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Abstract. Advances to a dual-scale modeling approach (Gorokhovski
and Herrmann, 2008) are presented to describe turbulent phase interface
dynamics in a Large Eddy Simulation spatial filtering context. Spatial
filtering of the governing equations to decrease the burden of Direct
Numerical Simulation introduces several sub-filter terms that require
modeling. Instead of developing individual closure models for the inter-
face associated terms, the dual-scale approach uses an exact closure by
explicitly filtering a fully resolved realization of the phase interface. This
resolved realization is maintained on a high-resolution over-set mesh
using a Refined Local Surface Grid approach (Herrmann, 2008) employ-
ing an un-split, geometric, bounded, and conservative Volume-of-Fluid
method (Owkes and Desjardins, 2014). Advection of the phase inter-
face on this DNS scale requires a reconstruction of the fully resolved
interface velocity. This velocity is the sum of the filter scale velocities,
readily available from an LES solver, and sub-filter velocity fluctuations.
These fluctuations can be due to sub-filter turbulent eddies, which can
be reconstructed on-the-fly using a local fractal interpolation technique
(Scotti and Meneveau, 1999) to generate time evolving sub-filter veloc-
ity fluctuations. In this work, results from the dual-scale LES model are
compared to DNS results for four different realizations of a unit density
and viscosity contrast interface in a homogeneous isotropic turbulent flow
at infinite Weber number. Introduction of a sub-filter turbulent velocity
reconstruction in a passive scalar context is the first step towards use of
a dual-scale model for multiphase applications.

Keywords: Volume-of-fluid · Dual-scale · Fractal interpolation ·
RLSG

1 Introduction

Atomization in turbulent environments involves a vast range of length and time
scales. Predictive simulations aiming to resolve all relevant scales thus require

The support of NASA TTT grant NNX16AB07A is gratefully acknowledged.

c© Springer Nature Switzerland AG 2021
M. Deville et al. (Eds.): TI 2018, NNFM 149, pp. 39–51, 2021.
https://doi.org/10.1007/978-3-030-65820-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65820-5_4&domain=pdf
http://orcid.org/0000-0002-6434-6639
http://orcid.org/0000-0003-0603-7448
https://doi.org/10.1007/978-3-030-65820-5_4


40 D. Kedelty et al.

enormous computational resources, taxing even the most powerful computers
available today [5]. Since primary atomization is governed by the dynamics of
the interface, a need therefore exists for appropriate interface models that make
the computational cost of predicting the atomization outcome more tractable.

A wide range of phenomenological models aiming to represent statistically
the essential features of atomization have been proposed in the past. Although
these aim to introduce the dominant mechanisms for breakup, they often use
round blobs injected from the nozzle exit and hence neglect all details of the
interface dynamics.

Other modeling approaches to atomization include stochastic models [6,7]
representing the interface by constituent stochastic particles and the mean inter-
face density transport equation model for Reynolds-Averaged Navier-Stokes
(RANS) approaches [21,22]. The former treats the interface dynamics in a
stochastic sense but requires the a priori knowledge of the breakup mechanism,
whereas the latter is affected by the drawbacks of the RANS approach: the
transport of the mean interface density is modeled by a diffusion-like hypothe-
sis, thereby neglecting the spatial grouping effects of liquid elements [5].

In the context of Large Eddy Simulations (LES), [12,18–20] have proposed
models to close the unclosed terms arising from the introduction of spatial fil-
tering into the governing equations. However, these models typically neglect the
contribution of the sub-filter surface tension term and are based on a cascade
process hypothesis that may be questionable in the context of surface tension-
driven atomization. An exception is the model for the sub-filter surface tension
term proposed in [1]. In [9,11], a dual-scale approach for LES of interface dynam-
ics was proposed and a model for the sub-filter surface tension induced motion
of phase interfaces was developed.

The purpose of this contribution is to develop a model for the sub-filter phase
interface motion induced by sub-filter turbulent velocity fluctuations. Combining
such a model with the surface tension model proposed in [9,11] will result in a
LES model applicable to atomizing flows.

