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Université de Toulouse, CNRS, Toulouse, France

ainur.nigmetova@toulouse-inp.fr, enrica.masi@imft.fr
2 CORIA UMR 6614 CNRS – INSA, Université de Rouen,
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Abstract. The main focus of the present study is to evaluate the accu-
racy of the soft-sphere method to represent the particle-particle and the
particle-wall collision effect in dilute rapid particulate flow. At this aim,
3D soft-sphere Discrete Element Method (DEM) simulation results are
presented for frictionless elastic and inelastic particles, for different sizes
and mean solid volume fractions, transported in a fully developed ver-
tical channel flow. The effect on particle statistics of the friction during
particle-wall collisions is analyzed. Profiles of time-averaged quantities
are assessed and well agree with simulation results available from the
literature, obtained by using the hard-sphere model.
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1 Introduction

Understanding the dynamics of turbulent gas–particle flows has great importance
for the successful design and optimization of many industrial applications, such
as fluidized beds, dust collectors, cyclone separators. These systems involve many
complex mechanisms, which are often coupled and interacting with each other.
In the past decades, the focus was mainly on the complexity of the interaction
between particles and gas-phase turbulence [1,15] and the effect of particle–
particle and particle–wall collisions [13,14].

Gas turbulence has a predominant effect on particle diffusion for small par-
ticles. In this case, the influence of the solid-solid interactions is less important,
because their dynamics is controlled by the fluid motion. However, in the case
of large particles, the distance they need to respond to the fluid flow is larger
than the characteristic dimension of the confinement, and the effect of the flow
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turbulence may be neglected. Their motion is considerably influenced by the
solid-solid collision process in confined flows. In this work, the inertial particles
motion in a steady and imposed fluid flow is studied.

Due to the discrete nature of the particles, the numerical simulation of the
particle motion is performed in a Lagrangian framework by Discrete Element
Method (DEM). Such an approach can be coupled with different models resolving
the fluid phase, depending on the characteristic length scales of the fluid and
particles.

An accurate resolution of particle-particle and particle-wall interactions is
necessary to describe properly the whole gas-particles flow dynamics. For this
reason, the objective of the present work is twofold. The first objective is to
study the influence of particles properties (particle size, concentration, restitu-
tion coefficient, etc.) on the velocity statistics in vertical channel flows using
the DEM simulation. For modeling the solid-solid interaction, DEM uses two
approaches, the hard-sphere [3] and the soft-sphere models [5]. The soft-sphere
model has computational advantages in simulating dense suspensions with mul-
tiple particle-particle contacts, while the hard-sphere model is better suited to
dilute regimes. Indeed, the soft-sphere models makes it possible to address multi-
ple collisions which occur in denses regimes, allowing particles to deform slightly
at the contact point. The hard-sphere approach assumes instead that no defor-
mation occurs during the instantaneous collision between the two solid bodies.
In this work, the soft-sphere model is used, since this can treat both low and high
particle number densities, and it can handle multiple contacts. Thus, the second
objective is to evaluate the accuracy of the soft-sphere model to reproduce the
solid-solid collision effect in a rapid gas-particles flow with dilute suspension of
massive particles, comparing with Lagrangian simulation results based on the
hard-sphere model [7,9,10].

2 General Description

2.1 Flow Configuration

The proposed test case is a gas-particles vertical fully developed channel flow,
studied early by [7,9,10]. The corresponding Reynolds number of the fully devel-
oped flow in the channel is about 42000. The computational domain is a rectan-
gular box, with periodic boundary conditions in the spanwise (x) and streamwise
directions (z) (see Fig. 1), while the y direction is normal to the walls. A monodis-
perse particle-laden fluid is introduced in the vertical direction z. The physical
characteristics of the fluid are ρf = 1.205 kg.m−3, νf = 1.515 × 10−5 m2.s−1.
For the dispersed phase, two kinds of particle are studied: dp = 1.5 mm and
ρp = 1032 kg.m−3, or dp = 406 μm and ρp = 1038 kg.m−3. These simulations
are carried out for mean solid volume fractions 〈αp〉 varying between 10−3 and
10−2. Low solid volume fractions and the large particle inertia make it possi-
ble to neglect the interactions between the fluid turbulence and the particles as
well as the influence of the particles on the mean fluid flow. The Stokes number
St = τpu∗/Ly for the present problem is about 200 and 2500 for smaller and
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larger particles, respectively. Here, τp = ρpd
2
p/18μf is the particle response time,

u∗ is the friction velocity and Ly is the channel width. According to the Stokes
number values, it turns out that St � 1, then the particles are not affected by
the turbulence of the fluid. The mean fluid velocity profile is determined from a
preliminary single-phase k − ε computation (see Fig. 2) and fixed during all the
simulations.

