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Abstract. We are concerned with modelling a particulate flow in a
three-dimensional domain. The particles are assumed to be rigid, allow-
ing us to describe their motion using the Newton laws. As we aim to
take into account complex shapes for the solid inclusions, we adopt vol-
ume penalization methods. Those methods allow us to extend the fluid
problem inside the solid domain by assimilating the particle as a porous
medium. The homogeneous fluid flow is governed by the incompressible
Navier-Stokes equations. The whole problem is solved with a projection-
correction method using finite volumes and a staggered mesh to ensure
the inf-sup condition for the stability. Regarding the transport of the par-
ticles, a marker-based front tracking method is used for the fluid-solid
interface, as well as a collision strategy. Both penalization methods are
studied and compared in the context of particulate flows.

Keywords: Fluid–structure interactions · Fictitious domain ·
Penalization

1 Introduction

We are interested in the modelling of fluid-solid systems where we consider rigid
solid inclusions in an incompressible viscous fluid flow in a three-dimensional
domain. Such problems led to a wide panel of methods to attempt to model and
reproduce faithfully the fluid-solid interactions observed in real life problems.
Depending on the needs, different degrees of coupling between the fluid and the
particles may be applied. In what follows we will resort to a strong coupling to
make evident the influence of the solid inclusions on the fluid. Using an Eule-
rian formulation for the fluid flow, we extend the fluid problem inside the solid
domain as defined by the fictitious domain methods. Given the assumptions on
the particles we require a rigidity constraint on the solid domain. Among the
most famous methods in this field, the works of Glowinsky et al. [1] which resort
to Lagrange multipliers for the constraint, and volume penalty methods [2,3].
The latter idea is based on porous laws and will be considered in our model.

The computational tests have been performed using the server of the Centre Commun
de Calcul Intensif (C3I) of Université des Antilles.
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Let us introduce our physical domain Ω along with its boundary Γ, containing
the fluid domain Ωf (t) and N particles Ωi

s(t) such that ∪N
i=1Ω

i
s(t) = Ωs(t) defines

the solid domain. Therefore we have Ωf (t) = Ω \ Ωs(t). Given the assumptions,
we will work with the incompressible Navier-Stokes equations to govern the fluid
flow,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ
(∂v

∂t
+ (v · ∇) v

)
− 2∇ · (μD(v)) + ∇p = f in R

+ × Ωf (t)

∇ · v = 0 in R
+ × Ωf (t)

v(0,x) = v0 in R
+ × Ωf (0)

v(t,x) = vΓ on R
+ × Γ

v(t,x) = V i(t) + ωi(t) × ri(t,x) on R
+ × ∂Ωi

s(t)

with the fluid velocity v and pressure p as the unknowns. The fluid here is defined
by its density ρ and dynamic viscosity μ. The term D(v) in the momentum
equation refers to the tensor of deformation rate of the fluid, and we have:
D(v) = 1

2 (∇v+(∇v)T ). The last relation defines the no–slip condition; it closes
the boundary conditions on Ωf and enables the coupling with the solid domain.
It states that the fluid velocity and the solid velocity are equal on the fluid–
solid interface. Finally, as the particles are assumed to be rigid, their motion
can be described using the translational and rotational velocities (V i,ωi) of
their respective center of mass Xi . As such we can define the rigid velocity field
vs(t,x) in Ωs(t): ∀x ∈ Ωs(t), ∃(V i(t),ωi(t)), vs(t) = V i(t) + ωi(t) × ri(t,x)
where ri(t,x) = x − Xi(t). In addition we have for each particle that,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Mi
dV i

δt
=

∫

Ωi
s(t)

ρsf i(t,x)dx +
∫

∂Ωi
s

σ(v, p) · ndS

d(Ji(t)ωi)
δt

=
∫

Ωi
s(t)

ρsri(t,x) × f i(t,x)dx +
∫

∂Ωi
s

ri(t,x) × (σ(v, p) · n)dS

Here the particle is subjected to the exterior force f i. The coupling with the fluid
exists within the surface integrals, as they involve σ(v, p) = (−pI + 2μD(v)),
the surface stress tensor of the incompressible fluid. The surface integral applied
to the translational (resp. rotational) acceleration will be denoted F i (resp. T i).
We also define the density, mass and inertia tensor (ρs,Mi, Ji) of the particle i.

