
Sorting by Reversals and Transpositions
with Proportion Restriction

Klairton Lima Brito1(B) , Alexsandro Oliveira Alexandrino1 ,
Andre Rodrigues Oliveira1 , Ulisses Dias2 , and Zanoni Dias1

1 Institute of Computing, University of Campinas, Campinas, Brazil
{klairton,alexsandro,andrero,zanoni}@ic.unicamp.br

2 School of Technology ,University of Campinas, Limeira, Brazil
ulisses@ft.unicamp.br

Abstract. In the field of comparative genomics, one way of comparing
two genomes is through the analysis of how they distinguish themselves
based on a set of mutations called rearrangement events. When con-
sidering that genomes undergo different types of rearrangements, it can
be assumed that some events are more common than others. To model
this assumption one can assign different weights to different events,
where more common events tend to cost less than others. However,
this approach, called weighted, does not guarantee that the rearrange-
ment assumed to be the most frequent will be also the most frequently
returned by proposed algorithms. To overcome this issue, we investigate
a new problem where we seek the shortest sequence of rearrangement
events able to transform one genome into the other, with a restriction
regarding the proportion between the events returned. Here we consider
two rearrangement events: reversal, that inverts the order and the ori-
entation of the genes inside a segment of the genome, and transposition,
that moves a segment of the genome to another position. We present an
approximation algorithm applicable to any desired proportion, for both
scenarios where the orientation of the genes is known or unknown. We
also show an improved (asymptotic) approximation algorithm for the
case where the gene orientation is known.

Keywords: Rearrangement events · Proportion restriction ·
Approximation algorithm

1 Introduction

When comparing two genomes, one of the main goals is to determine the sequence
of mutations that occurred during the evolutionary process capable of transform-
ing a genome into another. In comparative genomics, we estimate this sequence
through genome rearrangements, evolutionary events (mutations) affecting a
large sequence of the genome.

Two genomes G1 and G2 can be computationally represented as the sequence
of labels assigned to their shared genes (or shared blocks of genes). Labels are
c© Springer Nature Switzerland AG 2020
J. C. Setubal and W. M. Silva (Eds.): BSB 2020, LNBI 12558, pp. 117–128, 2020.
https://doi.org/10.1007/978-3-030-65775-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65775-8_11&domain=pdf
http://orcid.org/0000-0001-5287-2925
http://orcid.org/0000-0002-6320-9747
http://orcid.org/0000-0002-0568-1859
http://orcid.org/0000-0002-4763-3046
http://orcid.org/0000-0003-3333-6822
https://doi.org/10.1007/978-3-030-65775-8_11


118 K. L. Brito et al.

usually integer numbers. In addition, we associate a positive or negative sign
in each of the numbers, reflecting the orientation of that gene (or block) inside
of the genomes. Assuming that the genomes do not contain duplicated genes,
this representation results in a signed permutation, when the orientation of the
genes is known, and in an unsigned permutation otherwise. One of the genomes
can be seen as the identity permutation, in which the elements are in ascending
order, so problems dealing with genome rearrangements are usually treated as
sorting problems, in which the goal is to transform a given permutation into the
identity.

Two of the most studied genome rearrangements in the literature are the
reversal, that inverts the order and the orientation of the genes inside a seg-
ment of the genome, and transposition, that moves a segment of the genome
to another position. The Sorting by Reversals problem has an exact poly-
nomial algorithm for signed permutations [5] but it is NP-hard for unsigned
permutations [4].

The Sorting by Transpositions problem is NP-hard [3]. When we allow
the use of reversals and transpositions, and assuming that both events occur with
the same frequency (unweighted approach), we have the Sorting by Rever-

sals and Transpositions (SbRT) problem that is NP-hard on signed and
unsigned permutations [7].

In the weighted approach each type of event has an associated cost, and the
goal is to find a sequence of rearrangement events that transforms one genome
into another minimizing the sum of the costs. Oliveira et al. [7] showed that
Sorting by Weighted Reversals and Transpositions (SbWRT) prob-
lem is NP-hard on signed and unsigned permutations when the ratio between
the cost of a transposition and the cost of a reversal is less than or equal to
1.5. Oliveira et al. [8] developed a 1.5-approximation algorithm for SbWRT on
signed permutations considering costs 2 and 3 for reversals and transpositions,
respectively.

