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Abstract. Nanobodies (Nbs) achieve high solubility and stability due to four con-
served residues referred to as the Nb tetrad.While several studies have highlighted
the importance of the Nbs tetrad to their stability, a detailed molecular picture of
their role has not been provided. In this work, we have used the Rosetta package to
engineer synthetic Nbs lacking the Nb tetrad and used the Rosetta Energy Func-
tion to assess the structural features of the native and designed Nbs concerning
the presence of the Nb tetrad. To develop a classification model, we have bench-
marked three different machine learning (ML) and deep learning (DL) algorithms
and concluded that more complex models led to better binary classification for
our dataset. Our results show that these two classes of Nbs differ significantly in
features related to solvation energy and native-like structural properties. Notably,
the loss of stability due to the tetrad’s absence is chiefly driven by the entropic
contribution.
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1 Introduction

Ever since their discovery, single-domain binding fragment of heavy-chain camelid anti-
bodies [1], referred to as nanobodies (Nbs), have gained considerable attention in transla-
tional research as therapeutic and diagnostic tools against human diseases and pathogens
[2]. Along with its small size (15 kDa) and favorable physical-chemical properties (e.g.,
thermal and environmental stabilities), Nbs display binding affinities equivalent to con-
ventional antibodies (cAbs) [1, 3]. Moreover, its heterologous expression in bacteria
allows overcoming cAbs production pitfalls, such as high production cost and need of
animal facility [4, 5]. Hence, Nbs are considered as a promising tool against numerous
diseases. A variety of Nbs is currently being investigated under pre-clinical and clinical
stages against a wide range of viral infections [6, 7].

© Springer Nature Switzerland AG 2020
J. C. Setubal and W. M. Silva (Eds.): BSB 2020, LNBI 12558, pp. 93–104, 2020.
https://doi.org/10.1007/978-3-030-65775-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65775-8_9&domain=pdf
http://orcid.org/0000-0002-6958-3115
http://orcid.org/0000-0002-4768-2200
http://orcid.org/0000-0002-3983-8025
https://doi.org/10.1007/978-3-030-65775-8_9


94 M. V. F. Ferraz et al.

The general structural topology of the Nbs is depicted in Fig. 1. It is characterized by
a core structure composed of a pair of β-sheets, built from 4 and 5 antiparallel β-strands
linked by loops and a disulfide bridge. In contrast to cAbs, which contains six variable
loops, Nbs display three highly variable loops H1, H2, and H3. These loops correspond
to the Complementary Determining Region (CDR), which is responsible for antigenic
binding and recognition, hence providing the target specificity of the Nbs. The overall
structure of the Nbs is maintained by four conserved portions, termed as the framework.
A significant difference regarding Nbs and cAbs arises from the lack of the variable light
chain, and as a consequence, the light-heavy domains interface. To compensate for this
loss, four highly conserved residues referred to as the Nb Tetrad are found to replace
the nonpolar side chains with polar ones [8, 9]. The Nb tetrad comprises the residues
Y/P37, E44, R/C45 and G47. Presumably, these substitutions increase hydrophilicity
and solubility of the Nbs, being crucial for their stability [10].

Fig. 1. Cartoon representation of the overall topology of an Nb (PDB ID: 3DWT) [11]. The Nb
domain consists of 9 β-sheets linked by loop regions, 3 of these constitute the CDR region and
are colored in green, blue, and red. The framework region separated by the hypervariable loops
are colored in silver. The Nb tetrad residues are highlighted in yellow. (Color figure online)

These four residues’ presence is a hallmark characteristic of Nbs as it has been shown
by several sequence alignments studies [12, 13]. The high conservation of these residues
indicates an evolutionary-driven constraint, and it highlights their pivotal role in Nbs
structure. To ascertain that changes in the Nb tetrad would negatively impact the Nb
folding, we have previously designed a Nb by altering the tetrad residues. The obtained
chimera presented low expression yields and the absence of a well-defined globular
three-dimensional structure due to aggregation (unpublished data). On the contrary,
attempts to “camelize” human/murine Abs by grafting the Nb tetrad to the Ab heavy
chain’s corresponding position has resulted in structural deformations of the framework
β-sheet, leading to scarce stability and aggregation [14]. Although it has been described
a phage-display library derived from llamas that has produced a set of stable and soluble
Nbs devoid of the Nb tetrad [15], these Nbs are unusual, and their stability should be
explained in the light of an alternative mechanism.
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Given the Nb’s tetrad importance in maintaining its folded structure and stability,
these residues can be considered key to engineer novelNbs. It has been shown thatmolec-
ular dynamics simulations are not sufficient to capture the lower stability of aggregating
Nbs, and it does not elucidate the structural and thermodynamic features role of the Nb
tetrad to the structures of the Nbs [16]. In this study, we seek to identify the impact
of the Nb tetrad from a molecular perspective. To gain insight into the thermodynamic
contributions to the folded Nbs, we have used the Rosetta Energy Function compo-
nents combined with machine learning to identify whether there are differences in the
structural pattern of natural Nbs and the corresponding Nbs without the presence of
the tetrad sidechains, by replacing them for methyl groups (Alanine). We benchmarked
two machine learning (ML) models (Support Vector Machine [17] and Random Forest
[18]) and one deep learning (DP) model (Artificial neural network by Multilayer Per-
ceptron [19]) to evaluate the performance of these algorithms in effectively capture the
differences among the classes from the multivariate nature of the data.

