discussed formally in Sect. 5.1.

The object-modal logic OL is then characterized in the first-order meta-logic
ML as


OL A iff 
ML ∀x.[A]x

Hence, if ML is classical logic (CL), the former definition characterizes the clas-
sical modal logic K [3], while if it is intuitionistic logic (IL), then it characterizes
the intuitionistic modal logic IK [20].

In this work, we will adopt EL as the meta-theory (given by the system LEci),
hence characterizing what we will define as the ecumenical modal logic EK.
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3.2 An Ecumenical View of Modalities

The language of ecumenical modal formulas consists of a denumerable set P
of (ecumenical) propositional symbols and the set of ecumenical connectives
enhanced with unary ecumenical modal operators. Unlike for the classical case,
there is not a canonical definition of constructive or intuitionistic modal logics.
Here we will mostly follow the approach in [20] for justifying our choices for the
ecumenical interpretation for possibility and necessity.

The ecumenical translation [·]ex from propositional ecumenical formulas into
LEci is defined in the same way as the modal translation [·]x in the last section.
For the case of modal connectives, observe that, due to Proposition 1, the inter-
pretation of ecumenical consequence should be essentially intuitionistic. This
implies that the box modality is a neutral connective. The diamond, on the other
hand, has two possible interpretations: classical and intuitionistic, since its lead-
ing connective is an existential quantifier. Hence we should have the ecumenical
modalities: �,♦i,♦c, determined by the translations

[�A]ex = ∀y(R(x, y) →i [A]ey)
[♦iA]ex = ∃iy(R(x, y) ∧ [A]ey) [♦cA]ex = ∃cy(R(x, y) ∧ [A]ey)

Observe that, due to the equivalence (2), we have

14. ♦cA ↔i ¬�¬A

On the other hand, � and ♦i are not inter-definable due to (2). Finally, if Ac is
externally classical, then

15. �Ac ↔i ¬♦c¬Ac

This means that, when restricted to the classical fragment, � and ♦c are duals.
This reflects well the ecumenical nature of the defined modalities. We will denote
by EK the ecumenical modal logic meta-logically characterized by LEci via [·]ex.

4 A Labeled System for EK

The basic idea behind labeled proof systems for modal logic is to internalize
elements of the associated Kripke semantics (namely, the worlds of a Kripke
structure and the accessibility relation between them) into the syntax.

Labeled modal formulas are either labeled formulas of the form x : A or
relational atoms of the form xRy, where x, y range over a set of variables and
A is a modal formula. Labeled sequents have the form Γ 
 x : A, where Γ is
a multiset containing labeled modal formulas. The labeled ecumenical system
labEK is presented in Fig. 2.

We will denote by [Γ 
 x : A] the LEci sequent [Γ ] ⇒ [A]ex where [Γ ] =
{R(x, y) | xRy ∈ Γ} ∪ {[B]ex | x : B ∈ Γ}. The following is a meta-logical
soundness and completeness result.
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Fig. 2. Ecumenical modal system labEK. In rules �R,♦iL,♦cL, the eigenvariable y
does not occur free in any formula of the conclusion.

Theorem 2. The following are equivalent:

1. Γ 
 x : A is provable in labEK.
2. [Γ 
 x : A] is provable in LEci.

Proof. We will consider the following translation between labEK rule applications
and LEci derivations, where the translation for the propositional rules is the
trivial one:
xRy, y : A, x : �A,Γ 
 z : C

xRy, x : �A,Γ 
 z : C
�L �

R(x, y), [�A]ex,R(x, y) →i [A]ey,[Γ ] ⇒ R(x, y) [xRy, y : A, x : �A,Γ 
 z : C]

[xRy, x : �A,Γ 
 z : C]
(∀L,→i L)

xRy, Γ 
 y : A

Γ 
 x : �A
�R �

[xRy, Γ 
 y : A]

[Γ 
 x : �A]
(∀R,→i R)
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xRy, y : A,Γ 
 z : C

x : ♦iA,Γ 
 z : C
♦iL �

[xRy, y : A,Γ 
 z : C]

[x : ♦iA,Γ 
 z : C]
(∃iL,∧L)

xRy, y : A,Γ 
 x : ⊥
x : ♦cA,Γ 
 x : ⊥ ♦cL �

[xRy, y : A,Γ 
 x : ⊥]

[x : ♦cA,Γ 
 x : ⊥]
(∃cL,∧L)

xRy, Γ 
 y : A

xRy, Γ 
 x : ♦iA
♦iR �

R(x, y), [Γ ] ⇒ R(x, y) [xRy, Γ 
 y : A]

[xRy, Γ 
 x : ♦iA]
(∃iR,∧R)

x : �¬A,Γ 
 x : ⊥
Γ 
 x : ♦cA

♦cR �
∀y.¬(R(x, y) ∧ [A]ey), [Γ ] ⇒ ⊥

[Γ 
 x : ♦cA]
(∃cR)

(1) ⇒ (2) is easily proved by induction on a proof of Γ 
 x : A in labEK,
observing that 
LEci ∀y.¬(R(x, y) ∧ [A]ey) ↔i (∀y.R(x, y) →i [¬A]ey) = [�¬A]ex.

For proving (2) ⇒ (1) observe that the rules →i R,∧L,∧R are invertible in
LEci and →i L is semi-invertible on the right (i.e. if its conclusion is valid, so
is its right premise). Hence, in the translated derivations in LEci provability is
maintained from the end-sequent to the open leaves. This means that choosing a
formula [A]ex to work on is equivalent to performing all the steps of the translation
given above, ending with translated sequents of smaller proofs. Therefore, any
derivation of [Γ 
 x : A] in LEci can be transformed into a derivation of the same
sequent where all the steps of the translation are actually performed. This is, in
fact, one of the pillars of the focusing method [1,9]. In order to illustrate this,
consider the derivation

π
R(x, y), R(x, y) →i [A]ey, [�A]ex, [Γ ] ⇒ [C]ez

R(x, y), [�A]ex, [Γ ] ⇒ [C]ez
(∀L)

where one decides to work on the formula ∀y.(R(x, y) →i [A]ey) = [�A]ex obtain-
ing a premise containing the formula B = R(x, y) →i [A]ey, with proof π. Since
→i L is semi-invertible on the right and the left premise is straightforwardly
provable, then π can be substituted by the proof:

R(x, y), R(x, y) →i [A]ey , [�A]ex, [Γ ] ⇒ R(x, y)
π′

R(x, y), [A]ey , [�A]ex, [Γ ] ⇒ [C]ez

R(x, y), R(x, y) →i [A]ey , [�A]ex, [Γ ] ⇒ [C]ez
→i L

where π′ = π if B is never principal in π, while π′ is constructed from π by
permuting down the application of the rule →i L over B. Thus, by inductive
hypothesis, [xRy, y : A, x : �A,Γ 
 z : C] is provable in labEK.

Finally, observe that, when restricted to the intuitionistic and neutral operators,
labEK matches exactly Simpson’s sequent system L�� [20]. This implies that L��

is trivially embedded into labEK. The analyticity of labEK is presented next.
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4.1 Cut-Elimination for labEK

In face of Theorem 2 most of the proof theoretical properties of the system labEK
can be inherited from LEci. It is not different for the property of cut-elimination.
Hence we will only illustrate the process here.

The extension of the Ecumenical weight for formulas presented [14] to modal-
ities is defined bellow.

Definition 2. The Ecumenical weight (ew) of a formula in L is recursively
defined as

– ew(Pi) = ew(⊥) = 0;
– ew(A � B) = ew(A) + ew(B) + 1 if � ∈ {∧,→i,∨i};
– ew(♥A) = ew(A) + 1 if ♥ ∈ {¬,♦i,�};
– ew(A ◦ B) = ew(A) + ew(B) + 4 if ◦ ∈ {→c,∨c};
– ew(Pc) = 4;
– ew(♦cA) = ew(A) + 4.

Intuitively, the Ecumenical weight measures the amount of extra information
needed (the negations added) in order to define the classical connectives from
the intuitionistic and neutral ones.

Theorem 3. The rule

Γ 
 x : A x : A,Γ 
 z : C

Γ 
 z : C
cut

is admissible in labEK.

Proof. The proof is by the usual Gentzen method. The principal cases either
eliminate the top-most cut or substitute it for cuts over simpler ecumenical
formulas, e.g.

π1

x : �¬A,Γ 
 x : ⊥
Γ 
 x : ♦cA

♦cR

π2

xRy, y : A,Γ 
 x : ⊥
x : ♦cA,Γ 
 z : ⊥ ♦cL

Γ 
 z : ⊥ cut
�

π2

xRy, y : A,Γ 
 y : ⊥
xRy, Γ 
 y : ¬A

¬R

Γ 
 x : �¬A
�R π1

x : �¬A,Γ,
 z : ⊥
Γ 
 z : ⊥ cut

Observe that the label of bottom is irrelevant due to the weakening rule W (that
we have suppressed). Hence the Ecumenical weight on the cut formula passes
from ew(♦cx.A) = ew(A) + 4 to ew(�¬A) = ew(A) + 2.

The non-principal cuts can be flipped up as usual, generating cuts with
smaller cut-height.
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5 Axiomatization and Semantics

Classical modal logic K is characterized as propositional classical logic, extended
with the necessitation rule (presented in Hilbert style) A/�A and the distributiv-
ity axiom k : �(A → B) → (�A → �B). Intuitionistic modal logic should then
consist of propositional intuitionistic logic plus necessitation and distributivity.

As it is well known [16,20], there are many variants of axiom k that induces
classically, but not intuitionistically, equivalent systems. In fact, the following
axioms classically follow from k and the De Morgan laws, but not in an intu-
itionistic setting

k1 : �(A → B) → (♦A → ♦B) k2 : ♦(A ∨ B) → (♦A ∨ ♦B)
k3 : (♦A → �B) → �(A → B) k4 : ♦⊥ → ⊥

The combination of axiom k with axioms k1 − k4 characterizes intuitionistic
modal logic IK [16]. And L�� is sound and complete w.r.t. IK [20].

In the ecumenical setting, there are many more variants from k, depending on
the classical or intuitionistic interpretation of the implication and diamond. Since
L�� is a sub-system of labEK, EK is complete w.r.t. the intuitionistic version of
this set of axioms. Soundness will be established next.

For the sake of readability, we will abuse the notation and represent the con-
nectives of IK/L�� using the neutral/intuitionistic correspondents in EK/labEK.

Definition 3. Let [[·]]K be the following formula translation from EK to IK

[[pi]]K = pi [[pc]]K = ¬(¬(pi))
[[⊥]]K = ⊥ [[¬A]]K = ¬[[A]]K
[[A ∧ B]]K = [[A]]K ∧ [[B]]K [[A ∨i B]]K = [[A]]K ∨i [[B]]K
[[A →i B]]K = [[A]]K →i [[B]]K [[A ∨c B]]K = ¬(¬[[A]]K ∧ ¬[[B]]K)
[[A →c B]]K = ¬([[A]]K ∧ ¬[[B]]K) [[�A]]K = �[[A]]K
[[♦iA]]K = ♦i[[A]]K [[♦cA]]K = ¬�¬[[A]]K

The translation [[·]] : labEK → L�� is defined as [[x : A]] = x : [[A]]K and assumed
identical on relational atoms.

Since the translations above preserve the double-negation interpretation of clas-
sical connectives into intuitionistic (modal) logic, the following holds.

Lemma 1. 
labEK Γ 
 x : A iff 
labEK [[Γ 
 x : A]] iff 
L��
[[Γ 
 x : A]].

Hence we have that

Theorem 4. EK is sound w.r.t. the intuitionistic version of axioms k − k4.

Remark 1. One could ask: what happens if we exchange the intuitionistic ver-
sions of the connectives with classical ones? For answering that, consider kαβγ :
�(A →α B) →β (�A →γ �B) with α, β, γ ∈ {i, c}. Since C →i D ⇒ C →c D
in EK, kαii ⇒ kαβγ for any value of β, γ. Moreover, kcii is not provable in EK.
Hence, kiii is the minimal version of k provable in EK. The same holds for all
the other axioms.
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5.1 Ecumenical Birelational Models

In [2], the negative translation was used to relate cut-elimination theorems for
classical and intuitionistic logics. Since part of the argumentation was given
semantically, a notion of Kripke semantics for classical logic was stated, via the
respective semantics for intuitionistic logic and the double negation interpreta-
tion (see also [7]). In [14] a similar definition was given, but under the ecumenical
approach, and it was extended to the first-order case in [15]. We will propose a
birelational Kripke semantics for ecumenical modal logic, which is an extension
of the proposal in [14] to modalities.

Definition 4. A birelational Kripke model is a quadruple M = (W,≤, R, V )
where (W,R, V ) is a Kripke model such that W is partially ordered with order
≤, the satisfaction function V : 〈W,≤〉 → 〈2P ,⊆〉 is monotone and:
F1. For all worlds w, v, v′, if wRv and v ≤ v′, there is a w′ such that w ≤ w′

and w′Rv′;
F2. For all worlds w′, w, v, if w ≤ w′ and wRv, there is a v′ such that w′Rv′

and v ≤ v′.
An ecumenical modal Kripke model is a birelational Kripke model such that

truth of an ecumenical formula at a point w is the smallest relation |=E satisfying
M, w |=E pi iff pi ∈ V (w);
M, w |=E A ∧ B iff M, w |=E A and M, w |=E B;
M, w |=E A ∨i B iff M, w |=E A or M, w |=E B;
M, w |=E A →i B iff for all v such that w ≤ v,M, v |=E A implies M, v |=E B;
M, w |=E ¬A iff for all v such that w ≤ v,M, v 
|=E A;
M, w |=E ⊥ never holds;
M, w |=E �A iff for all v, w′ such that w ≤ w′ and w′Rv,M, v |=E A.
M, w |=E ♦iA iff there exists v such that wRv and M, v |=E A.
M, w |=E pc iff M, w |=E ¬(¬pi);
M, w |=E A ∨c B iff M, w |=E ¬(¬A ∧ ¬B);
M, w |=E A →c B iff M, w |=E ¬(A ∧ ¬B).
M, w |=E ♦cA iff M, w |=E ¬�¬A.

Since, restricted to intuitionistic and neutral connectives, |=E is the usual birela-
tional interpretation |= for IK (and, consequently, L�� [20]), and since the clas-
sical connectives are interpreted via the neutral ones using the double-negation
translation, an ecumenical modal Kripke model is nothing else than the standard
birelational Kripke model for intuitionistic modal logic IK. Hence, in the face of
Theorem 4, the following result is trivial.

Theorem 5. EK is sound and complete w.r.t. the ecumenical modal Kripke
semantics, that is, 
EK A iff |=E A.

6 Extensions

Depending on the application, several further modal logics can be defined as
extensions of K by simply restricting the class of frames we consider. Many of
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Table 1. Axioms and corresponding first-order conditions on R.

Axiom Condition First-Order (FO) Formula

T : �A → A ∧ A → ♦A Reflexivity ∀x.R(x, x)

4 : �A → ��A ∧ ♦♦A → ♦A Transitivity ∀x, y, z.(R(x, y) ∧ R(y, z)) → R(x, z)

5 : �A → �♦A ∧ ♦�A → ♦A Euclideaness ∀x, y, z.(R(x, y) ∧ R(x, z)) → R(y, z)

B : A → �♦A ∧ ♦�A → A Symmetry ∀x, y.R(x, y) → R(y, x)

xRx, Γ � w : C

Γ � w : C
T

xRz, xRy, yRz, Γ � w : C

xRy, yRz, Γ � w : C
4

yRz, xRy, xRz, Γ � w : C

xRy, xRz, Γ � w : C
5

yRx, xRy, Γ � w : C

xRy, Γ � w : C
B

Fig. 3. Labeled sequent rules corresponding to axioms in Table 1.

the restrictions one can be interested in are definable as formulas of first-order
logic, where the binary predicate R(x, y) refers to the corresponding accessibility
relation. Table 1 summarizes some of the most common logics, the corresponding
frame property, together with the modal axiom capturing it in the intuitionistic
framework [18].

We divide the problem of modal extensions in 3 parts: (i) transform the FO
formulas in Table 1 into inference rules; (ii) prove that the axioms are theo-
rems in the extended systems; and (iii) prove that the axioms actually enforce
the respective condition. In this work, we will show (i) and (ii), and start the
discussion of (iii) in the ecumenical setting.

The general problem of systematically extending standard proof-theoretical
results obtained for pure logic to non-logical axioms has been focus of attention
for quite some time now (see e.g. [4,6,13,20,22]). In [11], a systematic procedure
for transforming a class of FO formulas (called bipolars) into rules for atoms was
presented. This procedure involves polarization of formulas and focusing [1].

The main idea of this method is that assuming a FO clause as a theory
is the same as applying a rule, determined by the shape of the formula, on
its atomic subformulas. In order to illustrate the process, consider the formula
∀x, y.R(x, y) →i R(y, x). Having it as a theory and working throughout it in
LEci:

Γ 
 R(x, y) Γ,R(y, x) 
 C

Γ,R(x, y) →i R(y, x) 
 C
→i L

Γ,∀x, y.R(x, y) →i R(y, x) 
 C
∀L

From that, there are two protocols: the forward-chaining insists that the left
premise above is trivial, meaning that it is proved by the initial rule (hence
R(x, y) ∈ Γ and R(y, x) is “produced” from it); and the backward-chaining
insists that the right-most premise is trivial: that is, R(y, x) and C are the same
atomic formula. These protocols give rise to the rules, respectively
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Γ,R(y, x) 
 C

Γ,R(x, y) 
 C

Γ 
 R(x, y)
Γ 
 R(y, x)

The first one appears, e.g. in [20], while the second occurs in [22]. Adopting the
forward-chaining protocol, the FO formulas in Table 1 are transformed into the
rules in Fig. 3, hence fulfilling the goal (i). Observe that, as noted in Remark 1,
we only need to consider the intuitionistic version of the FO formulas.

Regarding (ii), it is easy to see that the axioms listed in the first column of
Table 1 are theorems in labEK extended with the respective rules. For example

xRx, x : A 
 x : A
init

xRx, x : �A 
 x : A
�L

x : �A 
 x : A
T


 x : �A →i A
→i R

xRx, x : A 
 x : A
init

xRx, x : A 
 x : ♦iA
♦iR

x : A 
 ♦iA
T


 x : A →i ♦iA
→i R


 x : (�A →i A) ∧ (A →i ♦iA) ∧R

Finally, item (iii) remains: do such axioms indeed reflect the respective conditions
in Fig. 3? We illustrate the complexity of the interaction of modal axioms and
ecumenical connectives in the case of axiom T.

It is well known that, by itself, �A →i A does not enforce reflexivity of an
intuitionistic model [20,21]. In fact, the derivation above shows that, in frames
having the reflexivity property, both �A →i A and A →i ♦iA are provable. For
the converse, since � and ♦i are not inter-definable, we need to add A →i ♦iA
in order to still be complete w.r.t. reflexive models. This is also true for any
extension of EK by path axioms plus contrapositives w.r.t. their corresponding
models. But beyond that it wouldn’t be as clean cut, unless one adds the preorder
relation into the mix as in [16]. This not mentioning the ecumenical nature of
atoms [10]. In fact, in the ecumenical setting, the possibility of mixing intuition-
istic and classical relational formulas and modalities can make this discussion
even harder, and it is left for a future work.

Finally, since adding ecumenical axioms can deeply affect the resulting sys-
tem, it should be studied carefully. For example, the modalities in EK are not
inter-definable, but what would be the consequence of adding ¬♦i¬A →i �A as
an extra axiom to labEK added with the rule T? The following derivation shows
that the addition of this new axiom has a disastrous propositional consequence.

xRy, y : A, y : ¬(A ∨i ¬A) 
 y : A
init

xRy, y : A, y : ¬(A ∨i ¬A) 
 y : ⊥ ¬L,∨iR1

xRy, y : ¬(A ∨i ¬A) 
 x : ⊥ ¬L,∨iR2,¬R

x : ♦i¬(A ∨i ¬A) 
 x : ⊥ ♦iL


 x : ¬♦i¬(A ∨i ¬A) ¬R


 x : �(A ∨i ¬A)
eq

xRx, x : (A ∨i ¬A) 
 x : (A ∨i ¬A)
init

xRx, x : �(A ∨i ¬A) 
 x : (A ∨i ¬A) �L

x : �(A ∨i ¬A) 
 x : (A ∨i ¬A) T


 x : (A ∨i ¬A)
cut
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where eq represents the proof steps of the substitution of a boxed formula for
its diamond version.1 That is, if � and ♦i are inter-definable, then A ∨i ¬A is a
theorem and intuitionistic KT collapses to a classical system!

7 Discussion and Conclusion

Some questions naturally arise with respect to ecumenical systems: what (really)
are ecumenical systems? What are they good for? Why should anyone be inter-
ested in ecumenical systems? What is the real motivation behind the definition
and development of ecumenical systems? Based on the specific case of the ecu-
menical system that puts classical logic and intuitionist logic coexisting in peace
in the same codification, we would like to propose three possible motivations for
the definition, study and development of ecumenical systems.

Philosophical Motivation. This was the motivation of Prawitz. Inferentialism,
and in particular, logical inferentialism, is the semantical approach according to
which the meaning of the logical constants can be specified by the rules that
determine their correct use. According to Prawitz [17],

“Gentzen’s introduction rules, taken as meaning constitutive of the logical
constants of the language of predicate logic, agree, as is well known, with
how intuitionistic mathematicians use the constants. On the one hand, the
elimination rules stated by Gentzen become all justified when the constants
are so understood because of there being reductions, originally introduced
in the process of normalizing natural deductions, which applied to proofs
terminating with an application of elimination rules give canonical proofs
of the conclusion in question. On the other hand, no canonical proof of an
arbitrarily chosen instance of the law of the excluded middle is known, nor
any reduction that applied to a proof terminating with an application of
the classical form of reduction ad absurdum gives a canonical proof of the
conclusion.”

But what about the use classical mathematicians make of the logical constants?
Again, according to Prawitz,

“What is then to be said about the negative thesis that no coherent meaning
can be attached on the classical use of the logical constants? Gentzen’s
introduction rules are of course accepted also in classical reasoning, but
some of them cannot be seen as introduction rules, that is they cannot serve
as explanations of meaning. The classical understanding of disjunction is
not such that A ∨ B may be rightly asserted only if it is possible to prove
either A or B, and hence Gentzen’s introduction rule for disjunction does
not determine the meaning of classical disjunction.”

1 We have presented a proof with cut for clarity, remember that labEK has the cut-
elimination property (see Appendix 4.1).
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As an alternative, in a recent paper [12] Murzi presents a different approach to
the extension of inferentialism to classical logic. There are some natural (proof-
theoretical) inferentialist requirements on admissible logical rules, such as har-
mony and separability (although harmonic, Prawitz’ rules for the classical oper-
ators do not satisfy separability). According to Murzi, our usual logical practice
does not seem to allow for an inferentialist account of classical logic (unlike what
happens with respect to intuitionistic logic). Murzi proposes a new set of rules
for classical logical operators based on: absurdity as a punctuation mark, and
Higher-level rules [19]. This allows for a “pure” logical system, where negation
is not used in premises.

Mathematical/Computational Motivation. (This was actually the original moti-
vation for proposing ecumenical systems.) The first ecumenical system (as far
as we know) was defined by Krauss in a technical report of the University of
Kassel [8] (the text was never published in a journal). The paper is divided
in two parts: in the first part, Krauss’ ecumenical system is defined and some
properties proved. In the second part, some theorems of basic algebraic number
theory are revised in the light of this (ecumenical) system, where constructive
proofs of some “familiar classical proofs” are given (like the proof of Dirichlet’s
Unit Theorem). The same motivation can be found in the final passages of the
paper [5], where Dowek examines what would happen in the case of axiomatiza-
tions of mathematics. Dowek gives a simple example from Set Theory, and ends
the paper with this very interesting remark:

“Which mathematical results have a classical formulation that can be
proved from the axioms of constructive set theory or constructive type
theory and which require a classical formulation of these axioms and a
classical notion of entailment remains to be investigated.”

Logical Motivation. In a certain sense, the logical motivation naturally com-
bines certain aspects of the philosophical motivation with certain aspects of the
mathematical motivation. According to Prawitz, one can consider the so-called
classical first order logic as “an attempted codification of a fragment of inferences
occurring in [our] actual deductive practice”. Given that there exist different and
even divergent attempts to codify our (informal) deductive practice, it is more
than natural to ask about what relations are entertained between these codifi-
cations. Ecumenical systems may help us to have a better understanding of the
relation between classical logic and intuitionistic logic. But one could say that,
from a logical point of view, there’s nothing new in the ecumenical proposal:
Based on translations, the new classical operators could be easily introduced by
“explicit definitions”. Let us consider the following dialogue between a classical
logician (CL) and an intuitionistic logician (IL), a dialogue that may arise as a
consequence of the translations mentioned above:

– IL: if what you mean by (A∨B) is ¬(¬A∧¬B), then I can accept the validity
of (A ∨ ¬A)!
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– CL: but I do not mean ¬(¬A ∧ ¬¬A) by (A ∨ ¬A). One must distinguish
the excluded-middle from the principle of non-contradiction. When I say that
Goldbach’s conjecture is either true or false, I am not saying that it would
be contradictory to assert that it is not true and that it is not the case that
it is not true!

– IL: but you must realize that, at the end of the day, you just have one logical
operator, the Sheffer stroke (or the Quine’s dagger).

– CL: But this is not at all true! The fact that we can define one operator in
terms of other operators does not imply that we don’t have different operators!
We do have 16 binary propositional operators (functions). It is also true that
we can prove 
 (A ∨c B) ↔ ¬(¬A ∧ ¬B) in the ecumenical system, but this
does not mean that we don’t have three different operators, ¬, ∨c and ∧.

Maybe we can resume the logical motivation in the following (very simple)
sentence:

Ecumenical systems constitute a new and promising instrument to study
the nature of different (maybe divergent!) logics.

Now, what can we say about modal ecumenical systems? Regarding the philo-
sophical view, in [15] we have used invertibility results in order to obtain a
sequent system for Prawitz’ ecumenical logic with a minimal occurrences of nega-
tions, moving then towards a “purer” ecumenical system. Nevertheless, negation
still plays an important role on interpreting classical connectives. This is trans-
ferred to our definition of ecumenical modalities, where the classical possibility
is interpreted using negation. We plan to investigate what would be the meaning
of classical possibility without impure rules. For the mathematical view, our
use of intuitionistic/classical/neutral connectives allows for a more chirurgical
detection of the parts of a mathematical proof that are intrinsically intuitionis-
tic, classical or independent. We now bring this discussion to modalities. There
is an interesting aspect of this expansion, that would be the ecumenical interpre-
tation of relational formulas, as noted in Sect. 6. Finally, concerning the logical
view, it would be interesting to explore some relations between general results
on translations and ecumenical systems.

We end the present text by noting that there is an obvious connection
between the Ecumenical approach and Gödel-Gentzen’s double-negation trans-
lations of classical logic into intuitionistic logic. This could lead to the erroneous
conclusion that the ecumenical refinement of classical logic is essentially the same
refinement produced by such translation. But, on a closer inspection, shows that
this is not true! Indeed, classical mathematical practice does not require that
every occurrence of ∨ in real mathematical proofs be replaced by its Gödel-
Gentzen translation. For example, there is no reason to translate the occurrence
of ∨ in the theorem (A → (A ∨ B)). Given that the Gödel-Gentzen translation
function systematically and globally eliminates every occurrence of ∨ and ∃ from
the language of classical logic, one may say that the ecumenical system reflects
more faithfully the “local” necessary uses of classical reasoning.
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That is, the ecumenical refinement “interpolates” the Gödel-Gentzen-
translation function. And this is extended, in our work, to reasoning with
modalities.
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Abstract. This paper studies the operations of public announcement
of statements and public utterance of questions in the context of sub-
structutral inquisitive epistemic logic. It was shown elsewhere that the
logical laws governing the modalities of knowing and entertaining from
standard inquisitive epistemic logic generalize smoothly to substructural
logics. In this paper we show that the situation is different with the
reduction axioms that in the standard setting govern the modality of
public announcement/utterance. The standard reduction axioms depend
on some features of classical logic that are not preserved in substructural
logics. Using an additional auxiliary modality, we show how to overcome
this obstacle and formulate an alternative set of reduction axioms for the
public announcement/utterance modality that can be used even in the
context of our general non-classical setting.

Keywords: Dynamic logic · Epistemic logic · Inquisitive logic ·
Substructural logic · Public announcement · Reduction axioms

1 Introduction

Public announcement logic (PAL, see, e.g. [9]), as a particular form of dynamic
epistemic logic, aims at capturing the logical structure of public communication
and reasoning about agents, and their changing believes and knowledge. In other
words, it is concerned with reasoning involving information about the dynamics
of information accessible to other agents. Inquisitive dynamic epistemic logic
(IDEL, see [3,4]) enriches PAL with the realm of questions. Agents are equipped
not only with information states but also with issues and not only statements
but also questions may be publicly announced/uttered.

The standard dynamic epistemic logic, as well as its inquisitive extension, are
based on classical logic. The aim of this paper is to present a general semantic
framework that can serve as a basis for non-classical inquisitive dynamic epis-
temic logics. It incorporates public announcement logic based on substructural
logic but at the same time applies to a language involving questions.
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Our approach relies significantly on the static framework for substructural
inquisitive epistemic logics developed in [5]. The main contribution of this paper
is an extension of this particular framework with an extra layer that allows
one to capture the dynamics of publicly announcing statements and raising
issues. The resulting semantics can be seen as a generalization of the seman-
tics of IDEL. However, we will see that the reduction axioms for the public
announcement/utterance modality used in [4] to syntactically characterize IDEL
are not valid in our more general setting. Our solution to this problem is that
we add to the language an auxiliary modality for which simple and elegant
reduction axioms can be formulated, and we will reduce the public announce-
ment/utterance modality to this additional modality.

2 The Object Language

The object language we will work with involves atomic formulas and the follow-
ing logical symbols: (a) standard logical symbols used in propositional substruc-
tural logics, namely the constant for contradiction (⊥), the constant for logical
truth (t), negation (¬), implication (→), extensional conjunction (∧), intensional
conjunction (⊗), declarative disjunction (∨); (b) a binary connective

�

that is
called inquisitive disjunction and that allows one to form disjunctive and polar
(yes/no) questions so that p

�

q amounts to the disjunctive question whether p
or q, and p

� ¬p to the polar question whether p (see, e.g., [2]); (c) two epis-
temic modalities, Ia and Ea (where a represents an agent); (d) a dynamic public
utterance modality [ϕ];1 (e) an auxiliary dynamic modality {ϕ}. We will also use
equivalence as a defined symbol: ϕ ↔ ψ =def (ϕ → ψ) ∧ (ψ → ϕ). The result-
ing language will be called LSIDEL (the language of Substructural Inquisitive
Dynamic Epistemic Logic). It can be defined in the following compact way:

ϕ ::= p | ⊥ | t | ¬ϕ | ϕ → ϕ | ϕ∧ϕ | ϕ⊗ϕ | ϕ∨ϕ | ϕ

�

ϕ | Iaϕ | Eaϕ | [ϕ]ϕ | {ϕ}ϕ

The modality Ia is interpreted as meaning: according to a’s information. This
modality can be applied to statements as well as to questions. In particular, we
have the following basic cases:2

1 It is common to interpret the modality [ϕ] as public announcement of ϕ. However, we
will follow [4] in using the term “public utterance” instead of “public announcement”.
The reason is that ϕ may represent a question, e.g. the question whether p or q, and
it seems that there is an intuitive difference between announcing whether p or q
and uttering whether p or q. The former indicates that an answer to the question
is uttered, while the latter means only that the question itself is uttered, which
corresponds better to what the modality [ϕ] is supposed to model.