The problem with weighted approaches is that they do not guarantee that
lower cost rearrangements, i.e., assumed to be most frequent, will be the most
frequently used by the algorithms. To overcome this issue we propose and inves-
tigate the Sorting by Reversals and Transpositions with Proportion Restriction
problem on signed and unsigned permutations. In this problem, we seek a sorting
sequence with an additional constraint in which the ratio between the number
of reversals and the size of the sequence must be greater than or equal to a
given parameter k ∈ [0..1]. We provide an algorithm that guarantees an approx-
imation for any value of k on signed and unsigned permutations. We also show
an asymptotic algorithm for the signed case with an improved approximation
factor.

This manuscript is organized as follows. Section 2 provides definitions used
throughout the paper. Section 3 presents an approximation algorithm for the
signed and unsigned cases. Section 4 presents an asymptotic approximation algo-
rithm for the signed case with an improved approximation factor. Section 5
concludes the paper.



Sorting by Reversals and Transpositions with Proportion Restriction 119

2 Basic Definitions

This section formally presents the definitions used in the genome rearrangement
problems. Given two genomes G1 and G2, each synteny block (common block
of genes between the two genomes) is represented by an integer that also has
a positive or negative sign to indicate its orientation, if known. Therefore, each
genome is a permutation of integers. We assume that one of them is represented
by the identity permutation ιn = (+1 +2 . . . +n) and the other is represented
by a signed (or unsigned) permutation π = (π1 π2 . . . πn).

We define a rearrangement model M as the set of rearrangement events
allowed to compute the distance. Given a rearrangement model M and a per-
mutation π, the rearrangement distance d(π) is the minimum number of rear-
rangements of M that sorts π (i.e., that transforms π into ι). The goal of the
Sorting by Genome Rearrangements problems consists in finding such distance
and the sequence that reflects it.

In this work, we will assume that M contains both reversals and transposi-
tions. Let us formally define these events.

Definition 1. Given a signed permutation π = (π1 . . . πn), a reversal ρ(i, j),
with 1 ≤ i ≤ j ≤ n, transforms π in the permutation π · ρ(i, j) = (π1 . . . πi−1

−πj . . . −πi πj+1 . . . πn).

Definition 2. Given an unsigned permutation π = (π1 . . . πn), a reversal
ρ(i, j), with 1 ≤ i < j ≤ n, transforms π in the permutation π · ρ(i, j) =
(π1 . . . πi−1 πj . . . πi πj+1 . . . πn).

Definition 3. Given a permutation π = (π1 . . . πn), a transposition τ(i, j, k),
with 1 ≤ i < j < k ≤ n + 1, applied to π transforms it in the permutation
π · τ(i, j, k) = (π1 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn). The effect of a
transposition is the same on signed and unsigned permutations.

The following definition helps us to formally define the problem of sorting by
reversals and transpositions with a constraint on the number of reversals used
in the sorting sequence.

Definition 4. Given a sequence of reversals and transpositions S, let |S| denote
the number of events in S and let |Sρ| denote the number of reversals in S.

Sorting by Reversals and Transpositions with Proportion

Restriction (SbRTwPR)

Input: A permutation π, that can be signed or unsigned, and a rational
number k ∈ [0..1].

Task: Find the shortest sequence S of reversals and transpositions
that turns π into ι, such that |Sρ|

|S| ≥ k.



120 K. L. Brito et al.

Note that when k = 1 the SbRTwPR problem becomes the Sorting by Rever-
sals problem on signed [5] and unsigned [4] permutations. Moreover, when k = 0
we have the Sorting by Reversals and Transpositions problem on signed [10] and
unsigned [9] permutations.

Example 1 shows an optimal solution S for π = (−1 +4 −8 +3 +5 +2 −7 −6)
considering the SbRT and the SbWRT problems (SbWRT using costs 2 for
reversals and 3 for transpositions). Note that half of the operations in S are
reversals and half are transpositions, even using a higher cost for transpositions.

Example 1.