Fig. 1. Flow configuration. Fig. 2. Mean streamwise velocity.

2.2 Averaging of Physical Quantities

Thanks to the homogeneity of streamwise and spanwise directions, mean vari-
ables depend only on the wall-normal coordinate y. Therefore, the channel is
divided into 40 slices for dp = 406 μm, 15 slices for dp = 1.5 mm, parallel to the
walls in y direction. Particles are associated with the slice in which their centres
are located. The quantities are averaged spatially and temporally in each slices.
The averaging operator will be written as 〈·〉, Up,i and u′′

p,i = up,i −Up,i indicate
the mean velocity of the particles in the i-th direction and the velocity fluctu-
ations, respectively. Second and third order moments are defined as following
〈u′′

p,iu
′′
p,j〉 and 〈u′′

p,iu
′′
p,ju

′′
p,m〉, respectively. For the sake of simplicity, the particle

velocity components (up,1, up,2, up,3) will be written as (u, v, w), the mean veloc-
ity components (Up,1, Up,2, Up,3) will be noted as (U, V,W ), and the fluctuation
components (u′′

p,1, u
′′
p,2, u

′′
p,3) will be noted as (u′′, v′′, w′′). And np = Np/Vc is

defined as the particle number density, computed in a slice of volume Vc con-
taining Np particles.

3 Particle Dynamics: Lagrangian Simulation

The Lagrangian solver for particle tracking runs in two successive steps. The
first step takes into account the fluid and gravity effects, which make move the
particles. Each particle is tracked in a Lagrangian fashion based on the DEM.
The fluid entrains the particles, and their velocity is changed using a second-
order explicit Runge-Kutta algorithm. Since, periodic boundary conditions for
particles are considered in streamwise and spanwise directions, particles leav-
ing the calculation domain will be relocated using the periodicity and rebound
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conditions. For the fluid-particles interaction, the only drag is considered. The
second step deals with the inter-particle and particle-wall collisions. To com-
pute contact between solid bodies the soft-sphere model is employed. The solids
are allowed to overlap with each other in a controlled manner. The collision is
detected, when the distance between two particles and between a particle and a
wall is less than the sum of their radii and the radius of the particle, respectively.
The collision is computed in the mass-spring-dashpot system over a time step,
that must be smaller than the time step for the fluid flow. In the soft-sphere
model the choice of several numerical parameters is important to solve collisions
properly. Particle rotation is not taken into account in our simulations. Each
step will be detailed in the following sections.

3.1 The Equations of Motion

DEM simulations is the way to simulate particulate processes, tracking each
particle and considering all particle-particle and particle-wall interactions. The
motion of a single spherical particle p with mass mp is deduced from Newton’s
second law

mp
dup

dt
= FD,p + FG,p + FC,p and

dxp

dt
= up (1)

up and xp are the particle velocity, and position, FD,p is the drag force, FG,p

is the gravity force and FC,p is the collision force exerted by the neighbouring
solid bodies in contact. The total collision force FC,p acting on a particle p is
computed as the sum of all the forces exerted by the Np particles and Nw walls
in contact FC,p =

∑Np+Nw

b=1 f col
q→p. The drag force FD,p acting on the particle p

is written
FD,p = mp

ug − up

τgp
, τgp =

4
3

ρpdp

ρgCD|ug − up| (2)

where CD is the drag coefficient. According to the assumption, the only fluid-
particle interaction force taken into account is the drag. The drag coefficient is
based on the Schiller and Naumann correlation [12]. And the gravitational force
is written as FG,p = mpg.

For each particle, the equation of motion Eq. 1 is solved at each time step.
To integrate it properly, different characteristic times based on the different phe-
nomena (gravity, drag) are defined. Therefore, several criteria must be verified
on each particle to choose the smallest time step appropriated to the most lim-
iting characteristic time. In dilute rapid particulate flow simulations, once the
stationary state is reached, the limiting time step is that defined from collision
parameters.