2 In the standard inquisitive epistemic logic, the letter K, instead of I, is used for
this modality since it is interpreted as knowing that/whether. However, in our more
general framework, we will not assume the specific features of knowledge, as for
example factivity (the agent can know only what is true) so the letter I seems to be
more appropriate.
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The formula Represents
Iap According to a’s information, p holds
Ia(p

�

q) a’s information resolves the question whether p or q

The modality Ea is called an entertaining modality. When applied to state-
ments this modality is assumed to behave just like Ia but its behavior differs
when it is applied to questions. This modality does not have a direct counterpart
in natural language but its meaning can be illustrated as follows. Assume, for
example, that an agent would like to have the information whether there are
two or three apples on a table. We also say that this is the agent’s issue. This
presupposes that the agent already has the information that at least one of these
numbers is correct and she wants to know which one it is. In that case we say
that the agent entertains the question whether there are two or three apples on
the table but also, for example, that she entertains the question whether there
is an even or odd number of apples on the table because every information that
resolves the former issue (two or three?), resolves also the latter one (even or
odd?).

In the standard framework of inquisitive epistemic logic the entertaining
modality serves mainly as a mean to define a more common wondering modality
in this way: Waϕ =df Eaϕ ∧ ¬Iaϕ. In our example, the agent for instance also
entertains the question whether there are less or more than five apples on the
table because every information that resolves her issue (two or three?) trivially
resolves also this question (less or more than five?). However, the agent does not
wonder whether there are less or more than five apples on the table because this
question is already resolved by her information that there are either two or three
apples on the table.

The formula Represents
Ea(p

�

q) a entertains the question whether p or q
Wa(p

�

q) a wonders whether p or q

For a statement α the formula [ϕ]α means: after a public utterance of ϕ, α
would be established. For example, assume that the agent a has the information
that if there are not two apples on the table then there are three apples there,
which is formalized as Ia(¬p → q). Then it holds that after a public utterance
that there are not two apples on the table, the agent will have the information
that there are three apples there, which is formalized as [¬p]Iaq. However, if [ϕ]
is applied to a question (e.g. a question of the form α

�

β) the result is typically
again a question. For instance, [ϕ](α

�

β) amounts to: after a public utterance of
ϕ, would α or β be established? More concretely, in the example above, [¬p](Iaq

�

¬Iaq) would encode the following question: after a public utterance that there
are not two apples on the table, would the agent a have the information that
there are three apples on the table?

The modality {ϕ} is auxiliary. It will help us to characterize syntactically
the logic of [ϕ]. There is a subtle difference between [ϕ] and {ϕ} which will be
clear after the semantics of these operators is introduced in Sect. 4.
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3 Substructural Inquisitive Epistemic Logic

In this section, we will focus on the static fragment of LSIDEL basically recapit-
ulating the framework of [5]. The proofs of the results presented in this section
are also worked out in [5]. The new contribution of this paper, which concerns
the treatment of the dynamic modality [ϕ] with the help of the modality {ϕ},
will be presented in the next section. The language LSIDEL without the two
dynamic modalities will be denoted as LSIEL.

Our semantics of LSIEL is based on the idea of information states as points
with respect to which formulas are evaluated. In standard semantic frameworks
of epistemic logic, as well as in the standard inquisitive semantics, an information
state is modeled as a set of possible worlds. Information states thus form a
complete atomic Boolean algebra (the algebra of all sets of possible worlds). In
our more general setting, more general algebraic structures will be employed and
information states will be regarded as primitive entities characterized by their
role within such structures.

In the semantics of standard inquisitive epistemic logic there is a crucial
interplay between the layer of possible worlds and the layer of information states.
In our generalization we need to have an analogue of these two layers. However,
since we intend to base the framework on non-classical logics we will need to
employ on the “lower layer” a notion that is more general than the notion of
a possible world. Inspired by situation semantics [1], the generalized possible
worlds will be called situations.

If we look just at the Boolean algebra of information states in the standard
framework, possible worlds correspond to the atoms in the algebra, i.e. to the
singleton states. From the lattice-theoretic point of view, a characteristic feature
of singletons is that they are completely join-irreducible elements in the algebra
of information state. This will be also the definitory feature of situations, the
analogues of worlds in our general setting.

Moreover, in the standard setting, where information states are represented
by sets of possible worlds, every information state can be viewed as union (i.e.
set-theoretic join) of a set of singletons (i.e. completely join-irreducible states).
We will need to preserve also this feature. So, in our framework, we will require
that every information state can be expressed as the join of a set of situations
(completely join-irreducible elements).

We will also need a formal notion of an issue. An issue will be represented
by a set of information states that can be intuitively viewed as those states
that resolve the issue. Like in the standard inquisitive semantics, we will require
that such a set must be downward closed and nonempty. The former condition
is motivated by interpreting s � t (where � is the lattice ordering) as saying
that s is informationally stronger than t.3 The latter condition is motivated
by interpreting the bottom element of the lattice as the absolutely inconsistent
state in which everything holds. A more detailed explanation of how particular

3 In the standard setting s � t reduces to s ⊆ t. In that case, the set of worlds s is
informationally stronger than t since it excludes more possibilities.
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features of the framework are motivated is contained in [5]. Let us summarize
the definition of situations and issues.

Definition 1. Let L = 〈S,�〉 be a complete lattice (of information states),
where

⊔
X denotes the join of X w.r.t. �. An element s ∈ S is called a sit-

uation in L iff it is completely join-irreducible, i.e. s =
⊔

X only if s = t,
for some t ∈ X. For any s ∈ S, the set of situations below s, i.e. the set
{i ∈ S | i is a situation such that i � s} will be denoted as Sit(s). An issue in
L is any nonempty downward closed subset of S.

We will denote situations by the letters i, j, . . . and arbitrary states by s, t, . . .
The models of our semantics also involve a compatibility relation C among

states, a binary operation · representing fusion of two states, the logical state
1, and, for each agent, an inquisitive state map assigning to each situation an
issue interpreted as the issue of the agent in the situation. A valuation will be a
function that assigns to every atomic formula an information state.

Definition 2. An abstract epistemic information model (AEI-model, for short)
is a structure M = 〈S,�, C, ·, 1, {Σa}a∈A, V 〉 such that (a) 〈S,�〉 is a complete
lattice; (b) every state from S is identical to the join of a set of situations, that
is, for any s ∈ S, s =

⊔
Sit(s); (c) 1 is a left-identity with respect to fusion, i.e.

1 · s = s; (d) � and · distribute over arbitrary joins from both directions; (e) C
is symmetric; (f) sC(

⊔
X) iff there is t ∈ X such that sCt; (g) for each agent

a ∈ A, Σa is a function assigning issues to situations and satisfying: if i, j are
situations such that i � j then Σa(i) ⊆ Σa(j); (h) V (p) ∈ S.

In accordance with the standard framework of inquisitive epistemic logic we
will denote the information state of the agent a in the situation i (in a given
AEI-model M) as σa(i) and we define:

σa(i) =
⊔

Σa(i).

Note that each AEI-model is based on a complete lattice and so it is bounded
and has the least element (the meet of all states). We will denote this special
state as 0. This state will represent an absolutely inconsistent state that supports
every piece of information (see Theorem 1(a)).

It might be useful to see in which sense AEI-models generalize structures that
naturally arise from the standard Kripke models for epistemic logic. An epistemic
Kripke model is a structure 〈W, {Ra}a∈A, V 〉, where W is a nonempty set (of
possible worlds); for each agent a ∈ A, Ra is a binary (accessibility) relation on
W such that Ra(w) represents the information state of the agent a in the world
w, i.e. the set of those worlds that are compatible with a’s information in w; and
V is a valuation function such that V (p) ⊆ W . We will not assume any special
properties of the accessibility relations such as “factivity” (w ∈ Ra(w)).

Every Kripke model K = 〈W, {Ra}a∈A, V 〉 determines a particular AEI-
model MK = 〈S,�, C, ·, 1, {Σa}a∈A, V 〉, where S = P(W ) (i.e. the power set of
W ); � is identical with ⊆ (so that situations are singletons); sCt iff s ∩ t �= ∅;
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s · t = s∩ t; 1 = W ; and s ∈ Σa({w}) iff s ⊆ Ra(w). V is a valuation in K as well
as in MK. It can be easily verified that every structure MK that arises in this
way from a Kripke model K satisfies all the conditions required in Definition 2
and thus is an example of an AEI-model.

Formulas of the language LSIDEL are evaluated with respect to states of
AEI-models. The support conditions fixing the semantic behaviour of the logi-
cal symbols from LSIEL are defined as follows (the support conditions for the
dynamic modalities from LSIDEL will be defined in the next section):

– M, s � p iff s � V (p),
– M, s � ⊥ iff s = 0,
– M, s � t iff s � 1,
– M, s � ¬ϕ iff for any t ∈ S, if tCs then M, t � ϕ,
– M, s � ϕ → ψ iff for any t ∈ S, if M, t � ϕ, then M, s · t � ψ,
– M, s � ϕ ∧ ψ iff M, s � ϕ and M, s � ψ,
– M, s � ϕ ⊗ ψ iff for some t, u ∈ S, s � t · u, M, t � ϕ and M, u � ψ,
– M, s � ϕ ∨ ψ iff for some t, u ∈ S, s � t � u, M, t � ϕ and M, u � ψ,
– M, s � ϕ

�

ψ iff M, s � ϕ or M, s � ψ,
– M, s � Iaϕ iff for any i ∈ Sit(s), M, σa(i) � ϕ,
– M, s � Eaϕ iff for any i ∈ Sit(s) and for any t ∈ Σa(i), M, t � ϕ.

We say that ϕ is valid in M if ϕ is supported by the state 1 in M. The set
of states that support ϕ in M will be denoted as ||ϕ||M (where the subscript
M will be usually omitted) and it will be called the proposition expressed by ϕ
in M. The logic of all AEI-models for the language LSIEL will be called SIEL
(Substructural Inquisitive Epistemic Logic). We say that ϕ is SIEL-valid if it is
valid in every AEI-model. We say that two formulas are SIEL-equivalent if in all
AEI-models they are supported by the same states.

In the particular cases of AEI-models generated by Kripke models the above
support conditions are intimately related to standard truth conditions. Let
us consider only the logical symbols ¬,→,∧,∨, Ia with their standard truth
conditions:

– K, w � p iff w ∈ V (p),
– K, w � ¬α iff K, w � α,
– K, w � α ∧ β iff K, w � α and K, w � β,
– K, w � α ∨ β iff K, w � α or K, w � β,
– K, w � α → β iff K, w � α or K, w � β,
– K, w � Iaα iff for all v ∈ Ra(w), K, v � α.

Then the support conditions above correspond to truth conditions in the fol-
lowing sense. For any Kripke model K, any s ⊆ W , and any formula α in the
simplified language for which the truth conditions were just introduced, it holds
that

MK, s � ϕ iff K, w � ϕ , for all w ∈ s.

Let us continue with the description of the most important general features of
our semantics. Note that an implication ϕ → ψ is valid in a model M iff for
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any state s in M, if M, s � ϕ then M, s � ψ. It is also useful to observe
that at situations, the support conditions for the modalities Ia and Ea may be
significantly simplified. Assume that i is a situation of a given AEI-model M.
Then it holds:

(a) M, i � Iaϕ iff M, σa(i) � ϕ,
(b) M, i � Eaϕ iff for any t ∈ Σa(i), M, t � ϕ.

Let us define the set of declarative LSIEL-formulas as the smallest set containing
all atomic formulas, ⊥, t, containing all LSIEL-formulas of the form Iaϕ, Eaϕ
and closed under the connectives ¬,→,∧,⊗,∨. Declarative formulas represent
statements (note that even if ϕ represents a question, Iaϕ and Eaϕ are always
statements). The following theorem expresses the most crucial features of the
support relation.

Theorem 1. In every AEI-model: (a) every LSIEL-formula is supported by the
state 0; (b) the support of LSIEL-formulas is downward persistent, i.e., if a
LSIEL-formula is supported by a state s and t � s then it is also supported
by the state t; (c) the support of declarative LSIEL-formulas is closed under
arbitrary joins, i.e., if a declarative LSIEL-formula is supported by each state
s ∈ X, then it is also supported by the state

⊔
X.

It follows from (a) and (b) of Theorem1 that every LSIEL-formula expresses
an issue. For any LSIEL-formula ϕ we define the informational content of ϕ,
denoted as info(ϕ), as follows:

info(ϕ) =
⊔

||ϕ||.

If ϕ represents a question, info(ϕ) captures the information presupposed by the
question. (For example, the question whether p or q presupposes the information
that p or q.) Now, the meaning of Theorem 1(c) can be interpreted as stating
that declarative formulas express a special kind of issues, namely those issues
that contain their own informational content (info(ϕ) ∈ ||ϕ||). Let us call the
issues that are already resolved by their own presuppositions, i.e. that contain
their own join, declarative propositions. Declarative propositions are semantic
counterparts of statements.

Now, we can present a syntactic characterization of SIEL-validity. We say
that an LSIEL-formula is SIEL-provable if it is provable in the axiomatic sys-
tem formulated in Table 1.4 The system is a basic substructural logic that can be
characterized as non-associative, distributive Full Lambek Logic with a paracon-
sistent negation and with only one implication (of course the second implication
← that is normally present in Full Lambek Logic could be easily added), and
extended with inquisitive disjunction and the epistemic modalities Ia, Ea.5

Theorem 2. For every LSIEL-formula ϕ, ϕ is SIEL-valid if and only if ϕ is
SIEL-provable.
4 In [5], the logic generated by this system is called InqSE.
5 It is discussed in detail in [5] why the distributivity axiom D1 is needed.
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Table 1. Axiomatization of the substructural inquisitive epistemic logic SIEL

Non-modal axioms:

A1 ϕ → ϕ A2 ⊥ → ϕ
A3 (ϕ ∧ ψ) → ϕ A4 (ϕ ∧ ψ) → ψ
A5 ϕ → (ϕ ∨ ψ) A6 ψ → (ϕ ∨ ψ)
A7 (ϕ ∨ ψ) → (ψ ∨ ϕ) A8 (α ∨ α) → α (for declarative α)
A9 ϕ → (ϕ

�

ψ) A10 ψ → (ϕ

�

ψ)

Modal axioms:

ID Ia(ϕ

�

ψ) ↔ (Iaϕ ∨ Iaψ)
IE Iaα ↔ Eaα (for declarative α)

Distributive axioms:

D1 (ϕ ∧ (ψ ∨ χ)) → ((ϕ ∧ ψ) ∨ (ϕ ∧ χ))
D2 (ϕ ⊗ (ψ ∨ χ)) → ((ϕ ⊗ ψ) ∨ (ϕ ⊗ χ))
D3 (ϕ ∧ (ψ

�

χ)) → ((ϕ ∧ ψ)

�

(ϕ ∧ χ))
D4 (ϕ ⊗ (ψ

�

χ)) → ((ϕ ⊗ ψ)

�

(ϕ ⊗ χ))
D5 (ϕ ∨ (ψ

�

χ)) → ((ϕ ∨ ψ)

�

(ϕ ∨ χ))
D6 (α → (ψ

�
χ)) → ((α → ψ)

�

(α → χ)) (for declarative α)

Non-modal rules:

R1 ϕ, ϕ → ψ/ψ R2 ϕ → ψ/(ψ → χ) → (ϕ → χ)
R3 χ → ϕ, χ → ψ/χ → (ϕ ∧ ψ) R4 ϕ → χ, ψ → ϑ/(ϕ ∨ ψ) → (χ ∨ ϑ)
R5 ϕ → (ψ → χ)/(ϕ ⊗ ψ) → χ R6 (ϕ ⊗ ψ) → χ/ϕ → (ψ → χ)
R7 t → ϕ/ϕ R8 ϕ/t → ϕ
R9 ϕ → ¬ψ/ψ → ¬ϕ R10 ϕ → χ, ψ → χ/(ϕ

�

ψ) → χ

Modal rules:

MR1 ϕ → ψ/Eaϕ → Eaψ MR2 Eaϕ ∧ Eaψ/Ea(ϕ ∧ ψ)
MR3 ϕ → ψ/Iaϕ → Iaψ MR4 Iaϕ ∧ Iaψ/Ia(ϕ ∧ ψ)

The following two results express crucial features of SIEL-validity. The first one
is a disjunctive normal form theorem.

Theorem 3. For every LSIEL-formula ϕ there is a finite set of declarative
LSIEL-formulas R(ϕ) = {α1, . . . , αn} s.t. ϕ is SIEL-equivalent to α1

�

. . .

�

αn.

Note that it follows from Theorem 3 that if an LSIEL-formula expresses a declar-
ative proposition it must be SIEL-equivalent to a declarative LSIEL-formula.
Another crucial feature of SIEL-validity is the disjunction property of the inquis-
itive disjunction.



Inquisitive Dynamic Epistemic Logic in a Non-classical Setting 213

Theorem 4. The logic SIEL has the inquisitive disjunction property, that is,
ϕ

�

ψ is SIEL-valid only if ϕ or ψ is SIEL-valid.

Theorem 3 shows that every question in the language corresponds to a disjunctive
question. The set R(ϕ) can be seen as an exhaustive set of direct answers. Theo-
rems 3 and 4 together imply that a question is SIEL-valid iff a direct answer to the
question is SIEL-valid, i.e., iff the question can be resolved by logical means.

4 The Dynamics

The main goal of this paper is to extend the framework presented in the previous
section with the semantics of the dynamic modality [ϕ]. Our treatment of the
dynamic modality is motivated by the framework developed in [4]. As in [4], we
will attempt to characterize the logical behaviour of this modality by reduction
axioms. However, in the substructural setting, we will face some obstacles that
are not present in the classical setting of [4]. To overcome these obstacles we will
employ the auxiliary modality {ϕ}.

Take an arbitrary AEI-model M = 〈S,�, C, ·, 1, {Σa}a∈A, V 〉. Given two
nonempty sets of states X and Y in M, one can define their fusion in the
following way:

X ◦ Y = {u ∈ S | for some s ∈ X, t ∈ Y, u � s · t}.

The result of this operation is always an issue. Assume that the support condi-
tions for a LSIDEL-formula ϕ are already defined so that the set ||ϕ|| of states
supporting the formula in M is determined. We now assume that ϕ might be
publicly uttered. Such a public utterance updates the issues of the agents. The
updated model is defined as follows:

Mϕ = 〈S,�, C, ·, 1, {Σϕ
a }a∈A, V 〉,

where for any situation i we have:

Σϕ
a (i) = Σa(i) ◦ ||ϕ||.

Later on, we will use the following proposition.

Proposition 1. Let M be an AEI-model, i one of its situations, and ϕ any
LSIDEL-formula. Then

⊔
Σϕ

a (i) = σa(i) · info(ϕ).

Proof. The following equations hold:

σa(i) · info(ϕ) =
⊔

Σa(i) · ⊔ ||ϕ|| =
=

⊔{⊔
Σa(i) · t | t ∈ ||ϕ||} =

=
⊔{⊔{s · t | s ∈ Σa(i)} | t ∈ ||ϕ||} =

=
⊔{s · t | s ∈ Σa(i), t ∈ ||ϕ||} =

=
⊔{u ∈ S | for some s ∈ Σa(i), t ∈ ||ϕ||, u � s · t} =

=
⊔

(Σa(i) ◦ ||ϕ||) =
⊔

Σϕ
a (i).
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A public utterance of ϕ modifies the point of evaluation as well as the issues of
the agents so that the semantic clause for [ϕ] can be specified as follows:

M, s � [ϕ]ψ iff Mϕ, s · info(ϕ) � ψ.

This clause generalizes the semantics of the standard public announcement oper-
ator. To see this, take again any epistemic Kripke model K = 〈W, {Ra}a∈A, V 〉.
Consider again the simplified language based on ¬,→,∧,∨, Ia, now also extended
with the public announcement operator [α]. An update of K by a formula α of
this language can be defined as Kα = 〈W, {Rα

a }a∈A, V 〉, where

Rα
a (w) = Ra(w) ∩ info(α).

In this equation, info(α) is just the set of all worlds in which α is true in K. Given
the correspondence between truth and support this is completely in accordance
with the notation introduce above, for the set of all worlds in which α is true in
K is identical to union of all states in MK that support α, i.e. to

⊔ ||α||, which
is exactly how we defined info(α).

The update of a Kripke model is usually defined so that also the set of
worlds W and the valuation V are updated. But this is not an essential aspect of
the semantics. One can easily obtain an equivalent semantics without updating
these two components. Now consider the standard truth condition for public
announcement:

K, w � [α]β iff K, w � α or Kα, w � β,

Now the corresponding support condition in MK is

MK, s � [α]β iff Mα
K, s ∩ info(α) � β.

Under this condition support by a state is still equivalent to truth in all the
worlds of the state. Since fusion · and intersection coincide in MK, this condition
corresponds to our general condition for support of public utterance introduced
above. This reasoning shows that our general semantics of public utterance can
be viewed as a generalization of the standard semantics of public announcement.

The formula {ϕ}ψ behaves like [ϕ]ψ with the difference that the point of eval-
uation is not updated, only the issues of the agents are. The support condition
for this modality is:

M, s � {ϕ}ψ iff Mϕ, s � ψ.

The logic of all AEI-models for the language LSIDEL will be called SIDEL
(Substructural Inquisitive Dynamic Epistemic Logic). We say that ϕ is SIDEL-
valid if it is valid in every AEI-model. Our main goal is to provide an axiomatic
characterization of SIDEL-validity. But first, it will be useful to formulate the
following observation concerning AEI-models.
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Proposition 2. For states s, t, u, v of any AEI-model it holds:

(a) 0 · s = s · 0 = 0,
(b) if s � t and u � v then s · u � t · v.

Proof. (a) It holds that 0 =
⊔ ∅. So, 0 ·s = (

⊔ ∅) ·s =
⊔{x ·s | x ∈ ∅} =

⊔ ∅ = 0.
The case of s · 0 is analogous.

(b) Assume s � t and u � v. Then (s·u)�(t·v) � (s·u)�(t·u)�(s·v)�(t·v) =
(s � t) · (u � v) = t · v.

Let us define the set of declarative LSIDEL-formulas as the smallest set contain-
ing all atomic formulas, the constants ⊥, t, containing all LSIDEL-formulas of
the forms Iaϕ, Eaϕ, closed under the connectives ¬,→,∧,⊗,∨, and closed under
the application of any [ϕ] and any {ϕ}, that is, if ϕ is any LSIDEL-formula and
α a declarative LSIDEL-formula then [ϕ]α and {ϕ}α are declarative LSIDEL-
formulas. From now on, we will use the letters ϕ,ψ, χ, ϑ as variables for arbitrary
LSIDEL-formulas, and α, β as variables for declarative LSIDEL-formulas. Now
we can extend Theorem 1 to the language LSIDEL.

Theorem 5. In every AEI-model: (a) every LSIDEL-formula is supported by
the state 0; (b) the support of LSIDEL-formulas is downward persistent, i.e., if
a LSIDEL-formula is supported by a state s and t � s then it is also supported
by the state t; (c) the support of declarative LSIDEL-formulas is closed under
arbitrary joins, i.e., if a declarative LSIDEL-formula is supported by each state
s ∈ X, then it is supported also by the state

⊔
X.

Proof. The theorem can be proved by induction. The inductive steps for the
logical symbols from LSIEL are as in the proof of Theorem 1. We need to go
through the inductive steps concerning the dynamic modalities. The inductive
steps for {ϕ} are straightforward. We will consider only the steps for [ϕ]. Take
an AEI-model M and assume that the claims (a)-(c) generally hold for some
arbitrary LSIDEL-formulas ϕ,ψ, and some declarative LSIDEL-formula α.

(a) We assume that Mϕ, 0 � ψ. So, due to Proposition 2(a), we have also
Mϕ, 0 · info(ϕ) � ψ, i.e. M, 0 � [ϕ]ψ.

(b) Assume that M, s � [ϕ]ψ and t � s. The former assumption amounts
to Mϕ, s · info(ϕ) � ψ. The inductive assumption and monotonicity of fusion
(Proposition 2(b)) imply Mϕ, t · info(ϕ) � ψ, and hence M, t � [ϕ]ψ.

(c) Assume M, s � [ϕ]α, for every s ∈ X. That is, Mϕ, s · info(ϕ) � α,
for every s ∈ X, and thus it follows from the inductive assumption for α that
Mϕ,

⊔
s∈X(s · info(ϕ)) � α. Due to distributivity of fusion over arbitrary joins,

Mϕ, (
⊔

X) · info(ϕ) � α, and hence M,
⊔

X � [ϕ]α.

We will often use the following proposition that shows that the support condition
for implication can be significantly simplified if the consequent of the implication
is declarative.

Proposition 3. For any state s of any AEI-model M, any LSIDEL-formula ϕ,
and any declarative LSIDEL-formula α:

M, s � ϕ → α iff M, s · info(ϕ) � α.
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Proof. First, assume M, s � ϕ → α. That means that M, s · t � α, for every t ∈
||ϕ||. Since α is declarative, it follows from Theorem 5(c) that M, s·info(ϕ) � α.

Second, assume M, s · info(ϕ) � α. Take any t such that M, t � ϕ. Then
(by Proposition 2(b)) s · t � s · info(ϕ), and so (by Theorem 5(b)) M, s · t � α.
It follows that M, s � ϕ → α.

In analogy to the standard public announcement logic PAL we would like to
characterize the modality [ϕ] by reduction axioms. However, here we have to
face the problem that the standard reduction axioms rely on some features of
classical logic that are not preserved in our substructural setting. In particular
the standard reduction axioms for implication ([ϕ](ψ → χ) ↔ ([ϕ]ψ → [ϕ]χ))
and negation ([ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ)), are not SIDEL-valid.

For example, as in PAL, [p](q → r) is SIDEL-equivalent to p → (q → r), and
[p]q → [p]r to (p → q) → (p → r). However, in contrast to classical logic on
which PAL is based, p → (q → r) is not SIDEL-equivalent to (p → q) → (p → r),
so the equivalence of [p](q → r) and [p]q → [p]r fails.

To show how the equivalence between p → (q → r) and (p → q) → (p → r)
fails in our semantics consider the following artificial example of an AEI-model
M = 〈S,�, C, ·, 1, {Σa}a∈A, V 〉, where S = P(ω), i.e. states are sets of natural
numbers; � is the subset relation; C is empty; fusion is defined as follows: s · t =
{m+n | m ∈ s, n ∈ t}; 1 = {0}; for any a ∈ A and any situation i , Σa(i) = {∅};
and V is a valuation such that V (p) = V (q) = {1}, and V (r) = {2}. Then it can
be shown that M is indeed an AEI-model. It holds that the state {0} supports
p → (q → r). To show this we can use Proposition 3: M, {0} � p → (q → r) iff
M, ({0} · info(p)) · info(q) � r, iff M, ({0} · {1}) · {1} � r iff M, {2} � r which
holds. Moreover, {0} supports p → q: M, {0} � p → q iff M, {1} � q, which also
holds. But {0} does not support p → r: M, {0} � p → r iff M, {1} � r, which
does not hold.

To show that [ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ) fails, we can consider the following
simple instance: [p]¬q ↔ (p → ¬[p]q). As in PAL, [p]¬q is SIDEL-equivalent to
p → ¬q and p → ¬[p]q to p → ¬(p → q). Of course, p → ¬q and p → ¬(p → q)
are equivalent in classical logic but they are not SIDEL-equivalent. To show a
concrete counterexample, consider the AEI-model M introduced in the previous
paragraph and modify the definition of the compatibility relation C: we now
define sCt iff 0 ∈ s and 1 ∈ t, or 1 ∈ s and 0 ∈ t. Let us denote this modified
structure as N . It can be observed that N is indeed an AEI-model. Moreover,
it can be shown that N , {0} � p → ¬q but N , {0} � p → ¬(p → q).

To overcome the failure of standard reduction axioms, we will exploit the
auxiliary modality {ϕ}. We will use axioms allowing to reduce [ϕ] to {ϕ} and
further axioms allowing to eliminate {ϕ}. Moreover, we will need rules that will
guarantee that provably equivalent formulas are universally replaceable. The
whole system of the extra axioms and rules is formulated in Table 2.

We say that an LSIDEL-formula is SIDEL-provable if it is provable in the
axiomatic system consisting of axioms and rules from Tables 1 and 2. We say
that ϕ and ψ are SIDEL-provably equivalent if ϕ ↔ ψ is SIDEL-provable. We
will need to show that SIDEL-provably equivalent formulas are replaceable. Note
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Table 2. Reduction axioms and rules of SIDEL

Reduction axioms for [ϕ]:

RA1 [ϕ](ψ

�

χ) ↔ ([ϕ]ψ

�

[ϕ]χ)
RA2 [ϕ]α ↔ (ϕ → {ϕ}α) (for declarative α)

Reduction axioms for {ϕ}:

RA3 {ϕ}p ↔ p
RA4 {ϕ}⊥ ↔ ⊥
RA5 {ϕ}t ↔ t
RA6 {ϕ}¬ψ ↔ ¬{ϕ}ψ
RA7 {ϕ}(ψ → χ) ↔ ({ϕ}ψ → {ϕ}χ)
RA8 {ϕ}(ψ ∧ χ) ↔ ({ϕ}ψ ∧ {ϕ}χ)
RA9 {ϕ}(ψ ⊗ χ) ↔ ({ϕ}ψ ⊗ {ϕ}χ)
RA10 {ϕ}(ψ ∨ χ) ↔ ({ϕ}ψ ∨ {ϕ}χ)
RA11 {ϕ}(ψ �

χ) ↔ ({ϕ}ψ

� {ϕ}χ)
RA12 {ϕ}Eaψ ↔ Ea(ϕ → {ϕ}ψ)
RA13 {ϕ}Iaα ↔ Ia(ϕ → {ϕ}α) (for declarative α)

Monotonicity rules for dynamic modalities:

DR1 ϕ → ψ/[χ]ϕ → [χ]ψ DR2 ϕ ↔ ψ/[ϕ]χ ↔ [ψ]χ
DR3 ϕ → ψ/{χ}ϕ → {χ}ψ DR4 ϕ ↔ ψ/{ϕ}χ ↔ {ψ}χ

that an alternative formulation of the axiomatic system would be obtained by
replacing the rules DR1-DR4 with a rule allowing directly the replacement of
equivalents. Nevertheless, with the rules DR1-DR4 we can show that this rule is
admissible in the system.

Theorem 6. Assume that ϕ,ψ are SIDEL-provably equivalent LSIDEL-
formulas. Assume that ϑ is a LSIDEL-formula containing ϕ as a subformula
and ϑ[ψ/ϕ] is the result of replacing an occurrence of ϕ in ϑ with ψ. Then ϑ
and ϑ[ψ/ϕ] are SIDEL-provably equivalent.

Proof. It is necessary to show that every operator in the language preserves
provable equivalences. For example, in the case of → that means that if ϕ ↔ ψ
is SIDEL-provable then, for any LSIDEL-formula χ, the formulas (ϕ → χ) ↔
(ψ → χ) and (χ → ϕ) ↔ (χ → ψ) are SIDEL-provable. All operators of the
language LSIEL have this property due to the axioms and rules from Table 1.
For the dynamic operators this property says that if ϕ ↔ ψ is SIDEL-provable
then, for any LSIDEL-formula χ, [χ]ϕ ↔ [χ]ψ, [ψ]χ ↔ [ϕ]χ, {χ}ϕ ↔ {χ}ψ, and
{ψ}χ ↔ {ϕ}χ are SIDEL-provable. This is guaranteed by the rules DR1-DR4.