π = (−1 +4 −8 +3 +5 +2 −7 −6)

π1 = π · ρ(1, 5) = (−5 −3 +8 −4 +1 +2 −7 −6)

π2 = π1 · τ(2, 4, 9) = (−5 −4 +1 +2 −7 −6 −3 +8)

π3 = π2 · τ(1, 3, 7) = (+1 +2 −7 −6 −5 −4 −3 +8)

π4 = π3 · ρ(3, 7) = (+1 +2 +3 +4 +5 +6 +7 +8)

S = {ρ(1, 5), τ(2, 4, 9), τ(1, 3, 7), ρ(3, 7)}
Example 2 shows an optimal solution S′ for the same signed permutation π

considering the SbRTwPR problem, adopting k = 0.6 (i.e., at least 60% of the
operations in S must be reversals). Compared with Example 1, the sequence S′

has only one more operation than S, while ensuring the minimum proportion of
reversals and using both reversals and transpositions.

Example 2.

π = (−1 +4 −8 +3 +5 +2 −7 −6)

π1 = π · ρ(2, 8) = (−1 +6 +7 −2 −5 −3 +8 −4)

π2 = π1 · ρ(2, 4) = (−1 +2 −7 −6 −5 −3 +8 −4)

π3 = π2 · τ(6, 8, 9) = (−1 +2 −7 −6 −5 −4 −3 +8)

π4 = π3 · ρ(1, 1) = (+1 +2 −7 −6 −5 −4 −3 +8)

π5 = π4 · ρ(3, 7) = (+1 +2 +3 +4 +5 +6 +7 +8)

S′ = {ρ(2, 8), ρ(2, 4), τ(6, 8, 9), ρ(1, 1), ρ(3, 7)}
In the following, we present breakpoints and the cycle graph, both widely

used to obtain bounds for the distance and to develop algorithms.

2.1 Breakpoints

Given a permutation π = (π1 . . . πn), we extend π by adding the elements
π0 = 0 and πn+1 = n + 1, with these elements having positive signs when
considering signed permutations. We observe that these elements are not affected
by rearrangement events. From now on, we work on extended permutations.

Definition 5. For an unsigned permutation π, a pair of elements πi and πi+1,
with 0 ≤ i ≤ n, is a breakpoint if |πi+1 − πi| �= 1.



Sorting by Reversals and Transpositions with Proportion Restriction 121

The number of breakpoints in a permutation π is denoted by b(π). Given an
operation γ, let Δb(π, γ) = b(π) − b(π · γ), that is, Δb(π, γ) denotes the change
in the number of breakpoints after applying γ to π.

Remark 1. The identity permutation ι is the only permutation with b(π) = 0.

2.2 Cycle Graph

For a signed permutation π, we define the cycle graph G(π) = (V,E), such that
V = {+π0,−π1,+π1,−π2,+π2, . . . ,−πn,+πn,−πn+1} and E = Eb ∪ Eg, where
Eb = {(−πi,+πi−1) | 1 ≤ i ≤ n + 1} and Eg = {(+(i − 1),−i) | 1 ≤ i ≤ n + 1}.
We say that Eb is the set of black edges and Eg is the set of gray edges.

Note that each vertex is incident to two edges (a gray edge and a black edge)
and, so, there exists a unique decomposition of edges in cycles. The size of a
cycle C ∈ G(π) is the number of black edges in C. A cycle C is trivial if it has
size 1. If C has size less than or equal to 3, then C is called short and, otherwise,
C is called long. The identity permutation ιn is the only one with a cycle graph
containing n + 1 cycles, which are all trivial.

The number of cycles in G(π) is denoted by c(π). Given an operation γ, let
Δc(π, γ) = c(π · γ) − c(π), that is, Δc(π, γ) denotes the change in the number of
cycles after applying γ to π.

The cycle graph G(π) is drawn in a way to highlight characteristics of the
permutation, as shown in Fig. 1. In this representation, we draw the vertices in
a horizontal line, from left to right, following the order +π0,−π1,+π1, . . . ,−πn,
+πn,−πn+1. The black edges are horizontal lines and the gray edges are arcs.