3.2 Collision Model

Particle-particle and particle-wall collisions are modeled using the soft-sphere
approach [6] originally proposed by Cundall and Strack [5]. The particles are
represented as a mass-spring-dashpot system (see Fig. 3). When the distance
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Fig. 3. Soft-sphere representation of
two particles during collision.

Fig. 4. Temporal evolution of the col-
lision between two particles.

between particles p and q is less than the sum of their radii rp and rq, parti-
cle starts to collide and a collision force f col

q→p is generated. This force may be
decomposed in normal and tangential components. f col

q→p = f col
n,q→p + f col

t,q→p. The
normal component is computed as

f col
n,q→p =

{
−knδpqnpq − 2γnMpqupq,n, if δpq > 0
0, else

(3)

where kn is the normal spring stiffness, npq the normal unit vector, γn is the
normal damping coefficient, and upq,n is the normal relative velocity. The term
δpq is defined as the overlapping distance between two particles δpq = rp + rq −
||Op − Oq|| and Mpq = ( 1

mp
+ 1

mq
)−1 is the effective mass of the p − q binary

system. The overlapping distance is considered only in the normal direction. The
unit normal vector and the normal relative velocity between particles p and q
are defined respectively as

npq =
xp − xq

||xp − xq|| , upq,n = ((up − uq) · npq)npq (4)

where up and uq are the p and q particle velocities, respectively. For the tan-
gential component of the contact force a Coulomb-type friction law is retained
f col
t,q→p = −μ||f col

n,q→p||tpq where μ is the dynamic friction coefficient.

3.3 Collision Parameters

The projection of the Eq. 1 on npq gives the equation for δpq in the normal
direction:

Mpq δ̈pq = −knδpq − 2γnMpq δ̇pq (5)

Equation 5 is the differential equation of the damped harmonic oscillator and its
solution is

δpq(t) =
|u0

pq,n|
√

ω2
0 − γ2

n

exp(−γnt) sin(
√

ω2
0 − γ2

nt) (6)
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with undamped angular frequency ω0 =
√

kn

Mpq
and normal damping parameter

γn = − ln en√
π2+ln2 en

ω0, where en is the normal restitution coefficient. It means

that the overlap depends on the user-defined parameters kn, en and the particle
properties. The differentiation of Eq. 6 provides that δ̇pq(t = 0) = |u0

pq,n|. The
contact during collision is solved over time and the duration of a contact can be
determined as a time corresponding to the end of the collision δpq(t = Tc) = 0
(see Fig. 4):

Tc =
π

√
ω2
0 − γ2

n

(7)

Since, the particle phase is monodisperse, Tc has a unique value in the particulate
system. The contact duration depends on ω0, γn, which depend on kn, en and
particle properties. It is essential to estimate the appropriate collision duration
to perform simulations with appropriate particle time step.

3.4 Numerical Parameters

To ensure the numerical stability for the used numerical schemes and to treat
the collision properly, the particle time step Δtp must be small enough. For
example, in the case of the hard-sphere model, according to [11], where the
particle velocity after collision is defined analytically from the velocity before
collision, the limiting condition is defined as Δtp < θdp/||ur||, with θ ≈ 0.3.
The information needed to estimate this condition is the mean relative impact
velocity ur = ||ur||, which can be estimated from the particles agitation q2p =
1/2(u′′ + v′′ + w′′)

ur =

√
8
3π

q2p (8)

In our simulations based on the soft-sphere model, to estimate the time step,
several conditions must be verified. First of all, Δtp has to be smaller or equal
than the fluid time step, which is estimated from the CFL condition for the fluid
phase CFL = maxi=1,3 |uf,i|Δtf/Δxf . To choose an appropriate value for Δtp
two conditions should be verified. The first condition CFLp = Δtp||up||/Δxf for
each particle is needed to ensure that a particle does not move more than few
elements of the Eulerian mesh during a substep. The second condition is based
on the fact that during a substep particles do not move more than 100·CFLcol

p %
of their diameter, where CFLcol

p = Δtp|u0
pq,n|/dp. It means that this condition

is necessary to control and limit the overlapping distance at the first impact.
Another condition is that Δtp must be inferior to the contact time Tc to limit
the overlapping distance during the collisions and to reach a sufficient resolution
for the time integration of the stiff collision term in Eq. 1 (see Fig. 4)

Δtp <
Tc

Nc
. (9)

Nc is the minimum number of steps during one contact. It is recommended in
the literature to integrate a dry contact with Δtp in the range [Tc/50, Tc/15] [2],
and following [8] in the gas-particles flow Nc should be greater than Nc > 5.



