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Fluid-Structure Interactions in Discrete
Mechanics

Jean-Paul Caltagirone1 and Philippe Angot2(B)

1 Institut Ingéniérie Mécanique de Bordeaux, Dept. TREFLE, CNRS UMR5295,
Université de Bordeaux, 16 Avenue Pey-Berland, 33607 Pessac Cedex, France

calta@ipb.fr
2 Institut de Mathématiques de Marseille, CNRS UMR7373, Aix-Marseille Université,

Centrale Marseille, 13453 Marseille Cedex, France
philippe.angot@univ-amu.fr

Abstract. The primary objective of discrete mechanics is to unify various laws
from different areas of physics, such as fluid mechanics and solid mechanics.
The same objective was also pursued by continuum mechanics, but the latter has
not been entirely successful in accomplishing it. The Galilean invariance and the
principle of equivalence make it possible to rewrite the law of dynamics as an
equality between accelerations, the one undergone by the medium and the exter-
nal accelerations applied to it. The derivation of the equation of discrete motion
leads to writing the acceleration as a Hodge-Helmholtz decomposition, i.e. the
sum of a gradient of a scalar potential and the rotational of a vector potential. By
choosing the acceleration as being a primary variable, we can express the velocity
and the displacement simply as quantities that accumulate over time. Potentials
represent energies per unit mass and are also stored over time. The resulting for-
mulation is able to describe the motion and dynamics of complex media, that can
be both fluid and solid, under large deformations and large displacements. Two
examples of fluid-structure coupling, an analytical solution and a numerical solu-
tion used for a benchmark, are presented here. They show the ability of the model
to reproduce the behavior of interacting fluid and solid media.

1 Introduction

The continuum mechanics is supposed to unify the mechanics of both solid and fluids.
Most of the numerous differences between these two mechanical modelings result in
the fact that the equation of motion is not the same for them, for example the Navier-
Stokes equation are formulated in terms of velocity in fluids whereas the Navier-Lamé
equation are expressed in displacement in solids. Multiple differences between the two
domains, fluid and solid, are related to one of the principal cause, the annexation of
the conservation of mass to the Navier-Stokes equations. In fact, the initial decoupling
between velocity and pressure requires the use of the law of mass conservation whatever
the chosen coupling way between pressure and velocity. In fact, number of difficulties
make this unification impossible in the concept of continuous medium [5].

Discrete mechanics differs in particular in that it does not require the use of tensors:
the notion of vector itself is associated with a constant scalar on an oriented edge. The
c© Springer Nature Switzerland AG 2021
M. Deville et al. (Eds.): TI 2018, NNFM 149, pp. 3–13, 2021.
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concept of tensor introduced in the 18th century has made it possible to synthesize
the normal and tangential stresses within the same operator applied to second-order
tensors; if it is necessary for the Navier-Stokes equation to express the local deformation
rate according to variable properties, it proves useless for the Navier-Lamé equation in
rotational formulation. This is an original confusion between the tensor properties of
anisotropic media and the formulation of the equation of motion. Although it is possible
to use the tensorial form, it is not strictly necessary.

Multiple difficulties and artifacts still enameled the conservation laws for fluid and
solid media. In fluids, the hypothesis of Stokes that 3λ +2μ = 0 is wrong [8,11]. Even
putting aside the Stokes hypothesis, the continuum mechanics consider for an isotropic
medium that the tensor of elasticity of the fourth order C is reduced to the two Lamé
coefficients, these are conditioned by the Clausius-Duhem 3λ +2μ ≥ 0 inequality that
can potentially define a negative viscosity. In solids, the use of tensors leads to the
writing of compatibility conditions to link constraints to displacements.

The discrete mechanics [5] proceeds from another vision, relying on the fact that
vector quantities are assigned to a finite-length bipoint saving the direction in any homo-
thetic reduction. A vector, velocity for example, will be a constant scalar attached to
this oriented segment. The derivation of the equation of discrete motion is initiated
from two principles emitted by Galileo, the relativity of motion and the principle of
equivalence between masses associated with gravity and inertia. The fundamental law
of the dynamics established in terms of forces by I. Newton then becomes an equality
between accelerations, namely the acceleration undergone by a medium is the sum of
the accelerations applied to it. This conservation law of the acceleration leads to express
conservation equations in terms of velocities for the fluids but also for the solids. The
principle of constraint accumulation makes it possible to derive accelerations relative to
inertia, diffusion, dissipation and all the other forces per unit of mass which contribute
to modify movement, gravitation, capillary effects, etc.

The equation of discrete motion is representative of all phenomena observed in
fluid flows, solids with complex constitutive laws representative of large displacements
and large deformations as well as the propagation of linear waves or shock waves. In
classical cases with constant material properties, it allows to recover all the solutions
obtained previously with the Navier-Stokes and Navier-Lamé equations.

2 Bases of Discrete Mechanics

2.1 Physical Model of Discrete Approach

Discrete mechanics is based on classical principles and postulates of physics; one of the
most emblematic is the principle of equivalence introduced by Galileo that assigns an
equivalent effect to the gravitational acceleration and the one due to inertia. This princi-
ple, now called the Weak Equivalence Principle (WEP), has been verified by numerous
experiments quantified by the Eötvös ratio η = 2 |γ1 − γ2|/ |γ1+ γ2| where γ1 and γ2 are
the accelerations of the two masses. The measurement of the acceleration is indepen-
dent of any reference and can be achieved with an absolute precision. The current state
leads to estimating that the WEP is exact with a ratio of Eötvös η < 10−17; Will’s [13]
review cites the various experiments carried out for a century.
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For gravitational effects only, this principle makes it possible to eliminate the mass
of Newton’s second law in order to obtain equality between the acceleration of the
medium and the gravitational acceleration. In fact the fundamental law of dynamics in
a more modern form ρ γγγ = f where f is the sum of the volume forces applied to the
medium is modified in discrete mechanics as follows:

γγγ = g (1)

where g, the sum of the forces per unit mass, is an acceleration.
By dissecting all the physical quantities and associated units by which they are

expressed, it can be noticed that each time the mass appears in these units, this is only
with a first order. It is therefore possible to define equivalent quantities but per unit
mass. It appears that only two fundamental units, i.e. a length and a time, are required
to quantify any physical variable.

Thus the notion of velocity V is degraded, this one appears as a secondary variable
whose value in absolute does not need to be known, it will not be present as such in the
system of equations. The acceleration γγγ takes on the contrary a fundamental status. It
will be considered as an absolute quantity which can be measured in any place and at
any moment. It possesses the essential property of satisfying the rule of vector summa-
tion, which is not the case with velocity, in any case for velocities close to the speed of
light. The principle of relativity, also understood by Galileo, is therefore satisfied from
the outset. A uniform translational motion is thus completely impaired in the equation
of the discrete motion as the velocity appears only through discrete operators that fil-
ter this contribution. This is a little more complex for uniform rotation movements [5].
However at the end, these motions are also filtered by the same operators. These two
stiffening movements have no effect on the acceleration of the particle or the material
medium.

Another foundation of discrete mechanics is the Hodge-Helmholtz decomposition,
see [1]. It establishes that every vector is the sum of a solenoidal component with null
divergence and another irrotational one. A third component is sometimes associated,
of harmonic type, being at the same time divergence and rotational free or constant.
The vector is thus the sum of a gradient of a scalar potential φ and a rotational of a
vector potential ψψψ . These are only defined to harmonic functions, the decomposition
is not unique and depends on the boundary conditions. There are many potentials in
physics and not all of them have the same importance. In discrete mechanics the vector
considered is the acceleration γγγ , an absolute quantity in a local reference frame. It is
written naturally:

γγγ = −∇φ +∇×ψψψ (2)

The harmonic term sometimes added is absent from this decomposition, it phys-
ically represents the movements of rectilinear translation and uniform rotation which
disappear by application of the discrete operators. All undulatory physics are implic-
itly based on this relation: the terms of the right hand side are derived from orthogonal
fields. The gradient and dual rotational operators project these fields on the sameΓ edge
and the sum of these two contributions is the acceleration applied to the medium. For
example, in electromagnetism, the electric and magnetic fields E and B are orthogonal
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to each other at any moment and themselves orthogonal to the wave vector k0. Thus a
current can be applied from a potential difference or produced by induction from a mag-
netic field. The unification of the laws of macroscopic physics is thus considered under
the undulatory point of view for any phenomenon of any nature, mechanical, acoustic,
electrical, magnetic, optical [10].

2.2 Geometrical Topologies and Definitions

The notion of continuous medium is abandoned, as is that of global reference frame.
There is a local discrete geometrical structure represented in Fig. 1 composed of pri-
mal and dual elementary structures. The term discrete geometric structure or geometric
topology defines a set of links between connected elementary objects, here points, seg-
ments, surfaces. These notions are identical to those that can be found in mesh struc-
tures, for example resulting from spatial discretization in finite elements. The segment
Γ of unit vector oriented t and of ends a and b defines the basic element of the primal
topology which, with two other segments, forms the planar surface S whose unit-
oriented normal is n such that t ·n= 0 (Fig. 1(a)). The scalar potential φ is only defined
at the ends of the primal topology. A possible contact discontinuity or shock wave Σ
intersects the segment Γ into c. The normal to theS plane is associated with a pseudo-
vector ψψψ such that the rotation of vector V is itself associated with the segment Γ .
Figure 1(b) represents the primal surface S as a planar polygon; the δ outline and the
Δ surface form the dual topology. The material medium, a flux of particles or an iso-
lated particle represented by a p sphere in Fig. 1(a) has a velocity and a spin but only
their components are explicitly represented on each Γ segment.

The thus defined primal and dual topologies intrinsically satisfy two essential dis-
crete properties ∇h × ∇hφ = 0 and ∇h · (∇h × ψψψ) = 0. They are verified whatever the
topologies based on planar surfaces, polygons or polyhedra and whatever the regular
functions φ and ψψψ . These conditions are absolutely necessary for a complete Hodge-
Helmholtz decomposition applied here to acceleration. Each vector can be decomposed
into a solenoidal part and an irrotational component, but the scalar and vectorial poten-
tials are not of the same importance according to the nature of the vector.

It should be noted that φ o and ψψψo are the stresses at time t, i.e. all the forces applied
before this instant are “remembered” and stored. The formalism presented here enables
us to take into account the entire history of the medium, i.e. its evolution over time from
an initial neutral state. For a given instantaneous state of strain, there may be multiple
paths by which this state can be reached, and (φ o,ψψψo) will, alone, contain the whole
of the medium’s history. It is not helpful to know the local and instantaneous stresses,
in that these two potentials will have accumulated stresses over time. These quantities
are also called “accumulators” or “storage potentials”. These potentials can therefore
be used to take into account the behavior of media with continuous memory.

2.3 Discrete Motion Equation

The discrete motion equation is derived from the conservation equation of acceleration
(2) by expressing the deviations of potentials φ and ψψψ as a function of velocityV. These
“deviators” are obtained on the basis of the physical analysis of the storage-release



Fluid-Structure Interactions in Discrete Mechanics 7

(a) (b)

Fig. 1. (a) Elementary geometrical structure of discrete media mechanics in direct referential
(m,n, t): three straight Γ edges delimited by dots define a planar faceS . The unit normal vectors
n to the face and the vector carried by Γ are orthogonal, t ·n= 0. The edge Γ can be intercepted
by a discontinuity Σ located in c, between the ends a and b of Γ . φ and ψψψ are the scalar and vector
potentials respectively. (b) The virtual machine of motion in Discrete Mechanics: the acceleration
of the medium along the edge Γ is due to the difference of the scalar potential φ between the ends
of the edge [a,b] of unit vector t, to the circulation action of the vector V on the contour of the
different primal facets S inducing an acceleration on Γ and the projection g · t imposed other
accelerations as gravity. The particle p has a velocity and an acceleration whose projections on
the Γ edges are named respectively γγγ and V.

processes of compression and shear energies. The first is written as the divergence of
velocity and the second as a dual rotational velocity. The physical modeling of these
terms is developed in a book devoted to discrete mechanics [5].

The vectorial equation of movement and its upgrades are written as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

γγγ = −∇
(
φ o −dt c2l ∇ ·V)

+∇× (
ψψψo −dt c2t ∇×V

)
+g

αl φ o −dt c2l ∇ ·V �−→ φ o

αt ψψψo −dt c2t ∇×V �−→ ψψψo

Vo+ γ dt �−→ Vo

(3)

The quantities φ o and ψψψo are the equilibrium potentials, the same ones that allow
the equation to be satisfied exactly at the discrete instants t and t+dt. cl and ct are the
longitudinal and transverse celerities, intrinsic quantities in the medium that can vary
according to physical parameters. The terms dt c2l ∇ ·V and dt c2t ∇×V are respectively
the deviators of the compression and shear effects. The second member is thus com-
posed of two oscillators in which φ o and ψψψo, which represent energies per unit mass,
exchange these energies with their respective deviators. The two terms in gradient and in
dual rotational are orthogonal and can not exchange energy directly. If an imbalance due
to an external event occurs on one of these effects, acceleration is modified and energy
is then redistributed towards the other term. The acceleration g represents gravity or
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any other source quantity and will also be written in the form of a Hodge-Helmholtz
decomposition.

The physical parameters αl and αt are the attenuation factors of the compression
and shear waves. They also depend only on the considered medium: for example, a
Newtonian fluid retains the shear stresses only for very weak relaxation time constants,
of order of magnitude of 10−12 s and the coefficient αt can be taken as zero. The updat-
ing of potentials at time t+ dt is thus affected by these coefficients ranging from zero
to unity. The velocity and possibly the displacement U are also upgraded. In the case
where the density is not constant, it is also updated using the conservation of mass in the
form ρ = ρo−dt ρo ∇ ·V. This quantity is only a function of the divergence of velocity.

The acceleration γγγ and the particle derivative of the velocity are written as ∂V/∂ t+
V · ∇V or using the Lamb vector ∂V/∂ t −V× ∇ ×V+ ∇

(‖V‖2/2) in continuum
mechanics. These expressions can not be transformed into a Hodge-Helmholtz decom-
position, the notion of tensor being non-existent in discrete mechanics. Similarly, the
Lamb term is not a rotational one. The acceleration is thus rewritten in the form of irro-
tational and solenoidal components of a Hodge-Helmholtz decomposition of inertial
potential φi = ‖V‖2/2. All other source terms applied to the medium or particle can
also be written as a Hodge-Helmholtz decomposition.

3 Validation of the DMModel

The formulation of discrete mechanics makes it possible to find all the results obtained
with the Navier-Stokes equation in the case of a medium with constant properties,
mainly the density, the viscosity and the coefficient of compressibility (or the celerity
of the waves). In the case where the properties are variable in space, the formulations
differ.

The exact solutions of the Navier-Stokes equations corresponding to physical cases
such as the Poiseuille or Couette flows are also exact solutions of the equation of dis-
crete mechanics when these solutions are formulated in the form of polynomials of
degree equal to or less than two. In the case of any continuous functions, the numeri-
cal solution obtained by the discrete formulation proves orders of convergence in time
and in space equal to two. This is for example the case of the synthetic solution of the
Green-Taylor vortex. Simulations of simple constraints applied to solids, compression,
bending, torsion make it possible to find the theoretical solutions also. Benchmarks on
fluid-structure interactions [3,4], compare very favorably with solutions obtained by
other authors.

The few validation cases presented here make it possible to confirm that the Navier-
Stokes equation and the discrete mechanics have the same solutions but above all, to
show the versatility of the latter unifying the representation of fluid flows, of complex
materials behaviors in an unsteady unified approach.

3.1 Oscillatory Fluid-Solid Interaction

Even if the rheology of the medium is more complex, e.g. viscoelastic fluids, non-linear
viscosity laws, viscoplastic fluids, time-dependent properties, and so on, we should still
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be able to represent its behavior under various types of applied stress. In some cases, the
shear-rotation stresses may only be partially accumulated. We can describe viscoelastic
behavior by weighting the accumulation term of ψψψo by an accumulation factor 0 ≤
αt ≤ 1. Fluids with thresholds can also easily be represented by specifying a value of
ψψψo =ψψψc below which the medium behaves like an elastic solid. Many of the difficulties
that are typically encountered in rheologies with non-linear viscosities are no longer an
issue with DM.

In discrete mechanics, the concepts of viscosity and shear-rotation are exclusively
associated with the faces of the primal topology, where the stress may be expressed in
the form ν ∇ ×V in fluids and dt ν ∇ ×V in solids. As an example, let us consider
the interaction between an incompressible viscous Newtonian fluid and a neo-Hookean
elastic solid. The stress tensor of an incompressible isotropic hyperelastic material is as
follows in the neo-Hookean model:

σσσ s = −p I+μsB, (4)

where B= FFt is the left Cauchy-Green deformation tensor. In two spatial dimensions,
the Cayley-Hamilton theorem can be used to show that the Mooney-Rivlin model of a
hyperelastic material is equivalent to the neo-Hookean model.

We shall study a problem that was published by Sugiyama in 2011 [12]. Con-
sider an elastic band with an applied shear stress generated by the periodic flow of
an incompressible Newtonian fluid. The flow is laminar and periodic in x. Given that
there are no compression terms, we can solve the problem in one spatial dimension
along the y-axis for y ∈ [0,1]. Suppose that the upper interface follows the periodic
motion V (t) = V0 sin(ω t), where V0 = 1 and ω = π . The velocity of the lower sur-
face is imposed at zero. The solid occupies the lower part of the domain, and the fluid
occupies the upper part of the domain; the position of the interface is y = 1/2. The
theoretical solution found by Sugiyama was obtained by separating the spatial variable
y from the time variable t. A homogeneous solution is found by considering a basis of
Fourier functions on the interval y∈ [0,1] and exponential functions on the time interval
in each of the fluid and solid domains separately. The sequence of Fourier coefficients
can be determined from the coupling at the interface by requiring the velocity and the
stress to be continuous.

We can find a solution V (y, t) directly from the equations of discrete mechanics [1]
simply by imposing the relevant conditions at y = 0 and y = 1. The coupling condi-
tions at the interface, namely the continuity of the velocity and the stress, are implicitly
guaranteed to hold by the dual curl operator. The notion of a 2D or 3D space does not
exist in discrete mechanics. Instead, the operators define the orientations of the normal
and tangent directions within a three-dimensional space. Despite this, the assumptions
made in this example enable us to solve along a single spatial dimension. The time
step is chosen to be δ t = 10−4 to ensure good overall levels of accuracy. By comparing
against the theoretical analytic solution, it can be shown that the numerical solution is
second-order in space and time.

Figure 2 plots the velocity and the displacement of the interface Σ over time. The
velocity of the upper wall is also shown. The solution establishes itself very quickly.
After just a few periods, the velocity becomes fully periodic. The velocity profiles are
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Fig. 2. Study of a periodic fluid-structure interaction between a viscous fluid and an elastic solid.
The kinematic viscosity of the fluid is ν = 1 and the shear modulus of the solid is ν = 4. The
velocity of the fluid at the upper wall is shown in black, the velocity of the interface Σ is shown
in red, and the displacement over time of the solid U at the interface is shown in blue.

shown until t = 10. The displacement of the solid over time may be deduced from the
relation U = Uo+Vdt, where dt represents both the differential element and the time
increment δ t = dt. Note that the displacement is strongly out of phase with the velocity
of the interface.

A selection of the velocity profiles in the y-direction are shown in Fig. 3 once the
periodic regime is fully established. The results converge to second order in space and
time. Given the absolute accuracy (of the order of 10−4 s) obtained using a coarse mesh
(n = 32), we can conclude that there is no observable error between the theoretical
solution and the numerical solution.

Fig. 3. Study of a periodic fluid-structure interaction between a viscous fluid and an elastic solid.
The viscosity of the fluid is ν = 1 and the shear modulus of the solid is ν = 4. The figures show
the velocity profiles as a function of y at time t = 10, t = 10.5, t = 10.8. The solid line holds for
the theoretical solution whereas the points represent the spatial approximation obtained with 32
cells.

One advantage of the fluid-structure interaction for a neo-Hookean model described
by Sugiyama is that it has a theoretical solution. This allows us to compare the numeri-
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cal solutions that we obtain more precisely, but also allows us to develop new concepts,
as we did for discrete mechanics in this section. Sugiyama obtained a first-order error in
the L2 and L∞ norms, whereas the model [1] achieves second-order results with much
lower absolute errors. This improvement is ultimately attributable to the separation of
the properties at the interface, as well as the fact that no interpolation is performed,
despite a fully monolithic and implicit treatment of the fluid-solid coupling.

Fluid-structure interactions in 2D or 3D geometries with a moving interface can of
course also be solved using the system [1]. However, without an analytic solution for
comparison, there is little benefit in doing so, since the errors of the various methodolo-
gies accumulate over each step of the process. Other more complex constitutive laws
can also be modeled.

3.2 Lid-Driven Open Cavity Flow with Flexible Bottom Wall

The lid-driven cavity with flexible bottom is an example that we can reasonable deal
with. This case corresponds to that proposed in reference [9]. It was also considered
by others authors [2,6]. A fluid, characterized by density ρ f = 1 kgm−3 and viscosity
μ = 10−2 Pa.s, is driven by the velocity boundary condition of the top of the cavity
which varies with time: u(x, t) = 1−cos(2π t/T ), where the period is equal to T = 5s.

Fig. 4. Lid-driven open cavity flow with flexible bottom wall, velocity and streamlines at t =
2.5,15,20 s.

The elastic structure density is ρs = 500kgm−3, the Young modulus is E = 250Pa
and the Poisson coefficient σ = 0. The fluid is considered as incompressible. Neumann
boundary conditions are imposed on the two holes localized at the top of the vertical
walls. As we resolve at the same time, the velocity field and the displacement field in
the fluid and the elastic membrane respectively, using a fixed grid, we have to take a
relative large thickness for the membrane (2% of the cavity length) compared to other
simulations of the literature, in order to prevent using a very fine grid. A one dimen-
sional deformation of the membrane can be dealt using another numerical scheme. The
formulation and the equations used are that proposed in the article. Only the procedure
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related to the membrane deformation and the numerical scheme are different. The dif-
ferential discrete operators, such as gradient, divergence and rotational properties have
the properties of continuum ∇ ·∇×ψψψ = 0 and ∇×∇φ = 0 on every type of unstructured
polyhedral meshes. This methodology is close the Discrete Exterior Calculus one [7]. In
the present case, adaptive quadrangle mesh is used with initially 2562 cells. The resolu-
tion of the motion equation of the fluid allows to obtain the pressure on the top surface
of the membrane, the lower surface being maintained at a constant pressure p= 0. The
force acting on the membrane, proportional to the pressure difference, allows to cal-
culate its displacement. The mesh is then modified and this at each time steps. This is
what we call the Arbitrary Lagrangian Eulerian method.

The results obtained are presented in the Fig. 4 where the horizontal velocity maps
in the fluid and the membrane shape are shown together with the streamlines for differ-
ent time steps.

Fig. 5. Lid-driven open cavity flow with flexible bottom wall. Evolution of maximum deviation
of membrane ym over time.

These results are in good agreement with those of [2] and [6]. After an unsteady
phase of a few cycles, the regime becomes totally periodic, of period T = 5 s (Fig. 5).
The divergence of the velocity remains less than 10−8 throughout the calculation. The
celerity of air, which is equal to c≈ 340ms−1, maintains the flow in the incompressibil-
ity approximation for the selected time period dt = 10−2 s. Indeed the discrete model
clearly shows that the Mach number M = v/c does not define the incompressibility of
a flow: this is the product dt c2l . For example water, an essentially incompressible fluid,
propagates the waves at a celerity of cl ≈ 1500ms−1 which induces the fact that water
is a compressible medium if the observation time constant dt is sufficiently low.

4 Towards a Unification of Solid and Fluid Mechanics

The most significant achievements of the discrete approach are as follows:

• discrete mechanics proposes a unique formulation of the equations of motion in
terms of the velocity to represent the motion of both fluids and solids;
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• the velocity variable, the displacement, and the stresses (po,ωωωo) or (φ o =
po/ρ,ψψψo = ωωωo/ρ) are calculated simultaneously and accumulated by simple dif-
ferential operators;

• the accumulation process for the stress holds for large displacements and large defor-
mations.

This theory describes the motion and displacements of solids and fluids consistently,
but the scope of the proposed description also extends to the dynamic behavior of these
materials and the propagation of waves within them. Possibly, the most important result
of discrete mechanics for fluids and solids is the formal Hodge-Helmholtz decompo-
sition of the equations of motion. The decomposition into irrotational and solenoidal
components enables us to understand the mechanisms governing the equilibrium of a
medium, and the divergence and curl of the velocity can be used to deduce the stresses,
namely the equilibrium pressure po and the rotation stress ωωωo.
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Abstract. As claimed for many years, High Performance Computing
(HPC) and high performance numerical simulation are necessary tools
for fundamental science and engineering. Big data and artificial intelli-
gence are some newcomers in the landscape, but not that new, especially
in science. Finally, open data and open science are becoming now manda-
tory for trustable and reproducible science.

This paper presents the recent evolution of HPC with the spectacular
arising of AI. HPC and AI share at least one common point: Data. Many
HPC communities are struggling with data, whether they are coming
from simulation and wait to be analyzed, or coming from large instru-
ments (experiments, observatories) and wait to be treated.

Data was not a major focus in the last decades for HPC community
but it reshapes HPC paradigms by introducing data as a “scientific pil-
lar”.

We will first present the current HPC context and how AI changed the
current HPC landscape. We will then focus about data use in HPC and
how AI can improve HPC simulations. We will also present the concept
of FAIR data and why this concern shall be treated soon and embraced
by HPC and AI community. We will finally conclude on the data issue
and present our point of view regarding the future evolution of HPC
market.

Keywords: HPC · AI · Open Science · Data

1 Introduction

With exascale challenge, Top500 [1] has really mutated, either regarding the
supercomputers listed and regarding its weight to estimate a supercomputer’s
compute power.

The first mutation comes from the exascale challenge itself. Power wall is hard
to cross and so far, (safe) decision has been made to promote low consumption
processors or high multicore processors while trying to keep a reasonable power
consumption of the overall machine.

Top500 is heckled by new rankings, such as Green500 [3] that proposes to
classify supercomputers by Flops per Watts rather than just Flops/s capacities.
This rank strategy deeply reshapes the Top500 ranking, as very few of the top 10
coming from Top500 can reach Green500 first ranks. Green500 also emphasizes
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Japan’s effort to build low energy consumption machines, as 6 over 10 of the
best Green500 machines come from Japan.

HPCG500 (High Performance Conjugate Gradients) [4] is either getting
more and more attention from HPC community: Indeed, Linpack benchmark
for Top500 provides an efficiency from 50% to 80% from peak compute capacity,
while real users applications have about 10% efficiency from peak performance.
Few of real applications can address the compute bound profile of High Perfor-
mance Linpack (HPL): In this context, HPCG is raised as a “more representa-
tive” benchmark, closer to “real HPC applications” profile. It is not surprising
to see that HPCG500 and Top500 present very different ranking, but the dif-
ference is less striking than Green500. However, if we compare the HPL peak
performance and HPCG peak performance, then the reality of supercomputer
compute capacity becomes closer to reality.

Even though the change is unavoidable, it is either not quite smooth. Last
petaflopic homogeneous supercomputers propose mostly massive parallel pro-
cessors, and users must take care of their application parallelism (especially
multi-level parallelism) if they really want to see a performance gain on the last
petaflopic computers.

On the other side, Top500 is fastly tainted by hybrid architecture (classic pro-
cessors with accelerators such as Graphic Process Units), which is a direct con-
sequence of exascale power wall. NVIDIA R© GPUs strike hard the 2018 Top500:
Half of top 10 most powerful supercomputers (November 2018 Top500 list [2])
contains nodes with NVIDIA R© GPUs. However, taking full advantage of hybrid
nodes efficiency requires large effort for HPC community. Choosing GPUs accel-
eration is mostly a tradeoff portability versus efficiency (in terms of compute
power and energy consumption). This trend is justified by the excellent ratio of
Flopss per Watts of NVIDIA R© GPUs but also by the ongoing evolution (that is
actually not far from a revolution) of HPC landscape.

“Hybrid” word must be used with caution: indeed, we traditionally referred
to hybrid architecture as compute nodes with accelerators (such as GPUs), but
hybrid may now, depending on the context, refer to the community addressed
by the supercomputer. Looking closely at the top 10 of the Top500 November
2018 list, we observe that 2 of them, Summit (USA) and ABCI (Japan) clearly
expose their membership to AI research: That is to say, Summit and ABCI are
not HPC dedicated but at the best, AI dedicated and at the worst, HPC and AI
dedicated. This recent trend is likely to be spread to the other Top500 computers
and might contaminate very quickly the full Top500.

The fusion of HPC and AI is clearly illustrated by many HPC centers that
are enlarging their scope of action: As an example, Argonne Leadership Com-
puting Facility (ALCF) from Argonne National Laboratory (ANL) has officially
announced the integration of Machine and Deep Learning as one of their scien-
tific pillars. Most of the historic and HPC actors made similar declarations.

In what follows we will focus on how AI reshapes the HPC community and
can help to consider data as a key point in their simulation process. We will then
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focus on the data issue, and address the FAIR data concept, which may lead in
the future both HPC and AI scientific research.

2 HPC (R)evolution

2.1 When AI Shakes HPC

Since the end of 2018, many HPC media relay the announcements of supercom-
puters dedicated to AI as well as strong positions to promote AI science and
development. The recent appearance and success of Deep500 [5], the ranking of
most powerful computers dedicated to AI (or HPC and AI) is a very good illus-
tration of Machine and Deep Learning success in industry and scientific fields.

AI Adoption. The Deep Learning (DL) success can be attributed to enterprises
and industries who have massively used it to improve their process, or wisely
address their (future) customers. Deep learning is currently widely adopted by
public at large scale. This might be seen as a very “late recognition” as AI
discipline was born many decades ago, around 1950. Success of AI and more
specifically Deep Learning is largely due to the GAFAM (Google, Apple, Ama-
zon, Facebook and Microsoft) but not only. At a more global scale, in the last
decades, every industry, every organization and everyone has gathered massive
amount of data. The convergence of a large amount of data and the maturity
of available computing hardware drove AI from “theoretical” discipline to “exe-
cutable” discipline, and currently, “unavoidable” discipline.

AI and HPC Fusion. Deep Learning is driven by data and HPC is generating
huge amount of data. Therefore, it is not very surprising to observe the collision
of these two disciplines. On another level, HPC community is quite mature
now and organized. It has access to a large panel of HPC platforms, addressing
many different needs in terms of hardware and compute capacity needs. The
progression of AI inside the HPC community is coming from four needs:

– AI needs large platforms to run specific experimentations, and HPC can offer
such platforms,

– HPC is struggling with data and their analyses,
– Many HPC applications cannot cross petaflopic or exaflopic scale due to their

algorithms and/or the physics model and numeric used,
– Governments have identified AI as a strategic point, at least as important as

HPC.

AI Supercomputers Might Cross Exascale First. Machine Learning and
Deep Learning completely reshape exascale challenge thanks to their ability to
reduce the compute precision. Though many HPC simulations require a fine
precision, Machine Learning and Deep Learning applications can be satisfied
with very low precision.
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For many years, reduced and/or mixed precision compute kernels have been
considered as a strategic key to overcome the exascale challenge. Even if this
strategy has been adopted for some applications, we must admit its success
remains very limited and did not drastically change the performance as expected:
Whether reduced/mixed precision kernels are too small to increase scalability
significantly, whether their numerical impacts imply to keep them very limited.
For now, reduced or mixed precision in HPC simulations is far from sufficient to
cross a new computing scale.

New cards are given with the rise of Machine Learning and Deep Learning
and their execution on hybrid processors that support as well classic HPC and
Deep Learning simulations. One may see that “AI” dedicated or “mixed” proces-
sors and GPU addressing the market are able to deal with low precision compute.
This is one of the key points when these processors are presented, showing very
attractive compute capacity especially with low precision. It would not be sur-
prising if first exascale application were a Deep Learning simulation running in
low precision. In that case, Exascale should not be late for 2020 as it is expected
since a few years, and might even be “greener” as expected if very low precision
is used.

Economic Market Drives Technologies. Deep learning market is more sen-
sitive to the economy than HPC. HPC remains a strategic point for many indus-
tries, but HPC use is restricted most of the time to very large enterprises who can
afford the infrastructure costs and human resources with a specific knowledge
to address large simulations (computer science, algorithms and IT). In contrast,
Deep Learning is widely accessible thanks to:

– The amount of data each industry has accumulated over time,
– The “black-box” frameworks, requiring few IT knowledge to build an AI

application,
– AI platform proposed by GAFAM, with reasonable costs.

A recent report coming from Market Research Future estimates that deep
learning economic market is about to reach $18 billion in 2023. This is no surprise
that governments provide massive efforts to support AI research and commu-
nity, and fund the acquisition of proprietary infrastructure to host AI research
community applications.

On the other side, vendors have greatly addressed this market by proposing
either dedicated AI solution or HPC & AI compliant solutions.

Consequently, many HPC vendors either get into the AI market with “pure”
AI processors or “mixed” processors, which can address the HPC or Machine
Learning and Deep Learning issues.

– Intel R© has recently proposed its AI dedicated processor, the Intel R© Nervana
processor. Intel R© either integrates, in its “HPC” processors, new instructions
set, dedicated to Deep Learning, making these processors a really good target
for “converged” architecture.
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– NVIDIA R© proposed AI supercomputers, with a “ready to go” box named
DGX R©. On the other side, NVIDIA R© was able to penetrate the market thanks
to its GPU Volta R© V100 and P100, which propose very interesting features
for AI but still remains extremely good candidates for HPC applications.

We did not mention above the Google R© TPU (Tensor Process Unit) as they
are not for sale, and we do believe that Google and Facebook are not likely to
commercialize their solutions.

The large economic growth of Machine Learning and Deep Learning market
are either due to the vendors themselves: Classic vendors such as Intel R© and
NVIDIA R© largely and actively contribute to AI framework development and
optimization. AI success is partly due to an active and efficient contribution of
vendors to the most used Machine Learning and Deep Learning frameworks,
allowing AI researchers and enterprises to focus only on the algorithm side, and
not on the development and performance issues.

This is also one major advantage of Machine Learning and Deep Learning
communities compared to HPC, as they directly made a massive use of open
source frameworks, and started their work on, mostly, private cloud platforms.
GAFAM very quickly offered to the AI community very advanced and smooth
platforms, with free access first to attract people, and low prices when addiction
or need is established.

HPC and AI communities have very different “habits” when it comes to
production and science: HPC community executes its simulation on proprietary
or governmental platforms, develops its own frameworks and is reluctant to share
its data, as most of them are sensitive data: Therefore, platforms of execution
run in a closed and secured environment that is hardly compatible with “open-
science”. The path to open-science for HPC community is harder than it is for
AI community. AI community mostly started to run on cloud platforms, non-
proprietary, with simulations based on open source frameworks, using data that
are not sensitive or whose security is not a major concern. AI community does
not need to migrate towards open-science: it directly started with open-science
mind.

3 Rethink HPC: Think Data

Regarding the recent market evolution and government decisions, HPC will have
to deal with AI community. This must not appear as a constraint, as many HPC
simulations can take advantage of Deep Learning or Machine Learning algo-
rithms and improve either their performance or data analysis process. Mostly,
these two scientific worlds collision is an opportunity to improve their simulation
and scientific research.

3.1 Data Struggling

Many scientific domains, such as astrophysics, materials, fusion... that are mas-
sively using HPC to execute their simulations are currently struggling with data.
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It can be data coming from real experimentations or HPC simulations and both
can be either output or input data.

Analyzing these data is vital for some scientific domains, as they might
improve drastically research and therefore theory. However, analysis part is often
not up to the HPC simulation level: Whether the analysis part is done manually
and is excessively long and fastidious to do, including lack of resources, whether
the platforms to do post treatment are inexistent or not adapted.

We recall that for very large set of data, we can hardly move Terabytes or
Petabytes of data from one HPC center where data were generated to another
where data could be analyzed. HPC centers hosting data consumer applications
will need to find solutions to the following issues:

– For long term and interactive storage: the storage capacities and functions
(which was, so far, limited to archive treatment) that we encouraged so far
cannot be considered anymore. The major risk is a loss of generated data and
inhibit research discoveries.

– The use of Machine Learning and/or Deep Learning solutions for analysis (pre
or post-treatment) of HPC data. Data analysis can be done in situ, depending
on the application workflow and needs.

It is often observed that data management is treated with a lower priority
compared to the compute capacity issue. This bad habit is now changing, because
of the fast and drastic rise of Deep Learning and Machine Learning in the HPC
landscape.

Big-data-driven models featuring machine learning and deep learning can
incredibly improve scientific research, as presented in [10]. In the Fusion energy
domain, such techniques enable key discoveries and/or provide considerable time
saving to produce results and simulations. The project EuroFusion Joint Euro-
pean Torus (JET) is faced to very large scale perturbations in modelling tokamak
systems.

The JET team realized great improvements regarding the predictive capabil-
ity (which currently is 80%) for disruptions that happen before to deterioration
incident: such success largely overcome the “classic” HPC simulations. This work
is still ongoing as upcoming International Thermonuclear Experimental Reactor
(ITER) aims to provide a predictive capability of 9̃5%, which requires a large
refinement of physical models, and this challenge can be crossed with machine
learning methods.

3.2 HPC Community Must Think Data

Unfortunately, the data issue has not been sufficiently addressed both in terms
of infrastructures and in terms of development frameworks. Many applications
generate massive amounts of data, but the post treatment and storage manage-
ment is not sharp enough to deal with the amount of data. Many codes do not
embed the post treatment procedures and data compression is either not enough,
not adapted or inexistent.
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HPC community really needs to rethink their applications, especially the
community with data issues. For this community, the power compute capacity
is currently their focus, while data should be the first focus as it will be -soon
enough- the bottleneck for their applications scalability.

Some HPC communities have understood that Machine Learning and/or
Deep Learning can be a very good alternative to classic HPC compute paradigms.

Current HPC applications are overwhelmed with:

– Data captured by observations/production instruments
– Data generated by simulations that must be treated and/or analyzed
– Data generated by sensors networks.

Some HPC applications are therefore in needs of Deep Learning methods
to automatize and accelerate the data treatment. This treatment can be used
either as pure analysis or as a quality comparison between data coming from the
simulation and data coming from real experimentations.

This can help to value the efficiency and accuracy of simulations, eventually
its limits and potential. The paper [11] gives a good overview of the data issue
in the context of turbulence modeling. Decades ago, the compute power was
the driving metric while now the data-driven model is favored. The amount of
experimental data are now used to estimate a model relevance or to improve the
model itself. A data-driven model is based on making a program that is able to
give results, based on large data set. Such approach is adequate for any scientific
model struggling with data.

Many numerical simulations in which turbulent flows appear use Large-Eddy
Simulation (LES). In [14], the turbulent flow in LES are decomposed into Grid
Scale (GS) flow field and filtered with SubGrid-Scale (SGS): The scientists
have used Artificial Neural Network (ANN) to find a new subgrid model of the
SubGrid-Scale (SGS) applied to LES. The team trained an ANN with a back-
ward propagation using direct numerical simulation data coming from turbulent
channel flow. Such configuration improved the correlation between the GS flow
field and the SGS stress tensor in LES.

As an illustration, the climate community is directly concerned by data chal-
lenge. An international consortium was built to design a climate model and make
predictions. Climate community is consuming and generating massive amount
of data. The recent use of Deep Learning in climate models can allow comparing
simulation results with observational ones, and therefore evaluating the accu-
racy of simulations. Machine Learning can also help to deal with forecasting
problems: Data accumulated about the climate can be effectively used to build
predictors for inferring dependencies between past and short-term future values
of observed values [7].

Many scientific applications are inundated with data, and for some frame-
work, using Hadoop is a nice option as Hadoop is one of the most used frame-
work to manage big data. Its success comes from his resilience, ease of use and
very good portability. In Computational Fluid Domain (CFD), Hadoop is used
to manage data analyses as CFD applications can generate large files to stock
information on the systems and associated time-steps. In [12], the authors used
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a one-dimensional MagnetoHydroDynamics simulation to show that Hadoop is a
good approach for CFD applications struggling with large data volume. HaDoop
File System (HDFS) success is also described in [13], especially because HDFS
proposes any plugins that apply to each problem depending on the issue (large
files, number of files, MapReduce issues...).

HPC community needs to rethink its old paradigms, where data was not an
issue. Many simulations have evolved, without considering the data as a key point
in both algorithms and code developments. For a long time it was assumed that
HPC was based on three pillars, namely, theory, experimentation and simulation.
This paradigm is not true anymore for any HPC simulation struggling with data.
Data is another pillar of science and should get at least as much attention as the
three others [8].

It will be tough to rethink the current HPC paradigms, especially introducing
a new “key parameter” in the center of the simulations. Many HPC applications
will need a complete strategy regarding data management and get educated to
Data Science. There is an urge to establish, for every data consumer/producer
code, data strategy: establishing a fast and efficient data treatment, that can
be executed with machine learning or deep learning. Though Data science is
somehow not new, and a large community has addressed this problem, the HPC
community is not yet fully aware of their needs of Data Science.

3.3 FAIR Data

Most of the current HPC platform treats the storage as an “archive” process,
while this cannot be true anymore with the current amount of data and the
converged platform “AI-HPC”. In the context of converged architectures, data
are the key of the simulation rather than a simple input and/or output. Such
application profile requires to get architecture able to feed large volume of data
to the CPU with a high bandwidth and very low latency. This large data transfer
is neither a pre/post process nor an input/output step, it is the “main compute
process”. This raises some questions as HPC centers can currently provide large
compute capabilities but are not ready to sustain dynamic and open software
stacks as well as dynamic and large storage capacities. One must always remem-
ber that (large amount and quality) data is the center of all AI applications.
Recently, a consortium seriously treats the data-tsunami issue. This consortium
proposed the concept of FAIR data [9] and [16], meaning that they must be:

– Findable: One must be able to find a data easily and quickly. This implies
a standardization and strict processes for data storage and more precisely
archive whatever the infrastructure is. Metadata associated to archived data
must be rich enough to precisely describe the stored data themselves and
respect a unique identifier.

– Accessible: Data must be accessible by scientists responsible of the data or
any scientists wishing to use these data for scientific purpose. Data storage
infrastructures must propose a standard protocol for data access: security and
clear conditions of access (license access, use agreement...) at least.
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– Interoperability: Data must be usable on any infrastructure and compatible
with any platforms and other data. This will be a direct consequence of the
“Findable” aspect in the FAIR data conception. The interoperability aspect
can be achieved if and only if standardization around metadata and archive
policies are defined.

– Re-usable: The re-usable access is also nested with the “Findable” and “Acces-
sible” characteristics presented above. A perishable data should not be inte-
grated in the FAIR process, in this part, only re-usable data matters, data
that can enrich several research activities.

Fig. 1. FAIR data

Data shall not be considered as passive, stored and pending for a treatment,
but active, whether we talk about “rough” or “treated” data. This implies a deep
adaptation of HPC community to satisfy these requirements, but the effort com-
ing from research community cannot happen before the establishment of FAIR
standard. A direct consequence is to protect and ensure the usability/viability
of scientific data.

The “DATA FAIR” consortium aims to provide guides and specifications to
describe the minimal required protocols, formats and interface that will help
to satisfy the Findable, Accessible, Interoperable and Reusable characteristics.
The consortium gathers scientists that are involved in data issue to develop
into a generic data principle, with different implementations in communities
and organizations. The aims of this existing consortium is to extend and share
the concept of FAIR data in order to ensure data management issue in each
application design.



HPC and Data: When Two Becomes One 23

One danger is that data is a major economic market that jeopardizes the
scientific community: Indeed, technologies for data management will very likely
not be driven by science. Data issued from scientific applications (whether we
talk about HPC or AI applications) are highly valuable in terms of scientific
knowledge but for some security and ethical issues, those data can’t be used for
economic purpose, or under very strict and identified conditions.

Towards Open Science. FAIR data presented above is not exactly the same
as open data, where the accessibility is mostly the only concern for open-data.
However, FAIR data implicitly leads HPC community towards the open science
concept: indeed, FAIR data is one of the corner-stone of open science.

AI scientific community has a major difference with HPC: AI success is (in
part) due to the massive open-source culture. Indeed, the massive use of Deep
Learning applications is a consequence of release as open source from major
frameworks coming from industries.

Globally, AI community started directly with the “open source” culture while
HPC went to open source more by necessity than by design.

Getting benefit from AI also implies that HPC must reconsider its “partition”
design and get toward open science: namely using and contributing to open
source codes, with an open access, and most of all, allowing FAIR data. Of
course these paradigms do not address the defense and army sector, but many
HPC scientific domains do not require secret defense or closed development and
could largely get benefit from open science.

The open science issues concern the biology and medical scientific communi-
ties. More precisely, the genomic studies are facing to the problem of data strug-
gling and FAIR data: They generate about 250 000 genomes per year. Nowadays
genomic analysis are used for clinical R&D and under pressure regarding the con-
fidentiality issues. The project sponsored by French government called “France
genomic plan” [6] aims to combined the use of big data and HPC to implement
an efficient use of genomics in healthcare pathway. Today, it could take between
days to weeks to obtain a feedback from biology experts in charge of genomic
analysis. Due to the huge increase of data and since we will be in healthcare
pathway, the genome’s analysis should be done in 2 or 3 days, and has to be
reproducible. HPC and AI are two solutions to reach this objective, such as using
a specific hardware to genome alignment process, which produces the differences
between the sequenced genome to analyze and a references one. The use of deep
learning is also a solution to genomic studies issues, and could help to analyze
the genome and identify the “defaults”: Annotation phase, which needs lots of
cross-comparisons, correlation and data analysis with many other data (existing
annotated genomes, databases, bibliography, clinical data, medical images...).

Such scientific domains can get a large benefit from open science; sharing
genomic data can greatly accelerate the research. Medical topics are clearly
caught between the data protection issue and the needs of open science.
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4 Conclusion

Data is the new gold and both AI and HPC communities must take this very
seriously. It is urgent to treat the data issue, and the FAIR concept and consor-
tiums around are very promising. However, both HPC and AI community must
get involved in this consortium to make sure it contributes to scientific research.