For 1 ≤ i ≤ n + 1, the black edge (−πi,+πi−1) is labeled as i. We represent
a cycle C by the sequence of labels of its black edges following the order they
are traversed, assuming that the first black edge is the one with highest label
(rightmost black edge of C) and it is traversed from right to left. Assuming this
representation, if a black edge is traversed from left to right we add a minus sign
to its label (the first black is always positive since it is traversed from right to
left by convention).

Two black edges of a cycle C are divergent if their labels have different signs,
and convergent otherwise. A cycle C is divergent if at least one pair of black
edges of C are divergent, and it is convergent otherwise.

+0 −5 +5 −2 +2 −4 +4 −3 +3 −1 +1 −6 +6 −7 +7 −8
1 2 3 4 5 6 −7 8

Fig. 1. Cycle Graph for π = (+5 + 2 + 4 + 3 + 1 + 6 − 7). In this cycle graph, we
have the cycles C1 = (5, 3, 4, 1), C2 = (6, 2), and C3 = (8, −7).



122 K. L. Brito et al.

We also classify convergent cycles as oriented and non-oriented. A cycle C =
(c1, c2, . . . , ck) is non-oriented if ci > ci+1, for all 1 ≤ i < k. Otherwise, we say
that C is oriented.

Two cycles C = (c1, c2, . . . , ck) and D = (d1, d2, . . . , dk) are interleaving if
either |c1| > |d1| > |c2| > |d2| > . . . > |ck| > |dk| or |d1| > |c1| > |d2| > |c2| >
. . . > |dk| > |ck|.

Let g1 be a gray edge adjacent to black edges with labels x1 and y1, such
that |x1| < |y1| and let g2 be a gray edge adjacent to black edges with labels x2

and y2, such that |x2| < |y2|. We say that two gray edges g1 and g2 intersect
if |x1| < |x2| ≤ |y1| < |y2|. Two cycles C and D intersect if an edge from C
intersect with an edge from D.

An open gate is a gray edge from a cycle C that does not intersect with
any other gray edge from C. An open gate g1 from C is closed if another gray
edge (which is not from C) intersects with g1. All open gates of G(π) must be
closed [8].

In the example of Fig. 1, the cycle C1 = (5, 3, 4, 1) is convergent and oriented,
the cycle C2 = (6, 2) is convergent and non-oriented, and the cycle C3 = (8,−7)
is divergent. The gray edge from C1 adjacent to black edges 1 and 4 intersects
with the gray edge from C2 adjacent to black edges 2 and 6, so the cycles C1

and C2 intersect.

3 Approximation Algorithms

In this section, we present approximation algorithms considering both unsigned
and signed permutations.

3.1 Unsigned Case

Here we present an approximation algorithm with a factor of 3 − k based on
breakpoints for SbRTwPR on unsigned permutations.

Lemma 1 (Kececioglu and Sankoff [6]). For any reversal ρ, Δb(π, ρ) ≤ 2.

Lemma 2 (Walter et al. [10]). For any transposition τ , Δb(π, τ) ≤ 3.

Lemma 3. Given an instance (π, k) for SbRTwPR on unsigned permutations,
and an optimal sequence of events S, the average number of breakpoints decreased
by an operation in S is less than or equal to 3 − k.

Proof. Since |S| is an optimal sequence for the instance (π, k), we have that at
least |S|k operations present in S are reversals. By Lemmas 1 and 2, we have that
a reversal can remove up to two breakpoints while a transposition can remove
up to three. Let φb(S) denote the average number of breakpoints decreased by
an operation in S, we have that

φb(S) ≤ (2|S|k) + (3|S|(1 − k))
|S| = 2k + 3(1 − k) = 3 − k. ��



Sorting by Reversals and Transpositions with Proportion Restriction 123

Theorem 1. Given an instance (π, k) for SbRTwPR on unsigned permuta-
tions, we have that dk(π) ≥ b(π)

3−k .

Proof. Since b(π) breakpoints must be removed in order to turn the permutation
π into ι and, by Lemma 3, up to 3 − k breakpoints are removed per operation
on average, the theorem follows. ��
Theorem 2 (Kececioglu and Sankoff [6]). It is possible to turn an unsigned
permutation π into ι using at most b(π) reversals.

