
Efficient Out-of-Core Contig Generation

Julio Omar Prieto Entenza , Edward Hermann Haeusler , and Sérgio
Lifschitz(B)

Departamento de Informática - (PUC-Rio), Rio de Janeiro, Brazil
sergio@inf.puc-rio.br

Abstract. Genome sequencing involves splitting a genome into a set
reads that are assembled into contigs that are eventually ordered and
organized as scaffolds. There are many programs that consider the use
of the de Bruijn Graph (dBG) but they must deal with a high computa-
tional cost, mainly due to internal RAM consumption. We propose to use
an external memory approach to deal with the de Bruijn graph construc-
tion focusing on contig generation. Our proposed algorithms are based
on well-known I/O efficient methods that identify unitigs and remove
errors such as tips and bubbles. Our analytical evaluation shows that
it becomes feasible to generate de Bruijn graphs to obtain the needed
contigs, independently of the available memory.

1 Introduction

Genome sequencing is the process that determines the order of nucleotides within
a DNA molecule. Modern instruments splits a genome into a set of many short
sequences (reads) that are assembled into longer contiguous sequences, contigs,
followed by the process of correctly ordering contigs into scaffolds [18].

We may associate genome sequencing with the problem of finding a Hamil-
tonian Cycle through an Overlap Layout Consensus (OLC) assembly method.
Alternatively, it can be modeled as the problem of finding a Eulerian Cycle con-
sidering the de Bruijn Graph (dBG) based methods [14]. The latter can be seen
as a breakthrough for the research on genome assembly. This is due to the fact
that to find a Hamiltonian Cycle is an NP-complete problem [14].

When we handle actual dBGs, we must consider the existence of errors that
appear due to high-frequencies distortions on Next-generation Sequencing (NGS)
platforms. These errors induce the dBG size to be more prominent than the
overlap graph used in the OLC genome sequencing method using the same reads.

To remove the errors, we need to have some data structure representation of
the dBG. Current real-world datasets induce challenging problems as they have
already reached high volumes and will continue to grow as sequencing technolo-
gies improve [19]. As a consequence, the dBG increases the complexity leading
to tangles and topological structures that are difficult to resolve [16]. Also, the
graph has a high memory footprint for large organisms (e.g., sugarcane plants)
and it becomes worse due to the increase of the genome datasets. Therefore,
there are research works that focus on dealing with the ever-growing graph sizes
c© Springer Nature Switzerland AG 2020
J. C. Setubal and W. M. Silva (Eds.): BSB 2020, LNBI 12558, pp. 25–37, 2020.
https://doi.org/10.1007/978-3-030-65775-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65775-8_3&domain=pdf
http://orcid.org/0000-0002-8164-9965
http://orcid.org/0000-0002-4999-7476
http://orcid.org/0000-0003-3073-3734
https://doi.org/10.1007/978-3-030-65775-8_3

26 J. O. P. Entenza et al.

for dBG-based genome assembly [3,15]. Any proposed solution must be aware
of the fact that the dBG is not entirely built before error pruning. After the
splitting of the genome in the first phase and, for a natural number k chosen
based on an empirical criterion, for each read of size m we will have m − k + 1
possible k-mers, which correspond to the nodes of the dBG. The number of k-
mers depends on the adjacency determined by the read itself. The splitting error
introduced in a given read may large increase the size of the subgraph it induces.

Roughly speaking, the dBG is a set of k-mers (subsequences of length k) [23]
linked to each other, according to information provided by their reads. Some
k-mers can come from different reads and the information about adjacency sup-
plied by any other read is processed only at dBG constructing phase. Thus, error
pruning should happen at this particular stage. The memory needed is so signif-
icant that we must use external memory to accomplish the dBG construction.

