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Abstract. In this paper we focus on explanation methods for time series
classification. In particular, we aim to quantitatively assess and rank
different explanation methods based on their informativeness. In many
applications, it is important to understand which parts of the time series
are informative for the classification decision. For example, while doing
a physio exercise, the patient receives feedback on whether the execution
is correct or not (classification), and if not, which parts of the motion
are incorrect (explanation), so they can take remedial action. Comparing
explanations is a non-trivial task. It is often unclear if the output pre-
sented by a given explanation method is at all informative (i.e., relevant
for the classification task) and it is also unclear how to compare expla-
nation methods side-by-side. While explaining classifiers for image data
has received quite some attention, explanation methods for time series
classification are less explored. We propose a model-agnostic approach
for quantifying and comparing different saliency-based explanations for
time series classification. We extract importance weights for each point in
the time series based on learned classifier weights and use these weights
to perturb specific parts of the time series and measure the impact on
classification accuracy. By this perturbation, we show that explanations
that actually highlight discriminative parts of the time series lead to sig-
nificant changes in classification accuracy. This allows us to objectively
quantify and rank different explanations. We provide a quantitative and
qualitative analysis for a few well known UCR datasets.

Keywords: Time series classification · Explainable machine learning ·
Evaluation · Comparing explanations · Saliency maps

1 Introduction

In the last decade, machine learning systems have become more ubiquitous and
highly integrated with our daily life due to the increased availability of per-
sonal computing and wearable devices. Machine learning methods, including
those dealing with time series data, have grown in complexity, performance,
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and impact. Among many applications [22,23], Time Series Classification (TSC)
algorithms are more commonly used nowadays in human activity recognition [3]
tasks, which often require explanations for certain critical decisions [6,14]. This
explanation is usually presented in the form of a saliency map [1], highlighting
the parts of the time series which are informative for the classification decision.

Recent efforts both in designing intrinsically explainable machine learning
algorithms, as well as building post-hoc methods explaining black-box algo-
rithms, have gained significant attention [20,24,28,31,36]; yet, these efforts
present us with a new challenge: How to assess and objectively compare such
methods? In other words, if two methods give different explanations, e.g., two
different saliency maps, which method and explanation should we trust more?
Assessing and comparing explanations is a non-trivial problem and requires a
solution.

In this work, we consider explanation and its informativeness within a defined
computational scope, in which a more informative explanation means a higher
capability to influence classifiers to correctly identify a class. With this definition,
we aim to objectively quantify and compare the informativeness of different
explanations, hence alleviating the need for, or at least reducing some of the
effort for, conducting user-studies which are very difficult to reproduce [9]. We
focus on quantitatively evaluating explanation methods for the TSC task. In
this paper, we only consider methods that produce explanations in the form
of saliency maps. In particular, we introduce a model-agnostic methodology to
quantitatively assess and rank different saliency maps based on a concept of
informativeness which we define in this paper.

In our experiments, we consider three popular and recent saliency-based
explanation methods representing two approaches for generating explanations
(i.e., model internals from an intrinsically explainable model and post-hoc expla-
nations) and two scopes of explanations (i.e., global explanation for the entire
dataset and local explanation for the prediction on a specific test example). As
illustrated in Fig. 1, such methods often produce significantly different expla-
nations and subsequently call for a methodology and evaluation measure for
comparison.

Fig. 1. Saliency map explanations for a motion time series obtained using different
explanation methods. In this figure, the most discriminative parts are colored in deep
red and the most non-discriminative parts are colored in deep blue. (Color figure online)
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Our methodology stems from the idea that highly informative explanations
correctly identify areas of the time series that are relevant for a classifier, thus
perturbing such parts will result in a reduced capability of classifiers for making
correct decisions. We focus on two scenarios in which the informativeness of
explanation methods should be evaluated: when a single explanation method is
presented and we want to know whether such method is actually informative,
and when multiple explanation methods are presented and we wish to compare
them.

The evaluation of a single explanation method compares the changes in
classification performance under two settings: when the time series perturbation
happens at either the discriminative and non-discriminative parts, as detected
by the explanation method to be evaluated. If the method is informative, we
expect that the accuracy will drop more significantly when the discriminative
parts are perturbed. In contrast, for the comparison of multiple explanation
methods we compare the classification performance only when the perturbation
happens at the discriminative parts of the time series. The more informative
method should trigger a more significant drop in accuracy. In both scenarios, we
quantify the effect of change in performance by an evaluation measure which
estimates the difference of the changes across multiple thresholds for identifying
discriminative parts. We verify our experiment results with a sanity-check step,
in which we visualize and compare the saliency maps for multiple examples of a
dataset with known ground truth.