FAIR data is not easy to set up as it involves not only the scientific community
but also vendors, HPC centers, legal sector... Nevertheless, this is an unavoidable
step to ensure a viable and substantial improvement of scientific research (HPC
and AI areas). The FAIR consortium is a good protection to protect scientific
data and limit their use in an economic context. The current approach of FAIR
to address the data issue enables the communities to prepare their frameworks
to big data issues and exploiting/analyzing these data.

HPC community will have large benefit from FAIR data but either from AI
community, as it can drastically help simulations scalability and data treatment.
We believe that HPC will be strongly impacted by Deep Learning applications.
It is very likely that the first exaflopic computer will be in fact a supercomputer
dedicated to Deep Learning frameworks, which illustrates well the HPC strong
evolution facing the AI rising.
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Abstract. The variational multiscale (VMS) approach based on a
modal discontinuous Galerkin (DG) method is used to perform LES
of the sub-critical flow past a circular cylinder at Reynolds numbers
20 000 and 140 000, based on the cylinder diameter. The potential of using
p-adaption in combination with DG-VMS is illustrated for the case at
Re = 140 000 by considering a non-uniform distribution of the polyno-
mial degree based on a recently developed error estimation strategy [15].

Keywords: Discontinuous Galerkin · P-adaptivity · Large-eddy
simulation · Variational multiscale approach

1 Introduction

The study of flows past cylinders is of relevance to many engineering applications,
such as noise prediction in aircraft landing gears. A characteristic feature of bluff
body aerodynamics is the appearance of a large-scale vortex shedding in the near
wake which can lead to flow-induced sound and vibration of the structure. The
ability to accurately predict this phenomenon across a wide range of Reynolds
numbers using numerical methods is especially challenging, in particular because
the location of the separation point on the cylinder wall is very sensitive to small
disturbances in the flow. On the other hand, the geometrical representation of the
cylinder adds an extra level of complexity in the context of high-order methods,
due to the necessity to use large curved elements around the wall when the order
of the polynomial approximation is increased (p-refinement).

In this work, the scale-resolving capabilities of the DG solver Aghora [4,18]
are illustrated by performing LES of the flow past a cylinder in the sub-critical
regime at Re = 20 000 and 140 000. The subgrid-scale (SGS) modelling approach
adopted here is based on the VMS approach developed in [5] in the context
of a modal DG method (DG-VMS). The potential of using p-adaptation for
LES is demonstrated for the case at Re = 140 000 by defining a non-uniform
distribution of local polynomial degrees based on a recently developed error
estimation strategy [15].
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A limited number of LES simulations of this configuration have been reported
in the literature for these two Reynolds numbers. We can cite the work presented
in [13,14,19] for Re = 20 000 and in [2,9] for Re = 140 000 based on second-order
finite-volume methods (FVM) and different SGS models, and grid resolutions.
The outcome of our DG-VMS simulations is compared with the high-resolution
LES results reported by Lysenko et al. [13] for Re = 20 000, and by Breuer [2] for
Re = 140 000 using low-dissipation second-order FVM. The material presented
in these two articles is well documented and, in our view, constitutes a valuable
reference to assess the performance of the present approach.

2 Governing Equations

Let Ω ⊂ R
3 be a bounded domain. The compressible Navier-Stokes (N-S) equa-

tions, with appropriate boundary conditions in ∂Ω, read

∂u
∂t

+ ∇ · (Fc (u) − Fv (u,∇u)) = 0, in Ω (1)

where u = (ρ, ρv, ρE)T is the vector of conservative variables. The vectors Fc,
and Fv are the convective and viscous fluxes, respectively,

Fc =
(
ρ, ρv ⊗ v + p¯̄I, (ρE + p)v

)T

, Fv = (0, ¯̄τττ , ¯̄τττ · v − q)T (2)

In (2), ¯̄τττ represents the shear-stress tensor, given by

¯̄τττ = μ

(
2¯̄S − 2

3
¯̄S ⊗ ¯̄I

)
with ¯̄S =

1
2

(∇v + ∇vT
)

(3)

μ is the dynamic viscosity and ¯̄S the rate-of-strain tensor. The heat-flux vector
is written as q = −k∇T , with T the temperature and k the thermal diffusivity.

3 The DG-VMS Formulation

Let Ωh be a shape-regular partition of the domain Ω, into N non-overlapping
and non-empty cells κ of characteristic size h. We also define the sets Ei and
Eb of interior and boundary faces in Ωh, such that Eh = Ei ∪ Eb. Let Vp

h =
{φ ∈ L2(Ωh) : φ|κ ∈ Pp(κ), ∀κ ∈ Ωh} be the functional space of piecewise
polynomials of degree at most p, and (φ1

κ, . . . , φ
Np
κ ) ∈ Pp(κ) a hierarchical and

orthonormal modal basis of Vp
h, of dimension Np, confined to κ [1]. The solution

in each element is thus expressed as a linear expansion of basis functions, the
coefficients of which constitute the degrees of freedom (DOFs) of the problem
at hand.

The LES technique used in this research is based on the projection of the N-S
equations onto a the functional space Vp

h. This projection operation implicitly
defines a partitioning of the solution such that a turbulent field u is decomposed
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into its resolved, uh, and unresolved components, u − uh. The variational form
of the LES equations thus reads: find uh in Vp

h such that ∀ φh ∈ Vp
h we have

∂

∂t

∫

Ωh

φhuhdV + Lc(uh, φh) + Lv(uh, φh) = Lsgs(u,uh, φh), (4)

where we have used the definition of the L2-projection, i.e.
∫

Ωh
(u − uh)φh =

0,∀φh ∈ Vp
h. In Eq. (4) Lc and Lv represent the weak form of the convective and

viscous terms, respectively. The term Lsgs on the right-hand-side of Eq. (4), is
the variational form of the SGS residual representing the effect of the unresolved
scales u − uh on the resolved field uh.

We now introduce the following notation: for a given interface in Ei we define
the average operator {u} = (u+ +u−)/2 and the jump operator [[u]] = u+ ⊗n−
u− ⊗n, where u+ and u− are the traces of the variable vector u at the interface
between elements κ+ and κ−, and n denotes the unit outward normal vector to
an element κ+. The DG discretization of the convective terms reads

Lc(uh, φh) ∼= −
∫

Ωh

Fc(uh) · ∇hφhdV

+
∫

Ei

[[φh]]hc(u+
h ,u−

h ,n)dS +
∫

Eb

φ+
h Fc

(
ub

) · ndS (5)

where the boundary values ub = ub

(
u+
h ,uext,n

)
, with uext a reference external

state, are computed so that the boundary conditions are satisfied on Eb. In this
paper, a modified version of the local Lax-Friedrichs (LLF) flux and the Roe
scheme have been employed for the simulations at the lower and higher Reynolds
numbers, respectively,

hc

(
u+

h ,u−
h ,n

)
=

1
2

(Fc

(
u+

h

) · n + Fc

(
u−

h

) · n + αD (
u+

h ,u−
h ,n

))
(6)

where D (
u+

h ,u−
h ,n

)
is the upwinding dissipation function associated with the

selected numerical flux. This is scaled by a coefficient α to calibrate the amount
of numerical dissipation introduced. Based on numerical experiments, α = 0.1 in
this study. Indeed, for this value the simulation remains stable while minimizing
the numerical dissipation introduced via the numerical flux.

The discretization of the viscous terms is performed using the symmetric
interior penalty (SIP) method proposed by Hartmann and Houston [8],

Lv(uh, φh) ∼=
∫

Ωh

Fv(uh,∇huh) · ∇hφh dV

−
∫

Ei

[[φh]]
{Fv

(
uh,∇huh

)} · n dS −
∫

Eb

φ+
h Fv

(
ub,∇ub

) · n dS

−
∫

Ei

[[uh]]
{
GT

(
uh

)∇hφh

} · n dS −
∫

Eb

(u+
h − ub)

{
GT

(
ub

)∇hφ+
h

)} · n dS

+
∫

Ei

[[φh]]δδδ (uh) · n dS +
∫

Eb

φ+
h δδδb

(
u+

h ,ub

) · n dS (7)
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where G (uh) = ∂Fv(uh,∇huh)/∂
(∇huh

)
is the so-called homogeneity tensor.

The viscous fluxes may thus be written as Fv(uh,∇huh) = G (uh) ∇huh. The
penalty function is defined following the approach proposed in [8] as

δδδ (uh) = ηIP
p2

h
G (uh) [[uh]] (8)

with ηIP the penalty parameter, which must be chosen sufficiently large.
The integrals in Eqs. (5) and (7) are computed by means of the Gauss-

Legendre quadrature with q = p + 1 + m points in each space direction, where
m depends on the test case considered.

As regards the SGS term, the effect of the subgrid scales can be approximated
by a closure term that depends only on the resolved field, Lsgs(u,uh, φh) ≈
Lm(uh, φh). The compressible LES formalism of [11] is used here, which consists
in introducing a SGS flux vector of the form,

Fm = (0, ¯̄τ sgs,−qsgs)T (9)

Using the eddy-viscosity assumption, the SGS stress tensor ¯̄τττ sgs is written as

τsgs
ij = ρhνt

(
2Sij − 2

3
Skkδij

)
(10)

where ρh is the resolved density, Sij are the components of the resolved rate-of-
strain tensor ¯̄S, and νt the turbulent eddy viscosity. The SGS heat-flux vector
is given by

qsgs
i = −ρhCp

νt

Prt

∂Th

∂xi
(11)

where Th denotes the resolved temperature and Prt is the turbulent Prandtl
number, assumed to be constant and equal to 0.6.

In this work, the Smagorinsky model is used, for which νt is expressed as

νt = (CsΔ)2|¯̄S| ; |¯̄S| =
√

2SijSij (12)

In (12), Cs is the model constant which usually takes a value between 0.1 and
0.2, and Δ is the filter size associated with a given element, defined here as
Δ = h

p+1 , with h the characteristic size of the element.
Based on the formalism laid out above, the model term Lm(uh, φh) is dis-

cretized using the same scheme employed to discretize the viscous fluxes. This
amounts to replacing Fv by Fm in Eq. (7). For more details on the DG-LES
formalism implemented in Aghora the reader is referred to [5,6].

In VMS we assume that the effect of the unresolved scales on the largest
resolved scales is negligible and thus the effect of the SGS model is confined
to a range of small resolved scales. This is obtained in the DG-VMS frame-
work by splitting the polynomial solution space Vp

h into a low-order component
V l ≡ VpL

h ⊆ Vp
h, associated with the large scales, and a high-order component

Vs ≡ Vp
h \ V l presenting the small scales, where pL is called the scale-partition

parameter. In this work, the SGS term is computed from the full resolved field,
as proposed in [5], and the effect of the SGS model is removed from all scales
belonging to V l by enforcing Lm(uh, φh) = 0,∀φh ∈ V l.



30 M. de la Llave Plata et al.

4 DG-VMS of the Flow Past a Circular Cylinder

The sections that follow report the results from the DG-VMS simulations of the
cylinder flow at Re = 20 000 and 140 000. At these sub-critical Reynolds numbers
the boundary layer separates laminarly from the cylinder surface and transition
to turbulence takes place in the free-shear layer. It is worth noting that in the
version of the VMS algorithm used in this work, the scale-partition parameter pL

that sets the limit between large and small scales is constant across the domain.
This implies that the SGS model will also be active in the cells covering the
(laminar) boundary layer region. This is, however, not an issue in VMS, as, by
definition, only the small scales are affected by the SGS dissipation, while the
mean flow is let free of SGS dissipation. In the DG-VMS simulations presented
in this paper a partition number pL = 1 has been used (see Sect. 3 and [5]).

In both simulations a curved O-type mesh is considered in a computational
domain with radial and spanwise extension of 25D and πD, respectively. The
number of elements in the azimuthal and radial directions is 36, and in the
spanwise direction 16 elements are used. This amounts to a total number of
elements equal to 20 736. In the case of the higher Reynolds number, a higher
stretching factor is used in a region closer to the cylinder, which leads to a more
pronounced clustering of the elements in the vicinity of the wall, with respect
to the lower-Reynolds-number case. As will be shown below, this is consistent
with the shorter length of the recirculation bubble expected and the resolution
requirements of the boundary layer at this higher Reynolds number. The focus in
this work is therefore on capturing the flow dynamics in the near-wake behind
the cylinder, by putting most of the computational effort in this region. The
region beyond the recirculation area can thus be considered as under-resolved.

Periodicity of the flow is assumed in the spanwise direction, and an isothermal
no-slip boundary condition is imposed on the cylinder wall. A laminar free-
stream flow at M = 0.2 is imposed via a far-field condition on the outer boundary
of the computational domain. Finally, the time integration is performed using
an explicit third-order accurate Runge-Kutta method.

The present simulations were carried out on the Bull supercomputer Occigen
at CINES. The total cost per convective time step in TauBench work units was
293160 for Re = 20 000 (420 cores), and 1.27 106 for Re = 140 000 (3360 cores).

4.1 Simulation Results at Re = 20 000

For this lower-Reynolds-number case, the polynomial degree is set to p = 4,
which leads to fifth-order accuracy in space and a number of DOFs of 2.59
million (Mdofs). The effective resolution at the wall is Δr/(p + 1) = 0.01D.
Over-integration is used to reduce aliasing errors and increase the accuracy of the
solution. A horizontal uniform flow at M = 0.2 is used as initial condition. After a
transient period, a statistically steady (periodic) state is reached, from which the
flow statistics are gathered for approximately 95 vortex-shedding cycles. Table 1
compares our DG-VMS results with those obtained by Lysenko et al. [13] using a
second-order low-dissipative FV compressible solver at the same Mach number
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Table 1. Cylinder flow at Re = 20 000: integral flow quantities.

Data Δ
(

Uc
D

)
Δrmin

D
Mdofs Nvs Cd Clrms St

Lr
D

Exp. [12,16] – – – – 1.20 0.48 1.19 –

FV − O(2) [13] – 5.6 10−4 12.4 75 [1.33–1.36] [0.61–0.70] [0.18–0.19] [0.57–0.69]

DG − O(5) 2 10−4 10−2 2.59 95 1.39 0.64 0.19 0.67

Fig. 1. Flow past a circular cylinder at Re = 20 000. Left: iso-surfaces of the Q-criterion
coloured by the Mach number. Right: streamlines of mean flow.

M = 0.2 and for the same dimension of the computational domain as in the
present simulation. The main integral flow quantities are shown in this table.
The range of values shown for the reference simulation correspond to the use of
different numerical schemes and SGS modelling approaches. More details about
the FV simulations by Lysenko et al. can be found in their original paper [13].

We can see from this table that the results yielded by the DG-VMS fifth-
order simulation are in fairly good agreement with the reference LES results.
Only the value of the drag coefficient Cd is slightly above the upper-most value
of the reference range, by about 2.2%. This is despite the fact that the DG
simulation involves nearly five times fewer DOFs than the FV simulation. It is
worth noting the much smaller effective size of the grid cells at the wall, which in
the DG simulation is about 18 times smaller with respect to the reference value.
The good prediction achieved with our DG approach is partly a consequence of
the excellent approximation properties of polynomial expansions in representing
thin boundary layers, as pointed out by Gottlieb and Orszag [7]. This coarseness
of the mesh in the vicinity of the wall does not seem to impact the accuracy
with which the integral quantities, and in particular the size of the recirculation
bubble Lr, are captured. In fact, the value of Lr is well within the range of
values reported in [13]. The different Cd and C ′

l found in the experiment and the
simulations might be due to compressibility effects linked to the use of M = 0.2.

Figure 1 shows a snapshot of the iso-surfaces of Q-criterion coloured by the
Mach number (left) as well as the streamlines of the time-averaged flow field
(right). We can see that the mean flow is characterised by the presence of a
main recirculation bubble, and the appearance of two symmetrical secondary
bubbles near the separation point in accordance with the literature. The value
of the primal separation angle is estimated from the profile of the wall-shear
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Fig. 2. Cylinder flow at Re = 20 000: streamwise velocity statistics on wake centreline.
Left: mean streamwise velocity; solid line: DG − p4, dashed line: incompressible FV
simulation (TKE-I in [13]). Right: rms of streamwise velocity; red solid line: DG− p4,
black solid line: compressible FV simulation (SMAG−γ in [13]), symbols: experimental
data of Lim and Lee [12] at Re = 16 000 (dots) and Re = 24 000 (circles).

stress, which leads to θsep = 88o. This estimated value is in good agreement
with the results of Lysenko et al. who predicted from their LES a value in the
range θsep = 86o − 88o. As pointed out by the author, these values are about
13% above the value predicted in the experiments of Son and Hanratty [20] and
Norberg [16]. The cause for these discrepancies might be an insufficient resolution
of the boundary layer, or else possible differences between the simulation and
the experimental conditions.

To further assess the quality of our results, the statistics in the near-wake
region are also analysed. Figure 2 therefore shows the mean streamwise veloc-
ity along the wake centreline (left), as well as the profile of root-mean-square
(rms) of the axial velocity fluctuations (right). The present results are compared
with the available data from [13]. For the first, the only data available is that
from an incompressible FV simulation using the dynamic k-equation SGS model
(see [13] for more details). Despite the different equation models used, the two
mean streamwise velocity profiles are in relatively good agreement. As regards
the profiles of rms of the axial velocity, our results are compared with the com-
pressible CFD results from [13] on the fine mesh and the experimental data of
Son and Hanratty [20] for Reynolds numbers Re = 16 000 and 24 000. We can
see that, overall, our results are in rather good agreement with the reference
numerical data, and well within the range of the values predicted by the exper-
iment. However, the discrepancies with the experimental data become visible
from approximately x/D = 2. These differences are also observed for the ref-
erence CFD data. This is partly a consequence of the lack of resolution in this
region. It is interesting to note that this under-resolution does not seem to have
a strong effect on the quality of the prediction in the wall region and near-wake
dynamics.
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Fig. 3. p-adapted DG-VMS of cylinder flow at Re = 140 000: distribution of p.

4.2 Static p-Adapted Simulation Results at Re = 140 000

The use of p-adaptation, involving refinement as well as coarsening, allows for an
important reduction of the number of DOFs with respect to uniform refinement,
as well as an increased level of accuracy.

Description of the p-Adapted Algorithm
The p-adaptive algorithm employed here is that developed in [15]. The algorithm
is initialised by specifying a uniform polynomial degree distribution. A first sim-
ulation is then carried out based on the prescribed polynomial degree that will
serve as initial solution for the next iteration of the p-adaptive algorithm. At each
iteration of the algorithm, a new distribution of polynomial degrees is defined
based on local error estimates and a new numerical solution is computed. The
error estimator used in this work is the small-scale energy density (SSED) esti-
mator proposed in [15], which can also be interpreted as a measure of the kinetic
energy associated with the highest-order modes representing the solution within
the element.

For the simulations presented here, an initial uniform distribution of poly-
nomial degree p = 4 is used. The DG simulation is then run until the flow is
fully developed and reaches a statistically periodic state. From this point, the
element-wise values of the SSED estimator are computed over approximately
five vortex-shedding cycles.

Based on the p-adaptation strategy just described, a new distribution of
polynomial degrees is obtained. A new iteration of the p-adaptation algorithm
is then applied. In this work, two iterations of the adaptive algorithm have been
performed leading to the p-pattern shown in Fig. 3, with p varying from 2 to 6. In
the spanwise direction p is kept constant. This is consistent with the statistically
2D character of the flow. The polynomial degree in the first element layer around
the cylinder is p = 6. This yields an effective size of the first element at the wall
of Δr/(p+1) = 4 ·10−3. This value is about 2.5 smaller than that corresponding
to Re = 20 000, in accordance with the fact that the boundary layer thickness is
inversely proportional to

√
Re as predicted by the theory.

DG-VMS Results at Re = 140 000
The p-adapted DG solution at this higher Re is compared with the numerical
data reported by Breuer [2], as well as the experimental data from Cantwell
and Coles [3]. In [2], the author performed a number of simulations using differ-
ent levels of resolution and spanwise extensions of the computational domain.
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Table 2. Circular cylinder flow at Re = 140 000: comparison of integral flow quantities
with the simulation results of Breuer [2] and Cantwell and Coles [3].

Data Δt
(

Uc
D

)
Mdofs Δrmin

D
Nvs Cd −Cp,b St

Lr
D

Experiment [3] – – – – 1.24 1.21 0.18 0.50

Breuer-C3 [2] 2 10−4 1.74 4 10−4 13–34 1.28 1.51 0.22 0.46

Breuer-D3 [2] 2 10−4 6.76 4 10−4 13–34 1.37 1.60 0.21 0.42

DG-O(3 − 7) 1.5 10−4 4.98 4 10−3 71 1.43 1.59 0.19 0.50

Fig. 4. Cylinder at Re = 140 000. Left: iso-surfaces of the Q-criterion coloured by the
Mach number. Right: streamlines of mean flow.

Here we consider for comparison the simulations C3 and D3 corresponding to a
spanwise length of the cylindrical domain of πD and a radial extension of 15D.
The number of DOFs was 1.74 and 6.76 Mdofs, respectively, for simulations C3
and D3. They are both based on the Smagorinsky model for SGS modelling.
Table 2 compiles the values of the integral quantities obtained from the present
simulation and for the reference data used for comparison. As regards the val-
ues of drag, Cd, and base pressure, −Cp,b, coefficients, our results are in good
agreement with the CFD data from Breuer, though substantially larger than the
experimental value. The Strouhal number, St, is in between the experimental
and the numerical reference values. The St measured by Cantwell and Coles [3]
appears, however, very low with respect to what has been found in other experi-
mental works. In particular, Son and Hanratty [20] report a value slightly above
0.19 which is consistent with the value found in the present work. Finally, the
recirculation length, Lr, predicted by the DG simulation is in perfect agreement
with the experimental value and slightly higher than the numerical reference. We
have however observed, that the value of this quantity is very sensitive to the
averaging period, in agreement with the observations made in [17]. This might
explain the differences found between our value and that reported by Breuer,
who considered an averaging time considerably lower. As pointed out in [17],
and from our own observations, this quantity is actually a very reliable indicator
of the level of accuracy in the simulation. It is indeed very sensitive to the mesh
resolution in the near-wake region, as well as to the amount of numerical and
SGS dissipation in the simulation.
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Fig. 5. Flow past a circular cylinder at Re = 140 000. Wake centreline statistics. •:
Experiments [3], red solid line: p-adapted DG-VMS.

Fig. 6. Flow past a circular cylinder at Re = 140 000. Wake statistics at x=1. •:
Experiments [3], red solid line: p-adapted DG-VMS.

Figure 4 shows a snapshot of the iso-surfaces of Q-criterion coloured by the
Mach number (left) and the streamlines of the time-averaged flow field (right).
We can observe the laminar separation that takes place on the cylinder surface
and the significantly larger-scale vortex shedding originating from this separa-
tion, as compared to the case at Re = 20 000. The separation angle is estimated
to be about 94o in agreement with the value reported by Breuer for simulation
C3 on the coarser mesh, and slightly higher than the value 92o obtained by the
author on the finer grid (simulation D3). On the right, we can see the plots
of the streamlines of the mean flow. The most salient feature is the length of
the recirculation bubble that shrinks as the Re number is increased. It is also
worth noting the two small secondary bubbles showing up in our simulation, not
observed in the experiments, nor in the simulation by Breuer. These two small
secondary bubbles have also been found, however, in the simulation performed
by Karabelas [10]. No clear explanation for this discrepancy with the experi-
ments can be given today, and further research will be necessary to clarify this
point. As regards the rms of the drag and lift coefficients we obtain the following
values, C ′

d = 0.094 and C ′
l = 0.79.

In Fig. 5, the wake centreline statistics are also compared with those obtained
from the experiment. As regards the mean velocity profile, we can see that the
length of the recirculation region matches very well the experimental value (see
also Table 2). It is apparent from these results, however, that as we move further
downstream from the recirculation region, the streamwise velocity levels are
significantly under-predicted. This is partly due to the very coarse mesh used in
the wake beyond the recirculation region. This is in contrast with the profiles
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of rms of the streamwise velocity 〈u′
u

′〉, better predicted over a longer distance
beyond the recirculation zone. This might be a consequence of the higher levels,
with respect to the reference, found in the region closer to the cylinder base. As
regards the cross-stream Reynolds stresses 〈v′

v
′〉, their magnitude is significantly

higher than the experimental value, although in fairly agreement with the values
predicted by Breuer on his fine-grid simulations (see [2], not shown here). We
have also inspected the wake statistics at a location x = 1 and compared to the
experimental data of Cantwell and Coles [3]. The outcome from this comparison
can be seen in Fig. 6. We can observe the overall good agreement found with
the experiment for these quantities. The most significant discrepancies appear
in the profile of the shear stresses 〈u′

v
′〉, although their magnitude is in line with

the differences found by Breuer on his fine-grid simulations. These discrepancies
might be linked to the different conditions between the experiment and the
simulations (e.g. zero turbulence level at the inlet in the simulation). In fact,
regarding the study carried out in [2], the author mentioned that grid refinement
did not appear to provide convergence towards the experimental values.

5 Conclusions

The scale-resolving capabilities of the DG solver Aghora [4,18] have been illus-
trated by performing high-order LES of the flow past a circular cylinder in the
sub-critical regime. The SGS modelling approach adopted here is based on the
DG-VMS formalism described in [5]. The static p-adaptive algorithm recently
proposed in [15] has been successfully applied to cylinder flow at Re = 140 000.
The maximum order of accuracy used in these simulations amounts to fifth and
seventh-order for Re = 20 000 and 140 000, respectively.

The outcome of our simulations has been compared with the high-resolution
LES results reported by Lysenko et al. [13] for Re = 20 000, and by Breuer [2]
for Re = 140 000, using low-dissipation second-order FVM, as well as with the
available experimental data. An overall good agreement with the reference CFD
data is found in terms of integral flow quantities and near-wake statistics. This
is despite the fact that the DG-VMS simulations involve much fewer DOFs than
the FV LES. For the higher Re, some discrepancies with the experimental data
have been found. These differences are, however, in line with those found in the
work of Breuer [2] and, based on published research, might be explained by the
different flow conditions between the simulations and the experiment.

It is noteworthy that the effective height of the first grid cell off the wall in
the DG simulations is one order of magnitude larger than in the reference LES.
This highlights the excellent approximation properties of DG approximations in
representing boundary layers.
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Abstract. Advances to a dual-scale modeling approach (Gorokhovski
and Herrmann, 2008) are presented to describe turbulent phase interface
dynamics in a Large Eddy Simulation spatial filtering context. Spatial
filtering of the governing equations to decrease the burden of Direct
Numerical Simulation introduces several sub-filter terms that require
modeling. Instead of developing individual closure models for the inter-
face associated terms, the dual-scale approach uses an exact closure by
explicitly filtering a fully resolved realization of the phase interface. This
resolved realization is maintained on a high-resolution over-set mesh
using a Refined Local Surface Grid approach (Herrmann, 2008) employ-
ing an un-split, geometric, bounded, and conservative Volume-of-Fluid
method (Owkes and Desjardins, 2014). Advection of the phase inter-
face on this DNS scale requires a reconstruction of the fully resolved
interface velocity. This velocity is the sum of the filter scale velocities,
readily available from an LES solver, and sub-filter velocity fluctuations.
These fluctuations can be due to sub-filter turbulent eddies, which can
be reconstructed on-the-fly using a local fractal interpolation technique
(Scotti and Meneveau, 1999) to generate time evolving sub-filter veloc-
ity fluctuations. In this work, results from the dual-scale LES model are
compared to DNS results for four different realizations of a unit density
and viscosity contrast interface in a homogeneous isotropic turbulent flow
at infinite Weber number. Introduction of a sub-filter turbulent velocity
reconstruction in a passive scalar context is the first step towards use of
a dual-scale model for multiphase applications.

Keywords: Volume-of-fluid · Dual-scale · Fractal interpolation ·
RLSG

1 Introduction

Atomization in turbulent environments involves a vast range of length and time
scales. Predictive simulations aiming to resolve all relevant scales thus require
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enormous computational resources, taxing even the most powerful computers
available today [5]. Since primary atomization is governed by the dynamics of
the interface, a need therefore exists for appropriate interface models that make
the computational cost of predicting the atomization outcome more tractable.

A wide range of phenomenological models aiming to represent statistically
the essential features of atomization have been proposed in the past. Although
these aim to introduce the dominant mechanisms for breakup, they often use
round blobs injected from the nozzle exit and hence neglect all details of the
interface dynamics.

Other modeling approaches to atomization include stochastic models [6,7]
representing the interface by constituent stochastic particles and the mean inter-
face density transport equation model for Reynolds-Averaged Navier-Stokes
(RANS) approaches [21,22]. The former treats the interface dynamics in a
stochastic sense but requires the a priori knowledge of the breakup mechanism,
whereas the latter is affected by the drawbacks of the RANS approach: the
transport of the mean interface density is modeled by a diffusion-like hypothe-
sis, thereby neglecting the spatial grouping effects of liquid elements [5].

In the context of Large Eddy Simulations (LES), [12,18–20] have proposed
models to close the unclosed terms arising from the introduction of spatial fil-
tering into the governing equations. However, these models typically neglect the
contribution of the sub-filter surface tension term and are based on a cascade
process hypothesis that may be questionable in the context of surface tension-
driven atomization. An exception is the model for the sub-filter surface tension
term proposed in [1]. In [9,11], a dual-scale approach for LES of interface dynam-
ics was proposed and a model for the sub-filter surface tension induced motion
of phase interfaces was developed.

The purpose of this contribution is to develop a model for the sub-filter phase
interface motion induced by sub-filter turbulent velocity fluctuations. Combining
such a model with the surface tension model proposed in [9,11] will result in a
LES model applicable to atomizing flows.

2 Governing Equations

The equations governing the fully resolved motion of an unsteady, incompress-
ible, immiscible, two-fluid system in the absence of surface tension are the Navier-
Stokes equations,

∂ρu

∂t
+ ∇ · (ρu ⊗ u) = −∇p + ∇ · (

μ
(∇u + ∇T u

))
, (1)

where u is the velocity, ρ the density, p the pressure, and μ the dynamic viscos-
ity. Here, we neglect surface tension to solely focus on the turbulence induced
dynamics of phase interfaces. Furthermore, the continuity equation results in a
divergence-free constraint on the velocity field

∇ · u = 0 . (2)
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Assuming ρ and μ are constant within each fluid, density and viscosity can be
calculated from

ρ = ψρl + (1 − ψ)ρg (3)
μ = ψμl + (1 − ψ)μg , (4)

where indices l and g denote values in liquid and gas, respectively, and ψ is a
volume-of-fluid scalar that is ψ = 0 in the gas and ψ = 1 in the liquid with

∂ψ

∂t
= −u · ∇ψ = −∇ · (uψ) + ψ∇ · u . (5)

Here, the last term on the right-hand side is zero for incompressible flows, see
Eq. (2). In this work, unit density and viscosity ratios are considered making this
a single-phase flow, therefore Eqs. (3) and (4) are unnecessary but are included
for completeness sake.

2.1 Filtered Governing Equations

Introducing spatial filtering into Eqs. (1) and (2) and assuming that the filter
commutes with both the time and spatial derivatives, the filtered governing
equations can be derived [20],

∂ρu

∂t
+ ∇ · (ρū ⊗ u)= − ∇p̄ + ∇ · (μ(∇u + ∇T u)) + τ 1 + ∇ · (τ 2 + τ 3) , (6)

∇ · ū=0 , (7)

where ¯ indicates spatial filtering, and

τ 1=
∂ρ u

∂t
− ∂ρu

∂t
(8)

τ 2=ρu ⊗ u − ρu ⊗ u (9)

τ 3=μ(∇u + ∇T u) − μ(∇u + ∇T u) , (10)

where τ 1, τ 2, and τ 3 are associated, respectively, with acceleration, advection,
and viscous effects [20]. Using Eqs. (3) and (4), the filtered density and viscosity
in Eq. (6) are

ρ = ρlψ + ρg(1 − ψ) (11)

μ = μlψ + μg(1 − ψ) , (12)

where
ψ =

∫
G(x)ψdx , (13)

and G is a normalized spatial filter function.
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3 The Dual-Scale Approach to Modeling Sub-filter
Interface Dynamics

Instead of relying on a cascade process by which dynamics on a sub-filter scale
can be inferred from the dynamics on the resolved scale, the dual-scale approach
proposed in [11] aims to maintain a fully resolved realization of the immiscible
interface geometry at all times, expressed, for example, in terms of a volume-
of-fluid scalar ψ. Then ψ can be calculated exactly by explicit filtering using
Eq. (13).

Although this is an exact closure, the problem of modeling is of course simply
shifted to the problem of maintaining a fully resolved realization of the interface
geometry, i.e., describing the fully resolved motion of the interface, Eq. (5). Since
the fully resolved velocity is the sum of the filtered velocity and the sub-grid
velocity, u = u + usg, this results in

∂ψ

∂t
= −∇ · ((u + usg) ψ) + ψ∇ · (u + usg) , (14)

where the only term requiring modeling is usg. In [11], a model for usg is pro-
posed consisting of three contributions,

usg = u′ + δu + uσ, (15)

where u′ is due to sub-filter turbulent eddies, δu is attributed to the interface
velocity increment due to relative sub-filter motion between the two immiscible
fluids, and uσ is due to sub-filter velocities induced by sub-filter surface tension
forces. The focus of the current contribution is on the first term; for a modeling
outline of the second term, the reader is referred to [10,11], and for modeling of
the last term, the reader is referred to [9].

3.1 Sub-filter Turbulent Fluctuation Velocity Models

We propose to reconstruct the sub-filter turbulent fluctuation velocity u′ using
fractal interpolation [17]. To demonstrate fractal interpolation in one dimension,
consider 3 adjacent LES scale nodes x0, x1, and x2 with velocities u0, u1, and
u2. Following [4,17] the fractal interpolation operator WFI can be written as

WFI(x) =u0 +
u1 − u0

x1 − x0
(x − x0)

+ d1

(
u(2x − x0) − u0 − u2 − u0

x2 − x0
(2x − x0)

)
if x ∈ [x0, x1] (16)

WFI(x) =u1 +
u2 − u1

x2 − x1
(x − x1)

+ d2

(
u(2x − x0) − u0 − u2 − u0

x2 − x0
(2x − x0)

)
if x ∈ [x1, x2] (17)



A Dual-Scale Approach for Turbulent Liquid/Gas Interactions 43

Here |d1| < 1 and |d2| < 1 are stretching factors making WFI a contractive map-
ping [17]. Successively applying the fractal interpolation operator WFI starting
with the LES filter velocities, generates the fully resolved turbulent fluctuation
velocity. In order to extend the method into three dimensions, the fractal inter-
polation operator is first performed in one spatial direction only, followed by
separate 1D fractal interpolations in the other two directions [17].

The determination of the values of the stretching factors d1 and d2 follows the
so-called ZE1 model of [17] by using d1 = −d2 = ±2−1/3 with the sign chosen
randomly with equal probability. This choice of di generates a velocity signal
that satisfies the −5/3 kinetic energy spectrum of turbulence at all sub-filter
scales.

4 Numerical Methods

Equation (14) is solved using an unsplit geometric transport scheme for volume-
of-fluid scalars that ensures both discrete volume conservation of each fluid and
boundedness of the volume-of-fluid scalar, ψ [13]. Geometric reconstruction of
the interface within each computational cell is done using PLIC reconstruction,
employing analytical formulas [16] using ELVIRA estimated normals [14,15].

To efficiently solve Eq. (14) for the fully resolved immiscible interface, the
RLSG method [8] is employed. By design, it solves the interface capturing advec-
tion equation on a separate, highly resolved Cartesian overset grid of mesh spac-
ing hG, independent of the underlying LES flow solver grid of mesh spacing
h. In the dual-scale LES approach, hG needs to be chosen sufficiently small to
maintain a fully resolved realization of the phase interface.

The velocity u at RLSG scale hG is calculated from

u = Wk
FIu, (18)

where the superscript k indicates k-times application of the fractal interpolation
operator WFI , with

k =
log

(
h

hG

)

log(2)
. (19)

Since the LES flow solver used in this work utilizes a staggered mesh layout,
the face normal velocities in each spatial direction are not co-located and hence
the fractal interpolation has to be performed for different locations depending
on the spatial component of the velocity vector.

The unsplit, geometric advection scheme of [13] requires face-centered veloc-
ities that are discretely divergence-free to ensure both conservation and bound-
edness. While discretely divergence free filtered velocities u are available on the
flow solver mesh in a standard fractional step method, i.e., ∇h ·u = 0, the fractal
interpolated velocities u are not necessarily divergence free on the fine overset
mesh. To ensure ∇hG

· u = 0, u is projected into the subspace of solenoidal
velocity fields using the projection/correction step of a standard fractional step
method applied to the overset mesh contained within each LES cell separately.
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Note that the resulting Poisson systems that need to be solved to determine
the Lagrange multiplier for projection of u are defined on a per LES cell basis,
necessitating an additional step to make the LES cell face average of u equal to
the LES scale filtered velocity u. This is achieved by computing and applying a
per cell face constant correction velocity to u, similar to the approach used to
determine an outlet correction velocity in the fractional step method to make the
approach satisfy the continuity equation on the entire domain. Here the correc-
tion velocity applied to each cell face ensures satisfying the continuity equation
for u on the LES filter scale h.

The fractal interpolation reconstruction is performed at every LES time step
such that the resolved scale velocity u is actively evolving with the LES velocity
u on the LES time scale.

Finally, to calculate ψ, Eq. (13) is evaluated by setting the filter size to the
local flow solver mesh spacing h and evaluating the integral by explicitly sum-
ming the volume-of-fluid scalar ψ of those overset-mesh cells that are contained
within a given LES flow solver cell.

4.1 Comparison Metrics

Assuming that the phase interface is initially planar with normal orientation in
the y-direction, we define α(x, z, t) as the liquid volume fraction that is contained
within a square column in the y-direction with cross sectional area equal to h2

G.
Using the definition of α(x, z, t), the RMS sum of the time evolution of α can
be defined as

α′
0(t) =

√
1
L2

∫

L

∫

L

((α(x, z, t) − α(x, z, 0))2 dxdz. (20)

This quantity depends predominantly on the large scale movement of the inter-
face. Defining α(x, z, t) as the liquid volume fraction contained within a square
column in the y-direction with cross sectional area equal to the LES filter scale
h2, we define the sub-filter liquid column height RMS as

α′(t) =

√
1
L2

∫

L

∫

L

((α(x, z, t) − α(x, z, t))2 dxdz, (21)

This quantity depends predominantly on the sub-filter transport of the volume
fraction.

To take into account that even on an LES mesh scale, the PLIC reconstruc-
tion of the filtered phase interface geometry provides a level of sub-filter geometry
resolution beyond the mere liquid column height α, we define a local quantity
Cmix that measures the sub-filter variation of the phase interface on the overset
mesh compared to the LES mesh. Cmix is calculated by first performing a PLIC
reconstruction on the LES mesh using the filtered volume fraction ψ, see Fig. 1.
The reconstructed planar representation of the phase interface is then used to
calculate liquid volume fractions on the overset mesh ψhG

. The root mean square
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Fig. 1. PLIC geometry on LES mesh cell (left), fully resolved PLIC geometry (center),
difference used to calculate Cmix (right).

Fig. 2. Comparison of LES filtered velocity (left) and fractal interpolated velocity
(right).

of the difference of these volume fractions and the fully resolved volume fractions
ψ, see Fig. 1, is Cmix,

Cmix(t) =

√
1
L3

∫

L

∫

L

∫

L

(
ψ − ψhG

)2
dxdydz. (22)

It should be pointed out that both α′ and Cmix will remain zero for all time
without a dual-scale model.

The probability density function (PDF) of interface curvature is used as a
final comparison metric. The curvature that is sampled is the mean curvature
calculated by height function [3]. Samples are taken from every RLSG cell that
contains an interface and |κ| is used to create the PDF.
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Fig. 3. Resulting 3D spatial kinetic energy spectra for 5123 overset mesh using fractal
interpolation (red). DNS (blue) and −5/3 reference line (dashed) are also provided.
Vertical solid black line denotes the LES filter scale.

5 Results and Discussion

An initially flat interface is placed inside a box of fully developed isotropic tur-
bulence. The fully developed isotropic turbulence field was graciously provided
by R. Chiodi and O. Desjardins [2]. Both density and viscosity ratio are unity,
and no surface tension forces are present with a Reynolds number of Reλ = 156
and Weλ = ∞. Here, we present DNS and LES results using the dual-scale app-
roach employing a LES mesh resolution of 323 and an overset mesh resolution
of 5123 for four different realizations generated by placing the phase interface at
different initial heights in the turbulent velocity field. The four different initial
heights listed from realization 1–4 are y = π, y = π/2, y = 0, y = 3π/2. DNS
results were obtained using a 5123 mesh for both the flow solver and interface
advection scheme.

Figure 2 shows, as an example, a comparison of the LES filtered velocity
field and the fractal interpolated velocity. Noticeably more small scale structure
is visible in the fractal interpolated velocity compared to the filter scale LES
velocity. This is corroborated by the kinetic energy spectrum shown in Fig. 3
that compares the kinetic energy spectrum of the fractal interpolated velocities
to the DNS velocities. The fractal interpolation kinetic energy spectrum does
show a noticeable dip before beginning to follow the −5/3 energy cascade. Note
the absence of any viscous dissipation range in the fractal interpolated velocities.

Figure 4 compares one realization of the phase interface geometry using frac-
tal interpolation and the interface geometry that would be obtained without
any dual-scale model. Including the fractal interpolated sub-filter velocity in the
advection velocity of the resolved realization of the interface clearly leads to
significantly more surface corrugations, as expected.

Figure 5a–b shows the liquid column height RMS α′
0 with respect the initially

flat interface. In Fig. 5a, comparison of the four different realizations show a large



A Dual-Scale Approach for Turbulent Liquid/Gas Interactions 47

t = 0.05s t = 0.10s t = 0.15s t = 0.20s

t = 0.05s t = 0.10s t = 0.15s t = 0.2s

Fig. 4. Comparison of time evolving phase interface geometry for Realization #1 of
homogeneous isotropic turbulence at several time steps: no dual-scale model (top) and
fractal interpolation velocity (bottom).

effect on α′
0, because α′

0 depends strongly on the large scale motion of the inter-
face that are noticeably different from realization to realization. However, each
of the individual LES results shows very good agreement with its corresponding
DNS result. Figure 5b compares the LES results with and without dual-scale
model to the DNS results for one realization. It can be seen that the dual-scale
LES result agrees more closely with the DNS, although the results without dual-
scale model are not too different from the DNS results since α′

0 depends mostly
on the large scale motion on the LES filter scale.

Figure 5c shows the sub-filter liquid column height RMS α′ for the different
realizations. The results presented are only shown until the periodic boundary
condition in the interface normal direction impacts the measurement. The dif-
ference between the realizations is very small, consistent with the observation
that α′ is a sub-filter quantity exhibiting a degree of universality of the small
scales. The dual-scale LES simulations consistently over-predict α′ at later times
compared to the DNS results. However, it should be noted that α′ is always zero
if no dual-scale LES model is applied and the dual-scale model is therefore a
significant improvement.

Figure 5d compares the sub-filter variation Cmix for the different realizations.
Again, the difference between the realizations is small, indicating that Cmix is
a sub-filter quantity that exhibits a degree of universality on the small scales.
The dual-scale LES simulations consistently under-predict Cmix compared to
the DNS results. However, again it should be noted that Cmix is always zero
if no dual-scale LES model is applied and the dual-scale model is therefore a
significant improvement.

Finally, Fig. 6 compares the PDF of interfacial curvature. Interestingly, no
difference in the PDFs can be observed between the four different realizations
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(a) (b)

(c) (d)

Fig. 5. Comparison of column height RMS α′
0 for: (a) Different realizations of Reλ.

(b) No sub-filter velocity, DNS, and fractal interpolation. (c) Comparison of sub-filter
liquid column height RMS α′. (d) Comparison Metric Cmix.

of Reλ. While this is not surprising on the small scales, this also holds true
for the larger scales as well. The dual-scale LES results show good agreement
with the DNS results while the LES results without the dual-scale model are
significantly different. Between κ = 1/h and κ = 1/hG the dual-scale model
overpredicts the population of curvature by approximately 1% as compared to
the DNS results. Comparison of dual-scale LES and DNS results at κ < 10−1,
i.e., at radii of curvature that are larger than the computational box size of 2π,
shows a difference of less than 0.01%. Note that both dual-scale LES and DNS
results show a peak curvature probability at κ = 1/hG, whereas the LES results
without dual-scale model are limited to κ = 1/h. Since the present simulations
are for infinite Weber number, the Hinze scale, aka Komogorov’s critical radius,
is zero and hence the appearance of larger and larger curvatures with time is
only limited by the available mesh resolution.

It should be stressed that the dual-scale LES result using the time evolving
fractal interpolation generates the same population of curvatures as the DNS and
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hence it can be conjectured that the dual-scale LES model might generate similar
droplet sizes in atomization cases, if drop generation is initiated by turbulent
velocity fluctuations.

Fig. 6. Comparison of probability density function of curvature after the interface has
had time to deform. Vertical reference lines denote the curvature of: 1/hG (solid) 1/h
(dotted).

6 Summary and Conclusions

A dual-scale modeling approach for phase interface dynamics in turbulent flows
is presented that is based on a fractal interpolation technique to generate
fully resolved turbulent velocity fields. The method uses overset high-resolution
meshes to capture a resolved realization of the phase interface geometry that
can be explicitly filtered to close the terms that require modeling in the fil-
tered Navier-Stokes equations. Comparison of DNS and dual-scale LES results
show good agreement for the case of an initially planar phase interface of unit
density and viscosity contrast at infinite Weber number placed into a homoge-
nous isotropic decaying turbulence field. This favorable comparison includes the
probability density function of interfacial curvature, an earlier indicator that the
proposed dual-scale LES model may be applicable to atomization cases where
droplet generation is initiated by turbulent eddies.

The dual-scale method has also shown significant improvements in compu-
tational cost. Proper implementation of the dual-scale method can be orders of
magnitude faster than a pure DNS simulation when only a small portion of the
domain contains an interface, as is the case for primary atomization. In the case
where the entire domain is filled with interface, the dual-scale method has shown
to be as fast as pure DNS.