The different approaches that deal with the dBG size aim to design
lightweight data structures to reduce the memory requirements and to fit the
assembly graph into the main memory. Although it might be efficient, the amount
of memory increases according to the size of the dataset and the DNA of the
organism. While bacteria genomes currently take only a few gigabytes of RAM,
species like mammalian and plants require over tens to hundreds of gigabytes.
For instance, approximately 0.5 TB of memory is required to build a hash table
of 75-mers for the human genome [19].

We propose algorithms to simplify and remove errors in the de Bruijn graph
using external memory. As a result, it will be able to generate contigs using a
fixed amount of RAM, independently of the read dataset size. There are other
works addressing de Bruijn graph processing using external memory [8,11], but
they focus only on the constructing of large de Bruijn graphs efficiently with no
error prune considerations. To the best of our knowledge, this is the first proposal
of using an external memory approach focusing on the dBG simplification and
errors removal for contig generation during dBG construction.

We show an algorithm that provides out-of-core contraction of unambiguous
paths with an I/O cost of O(|E|/B), where E is the set of edges of the dBG and
B is the size of the partition loaded to the RAM each time. With the overhead
for creating the new partitions, the overall I/O complexity is O((sort(|E|) +
|E|/B) log Path), where Path is the length of the longest unambiguous path in
the dBG. For a machine with memory M , and a dBG satisfying |E| < M2/4B
sort(E) is performed with I/O complexity O(|E|/B) [9]. Summing up the I/O
complexity of this out-of-core contraction of paths is O((|E|/B) log Path). The
out-of-core graph cleaning phase, by removing tips and bubbles, is performed with
a similar I/O complexity O((|E|/B+sort(|E|))logPath). The creation of contigs
is performed by a full scan of the graph with I/O complexity O(|V |/B).

2 De Novo Assembly Using de Bruijn Graph

Given a de Bruijn Graph G = (V,E) for genomic sequence assembly each node
holds unique k-mers, and the edges reflect consecutive nodes if they overlap by

Efficient Out-of-Core Contig Generation 27

k−1 characters. The assembly aims to construct a set of contigs from the dBG G.
Given a dBG as input, to generate contigs is equivalent to output all contiguous
sequences which represent unambiguous paths in the graph.

The use of the dBG to generate contigs consists of a pipeline: nodes enu-
meration, compaction, and graph cleaning. In the first step, a set of distinct
k -length substrings (k-mers) is extracted from the reads. Each k-mer becomes a
graph node. Next, all paths with all but the first vertex having in-degree 1 and
all but the last vertex having out-degree 1 (unitigs) are compacted into a single
vertex. Finally, the last step removes topological issues from the graph due to
sequencing errors and polymorphism [5].

The number of nodes in the graph can be huge. For instance, the size of
the genome of white spruce is 20 Gbp and generates 10.7 × 109 k-mers (with
k = 31) and needs 4.3 TB of memory [5]. Also, the whole genome assembly of
22 Gbp (bp - base pairs) loblolly pine generates 13× 109 k-mers and requires
800GB of memory [5]. Theoretically speaking, a 1,000 Genomes dataset with 200
Terabytes of data can generate about 247 or nodes, 64–128 times larger than the
problem size of the top result in the Graph 500 list [15].

Next-generation sequencing platforms do not provide comprehensive read
data from the genome sequences. Hence, the produced data is distorted by high
frequencies of sequencing errors and genomic repeats [18]. Sequencing errors
compound this problem because each such error corrupts the correct genomic
sequence into up to k erroneous k-mers. These erroneous k-mers introduce new
vertices and edges to the graph, significantly expanding its size and creating
topological artifacts as tips and bubbles [23].

Different solutions have been proposed to address the memory issues in
genome assembly problem. One approach samples the entire k-mer set and per-
forms the assembly process over the selected k-mers [21]. Another approach
address to encode the dBG into efficient data structures such as light-weight
hash tables [3], succinct data structures [2] or bloom filters[6,17]. There are
research works based on distributed memory systems for processing power and
memory demanding resources [3,7,15].