156 A. Nigmetova et al.

As discussed above, Tc depends on some parameters like kn, en and particle
properties. Then to predict the collision duration Tc, the appropriate value for
kn must be chosen for a given particle. Frequently used practice is to predict the
appropriate value for kn from the maximum value for the overlapping distance.
The maximum overlap δmax

pq is obtained from δ̇(t) = 0

δmax
pq

dp
=

|u0
pq,n|

ω0dp
exp

(

− γn√
ω2
0 − γ2

n

arcsin

√
ω2
0 − γ2

n

ω0

)

(10)

By using an estimate for the value of u0
pq,n and fixing the maximum overlap

δmax
pq , kn can be obtained from Eq. 10. The only drawback of this approach is

the lack of information concerning u0
pq,n before performing the simulations. In

some references, it is recommended that the maximum overlapping δmax
pq is less

than 10% of the particle diameter [4], other references propose instead to keep
its value less than 1% [8]. The resulting high value of kn leads to a small particle
time step, which is very limiting for the numerical simulation. The point is how
should be evaluated the stiffness coefficient to have less constrained particle time
step without significantly affecting the flow dynamics. It will be discussed in the
next section.

4 Simulation Results and Discussions

DEM simulations of the vertical channel flow are here presented. They are used
to study the influence of the particle properties on the velocity statistics and to
evaluate the soft-sphere approach in rapid particulate flow. Numerical test cases
and main parameters are presented in the Table 1. The value of relative velocity
ur for all cases is obtained from q2p using Eq. 8.

Table 1. Numerical test cases.

Case dp 〈αp〉 Np δmax
pq /dp kn Δtp Δtf Nc CFLp CFLcol

p ur

B 406 µm 1.2 × 10−3 10520 0.05 3000 N/m 10−6 s 10−5 s 10 1.5 0.01 1.05 m/s

C 406 µm 4 × 10−3 35067 0.05 3000 N/m 10−6 s 10−5 s 10 1.5 0.3 0.87 m/s

D 406 µm 1 × 10−2 87668 0.05 3000 N/m 10−6 s 10−5 s 10 1.5 0.3 0.79 m/s

E 1.5 µm 4.1 × 10−3 712 0.03 5000 N/m 4 × 10−5 s 2.5 × 10−5 s 10 1.5 0.01 0.61 m/s

F 1.5 mm 1.4 × 10−2 2433 0.03 5000 N/m 4 × 10−5 s 2.5 × 10−5 s 10 1.5 0.3 0.56 m/s

G 1.5 mm 4.1 × 10−2 7127 0.03 5000 N/m 4 × 10−5 s 2.5 × 10−5 s 10 1.5 0.3 0.53 m/s

Results for the mean particle streamwise velocity are shown by Fig. 5 (left
panel). The fluid velocity is frozen and is the same for all studied cases (see
Fig. 2). The left and middle panels of Fig. 5 correspond to the elastic frictionless
cases for the inter-particle (ec = 1, μc = 0) and the particle-wall (ew = 1, μw = 0)
collisions. Results show that, for all the cases, the mean particle velocity profile
is flatter than that of the fluid (Fig. 2); this is due to the strong influence of
transverse particle dispersion. Results also show that the mean particle velocity
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is mostly dependent on the particle diameter, which in turn shows the strong
influence of the drag. The mean particle number density demonstrates (see the
middle panel of Fig. 5) that near-wall geometrical effects have a strong influence
on the collisional characteristics and lead to an overcrowding of the particles,
creating a mean force towards the wall [7,9,10]. Smaller particles (dp = 406µm)
are more transported by the fluid than larger particles (dp = 1.5 mm) at the
center of the channel. Larger particles are instead more concentrated at the near
wall region than the small ones. The numerical simulations results based on the
soft-sphere model are in excellent agreement with hard-sphere model simulations
for both mean streamwise velocity and mean particle number density (see the
left and middle panel of Fig. 5). Kinetic stress components (second-order particle
velocity correlations) for the case 〈αp〉 = 1 × 10−2 are presented by Fig. 5 (right
panel) for two different set of particles-wall collision parameters (ew = 1, μw = 0
and ew = 0.94, μw = 0.325). The difference between the elastic frictionless case
and the inelastic case with friction shows the strong sensitivity of the system
to the boundary conditions for particles. Inelastic restitution ew < 1 induces
dissipation at the wall. When μw > 0, it causes a friction effect at the wall
characterized by a non-zero value of the shear stress 〈u′′v′′〉. The friction effect
involves a production of the vertical variance 〈u′′u′′〉 by the velocity gradient
term and, by collisional redistribution, an increase in 〈v′′v′′〉 and 〈w′′w′′〉. In the
inelastic case with friction our results also fully agree with the simulations based
on the hard-sphere model [10].