2 Computational Details

2.1 Dataset Preparation

A total of 30 non-redundant X-ray derived Nb structures, with resolution lower than 3 Å,
were retrieved from the Protein Data Bank (PDB). To alleviate bad atomic contacts, the
nearest local minimum in the energy function was achieved by geometry-minimizing
their initial coordinates using the Rosetta package v. 3.10 [20] and the linear-Broyden-
Fletcher-Goldfarb-Shanno minimization flavor conditioned to the Armijo-Goldstein
rule. The minimization protocol was carried out in a stepwise fashion, where the
sidechain angles were initially geometry-minimized, followed by full rotamer pack-
ing and minimization of the orientation of sidechain, backbone, and rigid body. To
enhance sampling, χ1 and χ2 rotamers angles were used for all residues that pass an
extra-chi cutoff of 1. Hydrogen placement was optimized during the protocol. For each
of the minimized structures, the Nb tetrad residues were identified and replaced by ala-
nine using the RosettaScripts in the four positions, and the obtained structures were
geometry-minimized accordingly to the previously described protocol. Thus, the final
dataset consisted of 60 instances.

To evaluate folding propensity, the Nb structures were scored using the all-atom
Rosetta Energy Function 2015 (REF2015) [21] to calculate the energy of all atomic
interactions within the proteins. The REF2015 possesses 20 terms and these were used
as the features. The terms can be found in the GitHub (https://github.com/mvfferraz/
NanobodiesTetrad), and a detailed description of each term can be found in reference
[21]. The score function is a model parametrized to approximate the energy for a given
protein conformation. Thus, it consists of a weighted sum of energy terms expressed as
mathematical functions based on fundamental physical theories, statistical-mechanical
models, and protein structures observations. The Rosetta package is a state-of-art prime-
tool to themodeling anddesign of proteins, and its empirical energy function successfully
allows for a valid assessment of the relative thermodynamic stability of folded proteins.
The weights for each energy term were kept as default. The parsed command lines, PDB
codes, and dataset are available in the GitHub.

https://github.com/mvfferraz/NanobodiesTetrad
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2.2 Classification Methods

All the algorithms were written using Python v. 3, and the Scikit Learn Library [22] was
employed in conjunction with the Pandas [23] and Numpy [24] packages. In addition,
Tensorflow [25] and Keras [26] were used for the NN algorithm. The dataset was split
as training (70%) and test (30%) sets. The data features vector was standardized using
preprocessing tools to normally distribute the data by scaling the data to a zero mean
and unit variance. Details of the code can be found in the GitHub.

Linear Discriminant Analysis (LDA). To identify whether the folding propensity of
the Nbs containing the Nb tetrad and those that do not, are linearly separable, a one-
component LDA was carried out [27]. LDA projects the input data to a linear subspace
constituted of directions to maximize the separation between the classes and minimize
the separation among a class. Bayes’ statistics are applied to fit conditional class densities
for each sample of the data. To select the significant variables, the ensemble learning
method of extremely randomized trees (Extra Tree) classifier [28] was used. The number
of estimators was kept as 100. The number of features to consider when searching for
the best split was assigned as 2, and the quality of a split was measured using the entropy
criterion. The LDA was solved using eigenvalue decomposition and was performed by
fitting the data and then transforming it without additional parameters. The weights of
the LD were used to detect which features are responsible for separating the classes
explicitly. To compare if two means were statically different, two-tailed paired t-test
was used (GraphPad Prism 8 [29]). Differences were considered statistically significant
for a p-value such that p < 0.05, at the 95% confidence level.

