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1 Institut Ingéniérie Mécanique de Bordeaux, Dept. TREFLE, CNRS UMR5295,
Université de Bordeaux, 16 Avenue Pey-Berland, 33607 Pessac Cedex, France

calta@ipb.fr
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Abstract. The primary objective of discrete mechanics is to unify various laws
from different areas of physics, such as fluid mechanics and solid mechanics.
The same objective was also pursued by continuum mechanics, but the latter has
not been entirely successful in accomplishing it. The Galilean invariance and the
principle of equivalence make it possible to rewrite the law of dynamics as an
equality between accelerations, the one undergone by the medium and the exter-
nal accelerations applied to it. The derivation of the equation of discrete motion
leads to writing the acceleration as a Hodge-Helmholtz decomposition, i.e. the
sum of a gradient of a scalar potential and the rotational of a vector potential. By
choosing the acceleration as being a primary variable, we can express the velocity
and the displacement simply as quantities that accumulate over time. Potentials
represent energies per unit mass and are also stored over time. The resulting for-
mulation is able to describe the motion and dynamics of complex media, that can
be both fluid and solid, under large deformations and large displacements. Two
examples of fluid-structure coupling, an analytical solution and a numerical solu-
tion used for a benchmark, are presented here. They show the ability of the model
to reproduce the behavior of interacting fluid and solid media.

1 Introduction

The continuum mechanics is supposed to unify the mechanics of both solid and fluids.
Most of the numerous differences between these two mechanical modelings result in
the fact that the equation of motion is not the same for them, for example the Navier-
Stokes equation are formulated in terms of velocity in fluids whereas the Navier-Lamé
equation are expressed in displacement in solids. Multiple differences between the two
domains, fluid and solid, are related to one of the principal cause, the annexation of
the conservation of mass to the Navier-Stokes equations. In fact, the initial decoupling
between velocity and pressure requires the use of the law of mass conservation whatever
the chosen coupling way between pressure and velocity. In fact, number of difficulties
make this unification impossible in the concept of continuous medium [5].

Discrete mechanics differs in particular in that it does not require the use of tensors:
the notion of vector itself is associated with a constant scalar on an oriented edge. The
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concept of tensor introduced in the 18th century has made it possible to synthesize
the normal and tangential stresses within the same operator applied to second-order
tensors; if it is necessary for the Navier-Stokes equation to express the local deformation
rate according to variable properties, it proves useless for the Navier-Lamé equation in
rotational formulation. This is an original confusion between the tensor properties of
anisotropic media and the formulation of the equation of motion. Although it is possible
to use the tensorial form, it is not strictly necessary.

Multiple difficulties and artifacts still enameled the conservation laws for fluid and
solid media. In fluids, the hypothesis of Stokes that 3λ +2μ = 0 is wrong [8,11]. Even
putting aside the Stokes hypothesis, the continuum mechanics consider for an isotropic
medium that the tensor of elasticity of the fourth order C is reduced to the two Lamé
coefficients, these are conditioned by the Clausius-Duhem 3λ +2μ ≥ 0 inequality that
can potentially define a negative viscosity. In solids, the use of tensors leads to the
writing of compatibility conditions to link constraints to displacements.

The discrete mechanics [5] proceeds from another vision, relying on the fact that
vector quantities are assigned to a finite-length bipoint saving the direction in any homo-
thetic reduction. A vector, velocity for example, will be a constant scalar attached to
this oriented segment. The derivation of the equation of discrete motion is initiated
from two principles emitted by Galileo, the relativity of motion and the principle of
equivalence between masses associated with gravity and inertia. The fundamental law
of the dynamics established in terms of forces by I. Newton then becomes an equality
between accelerations, namely the acceleration undergone by a medium is the sum of
the accelerations applied to it. This conservation law of the acceleration leads to express
conservation equations in terms of velocities for the fluids but also for the solids. The
principle of constraint accumulation makes it possible to derive accelerations relative to
inertia, diffusion, dissipation and all the other forces per unit of mass which contribute
to modify movement, gravitation, capillary effects, etc.