Although their apparent differences, all of these approaches are based exclu-
sively on in-memory systems. Consequently, if the size of the graph exceeds the
amount of memory available, it will be necessary to increase the RAM. As in the
next future, the size of datasets will increase dramatically, and this situation will
stress the different systems [20]. There is a need for new approaches to process
all of this massive amount of information in a scalable way. We propose in this
work to use an external memory approach to process the dBG. To increase the
amount of RAM does not guarantee that the graph will always fit.

3 Overview of Our Proposed Approach

Our basic pipeline of de novo genome assembly could be divided into five basic
operations [23]: 1) dBG construction, which constructs a dBG from the DNA
reads; 2) Contraction of unambiguous paths, which merges unambiguous vertices

28 J. O. P. Entenza et al.

into unitigs; 3) Graph cleaning, which filters and removes errors such as tips and
bubbles; 4) Contigs creation, which create a first draft of the contigs and 5)
Scaffolds, which joins the previous contigs together to form longer contigs. In
this work, we face steps 2, 3, and 4 using an external memory approach. We
assume a de Bruijn graph exists, and it is persisted as an edge-list format.

Fig. 1. Graph Contraction. Dashed arcs represent the messages and the label
between brackets indicates if a vertex is a tail (t) or a head (h). a) A flipped coin
choose which node will be t or h. If a tail vertex has out-degree = 1 then it sends a
message to its neighbour. b) If a h vertex receives a message and its in-degree = 1 then
both vertices are merged. c) Shows the result after some repeated steps.

The Contraction of unambiguous paths simplifies the graph by merging
some nodes in the graph. Whenever a node with only one outgoing directed
edge points out to another node with only one incoming directed edge, these
two nodes are merged. These single nodes are called unitigs and are maximal if
they extend in either direction. Thus, the problem of compacting a de Bruijn
graph is to report the set of all maximal unitigs. Figure 1 shows how we simplify
the dBG into a compacted graph. All the remained nodes are maximal unitigs.

The algorithmic solution to this problem is straightforward in the in-memory
context. Let’s assume that each path representing a unitig is a linked list where
the head and the tail can be branching nodes (see Fig. 1a). Then, to obtain a
maximal unitig, we only need to visit each uc node and merge them with its
successor node into the new one.

Although the in-memory algorithm is straightforward, the use of this app-
roach is not efficient in the external memory because the number of I/O accesses
is linear concerning the number of nodes. Finding all the maximal unitigs is
analogous to apply the well-known graph edge contraction technique in external
memory on all the unambiguous paths. Given a graph G, the contraction of an
edge (u, v) is the replacement of u and v with a single vertex such that edges
incident to the new vertex are the edges other than (u, v) that were incident with
u or v [22]. As in our case, this algorithm can only apply on unambiguous paths.
Therefore, we divided our proposal into two steps: 1) select branching nodes ua

Efficient Out-of-Core Contig Generation 29

as head/tail of each unitig paths; and 2) apply the graph contraction technique
over these paths until all nodes are maximal unitigs.

In Graph cleaning we aim to remove short dead-end divergences, called tips,
from the main path. One strategy consists of testing each branching node for all
possible path extensions up to a specified minimum length. If the length of the
path is less than a certain threshold (set by the user) then the nodes belonging
to this path are removed from the graph [7,23].

The tips removing process is analogous to traversal the paths from a branch-
ing node, ua, to a dead-end node ue. The graph does not fit into RAM, even
after the unitig process. We need to traverse the dBG in an I/O efficient way
to find and remove all tips. Our algorithm is based on an external memory list
ranging from the ue to ua nodes. However, we have to make two significant mod-
ifications: (i) the ranking is represented by each edge/node’s coverage to decide
which path will be removed, and (ii) as two of more dead-ends could reach the
same ua node, we need to keep in RAM a data structure to make the traversal
backward. This way, we eliminate the selected path from the branching node.