So as to prevent the use of time–dependent spatial meshes, we resort to fic-
titious domain methods to extend the fluid problem inside the solid domain. In
our case we will be using and comparing the L2–penalty and the H1–penalty
methods, which consist in penalizing specific quantities in the fluid problem.
Convergence estimates can be found in [2,4] for fixed obstacles. Notably, the
L2–penalty has a convergence rate of O(η1/2) in the fluid in regard to the penal-
ization parameter η whereas the H1–penalty has a convergence rate of O(η).



Simulation of a Particulate Flow in 3D Using Volume Penalization Methods 105

1.1 The Darcy or L2–Penalty

We penalize the velocity itself by introducing a perturbation term to the momen-
tum equation in order to extend the problem inside the solid domain:

⎧
⎨

⎩

ρ
(∂v

∂t
+(v · ∇)v

)
− 2∇ · (μD(v)) + ∇p +

μ

η
1Ωs

(v − vs) = f in R
+ × Ω

∇ · v = 0 in R
+ × Ω

The parameter η roughly describes the permeability of the solid domain, which
is now considered as a porous medium. The latter will be taken as small as pos-
sible, in order to obtain the no–slip condition on ∂Ωs in a weak sense with fixed
point iterations regarding the convergence of vs.

Following the introduction, the system of equations above is coupled to the
Newton laws for the transport of the solid domain. Owing to the modified
momentum equation, we can consider for the fluid contributions on the particle
Ωi

s(t):

F i = lim
η→0

μ

η

∫

Ωi
s(t)

(v − vs)dx + ρ

∫

Ωi
s(t)

dv

dt
dx

T i = lim
η→0

μ

η

∫

Ωi
s(t)

ri(t,x) × (v − vs)dx + ρ

∫

Ωi
s(t)

ri(t,x) × dv

dt
dx

Using these definitions, one deals with volume integrals, favoring greatly their
computation in the context of fictitious domain methods.

1.2 The Viscous or H1–Penalty

We constraint the extended fluid velocity by penalizing its tensor of deformation
rate D(v) inside the solid domain, in the momentum equation. To achieve this
we resort to a multiphase flow representation of the problem, using the non–
homogeneous incompressible Navier-Stokes equations with variable viscosity,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+

(
v · ∇

)
ρ = 0 in R

+ × Ω

∂(ρv)
∂t

+ ∇ · (ρv ⊗ v) − 2∇ · (μ(ρ)D(v)) + ∇p = f in R
+ × Ω

∇ · v = 0 in R
+ × Ω

along with inflow boundary conditions for ρ on {x ∈ Γ, (v(t,x) · n(x)) < 0} as
well as initial conditions. Consequently we have introduced the transport equa-
tion of the two–valued density ρ(t,x) ≥ ρ > 0, which will carry out the transport
of the particles rather than the Newton laws. Similarly, we have for the viscos-
ity: μf ≤ μ(ρ) ≤ μs. The solid viscosity μs will be taken as great as possible to
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enforce the penalization of the tensor D(v). We aim that way to tend towards
‖D(v)‖L2(Ωs(t)) = 0. With this property we can go back to a rigid motion veloc-
ity field in Ωs(t) for an accurate representation of the rigid behaviour of the
particles.

2 Numerical Method to Solve the Problem

In the present section we describe time and spatial discretization schemes
applied to the penalized problems, followed by the strategies regarding the fluid–
structure coupling. We resort to the incremental projection scheme [5,6] adapted
to both penalty methods to solve the extended problem in Ω. Using the Hodge–
Helmholtz decomposition of a given vector in L2(Ω), we are able to decouple the
computation of the velocity and pressure. In a first sub-step we account for the
viscous terms to determine a predicted velocity, followed by a second sub-step
where we enforce the incompressibility constraint to obtain the pressure and
corrected velocity. For the discretization of the derivatives, we use a BDF2 for-
mulation for the time derivative of the velocity and a Richardson extrapolation
for the non—linear inertia term. Thereafter we complete the projection scheme
with the transport of the solid domain. For the Darcy penalty, we use an implicit
scheme of the Newton laws in regards to the particle velocities.

Resorting to an advection scheme of the phase field of the particles for the
viscous penalty could render difficult the localisation of the fluid–solid interface.
Instead we carry out the transport of markers defined on the surface of the
particles using Runge–Kutta schemes [7]. We require at least Ndf = 6 markers
for each particle, Ndf being the degree of freedom for a 3–dimensional rigid solid.
Using the no–slip condition, we end up with at most an overdetermined system
given by the rigid–body equations valued on each marker.