The equation of discrete motion is representative of all phenomena observed in
fluid flows, solids with complex constitutive laws representative of large displacements
and large deformations as well as the propagation of linear waves or shock waves. In
classical cases with constant material properties, it allows to recover all the solutions
obtained previously with the Navier-Stokes and Navier-Lamé equations.

2 Bases of Discrete Mechanics

2.1 Physical Model of Discrete Approach

Discrete mechanics is based on classical principles and postulates of physics; one of the
most emblematic is the principle of equivalence introduced by Galileo that assigns an
equivalent effect to the gravitational acceleration and the one due to inertia. This princi-
ple, now called the Weak Equivalence Principle (WEP), has been verified by numerous
experiments quantified by the Eötvös ratio η = 2 |γ1 − γ2|/ |γ1+ γ2| where γ1 and γ2 are
the accelerations of the two masses. The measurement of the acceleration is indepen-
dent of any reference and can be achieved with an absolute precision. The current state
leads to estimating that the WEP is exact with a ratio of Eötvös η < 10−17; Will’s [13]
review cites the various experiments carried out for a century.
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For gravitational effects only, this principle makes it possible to eliminate the mass
of Newton’s second law in order to obtain equality between the acceleration of the
medium and the gravitational acceleration. In fact the fundamental law of dynamics in
a more modern form ρ γγγ = f where f is the sum of the volume forces applied to the
medium is modified in discrete mechanics as follows:

γγγ = g (1)

where g, the sum of the forces per unit mass, is an acceleration.
By dissecting all the physical quantities and associated units by which they are

expressed, it can be noticed that each time the mass appears in these units, this is only
with a first order. It is therefore possible to define equivalent quantities but per unit
mass. It appears that only two fundamental units, i.e. a length and a time, are required
to quantify any physical variable.

Thus the notion of velocity V is degraded, this one appears as a secondary variable
whose value in absolute does not need to be known, it will not be present as such in the
system of equations. The acceleration γγγ takes on the contrary a fundamental status. It
will be considered as an absolute quantity which can be measured in any place and at
any moment. It possesses the essential property of satisfying the rule of vector summa-
tion, which is not the case with velocity, in any case for velocities close to the speed of
light. The principle of relativity, also understood by Galileo, is therefore satisfied from
the outset. A uniform translational motion is thus completely impaired in the equation
of the discrete motion as the velocity appears only through discrete operators that fil-
ter this contribution. This is a little more complex for uniform rotation movements [5].
However at the end, these motions are also filtered by the same operators. These two
stiffening movements have no effect on the acceleration of the particle or the material
medium.

Another foundation of discrete mechanics is the Hodge-Helmholtz decomposition,
see [1]. It establishes that every vector is the sum of a solenoidal component with null
divergence and another irrotational one. A third component is sometimes associated,
of harmonic type, being at the same time divergence and rotational free or constant.
The vector is thus the sum of a gradient of a scalar potential φ and a rotational of a
vector potential ψψψ . These are only defined to harmonic functions, the decomposition
is not unique and depends on the boundary conditions. There are many potentials in
physics and not all of them have the same importance. In discrete mechanics the vector
considered is the acceleration γγγ , an absolute quantity in a local reference frame. It is
written naturally:

γγγ = −∇φ +∇×ψψψ (2)

The harmonic term sometimes added is absent from this decomposition, it phys-
ically represents the movements of rectilinear translation and uniform rotation which
disappear by application of the discrete operators. All undulatory physics are implic-
itly based on this relation: the terms of the right hand side are derived from orthogonal
fields. The gradient and dual rotational operators project these fields on the sameΓ edge
and the sum of these two contributions is the acceleration applied to the medium. For
example, in electromagnetism, the electric and magnetic fields E and B are orthogonal
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to each other at any moment and themselves orthogonal to the wave vector k0. Thus a
current can be applied from a potential difference or produced by induction from a mag-
netic field. The unification of the laws of macroscopic physics is thus considered under
the undulatory point of view for any phenomenon of any nature, mechanical, acoustic,
electrical, magnetic, optical [10].