Future work will focus on incorporating the dual-scale model for surface
tension and an analysis on the impact of sub-filter surface tension on the interface
dynamics.
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Abstract. The simplest numerical framework to study turbulent parti-
cle dispersion assumes that particles can be modeled as point-like spheres
brought about by the flow. In spite of its simplicity, this framework has
led to significant advancements in the study of particle-turbulence inter-
actions. In this paper we examine how particle dispersion in dilute tur-
bulent suspensions changes when particles are non-spherical (elongated)
and may actively move within the fluid (motile). In particular, we show
how elongation and motility add to particle inertia to modulate pref-
erential concentration. Results for particles suspended in wall-bounded
turbulence are presented to highlight effects on wall accumulation and
segregation, which represent the macroscopic manifestation of preferen-
tial concentration.

Keywords: Preferential concentration · Non-sphericity · Motility

1 Introduction

Particle transport in turbulent flows is fundamental to science and technology.
Examples of open scientific issues include emissions reduction in combustion,
rheological characterization of fibrous particle suspension, plankton population
dynamics and convection of pollutants in the atmosphere. From a physical stand-
point, whichever the flow geometry, particle dynamics is controlled by turbulent
flow structures whose timescale is comparable to the particle Stokes number,
defined as St = τp/τf where τp is the characteristic relaxation time of the par-
ticle and τf is the characteristic time of the flow. Previous works focusing on
turbulent dispersed flows in channels, pipes and jets (see [1,22] and references
therein) show a strong correlation between coherent wall structures, local particle
segregation and subsequent deposition and re-entrainment, the Stokes number
being the scaling parameter. The reader is referred to [22] for an extensive review
of these processes, how they are generated by particle-turbulence interactions at
the particle scale and how they can be investigated by means of point-particle
Euler-Lagrange simulations when particles are, in size, smaller than the Kol-
mogorov length scale of the flow. Here, we just provide a representative view of
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particle dynamics and distribution in a turbulent boundary layer, resulting from
local microscopic particle-turbulence interactions in the dilute regime. Figure
1(a) shows a cross-sectional view of the instantaneous particle distribution in
turbulent channel flow, obtained from point-particle direct numerical simulations
in the absence of gravitational settling and assuming that particle dynamics is
governed by the drag force only. The shear Reynolds number is Reτ = 300,
based on the half channel height, and spherical particles with Stokes number
St = 30 are considered. Particles appear non-homogeneously distributed across
the channel, and tend to cluster. From these clusters, particles are transported
to the wall, and accumulate in specific “reservoirs” where concentration build-up
occurs. Particles tend to stay long times in these accumulation regions, classified
by a streamwise velocity lower than the mean [20], so that eventually particle
concentration increases near the wall. To quantify near-wall accumulation, in
Fig. 1(b) we show the particle concentration, C/C0 (namely, the number of par-
ticles counted per unit fluid volume, normalised by its initial value C0), as a
function of the non dimensional distance from the wall, z+. Superscript + rep-
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Fig. 1. Instantaneous distribution and wall accumulation of inertial particles in turbu-
lent channel flow (Reτ = 300). Panels: (a) St = 30 particle position in the cross-flow
plane; (b) particle concentration in the wall-normal direction, z+. Concentration is
computed as follows: (1) the flow domain is divided into Ns wall-parallel fluid slabs
of variable thickness, Δz+(s) (using hyperbolic-tangent binning with stretching factor
γ = 1.7); (2) the number Np,s of particles with center of mass located in the sth slab
at each time step is counted; (3) the number density C = Np,s/Vs is computed, with
Vs the volume of the sth slab. The normalized concentration is obtained dividing C by
its initial value C0.
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resents wall units, defined in Sect. 2. Details on the calculation of C/C0 can be
found in [15]. The concentration profile corresponding to the St = 30 particle
distribution of Fig. 1(a) is shown together with the profiles of additional particle
sets, characterized by Stokes numbers ranging from 1 (relatively low inertia) to
100 (relatively high inertia). All concentration profiles develop a maximum well
into the viscous sublayer, and the peak of C/C0 increases monotonically with
St, namely with particle inertia. This behaviour can be viewed as the outcome
of the turbulence inhomogeneity [21].

Figure 1 provides an at-a-glance rendering of preferential concentration
effects in a simplified and well-controlled situation in which these phenomena
are due solely to particle inertia. Inertia introduces a time lag (the relaxation
time, τp) in the particle response to the fluid velocity fluctuations. This leads
to a deviation of particle trajectory with respect to pure tracers, which fol-
low exactly the fluid streamlines. The ability to depart from fluid streamlines
generates small-scale clustering and wall accumulation phenomena, explaining
the fundamental physical mechanism by which a dilute suspension of inertial
particles cannot be fully mixed by turbulence. In this paper, we investigate pref-
erential concentration effects in more complex situations, characterized either
by multiple sources of particle dispersion modulation, as in the case of heavy
non-spherical particles, or by non-inertial effects, as in the case of motile par-
ticles that exploit their self-propelling capability to escape fluid streamlines. In
both cases, we focus our discussion on dilute suspensions of point-wise parti-
cles and we exploit an Eulerian-Lagrangian approach based on direct numerical
simulations of turbulence to examine statistically preferential concentration.

2 Methodology

The carrier fluid is Newtonian (with dynamic viscosity μ and kinematic viscosity
ν) and incompressible (with density ρ). The fluid motion is governed by the
following dimensionless mass and momentum conservation equations:

∇ · u = 0; u̇ + (u · ∇)u = −∇p + Re−1
τ ∇2u (1)

where u = (ux, uy, uz) is the fluid velocity, u̇ its time derivative, p is the fluid
pressure, and Reτ = huτ/ν is the shear Reynolds number, with h the chan-
nel half-height, and uτ=

√
τw/ρ the wall-friction velocity based on the wall

shear stress τw. The flow is driven by a constant mean pressure gradient and
is unaffected by the presence of the particles (one-way coupling). We performed
direct numerical simulation of Eq. (1), considering both closed channel flow (for
the spherical and elongated particles) and open channel flow (for the motile
particles). Regardless of the flow configuration, periodic boundary conditions
were imposed in the streamwise (x) and spanwise (y) directions. In the wall-
normal/vertical direction (z), no-slip conditions at both walls were imposed in
the closed channel configuration, whereas a free-slip condition was imposed at the
free surface in the open channel configuration. Equations (1) are discretized using
a pseudo-spectral method based on transforming variables into the wavenumber
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space, through a Fourier representation in x and y, and a Chebyshev representa-
tion in z. A two-level explicit Adams-Bashforth scheme for the non-linear terms
and an implicit Crank-Nicolson method for the viscous terms are employed for
the time advancement. The convective non-linear terms are first computed in the
physical space and then transformed in the wavenumber space using a de-aliasing
procedure based on the 2/3-rule; derivatives are evaluated in the wavenumber
space to maintain spectral accuracy [15].

Spherical particles with density ρp >> ρ are injected into the flow at concen-
tration low enough to consider dilute system conditions (particle-particle inter-
actions are neglected). Particles are assumed to be pointwise, rigid and heavy, so
that the most significant force acting on them is Stokes drag. To keep the simula-
tion setting as simplified as possible, thus allowing direct comparison among the
different types of inertial particles considered in this paper, the effect of gravity
has also been neglected. With the above assumptions the following Lagrangian
equation for the particle velocity is obtained [17]:

u̇p = −0, 75 (CD/dp) (ρ/ρp) |up − uf@p|(up − uf@p), (2)

with up = ẋp the translational particle velocity, u̇p its time derivative, uf@p

the fluid velocity at the particle location, dp the particle diameter, CD =
24Re−1

p (1 + 0.15Re0.687
p ) the drag coefficient, and Rep = dp|up − uf@p|/ν

the particle Reynolds number. For the present simulations, several particle
sets were considered, characterized by different values of the relaxation time
τp = ρpd

2
p/18μ, which is made dimensionless using wall variables and the Stokes

number for each particle set is obtained as St = τp/τf where τf = ν/u2
τ is the

characteristic flow time scale.
Elongated particles (also injected in a dilute flow, and referred to as fibers

hereinafter) are modelled as pointwise rigid prolate spheroids with semi-major
axis b, semi-minor axis a and aspect ratio λ = b/a. Translation and rotation are
governed by the following equations:

mpu̇p = FD, ˙(I·ω′) + ω′ × (I·ω′) = M′, (3)

where mp = 4πa3λρp/3 is fiber mass. In Eq. (3), FD is the drag force acting
on the fiber formulated in the inertial frame of reference x = 〈x, y, z〉, I is
the moment of inertia tensor, ω′ is the angular velocity of the fiber and M′ is
the Jeffery torque [6]. Both ω′ and M′ are formulated in the particle frame of
reference x′ = 〈x′, y′, z′〉 with origin at the fiber center of mass and axes x′, y′

and z′ aligned with the principal directions of inertia. In the point-particle limit,
the surrounding flow can be considered Stokesian and the drag force FD can be
expressed as [2]:

FD = μRK′RT · (uf@p − up) = μK · Δu (4)

where R is the orthogonal transformation matrix which relates the same vector
in the two above-mentioned frames through the linear transformation x = R x′

(RT being its transpose), K′ is the resistance tensor in the particle frame, and
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Δu = uf@p − up is the relative velocity between the fluid and the fiber at
the center of mass of the fiber. Equation (4) is valid for a spheroid with arbi-
trary shape under creeping flow conditions, namely small fiber Reynolds number,
Rep = 2a | Δu | /ν. This condition is met for all fibers except the longest ones
(see [23] for a more detailed discussion on the validity of the small-Rep assump-
tion for spheroids). The particle Stokes number is defined as [14]:

St = 4/3 (ρp/ρf ) (a+)2λf(λ), f(λ) = ln(λ +
√

λ2 − 1)/6
√

λ2 − 1, (5)

where superscript + indicates wall units, obtained using uτ and ν (a+ = auτ/ν).
Motile particles (referred to as swimmers hereinafter) are modelled as mass-

less pointwise sphere with position xp evolving in time according to:

ẋp(t) = uf@p(xp) + vsp, (6)

where vs is the (constant) swimming speed, and the unit vector p defines the
spatial orientation of the swimmer. Vector p evolves in time according to the
response of the swimmer to the biasing torques acting upon it: The viscous
torque caused by shear, which rotates the body according to the local velocity
gradients, and the gyrotactic torque arising from bottom heaviness, which tends
to align the swimmer along the vertical direction k [19]. The orientation rate is
computed as:

ṗ = (2B)−1 [k − (k · p)p] + ωf@p ∧ p (7)

with k the unit vector pointing upward in the vertical direction, ωf@p the fluid
vorticity at the swimmer’s position, and B the characteristic time a perturbed
gyrotactic swimmer takes to re-orient vertically when ωf@p = 0. The first term
on the rhs of Eq. (7) represents the tendency of a swimmer to remain aligned
with the vertical direction due to bottom-heaviness, while the second term rep-
resents the tendency of fluid vorticity to overturn the swimmer through a vis-
cous torque. The key parameters in Eqs. (6) and (7) are the stability number
Ψ = 1

2B
ν

u2
τ
, which parameterises the importance of vortical overturning with

respect to directional swimming, and the swimming number Φ = vs/uτ . As done
for the inertial particles, swimmers are tracked assuming dilute flow conditions
and using a point-particle approach, justified by the sub-Kolmogorov size typical
of aquatic micro-organisms.

The statistics presented in this paper are relative to a turbulent Poiseuille
channel flow. For the spherical and elongated particles, the shear Reynolds num-
ber is Reτ = 300, corresponding to a bulk Reynolds number Re = u0h/ν = 4200,
with u0 � 3.3 m/s (resp. u0 � 0.21 m/s) the bulk velocity in the case of gas-solid
flow (resp. liquid-solid flow). For the swimmers, values of Reτ from 170 to 1020
were considered in order to explore Reτ effects on vertical migration dynamics.
In all simulations, and regardless of the specific value of Reτ , the domain size
is Lx × Ly × Lz = 4πh × 2πh × 2h in the streamwise, spanwise and wall nor-
mal/vertical directions, respectively. The grids used to discretize this domain
are given in Table 1. Lagrangian tracking of inertial particles was performed
considering both spherical particles with Stokes numbers ranging from St = 1
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to St = 100, and fibers with Stokes numbers St = 5 and St = 30 and aspect
ratio λ = 3, 10, 50 (the case λ = 1 was also considered, to allow comparison with
spherical particles). The simulation parameters for the different particle sets are
provided in Tables 2 and 3, respectively. To simulate the motion of the swimmers,
we fixed Φ = 0.048, corresponding to a dimensional swimming velocity vs = 100
μm/s typical of Chlamydomonas augustae [4], and varied the stability number
(ΨH = 1.13, ΨI = 0.113, ΨL = 0.0113), corresponding to B = 0.054, 0.54 and 5.4
s, respectively: These values fall within the typical range of motile phytoplankton
species [4].

Table 1. Simulation parameters for the flow field.

Flow configuration Shear Reynolds
number, Reτ

Grid
points
Nx × Ny ×
Nz

Shear
velocity uτ

[m s−1]

Bulk Reynolds
number, Reb

Closed channel 300 256×
256× 257

0.2355 4200

170 128×
128× 129

0.006 1400

Open channel 510 256×
256× 257

0.018 4300

1020 512×
512× 513

0.036 8600

Table 2. Spherical particles simulation parameters (closed channel flow, Reτ = 300).
V +

s is the dimensionless terminal velocity of the particle in still fluid.

St τp (s) d+
p dp (μm) V +

s = g+ · St Re+p = V +
s · d+

p /ν+

1 0.283 · 10−3 0.153 10.2 0.0118 0.00275

4 1.132 · 10−3 0.306 20.4 0.0472 0.01444

5 1.415 · 10−3 0.342 22.8 0.0590 0.02018

20 5.660 · 10−3 0.684 45.6 0.2358 0.16129

25 7.075 · 10−3 0.765 51.0 0.2948 0.22552

100 28.30 · 10−3 1.530 102.0 1.1792 1.80418

Table 3. Elongated particles simulation parameters (closed channel flow, Reτ = 300).

St Shape λ ρp/ρf ρp 2b+ 2b (μm) - St Shape λ ρp/ρf ρp 2b+ 2b (μm)

5 Sphere 1 173.6 225.7 0.72 96.07 - 30 Sphere 1 1041.7 1354.2 0.72 96.07

3 92.9 120.8 2.16 287.9 3 557.1 724.2 2.16 287.9

5 Ellipsoid 10 57.7 75 7.2 960.1 - 30 Ellipsoid 10 346.3 450.2 7.2 960.1

50 37.7 49 36 4800 50 226.2 294 36 4800
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For each tracked set, Np = 106 particles/swimmers were injected into the flow
with random position, random orientation and velocity equal to the fluid veloc-
ity at the release position. The equations of motion were solved using a 4th order
Runge-Kutta scheme with a time step equal to that of the fluid. The fluid veloc-
ity and vorticity at the instantaneous particle location were obtained through
interpolation based on 6th-order Lagrange polynomials. Periodic boundary con-
ditions were imposed on particles in both streamwise and spanwise directions,
whereas elastic reflection and conservation of angular momentum were applied
when a particle touched the wall (or the free surface, in the case of the micro-
swimmers). Elastic reflection was chosen since it is the most conservative assump-
tion when measuring preferential concentration in a turbulent boundary layer.
A more detailed discussion on the modelling issues associated to particle-wall
collisions, not included here for sake of brevity, can be found in [16,23].

3 Results and Discussion

We discuss the effect on preferential concentration introduced by two proper-
ties that provide particles with the ability to escape fluid streamlines: Particle
shape (elongation, in particular, which adds to inertia in our problem) and par-
ticle motility (which leads to particle non-homogeneous distribution even with-
out inertia). Statistics presented in this section were computed starting at time
t+ = 1000 upon particle injection, and gathered for a span Δt+ = 2000, unless
otherwise indicated.

Effect of Elongation on Preferential Concentration
Figure 2 shows the instantaneous distribution of the St = 30 fibers with λ = 10
(taken here as reference for the visualization) in the center region (panel a)

)b()a(

Fig. 2. Spatial distribution of St = 30 fibers with λ = 10 in closed channel flow at
Reτ = 300. Panels: (a) Channel center; (b) Near-wall region.
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Fig. 3. Segregation parameter, Dmax, along the wall-normal direction for inertial elon-
gated fibers in closed channel flow at Reτ = 300. Panels: (a) St = 5; (b) St = 30.

and in the near-wall region (panel b) of the channel. Similar distributions are
observed for the other sets (not shown). In the channel center, fibers cluster into
groups leaving empty regions that have the same location for all fiber sets. This
indicates that, in spite of the strong mathematical coupling between rotational
and translational equations due to the dependency of the resistance tensor on
the orientation [13], macroscopic fiber distributions are unaffected by elonga-
tion and depend only on inertia. Near the wall, fibers segregate into elongated
streaks that correlate with regions of low-speed fluid velocity, but do not exhibit
a strong preferential orientation in the streamwise direction. To examine in a
more quantitative way the relative tendency of fibers to segregate in a turbulent
flow, we computed the deviation from randomness, D ≡ (σ − σPoisson) /μ [5],
where σ is the standard deviation for the measured number density distribution,
σPoisson is the standard deviation for a Poisson distribution (i.e. a purely ran-
dom distribution of the same number of particles), and μ is the mean particle
number density. D = 0 corresponds to a random distribution, D < 0 corre-
sponds to a uniform distribution, D > 0 indicates segregation (larger values of
D correspond to stronger segregation). The value calculated for D depends on
the size of the cell volume Ωcell used for the calculation. This dependency can
be partially overcome by computing the number density distribution for several
values of Ωcell and keeping only the largest value of D [20], indicated as Dmax

in the following. In Fig. 3, we show the behavior of Dmax as a function of the
wall-normal coordinate, z+, for all cases considered in the (λ, St)-space. Profiles
are averaged both in space, over the homogeneous directions, and in time, over
the last 200 time units of the simulations. Segregation reaches a maximum inside
the viscous sublayer (z+ < 5), suggesting that such build-up is driven by inertia.
Indeed, the larger values of Dmax are obtained for the St = 5 and St = 30
fibers, which exhibit the highest tendency to undergo low-speed streak segrega-
tion. Small values are obtained for the St = 1 fibers, which exhibit the lowest
tendency to undergo low-speed streak segregation (not shown), in agreement
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with previous findings [14]. Once in the viscous sublayer, however, elongation
becomes important in determining the location and the magnitude of maximum
segregation. Changes in the aspect ratio produce non-monotonic modifications
and cross-overs between profiles indicating that, locally, the influence of wall
turbulence on fibers is strongly affected by λ and not only by St.

The results in Fig. 3 indicate the presence of a specific parameter range in
which inertia combines with elongation to give rise to a non-trivial behaviour
eventually leading to significant quantitative changes in near-wall dispersion.
These will be analyzed next by means of concentration statistics. Figure 4 shows
the instantaneous concentration profiles, computed as in [14], for both St = 5
fibers (panel a) and St = 30 fibers (bottom panel). The most evident changes
occur in the very near-wall region, within few wall units from the wall: each
profile develops a peak of concentration which is always found within the closest
fluid slab considered for fiber counting. The peak value of C/C0 differs depending
on the aspect ratio: Compared to the spherical particles (black circles) with
the same Stokes number, we observe a sharp increase of fiber accumulation
already at λ = 3 for St = 5, followed by a decrease for longer fibers. Figure
4(b) suggests that this effect fades away for the shortest fibers (λ < 10 in our
simulations) as fiber inertia increases. We remind that, for a given value of St,
the mass of a fiber increases with its elongation so longer fibers have higher
inertia. Therefore, the modification of the statistics that we observe when we
increase the aspect ratio is due to a change in particle shape and is both direct
and indirect (through increased inertia). Outside the viscous sublayer, variations
are less evident and, again, the elongation of the fiber does not seem to play
an important role. Overall, the results just discussed indicate that the fiber
responsiveness to segregation and preferential concentration induced by the flow
is strongly (and directly) correlated to the fiber aspect ratio mostly in the viscous
sublayer, where particle anisotropy due to non-sphericity adds to flow anisotropy
and the combined effects of shape and inertia lead to a quantitatively different
build-up of fibers.
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Fig. 4. Fiber concentration in the wall-normal direction (closed channel flow, Reτ =
300. Panels: (a) St = 5; (b) St = 30. Concentration was computed as explained in
Fig. 1.
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Effect of Motility on Preferential Concentration
A physical problem in which preferential concentration is observed in the absence
of inertia is provided by the rising of gyrotactic micro-swimmers in free-surface
turbulence. This phenomenon has been investigated recently [10,11,16], with
the aim of elucidating the importance of the swimmer’s vertical stability on its
ability to move through turbulent vortices and reach the sub-surface layers of
the flow. Turbulent flow structures near the free surface have been widely inves-
tigated [7,18]. Within the range of Reτ investigated here, surface structures
are generated and sustained by bursting phenomena that are continuously pro-
duced by wall shear turbulence inside the buffer layer. Bursts emanate from the
bottom of the channel and produce upwelling motions of fluid that are advected
toward the free surface. Near the surface, turbulence is restructured due to damp-
ing of vertical fluctuations: upwellings appear as sources for the surface-parallel
fluid velocity and alternate to sinks associated with fluid downdrafts from the
surface to the bulk. This phenomenology has been long recognized to produce
flow with properties that differ from those typical of 2D incompressible turbu-
lence [9]. To characterize the surface topology, we use the surface divergence
∇2D = ∂uf

∂x + ∂vf

∂y = −∂wf

∂z . In open channel flow, ∇2D does not vanish and
swimmers located on the free surface probe a compressible 2D system [3], where
velocity sources are regions of local flow expansion (∇2D > 0) generated by
upwellings and velocity sinks are regions of local compression (∇2D < 0) due to
downwellings. Figure 5 provides a qualitative characterization of swimmer clus-
tering on the free surface by correlating the instantaneous swimmer distribution
with the colormap of ∇2D. Due to gyrotaxis, swimmers can not retreat from
the free surface by simply following flow motions: They can only leave velocity
sources (red areas in Fig. 5) and collect into velocity sinks (blue areas in Fig.
5), where they organize themselves in clusters that are stretched by the fluid to
form filamentary structures. Formation of clusters with fractal mass distribution
has been observed previously for the case of Lagrangian tracers in surface flow
turbulence without mean shear [3,8], with wind-induced shear [16], and for the
case of floaters in free-surface turbulence [11].

Another feature of swimmer dynamics that is clearly highlighted in Fig. 5,
is the different number of cells that have reached the surface at the time instant
of the visualizations. Swimmers with low gyrotaxis (low stability number ΨL,
panel a), are out-numbered by swimmers with high gyrotaxis (high stability
number ΨH , panel b). To quantify this qualitative observation, in Fig. 6(a) we
show the wall-normal concentration profiles computed at the same time of Fig.
5 (t+ = 104), comparing results at varying gyrotaxis. Concentration builds up
within a thin layer just below the surface. The maximum value of concentration
is reached right at the surface, and increases monotonically with gyrotaxis. In the
bulk of the flow, the distribution of the swimmers remains uniform whereas the
bottom wall is depleted of cells, indicating a continuous migration towards the
free-surface. This process can be further analyzed considering the time behaviour
of the number of swimmers that have reached the surface, represented by the
solid line in Figs. 6(b)–(d), and normalized by the total number of swimmers



62 C. Marchioli et al.

(a)

(b)

Fig. 5. Top view of micro-swimmers distribution on the free surface (Reτ = 510,
t+ = 104). Flow is from left to right. Panels: (a) Low gyrotaxis, ΨL; (b) High gyrotaxis,
ΨH .

tracked in the simulations. More precisely, these figures show the number of
swimmers trapped in a monitor fluid slab 0.01 < z+ < 0.5 just below the free-
surface, chosen in order to minimise the effect of the elastic rebound condition
imposed at the upper boundary of the flow domain. In addition, the dashed and
dotted curves in each figure represent the fraction of swimmers located in regions
of the monitor fluid slab characterized by negative and positive values of the
surface divergence, respectively. In agreement with the qualitative observations
drawn from Fig. 5, the number of swimmers sampling ∇2D < 0 in downwelling
regions is always much higher than the number of swimmers sampling ∇2D > 0
in upwelling regions. Within the time window of the simulations, n/N reaches
a steady state only for swimmers with low gyrotaxis, ΨL, and only 5 ∼ 6% of
the swimmers are able to reach the surface. For the cases of intermediate and
high gyrotaxis, n/N increases steadily (up to roughly 70% for the ΨI swimmers
and roughly 80% for the ΨH swimmers), and provides the source for continuous
accumulation into filamentary clusters within downwellings.
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Fig. 6. Surfacing and accumulation of gyrotactic micro-swimmers (Reτ = 510). Pan-
els: (a) Wall-normal concentration at varying gyrotaxis; (b), (c), (d) Evolution of the
number of swimmers reaching the sub-surface layer 0.1 < z+ < 0.5 for low, interme-
diate and high gyrotaxis. The relative contributions due to swimmers in downwellings
(∇2D < 0, dash-dotted lines) and upwellings (∇2D > 0, dashed lines) are also shown.

4 Conclusions

We have examined two instances of turbulent dispersed flow in which preferen-
tial concentration phenomena are not determined solely by particle inertia, and
we have tried to highlight the differences introduced by the presence of shape
effects or motility effects. The physical problems investigated all refer to one-way
coupled flows, and therefore the results discussed in this paper are valid only for
dilute particle suspensions. Our results show that, when shape effects add to
inertial effects, significant quantitative modifications to particle segregation into
clusters and to particle accumulation near solid boundaries occur. Such quanti-
tative changes are, in general, not monotonically dependent on the increase of
particle elongation and appear difficult to model within numerical approaches
that are not based on direct numerical simulations of turbulence. In particular,
it would be useful to include shape effects in subgrid closure models for predict-
ing preferential concentration via Large-Eddy simulations [12]. However, present
results suggest that this may be a very challenging task. We also show that pref-
erential concentration can be observed in the absence of inertia, by considering
particles that can propel themselves within the fluid. In this case, preferential
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concentration is associated to two-dimensional clustering at a free surface, where
the degree of segregation can be “tuned” by modulating the vertical stability of
directional swimming.
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Abstract. Reference solutions for the turbulent forced convection of air
around heated square cylinders at high Reynolds numbers (Re ≥ 104)
are set-up from a bibliographical synthesis of about twenty experiments.
These reference solutions concern the flow dynamics and heat transfer.
We particularly focus on the local Nusselt number around the obstacle.
These solutions are used to identify the URANS models that are the
most adequate to reproduce the flow physics and heat transfer in this
configuration. Different versions of the k-ε and k-ω models are tested. The
k-ω SST model is shown to be the most accurate to evaluate the flow
dynamics and heat transfer: its accuracy is equivalent to that obtained
by 3D LES and high performance computing.

Keywords: Heated square cylinder · Turbulent forced convection ·
URANS simulations · Bibliographical synthesis · Experimental
reference solution

1 Introduction

In many industrial applications, an accurate prediction of the local convective
heat transfer in the turbulent forced convection around heated bluff bodies is
crucial. For instance, in the nacelle compartment of aeronautical engines, the
equipment like valves, electrical harnesses, pumps or ducts is submitted to large
heat fluxes in such a way that it must often be air-cooled to never exceed a
maximum allowable temperature [1]. To optimize the cooling systems, accurate
enough numerical simulations must be carried out. If correctly optimized and val-
idated, URANS (Unsteady Reynolds Averaged Navier-Stokes) simulations can
be preferred to LES to model a long period of a transient flow such as a complete
flight mission for example. The objective of this communication is to define if
an accurate prediction of the flow dynamics and heat transfer around heated
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bluff bodies is possible from URANS simulations and to test and characterize
different k-ε and k-ω models [2,3].

In that aim, a 2D test case representative of the main physics and features
encountered in this context is chosen. It is the ERCOFTAC benchmark pro-
posed by Lyn, Rodi et al. [4–6] of an air flow around a square cylinder, placed
transversally at mid-height of a channel, at Reynolds number Re = 22,000, but
considering that the cylinder is heated. A large experimental and numerical
database of the flow dynamics for this test case or for similar configurations is
available in the literature. There is also a thermal database thanks to the exper-
iments around heated square cylinders [7–10]. Thus, to characterize the differ-
ent URANS models used in the present paper and enable comparisons between
experiments and simulations, reference solutions for the global characteristics of
the flow dynamics and heat transfer have been first set-up from a bibliographical
review of about twenty experiments.

The outline of the paper is the following. The flow dynamics is presented in
Sect. 2, the synthesis of the bibliographical review in Sect. 3 and the used URANS
models, flow configuration and numerical methods in Sect. 4. The URANS results
are then compared with the experimental reference results and discussed. The
global quantities and statistics describing the flow dynamics and heat transfer
are analyzed in Sect. 5, for four variants of the k-ε and k-ω models. The local
profiles around the square cylinder, computed with the k-ω SST model, are
analyzed in Sect. 6. Conclusions are given in Sect. 7.

2 Flow Dynamics of the Selected Test Case

Figure 1 sums up in a simplified way the main patterns observed in the turbulent
air flow around a square obstacle at Re = U∞D/ν ≥ 104, with D the length
of the obstacle edge and U∞ the free stream velocity. In Fig. 1(left), the blue
lines more or less correspond to the stream lines of the instantaneous phase
averaged flow. Two shear layers symmetrically separate from the top and bottom
leading edges. A Kelvin-Helmholtz (KH) instability intermittently develops in
these shear layers [11–13] with, between them and the top and bottom faces of the
square cylinder, two recirculations, very unstable over time, with a reverse flow
near the wall. The shear layers do not reattach on the side walls, but eventually
on the rear face. They flaps above and behind the trailing edges and they roll
up as the Karman instability develops. The vortical structures associated with
this instability are continuously and quasi periodically generated in the wake,
while the KH vortical structures appear intermittently in the shear layers [12,13].
The frequencies associated with the two instabilities are clearly separated in the
Fourier spectra of the velocity or pressure time signals: the Strouhal number
St = fD/U∞ of the Karman vortex shedding is approximately equal to 0.13
while it varies between 1 and 10 for the KH instability. In the near wake behind
the obstacle, the turbulent intensity is very high and the instantaneous flow is
complicated to describe. On the other hand, the time averaged flow is simple
(Fig. 1(right)): it is steady and symmetrical through the horizontal axis; the two
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separated shear layers are still present with two recirculations between them
and the side walls; lastly, in the near wake, there are two steady contrarotative
vortices with a reverse flow on the horizontal axis.

Fig. 1. Schematic representation of the instantaneous phase averaged and time aver-
aged flow around a square cylinder at high Reynolds number.

3 Bibliographical Review for Reference Solution
Setting-Up

Several quantities are quasi systematically measured to characterize the global
dynamics of the just described flow. Their average values, with their dispersion
margins, are compiled in Table 1. They result from a synthesis of 17 experi-
ments ([4–6,11,12,14–20] among others), not detailed in the present paper. The
first reported quantity is the dimensionless wake length, Lw/D, where Lw is the
length from the square center to the point where the averaged horizontal veloc-
ity, u, vanishes (cf. Fig. 1(right)). St = fD/U∞ is the Strouhal number with
f the frequency of the vortex shedding. Cd, C ′

d and C ′
l are the time averaged

drag coefficient, the RMS of the drag coefficient and the RMS of the lift coeffi-
cient respectively. Cp,b = 2(p − p∞)/(ρ∞U2

∞) is the time averaged base pressure
coefficient, where p is the time averaged pressure on the rear face of the square
cylinder; p∞ and ρ∞ are the free stream pressure and density respectively.

Table 1. Global flow characteristics around a square cylinder at Re ≥ 104 resulting
from the synthesis [21] and the present one. {BEC} = blockage effect corrected values.

ReferenceMethods Re

×10−3
I % Lw/D St Cd C′

d C′
l −Cp,b

{BEC}
D/H%

Sohankar

2006 [21]

LES& exp.

synthesis

5–5000 0–2 0.13

± 0.01

2.15

± 0.15

0.18

± 0.05

1.3 ± 0.3 ∼6

Present

reference

values

Synthesis

from 17

experim.

10–200 0–2

4.4–6.5

10–14

1.4 ± 0.1

1.4 ± 0.1

1.4 ± 0.1

.13±.008

.13 ± .008

.13 ± .008

2.15 ± 0.1

1.9 ± 0.1

1.6 ± 0.1

.2±.03

.2 ± .03

.2 ± .03

1.2±0.2

1.1 ± 0.2

0.65 ± 0.25

1.5{1.4} ± 0.1

1.3{1.2} ± 0.1

0.9{0.8} ± 0.2

5–7.5

It is well known that these quantities and the flow structure do not depend on
Re for 104 to 2 × 104 ≤ Re ≤ 5 × 106 [21]. On the other hand, they may depend
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on the inlet turbulence intensity, I, and the blockage effect, D/H, due to the
presence of the cylinder in a finite size channel. When I increases, the inside and
outside of the separated shear layers are more linked (the shear layers thicken);
therefore the fluctuations of the lift force (C ′

l) decrease, the base pressure Cp,b

increases and the drag force (Cd) decreases [14,16,19]. Note however that C ′
d

and St are very few influenced by I.
The blockage effect, D/H, modifies the mean velocity at the obstacle level

and the hydrodynamic forces exerted on it. However, when D/H < 10%, its
influence on the global quantities of Table 1 is weak comparing with I influence:
the variations due to D/H are generally smaller than 10% but can reach 15% on
Cp,b, the quantity the most influenced by D/H. The blockage effect is a classical
issue of closed wind tunnels, overcome by appropriate corrections of the results
[22]. In the next to last column of Table 1, both the blockage effect corrected and
uncorrected values of Cp,b are mentioned, with the corrected value into braces.
The reference solutions resulting from our bibliographical review are given in
the last row of Table 1, with their dispersion margin. As discussed above, they
possibly depend on I and D/H. In the next to last line, they are compared with
the reference solutions established by Sohankar [21]. These reference solutions
agree well, with smaller dispersion margins for the present ones because LES
results are not included in our analysis, contrary to [21].

Table 2. Experimental correlations of Nu around a heated square cylinder at Re >
104 and Nu values at Re = 22, 000. In the last line: reference solutions for Nu at
Re = 22, 000. In all the experiments, flows are smooth: I < 0.6%. HT = heat transfer;
HMTA = heat and mass transfer analogy; correl. = correlation; I&I = interpolation
and integration of Nu or Sh profiles at Re = 22, 000.

Reference Metrology;

plotted

profiles

D/H

%

Method and

used fig. nb

in the refer.

Re

×10−3
Nuf

front

Nus

side or

top-

bottom

Nur

rear

Nut

total

Igarashi

(1985) [7]

HT; Nu

profiles

3.8-

7.3

correlation

correl. value

I&I of fig.4a

5.6-56

22

22 92.6 95.4-98.7 136.9

0.14Re0.66

102.8

105.9

Igarashi

(1986) [8]

HT; Cp,

Nu prof.

3.8-

7.3

correlation

correl. value

11-56

22

0.640Re1/2

94.9

0.131Re2/3

102.9

0.180Re2/3

141.3

0.14Re2/3

109.9

Tsutsui et

al (2001) [9]

HT; Cp,

Nu prof.

5 I&I of fig.10 22 90.5 102.1-100.6 136.1 107.3

Yoo et al.

(2003) [10]

HMTA;

Sh prof.

10 correl of fig.5

correl. value

I&I of fig.3c

11.25-37.5

22

22

2.197Re0.386

104.2

109.3

0.392Re0.55

95.9

106.5-100.4

.572Re0.545

133.1

139.5

107.3

113.9

Nu reference values from the above exp. 22 100±10 101±6 137±5 108±6

Table 2 compiles experimental results on the averaged Nusselt numbers Nu
around a heated square cylinder at Re ≥ 104 [7–9], with experiments on mass
transfer, using naphthalene sublimation in air flows around square cylinders [10].
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Indeed, using Colburn relation and heat and mass transfer analogy, the average
Sherwood number Sh is shown to be related to Nu by Nu/Sh = (Pr/Sc)1/3.
That provides Nu = 0.6778Sh at Prandtl number Pr = 0.71 and Schmidt
number Sc = 2.28 for the diffusion of naphthalene vapor into air at ambient
conditions [23]. The values of the front, side, rear and total average Nusselt
numbers (noted Nuf , Nus, Nur and Nut respectively) at Re = 22, 000 are
given in Table 2. They are obtained either directly from the experimental cor-
relations or from interpolations and integrations of the experimental profiles of
the Nusselt or Sherwood numbers at other Reynolds numbers. Reference solu-
tions with their dispersion margins for Nuf , Nus, Nur and Nut at Re = 22, 000
are then established from these interpolated results and given in the last line of
Table 2. They will be used below to validate the URANS simulations.

4 URANS Models, Flow Configuration and Numerical
Methods

The turbulent vortex shedding behind a square cylinder is a typical example of
large-scale coherent structures developing in a turbulent shear flow. The mod-
elling of this flow type was addressed by Reynolds and Hussain [24,25]. They
proposed a double or a triple decomposition of all the quantities, f , charac-
terizing these flows, in order to separately describe their mean (time-averaged)
contribution f , their periodic contribution f̃ (the coherent fluctuations around
the mean), their turbulent contribution f ′, and the interactions between f , f̃
and f ′. Thus a time signal in this flow type can be decomposed as follows:

f(M, t) = f(M) + f̃(M, t) + f ′(M, t) (1)

f(M, t) =< f(M, t) > +f ′(M, t) (2)

where < f(M, t) > is the phase average obtained by averaging over a large
ensemble of observations of f(M, t) at the same phase of the flow with respect to
a reference oscillator. As explained in [25], the phase averaging process rejects the
background turbulence and extracts only the organized motions from the total
signal. In the case of the turbulent vortex shedding behind a square cylinder,
it is observed that the coherent contributions < f > or f̃ are quasi periodic
and quasi two-dimensional in the plane (O, x, y) transverse to the cylinder axis,
and they are characterized by much larger space and time scales than those of
the three-dimensional turbulence, f ′. This explains the success of the URANS
models for such flow configurations.

In the present study, the RNG and Realizable k-ε models and the standard
and low Re versions of the k-ω SST model are tested in their basic forms (without
changing the constants of the models) using the CFD software Ansys/Fluent.
The Boussinesq hypothesis is used to relate the Reynolds stresses to the mean
velocity gradients and the turbulent heat fluxes to the mean temperature gra-
dients, with a turbulent Prandtl number Prt = 0.85. We refer to [2,3] and the
Ansys/Fluent documentation [26] for more details.



URANS Models for Forced Convection Around Heated Square Cylinders 71

The 2D flow configuration of the present simulations is presented on Fig. 2.
It is similar to the 2D plane (O, x, y) in the 3D LES study performed by Boileau
et al. (2013) [27]. An incompressible air flow, with the physical properties ρ =
1.1774 kg/m3, μ = 1.983 × 10−5 kg/m.s, k = 2.851072 × 10−2 W/m.K and Cp =
1006.43 J/kg.K, is imposed at the inlet of a rectangular channel, with a uniform
horizontal velocity U∞ = 9.2632m/s and temperature T∞ = 300K, and with
a turbulence intensity I = 2%. This air flow encounters a non-slipping square
cylinder of diameter D = 4 cm, heated at Tcyl = 330K. Thus Re = ρU∞D/μ =
22, 000 and Pr = μCp/k = 0.7. The channel is limited by two horizontal slipping
boundaries located at 6.5D from the top and bottom faces of the cylinder. A
zero-gradient boundary condition is applied at the channel outlet located at 15D
downstream the cylinder rear face. The reference frame (O, x, y) is at the square
center with (Ox) and (Oy) the horizontal and vertical axes respectively.

Fig. 2. Flow configuration and boundary conditions (B.C.) (left). Lines and coordinates
of the lines used for profile plots around the square cylinder (right).

The 2D incompressible URANS equations are solved with ANSYS/Fluent
v17.2 [26] by a collocated finite volume method using a 2nd order time implicit
scheme and a 2nd order Quick scheme in space. The SIMPLE algorithm is used
for the velocity/pressure coupling and Δt = 10−4 s for all the simulations. Since
the period of the Von Karman vortices is τ = 0.0332 s for a Strouhal number
St = D/(τU∞) = 0.13, one period is equal to 332 time steps and Δtadim =
U∞Δt/D = 0.023; this was checked to provide time converged solutions. To get
well converged statistics, the time integration duration is between 2 and 6 s,
which corresponds to 60τ to 200τ .

To analyze the grid sensitivity of the solutions, five non uniform Cartesian
grids refined close to the cylinder were used. The mesh total size Nx ×Ny varies
from Nx × Ny = 188 × 110 for the coarsest grid (that has 20 × 20 uniform cells
around the square cylinder with 5 < y+ < 30 to 50) to Nx × Ny = 435 × 310
for the finest grid (that has 140 × 140 uniform cells around the square cylinder
with 0 < y+ < 5 to 10). The different mesh sizes used are designated by the
cell number around the square cylinder (e.g. 140 × 140). The total cell number
Nx ×Ny is indicated in Table 3. For the finest grid 140×140, the first grid point
close to the wall is located in the viscous sublayer because y+ < 5 (except on
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the front face where y+ < 10). For the coarsest grid 20 × 20, the first grid point
is mainly located in the buffer layer because 5 < y+ < 32.

5 Analysis of the Global Quantities and Statistics

The global quantities and statistics, characteristic of the flow and heat transfer
around a square cylinder, are presented in Table 3 for the tested URANS models

Table 3. Flow and heat transfer global characteristics obtained from URANS simula-
tions at Re = 22, 000 and I = 2%. Comparison with the reference solutions of Tables 1
and 2 and [21] (two last lines). The values in italics fit the reference ranges and the bold
values in the yellow boxes are in a 10% accuracy from the references (20% accuracy
for C′

d and Cp,b, or in [21] range for C′
l).
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at Re = 22, 000 and I = 2%. The results of the k-ε and k-ω standard models
are not presented because they are less good than with the improved versions
and they are grid dependent. The reference solutions established in Tables 1 and
2 from the experimental results at 0 < I ≤ 2% are reminded in the last line of
Table 3. The URANS values in italics in Table 3 are in the experimental reference
ranges and the bold values in the yellow boxes are in a 10% accuracy from the
references for Lw/D, St, Cd and the Nu values, in a 20% accuracy for C ′

d and
Cp,b, and in the Sohankar [21] reference range for C ′

l . Larger accuracy ranges
are used for C ′

d, Cp,b and C ′
l because they are harder to reproduce by URANS

simulations. A first glance at Table 3 indicates that St and Cd are not pertinent
criteria to qualify the URANS models: they are indeed not discriminant enough
since nearly all the models are able to reproduce the St and Cd reference values.
On the other hand, Lw/D, C ′

d, Cp,b, the averaged Nusselt number on each face,
Nuf , Nus, Nur, and, to a lesser extent, C ′

l and the averaged total Nusselt
number Nut, are quite hard to reproduce: very few values of these quantities are
in italics in Table 3.

It appears that the k-ε RNG model does not well reproduce the experimental
results, except St, Cd, and Nut. The result quality also depends on the grid size:
only the mesh of 100×100 cells on the cylinder provides good enough results. The
k-ε realizable model presents better results than the RNG version for the flow
dynamics (except C ′

d). However, it provides poor values of the Nusselt numbers.
The best tested URANS model is k-ω SST because it allows recovering most
of the experimental results whatever the grid size used. The exceptions are for
the averaged Nusselt numbers that can be hard to obtain with the coarser grids
(20 × 20 cells around the cylinder) and, on the front face, where Nuf is over-
estimated and strongly grid dependent. Finally, a low Re version of the k-ω SST
model has been tested, in which the turbulent viscosity is damped by a damping
function in the low Re regions. It does not improve the basic k-ω SST model.

6 Analysis of Thermal and Dynamical Profiles Around
the Cylinder

Since the k-ω SST model is clearly the best among the tested models to mimic
the global dynamical and thermal behaviors of the flow, we investigate now its
ability to reproduce the local behaviors around the square cylinder. The lines
used to plot the field and wall profiles around the square cylinder are drawn on
Fig. 2(right). Comparisons of these profiles with experimental and LES results
are analyzed below. The main used LES results are extracted from Boileau et al.
(2013) [27] in which a high performance 3D simulation with heat transfer was
carried out on an unstructured mesh of 12.6 million cells, with y+ < 2 on most
of the square cylinder surface.

On Fig. 3, longitudinal profiles of the time-averaged streamwise velocity com-
ponent, u, and time-averaged total kinetic energy, ktot, along the symmetry axis
y = 0 in the cylinder wake (see Fig. 2(right)) are presented. The profiles from
the k-ω SST simulations are compared with experimental and LES results. On



74 X. Nicolas et al.

Fig. 3(left), the k-ω SST profiles of u/U∞ along y = 0 agree very well with the
experimental profiles [5,18,20] in the near wake, for x/D ≤ 2.5. In this zone, the
k-ω SST profiles converge towards the experimental results with the grid refine-
ment. The agreement of the LES profile [27] is a bit less good in this zone since
the recirculation length predicted by LES is approximately equal to Lw/D ≈ 1
while the experiments give Lw/D ≈ 1.4. On the other hand, in the far wake,
for x/D > 3, LES is able to predict the very slow velocity recovery observed
experimentally in [5,20]. This slow velocity recovery is due to the presence of
the large turbulent eddies of the Von-Karman alley. A faster velocity recovery is
observed in Durão et al. experiments [18] because both the background turbu-
lence intensity (I = 6%) and the blockage effect (D/H = 12.8) are much larger
than in [5,20] where I < 3% and D/H ≤ 7: indeed the turbulent dissipation and
the flow confinement both promote the large eddy disintegration and the veloc-
ity recovery. The URANS simulations also present this behavior on the largest
grids because the turbulent dissipation is promoted in this case. But if the grid
is refined (see the k-ω SST case 140 × 140), the URANS profiles better agree
with the experiments.

Fig. 3. Longitudinal profiles of the time-averaged streamwise velocity component and
time-averaged total kinetic energy in the cylinder wake along y = 0 (see Fig. 2 right).
Comparison of the k-ω SST results with experimental [5,6,18,20] and LES [27] results.