We will also need the disjunctive normal form theorem for SIDEL-provability.
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Theorem 7. For each LSIDEL-formula ϕ there is a finite set of declarative
LSIDEL-formulas R(ϕ) = {α1, . . . , αn} such that ϕ is SIDEL-provably equivalent
to α1

�

. . .

�

αn.

Proof. This can be proved, like Theorem3, by induction on the complexity of ϕ.
We have to add to the proof of Theorem3 just the inductive steps for [ϕ] and
{ϕ}. But these steps can be obtained using the axioms RA1 and RA11.

Now we can show that the axioms from Table 2 allow us to eliminate the dynamic
modalities.

Theorem 8. For any LSIDEL-formula ϕ there is an LSIEL-formula ϕ∗ such
that ϕ and ϕ∗ are SIDEL-provably equivalent.

Proof. We will proceed in two steps. In the first step, we will find for any LSIDEL-
formula ϕ an SIDEL-provably equivalent LSIDEL-formula ϕ◦ that does not con-
tain any occurrence of the dynamic modality [ψ] (for any ψ). In the second step,
we will transform ϕ◦ into the SIDEL-provably equivalent LSIEL-formula ϕ∗ by
eliminating all occurrences of the modality {ψ}.

Take any subformula of ϕ that is of the form [ψ]χ. According to Theorem 7
there are LSIEL-formulas α1, . . . , αn such that χ is SIDEL-provably equivalent
to α1

�

. . .

�

αn. Hence, [ψ]χ must be SIDEL-provably equivalent to the following:

[ψ](α1

�

. . .
�

αn) (Theorem 7),
[ψ]α1

�

. . .
�

[ψ]αn (RA1),
(ψ → {ψ}α1)

�

. . .

�

(ψ → {ψ}αn) (RA2).

In this way we can, step by step, eliminate all occurrences of the modality [ψ]
from ϕ obtaining the formula ϕ◦.

In the formula ϕ◦ we can recursively eliminate, using the axioms RA3-RA13,
all occurrences of the modality {ψ}. By this elimination we obtain the LSIEL-
formula ϕ∗. The only case that needs to be discussed is the case {ϕ}Iaψ with
non-declarative ψ. Assume that ψ is SIDEL-provably equivalent to β1

�

. . .

�

βm,
and thus {ϕ}Iaψ is SIDEL-provably equivalent to {ϕ}Ia(β1

�

. . .

�

βm). The last
formula is SIDEL-provably equivalent (due to the axiom ID from Table 1 and
RA10 from Table 2) to {ϕ}Iaβ1 ∨ . . . ∨ {ϕ}Iaβm. Now we can apply RA13.

Let us illustrate the elimination with a simple example. Consider the formula
ϕ = [Iap]Ib(q

�

r). In this case the dynamic modality can be eliminated in the
following steps:

1. [Iap]Ib(q

�

r)
2. Iap → {Iap}Ib(q

�

r) (RA2, Table 2)
3. Iap → {Iap}(Ibq ∨ Ibr) (ID, Table 1)
4. Iap → ({Iap}Ibq ∨ {Iap}Ibr) (RA10, Table 2)
5. Iap → (Ib(Iap → {Iap}q) ∨ Ib(Iap → {Iap}r)) (RA13, Table 2)
6. Iap → (Ib(Iap → q) ∨ Ib(Iap → r)) (RA3, Table 2)
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The step 2 corresponds to ϕ◦ in the proof of Theorem8 and the formula in the
step 6 corresponds to ϕ∗ that is already in the language LSIEL.
The following theorem shows that the system is sound with respect to our
semantics.

Theorem 9. All instances of axioms RA1-RA13 are SIDEL-valid. The rules
DR1-DR4 preserve SIDEL-validity.

Proof. We will discuss only some of the cases.
RA1: M, s � [ϕ](ψ

�

χ) iff Mϕ, s · info(ϕ) � ψ
�

χ iff Mϕ, s · info(ϕ) � ψ
or Mϕ, s · info(ϕ) � χ iff M, s � [ϕ]ψ or M, s � [ϕ]χ iff M, s � [ϕ]ψ

�

[ϕ]χ.
RA2: M, s � [ϕ]α iff Mϕ, s · info(ϕ) � α iff M, s · info(ϕ) � {ϕ}α iff

M, s � ϕ → {ϕ}α.
RA3: M, s � {ϕ}p iff Mϕ, s � p iff M, s � p.
RA6: M, s � {ϕ}¬ψ iff Mϕ, s � ¬ψ iff for any t, if sCt then Mϕ, t � ψ iff

for any t, if sCt then M, t � {ϕ}ψ iff M, s � ¬{ϕ}ψ.
RA7: M, s � {ϕ}(ψ → χ) iff Mϕ, s � ψ → χ iff for any t, if Mϕ, t � ψ

then Mϕ, s · t � χ iff for any t, if M, t � {ϕ}ψ then M, s · t � {ϕ}χ iff
M, s � {ϕ}ψ → {ϕ}χ.

RA12: M, s � {ϕ}Eaψ iff Mϕ, s � Eaψ iff for any i ∈ Sit(s), for any
t ∈ Σa(i) ◦ ||ϕ||, Mϕ, t � ψ iff for any i ∈ Sit(s), for any t ∈ Σa(i) ◦ ||ϕ||,
M, t � {ϕ}ψ iff for any i ∈ Sit(s), for any u ∈ Σa(i) and for any v, if M, v � ϕ
then M, u ·v � {ϕ}ψ iff for any i ∈ Sit(s), for any u ∈ Σa(i), M, u � ϕ → {ϕ}ψ
iff M, s � Ea(ϕ → {ϕ}ψ).

RA13: M, s � {ϕ}Iaα iff Mϕ, s � Iaα iff for any i ∈ Sit(s), Mϕ,
⊔

Σϕ
a (i) �

α iff for any i ∈ Sit(s), M,
⊔

Σϕ
a (i) � {ϕ}α iff (using Proposition 1) for any

i ∈ Sit(s), M, σa(i)·info(ϕ) � {ϕ}α iff for any i ∈ Sit(s), M, σa(i) � ϕ → {ϕ}α
iff M, s � Ia(ϕ → {ϕ}α).

We have explained above that epistemic Kripke models determine particular
AEI-models. Theorem 9 shows that the axioms and rules presented in Table 2
are sound with respect all AEI-models, and thus also with respect to those
AEI-models that are determined by the Kripke models of the standard public
announcement logic PAL. This means that if we take any formula α of the lan-
guage of PAL (it can be a formula using only the operators ¬,→,∧,∨, Ia, [β])
then α is equivalent to α∗ also in PAL. In other words, the procedure of eliminat-
ing the public utterance modality that we introduced in this paper and that is
based on the axioms RA1-RA13 can be used also in the context of PAL, though
it differs from the standardly used procedure based on the standard reduction
axioms.

The following theorem provides a sound and complete syntactic characteri-
zation of SIDEL-validity through SIDEL-provability.

Theorem 10. For every LSIDEL-formula ϕ, ϕ is SIDEL-valid if and only if ϕ
is SIDEL-provable.
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Proof. Soundness, i.e. the right-to-left direction, is given by soundness of the
SIEL-axioms and rules, and by Theorem9. Completeness, i.e. the left-to-right
direction, can be proved as follows: Assume that ϕ is SIDEL-valid. Due to The-
orem 8, ϕ is SIDEL-provably equivalent to the LSIEL-formula ϕ∗. Due to sound-
ness of the system, ϕ∗ must be also SIDEL-valid. Since SIDEL is a conservative
extension of SIEL, ϕ∗ is SIEL-valid and hence SIEL-provable. It follows that ϕ∗,
and thus also ϕ, is SIDEL-provable.

Our next application of the previous results shows that the logic SIDEL has the
inquisitive disjunction property.

Theorem 11. The logic SIDEL has the inquisitive disjunction property, that is,
ϕ

�

ψ is SIDEL-valid only if ϕ or ψ is SIDEL-valid.

Proof. Assume ϕ

�

ψ is SIDEL-valid. Then also ϕ∗ �

ψ∗ is SIDEL-valid, and
thus SIEL-valid. Since SIEL has the inquisitive disjunction property, ϕ∗ or ψ∗ is
SIEL-valid. It follows that ϕ or ψ is SIDEL-valid.

5 Conclusion

To sum up, we have developed a logic SIDEL of public announcement of state-
ments and public utterance of questions based on a basic substructural logic. We
focused on one particular minimal logic but the framework is quite flexible and
can be adapted easily to other substructural logics. It was shown in [6,7] how to
obtain semantics for inquisitive versions of relevant logics, fuzzy logics and other
substructural logics within the framework of information models. These logics
could be further enriched with the epistemic modalities Ia, Ea and the dynamic
modalities [ϕ], {ϕ} using the same reduction axioms and the semantic approach
elaborated in this paper.

The semantics of SIDEL can be viewed as a generalization of the semantics of
the inquisitive dynamic epistemic logic IDEL developed in [4]. This observation
implies that our reduction axioms are valid even in the context IDEL and hence
also in the context of PAL since IDEL just extends PAL with the inquisitive
dimension. In other words, the method of elimination of the dynamic modalities
that we employed could be used also in IDEL and PAL in the sense that for any
formula ϕ from the language of IDEL (or PAL), the corresponding formula ϕ∗,
obtained by our reduction axioms from ϕ, is equivalent to ϕ not only in SIDEL
but also in IDEL (or PAL).

On the other hand, as we showed above, in the context of SIDEL we cannot
use the reduction axioms that are normally used for IDEL (or PAL). To be more
concrete, IDEL uses the reduction axioms from Table 3. From these axioms only
!Atom, !⊥, !∧, !

�

, and !Ia are SIDEL-valid. However, the axioms !→ and !Ea are
invalid in SIDEL.
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Table 3. Reduction axioms of IDEL used in [3]

!Atom [ϕ]p ↔ (ϕ → p)
!⊥ [ϕ]⊥ ↔ (ϕ → ⊥)
!∧ [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ)
!→ [ϕ](ψ → χ) ↔ ([ϕ]ψ → [ϕ]χ)
!

�

[ϕ](ψ

�

χ) ↔ ([ϕ]ψ

�

[ϕ]χ)
!Ea [ϕ]Eaψ ↔ (ϕ → Ea(ϕ → [ϕ]ψ))
!Ia [ϕ]Iaψ ↔ (ϕ → Ia[ϕ]ψ)

In future work we would like to explore whether our framework could be also
seen as a generalization of Dynamic Logic of Questions developed in [8].
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Abstract. A shallow semantical embedding for public announcement
logic with relativized common knowledge is presented. This embedding
enables the first-time automation of this logic with off-the-shelf theo-
rem provers for classical higher-order logic. It is demonstrated (i) how
meta-theoretical studies can be automated this way, and (ii) how non-
trivial reasoning in the target logic (public announcement logic), required
e.g., to obtain a convincing encoding and automation of the wise men
puzzle, can be realized. Key to the presented semantical embedding—
in contrast, e.g., to related work on the semantical embedding of nor-
mal modal logics—is that evaluation domains are modeled explicitly and
treated as additional parameter in the encodings of the constituents of
the embedded target logic, while they were previously implicitly shared
between meta logic and target logic.

Keywords: Public announcement logic · Relativized common
knowledge · Semantical embedding · Higher-order logic · Proof
automation

1 Introduction

Previous work has studied the application of a universal (meta-)logical reasoning
approach [4,5] for solving a prominent riddle in epistemic reasoning, known as
the wise men puzzle, on the computer [5]. The solution presented there puts a
particular emphasis on the adequate modeling of (ordinary) common knowledge
and it also illustrates the elegance and the practical relevance of the shallow
semantical embedding approach (in classical higher-order logic) [4], when being
utilized within modern proof assistant systems such as Isabelle/HOL [20]. How-
ever, this work nevertheless falls short, since it did not convincingly address
the interaction dynamics between the involved agents. To do so, we extend and
adapt in this paper the universal (meta-)logical reasoning approach for “public
announcement logic” and we demonstrate how it can be adapted to achieve a
convincing encoding and automation of the wise men puzzle in Isabelle/HOL
that also captures the interaction dynamics of the wise men puzzle scenario. In
more general terms, we present the first automation of public announcement
logic with relativized common knowledge, and we demonstrate that, and how,
this logic can be seen and elegantly handled as a fragment of classical higher-
order logic. Key to the presented extension of the shallow semantical embedding
c© Springer Nature Switzerland AG 2020
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approach is that the evaluation domains of the embedded target logic (public
announcement logic with relativized common knowledge) are no longer implic-
itly shared with the meta-logic (classical higher-order logic), but they are now
explicitly modeled as an additional parameter in the encoding of the embedded
logics constituents.

This paper is structured as follows: Sect. 2 briefly recaps classical higher-
order logic (Church’s type theory), and Sect. 3 sketches public announcement
logic with relativized common knowledge. The main contributions of this paper
are then presented in Sect. 4, where a shallow semantical embedding of public
announcement logic in classical higher-order logic is studied. In Sect. 5 the newly
acquired embedding is tested and applied to achieve an encoding and automation
of the prominent wise men puzzle. Section 6 discusses related work and Sect. 7
concludes the paper.

2 Classical Higher-Order Logic

We briefly recap classical higher-order logic (HOL), respectively Church’s simple
theory of types [6,10], which is a logic defined on top of the simply typed lambda
calculus. The presentation is partly adapted from Benzmüller [3]. For further
information on the syntax and semantics of HOL we refer to [7].

Syntax of HOL. We start out with defining the set T of simple types by the
following abstract grammar: α, β := o | i | (α → β). Type o denotes a bivalent set
of truth values, containing truth and falsehood, and i denotes a non-empty set of
individuals. Further base types are optional. → is the function type constructor,
such that (α → β) ∈ T whenever α, β ∈ T . We may generally omit parentheses.

The terms of HOL are defined by the following abstract grammar:

s, t := pα | Xα | (λXαsβ)α→β | (sα→βtα)β

where α, β, o ∈ T . The pα ∈ Cα are typed constants and the Xα ∈ Vα are typed
variables (distinct from the pα). If sα→β and tα are HOL terms of types α → β
and α, respectively, then (sα→βtα)β , called application, is an HOL term of type
β. If Xα ∈ Vα is a typed variable symbol and sβ is an HOL term of type β, then
(λXαsβ)α→β , called abstraction, is an HOL term of type α → β. The type of each
term is given as a subscript. We call terms of type o formulas. As primitive logical
connectives we choose ¬o→o,∨o→o→o, =α→α→α and Π(α→o)→o. Other logical
connectives can be introduced as abbreviations; e.g. −→o→o→o= λXoλYo¬X∨Y .

Semantics of HOL. A frame D for HOL is a collection {Dα}α∈T of nonempty
sets Dα, such that Do = {T, F} (for true and false). Di is chosen freely and
Dα→β are collections of functions mapping Dα into Dβ .

A model for HOL is a tuple M = 〈D, I〉, where D is a frame, and I is a
family of typed interpretation functions mapping constant symbols pα ∈ Cα to
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appropriate elements of Dα, called the denotation of pα. The logical connectives
¬,∨,Π and = are always given their expected standard denotations:

I(¬o→o) = not ∈ Do→o s.t. not(T) = F and not(F) = T
I(∨o→o→o) = or ∈ Do→o→o s.t. or(a,b) = T iff (a = T or b = T)
I(=α→α→o) = id ∈ Dα→α→o s.t. for all a,b ∈ Dα, id(a,b) = T

iff a is identical to b.
I(Π(α→o)→o) = all ∈ D(α→o)→o s.t. for all s ∈ Dα→o, all(s) = T

iff s(a) = T for all a ∈ Dα

A variable assignment g maps variables Xα to elements in Dα. g[d/W ] denotes
the assignment that is identical to g, except for variable W , which is now mapped
to d.

The denotation �sα�M,g of an HOL term sα on a model M = 〈D, I〉 under
assignment g is an element d ∈ Dα defined in the following way:

�pα�M,g = I(pα)
�Xα�M,g = g(Xα)
�(sα→βtα)β�M,g = �sα→β�M,g(�tα�M,g)
�(λXαsβ)α→β�M,g = the function f from Dα to Dβ

s.t. f(d) = �sβ�M,g[d/Xα] for all d ∈ Dα

In a standard model a domain Dα→β is defined as the set of all total functions
from Dα to Dβ : Dα→β = {f | f : Dα → Dβ}. In a Henkin model (or general
model) [14] function spaces are not necessarily required to be the full set of
functions: Dα→β ⊆ {f | f : Dα → Dβ}. However, we require that the valuation
function remains total, so that every term denotes.

A HOL formula so is valid in an Henkin model M under assignment g if
and only if �so�

M,g= T ; also denoted by M, g |=HOL so. A HOL formula so is
called valid in M, denoted by M |=HOL so, iff M, g |=HOL so for all assignments
g. Moreover, a formula so is called valid, denoted by |=HOL so, if and only if so is
valid in all Henkin models M.

Due to Gödel [13] a sound and complete mechanization of HOL with stan-
dard semantics cannot be achieved. For HOL with Henkin semantics sound and
complete calculi exist; cf. e.g. [7,8] and the references therein.

Each standard model is obviously also a Henkin model. Consequently, when
a HOL formula is Henkin-valid, it is also valid in all standard models.

3 Public Announcement Logic

The most important concepts and definitions of a public announcement logic
(PAL) with relativized common knowledge are depicted. For more details we
refer to [16,23].
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Before exploring these definitions some general descriptions of the modeling
approach might be worthwhile. We use a graph-theoretical structure, called epis-
temic models, to represent knowledge. Epistemic models describe situations in
terms of possible worlds. A world represents one possibility about how the cur-
rent situation can be. Each agent is assumed to entertain a number of these pos-
sibilities. Knowledge is described using an accessibility relation between worlds,
rather than directly representing the agent’s information.

Let A be a set of agents and P a set of atomic propositions. Atomic propo-
sitions are intended to describe ground facts. We use a set W to denote possible
worlds and a valuation function V : P → ℘(W ) that assigns a set of worlds to
each atomic proposition. Vice versa, we may identify each world with the set of
propositions that are validated in them.

Definition 1 (Epistemic Model). Let A be a (finite) set of agents and P a
(finite or countable) set of atomic propositions. An Epistemic Model is a triple
M = 〈W, {Ri}i∈A, V 〉 where W �= ∅, Ri ⊆ W × W is an accessibility relation
(for each i ∈ A), and V : P → ℘(W ) is a valuation function (℘(W ) is the
powerset of W ).

Information of agent i at world w can now be defined as: Ri(w) = {v ∈
W | wRiv}. Having a separate (accessibility) relation for each agent enables
them to have their own viewpoints.

Next, we introduce the syntax of our base epistemic logic as the set of sen-
tences generated by the following grammar (where p ∈ P and i ∈ A):

ϕ,ψ := p | ¬ϕ | ϕ ∨ ψ | Kiϕ

We also introduce the abbreviations ϕ∧ψ := ¬(¬ϕ∨¬ψ) and ϕ → ψ := ¬ϕ∨ψ.

Definition 2 (Truth at world w). Given an epistemic model M =
〈W, {Ri}i∈A, V 〉. For each w ∈ W,ϕ is true at world w, denoted M, w |= ϕ, is
defined inductively as follows:

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w �|= ϕ
M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ
M, w |= Kiϕ iff for all v ∈ W , if wRiv then M, v |= ϕ

The formula Kiϕ expresses that “Agent i knows ϕ”. This describes knowledge
as an all-or-nothing definition. If we postulate that agent i knows ϕ, we say that
ϕ is true throughout all worlds in agents i’s range of considerations.

Satisfiabilty of a formula ϕ for a model M = 〈W, {Ri}i∈A, V 〉 and a world
w ∈ W is expressed by writing that M, w |= ϕ. We define V M(ϕ) = {w ∈
W | M, w |= ϕ}. Formula ϕ is valid if and only if for all M and for all worlds
w we have M, w |= ϕ.

Our modal logic above (corresponding to the normal modal logic K) is not
yet sufficiently suited to encode epistemic reasoning. Therefore, additional con-
ditions (reflexivity, transitivity and euclideaness) are imposed on the accessibil-
ity relations. This can e.g. be achieved by postulating the following principles,
resp. axiom schemata (in a Hilbert-style proof system).
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Assumption Formula Property
T Truth Kiϕ → ϕ Reflexive
4 Positive Introspection Kiϕ → KiKiϕ Transitive
5 Negative Introspection ¬Ki → Ki¬Kiϕ Euclidean

We add public announcements [18] to our logic. The objective is to formulate an
operation that transforms the epistemic model such that all agents find out that
ϕ is true. This is achieved by taking the model M and discarding all worlds in
which ϕ is false. Afterwards all agents will only consider worlds in which ϕ is
true. Because of the publicity of the announcement all agents are aware of the
fact that all other agents know that ϕ holds true afterwards.

Definition 3 (Public Announcement). Suppose that M = 〈W, {Ri}i∈A, V 〉
is an epistemic model and ϕ is a formula (in the language of our base logic). After
all the agents find out that ϕ is true (i.e., ϕ is publicly announced), the resulting
model is M!ϕ = 〈W !ϕ, {R!ϕ

i }i∈A, V !ϕ〉 where W !ϕ = {w ∈ W | M, w |= ϕ},
R!ϕ

i = Ri ∩ (W !ϕ × W !ϕ) for all i ∈ A, and V !ϕ(p) = V (p) ∩ W !ϕ for all p ∈ P.
To say that “ψ is true after the announcement of ϕ” is represented as [!ϕ]ψ.

Truth for this new operator is defined as:

M, w |= [!ϕ]ψ iff M, w �|= ϕ or M!ϕ, w |= ψ

We conclude this section with the introduction of notions for group knowledge.
Mutual knowledge, often stated as everyone knows, describes knowledge that

each member of the group holds. Usually, it is defined for a group of agents G ⊆ A
as EGϕ :=

∧
i∈G Kiϕ. Equivalently, a new relation can be introduced to express

mutual knowledge with the knowledge operator.

Definition 4 (Mutual Knowledge). Let G ⊆ A be a group of agents. Let
RG =

⋃
i∈G Ri. The truth clause for mutual knowledge is:

M, w |= EGψ iff for all v ∈ W , if wRGv then M, v |= ψ

Still, there is a distinction to make between everyone knows ϕ and it is common
knowledge that ϕ. A statement p is common knowledge when all agents know p,
know that they all know p, know that they all know that they all know p, and so
ad infinitum. Relativized common knowledge was introduced by van Benthem,
van Eijck and Kooi [22] as a variant of common knowledge for dynamic epistemic
logics. As the name suggests knowledge update is then treated as a relativization.

Definition 5 (Relativized Common Knowledge). Let G ⊆ A be a group of
agents. Let RG =

⋃
i∈G Ri. The truth clause for relativized common knowledge

is:
M, w |= CG(ϕ|ψ) iff for all v ∈ W , if w(Rϕ

G)+v then M, v |= ψ

where Rϕ
G = RG ∩ (W×V M(ϕ)), and (Rϕ

G)+ denotes the transitive closure of
Rϕ

G.
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Intuitively, CG(ϕ|ψ) expresses, that after ϕ is announced, ψ becomes common
knowledge in the group. This means, that every path from w, that is accessible
using the agent’s relations through worlds in which ϕ is true, must end in a
world in which ψ is true. Ordinary common knowledge of ϕ can be abbreviated
as CG(�|ϕ), where � denotes an arbitrary tautology.

In the remainder we use PAL to refer to the depicted logic consisting of modal
logic K, extended by the principles T45, public announcement and relativized
common knowledge.

4 Modeling PAL as a Fragment of HOL

A shallow semantical embedding (SSE) of a target logic into HOL provides a
translation between the two logics in such a way that the former logic is identified
and characterized as a proper fragment of the latter.1 Once such an SSE is
obtained, all that is needed to prove (or refute) conjectures in the target logic is
to provide the SSE, encoded in an input file, to the HOL prover in addition to
the encoded conjecture. We can then use the HOL prover as-is, without making
any changes to its source code, and use it to solve problems in our target logic.

4.1 Shallow Semantical Embedding

To define an SSE for target logic PAL we lift the type of propositions in order
to explicitly encode their dependency on possible worlds; this is analogous to
prior work [4,5]. In order to capture the model-changing behavior of PAL we
additionally introduce world domains (sets of worlds) as parameters/arguments
in the encoding. The rationale thereby is to be able to suitably constrain, and
recursively pass-on, these domains after each model changing action.

PAL formulas are thus identified in our semantical embedding with certain
HOL terms (predicates) of type (i → o) → i → o. They can be applied to
terms of type i → o, which are assumed to denote evaluation domains, and
subsequently to terms of type i, which are assumed to denote possible worlds.
That is, the HOL type i is identified with a (non-empty) set of worlds, and the
type i → o, abbreviated by σ, is identified with a set of sets of worlds, i.e., a set
of evaluation domains. Type (i → o) → i → o is abbreviated as τ , and type α is
an abbreviation for i → i → o, the type of accessibility relations between worlds.

For each propositional symbol pi of PAL, the corresponding HOL signature
is assumed to contain a corresponding constant symbol pi

σ, which is (rigidly)
denoting the set of all those worlds in which pi holds. We call the pi

σ σ-type-
lifted propositions. Moreover, for k = 1, . . . , |A| the HOL signature is assumed to
contain the constant symbols r1α, . . . , r

|A|
α . Without loss of generality, we assume

that besides those constants symbols and the primitive logical connectives of
HOL, no other constant symbols are given in the signature of HOL.

1 The SSE technique is not be confused with higher-order abstract syntax [17].
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As a simplifying assumption in this ongoing work (which has a particular
focus on an automation of the Wise Men Puzzle in PAL) we continue with
choosing |A| = 3. (A generalization for arbitrary A is straightforward).

The mapping ·� translates a formula ϕ of PAL into a term ϕ� of HOL of
type τ . The mapping is defined recursively:

pj� = (A(pj
σ))τ

¬ϕ� = ¬τ→τϕ�
ϕ ∨ ψ� = ∨τ→τ→τϕ�ψ�

K rk ϕ� = Kα→τ→τ rk
α ϕ�

[!ϕ]ψ� = [! · ] ·τ→τ→τ ϕ�ψ�
C(ϕ|ψ)� = C(·|·)τ→τ→τ ϕ�ψ�

Operator A(·), which evaluates atomic formulas, is defined as follows:

A·σ→τ = λAσλDσλXi(D X ∧ A X)

As a first argument it accepts a σ-type-lifted proposition Aσ, which are rigidly
interpreted. As a second argument it accepts an evaluation domain Dσ, that
is, an arbitrary subset of the domain associated with type σ. And as a third
argument it accepts a current world. It then checks whether (i) the current
world is a member of evaluation domain Dσ and (ii) whether the σ-type-lifted
proposition Aσ holds in the current world.

The other logical connectives of PAL, except for [! · ]·τ→τ→τ , are now defined
in a way so that they simply pass-on the evaluation domains as parameters to the
atomic-level. Only [! · ]·τ→τ→τ is modifying, in fact, constraining, the evaluation
domain it passes on, and it does this in the expected way (cf. Definition 3):

¬τ→τ = λAτλDσλXi¬(A D X)
∨τ→τ→τ = λAτλBτλDσλXi(A D X ∨ B D X)
Kα→τ→τ= λRαλAτλDσλXi∀Yi((D Y ∧ R X Y ) −→ A D Y )

[! · ]·τ→τ→τ = λAτλBτλDσλXi(¬(A D X) ∨ (B (λYi D Y ∧ A D Y ) X))

To model C(·|·)τ→τ→τ we reuse the following operations on relations; cf. [4,5].

transitiveα→o = λRα∀Xi∀Yi∀Zi(¬(R X Y ∧ R Y Z) ∨ R X Z)
intersectionα→α→α = λRαλQαλXiλYi(R X Y ∧ Q X Y )

unionα→α→α = λRαλQαλXiλYi(R X Y ∨ Q X Y )
subα→α→o = λRαλQα∀Xi∀Yi(¬R X Y ∨ Q X Y )

tcα→α = λRαλXiλYi∀Qα

(¬transitive Q ∨ (¬sub R Q ∨ Q X Y ))

Additionally, EVR is defined as the union of three agents r1, r2 and r3 of type α.
EVR can then be used as a relation, e.g., for the knowledge operator to describe
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mutual knowledge of the three agents. But most importantly, we need this rela-
tion in order to encode relativized common knowledge.

EVRα = union(union r1 r2) r3

We want to remark that a general higher-order definition for the union of a
set of relations could alternatively be introduced first and then be applied to
our concrete set of relations R consisting of r1, r2 and r3. Nothing prevents us
from generalizing the notion of mutual knowledge this way to an arbitrary group
of agents R, and to consider R as a further parameter in e.g. the definition of
C(·|·)τ→τ→τ . However, in our first experiments as presented in this paper, which
are primarily intended to study the practical feasibility of the embedding app-
roach for PAL, we have still avoided this final generalization step. The operator
C(·|·)τ→τ→τ thus abbreviates the following HOL term:

C(·|·)τ→τ→τ= λAτλBτλDσλXi∀Yi

(tc(intersection EVR (λUiλVi(D V ∧ A D V ))) X Y

−→ B D Y )

Analyzing the truth of a PAL formula ϕ, represented by the HOL term ϕ�, in
a particular domain d, represented by the term Dσ, and a world s, represented
by the term Si, corresponds to evaluating the application (ϕ� Dσ Si). ϕ is thus
generally valid if and only if for all Dσ and all Si we have D S → ϕ�D S.

The validity function, therefore, is defined as follows:

vldτ→o = λAτ∀Dσ∀Si(D S −→ A D S).

The necessity to quantify over all possible domains in this definition will be
further illustrated below.

4.2 Encoding into Isabelle/HOL

What follows is a description of the concrete encoding of the presented SSE of
PAL in HOL within the higher-order proof assistant Isabelle/HOL.2

All necessary types can be modeled in a straightforward way. We declare i
to denote possible worlds and then introduce type aliases for σ, τ and α. Type
bool represents (the bivalent set of) truth values.

typedecl i

type_synonym σ = "i⇒bool"

type_synonym τ = "σ⇒i⇒bool"

type_synonym α = "i⇒i⇒bool"

2 The full sources of our encoding can be found at http://logikey.org in subfolder
Public-Announcement-Logic, resp. at https://github.com/cbenzmueller/LogiKEy/
tree/master/Public-Announcement-Logic.

http://logikey.org
https://github.com/cbenzmueller/LogiKEy/tree/master/Public-Announcement-Logic
https://github.com/cbenzmueller/LogiKEy/tree/master/Public-Announcement-Logic
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The agents are declared mutually distinct accessibility relations and the group
of agents is denoted by predicate A. In order to obtain S5 (KT45) properties, we
declare respective conditions on the accessibility relations in the group of agents
A. Various Isabelle/HOL encodings from [4,5] are reused here (without men-
tioning due to space restrictions), including the encoding of transitive closure.
consts a::"α" b::"α" c::"α"

abbreviation "A x ≡ x = a ∨ x = b ∨ x = c"

axiomatization where

alldifferent: "¬(a = b) ∧ ¬(a = c) ∧ ¬(b = c)" and

agents_S5: "∀i.A i −→ (reflexive i ∧ transitive i ∧ euclidean i)"

abbreviation EVR :: "α" ("EVR")

where "EVR ≡ union_rel (union_rel a b) c"

To distinguish between HOL connectives (e.g. ¬) and the lifted PAL connectives
(e.g. ¬τ→τ ) we make use of bold face fonts, see for example the definition ¬τ→τ ≡
λϕτ .λWσ.λwi.¬ϕ W w below. Each of the lifted unary and binary connectives of
PAL accepts arguments of type τ , i.e. lifted PAL formulas, and returns such a
lifted PAL formula.