Theorem 3. SbRTwPR is approximable by a factor of 3 − k on unsigned per-
mutations.

Proof. By Theorem 2, we can turn any unsigned permutation π into ι using at
most b(π) reversals. Since we use only reversals, the constraint |Sρ|

|S| ≥ k is not

violated. By the lower bound showed in Theorem 1, we have b(π)
b(π)
3−k

= 3 − k. ��

In order to avoid solutions for the problem consisting exclusively of reversals,
we propose the Algorithm 1. This algorithm guarantees the same approximation
factor for the problem and tends to provide solutions in which the ratio between
the number of reversals and the size of the sorting sequence is close to k.

Algorithm 1: An approximation algorithm for SbRTwPR on unsigned
permutations.
Input: An unsigned permutation π and a value k
Output: A sequence of reversals and transpositions that sorts π

1 Let S ← {}
2 while π �= ι do

3 if
|Sρ|

|S|+1
≥ k and there is a transposition τ such that Δb(π, τ) ≥ 1 then

4 Apply τ in π
5 Append τ to S

6 else
7 Let S′ be a sequence of reversals that decreases, on average, one or more

breakpoints per operation [6]
8 Apply S′ in π
9 Append S′ to S

10 return S

Note that a transposition τ is only applied if two constraints are fulfilled:
(i) |Sρ|

|S|+1 ≥ k, this ensures that the sorting sequence will comply with the main

restriction of the problem that |Sρ|
|S| ≥ k. (ii) Δb(π, τ) ≥ 1, this constraint ensures

that the sorting sequence will contain a maximum of b(π) operations, since every
reversal sequence removes, on average, one or more breakpoints per operation.
Since Algorithm 1 removes one or more breakpoints by iteration, it guarantees



124 K. L. Brito et al.

that the permutation π will be sorted. In addition, no more than b(π) oper-
ations will be used to sort π, maintaining the approximation factor of 3 − k.
Since each operation (reversal or transposition) can be found in linear time and
|S| ≤ b(π) ≤ n + 1, the running time of Algorithm 1 is O(n2).

3.2 Signed Case

Here we present an approximation algorithm with a factor of 3 − 3k
2 based on

the cycle graph for SbRTwPR on signed permutations.

Lemma 4 (Hannenhalli and Pevzner [5]). For any reversal ρ, Δc(π, ρ) ≤ 1.

Lemma 5 (Bafna and Pevzner [1]). For any transposition τ , Δc(π, τ) ≤ 2.

Lemma 6. Given an instance (π, k) for SbRTwPR on signed permutations,
and an optimal sequence of events S, the average number of cycles increased by
an operation in S is less than or equal to 2 − k.

Proof. Since |S| is an optimal sequence for the instance (π, k), we have that at
least |S|k operations in S sequence are reversals. By Lemmas 4 and 5, we have
that a reversal creates at most one new cycle, while a transposition creates at
most two new cycles. Let φc(S) denote the average number of cycles increased
by an operation in S, we have that:

φc(S) ≤ (1|S|k) + (2|S|(1 − k))
|S| = 1k + 2(1 − k) = 2 − k. ��

Theorem 4. Given an instance (π, k) for SbRTwPR on signed permutations,
we have that dk(π) ≥ n+1−c(π)

2−k .

Proof. Since (n + 1) − c(π) new cycles must be created in order to turn the
permutation π into ι and, by Lemma 6, up to 2 − k new cycles are created per
operation on average, the theorem follows. ��
Theorem 5. Given a signed permutation π, there exists a sequence of reversals
S that transforms π into ι such that the average number of cycles increased by
any reversal in S is greater than or equal to 2/3.

Proof. If at any stage G(π) has a divergent cycle C, then there exists a reversal
applied to C that increases the number of cycles by one unit [10]. Otherwise,
G(π) has only convergent cycles, and one of the following is true [8]:

– there exists a long oriented cycle (Fig. 2, Case 1);
– there exists a short cycle C whose open gates are closed by another non-trivial

cycle D (Fig. 2, Case 2);
– there exists a long non-oriented cycle C whose open gates are closed by one

or more non-trivial cycles (Fig. 2, Case 3).