The fluctuations in the wake are depicted on Fig. 3(right) through the profiles
of the time averaged total kinetic energy, ktot. In the URANS simulations, it is
defined as the sum of the turbulent and coherent (or quasi-periodic) kinetic
energies:

ktot(M) = < k >(M) + k(M) (3)

with the time-averaged coherent kinetic energy defined as:

< k >(M) =
1
2

(
RMS2(< u > (M, t)) + RMS2(< v > (M, t))

)
(4)
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Fig. 4. Transverse profiles of the time-averaged (left) and fluctuating/RMS (right)
streamwise velocity component in the cylinder top wake. Comparison with experiments
[5] and LES [27,28].

and k(M) the time-averaged turbulent kinetic energy. In the experiments, ktot is
directly computed from the measured time signals of the velocity components as:

ktot(M) =
1
2

(
RMS2(u(M, t)) + RMS2(v(M, t))

)
(5)

In Fig. 1(right), the k-ω SST profiles of ktot are compared with the experi-
mental results from [5,6,18]. It appears that the k-ω SST profiles overestimate
ktot compared to the experiments, particularly around x/D = 2. This could
then explain the faster velocity recovery already observed in Fig. 3(left), the
total fluctuations (turbulent and coherent) promoting the break-up of the large
eddies.

The transverse/vertical profiles of the time-averaged and fluctuating/RMS
streamwise velocity components, obtained from the k-ω SST simulations on four
different grids, are plotted on Figs. 4 and 5. On Fig. 4, the profiles are located in
the top near wake of the cylinder, for 0.75 ≤ x/D ≤ 2.5 and 0 ≤ y/D ≤ 2.5. On
Fig. 5, they are located above the top surface of the cylinder along the vertical
lines x/D = −0.5 to 0.5 drawn on Fig. 2(right). They are compared with exper-
iments [4,5] and LES [27,28]. Globally, all these profiles are in good agreement
with the experiments. Furthermore, the k-ω SST solutions are as accurate as
the LES solutions when comparing with the experiments. The URANS averaged
streamwise velocity profiles, u(y), perfectly agree with the experimental and
LES results, particularly with the finest grid 140 × 140, both above the cylin-
der (Fig. 5) and in its wake (Fig. 4). A good enough agreement is also observed
for the averaged transverse velocity profiles v(y) (not shown) except in the near
wake for x/D ≤ 1 where the main discrepancies are observed. As for the velocity
fluctuation profiles, u′(y) (and v′(y); not shown), the k-ω SST simulations seem
to slightly overestimate the experimental values, at least for y/D > 0.7.

On Fig. 5, it is very satisfying to observe that the k-ω SST model is able to
capture the complex flow physics above the cylinder. The flow separation at the
leading edge of the bluff body, the thickness of the shear layer, the backflow with
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Fig. 5. Same as Fig. 4 for the cylinder top face and comparison with experiments [4].

a negative velocity in the recirculation below the separated shear layer are well
reproduced by this URANS model (see u(y) on the left of Fig. 5). Moreover the
intensity of the velocity fluctuations in the flapping shear layer are well captured,
sometimes better than with the LES (see u′(y) on the right of Fig. 5).

The wall profiles of the time-averaged pressure coefficient, Cp, and Nusselt
number, Nu, around the cylinder surface are considered on Fig. 6. On the left, the
Cp profiles on the front and rear faces and on the trailing edges of the horizontal
faces (closed to the points B and C) are in a fairly good agreement with the
experimental data [15,17] and the recent DNS [13]. However discrepancies are
observed on the top and bottom plates close to the leading edge (close to points
A and D): the Cp values are underestimated by the k-ω SST model in this
zone. These inaccuracies are maybe due to a too poor spatial resolution in these
critical zones, where high speeds and boundary layer separations are observed
(the y+ values, not shown here, are maximum at points A and D). For the LES
[27], an opposite agreement is observed: the maximum discrepancies with the
experimental data are on the trailing edges of the horizontal faces and on the
rear face.

Fig. 6. Profiles of the time-averaged pressure coefficient (left) and Nusselt number
(right) around the cylinder surface. Comparisons with experiments [7,10,15,17], LES
[27] and DNS [13].
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The time-averaged Nusselt number is plotted on Fig. 6(right). The k-ω SST
profiles are compared to the LES [27] and experimental solutions [7,8,10]. As
the Nusselt profiles of these experiments are not measured at Re = 22, 000, the
Nu experimental profiles of Fig. 6(right) are interpolated from the Nu profiles
plotted in [7,8,10] at other Re values. We have used the Nu profiles at the closest
Re values from 22,000 and the interpolation laws as a function of Re established
in these references, whose equations are reported in Table 2 for each cylinder face.
Table 2 has shown that the maximum averaged heat transfer around a square
cylinder is located on the rear face. Figure 6(right) more precisely indicates that
the maximum Nusselt numbers are located on the front face close to the angles
(due to higher velocities at points A and D) and at the trailing edges of the
horizontal faces (due to the flapping shear layers on the rear face [4] and the high
level of the velocity fluctuations in the near wake of the cylinder; see Figs. 4(right)
and 5(right)). When the grids are refined from 20× 20 to 140× 140 cells around
the cylinder, the k-ω SST Nu solutions seem to converge, at least on the front
and rear faces (a variation is still present on the horizontal faces below the
separated shear layer). Once again, the discrepancy between the URANS solution
on the finest grid and the two experimental solutions [7, 10] is equivalent to the
discrepancy between LES [27] and experiments, except on the front face where
the k-ω SST solutions overestimate by 20% the experimental values.

7 Conclusions

The turbulent forced convection at high Reynolds number (Re ≥ 104) around
a square cylinder is a very interesting test case to qualify turbulence models
because it contains very rich flow features: laminar/turbulent transition, flow
separation, backward recirculation, turbulent wake flow with vortex shedding
and heat transfer around the obstacle. In the first part of the paper, reference
quantities describing the main flow and heat transfer characteristics of this test
case have been set-up from a synthesis of around twenty distinct experiments.
The flow characteristics concern the wake length, the Strouhal number and the
time-averaged and RMS of the drag, lift and pressure coefficients. Furthermore
a reference solution for the time-averaged wall Nusselt number on each cylinder
face is built for the first time.

From the results of the various k-ε and k-ω models tested, it has been shown
that the Strouhal number, the averaged drag coefficient and the RMS of the
lift coefficient, which are usually used criteria to qualify numerical models, are
in fact not selective enough to distinct between the appropriate and the non-
pertinent models. On the other hand, quantities like the wake length, the RMS
of the drag coefficient and the averaged Nusselt number on each face are hardly
predictable.

Among the URANS models tested, it has been shown that the k-ω SST model
is the most relevant to predict the flow dynamics and heat transfer in the present
flow configuration, whatever the grid sizes for wall Reynolds numbers such as
y+ < 20. The k-ε type models provide unsatisfactory results for the present test
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case, particularly for heat transfer. The low Re version of the k-ω SST model
does not improve it.

An analysis of the averaged and fluctuating velocity profiles around the
square cylinder and the wall profiles of the averaged pressure coefficients and
Nusselt number has been carried out, with numerous comparisons with LES and
experimental results. Compared with the experiments, the k-ω SST results are
shown to be as accurate as the LES results [27], but for a much smaller compu-
tational cost, compatible with industrial applications. We have indeed evaluated
the ratio of the LES CPU time in [27] to the present URANS CPU time: it varies
between one and two magnitude orders according to the grid sizes.

To conclude, this paper proves that the k-ω SST model can be an excellent
model for simple industrial flow configurations such as the present one, in partic-
ular when a sort of scale separation is present between the space and time scales
of the largest eddies (here the von-Karman vortices) and those of the turbulence.
However one cannot conclude that the k-ω SST model will be pertinent in more
complex flow geometries, in particular when several characteristic frequencies of
the flow will interact, like in the interaction between a wake flow and a free jet
flow for instance.

Acknowledgments. Asmaa Ait Daraou and Salmane Merzouki are gratefully
acknowledged for their contribution to the present work.
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Abstract. As a consequence of the remarkable advances in computa-
tional sciences realized over the past decades, complex physical pro-
cesses can now be simulated. To insure fidelity and accuracy, precise
convergence criteria must be satisfied. While efforts have been dedicated
towards the validation of the computational tools specialized in two-
phase flows, there remains a number of open questions. One of them
is whether numerical solvers build upon the one-fluid formulation are
able to converge integral quantities. This includes enstrophy, to which
the boundary layers that develop in the interface vicinity contribute the
most. A subsequent question is whether the lack of convergence of the
aforementioned quantity affects lower order statistics, chief among them
the surface area density. The presented work examines these questions in
the context of the phase inversion configuration [1,2]. Moderate Reynolds
and Weber numbers are selected so as to guarantee proper resolution of
the single-phase flow. The simulations are performed using Basilisk, a
recently developed tree-based software using adaptive meshes.

Keywords: CFD · Multiphase flows · Convergence study

1 Introduction

As a consequence of the remarkable advances in computational sciences realized
over the past decades, complex physical processes can now be simulated with
an astonishing degree of fidelity and accuracy. In the case of two-phase flows
in particular, simulation and modeling have evolved from simplistic or back-of-
the-envelop estimates (integral balance, analytical analysis) to peta-scale and
soon exa-scale computing applications, generating unprecedented amounts of
information.
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However, an increase in problem size does not necessarily correspond to an
improvement in fidelity and predictability, since precise convergence criteria must
be satisfied. While such properties are well-established in the computational
methods employed in the single-phase community, the same can not be said for
its two-phase counterpart, since the presence of the interface and related artifacts
prohibits the use of the same analysis. The inability to perform such analysis
is the main source of the discrepancies observed in direct numerical simulation
(DNS) of multi-scale two-phase flows, where flow statistics fail to converge under
mesh refinement (total enstrophy, for example [2]). In the past three decades,
a series of efforts have been dedicated to physical validation of computational
tools devoted to multi-phase flows. These studies range from interface tracking
algorithm with analytical velocity fields, to comparison of Navier-Stokes sim-
ulations to available experiments and analytical solutions, or validation versus
linear stability theory [3]. However, in most of these cases the topology of the
interface is kept simple and the variation of only one multiphase flow charac-
teristic, such as, oscillation modes of a free surface, coalescence of two drops,
etc. is considered. Therefore, the details of the interaction between the interface
and the underlying unsteady and usually turbulent flow, characteristic of most
relevant environmental and industrial applications, remains unexplored.

Fig. 1. A sketch of the phase inversion problem in a closed box. L denotes the size of
the computational domain.

A reference problem, similar to the homogenous isotropic turbulence [4],
adapted to multiphase flow configurations, would provide a benchmark for assess-
ing features such as accuracy and convergence of the underlying solvers in a more
rigorous fashion. Osmar et al. [2] introduced the phase inversion of an oil droplet
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into a heavier fluid inside a box, shown in Fig. 1 and studied previously by [1,5,6],
as a possible candidate, since it satisfies the following necessary criteria: (i) The
initial condition is geometrically simple. (ii) The final steady-state solution is
well known and is described by a horizontal plane with all the light fluid on
the top. (iii) The problem showcases features similar to multi-scale multi-phase
flows, as encountered in real motions, such as, large interfacial scales interact-
ing with small dispersed droplets. The first two points are necessary in order
to lift restrictions on the grid generation requirements and the numerical meth-
ods implemented for simulating the underlying flow. The set-up also allows an
extensive parametric study by changing the density or viscosity ratios at the
interface as well as the surface tension coefficient, resulting in various regimes:
laminar, turbulent, strongly dispersed flows, as well as, large drop topologies.
From a numerical point of view, physical parameters can also be defined such
that a numerical convergence study is realizable for a DNS configuration, where
time and spatial scales of both the flow and the interface are resolved.

This set-up is therefore chosen here to assess the performance of an open
source code, Basilisk [7]. The objective of this study is to first investigate the
convergence of the code in various Reynolds and Weber number regimes and
to also establish whether the underlying Navier-Stokes solver together with the
interface tracking technique can provide consistent solutions of this problem.

The manuscript is organized as follows. The governing equations are pre-
sented in Sect. 2. Section 3 briefly explains the numerical implementation of
the underlying equations in Basilisk. The computational domain is presented
in Sect. 4, where the specifications of various cases studied in this work are also
described. The results are then discussed in Sect. 5. Finally, Sect. 6 presents the
summary and conclusions of this work.

2 Governing Equations

The flow is governed by Navier-Stokes equations for a mixture of two immiscible
fluids. The interface position is defined by a Heaviside function H that takes the
value of one in the reference phase and zero in the other [8]. The evolution of H
is given by

∂H
∂t

+ u · ∇H = 0, (1)

where u denotes the velocity vector. The continuity and momentum equation in
each phase i (for the purpose of this study i = 1, 2) reads as

∇ · u = 0, (2)

ρ

(
∂u
∂t

+ (u · ∇)u
)

= −∇P + ρg + ∇ · (μ(∇u + ∇Tu)), (3)

where P represents the pressure, g the gravity vector, ρ the density, and μ the
dynamic viscosity. Term ()T denotes the transpose operator. In the one fluid
formulation, each variable is weighted by the respective volume fraction and
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then added to obtain evolution equations for the various averaged quantities.
What remains is to account for the relation between the velocity and pressure,
established by mass and momentum balances across a differentially thin interface
located at xI . In the absence of mass transfer, the velocity across the interface is
continuous u1(xI) = u2(xI), and the Laplace equation gives the pressure jump
at the interface as

p1 − p2 = σκ, (4)

where, σ denotes the surface tension coefficient, and κ the curvature of the
interface. Applying these conditions for the region containing an interface, the
momentum equation can be represented for averaged quantities as [9]

ρ

(
∂u
∂t

+ (u · ∇)u
)

= −∇P + ρg + ∇ · (μ(∇u + ∇Tu)) + σκniδi. (5)

In the above equation, ni is the vector normal to the interface and δi a Dirac
function indicating the location of the interface.

3 Numerical Treatment

An open-source numerical solver, Basilisk [7], is used to carryout the simulations.
The basis for the numerical scheme, employed in this solver, is the incompress-
ible adaptive Navier-Stokes solver Gerris [10,11], which uses an octree for spatial
discretization. This fine-scale adaptivity was proven invaluable [12], specifically
in case of multiphase flows, where it is desirable to refine on and along interfaces.
The interfaces itself is implicitly represented using an extension of the piece-wise
linear geometric volume of fluid (VOF) treatment for adaptive meshes [12]. The
resulting treatment allows full adaptivity along the interface while keeping all
the other advantages of the VOF method, such as, arbitrary interface topology
and topological changes, good mass conservation properties and sharp interface
description. The basis for the advection of the volume fraction is the direction-
split scheme originally implemented by DeBar [13] and re-implemented by others
[14,15], resulting in a scheme which is generally identical to the Eulerian-implicit-
explicit scheme described by Rider and Kothe [14]. Volume fluxes are then esti-
mated using the geometry of the reconstructed interface [13,16]. This geomet-
rical approach is efficient and simple to implement for Cartesian discretization
elements. Finally, surface tension is calculated using a novel generalized height-
function (HF) method for low resolutions, which ensures consistent second-order
convergence of the curvature estimates across all resolutions [12], which is made
applicable to octree grids by using the virtual regular Cartesian stencils method.

4 Computational Domain

The non-dimensional numbers governing the dynamics of this problem are the
Reynolds (Re), and the Weber (We) numbers defined below;

Re =
ρ1LUg

μ1
, and We =

ρ1LU2
g

σ
, (6)
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where Ug = [(ρ2−ρ1)/ρ1×√
Hg/2] is defined according to the density variations

at the interface and the buoyancy forces. The related dimensionless numbers of
the various cases visited in this study are given in Table 1.

Table 1. The parameters of the three cases discussed in this study.

ρ1

(kg ·m−3)

μ1

(Pa · s)

ρ2

(kg ·m−3)

μ2

(Pa · s)

Surface

tension, σ

(N · m−1)

Gravity, g L m Re We

Case 1 1000 0.1107 900 0.1107 0.0613 9.81 0.1 200 80

Case 2 1000 0.0111 900 0.0111 0.0153 9.81 0.1 2000 320

Case 3 1000 0.1107 900 0.1107 0.0153 9.81 0.1 200 320

In order to ensure that the various scales, present in the flow, are properly
resolved throughout the convergence study, moderate Re and We numbers are
selected in all the cases. For simplicity, slip boundary conditions are enforced at
all the edges of the computational domain.

5 Results

The main objective of this study, as mentioned previously, is to verify whether in
such low Reynolds and Weber number regimes convergence is achieved using the
underlying numerical solver (Basilisk). Since this solver uses adaptive meshes,
the grid-spacing is set by fixing the maximum refinement level permitted by the
code a priori, and thus determining the maximum resolution. Henceforth all grids
are reported using the maximum resolution, captured by the maximum level.
Various quantities are considered in order to establish convergence, amongst
which are kinetic energy and the evolution of enstrophy in fluid 1 using the
following equation,

E =
∫

Ω

C · 1
2
ω2 dV, (7)

where C is the characteristic function of phase one, with C = 1. Previous studies
show that enstorphy is the most sensitive, as far as convergence is concerned,
and therefore is selected as the measure of convergence in this study.

Figure 2 shows the evolution of kinetic energy and enstrophy for various level
of refinement, applied to case 1 with the lowest Re and We numbers. As expected,
kinetic energy is converged, while the same can not be said for enstrophy. Exam-
ining Fig. 2(b) suggest that for 0.8 < t < 1.3 the evolution of enstrophy for
various levels shows different behaviors, while for the remaining times conver-
gence is achieved. These two limits, t = 0.8 and t = 1.3, are identified as cases
A and B in the figure and the position of the interface for these two cases are
shown in Figs. 2(c) and 2(d). These figures also show the grid refinement around
the interface. Case A coincides with the time where the interface reaches the
upper boundary, causing the breakup of the sheet. Case B, on the other hand,
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coincides with the time where the sheet breakup is complete and the location
of the interface with respect to the boundary does not change within the time
frame of interest. Therefore, the lack of convergence could be attributed either
to the sheet breakup or the interaction of the fluid with the upper boundary.
Before examining these possibilities, the variation of the enstrophy is examined
for increasing Reynolds and Weber numbers, in order to establish the influence
of these parameters on the convergence of the solution.

Time 

k 

(a) Kinetic energy

A B 

Time 

E 

(b) Enstrophy

(c) Case A (d) Case B

Fig. 2. Temporal evolution of kinetic energy and enstrophy, as well as, the position of
interfaces for Cases A and B. The results are shown for Re = 200 and We = 80. —,
2563; —, 5122; —, 10243; —, 20483.

Two cases are considered for further analysis: (i) a case where the value of
both Reynolds and Weber numbers are increased compared to the original case
(Fig. 2), and (ii) a case where only the value of the Weber number is increased
and the Reynolds number is kept the same as the original case. The evolution
and convergence of enstrophy for both cases is shown in Fig. 3. Comparison of
the evolution of enstrophy profiles to the original case, Fig. 2(b), shows that
the rapid oscillation in the enstrophy profile for the smaller grid resolutions is
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suppressed in the case with increased Reynolds and Weber numbers. On the
other hand, the case with increased We number behaves similar to the original
case. Also in the case where the Re number is increased, contrary to the other two
cases, enstrophy does not diverge when the profile first hits the upper boundary
at t ≈ 0.7, corresponding to Fig. 3(c). Disagreements appear due to secondary
interactions of the interface with the upper boundary, shown in Fig. 3(d) in the
region highlighted by the circle. As the Reynolds number is lower in the other
two cases, the interface distribution is more regular, demonstrated by Figs. 3(e)
and 2(c), causing this secondary interaction to be absent.

Fig. 3. Temporal evolution of enstrophy. (a) Re = 2000 and We = 320; (b) Re = 200
and We = 320. —, 2563; —, 5122; —, 10243; —, 20483.

In order to determine whether the slip boundary condition is responsible
for the lack of convergence in the studied cases, an alternative configuration is
considered, where the upper boundary is augmented by a layer of thin film. This
alternate setup causes the rising fluid to first interact with the thin film before
reaching the upper boundary. The non-dimensional governing parameters are
set to the value of the original case, with Re = 200 and We = 320. The initial
configuration is shown in Fig. 4(a). Varying the thickness of the film, results of
which are not shown here, demonstrates that an optimal thickness is required
beyond which the dynamics of the system becomes independent of the upper
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boundary. In order to reach this limit the thickness of the film is chosen as
L0 = L/4. Figure 4(b) shows that when the rising interface reaches the layer of
thin film on the top of the box, the convergence in the enstrophy is lost. However
when the film is fully reconnected at t ≈ 1.2, the prediction of the evolution of
enstrophy agrees across all resolutions and convergence is established. Therefore,
although the nature of boundary conditions is different than that of the original
case, enstrophy seems to behave similarly, suggesting that the sheet breakup,
and not the nature of the boundary condition, might be responsible for the lack
of convergence in the enstrophy profile.

Fig. 4. A case with a thin film at the upper boundary. —, 2563; —, 5122; —, 10243;
—, 20483.

In order to examine the nature of the breakup as the sheet hits the upper
boundary, the interface distribution of the lowest and highest grid resolutions,
for the original case, are compared. Figure 5 shows the interface at the moment
of breakup in the two cases. The comparison shows that the sheet breaks by
forming small ligaments the size of the grid resolution. As the gris resolution
changes, so do the structures that are formed during the breakup process, which
can potentially effect the integral quantities such as the enstrophy. What remains
to be established, is whether the numerical method through the alignment of the
grid is affecting this process, or there exists a physical explanations. The answer
to these questions are left as a topic of future research.

In order to establish whether the sheet break up is responsible for the loss
of convergence, the evolution of the enstrophy profile will be calculated over a
modified domain, for case 1. The modified domain is defined such that the region
which includes the sheet breakup is excluded when evaluating the desired integral
quantity. As a first attempt, the integral is evaluated over the entire region 0 ≤
z ≤ (11×L0)/12, where z denotes the vertical axis. Figure 6 shows the evolution
of the kinetic energy and enstrophy for this subdomain. Both profiles converge,
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(a) 20483 (b) 2563

Fig. 5. The structure of the breakup as the interface reaches the upper boundary.

Time 

k 

(a) Evolution of the kinetic energy

Time 

E 

(b) Evolution of enstrophy

Fig. 6. Evolution of integral quantities for a subdomain, excluding the sheet breakup,
for Re = 200 and We = 80. —, 2563; —, 5122; —, 10243; —, 20483.

even after the interaction of the interface with the upper boundary, confirming
the hypothesis that the sheet breakup at the top boundary is responsible for the
lack of convergence in the integral quantities, and in particular, the enstrophy
profile.

6 Summary and Conclusions

In this study a phase inversion problem [2] is used as a reference test case to
investigate the convergence of an open source code “Basilisk” [7]. In order to
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establish convergence, various integral quantities are considered, in particular,
enstrophy, which has been shown to be the most sensitive as far as the conver-
gence criteria is concerned. Therefore, most results throughout the study are
presented using this integral quantity. The results show that even for moderate
Re and We numbers, the convergence is lost as the interface reaches the upper
boundary of the computational domain. Examining the interface topology as it
reaches the upper boundary, it was shown, that it breaks by creating thin liga-
ments the size of the grid resolution. As the grid resolution increases, the width
of these ligaments decrease, resulting in the lack of convergence in the quantity
of interest. Increasing Re and We numbers has little effect on the convergence
property at the time of breakup. By removing the region including the sheet
breakup when calculating the integral quantity of interest, it was established
that, convergence is achieved within the subdomain, suggesting that the exist-
ing sheet breakup is responsible for the lose of convergence. This hypothesis was
also confirmed by replacing the slip boundary condition with a thin film of the
lighter fluid and altering the interface/boundary interaction. The modified setup
shows clearly, that throughout the region where the sheet breaks and reconnects
the convergence is lost, and afterwards all grids arrive to a convergent solution
again. This conclusion motivates further studies in the break up process of a
liquid sheet, in order to establish whether the lack of convergence is due to the
numerical treatment of the interface, or whether it is a consequence of a physical
phenomenon.
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Abstract. Large-eddy simulation (LES) seeks to predict the dynamics
of the larger eddies in turbulent flow by applying a spatial filter to the
Navier-Stokes equations and by modeling the unclosed terms resulting
from the convective non-linearity. Thus the (explicit) calculation of all
small-scale turbulence can be avoided. This paper is about LES-models
that truncate the small scales of motion for which numerical resolution is
not available by making sure that they do not get energy from the larger,
resolved, eddies. To identify the resolved eddies, we apply Schumann’s
filter to the (incompressible) Navier-Stokes equations, that is the turbu-
lent velocity field is filtered as in a finite-volume method. The spatial dis-
cretization effectively act as a filter; hence we define the resolved eddies
for a finite-volume discretization. The interpolation rule for approximat-
ing the convective flux through the faces of the finite volumes determines
the smallest resolved length scale δ. The resolved length δ is twice as large
as the grid spacing h for an usual interpolation rule. Thus, the resolved
scales are defined with the help of box filter having diameter δ = 2h.
The closure model is to be chosen such that the solution of the resulting
LES-equations is confined to length scales that have at least the size δ.
This condition is worked out with the help of Poincarés inequality to
determine the amount of dissipation that is to be generated by the clo-
sure model in order to counterbalance the nonlinear production of too
small, unresolved scales. The procedure is applied to an eddy-viscosity
model using a uniform mesh.

Keywords: Large-eddy simulation · Scale truncation · Filter length

1 Large-Eddy Simulation

The Navier-Stokes (NS) equations provide a model for turbulent flow. In the
absence of compressibility (∇·u = 0), the NS-equations are

∂tu + ∇·(u ⊗ u) − ν ∇·∇u + ∇p = 0, (1)

where u denotes the fluid velocity, p stands for the pressure and ν is the viscos-
ity. The entire spectrum - ranging from the scales where the flow is driven to
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the smallest, dissipative scales - is to be resolved numerically when turbulence
is computed from the NS-equations. The available computing power is often
inadequate to resolve the small scales where the dissipation takes place. In that
case, the NS-equations do not provide a tractable model. Therefore, finding a
coarse-grained description is one of the main challenges to turbulence research.
A most promising methodology for that is large-eddy simulation [1].

Large-eddy simulation (LES) seeks to predict the dynamics of spatially fil-
tered turbulent flows. To that end, a spatial filter is applied to the NS-equations:

∂tu + ∇ · (u ⊗ u) − ν ∇·∇u + ∇p = ∇ · (u ⊗ u − u ⊗ u) (2)

where the filter is denoted by a bar, i.e., u denotes the filtered velocity field,
and p stands for the filtered pressure. Here it may be stressed that it is assumed
that the filter commutes with spatial differential operators. The right-hand side
represents the effects of the residual scales on the ‘larger eddies’. To remove the
explicit dependence on the residual scales of motion, the commutator of u ⊗ u
and the filter is replaced by a closure model. This yields

∂tv + ∇ · (v ⊗ v) − ν ∇·∇v + ∇π = −∇ · τ(v) (3)

where the variable name is changed from u to v (and p to π) to stress that the
solution of (3) differs from u, because the closure model τ is not exact [2].

2 Filter Length of a Finite-Volume Discretization

When the LES-equations are discretized in space, the low-pass characteristics
of the discrete operators effectively act as a filter too. This numerical filter will
inevitably interact with the filter that is explicitly applied to the Navier-Stokes
equations. To try to distinguish these filters, we apply Schumann’s filter to the
NS-equations [3]. That is, as in a finite-volume method we take

u =
1

|Ωh|
∫

Ωh

u(x, t) dx,

where Ωh denotes a cell of the computational mesh. To start, we consider an
one-dimensional uniform mesh with spacing h. Schumann’s filter is then given
by

ui =
1
h

∫ xi+h/2

xi−h/2

u(ξ, t) dξ (4)

Like in a finite-volume method, the conservation of momentum is described by

h
dui

dt
+ u2

i+1/2 − u2
i−1/2 = · · · (5)

where ui+1/2 denotes the velocity at xi+1/2, that is exactly midway between
the grid points xi and xi+1. The dots in Eq. (5) stand for the linear (diffusive)
contributions to the conservation law. These contributions are omitted because
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they are not important here. The core problem is that the velocities ui+1/2 at
the faces of the control volume (here in 1D) are to be expressed in terms of the
box-filtered velocities ui. To make that connection, we introduce a second filter
with filter length δ:

ũi+1/2 =
1
δ

∫ xi+1/2+δ/2

xi+1/2−δ/2

u(ξ, t) dξ (6)

Note that this filter is half a grid cell shifted relative to the original filter. Now
by choosing δ = 2h, we obtain the key relation

ũi+1/2 =
1
2

(ui + ui+1) (7)

This equation does not contain any error! Thus the conservation law (5) can also
be written as

h
dui

dt
+ ũ2

i+1/2 − ũ2
i−1/2 = −σi+1/2 + σi−1/2 + · · · (8)

where σi+1/2 = ũ2
i+1/2−u2

i+1/2. According to Eq. (7), the left-hand side depends
on the spatially filtered velocities ui−1, ui and ui+1. In the conventional finite-
volume method, Eq. (7) is viewed as the interpolation rule for the fluxes - the
interpolation rule is then given by ui+1/2 ≈ ũi+1/2. Consequently, the right-hand
side of (8) represents the interpolation error. If, however, Eq. (8) is seen as a
closure problem, then the problem reads: express σi+1/2 in terms of the box-
filtered velocity ũi+1/2. So from that point of view, (the effect) of the residual of
the δ-filter is to be modeled to close (8). These different points of view illustrate
the entanglement of the discretization (here: interpolation) error and the closure
model.

We take δ = 2h and consider two neighboring ‘volumes’, say [xi−1/2, xi+1/2]
and [xi+1/2, xi+3/2]. The two corresponding momentum equations (Eq. (8) for
ui as well as for ui+1) can be added together using Eq. (7). Thus, we get

δ
dũ

dt
i+1/2 + ũ2

i+3/2 − ũ2
i−1/2 = −σi+3/2 + σi−1/2 + · · ·

A finite-difference approximation with stepsize δ = 2h induces a spatial filter
too. Indeed,

φi+3/2 − φi−1/2

δ
=

1
δ

∫ xi+3/2

xi−1/2

∂φ

∂x
(ξ) dξ =

∂̃φ

∂x
i+1/2

Hence by combining the two equations above, we obtain

∂tũ + ˜∂xũ2 = ˜∂x(ũ2 − u2) + · · · (9)

Once again, it may be stressed that the above momentum equation is exact: it
does not contain any error yet. The nonlinear term in the left-hand side is usually



94 R. Verstappen

not filtered; hence to put it the standard LES-form, we add the residual of ∂xũ2

to both the left- and right-hand side. This yields the common LES-template
wherein the filter length equals δ = 2h (i.e., is given by the interpolation filter):

∂tũ + ∂xũ2 = ∂x(ũ2 − ũ2) + · · · (10)

So, in a finite-volume setting, we need to model the effects of all scales smaller
than δ = 2h, and not just the subgrid contributions. Indeed, the finite-volume
template (8) can be closed by modeling the effect of the residue of the interpo-
lation filter (6). If we view the finite-volume method in this way, we should be
borne in mind that the closure condition is to be imposed at the scale δ = 2h
which is determined by the interpolation rule. It may be remarked here that the
highest frequency that can be represented on the grid (the mode that equals +1
in the even grid points and −1 in the odd grid points) lies in the kernel of the
interpolation operator; hence that mode is invisible and therefore it’s effect need
be modeled.

So far, we have only considered one spatial dimension. The above reasoning
can simply be extended to more dimensions. Indeed, also in two or three dimen-
sions we need to interpolate the velocities to the faces of the control volumes
and the interpolation filter has width 2h.

3 Separation of Scales

The very essence of large-eddy simulation is that the (explicit) calculation of
all small-scale turbulence - for which numerical resolution is not available - is
avoided. This sets a condition to the closure model [4–7]. To determine this
condition, we consider an arbitrary part of the flow domain with diameter δ.
With the aid of the associated box filter,

ṽ =
1

|Ωδ|
∫

Ωδ

v(x, t) dx, (11)

the undesirable small scales in the LES-field v are defined by v′ = v − ṽ.
We make use of the Poincaré-Wirtinger inequality to develop a scale-

separation condition, see also [4–6]. This inequality states that there exists a
constant Cδ depending only on the domain Ωδ such that∫

Ωδ

|v − ṽ|2 dx ≤ Cδ

∫
Ωδ

|∇v|2 dx (12)

That is, the L2(Ωδ) norm of the residual field v′ is bounded by a constant
(independent of v) times the L2(Ωδ) norm of ∇v. Payne and Weinberger [8]
have shown that the Poincaré constant is given by Cδ = (δ/π)2 for convex
(bounded, Lipschitz) domains Ωδ. This is the best possible estimate in terms of
the diameter alone.

The Poincaré inequality provides an upper bound for the energy of the
unwanted subfilter scales of motion. Note that if we take the closure model
such that

∫
Ωδ

|∇v|2 dx = 0 for all times, then
∫

Ωδ
|v′|2 dx = 0.
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4 Counterbalancing the Production of Too Small Scales

Equation (12) shows that the energy of the too small scales can be bounded by
L2(Ωδ) norm of the velocity gradient ∇v. According to Eq. (3), this L2-norm is
governed by

d
dt

∫
Ωδ

1
2
|∇v|2dx =

∫
Ωδ

∇ (ν ∇·∇v) : ∇ dx (13)

−
∫

Ωδ

∇∇·(τ + (v ⊗ v) + πI) : ∇v dx

Here it may be remarked that we use the common notation a : b =
∑

ij aijbij .
The second line of the right-hand side above represents the nonlinear produc-
tion as a result of the pressure, convection and the modeled eddy-dissipation,
respectively. Equation (13) shows that

d
dt

∫
Ωδ

1
2
|∇v|2dx = −ν

∫
Ωδ

∇·∇v : ∇·∇v dx ≤ 0 (14)

provided the closure model τ is chosen such that
∫

Ωδ

∇∇·(τ + (v ⊗ v) + πI) : ∇v dx =
∫

∂Ωδ

ν∇v : ∂n∇v ds (15)

It goes without saying that we have to initialize the velocity field such that
v′ = 0 at t = 0. Then, v is constant in Ωδ; hence ∇v = 0 in Ωδ. Thus, we have∫

Ωδ
|∇v|2dx = 0 at t = 0. If Eq. (14) is supplied with this initial condition we

obtain
∫

Ωδ
|∇v|2dx = 0 for all times t ≥ 0. Now by applying Poincaré’s inequality

(12) we arrive at
∫

Ωδ
|v ′|2 dx = 0. So, in conclusion, Eq. (15) ensures that all

scales of size smaller than δ are insignificant, and hence need not be computed.
Stated otherwise, if Eq. (15) is satisfied, the closure model τ counterbalances
the nonlinear production of small, unresolved scales of motion in a large-eddy
simulation of turbulence.

To elaborate on this truncation condition, we use Cayley-Hamilton’s theorem.
For incompressible flows, Cayley-Hamilton states that ∇v3 − Q∇v + RI = 0,
where the second and third invariant of the velocity-gradient tensor are given
by Q(v) = 1

2∇v : ∇v and R(v) = − 1
3∇v∇v : ∇v = −det ∇v, respectively. The

convective contribution to the left-hand side of Eq. (15) can be written in terms
of these invariants. Indeed, since ∂kvk = 0, we have

∫
Ωδ

∂i∂k (vkvj) ∂ivj dx

=
∫

Ωδ

∂ivk∂kvj∂ivj +
1
2
∂k

(
vk (∂ivj)

2
)

dx

−
∫

Ωδ

3R(v) dx +
∫

∂Ωδ

Q(v) v · nds
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where n is the outward-pointing normal vector to the boundary ∂Ωδ of Ωδ and
ni = ni/δi. It may be noted that he Einstein summation convention applies here,
i.e., the above formula represents a summation over the terms indexed by i, j
and k. In the sequel we will implicitly use Einstein’s notation too.

In conclusion, the nonlinear contributions to the evolution of the L2(Ωδ)
norm of ∇v are balanced by the closure model if

∫
Ωδ

∇∇·(τ + πI) : ∇v dx = 3
∫

Ωδ

R(v) dx (16)

−
∫

∂Ωδ

(Q(v) v · n + ν∂nQ) ds

This condition ensures that the dissipation provided by the closure model τ is
sufficient to damp the production of any scales of size smaller than δ. Thus the
model confines the LES-solution to scales having at least length δ. It may be
noted that the surface integral in Eq. (16) consists of two parts. The first part
represents the convective flux of Q through the boundary of the box; the negative
sign occurs because the normal is taken in the outward direction. The second
part represents the viscous diffusion of Q through the boundary of the box Ωδ.
The volume integral describes the production of Q; note: R provides a measure
for the production.

5 Eddy Viscosity

The eddy-viscosity model is the most widely used model. For that reason, we
consider it here. That is, we adopt the template

τ(v) − 1
3
tr(τ)I = −2 νt S(v) (17)

where νt denotes the eddy viscosity and S(v) is the symmetric part of the velocity
gradient, S(v) = 1

2 (∇v+∇v∗). As usual, the factor −2 is introduced in Eq. (17).
Moreover only the deviatoric component of the closure tensor is described here,
because the divergence of the volumetric, isotropic component 1

3 tr(τ)I can be
incorporated into the pressure gradient; see Eq. (3). The classical Smagorinsky
model reads νt = C2

S δ2
√

4q, where CS is the Smagorinsky constant and q = 1
2S :

S is the second invariant of S.
The scale-truncation condition can be used to determine the eddy-viscosity

in Eq. (17). By substituting the eddy-viscosity model into (16), we obtain the
following expression for the eddy viscosity

−
∫

Ωδ

∇∇·νt∇v : ∇v dx = 3
∫

Ωδ

R(v) dx (18)

−
∫

∂Ωδ

(Q(v) v · n + ν∂nQ) ds
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where we neglected the contribution of the pressure, since we only consider
the deviatoric component of the closure model. The left-hand side represents
the eddy-dissipation of scales that are too small to be resolved, the volume
integral over R represents the production of these scales, and the surface integrals
in the right-hand side describe their convective and diffusive transport. Now
if we assume that the dissipation balances the production, then there is no
nett production; so there is nothing to be transported. Therefore we omit the
contribution of the transport terms here. Furthermore, we assume that the eddy-
viscosity consists of large scales only; hence, νt is taken constant in Ωδ. Under
these assumptions, Eq. (18) simplifies to

−νt

∫
Ωδ

∇∇·∇v : ∇v dx = 3
∫

Ωδ

R(v) dx

If we divide this equation by the L2(Ωδ)-norm of the scaled velocity gradient
∇v, we get

νt Ray (−∇·∇,∇v) =
3
∫

Ωδ
R(v) dx

2
∫

Ωδ
Q(v) dx

(19)

where the Rayleigh quotient is defined by

Ray (−∇·∇,∇v) =

∫
Ωδ

−∇·∇ ∇v : ∇v dx∫
Ωδ

∇v : ∇v dx
(20)

The eddy viscosity νt depends on the (scaled) velocity-gradient via Q and R
as well as on the Rayleigh quotient of the (negative) Laplacian −∇·∇ in the
direction of ∇v. The physical dimension of the right-hand side in (19) is 1/time;
the Rayleigh quotient in Eq. (20) has dimension 1/length2. So in this set-up,
the ratio of the invariants Q(v) and R(v) defines the time that is necessary to
construct an eddy-viscosity, and the Rayleigh quotient provides the length.

Unfortunately, calculating the Rayleigh quotient numerically is not a great
option, because a direct numerical computation yields a proper approximation
of the spectrum of the Laplacian (and thus of the Rayleigh quotient) only if the
filter length is taken much larger than the grid width, which means in practice
that the cost of the simulation becomes too high. To work around this we first
note that the Rayleigh quotient scales with 1/δ2; hence, it can be approximated
by (c/δ)2, where c denotes a constant; details to follow. In this way we arrive at

νt =
3δ2

2c2

∫
Ωδ

R(v) dx+∫
Ωδ

Q(v) dx
(21)

where the index ‘+’ denotes the positive part, i.e., f+ = max{0, f}. Thus, neg-
ative values are clipped (see also [9]).

Next, we bound the Rayleigh quotient on basis of the smallest eigenvalue
of the (negative) Laplacian on Ωδ. In a numerical simulation, the value of the
constant c depends on the discretization of the convective derivative, see [10].
The Rayleigh quotient of −∇ · ∇ (in the direction of ∇v) can be bounded from
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below with the help of the smallest eigenvalue of the discretization of −∇ ·∇ on
Ωδ. On an uniform 1D mesh the smallest eigenvalue of a second-order central
discretization of the second derivative on an interval of length δ is equal to 4/δ2.
The associated eigenmode is −1 0 + 1 0 − 1, i.e., the amplitude is zero in
the odd grid points and oscillates between −1 and +1 in the even grid point.
Note: δ = 2h. It may be noted this will be the dominant mode if the closure
model functions well, since then all other modes, smaller scales of motion, are
effectively dampened by the closure model. Likewise, in 3D, the largest eigenvalue
of a second-order central discretization of the Laplacian on Ωδ is equal to 12/δ2;
hence c2 = 12 in that case. For this choice of the discretization (and mesh) the
eddy viscosity is given by

νt =
δ2

8

∫
Ωδ

R(v) dx+∫
Ωδ

Q(v) dx
(22)

To calculate the eddy viscosity from this expression, the invariants R(v) and
Q(v) are to be computed from the (scaled) discrete velocity gradient, where the
gradient is discretized as in the convective term. Furthermore, the integrals over
the filter box Ωδ are to be approximated with the help of a quadrature rule, the
trapezoidal rule or the midpoint rule, for example.

6 Results

The eddy-viscosity model given by Eq. (22) yields νt = 0 in any part Ωδ of the
flow where R = 0 (no production of scales < δ). It goes without saying that
the performance of the eddy-viscosity model has to be investigated for many
cases. As a first step it was tested for an isotropic turbulent flow by means of a
comparison with a direct numerical simulation (DNS). The computational grid
used for the large-eddy simulation consists of 643 points. Figure 1 shows the
results of 3 large-eddy simulations. As can be seen in Fig. 1 the LES using the
eddy-viscosity model (22) with δ = h does not dissipate the energy sufficiently:
the tail of the energy spectrum is too high. Taking δ = 2h gives much better
results. The dynamic Smagorinsky model is a bit more dissipative in his case,
that is damps the small-scales too much. This example confirms that δ = 2h is
the right choice for the eddy-viscosity model (22).

Next, the eddy-viscosity model (22) is evaluated for the numerical simulation
of a turbulent channel flow by means of a comparison with a direct numerical
simulation (DNS). The results are compared to the DNS data of Moser et al. at
Reτ = 590 [11]. In fact, we should compare the LES-solution ṽ to the filtered
DNS-solution ũ. Yet, since the filtered DNS-solution is not given by Moser et
al. we will compare v directly to u. The dimensions of the channel are taken
identical to those of the DNS of Moser et al. The computational grid used for
the large-eddy simulation consists of 643 points. The DNS was performed on a
384 × 257 × 384 grid, i.e., the DNS uses about 144 times more grid points than
the present LES. As can be seen in Fig. 2 both the mean velocity and the root-
mean-square of the fluctuating velocity are in good agreement with the DNS.
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Fig. 1. Energy spectrum of an isotropic turbulent flow. The spectrum that extend
beyond k = 100 corresponds to a DNS. The other three spectra represents results of
large-eddy simulations. The upper curve corresponds to the eddy-viscosity model (22)
with δ = h; the lower curve shows the result of a LES using the dynamic Smagorinsky
model for comparison, the middle curve corresponds to (22) with δ = 2h.
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Fig. 2. The upper figure shows the mean velocity (in wall coordinates) obtained with
the help of the 643 LES and the DNS [11]. The lower figure displays the rms of the
fluctuating velocities; here the upper and lower curve represents the stream-wise and
wall-normal component, respectively.
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Here, it may be remarked that 643 simulations without a LES-model predict a
wall friction that differs about 10% from the DNS.

7 Conclusions

We discussed closure models for large-eddy simulation of incompressible tur-
bulent flows. In particular, we considered minimum-dissipation models which
ensure that the closure model provides sufficient dissipation to counteract the
production of any (small) scales for which numerical resolution is not available.
When the LES-equations are discretized in space, the low-pass characteristics of
the discrete operators effectively act as a filter too. In this paper we focussed
on a finite-volume discretization technique. For such a discretization method the
resolved scales are defined with the help of interpolation rule for approximat-
ing the convective fluxes through the faces of control volumes. Consequently, in
a finite-volume setting, we need to model the effects of all scales smaller than
δ = 2h, where h denotes the mesh width. We used Poincaré’s inequality to
truncate the nonlinear dynamics at the scale δ set by the interpolation rule.
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Abstract. We are concerned with modelling a particulate flow in a
three-dimensional domain. The particles are assumed to be rigid, allow-
ing us to describe their motion using the Newton laws. As we aim to
take into account complex shapes for the solid inclusions, we adopt vol-
ume penalization methods. Those methods allow us to extend the fluid
problem inside the solid domain by assimilating the particle as a porous
medium. The homogeneous fluid flow is governed by the incompressible
Navier-Stokes equations. The whole problem is solved with a projection-
correction method using finite volumes and a staggered mesh to ensure
the inf-sup condition for the stability. Regarding the transport of the par-
ticles, a marker-based front tracking method is used for the fluid-solid
interface, as well as a collision strategy. Both penalization methods are
studied and compared in the context of particulate flows.

Keywords: Fluid–structure interactions · Fictitious domain ·
Penalization

1 Introduction

We are interested in the modelling of fluid-solid systems where we consider rigid
solid inclusions in an incompressible viscous fluid flow in a three-dimensional
domain. Such problems led to a wide panel of methods to attempt to model and
reproduce faithfully the fluid-solid interactions observed in real life problems.
Depending on the needs, different degrees of coupling between the fluid and the
particles may be applied. In what follows we will resort to a strong coupling to
make evident the influence of the solid inclusions on the fluid. Using an Eule-
rian formulation for the fluid flow, we extend the fluid problem inside the solid
domain as defined by the fictitious domain methods. Given the assumptions on
the particles we require a rigidity constraint on the solid domain. Among the
most famous methods in this field, the works of Glowinsky et al. [1] which resort
to Lagrange multipliers for the constraint, and volume penalty methods [2,3].
The latter idea is based on porous laws and will be considered in our model.