A special case, as discussed before, is the new operator for atomic propositions
A(·). When evaluating σ-type lifted atomic propositions p we need to check if p
is true in the given world w, but we also need to check whether the given world
w is still part of our evaluation domain W that has been recursively passed-on.
Operator A(·) is thus of type “σ ⇒ τ”.
abbreviation patom :: "σ ⇒ τ" ("A_")

where "Ap ≡ λW w. W w ∧ p w"

abbreviation ptop :: "τ" ("�")

where "� ≡ λW w. True"

abbreviation pneg :: "τ⇒τ" ("¬")

where "¬ϕ ≡ λW w. ¬(ϕ W w)"

abbreviation pand :: "τ⇒τ⇒τ" ("∧")

where "ϕ ∧ ψ ≡ λW w. (ϕ W w) ∧ (ψ W w)"

abbreviation por :: "τ⇒τ⇒τ" ("∨")

where "ϕ ∨ ψ ≡ λW w. (ϕ W w) ∨ (ψ W w)"

abbreviation pimp :: "τ⇒τ⇒τ" ("→")

where "ϕ → ψ ≡ λW w. (ϕ W w) −→ (ψ W w)"

abbreviation pequ :: "τ⇒τ⇒τ" ("↔")

where "ϕ ↔ ψ ≡ λW w. (ϕ W w) ←→ (ψ W w)"

In the definition of the knowledge operator K, we have to make sure to add a
domain check in the implication.
abbreviation pknow :: "τ⇒τ⇒τ" ("K_ _")

where "K r ϕ ≡ λW w.∀v. (W v ∧ r w v)−→(ϕ W v)"

Two additional abbreviations are introduced to improve readability. A more
concise way to state knowledge and an additional operator for mutual knowledge,
in which the EVR relation gets used.
abbreviation agtknows :: "τ⇒τ⇒τ" ("K _")

where "Kr ϕ ≡ K r ϕ"



Public Announcement Logic in HOL 231

abbreviation evrknows :: "τ⇒τ" ("EA _")

where "EA ϕ ≡ K EVR ϕ"

We finally see the change of the evaluation domain in action, when introducing
the public announcement operator. We already inserted domain checks in the
definition of the operators K and A(·). Now, we need to constrain the domain
after each public announcement. So far the evaluation domain, modeled by W,
got passed-on through all lifted operators without any change. In the pub-
lic announcement operator, however, we modify the evaluation domain W into
(λz. W z ∧ ϕ W z) (i.e., the set of all worlds z in W, such that ϕ holds for W
and z), which is then recursively passed-on. The public announcement operator
is thus defined as:

abbreviation ppal :: "τ⇒τ⇒τ" ("[!_]_")

where "[!ϕ]ψ ≡ λW w. ¬(ϕ W w) ∨ (ψ (λz. W z ∧ ϕ W z) w)"

The following embedding of relativized common knowledge is a straightforward
encoding of the semantic properties and definitions as proposed in Definition 5.

abbreviation prck :: "τ⇒τ⇒ τ" ("C�_|_�")
where "C�ϕ|ψ�" ≡ λW w.∀v.

(tc (intersection_rel EVR (λu v. W v ∧ ϕ W w)) w v) −→ (ψ W v)"

As described earlier we can abbreviate ordinary common knowledge as CG(�|ϕ):

abbreviation pcmn :: "τ⇒τ" ("CA _") where "CA ϕ ≡ C��|ϕ�"

Finally an embedding for the notion of validity is needed. Generally, for a type-
lifted formula ϕ to be valid, the application of ϕ has to hold true for all worlds
w. In the context of PAL the evaluation domains also have to be incorporated in
the definition. Originally we were tempted to define PAL validity in such that
we start with a “full evaluation domain”, a domain that evaluates to True for all
possible worlds and gets restricted, whenever necessary after an announcement.
Such a validity definition would look like this:

abbreviation tvalid::"τ⇒bool" ("	_
T") where "	_
T ≡ ∀w. ϕ (λx. True) w"

But this leads to undesired behavior, which we can easily see when using our
reasoning tools to study e.g. the validity of an often proposed schematic axiom
of PAL, Announcement Necessitation: from ψ, infer [!ϕ]ψ. If we check for a
counterexample in Isabelle/HOL, the model finder Nitpick reports the following:

lemma necessitation: assumes "	ψ
T" shows "	[!ϕ]ψ
T" nitpick oops

Nitpick found a counterexample for card i = 2:

Free variables:

ϕ = (λx. _)

(((λx. _)(i1 := True, i2 := True), i1) := False,

((λx. _)(i1 := True, i2 := True), i2) := True,

((λx. _)(i1 := True, i2 := False), i1) := False,

((λx. _)(i1 := True, i2 := False), i2) := False,

((λx. _)(i1 := False, i2 := True), i1) := False,
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((λx. _)(i1 := False, i2 := True), i2) := False,

((λx. _)(i1 := False, i2 := False), i1) := False,

((λx. _)(i1 := False, i2 := False), i2) := False)

ψ = (λx. _)

(((λx. _)(i1 := True, i2 := True), i1) := True,

((λx. _)(i1 := True, i2 := True), i2) := True,

((λx. _)(i1 := True, i2 := False), i1) := False,

((λx. _)(i1 := True, i2 := False), i2) := False,

((λx. _)(i1 := False, i2 := True), i1) := False,

((λx. _)(i1 := False, i2 := True), i2) := False,

((λx. _)(i1 := False, i2 := False), i1) := False,

((λx. _)(i1 := False, i2 := False), i2) := False)

Skolem constant:

??.tvalid.w = i2

The valid function needs instead to be defined such that it checks validity not
only for all worlds, but for all domains and worlds. Otherwise, the observed but
undesired value flipping may occur.

abbreviation pvalid :: "τ⇒bool" ("	_
")
where "	_
 ≡ ∀W.∀w. W w −→ ϕ W w "

All here introduced definitions are hidden from the user, who can construct
formulas in PAL and prove these using the newly embedded operators.

5 Experiments

5.1 Proving Axioms and Rules of Inference of PAL in HOL

The presented SSE of PAL is able to prove the following axioms and rules of
inference as presented for PAL in [2, see also Appendix F]:

System K
– All substitutions instances of propositional tautologies
Axiom K Ki(ϕ → ψ) → (Kiϕ → Kiψ)
Modus ponens From ϕ and ϕ → ψ infer ψ
Necessitation From ϕ infer Kiϕ

System S5
Axiom T Kiϕ → ϕ
Axiom 4 Kiϕ → KiKiϕ
Axiom 5 ¬Kiϕ → Ki¬Kiϕ

Reduction Axioms
Atomic Permanence [!ϕ]p ↔ (ϕ → p)
Conjunction [!ϕ](ψ ∧ χ) ↔ ([!ϕ]ψ ∧ [!ϕ]χ)
Partial Functionality [!ϕ]¬ψ ↔ (ϕ → ¬[!ϕ]ψ)
Action-Knowledge [!ϕ]Kiψ ↔ (ϕ → Ki(ϕ → Ki(ϕ → [!ϕ]ψ)))
– [!ϕ]C(χ|ψ) ↔ (ϕ → C(ϕ ∧ [!ϕ]χ|[!ϕ]ψ))
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Axiom schemes for RCK
C-normality C(χ|(ϕ → ψ)) → (C(χ|ϕ) → C(χ|ψ))
Mix axiom C(ψ|ϕ) ↔ E(ψ → (ϕ ∧ C(ψ|ϕ)))
Induction axiom (E(ψ → ϕ) ∧ C(ψ|ϕ → E(ψ → ϕ))) → C(ψ|ϕ)
Rules of Inference
Announcement Nec. from ϕ, infer [!ψ]ϕ
RKC Necessitation from ϕ, infer C(ψ|ϕ)
Only for the mix- and induction axiom (schemata) for relativized common knowl-
edge is one direction, respectively, not automatically provable yet. Structural
induction is required and a proof still needs to be provided by hand.

(*System K*)

lemma tautologies: "���" by auto

lemma axiom_K: "A i =⇒ �(Ki (ϕ → ψ)) → ((Ki ϕ) → (Ki ψ))�" by auto

lemma modusponens: assumes 1: "�ϕ → ψ�" and 2: "�ϕ�" shows "�ψ�"
using 1 2 by auto

lemma necessitation: assumes 1: "�ϕ�" shows "A i =⇒ �Ki ϕ�"
using 1 by auto

(*More axiom systems*)

lemma axiom_T: "A i =⇒ �(Ki ϕ) → ϕ)�"
using group_S5 reflexive_def by auto

lemma axiom_4: "A i =⇒ �(Ki ϕ) → (Ki (Ki ϕ))�"
by (meson group_S5 transitive_def)

lemma axiom_5: "A i =⇒ �(¬Ki ϕ) → (Ki (¬Ki ϕ))�
by (meson euclidean_def group_S5)

(*Reduction Axioms*)

lemma atomic_permanence: "�([!ϕ]Ap) → (ϕ →A p)� by auto

lemma conjunction: "�([!ϕ](ψ ∧ χ)) ↔ (([!ϕ]ψ) ∧ ([!ϕ]χ))� by auto

lemma partial_functionality: "�([!ϕ]¬ψ) ↔ (ϕ → (¬[!ϕ]ψ))� by auto

lemma action_knowledge: "A i =⇒ �([!ϕ](Ki ψ)) ↔ (ϕ → (Ki (ϕ → (([!ϕ]ψ))))�
by auto

lemma "�([!ϕ]C�ψ|χ�) ↔ (ϕ → C�ϕ ∧[! ϕ]χ|[!ϕ]ψ�)�
by (smt intersection_rel_def sub_rel_def tc_def transitive_def)

(*Axiom schemes for RCK*)

lemma C_normality: "�(C�χ|ϕ → ψ�) → (C�χ|ϕ � → C�χ|ψ�)�
unfolding Defs by blast

lemma mix_axiom1: "�C�χ|ϕ � → (EA(χ → (ϕ ∧ C�χ|ψ�)))�
unfolding Defs by metis

lemma mix_axiom2: "�(EA (χ → (ϕ ∧ C�χ|ψ�))) → C�χ|ϕ��
unfolding Defs sledgehammer (*timeout*)

lemma induction_axiom1: "�(EA (χ → ϕ)) ∧ C�χ|ϕ → (EA (χ → ϕ))�) → C�χ|ϕ��
unfolding Defs sledgehammer (*timeout*)

lemma induction_axiom2: "�C�χ|ϕ � → (EA (χ → ϕ)) ∧ C�χ|ϕ → (EA (χ → ϕ))�)�
unfolding Defs by smt
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(*Rules of Inference*)

lemma announcement_nec: assumes 1: "�ϕ�" shows "�[!ψ]ϕ�" using 1 by auto

lemma rkc_necessitation: assumes 1: "�ϕ�" shows "�C�χ|ϕ��"
using 1 by (metis intersection_rel_def sub_rel_def tc_def transitive_def)

5.2 Exploring Failures of Uniform Substitution

The following principles are examples of sentences that are valid for eternal
sentences p, but not schematically valid [15].

1. p → ¬[!p](¬p)
lemma "�A

p → ¬[!Ap](¬Ap)� by simp

lemma "�ϕ → ¬[!ϕ](¬ϕ)� nitpick oops (*countermodel found*)

2. p → ¬[!p](¬Kip)
lemma "�A

p → ¬[!Ap](¬Ka
Ap)� by simp

lemma "�ϕ → ¬[!ϕ](¬Ka ϕ)� nitpick oops (*countermodel found*)

3. p → ¬[!p](p ∧ ¬Kip)
lemma "�A

p → ¬[!Ap](Ap ∧¬ Ka
Ap)� by simp

lemma "�ϕ → ¬[!ϕ](ϕ ∧ ¬Ka ϕ)� nitpick oops (*countermodel found*)

4. (p ∧ ¬Kip) → ¬[!p ∧ ¬Kip](p ∧ ¬Kip)
lemma "�(Ap ∧ ¬Ka

Ap) → ¬[!Ap ∧ ¬Ka
Ap](Ap ∧ ¬Ka

Ap)� by blast

lemma "�(ϕ ∧ ¬Ka ϕ) → ¬[!ϕ ∧ ¬Ka ϕ](ϕ ∧ ¬Ka ϕ)� nitpick oops (*ctm. fd.*)

5. Kip → ¬[!p](¬Kip)
lemma "�(Ka

Ap) → ¬[!Ap](¬Ka
Ap)� using group_S5 reflexive_def by auto

lemma "�(Ka ϕ) → ¬[!ϕ](¬Ka ϕ)� nitpick oops (*countermodel found*)

6. Kip → ¬[!p](p ∧ ¬Kip)
lemma "�(Ka

Ap) → ¬[!Ap](Ap ∧ ¬Ka
Ap)� using group_S5 reflexive_def by auto

lemma "�(Ka ϕ) → ¬[!ϕ](ϕ ∧ ¬Ka ϕ)� nitpick oops (*countermodel found*)

5.3 Example Application: The Wise Men Puzzle

The Wise Men puzzle is a interesting riddle in epistemic reasoning. It is well
suited to demonstrate epistemic actions in a multi-agent scenario. Baldoni [1]
gave a formulation for this, which later got embedded into Isabelle/HOL by
Benzmüller [4,5]. In the following implementation these results will be used as
a stepping stone.

First the riddle is recited, and then we go into detail on how the uncertainties
of all three agents change. The reader is invited to try to solve the riddle on her
own before continuing with the analysis.

Once upon a time, a king wanted to find the wisest out of his three wisest
men. He arranged them in a circle and told them that he would put a white
or a black spot on their foreheads and that one of the three spots would



Public Announcement Logic in HOL 235

certainly be white. The three wise men could see and hear each other but,
of course, they could not see their faces reflected anywhere. The king, then,
asked each of them [sequentially] to find out the color of his own spot. After
a while, the wisest correctly answered that his spot was white.

The already existing encoding by Benzmüller puts a particular emphasis on the
adequate modeling of common knowledge. Here, this solution will be enhanced
by the public announcement operator. Consequently, common knowledge will
not be statically stated after each iteration, but a dynamic approach is used for
this.

Before we can evaluate the knowledge of the first wise man we need to formu-
late the initial circumstances and background knowledge. Let a, b and c be the
wise men. It is common knowledge, that each wise man can see the foreheads of
the other wise men. The only doubt a wise man has, is whether he has a white
spot on his own forehead or not. Additionally, it is common knowledge that at
least one of the three wise men has a white spot on his forehead. The rules of
the riddle are embedded as follows:3

consts ws :: "α ⇒ σ"
axiomatization where

(* Common knowledge: at least one of a, b and c has a white spot *)

WM1: "	CA (Aws a ∨ Aws b ∨ Aws c)
"
(* Common knowledge: if x has not a white spot then y know this *)

WM2ab: "	CA (¬(Aws a) → Kb(¬(Aws a)))
"
WM2ac: "	CA (¬(Aws a) → Kc(¬(Aws a)))
"
WM2ba: "	CA (¬(Aws b) → Ka(¬(Aws b)))
"
WM2bc: "	CA (¬(Aws b) → Kc(¬(Aws b)))
"
WM2ca: "	CA (¬(Aws c) → Ka(¬(Aws c)))
"
WM2cb: "	CA (¬(Aws c) → Kb(¬(Aws c)))
"

Now the king asks a whether he knows if he has a white spot or not. Assume
that a publicly answers that he does not. This is a public announcement of the
form: ¬(Ka(Aws a)) ∨ (Ka¬(Aws a)). Again, a wise man gets asked by the king
whether he knows if he has a white spot or not. Now its b’s turn and assume
that b also announces that he does not know whether he has a white spot on his
forehead.4

When asked, c is able to give the right answer, namely that he has a white
spot on his forehead. We can prove this automatically in Isabelle/HOL:

theorem whitespot_c:

"�[!¬((Ka(Aws a)) ∨ (Ka(¬(Aws a)))]([!¬((Kb(Aws b)) ∨ (Kb(¬(Aws b)))](Kc(Aws c)))�"
using WM1 WM2ba WM2ca WM2cb group_S5

unfolding reflexive_def intersection_rel_def

union_rel_def sub_rel_def tc_def

by smt

3 One might also add axioms of the form 	CA (Aws x) → Ky(
Aws x)
” for x, y ∈ A.

This is not necessary as we will see in the proof found using Isabelle/HOL.
4 The case where neither a nor b can correctly infer the color of their forehead when

being asked by the king is the most challenging case; we only discuss this one here.
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6 Comparison with Related Work

In related work [21], van Benthem, van Eijck and colleagues have studied a
“faithful representation of DEL [dynamic epistemic logic] models as so-called
knowledge structures that allow for symbolic model checking”. The authors show
that such an approach enables efficient and effective reasoning in epistemic sce-
narios with state-of-the-art Binary Decision Diagram (BDD) reasoning technol-
ogy, outperforming other existing methods [25,26] to automate DEL reasoning.
Further related work [24] demonstrates how dynamic epistemic terms can be
formalized in temporal epistemic terms to apply the model checkers MCK [11]
or MCMAS [19]. Our approach differs in various respects, including:

External vs. internal representation transformation: Instead of writing
external (e.g. Haskell-)code to realize the required conversions from DEL into
Boolean representations, we work with logic-internal conversions into HOL,
provided in form of a set of equations stated in HOL itself (thereby heavily
exploiting the virtues of λ-abstraction and λ-conversion). Our encoding is
concise (only about 50 lines in Isabelle/HOL) and human readable.

Meta-logical reasoning: Since our conversion “code” is provided within the
(meta-)logic environment itself, the conversion becomes better controllable
and even amenable to formal verification. Moreover, as we have also demon-
strated in this paper, meta-logical studies about the embedded logics and
their embedding in HOL are well-supported in our approach.

Scalability beyond propositional reasoning: Real world applications often
require differentiation between entities/individuals, their properties and func-
tions defined on them, and quantification over entities, or even properties and
functions, supports generic statements that are not supported in propositional
DEL. The shallow semantical embedding approach, in contrast, very natu-
rally scales for first-order and higher-order extensions of the embedded logics;
for more details on this we refer to [4,5] and the references therein.

Reuse of automated theorem proving and model finding technology:
Both approaches reuse state-of-the-art automated reasoning technology. In
our case this includes world-leading first-order and higher-order theorem
provers and model finders already integrated with Isabelle/HOL [9]. These
tools in turn internally collaborate with latest SMT and SAT solving tech-
nology. The burden to organize and orchestrate the technical communication
with and between these tools is taken away from us by reuse of respective
solutions as already provided in Isabelle/HOL (and recursively also within
the integrated theorem provers). Well established and robustly supported
language formats (e.g. TPTP syntax, http://www.tptp.org) are reused in
these nested transformations. These cascades of already supported logic trans-
formations are one reason why our embedding approach readily scales for
automating reasoning beyond just propositional DEL.

We are convinced, as evidenced by the above discussion, that our approach is
particularly well suited for the exploration and rapid prototyping of new logics

http://www.tptp.org
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(and logic combinations) and their embeddings in HOL, and for the study of their
meta-logical properties, in particular, when it comes to first-order and higher-
order extensions of DEL. At the same time we share with the related work by
van Benthem, van Eijck and colleagues a deep interest in practical (object-level)
applications, and therefore practical reasoning performance is obviously also
of high relevance. In this regard, however, we naturally assume a performance
loss in comparison to hand-crafted, specialist solutions. Previous studies in the
context of first-order modal logic theorem proving nevertheless have shown that
this is not always the case [12]. Future work therefore includes the conduction
of comparative performance studies in which the work presented in this paper
is compared with the existing alternative approaches.

7 Conclusion

A shallow semantical embedding of public announcement logic with relativized
common knowledge in classical higher-order logic has been presented, and our
implementation of this embedding in Isabelle/HOL delivers results as expected.
In particular, we have shown how model-changing behaviour can be adequately
and elegantly addressed in our embedding approach. With reference to uniform
substitution, we saw that our embedding enables the study of meta-logical prop-
erties of public announcement logic, and object-level reasoning has been demon-
strated by a first time automation of the wise men puzzle encoded in public
announcement logic with a relativized common knowledge operator.

Further work includes the provision of proofs for the faithfulness of the pre-
sented embedding; this should be analogous to prior work, see e.g. [3].

Acknowledgments. We thank David Streit, David Fuenmayor, Arvid Becker and the
anonymous reviewers for useful comments, suggestions and feedback to this work.
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Abstract. The idealizations resulting from the use of Kripke semantics
in Epistemic Logic are inherited by formalizations of group epistemic
notions. For example, distributed knowledge (DK) is often taken to reflect
the potential knowledge of a group: what agents would know if they had
unbounded means of communication and deductive ability. However, this
does not specify whether/how this potential can be actualized, especially
since real people are not unbounded reasoners. Inspired by experiments
on group reasoning, we identify two dimensions of actualizing DK: com-
munication and inference. We build a dynamic framework with effortful
actions accounting for both, combining impossible-worlds semantics and
action models, and we provide a method for extracting a sound and com-
plete axiomatization.

1 Introduction

Epistemic Logic (EL), seen as a normal modal logic (usually S5), has been used in
the study of multi-agent systems, modelling not only the individual knowledge of
each agent, but also collective epistemic notions. For example, a group is said to
have common knowledge (CK) of φ whenever everybody knows that everybody
knows (ad infinitum) that φ, and distributed knowledge (DK) of φ whenever
agents can deduce φ by pooling their knowledge together. With the tools of
Dynamic Epistemic Logic (DEL), we can further capture the communicative
actions giving rise to them, e.g. actions actualizing DK and converting it into
CK.

However, EL is often criticized on grounds of idealization: its predictions
are practically unattainable by real agents. This has implications for collective
notions. It can well be that members of a group do not know all logical con-
sequences of their knowledge (e.g. because of memory overload) or do not take
all necessary communicative actions (e.g. because of time pressure). The same
constraints apply to higher-order reasoning as agents cannot ascribe knowledge
to others to an infinite modal depth. Group reasoning is a dynamic, mixed task
that requires actions of both inference and communication. These are not always
affordable by human agents, given their cognitive limitations. Therefore, the
evolution of reasoning is bounded by agents’ resources. Even from a normative
viewpoint, it makes sense to study what can be feasibly asked of them.
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M. A. Martins and I. Sedlár (Eds.): DaĹı 2020, LNCS 12569, pp. 239–258, 2020.
https://doi.org/10.1007/978-3-030-65840-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65840-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-65840-3_15


240 A. Solaki

This is corroborated by empirical findings. In deductive reasoning tasks peo-
ple often have trouble applying certain inference rules. Perhaps the best known
task is the Wason selection task [34]:

Four cards are given to the participants. Each card has a number on one
side and a letter on the other. The visible sides of the cards read A, K, 4,
and 7. The participants are asked which cards need to be turned to check
whether the following holds: if a card has a vowel on one side, it has an
even number on the other.

Individuals do notoriously bad in the task, although it involves just applications
of Modus Ponens and Modus Tollens. This has given rise to theories in psychol-
ogy of reasoning, explaining the asymmetry between the cognitive difficulty of
different inferences [24,28]. Other findings study the difficulty of reasoning about
others [32]. Group variants of deductive tasks similarly reveal limits in group rea-
soning. Nonetheless, they also allow us to track which actions underlie successful
performance and the effort they require. Its distribution among members often
yields better performance compared to the individual case [21,30].

In light of this, we can revisit group epistemic notions from the perspective
of non-ideal agents. Using DEL, we can specify the intertwined effortful actions
(communicative and inferential) that refine group knowledge, in accord with
empirical facts. Revisiting DK is a first step because of the implicit flavour
underlying its understanding as what would be known, if the agents were to
pool their knowledge and deduce information on its basis. In revisiting DK, we
need to specify (i) which actions may “actualize” it, i.e. turn it into (explicit)
mutual knowledge of the group, and (ii) to what extent these can be undertaken,
given that agents are bounded.

The first type of actions is communicative actions. Subtleties underpinning
the understanding of DK as the outcome of some (unlimited) communication
among group members have been discussed in [18,29,36]. The latter consider the
formula p∧ ¬Ka1p: p is true but a1 does not know it. The formula DG(p∧ ¬Ka1p),
where G is a group including a1, is consistent in extensions of EL with DG

operators standing for DK. Yet no communication could render this mutual
knowledge of G. The problem lies in that the formula is evaluated in a model
that does not explicitly encode the effect of information pooling taking place.
The operation introduced by the authors to fill this gap is called resolution and
it is similar to operations in [6,11].

Since our goal is to do justice to non-ideal agents, we should further account
for the extent to which resolution can be undertaken. This has implications
for the second type of actions too, namely inferential actions. There is more
than pooling information together that occurs in group deliberations, but unlike
communication, the deductive reasoning of group members is usually neglected
in multi-agent EL, whereby agents automatically know all consequences of their
knowledge. As with communication, we want to encode explicitly the inferential
actions of group members, and the extent to which these can be undertaken.
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Outline. In Sect. 2, we present our framework accounting for how agents actu-
alize DK under resource-bounds, using a novel combination of impossible-worlds
semantics [12] and action models [5]. We illustrate its workings in Sect. 3 and
provide a method for the extraction of a sound and complete axiomatization in
Sect. 4.

2 The Framework

2.1 Syntax

The logical language of our framework extends that of standard multi-agent
epistemic logics. Given a non-empty set of agents Ag, it includes:

i Quantitative comparisons between terms that are introduced to capture cog-
nitive costs of actions (communicative, inferential) with the cognitive capac-
ities of agents.

ii Operators DG, standing for the distributed knowledge of group G ⊆ Ag.
iii Operators Aj , where j ∈ Ag, that indicate the inference rules that agent j

has acknowledged as truth-preserving (similar to [16,31,35]).
iv Operators 〈RG〉, standing for resolution of group G, i.e. actions of communi-

cation through which members pool their knowledge together (in the spirit
of operations appearing in [6,11,36]).

v Operators of the form 〈C, e〉, where e is an event in action model C designed
to capture applications of inference rules in a multi-agent setting.

In order to define the language formally we need the following two prerequisites.
Given the propositional language LP based on a set of atoms P :

Definition 2.1 (Rule). An inference rule ρ is of the form {φ1, . . . , φn} � ψ
where φ1, . . . , φn, ψ ∈ LP .

Inference rules should be read as whenever every formula in {φ1, . . . , φn} is
true, so is ψ (as in [31, Chapter 2]). We use pr(ρ) and con(ρ) to abbreviate,
respectively, the set of premises and the conclusion of ρ. The set of rules is
denoted by LR.

Definition 2.2 (Terms). The set of terms T is defined as T := {cρ | ρ ∈
LR} ∪ {cG | G ⊆ Ag} ∪ {cpj | j ∈ Ag}. It contains elements for (i) the cognitive
costs of rule applications (of the form cρ), (ii) cognitive costs of resolution among
members of groups (of the form cG), (iii) cognitive capacities of agents (of the
form cpj).

Definition 2.3 (Language). With the above in place, language L is given by:

φ ::= p | z1s1 + . . . + znsn ≥ z | ¬φ | φ ∧ ψ | Ajρ | DGφ | 〈RG〉φ | 〈C, e〉φ

where p ∈ P , z1, . . . , zn ∈ Z, z ∈ Z
r, s1, . . . , sn ∈ T , ρ ∈ LR. The dynamic oper-

ators are, 〈RG〉 for resolution, and 〈C, e〉, where C is an action model and e an
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event of C. We will specify the effect of dynamic operators later when presenting
the semantics; for now they should be thought as operators for communication
and inference respectively.1

Examples of Formulas. The formula (cpj ≥ cρ)∧ Ajρ says that (i) the cogni-
tive capacity of agent j (to which the term cpj corresponds) is greater or equal
than the cognitive cost of a rule ρ (to which the term cρ corresponds), and (ii)
the agent j has acknowledged rule ρ as truth-preserving. Individual knowledge
of an agent j is defined in terms of DK as Kj := D{j}. A formula like 〈C, e〉Kjφ
says that after the event e of the action model C takes place, the agent j knows
that φ.

2.2 Resource-Sensitive Epistemic Models

In order to interpret these formulas, we define a resource-sensitive epistemic
model and suitable model updates, induced by actions of resolution and infer-
ence, corresponding to the effect of our dynamic operators 〈RG〉 and 〈C, e〉.

Our models supplement Kripke models with impossible worlds and cognitive
components. Impossible worlds, unlike possible ones, are not closed under logical
consequence, to do justice to the fallibility of agents as real people might enter-
tain some inconsistent/incomplete scenarios. Yet by taking reasoning steps, to
the extent they can cognitively afford them, they can gradually eliminate some
of them. To start with, we impose Minimal Consistency : we rule out explicit
contradictions, in line with the literature on Minimal Rationality [14].

For the other components, we first need to parameterize our models by Res ,
denoting the set of resources (time, memory, attention etc.) we want to consider.
Then r := |Res| is the number of these resources. Another parameter concerns
the cognitive effort of the agents w.r.t. each resource. The cost function c :
LR ∪ P(Ag) → N

r assigns a cognitive cost to (i) each inference rule, (ii) each
group, w.r.t. each resource. That is, cost is a vector (as in [2]), used to indicate
the units consumed per resource for actions of inference and resolution. We use
the notation ck, k = 1, . . . , r to refer to the value of the k-th element of the
vector and we assume that the first resource, hence the first element of the
vector, concerns time. Concrete assignments of costs rely on empirical research.
This is because the cognitive difficulty of reasoning tasks is often explained in

1 The choice of number r is discussed in the next subsection. Formulas involving
∨, →, ≤, =, − can be defined in terms of the rest. This is why formulas like cpj ≥ cρ

or cpj ≥ cG are well-formed in this language.
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terms of the number and the kind of the rules that have to be applied, also
considering the different response times of people in different inferences [28] and
memory constraints [15].2

With the above fixed, we introduce cognitive capacity to the model to capture
the agents’ available power w.r.t. each resource. As resources are depleted while
reasoning evolves, capacity will not remain constant, but it may change as a
result of actions of inference or resolution, that require effort by agents uncover-
ing new information. This is because cognitive capacity w.r.t. certain resources,
like memory, is correlated with deductive reasoning performance [7]. Overall:

Definition 2.4 (Resource-sensitive model (RSM)). Given parameters
Res and c, a RSM is a tuple M := 〈WP ,W I , {∼j}j∈Ag, VP , VI , R, {cpj}j∈Ag〉
where:

– WP and W I are sets of possible and impossible worlds, respectively.
– Each ∼j is an epistemic accessibility relation imposed on W := WP ∪ W I ,

that is, a binary relation on W .
– VP : WP → P(P ) is a valuation function assigning to each possible world,

the propositional atoms that are true there.
– VI : W I → P(L) is a valuation function assigning to each impossible world,

the formulas (atomic or complex) that are true there.
– R : W × Ag → P(LR) is a function that assigns to each pair of a world and

an agent the rules that the agent has acknowledged there.
– cpj ∈ Z

r stands for the cognitive capacity of each agent, i.e. what j can afford
w.r.t. each resource. As a convention, we will consider that time is always a
resource and the first component of the vector of cpj refers to it.