2 Governing Equations

The equations governing the fully resolved motion of an unsteady, incompress-
ible, immiscible, two-fluid system in the absence of surface tension are the Navier-
Stokes equations,

∂ρu

∂t
+ ∇ · (ρu ⊗ u) = −∇p + ∇ · (

μ
(∇u + ∇T u

))
, (1)

where u is the velocity, ρ the density, p the pressure, and μ the dynamic viscos-
ity. Here, we neglect surface tension to solely focus on the turbulence induced
dynamics of phase interfaces. Furthermore, the continuity equation results in a
divergence-free constraint on the velocity field

∇ · u = 0 . (2)
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Assuming ρ and μ are constant within each fluid, density and viscosity can be
calculated from

ρ = ψρl + (1 − ψ)ρg (3)
μ = ψμl + (1 − ψ)μg , (4)

where indices l and g denote values in liquid and gas, respectively, and ψ is a
volume-of-fluid scalar that is ψ = 0 in the gas and ψ = 1 in the liquid with

∂ψ

∂t
= −u · ∇ψ = −∇ · (uψ) + ψ∇ · u . (5)

Here, the last term on the right-hand side is zero for incompressible flows, see
Eq. (2). In this work, unit density and viscosity ratios are considered making this
a single-phase flow, therefore Eqs. (3) and (4) are unnecessary but are included
for completeness sake.

2.1 Filtered Governing Equations

Introducing spatial filtering into Eqs. (1) and (2) and assuming that the filter
commutes with both the time and spatial derivatives, the filtered governing
equations can be derived [20],

∂ρu

∂t
+ ∇ · (ρū ⊗ u)= − ∇p̄ + ∇ · (μ(∇u + ∇T u)) + τ 1 + ∇ · (τ 2 + τ 3) , (6)

∇ · ū=0 , (7)

where ¯ indicates spatial filtering, and

τ 1=
∂ρ u

∂t
− ∂ρu

∂t
(8)

τ 2=ρu ⊗ u − ρu ⊗ u (9)

τ 3=μ(∇u + ∇T u) − μ(∇u + ∇T u) , (10)

where τ 1, τ 2, and τ 3 are associated, respectively, with acceleration, advection,
and viscous effects [20]. Using Eqs. (3) and (4), the filtered density and viscosity
in Eq. (6) are

ρ = ρlψ + ρg(1 − ψ) (11)

μ = μlψ + μg(1 − ψ) , (12)

where
ψ =

∫
G(x)ψdx , (13)

and G is a normalized spatial filter function.
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3 The Dual-Scale Approach to Modeling Sub-filter
Interface Dynamics

Instead of relying on a cascade process by which dynamics on a sub-filter scale
can be inferred from the dynamics on the resolved scale, the dual-scale approach
proposed in [11] aims to maintain a fully resolved realization of the immiscible
interface geometry at all times, expressed, for example, in terms of a volume-
of-fluid scalar ψ. Then ψ can be calculated exactly by explicit filtering using
Eq. (13).

Although this is an exact closure, the problem of modeling is of course simply
shifted to the problem of maintaining a fully resolved realization of the interface
geometry, i.e., describing the fully resolved motion of the interface, Eq. (5). Since
the fully resolved velocity is the sum of the filtered velocity and the sub-grid
velocity, u = u + usg, this results in

∂ψ

∂t
= −∇ · ((u + usg) ψ) + ψ∇ · (u + usg) , (14)

where the only term requiring modeling is usg. In [11], a model for usg is pro-
posed consisting of three contributions,

usg = u′ + δu + uσ, (15)

where u′ is due to sub-filter turbulent eddies, δu is attributed to the interface
velocity increment due to relative sub-filter motion between the two immiscible
fluids, and uσ is due to sub-filter velocities induced by sub-filter surface tension
forces. The focus of the current contribution is on the first term; for a modeling
outline of the second term, the reader is referred to [10,11], and for modeling of
the last term, the reader is referred to [9].