The computational tests have been performed using the server of the Centre Commun
de Calcul Intensif (C3I) of Université des Antilles.
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Let us introduce our physical domain Ω along with its boundary Γ, containing
the fluid domain Ωf (t) and N particles Ωi

s(t) such that ∪N
i=1Ω

i
s(t) = Ωs(t) defines

the solid domain. Therefore we have Ωf (t) = Ω \ Ωs(t). Given the assumptions,
we will work with the incompressible Navier-Stokes equations to govern the fluid
flow,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ
(∂v

∂t
+ (v · ∇) v

)
− 2∇ · (μD(v)) + ∇p = f in R

+ × Ωf (t)

∇ · v = 0 in R
+ × Ωf (t)

v(0,x) = v0 in R
+ × Ωf (0)

v(t,x) = vΓ on R
+ × Γ

v(t,x) = V i(t) + ωi(t) × ri(t,x) on R
+ × ∂Ωi

s(t)

with the fluid velocity v and pressure p as the unknowns. The fluid here is defined
by its density ρ and dynamic viscosity μ. The term D(v) in the momentum
equation refers to the tensor of deformation rate of the fluid, and we have:
D(v) = 1

2 (∇v+(∇v)T ). The last relation defines the no–slip condition; it closes
the boundary conditions on Ωf and enables the coupling with the solid domain.
It states that the fluid velocity and the solid velocity are equal on the fluid–
solid interface. Finally, as the particles are assumed to be rigid, their motion
can be described using the translational and rotational velocities (V i,ωi) of
their respective center of mass Xi . As such we can define the rigid velocity field
vs(t,x) in Ωs(t): ∀x ∈ Ωs(t), ∃(V i(t),ωi(t)), vs(t) = V i(t) + ωi(t) × ri(t,x)
where ri(t,x) = x − Xi(t). In addition we have for each particle that,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Mi
dV i

δt
=

∫

Ωi
s(t)

ρsf i(t,x)dx +
∫

∂Ωi
s

σ(v, p) · ndS

d(Ji(t)ωi)
δt

=
∫

Ωi
s(t)

ρsri(t,x) × f i(t,x)dx +
∫

∂Ωi
s

ri(t,x) × (σ(v, p) · n)dS

Here the particle is subjected to the exterior force f i. The coupling with the fluid
exists within the surface integrals, as they involve σ(v, p) = (−pI + 2μD(v)),
the surface stress tensor of the incompressible fluid. The surface integral applied
to the translational (resp. rotational) acceleration will be denoted F i (resp. T i).
We also define the density, mass and inertia tensor (ρs,Mi, Ji) of the particle i.

So as to prevent the use of time–dependent spatial meshes, we resort to fic-
titious domain methods to extend the fluid problem inside the solid domain. In
our case we will be using and comparing the L2–penalty and the H1–penalty
methods, which consist in penalizing specific quantities in the fluid problem.
Convergence estimates can be found in [2,4] for fixed obstacles. Notably, the
L2–penalty has a convergence rate of O(η1/2) in the fluid in regard to the penal-
ization parameter η whereas the H1–penalty has a convergence rate of O(η).
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1.1 The Darcy or L2–Penalty

We penalize the velocity itself by introducing a perturbation term to the momen-
tum equation in order to extend the problem inside the solid domain:

⎧
⎨

⎩

ρ
(∂v

∂t
+(v · ∇)v

)
− 2∇ · (μD(v)) + ∇p +

μ

η
1Ωs

(v − vs) = f in R
+ × Ω

∇ · v = 0 in R
+ × Ω

The parameter η roughly describes the permeability of the solid domain, which
is now considered as a porous medium. The latter will be taken as small as pos-
sible, in order to obtain the no–slip condition on ∂Ωs in a weak sense with fixed
point iterations regarding the convergence of vs.

Following the introduction, the system of equations above is coupled to the
Newton laws for the transport of the solid domain. Owing to the modified
momentum equation, we can consider for the fluid contributions on the particle
Ωi

s(t):

F i = lim
η→0

μ

η

∫

Ωi
s(t)

(v − vs)dx + ρ

∫

Ωi
s(t)

dv

dt
dx

T i = lim
η→0

μ

η

∫

Ωi
s(t)

ri(t,x) × (v − vs)dx + ρ

∫

Ωi
s(t)

ri(t,x) × dv

dt
dx

Using these definitions, one deals with volume integrals, favoring greatly their
computation in the context of fictitious domain methods.

1.2 The Viscous or H1–Penalty

We constraint the extended fluid velocity by penalizing its tensor of deformation
rate D(v) inside the solid domain, in the momentum equation. To achieve this
we resort to a multiphase flow representation of the problem, using the non–
homogeneous incompressible Navier-Stokes equations with variable viscosity,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+

(
v · ∇

)
ρ = 0 in R

+ × Ω

∂(ρv)
∂t

+ ∇ · (ρv ⊗ v) − 2∇ · (μ(ρ)D(v)) + ∇p = f in R
+ × Ω

∇ · v = 0 in R
+ × Ω

along with inflow boundary conditions for ρ on {x ∈ Γ, (v(t,x) · n(x)) < 0} as
well as initial conditions. Consequently we have introduced the transport equa-
tion of the two–valued density ρ(t,x) ≥ ρ > 0, which will carry out the transport
of the particles rather than the Newton laws. Similarly, we have for the viscos-
ity: μf ≤ μ(ρ) ≤ μs. The solid viscosity μs will be taken as great as possible to
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enforce the penalization of the tensor D(v). We aim that way to tend towards
‖D(v)‖L2(Ωs(t)) = 0. With this property we can go back to a rigid motion veloc-
ity field in Ωs(t) for an accurate representation of the rigid behaviour of the
particles.

2 Numerical Method to Solve the Problem

In the present section we describe time and spatial discretization schemes
applied to the penalized problems, followed by the strategies regarding the fluid–
structure coupling. We resort to the incremental projection scheme [5,6] adapted
to both penalty methods to solve the extended problem in Ω. Using the Hodge–
Helmholtz decomposition of a given vector in L2(Ω), we are able to decouple the
computation of the velocity and pressure. In a first sub-step we account for the
viscous terms to determine a predicted velocity, followed by a second sub-step
where we enforce the incompressibility constraint to obtain the pressure and
corrected velocity. For the discretization of the derivatives, we use a BDF2 for-
mulation for the time derivative of the velocity and a Richardson extrapolation
for the non—linear inertia term. Thereafter we complete the projection scheme
with the transport of the solid domain. For the Darcy penalty, we use an implicit
scheme of the Newton laws in regards to the particle velocities.

Resorting to an advection scheme of the phase field of the particles for the
viscous penalty could render difficult the localisation of the fluid–solid interface.
Instead we carry out the transport of markers defined on the surface of the
particles using Runge–Kutta schemes [7]. We require at least Ndf = 6 markers
for each particle, Ndf being the degree of freedom for a 3–dimensional rigid solid.
Using the no–slip condition, we end up with at most an overdetermined system
given by the rigid–body equations valued on each marker.

As we aim to simulate a large collection of particles we need to adopt a
fitting strategy to account for the potential collisions between particles or the
boundaries of the computational domain. One can resort to repulsive forces

x
j

x
k

m 1
jk

m 2
jk

Fig. 1. Defining the markers
for a particle in 2D

using the given position and orientation of the par-
ticle. In our case we will couple the fluid–solid
scheme above with the method introduced in [8].
In the latter reference we break down a particle
in sub–spheres in such a way that we can define
the particle as the union of the convex hulls of
two neighbouring sub–spheres (Fig. 1). Using an
Uzawa algorithm, the predicted velocities of all
sub–spheres are projected on a set of admissible
velocities.

Regarding the spatial discretizations, finite volumes and a staggered mesh
have been chosen. We define the fields for the penalty quantities (ρ, μ,1Ωs

) on
the velocity grids. To compute those fields on the cells where the fluid-solid
interface is located, we adopt an averaging method.
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3 Validation Tests and Comparisons

3.1 Dropping a Ball in a Viscous Fluid

For a first test we drop a rigid heavy sphere in a viscous fluid and observe it
attaining its terminal velocity according to the principle that the drag force
exerted on the particle by the fluid as well as buoyancy balances the gravity
applied to the sphere. We define the fluid using the density ρf = 1 and viscosity
μf = 0.01. The sphere with radius r = 0.05 and density ρs = 5 is falling in
the rectangular domain [0, 1] × [0, 1] × [0, 3] to which we applied channel–flow
boundary conditions. The gravity constant applied to the ball is g = 98.1. We
take for the penalty parameters μs = 104 and 1/η = 107. For the time step we
will be using δt = 0.001. The spatial step h is such that h = max

i=x,y,z
hi = 1/50.

The initial position for the ball is (0.5, 0.5, 1) (Figs. 2 and 3).

Fig. 2. Fluid velocity magnitude for the
L2–penalty (left) and H1–penalty (right)
when Z(t) = 2.617

Fig. 3. W -component of the trans-
lational velocity reaching a termi-
nal velocity of the for the L2–
penalty (above) and H1–penalty
(bottom)

In both cases the velocity of the particle keeps a straight trajectory and
reaches a terminal velocity, which is a first satisfying result. However the termi-
nal velocities while being within the same order (4L.T−1 against 12L.T−1) still
differ. We can also observe a diffusion around the sphere constrained with the
H1/viscous penalty. This could be explained by the fact that no specific treat-
ment regarding the interface is used when computing the viscous part of the
momentum equation of the penalized problem. Meanwhile the Darcy penalty
probably requires corrections regarding the physical parameters and external
forces to obtain a coherent coupling between the Newton laws and the fluid
problem.
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3.2 A Rigid Rod in a Lid–Driven Cavity

To demonstrate the marker strategy with a non–spherical particle, we place a
rigid rod in the domain Ω = [0, 1]3 with the boundary conditions of a lid–driven
cavity problem. On the side {(x, y, z) ∈ Γ, z = 1} of Ω we set u(t,x) = 1.
The rigid rod is defined with the density ρs = 0.8, a length l = 0.1 and width
w = 0.02. For the fluid we use μf = 1.0. We neglect the gravity and leave the
boundary conditions to establish the flow. We use the spatial step h = 1/70 and
the same time step as the previous test. We take μs = 104 to penalize the solid
(Fig. 4).

Fig. 4. State of the problem at times t = 2.25, t = 4, 25, t = 6.0, t = 6.75

Despite the rather coarse mesh and the thin rod used in this test, the particle
properly follows the flow and rotates appropriately, while remaining rigid. The
markers seem to handle correctly the decomposition of a complex particle using
sub–spheres from the collision strategy.

4 Concluding Remarks

We were able to study and compare the L2-penalty and the H1-penalty meth-
ods in the context of particulate flows. As far as we know, comparative studies
between those two methods do not exist for such situations. Therefore, this work
can be considered as a novel short progress in this direction. The numerical tests
were overall satisfying and allowed us to take a step further in validating our
code. However more work is required regarding the calibration of the Darcy
penalty problem and the sharpness of the interface with the viscous–penalized
problem to help with the comparison of the methods and the global observations.
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Mathématique 354(11), 1124–1131 (2016)

8. Faure, S., Martin, S., Maury, B., Takahashi, T.: Towards the simulation of dense
suspensions: a numerical tool. ESAIM Proc. 28, 55–79 (2009)



Simulation of a Confined Turbulent
Round Jet at Moderate Reynolds

Number

Georges Halim Atallah1,2(B), Emmanuel Belut1, Sullivan Lechêne1,
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Abstract. The objective of this study is to numerically simulate the
turbulent flow of a confined round jet at moderate Reynolds number,
which is representative, in a first step, of an available experiment char-
acterizing a problem of pollutant transport in a confined medium.
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1 Introduction

In numerous scientific research areas, particularly in chemistry, operators are
very often required to handle materials that could be volatile and could proba-
bly be inhaled. Depending on the materials being studied, the gases generated
can be toxic and therefore present a real danger to the operator’s health in
case of inhalation. Laboratory fume cupboards are devices that are supposed to
ensure the protection of the operator. Their ability to contain pollutant gases is
vulnerable to turbulent phenomena and aeraulic perturbations, which are them-
selves induced by drafts or moving objects. When a laboratory fume cupboard
is disturbed, the pollutant gas, instead of being confined inside the device, leaks
because of the induced turbulent flow. In order to simulate the pollutant trans-
port process when the device is submitted to disturbances, we first propose to
design a small-scale experimental model involving the same physical phenomena.
This is an experiment describing the transport of pollutant injected into a con-
fined enclosure through a round turbulent jet that allows to collect experimental
data of time average velocity, kinetic energy and mean age air profile [2,4] so
that numerical simulations can be validated against experimental measurements
and statistics. In the present work, we only focus on flow characteristics and
more particularly on the turbulent aspect of the carrier flow motion.
c© Springer Nature Switzerland AG 2021
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2 Confined Turbulent Round Jet at Moderate Reynolds
Number

2.1 Experimental Setup

Air is injected into a rectangular enclosure containing the same fluid at rest
through a circular inlet (round jet) at a flow rate of 40 L · min−1 and exits
through an open circular outlet at atmospheric pressure. The diameter of the
inlet injector is D = 0.04 m, so that the Reynolds number based on the injector
diameter Re = 1500. The flow rate is sufficiently high so that the flow degenerates
into turbulence [1]. Airflow velocity profiles were measured by Laser Doppler
Anemometry in the central plane (y = 0 m) in several cross-sections located at
x = 0.1, 0.3, 0.5 and 0.7 m in the streamwise x-direction [2].

Fig. 1. Geometric description of the confined air injection in a cavity with cylindrical
inlet and outlet.

2.2 Model and Numerical Methods

All developments are investigated with the home made code Fugu, developed in
the TCM team of MSME lab. We performed numerical simulation of an airflow
assumed to be incompressible and isothermal using a finite volume method on an
irregular and staggered Cartesian grid governed by the following set of equations:

∇ · u = 0, (1a)

ρ

(
∂u

∂t
+ ∇ · (u ⊗ u)

)
= −∇p + ∇ · [

(μ + μsgs)
(∇u + (∇u)T

)]
, (1b)

where u is the velocity vector, p is the pressure, ρ = 1.2250 kg · m−3 is the
density and μ = 1.7894 ·10−5 Pa · s is the dynamic viscosity of the fluid. When a
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turbulence model is considered, a turbulent viscosity μsgs is incorporated through
an eddy viscosity model in the motion equations. In the present work, gravity
effects are neglected. Boundary conditions for u are no-slip condition for all walls
and zero gradient at the outlet for the normal component. Imposing a velocity
profile such as the one of the experience requires taking into account a number
of factors that are difficult to simulate. In practice, the injector nozzle is never
really designed with perfect geometry and therefore has imperfections. They
can then cause instabilities that directly affect the potential core area (near-
field) of the jet. Thus, a simple flat velocity profile such that uinlet = μRe/ρD
is imposed at the inlet and only intermediate and far fields region of the jet
are investigated and compared to experiments in the present work. A centered
scheme is used to discretize the advection term and viscous terms whereas time
integration is carried out with a second order Gear scheme. Pressure is obtained
by using a time-splitting approach for handling pressure-velocity coupling. A
scalar projection method is considered here [3]. These schemes are combined with
the preconditioned MILU-BICGSTAB II solver to build a solution of Eqs. (1a–
1b).

A mesh convergence study was first performed with direct numerical simula-
tion (DNS) to assess if the obtained numerical solutions reproduce the behavior
of experimental data. The mesh convergence study was performed with mesh
sizes of {nx, ny, nz} = {128, 64, 64}, {192, 96, 96} and {256, 128, 128}. For each
case, the mesh is refined with 400, 900 and 1600 cells respectively along the jet
inlet cross section. It was observed that a simple regular mesh size generates too
much dissipation for the same number of cells, which inhibits the ability to cap-
ture a degeneration to turbulence. This is why we chose to use a refined irregular
mesh in the jet inlet cross section to capture the effects of turbulence. The time
step is defined as Δt = CFL×hmin with CFL = 0.5 and hmin is the length of the
smallest cell. The flow was also simulated with Large Eddy Simulation (LES)
models on the coarsest mesh size. The idea is to measure the capability of LES
to provide a suitable solution on a too coarse mesh for tackling with DNS.

2.3 Large Eddy Simulation (LES) Turbulence Modeling

Our LES simulations were performed with a variety of classical LES models [6].
The first is an eddy viscosity model based on the mixed scale approach, which
is a combination of the Smagorinsky and the Turbulent Kinetic Energy (TKE)
models. The subgrid-scale viscosity is classically evaluated by the following for-
mula:

νsgs = CmΔ
1+α (

2SijSij

)α/2 (
q2c

)(1−α)/2
, (2)

with Cm = C2α
s C1−α

TKE, Δ = (ΔxΔyΔz)1/3, Sij is the resolved strain rate tensor,
qc is the subgrid-scale kinetic energy. In our implementation, α ∈ [0, 1] is a
weighting coefficient (α = 0 gives the TKE model, α = 1 gives the Smagorinsky
model). In our approach, α is taken equal to 0.5 for the mixed scale model. Cs

and CTKE are the constant of the Smagorinsky and TKE models and are taken



Simulation of a Confined Turbulent Round Jet 113

equal to 0.18 and 0.2 respectively. In the motion equations, μsgs = ρνsgs is then
added to the molecular dynamic viscosity as shown in Eq. (1b).

The other one is the Wall Adaptating Local Eddy-viscosity (WALE) model
[6]. Its known advantage is that it allows to reproduce a good asymptotic
behaviour near solid walls for wall bounded flows. The subgrid-scale viscosity
is define as:

νsgs =
(
CwΔ

)2
(
S

d

ijS
d

ij

)3/2

(
SijSij

)5/2
+

(
S

d

ijS
d

ij

)5/4
, (3)

with Cw = 0.75 and S
d

ij = SikSkj + ΩikΩkj − 1
3

(
SmnSmn − ΩmnΩmn

)
δij .

Ωij is the resolved rotation tensor and δij is the Kronecker delta.

3 Results and Discussion

Direct Numerical Simulation. When possible, DNS is the simplest model for
turbulence and also the more accurate to investigate on a numerical point of view.
Its main drawback is the requirement of solving all the time and space scales of
the flow, which is generally impossible as soon as the Reynolds number is high.
In our experiment of turbulent round jet, the Reynolds number is moderate,
so it is reasonable to try to simulate the problem with DNS. If we succeed, a
reference simulation will be available, which could be degenerated in terms of
mesh or time step in order to try to simulate faster the same problem with LES
models.

After thirty seconds of physical time corresponding to an established jet
motion, average fields are then calculated over thirty seconds of physical time,
ensuring a converged behavior of these average fields. As shown in Fig. 2, outside
the jet area (z ≤ 0.3 m), we can observe a little influence of the mesh size. In
these zones, the flow is mainly laminar and all grids capture the correct motion.
Inside the jet (z > 0.3 m), numerical solutions on all meshes globally reproduces
the average velocity intensities. However, refining the grids allows to converge
simulation results to those of the experiments, which is a nice feature of the
Fugu code. Note that the fact that the maximum velocities are not at the same
height z is explained by the fact that the imposed velocity profile is spatially
constant in the injector, which is not the case in the experiment [2].

The DNS gives results in fairly good agreement with those of the experiments,
but the computation cost is far too high on the finer mesh, even with the MPI
parallel implementation that we considered (512 processors). An important point
is to be able to carry out this kind of simulation with mesh sizes of the order
of the coarsest grid presented here (128 × 64 × 64 cells). Therefore, in the next
section, LES simulations with models presented in Sect. 2.3 were performed on
the coarsest mesh.
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Fig. 2. Measured and computed (a) mean velocity profiles and (b) mean turbulent
kinetic energy at the central plane y = 0 m and x = 0.3, 0.5 and 0.7 m. Comparison
between DNS simulations (without explicit LES model) and experiments [2].

Large Eddy Simulation. In order to reach such results as in DNS on fine
mesh at a lower cost, simulations were performed on the coarsest mesh using
LES models with the same numerical setup as in DNS. A first observation is
that the three Smagorinsky, TKE and mixed scale models maintain the jet in
a laminar state and inhibit the transition to turbulence. However, the WALE
model provides a better behaviour than the others despite the fact that the
laminar-turbulent transition occurs farther than it occurs in DNS. This leads to
an overestimation of velocity intensities as shown in Fig. 3.
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Fig. 3. Comparison between computed mean velocity at the central plane y = 0 m and
x = 0.3, 0.5 and 0.7 m with LES WALE model and DNS on 256× 128× 128 mesh size.

4 Concluding Remarks

The dynamics of a cylindrical jet at moderate Reynolds number of 1500 has
been simulated with DNS and LES turbulence approaches. The results of the
DNS compare favorably to those provided by the experiments. LES conducted
on the coarsest DNS grid are not able to recover the correct experimental jet
dynamics. The main reason that we have identified, by changing all physical and
numerical parameters of the simulations, is that the results are very sensitive
to inlet jet profile of mean velocity (for the DNS) and also to the fluctuating
(or subgrid component) of the velocity, that is not considered in the present
work. Future improvements of our LES simulations will be to impose synthetic
turbulent unsteady inlet jet conditions [5] in order to feed simulations with
realistic subgrid scale fluctuations of the velocity.
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ties of the French CINES (National computing center for higher education) and CCRT
(National computing center of CEA) under project number A0032B06115.
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Abstract. Very-large-scale motions appear in the bulk region of tur-
bulent pipe flow. They become increasingly energetic with the Reynolds
number and interact with the near-wall turbulence. These structures
appear either in the shape of positive (high-speed) or negative (low-
speed) streamwise velocity fluctuation. The impact of the sign of the
structures on the pipe flow turbulence is analysed in this study by means
of conditionally averaged one- and two-point statistics, using data from
direct numerical simulations of turbulent pipe flow in a flow domain of
length L = 42R and friction Reynolds numbers of 180 ≤ Reτ ≤ 1500.
Conditionally averaged two-point velocity correlations reveal that low-
speed motions are longer and more energetic than their high-speed coun-
terparts. The latter are predominately responsible for the Reynolds num-
ber dependency of turbulence statistics in the vicinity of the wall, which
is in good agreement with observations of the so-called amplitude mod-
ulation in wall-bounded turbulence.

Keywords: Turbulent pipe flow · DNS · VLSM

1 Introduction

Very long coherent regions of energetic streamwise velocity fluctuations, also
referred to as very-large-scale motions (VLSM), play an important role in high
Reynolds number wall-bounded turbulence, since they carry a substantial frac-
tion of turbulent energy [2,6]. Although the maximum energy content of VLSM
is located in the outer flow region, they penetrate deep into the buffer layer. The
interaction of the large- and very-large-scale outer flow motions with the near-
wall coherent structures and their impact on high-order turbulence statistics
has recently been discussed by Bauer et al. [1]. Due to this interaction, loga-
rithmic Reynolds number dependencies of different statistical moments of the
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velocity distribution were found and reported. In the current study, the differ-
ent contributions of high- and low-speed VLSM to one- and two-point statistics
are investigated in more detail. Therefore, conditionally averaged statistics are
computed from the DNS data used in Bauer et al. [1] and subsequently analyzed.

2 Numerical Methodology

The incompressible Navier-Stokes equations in their dimensionless form

∂u

∂t
+ u · ∇u + ∇p =

1
Reτ

∇2u, (1)

∇ · u = 0, (2)

are integrated in time using a leapfrog-Euler scheme, after being discretised by
means of a fourth-order finite volume method. The governing equations as well
as all quantities presented below are normalised in viscous units, i.e. the friction
Reynolds number Reτ = uτR/ν , based on friction velocity, pipe radius and
kinematic viscosity, and the viscous length δν = ν/uτ . The flow geometry is
a smooth annular pipe with length L and radius R. Table 1 lists the different
considered cases for which DNS were performed in Bauer et al. [1].

Table 1. Turbulent pipe flow simulation cases. Nz, Nϕ and Nr are the number of
grid points with respect to the axial, azimuthal and radial direction, respectively. Δz+,
streamwise grid spacing; R+Δϕ, azimuthal grid spacing at the wall; Δr+min and Δr+max,
minimal and maximal radial grid spacing, respectively. All grid spacings normalised by
wall units.

Case Reτ L/R Nz Nϕ Nr Δz+ R+Δϕ Δr+min Δr+max

P180 180 42 1536 256 84 4.9 4.4 0.31 4.4

P360 360 42 3072 512 128 4.9 4.4 0.39 4.4

P720 720 42 4608 1024 222 6.6 4.4 0.49 6.6

P1500 1500 42 8192 2048 408 7.7 4.6 0.49 7.8

Statistical quantities are computed as follows

〈u〉(r) =
1
L

1
2πr

1
Δt

∫ t0+Δt

t=t0

∫ L

z=0

∫ 2π

ϕ=0

u(z, ϕ, r, t)rdϕdzdt, (3)

where angle brackets indicate averaging in both homogeneous directions and
time with Δt being the averaging interval in time.
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Fig. 1. Iso-volumes of the streamwise velocity fluctuation u′+
z inside the pipe. Red

(blue) structures exhibit values ranging from +(−)3 to +(−)5.

3 Results

Instantaneously, VLSM can be visualised by means of iso-volumes of the stream-
wise velocity fluctuation u′

z shown in Fig. 1. The statistical counterpart of these
turbulent coherent structures are iso-contours of the streamwise two-point veloc-
ity correlation

Rzz(Δz,Δϕ, r0 + Δr) =
〈u′

z(0, 0, r0)u′
z(Δz,Δϕ, r0 + Δr)〉

〈u′
z(0, 0, r0)u′

z(0, 0, r0)〉 , (4)

where Δz, Δϕ and Δr are the axial, azimuthal and radial separation lengths,
respectively, and r0 is the reference point. Iso-contours of the streamwise three-
dimensional two-point velocity correlation with Rzz = +(−)0.1 are depicted in
Fig. 2 for the different considered Reynolds numbers. The reference point of the
velocity correlations is located at r0 = 0.6R. For the lowest Reynolds number,
Reτ = 180 (Fig. 2 (a)), the footprint of near-wall velocity streaks—located at
a wall distance of y+ ≈ 15—is visible in the form of near-wall tails of the iso-
contours. With increasing Reynolds number these structures become less pro-
nounced, since they scale in viscous units. VLSM, on the contrary, appear at
Reynolds numbers around Reτ ≈ 720 and become increasingly energetic and
clearly visible through the iso-contours shown in Fig. 2 (d). VLSM appear as
either high- or low-speed motions [3]. The latter are of larger streamwise extent
than the former, as the iso-contours of the conditionally averaged streamwise
velocity correlations depicted in Fig. 3 show. The logarithmic Reynolds number
dependency of statistical moments of the velocity distribution up to the fourth
is related to the interaction of the large- and very-large outer scale motions
with the near-wall turbulence [1]. In order to determine the effect of high- and
low-speed motions separately, the variance and skewness of the streamwise veloc-
ity distribution are computed conditionally for regions of positive and negative
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(a) Reτ = 180
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Fig. 2. Iso-surfaces and contours of the three-dimensional two-point velocity corre-
lation of the streamwise velocity component Rzz(Δz, ϕ, r0 + Δr) as a function of
the axial, azimuthal and radial separation lengths. Reference point of the correla-
tion at r0 = 0.6R. Cartesian cross-sectional coordinates ξ = (r0 + Δr) sin(Δϕ),
η = (r0 +Δr) cos(Δϕ). (a) Reτ = 180, (b) Reτ = 360, (c) Reτ = 720, (d) Reτ = 1500.
The orange (cyan) iso-surfaces exhibit values of +(−)0.1. Iso-contours values range
from +(−)0.1 to +(−)1, increment of 0.1.

velocity fluctuations. The results are shown in Fig. 4 for both variance (a) and
skewness (b) for regions of positive (solid lines) and negative (dashed lines)
streamwise velocity fluctuations. For both quantities the profiles for high-speed
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Fig. 3. Iso-surfaces and contours of the conditionally averaged three-dimensional two-
point velocity correlation of the streamwise velocity component Rzz(, Δz, ϕ, r0 + Δr)
depicted as in Fig. 2. (a) Condition u′

z < 0, cyan (orange) iso-surfaces exhibit values of
+(−)0.1. (b) Condition u′

z > 0, orange (cyan) iso-surfaces exhibit values of +(−)0.1.
Reτ = 1500.

Fig. 4. Variance 〈u′
zu′

z〉 (a) and Skewness S(uz) (b) of the streamwise velocity distri-
bution. Conditionally averaged for regions of positive (solid lines) and negative (dashed
lines) streamwise velocity fluctuations. , Reτ = 180; , Reτ = 360; , Reτ = 720;

, Reτ = 1500.

regions reflect a significantly stronger dependency on the Reynolds number in
the vicinity of the wall as the ones for low-speed regions. This means that the
modulation of the small scales in the vicinity of the wall is primarily caused by
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high-speed outer flow motions, which is in good agreement with observations of
the amplitude modulation in turbulent boundary layer flows [4,5].

4 Conclusion

Observations from DNS data of turbulent pipe flow show that high- and low-
speed VLSM appearing in the outer layer of the flow, interact differently with
the near-wall turbulence. High-speed motions modulate the small-scale motions
in the vicinity of the wall considerably more than their low-speed counterparts,
which can be seen in the analysis of conditionally averaged turbulence statistics.
This is consistent with the general observations of sweeps and ejections in wall-
bounded turbulence. High-speed fluid is predominately moving towards the wall
(sweep), whereas low-speed fluid is ejected away from the wall. Since the small
scales near the wall are modulated by the large scales in the outer flow, it is
plausible that this modulation is related to high-speed motions and, thus, to the
sweeps.
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Abstract. Heat transfer in turbulent forced convection of power-law
fluids, in a heated horizontal pipe at isoflux conditions, is analyzed by
large eddy simulations (LES), with an extended Smagorinsky model.
A temperature dependent fluid is studied at various Pearson numbers
(0 ≤ Pn ≤ 5), for two power law indices (n = 0.75 and 1), at Reynolds
and Prandtl numbers Res =4000 and Prs =1. The LES predictions are
validated through comparisons with the literature at Pn=0. They allow
a better understanding of the physical mechanisms involved in the non-
Newtonian temperature dependent fluid flows: with increasing Pn, the
relative viscosity is reduced close to the wall and enhanced towards the
pipe center, reducing the turbulent fluctuations and heat transfer in the
bulk and, as a consequence, the friction factor and Nusselt number.

Keywords: LES · Non-Newtonian · Temperature dependent
power-law fluids · Turbulence · Pipe flow · Heat transfer

1 Introduction

Turbulent flows of non-Newtonian fluids are encountered in a wide range of
engineering applications such as flows through ducts, pumps, turbines and heat
exchangers, in the petroleum, chemical and food industries. When the Reynolds
number is sufficiently large, large eddy simulation provides an effective tool
to predict the effect of the flow parameters on the turbulent fields. Otha and
Miyashita [1] developed a turbulence model that can reproduce DNS results in
non-Newtonian fluid flows. They performed LES with a Smagorinsky model,
extended according to their DNS results. They showed that this model can more
accurately predict the velocity of turbulent flows, for fluids described by Casson’s
and power-law models, than the standard Smagorinsky model. Gnambode et al.
[2] used this extended Smagorinsky model to predict the turbulent pipe flow
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of power law fluids, for various flow indices (0.5 ≤ n ≤ 1.4), Reynolds numbers
(4000≤Res ≤12000) and Prandtl numbers (1≤Prs ≤100).

LES studies of heat transfer in a turbulent pipe flow of a non-Newtonian
fluid are scarce. Some theoretical and experimental [4,5] works focused on the
turbulent heat transfer in pipe flows of non-Newtonian fluids for a constant vis-
cosity case. Studies accounting for the temperature dependent viscosity observed
in applications are even more scarce.

The objective of this work is to numerically investigate by LES, with an
extended Smagorinsky model, turbulent heat transfer in the fully developed pipe
flow of a temperature dependent power law fluid at n = 0.75 and 1, Res = 4000,
and Prs = 1, for 0≤Pn≤5, where the Pearson number, Pn, is the dimensionless
number measuring the temperature effect on the consistency of a non-Newtonian
fluid. The aim is to gain more insights into such complex fluid flows whose
viscosity is a function of both the temperature and the shear rate.

2 Governing Equations and Numerical Procedure

The present study deals with the fully developed turbulent flow and heat
transfer of power law fluids in pipes whose wall is heated at a constant heat
flux φw. The filtered non-Newtonian equations are made dimensionless using
the centerline axial velocity of the analytical fully developed laminar profile,
Ucl = (3n + 1)Ub/(n + 1), the pipe radius, R, and the reference temperature,
Tref =φwR/λ, for the velocity, length and temperature scales respectively, where
Ub is the bulk velocity and λ the fluid thermal conductivity. The filtered equa-
tions (with the continuity eq. ∂ui/∂xi =0) read:
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where Θ=(<Tw > (z)−T (r,θ,z,t))/Tref is the dimensionless temperature, Tw is
the wall temperature and <> is an average in time and in the periodic directions.
The subgrid heat flux tensor is defined by τθj =−αt(∂Θ/∂xj), with αt =νt/Prt

the turbulent thermal diffusivity linked to the turbulent viscosity, νt, by the
turbulent Prandtl number, Prt, which is constant for a given flow index n.
Preliminary LES carried out with the dynamical Smagorinsky model [2] resulted
in the following estimates: for n = 1, Prt = 0.7 and for n = 0.75, Prt = 1.5.
The Reynolds and Prandtl numbers of the simulations are defined as Res =
ρU2−n

cl Rn/K0 and Prs =K0/ραRn−1Un−1
cl . The apparent viscosity η of the fluid

is modeled by a power-law: η=Kγn−1, where K =K0 exp[Pn(Θ−Θb)], with K0

the consistency at the bulk temperature Tb, Pn=bTref the Pearson number and
b the parameter of the thermo-dependence. γ=(SijSij)1/2 is the shear rate, with
the strain rate tensor Sij =(ui,j + uj,i)/2. The subgrid stress tensor is equal to
τij =−2νtSij . In the non-Newtonian Smagorinsky model [1], νt =Csfs(fηΔ)2Sij ,
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where fs is the van Driest wall damping function and fη = η/ηw the correction
function for the change in viscosity.

An in-house finite difference code is used to solve the above LES model in a 3D
cylindrical domain of axial length Lz =20R so that the largest thermal structures
are well captured. Periodic boundary conditions (BC) and a uniform grid are
used in θ and z directions. No slip BC and a non-uniform grid refined close to
the wall are used in the radial direction. The mesh size is Nθ × Nr × Nz =653.
More details on the non-Newtonian Smagorinsky model, numerical methods,
simulation parameters and validations are given in [2].

3 Results and Discussion

3.1 Mean Velocity and RMS Profiles

The mean streamwise velocity profiles, U+=U/Uτ , scaled by the friction velocity
Uτ = (τw/ρ)1/2, are depicted in Fig. 1 left, for Res = 4000, Pn = 0 and Prs = 1,
as a function of the wall distance y+ =ρUτ (r − R)/ηw with ηw =(Kγn−1)w the
viscosity at the wall. These profiles are in satisfactory agreement with the DNS
results by Rudman et al. [3] for n=0.75, and with the well-known universal law
for n=1. The profiles of the root mean square (RMS) of the velocity fluctuations
also agree well with the DNS data [3], Fig. 1 right. Since, for the shear thinning
fluid (n=0.75), the apparent viscosity is smaller close to the wall and larger in
the bulk than with a Newtonian fluid (n=1), the mean velocity is expected to
be larger and the RMS to be smaller in the flow core (for y+ > 20) for n=0.75.

Fig. 1. Effect of n on the axial velocity (left) and on the RMS of U ′
z (right) at Pn=0.

For the Newtonian fluid (n = 1), the viscosity is constant when Pn = 0
because η = K0. In accordance with the experiments [4,5], for a n < 1, the
viscosity η = Kγn−1 increases towards the duct center with increasing Pn (see
Fig. 2 left, for n = 0.75). This is due to the decreasing shear rate γ and the
increasing consistency K = K0exp[Pn(Θ − Θb)] towards the center. Indeed,
Pn > 0 and, when the duct wall is heated, Θ − Θb = Tb − T is negative close to
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the wall but positive in the core region. The fluid becomes more rigid towards the
pipe center and leads to a monotonous decrease of all the velocity fluctuations
(normal and parallel to the wall) when Pn increases (see Fig. 2 right for U ′

z).
Note that all the fluctuations are damped towards the pipe center for Pn ≥ 3.

On the other hand, a non-monotonous evolution of the mean axial velocity
with increasing Pn is observed in the log-region at n = 0.75 (Fig. 3 left) and n =
1 (not shown). This behavior is correlated with the non-monotonous evolution
of the mean wall shear stress τw = Kγw or friction factor f = 2τw/ρU

2
(Fig. 3

right): f decreases and the flow accelerates when Pn increases from 0 to 2 and f
increases and the flow decelerates when Pn increases from 2 to 5. This is due to
the competition, in the wall boundary layer, between the decreasing consistency
due to heating and the increasing shear rate when Pn increases.

Fig. 2. Effect of Pn on the mean viscosity (left) and on the RMS of Uz (right).

Fig. 3. Effect of Pn on the axial velocity (left) and on the friction factor (right).
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3.2 Temperature, RMS and Turbulent Heat Fluxes

As already seen above, due to the strong increase of the apparent viscosity in the
bulk flow when Pn increases, the velocity and temperature fluctuations decrease
from Pn = 0 to 2 and almost vanish beyond (Fig. 4 left). As a consequence,
with increasing Pn, the turbulent wall-normal heat flux undergoes a noticeable
reduction (Fig. 4 right): it is strong at Pn = 0, twice smaller at Pn = 1 and
nearly zero beyond due to the simultaneous decrease of the fluctuating radial
velocity and temperature. The same behavior is observed for the axial turbulent
heat flux <U ′

zΘ
′> (not shown here).

To help interpreting Fig. 5 left, remind that Θ−Θb = Tb −T is negative close
to the wall and positive in the core region. Therefore the Θ-increase corresponds
to a reduction of T . Thus Fig. 5 left shows that the fluid is the hottest and
the most T -homogenous at Pn = 0, thanks to the strong turbulent radial heat
flux which controls heat transfer (Fig. 4 right). When Pn increases from 0 to
2, T significantly decreases towards the pipe center due to the decrease of the
turbulent radial heat flux and the smaller residence time of the fluid particles
in the channel because of the fluid acceleration (Fig. 3 left). As a consequence
the average Nusselt number, Nu = hD/k, strongly decreases from Pn = 0 to
2 (Fig. 5 right). When Pn increases from 2 to 5, the flow decelerates and heat
transfer is controlled by the mean axial convection because the turbulent radial
heat flux nearly vanishes: the residence time increases and the fluid is more
heated by radial molecular diffusion (Fig. 5 left); thus, Nu is small and nearly
constant (Fig. 5 right). The similar behavior of f and Nu in Figs. 3 and 5 (right)
also indicate a clear analogy between the momentum and heat transfer for each
fluid.

Fig. 4. Effect of Pn on the RMS of Θ′ (left) and on the radial heat flux (right).
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Fig. 5. Effect of Pn on the temperature (left) and on the Nusselt number (right).

3.3 Visualizations

To show the effects of Pn and n on the flow, the resolved axial velocity fluc-
tuations are presented in Fig. 6, in the full cylindrical plane (θ, z) at y+ � 15.
For the Newtonian fluid (n = 1), with increasing Pn, the turbulent structures
are less random and the streaks are larger indicating a less developed turbu-
lence. For the shear-thinning fluid (n = 0.75), the number of streaks is reduced
compared with n = 1 and much longer streaks appear, particularly at Pn = 1.
This suggests a reduction of the turbulence and, as a consequence, of the heat
transfer, more pronounced at n=0.75 than at n=1 due the augmentation of the
viscosity towards the pipe center. Clearly these visualizations and the f and Nu
behaviors in Figs. 3 and 5 indicate a structural change in the flow for Pn ≥ 1.

Fig. 6. 2D field of the resolved axial velocity fluctuations in the plane (θ, z) at y+ � 15.

4 Conclusions

This study is the first contribution that uses LES, with an extended Smagorinsky
model, to simulate turbulent flows and heat transfer of temperature dependent
power-law fluids in pipes, under isoflux conditions. These LES enable to analyze
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these complex fluid flows with shear rate and temperature dependent viscosity.
The Pearson number effect on the flow and thermal fields is in depth studied.
For the non-temperature dependent viscosity case (Pn = 0), the axial velocity
profiles for the shear-thinning and Newtonian fluids, as well as the friction factors
and Nusselt numbers, are in reasonably good agreement with the findings of the
literature. With increasing Pn (temperature dependent viscosity case), the mean
viscosity is enhanced towards the pipe center. As a consequence, the RMS of the
temperature Θ′+, similarly to the RMS of Uz, is reduced when approaching the
pipe center, and the Nusselt number undergoes a significant reduction when Pn
increases. From Pn = 0 to 2, this leads to a decrease of the turbulent radial heat
flux, acceleration of the flow and temperature reduction in the log-region.
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Abstract. This paper presents a computational study of the flow
around the DTMB 5415 at 10◦ static drift. Two RANS (Reynolds Aver-
aged Navier-Stokes) turbulence models, as the isotropic k-ω SST and
the non linear anisotropic EARSM (Explicit Algebraic Reynolds Stress
Model) and one hybrid RANS-LES model, the DES (Detached Eddy
Simulation) based on the k-ω, are used with the flow solver ISIS-CFD.
All numerical results are compared to experimental data. The numerical
results show that the DES model is the one turbulence model that able
to predict correctly the behavior of the flow in the core of the SDTV
(Sonar Dome Tip Vortex), and particularly the high level of the turbu-
lence kinetic energy.

Keywords: Turbulence models · DTMB 5415 · Static drift

1 Introduction

For ship design, environmental aspects and signature characteristics, it is impor-
tant to understand the three-dimensional flow around a ship and in the wake
of the hull under straight ahead or static drift conditions. For this geometry
and these conditions, the flow is dominated by the onset of longitudinal vortices
progressing in the close vicinity of the hull. With a Reynolds Averaged Navier-
Stokes (RANS) approaches, using an Explicit Algebraic Reynolds Stress Model
(EARSM) or Reynolds Stress Transport Model (RSTM), the averaged iso-wakes
or longitudinal vorticity were in agreement with the measurements [1,6]. How-
ever, for two hulls, the Japanese Bulk Carrier (JBC) and the David Taylor Model
Basin (DTMB) 5415, the level of the turbulent kinetic energy (TKE) predicted
with a RANS turbulence model is underestimated compared to the experimental
data. For the JBC, a Large Eddy Simulation predict a high level of TKE [8].

The geometry used in this study is the DTMB 5415, see Fig. 1, which has a
length between the perpendiculars LPP = 3.048 m. The draught of the ship is T
= 0.248 m and the hull is fixed. The model is a bare hull except the bilge keels.
The Reynolds number, based on the length LPP and the towing velocity U =
1.531 m/s, is Re = 4.65 × 106 and the Froude number is Fr = 0.28.
c© Springer Nature Switzerland AG 2021
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Fig. 1. Geometry of DTMB 5415.

In this study, the ship has a drift angle β = 10◦ and all flow measurements
have been performed by IIHR [10] which provides tomographic PIV information
at several stations. Due to the static drift, the flow is asymmetric about the hull
centerline as the hull is oriented obliquely to the incoming flow. The main vortices
are the sonar dome tip vortex (SDTV), the bilge keel tip vortex (BKTV) and
the aft-body keel vortex (ABKV). In the following of the paper, the comparisons
will examine SDTV.

2 ISIS-CFD at Glance

ISIS-CFD, developed by the Ecole Centrale de Nantes and CNRS and available
as a part of the FINE/Marine computing suite, is an incompressible Unsteady
Reynolds-Averaged Navier-Stokes (URANS) method. The solver is based on the
finite volume method to build the spatial discretization of the transport equa-
tions. The unstructured discretization is face-based, which means that cells with
an arbitrary number of arbitrarily shaped faces are accepted. A second order
backward difference scheme is used to discretize time. The solver can simulate
both steady and unsteady flows. The velocity field is obtained from the momen-
tum conservation equations and the pressure field is extracted from the mass
equation constraint, or continuity equation, transformed into a pressure equa-
tion. In the case of turbulent flows, transport equations for the variables in the
turbulence model are added to the discretization.

The solver features sophisticated turbulence models: apart from the classical
two-equation k-ε and k-ω models, the anisotropic two-equation Explicit Alge-
braic Reynolds Stress Model (EARSM), as well as Reynolds Stress Transport
Models, are available [2,3]. All these are RANS models. One hybrid RANS-
LES method used is the Detached Eddy Simulation (DES), based on the k-ω
model [7]. Recently, some modifications of this formulation proposed by Griske-
vich et al. [4] includes recalibrated empirical constants in the shielding function
and a simplification of the original Spalart-Allmaras-based formulation. This new
model is called Improved Delayed Detached Eddy Simulation (IDDES). These
hybrid RANS-LES models have been validated on automotive flows character-
ized by large separations [5].

Free surface flow is simulated with a multi-phase flow approach: the water
surface is captured with a conservation equation for the volume fraction of water,
discretized with specific compressive interface-capturing scheme [9].
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3 Results

The mesh is generated by HexpressTM, an automatic unstructured mesh gener-
ator. A first refinement box including the hull with a cell size of 10 mm in each
direction is used. Two other boxes, one including the sonar dome until X/LPP

= 1.0 and the other including the windward bilge keel until X/LPP = 1.0, are
used. For these two boxes, the cell size is Δx = 1.5 mm and Δy = Δz = 0.7 mm.
Finally, a last box covering the sonar dome until X/LPP = 0.6 is used with the
cell size Δx = 0.75 mm and Δy = Δz = 0.35 mm. The final mesh contains 162.6
million cells.

Figure 2 presents a comparison of the axial velocity in a plane located at
X/LPP = 0.4. In this slice, only the SDTV vortex is visible. The comparison of
the vortex size with the different turbulence models is similar and in agreement
with the experimental data.