Each RSM comes parameterized by Res and c, yet we will not explicitly write
them down as components of the model. This is to serve simplicity of notation
but also to emphasize that these, unlike cp, are not meant to be modified in the
aftermath of our actions.

Model Conditions. To fulfill Minimal Consistency we ask: {φ,¬φ} �⊆ VI(w),
for any w ∈ W I and φ ∈ L. To ensure that acknowledged inference rules are
truth-preserving, we impose Soundness of inference rules: for w ∈ WP , j ∈ Ag:
ρ ∈ R(w, j) implies M,w |= tr(ρ) where tr(ρ) :=

∧

φ∈pr(ρ)

φ → con(ρ).3

2 Notice that different schools (e.g. Mental Logic [28], Mental Models [24]) point at
different “measures” for the difficulty of deductive tasks; still, the very observation
that not all inferences require equal effort is uncontroversial. Since this debate is
not settled in the empirical realm, we have not committed to any view on cost
assignments. Instead, we focus on providing the machinery to embed such features
in formal logical modelling.

3 We focus on truth-preserving rules because we accept the factivity of knowledge.
Besides, this is one of the features distinguishing knowledge from belief, according
to most theories of knowledge. However, notice that other notions, like belief, could
be developed through non-truth-preserving inferences as well.
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It is common in EL to ask that epistemic relations are reflexive, symmetric
and transitive, properties that correspond to properties of knowledge: factivity,
positive and negative introspection. In what follows, we will impose reflexivity
(and thus factivity); still, we abstain from assuming unlimited introspection,
thus from asking that relations are symmetric and transitive. In the context of
resource-bounded agents, it is reasonable to extend considerations of non-ideal
performance to higher-order reasoning as well.

Before we proceed to model updates, we define the truth clauses for the static
fragment, i.e. L without 〈RG〉 and 〈C, e〉 operators. To do that, we first need
to interpret the terms in T . The intuition is that those of the form cρ and cG

correspond to the cognitive costs of rules and group resolution (respectively),
and those of the form cpj to the cognitive capacities of agents. This is why cpj

is used both as a model component and as a term of the language. The use can
be understood from the context. Notice that our intended reading of ≥ is that
s ≥ t iff every k-th component of s is greater or equal than the k-th component
of t.

Definition 2.5 (Interpretation of terms). Given a model M , the terms of
T are interpreted as follows: cM

ρ = c(ρ), cM
G = c(G) and cpM

j = cpj.

Definition 2.6 (Static truth clauses). Take ∼G:= ∩j∈G ∼j, for G ⊆ Ag.

For w ∈ WP :

M,w |= p iff p ∈ VP (w)
M,w |= z1s1 + . . . + znsn ≥ z iff z1s

M
1 + . . . + znsM

n ≥ z
M,w |= ¬φ iff M,w �|= φ
M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ
M,w |= Ajρ iff ρ ∈ R(w, j)
M,w |= DGφ iff M,u |= φ for all u : w ∼G u

For w ∈ W I : M,w |= φ iff φ ∈ VI(w)

In impossible worlds, formulas are evaluated directly (i.e. not recursively) by the
valuation function. Notice that the clause for DG is given through the intersec-
tion of relations of G members (as in DEL), but it now quantifies over possible
and impossible worlds, hence leaving room for deductively imperfect agents and
groups. A formula is said to be valid in a model iff it is true at all possible worlds.

2.3 Resolution

We use resolution as the action that captures how information is pooled by
group members, thereby enhancing the group’s knowledge. As in [36], resolution
is understood as publicly known private communication among members.4 The
resolution of group G induces a model update such that an epistemic relation

4 There are alternative understandings compatible with our framework, e.g. general-
izations where agents share all they know with different sets of agents [6]. This might
allow to break down the effect of resolution into the incremental sharing actions of
the members and study their possibly asymmetrical contribution in actualizing DK.
This is left for future work.
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for a member of G is the intersection of relations of the members of G, and it
remains intact for the rest. Moreover resolution might come at a cost. It can
be that “pooling” is effortless, e.g. because information is shared within the
group for “free”. However, it can be that adopting a piece of private information
through a publicly known action requires effort, e.g. because the group is too
big.5 One way to formally account for this effort is as follows: resolution incurs
a non-zero cost on cognitive capacity for members of G, but also a cost w.r.t.
time (and only time) for agents outside G (as time passes while G deliberates).
The model update of resolution is below:

Definition 2.7 (Resolution). Given RSM M = 〈WP ,W I ,∼j , VP , VI ,
R, cpj〉, the resolution of group G produces a new RSM MG := 〈WP ,W I ,∼′

j ,
VP , VI , R, cp′

j〉 where:

∼′
j=

{
∩i∈G ∼i, if j ∈ G

∼j , otherwise
cp′

j =

{
cpj − c(G), for j ∈ G

cpj − (c1(G), . . . , 0), otherwise

The conditions of RSMs are preserved by this definition. Resolution formulas
are interpreted as follows. For w ∈ W :

M,w |= 〈RG〉φ iff M,w |= (cpi ≥ cG) for all i ∈ G and MG, w |= φ

i.e. the “precondition” of resolving knowledge among the group G is that the
action is cognitively affordable to everyone in the group.

2.4 Inference

Action Models. Action models are used in DEL to represent complex infor-
mational actions [5]. They usually include (i) a set of events E, (ii) a binary
relation ≈j on E for each agent, representing her uncertainty regarding events
taking place, (iii) a precondition function pre assigning a formula to each event,
to indicate what is required for the event to occur. A common example is (semi-)
private announcements, whereby only some agents find out something while the
rest do not. In this attempt, we design novel action models to represent the infer-
ential steps of agents in a multi-agent context. For example, the events in our
action models can represent rule applications. They will too contain relations ≈j

and a precondition function pre : E → L. However, we need additional compo-
nents to capture the effect of inferential actions on RSMs, since the latter also
have additional components compared to plain Kripke models. More specifically:

� a second type of precondition pre imp : E → P(L) that indicates which
formulas should be represented by the impossible worlds entertained by the
agent(s) acting in an event e. The rough idea is to impose a “measure” on the
impossibilities they may entertain in order to qualify for a rule-application.

5 It has been argued that there are two different kinds of such informational events,
“implicit” and “explicit” [9,10]. This fits well with distinctions in the philosophical
and linguistic literature [8] between bare seeing (“naked infinitives”) and seeing-that,
which additionally implies epistemic awareness of the fact described.
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� a postcondition function pos : Ag × P(L) × E → P(L) that will allow us
to capture the effect of each event on the valuation of impossible worlds.
� a cognitive capacity postcondition, of the form pos cp : Ag ×Z

r → Z
r, that

will allow us to capture the effect of actions on cognitive capacities of agents.
� for notational convenience, a label function assigning to each event which
rule, if any, is applied and who the “actors” are. For example, if event e1 stands
for an application of ρ only by agent a1, its label is (ρ, {a1}) indicating that
the applied rule is ρ and its actor is a1. If the event represents that nothing
happens, its label is (∅, ∅): no inferential step occurs and (naturally) no one
undertakes it. The label function is of the form lab : E → (LR ∪{∅})×P(Ag).

Definition 2.8 (Action model for inference). An action model C is a tuple
〈E,≈j , pre, pre imp, pos, pos cp, lab〉, with the components as above.

Consider the group selection task; Modus Ponens is applied by all agents,
as evinced by the reported dialogues of participants, e.g. in [21, p. 237], [30, p.
15–17]. We capture this type of inferential action with the action model below:

Inference by all (CALL). This action model captures that all agents per-
form the same reasoning step, the application of a rule ρ, e.g. a Modus Ponens
instance. It comprises one event e1, and clearly lab(e1) = {ρ,Ag}. The precondi-
tion is that everybody knows the premises of ρ, has it available and has enough
cognitive capacity to apply it. The precondition of impossibility is such that
impossible worlds should at least represent the premises of ρ. The postcondi-
tion is used to show that agents can add the conclusion in their epistemic state
through this rule-application, while the postcondition on capacity reduces it by
the cost of ρ (Fig. 1).

Fig. 1. The action model for an inference of ρ performed by all.

But back to the group selection task: not all agents apply Modus Tollens.
In many groups, only one member applies it and figures out that 7 should be
turned [21, p. 238, 241]. In [30, p. 18–20], some dyads succeed because there is a
member with background in logic who has the rule available and affordable and
thus applies it. This is captured by another type of action model:

Inference by some (CSOME). It is not uncommon that only some agents (G ⊂
Ag) perform a rule unbeknownst to agents in Ag \ G who do not. For simplicity,
we design the action model in the case where one agent applies a rule ρ, but the
design can be generalized to other subsets of Ag. The action model comprises two
events, e1 to represent the application of the rule by a (hence, lab(e1) = (ρ, {a}))
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and e0 to represent that nothing happens (hence, lab(e0) = (∅, ∅)). The latter is
needed to capture that agents other than a are uncertain about the content of their
peer’s action (the rule-application). The precondition for e1 is that a knows the
premises of the rule, has the rule available and has enough cognitive capacity to
apply it. For e0 it is just �, as nothing happens. The precondition of impossibility
in e1 is such that impossible worlds should at least represent the premises of the
rule ρ, while for e0 it is the empty set. The postcondition will be used to show that
the actor can add the conclusion of ρ in her epistemic state, while nothing changes
for the other agents. The cognitive postcondition is such that only the cognitive
capacity of the actor is reduced by the cognitive cost of applying ρ, while for the
non-actors only time is consumed (Fig. 2).

Fig. 2. The action model for an inference of ρ performed by a unbeknownst to the
rest.

Product Models. We now define product models, i.e. the model updates
induced by the inferential actions. Our RSMs have additional components com-
pared to simple Kripke models, like the set of impossible worlds and the cognitive
capacity, which should be also modified according to the effect of the actions.
Roughly, impossible worlds entertained by actors of inference rules can be elim-
inated – if their inconsistency is uncovered by applying the rule – or become
enriched because, through rule applications, actors come to know the conclusion
of the rule. Moreover, cognitive capacities of agents are reduced by the suitable
cost. We will describe the model transformations by actions of inference, i.e. the
product models, component by component. First we need certain abbreviations:

Abbreviations. Given a RSM M and a world w in WP we take:

[∼j (w)] := {u ∈ W I | w ∼j u} [∼ (w)]G =
⋃

j∈G

[∼j (w)] [∼]G =
⋃

u∈WP

[∼ (u)]G

These abbreviations capture, respectively, which impossible worlds are accessi-
ble from w for agent j, for group G, and the ones overall entertained by G.
Given a model M and a rule ρ we also need an abbreviation to talk about
impossible worlds that will become inadmissible, given Minimal Consistency,
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once ρ is applied: [MC]ρ := {w ∈ W I | ¬con(ρ) ∈ VI(w) or con(ρ) =
¬φ, for some φ ∈ VI(w)} . Next, given a model M and an action model C:

[MC]e =

{
[MC]ρ ∩ [∼]lab2(e), if lab1(e) = ρ

∅, otherwise
.

This allows us to talk about the impossible worlds that will be uncovered
as inadmissible by an occurrence of e. For example, if the event represents a
ρ-application, then this set of worlds will contain those worlds susceptible to
Minimal Consistency that are also entertained by the actors (those who do apply
the rule).6 The components of the product model are then built as follows:

� the new set (WP )′ consists of pairs of possible worlds and events, such that
the world satisfies the precondition of the event.
� the new set (W I)′ consists of pairs of impossible worlds and events, such
that the world satisfies the precondition of impossibility and it is not ruled out
by Minimal Consistency. That is, if an event e represents a rule-application,
the impossible worlds which are paired with it are the ones that survive the
rule-application. If an impossible world lies in the epistemic state of an actor
who by applying the rule unveils that she initially entertained an inconsis-
tency, then that world will not give rise to such a pair.
� The valuation V ′

P is simply VP restricted to the surviving possible worlds.
� The valuation V ′

I is given as follows with the help of the postcondition
function: if the pair (w, e) ∈ (W I)′ lies in the epistemic state of an actor,
who applies ρ, then its valuation is extended by the conclusion of ρ: the
agent came to know the conclusion via the rule-application. Otherwise, the
valuation should not be extended, since the epistemic states of non-acting
agents should not change: they do not come to know the conclusion.
� R′ is simply R restricted to the surviving worlds.
� The new cognitive capacity is given through the capacity postcondition.
That is, the capacities of non-actors remain unchanged as they did not make
any cognitive effort, with the exception of time (which is consumed anyway).
However, actors’ capacity is reduced by the cost of the rule-application.

Definition 2.9 (Product model). Let M be a RSM and C an action model.
The product model M ⊗ C is a tuple 〈(WP )′, (W I)′,∼′

j , V
′
P , V ′

I , R′, cp′
j〉 where:

(W P )′ = {(w, e) ∈ W P × E | M, w |= pre(e)}
(W I)′ = {(w, e) ∈ W I × E | pre imp(e) ⊆ VI(w) and w ∈ [MC]e}
(w, e) ∼′

j (w′, e′) iff w ∼j w′ and e ≈j e′)
V ′

P (w, e) = VP (w), for (w, e) ∈ (W P )′

V ′
I (w, e) =

⎧⎨
⎩

pos(j, VI(w), e) with j ∈ lab2(e), if w ∈ ⋃
(u,x)∈(WP )′

[∼ (u)]lab2(e)

pos(j, VI(w), e), with j ∈ lab2(e), otherwise
,for (w, e) ∈ (W I)′

R′((w, e), j) = R(w, j), for (w, e) ∈ W ′ where W ′ = (W P )′ ∪ (W I)′

cp′
j = pos cp(j, cpj)

6 For example, if an impossible world w represents p, p → q, ¬q and is entertained
by all agents, and event e1 represents the application of MP = {p, p → q} � q,
then w will be contained in [MC]e1 . This world will become inadmissible by an e1
occurrence, because its inconsistency is uncovered by the application of the rule.
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Then the semantic interpretation for operators 〈C, e〉 is given below. For w ∈ W :

M,w |= 〈C, e〉φ iff M,w |= pre(e) and M ⊗ C, (w, e) |= φ

3 Discussion

We now see these constructions in action and discuss features of the framework.

Example 3.1 (Dyad selection task). For this variant of the task, we focus
on two agents, each knowing the visible side of one card. The first (a1) sees the
letter card A, and the second (a2) sees the number card 7.7

Language. Denote “card 1 has a vowel” with v1 and “card 1 has an even
number” with e1. Likewise, v2 (respectively, e2) stand for “card 2 has a vowel
(even number)”. Abbreviate the formulas vi → ei for i = 1, 2 with COND . Also,
MP := {v1 → e1, v1} � e1 and MT := {v2 → e2,¬e2} � ¬v2.

Initial Model. The model representing that a1 knows the content of the letter
card and a2 knows that of the number card is Fig. 3 (left). The formulas of
COND are true throughout all worlds. Since agents are fallible, at the beginning
they only know what they see (the visible sides) – they have not immediately
put their observations together nor have they inferred immediately what lies
in the back of the cards. The impossible (incomplete) worlds representing the
combinations of letter and number on the first and the second card are:

� w2: the first card depicts a vowel and the second card an even number.
� w3: the first card depicts a vowel and the second card an odd number.
� w4: the first card depicts a consonant and the second card an even number.
� w5: the first card depicts a consonant and the second card an odd number.

We draw these worlds as rectangles and write down all formulas true there, to dis-
tinguish them from the real (possible) world (w1), where we write the atoms that
are true there, namely v1, e1 (thus ¬e2,¬v2 are also true as possible worlds are
maximal consistent alternatives). The epistemic relations represent the uncer-
tainty of agents w.r.t. the card they have not seen. There are also reflexive and
transitive arrows, not drawn for simplicity. Moreover, for Res = {time,memory},
take cp(a1) = (6, 6), cp(a2) = (6, 4). Both agents have acknowledged MP , but
only a1 has acknowledged MT . Finally, c(MP ) = (1, 2), c(MT ) = (3, 2) as MT
is provably more difficult than MP, and c(G) = (1, 1), for the cost of resolution
of G = {a1, a2}.

7 The framework can also be applied to the Shadow-Box experiment [23], investigating
the synthesis of disparate points of view. For example, [1] sees learning as a social
process of belief revision of interacting agents and draws connections between the
Shadow-Box and variants of selection tasks whereby agents have access to different
part of the world (set of cards).
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Fig. 3. The initial model M and the updated pointed model (Mfin, ((w1, e1), e
′
1))

Actions. Afterwards, both agents share their observations. This is captured via
resolution. This can be undertaken because cp(ai) ≥ c(G), for i = 1, 2. However,
it reduces capacities to (5, 5) and (5, 3) respectively. Then, all agents apply MP
(captured by an action model C1), since they both have the rule available and
affordable, in accord with the experimental dialogues [21,30]. Their capacities
become (4, 3) and (4, 1). However, only a1 applies MT , having the rule available
and affordable. This is in accord with the dialogues and captured by an action
model C2. Her capacity becomes (1, 1), while a2’s becomes (1, 1) too.

Final Model. The final pointed model is depicted in Fig. 3. We have Mfin :=
(MG ⊗C1)⊗C2, resulting from a resolution update (MG) and then from product
updates with C1 amd C2. As a result, Mfin, ((w1.e1).e′

1) |= Ka1e1 ∧ Ka1¬v2 ∧
Ka2e1 ∧ ¬Ka2¬v2, so M,w1 |= 〈RG〉〈C1, e1〉〈C2, e

′
1〉(Ka1e1 ∧ Ka1¬v2 ∧ Ka2e1 ∧

¬Ka2¬v2).

Further Development. After another resolution round, a2 will also come to
know ¬v2, since she can afford that action (pooling information a1 derived ear-
lier). This corresponds naturally to the dialogues in [21, p. 238–240] and [30, p.
16, 19], where the member who figures out that 7 should be turned shares the
newly deduced information. Notice that a2 could use resolution, but not MT ;
at the end, she did not have to apply MT herself, because her teammate did so,
and all she had to do is communicate with her. Had the group not shared their
information they would not have reported the correct solution; had a2 reasoned
alone, her resources would not have allowed her to reach the solution. This illus-
trates one way in which reasoning in groups facilitates performance in tasks that
are more challenging on the individual level.

Our framework models the crucial interplay of resolution and inference, also
evident in tasks like the Shadow-Box experiment or interdisciplinary research
itself. One member might provide input information and another the means (e.g.
a proof strategy) to reach a result that would not have been reached if members
worked alone. Scientific quests largely depend on gathering suitable information
and deriving more on its basis to actualize scientific potential. However, this
process is effortful; resolving and deducing comes with a cognitive cost.
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We present some validities and invalidities, as further basis of discussion. The
full-fledged proofs for all theorems that follow are omitted for brevity.

Theorem 3.1 (Some validities). |= DG〈RG〉φ ↔ 〈RG〉EGφ where EG :=
∧

j∈G

Kj

|= ∧

j∈Ag

∧

φ∈pr(ρ)

Kjφ ∧ ∧

j∈Ag

Ajρ ∧ ∧

j∈Ag

(cpj ≥ cρ) → 〈CALL, e1〉EAgcon(ρ) where lab1(e1) = ρ

|= ∧

φ∈pr(φ)

DG〈RG〉φ ∧ Ajρ ∧ (cpj ≥ cG + cρ) → 〈RG〉〈CSOME , e1〉Kjcon(ρ) where j ∈ G, lab1(e1) = ρ, j ∈ lab2(e1)

|= ∧

φ∈pr(φ)

DAg〈RAg〉φ ∧ ∧

j∈Ag

Ajρ ∧ ∧

j∈Ag

(cpj ≥ cAg + cρ) → 〈RAg〉〈CALL, e1〉EAgcon(ρ) where lab1(e1) = ρ

The first validity pertains to the effect of resolution on the understanding of
DK (as in [36]) showing that after a group resolves their knowledge, φ is known
by its members. The second captures the effect of actions of inference. The
agents do not immediately know all logical consequences of their knowledge: they
have to undertake effortful reasoning steps. The other validities encapsulate the
interplay of communication and inference: once members resolve their knowledge
and come to know the premises, then those who apply the rule, come to know
the conclusion as well. Contrary to these, we escape features of idealized agents:

Theorem 3.2 (Some invalidities).

|= DGφ → 〈RG〉EGφ |= DG〈RG〉φ → 〈RG〉EGEGφ |= ∧
φ∈pr(ρ)

DGφ → DGcon(ρ)

|= ∧
φ∈pr(ρ)

Kjφ ∧ (cpj ≥ cρ) ∧ Ajρ → 〈CSOME , e1〉Kjcon(ρ) where ρ = lab1(e1) and j ∈ lab2(e1)

The first invalidity unveils the problem behind the traditional understanding
of DK (recall Sect. 1) and it is also identified in [36]. The second invalidity
shows that higher orders of knowledge require additional reasoning steps that
might not follow from attaining mutual knowledge alone. This departs from
literature viewing actualizations of DK as CK, because our attempt focuses
on resource-boundedness: higher-order knowledge, and hence CK, need extra
effort that should not be taken for granted. The third invalidity shows that DK
is not logically closed, therefore actualizing knowledge of logical consequences
is not trivial. The fourth invalidity shows that non-acting agents might not
come to know logical consequences, even if some of their peers do. This might
need yet another round of resolution, exemplifying the continuous and resource-
consuming interplay of communication and inference that takes place in reality
when non-ideal groups deliberate.

The theorems illustrate how DK is actualized by non-ideal agents. The use of
impossible worlds as “witnesses” of agents’ fallibility did not result in a trivialized
system where anything goes, due to the dynamics: agents come to know more
via resolution and inference, provided that they can. Specifying these steps,
monitoring their interplay and the effort they require allows us to track to which
extent a group realizes its potential, instead of pre-setting an arbitrary bound.
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This provides the “bridge” between the implicit notion of DK and the explicit
knowledge real groups can achieve.

Related Work. Comparisons with related work concern: (a) the inferen-
tial aspect of knowledge, (b) the communicative aspect of actualizing group
potential.

Consider aspect (a): this approach contributes to impossible-worlds seman-
tics used against omniscience [27] by adding dynamics that avoid the extreme
of trivial logics. Other approaches discern implicit (omniscient) and explicit
(omniscience-free) attitudes through a syntactic “filter” (like an awareness
function [17]). However, forms of the problem may persist and it not clear
how resource-boundedness could fit in this picture. Closer to our view are
[13,16,31,35], yet our elaborate specification of reasoning processes is impor-
tant in bridging logic with empirical facts, because these usually pertain to the
difficulty of individual inference rules [14,24,28]. This also discerns our frame-
work from others with multiple, non-ideal agents [3,4] that too study the effect
of communication and inference in multi-agent settings.

Consider aspect (b): [6,36] propose actions following the observation in [11]:
it takes more than communication of formulas expressible in the standard lan-
guages to actualize DK. Our resolution action is based on [36]’s, and is similar
to a special case of [6]’s tell-all-you-know actions, and to [11]’s communication
core. While this wider variety of actions is compatible with the framework,8

our dynamics is tailored to bounded agents, explaining how far group reasoning
can go. It is precisely this difference in scope that justifies our divergence from
studying actualizations of DK as CK. It would also be interesting to connect this
resource-sensitive attempt and another generalization of operations for pooling
information given in [26]: the authors provide an epistemic modality relative to
structured communication scenarios as an alternative to distributed knowledge.

Overall, our approach addresses the problem of logical omniscience, in a
multi-agent context and in agreement with experimental results and philosoph-
ical proposals (e.g. towards a theory of feasible inferences [14]). Departing from
this well-known problem, this approach demarcates the communicative and infer-
ential actions underlying whether and how DK is actualized. As [10] argues,
information goes hand in hand with the processes that create, modify, and con-
vey it; this analysis naturally applies to deliberating groups, and importantly,
to resource-bounded ones.

4 Reduction and Axiomatization

In this section, we reduce RSMs to possible-worlds structures with syntactic func-
tions, resembling awareness structures [17]. A reduction from impossible worlds
to syntactic structures follows the converse direction to [33], showing how various

8 Their model transformations could be captured as in the aforementioned attempts
(epistemic relation-wise), accompanied by the incurrence of a cost to those receiving
the information.
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structures, like awareness ones, can be reduced to impossible-worlds models vali-
dating precisely the same formulas (given a fixed background language). Besides,
the division of responses to logical omniscience into syntactic and semantic ones
is common in the literature. Syntactic approaches are claimed to lack the ele-
gance of semantic (impossible-worlds) ones, yet the latter’s semantic rules do not
adequately capture intuitions about knowledge formation [17]. Our framework
is a semantic one, using impossible worlds to do justice to multiple non-ideal
agents but nonetheless preserves explanatory power since agents can engage in
knowledge-refining actions. While the model and its actions accommodate these
intuitions, the reduction is instrumental in providing a sound and complete logic,
as it allows for the use of standard DEL techniques. In this way, we wish to har-
vest both the benefits of impossible-worlds semantics and the more convenient
technical treatment of syntactic approaches.

An outline of the reduction is as follows. First, we focus on the static part and
we show that the effect of impossible worlds in the interpretation of DG can be
captured in a possible-worlds model, provided that suitable syntactic functions
are introduced. Second, we obtain a sound and complete static axiomatization,
through modal logic techniques. Third, we move to the dynamics. We explain
why the common DEL procedure of giving reduction axioms is not straightfor-
ward but also how this issue can still be overcome.

4.1 Reduction and Static Axiomatization

Reduced (Static) Language. We fix an appropriate language Lred as the
“common ground” to show that the reduction is successful, i.e. the same formulas
are valid under the original and the reduced models. Take ∼G (w) := {u ∈
W | w ∼G u}, which denotes the set the truth clause for DG quantifies over.
Auxiliary operators (LDG

, IDG
) are then introduced to the static fragment of L to

discern (syntactically) the effect of quantifying over (im)possible worlds in DG-
interpretations. Their semantic interpretations are given below. For w ∈ WP :

M,w |= LDG
φ iff M,u |= φ for all u ∈ WP ∩ ∼G (w)

M,w |= IDG
φ iff M,u |= φ for all u ∈ W I∩ ∼G (w)

These essentially help us break down the DG operator. We also use ⊥ as an
auxiliary element of Lred , that is never true in any world.

Building the Reduced Model. Towards interpreting the auxiliary operators
IDG

in a reduced model, we construct awareness-like functions:

– IDG
: WP → P(L) such that IDG

(w) =
⋂

v∈W I∩∼G(w)

VI(v). Intuitively, IDG

takes a possible world and yields the set of formulas true at all impossible
worlds in its quantification set (the set of worlds DG quantifies over).

Definition 4.1 (Awareness-like structure (ALS)). Given M = 〈WP ,W I ,
∼j , VP , VI , R, cpj〉, its ALS (reduced model) is M := 〈W,∼r

j ,V,R, cpj , IDG
〉

with:
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W = WP w∼r
ju iff w ∼j u, for w, u ∈ W V(w) = VP (w) for w ∈ W

R(w, j) = R(w, j) for w ∈ W cpj is as in the original IDG
as explained before

The clauses based on ALSs are such that the IDG
-operators are interpreted via

the awareness-like functions. Due to the construction of awareness-like functions,
Minimal Consistency is inherited by the reduced model: for no w ∈ W, G ⊆ Ag,
is it the case that {φ,¬φ} ⊆ IDG

(w). Soundness of inference rules is also clearly
preserved. Moreover, take ∼r

j(w) := {u ∈ W | w∼r
ju} now based on the new

ordering ∼r
j . The interpretation of terms is as in the original, since the values

of capacities and costs are unchanged. The semantic clauses, based on M, are
standard for the boolean connectives. The remaining:

M, w |= p iff p ∈ V(w) M, w |= LDGφ iff M, u |= φ for all u ∈ ⋂
j∈G ∼r

j (w)

M, w |= z1s1 + . . . + znsn ≥ z iff z1s
M
1 + . . . + znsMn ≥ z M, w |= IDGφ iff φ ∈ IDG(w)

M, w |= Ajρ iff ρ ∈ R(w, j) M, w |= DGφ iff M, w |= LDGφ and M, w |= IDGφ

We now show that the definition of the ALSs indeed fulfills its purpose:

Theorem 4.1 (Reduction). Given a RSM M , let M be its ALS. Then M is
a reduction of M , i.e. for any w ∈ WP and formula φ ∈ Lred : M,w |= φ iff
M, w |= φ.

Proof. The proof goes by induction on the complexity of φ.

Based on this, we provide the static axiomatization:

Definition 4.2 (Static axiomatization). Λ is axiomatized by Table 1 and
the rules Modus Ponens, NecessitationDG

(from φ, infer LDG
φ).

Table 1. The static axiomatization

PC All instances of classical propositional tautologies

Ineq All instances of valid formulas about linear inequalities

D-Distribution LDG
(φ → ψ) → (LDG

φ → LDG
ψ)

D-factivity LDG
φ → φ

D-Monotonicity LDG
φ → LDB

φ, if G ⊆ B

IDG
φ → IDB

φ, if G ⊆ B

Minimal Consistency IDG
⊥ ∨ (¬(IDG

φ ∧ IDG
¬φ))

Soundness of inference rules Ajρ → tr(ρ)

Reducing DG DGφ ↔ LDG
φ ∧ IDG

φ

Ineq , described in [19], is introduced to account for the linear inequalities. The
axioms for LDG

mimic the behaviour of DG-involving axioms in the standard
logics with DK [18,20,22] only now using the auxiliary operator quantifying over
the possible worlds alone. Soundness of inference rules and Minimal Consistency
take care of the respective model conditions. Finally, the last axiom reduces DG

in terms of the corresponding auxiliary operators.
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Theorem 4.2 (Λ soundness/completeness). Λ is sound and complete w.r.t.
ALSs.

Proof. Soundness follows from the validity of axioms. Completeness follows [22,
p. 65], as the crucial difference (auxiliary operators interpreted through syntactic
functions) is accommodated from the construction of a suitable canonical model.

4.2 Dynamic Axiomatization

Moving to the dynamic part, consider a RSM M and its reduced ALS M. If an
update, either of resolution or inference, takes place, then we get an updated
M ′ and thus an updated ALS M′ corresponding to it. We observe that M′ is
such that an updated awareness-like function I′DG

is given in terms of IDG
, i.e

the awareness-like function in M. That is, the new values are set expressions of
the original ones. We present the updated functions below.9

After resolution of G: I′DB
(w) =

⋂

u∈(W I)∩∼′
B(w)

VI(u) =

{
IDG∪B

(w), if G ∩ B �= ∅
IDB

(w), if G ∩ B = ∅

After CALL: I′DG
(w, e1) =

⋂

(w′,e′)∈(W I)′∩∼′
G(w,e1)

V ′
I (w′, e′) =

{
IDG

(w) ∪ {con(ρ)}, if (W I)′ �= ∅
IDG

(w) ∪ IDG
(w), if (W I)′ = ∅

After CSOME , we have the cases below regarding e1 and e0:

I′
DG

(w, e1) =

⎧⎪⎨
⎪⎩

IDG(w), if (W I)′∩ ∼′
G (w, e1) = ∅ and a ∈ G

IDG(w) ∪ {con(ρ)}, if (W I)′∩ ∼′
G (w, e1) = ∅ and a ∈ G

IDG(w) ∪ IDG(w), if (W I)′∩ ∼′
G (w, e1) = ∅

I′
DG

(w, e0) = IDG(w)

In DEL, it is common to provide reduction axioms for the dynamic operators,
in our case, for 〈RG〉 and 〈C, e〉. However, reducing dynamic formulas involving
the auxiliary operator IDG

(thus DG too) cannot be straightforwardly obtained
because the new sets obtained through the update of IDG cannot be described
by means of the static language alone. Similar problems are encountered in [31,
Chapter 5]; in that single-agent framework, there are syntactic functions which
are expanded after certain actions. The focus is on actions that give rise to syn-
tactic functions which are structured expressions of the original ones, in turn
treatable with a specific static language. We follow a similar procedure, tailored
to our syntactic functions IDG

. This is because, as shown above, the updated val-
ues are too given in terms of the original ones, reflecting the refinement induced
by each action. Just to sketch the idea, as in [31], we extend the static language,
essentially re-expressing the auxiliary operators as set-expression operators, and
provide reduction axioms that yield a full sound and complete axiomatization.