3.1 Sub-filter Turbulent Fluctuation Velocity Models

We propose to reconstruct the sub-filter turbulent fluctuation velocity u′ using
fractal interpolation [17]. To demonstrate fractal interpolation in one dimension,
consider 3 adjacent LES scale nodes x0, x1, and x2 with velocities u0, u1, and
u2. Following [4,17] the fractal interpolation operator WFI can be written as

WFI(x) =u0 +
u1 − u0

x1 − x0
(x − x0)

+ d1

(
u(2x − x0) − u0 − u2 − u0

x2 − x0
(2x − x0)

)
if x ∈ [x0, x1] (16)

WFI(x) =u1 +
u2 − u1

x2 − x1
(x − x1)

+ d2

(
u(2x − x0) − u0 − u2 − u0

x2 − x0
(2x − x0)

)
if x ∈ [x1, x2] (17)
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Here |d1| < 1 and |d2| < 1 are stretching factors making WFI a contractive map-
ping [17]. Successively applying the fractal interpolation operator WFI starting
with the LES filter velocities, generates the fully resolved turbulent fluctuation
velocity. In order to extend the method into three dimensions, the fractal inter-
polation operator is first performed in one spatial direction only, followed by
separate 1D fractal interpolations in the other two directions [17].

The determination of the values of the stretching factors d1 and d2 follows the
so-called ZE1 model of [17] by using d1 = −d2 = ±2−1/3 with the sign chosen
randomly with equal probability. This choice of di generates a velocity signal
that satisfies the −5/3 kinetic energy spectrum of turbulence at all sub-filter
scales.

4 Numerical Methods

Equation (14) is solved using an unsplit geometric transport scheme for volume-
of-fluid scalars that ensures both discrete volume conservation of each fluid and
boundedness of the volume-of-fluid scalar, ψ [13]. Geometric reconstruction of
the interface within each computational cell is done using PLIC reconstruction,
employing analytical formulas [16] using ELVIRA estimated normals [14,15].

To efficiently solve Eq. (14) for the fully resolved immiscible interface, the
RLSG method [8] is employed. By design, it solves the interface capturing advec-
tion equation on a separate, highly resolved Cartesian overset grid of mesh spac-
ing hG, independent of the underlying LES flow solver grid of mesh spacing
h. In the dual-scale LES approach, hG needs to be chosen sufficiently small to
maintain a fully resolved realization of the phase interface.

The velocity u at RLSG scale hG is calculated from

u = Wk
FIu, (18)

where the superscript k indicates k-times application of the fractal interpolation
operator WFI , with

k =
log

(
h

hG

)

log(2)
. (19)

Since the LES flow solver used in this work utilizes a staggered mesh layout,
the face normal velocities in each spatial direction are not co-located and hence
the fractal interpolation has to be performed for different locations depending
on the spatial component of the velocity vector.

The unsplit, geometric advection scheme of [13] requires face-centered veloc-
ities that are discretely divergence-free to ensure both conservation and bound-
edness. While discretely divergence free filtered velocities u are available on the
flow solver mesh in a standard fractional step method, i.e., ∇h ·u = 0, the fractal
interpolated velocities u are not necessarily divergence free on the fine overset
mesh. To ensure ∇hG

· u = 0, u is projected into the subspace of solenoidal
velocity fields using the projection/correction step of a standard fractional step
method applied to the overset mesh contained within each LES cell separately.
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Note that the resulting Poisson systems that need to be solved to determine
the Lagrange multiplier for projection of u are defined on a per LES cell basis,
necessitating an additional step to make the LES cell face average of u equal to
the LES scale filtered velocity u. This is achieved by computing and applying a
per cell face constant correction velocity to u, similar to the approach used to
determine an outlet correction velocity in the fractional step method to make the
approach satisfy the continuity equation on the entire domain. Here the correc-
tion velocity applied to each cell face ensures satisfying the continuity equation
for u on the LES filter scale h.

The fractal interpolation reconstruction is performed at every LES time step
such that the resolved scale velocity u is actively evolving with the LES velocity
u on the LES time scale.

Finally, to calculate ψ, Eq. (13) is evaluated by setting the filter size to the
local flow solver mesh spacing h and evaluating the integral by explicitly sum-
ming the volume-of-fluid scalar ψ of those overset-mesh cells that are contained
within a given LES flow solver cell.

4.1 Comparison Metrics

Assuming that the phase interface is initially planar with normal orientation in
the y-direction, we define α(x, z, t) as the liquid volume fraction that is contained
within a square column in the y-direction with cross sectional area equal to h2

G.
Using the definition of α(x, z, t), the RMS sum of the time evolution of α can
be defined as

α′
0(t) =

√
1
L2

∫

L

∫

L

((α(x, z, t) − α(x, z, 0))2 dxdz. (20)

This quantity depends predominantly on the large scale movement of the inter-
face. Defining α(x, z, t) as the liquid volume fraction contained within a square
column in the y-direction with cross sectional area equal to the LES filter scale
h2, we define the sub-filter liquid column height RMS as

α′(t) =

√
1
L2

∫

L

∫

L

((α(x, z, t) − α(x, z, t))2 dxdz, (21)

This quantity depends predominantly on the sub-filter transport of the volume
fraction.