2.2 Geometrical Topologies and Definitions

The notion of continuous medium is abandoned, as is that of global reference frame.
There is a local discrete geometrical structure represented in Fig. 1 composed of pri-
mal and dual elementary structures. The term discrete geometric structure or geometric
topology defines a set of links between connected elementary objects, here points, seg-
ments, surfaces. These notions are identical to those that can be found in mesh struc-
tures, for example resulting from spatial discretization in finite elements. The segment
Γ of unit vector oriented t and of ends a and b defines the basic element of the primal
topology which, with two other segments, forms the planar surface S whose unit-
oriented normal is n such that t ·n= 0 (Fig. 1(a)). The scalar potential φ is only defined
at the ends of the primal topology. A possible contact discontinuity or shock wave Σ
intersects the segment Γ into c. The normal to theS plane is associated with a pseudo-
vector ψψψ such that the rotation of vector V is itself associated with the segment Γ .
Figure 1(b) represents the primal surface S as a planar polygon; the δ outline and the
Δ surface form the dual topology. The material medium, a flux of particles or an iso-
lated particle represented by a p sphere in Fig. 1(a) has a velocity and a spin but only
their components are explicitly represented on each Γ segment.

The thus defined primal and dual topologies intrinsically satisfy two essential dis-
crete properties ∇h × ∇hφ = 0 and ∇h · (∇h × ψψψ) = 0. They are verified whatever the
topologies based on planar surfaces, polygons or polyhedra and whatever the regular
functions φ and ψψψ . These conditions are absolutely necessary for a complete Hodge-
Helmholtz decomposition applied here to acceleration. Each vector can be decomposed
into a solenoidal part and an irrotational component, but the scalar and vectorial poten-
tials are not of the same importance according to the nature of the vector.

It should be noted that φ o and ψψψo are the stresses at time t, i.e. all the forces applied
before this instant are “remembered” and stored. The formalism presented here enables
us to take into account the entire history of the medium, i.e. its evolution over time from
an initial neutral state. For a given instantaneous state of strain, there may be multiple
paths by which this state can be reached, and (φ o,ψψψo) will, alone, contain the whole
of the medium’s history. It is not helpful to know the local and instantaneous stresses,
in that these two potentials will have accumulated stresses over time. These quantities
are also called “accumulators” or “storage potentials”. These potentials can therefore
be used to take into account the behavior of media with continuous memory.

2.3 Discrete Motion Equation

The discrete motion equation is derived from the conservation equation of acceleration
(2) by expressing the deviations of potentials φ and ψψψ as a function of velocityV. These
“deviators” are obtained on the basis of the physical analysis of the storage-release
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(a) (b)

Fig. 1. (a) Elementary geometrical structure of discrete media mechanics in direct referential
(m,n, t): three straight Γ edges delimited by dots define a planar faceS . The unit normal vectors
n to the face and the vector carried by Γ are orthogonal, t ·n= 0. The edge Γ can be intercepted
by a discontinuity Σ located in c, between the ends a and b of Γ . φ and ψψψ are the scalar and vector
potentials respectively. (b) The virtual machine of motion in Discrete Mechanics: the acceleration
of the medium along the edge Γ is due to the difference of the scalar potential φ between the ends
of the edge [a,b] of unit vector t, to the circulation action of the vector V on the contour of the
different primal facets S inducing an acceleration on Γ and the projection g · t imposed other
accelerations as gravity. The particle p has a velocity and an acceleration whose projections on
the Γ edges are named respectively γγγ and V.

processes of compression and shear energies. The first is written as the divergence of
velocity and the second as a dual rotational velocity. The physical modeling of these
terms is developed in a book devoted to discrete mechanics [5].

The vectorial equation of movement and its upgrades are written as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

γγγ = −∇
(
φ o −dt c2l ∇ ·V)

+∇× (
ψψψo −dt c2t ∇×V

)
+g

αl φ o −dt c2l ∇ ·V �−→ φ o

αt ψψψo −dt c2t ∇×V �−→ ψψψo

Vo+ γ dt �−→ Vo

(3)

The quantities φ o and ψψψo are the equilibrium potentials, the same ones that allow
the equation to be satisfied exactly at the discrete instants t and t+dt. cl and ct are the
longitudinal and transverse celerities, intrinsic quantities in the medium that can vary
according to physical parameters. The terms dt c2l ∇ ·V and dt c2t ∇×V are respectively
the deviators of the compression and shear effects. The second member is thus com-
posed of two oscillators in which φ o and ψψψo, which represent energies per unit mass,
exchange these energies with their respective deviators. The two terms in gradient and in
dual rotational are orthogonal and can not exchange energy directly. If an imbalance due
to an external event occurs on one of these effects, acceleration is modified and energy
is then redistributed towards the other term. The acceleration g represents gravity or
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any other source quantity and will also be written in the form of a Hodge-Helmholtz
decomposition.