Bubbles are paths that diverge from a node then converge into another.
The process of fixing bubbles begins by detecting the divergence points in the
graph [23]. For each point, all paths from it are detected by tracing the graph
forward until a convergence point is reached. Some assemblers restricts the size
of the bubble to n nodes where k ≤ n ≤ 2k [7], others use a modified version of
Dijkstra’s algorithm [23]. To simulate the different external memory approaches,
we need to identify all branching nodes ua. We execute an I/O-efficient breath-
first search (BFS) from ua until we find a visited node. It means that there is
a bubble at some point in the search (vb). Then, we select the branch that will
be kept and start another BFS in a backward direction (the start node is vb).
Finally, we remove the other paths until we find back ua. After the execution
of steps 2 and 3, the Contigs creation step involves the output of all the contigs
represented by nodes.

Processing Out-of-Core Graphs. Many graph engines implement a vertex-
centric or “think like a vertex” (TLAV) programming interface. This paradigm
iteratively executes a user-defined program over vertices of a graph. The vertex
program is designed from the vertex’s perspective, receiving as input the data
from adjacent vertices and incident edges. Execution halts after a specified num-
ber of iterations, called supersteps, are completed. It is important to note that
each vertex knows the global supersteps. There is no other knowledge about the
overall graph structure but its immediate neighbors and the messages that are
exchanged along their incident edges [13].

The computation graph engines proceed in supersteps. For every superstep,
it loads one or more partitions p based on available RAM. Then, it processes
the vertices and edges that belong to p and saves the partitions back to disk.
A different subset of partitions is then loaded and processed until all of them
have been treated for the given superstep. The process is then repeated for the
next superstep until there are no remaining vertices to visit (see Algorithm1

30 J. O. P. Entenza et al.

Algorithm 1. Out-of-core graph processing taken from GraphChi [9]
Input:

G = (V,E): a general graph
UpdateFunction: a user-defined program to apply over the vertices

1: procedure OutOfCore(G,UpdateFunction)
2: for each superstep ∈ Algorithm do � superstep is a global variable
3: for each p ∈ Partition do
4: p.load() � Load partition to RAM
5: parallel for each v ∈ p.vertices() do � Apply UpdateFunction
6: UpdateFunction(G,v)
7: p.save() � Save partition to disk

from GraphChi [9]). If the machine has sufficient RAM to store the graph and
metadata, all partitions can be kept in RAM, and there is no disk access [9].

Because all the operations related to partitions and parallel vertices processing
are fixed, from now we will only highlight the UpdateFunction and the number
of supersteps. For simplicity, UpdateFunction(G,u) means that we apply the
function over the vertex u in the graph G.

4 Contig Generation

The graph contraction algorithm (Algorithm2) is based on I/O-efficient list rank-
ing algorithm based on graph contraction [4] but using a TLAV [12]. The output
is the distance of each node from the beginning of the list. In this case, it cor-
responds to k-mer concatenation. Thus, in our output, the beginning node will
have the unitig concatenation. Initially, we assign the k-mer as the rank of each
vertex. We then continue recursively: first, in one superstep, we find a maximal
independent set among all vertices that belong to a unitig (line 11). For each
of these, we flip a fair coin and vertices that flipped “tails” pick a neighbor
that flipped “heads” (if any) to contract with [1]. Later the vertices identified
as “tails” with precisely one outgoing edge send the required information to
its neighbors (lines 12 and 13). In the next superstep, the vertices marked as
head, with only one in-going edge, are merged with tail vertices, and the edge
information is updated (lines 17 to 22). The function PreprocessNewGraph cre-
ates new partitions from the removed and added vertices and edges (line 9).
This step implies merging nodes, and remove duplicate edges and update the
graph partitioning. Next, we recursively continue coarsening the graph until all
unambiguous nodes are collapsed.