Sorting by Reversals and Transpositions with Proportion Restriction 125

1 2 3

−1 2 3

1 −2 3

1 2 3

Case 1

1 2 3 −4 5

−1 2 3 4 5

1 −2 3 4 5

Case 2

1 2 3 4 5 6 7

1 −2 3 4 5 6 7

−1 2 3 4 5 6 7

1 2 3 4 5 6 7

Case 3

Fig. 2. Operations applied in each case of Theorem 5.

If G(π) has an oriented long cycle C, then we can apply a reversal on its
black edges in such a way that it turns C into a divergent cycle C ′. Since C ′

is long, we can apply at least two reversals on C ′ that increase the number of
cycles by one unit each (Fig. 2, Case 1).

In the other two cases we can turn the cycle C into an oriented cycle C ′ by
applying one reversal to a cycle D that closes an open gate from C. If C ′ is short,
we can break it into two trivial cycles with a reversal, and this second reversal
turns D into a divergent cycle D′, which guarantees that we can apply a third
reversal to D′ that increases the number of cycles by one (Fig. 2, Case 2). If
C ′ is long, then we can apply at least two reversals that increase the number of
cycles by one unit each (Fig. 2, Case 3).

In the three cases above we applied three reversals that increased the number
of cycles by two, and the theorem follows. ��

Theorem 6. SbRTwPR is approximable by a factor of 3 − 3k
2 on signed per-

mutations.



126 K. L. Brito et al.

Proof. By Theorem 5, we can turn any signed permutation π into ι using at
most 3(n+1−c(π))

2 reversals. Since we use only reversals, the constraint |Sρ|
|S| ≥ k

is not violated. By the lower bound showed in Theorem 4, we have:

3(n+1−c(π))
2

n+1−c(π)
2−k

= 3 − 3k

2
. ��

Note that in order to avoid a solution composed exclusively of reversals,
the approach used in Algorithm 1 can be adapted to be applied in this case as
well. In Sect. 4, we will present an asymptotic approximation algorithm with an
improved approximation factor for the signed case.

4 Asymptotic Approximation for the Signed Case

In this section we show an asymptotic algorithm for SbRTwPR on signed per-
mutations, where k ∈ [0, 1] with an approximation factor of ( 2−k

1− k
3
).

Definition 6. Let Aρ be an algorithm that sorts a permutation using only signed
reversals and guarantees a ratio of 2/3 of cycles increased by applied reversals
(Theorem 5), and let Aρ(π) represents the sequence of reversals returned by the
algorithm that sorts π.

Now consider Algorithm 2.

Algorithm 2: An approximation algorithm for SbRTwPR on signed per-
mutations.
Input: A signed permutation π and a value k
Output: A sequence of reversals and transpositions that sorts π

1 Let S ← {}
2 while |Aρ(π)| > k(|S| + |Aρ(π)|) do
3 if G(π) has a divergent cycle then
4 Let ρ be a reversal that increases one cycle in G(π)
5 Apply ρ in π
6 Append ρ to S

7 else
8 Let S′ be a sequence of at most two transpositions that increases two

cycles in G(π) [2, Theorem 3.4]
9 Apply S′ in π

10 Append S′ to S

11 Apply Aρ(π) in π
12 Append Aρ(π) to S
13 if |Sρ| < k|S| then
14 Replace the last two transpositions of S with six reversals [8]
15 return S



Sorting by Reversals and Transpositions with Proportion Restriction 127

Lemma 7. Given a signed permutation π, Algorithm 2 sorts π using at most
(n + 1 − c(π))/(1 − k/3) + 4 operations.

Proof. Let S = (S1, . . . , S|S|) be the sorting sequence generated by the algorithm
without considering the substitution of transpositions by reversals applied in line
14. Let S′ be the subsequence of operations applied in the while loop of lines
2 to 10. Each operation in S′ increases the number of cycles by at least one
unit, and each operation in S \ S′ (that is, the operations applied outside the
while loop) increases on average in 2/3 the number of cycles. By the condition
of line 2, we have that |S′| ≥ (1 − k)|S| and, therefore, the average increase in
the number of cycles in S is at least (1− k)|S|+ k|S|2/3

|S| = 1 − k/3. Since these

operations increase at most n + 1 − c(π) cycles, we have that |S| ≤ n+1− c(π)
1− k/3 .