(a) k-ω SST (b) EARSM

stnemirepxE)d(SED)c(

Fig. 2. Comparison of the axial velocity at X/LPP = 0.4.

For the same slice, it is possible to plot the turbulence kinetic energy, see
Fig. 3. In the experiments, a maximum of TKE is observed in the core of the
vortex while with the RANS turbulence models, a minimum of TKE is predicted.
Only the hybrid RANS-LES model predicts this high level of TKE in the core
of the vortex.
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(a) k-ω SST (b) EARSM

stnemirepxE)d(SED)c(

Fig. 3. Comparison of the turbulent kinetic energy at X/LPP = 0.4.

With the help of several slices, it is possible to plot the longitudinal evolution
in the core of SDTV and BKTV, see Fig. 4 which presents the position of the
vortex core, the axial velocity and TKE. The positions of SDTV and BKTV
are very well predicted by all numerical simulations. For the axial velocity, the
velocity predicted with the EARSM turbulence model is not in agreement with
the experimental data. Indeed, in the numerical simulation, a decrease of the
velocity is predicted until X/LPP = 0.8 while in the experiments, the velocity
increases until X/LPP = 0.6 and then decreases slightly. With the k-ω SST
turbulence model, the velocity is constant until X/LPP = 0.6 and then increases.
The DES model is the only one that is able to predict the correct behavior
of the velocity in the core of SDTV. For the turbulence kinetic energy, the
RANS models predict a decrease when we move along the hull. However, in the
experiments, the level of TKE is constant in the core and the hybrid RANS-LES
model is able to predict this behavior.

This high level of turbulent kinetic energy is due to a population of ring
vortices, see Fig. 5 which shows the core of the SDTV vortex obtained with the
hybrid RANS-LES model, that comes from the periodic shedding at the trailing
edge of the sonar dome. These vortices are driven in a global rotation motion
around the axis of the SDTV and then create a high level of resolved fluctuations
in its core. So, the high level of k in the core is not due to vortex meandering.
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(a) Transverse position (b) Vertical position

(c) Axial velocity (d) Turbulent kinetic energy

Fig. 4. Longitudinal evolution in the core of SDTV.

Fig. 5. View of an iso-surface of non-dimensional Q (Q∗ = 50) around the SDTV
vortex.
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4 Conclusions

In this paper, an investigation of RANS and hybrid RANS-LES models for the
flow simulation around a DTMB 5415 at 10◦ static drift has been conducted.
This numerical study has been carried out with the flow solver ISIS-CFD. It has
been shown that the use of the hybrid RANS-LES model offers an advantage
over RANS models, particularly in terms of the turbulence kinetic energy in the
core of the vortex. This high level of turbulent kinetic energy prediction is due
to a vortex shedding on the trailing edge of the sonar dome.
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Equipement National de Calcul Intensif).
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Abstract. Experiments and large eddy simulations are carried out to
study the interaction of spherical particles with a turbulent air jet
impacting a wall. The context is that of the dynamical air curtains
used to separate a contaminated ambiance with passive or inertial par-
ticles from a clean ambiance. In the present study, the jet and particle
Reynolds numbers and the jet and turbulence Stokes numbers are respec-
tively equal to Rej = 13500, 0.7 ≤ Rep ≤ 3.5, 0.02 ≤ Stj ≤ 0.35 and
0.1 ≤ Stt ≤ 1: they mainly concern passive particles. The rate of the
particles that cross the air jet is analyzed according to the particle size,
for two particle injection heights. A non-monotonic passing rate of the
particles through the jet with respect to the particle size is observed in
the experiments.

Keywords: Impacting plane jet · Air curtain · Particle/jet
interaction · Passive particles · Experiments · LES

1 Introduction

Plane air jets are widely used in industry and cover a large range of applications:
cooling and wiping of liquid films by plane turbulent jets [1], spread reduction
of fumes and gaseous pollutants in tunnel fires [2] etc. In our case, a plane air
jet is used for the separation of two clean and polluted atmospheres by inertial
and passive (non-inertial) particles. The purpose of this work is to define if
large eddy simulations (LES) allow qualitatively and quantitatively reproducing
the interaction between particles and a turbulent vertical air jet. In that aim,
an experimental apparatus and a numerical tool based on the coupling of LES
and a Lagrangian model for the particle transport have been developed. The
studied configuration is that of an air jet impacting a wall (similar to that of
experiments [3] and LES [4]) and crossed by particles. The objective is to study
the jet dynamics without particle and, then, to inject particles towards the jet,
to measure their passage rate through the jet and to compare it with that of the
LES.
c© Springer Nature Switzerland AG 2021
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2 Analysis of the Impinging Plane Air Jet, Without
Particle

2.1 Experimental Facility and Method

In order to characterize impacting plane air jets, we designed the experimental
device of Fig. 1. A vertical plane air jet is generated by a centrifugal fan that
blows air through a divergent and convergent channel, then through a rectangular
nozzle of section width e = 3mm in x-direction and depth dz = 200mm in z-
direction. The nozzle aspect ratio dz/e = 66 ensures that the flow is statistically
two-dimensional and free from the side wall effects when taking measurements
in the central plane (z = 0) of the jet. The nozzle outlet is located in the middle
of the top wall of a horizontal rectangular channel of height H = 3 cm, depth
dz = 200mm and length Lx = 60 cm in x-direction (30 cm on each side of the
jet). The jet average velocity at nozzle outlet is Uj = 65m/s. The jet Reynolds
number Re = Uje/ν = 13500 and the opening ratio H/e = 10 are fixed in
all the study. The analysis of the velocity field is carried out by particle image
velocimetry (PIV), by seeding with oil particle tracers directly at the fan level
and using a Nd-Yag laser (65mJ, 15Hz) and a fast camera (FS EO 4M-32).

Fig. 1. Sketch and photography of the experimental facility.

2.2 Flow Configuration, LES Model and Numerical Methods

The LES are performed with the CFD code Ansys/Fluent v18.2 using the WALE
model for the sub-grid effects. The filtered Navier-Stokes equations are solved by
a finite volume method with a second order bounded central scheme, a second
order time implicit scheme and PISO algorithm. The numerical configuration
is close to that of the experiments. The computational domain size is Lx ×
Ly(H) × Lz = 243 × 30 × 18.84mm3 in the horizontal, vertical and depth
directions respectively (Fig. 2 left). The vertical plane jet is injected into the
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domain by a nozzle of section Lz × e = 18.84 × 3mm2 located in the center of
the upper horizontal wall. The experimental velocity profile measured in [3] at
the outlet of the nozzle and taken up in the LES [4] is interpolated and imposed
as inlet boundary conditions (B.C.) in our simulations with the average velocity
Uj = 65m/s. Turbulent fluctuations in the inlet velocity profiles are generated,
with a turbulent intensity I = 2%, by a «spectral synthesizer». No slip B.C.
are imposed on the horizontal walls and periodic B.C. on the front and back
faces. The depth Lz/e = 2π is chosen so that the time signals are decorrelated
in z-direction [4]. The air jet impacts the lower wall and horizontally flows out
through the left and right vertical openings considered at atmospheric pressure.
A non-uniform Cartesian mesh of size Nx × Ny × Nz = 236 × 150 × 64 cells
(y+

max < 5.6) is used (Fig. 2 right). It is uniform in z-direction. The time step
is Δt = 10−6 s such that CFLmax = (UΔt/Δx)max = 7. The time duration for
the statistics is 0.02 s.

Fig. 2. Sketch of the computational domain (left) and mesh in the (x−y) plane (right).

2.3 Result Discussion for an Air Jet Without Particle

Figure 3 shows average and rms velocity profiles obtained by the present PIV and
LES, compared with experimental [3,5] and LES [4] results. Other validations
were carried out by comparing various vertical and transverse profiles of the
time averages and rms of the velocity components and pressure, the Reynolds
stresses, the half width of the jet and the spectral analysis of time signals. All
these results are in good agreement with the results published in the reference
literature (see [6] for more details about the validations).

3 Analysis of the Jet/Particles Interaction

3.1 Experimental Facility and Particle Generation (Spinning Disk)

To generate particles, the spinning disk method is used (Fig. 4 right). The prin-
ciple is the fragmentation and dispersion of oil droplets under the centrifugal
force of a rotating disk. The edge of this disk is placed at 1 cm from the jet
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Fig. 3. Mean velocity magnitude (left) and vertical velocity rms (right) along jet axis.

axis and its tangential speed is Vt = Rω = 38m/s with R = 1.6 cm. Figures
4 and 5 show that the presence of the rotating disk does not perturb the air
jet flow. The oil mass flow rate for particle generation is ṁ = 0.2 g/min and
the generated particle diameter is 0.3 ≤ dp ≤ 7µm. The particle total concen-
trations, Cp,l and Cp,r, and size distribution are locally measured on the two
sides of the jet, at x = ±20 cm, by an optical particle counter (COP-GRIMM;
Fig. 4 left). Cp,l is measured on the left side (opposite side of the rotating disk
with respect to the jet) and Cp,r on the right side (on the side of the rotating
disk). We have checked that these concentrations are quasi homogeneous in all
the channel section at this distance. The particle passing rate through the jet,
defined by PPR = Cp,l

Cp,l+Cp,r
, is computed from the average values of the con-

centrations measured during a ten minute particle injection in the presence of
the jet, for two positions of the rotating disk: at y = 7mm (jet potential cone
level) and y = 17mm (jet developed zone; Fig. 3 left). Since, the optical counter
can measure the diameter dp of each particle, the PPR can also be measured
for each class of particle size.

Fig. 4. Experimental facility for the jet/particle interaction study (left). Spinning disk
principle and PIV field of the mean velocity magnitude with the rotating disk (right).
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Fig. 5. Profiles of the mean vertical velocity (left) and rms of the horizontal (center)
and vertical (right) velocities along the jet axis, with and without the disk in rotation.

3.2 Configuration and Parameters of the Jet/Particle Simulations

A Lagrangian model expressing the balance between the inertial, drag and grav-
ity forces is used for the transport of the oil droplets considered as spheres. In
this model, the particle relaxation time tp = ρpd2

p

18μ
24

CDRep
and the drag coeffi-

cient CD = a1 + a2
Rep

+ a3
Re2

p
(ai = cst) are function of Rep = ρdp|up−u|

μ ,
the particle Reynolds number. A “stochastic tracking model” is also activated
in Ansys/Fluent to take into account the turbulent dispersion of the parti-
cles (see [7] for more details). Since the largest particle volume fraction was
estimated around 10−3 in the spinning disk neighborhood at the end of the
injection period, a two-way-coupling model was used in the simulations. Fur-
thermore, ts = e/(2up) being the characteristic time of the particles to go
through the half of the jet thickness and tκ being the Kolmogorov time scale,
the jet and turbulence Stokes numbers are estimated to vary in the ranges
0.02 ≤ Stj = tp/ts ≤ 0.35 and 0.1 ≤ Stt = tp/tκ ≤ 1 (to 7, locally), when
dp varies between 1 and 5µm. Therefore the particles are mainly passive, that
is with little inertial effects.

The injection and boundary conditions for the particles are presented on
Fig. 6 (left). Around 1 million of spherical particles of the same diameter (dp = 1,
3 or 5µm) and density ρp = 920 kg/m3 are injected in the domain from a thin
surface of depth ×height= 18.8 × 1mm2, located at x = 10mm from the air jet
median plane and at y = 7 or 17mm from the top wall. They are injected during
2ms, with a horizontal velocity up = −10m/s and mass flow rate ṁ = 0.3 g/min.
Their trajectories are followed during 5ms for the injection at y = 7mm and
during 50ms at y = 17mm. The particles are reflected on the top wall and
on the bottom wall in front of the air jet nozzle, but they are trapped on the
rest of the bottom wall. Due to the simulation cost, the PPR is only computed
for the injection at y = 17mm: it is the proportion of particles of the same
diameter that have passed through the jet median plane (x = 0) at t = 50ms.
The total user time of these simulations is around two months on 20-cores of
recent high-performance computing workstations.
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Fig. 6. Simulation domain with the injection line and the particle B.C. (left). Vorticity
contours and 3µm-particle location (black points) in the vertical median plane at z = 0,
at t = 2.25ms, for the particles injected at y = 7mm from the top wall (right).

3.3 Result Discussion for an Air Jet with Particle Injection

Figure 6 (right) shows the particle/vorticity interaction, for dp = 3µm and the
injection position at y = 7mm, just after the injection period, at t = 2.25ms.
The particles are driven by Kelvin Helmholtz rolls that are partially responsible
for the passage of the particles through the jet, mainly in the impact zone (see
also [4]). Note that, due to the presence of two large vortices on both sides of
the jet (not shown here; see [6] for more details), the evacuated particles towards
the channel outlets can be taken back to the jet by these vortices, for t > 10ms.
This explains why the PPR is measured at t = 50ms in the simulations.

The experimental time evolution of the particle concentration Cp,l is shown
on Fig. 7 (left) for three different tests. There are four distinct phases in this
graph which correspond to the time variation of Cp,l: (1) in the environment
(before particle injection) in order to subtract it from the following measure-
ments; (2) with particle injection but without air jet; (3) with particle injection
and with air jet (it is therefore the concentration of particles passing through the
jet); (4) after stopping the particle generation. One can see that the repeatability
of the measurements is ensured and a decrease in the particle concentration is
observed in the presence of the jet.

Fig. 7. Time evolution of the particle concentration Cp,l (left). Passing rate of the
particles through the jet with respect to the particle diameter (right).
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Figure 7 (right) presents the PPR evolution, for each class of particle size,
with respect to dp, for the two positions of the rotating disk in the experiments
and at y = 17mm for the simulations. The experimental PPR values are similar
for the two injection locations, except at dp < 1µm. As already noted above, this
can be partly explained by the presence of the two large vortices on both sides
of the jet that “recycle" the particles [6]. For the injection at 17mm, the experi-
mental and numerical PPR values are in a relatively good agreement when the
standard deviations of the experimental results are taken into account. However
a non-monotonic PPR evolution with dp is clearly visible in the experiments but
is not reproduced by LES. In the experiments, the larger value of the PPR for
the smallest dp could be due to the turbulent dispersion of the smallest particles
while its increase for the largest dp could be due to inertial effects relatively to
the turbulence scale (Stt,max = 7 for dp = 5µm). This small-scale phenomenon
is filtered by LES and likely not taken into account in the numerical model.
Another explanation could be the coalescence (resp., the break-up) of the oil
droplets, increasing then the PPR of the biggest (resp., smallest) particles.

4 Conclusions

In the first part of this study, an analysis of the air jet dynamics without par-
ticles has been performed with PIV and LES simulations. The comparison of
the results has shown that the Wale LES model is appropriate to simulate a
turbulent air jet impacting a wall. In the second part, the interactions between
this air jet and spherical particles of different diameters was investigated by
the two approaches. The method of particle generation by a spinning disk has
appeared to be a very interesting method because it does not perturb the jet.
The experiments have enabled to set up reference results to validate simulations
with particle/jet interaction because no experiment exists in the literature for
this configuration. The LES have enabled a better understanding of the par-
ticle/jet interactions, in particular the interactions with the Kelvin-Helmholtz
rolls. A non-monotonic passing rate of the particles through the jet with respect
to the particle size has been experimentally observed. This paper is a presenta-
tion of the first results of this study but new results and deeper analyses are in
progress.
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Abstract. Modeling and simulating multiphase flows still remain an
exciting and stimulating scientific challenge. Many approaches were
developed to describe the topological evolution of the interface. This
paper remains in the domain of the Front-Tracking method [8,10], in
which, in addition to the use of an Eulerian mesh to solve the Navier-
Stokes equations, a Lagrangian interfacial mesh of surface elements (tri-
angles in 3D) explicitly describes the evolution of the interface. Whatever
the method used, getting the interfacial capillary, mass or energy trans-
fers is crucial for the study of multiphase flows. A comparison is done
between different techniques [7,10] used to get the geometrical properties
of the 3D front-tracking objects, such as the surface tension forces, mean
curvatures and normal vectors, which are essential for the modeling and
understanding of multiphase flows.

Keywords: Front-tracking · Multiphase flow · Surface tension ·
Curvature

1 Introduction

The numerical simulation and modeling of multiphase flows have been of great
interest these last two decades. It has a wide range of involvements in our
daily life, whether in chemical engineering, material design, energy field or pro-
pelling, with boiling crisis, combustion in motors, atomization, surface coating,
to cite but a few. Different approaches are used to take into account the sur-
face tension forces. In the Direct Numerical Simulation (DNS) of multiphase
flows, unstructured meshes are usually used for discretization [2]. Each phase
is resolved independently, and the junction at the interface is satisfied through
jump conditions [3], including the surface tension forces. In the case of the One-
Fluid model, contrary to the previous one, a structured mesh is often used to
solve the conservation equations in the entire domain. The surface tension forces
Fst are included in the Navier-Stokes equations. One way to estimate them is
using the Continuum Surface Force (CSF) proposed by Brackbill et al. [1]. But
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whatever the method employed, the mean curvature κ and the unit normal vec-
tor n must be accurately evaluated, for they are essential geometrical properties
for the study of multiphase flows and interfacial transfers. In the case of 3D
front-tracking methods, four approximations are presented and compared to get
those surfaces properties.

2 Geometrical Interface Properties

Four approaches to get the geometrical properties of the interface, namely the
mean curvature κ and the unit normal vector n, are shown below, knowing the
triangular interface mesh (vertices positions and mesh connectivity). They can
be gathered into two groups.

2.1 The Meyer et al. Approach

The Meyer approach is based on a discrete formulation of the Laplace-Beltrami
operator [7]. The curvature and the normal vector are obtained through a linear
combination of the Ni edges sharing the same vertex xi.

K(xi) =
1

2Amixed

Ni∑

j=1

(cot αij + cot βij)(xi − xj) = 2κn (1)

where αij and βij are the angles facing the edge [xixj], and K is the Laplace-
Beltrami operator, which is basically a Laplacian acting on the surface (see
Fig. 1b). Two variants can be differentiated based on the construction of the area
Amixed: the Standard Meyer Method [7] and the Barycentric Meyer Method [4].
In both cases, when the triangle is acute, the Voronoi area is used. If the triangle
is obtuse, either the middle of the edge opposite to the obtuse angle (Standard
Meyer Method), or the centroid (Barycentric Meyer Method) is employed to
construct Amixed.

2.2 The Frenet Approach

The Frenet approach is used in the works by Shin and Juric [8], as well as in those
by Tryggvason et al. [10]. Evaluated on an element (line in 2D and triangle in
3D), it can be called Frenet Element Method. The average surface tension force
is:

f =
σ

S

∫

S

κndS =
σ

S

∮

∂S

t ∧ ndl (2)

with ∧ the cross product, S the area of the element, ∂S its perimeter, t and n the
unit tangent and normal vectors at the edge. The average force is approximated
by:

f ≈ σ

S

3∑

i=1

(t0i ∧ n0i)L0i (3)
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Fig. 1. Areas on which are applied the average force for the frenet element and vertex
methods (a) and the Standard Meyer method (b).

where •0i refers to the parameters at the edge shared by elements T0 and Ti. For
an analytical surface, it is simple to get the tangent and the normal vector at
the edge. This is more problematic for the approximated surface. To mimic the
continuous formulation in the 3D discrete case, the normal vector to the edge
shared by the elements T0 and T1 is approximated by:

n01 =
S1n0 + S0n1

‖S1n0 + S0n1‖ (4)

Instead of computing the mean values of the curvature and normal vector on
the element, an average value centered around a vertex xi can be preferred, the
so called Frenet Vertex Method. The resulting surface tension force, constructed
on the elements sharing the same vertex xi, consists in a linear combination of
the average force on each element, using the Frenet Element Method:

F(xi) =
Ni∑

j=1

Sjf j and κn =
F(xi)

σ
Ni∑
j=1

Sj

(5)

3 Simulations and Results

The aforementioned methods are compared and their accuracy estimated on an
analytical surface [6], where the exact curvature and normal vector are com-
puted [5]. The following analytical surface is considered (see Fig. 2):

f(u, v) = sin(5u) sin(5v) with (u, v) ∈ [−π

5
,
π

5
] × [−π

5
,
π

5
] (6)

Its discrete approximation results in a projection of a planar mesh, for which
the size and the shape of the elements are controlled. Let x =

(
x1, x2, 0

)
be a

vertex of an initial planar mesh of equilateral triangles, the edges size of which



A Review of Geometrical Interface Properties 147

Fig. 2. Top view (left) and side view (right) of the mean curvature κ for the analytical
surface f(u, v) (Eq. 6).

is d. From this initial planar mesh, random disturbances are introduced: x̃ =
x + r × p × d × (

cos 2πθ, sin 2πθ, 0
)
, where p is the maximum magnitude of the

perturbation (0 ≤ p < 0.5), and (r, θ) is a couple of random numbers drawn from
a standard uniform distribution. To evaluate the accuracy of the approximations,
the following measure is defined:

Errrel2 (•) =

√√√√√√√√

N∑
j=1

‖ •j − •ref
j ‖2

N∑
j=1

‖ •ref
j ‖2

(7)

where ‖ • ‖ is the absolute-value for a scalar number, or the Euclidean norm for
a vector, N denotes the number of vertices (Meyer approach and Frenet Vertex
Method) or elements (Frenet Element Method). The notation •ref

j stands for the
average force direction nref

j or intensity κref
j on the surface S, which corresponds

to, either the element j, or the stencil surrounding the vertex xj :

nref
j =

F̄
‖F̄‖ , κref

j =
‖F̄‖
σ

, with F̄ =
σ

S
∫

S
κnds (8)

The convergence of the approximation is studied as a function of the dimen-
sionless mesh size d×maxj(κ

ref
j ), which represents the size of the triangles used

for describing the maximum curvature. First, no perturbation is applied on the
planar equilateral mesh (p = 0). The numerical errors reported in Table 1 indi-
cate that the best methods which stand out are the Standard Meyer Method,



148 D.-A. K. Bi et al.

Table 1. Comparative and convergence study on κ, p = 0

d × max(κ) Std Meyer Bar Meyer Frenet vertex Frenet element

Errrel2 (κ) Order Errrel2 (κ) Order Errrel2 (κ) Order Errrel2 (κ) Order

7.80E–01 2.04E–02 3.27E–02 1.98E–02 9.95E–02

3.90E–01 6.20E–03 1.72 1.86E–02 0.81 7.20E–03 1.46 5.33E–02 0.90

1.95E–01 1.82E–03 1.77 1.42E–02 0.39 3.05E–03 1.24 2.72E–02 0.97

9.75E–02 5.38E–04 1.76 9.04E–03 0.66 1.13E–03 1.43 1.42E–02 0.94

4.87E–02 1.65E–04 1.71 6.75E–03 0.42 5.36E–04 1.08 7.22E–03 0.97

2.44E–02 5.31E–05 1.63 4.68E–03 0.53 2.07E–04 1.37 3.61E–03 1.00

Table 2. Comparative and convergence study on κ, p = 0.05

d × max(κ) Std Meyer Bar Meyer Frenet vertex Frenet element

Errrel2 (κ) Order Errrel2 (κ) Order Errrel2 (κ) Order Errrel2 (κ) Order

7.80E–01 2.38E–02 3.39E–02 2.04E–02 1.02E–01

3.90E–01 1.39E–02 0.78 2.34E–02 0.54 8.99E–03 1.18 5.90E–02 0.79

1.95E–01 1.24E–02 0.16 2.05E–02 0.19 5.90E–03 0.61 3.77E–02 0.65

9.75E–02 1.24E–02 0.00 2.00E–02 0.04 5.48E–03 0.11 3.03E–02 0.31

4.87E–02 1.24E–02 0.00 1.98E–02 0.01 5.44E–03 0.01 2.80E–02 0.11

2.44E–02 1.24E–02 0.00 1.98E–02 0.00 5.42E–03 0.00 2.74E–02 0.03

Table 3. Comparative and convergence study on n, p = 0.2

d × max(κ) Std Meyer Bar Meyer Frenet vertex Frenet element

Errrel2 (n) Order Errrel2 (n) Order Errrel2 (n) Order Errrel2 (n) Order

7.80E–01 1.23E–01 1.23E–01 1.56E–01 8.78E–02

3.90E–01 5.23E–02 1.23 5.23E–02 1.23 6.39E–02 1.29 5.46E–02 0.69

1.95E–01 1.41E–02 1.90 1.40E–02 1.90 1.11E–02 2.52 2.72E–02 1.00

9.75E–02 3.93E–03 1.84 3.89E–03 1.85 2.83E–03 1.97 1.32E–02 1.04

4.87E–02 1.12E–03 1.82 1.08E–03 1.85 1.20E–03 1.24 6.75E–03 0.97

2.44E–02 3.53E–04 1.66 3.30E–04 1.71 5.08E–04 1.24 3.37E–03 1.00

followed by the Frenet Vertex one. From now on, random perturbations are intro-
duced in the aforementioned planar mesh, and 100 simulations are performed
to get the mean statistical values. As shown in Table 2 for small disturbances
(p = 0.05), all methods saturate when refining the mesh. This saturation is all
the more high as the magnitude p of the perturbations increases. Indeed, for
p = 0.2 and d × maxj(κ

ref
j ) = 2.44 × 10−2, the relative curvature errors for

the Standard Meyer and the Frenet Vertex Methods are 4 times larger, with
respectively Errrel2 (κ) = 4.96×10−2 and Errrel2 (κ) = 2.35×10−2. Concerning the
normal vector approximation n, even for large perturbations (p = 0.2), the meth-
ods converge, with at least a 1st order accuracy (Table 3). However, despite the
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convergence of the unit normal vector, the saturation of the curvature prevents
the convergence of the surface tension force.

4 Remarks and Conclusion

Getting the surface tension force, the mean curvature and the normal vector
at the interface of multiphase flows is not as straightforward as in 2D, where
the usual methods give good results, both in terms of errors and accuracy [9].
The tests conducted in this paper show that, without random perturbation, the
Standard Meyer and the Frenet Vertex Methods stand out and have a good
accuracy. It is worth to point out that, after projection onto the surface, the
triangles are not equilateral anymore. However, the surface mesh still varies
smoothly, since the analytical function is regular enough. In contrast, the addi-
tion of disturbances definitely breaks this regularity, preventing the convergence
of the curvature (and the surface tension force). In the framework of multiphase
flows approximated by 3D front-tracking methods, the mesh quality is difficult
to manage because of the complexity of the dynamics. Therefore, despite rela-
tively small errors, applying the different methods is questionable due to their
lack of convergence.
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Abstract. The main focus of the present study is to evaluate the accu-
racy of the soft-sphere method to represent the particle-particle and the
particle-wall collision effect in dilute rapid particulate flow. At this aim,
3D soft-sphere Discrete Element Method (DEM) simulation results are
presented for frictionless elastic and inelastic particles, for different sizes
and mean solid volume fractions, transported in a fully developed ver-
tical channel flow. The effect on particle statistics of the friction during
particle-wall collisions is analyzed. Profiles of time-averaged quantities
are assessed and well agree with simulation results available from the
literature, obtained by using the hard-sphere model.

Keywords: Gas-particles flows · Discrete element method ·
Soft-sphere model

1 Introduction

Understanding the dynamics of turbulent gas–particle flows has great importance
for the successful design and optimization of many industrial applications, such
as fluidized beds, dust collectors, cyclone separators. These systems involve many
complex mechanisms, which are often coupled and interacting with each other.
In the past decades, the focus was mainly on the complexity of the interaction
between particles and gas-phase turbulence [1,15] and the effect of particle–
particle and particle–wall collisions [13,14].

Gas turbulence has a predominant effect on particle diffusion for small par-
ticles. In this case, the influence of the solid-solid interactions is less important,
because their dynamics is controlled by the fluid motion. However, in the case
of large particles, the distance they need to respond to the fluid flow is larger
than the characteristic dimension of the confinement, and the effect of the flow
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turbulence may be neglected. Their motion is considerably influenced by the
solid-solid collision process in confined flows. In this work, the inertial particles
motion in a steady and imposed fluid flow is studied.

Due to the discrete nature of the particles, the numerical simulation of the
particle motion is performed in a Lagrangian framework by Discrete Element
Method (DEM). Such an approach can be coupled with different models resolving
the fluid phase, depending on the characteristic length scales of the fluid and
particles.

An accurate resolution of particle-particle and particle-wall interactions is
necessary to describe properly the whole gas-particles flow dynamics. For this
reason, the objective of the present work is twofold. The first objective is to
study the influence of particles properties (particle size, concentration, restitu-
tion coefficient, etc.) on the velocity statistics in vertical channel flows using
the DEM simulation. For modeling the solid-solid interaction, DEM uses two
approaches, the hard-sphere [3] and the soft-sphere models [5]. The soft-sphere
model has computational advantages in simulating dense suspensions with mul-
tiple particle-particle contacts, while the hard-sphere model is better suited to
dilute regimes. Indeed, the soft-sphere models makes it possible to address multi-
ple collisions which occur in denses regimes, allowing particles to deform slightly
at the contact point. The hard-sphere approach assumes instead that no defor-
mation occurs during the instantaneous collision between the two solid bodies.
In this work, the soft-sphere model is used, since this can treat both low and high
particle number densities, and it can handle multiple contacts. Thus, the second
objective is to evaluate the accuracy of the soft-sphere model to reproduce the
solid-solid collision effect in a rapid gas-particles flow with dilute suspension of
massive particles, comparing with Lagrangian simulation results based on the
hard-sphere model [7,9,10].

2 General Description

2.1 Flow Configuration

The proposed test case is a gas-particles vertical fully developed channel flow,
studied early by [7,9,10]. The corresponding Reynolds number of the fully devel-
oped flow in the channel is about 42000. The computational domain is a rectan-
gular box, with periodic boundary conditions in the spanwise (x) and streamwise
directions (z) (see Fig. 1), while the y direction is normal to the walls. A monodis-
perse particle-laden fluid is introduced in the vertical direction z. The physical
characteristics of the fluid are ρf = 1.205 kg.m−3, νf = 1.515 × 10−5 m2.s−1.
For the dispersed phase, two kinds of particle are studied: dp = 1.5 mm and
ρp = 1032 kg.m−3, or dp = 406 μm and ρp = 1038 kg.m−3. These simulations
are carried out for mean solid volume fractions 〈αp〉 varying between 10−3 and
10−2. Low solid volume fractions and the large particle inertia make it possi-
ble to neglect the interactions between the fluid turbulence and the particles as
well as the influence of the particles on the mean fluid flow. The Stokes number
St = τpu∗/Ly for the present problem is about 200 and 2500 for smaller and
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larger particles, respectively. Here, τp = ρpd
2
p/18μf is the particle response time,

u∗ is the friction velocity and Ly is the channel width. According to the Stokes
number values, it turns out that St � 1, then the particles are not affected by
the turbulence of the fluid. The mean fluid velocity profile is determined from a
preliminary single-phase k − ε computation (see Fig. 2) and fixed during all the
simulations.

Fig. 1. Flow configuration. Fig. 2. Mean streamwise velocity.

2.2 Averaging of Physical Quantities

Thanks to the homogeneity of streamwise and spanwise directions, mean vari-
ables depend only on the wall-normal coordinate y. Therefore, the channel is
divided into 40 slices for dp = 406 μm, 15 slices for dp = 1.5 mm, parallel to the
walls in y direction. Particles are associated with the slice in which their centres
are located. The quantities are averaged spatially and temporally in each slices.
The averaging operator will be written as 〈·〉, Up,i and u′′

p,i = up,i −Up,i indicate
the mean velocity of the particles in the i-th direction and the velocity fluctu-
ations, respectively. Second and third order moments are defined as following
〈u′′

p,iu
′′
p,j〉 and 〈u′′

p,iu
′′
p,ju

′′
p,m〉, respectively. For the sake of simplicity, the particle

velocity components (up,1, up,2, up,3) will be written as (u, v, w), the mean veloc-
ity components (Up,1, Up,2, Up,3) will be noted as (U, V,W ), and the fluctuation
components (u′′

p,1, u
′′
p,2, u

′′
p,3) will be noted as (u′′, v′′, w′′). And np = Np/Vc is

defined as the particle number density, computed in a slice of volume Vc con-
taining Np particles.

3 Particle Dynamics: Lagrangian Simulation

The Lagrangian solver for particle tracking runs in two successive steps. The
first step takes into account the fluid and gravity effects, which make move the
particles. Each particle is tracked in a Lagrangian fashion based on the DEM.
The fluid entrains the particles, and their velocity is changed using a second-
order explicit Runge-Kutta algorithm. Since, periodic boundary conditions for
particles are considered in streamwise and spanwise directions, particles leav-
ing the calculation domain will be relocated using the periodicity and rebound
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conditions. For the fluid-particles interaction, the only drag is considered. The
second step deals with the inter-particle and particle-wall collisions. To com-
pute contact between solid bodies the soft-sphere model is employed. The solids
are allowed to overlap with each other in a controlled manner. The collision is
detected, when the distance between two particles and between a particle and a
wall is less than the sum of their radii and the radius of the particle, respectively.
The collision is computed in the mass-spring-dashpot system over a time step,
that must be smaller than the time step for the fluid flow. In the soft-sphere
model the choice of several numerical parameters is important to solve collisions
properly. Particle rotation is not taken into account in our simulations. Each
step will be detailed in the following sections.

3.1 The Equations of Motion

DEM simulations is the way to simulate particulate processes, tracking each
particle and considering all particle-particle and particle-wall interactions. The
motion of a single spherical particle p with mass mp is deduced from Newton’s
second law

mp
dup

dt
= FD,p + FG,p + FC,p and

dxp

dt
= up (1)

up and xp are the particle velocity, and position, FD,p is the drag force, FG,p

is the gravity force and FC,p is the collision force exerted by the neighbouring
solid bodies in contact. The total collision force FC,p acting on a particle p is
computed as the sum of all the forces exerted by the Np particles and Nw walls
in contact FC,p =

∑Np+Nw

b=1 f col
q→p. The drag force FD,p acting on the particle p

is written
FD,p = mp

ug − up

τgp
, τgp =

4
3

ρpdp

ρgCD|ug − up| (2)

where CD is the drag coefficient. According to the assumption, the only fluid-
particle interaction force taken into account is the drag. The drag coefficient is
based on the Schiller and Naumann correlation [12]. And the gravitational force
is written as FG,p = mpg.

For each particle, the equation of motion Eq. 1 is solved at each time step.
To integrate it properly, different characteristic times based on the different phe-
nomena (gravity, drag) are defined. Therefore, several criteria must be verified
on each particle to choose the smallest time step appropriated to the most lim-
iting characteristic time. In dilute rapid particulate flow simulations, once the
stationary state is reached, the limiting time step is that defined from collision
parameters.

3.2 Collision Model

Particle-particle and particle-wall collisions are modeled using the soft-sphere
approach [6] originally proposed by Cundall and Strack [5]. The particles are
represented as a mass-spring-dashpot system (see Fig. 3). When the distance
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Fig. 3. Soft-sphere representation of
two particles during collision.

Fig. 4. Temporal evolution of the col-
lision between two particles.

between particles p and q is less than the sum of their radii rp and rq, parti-
cle starts to collide and a collision force f col

q→p is generated. This force may be
decomposed in normal and tangential components. f col

q→p = f col
n,q→p + f col

t,q→p. The
normal component is computed as

f col
n,q→p =

{
−knδpqnpq − 2γnMpqupq,n, if δpq > 0
0, else

(3)

where kn is the normal spring stiffness, npq the normal unit vector, γn is the
normal damping coefficient, and upq,n is the normal relative velocity. The term
δpq is defined as the overlapping distance between two particles δpq = rp + rq −
||Op − Oq|| and Mpq = ( 1

mp
+ 1

mq
)−1 is the effective mass of the p − q binary

system. The overlapping distance is considered only in the normal direction. The
unit normal vector and the normal relative velocity between particles p and q
are defined respectively as

npq =
xp − xq

||xp − xq|| , upq,n = ((up − uq) · npq)npq (4)

where up and uq are the p and q particle velocities, respectively. For the tan-
gential component of the contact force a Coulomb-type friction law is retained
f col
t,q→p = −μ||f col

n,q→p||tpq where μ is the dynamic friction coefficient.

3.3 Collision Parameters

The projection of the Eq. 1 on npq gives the equation for δpq in the normal
direction:

Mpq δ̈pq = −knδpq − 2γnMpq δ̇pq (5)

Equation 5 is the differential equation of the damped harmonic oscillator and its
solution is

δpq(t) =
|u0

pq,n|
√

ω2
0 − γ2

n

exp(−γnt) sin(
√

ω2
0 − γ2

nt) (6)
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with undamped angular frequency ω0 =
√

kn

Mpq
and normal damping parameter

γn = − ln en√
π2+ln2 en

ω0, where en is the normal restitution coefficient. It means

that the overlap depends on the user-defined parameters kn, en and the particle
properties. The differentiation of Eq. 6 provides that δ̇pq(t = 0) = |u0

pq,n|. The
contact during collision is solved over time and the duration of a contact can be
determined as a time corresponding to the end of the collision δpq(t = Tc) = 0
(see Fig. 4):

Tc =
π

√
ω2
0 − γ2

n

(7)

Since, the particle phase is monodisperse, Tc has a unique value in the particulate
system. The contact duration depends on ω0, γn, which depend on kn, en and
particle properties. It is essential to estimate the appropriate collision duration
to perform simulations with appropriate particle time step.

3.4 Numerical Parameters

To ensure the numerical stability for the used numerical schemes and to treat
the collision properly, the particle time step Δtp must be small enough. For
example, in the case of the hard-sphere model, according to [11], where the
particle velocity after collision is defined analytically from the velocity before
collision, the limiting condition is defined as Δtp < θdp/||ur||, with θ ≈ 0.3.
The information needed to estimate this condition is the mean relative impact
velocity ur = ||ur||, which can be estimated from the particles agitation q2p =
1/2(u′′ + v′′ + w′′)

ur =

√
8
3π

q2p (8)

In our simulations based on the soft-sphere model, to estimate the time step,
several conditions must be verified. First of all, Δtp has to be smaller or equal
than the fluid time step, which is estimated from the CFL condition for the fluid
phase CFL = maxi=1,3 |uf,i|Δtf/Δxf . To choose an appropriate value for Δtp
two conditions should be verified. The first condition CFLp = Δtp||up||/Δxf for
each particle is needed to ensure that a particle does not move more than few
elements of the Eulerian mesh during a substep. The second condition is based
on the fact that during a substep particles do not move more than 100·CFLcol

p %
of their diameter, where CFLcol

p = Δtp|u0
pq,n|/dp. It means that this condition

is necessary to control and limit the overlapping distance at the first impact.
Another condition is that Δtp must be inferior to the contact time Tc to limit
the overlapping distance during the collisions and to reach a sufficient resolution
for the time integration of the stiff collision term in Eq. 1 (see Fig. 4)

Δtp <
Tc

Nc
. (9)

Nc is the minimum number of steps during one contact. It is recommended in
the literature to integrate a dry contact with Δtp in the range [Tc/50, Tc/15] [2],
and following [8] in the gas-particles flow Nc should be greater than Nc > 5.
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As discussed above, Tc depends on some parameters like kn, en and particle
properties. Then to predict the collision duration Tc, the appropriate value for
kn must be chosen for a given particle. Frequently used practice is to predict the
appropriate value for kn from the maximum value for the overlapping distance.
The maximum overlap δmax

pq is obtained from δ̇(t) = 0

δmax
pq

dp
=

|u0
pq,n|

ω0dp
exp

(

− γn√
ω2
0 − γ2

n

arcsin

√
ω2
0 − γ2

n

ω0

)

(10)

By using an estimate for the value of u0
pq,n and fixing the maximum overlap

δmax
pq , kn can be obtained from Eq. 10. The only drawback of this approach is

the lack of information concerning u0
pq,n before performing the simulations. In

some references, it is recommended that the maximum overlapping δmax
pq is less

than 10% of the particle diameter [4], other references propose instead to keep
its value less than 1% [8]. The resulting high value of kn leads to a small particle
time step, which is very limiting for the numerical simulation. The point is how
should be evaluated the stiffness coefficient to have less constrained particle time
step without significantly affecting the flow dynamics. It will be discussed in the
next section.

4 Simulation Results and Discussions

DEM simulations of the vertical channel flow are here presented. They are used
to study the influence of the particle properties on the velocity statistics and to
evaluate the soft-sphere approach in rapid particulate flow. Numerical test cases
and main parameters are presented in the Table 1. The value of relative velocity
ur for all cases is obtained from q2p using Eq. 8.

Table 1. Numerical test cases.

Case dp 〈αp〉 Np δmax
pq /dp kn Δtp Δtf Nc CFLp CFLcol

p ur

B 406 µm 1.2 × 10−3 10520 0.05 3000 N/m 10−6 s 10−5 s 10 1.5 0.01 1.05 m/s

C 406 µm 4 × 10−3 35067 0.05 3000 N/m 10−6 s 10−5 s 10 1.5 0.3 0.87 m/s

D 406 µm 1 × 10−2 87668 0.05 3000 N/m 10−6 s 10−5 s 10 1.5 0.3 0.79 m/s

E 1.5 µm 4.1 × 10−3 712 0.03 5000 N/m 4 × 10−5 s 2.5 × 10−5 s 10 1.5 0.01 0.61 m/s

F 1.5 mm 1.4 × 10−2 2433 0.03 5000 N/m 4 × 10−5 s 2.5 × 10−5 s 10 1.5 0.3 0.56 m/s

G 1.5 mm 4.1 × 10−2 7127 0.03 5000 N/m 4 × 10−5 s 2.5 × 10−5 s 10 1.5 0.3 0.53 m/s

Results for the mean particle streamwise velocity are shown by Fig. 5 (left
panel). The fluid velocity is frozen and is the same for all studied cases (see
Fig. 2). The left and middle panels of Fig. 5 correspond to the elastic frictionless
cases for the inter-particle (ec = 1, μc = 0) and the particle-wall (ew = 1, μw = 0)
collisions. Results show that, for all the cases, the mean particle velocity profile
is flatter than that of the fluid (Fig. 2); this is due to the strong influence of
transverse particle dispersion. Results also show that the mean particle velocity
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is mostly dependent on the particle diameter, which in turn shows the strong
influence of the drag. The mean particle number density demonstrates (see the
middle panel of Fig. 5) that near-wall geometrical effects have a strong influence
on the collisional characteristics and lead to an overcrowding of the particles,
creating a mean force towards the wall [7,9,10]. Smaller particles (dp = 406µm)
are more transported by the fluid than larger particles (dp = 1.5 mm) at the
center of the channel. Larger particles are instead more concentrated at the near
wall region than the small ones. The numerical simulations results based on the
soft-sphere model are in excellent agreement with hard-sphere model simulations
for both mean streamwise velocity and mean particle number density (see the
left and middle panel of Fig. 5). Kinetic stress components (second-order particle
velocity correlations) for the case 〈αp〉 = 1 × 10−2 are presented by Fig. 5 (right
panel) for two different set of particles-wall collision parameters (ew = 1, μw = 0
and ew = 0.94, μw = 0.325). The difference between the elastic frictionless case
and the inelastic case with friction shows the strong sensitivity of the system
to the boundary conditions for particles. Inelastic restitution ew < 1 induces
dissipation at the wall. When μw > 0, it causes a friction effect at the wall
characterized by a non-zero value of the shear stress 〈u′′v′′〉. The friction effect
involves a production of the vertical variance 〈u′′u′′〉 by the velocity gradient
term and, by collisional redistribution, an increase in 〈v′′v′′〉 and 〈w′′w′′〉. In the
inelastic case with friction our results also fully agree with the simulations based
on the hard-sphere model [10].

Fig. 5. Comparison between numerical simulations based on the soft-sphere and the
hard-sphere model. Left: mean streamwise velocity, middle: mean particle number den-
sity, right: kinetic stress tensor components for the case D.

The stiffness coefficient sensitivity analysis is realized to evaluate the accu-
racy of the soft-sphere model. In order to ensure this, first, Eq. 10 can be bounded
from above using ec � 1 or ew � 1

δmax
pq

dp
�

|u0
pq,n|
dp

√
Mpq

kn
� λ, 0 < λ � 0.01 (11)

for the highest value of kn. On the other hand, |u0
pq,n| ≈ k · ur for k � 2. Then,

Eq. 11 will be rewritten like

δmax
pq

dp
� ur

dp

√
Mpq

kn
� λ

k
, 0 < λ � 0.01 (12)
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Fig. 6. Comparison for the different values of the stiffness coefficient. Left: proba-
bility density function (PDF) of the dimensionless maximum overlapping distance
(dp = 406µm), middle: cumulative distribution function (CDF) of the dimensionless
maximum overlapping distance (dp = 406µm), right: PDF of the first overlap weighted
by max (δ0pq)

As shown by Fig. 6 (left pannel), the maximum value of the overlap is strongly
dependent on kn (see Eq. 10). The higher kn, the lower the mean value of δmax

pq /dp

will be. But it is relevant to notice that even when kn is low (kn = 300), the
percentage of the collisions which have the high overlapping is very small, as
shown by cumulative distribution function (see the middle panel of Fig. 6). And
its mean value corresponds more to the small overlapping. The high values of
δmax
pq /dp occurring rarely do not affect the whole dynamics of the gas-particles

flow as demonstrated by Fig. 7 for different quantities. This observation provides
to weaken the conditions on δmax

pq /dp (Eq. 11).
Moreover, from Fig. 6 (right panel), it is observed that the first distance of

the overlap δ0pq does not depend on the stiffness coefficient value for different
particle diameters, the first impact relative velocity ur does not as well. This

fact allows to identify the dimensionless parameter κn = ur

dp

√
Mpq

kn
depending on

ur and to estimate the mean overlapping distance as

δmean
pq

dp
� κn � λ∗ (13)

where λ∗ takes values between (0, 0.05) less constraining for Δtp. The dimen-
sionless parameter κn provides the estimation of the mean overlapping knowing
the value of the mean particles agitation and kn for a given particle.