I/O Analysis. Lines 11–22 can be done with a full scan over all the graph
partitions. We load a partition into RAM, we update the vertices and edge
values, and then write them to the disk. Then, we load the next partition and its
vertices and edges according to the saved partition. So, the I/O cost is O(|E|/B).

On the other hand, PreprocessNewGraph (line 9) creates new partitions
from superstep i − 1 to be processed in the superstep i. To create the new

Efficient Out-of-Core Contig Generation 31

Algorithm 2. Graph Contraction
Input: G = (V,E): a contracted dBG
Output: G′: a graph with all no ambiguous paths contracted.
1: procedure ContractGraph(G)
2: superstep ← 0 and merge ← true
3: while merge = true do
4: merge ← false
5: MergeNodes(G, u) � External Memory Context
6: superstep ← superstep + 1
7: if superstep is odd then
8: G ← PreprocessNewGraph(G)
9: procedure MergeNodes(u)

10: flag ← T ∨ H in randomly way
11: if superstep is even then
12: if flag = true ∧ d+(u) = 1 then
13: send({flag, seq, neighbors, id}, j) � message to outgoing edge
14: else
15: if d−(u) = 1 then � merge nodes from incoming neighbor
16: m ← receive({flag, seq, i})
17: if m.flag �= flag then
18: add edge(u,m.neighbors)
19: seq ← glue(seq,m.seq)
20: delete(m.id)
21: merge ← true

partitions, first, it is necessary to divide the nodes by their ID and later sort
all the edges based on their destination vertex ID [9]. Thus, the I/O cost of the
process for the created graph is O(sort(|E|)).

Finally, at each superstep, Algorithm 2 contracts a constant fraction of the
vertices per iteration by graph contraction [22]. It expected O(log Path) iter-
ations with high probability, where Path is the longest unambiguous path
in the graph [1]. Hence, the overall expected I/O cost for simplifying the
graph is O((sort(|E|) + |E|/B) log Path). If we assume |E| < M2/(4B) then
sort(|E|) = O(|E|/B). This condition can be satisfied with a typical value of M ,
say 8 GB, B in the order of kilobytes and a graph size smaller than a petabyte
[10]. On these conditions the I/O cost is O((|E|/B) log Path) (Fig. 2).

To remove tips, we design a straightforward procedure in few supersteps
(Algorithm 3). At this point, all nodes are contracted. Thus, all terminal nodes
are potential tips, and they may be removed. In the first superstep, the vertices
having an in-degree or out-degree of zero and sequence’s length less than 2k are
identified as potential tips (line 10), and a message is sent to their neighbors
(line 11). In the next superstep (lines 14–17), the vertices that received the
messages, search for the maximal multiplicity among all neighbors and remove
those potential tips with multiplicity less than the maximal value. Removing
the tips generates new linear paths in the graph that will be contracted. Note

32 J. O. P. Entenza et al.

Fig. 2. Removing tips. Dotted lines show the sent messages. a) F and I are
marked as potential tips. Later, they send a message to their neighbors. b) C and D
receive the messages and check their multiplicity to eliminate the real tips. So, H and
I are removed. c) The graph is compressed to obtain the final result.

that once the initial set of tips are removed, it could produce other tips. Most
assemblers execute the removal tip algorithm a fixed number of times.

Algorithm 3. Tips removal
Input: G = (V,E): a dBG
Output: G

′
: another graph with tips removed.

1: procedure Tips(G)
2: superstep ← 0
3: while tips = true do
4: tips ← false
5: RemoveT ips(G, u)
6: superstep ← superstep + 1
7: ContractGraph(G))
8: procedure RemoveTips(u) � External Memory Context
9: if superstep = 0 then

10: if u is ue ∧ |seq| ≤ 2k then � Identify all potential tips
11: send(id) � Send a message to its neighbor
12: else
13: maximal ← max(∀u.neighbors.multip) � Get max multiplicity
14: for all m ∈ receive(id) do � Identify the real tips and remove them
15: if (u,m.id).mult < maximal then
16: delete node(m.id)
17: tips ← true

Efficient Out-of-Core Contig Generation 33

I/O Analysis. The function RemoveT ips needs only two supersteps to remove
any tip given a graph: one to identify all tips and other to removes all of them
(lines 8–17). This can be carried out with at most two full scans over all the
graph partitions. Thus, the I/O cost is O(|E|/B). Although RemoveT ips only
executes two supersteps, the graph contraction dominates the I/O cost (line
7). The I/O cost is O((|E|/B + sort(|E|)) log Path), where Path represents the
longest path created after the tips are removed.