The physical parameters αl and αt are the attenuation factors of the compression
and shear waves. They also depend only on the considered medium: for example, a
Newtonian fluid retains the shear stresses only for very weak relaxation time constants,
of order of magnitude of 10−12 s and the coefficient αt can be taken as zero. The updat-
ing of potentials at time t+ dt is thus affected by these coefficients ranging from zero
to unity. The velocity and possibly the displacement U are also upgraded. In the case
where the density is not constant, it is also updated using the conservation of mass in the
form ρ = ρo−dt ρo ∇ ·V. This quantity is only a function of the divergence of velocity.

The acceleration γγγ and the particle derivative of the velocity are written as ∂V/∂ t+
V · ∇V or using the Lamb vector ∂V/∂ t −V× ∇ ×V+ ∇

(‖V‖2/2) in continuum
mechanics. These expressions can not be transformed into a Hodge-Helmholtz decom-
position, the notion of tensor being non-existent in discrete mechanics. Similarly, the
Lamb term is not a rotational one. The acceleration is thus rewritten in the form of irro-
tational and solenoidal components of a Hodge-Helmholtz decomposition of inertial
potential φi = ‖V‖2/2. All other source terms applied to the medium or particle can
also be written as a Hodge-Helmholtz decomposition.

3 Validation of the DMModel

The formulation of discrete mechanics makes it possible to find all the results obtained
with the Navier-Stokes equation in the case of a medium with constant properties,
mainly the density, the viscosity and the coefficient of compressibility (or the celerity
of the waves). In the case where the properties are variable in space, the formulations
differ.

The exact solutions of the Navier-Stokes equations corresponding to physical cases
such as the Poiseuille or Couette flows are also exact solutions of the equation of dis-
crete mechanics when these solutions are formulated in the form of polynomials of
degree equal to or less than two. In the case of any continuous functions, the numeri-
cal solution obtained by the discrete formulation proves orders of convergence in time
and in space equal to two. This is for example the case of the synthetic solution of the
Green-Taylor vortex. Simulations of simple constraints applied to solids, compression,
bending, torsion make it possible to find the theoretical solutions also. Benchmarks on
fluid-structure interactions [3,4], compare very favorably with solutions obtained by
other authors.

The few validation cases presented here make it possible to confirm that the Navier-
Stokes equation and the discrete mechanics have the same solutions but above all, to
show the versatility of the latter unifying the representation of fluid flows, of complex
materials behaviors in an unsteady unified approach.

3.1 Oscillatory Fluid-Solid Interaction

Even if the rheology of the medium is more complex, e.g. viscoelastic fluids, non-linear
viscosity laws, viscoplastic fluids, time-dependent properties, and so on, we should still
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be able to represent its behavior under various types of applied stress. In some cases, the
shear-rotation stresses may only be partially accumulated. We can describe viscoelastic
behavior by weighting the accumulation term of ψψψo by an accumulation factor 0 ≤
αt ≤ 1. Fluids with thresholds can also easily be represented by specifying a value of
ψψψo =ψψψc below which the medium behaves like an elastic solid. Many of the difficulties
that are typically encountered in rheologies with non-linear viscosities are no longer an
issue with DM.

In discrete mechanics, the concepts of viscosity and shear-rotation are exclusively
associated with the faces of the primal topology, where the stress may be expressed in
the form ν ∇ ×V in fluids and dt ν ∇ ×V in solids. As an example, let us consider
the interaction between an incompressible viscous Newtonian fluid and a neo-Hookean
elastic solid. The stress tensor of an incompressible isotropic hyperelastic material is as
follows in the neo-Hookean model:

σσσ s = −p I+μsB, (4)

where B= FFt is the left Cauchy-Green deformation tensor. In two spatial dimensions,
the Cayley-Hamilton theorem can be used to show that the Mooney-Rivlin model of a
hyperelastic material is equivalent to the neo-Hookean model.