Fig. 7. Simulation results based on the soft-sphere model for different stiffness coeffi-
cients for the case D. Left: mean streamwise velocity, middle: mean particle number
density, right: kinetic stress tensor components
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5 Conclusion

Soft-sphere DEM simulations have been performed and numerical results ana-
lyzed for a vertical gas-particles channel flow. Simulations have been performed
neglecting the influence of the fluid turbulence on the particle fluctuating motion
and the modification of the fluid flow by the particles. Two types of particles
have been studied, for various mean volume fractions. Results based on two
approaches, the soft-sphere and the hard-sphere models, have been compared
and validated quantitatively and qualitatively for different physical variables.
Thereafter, a sensitivity analysis about the soft-sphere model parameters has
been carried out to gain insight in the choice of the optimal ones to properly
treat the solid-solid collision. It was found that a less restrictive model for the
maximum overlapping distance can be defined as a function of the mean value
of the impact variables without influencing the flow behaviour.
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Abstract. Cathare-3 is the new version of the French Thermal-
hydraulic code for the safety analysis of nuclear reactors, its 3D module
is mainly used to model the reactor vessel with a “porous” medium app-
roach of two-fluid six equations model. Therefore, the balance equations
are established using a double-averaged method: first, a time-average,
and then, space-average. Optional terms can be added in momentum
and energy balance equations to model turbulent diffusion and disper-
sion effects. These terms have an impact on core simulations at sub-
channel scale. So, the Cathare team have established models for these
terms in rod bundle geometry and had validated them on various exper-
iments. The presented simulations are a 3D modeling of the core of the
ROSA-2/LSTF experiment using Cathare-3 3-D module with a radial
nodalization of one mesh per rod. A phase of core uncovering during
which the rod temperatures in the dry zone increase is observed in an
experimental test and experimental evolutions of rods and gas tempera-
tures are compared with Cathare-3 calculations with and without the
turbulent terms.

Keywords: Cathare-3 · Two-phase flow · Core-mixing ·
ROSA-2/LSTF

1 Introduction

First, in Sect. 2, this article presents the Cathare-3 code and its 3-D Module,
with its basic set of equations and its turbulence modeling. Then, in Sect. 3,
an experimental test (ROSA-2 Test 3) made on the Large Scale Test Facility
(LSTF) and its 3D modeling with the Cathare-3 code are described. In the
Sect. 4, Cathare-3 calculations of LSTF core are analyzed and compared with
the experimental evolutions.
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2 The CATHARE Code and its 3D Module

Cathare-3 is the new version of the French Thermal-hydraulic code for safety
analysis of Pressurized Water Reactor (PWR) [8]. Its development has begun
in 2006 as part of the NEPTUNE project launched by the CEA, EDF, FRAM-
ATOME and IRSN in 2001 [9], in the continuity of the reference multi-concept
Cathare-2 [2]. The 3-D Module of Cathare-2 has been validated to model
both the whole reactor Pressure Vessel (PV) and some subcomponents like the
core or the downcomer from the Small to Large Break (SB to LB) Loss-Of-
Coolant-Accidents (LOCA) with a coarse meshing of about 1000 meshes for
the whole PV. The 3D modeling abilities of Cathare-3 have been improved
compared to Cathare-2 with:

– New numerical methods, which allow simulations with large number of 3D-
cells,

– Non-conformal Multi-3D Modules modeling of the vessel (see [12]),
– Optional closure laws, modelling turbulence for sub-channel analysis,

The 3-D Module of Cathare is based on a “porous” version of the two-
fluid 6-equation model. To obtain this model, the local instantaneous two-phase
balance equations are double-averaged: first time-averaged to filter the pseudo-
aleatory variations of the flow variables due to turbulence and two-phase inter-
mittence, and then space-averaged to account for the interactions of the flow
with the internal solid structures. Thus, the complex and relatively small struc-
tures such as rod bundles, grids, guide tubes, are managed via a porous medium
approach. The mass, momentum (one in each direction) and energy balance
equations (Eq. 1 to 3) are written for each phase k (liquid or gas):

φ
∂(αkρk)

∂t
+ ∇ · (φαkρkV k) = (−1)kφΓ (1)

αkρk

(
∂V k

∂t
+ V k · ∇V k

)
+ αk∇P = −(pi + pT

i )∇αk − (−1)kτi − τwk (2)

+αkρkg +
1

φ
∇ · (αkρkt

T
k )

φ
∂(αkρkek)

∂t
+ ∇ · (φαkρkekV k) = −P

[
φ

∂αk

∂t
+ ∇ · (φαkV k)

]
+ φqke

+φ(−1)kΓHk + Scqwk + ∇ · (αkρkq
T
k ) (3)

In these equations, the main variables are the enthalpy Hk; the volumic
fraction αk (with αL +αG = 1); the pressure P and the velocity V k. The density
ρk is determined with an equation of state: ρk = f(P,Hk) and the internal
energy ek is calculated with the enthalpy (ek = f(P,Hk)). The porosity φ and
the heating surface Sc are set by the user. The closure terms are the interfacial
pressure pi; the interfacial friction τi; the wall friction τwk with the phase k;
the interfacial heat transfers qke of the phase k with the interface; the wall heat
flux qwk to the phase k and Γ is the interfacial mass transfer: Γ = (Scqwi −
qge − qle)/(HG − HL) with qwi the wall-to-interface heat flux. The turbulent
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dispersion of void pT
i , the turbulent diffusion and dispersion of momentum tTk

and the turbulent diffusion and dispersion of energy qT
k are optional closure

terms, they came out during the double (time and space) averaging process of
the local convection terms:

tTk = (νφ
tk + νφ

dk)
[
∇(φV k) + ∇T (φV k) − 2

3
∇(φV k)I

]
(4)

qT
k = (αφ

tkI + Dφ
dk)φ∇ek (5)

In Cathare-3, these two terms are modeled with algebraic models and no
additional equation is solved. Two global coefficients are used in the code, model-
ing both turbulent diffusion and dispersion (or neglecting one of the two effects):
the total macroscopic turbulent viscosity (νφ

T = νφ
tk + νφ

dk) and the thermal dis-
persive tensor component (Dφ

T = αφ
tkI + Dφ

dk).
A model for the spatial average of the turbulent kinetic energy < k >f in a

single phase flow in tubes or rod-bundle has been established [6]:

<k>f = cpV
2
kRe−1/6 (6)

With cp a constant equal to 0.0367; V k the flow velocity and Re the Reynolds
number based on the hydraulic diameter (DH - set by the user): Re =
(ρV DH)/μ.

Thus, correlations have been developed, fitted on experimental data [7,13]:

νφ
T = ADH

√
<k>f (7)

Dφ
T =

νφ
T

PrT
=

ADH

√
<k>f

PrT
(8)

pT
i = BρLV L

√
<k>f (9)

With A = 0.5, B = 0.2 and the macroscopic turbulent Prandtl number PrT = 1.
The turbulent diffusion and dispersion of momentum has been validated with

the liquid adiabatic single phase tests on GRAZIELLA loop and the AGATE test
section with partial grids. The turbulent diffusion and dispersion of energy has
been validated with the PSBT Benchmark and the heated single phase (liquid)
tests in the OMEGA-2 and GRAZIELLA loops. The void fraction dispersion has
been validated with the PSBT Benchmark and the boiling tests on GRAZIELLA
test section. It has to be emphasized that the momentum diffusive flux remains
negligible in front of turbulent diffusion and dispersion of energy as long as
the gradient of the mean velocity are small, which is often the case inside the
core. The main conclusion which can be draw from this validation is that the
calibration of the present simple algebraic models clearly depends on the type
of grids (mixing vane or simple spacer) and on the distance between grids1 [7].
1 GRAZIELLA and OMEGA-2 test sections do not include mixing vane on spacer

grids. On heated tests, A constant of the turbulent diffusion and dispersion of
energy model (Eq. 8) must be divided by a factor 30 to obtain the right temperature
gradients.
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It must be noted that the current validation do not cover the single phase gas
flow.

3 LSTF and the ROSA-2 Test 3

The OECD/NEA ROSA-2 Project [11] was performed to resolve key safety issues
of PWR Thermal-hydraulics by means of LSTF experiments at the Japan Atomic
Energy Agency (JAEA). LSTF is a full-pressure and full-height integral test
facility using a full-height core (3.66m of heating length) composed of more than
1000 simulated fuel rods with 10 MW electrical power. The rods are regrouped in
24 assemblies and the radial power profile is divided in 3 zones (hight, mean and
low) with radial peaking factor of 1.51. Test 3 is a Hot-Leg SB-LOCA transient
during which the primary circuit empties through the break and the core start to
boiling (Fig. 1 - left). Then, a phase of core unrecovery is observed during about
250 seconds at a pressure around 7MPa. Liquid level drop down to half height in
the core by boil-off and a core temperature excursion took place (Fig. 1 - center).
As explained in [3]; because of the non-homogeneous radial power profile in the
core, cross-flows are expected in the dry zone (Fig. 1 - right) with a “chimney
effect” (steam cross-flows from the low power assemblies to the hot ones). These
cross-flows have an impact on the maximum cladding temperature and may be
influenced by turbulent effects (core spacers with mixing vanes, ...).

Fig. 1. Schemes of the ROSA-2/LSTF Test 3 transient phenomena with the system
scale at the left [11]; the core scale at the center and the rod bundle scale in the dry
zone at the right [3]

Experimental data package provide heating rods cladding temperature (local-
ized at the center of the assemblies) and gas temperature (localized at the cor-
ner of the assemblies on non-heating rods) for 4 elevations of the dry zone. The
observed maximum rod cladding temperature was about 500 ◦C.

The Cathare-3 3D modeling of the LSTF core with a radial nodalization
of one mesh per rod (and 48 axial meshes) is presented Fig. 2, only a quart (in a
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radial plan) of the core is modeled. Indeed, the geometry and the radial power
profile are symmetrical by quart (more exactly, by 1/8) and we have performed
verification of the symmetrical behavior of the temperatures experimental evo-
lutions when it was possible. At the top of the core, the imposed outlet condition
is the evolution of the experimental pressure. At the bottom, an incoming liquid
flow at saturation is imposed as limit condition and the flow rate is regulated
during the simulation in order to have the experimental position of the collapsed
level (obtained by ΔP measurements). Thermal structures (heating rod, non-
heating rod, core barrel) are modeled and power is injected in the heating rods,
following the power experimental evolution.

Fig. 2. Left, a scheme of the experimental core with the power level of each assemblies
and the position of some experimental measurements, and right, the radial nodalization
used in Cathare-3 calculations with the porosity field

From the experimental evolutions of the cladding temperature, we can say
that axial position of the swell level is the same for the all the core, even with
the radial peaking factor. The wetted zone is thus characterized by a perfect
or quasi-perfect radial mixing with cross-flows and there should be a uniform
axial steam flux at the exit of the swell level all over the core. These experi-
mental observations and deductions have also been observed on PERICLES-2D
experiment [10] and are well predicted by Cathare-3. As the main focus is the
analysis of the dry zone, an adjustment on the interfacial friction τi has been
made in the goal to have the correct start of the temperature rise in the calcu-
lations. Indeed, in the standard calculation, there is a little shift on the swell
level2.

4 Comparison Between CATHARE and LSTF

Cathare-3 calculations have been done with and without the turbulent mod-
els (the turbulent diffusion and dispersion of momentum tTk and the turbulent
2 Of about 15 seconds on the instant of start of increase which is equivalent to 10 cm

on the swell level - this is lower than the experimental uncertainty of the collapsed
level.
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diffusion and dispersion of energy qT
k , the turbulent dispersion of void pT

i was
not used). Figure 3 shows the radial field of gaz temperature in the dry zone
without (left) and with (right) the turbulent models. The two calculations pro-
vides results quite similar, one can see some mixing layers at the border between
the cold and the hot assemblies. Moreover, the cold steam from cold assemblies
moves to hot assemblies: the expected “chimney effect” is observed in the calcu-
lations. Diffusion terms impact the radial transfers, indeed, there are smoothly
radial profile for the steam temperature in the calculation with turbulent mod-
els. Moreover, in the channels without heating rod, radial transfers increase with
turbulent models and the temperature is more homogeneous. One more infor-
mation can be drawn from the radial field: the maximum temperature is not
localized at the exact center of the hot assembly but there is a little offset due
to the “chimney effect”.

Fig. 3. Radial field of steam temperature in the dry zone without (left) and with (right)
the turbulent models

The Fig. 4 shows comparison between experimental evolutions of the tem-
perature and the temperature resulting from the Cathare-3 calculations. The
observed differences on experimental steam evolutions between TG1 (localized
next to hot and mean assemblies - see Fig. 3) and TG2 (localized next to two cold
assemblies - see Fig. 3) are due to the “chimney effect”. Indeed, TG2 position (or
thermocouple) receive more cold steam than TG1 one. So, this is a direct exper-
imental proof of this effect. In calculation, effect is more visible with diffusion
terms but differences remains with the experimental evolutions. Concerning the
maximum cladding temperature, the turbulent models have a very low impact
and both Cathare-3 calculations are quite good. But this is no experimental
evolution of the steam temperature in the central part of the hot assembly which
can be used to validate with precision the Cathare-3 wall-to-steam heat flux
correlation.

It must be noticed that the current turbulent models are not validated
in single phase steam flow and this work is one of the first evaluation with
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Fig. 4. The evolution of the temperature in the dry zone with the experimental curves
(in black) and the results of Cathare-3 calculations with (in blue) and without (in
green) the turbulent models. The cladding temperature is drawn at two elevation in
the core (position 7 with the circles and position 8 with the spades), localized at the
center of the hot assembly. The steam temperature is drawn for two position at the
elevation 7 of the hot assembly (TG1 with the diamonds and TG2 with the squares) -
see Fig. 3 for the exact localization.

experimental comparisons of these models in such conditions. The experimental
data on LSTF is not sufficient enough to calibrate and validate these models.

5 Conclusions

It has been shown that turbulent effects impact the radial transfers in the dry
zone of the core and they have to be modeled in sub-channel analysis. But,
improvements are needed for the turbulence models of Cathare-3. So, the work
on these models will be continued, with several way:

– Other rod-bundle experiments can be used, sub-channel calculations with
turbulent models on PERICLES-2D experiment [10] have already been done
with Cathare-3 but without comparison with the experimental data [1],

– CFD simulations of turbulent non-axial flow in rod bundle [5] can also be
used for model development with upscaling process,

– The experimental program METERO [4], which will be made in CEA, will
provide information for the development and validation of turbulent diffusion
and dispersion terms. METERO test section is two half PWR assemblies,

This modeling also shows the capabilities of Cathare-3 to manage a large
number of 3D-cells (about 15 000 useful) and to perform simulations comparable
to the simulation of a whole PWR assembly at the subchannel scale.
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Abstract. The current state of the art of large eddy simulation of
immiscible two-phase flows suffers from the lack of appropriate closure
models for subgrid scale (SGS) contributions of interfacial physics. In
this study, we extend the Approximate Deconvolution Model [1] to the
two-phase LES with volume of fluid method (ADM-VOF) to account
for all the SGS terms appearing in spatially-filtered governing equations
of incompressible interfacial flows. Following the central concept of the
ADM, the subgrid surface tension force and interfacial transport terms
as well as the subgrid stress tensor are reconstructed by approximat-
ing the inverse of filter operation. Accordingly, the filtered Navier-Stokes
equations as well as the filtered VOF equation are closed and solved
using the two-phase finite volume solver in OpenFOAM. In our recent
investigation [2], the ADM-VOF formulation is developed into details,
and employed for an a posteriori LES on the phase inversion benchmark
problem. In the present study, the sensitivity of the simulation results to
the ADM parameters such as size and type of filter kernels as well as the
approximation order of the inverse filter are investigated. The results
clearly reveal the potentials of the structural approach of ADM-VOF
for large eddy simulation of interfacial turbulence where functional SGS
closures are almost impractical.

Keywords: Large eddy simulation · ADM-VOF · Structural subgrid
model · Explicit filter

1 Introduction

Large eddy simulation of two-phase interfacial flows is still complicated due
to the lack of a general conclusion on subgrid scale closure models. There are
two basic families for modelling SGS terms in the filtered governing equations:
functional and structural models [3]. The former are originally developed for
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single-phase LES and rely on the turbulent energy cascade theory which might
not be applicable in the context of multiphase flows. This makes the latter a cru-
cial alternative for modelling the SGS terms with more physical complexities.
Indeed, the structural models have a mathematical nature and can be estab-
lished with no prior knowledge of the physics of the interactions between the
resolved and subgrid scales. A well-known type of structural models is Approx-
imate Deconvolution Model (ADM) [1] which originates from single-phase flow
but has been paid attention to in the recent years for two-phase flows. In this
structural method, an approximation of the unfiltered solution is obtained math-
ematically and can be used to close the SGS terms in the filtered equations while
respecting the mathematical structure of the SGS terms. Our a priori study [4]
have clearly shown that the ADM predicts the SGS contributions of stress ten-
sor and interface dynamics in one-fluid formulation significantly more accurate
than the conventionally-used functional LES models. We recently extended the
ADM to the two-phase LES formulation by modelling all the subgrid terms
appearing in the filtered Navier-Stokes and volume of fluid equations [2]. By
employing this new approach (hereinafter called ADM-VOF), an a posteriori
large eddy simulation was performed on the well-known benchmark problem of
liquid-liquid phase inversion. A comparison with highly resolved (quasi-DNS)
simulations has demonstrated the potentials of ADM-VOF in predicting the
macroscopic characteristics of interfacial turbulence. However, many details on
the ADM parameters remain to discuss. In the present study, the sensitivity of
the a posteriori LES results to the ADM parameters such as size and type of
filters as well as the level of deconvolution are investigated in detail.

2 Numerical Methodology

2.1 Description of ADM-VOF Approach

Turbulent interfacial flows can be described by the continuity and incompressible
Navier-Stokes equations as well as the advection equation of interface capturing
technique (in this study VOF method is employed). By applying a spatial filter
operator G to a flow quantity φ(x, t), the filtered quantity reads:

φ(x, t) = G ∗ φ(x, t) =
∫

D

G(x − x′)φ(x′, t) dx′ (1)

where (·) indicates the spatial non-weighted filtering. Therefore, the filtered gov-
erning equations are derived as follows:

∇ · U = 0 (2a)

∂(ρU)
∂t

+ ∇ · (ρU ⊗ U) = −∇p + ∇ · (2μD) + ρg + Sσ

+ ∇ · (τμD − τuu) + τσ − τtt

(2b)
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∂α

∂t
+ ∇ · (αU) = −∇ · ταu (2c)

In this one-fluid formulation, U is the mixture velocity vector shared with
all phases. p is the pressure and D is the rate of deformation tensor in the
form of D = 1

2 (∇U + ∇TU). The scalar function α is the volume fraction field
which determines the physical properties of the flow as ρ = αρ1 + (1 − α)ρ2 and
μ = αμ1 + (1 − α)μ2. The surface tension force is treated by the Continuous
Surface Force (CSF) method [5] and reads Sσ = σκn̂δs, where σ is the surface
tension coefficient and n̂ and κ are the interface normal vector and interface
curvature, respectively. The subgrid terms on the RHS of the equations should
be closed using SGS models. In the ADM the original unfiltered flow fields are
recovered by approximating the inverse of filter kernel G.

φ(x, t) = G−1 ∗ φ(x, t) (3)

If Q is the deconvolution operator approximated by Q ≈ G−1, then the deconvo-
luted solution of flow quantity reads φ∗(x, t) = Q ∗ φ(x, t) ≈ φ(x, t). According
to [1], Q can be approximated by an infinite series of filter operators such as
φ∗(ν+1) = φ∗(ν) + (φ − G ∗ φ∗(ν)) with the initial condition φ∗(0) = φ, that iter-
ates until ν + 1 reaches the intended N . The a priori analysis in [4] reported
that N = 7 reveals the most accurate correlation with the DNS results. Using
ADM, the important SGS terms are closed and implemented in C++ libraries of
OpenFOAM [7] as presented in Table 1. It should be noted that the SGS terms
τμD and τtt are not modelled due to their negligible subgrid contributions [4].

Table 1. The ADM-based closures for three SGS terms.

SGS term ADM closure

τuu

(
ρU∗ ⊗ U∗ − ρU∗ ⊗ U∗)

τσ σ
(
κ∗∇α∗ − κ∗∇α∗)

ταu

(
α∗U∗ − α∗U∗)

It has to be noted that in the context of ADM an additional relaxation term
is required in the momentum equation to reproduce the energy dissipation of the
reconstructed scales in the subgrid [1]. In fact, the ADM reconstructs the flow
information between the explicit and implicit (i.e. the grid) filtered scales of the
LES. In this study, the relaxation term is accounted by a modified functional
model that is a dynamic Smagorinksy in which the scales reconstructed by ADM
are removed from the Germano identity [2]. The procedure of implementation
of this term is explained in [6] and thus is not repeated here.

2.2 Explicit Filter Operation

It remains to discuss the explicit filter operations used to create the deconvoluted
fields (φ∗) in ADM-VOF, where the discrete form of explicit filters are used as a
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mathematical operator. A general formulation for the discrete box and Gaussian
filters with second-order accuracy on a 3-point stencil reads [8]

φ̄i =
1
24

ε2(φi−1 + φi+1) +
1
12

(12 − ε2)φi (4)

where ε is the ratio of filter size to the grid size (i.e. ε = Δ/Δx). In the
framework of OpenFOAM, the discrete form of second-order box and Gaussian
filters are implemented under the name of laplace filter where it is possible
to switch in between by setting the corresponding parameters [7]. We further
extend this formulation to include fourth-order filters. Therefore, the general
formulation for the explicit filter reads

φ̄ = φ +
(Δx)2

C1
∇2φ + a

(Δx)4

C2
∇2∇2φ (5)

where a switches between 0 and 1 for the 2nd order and 4th order filters,
respectively. Also, C1 and C2 are user-input constants that control the filter
size as presented in table 2. Although the box and Gaussian filters share similar
formulation for second-order accuracy, their fourth-order forms are different from
each other [8]. In this study, we focus on the Gaussian filters at different sizes
and orders. For further numerical details we refer to [2].

Table 2. The user-input parameters for different filters used in this study.

Filter order Filter size ratio (ε) C1 C2

2nd order 1 24 –

2nd order 1.5 32
3

–

2nd order 2 6 –

4th order 1 24 1152

3 Results and Discussion

In order to investigate the sensitivity of ADM parameters, a two-dimensional
phase inversion benchmark is simulated on a very fine structured grid of 20482

as the reference case. It represents a buoyancy-driven turbulent interfacial flow
with several interfacial events such as coalescence and rupture as shown in Fig. 1.
This benchmark is also used in [2] where the details of the simulation setup,
numerical schemes, flow characteristics, and grid dependency are presented com-
prehensively. Two coarse grids of 2562 and 5122 are considered to perform the
a posteriori simulation. We started the ADM-VOF simulations with the highest
approximation order for the inverse filter and the filter to grid ratio of unity
(i.e. N = 7 and ε = 1). Then, the ADM parameters varied in accordance with
Table 1. Two macroscopic characteristics of the flow are considered for compari-
son: (i) the volume integral of enstrophy in heavier fluid (E =

∫
Ω

1
2 (∇×U)2dV ),
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and (ii) total interfacial length (Λ =
∫

Ω
|∇α|dV). The former is normalized by

the maximum enstrophy in the reference case while the latter is normalized by
its magnitude at the beginning of the process. The temporal evolution of E and
Λ are plotted for two different grid sizes in Figs. 2 and 3. We further filtered
the quasi-DNS results by the box filters of 8 × 8 and 4 × 4 to obtain the highly-
resolved flow fields filtered by the corresponding grid of a posteriori simulations.
For better comparison, the Λ from the quasi-DNS results is also plotted. The
LES results demonstrate sensitivity to the ADM filter size depending on the grid
size. On the much coarse grid of 2562, increasing ε results in slight improvement
on the interfacial length with no noticeable influence on enstrophy. But, on the
finer grid of 5122, the large ADM filter size results in a large overestimation of
both E and Λ. Increasing the approximation order of the inverse filter improves
the prediction of the maximum enstrophy and its decreasing rate especially on
the grid of 5122.

The results further reveal that changing the filter type to fourth-order Gaus-
sian can only improve the E in the latest stages of the process. Also, on the finer
grid of 5122, it slightly corrects the overestimation of Λ compared to second-order
filter. Given the computational overhead of high order filters, the second-order
Gaussian filter seems accurate enough for the ADM-VOF simulations.

(a) t = 0 s (b) t = 4 s (c) t = 8 s (d) t = 20 s

Fig. 1. The α iso-contour of 0.5 at different stages of phase inversion benchmark.

Fig. 2. Temporal evolution of normalized total enstrophy in heavier fluid (left) and
total interfacial length (right) on the grid of 2562 for different cases.
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Fig. 3. Temporal evolution of normalized total enstrophy in heavier fluid (left) and
total interfacial length (right) on the grid of 5122 for different cases.

4 Conclusion

In the present study, a sensitivity analysis on the ADM-VOF method parameters
in a posteriori LES of interfacial turbulence is presented. The size and type of
explicit filters as well as the order of deconvolution are investigated. A general
conclusion can be drawn that (i) the effect of filter size depends on the LES grid
resolution, (ii) the approximation order of N = 7 for the inverse filter gives the
more accurate results and (iii) higher order Gaussian filters can only improve
the results slightly. Investigation on effect of ADM relaxation term and a priori
analysis of a 3D phase inversion flow with different filtering approaches remain
for future studies.
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Abstract. A newly developed high-density particle tracking velocime-
try (HD-PTV) technique is introduced and validated on a synthetic data
set. Further, Lagrangian velocities in turbulent Rayleigh-Bénard Convec-
tion (RBC) are determined based on particle images measured in a cubic
sample filled with water with a Prandtl number Pr = 6.9 and a Rayleigh
number of Ra = 1.0 · 1010. It is shown that the new technique allows
to resolve not only a three-dimensional (3D) large-scale circulation in
a diagonal plane of the sample but also the secondary flow structures
developing in the corners of the perpendicular plane.

1 Introduction

Turbulent thermal convection occurs frequently in nature, e.g. atmospheric flows,
and in numerous technical applications, such as room or cabin ventilation.
Measurements of the three-dimensional (3D) velocity and temperature fields
are important since they determine the heat transport in thermal convection
problems [1]. Measurements of all three velocity components are possible with
the large-scale Tomographic Particle Image Velocimetry (Tomo-PIV). This was
shown in [2] studying the large-scale flow structures developing in mixed convec-
tion and in turbulent Rayleigh-Bénard convection (RBC) [3]. The major draw-
back of the correlation-based Tomo-PIV approach is the limited spatial resolu-
tion of the obtained velocity fields. Hence, small-scale flow structures typically
developing in turbulent flows in general and especially in the corners of cuboidal
samples, cannot be resolved if large measurement volumes are considered. These
smaller flow structures are however important since they are interacting with
the well-known large-scale circulation (LSC) found in one diagonal plane of the
samples.

In addition, previous Tomo-PIV studies [3] have shown that RBC in a cube
is characterized by secondary structures, which develop in a plane perpendicular
to the plane of the LSC. However, the additional smaller secondary structures
c© Springer Nature Switzerland AG 2021
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in the corners were not resolved by Tomo-PIV. However it was shown in [4] that
small scale structures are better resolved with Particle Tracking Velocimetry
(PTV) and high particle densities.

In this context, we developed a high-density Particle Tracking Velocimetry
(HD-PTV) method which is validated on a synthetic data set below. Addition-
ally, its capability to compute the Lagrangian trajectories of the aforementioned
secondary structures in RBC is demonstrated using an experimental data set.

2 Experimental and Synthetic Setup

Turbulent RBC in water of Prandtl number Pr = 6.9 in a cubical sample with
a side length of 500mm enclosed by 10 mm thick glass walls is considered at a
mean sample temperature of T = 21 ◦C and a Rayleigh number of Ra= 1.0 ·1010.
TiO2-coated neutrally buoyant latex particles are employed as flow tracers. The
entire volume is illuminated using a high-power LED array. A time-resolved
measurement is realized by separating two subsequent light-pulses with a time
delay of Δt = 0.35 s. The scattered light from the tracer particles is recorded
using 4 PCO-Pixelfly CCD-cameras. A detailed description of the time-resolved
measurement and the experimental setup can be found in [3].

An additional synthetic data set is generated to be able to validate the trajec-
tories provided by the HD-PTV method in comparison to the ground truth. The
synthetic test case allows for the evaluation of five fundamental capabilities of
the PTV algorithm: 3D particle movement, particles leaving the domain, contra-
dicting movement of particle images, varying particles per pixel (ppp) densities
and the impact of particle acceleration. The data set features three structures:
A large rotating ring in the vertical plane, a smaller horizontal ring and a line
intersecting both. The particles are distributed according to analytical functions.
The two ring structures are based on a sine and cosine combination such that
the large one orientates normal to the horizontal Z direction and the smaller
one normal to the vertical Y direction while both are centered around zero. The
particles move tangentially to the prescribed circle. The line has its source at
(X = −250 mm, Y = −250 mm, Z = −250 mm) and the particles move until
they reach the boundary at (X = 250 mm, Y = 250 mm, Z = 250 mm) and
are reset to the position at the source. All particles are Gaussianly distributed
around their central structure. An exemplary particle distribution is presented in
Fig. 2a) with color coding according to the particle ID. In the context of thermal
convection one parameter is of specific interest: the particle acceleration. The
individual particle acceleration can be interpreted as the turbulent fluctuations
modeled by random Gaussian factors, centered around one with a width of σV ,
which are applied to the velocity components of each particle. For each time
step, the particles are projected to the four synthetic camera images using on
Soloff-Polynomials [5] such that each particles covers 2 × 2 pixels. Various data
sets, each containing 4000 time steps, with different particle numbers and σV

are generated.
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3 High-Density PTV

The process chain of the new HD-PTV approach is illustrated in Fig. 1. First,
the volume is illuminated and the scattered light is recorded by four cameras.
Each camera records two images at the two time steps t and t+Δt. The particle
distribution in 3D space is determined using a modified version of the iterative
particle reconstruction (IPR) [6], see Sect. 3.1. At high seeding densities, it is
challenging to keep track of the position of the particles at the next time step.
Thus, a prediction is needed to improve the assignment. Once, the motion of a
particle i is known at t + Δt, a simple guess of its position at t + 2Δt leads to
Xi(t + 2Δt, i) = Xi(t + Δt, i) + Δt · Vi(t + Δt, i). Since this guessed position
can vary greatly from the actual particle position, a reliable particle position
predictor is mandatory for the below presented particle tracking.

Fig. 1. Illustration of the HD-PTV software chain.

3.1 Three Dimensional Particle Tracking

First, the 3D particle reconstruction is performed using of a modified version of
an iterative particle reconstruction [6] taking into account the imaging proper-
ties, shape and brightness, of the particles. The particle distribution in 3D space
is determined using triangulation methods. The translation from 3D space to
2D images is performed with Soloff-Polynomials [5] determined from a volume
self calibration. The projections are computed and compared to the recorded
images. The position of any candidate in 3D space is corrected by varying it in
every direction until the residual is converged. The remaining particle images
are used to reconstruct additional particles in 3D space until all particle images
are used.

The initialization step is performed for ninit time steps, typically 5 to 20 are
sufficient. The particles are tracked by a track initialization using possible parti-
cle displacements computed from all neighboring particles and a median filter of
the possible displacements to determine the most likely displacement. The exact
association of a particle is determined using a regularization to compensate the
uncertainty from the displacement. This step results in particle associations for
the ninit time steps.
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After the initialization, the particle associations are used for the particle
tracking with a simplified Gaussian Mixture Model which increases the tracking
accuracy considerably. It provides further a compact representation for each
trajectory. Thus, there is no need for an individual treatment of every single
snapshot of the particle distribution. The current particle positions and velocities
are used to calculate a trajectory for the following time step, just by applying
the velocity components to the position of the particle and regularizing the
3D particle in all three dimensions until the projection error to the images is
minimal. This allows an accurate prediction of the particle position at the next
time step while saving computational resources. All remaining particles from the
camera images are added by employing the initialization step.

4 Synthetic Case

The synthetic case is designed to mimic the large scale circulations in the convec-
tion sample presented below. The flow velocities are typically small. Assuming
a PCO Pixelfly camera operating at 3.3Hz in rolling shutter mode, the average
velocity is V = 16 mm/s.

The reconstructed particle distribution for σV = 0.10 is shown in Fig. 2b).
The particle positions are indicated using spheres and the reconstructed veloci-
ties from the last 10 time steps are attached as tails. The three large structures
are clearly visible and the particle distribution is virtually identical with the
ground truth in Fig. 2a). The average deviation of a reconstructed from an asso-
ciated true particle is determined to an average L2 distance of 3.9 ·10−4 mm thus
proving the accuracy of the new technique.

Fig. 2. a) Synthetic flow structures with the particle position indicated using spheres
and the particle paths of the last 10 time step as tails with color coding according to
the particle ID. b) the reconstructed flow structures with color coding according to the
velocity magnitude for the tails. Both for 0.035 ppp and σV = 0.10.

Trajectories for different particle densities are obtained by altering the num-
ber of particles in the system and thus the particles per pixel (ppp) on the
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synthetic camera images. In addition, the variance is increased in the range
σV = 0.00–0.10 to simulate stronger velocity fluctuations. In Fig. 3, the obtained
matched particles are plotted as a function of the total number of particles. All
three curves start at a close to 100% efficiency and decrease with increasing
number of particles. Further, large σV -values lead to lower efficiencies and the
case with the highest σV (green curve) reflects the lowest percentage of matched
particles. This is expected for higher velocity fluctuations since particles devi-
ate more likely from the ideal path. Up to 0.052 ppp, the number of matched
particles remains close to 100% and decreases for higher ppp values. However,
50% to 70% of matched particles are obtained for the highest density of 0.128
ppp. To conclude, for moderately high seeding densities up to 0.085 ppp, the
HD-PTV method is viable for all investigated variances i.e. mimicked turbulent
intensities.

Fig. 3. Percentage of matched particles depending on the particle number for three
different velocity variances σV = 0.00–0.10.

5 Experimental Case

HD-PTV is employed to measure the flow structures developing in turbulent
RBC from camera images with 0.062 ppp obtained in an RBC measurement. The
particle positions and the associated Lagrangian trajectories are reconstructed
to study the LSC and the developing secondary structures. In the considered
time period, on average 5260 particles could be tracked and their velocities were
deduced. The resulting particle paths are presented in Fig. 4a). In a diagonal
subvolume of the sample, ranging from 30% to 70% of the diagonal length, the
particle positions are highlighted as grey dots. The associated trajectories of
the last 50 time steps are attached as tails. Only particles with a trajectory
length of more than 25 time steps are shown. The particle paths are colored
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according to the velocity magnitude. Especially the fast wall-parallel particle
trajectories highlight the resolved LSC in the diagonal of the sample. Further, a
maximum velocity magnitude of 18.9 mm/s could be obtained from the HD-PTV
trajectories.

A close up view of a smaller structure located in the corner of the sample is
shown in Fig. 4b). Even though the seeding density in the corner of the sample
is reduced due to adhesion of the particles to the boundaries, this structure with
a diameter of 40mm (8% of the sample-filling LSC) and a velocity of 4.8mm/s
are successfully resolved with the presented HD-PTV technique.

Fig. 4. a) Particle trajectories with an extension of more than 25 time steps in a
diagonal subvolume of the sample. The particles are indicated using grey dots and the
particle paths are color-coded according to the velocity magnitude. Close up view of
the corner of the sample in b).

6 Conclusion

HD-PTV, a newly developed PTV technique for high seeding densities, was pre-
sented and validated using synthetic data sets to compare the reconstructed
trajectories to the ground truth. For various particle images densities 0.035 <
ppp < 0.128 the reconstruction efficiency was measured for three different veloc-
ity variances in the range 0.00 < σV < 0.10 mimicking an increase of the tur-
bulence intensity. It is found that for moderately high seeding densities up to
0.085 ppp, the HD-PTV method reconstructs the Lagrangian particle trajecto-
ries for all σV with more than 70–90% matched particles.

Additionally, the particle trajectories of RBC in a cubic sample filled with
water at Pr = 6.9 and Ra= 1.0 · 1010 were determined. It was shown that the
new technique allows to resolve not only the LSC in a diagonal plane of the
sample but also the secondary flow structures developing in the corners of the
perpendicular plane.
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Abstract. In our prior study [9], an a-priori analysis on the spatially-
filtered two-fluid model (TFM) was presented for turbulent gas-solid
flows, where the unresolved terms were modeled by an approximate
deconvolution model (ADM). With such an approach, an approxima-
tion of the unfiltered solution is obtained by repeated filtering allowing
the determination of the RSFS (resolved sub-filter scales) contribution of
unclosed terms of the filtered equations directly. In the present study, this
ADM-TFM approach is implemented in an a-posteriori manner for the
coarse grid simulation of unbounded fluidization of Geldart type A parti-
cles. The ADM-TFM predictions of the domain averaged slip are in fairly
good agreement with the fine grid reference case previously published in
literature [3] and do not show a notable grid-dependency. Compared to
TFM simulations using the same grid resolution, the ADM-TFM app-
roach does only require marginally more computational resources but
yields considerably better agreement with the fine grid data.

Keywords: Multiphase turbulence · Kinetic theory based two-fluid
model (TFM) · Sub-grid closure · Structural turbulence model

1 Introduction

Turbulent (clustered) gas-solid flows emerge in a variety of industrial impor-
tant processes. Important applications are fluidized beds. Especially, in the riser
section of circulation fluidized beds (CFB), there are clusters and streamers of
particles which are continuously formed and broken. In principle, Euler-Euler
(i.e. two-fluid model, TFM) and Euler-Lagrange simulations are capable of pre-
dicting those heterogenous meso-scale structures [3]. However, to accurately pre-
dict the hydrodynamics of fluidized beds, the computational grid size for those
simulation methods should be much smaller than the typical length scale of
clusters.
c© Springer Nature Switzerland AG 2021
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To account for those small unresolved scales in coarse grid simulations, fil-
tered two-fluid models (fTFM) have been developed ([9] and references therein).
More recently, a different class of filtered (averaged) models employs the concepts
of turbulence modeling to derive constitutive relations for unresolved terms [2,7].
Particularly, recent turbulence models are of functional type and follow either
the concept of RANS [2] or LES (large eddy simulation) [7].

In the past two decades, structural LES models [9,11] have been success-
fully proposed as an alternative to the well established functional models [4]
in single phase flows. The main advantage of structural models is the aim to
reconstruct certain unresolved scales (resolved sub-filter scales, RSFS) by, for
example, de-filtering [11] or Taylor series expansions [6]. Thus, these models
can be established with no a-priori knowledge of the physics of the interactions
between the resolved and sub-grid scales [6]. On the contrary, functional meth-
ods rely on the turbulent energy cascade [4], which might not be the case in
turbulent multiphase flows. One of the most popular structural approaches is
the approximate deconvolution model (ADM) originally proposed by Stolz and
Adams [11]. Recently, the a-priori study of [9] has demonstrated that predictions
of ADM are in fairly good agreement with the highly resolved TFM simulations
of moderately dense gas-solid flows for various filter sizes and different parti-
cle sizes. However, an a-posteriori analysis of the applicability of ADM to the
coarse grid simulation of (moderately dense) gas-solid flow involving clustering
and bubbling (such as observed in risers and fluidized beds) is still missing.

In this paper, we apply ADM to fTFM to close the unresolved sub-grid terms.
The results received from the ADM-TFM approach are discussed with respect
to a highly resolved reference simulation in the case of unbounded fluidization.

2 Filtered Two-Fluid Model

In the case of coarse grids not all flow features are resolved by the TFM equations.
Thus, balance equations for the meso-scale flow can be found by applying a
spatial filter operation the TFM equations yielding their filtered counterpart [9]
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∂t
+

∂

∂xk

(
(1 − φ)ṽiṽk
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where φ being the solids volume fraction, ρg the density of the gas phase (q ≡ g)
and the solid phase (q ≡ s). vi and ui denote the i-th component of the gas and
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solid phase velocities, respectively. In Eqs. (1) through (4) we employed Favre
(phase) averages defined as ṽi = (1 − φ)vi/(1 − φ) and ũi = φui/φ. Here, ( )
denotes a simple box filter with filter length Δfi [5,9]. The Reynolds-stress-like
contribution stemming from the convective terms reads

fR
gi = − ∂

∂xk
Rg,ik, fR

si = − ∂

∂xk
Rs,ik, (5)

with

Rg,ik = ρg

(
(1 − φ)vivk − (1 − φ)ṽiṽk

)
, Rs,ik = ρs

(
φuiuk − φũiũk

)
. (6)

It has to be further noted that whenever two identical indices appear in the same
term, a summation over all values of the repeated index is implied. We use this
convention throughout this paper. Furthermore, the remaining term, fqi, on the
right hand side of Eqs. (2) and (4) is given by [9]
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(7)

where p denotes the gas-phase pressure, ρq the density, Σfr
ik the frictional stress,

τ̃p the particle relaxation time from Wen and Yu [13] evaluated from filtered
quantities and gi the standard acceleration due to gravity. Furthermore, μg is
the gas-phase viscosity and Dg,ik = (∂vi/∂xk + ∂vk/∂xi)/2. Constitutive models
employed for the particle-phase stress, Σfr

ik, can be found in tables 3 and 4 in
our previous study [8].

It remains to discuss the drift velocity ũd,i, which is defined as [9]

ũd,i =
φvi

φ
− ṽi. (8)

Approximate Deconvolution Model: ADM-TFM
The filter operation (with filter G) is formally written as g = G � g. Thus, g
may be reconstructed from the filtered quantities g = G−1 � g and, therefore,
the filtered drag force and the Reynolds-stress contribution may be computed
directly from the reconstructed φ, ui and vi. However, in most interesting cases
G is not invertible. Higher-order reconstruction of G−1 can be achieved by the
iterative deconvolution method of van Cittert [1], where the unfiltered quantities
can be derived by a series of successive filtering operations (G) applied to the
filtered quantities with

g(k+1) = g(k) +
(
g − G � g(k)

)
(9)
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with the initial condition g(0) = g. Equation (9) is iterated until k + 1 reaches
the desired level of deconvolution, ν, and finally, g� = g(ν).

To reconstruct the contributions of the unresolved terms appearing on the
right hand side of the filtered solid momentum equation, the approximate unfil-
tered velocities, u�

i and v�
i , and the approximate unfiltered volume fraction, φ�,

are substituted into Eqs. (6) and (7) yielding their modeled counterparts of Rik

and fsi; these are [9]
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�
k

)
,

f
(m)

gi = −(
1 − φ

) ∂p

∂xi
+

∂

∂xk

(
μg(1 − φ)D̃g,ik

) − φρs

τ̃p

(
ṽi − ũi + ũ�

d,i

)

+
(
1 − φ

)
ρggi,

f
(m)

si = −φ
∂p

∂xi
− ∂

∂xk
Σfr�

ik +
φρs

τ̃p

(
ṽi − ũi + ũ�

d,i

)
+ φρsgi,

(10)

with the drift velocity ũ�
d,i =

φ�v�
i

φ�
− (1 − φ�)v�

i

1 − φ�
.

Here, Σfr�
ik indicates that the frictional stress contribution is evaluated from

deconvoluted fields, where we employ the μ(Is)-rheology [8]. Following our pre-
vious study [8], Σfr�

ik solely gets active in regions with φ̄ > 0.5. Finally, it has
to be noted that for the terms in Eq. (10), which do not require closure such as
−φ∂p/∂xi, no deconvolution is applied.

3 Case Setup

In this paper, we consider the unbounded fluidization of particles with a diameter
of ds = 75µm and a density of 1500 kg m−3 in a three-dimensional periodic
domain. The size of the domain is the same as that of Fullmer and Hrenya [3],
which is Lx = Ly = 0.8 cm in the horizontal directions and Ly = 3.2 cm in the
vertical (streamwise) direction. A pressure gradient is applied to balance the
weight of the suspension in the domain so that the mixture as a whole does not
accelerate; this part is added as an extra source term in the momentum Eqs.
(2) and (4). A uniform discretization is used for all simulations with a grid size
between 666µm and 800µm, which is 2.6 to 3.2 times coarser than the grid
size required for grid size independent solutions using TFM [3] (more details are
given in [3]).

The open-source CFD code OpenFOAM 5 (https://openfoam.org) was
employed for numerical solution of the governing equations. Particularly, we
modified the OpenFOAM solver twoPhaseEulerFoam to account for Eq. (10).
Time advancement is achieved by a variable time-step procedure, where the
time step is limited by a maximum Courant number of 0.25. Pressure-velocity

https://openfoam.org
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Fig. 1. Left: comparison of mean-slip Reynolds numbers, Resl, between TFM and
ADM-TFM simulations for various mean solid volume fractions and grid spacings (×:
highly resolved TFM from [3]; �, �, ◦: present study). Right: snapshots of solid volume
fraction.

coupling is based on the PIMPLE algorithm [12]. Similar to [3], the SuperBee
flux-limiter was used for all variable extrapolation. For more details the reader
is referred to [10].

4 Results and Discussion

In Fig. 1 the time averages of mean-slip Reynolds number, Resl = ρgũslds/μg,
received from ADM-TFM with ν = 7 are compared with the published highly
resolved TFM results of [3]. The agreement of the coarse grid ADM-TFM simu-
lations with fine-grid TFM is excellent, where both show a decreasing mean slip
velocity ũsl with increasing mean solid volume fraction. In contrast, neglecting
the unresolved structures by using TFM with a coarse grid resolution yields a
considerable underprediction of the mean slip velocity. This, in turn, implies that
the gas-solid drag force is significantly overestimated. Furthermore, our results
unveil that in this case (especially for higher solid concentrations) no distinct
clusters form. In particular, these “blurred” structures are much more dilute
than the more distinct clusters received from the ADM-TFM simulations (Fig. 1
right).