The primary approach to identify and remove bubbles is based on BFS
(breadth-first search) algorithm. As bubbles consist of paths with very different
multiplicities, those paths with low multiplicity are deleted and use the path
with the highest multiplicity to represent the bubble. In our algorithm, each
vertex manages its history, which makes it easy to control the different paths
and to pick up the right one.

The proposed algorithm has two stages: forward and backward. In the for-
ward stage (Algorithm 4) identifies all paths that form a bubble and select one of
them. On the other hand, the backward stage, (Algorithm 5), removes the redun-
dant paths and compacts the graph. Due to space limitations, we will illustrate
and explain both algorithms by examples. See Fig. 3 for the forward stage and
Fig. 4 for the backward stage.

Fig. 3. Forward Bubble Detection. The figures only show the id par in the sent
messages. a) A is a potential bubble beginning, so it sends messages to the outgoing
neighbors. b) B and E keep it and forward new messages updating the vertices IDs. c)
When H, in-degree ≥ 2, receives a message it selects that E belongs to a bubble. Later,
it marks the node for the backward stage.

I/O Analysis. In the forward stage, SelectPath (line 4) iterates through the
bubbles in a constant number of times depend on a limit value. Also, only a
small number of messages are present in the graph, each one originating from
any ambiguous vertex whose out-degree is greater than 2. Moreover, each mes-
sage will be passed along an edge exactly once, as notifications are only sent

34 J. O. P. Entenza et al.

Algorithm 4. Forward stage bubble detection
Input:

G = (V,E): a compressed dBG and limit: max. length of the bubble path
Output: G

′
: a graph with all bubbles selected.

1: procedure FindBuble(G)
2: superstep ← 0
3: while superstep ≤ limit do
4: SelectPath(G, u))
5: superstep ← superstep + 1
6: procedure SelectPath(G,u) � External Memory Context
7: if superstep = 0 ∧ d+(vertex) ≥ 2 then � Identify possible bubble start
8: outgoing.add(id, id, seq)
9: else

10: outgoing ← {} and incomming ← receive(id1, id2, seq)
11: for each m ∈ incomming do
12: if m.id /∈ history then
13: m.seq ← glue(seq,m.seq) and m.id2 ← id
14: history.add(m) and outgoing.add(m)
15: else
16: for each h ∈ history do � All possible bubble ends
17: if h.id1 = m.id1 then
18: apply heuristic(m,h)
19: if m is bubble then
20: mark m.id2 and history.add(m)
21: else
22: mark h.id2
23: send(outgoing) � send message to all out-edges

along outgoing edges. This means that only in-edges are read, and the out-
edges are written. As this algorithm implies an external BFS traversal, the I/O
cost is O(BPath(|V | + |E|)/B) ≈ O(BPath|E|/B) where BPath is the longest
length among all bubbles and |E| = O(|V |) because a dBG is a sparse graph.
Then the total I/O cost is O(limit ∗ BPath ∗ |E|/B) = O(BPath ∗ |E|/B).
On the other hand, the backward stage uses another BFS but in the oppo-
site direction to the forward phase, so the I/O cost is the same. Addition-
ally, it iterates through the set of vertices (lines 6–8) and executes a contrac-
tion on the resulting graph. Therefore, the I/O cost of the backward stage is
O((|E|/B + sort(|E|)) log BPath).