For reasons of brevity, we cannot present the full-fledged procedure and the
reduction axioms here. Some remarks to give a flavor of the more important
reduction axioms: for inequalities, they reflect, with the help of abbreviations,
the resource consumption each action induces; for LG operators, they reflect that
these operators behave as DG does in standard DEL; for IG, making crucial use
of the set-expression operators, they reflect that the awareness-like functions are
updated in a principled way: as specific set expressions of the original ones.
9 We get these results using Definition 2.7, Definition 2.9, Definition 4.1.
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5 Conclusions and Future Work

The EL modelling of unbounded agents has repercussions for group reasoning
and DK is instrumental in illustrating this because it presupposes that agents
can undertake unlimited actions of communication and inference. We looked into
actualizations of DK under bounded resources, using RSMs and actions for com-
munication and inference. The combination of impossible-worlds semantics and
action models might be of independent interest given the former’s use in areas
beyond epistemic logic and the latter’s popularity in the study of multi-agent
dynamics. We furthermore showed that our models can be reduced to syntac-
tic structures. In doing so, we confirmed a pattern observed in the omniscience
literature and offered a useful detour for a sound and complete logic.

One direction for future work concerns non-ideal higher-order reasoning, and
hence connections of DK and CK. As with deductive reasoning, we envisage
the introduction of effortful steps for introspection and reasoning about other
agents, and the use of experimental results showing that groups usually act on
a large, but finite, degree of mutual knowledge as if they had CK. On another
note, group reasoning, in this attempt, can be better than individual in ways
that agree with the distribution of skills observed in [21,30] and the view that at
the upper limit groups perform as their best member [25]. However, the former
also emphasize the facilitative effect of dialogue in group performance, which
may be captured via a combination of RSMs with dialogical/inquisitive models.
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Abstract. There has been a significant interest in modal logics with
intersection, prominent examples including epistemic and doxastic log-
ics with distributed knowledge, propositional dynamic logic with inter-
section, and description logics with concept intersection. Completeness
proofs for such logics tend to be complicated, in particular on model
classes such as S5 used, e.g., in standard epistemic logic, mainly due to
the undefinability of intersection of modalities in standard modal logic.
A standard proof method for the S5 case uses an “unraveling-folding”
technique to achieve a treelike model to deal with the problem of unde-
finability. This method, however, is not easily adapted to other logics,
due to its reliance on S5 in a number of steps. In this paper we demon-
strate a simpler and more general proof technique by building a treelike
canonical model directly, which avoids the complications in the processes
of unraveling and folding. We illustrate the technique by showing com-
pleteness of the normal modal logics K, D, T, B, S4 and S5 extended
with intersection modalities. Furthermore, these treelike canonical mod-
els are compatible with Fischer-Ladner-style closures, and we combine
the methods to show the completeness of the mentioned logics further
extended with transitive closure of union modalities known from PDL or
epistemic logic. Some of these completeness results are new.

Keywords: Modal logic · Intersection modality · Transitive closure of
union modality · Completeness · Epistemic logic · Distributed
knowledge

1 Introduction

Intersection plays a role in several areas of modal logic, including epistemic logics
with distributed knowledge [11,15], propositional dynamic logic with intersection
of programs [13], description logics with concept intersection [3,4], and coalition
logic [1]. It is well-known that relational intersection in Kripke models is not
modally definable and that standard logics with intersection are not canonical
(cf., e.g., [14]).
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A method for proving completeness for certain modal logics with intersec-
tion was developed in [11,12,14–16] for various (static) epistemic logics with
distributed knowledge, and later explicated and extended in [17–19] as the
unraveling-folding method which is applicable to various static or dynamic epis-
temic S5 logics with distributed knowledge with or without common knowledge.

Let us take a closer look at this technique for epistemic logic with distributed
knowledge (S5D). It is known that the canonical S5 model built in the standard
way is not a model for the classical axiomatization for this logic. This is because
the accessibility relation RG (where G is a set) that is (implicitly) used to inter-
pret the intersection (distributed knowledge) modality is not necessarily the
intersection of individual accessibility relations Ra (a ∈ G). In the canonical S5
model we can ensure that RG ⊆ ⋂

a∈G Ra, but not that RG ⊇ ⋂
a∈G Ra.

The unraveling-folding method is carried out in the following way. A pre-
model is a standard S5 model where RG is treated as a primitive relation for each
group G. A pseudo model is a pre-model satisfying the following two constraints:

1. R{a} = Ra for every agent a, and
2. RG ⊆ ⋂

a∈G Ra for every agent a and group G

A (proper) S5D model is then a pseudo model that satisfies also a third con-
straint:

3. RG ⊇ ⋂
a∈G Ra for every agent a and group G

A canonical pseudo model can be truth-preservingly translated to a treelike pre-
model using an unraveling technique, and then folded to an S5D model while
also preserving the truth of all formulas (for details of the two processes see
[18]). Completeness is achieved by first building a canonical pseudo model for a
given consistent set Φ of formulas, and then translating it to an S5D model for
Φ using the unraveling-folding method.

There are many subtleties not mentioned in this simplified overview, which
in particular makes the method cumbersome to adapt to extensions of basic
epistemic logic or to non-S5 based logics.

In this paper we demonstrate a simpler way to prove completeness for modal
logics with intersection. Since we know that a treelike model typically works for
such logics, the idea is to build a treelike model directly for a given consistent set
of formulas. We call such a model a standard model. This eliminates having to
deal with the details of the unraveling and folding processes, and dramatically
simplifies proofs.

We illustrate the technique by building the standard model for each of the
modal logics, K, D, T, B, S4 and S5, extended with intersection. We furthermore
demonstrate that the method is useful by showing that it is compatible with
finitary methods based on Fischer-Ladner-style closures, and introduce finitary
standard models for the mentioned logics further extended with the transitive
closure of the union, used in, e.g., PDL and epistemic logic (common knowledge),
as well. Some of these completeness results have been stated in the literature
before, often without proof.
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The rest of the paper is structured as follows. In the next section we introduce
basic definitions and conventions. In Sect. 3 we give a taste of the proof technique
by demonstrating it on a well-known case: S5∩ with intersection. The reader who
wants to immediately see what the technique looks like can jump directly to that
section. In Sect. 4 we systematically consider a class of well-known modal logics
extended with intersection. For each of them we introduce an axiomatization
and show its completeness. We then extend the logics, proofs and results further
with a modality for the transitive closure of union in Sect. refsec:logiccd. We
conclude in Sect. 6.

2 Preliminaries

In this paper we study modal logics over multi-modal languages with countably
many standard unary modal operators: �0, �1, �2, etc. On top of these we
focus on two types of modal operators, each indexed by a finite nonempty set I
of natural numbers:

– Intersection modalities, denoted ∩I ;
– Transitive closure of union modalities, henceforth referred to as union+

modalities for brevity, denoted �I .

We mention some applications of these modalities below.
The languages are parameterized by a countably infinite set pr of proposi-

tions, and a countable set I of primitive types. A finite non-empty subset I ⊆ I
is called an Index. We are interested in the following languages.

Definition 1 (languages).

(L) ϕ ::= p | ¬ϕ | (ϕ → ϕ) | �iϕ
(L∩) ϕ ::= p | ¬ϕ | (ϕ → ϕ) | �iϕ | ∩Iϕ
(L∩�) ϕ ::= p | ¬ϕ | (ϕ → ϕ) | �iϕ | ∩Iϕ | �Iϕ

where p ∈ pr, i ∈ I and I is an index. Boolean connectives are defined as usual.

A Kripke model M (over pr and I) is a triple (S,R, V ), where S is a
nonempty set of states, R : I → ℘(S × S) assigns to every modality �i a
binary relation Ri on S, and V : pr → S is a valuation which associates with
every propositional variable a set of states where it is true.

Definition 2 (satisfaction). For a given formula α, the truth of it in, or
its satisfaction by, a model M = (S,R, V ) with a designated state s, denoted
M, s |= α, is defined inductively as follows.

M, s |= p iff s ∈ V (p)
M, s |= ¬ϕ iff not (M, s) |= ϕ
M, s |= (ϕ → ψ) iff M, s |= ϕ implies M, s |= ψ
M, s |= �iϕ iff for all t ∈ S, if (s, t) ∈ Ri then M, t |= ϕ

M, s |= ∩Iϕ iff for all t ∈ S, if (s, t) ∈ ⋂
i∈I Ri then M, t |= ϕ

M, s |= �Iϕ iff for all t ∈ S, if (s, t) ∈ ⊎
i∈I Ri then M, t |= ϕ
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where1
⊎

i∈I Ri is the transitive closure of
⋃

i∈I Ri.

Thus, the intersection modalities are interpreted by taking the intersection,
and the union+ modalities by taking the transitive closure of the union.

Given a formula ϕ and a class C of models, we say ϕ is valid (|= ϕ) in C iff ϕ
is true in all states in all models of C . A formula ϕ is a logical consequence of a
set of formulas Φ (Φ |= ϕ) if ϕ is true in a given state in a given model whenever
all formulas in Φ are. We are interested in certain classes of models, in particular
those defined by well-known frame conditions. In this paper we are going to
focus on some of the most well known frame conditions (see, e.g., [9]). These are
seriality, reflexivity, symmetry, transitivity and Euclidicity. It is well known that
these frame conditions are characterized by the formulas D (�iϕ → ¬�i¬ϕ), T
(�iϕ → ϕ), B (¬ϕ → �i¬�iϕ), 4 (�iϕ → �i�iϕ) and 5 (¬�iϕ → �i¬�iϕ),
respectively. With respect to different combinations of these frame conditions,
normal modal logics K, D (also known as KD), ¡(also known as KT), B (also
known as KTB), S4 (also known as KT4) and S5 (also known as KT5) based on
the language L are well studied in the literature. We shall refer an “S5 model”
to a Kripke model in which the binary relation is an equivalence relation, and
likewise for a D, T, B or S4 model.

In this paper we will focus on the corresponding logics over the languages
L∩ and L∩�, and they will be named in a comprehensive way as follows:

K∩, D∩, T∩, B∩, S4∩, S5∩,
K∩�, D∩�, T∩�, B∩�, S4∩�, S5∩�.

There are well known applications of these logics, for example are S5∩ and
S5∩� (under the restriction that I is finite) well known as S5D (multi-agent
S5 with distributed knowledge) and S5CD (multi-agent S5 with distributed and
common knowledge) respectively in the area of epistemic logic. The logics K∩ and
S4∩ are known as ALC(∩) (i.e., ALC with role intersection) and S(∩) (where
S is ALC with role transitivity) respectively in the area of description logic
[3,4].2 The logic K∩� is close to propositional dynamic logic with intersection
(IPDL) [13] or the description logic ALC(∩,∪, ∗), and similarly, S4∩� is close to
S(∩,∪, ∗).3

1 Although the symbol
⊎

is sometimes used for disjoint union, we repurpose it here
for transitive closure of the union.

2 The subscript i of a unary modal operator �i typically stands for an agent in epis-
temic logic or a role in description logic. In epistemic logic, a finite number of agents
is assumed, and the intersection modality (i.e., a distributed knowledge operator)
is an arbitrary intersection over a finite domain. In description logic, the number
of roles are typically unbounded, but the intersection is binary, which is in effect
equivalent to finite intersection.

3 There are two major differences however. First, the Kleene star in both logics are the
reflexive-transitive closure, and we consider the transitive closure which is denoted
by a “+” in the symbol �. Second, �I is a compound modality (union and then take
the transitive closure), while in those logics the Kleene star is separated from the
union, and as a result, the Kleene star applies to the intersection as well, which we
do not consider here.
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The minimal logic K can be axiomatized by the system K composed of the
following axiom (schemes) and rules (where ϕ,ψ ∈ L and i ∈ I):

(PC) all instances of all propositional tautologies
(MP) from (ϕ → ψ) and ϕ infer ψ

(K) �i(ϕ → ψ) → (�iϕ → �iψ)
(N) from ϕ infer �iϕ.

Axiomatizations for D, T, B , S4 and S5, which are named D, T, B, S4 and S5
respectively, can be obtained by adding characterization axioms to K. In more
detail, D = K⊕D, T = K⊕T, B = T⊕B, S4 = T⊕4 and S5 = T⊕5, where the
symbol ⊕ means combining the axioms and rules of the two parts. Details can be
found in standard modal logic textbooks (see, e.g., [8,9]). Given an axiomatization
L, we use “ �L ϕ ” to denote that ϕ is derivable inL, and when Φ is a set of formulas
“ Φ �L ϕ ” means that �L (ψ0 ∧ · · · ∧ ψn) → ϕ for some ψ0, . . . , ψn ∈ Φ.

A logic extended with the intersection modality is typically axiomatized by
adding axioms and rules to the corresponding logic without intersection. The
axioms and rules to be added are in total called the characterization of intersec-
tion, and depends on which logic we are dealing with. Similarly we can define
the characterization of the transitive closure of union, which can be made inde-
pendent to the concrete logic (will be made clearer in Sect. 5).

Characterizations of intersection and transitive closure of union can be found
in the literature for some of the logics, including K∩, T∩, S4∩, S5∩ and S5∩� in
epistemic logic (see [11,15,17]). For base logic S5, intersection in S5∩ and S5∩�

is characterized by the following axioms and rules:

– (K∩) ∩I(ϕ → ψ) → (∩Iϕ → ∩Iψ)
– (D∩) ∩Iϕ → ¬ ∩I ¬ϕ
– (T∩) ∩Iϕ → ϕ
– (4∩) ∩Iϕ → ∩I∩Iϕ
– (B∩) ¬ϕ → ∩I¬∩Iϕ
– (5∩) ¬∩Iϕ → ∩I¬∩Iϕ
– (N∩) from ϕ infer ∩Iϕ
– (∩1) �iϕ ↔ ∩{i}ϕ
– (∩2) ∩Iϕ → ∩Jϕ, if I ⊆ J

Transitive closure of union in S5∩� is characterized by the following:

– (K�) �I(ϕ → ψ) → (�Iϕ → �Iψ)
– (D�) �Iϕ → ¬�I¬ϕ
– (T�) �Iϕ → ϕ
– (4�) �Iϕ → �I�Iϕ
– (B�) ¬ϕ → �I¬�Iϕ
– (5�) ¬�Iϕ → �I¬�Iϕ
– (N�) from ϕ infer �Iϕ
– (�1) �Iϕ → �i(ϕ ∧ �Iϕ), if i ∈ I
– (�2) from ϕ → ∧

i∈I �i(ϕ ∧ ψ) infer ϕ → �Iψ
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It is known that the axiomatization S5∩ = S5⊕{K∩,T∩, 5∩,∩1,∩2} is sound
and complete4 for the logic S5∩, and S5∩� = S5∩ ⊕ {K�,�1,�2} is sound and
complete5 for the logic S5∩� (see, e.g., [11]), in the case that I is finite. However,
since the intersection and union+ modalities are interpreted as operations over
relations for standard box operators, their properties change in accordance with
those for standard boxes. As a result, the characterization axioms and rules vary
for weaker logics. We shall look into this in the following sections. First we define
some basic terminology that will be useful.

Definition 3 (paths, (proper) initial segments, rest, tail). Given a model
M = (S,R, V ), a path of M is a finite nonempty sequence 〈s0, I1, . . . , In, sn〉
where: (i) s0, . . . , sn ∈ S, (ii) I1, . . . , In are indices, and (iii) for all x = 1, . . . , n,
(sx−1, sx) ∈ ⋂

i∈Ix
Ri.

For paths s = 〈s0, I1, . . . , Im, sm〉 and t = 〈t0, J1, . . . , Jn, tn〉 of a model,

– We say that s is an initial segment of t, denoted s � t, if m ≤ n, sx = tx
for all x = 0, . . . ,m, and Iy = Jy for all y = 1, . . . ,m, and then we say that
t extends s with 〈Jm+1, tm+1, . . . , Jn, tn〉;

– We say s is a proper initial segment of t, denoted s ≺ t, if the former is an
initial segment of the latter and m < n;

– We write tail(s) for sm, and similarly tail(t) for tn;
– When s is an initial segment of t, we write t \ s to stand for the path

〈tm, Jm+1, . . . , Jn, tn〉. Note that tail(s) is kept in t \ s, and when s = t,
we have t \ s = 〈tn〉.

Given a natural number i, a path s = 〈s0, I1, . . . , In, sn〉 is called:

– An i-path, if i appears in all the indices of the path, i.e., i ∈ ⋂n
x=1 Ix (note

that a path of length 1, such as 〈s0〉, is trivially an i-path).
– An I-path, where I is an index, if I ⊆ ⋂n

x=1 Ix.

3 A Simple Completeness Proof for S5∩

To illustrate the new technique we now give a proof, omitting some details, for
the particular case of S5∩, assuming familiarity with the canonical model method
for classical modal logics. In the next section we demonstrate the generality of
the technique and provide all details.

Let MCS be the set of all maximal S5∩-consistent sets of L∩-formulas. For
a given index I, the canonical relation �I is a binary relation on MCS, such
that Φ �I Ψ iff for all ϕ, ∩Iϕ ∈ Φ implies ϕ ∈ Ψ . It is easy to see that �I is an
equivalence relation. A canonical path is a sequence 〈Φ0, I1, . . . , In, Φn〉 such that:
(i) Φ0, . . . , Φn ∈ MCS, (ii) I1, . . . , In are indices, and (iii) for all x = 1, . . . , n,
(sx−1, sx) ∈ �Ix . We use similar terminology and notation for canonical paths
as for paths in a model (Definition 3).

4 D∩, 4∩, B∩ and N∩ are not needed in the sense that they are derivable.
5 D�, T�, 4�, B�, 5� and N� are not needed in the sense that they are derivable.
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Definition 4. The standard model for S5∩ is a tuple M = (S,R,V) such that:

– S is the set of all canonical paths;
– For all i ∈ I, Ri ⊆ S × S such that (s, t) ∈Ri iff (i) s and t have a common

initial segment u, and (ii) both s \ u and t \ u are i-paths.
– For any propositional variable p, V(p) = {s ∈ S | p ∈ tail(s)}.
Lemma 5. The standard model for S5∩ is an S5 model.

Proof. An easy verification of the definition of the standard model.

Lemma 6 (truth). For any ϕ ∈ L∩ and a state s of M, M, s |= ϕ iff ϕ ∈ tail(s).

Proof. By induction on ϕ. The atomic and Boolean cases are easy to show.
Interesting cases are for the modalities �i (i ∈ I) and ∩I (I is an index), the
former following easily from the latter.

M, s |= ∩Iψ
⇔ for all t, if (s, t) ∈ ⋂

i∈I Ri then ML, t |= ψ
⇔ for all t, if (s, t) ∈ ⋂

i∈I Ri then ψ ∈ tail(t) ⇔ ∩Iψ ∈ tail(s)

where the last step needs an argument.
Suppose ∩Iψ /∈ tail(s), we get ¬∩I ψ ∈ tail(s). Let Φ− = {¬ψ}∪{ψ′ | ∩Iψ

′ ∈
tail(s)}. We can show that Φ− is S5∩-consistent just as in a classical proof of the
existence lemma. Use the Lindenbaum construction to extend Φ− into Φ ∈ MCS.
Since ¬ψ ∈ Φ, ψ /∈ Φ. Let t be s extended with 〈I, Φ〉. Clearly, ψ /∈ tail(t) and
(s, t) ∈ ⋂

i∈I Ri (since s Ri t for all i ∈ I).
Suppose ∩Iψ ∈ tail(s) and assume towards a contradiction that there is a

state t such that (s, t) ∈ ⋂
i∈I Ri and ψ /∈ tail(t). By definition, s and t have a

common initial segment u, and s \ u and t \ u are both I-paths. There are three
cases: (i) s � t, (ii) t � s, and (iii) s and t fork (i.e., neither (i) or (ii)). Since �I

is an equivalence relation, in all cases it is easy to verify that tail(s) �I tail(t).

Theorem 7. S5∩ is a strongly complete axiomatization of S5∩.

4 Logics over L∩

In this section we study the logics over the language L∩, namely, K∩, D∩, T∩,
B∩, S4∩ and S5∩, which means that in this section a “formula” stands for a
formula of L∩, and a “logic” without further explanation refers to one of the six.
We shall provide a general method for proving completeness for these logics.

The axiomatization L we will provide for a logic L is an extension of the
axiomatization for the corresponding logic without intersection, with the char-
acterization of intersection. The characterization of intersection depends on the
frame conditions. For a given class of models, the characterization of intersection
is listed below:
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Int(K) = {K∩,∩1,∩2}
Int(D) = {K∩,∩1,∩2}
Int(T) = {K∩,T∩,∩1,∩2}
Int(B) = {K∩,T∩,B∩,∩1,∩2}
Int(S4) = {K∩,T∩, 4∩,∩1,∩2}
Int(S5) = {K∩,T∩, 5∩,∩1,∩2},

where Int(K) is the characterization of intersection for the class of all models,
Int(D) for the class of all D models, Int(T) for the class of all T models, and
so on. Note that D∩ is not included in Int(D): it is in fact invalid in D∩ [2].

By adding the characterization of intersection to the axiomatization of a logic,
we get an axiomatization for the corresponding logic over L∩. To be precise, we
list the axiomatizations as follows:

K∩ = K⊕ Int(K)
D∩ = D⊕ Int(D)
T∩ = T⊕ Int(T)
B∩ = B⊕ Int(B)
S4∩ = S4⊕ Int(S4)
S5∩ = S5⊕ Int(S5).

It is not hard to verify that all the above axiomatizations are sound in their
corresponding logics, respectively.

Some of the above axiomatizations, in particular, K∩, T∩, S4∩ and S5∩,
are given in [11]. An outline of a completeness proof is also found there, without
details. Similarly, equivalent axiomatizations for some of the cases are also found
in [5], with proof of completeness only for the K∩ case. For logics extending K∩

detailed proofs can be found for certain cases, such as the S5∩ with only a single
intersection modality for the set of all agents (which is assumed to be finite) [10].
A more general and detailed proof based on this technique for the S5 case can
be found in [18] (still for the S5 case). The proof goes through an unraveling-
folding procedure, mentioned in the introduction. Due to the subtleties in the
unraveling and folding processes, it is difficult to apply this technique directly
to new logics, as it has to be adapted from the beginning (for example, even the
definition of a path depends on the underlying logic) through several steps all
the way to the very end of the procedure.

We introduce a simpler method for proving completeness, that can easily be
adapted to a range of different logics. This is a relatively straightforward variant
of the canonical model method. For each of the logics L mentioned above, with
corresponding axiomatization L, we show that L is a complete axiomatization
of L, which is equivalent to finding an L model for every L-consistent set of
formulas. The model we are going to build is called a standard model.

Let MCSL be the set of all maximal L-consistent sets of L∩-formulas.6 Given
L, given an index I, we shall write �I to stand for the binary relation on MCSL,
such that Φ �I Ψ iff for all ϕ, ∩Iϕ ∈ Φ implies ϕ ∈ Ψ . This type of relations is
6 We refer to a modal logic textbook, say [8], for a definition of a (maximal) consistent
set of formulas.
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typically used in the definition of a canonical model, and are sometimes called
canonical relations. We easily get the following proposition.

Proposition 8. For any index I, the canonical relation �I on MCSL is:

1. serial, if I is singleton and L is D∩;
2. reflexive, if L is T∩;
3. reflexive and symmetric, if L is B∩;
4. reflexive and transitive, if L is S4∩;
5. an equivalence relation, if L is S5∩;
6. s.t. �J ⊆ �I , for any index J ⊇ I.

Definition 9 (canonical paths). Given an axiomatization L, a canonical
path for L is a sequence 〈Φ0, I1, . . . , In, Φn〉 such that:

(i) Φ0, . . . , Φn ∈ MCSL,
(ii) I1, . . . , In are indices, and
(iii) for all x = 1, . . . , n, (Φx−1, Φx) ∈ �Ix .

Initial segments, tail(s), (“canonical”) i-paths, I-paths, and so on, are defined
exactly like for paths in a model (Definition 3).

The standard models we will define for these logics are a bit different from
the canonical model for a standard modal logic. As mentioned existing proofs
are based on transforming the canonical model to a treelike model. We will
construct a treelike model directly: in the standard model for a logic L, a state
will be a canonical path for L. However, the binary relations in a standard model
is dependent on the concrete logic we focus on. We now first define these binary
relations and then introduce the definition of a standard model.

Definition 10 (standard relations). Given a logic L with its axiomatization
L, we define RL as follows. For any i ∈ I, RL

i is the binary relation on the set
of canonical paths for L, called the standard relation for i, such that:

– When L is K∩ or D∩: for all canonical paths s and t for L, (s, t) ∈RL
i iff t

extends s with 〈I, Φ〉 for some I � i and Φ ∈ MCSL;
– When L is T∩: for all canonical paths s and t for T∩, (s, t) ∈RT∩

i iff t = s

or t extends s with 〈I, Φ〉 for some I � i and Φ ∈ MCST∩
;

– When L is B∩: for all canonical paths s and t for B∩, (s, t) ∈RB∩
i iff one of

the following holds for some I � i and Φ ∈ MCSB∩
:

(i) t = s
(ii) s extends t with 〈I, Φ〉
(iii) t extends s with 〈I, Φ〉;

– When L is S4∩: for all canonical paths s and t for S4∩, (s, t) ∈RS4∩
i iff s is

an initial segment of t and t \ s is a canonical i-path;
– When L is S5∩: for all canonical paths s and t for S5∩, (s, t) ∈RS5∩

i iff
(i) s and t have a common initial segment u, and
(ii) both s \ u and t \ u are canonical i-paths.
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Definition 11 (standard models). Given a logic L, the standard model for
L is a tuple ML = (S,R,V) such that:

– S is the set of all canonical paths for L;
– R = RL;
– For any propositional variable p, V(p) = {s ∈ S | p ∈ tail(s)}.
Lemma 12 (standardness). The following hold:

1. MK∩
is a Kripke model;

2. MD∩
is a D model;

3. MT∩
is a T model;

4. MB∩
is a B model;

5. MS4∩
is an S4 model;

6. MS5∩
is an S5 model.

Lemma 13 (existence). For any logic L, state s of ML, and index I, if ∩Iϕ /∈
tail(s) then there is a state t of ML such that (s, t) ∈ ⋂

i∈I RL
i and ϕ /∈ tail(t).

Proof. Let s be a state of ML and ∩Iϕ /∈ tail(s). So ¬ ∩I ϕ ∈ tail(s). Consider
the set Φ− = {¬ϕ}∪{ψ | ∩Iψ ∈ tail(s)}. We can show Φ− is L consistent just as
in a classical proof of the existence lemma (see, e.g., [8]). We can then extend it
into a maximal consistent set Φ of formulas using the Lindenbaum construction.
Since ¬ϕ ∈ Φ, ϕ /∈ Φ. Let t be s extended with 〈I, Φ〉. By definition it is clear
that ϕ /∈ tail(t) and for all L, (s, t) ∈ ⋂

i∈I RL
i (since s RL

i t for all i ∈ I).

Lemma 14 (truth). Given a logic L, a formula ϕ, and a state s of ML, it
holds that: ML, s |= ϕ if and only if ϕ ∈ tail(s).

Proof. The proof is by induction on ϕ. The atomic case is by definition. Boolean
cases are easy to show. Interesting cases are for the modalities �i (i ∈ I) and
∩I (I is an index). We start with the case for ∩Iψ.

ML, s |= ∩Iψ
⇔ for all t, if (s, t) ∈ ⋂

i∈I RL
i then ML, t |= ψ

⇔ for all t, if (s, t) ∈ ⋂
i∈I RL

i then ψ ∈ tail(t)
⇒ ∩Iψ ∈ tail(s) (existence lemma)

For the converse of the last step, suppose ∩Iψ ∈ tail(s) and assume towards a
contradiction that there is a state t such that (s, t) ∈ ⋂

i∈I RL
i and ψ /∈ tail(t).

– If L is K∩ or D∩, it must be that t extends s with 〈J, Φ〉 for J ⊇ I and
Φ ∈ MCSL. By definition tail(s) �J tail(t), and by Proposition 8.6, we have
tail(s) �I tail(t). Therefore ψ ∈ tail(t), which leads to a contradiction.

– If L is T∩, we face an extra case compared with the above, namely s = t. A
contradiction can be reached by applying the axiom T∩.
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– If L is B∩, then (i) t = s or (ii) s = 〈t, J, Φ〉 or (iii) t = 〈s, J, Φ〉 where
J ⊇ I and Φ ∈ MCSB. Case (i) can be shown similarly to the case when
L is T∩, and case (iii) to the case when L is K∩ or D∩. For case (ii), it is
important to observe that �I is symmetric (Proposition 8.3) and �J ⊆ �I

(Proposition 8.6).
– If L is S4∩, s must be an initial segment of t and t \ s is an I-path. We get
tail(s) �I tail(t) by Proposition 8.6 and the reflexivity and transitivity of �I

(Proposition 8.4). Therefore ψ ∈ tail(t) which leads to a contradiction.
– If L is S5∩, s and t have a common initial segment u, and s \ u and t \ u are

both I-paths. When one of s and t is an initial segment of the other, it can
be shown like in the case when L is S4∩. The interesting case is when s and t
really fork, in this case we can show both tail(s)�I tail(u) and tail(u)�I tail(t)
by transitivity and symmetry of �I (Proposition 8.5) and Proposition 8.6, so
that tail(s)�Itail(t). Then ψ ∈ tail(t), which leads to a contradiction.

Finally, the case for �iψ: ML, s |= �iψ ⇐⇒ ML, s |= ∩{i}ψ (validity of ∩1)
⇐⇒ ∩{i}ψ ∈ tail(s) (special case of ∩Iψ) ⇐⇒ �iψ ∈ tail(s) (axiom ∩1).

Theorem 15 (strong completeness). Given L ∈ {K∩,D∩,T∩,B∩,S4∩,S5∩}
and its axiomatization L, for any Φ ⊆ L∩ and ϕ ∈ L∩, if Φ |= ϕ, then Φ �L ϕ.

Proof. Suppose Φ �L ϕ. It follows that Φ∪{¬ϕ} is L consistent. Extend it to be
a maximal consistent set Ψ , then 〈Ψ〉 is a canonical path. By the truth lemma,
for any formula ψ, we have M, 〈Ψ〉 |= ψ iff ψ ∈ Ψ . It follows that Ψ is satisfiable,
which leads to Φ �|= ϕ.

5 Logics over L∩�

In this section we study the logics with both the intersection and union+ modal-
ities. The language is set to be L∩� in this section, and by a “logic” without
further explanation we mean one of K∩�, D∩�, T∩�, B∩�, S4∩� or S5∩�.