To take into account that even on an LES mesh scale, the PLIC reconstruc-
tion of the filtered phase interface geometry provides a level of sub-filter geometry
resolution beyond the mere liquid column height α, we define a local quantity
Cmix that measures the sub-filter variation of the phase interface on the overset
mesh compared to the LES mesh. Cmix is calculated by first performing a PLIC
reconstruction on the LES mesh using the filtered volume fraction ψ, see Fig. 1.
The reconstructed planar representation of the phase interface is then used to
calculate liquid volume fractions on the overset mesh ψhG

. The root mean square
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Fig. 1. PLIC geometry on LES mesh cell (left), fully resolved PLIC geometry (center),
difference used to calculate Cmix (right).

Fig. 2. Comparison of LES filtered velocity (left) and fractal interpolated velocity
(right).

of the difference of these volume fractions and the fully resolved volume fractions
ψ, see Fig. 1, is Cmix,

Cmix(t) =

√
1
L3

∫

L

∫

L

∫

L

(
ψ − ψhG

)2
dxdydz. (22)

It should be pointed out that both α′ and Cmix will remain zero for all time
without a dual-scale model.

The probability density function (PDF) of interface curvature is used as a
final comparison metric. The curvature that is sampled is the mean curvature
calculated by height function [3]. Samples are taken from every RLSG cell that
contains an interface and |κ| is used to create the PDF.
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Fig. 3. Resulting 3D spatial kinetic energy spectra for 5123 overset mesh using fractal
interpolation (red). DNS (blue) and −5/3 reference line (dashed) are also provided.
Vertical solid black line denotes the LES filter scale.

5 Results and Discussion

An initially flat interface is placed inside a box of fully developed isotropic tur-
bulence. The fully developed isotropic turbulence field was graciously provided
by R. Chiodi and O. Desjardins [2]. Both density and viscosity ratio are unity,
and no surface tension forces are present with a Reynolds number of Reλ = 156
and Weλ = ∞. Here, we present DNS and LES results using the dual-scale app-
roach employing a LES mesh resolution of 323 and an overset mesh resolution
of 5123 for four different realizations generated by placing the phase interface at
different initial heights in the turbulent velocity field. The four different initial
heights listed from realization 1–4 are y = π, y = π/2, y = 0, y = 3π/2. DNS
results were obtained using a 5123 mesh for both the flow solver and interface
advection scheme.

Figure 2 shows, as an example, a comparison of the LES filtered velocity
field and the fractal interpolated velocity. Noticeably more small scale structure
is visible in the fractal interpolated velocity compared to the filter scale LES
velocity. This is corroborated by the kinetic energy spectrum shown in Fig. 3
that compares the kinetic energy spectrum of the fractal interpolated velocities
to the DNS velocities. The fractal interpolation kinetic energy spectrum does
show a noticeable dip before beginning to follow the −5/3 energy cascade. Note
the absence of any viscous dissipation range in the fractal interpolated velocities.

Figure 4 compares one realization of the phase interface geometry using frac-
tal interpolation and the interface geometry that would be obtained without
any dual-scale model. Including the fractal interpolated sub-filter velocity in the
advection velocity of the resolved realization of the interface clearly leads to
significantly more surface corrugations, as expected.

Figure 5a–b shows the liquid column height RMS α′
0 with respect the initially

flat interface. In Fig. 5a, comparison of the four different realizations show a large
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t = 0.05s t = 0.10s t = 0.15s t = 0.20s

t = 0.05s t = 0.10s t = 0.15s t = 0.2s

Fig. 4. Comparison of time evolving phase interface geometry for Realization #1 of
homogeneous isotropic turbulence at several time steps: no dual-scale model (top) and
fractal interpolation velocity (bottom).

effect on α′
0, because α′

0 depends strongly on the large scale motion of the inter-
face that are noticeably different from realization to realization. However, each
of the individual LES results shows very good agreement with its corresponding
DNS result. Figure 5b compares the LES results with and without dual-scale
model to the DNS results for one realization. It can be seen that the dual-scale
LES result agrees more closely with the DNS, although the results without dual-
scale model are not too different from the DNS results since α′

0 depends mostly
on the large scale motion on the LES filter scale.