At this point, the graph should be formed by contracted vertices. As each
vertex represents a contig, we can output them using a full scan over the graph.
Thus, the I/O complexity is O(|V |/B), where |V | is the number of contigs.

Efficient Out-of-Core Contig Generation 35

Fig. 4. Backward Bubble Elimination. a) H is a bubble ending, so it sends messages
to the incoming neighbors communicating that E is marked. b) When E receives the
message, it is marked and does not send more messages because it detects that the
next node is the bubble. B does not send any message because its history does not
have the node E. c) The graph is simplified after all bubbles are removed.

Algorithm 5. Backward step bubble detection
Input:

G = (V,E):compressed dBG and limit: max. length of the bubble path
Output: G

′
: a graph with all bubbles nodes marked.

1: procedure BackTrackPath(G)
2: superstep ← 0
3: while superstep ≤ limit do
4: RemovePath(G, u)
5: superstep ← iter + 1
6: for each u ∈ V do � External Memory Context
7: if u.mark = true then
8: delete(v)
9: CompressGraph(G))

10: procedure RemovePath(G,u) � External Memory Context
11: if superstep = 0 ∧ d−(u) ≥ 2 then � Identify all possible bubble ends
12: for each m ∈ history do
13: if m is marked then
14: outgoing.add(m.id,m.id2)
15: else
16: outgoing ← {}; incomming ← receive(id1, id2)
17: for each m ∈ incomming do � Find the closest common ancestor
18: if m.id2 = id then
19: dst ← history.pop(m.id)
20: if dst �= id then
21: outgoing.add(m) and mark = true

22: send(outgoing)

36 J. O. P. Entenza et al.

5 Conclusions

In this paper, we have proposed out-of-core algorithms for dealing with contig
generation, one of the most critical steps of fragment assembly methods based
on de Bruijn graphs. Besides presenting these algorithms, we have made an I/O
analytical evaluation that shows that it becomes feasible to generate de Bruijn
graphs to obtain the needed contigs, independently of the available memory.

The I/O cost studies show that graph simplification is one of the most expen-
sive steps. Actually, we could expect it because this phase involves a more sig-
nificant number of vertices and edges. To deal with that, one could choose to do
the assembly without simplifying the graph. In this condition, a tip is a branch
with low coverage and not just a vertex. Hence, it will be necessary to apply a
list ranking from the dead-end to branching nodes.

Among other issues, we may cite that it is hard to estimate the number of
executions related to each phase. Primarily it depends on the number of nodes
in the graph, which itself depends on the properties of the read’s datasets. As
these values vary from one dataset and sequencing technology to another, the
assembly algorithms execute each step, a fixed and empirical number of times. As
future work, we may cite the evaluation of other graph simplification approaches
targeting erroneous and non-recognizable structures, such as X-cuts.

Acknowledgments. This work is partially supported by grants from CNPq, CAPES
and FAPERJ, Brazilian Public Funding Agencies.

References

1. Anderson, R.J., Miller, G.L.: A simple randomized parallel algorithm for list-
ranking. Inf. Process. Lett. 33(5), 269–273 (1990)

2. Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de Bruijn Graphs. In:
Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 225–235. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33122-0 18

3. Chapman, J.A., et al.: Meraculous: de novo genome assembly with short paired-end
reads. PLoS One 6(8), e23501 (2011)

4. Chiang, Y.J., et al.: External-memory graph algorithms. Procs. ACM/SIAM Symp.
Discr. Algorithm. (SODA) 95, 139–149 (1995)

5. Chikhi, R., Limasset, A., Medvedev, P.: Compacting de Bruijn graphs from
sequencing data quickly and in low memory. Bioinformatics 32(12), i201–i208
(2016)

6. Chikhi, R., Rizk, G.: Space-efficient and exact de Bruijn graph representation based
on a bloom filter. Algorithm. Mol. Biol. 8(1), 22 (2013)