Support Vector Machine (SVM). SVM consists of a non-probabilistic binary linear
classifier, and wherein classification is performed by the construction of a set of hyper-
planes in a high-dimensional space. SVM seeks to find a line of separation between the
hyperplanes from each class. This line is optimally drawn for maximizing the distance
between the closest points regarding each class. C-Support Vector Classification (SVC)
was used with a linear Kernel with C = 1 hyperparameter, identified with a grid-search
over pre-defined values for C (0.001, 0.01, 0.1, 1, 10, 100) and different types of Kernel
(Linear and Radial basis function). The linear Kernel, K, is defined as a function of the
vectors in the input space, x and y, as K(x, y) = xT y, for x, y ∈ R

d .

Random Forest (RF). RF is a meta estimator that builds a number of decision trees on
bootstrapped training samples and uses averaging from random samples for each split in
a tree. All parameters were implemented as the default, save by the criterion to measure
the split’s quality, set as entropy envisioning information gain.

Neural Network (NN). TensorFlow library was used in conjunction with the Keras
high-level application programming interface. The classification was performed using
the Multi-layer Perceptron (MLP) Classifier with 100 hidden layers. An MLP is a feed-
forward artificial NN class, which learns a function f (·) : Rm → Rn by training on a
dataset with m input dimensions and n output dimensions, and it contains hidden layers
in between the input and output layer. Each hidden layer contains a weight propagated
for each posterior layer as a weighted linear summation and followed by a non-linear
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activation function g(·) : R → R. The weight optimization was conducted by stochastic
gradient descent, and the step-size for updating the weights was defined as 0.01. Max-
imum iterations number was set as 500, or until it reaches convergence by considering
the default tolerance.

Diagnostic Performance Evaluation. Four performance measures were assessed. The
accuracy of the models was computed using the 10-fold cross-validation. To verify the
model’s performance, the confusion matrix, and the Receiver Operating Characteris-
tic (ROC) curve were evaluated along with the models’ learning curve. For a binary
classification task, precision, recall, and f1-score are defined according to the assigned
classification (true positive (tp), true negative (tn), false positive (fp) and false negative
(fn)) as described by Eqs. 1–3. For a detailed description of each metric, see [30].

Precision =
tp

tp + fp
(1)

Recall =
tp

tp + fn
(2)

f1 =
2

recall−1 + precision−1= tp

tp + 1
2 (fp + fn)

(3)

3 Results and Discussion

3.1 Features Selection

The Rosetta energy terms are convenient mathematical approximations to the physics
that governs protein structure and stability. The Rosetta Energy Function (REF) ranks
the relative fitness of several amino acid sequences for a given protein structure, and it
is capable of predicting the threshold for protein stability by discriminating native-like
from non-native structures in a decoy [31]. The functional form relies upon pairwise
decomposability of energy terms. The decomposition limits the number of energetic
contributions to 1/2N (N − 1), where N is the atom’s number in the system.

WhenusingRosetta energy function to calculate the score of a protein, i.e., the relative
energy for a given conformation reasoned by specific parameters of the Hamiltonian, it
yields a total of 20 energetic terms [21]. A feature selection was performed to reduce the
effects of noise or irrelevant variables to construct the models. A feature was considered
relevant and non-redundant if it presented a feature importance score higher than 0.05
(Fig. 2). From the obtained split, a total of 7 features were filtered:

• fa_dun: the probability of a given rotamer is a native-like state based on Dunbrack’s
statistics for a given φ and ψ angles;

• hbond_sc: energy for the sidechain-sidechain hydrogen bond;
• lk_ball_wtd: asymmetric solvation energy;
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Fig. 2. Feature selection based on REF terms using Extra trees classifier. Feature importance
greater than 0.05 was regarded as a relevant feature. The red dashed line represents the threshold
for a given feature to be filtered. (Color figure online)

• fa_intra_sol_xover4: Lazaridis-Karplus solvation energy for intra-residue interac-
tions;

• fa_sol: Lazaridis-Karplus solvation energy model based on Gaussian exclusion;
• ref : An approximation to the relative energies of the unfolded-state ensembles;
• fa_elec: Coulombic electrostatic potential.

The short descriptions of the terms were retrieved from [21]. As can be seen, almost
half of the selected terms are related to the system’s solvation properties. Since the
replacement of hydrophilic residues for alanine increases the hydrophobic content of
the Nbs lacking Nb tetrad, these structural differences have potentially been captured
by the REF. These observations corroborate the well-described importance of the Nbs
tetrad for solubility.