Compared with the characterization of intersection, that of transitive closure
of union is more straightforward:

Un(K) = Un(D) = Un(T) = Un(B) = Un(S4) = Un(S5) = {K�,�1,�2}.

These axioms are not new, see, e.g., [11], although as far as we know they have
not been studied in combination with D and B in the literature. For simplicity we
write Un for this set of axioms. Additional validities for union+ corresponding
to specific frame conditions can be derived in specific logic systems. For instance,
D� is a theorem of D ⊕ Un.

By adding to the axiomatization of a logic over L∩ the characterization of
union+, we get a sound axiomatization for the corresponding logic over L∩�. To
be precise, we list the axiomatizations as follows:
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K∩� = K∩ ⊕Un
D∩� = D∩ ⊕Un
T∩� = T∩ ⊕Un
B∩� = B∩ ⊕Un
S4∩� = S4∩ ⊕Un
S5∩� = S5∩ ⊕Un.

It is well known that logics with both a basic modality and a modality for the
transitive closure of the basic modality is not semantically compact ; we will thus
be concerned only with weak rather than strong completeness in this section.
We will make extensive references to the names of logics and axiomatizations,
and for simplicity we shall call a tuple σ = (L,L, α, ι) a signature, when L is
one of the logics K∩�, D∩�, T∩�, B∩�, S4∩� and S5∩�, L is the corresponding
axiomatization for L, α is a formula of L∩�, and ι is an index such that (i) i ∈ ι
for every �i occurring in α, and (ii) every index occurring in α is a subset of ι.

Definition 16 (closure). Given a signature σ = (L,L, α, ι), the σ-closure,
denoted cl(σ), is the minimal set of formulas satisfying the following conditions:

1. α ∈ cl(σ);
2. If ϕ ∈ cl(σ), then all the subformulas of ϕ are also in cl(σ);
3. If ϕ does not start with a negation symbol and ϕ ∈ cl(σ), then ¬ϕ ∈ cl(σ);
4. For any i ∈ ι,

(i) If ∩{i}ϕ ∈ cl(σ) then �iϕ ∈ cl(σ), and
(ii) If �iϕ ∈ cl(σ) then ∩{i}ϕ ∈ cl(σ);

5. For indices I and J with I ⊂ J ⊆ ι, if ∩Iϕ ∈ cl(σ) then ∩Jϕ ∈ cl(σ);
6. For indices I, J ⊆ ι, if �Iϕ ∈ cl(σ) and I ∩ J �= ∅ then ∩J�Iϕ ∈ cl(σ).7

It is not hard to verify that cl(σ) is finite and nonempty for any signature
σ. Given σ = (L,L, α, ι), a set of formulas is said to be maximal L-consistent
in cl(σ), if it is (i) a subset of cl(σ), (ii) L-consistent and (iii) maximal in cl(σ)
(i.e., any proper superset which is a subset of cl(σ) is inconsistent). We write
MCSσ for the set of all maximal L-consistent sets of formulas in cl(σ).

Now we adapt the canonical relations to the finitary case. Given a signature
σ and an index I, we may try to define a canonical relation �I to be a binary
relation on MCSσ, such that Φ �I Ψ iff for all ϕ, ∩Iϕ ∈ Φ implies ϕ ∈ Ψ , like we
did for the logics over L∩. But there are subtleties here. For example, transitivity
may be lost for S4∩�, if ∩Iϕ ∈ Φ but ∩I∩Iϕ /∈ Φ in case the latter is not included
in the closure. We introduce the formal definition below.

Definition 17 (finitary canonical relation). For a signature σ = (L,L, α, ι)
and an index I ⊆ ι, the canonical relation �I for σ is the binary relation on
MCSσ, such that the following hold for all Φ, Ψ ∈ MCSσ:

7 This is the place where the use of ι is essential to make sure that a closure is finite.
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– If L is K∩�, D∩� or T∩�: Φ �I Ψ iff {ϕ | ∩Iϕ ∈ Φ} ⊆ Ψ ;
– If L is B∩�: Φ �I Ψ iff {ϕ | ∩Iϕ ∈ Φ} ⊆ Ψ and {ϕ | ∩Iϕ ∈ Ψ} ⊆ Φ;
– If L is S4∩�: Φ �I Ψ iff {∩Iϕ | ∩Iϕ ∈ Φ} ⊆ {∩Iϕ | ∩Iϕ ∈ Ψ};
– If L is S5∩�: Φ �I Ψ iff {∩Iϕ | ∩Iϕ ∈ Ψ} = {∩Iϕ | ∩Iϕ ∈ Ψ}.

Note that for all the logics, from Φ �I Ψ we still get that ∩Iϕ ∈ Φ implies
ϕ ∈ Ψ , as the criteria above are at least not weaker. We get the following
proposition that is similar to Proposition 8.

Proposition 18. For any signature σ = (L,L, α, ι) and any index I ⊆ ι, the
canonical relation �I for σ is:

1. Serial, if I is singleton and L is D∩�;
2. Reflexive, if L is T∩�;
3. Reflexive and symmetric, if L is B∩�;
4. Reflexive and transitive, if L is S4∩�;
5. An equivalence relation, if L is S5∩�.
6. �J ⊆ �I , for any index J such that I ⊆ J ⊆ ι.

Proof. For seriality when I = {i}: given Φ ∈ MCSσ and a formula ϕ such that
∩{i}ϕ ∈ Φ, it suffices to show the existence of a Ψ ∈ MCSσ such that ϕ ∈ Ψ . This
is easy, take ϕ and extend it to be L-maximal in cl(σ) (note that ϕ ∈ cl(σ)).

For reflexivity, we make use of the axiom T∩ and the fact that cl(σ) is closed
under subformulas.

For the combinations of frame conditions for B∩�, S4∩� and S5∩�, we can
see that they are enforced by the definition of the canonical relation.

Definition 19 (finitary canonical paths). Given a signature σ = (L,L, α, ι),
a canonical path for L in cl(σ) is a sequence 〈Φ0, I1, . . . , In, Φn〉 such that:

(i) Φ0, . . . , Φn ∈ MCSσ,
(ii) I1, . . . , In ⊆ ι are indices, and
(iii) for all x = 1, . . . , n, (Φx−1, Φx) ∈ �Ix .

Initial segments, tails of paths, (“canonical”) i-paths, I-paths, and so on, are
defined like for paths in a model (Definition 3).

Definition 20 (standard relation). Given a signature σ = (L,L, α, ι), for
any i ∈ ι, the standard relation Rσ

i is the binary relation on the canonical paths
for L in cl(σ), such that:

– If L is K∩� or D∩�: for all canonical paths s and t for L in cl(σ), (s, t) ∈Rσ
i

iff t extends s with 〈I, Φ〉 for Φ ∈ MCSσ and some index I such that i ∈ I ⊆ ι;
– If L is T∩�: for all canonical paths s and t for T∩� in cl(σ), (s, t) ∈Rσ

i iff
t = s or t extends s with 〈I, Φ〉 for Φ ∈ MCSσ and some index I s.t. i ∈ I ⊆ ι;

– If L is B∩�: for all canonical paths s and t for B∩� in cl(σ), (s, t) ∈Rσ
i iff

(i) t = s or (ii) s = 〈t, I, Φ〉 or (iii) t = 〈s, I, Φ〉 for Φ ∈ MCSσ and some
index I such that i ∈ I ⊆ ι;
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– If L is S4∩�: for all canonical paths s and t for S4∩� in cl(σ), (s, t) ∈Rσ
i iff

s is an initial segment of t and t \ s is a canonical i-path;
– If L is S5∩�: for all canonical paths s and t for S5∩� in cl(σ), (s, t) ∈Rσ

i iff
(i) s and t have a common initial segment u, and (ii) both s \ u and t \ u are
canonical i-paths.

Definition 21 (finitary standard models). Given a signature σ = (L,L,
α, ι), the standard model for σ is a tuple Mσ = (S,R,V) such that:

– S is the set of all canonical paths for L in cl(σ).
– Ri = Rσ

i .
– For any propositional variable p, V(p) = {s ∈ S | p ∈ tail(s)}.
Lemma 22 (standardness). For any signature σ = (L,L, α, ι),

1. Mσ is a Kripke model;
2. Mσ is a D model when L = D∩� and L = D∩�;
3. Mσ is a T model when L = T∩� and L = T∩�;
4. Mσ is a B model when L = B∩� and L = B∩�;
5. Mσ is an S4 model when L = S4∩� and L = S4∩�;
6. Mσ is an S5 model when L = S5∩� and L = S5∩�.

Lemma 23 (existence). For any signature σ, any state s of Mσ, and any
index I ⊆ ι,

1. Given ∩Iϕ ∈ cl(σ), if ∩Iϕ /∈ tail(s), then there is a state t of Mσ such that
(s, t) ∈ ⋂

i∈I Rσ
i and ϕ /∈ tail(t).

2. Given �Iϕ ∈ cl(σ), if �Iϕ /∈ tail(s), then there is a state t of Mσ such that
(s, t) ∈ ⊎

i∈I Rσ
i and ϕ /∈ tail(t).

Proof. Let σ = (L,L, α, ι) and s be a state of Mσ.

(1) Let ∩Iϕ /∈ tail(s). So ¬∩Iϕ ∈ tail(s). Consider the set Φ− = {−ϕ} ∪ {ψ |
∩Iψ ∈ tail(s)} (where −ϕ is ψ if ϕ = ¬ψ, and is ¬ϕ if ϕ does not start with a
negation symbol). Clearly Φ− ⊆ cl(σ) and it is not hard to show that it is L
consistent. We can then extend it into a maximal consistent set Φ of formulas
in cl(σ). Since −ϕ ∈ Φ, ϕ /∈ Φ. Let t be s extended with 〈I, Φ〉. By definition
it is clear that ϕ /∈ tail(t) and (s, t) ∈ ⋂

i∈I Rσ
i (since s Rσ

i t for all i ∈ I).
(2) Let P be the property on the states of Mσ such that for any s, s ∈ P
iff for any t, if (s, t) ∈ ⊎

i∈I Rσ
i then ϕ ∈ tail(t). The equivalent condition

is that for any state s0 of Mσ, s0 ∈ P iff ϕ ∈ tail(sn) holds for any path
〈s0, {i0}, . . . , {in−1}, sn〉 of Mσ with {i0, . . . , in−1} ⊆ I. Let ψ =

∨
s∈P t̂ail(s)

(where t̂ail(s) is the conjunction of all formulas in tail(s)). We get the
following:
(a) For any i ∈ I, �L ψ → �iϕ. First observe that for every s0 ∈ P, any
path 〈s0, {i0}, . . . , {in−1}, sn〉 as described above is such that ϕ ∈ tail(sn). As
a special case, for any state s1, if 〈s0, {i}, s1〉 is a path, namely tail(s0) �{i}
tail(s1), then ϕ ∈ tail(s1). It follows that �iϕ ∈ tail(s0) (for otherwise it
violates the first clause; just treat �i to be ∩{i}). This means that �iϕ is a
conjunct of every disjunct of ψ, and so �L ψ → �iϕ.
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(b) For any i ∈ I, �L ψ → �iψ. Suppose towards a contradiction that
ψ ∧ ¬�iψ is consistent. There must be a disjunct of ψ, say t̂ail(t) (with t ∈
P), such that t̂ail(t) ∧ ¬�iψ is consistent. By properties of MCSσ we have
�L

∨{Φ̂ | Φ ∈ MCSσ} (similarly Φ̂ is the conjunction of formulas in Φ).
So there must be Φ ∈ MCSσ \ {tail(s) | s ∈ P} such that t̂ail(t) ∧ ¬�i¬Φ̂
is consistent. It follows that tail(t) �{i} Φ. The path u which extends t with
〈{i}, Φ〉 is such that (t, u) ∈Rσ

{i}. Since t ∈ P, we have u ∈ P as well. However,
this conflicts with the fact that Φ /∈ {tail(s) | s ∈ P}.

Now suppose s ∈ P, and we must show �Iϕ ∈ tail(s). By (a) and (b),
�L ψ → ∧

i∈I �i(ψ ∧ ϕ), and then by �2 we have �L ψ → �Iϕ. Let ξ = t̂ail(s).
It follows that �L ξ → ψ, as ξ is one of the disjuncts of ψ. We get �L ξ → �Iϕ,
and so �Iϕ ∈ tail(s) for tail(s) is consistent.

Lemma 24 (truth). Given a signature σ, a formula ϕ ∈ cl(σ), and a state s
of Mσ, it holds that: Mσ, s |= ϕ iff ϕ ∈ tail(s).

Proof. The proof is by induction on ϕ. The atomic and Boolean cases are easy
to show. The cases for the modalities �i (i ∈ I) and ∩I (I is an index) are not
much different from those of the proof of Lemma 14 (we need to be careful with
the closure, however; just note that all the i’s and I’s used here are bounded by
an ι). Here we detail the case for �Iψ.

Mσ, s |= �Iψ
⇔ for all t, if (s, t) ∈ ⊎

i∈I Rσ
i then Mσ, t |= ψ

⇔ for all t, if (s, t) ∈ ⊎
i∈I Rσ

i then ψ ∈ tail(t)
⇒ �Iψ ∈ tail(s) (existence lemma)

For the converse direction of the last step, suppose �Iψ ∈ tail(s) and towards a
contradiction that there is a state t such that (s, t) ∈ ⊎

i∈I Rσ
i and ψ /∈ tail(t).

So there is a path 〈s0, {i0}, . . . , {in−1}, sn〉 of Mσ such that {i0, . . . , in−1} ⊆ I,
s = s0 and t = sn.

– If L is K∩� or D∩�, it must be that t extends s with 〈J0, Φ1, . . . , Jn−1, Φn〉
where ψ /∈ Φn and for each x, ix ∈ Jx and Φx ∈ MCSσ. By definition
tail(s0) �J0 Φ1 �J1 · · · �Jn−1 Φn. By the axioms �1, ∩1 and ∩2 we can get
�L �Iψ → ∩J0�Iψ, and �Iψ ∈ Φ1 for ∩J0�Iψ ∈ cl(σ). Doing this recursively,
we get �Iψ ∈ Φn and so ψ ∈ Φn by T�, which contradicts ψ /∈ tail(t).

– If L is T∩�, we face an extra case compared with the above, namely s = t. A
contradiction can be achieved by applying the axiom T�.

– If L is B∩�, there are three cases: (i) sx+1 = sx or (ii) sx = 〈sx+1, J, Φ〉 or
(iii) sx+1 = 〈sx, J, Φ〉 where J ⊇ I and Φ ∈ MCSσ. In all cases, by similar
reasoning to the above (for case (ii) we use the symmetric condition for �I),
we can show that ψ ∈ tail(sx+1) given �Iψ ∈ tail(sx), and then reach a
contradiction similarly.
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– If L is S4∩�, sx (0 ≤ x < n) must be an initial segment of sx+1 and sx+1\sx is
a finitary canonical ix-path (ix ∈ I). By the axioms �1 and ∩1, �S4∩� �Iψ →
∩J�Iψ (for all ix ∈ J ⊆ ι). So we get ∩J�Iψ ∈ tail(sx+1) (we use T� in the
case when s = t). Recursively carrying this out, we get ∩J�Iψ ∈ tail(t), and
so ψ ∈ tail(t) which leads to a contradiction.

– If L is S5∩�, then sx and sx+1 have a common initial segment u, and sx\u and
sx+1 \u are both finitary canonical ix-paths. Since �S5∩� �Iψ → ∩J�Iψ (for
all ix ∈ J ⊆ ι), ∩J�Iψ ∈ tail(s0), and by the definition of �, ∩J�Iψ ∈ tail(sx),
so ψ ∈ tail(t) which leads to a contradiction as well.

Theorem 25 (weak completeness). Let L be the corresponding axiomati-
zation introduced for a logic L ∈ {K∩�,D∩�,T∩�,B∩�,S4∩�,S5∩�}. For any
ϕ ∈ L∩�, if |= ϕ, then �L ϕ.

Proof. Suppose �L ϕ. It follows that {¬ϕ} is L consistent. Extend it to be a
maximal consistent set Φ in cl((L,L,¬ϕ, ι)) with ι including {i | �i occurs in ϕ}
and all the indices occurring in ϕ, then 〈Φ〉 is a canonical path for L in
cl((L,L,¬ϕ, ι)). By the truth lemma, for any formula ψ in the closure, we have
M(L,L,¬ϕ,ι), 〈Φ〉 |= ψ iff ψ ∈ Φ. It follows that Φ is satisfiable, which leads to
�|= ϕ.

6 Discussion

We focused mainly on the completeness proof for the modal logics, K, D, T, B,
S4 and S5, extended with intersection and with or without the transitive closure
of union. For some of these logics proofs of completeness using the unraveling-
folding technique exist in the literature, for some no or only partial proofs exist.
We have to omit details here, but the method can also be directly applied to
many other canonical multi-modal logics with the intersection modality, includ-
ing popular systems of epistemic and doxastic logics such as S4.2, S4.3, S4.4 –
we have in fact already applied successfully for the KD45 case.8 By avoiding the
model translation processes used in the unraveling-folding method and building
a standard model directly, the proofs we present are dramatically simpler than
those found in the literature for special cases. We believe that the readers who
are familiar with the canonical model method for completeness proofs of modal
logics will find the proofs very familiar and straightforward.

While our approach is inspired by simplifying the existing proof technique,
the standard model we build is not identical to the model produced by the
unraveling-folding processes: it is simpler because we do not have to use so-
called reductions of paths. We emphasize, however, that the unraveling-folding
method was still important for us to arrive at this proof technique: it explains
why we take (finitary) canonical paths to be the states of the standard model.
Further work that could be interesting is to show possible bisimilarity of the
model we build to that by the unraveling-folding processes.

8 In an extension of [2], to appear.
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It is worth mentioning that our results are slightly more general than most
existing proofs from the literature on distributed knowledge in that it allows a
(countably) infinite set of boxes. This slightly complicates the proofs in the cases
with transitive closure of the union, requiring the use of the σ signatures.

Finally, as mentioned the full language of PDL with intersection (IPDL) is
more general than the languages we have considered here: it allows, e.g., transi-
tive closure of intersections. While there are complete axiomatizations of IPDL
with infinitary and/or unorthodox inference rules [7], and complete axiomatiza-
tions with finitary orthodox rules of iteration-free IPDL [6], finitary orthodox
axiomatization of full IPDL is a long-standing open problem. Perhaps the tech-
nique presented in this paper could help shed some new light on that problem.
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Abstract. Modal logics for reasoning about interaction in social net-
works is an active area of research. In this paper we introduce modalities
for quantifying over possible “tweets”, i.e., simultaneous messages sent to
all an agent’s “followers”, into an existing basic framework for reasoning
about this type of network events. Modalities that quantify over infor-
mational events in general, and over agent announcements in particular,
is also an active area in the study of the dynamics of knowledge and
belief. We combine these two directions by interpreting such modalities
in social networks. We study the resulting logic, and provide a sound and
strongly complete (infinitary) axiomatisation.

1 Introduction

Modal logics for reasoning about interaction in social networks is currently an
active area of research, existing work characterising events and phenomena such
as general messaging [18], cascades and diffusion [7], structural balance [20], or
group conformity [17], to name a few. At the same time modalities quantify-
ing over informational events have been of considerable interest in the study of
the dynamics of knowledge and belief; notable examples include Arbitrary Public
Announcement Logic (APAL) [5], Group Announcement Logic (GAL) [1], Coali-
tion Announcement Logic (CAL) [2,11], Refinement Modal Logic [8], Arbitrary
Action Model Logic [13], Future Event Logic (FEL) [10].

In this paper we add a GAL-style modality ⟨a⟩ for each agent a to a minimal
logic for reasoning about “tweeting” [21] in social networks. A formula of the
form ⟨a⟩ϕ means that a can send a “tweet”, i.e., send a message simultaneously
to all her friends, after which ϕ, typically an epistemic formula, will be true. This
allows the expression of potentially interesting properties involving an agent’s
ability to make some belief state come about such as ([a] is the dual):

– ⟨a⟩(Bbp ∧ ¬Bcp): it is possible for a to make a tweet such that b learns p
without c learning it;
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– [a](Bbp→ Bbq): no matter what a tweets b will believe q only if she believes
p;

– [a]¬⟨b⟩Bcr: no matter what a tweets there is nothing b can tweet that will
make c believe r;

–
∨

a ∈Agnt⟨a⟩ϕ, where Agnt is the set of all agents: there is a possible tweet (by
someone) after which ϕ becomes true.

Like in the starting point, Propositional Network Announcement Logic
(PNAL) [21], we use a relatively simple epistemic model. In particular, we only
model purely propositional tweets (no tweets about others’ knowledge or belief)
and we don’t model higher-order knowledge. On the other hand, we allow arbi-
trary belief states, not only S5 knowledge. As shown in [21] even with this simple
model there are interesting and subtle issues, and this level of abstraction is use-
ful to tease out the fundamental principles for reasoning about these types of
network events.

We study logical properties in the form of potentially valid formulas, such as,
e.g., Church-Rosser and McKinsey properties, of the resulting logic. The main
result is a sound and complete axiomatisation. The logic is not semantically
compact, and thus a strongly complete finitary axiomatisation does not exist.
The axiomatisation we provide is a strongly complete infinitary system. The
same situation as for most of the logics with modalities quantifying over events
mentioned above, including APAL and GAL, at present time only infinitary
complete axiomatisations are known1.

The rest of the paper is organised as follows. In the next section we review
the basics of PNAL, before we extend it with the new modalities in Sect. 3 where
we also look at some of their logical properties and the issue of compactness. In
Sect. 4 we define the infinitary system, and show that it is sound and strongly
complete. We conclude in Sect. 5.

2 Propositional Network Announcement Logic

In this section we give a succinct presentation of propositional network announce-
ment logic. For further details and discussion, see [21].

The logic is parameterised by a non-empty set Agnt of agents and a non-
empty set Prop of propositional letters. We will assume that Prop is countably
infinite. Let Lprop be the language of propositional logic over Prop, i.e., formulas
generated by the grammar:

θ ::= p | ¬θ | θ ∧ θ

where p ∈ Prop.

1 Finitary axiomatisations for both APAL and GAL have been published but later
discovered to be unsound [15].
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A valuation is a function v : Prop→ {true, false}; Val denotes the set of all
valuations and [[θ]] = {v ∈Val | v(θ)= true} is the set of valuations making θ true,
where v is extended from propositional letters to all propositional formulas in
the usual truth-functional way.

The language of Propositional Network announcement Logic (PNAL) is
defined by the following grammar, where a ∈ Agnt and θ ∈ Lprop.

ϕ ::= Baθ | ¬ϕ | ϕ ∧ ϕ | 〈a : θ〉ϕ

The intended meaning of Baθ is that agent a believes θ, while ⟨a : θ⟩ϕ means that
a can tweet θ, after which ϕ is the case. Formulas of the form Baθ are called belief
formulas; expressions of the type θ are sometimes called messages. The usual
derived propositional connectives are used, as well as [a : θ] for ¬⟨a : θ⟩¬. Another
useful notation will be �c which we will use as a variable over expressions of the
form c0 : θ0, . . . , cn : θn (n ≥ 0), where each ci is an agent and each θi ∈ Lprop,
representing a (possibly empty) sequence of tweets. Abusing notation, we write
⟨�c⟩ for the sequence ⟨c0 : θ0⟩. . .⟨cn : θn⟩, and [�c ] for ¬⟨�c ⟩¬. The reversal of �c,
denoted �c, is the reverse sequence of tweets cn : θn, . . . , c0 : θ0.

A propositional network announcement model, henceforth just a model, over
Agnt and Prop is a pair (F, ω), where the following relation F is a binary relation
on Agnt and the belief state function ω : Agnt → pow(Val) assigns each agent a
(possibly empty) set of valuations. bFa means that b is a follower of a, i.e., will
receive all messages a send. We write Fa for the set {b | bFa} of followers of a.

The satisfaction relation between formulas ϕ and models (F, ω) is defined
recursively as follows:

where [C ↑ θ]ω(b) =
{

ω(b) ∩ [[θ]] if b ∈ C
ω(b) otherwise

– the result of simultaneously updating all the agents in a set C with θ. We get
that F, ω ⊧ [a : θ]ϕ iff F, ω ⊧ Baθ implies that F, [Fa ↑ θ]ω ⊧ ϕ. This semantics
assumes, like in public announcement logic, that tweets are truthful (they are
actually believed to be true) and that agents are credulous.

We write F, ω ⊧ Γ , when Γ is a set of formulas, to mean that F, ω ⊧ ϕ for
all ϕ ∈ Γ . As usual we say that a formula ϕ is valid on a given class of models
M, ⊧Mϕ or just ⊧ϕ when M is the class of all models, iff it is satisfied by every
model in that class, and that ϕ is a logical consequence of a set of formulas Γ
wrt. M, Γ ⊧M ϕ or just Γ ⊧ ϕ, if ϕ is satisfied by every model in the class that
satisfies all the formulas in Γ .
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A Hilbert-style proof system pNAL is defined in Fig. 1. For a (finitary)
Hilbert-style proof system S, when Γ is a set of formulas and ϕ is a formula,
Γ ⊢S ϕ denotes the fact that there is a finite set of formulas Δ = {δ1, . . . , δk} ⊆ Γ
such that ⊢S

∧
1≤i≤k δi → ϕ. A system S is sound wrt. a class of models M if

Γ ⊢S ϕ implies that Γ ⊧M ϕ, and it is strongly complete if that implication holds
in the other direction.

Theorem 1 (Theorem 3 in [21]). pNAL is sound and strongly complete with
respect to the class of all models.

Fig. 1. Axioms and rules of pNAL. ϕ, ψ are any formulas in the language of PNAL;
θ, θi, χ, χ′

∈ Lprop. ⊢0 denotes derivability in propositional logic.

3 Arbitrary Propositional Network Announcement Logic

The language LAPNAL of Arbitrary Propositional Network Announcement Logic
(APNAL) extends the PNAL language with a modality [a] for each agent a.

Definition 2. LAPNAL is defined as follows, where θ ∈ Lprop and a ∈ Agnt:

ϕ ::= Baθ | ¬ϕ | ϕ ∧ ϕ | 〈a : θ〉ϕ | [a]ϕ

We use derived connectives as for PNAL, in addition to ⟨a⟩ϕ for ¬[a]¬ϕ2.
The models are the same as for PNAL (propositional network announcement
models).

2 We choose to take [a] as primary instead of ⟨a⟩ only because it makes some proofs
simpler.
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Definition 3. Satisfaction of a formula in a model F, ω is defined by

F, ω ⊧ [a]ϕ iff F, ω ⊧ [a : θ]ϕ for all θ ∈ Lprop

in addition to the clauses for PNAL.

In other words, [a] quantifies over all possible announcements a can truthfully
make. We get that

F, ω ⊧ 〈a〉ϕ iff F, ω ⊧ 〈a : θ〉ϕ for some θ ∈ Lprop

Validity and logical consequence are defined as in the case of PNAL.

3.1 Logical Properties

The following validities follow immediately from the semantics.

Proposition 4. Let a ∈ Agnt, and ϕ,ψ ∈ LAPNAL. We have

1. ⊧[a]ϕ→ ϕ
2. ⊧[a]ϕ→ [a : θ]ϕ
3. ⊧[a]ϕ→ ⟨a⟩ϕ
4. ⊧[a]¬ϕ↔ ¬ ⟨a⟩ϕ

5. ⊧[a](ϕ ∧ ψ)↔ ([a]ϕ ∧ [a]ψ)

6. ⊧[a](ϕ→ ψ)→ ([a]ϕ→ [a]ψ)

7. ⊧[a][a]ϕ↔ [a]ϕ

Let us look at combinations of the two types of modalities. The following
combinations are generally not valid. There are formulas ϕ such that:

A counterexample for each of these is shown in Fig. 2. Assume that θ = p. For
the first item, see Fig. 2a. Let ϕ = ¬Bcp, then
For the second, see Fig. 2b. Let ϕ = ¬Bcq, then
For the third, see Fig. 2b. Let ϕ = Bcq, then

Fig. 2. Counterexamples for permutations, double-headed arrows stand for follower-
ship, e.g., cF1a in (a). Brace brackets represent belief sets (implicitly closed under
logical consequence).
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The fourth combination, missing above, is a Church-Rosser like property. It is
known that the explicit tweeting modalities satisfy the Church-Rosser property:
the formula

〈b : χ〉[a : θ]ϕ→ [a : θ]〈b : χ〉ϕ
is valid [21, Pop. 11]. The fourth combination property is in fact valid:

Proposition 5 (Mixed-CR). Let a, b ∈ A, θ ∈ Lprop, and ϕ ∈ LAPNAL. We
have ⊧⟨b⟩[a : θ]ϕ→ [a : θ]⟨b⟩ϕ.

Proof. Let F, ω ⊧ ⟨b⟩[a : θ]ϕ. By semantics, for some δ ∈ Lprop, F, ω ⊧ ⟨b : δ⟩
[a : θ]ϕ. Thus (see above), F, ω ⊧ [a : θ]⟨b : δ⟩ϕ. As we have ⊧⟨b : δ⟩ϕ→⟨b⟩ϕ from
Proposition 4, then for valuation [Fa ↑ θ]ω, we get F, [Fa ↑ θ]ω ⊧ ⟨b : δ⟩ϕ→⟨b⟩ϕ,
that’s F, ω ⊧ [a : θ](⟨b : δ⟩ϕ→⟨b⟩ϕ) by semantics, and F, ω ⊧ [a : θ]⟨b : δ⟩ϕ →
[a : θ]⟨b⟩ϕ by distribution of [a : θ]. Then by MP, we get F, ω ⊧ [a : θ]⟨b⟩ϕ.

The mixed-CR property tells us that if a can make ϕ true by tweeting θ after b
takes any action, then a will still preserve this ability after b tweets anything (take
the contrapositive of the formula to get this reading). The arbitrary tweeting
modalities satisfy a “pure” CR property as well:

Proposition 6 (CR). Let a, b ∈ A, and ϕ ∈ LAPNAL. We have ⊧ ⟨a⟩[b]ϕ→ [b]
⟨a⟩ϕ.

Proof. Let F, ω ⊧ ⟨a⟩[b]ϕ. F, ω ⊧ ⟨a : θ⟩[b]ϕ for some θ ∈ Lprop, by the contra-
position of mixed-CR, we get F, ω ⊧ [b]⟨a : θ⟩ϕ. As ⊧ ⟨a : θ⟩ϕ→⟨a⟩ϕ from
Proposition 4, then for any χ ∈ Lprop, ⊧ [b : χ](⟨a : θ⟩ϕ→⟨a⟩ϕ). By semantics,
⊧ [b](⟨a : θ⟩ϕ→⟨a⟩ϕ), then from Proposition 4, we get ⊧ [b]⟨a : θ⟩ϕ→ [b]⟨a⟩ϕ.
Hence F, ω ⊧ [b]⟨a⟩ϕ.

It’s not hard to see that the McKinsey formula,

[a]〈b〉ϕ→ 〈b〉[a]ϕ

is not valid. See Fig. 2c, let ϕ = Bdp ∧ ¬Bcp, then F3, ω3 ⊧ [a]⟨b⟩ϕ, but
, as F3, ω3 ⊧ [b]⟨a⟩(¬Bdp ∨ Bcp). That’s

The following are non-validities involving combinations of diamonds.