Fig. 5. Comparison between numerical simulations based on the soft-sphere and the
hard-sphere model. Left: mean streamwise velocity, middle: mean particle number den-
sity, right: kinetic stress tensor components for the case D.

The stiffness coefficient sensitivity analysis is realized to evaluate the accu-
racy of the soft-sphere model. In order to ensure this, first, Eq. 10 can be bounded
from above using ec � 1 or ew � 1

δmax
pq

dp
�

|u0
pq,n|
dp

√
Mpq

kn
� λ, 0 < λ � 0.01 (11)

for the highest value of kn. On the other hand, |u0
pq,n| ≈ k · ur for k � 2. Then,

Eq. 11 will be rewritten like

δmax
pq

dp
� ur

dp

√
Mpq

kn
� λ

k
, 0 < λ � 0.01 (12)
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Fig. 6. Comparison for the different values of the stiffness coefficient. Left: proba-
bility density function (PDF) of the dimensionless maximum overlapping distance
(dp = 406µm), middle: cumulative distribution function (CDF) of the dimensionless
maximum overlapping distance (dp = 406µm), right: PDF of the first overlap weighted
by max (δ0pq)

As shown by Fig. 6 (left pannel), the maximum value of the overlap is strongly
dependent on kn (see Eq. 10). The higher kn, the lower the mean value of δmax

pq /dp

will be. But it is relevant to notice that even when kn is low (kn = 300), the
percentage of the collisions which have the high overlapping is very small, as
shown by cumulative distribution function (see the middle panel of Fig. 6). And
its mean value corresponds more to the small overlapping. The high values of
δmax
pq /dp occurring rarely do not affect the whole dynamics of the gas-particles

flow as demonstrated by Fig. 7 for different quantities. This observation provides
to weaken the conditions on δmax

pq /dp (Eq. 11).
Moreover, from Fig. 6 (right panel), it is observed that the first distance of

the overlap δ0pq does not depend on the stiffness coefficient value for different
particle diameters, the first impact relative velocity ur does not as well. This

fact allows to identify the dimensionless parameter κn = ur

dp

√
Mpq

kn
depending on

ur and to estimate the mean overlapping distance as

δmean
pq

dp
� κn � λ∗ (13)

where λ∗ takes values between (0, 0.05) less constraining for Δtp. The dimen-
sionless parameter κn provides the estimation of the mean overlapping knowing
the value of the mean particles agitation and kn for a given particle.

Fig. 7. Simulation results based on the soft-sphere model for different stiffness coeffi-
cients for the case D. Left: mean streamwise velocity, middle: mean particle number
density, right: kinetic stress tensor components
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5 Conclusion

Soft-sphere DEM simulations have been performed and numerical results ana-
lyzed for a vertical gas-particles channel flow. Simulations have been performed
neglecting the influence of the fluid turbulence on the particle fluctuating motion
and the modification of the fluid flow by the particles. Two types of particles
have been studied, for various mean volume fractions. Results based on two
approaches, the soft-sphere and the hard-sphere models, have been compared
and validated quantitatively and qualitatively for different physical variables.
Thereafter, a sensitivity analysis about the soft-sphere model parameters has
been carried out to gain insight in the choice of the optimal ones to properly
treat the solid-solid collision. It was found that a less restrictive model for the
maximum overlapping distance can be defined as a function of the mean value
of the impact variables without influencing the flow behaviour.
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