3.2 Linear Separability of the Data

LDA was used to evaluate whether the filtered features’ combination can discriminate
natural Nbs from Nbs lacking Nb tetrad. Since we have two classes, the LDA was
performed in a one-dimensional fashion. LDA is a supervised dimensionality reductor
that identifies the attributes that mostly account for the classes’ variance. From fitting
a Gaussian density to each class, a single LD was able to separate the class linearly.
Figure 3A shows the one-dimensional separability for the classes. In general, natural
Nbs lead to a negative value for the LD, and the contrary is observed for the Nbs that
lack the Nb tetrad.

To investigate the features that account for the most separation between the classes,
the LD loadings were assessed. The loadings indicate the contribution of each feature in
predicting class assignment and are shown in Fig. 3B. A higher weight (relatively to their
modulus) are fa_dun, lk_ball_wtd, and ref . These results highlight the importance of the
Nbs tetrad to solubility and stability of Nbs. The lk_ball_wtd consists of the orientation-
dependent solvation of polar atoms when assuming the ideal water geometry. As already
stated, the REF was able to capture the solvation contribution to the Nb tetrad presence.
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Fig. 3. Discriminant features assessed by LDA. (A) One dimensional LDA. The bars in red are
the LD values for the Nbs lacking the Nb tetrad whereas the bars in blue consist of the natural
Nbs; (B) Loading of each feature used to calculate de LDs; (C–E) ref energy, lk_ball_wdt, fa_dun
energy terms, respectively, for each class. The p-value < 0.05 indicates significant differences in
the means. (Color figure online)

Moreover, the other two features are related to native-like conformations properties.
Thus, these results show that the Nb tetrad potentially impacts Nbs’ backbone φ and
ψ angles distribution as it is found in the Dunbrack’s library of rotamers. Given the
importance of the torsion angles for protein folding, a putative explanation for the Nbs
tetrad’s role in maintaining the structure arises from a geometrical issue. It must be noted
that regarding the geometric features, this effect is unlikely to be an artifact from the
modeling, since the replacement by alanine residues are not expected to cause significant
structural changes, due to the small size of its sidechain, it can be positioned andmatched
for in any part of the protein (except when replacing tightly buried glycine residues).

To ensure the average of these featureswere statistically different between the classes,
a two-tailed t-test was used. Figure 3(C–E) shows the distribution of the data for each
class, along with averages and standard deviations. All three features presented a p-value
< 0.05, indicating that these averages are statistically different.

3.3 Classification Algorithms

Given that the selected features can discriminate between the natural Nbs and Nbs that
lack the Nb tetrad, classification algorithms were employed to compare the different
performance in capturing the classes’ structural differences. In this benchmark, machine



100 M. V. F. Ferraz et al.

learning (SVM and RF) and deep learning (ANN-MLP) were assessed regarding their
binary classification performance. SVM is an instance-based learning model, and RF is
an ensemble method. MLP is a class of NN, and here it has been employed more than
three hidden-layers, and therefore, consists of a DL approach.

All the models have been prepared with the same data and training set. All the
20 features were taken into account to carry out the classifications, since using the
selected features from extra trees classifier resulted in poor performances (Data not
shown for conciseness). Since it is a small dataset, it is prone to suffer from overfitting
the data (high variance). Thus, we performed several performance evaluations. Initially,
the models were compared regarding their threshold metrics. Threshold metrics are
useful for diagnosing classification prediction errors. Initially, the scores (Fig. 4A),
which are directly associated with a combination of the precision and the recall values,
were calculated using two approaches: 1) Evaluation was performed considering the
initial training/test set; 2) A 10-fold cross-validation was employed. In the latter flavor
of evaluating the estimator performance, the training set is split into k sets, and themetrics
are calculated in a loop for the different generated sets. The performance is thenmeasured
by the average of each k-fold cross-validation. The SVMmodel presented a remarkable
performance in properly assigning the classes, with an accuracy of 0.94 for the initial test
set, and an accuracy average of 0.80 when considering ten different subsets. Followed
by SVM, MLP also presented good metrics, even though with a slightly lower value.
From the three models, the one with the poorest metrics was the RF algorithm. The two
formers are more complex and robust models, so that the classification task is likely not
trivial, in such a way, a simpler algorithm will not capture the main differences between
the classes. The algorithms were compared using the confusion matrix (Fig. 4B–D).
The diagonal elements of the matrixes consist of the number of true label classification,
whereas, off-diagonal elements represent the mislabeled classifications. The SVM and
MLP algorithms outperformed the RF model. The performance metrics are summarized
in Table 1 and demonstrate the SVM and MLP algorithms’ efficacy for our dataset.