5 Conclusions

In this paper, we have assessed the ADM-TFM approach for closing the unre-
solved terms appearing in the filtered TFM-equations, where the approximate
deconvolution model (ADM) originally stemming from the single-phase large
eddy simulation was extended to the two-phase gas-solid flow in our previous
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study [9]. The ADM-TFM approach has been applied to a coarse grid simulation
of the unbounded fluidization of fine particles, where the coarse grid ADM-TFM
simulations are in excellent agreement with fine-grid reference simulations pub-
lished in literature [3]. To conclude, this study demonstrates that, in terms of
agreement of Resl with the reference data, the presented ADM-TFM approach
applies well to the coarse-grid simulation of fluidized gas-solid flows of fine par-
ticles. However, still the ADM-TFM approach has to be tested at even coarser
grids.
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Abstract. A front-tracking method is developed with specific algo-
rithms for handling volume conservation and arbitrary shape interfaces.
We propose a marker advection method which takes into account the
jump relation in order to deal with the jump of the physical disconti-
nuities at the interface for two-phase flow simulations. A comparison to
different interface tracking approaches is carried out on a rising bubble
test case in order to show the ability of our conservative front-tracking
method to describe interfaces with high accuracy.

Keywords: Front-tracking · Velocity reconstruction based on jump
relations · Multiphase flow · Volume conservation

1 Introduction

The understanding of the dynamics of multiphase flows remains challenging
because of the complex physics they entail. A major difficulty in multiphase
flow simulation is to capture simultaneously the smallest and the largest scales
of the interface while describing accurately the topology changes of the flow
and the interfacial characteristics such as capillary forces when small and large
deformable interfaces interact in an unsteady flow motion.

The front-tracking approach is a class of method, where the front interface
between two phases is represented by connected markers independent of the
Cartesian grids used for the discretization of the Navier-Stokes equations. The
computed interfacial source terms are transferred to the Cartesian fixed grid for
the integration process. We present here an improvement of this method with the
development of specific algorithms in order to obtain the most accurate advection
of the interface as possible while keeping the volume constant after the interface
advection step. A thoroughly description of this method is detailed in [5]. The
front-tracking method presented here is based on the Tryggvason et al. work
[1] for multiphase and isothermal flows. The interface is represented by a chain
c© Springer Nature Switzerland AG 2021
M. Deville et al. (Eds.): TI 2018, NNFM 149, pp. 189–195, 2021.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65820-5_21&domain=pdf
https://doi.org/10.1007/978-3-030-65820-5_21


190 M. Tavares et al.

of markers connected by segments and the connectivity between neighbouring
elements is stored to compute the magnitude and the direction of the surface
tension.

2 The Front-Tracking Method

2.1 Base Components of the Front-Tracking Method

Lagrangian Advection of the Interface Markers. The interface is advected

by solving the following Lagrangian equation
dx̄m

dt
= V̄m(t) with V̄m(t) the

Lagrangian velocity of the marker m at position x̄m. For the time integra-
tion, a second order Runge-Kutta scheme combined with a second order Adams-
Bashforth extrapolation method is used.

To get the velocities at x̄m, different interpolation procedures can be investi-
gated. The bilinear interpolation method [3] is quite common [3]. The Parabolic
Edge Reconstruction Method (PERM) by Pope et al. [2] which consists in a
divergence free approximation at the nodes and cell centers of the Eulerian veloc-
ity grids is also considered here for validation purposes.

Management of the Interface Elements Size. When the interface is highly
stretched and deformed, inducing the appearance of regions with different marker
densities, markers are locally inserted or suppressed in order to keep the instan-
taneous size of each interface element almost constant and maintain a good
accuracy at each time step.

At t(n), if the size of an element is too large, the mesh is enriched. Similarly,
the deletion of a too small element depends on its size but also on the dimension-
less curvatures calculated at the markers in order to avoid the local deterioration
of the interface shape.

2.2 Volume Conservation

As the interface is approximated by linear elements and advected by the veloc-
ity field, the front-tracking method cannot geometrically conserve the volume
delimited by the connected elements for incompressible flows. To keep the vol-
ume constant, two specific algorithms have been developed in this work.

Homothetic Rescaling Method. The homothetic rescaling method is purely
geometric and consists in performing a homothety of the markers position after
the advection step with respect to the relation V(n+1) = V(n) where V(n) is the
known volume at time t(n). For all markers of the front, the coordinate x̄m of
the marker m is adjusted to satisfy the volume conservation as follows:

x̄m ← x̄O + kx̄O
(x̄m − x̄O) (1)
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where kx̄O
is the homothety coefficient expressed by kx̄O

=
√

V(n)

V(n+1) and x̄O

the homothety centre. Even if the location of x̄O is free, its position plays an
important role and a natural choice could be to identify x̄O at the centroid of
the considered front-tracking surface.

Velocity Based Correction (VBC) Method. This method is based on the
fluid flow characteristics namely the markers displacement over a time step. After
the advection step, each marker m is slightly moved in the normal direction
(n̄(n+1)

m ) to the interface:

x̄(n+1)
m ← x̄(n+1)

m + kp̄m (2)

with p̄m
def=

∣∣∣(x̄(n+1)
m − x̄

(n)
m ) · n̄

(n+1)
m

∣∣∣ n̄
(n+1)
m . The coefficient k is therefore solution

of a second order polynomial (see [5]).
These two algorithms are investigated and compared in the rising bubble test

case in the Sect. 4.

3 A Marker Advection Method Based on the Jump
Relations at the Interface

The velocity reconstruction method we present in this section is based on the
physical jump at the interface and has been developed to give a better represen-
tation of the velocity derivatives discontinuity at the interface. If we consider an
incompressible and immiscible two fluid flow, labeled 1 and 2, separated by an
interface Γ , of surface tension σ, we can write the jump relations at each point
belonging to Γ :

v̄1 = v̄2 (3)

n̄ · ( ¯̄T 1 − ¯̄T 2) · n̄ = σ(∇̄·n̄) (4)

t̄ · ( ¯̄T 1 − ¯̄T 2) · n̄ = (∇̄σ) · t̄ (5)

with the velocity vector v̄, the stress force applied by the fluid flow on both
sides of the interface, ¯̄T ≡ (−p¯̄I + μ(∇̄v̄ + (∇̄v̄)t)), n̄ the unit outward normal
vector of the fluid domain 2 and t̄ the tangential unit vector. Thanks to these
relations, the velocity of the interface mesh nodes V̄m is evaluated, but also the
velocity gradients, at the marker m and finally, the interface is advected with
the calculated velocities. This requires the development of specific algorithms
presented briefly below.

Linear Approximation Function for the Velocity Components. The cal-
culation of V̄m requires the construction of linear approximation functions for
the velocity components in each of the two fluid domains. For example, we note
V x,1

m the unknown horizontal velocity component of the fluid domain 1 at m with
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coordinates x̄m. We construct a linear interpolation polynomial based on trian-
gles using two other Eulerian grid nodes nx,1

2 and nx,1
3 of coordinates x̄x,1

2 and
x̄x,1
3 and the related velocities are vx,1

2 and vx,1
3 , to get a local continuous approx-

imation ṽx,1(x̄). Then, the linear approximation of the horizontal component of
the velocity is given by:

ṽx,1(x̄) = V x,1
m ψx,1

m (x̄) + vx,1
2 ψx,1

2 (x̄) + vx,1
3 ψx,1

3 (x̄) (6)

where ψx,1
α (x̄) are the Lagrangian linear polynomials such that ψx,1

α

(
x̄x,1

β

)
= δα,β ,

for (α, β) ∈ {m, 2, 3} × {m, 2, 3}, with the Kronecker delta δα,β = 0 if α �= β

and δα,α = 1. The variables vx,1
k , k = 2, 3, are the known horizontal velocities

on the horizontal Eulerian grid and V x,1
m is the unknown horizontal velocity of

the interface marker m for fluid 1.

Pressure Evaluation at the Interface Node. The pressures in the two fluid
domains at any interface node m are approximated using the Eulerian nodes of
the pressure grid. For fluid 1 for example, the pressures p12 and p13 at np,1

2 and
np,1
3 which coordinates are x̄p,1

2 and x̄p,1
3 , are used for the approximation. Then,

the pressure p1m at the marker m is equal to the interpolated pressure at the
intersection point n1

I whose coordinate is x̄1
I , located at the intersection between

the straight line Δ = {x̄m + ξn̄m; ξ ∈ R} and [np,1
2 np,1

3 ]:

p1m =
‖x̄p,1

2 − x̄1
I‖p13 + ‖x̄p,1

3 − x̄1
I‖p12

‖x̄p,1
3 − x̄p,1

2 ‖
(7)

Reconstruction of the Velocity at the Interface Marker m. To eventually
reconstruct the velocity, we impose the equality V x

m
def= V x,1

m = V x,2
m and V y

m
def=

V y,1
m = V y,2

m to satisfy the jump condition (3). Then, we substitute the linear
interpolations and the pressure approximations into the jump relations (4)–(5)
to get the following linear system (see [5] to get the expressions of the matrix
and vector components):

A(1, 1)V x
m + A(1, 2)V y

m = B(1) (8)
A(2, 1)V x

m + A(2, 2)V y
m = B(2) (9)

4 Bubble Rising Test Case

This test case [4] considers an isothermal and incompressible flow of two immis-
cible fluids. We model a bubble rising which evolution is tracked during 3 s.
No-slip boundary conditions are applied on the top and bottom walls whereas a
free slip condition is used at the vertical walls. The initial configuration consists
of a circular bubble centered at (0.5; 0.75) in a [1; 2] rectangular domain with a
0.15 radius. The physical parameters defining the test case are given in the first
case of [4]. We have run the rising bubble simulation with the Eulerian grid sizes
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h = 1/40, h = 1/80 and h = 1/160 and the time step Δt = h/16 with the front-
tracking method presented above and the marker velocity calculated with the
PERM reconstruction method (FTR-PERM-VBC), the bilinear method (FTR-
Bilinear-VBC) or the jump relations velocity based method (FTR-JUMP-VBC)
where the -VBC extension indicates the use of the velocity based correction
for the volume conservation. A reference interface has been computed using an
Eulerian grid size h = 1/320 and a time step Δt = h/16 with the velocity jump
based relations for the marker velocity and the velocity based correction to pre-
serve the bubble volume. Figure 1 illustrates the rising bubble interface at time
t = 3 s for all methods compared to the reference solution with the Eulerian grid
sizes h = 1/80. All of the velocity calculation methods slightly differs from the
reference solution for this Eulerian grid size. For the FTR-PERM-VBC and the
FTR-Bilinear-VBC, we observe spurious oscillations appearance at each bottom
side of the ellipsoidal bubble. With the FTR-JUMP-VBC method, we do not
have non physical wiggles at the interface which is an interesting point of this
method.

Fig. 1. Velocity interpolation method
comparison on the rising bubble test
case

Fig. 2. Volume conservation methods
comparison on the rising bubble test
case

Since looking at the bubble shapes is clearly not sufficient to show the accu-
racy of the tracking methods for finer grids, quantities have been defined for
this purpose. We use for example the vertical component of the bubble mass
center Yc, and the bubble circularity Cb = πda/Pb, πda denoting the circum-
ference of a circle with diameter da, which has an area equal to a bubble with
perimeter Pb. For a circular bubble, this ratio is equal to 1. Table 1 shows the
relative errors (‖E‖1) on the temporal evolution of the quantities Yc and Cb to
the same quantities defined for the reference solution and the respective conver-
gence order. For Yc and Cb, the relative error decreases with the grid refinement
with comparable error levels for all the velocity calculation methods. However,
even if the convergence rate is higher with h = 1/40 for the FTR-PERM-VBC
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and the FTR-Bilinear-VBC methods, the order quickly saturates contrary to the
FTR-JUMP-VBC method which converges with a more than linear convergence
order approaching quadratic convergence for h = 1/80. These results indicate
that the velocity jump based method is much more adapted to the interface
velocity calculation than the other methods. We can see in Fig. 2 a comparison
between the reference and the solution calculated with the FTR-JUMP method
and either homothetic rescaling (HR) or the velocity based correction (VBC)
for the volume correction. The location of the homothety centre at the centroid
for the FTR-JUMP-HR method clearly affects the solution with a noticeable
gap between the reference and the FTR-JUMP-HR solution contrary to the
FTR-JUMP-VBC method. It is therefore more interesting to consider the flow
characteristics (VBC) for the volume conservation.

Table 1. Relative error in norms and convergence rate for the rising bubble test case

h FTR-JUMP-VBC FTR-PERM-VBC FTR-BILINEAR-VBC

Circularity ‖E‖1 Order ‖E‖1 Order ‖E‖1 Order

1/40 1.86E−02 4.83E−02 5.94E−02

1/80 8.48E−03 1.1 7.67E−03 2.6 6.56E−03 3.2

1/160 2.84E−03 1.6 3.40E−03 1.2 3.53E−03 0.9

Center of mass ‖E‖1 Order ‖E‖1 Order ‖E‖1 Order

1/40 1.10E−02 1.39E−03 1.02E−03

1/80 4.59E−03 1.3 9.62E−04 0.5 1.52E−03 −0.6

1/160 1.48E−03 1.6 1.48E−03 −0.6 1.70E−03 −0.2

5 Conclusion

We have proposed a 2D front-tracking method for a sharp interface represen-
tation which conserves the volume while preserving the shape of the interface.
Our new interface velocity reconstruction based on the jump relations provides
the most accurate interface representation. In the rising bubble test case, our
approach prevents the wiggles appearance which are induced by other marker
velocity interpolation methods. Ongoing works and perspectives are the exten-
sion of the method to three dimensions and also an original coupling between
the Navier-Stokes equations and the velocity based jump relations using directly
the marker velocities and gradients in the finite volume fluxes coming from the
momentum equation approximation.
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Abstract. Most of stochastic models for dissipation contain an inter-
mittency parameter which is assumed to be an universal constant. How-
ever, a review of the literature reveals a very large range of values for
this parameter. We present a model for dissipation with random inter-
mittency and investigate the validity of this model on sample datasets
from the Johns Hopkins Turbulence Database and a Sonic anemometer
measurement.
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1 Introduction

One of the most widely used statistics characterizing the intermittent nature of
turbulence is the so called “intermittency parameter”. This parameter hereafter
denoted by μ, measures the discrepancy from the Kolmogorov K41 model. It
is the exponent in the inertial-range power-law behavior of the autocorrelation
of the turbulent energy dissipation rate ε, 〈ε(x)ε(x + r)〉 ∼ (L

r )μ where L is a
length scale of the large structures of the flow. It is usually admitted that μ
is an universal constant (�0.2 for the Kolmogorov lognormal model). However,
a review of the literature reveals a relatively large range of measured values.
According to the nature of the flow, to the domain of study, and to the particular
formulations that are adopted for estimation, these values can vary from 0.15 to
0.8 [1]. This suggests that it is possible to have several levels of intermittency
in a turbulent flow. D. Bernard et al. [2], investigated a possible dynamic value
of μ over time for some specific flows. They considered a stochastic integral
representation of the dissipation rate ε introduced by F. Schmitt and Marsan [9]
and extended this model to a new model in a Markov Regime-Switching setting
in which μ and a scale parameter λ are assumed to be random processes driven
by a hidden continuous time Markov chain X(t).
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In this article, we investigate the validity of the model proposed in [2] on
sample datasets from the Johns Hopkins Turbulence Database (JHTDB). The
paper is organized as follows. Section 2 presents a description of the data used
for the analysis. In Sect. 3 we recall the stochastic integral cascade model of
F. Schmitt [9] and compute several hundred values of μ. A plot of the probabil-
ity distribution functions (pdf) of these values shows that each pdf is a mixture
of distributions. This reveals the existence of regimes (states of dissipation cor-
responding each to a level of intermittency with a specific value of μ) in the
dissipation process. The fourth section is devoted to the model with several lev-
els of intermittency. We precise the model and describe the Bayesian setting
for the estimation of the parameters. In Sect. 5, we estimate the values of μ for
the JHTDB datasets. We use the Viterbi Algorithm (a dynamic programming
algorithm) to choose the number of regimes and the dynamic of these regimes
in the studied time series. We finally use a Bayesian nonparametric approach to
estimate the parameters. We conclude in the last section by pointing out some
consequences of the possibly random nature of the intermittency in turbulence
modeling, indicating some elements for future research.

2 Data Description

Two datasets are used in this paper: an active grid generated flow dataset and
an atmospheric turbulence dataset. The active grid generated flow dataset is
a sample data from the JHTDB. As described in [5], these data are obtained
by measurements performed downstream of an active grid that generates high-
Reynolds-number turbulence in a range of Taylor microscale Reynolds numbers
Reλ of about 630 to 720, with a turbulence intensity of 17.4%. The grid size
M , is 0.152 m. The measurement locations in the streamwise (longitudinal)
direction are at x/M = 20, 30, 40 and 48 distance from the grid. The signals
are sampled at fs = 40 kHz, low-pass filtered at a frequency of 20 kHz. We
consider in this study a sampling time of 30 s, so the total number of data
points for each measurement location is 12.105. The atmospheric turbulence
dataset comes from a Sonic anemometer measurements conducted during two
years, in a mangrove forest [3] with a Campbell CSAT3 ultrasonic anemometer.
Among other variables, wind velocity was recorded at a frequency 20 Hz by its
3D components u, v and w.

3 Causal Log-Normal Cascade Model

3.1 Model Definition

Discrete multiplicative cascade models represent the dissipation rate at a posi-
tion x of a turbulence developed from a larger scale L to a smaller scale lo
in n steps as a product ε(x) =

∏n
p=1 Wp,x of independent and identically dis-

tributed random variables Wp,x having a common distribution W . Continuous
cascade models are obtained from the discrete ones by keeping the total scale



198 A. Tossa et al.

ratio Λ = L/l0 fixed and letting n → +∞. It has been shown [8] that for a scale
ratio 1 < λ < Λ, the process γλ(x) = log(ελ(x)) can be written in the form of
a stochastic integral γλ(x) =

∫ λ

1
M

(
cdη
η ,DηI0(x)

)
where c > 0 is a parameter,

M is a stochastic measure, I0(x) is an interval of length τ = L/λ centered at x
and η is the integration variable. Dη is a dilatation operator of factor η. When
considering continuous cascades developing in time, the dissipation rate can be
written as ελ(t) = λ−c exp

(∫ t−τ

t−τλ
(t − u)−1/αdLα(cu)

)
where Lα is a Lévy mea-

sure. This equation corresponds to the exponential of a fractional integration of
order 1 − 1/α of a Lévy-stable noise. The log-normal case corresponding to
α = 2 and Lα replaced by the Wiener measure, leads to the stochastic equation
studied by F. Shmitt in [9]

ελ(t) = λ− μ
2 exp(μ

1
2

∫ t

t+1−λ

(t + 1 − u)−1/2dB(u)) (1)

where t stands for time and B(u) is a standard Brownian motion. In this case,
γλ(t) = log(ελ(t)) = −μ

2 log λ + μ1/2
∫ t

t+1−λ
(t + 1 − u)−1/2dB(u)

is a stationary process with mean −μ
2 log λ and autocorrelation function defined

for time increments ζ by

Cγλ
(ζ) = 〈γλ(t)γλ(t + ζ)〉 ≈ Aλ − μ ln ζ (2)

where Aλ is a constant depending weakly on λ [9].

3.2 Estimating the Intermittency Parameter

We estimate the dissipation rate under the assumption of isotropic turbulence by
the relation ε = 15ν

U2

〈(
∂u
∂t

)2〉
where ν is the kinematic viscosity, u is the longitu-

dinal velocity and U is the mean longitudinal velocity. The angle brackets denote
averaging. For this analysis, we consider the above expression normalized by the
ratio 15ν/U2. So, the time increments of the longitudinal velocity are used to
compute the energy dissipation time series ε(t) = (V (t + Δt) − (t))2 /Δt2, with
Δt = 2.10−4 s for the active grid generated flow dataset and 0.05 s for the atmo-
spheric turbulence dataset. We use Eq. (2) to estimate μ as the linear regression
coefficient of Cγλ

(ζ) versus log(ζ). For the active grid turbulence, the results are
almost identical for all measurement locations, that is 0.42 for x/M = 20, 40 and
48, and 0.41 for x/M = 30. The same observation can be made for the atmo-
spheric turbulence where we obtained μ = 0.28 for the low speed wind (LSW)
and 0.33 for high speed wind (HSW). Figure 1 displays the pdf of μ estimated
on 11000 sliding windows of 5 s lengths for the active grid datasets and 5000
windows of 5 min for the Sonic anemometer datasets. All the estimates match
the known range of values of μ; however, the form of the pdf reveals that μ is not
constant. Indeed, if this was the case the distributions should be approximately
Gaussian. The ones in Fig. 1 appear more like mixtures of Gaussian distributions
than a unique Gaussian distribution. This reveals that there are several possible
values of μ corresponding to different levels of intermittency in the dissipation
process.
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Fig. 1. Estimated pdf of µ for the active grid datasets (x/M = 20, 30, 40 and 48) and
the atmospheric turbulence datasets (LSW and HSW)

4 Multilevel Intermittency Model

Our observation from the results of the previous section is that in some tur-
bulent flows, the intermittency of the energy dissipation process may not be a
homogeneous phenomenon. Such flows can display several levels of intermittency
corresponding each to a regime in the dissipation process. The process therefore
switches randomly from one regime to another over time. The D. Bernard et al.
model (3) takes into account this behavior by assuming that the parameters μ
and λ are themselves stochastic processes governed by a continuous-time Markov
chain

γ(t) = −μX(t)

2
log(λX(t)) + μ

1/2
X(t)

∫ t

t+1−λX(t)

(t + 1 − u)−1/2dB(u) (3)

where B(u) is a Brownian motion, X = (X(t))t≥0 is a continuous time Markov
chain taking values in a finite set S = {1, 2, . . . ,K} that represents the regimes.
This model assumes K levels of intermittency (regimes) characterized by their
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intermittency parameters (μ1, . . . , μK) and the scale parameters (λ1, . . . , λK).
The meaning of this setting is that during regime i the intermittency parameter
and the scale parameter are constant and equal to μi and λi respectively. If, at
a given time t, the state of the chain is i, that is if X(t) = i, (i ∈ S), then the
dissipation process is in regime i so that μX(t) = μi and λX(t) = λi.

5 Estimation of the Multilevel Intermittency Model

5.1 Procedure

From model (3), one can observe that if μ and λ are known and a sample path
X of the Markov chain is given, then γ(t) is a Gaussian process. In probabilistic
terms, this model can be written in the form (γ|X,μ, λ) ∼ P, where P is a
Gaussian distribution; so, using the Baye’s theorem, one can make inference
about μ, λ and X, if appropriate prior distributions are defined for each of these
parameters. A Bayesian based algorithm proposed in [2] is used here to estimate
the values of μ for the multilevel intermittency model. The estimation procedure
is described as follows: first, we determine the number of states and the most
likely path of the hidden Markov chain that best describes the observed data.
Then, we compute the transition probability matrix of the chain and finally
estimate μ and λ.

To choose the number of states of the hidden Markov chain, we try different
numbers K of states and look at the model likelihood as a function of K. We pick
the value of K which gives the smallest value of the Akaike Information Criterion
(AIC). We use the Viterbi algorithm to find the most likely path of the chain
that best fit the data. The transition probability matrix P = (pi,j)i,j=1,...K is
estimated as follows: let nij be the number of times the chain made a transition
from state i to state j in the most likely path. We estimate the transition prob-
ability pi,j by maximum likelihood using the estimates p̂i,j = ni,j/

∑K
k=1 ni,k.

The parameters μ and λ are estimated using the aforementioned algorithm.

5.2 Application to JHTDB Datasets

For the active grid flow dataset, our selection procedure described in Sect. 5.1
identified three regimes for the measurement locations 20 M, 40 M and 48 M and
two regimes for the location 30 M. For the atmospheric turbulence measurement
three regimes were identified for both the low and the high speed wind datasets.
For each dataset the algorithm was run on 50,000 generated sample paths of the
Markov chain. 1000 burn in iterations were executed followed by 10,000 other
iterations. For each regime, we chose the mean of the values generated by the
10,000 iterations as an estimate of μ. The results are presented in Table 1 and
Table 2 where the regimes are numbered in increasing order of the values of
μ. This values are in accordance with the pdf of μ presented in Fig. 1. Note
that during the process, the scale parameters were also estimated but are not
presented here since our interest is on the intermittency parameter μ.
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Table 1. Values of µ for the active grid
dataset

Regime 1 Regime 2 Regime 3

20 M 0.41 0.49 0.61

30 M 0.41 0.55

40 M 0.42 0.53 0.65

48 M 0.38 0.50 0.70

Table 2. Values of µ for the atmo-
spheric turbulence dataset.

Regime 1 Regime 2 Regime 3

LSW 0.42 0.53 0.65

HSW 0.26 0.33 0.39

6 Conclusion

The datasets analyzed in this study show that, from a strictly statistical point of
view, the intermittency parameter is not a constant. This means that the dissi-
pation process in some turbulent flows can display several levels of intermittency.
In such cases, it would be more appropriate to consider the intermittency param-
eter as a random variable. The results obtained in this analysis, confirm those
presented in [2]. Furthermore, the proposed model considers a finite number of
discrete values for the intermittency parameter. Future works could investigate
the extension of this model to continuous processes where the number of states
of the hidden Markov chain introduced in Eq. (3) becomes infinitely large.
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Abstract. A Lagrangian scheme devoted to the approximation of advec-
tion term in advection-diffusion equation (ADE) is proposed to deal with
large values of Péclet number. Advection and diffusion of circular con-
centration in a vortex flow are considered for validation purpose. The
Lagrangian scheme reduces the numerical diffusion to almost computer
error and provides better results than other Eulerian classical schemes of
the literature. The injection of a pollutant in a cavity is finally illustrated.

Keywords: Lagrangian scheme · Advection-diffusion · Large Pe
number

1 Introduction

The tracking of pollutants in gas and liquid is a major problem to address in
atmospheric environment, air quality characterization and industrial material
processes. The design of schemes for the hyperbolic advection term of the trans-
port equation for pollutant concentration has been widely studied, with mostly
Eulerian schemes relying on splines reconstruction, high-order spectral, finite
difference and finite volume schemes, combined with limiters belonging to the
class of TVD or WENO approaches. Reviews and comparisons of these schemes
are for example given in [5,6]. The conclusion of all studies if that when the
molecular or turbulent diffusion is low compared to the advection, all schemes
are diffusive or dispersive, providing unexpected spreading or unphysical oscilla-
tions of the numerical solutions. In the present work, a new Lagrangian scheme
[6] is proposed for the advection-diffusion equations that avoids diffusion and
respects the monotonicity of the solution.

2 Model and Numerical Methods

The framework of the present work is the simulation of incompressible fluid
flows with a Finite-Volume method on Cartesian staggered grids. The advection-
c© Springer Nature Switzerland AG 2021
M. Deville et al. (Eds.): TI 2018, NNFM 149, pp. 202–207, 2021.
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diffusion equation (ADE) of a quantity Φ (temperature, pollutant concentration,
. . .) is considered. Γ is the diffusivity and u the fluid velocity, either prescribed
or given by the last iteration of the Navier-Stokes resolution. Classical Eulerian
Centered, Upwind, Quick, TVD or WENO schemes are generally used for dis-
cretizing the advection term. Solving the ADE with centered schemes introduce
oscillations and non bounded solutions for a low diffusivity coefficient Γ or high
Péclet cell number values, given by Pe = ‖u‖Δx/Γ . On the contrary, low order
upwind schemes induce important numerical diffusion that alter the physical
meaning of the solution, as centered schemes do. A Sequential Operator Split-
ting (SOS) method [2,4] is utilized. Introducing a time step Δt, ADE is split in
time into two substeps: advection

∂Φ

∂t
+ ∇ · (uΦ) = 0 (1)

is first solved along the time interval ]t, t + Δt], providing intermediate solution
Φ�. Then, diffusion

∂Φ

∂t
− ∇ · (Γ∇Φ) = 0 (2)

is solved with initial condition Φ(t) = Φ�(t + Δt). It provides the approximated
solution of Φ(t + Δt). The SOS is second-order accurate at each time step [2].
More sophisticated SOS can be found in [2,4]. Let us consider Φn = Φ(tn) as
the discrete value of Φ at time tn = t0 + nΔt, n being the iteration number and
Δt = tn+1 − tn the time step. In practice, the intermediate solution Φ� after
advection is updated solving Eq. (1) with an explicit Lagrangian scheme (see
below) while Eq. (2) is discretized with an implicit Eulerian centered scheme and
direct MUMPS [1] or preconditioned MILU-BICGSTAB II iterative solvers are
used to obtain solutions. In addition to the Lagrangian scheme developed in this
paper, a non-conservative Weno scheme of order 5 [3] will be used, coupled with
a third order Runge-Kutta time integration. For comparison, results obtained
with a QUICK scheme are also presented. The Lagrangian scheme for ADE is
an extension of VSM scheme from [6]. A number of M markers (Lagrangian
particles), located at Xm and bringing volumes δVm, are seeded in the Eulerian
grid (Fig. 1) devoted to solving of conservation equations. Initially, markers are
equality placed in each cell according to a number of particles per direction
and per cell (ppdpc). A simulation then handles ppdpcd × Nx × Ny × Nd−2

z

Lagrangian objects, where d is the space dimension and Nx, Ny and Nz are the
numbers of scalar cells in each space direction. Furthermore, the markers carry
the local information, φm, of the Eulerian field Φ. At initial time φ0

m = Φ0(X0
m).

The markers are then advected solving the Lagrangian equation dXm

dt = u|Xm
.

The material derivative on marker position is integrated in time with a second
order Runge-Kutta scheme. The velocities at particle positions follow a linear
Q1 interpolation. As illustrated in Fig. 1 for marker 2, the volume δVm of a
marker can contribute to the computation of Φ� on neighboring cells. The value
of Φn+1 is then obtained solving the unsteady diffusion equation (2). Finally, the
local (marker) information is updated according to the variation of Φ during the
diffusion step at the particle position:
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Fig. 1. Sketch of the Lagrangian particles (blue diamond) on a 2D staggered grid.
Velocities at particles position are interpolated with surrounding grid velocities (see
marker 3 for example, red left triangle and green triangle stand for horizontal and
vertical components, respectively). The Eulerian information is computed with averages
of markers included in the corresponding cell (see cell Ωi+1,j for example). (Color figure
online)

∂φm

∂t

∣
∣
∣
∣
Xn+1

m

=
∂Φ

∂t

∣
∣
∣
∣
Xn+1

m

(3)

The number of particles per cell, Mc, varies over time. It can increase or decrease
according to local streamline convergence or divergence. It can be interesting to
remove or add particles in each cell in order to save computational time and
maintain physical relevancy of the solution. This way, Mc is reduced to a constant
value at each iteration by using the following treatment:

– In each cell where Mc > ppdpcd, the distances between particles and its
neighbors are computed for every pair. The particle having the lower distance
(according to a norm, L2 for example) is removed (particle 7 in Fig. 1) and
this procedure is applied until Mc = ppdpcd.

– In cells where Mc < ppdpcd, new particles are randomly introduced until
Mc = ppdpcd. By noting M0

c the initial number of markers, we have to insert
Mi = ppdpcd − M0

c particles.

As discussed in the next section, these reseeding operations can lead to spurious
effect on isovalues of the scalar field.

3 Advection-Diffusion of a Concentration Peak

A peak of concentration is placed in a domain defined by (x, y) ∈ [0, L]2 with
velocity field u(x, y) = −a (y − yc) ex + a (x − xc) ey corresponding to a block
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rotation motion around the fixed point (xc, yc). With a = π/2 and xc = yc =
L/2, a marker placed in this field needs T = 4 s to make a complete turn and
return back to its initial position. In this velocity field, a peak of concentration
of radius R is initialized such that

Φ(r, t = 0) =

⎧

⎨

⎩

R − r

R
if r < R

0 otherwise
(4)

where r =
√

(x − xp)2 + (y − yp)2 is the radial coordinate centered around
(xp, yp) the position of the peak center. At the initial time, (xp, yp) =
(L/2, 3L/4). The analytical solution over time is given by

Φ(r, t) =
∞∑

n=1

AnJ0(λnr) exp(−λ2
nΓt) (5)

where J0 is the zeroth order Bessel function of the first kind and λn the nth root
of J0(λ) = 0. The An coefficients are obtained as:

An =
2RJ1(Rλn)
λnJ1(λn)2

− 2
RJ1(λn)2λ3

n

(

(Rλn)2J1(Rλn)

−πRλn

2
[H0(Rλn)J1(Rλn) − H1(Rλn)J0(Rλn)]

)
(6)

with J1 the first order Bessel function of the first kind, and H0 and H1 the Struve
functions of order 0 and 1, respectively. The numerical solutions obtained with
different schemes are compared to this reference solution after a simulation time
of T = 4 s and the diffusion coefficient Γ varies from 10−4 to 10−6 m2/s. The
domain is discretized with Nx = Ny = N and Δt is chosen according to CFL
condition defined by a

2Δt/Δx (a/2 is the velocity at the peak center). A first
set of results is given in Fig. 2 for Γ = 10−6 m2/s and different schemes. On one
hand, The QUICK scheme introduces an excessive numerical diffusion and is
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Fig. 2. Zoom on the numerical (blue lines) and reference solutions (black) after one
turn for different schemes on a N2 = 1282 mesh and for Γ = 10−6 m2/s. (Color figure
online)
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sensitive to the advection direction. The numerical diffusion is reduced with the
Weno5 scheme. On the other hand, oscillations disrupt the numerical solution of
the Lagrangian scheme but this latter do not introduce numerical diffusion and
presents, on this mesh, a better solution than the other schemes. Note that the
Lagrangian scheme, with 2 particles per direction and per cell (ppdpc), is able to
represent 95% of the peak value. The second set of results (Fig. 3) presents, on
the same mesh, the results obtained with the Lagrangian scheme and different
values of ppdpc. The first observation is that the oscillations can be reduced
increasing by the ppdpc value. In the same time, the quality of the solution
increase, i.e. 99.2% of the peak value is correctly represented for ppdpc = 8.
It has been verified that the oscillations come from the reseeding procedures.
Indeed, all the markers follow circle trajectories and come back to their initial
position after time T . Removing reseeding procedures in this particular rotation
motion case suppress the oscillations even with a small ppdpc value. However,
in practical cases, enrichment is mandatory to balance particle lack in sheared
zones.

Lagrangian scheme (2 ppdpc)
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Fig. 3. Zoom on the numerical (blue lines) and reference solutions (black) after one
turn for different values of ppdpc on a N2 = 1282 mesh and for Γ = 10−6 m2/s. (Color
figure online)

4 Injection of a Pollutant in a Cavity

The Lagrangian scheme is applied to polluted air injected into a rectangular
enclosure containing the same fluid at rest. A round jet enters with a flow rate
of 40 
/min. Gas exits through an open circular outlet at atmospheric pressure.
The Reynolds number based on the injector diameter is Re = 1500. The numer-
ical solution is obtained on a mesh with 64 × 32 × 32 cells and without any
turbulence modeling. The dynamical solution is used in the ADE equation. The
Fig. 4 presents the concentration fields is observed after 1.5 s. Iso-concentration
for the Weno5 and Lagrangian with 4 ppdpc schemes are shown. The left part of
the cavity presents the iso-concentration obtained with the Lagrangian scheme
while the right part provides the Weno5 results. The numerical diffusion intro-
duced by the Weno scheme prevents it form picking up the signal correctly while
the Lagrangian scheme is able to represent high values of the concentration field.
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Fig. 4. Iso-concentration C = 0.25, 0.5 and 0.75 plotted for Lagrangian and
Weno5 scheme at 1.5 s.

5 Concluding Remarks

The efficiency of a fully Lagrangian scheme has been demonstrated for the reso-
lution of an ADE. It is even more effective than the ratio between advection and
diffusion is important. The extra cost of the particle tracking method used by
the Lagrangian scheme is counterbalanced by the fact that the advection process
does not introduce numerical diffusion, respect monotonicity of the solution and
allows coarser meshes to use in comparison to classical Eulerian schemes. The
major drawback of the Lagrangian approach is the spurious oscillations intro-
duced by the reseeding procedures. This will be considered in future works, as
well as local varying Lagrangian seeding of particles in order to reduce the global
cost of the scheme.
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Abstract. The spreading time that a droplet takes to reach its maxi-
mum spreading state is a parameter of paramount importance. We study
the impact of a liquid droplet on a super-hydrophobic surface. A contact
angle of θ = 170◦ is used as the numerical input for the non-wetting
property of the surface. Numerical simulations to understand the effects
of initial impact conditions on spreading time of liquid droplets onto
solid surfaces are conducted in a regime where 1 < We < 300 and
1 < Re < 300. We demonstrate that the spreading time tmax is jointly
determined by the inertial, capillary and viscous forces. The spreading
time tmax decreases exponentially with the increase of the impact velocity
V0 and surface tension σ. Regarding the influences of dynamical viscosity
on spreading time, the effects of dynamic viscosity is secondary at low
Weber numbers (We < 5), while in a moderate Weber number regime
(5 < We < 300), the effects of dynamic viscosity should be taken into
account. Finally, in our study, we successfully scale the dimensionless
spreading time in the form as t∗

max/Re1/5 ∼ WeRe−2/5.

Keywords: Droplet impact · Two-phase flow · Maximum spreading

1 Introduction

Numerous studies on the impact of a liquid droplet onto solid surface have been
conducted to understand the underlying physics, due to its numerous physical
phenomena in nature and widespread applications in industry [3,5,9,21]. The
attractive dynamic process and different outcomes of droplets impacting on solid
surfaces could be referred in several reviews [8,23] and the references included.
Droplet impact dynamics is largely dependent on the impact velocity, proper-
ties of the liquid, surface conditions and the environmental conditions. These
parameters determine the interactions between the liquid droplet and target
surface and the outcomes of droplet impact. For most of the applications, the
priority is controlling the contact area between the impacting droplet and the
target surface. The contact area is described by the maximum spreading diameter
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Dmax. Numerous experimental works and numerical studies have been carried
out on the maximum spreading diameter of a droplet impacting on smooth and
rough solid surfaces [2,9–11,15,17]. Based on energy conservation, the balance
among kinetic energy, surface energy and dissipation work during spreading, sev-
eral analytical models predicting the maximum spreading diameter are proposed
[7,10,12–14,16,18]. The major differences between the prediction models lie in
the estimation of dissipation work during spreading phase. The dissipation work
is calculated by integrating the dissipation function over the spreading time
and the the volume where dissipation occurs. Chandra and Avedisian (1991)
assumed the dissipation work takes place in the whole droplet, Pasandideh-Fard
et al. (1996) proposed that most of the dissipation occurs in the boundary layer
near the target surface. Based on these previous studies, Huang and Chen (2018)
take the dissipation near the contact line into account.

There are fewer studies dedicated to the investigation on spreading time tmax.
The significance of studying the spreading time tmax not only lies in the calcu-
lation of the viscous dissipation energy, but also in illustrating the spreading
behaviour of the droplet [1,7,14,16,18]. The spreading time tmax here is nor-
malized by the ratio D0/V0, denoted by t∗max. In the early studies, Chandra and
Avedisian (1991) approximated the spreading time tmax as,

tmax = D0/V0, (1)

which is the time for the droplet height decreasing from its highest value D0 to
0 at impact velocity V0 [1]. Pasandideh-Fard et al. (1996) derived the spreading
time as,

tmax = (8/3) · D0/V0, (2)

based on the simple geometric assumption that the splat at maximum spreading
is approximated by a cylinder [14]. The Eq. (2) has been widely adopted in
theoretical models predicting the maximum spreading diameter Dmax [4,13,16,
18]. The models Eq. (1) and Eq. (2) are unphysical as they assume spreading
time tmax is only determined by the initial diameter D0 and impact velocity
V0 of the droplet by ignoring the influences of the surface tension σ, dynamic
viscosity μ and the wettability of the target surface. Lee et al. (2016b) conducted
experiments to show that the spreading time tmax decreases with surface tension
σ and proposed a new scaling of tmax with maximum spreading factor ξmax and
surface tension σ as,

tmax = bD0ξmax/V0, (3)

where parameter b equals to the ratio of surface tension of droplet liquid to a
reference liquid [11]. Recently, Huang and Chen (2018) compared their experi-
mental results for water droplets impacting on parafilm surface with these two
relations Eq. (2) and Eq. (3) [7]. The comparison shows that the dimensionless
maximum spreading time can not be seen as constant, and the difference between
prediction Eq. (3) and experimental results become larger with the increase of
Weber number.
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In this work, we use the homemade code Thetis, the modified 1-fluid model
and improved Smooth VOF methods to conduct accurate two-phase flow sim-
ulations including the wetting effects, which has been validated to experimen-
tal results [6,19,20,22]. We aim to quantitatively demonstrate the influences of
impact velocity V0, surface tension σ and dynamic viscosity μ on the spread-
ing time tmax in terms of Weber and Reynolds number (We = ρD0V

2
0 /σ,

Re = ρV0D0/μ) from our numerical simulations. The present paper starts with
the influences of droplet’s physical properties on the spreading time tmax. The
droplet’s major physical properties are the impact velocity V0, surface tension
σ and dynamic viscosity μ are varied in a systematic way. The contact angle
we applied between the droplet and the surface is set as 170◦, i.e., the droplet
impacts on a non-wetting surface. The spreading time tmax can be scaled as
an exponential function of Weber and Reynolds number. Finally, the scaling of
t∗max is compared with results measured in experiments and some conclusions
are made.

2 The Dependence of tmax on Weber and Reynolds
Number

In our simulations, the droplet is chosen as a molten ceramic with initial diameter
D0 = 30µm, density ρ = 5700 kg/m3, surface tension σ = 0.5 N/m d dynamic
viscosity μ = 0.03 Pa ·s. We investigate the influences of the physical properties
of a droplet on the spreading time tmax by varying the impact velocity V0, surface
tension σ and dynamic viscosity μ on a non-wetting surface. The Fig. 1 plots
the dimensionless spreading time t∗max (= tmaxV0/D0) versus Reynolds number,
where the impact velocity and dynamic viscosity varies while keeping surface
tension constant. For the case of lower Weber number We < 5, the influences
of Reynolds number on t∗max could be ignored compared to those in moderate
Weber number regime 5 < We < 300. The explanation could be said as for
higher Weber number, as the droplet spreads much larger, the viscous dissipation
during spreading becomes an important role in countering the inertial force of
the droplet. The dimensionless spreading time t∗max remains largely dependent
on the impact velocity (Weber number). For the results in the cases with lower
Weber number (We < 5), the exponent of Re is in order of 0.02. The results
obtained with moderate Weber number (5 < We < 300) show that

t∗max ∼ Re0.1. (4)

The Fig. 2 plots t∗max versus Weber number, in which the impact veloc-
ity and the surface tension are varied. In logarithmic scale, the dimensionless
spreading time t∗max could be scaled as an exponential function of We. Based on
these two figures Fig. 1 and Fig. 2, we observe that the dimensionless maximum
spreading time t∗max is an exponential function in terms We and Re. Recall the
crossover function Re−1/5 · (WeRe−2/5) used to scale the maximum spreading
factor [9], and plot the maximum spreading time results in Fig. 1 and Fig. 2 as
t∗max/Re1/5 ∼ WeRe−2/5, shown in Fig. 3,
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Fig. 1. The dimensionless maximum spreading time t∗
max plotted against Reynolds

number for the impinging droplets with varied dynamic viscosity impacting on non-
wetting surfaces.

Fig. 2. The dimensionless maximum spreading time t∗
max plotted against Weber num-

ber for the impinging droplets with varied surface tension impacting on non-wetting
surfaces.

t∗max/Re1/5 = 0.375(WeRe−2/5)0.264. (5)

To validate this relation Eq. (5) we obtained, the experimental results of max-
imum spreading time measured in literature [7,11] are rescaled and replotted in
Fig. 4. Lee et al. (2016b) measured the maximum spreading time of ethanol,
water and glycerol droplet on steel surfaces [11]. On steel surface, ethanol main-



212 Y. Xu et al.

Fig. 3. The function t∗
max/Re1/5 plotted versus the impact number P = WeRe−2/5.

All the data shown in Fig. 1 and Fig. 2 are included. The error bars are the difference
between the value from our simulations and the estimated values provided by the the
scaling.

Fig. 4. Comparison between the scaling Eq. (5) (red dash line) and experimental results
[7,11] (hollow symbols) of dimensional spreading time t∗

max. (Color figure online)

tains a dynamic contact angle ranging from 41◦ to 63◦ and wets the surface.
While the water and glycerol maintains an obtuse contact angle between 93◦

and 121◦ and are dynamically nonwetting. Huang and Chen (2018) measured
the maximum spreading time of water droplet impacting onto parafilm surface
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with contact angle 110◦ ± 7◦ [7]. In Fig. 4, for clearness, we compare the scaling
Eq. (5) observed from our simulations to the experimental results. The experi-
mental results measured from, water and glycerol droplets impacting onto steel
surfaces, and water droplets impacting onto parafilm, coincide into a line which
follows the Eq. (5). The spreading time measured from ethanol droplets impact-
ing on steel surface are higher than the ones obtained on hydrophobic surfaces.
Lee et al. (2016b) concluded that ethanol’s lower surface tension attributed to
its higher maximum spreading time than the one of water and glycerol. While as
the numerical simulations we performed have taken the effects of the variation
of surface tension on spreading time into consideration, we draw the conclusion
that the differences are caused by the different wettabilities.

3 Conclusions and Remarks

We postulate that for droplets impacting on non-wetting surfaces, the dimen-
sionless spreading time t∗max scales with no dependence on Reynolds number at
lower Weber number (We < 5), while scales with Re1/10 in the moderate Weber
number regime 5 < We < 300. The dimensionless maximum spreading time
scales with the dependences of We3/10 in the range of the Reynolds number,
Re < 300. Inspired from the cross-over for ξmax between capillary and viscous
regimes, we found that the interpolation between We1/2 and Re1/5 provides a
smooth cross-over for t∗max as well. The scaling Eq. (5) obtained from droplets
impacting on purely non-wetting surfaces fits well with experimental results
obtained on hydrophobic surfaces (contact angle θ > 90◦). For the experiments
done on wetting surfaces, our prediction largely underestimates the maximum
spreading time tmax. Based on this current work, a detailed study of the depen-
dence of tmax on impact velocity, surface tension and dynamic viscosity could be
carried out. A correlation between spreading time tmax and maximum spreading
diameter Dmax could be found, which could be used in improving the accuracy
of the calculation of dissipation work, then the analytical models predicting
maximum spreading diameter based on energy conservation.
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