In the final sequence, we may increase four operations by replacing the last two
transpositions with six reversals (only if necessary). Therefore, the size of this
sequence is at most n+1− c(π)

1− k/3 + 4.

Theorem 7. Algorithm 2 is a 2− k
1− k/3 -asymptotic approximation algorithm for

SbRTwPR.

Proof. Since the algorithm only adds transpositions while the condition of line
2 is satisfied and at most two transpositions are added in the sorting sequence
in one iteration, we guarantee that |Sρ| ≥ k by replacing the last two transpo-
sitions by reversals. By Lemma 7 and Theorem 4, the sequence S returned by
Algorithm 2 satisfies |S| ≤ n+1−c(π)

1−k/3 + 4 ≤ 2−k
1−k/3dk(π) + 4. Therefore, it is a

2−k
1−k/3 -asymptotic approximation algorithm for SbRTwPR. ��

5 Conclusion

We investigated the Sorting by Reversals and Transpositions with Proportion
Restriction problem and presented an approximation algorithm with a factor
of 3 − k for unsigned permutations, and an approximation and an asymptotic
approximation algorithm with factors 3 − 3k

2 and 2−k
1− k

3
for signed permutations,

respectively.
As future work, we intend to test the proposed algorithms and develop heuris-

tics for the problems. Another interesting research line would be to investigate
the complexity of the problems when 0 < k < 1.

Acknowledgments. This work was supported by the National Council of Techno-
logical and Scientific Development, CNPq (grants 400487/2016-0, 140272/2020-8, and
425340/2016-3), the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior -
Brasil (CAPES) - Finance Code 001, and the São Paulo Research Foundation, FAPESP
(grants 2013/08293-7, 2015/11937-9, 2017/12646-3, and 2019/27331-3).



128 K. L. Brito et al.

References

1. Bafna, V., Pevzner, P.A.: Sorting permutations by transpositions. In: Proceedings
of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1995),
pp. 614–623. Society for Industrial and Applied Mathematics, Philadelphia (1995)

2. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Discret. Math. 11(2),
224–240 (1998)

3. Bulteau, L., Fertin, G., Rusu, I.: Sorting by transpositions is difficult. SIAM J.
Discret. Math. 26(3), 1148–1180 (2012)

4. Caprara, A.: Sorting permutations by reversals and Eulerian cycle decompositions.
SIAM J. Discret. Math. 12(1), 91–110 (1999)

5. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algo-
rithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)

6. Kececioglu, J.D., Sankoff, D.: Exact and approximation algorithms for sorting by
reversals, with application to genome rearrangement. Algorithmica 13, 180–210
(1995)

7. Oliveira, A.R., Brito, K.L., Dias, U., Dias, Z.: On the complexity of sorting by
reversals and transpositions problems. J. Comput. Biol. 26, 1223–1229 (2019)

8. Oliveira, A.R., Brito, K.L., Dias, Z., Dias, U.: Sorting by weighted reversals and
transpositions. J. Comput. Biol. 26, 420–431 (2019)

9. Rahman, A., Shatabda, S., Hasan, M.: An approximation algorithm for sorting by
reversals and transpositions. J. Discret. Algorithms 6(3), 449–457 (2008)

10. Walter, M.E.M.T., Dias, Z., Meidanis, J.: Reversal and transposition distance of
linear chromosomes. In: Proceedings of the 5th International Symposium on String
Processing and Information Retrieval (SPIRE 1998), pp. 96–102. IEEE Computer
Society, Los Alamitos (1998)


	Sorting by Reversals and Transpositions with Proportion Restriction
	1 Introduction
	2 Basic Definitions
	2.1 Breakpoints
	2.2 Cycle Graph

	3 Approximation Algorithms
	3.1 Unsigned Case
	3.2 Signed Case

	4 Asymptotic Approximation for the Signed Case
	5 Conclusion
	References