To identify howmuch the models can benefit from adding more data, learning curves
were plotted. Two learning curves were constructed: 1) Train learning curve: calculated
based on the training set and diagnosis how well the model is learning, and 2) Validation
learning curve: calculated based on a hold-out validation set and diagnosis how well the
model is generalizing. Figure 5D–F shows the learning curve for the models. For SVM,
the training curve modestly decreases as more samples are added, and the learning curve

Table 1. Threshold performance metrics for each binary classification model

Model Nb Precision Recall F1-score Instances Accuracy

SVM Natural 0.90 1.00 0.95 9 0.94
� Tetrad 1.00 0.89 0.94 9

RF Natural 0.83 0.56 0.67 9 0.72
� Tetrad 0.67 0.89 0.76 9

MLP Natural 0.82 1.00 0.90 9 0.89
� Tetrad 1.00 0.78 0.88 9
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Fig. 4. Thresholdmetrics for the models’ performance (A) Validation scores for the SMV, RF and
MLP models considering the accuracy for the train/test split and for the 10-fold cross-validation;
(B–D) Confusion matrix for SVM, RF, and MLP

increases until reaching a plateau at a score of nearly 0.80. As can be seen, the model
fits the data well, but its generalization has a slightly lower value for the score. Thus, the
SVMmodelmight be slightly overfitted.However, its learning capability is progressively
increased as more samples are added, indicating that the set number is small. For MLP,
a similar trend is observed. However, for the same number of samples, SVM acquires
a higher score for the learning curve, suggesting a better model’s performance. These
results indicate that one source of difficulty for classifying using this dataset resides in
the small number of samples.

Furthermore, it shows that the algorithm’s training and learning process is not
straightforward, given that MLP presents a higher score for the training, proposing that
the more complex fitting to the data is required. The RF model did not reflect sensitivity
to increasing the number of samples, and a decrease in the learning curve is observed.
Thus, the RF model does not benefit from increasing the dataset, and its overfitting can-
not be attributed solely to the small size of the dataset, but rather to the simplicity of the
algorithm over a complex classificatory task.

These information show that SVM and MLP have the potential to classify between
the classes. Such a model is of fundamental relevance for a myriad of protein design
algorithms that rely onMonteCarlo sampling. Since a large number of decoys are usually
generated, identifying the Nbs that possess native-like characteristics is of enormous
advantage to time and resources saving for experimental characterization. From our
benchmarking, the RF model is not a proper model to learn from the data. Besides SVM
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Fig. 5. Assessment of the models’ performance through their characteristic curves. (A–C) ROC
curves for SVM, RF, and MLP models, respectively; (D–F) Learning curves and the validation
score as function of the number of training examples for SVM, RF, and MLP, respectively

having a slight advantage overMLP, the latter is a promising alternative since its training
curve perfectly fits the training data, and its increasing learning curve is a promising
indicator of its potential. The SVM presented a satisfactory performance, and from
searching for different parameters combination, a considerable gain in the predictivity
capacity might be observed. The ML and DL algorithms’ performance confirms that
there are traits that allow for the discrimination of Nbs containing the tetrad or not.
Our results show that abolishing the tetrad associates with loss of folding stability in
agreement with literature data. It is captured by the ref term, which in turn is shown to
have significant contributions from the solvation energy and torsional dihedral motion
terms. Therefore, the loss of Nbs stability due to eliminating the tetrad is a mostly
entropic-driven phenomenon.

4 Conclusions

We have compared the structural features, calculated by the REF’s energy term, of
natural Nbs containing the Nbs tetrad and a synthetic set of Nbs lacking the tetrad. Data
mining analyses revealed that the two classes of nanobodies differ mainly by folding and
solvation features, corroboratingwith previous studies suggesting the tetrad’s importance
for stability and solubility. This work’s findings expand the knowledge on the impact
of the Nbs tetrad from a molecular-level perspective by highlighting the importance of
entropic contributions to their stability.
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5. Jovčevska, I., Muyldermans, S.: The Therapeutic potential of Nanobodies. BioDrugs 34(1),
11–26 (2019). https://doi.org/10.1007/s40259-019-00392-z

6. Beghein, E., Gettemans, J.: Nanobody technology: A versatile toolkit for microscopic imag-
ing, Protein–Protein interaction analysis, and protein function exploration. Front. Immunol.
8, 771 (2017)