A counterexample for the first two is found in Fig. 2d. Let ϕ = Bcq, then
we have F4, ω4 ⊧ ⟨a⟩⟨b⟩⟨a⟩Bcq but Therefore,
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⟨a⟩⟨b⟩ψ. A counterexample for the third is found in Fig. 2a. Let ϕ = Bcp, we have
F1, ω1 ⊧ ⟨b⟩⟨a⟩Bcp but

3.2 Non-compactness

Recall that a logic is (semantically) compact if it is the case that any set of
formulas is satisfiable if and only if each of its finite subsets are. We now show
that APNAL is not compact when there are at least two agents. Let b ≠ a and

Δ = {¬Bbp, 〈a〉Bbp} ∪ {Baθ→Bbθ | θ ∈ Lprop}.

We first argue that Δ is unsatisfiable. Assume otherwise: F, ω ⊧ ϕ for any ϕ ∈ Δ.
From F, ω ⊧ ⟨a⟩Bbp, we know that there is a θ ∈ Lprop such that F, ω ⊧ ⟨a : θ⟩Bbp,
then F, ω ⊧ Baθ and F, [Fa ↑ θ]ω ⊧ Bbp. Therefore [Fa ↑ θ]ω(b) ⊆ [[p]]. As
F, ω ⊧ ¬Bbp, we have , then we must have [Fa ↑ θ]ω(b) =ω(b) ∩ [[θ]] ⊆ [[p]].
But from F, ω ⊧ Baθ → Bbθ, and F, ω ⊧ Baθ, we get F, ω ⊧ Bbθ, therefore
ω(b) ⊆ [[θ]], and ω(b) ∩ [[θ]] = ω(b). Finally, we have ω(b) ⊆ [[p]] and as
a contradiction.

Now let Δ′ be a finite subset of Δ. Let q be a propositional atom not occurring
(anywhere) in Δ′. Let bFa and ω(b) = [[q → p]], and ω(a) = [[q]]. It is easy to see
that we have that F, ω ⊧ Δ′.

4 Proof System

In this section we will present a Hilbert-style proof system for APNAL, and
show that it is sound and strongly complete. In the absence of compactness,
our system is an infinitary proof system, allowing, unlike a standard finitary
system, derivation rules that take infinitely many premises. A proof in such a
system can be seen as a tree with possibly infinite width, but finite height. The
standard meta logical proof technique for Hilbert systems of induction on the
length of proofs thus can’t be used directly. Instead, we abstract away from the
notion of proof, and define the derivation relation ⊢

∞
between sets of formulas

and formulas directly and inductively, using base cases (for example axioms)
and closure rules. We can then use induction over this definition in meta logical
proofs. This is a standard technique for defining and dealing with infinitary
Hilbert-style proof systems [4,14,16,19]. While we take inspiration from the
completeness proof for APAL and make use of Goldblatt’s necessitation forms
in the formulation of our infinite derivation rule, the “theory” technique used
in [6] for proving completeness of the infinitary system for APAL does not seem
to be directly applicable to APNAL.

4.1 Axiomatisation and Soundness

In order to define a key (infinitary) derivation rule for the [a] operator, we make
use of a technique suggested by Goldblatt [12], and used in [6] for APAL, called
necessity forms. The following is an adaption of necessity forms to APNAL.
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Definition 7 (Necessity form). Necessity forms are defined inductively as
follows.

– # is a necessity form.
– If ψ̂ is a necessity form and ϕ ∈ LAPNAL, then ϕ→ ψ̂ is a necessity form.
– If ψ̂ is a necessity form and a ∈ Agnt, θ ∈ Lprop, then [a : θ]ψ̂ is a necessity

form.

We write LNec to denote the set of all necessity forms. If ϕ̂ is a necessity form
and ψ a formula, then ϕ̂(ψ) is the formula obtained by substituting (the unique)
# in ϕ̂ with ψ.

We use Greek letters with a “hat” for general necessity forms, as in the definition.
Note that any necessity form contains exactly one occurrence of the symbol #.
Also note that # cannot occur in the scope of a belief operator, Ba# is for
example not a necessity form. The negation ¬ϕ̂ of a necessity form ϕ̂ is called a
possibility form. Note that we have that ψ′→ ψ̂(ϕ) is equivalent to (ψ′→ ψ̂)(ϕ);
and that [a : θ]ψ̂(ϕ) is equivalent to ([a : θ]ψ̂)(ϕ). We will sometimes leave out
the parentheses for simplicity.

Definition 8 (Axiomatization S∞). The derivation relation ⊢S∞ , written ⊢
∞

for simplicity, between sets of LAPNAL-formulas and LAPNAL-formulas is the
smallest relation satisfying the properties in Fig. 3 (lower part).

Fig. 3. Axioms (upper part) and definition of the infinitary derivation relation ⊢
∞

over
the language LAPNAL (lower part). ⊢

∞
ϕ is shorthand for ∅⊢

∞
ϕ. Γ ⊢

∞
Δ means that

Γ ⊢
∞

ϕ for each ϕ ∈ Δ.

Soundness and completeness are defined as usual: S∞ is sound if Γ ⊢
∞

ϕ implies
that Γ ⊧ ϕ, and strongly complete if Γ ⊧ ϕ implies that Γ ⊢

∞
ϕ, for ϕ and Γ .

The system can be viewed as consisting of three parts. The first is axioms and
rules from pNAL (Nec: is derivable by using [a]int and Na). The second deals with
the new [a] modality; the axiom [a]int and the rules DiA and Na. The meaning
of the [a]int axiom is obvious. The Na rule is a standard necessitation rule for the
[a] modalities. DiA is the only infinitary derivation rule. Intuitively it says that
we can derive [a]ψ if we have derived [a : θ]ψ for any θ, and, furthermore, that
we can do that “anywhere” in a formula – more precisely anywhere a necessity
form allows us to. Let us illustrate DiA with some examples.
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C1: {[a : θ]ϕ | θ ∈ Lprop}⊢∞ [a]ϕ. We can infer that [a]ϕ, if we have that for any
θ ∈ Lprop, [a : θ]ϕ.

C2: {ψ→ [a : θ]ϕ | θ ∈ Lprop}⊢∞ ψ→ [a]ϕ, which is actually derivable from C1.
C3: {[b : χ][a : θ]ϕ | θ ∈ Lprop}⊢∞ [b : χ][a]ϕ illustrates why we need to define

DiA rule based on necessity forms. It is easy to verify that C1 is implied by
C3, but there are no general reduction axioms for nested modalities and the
implication does not hold in the other direction. A general case of C3 can be
given as follows:

{[b1 : χ1] · · · [a : θ] · · · [bn : χn]
︸ ︷︷ ︸

finite

ϕ | θ ∈ Lprop}⊢∞ [b1 : χ1] · · · [a] · · · [bn : χn]
︸ ︷︷ ︸

only change one modality

ϕ.

The remaining rules, W and Cut, allow us to strengthen and weaken the
set of premises, respectively. These are standard closure rules in inductive
definition of the derivability relation for infinitary Hilbert-style systems (see,
e.g., [4]).
In this inductive definition of ⊢

∞
, the base cases are Ax, DiA and MP, and

the inductive cases are Na, W and Cut. We will now prove soundness.

Lemma 9. For any formula ϕ and set of formulas Γ , if Γ ⊢
∞

ϕ then Γ ⊧ ϕ.

Proof. The proof is by induction on the definition of the ⊢
∞

relation.
Base cases. For Ax, Γ = ∅. That ⊧ϕ holds for any instance ϕ of a pNAL

axiom schema can be shown in exactly the same way as for pNAL (Theorem 1)3.
Validity of the new axiom [a]int is straightforward. For MP, {ϕ,ϕ→ψ}⊧ψ holds
trivially. We show the DiA case below.

Inductive cases. For Na, we must show that if the induction hypothesis holds
for ⊢

∞
ϕ, then it holds for ⊢

∞
[a]ϕ. Thus, assume that ⊧ϕ; we must show that

⊧[a]ϕ – but that holds trivially. The cases for W and Cut are also trivial: for
W, Γ ⊧ ϕ implies that Γ ∪Δ ⊧ ϕ, and for Cut, Γ ⊧ Δ and Γ ∪Δ ⊧ ϕ implies
that Γ ⊧ ϕ.

The interesting case is (the base case) DiA. We show that for any ϕ̂, a, ψ,

{ϕ̂([a : θ]ψ) | θ ∈ Lprop} ⊧ ϕ̂([a]ψ)

by induction on the complexity of the necessity form ϕ̂. Let (F, ω) be an arbitrary
model. we have the following cases:

– ϕ̂ = #. We need show that {[a : θ]ψ | θ ∈ Lprop} ⊧ [a]ψ. This follows imme-
diately by definition of the semantics.

– ϕ̂ = ϕ′→ ϕ̂′′. Let F, ω ⊧ (ϕ′→ ϕ̂′′)([a : θ]ψ) for all θ. We must show that
F, ω ⊧ (ϕ′→ ϕ̂′′)([a]ψ). By definition of substitution, (ϕ′→ ϕ̂′′)([a : θ]ψ) =
ϕ′→ ϕ̂′′([a : θ]ψ), and (ϕ′→ ϕ̂′′)([a]ψ) = ϕ′→ ϕ̂′′([a]ψ). Let F, ω ⊧ ψ′. Thus,
F, ω ⊧ ϕ̂′′([a : θ]ψ) for all θ. By the induction hypothesis, F, ω ⊧ ϕ̂′′([a]ψ).
Thus, F, ω ⊧ ψ′ → ϕ̂′′([a]ψ).

3 While the axioms schemata are the same, the instances of the axioms are of course
different, but validity can be shown in the same way.
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– ϕ̂ = [b : χ]ϕ̂′. Let F, ω ⊧ [b : χ]ϕ̂′([a : θ]ψ) for all θ. We must show that
F, ω ⊧ [b : χ]ϕ̂′([a]ψ). If we are done. Assume that F, ω ⊧ Bbχ.
Thus we have that F, [Fb↑χ]ω ⊧ ϕ̂′([a : θ]ψ) for any θ, and by the induc-
tion hypothesis we get that F, [Fb↑χ]ω ⊧ ϕ̂′([a]ψ), which again implies that
F, ω ⊧ [b : χ](ϕ̂′([a]ψ)).

Lemma 10. The statements in Fig. 4 all hold.

Fig. 4. Admissible rules in S∞.

Proof. Mo, Imp, and RT are straightforward.

Ns: Let ⊢
∞

ϕ, then ⊢
∞

[a]ϕ by Na. ⊢
∞

[a]ϕ→ [a : θ]ϕ by Ax, {[a]ϕ}⊢
∞

[a : θ]ϕ
by RT, then ⊢

∞
[a : θ]ϕ by Cut.

Cond: Infinitary induction on the derivation of Γ ∪Δ⊢
∞

ϕ. The base cases are
Ax, MP, DiA, and inductive steps are Na, W, and Cut.
Ax: Let Γ = Δ = ∅. We need show that ⊢

∞
ψ→ϕ when ⊢

∞
ϕ. Let ⊢

∞
ϕ,

by W, {ϕ→ (ψ→ϕ)}⊢
∞

ϕ, and {ϕ,ϕ→ (ψ → ϕ)}⊢
∞

ψ→ϕ by MP, then
by Cut, {ϕ→ (ψ→ϕ)}⊢

∞
ψ→ϕ. By Ax, ⊢

∞
ϕ→ (ψ → ϕ), then by Cut

again, we have ⊢
∞

ψ→ϕ.
MP: Let Γ ∪Δ = {ϕ′, ϕ′ → ϕ} and {ϕ′, ϕ′→ϕ}⊢

∞
ϕ. We need show that

Γ ∪ {ψ → δ | δ ∈ Δ}⊢
∞

ψ → ϕ.

There are four different possible combinations for Γ and Δ.
• Γ = {ϕ′} and Δ = {ϕ′→ϕ}. We show that {ϕ′, ψ→ (ϕ′→ϕ)}⊢

∞
ψ

→ϕ. By Ax, ⊢
∞

(ψ → (ϕ′→ϕ)) → (ϕ′ → (ψ→ϕ)), then {ϕ′, ψ→
(ϕ′→ϕ)}⊢

∞
ψ→ϕ, by apply RT twice.

• Γ = {ϕ′→ϕ} and Δ = {ϕ′}. We show that {ϕ′→ϕ,ψ→ϕ′}⊢
∞

ψ→ϕ.
By Ax, ⊢

∞
(ψ→ϕ′) → ((ϕ′→ϕ) → (ψ → ϕ)), then {ϕ′→ϕ,ψ→

ϕ′}⊢
∞

ψ→ϕ by apply RT twice.
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• The other two combinations Γ = ∅, or Δ = ∅ can be proved similarly.
DiA: Let ϕ = ψ̂([a]ξ) and Γ ∪Δ = {ψ̂([a : θ]ξ) | θ ∈ Lprop}. Then we have

Γ ∪ Δ⊢
∞

ϕ. For convenience, enumerate all θ ∈ Lprop. Without loss of
generality, fix a set Q such that

Γ = {ψ̂([a : θ]ξ) | θ ∈ Q}, and Δ = {ψ̂([a : θ]ξ) | θ ∈ Lprop\Q}.

Let

Γ ′ = {ψ → ψ̂([a : θ]ξ) | θ ∈ Q},

Δ′ = {ψ → ψ̂([a : θ]ξ) | θ ∈ Lprop\Q},

As for arbitrary θ ∈ Lprop, ψ→ ψ̂([a : θ]ξ) is a necessity form substituting
# with [a : θ]ξ, then Γ ′∪Δ′ ⊢

∞
ϕ′ by DiA, where ϕ′ = ψ→ ψ̂([a]ξ) = ψ→ϕ.

By W, Γ ∪ Γ ′ ∪ Δ′⊢
∞

ϕ′. For each θ ∈ Q and ψ̂([a : θ]ξ) ∈ Γ , by Ax,
⊢
∞

ψ̂([a : θ]ξ)→ (ψ→ ψ̂([a : θ]ξ)). Then Γ ⊢
∞

Γ ′ by repeating RT for each
θ ∈ Q, therefore, Γ ∪ Δ′ ⊢

∞
Γ ′ by W. By Cut, Γ ∪ Δ′ ⊢

∞
ϕ′, that’s Γ ∪

Δ′⊢
∞

ψ→ϕ. Now by W, it follows Γ ∪Δ′ ∪{ψ→ δ | δ ∈ Δ}⊢
∞

ψ→ϕ. Now
for each formula in Δ, by Mo, Γ ∪ {ψ→ δ | δ ∈ Δ}⊢

∞
Δ′. Then by Cut,

we have Γ ∪ {ψ→ δ | δ ∈ Δ}⊢
∞

ψ→ϕ as the desired conclusion.
Na: Γ = Δ = ∅. Let ϕ = [a]ϕ′, and ⊢

∞
ϕ′, we need prove that ⊢

∞
ψ→ [a]ϕ′.

From ⊢
∞

ϕ′, by Na, ⊢
∞

[a]ϕ′, and ⊢
∞

[a]ϕ′→ (ψ → [a]ϕ′) by Ax, then by
RT, {[a]ϕ′}⊢

∞
ψ→ [a]ϕ′, and by Cut, ⊢

∞
ψ→ [a]ϕ′.

W: Let Γ ′ ∪Δ′ ⊢
∞

ϕ for some Γ ′ ⊆ Γ and Δ′ ⊆ Δ. By IH, we apply Cond
to get Γ ′ ∪ {ψ→ δ | δ ∈ Δ′}⊢

∞
ψ→ϕ, that is Γ ∪ {ψ→ δ | δ ∈ Δ}⊢

∞
ψ→ϕ

by W.
Cut: Let Γ ∪Δ⊢

∞
Δ′, and Γ ∪Δ ∪Δ′ ⊢

∞
ϕ. Now for the first derivation, we

apply IH for each δ′ ∈ Δ′, Γ ∪{ψ→ δ | δ ∈ Δ}⊢
∞

ψ→ δ′, that is Γ ∪{ψ→ δ |
δ ∈ Δ}⊢

∞
{ψ→ δ′ | δ′ ∈ Δ′}. For the second derivation, apply IH on ϕ,

Γ ∪ {ψ→ δ | δ ∈ Δ ∪ Δ′}⊢
∞

ψ→ϕ, by Cut, Γ ∪ {ψ→ δ | δ ∈ Δ}⊢
∞

ψ→ϕ.
DT: From Γ ∪ {ψ}⊢

∞
ϕ, we have Γ ∪ {ψ→ψ}⊢

∞
ψ→ϕ by Cond. From Ax and

W, Γ ⊢
∞

ψ→ψ, then by Cut, Γ ⊢
∞

ψ→ϕ.
Raa, Con, Eqv are straightforward.

Lemma 11. For any necessity form ϕ̂ and formula [a]ϕ′,
⊢
∞

ϕ̂([a]ϕ′)→ ϕ̂([a : θ]ϕ′).

Proof. Proof by induction on the complexity of ϕ̂:

(#) ϕ̂ = #. Guaranteed by [a]int from Ax. ⊢
∞

[a]ϕ′→ [a : θ]ϕ′

(→) ϕ̂ = ψ′ → ψ̂.
By IH, ⊢

∞
ψ̂([a]ϕ′)→ ψ̂([a : θ]ϕ′), by RT, {ψ̂([a]ϕ′)}⊢

∞
ψ̂([a : θ]ϕ′), and by

Cond, {ψ′→ ψ̂([a]ϕ′)}⊢
∞

ψ′→ ψ̂([a : θ]ϕ′). Then we have ⊢
∞

(ψ′→ ψ̂([a]ϕ′))
→ (ψ′ → ψ̂([a : θ]ϕ′)) by DT.

(◻) ϕ̂ = [b : χ]ψ̂.
By IH, ⊢

∞
ψ̂([a]ϕ′)→ ψ̂([a : θ]ϕ′), And then by Ns, ⊢

∞
[b : χ](ψ̂([a]ϕ′)→

ψ̂([a : θ]ϕ′)). ⊢
∞

[b : χ]ψ̂([a]ϕ′)→ [b : χ]ψ̂([a : θ]ϕ′) from K: and Eqv.
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4.2 Completeness

We now prove that S∞ is strongly complete with respect to the class of all mod-
els. We will use a canonical model method; we can in fact use exactly the same
canonical model used for completeness of pNAL in [21]. However, constructions
and proofs, such as those for Lindenbaum’s lemma, that are standard for finitary
axiomatisations, can’t be used directly for infinitary systems – typically because
they are defined or proved by induction on the length of derivations. We start by
proving a variant of Lindenbaum’s lemma under the infinitary axiomatization
S∞, which is non-trivial, before proving a truth lemma (Lemma 15) and finally
the completeness result (Theorem 16).

We say that a set of formulas Γ is consistent iff (where ⊥ = α ∧ ¬α
for some atomic proposition α); that it is maximal iff for any formula ϕ, either
ϕ ∈ Γ or ¬ϕ ∈ Γ . A maximal consistent set (MCS) is a set of formulas that is
maximal and consistent.

Lemma 12 (Lindenbaum). Let Γ be an consistent set of formulas. There
exists an MCS Γ ′ such that Γ ⊆ Γ ′.

Proof Recall the rule DiA:

{ϕ̂([a : θ]ψ) | θ ∈ Lprop}⊢∞ ϕ̂([a]ψ)

A formula of the form ϕ̂([a]ψ), i.e., a formula that can be obtained by substitu-
tion of [a]ψ on a necessity form ϕ̂, will be said to be on DiA-form. If β = ϕ̂([a]ψ)
is on DiA-form, then for any θ ∈ Lprop, the formula β(: θ) = ϕ̂([a : θ]ψ) is called
a DiA-witness. For example, given a formula α = ϕ → [b]ψ, and a θ ∈ Lprop,
then α(: θ) = ϕ→ [b : θ]ψ is a DiA-witness for α.

Let Γ be a consistent set of formulas. Enumerate all formulas in LAPNAL as
ψ1, ψ2, · · · , ψn, · · · . We construct Γ ′ ⊇ Γ inductively as follows:

The maximality of Γ ′ is easy to see from the construction. For the third case,
if ψ has the DiA-form and then there must exists a DiA-witness,
i.e., ψ(: θ) such that since ⊢

∞
is closed under DiA. It remains

to be shown that Γ ′ is consistent. First, we prove that every Γi is consistent,
by induction on i. For the base case, Γ0 is consistent by assumption. For the
induction step, assume that Γi is consistent. We argue by the three cases in the
definition of Γi+1.
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C1: Γi+1 = Γi ∪ {ψi+1} is obviously consistent.
C2: Γi+1 = Γi∪{¬ψi+1}. If Γi+1 = Γi∪{¬ψi+1}⊢∞ ⊥, then Γi⊢∞ ψi+1 by Raa, which

is a contradiction.
C3: Let ψi+1 = ϕ̂([a]ψ) be the DiA-form, ψi+1(: θ) = ϕ̂([a : θ]ψ) be a DiA-

witness. Suppose that Γi+1 = Γi ∪ {¬ϕ̂([a]ψ), ¬ϕ̂([a : θ]ψ)}⊢
∞
⊥, by Raa,

Γi ∪ {¬ϕ̂([a : θ]ψ)}⊢
∞

ϕ̂([a]ψ). Γi ∪ {¬ϕ̂([a : θ]ψ)}⊢
∞

ϕ̂([a]ψ)→ ϕ̂([a : θ]ψ) by
Lemma 11 and W. Then by RT, Γi∪{¬ϕ̂([a : θ]ψ), ϕ̂([a]ψ)}⊢

∞
ϕ̂([a : θ]ψ). By

Cut, Γi∪{¬ϕ̂([a : θ]ψ)}⊢
∞

ϕ̂([a : θ]ψ), and thus Γi ⊢∞ ¬ϕ̂([a : θ]ψ)→ϕ̂([a : θ]ψ)
by DT. As by Ax, ⊢

∞
(¬ϕ̂([a : θ]ψ)→ϕ̂([a : θ]ψ))→ϕ̂([a : θ]ψ), then by W and

Imp, Γi⊢∞ ϕ̂([a : θ]ψ), which contradicts the assumption that
and the induction hypothesis that Γi is consistent.

Thus, each Γi is consistent. To show that Γ ′ is consistent, we first show the
following claim. For any Γ ′′ and ϕ such that Γ ′′⊢

∞
ϕ,

Γ ′′ ⊆ Γ ′⇒ ϕ ∈ Γ ′. (1)

The proof is by induction on the definition of Γ ′′⊢
∞

ϕ. We only show DiA and
Na here. Others are similar to the cases in [4].

DiA: We have that Γ ′′ = {ψ̂([a : θ]ξ) | θ ∈ Lprop}, ϕ = ψ̂([a]ξ). Assume that
Γ ′′ ⊆ Γ ′. Proof by contradiction. Assume that Let i ≥ 1 be such that
ϕ =ψi (ϕ is the i-th formula in the enumeration). If Γi−1 ⊢∞ ϕ then ϕ ∈ Γi by
construction, but then ϕ ∈ Γ ′. So Thus, Γi is constructed by the
third case in the definition: Γi = Γi−1 ∪ {¬ϕ, ¬ϕ(: θ)} for some θ ∈ Lprop. Now
we claim that

(2)

If j < i, then by the construction, as ; if j � i, by
the structure of Γj , we have Γj ⊢∞ ¬ϕ(: θ), as Γi ⊢∞ ¬ϕ(: θ). By the fact that
Γj is consistent, we have Therefore, claim (2) is proved. It implies
that by the construction of Γ ′. But we have that ϕ(: θ) ∈ Γ ′′,
which contradicts the assumption that Γ ′′ ⊆ Γ ′.

Na: We have that Γ ′′ = ∅, ϕ = [a]ϕ′. Let i≥1 be such that ϕ=ψi. From ⊢
∞

[a]ϕ′

and W we have that Γi−1 ⊢∞ ϕ, so ϕ ∈ Γi by construction and thus ϕ ∈ Γ ′.

We have thus proved that (1) holds for any Γ ′′, ϕ such that Γ ′′⊢
∞

ϕ, particularly,
for Γ ′′ = Γ ′ and ϕ = ⊥. Thus, if Γ ′ is inconsistent then ⊥ ∈ Γj for some j ∈ N,
which contradicts the consistency of Γj .

Given the Lindenbaum lemma and the other properties of the system shown
above, we can now use a canonical model technique to prove completeness. In
fact, we can use exactly the same definition of the canonical model as for the
sub-logic pNAL in [21], and extend the corresponding truth lemma.

For any MCS Γ , FΓ and ωΓ are defined as follows [21]:

bFΓ a iff [�c ][a : θ]Bbθ ∈ Γ for all �c and θ

ωΓ (a) =
⋂{[[θ]] | Baθ ∈ Γ}.
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We also define the following, when Γ , Γ ′ are MCSs:

– Let ⟨a : θ⟩Γ = {ϕ | }⟨a : θ⟩ϕ ∈ Γ .
– Let Γ � Γ ′ iff Baθ ∈ Γ and Γ ′=⟨a : θ⟩Γ for some a and θ.
– Let ≤ be the transitive closure of �

The truth lemma makes use of the following two lemmas4:

Lemma 13 ([21]). If Γ is an MCS and Γ ≤ Γ ′ then

1. Γ ′ is also an MCS and
2. there is a �c such that: (a) Γ ′ = ⟨�c⟩Γ , and (b) [ �c]ϕ ∈ Γ iff ϕ ∈ Γ ′ for all ϕ

(where �c is the reversal of �c).

Lemma 14 ([21]). If Γ ≤ Γ ′ and Baθ ∈ Γ ′ then [FΓ a ↑ θ]ωΓ ′ = ω
⟨a:θ⟩Γ ′ .

The proof of the truth lemma extends the truth lemma for pNAL [21] with
the clause for the new modalities.

Lemma 15 (Truth Lemma). FΓ , ωΓ ⊧ ϕ iff ϕ ∈ Γ , for any ϕ and Γ .

Proof. Let Γ be an MCS. We prove by induction on formulas ϕ that, for any
MCS Γ ′, if Γ ≤ Γ ′ then

FΓ , ωΓ ′ ⊧ ϕ iff ϕ ∈ Γ ′.

In each of the cases, we assume that Γ ′ ≥ Γ . By Lemma 13.1, Γ ′ is a MCS. We
show the new case; the others are exactly as in the proof for pNAL [21].
⟨a : θ⟩ψ The following are equivalent:

FΓ , ωΓ ′⊧⟨a : θ⟩ψ
FΓ , ωΓ ′ ⊧Baθ and FΓ , [FΓ a ↑ θ]ωΓ ′ ⊧ ψ by semantics
Baθ ∈ Γ ′ and FΓ , [FΓ a ↑ θ]ωΓ ′ ⊧ ψ by the Baθ case, above
Baθ ∈ Γ ′ and FΓ , ω

⟨a:θ⟩Γ ′ ⊧ ψ by Lemma 14, since Γ ≤ Γ ′

Baθ ∈ Γ ′ and ψ∈⟨a : θ⟩Γ ′ by I.H., since Γ ≤⟨a : θ⟩Γ ′

Baθ ∈ Γ ′ and ⟨a : θ⟩ψ ∈ Γ ′ by definition of ⟨a : θ⟩Γ ′

⟨a : θ⟩ψ ∈ Γ ′ by Sinc and closure of Γ ′

ϕ = [a]ψ′

(⇒) Proof by contraposition. Assume that , then by DiA, there is a
θ ∈Lprop such that By maximality, ⟨a : θ⟩¬ψ′ ∈ Γ ′. The induction
hypothesis is that, for any Γ ′′ such that Γ ≤ Γ ′′, FΓ , ωΓ ′′ ⊧ ψ′ iff ψ′ ∈ Γ ′′,
which implies, by maximality, that FΓ , ωΓ ′′ ⊧ ¬ψ′ iff ¬ψ′ ∈ Γ ′′. Now we can
use exactly the same reasoning as in the case for ⟨a : θ⟩ψ, with ψ = ¬ψ′ (as
just mentioned, the induction hypothesis, that proof relies on, holds for ¬ψ′),
to conclude that FΓ , ωΓ ′ ⊧ ⟨a : θ⟩¬ψ, which means that . It
follows that

4 Strictly speaking the corresponding lemmas in [21] don’t say exactly the same thing
since the notion of an MCS is different. However, they can be proven in exactly the
same way.
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(⇐) Assume that [a]ψ′ ∈Γ ′, then by [a]int and the fact that Γ ′ is an MCS, [a : θ]ψ′ ∈
Γ ′ for all θ ∈Lprop, which, by consistency, means that for all θ. Like
in the (⇒) case, we can now reason exactly like in the case for ⟨a : θ⟩ψ, with
ψ=¬ψ′, and conclude that for any θ (again, our induction
hypothesis for ψ′ implies that it also holds for ¬ψ′). That is, FΓ , ωΓ ′ ⊧ [a : θ]ψ′

for all θ ∈ Lprop. It follows that FΓ , ωΓ ′ ⊧ [a]ψ′.

This completes the inductive proof. Finally, let ⊤ be any tautology. Then
Ba ⊤ ∈Γ by NecB and Γ = ⟨a : ⊤⟩Γ by Null. Thus Γ � Γ and so Γ ≤ Γ .

Theorem 16 (Strong Completeness). For any set of formulas Γ and for-
mula ϕ, if Γ ⊧ ϕ then Γ ⊢

∞
ϕ.

Proof. Let If Γ ∪ {¬ϕ} was inconsistent, then Γ ∪ {¬ϕ}⊢
∞
⊥, which by

DT means that Γ ⊢
∞

¬ϕ→ ⊥ and by Taut, W, and Imp that Γ ⊢
∞

ϕ. But that
is not the case, so Γ ∪ {¬ϕ} is consistent. From Lemma 12 there is an MCS Γ ′

such that Γ ∪ {¬ϕ} ⊆ Γ ′, and by Lemma 15 we have that FΓ ′ , ωΓ ′ ⊧ ¬ϕ and
FΓ ′ , ωΓ ′ ⊧ Γ . Thus,

5 Discussion

We extended PNAL, a basic logic for reasoning about the belief dynamics of
tweets in a social networks, with “ability” operators of the form ⟨a⟩ quantifying
over the possible tweets agent a truthfully can make. We studied the logical
properties of this modality and its interaction with explicit tweeting modalities.
In particular, we provided a sound and strongly complete infinitary Hilbert-style
axiomatic system.

Since the logic is not semantically compact, it is not possible to obtain a
strong completeness result with a finitary axiomatisation. The possibility for
finitary weak completeness is left for future work. Standard finitary methods
such as using PDL-like closures in the construction of the canonical model, do
not seem to work directly however. It has recently been shown that weak finitary
completeness is possible for APAL restricted to propositional announcements [9].

Like both APAL and GAL, the APNAL modalities satisfy both the standard
modal logic axiom 4 and the Church-Rosser property. For the former the CR
property reads as ◇ ◻ ϕ→ ◻◇ ϕ, for both GAL and APNAL the more general
variant ⟨a⟩[b]ϕ→ [b]⟨a⟩ϕ hold for any a, b5.

Another obvious direction for future work is relaxing the simplifying assump-
tions in the framework, in particular to allow modelling of higher-order beliefs
and tweets. This is true already for PNAL, see [21] for a general discussion. It
is perhaps of particular interest in the context of APNAL as it would put the
relationship between knowledge and ability with potential subtleties [3] on the
table in the analysis of tweeting scenarios. Yet another natural direction would
be to look at group ability, with GAL-like modalities of the form ⟨G⟩ where G
is a group.
5 For GAL the even more general variant ⟨G⟩[H]ϕ → [H]⟨G⟩ϕ holds for any sets of

agents G, H.
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