As we aim to simulate a large collection of particles we need to adopt a
fitting strategy to account for the potential collisions between particles or the
boundaries of the computational domain. One can resort to repulsive forces

x
j

x
k

m 1
jk

m 2
jk

Fig. 1. Defining the markers
for a particle in 2D

using the given position and orientation of the par-
ticle. In our case we will couple the fluid–solid
scheme above with the method introduced in [8].
In the latter reference we break down a particle
in sub–spheres in such a way that we can define
the particle as the union of the convex hulls of
two neighbouring sub–spheres (Fig. 1). Using an
Uzawa algorithm, the predicted velocities of all
sub–spheres are projected on a set of admissible
velocities.

Regarding the spatial discretizations, finite volumes and a staggered mesh
have been chosen. We define the fields for the penalty quantities (ρ, μ,1Ωs

) on
the velocity grids. To compute those fields on the cells where the fluid-solid
interface is located, we adopt an averaging method.
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3 Validation Tests and Comparisons

3.1 Dropping a Ball in a Viscous Fluid

For a first test we drop a rigid heavy sphere in a viscous fluid and observe it
attaining its terminal velocity according to the principle that the drag force
exerted on the particle by the fluid as well as buoyancy balances the gravity
applied to the sphere. We define the fluid using the density ρf = 1 and viscosity
μf = 0.01. The sphere with radius r = 0.05 and density ρs = 5 is falling in
the rectangular domain [0, 1] × [0, 1] × [0, 3] to which we applied channel–flow
boundary conditions. The gravity constant applied to the ball is g = 98.1. We
take for the penalty parameters μs = 104 and 1/η = 107. For the time step we
will be using δt = 0.001. The spatial step h is such that h = max

i=x,y,z
hi = 1/50.

The initial position for the ball is (0.5, 0.5, 1) (Figs. 2 and 3).

Fig. 2. Fluid velocity magnitude for the
L2–penalty (left) and H1–penalty (right)
when Z(t) = 2.617

Fig. 3. W -component of the trans-
lational velocity reaching a termi-
nal velocity of the for the L2–
penalty (above) and H1–penalty
(bottom)

In both cases the velocity of the particle keeps a straight trajectory and
reaches a terminal velocity, which is a first satisfying result. However the termi-
nal velocities while being within the same order (4L.T−1 against 12L.T−1) still
differ. We can also observe a diffusion around the sphere constrained with the
H1/viscous penalty. This could be explained by the fact that no specific treat-
ment regarding the interface is used when computing the viscous part of the
momentum equation of the penalized problem. Meanwhile the Darcy penalty
probably requires corrections regarding the physical parameters and external
forces to obtain a coherent coupling between the Newton laws and the fluid
problem.
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3.2 A Rigid Rod in a Lid–Driven Cavity

To demonstrate the marker strategy with a non–spherical particle, we place a
rigid rod in the domain Ω = [0, 1]3 with the boundary conditions of a lid–driven
cavity problem. On the side {(x, y, z) ∈ Γ, z = 1} of Ω we set u(t,x) = 1.
The rigid rod is defined with the density ρs = 0.8, a length l = 0.1 and width
w = 0.02. For the fluid we use μf = 1.0. We neglect the gravity and leave the
boundary conditions to establish the flow. We use the spatial step h = 1/70 and
the same time step as the previous test. We take μs = 104 to penalize the solid
(Fig. 4).

Fig. 4. State of the problem at times t = 2.25, t = 4, 25, t = 6.0, t = 6.75

Despite the rather coarse mesh and the thin rod used in this test, the particle
properly follows the flow and rotates appropriately, while remaining rigid. The
markers seem to handle correctly the decomposition of a complex particle using
sub–spheres from the collision strategy.

4 Concluding Remarks

We were able to study and compare the L2-penalty and the H1-penalty meth-
ods in the context of particulate flows. As far as we know, comparative studies
between those two methods do not exist for such situations. Therefore, this work
can be considered as a novel short progress in this direction. The numerical tests
were overall satisfying and allowed us to take a step further in validating our
code. However more work is required regarding the calibration of the Darcy
penalty problem and the sharpness of the interface with the viscous–penalized
problem to help with the comparison of the methods and the global observations.
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