We shall study a problem that was published by Sugiyama in 2011 [12]. Con-
sider an elastic band with an applied shear stress generated by the periodic flow of
an incompressible Newtonian fluid. The flow is laminar and periodic in x. Given that
there are no compression terms, we can solve the problem in one spatial dimension
along the y-axis for y ∈ [0,1]. Suppose that the upper interface follows the periodic
motion V (t) = V0 sin(ω t), where V0 = 1 and ω = π . The velocity of the lower sur-
face is imposed at zero. The solid occupies the lower part of the domain, and the fluid
occupies the upper part of the domain; the position of the interface is y = 1/2. The
theoretical solution found by Sugiyama was obtained by separating the spatial variable
y from the time variable t. A homogeneous solution is found by considering a basis of
Fourier functions on the interval y∈ [0,1] and exponential functions on the time interval
in each of the fluid and solid domains separately. The sequence of Fourier coefficients
can be determined from the coupling at the interface by requiring the velocity and the
stress to be continuous.

We can find a solution V (y, t) directly from the equations of discrete mechanics [1]
simply by imposing the relevant conditions at y = 0 and y = 1. The coupling condi-
tions at the interface, namely the continuity of the velocity and the stress, are implicitly
guaranteed to hold by the dual curl operator. The notion of a 2D or 3D space does not
exist in discrete mechanics. Instead, the operators define the orientations of the normal
and tangent directions within a three-dimensional space. Despite this, the assumptions
made in this example enable us to solve along a single spatial dimension. The time
step is chosen to be δ t = 10−4 to ensure good overall levels of accuracy. By comparing
against the theoretical analytic solution, it can be shown that the numerical solution is
second-order in space and time.

Figure 2 plots the velocity and the displacement of the interface Σ over time. The
velocity of the upper wall is also shown. The solution establishes itself very quickly.
After just a few periods, the velocity becomes fully periodic. The velocity profiles are
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Fig. 2. Study of a periodic fluid-structure interaction between a viscous fluid and an elastic solid.
The kinematic viscosity of the fluid is ν = 1 and the shear modulus of the solid is ν = 4. The
velocity of the fluid at the upper wall is shown in black, the velocity of the interface Σ is shown
in red, and the displacement over time of the solid U at the interface is shown in blue.

shown until t = 10. The displacement of the solid over time may be deduced from the
relation U = Uo+Vdt, where dt represents both the differential element and the time
increment δ t = dt. Note that the displacement is strongly out of phase with the velocity
of the interface.

A selection of the velocity profiles in the y-direction are shown in Fig. 3 once the
periodic regime is fully established. The results converge to second order in space and
time. Given the absolute accuracy (of the order of 10−4 s) obtained using a coarse mesh
(n = 32), we can conclude that there is no observable error between the theoretical
solution and the numerical solution.

Fig. 3. Study of a periodic fluid-structure interaction between a viscous fluid and an elastic solid.
The viscosity of the fluid is ν = 1 and the shear modulus of the solid is ν = 4. The figures show
the velocity profiles as a function of y at time t = 10, t = 10.5, t = 10.8. The solid line holds for
the theoretical solution whereas the points represent the spatial approximation obtained with 32
cells.

One advantage of the fluid-structure interaction for a neo-Hookean model described
by Sugiyama is that it has a theoretical solution. This allows us to compare the numeri-
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cal solutions that we obtain more precisely, but also allows us to develop new concepts,
as we did for discrete mechanics in this section. Sugiyama obtained a first-order error in
the L2 and L∞ norms, whereas the model [1] achieves second-order results with much
lower absolute errors. This improvement is ultimately attributable to the separation of
the properties at the interface, as well as the fact that no interpolation is performed,
despite a fully monolithic and implicit treatment of the fluid-solid coupling.

Fluid-structure interactions in 2D or 3D geometries with a moving interface can of
course also be solved using the system [1]. However, without an analytic solution for
comparison, there is little benefit in doing so, since the errors of the various methodolo-
gies accumulate over each step of the process. Other more complex constitutive laws
can also be modeled.