7. Konwarh, R.: Nanobodies: Prospects of expanding the Gamut of neutralizing antibodies
against the novel coronavirus, SARS-CoV-2. Front. Immunol. 11, 1531 (2020)

8. Revets, H., DeBaetselier, P.,Muyldermans, S.: Nanobodies as novel agents for cancer therapy.
Expert. Opin. Biol. Ther. 5, 111–124 (2005)

9. Muyldermans, S.: Single domain camel antibodies: Current status. J. Biotechnol. 74, 277–302
(2001)

10. Barthelemy, P.A., et al.: Comprehensive analysis of the factors contributing to the stability
and solubility of autonomous human VH domains. J. Biol. Chem. 283, 3639–3654 (2008)

11. Vincke, C., Loris, R., Saerens, D., Martinez-Rodriguez, S., Muyldermans, S., Conrath, K.:
General strategy to humanize a camelid single-domain antibody and identification of a
universal humanized nanobody scaffold. J. Biol. Chem. 284, 3273–3284 (2009)

12. Mitchell, L.S., Colwell, L.J.: Comparative analysis of nanobody sequence and structure data.
Proteins 86, 697–706 (2018)

13. Kunz, P., et al.: Exploiting sequence and stability information for directing nanobody stability
engineering. Biochim. Biophys. Acta Gen. Subj. 1861, 2196–2205 (2017)

14. Rouet, R., Dudgeon, K., Christie,M., Langley, D., Christ, D.: Fully humanVH single domains
that rival the stability and cleft recognition of camelid antibodies. J. Biol. Chem. 290, 11905–
11917 (2015)

15. Tanha, J., Dubuc, G., Hirama, T., Narang, S.A., MacKenzie, C.R.: Selection by phage dis-
play of llama conventional V(H) fragments with heavy chain antibody V(H)H properties. J.
Immunol. Methods 263, 97–109 (2002)

16. Soler, M.A., de Marco, A., Fortuna, S.: Molecular dynamics simulations and docking enable
to explore the biophysical factors controlling the yields of engineered nanobodies. Sci. Rep.
6, 34869 (2016)

17. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines.
IEEE Intell. Syst. Appl. 13, 18–28 (1998)

18. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
19. Pal, S.K., Mitra, S.: Multilayer perceptron, fuzzy sets, classifiaction. IEEE. Trans. Newural.

Netw. 3(5), 683–697 (1992)
20. Leaver-Fay, A., et al.: ROSETTA3: An object-oriented software suite for the simulation and

design of macromolecules. Methods Enzymol. 487, 545–574 (2011)
21. Alford, R.F., et al.: The Rosetta all-atom energy function for macromolecular modeling and

design. J. Chem. Theory Comput. 13, 3031–3048 (2017)
22. Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12,

2825–2830 (2011)

https://doi.org/10.1007/s40259-019-00392-z


104 M. V. F. Ferraz et al.

23. McKinney, W.: Data structures for statistical computing in python. In: Proceedings of the 9th
Python in Science Conference, pp. 56–61. Austin (2010)

24. Harris, C.R., et al.: Array programming with NumPy. Nature 585, 357–362 (2020)
25. Abadi, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed

systems. arXiv preprint arXiv:1603.04467 (2016)
26. Gulli, A., Pal, S.: Deep learning with Keras. Packt Publishing Ltd, Birmingham (2017)
27. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals Eugen. 7,

179–188 (1936)
28. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63, 3–42

(2006)
29. Prism, G.: Graphpad software. San Diego, CA, USA (1994)
30. Powers, D.M.: Evaluation: From precision, recall and F-measure to ROC, informedness,

markedness and correlation. J. Mach. Learn. Technol. 2, 37–63 (2011)
31. Cunha, K.C., Rusu, V.H., Viana, I.F., Marques, E.T., Dhalia, R., Lins, R.D.: Assessing protein

conformational sampling and structural stability via de novo design and molecular dynamics
simulations. Biopolymers 103, 351–361 (2015)

http://arxiv.org/abs/1603.04467

	Unraveling the Role of Nanobodies Tetrad on Their Folding and Stability Assisted by Machine and Deep Learning Algorithms
	1 Introduction
	2 Computational Details
	2.1 Dataset Preparation
	2.2 Classification Methods

	3 Results and Discussion
	3.1 Features Selection
	3.2 Linear Separability of the Data
	3.3 Classification Algorithms

	4 Conclusions
	References