Figure 5c shows the sub-filter liquid column height RMS α′ for the different
realizations. The results presented are only shown until the periodic boundary
condition in the interface normal direction impacts the measurement. The dif-
ference between the realizations is very small, consistent with the observation
that α′ is a sub-filter quantity exhibiting a degree of universality of the small
scales. The dual-scale LES simulations consistently over-predict α′ at later times
compared to the DNS results. However, it should be noted that α′ is always zero
if no dual-scale LES model is applied and the dual-scale model is therefore a
significant improvement.

Figure 5d compares the sub-filter variation Cmix for the different realizations.
Again, the difference between the realizations is small, indicating that Cmix is
a sub-filter quantity that exhibits a degree of universality on the small scales.
The dual-scale LES simulations consistently under-predict Cmix compared to
the DNS results. However, again it should be noted that Cmix is always zero
if no dual-scale LES model is applied and the dual-scale model is therefore a
significant improvement.

Finally, Fig. 6 compares the PDF of interfacial curvature. Interestingly, no
difference in the PDFs can be observed between the four different realizations
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(a) (b)

(c) (d)

Fig. 5. Comparison of column height RMS α′
0 for: (a) Different realizations of Reλ.

(b) No sub-filter velocity, DNS, and fractal interpolation. (c) Comparison of sub-filter
liquid column height RMS α′. (d) Comparison Metric Cmix.

of Reλ. While this is not surprising on the small scales, this also holds true
for the larger scales as well. The dual-scale LES results show good agreement
with the DNS results while the LES results without the dual-scale model are
significantly different. Between κ = 1/h and κ = 1/hG the dual-scale model
overpredicts the population of curvature by approximately 1% as compared to
the DNS results. Comparison of dual-scale LES and DNS results at κ < 10−1,
i.e., at radii of curvature that are larger than the computational box size of 2π,
shows a difference of less than 0.01%. Note that both dual-scale LES and DNS
results show a peak curvature probability at κ = 1/hG, whereas the LES results
without dual-scale model are limited to κ = 1/h. Since the present simulations
are for infinite Weber number, the Hinze scale, aka Komogorov’s critical radius,
is zero and hence the appearance of larger and larger curvatures with time is
only limited by the available mesh resolution.

It should be stressed that the dual-scale LES result using the time evolving
fractal interpolation generates the same population of curvatures as the DNS and



A Dual-Scale Approach for Turbulent Liquid/Gas Interactions 49

hence it can be conjectured that the dual-scale LES model might generate similar
droplet sizes in atomization cases, if drop generation is initiated by turbulent
velocity fluctuations.

Fig. 6. Comparison of probability density function of curvature after the interface has
had time to deform. Vertical reference lines denote the curvature of: 1/hG (solid) 1/h
(dotted).

6 Summary and Conclusions

A dual-scale modeling approach for phase interface dynamics in turbulent flows
is presented that is based on a fractal interpolation technique to generate
fully resolved turbulent velocity fields. The method uses overset high-resolution
meshes to capture a resolved realization of the phase interface geometry that
can be explicitly filtered to close the terms that require modeling in the fil-
tered Navier-Stokes equations. Comparison of DNS and dual-scale LES results
show good agreement for the case of an initially planar phase interface of unit
density and viscosity contrast at infinite Weber number placed into a homoge-
nous isotropic decaying turbulence field. This favorable comparison includes the
probability density function of interfacial curvature, an earlier indicator that the
proposed dual-scale LES model may be applicable to atomization cases where
droplet generation is initiated by turbulent eddies.

The dual-scale method has also shown significant improvements in compu-
tational cost. Proper implementation of the dual-scale method can be orders of
magnitude faster than a pure DNS simulation when only a small portion of the
domain contains an interface, as is the case for primary atomization. In the case
where the entire domain is filled with interface, the dual-scale method has shown
to be as fast as pure DNS.

Future work will focus on incorporating the dual-scale model for surface
tension and an analysis on the impact of sub-filter surface tension on the interface
dynamics.
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