3.2 Lid-Driven Open Cavity Flow with Flexible Bottom Wall

The lid-driven cavity with flexible bottom is an example that we can reasonable deal
with. This case corresponds to that proposed in reference [9]. It was also considered
by others authors [2,6]. A fluid, characterized by density ρ f = 1 kgm−3 and viscosity
μ = 10−2 Pa.s, is driven by the velocity boundary condition of the top of the cavity
which varies with time: u(x, t) = 1−cos(2π t/T ), where the period is equal to T = 5s.

Fig. 4. Lid-driven open cavity flow with flexible bottom wall, velocity and streamlines at t =
2.5,15,20 s.

The elastic structure density is ρs = 500kgm−3, the Young modulus is E = 250Pa
and the Poisson coefficient σ = 0. The fluid is considered as incompressible. Neumann
boundary conditions are imposed on the two holes localized at the top of the vertical
walls. As we resolve at the same time, the velocity field and the displacement field in
the fluid and the elastic membrane respectively, using a fixed grid, we have to take a
relative large thickness for the membrane (2% of the cavity length) compared to other
simulations of the literature, in order to prevent using a very fine grid. A one dimen-
sional deformation of the membrane can be dealt using another numerical scheme. The
formulation and the equations used are that proposed in the article. Only the procedure
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related to the membrane deformation and the numerical scheme are different. The dif-
ferential discrete operators, such as gradient, divergence and rotational properties have
the properties of continuum ∇ ·∇×ψψψ = 0 and ∇×∇φ = 0 on every type of unstructured
polyhedral meshes. This methodology is close the Discrete Exterior Calculus one [7]. In
the present case, adaptive quadrangle mesh is used with initially 2562 cells. The resolu-
tion of the motion equation of the fluid allows to obtain the pressure on the top surface
of the membrane, the lower surface being maintained at a constant pressure p= 0. The
force acting on the membrane, proportional to the pressure difference, allows to cal-
culate its displacement. The mesh is then modified and this at each time steps. This is
what we call the Arbitrary Lagrangian Eulerian method.

The results obtained are presented in the Fig. 4 where the horizontal velocity maps
in the fluid and the membrane shape are shown together with the streamlines for differ-
ent time steps.

Fig. 5. Lid-driven open cavity flow with flexible bottom wall. Evolution of maximum deviation
of membrane ym over time.

These results are in good agreement with those of [2] and [6]. After an unsteady
phase of a few cycles, the regime becomes totally periodic, of period T = 5 s (Fig. 5).
The divergence of the velocity remains less than 10−8 throughout the calculation. The
celerity of air, which is equal to c≈ 340ms−1, maintains the flow in the incompressibil-
ity approximation for the selected time period dt = 10−2 s. Indeed the discrete model
clearly shows that the Mach number M = v/c does not define the incompressibility of
a flow: this is the product dt c2l . For example water, an essentially incompressible fluid,
propagates the waves at a celerity of cl ≈ 1500ms−1 which induces the fact that water
is a compressible medium if the observation time constant dt is sufficiently low.

4 Towards a Unification of Solid and Fluid Mechanics

The most significant achievements of the discrete approach are as follows:

• discrete mechanics proposes a unique formulation of the equations of motion in
terms of the velocity to represent the motion of both fluids and solids;
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• the velocity variable, the displacement, and the stresses (po,ωωωo) or (φ o =
po/ρ,ψψψo = ωωωo/ρ) are calculated simultaneously and accumulated by simple dif-
ferential operators;

• the accumulation process for the stress holds for large displacements and large defor-
mations.

This theory describes the motion and displacements of solids and fluids consistently,
but the scope of the proposed description also extends to the dynamic behavior of these
materials and the propagation of waves within them. Possibly, the most important result
of discrete mechanics for fluids and solids is the formal Hodge-Helmholtz decompo-
sition of the equations of motion. The decomposition into irrotational and solenoidal
components enables us to understand the mechanisms governing the equilibrium of a
medium, and the divergence and curl of the velocity can be used to deduce the stresses,
namely the equilibrium pressure po and the rotation stress ωωωo.
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