7. Jackman, S.D., et al.: Abyss 2.0: resource-efficient assembly of large genomes using
a bloom filter. Genome Res. 27(5), 768–777 (2017)

8. Kundeti, V.K., et al.: Efficient parallel and out of core algorithms for constructing
large bi-directed de Bruijn graphs. BMC Bioinf. 11(1), 560 (2010)

9. Kyrola, A., Blelloch, G., Guestrin, C.: Graphchi: large-scale graph computation on
just a PC. In: USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), pp. 31–46 (2012)

https://doi.org/10.1007/978-3-642-33122-0_18

Efficient Out-of-Core Contig Generation 37

10. Kyrola, A., Shun, J., Blelloch, G.: Beyond synchronous: new techniques for
external-memory graph connectivity and minimum spanning forest. In: Gudmunds-
son, J., Katajainen, J. (eds.) Experimental Algorithms — SEA 2014. Lecture Notes
in Computer Science, vol. 8504, pp. 123–137. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-07959-2 11

11. Li, Y., Kamousi, P., Han, F., Yang, S., Yan, X., Suri, S.: Memory efficient minimum
substring partitioning. Proc. VLDB Endow. 6(3), 169–180 (2013)

12. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: Process
ACM SIGMOD Intl. Conf. on Manage. Data, pp. 135–146 (2010)

13. McCune, R.R., Weninger, T., Madey, G.: Thinking like a vertex: a survey of vertex-
centric frameworks for large-scale distributed graph processing. ACM Comput.
Surv. (CSUR) 48(2), 25:1–25:39 (2015)

14. Medvedev, P., Georgiou, K., Myers, G., Brudno, M.: Computability of models for
sequence assembly. In: Giancarlo, R., Hannenhalli, S. (eds.) Algorithms in Bioinfor-
matics — WABI 2007. Lecture Notes in Computer Science, pp. 289–301. Springer,
Cham (2007). https://doi.org/10.1007/978-3-540-74126-8 27

15. Meng, J., Seo, S., Balaji, P., Wei, Y., Wang, B., Feng, S.: Swap-assembler 2: opti-
mization of de novo genome assembler at extreme scale. In: Proceedings of the
45th ICPP, pp. 195–204. IEEE (2016)

16. Miller, J.R., Koren, S., Sutton, G.: Assembly algorithms for next-generation
sequencing data. Genomics 95(6), 315–327 (2010)

17. Salikhov, K., Sacomoto, G., Kucherov, G.: Using cascading bloom filters to improve
the memory usage for de Brujin graphs. Algorithm. Mol. Biol. 9(1), 2 (2014)

18. Simpson, J.T., Pop, M.: The theory and practice of genome sequence assembly.
Ann. Rev. Genomics Hum. Genet. 16, 153–172 (2015)

19. Sohn, J., Nam, J.W.: The present and future of de novo whole-genome assembly.
Briefings Bioinf. 19(1), 23–40 (2016)

20. Stephens, Z.D., et al.: Big data: astronomical or genomical? PLoS Bio. 13(7),
e1002195 (2015)

21. Ye, C., Ma, Z.S., Cannon, C.H., Pop, M., Douglas, W.Y.: Exploiting sparseness in
de novo genome assembly. BMC (BioMed Central) Bioinf. 13, S1 (2012)

22. Zeh, N.: I/o-efficient graph algorithms. In: EEF Summer School on Massive Data
Sets (2002)

23. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using
de Bruijn graphs. Gen. Res. 821–829 (2008)

https://doi.org/10.1007/978-3-319-07959-2_11
https://doi.org/10.1007/978-3-319-07959-2_11
https://doi.org/10.1007/978-3-540-74126-8_27

	Efficient Out-of-Core Contig Generation
	1 Introduction
	2 De Novo Assembly Using de Bruijn Graph
	3 Overview of Our Proposed Approach
	4 Contig Generation
	5 Conclusions
	References