Our experiments show that explanations actually highlighting discrimina-
tive parts of the time series (i.e., that are more informative) lead to significant
changes in classification accuracy, reflected by our proposed evaluation measure
for quantifying this behaviour. While there is no one-size-fits-all ideal explanation
method that perfectly highlights the discriminative parts in all TSC problems
and datasets, our evaluation methodology provides a guideline to objectively
evaluate any potential TSC saliency-based explanation methods for specific use
cases, and safely reject those that fail both of the aforementioned steps.

Our main contributions are as follows:

1. We propose a new methodology and evaluation measure designed to enable
us to objectively quantify and compare the informativeness of different expla-
nation methods for the TSC task.

2. We empirically analyse our evaluation methodology with three representative
explanation methods and three “referee” TSC algorithms.

3. We provide a discussion of the quantitative and qualitative assessment of
various TSC explanation methods across several TSC benchmark datasets,
and propose some directions for future work in this area.

2 Related Work

2.1 Time Series Classification

Although many TSC studies have been published in the past, very few of them
focused on explainability. The list of TSC algorithms typically starts with the
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famous baselines 1NN-Euclidean and 1NN-DTW [16]; both are a combination of
a nearest neighbour classifier and a distance measure. In most of the literature in
this field, they are the benchmark classifiers due to their simplicity and accuracy.
For this type of classifier, one can explain the classification decision on a time
series by examining its nearest neighbour in the training data. However, we are
not aware of any TSC studies that have investigated this prospect in depth.

Recent TSC papers have explored many other directions which include
interval-based, shapelet-based, dictionary-based, and autocorrelation-based
methods [4]. Nevertheless, only shapelet-based and dictionary-based classifiers
in this group have shown the potential for explainability. Shapelet-based clas-
sifiers revolve around the concept of shapelets, segments of time series which
can generalize or discriminate the classes. Examples of shapelet-based classifiers
include Shapelet Transform [5] and Learning Shapelets [11]. It is theoretically
possible to use shapelets as an explanation mechanism for these classifiers, but
this was not considered in depth in previous studies, beyond a high-level qual-
itative discussion. On the other hand, dictionary-based classifiers have made
significant breakthroughs with the introduction of SAX-VSM [29], BOSS [26],
WEASEL [27], and Mr-SEQL [18]. The SAX-VSM work, although inferior to
the latter in terms of accuracy, presented some attempts to explain the classifier
by highlighting the highest-scored subsequences of the time series, which is a
form of saliency mapping. Similar bids to explain the classification decision were
made by SAX-VFSEQL [21] and its successor Mr-SEQL which are also classi-
fiers from this group. Two other important families of TSC algorithms are deep
learning, e.g., ResNet [15] and ensemble methods, e.g., HIVE-COTE [4]; they
are generally well-known for being highly accurate. While not many attempts
have been made to explain ensemble TSC methods, deep neural networks with
convolutional layers can produce a saliency map explanation of the time series
classification by using the Class Activation Map (CAM) method [36]. This option
was explored in [35] and [15].

2.2 Explanation in Time Series Classification

Saliency Maps. Saliency mapping is a visualisation approach to highlight parts
of a time series that are important for the TSC model in making a prediction.
Such mappings are often produced by matching a time series with a vector of
weights (w) using a color map. This vector of weights has a corresponding weight
value for each data point in the time series. The saliency map (characterized by
the vector of explanation weights) and the method to produce the vector of
weights for the mapping, are hereafter respectively called TSC explanation and
explanation method. Figure 2 (bottom right) shows an example saliency map in
which the vector of explanation weights is matched to the original time series
using a heatmap. The explanation weight is non-negative since its magnitude
reflects the discriminative power of the associated data point in the time series.

In this work, we explore three TSC explanation methods using the concept
of explanation seen as a vector of weights: MrSEQL-SM, CAM, and LIME.
These methods represent three distinct approaches for producing saliency-based
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explanations in the form of highlighting the discriminative parts of a time series.
We summarize the properties of these explanation methods in Table 1.

Table 1. Summary of TSC explanation methods properties.

Explanation method Type Model-specific Explanation scope

MrSEQL-SM Intrinsic Yes Global

CAM Post-hoc Yes Local

LIME Post-hoc No Local

Fig. 2. The saliency map explanation MrSEQL-SM obtained from the MrSEQL linear
classifier.

MrSEQL-SM. Mr-SEQL [18] is an efficient time series classification algorithm
that is intrinsically explainable, since it learns a linear model for classification.
The algorithm converts the numeric time series vector into strings, e.g., by using
the SAX [19] transformation with varying parameters to create multiple symbolic
representations of the time series. The symbolic representations are then used as
input for SEQL [13], a sequence learning algorithm, to select the most discrimi-
native subsequence features for training a classifier using logistic regression. The
symbolic features combined with the classifier weights learned by logistic regres-
sion make this classification algorithm explainable (Fig. 2). For a time series,
the explanation weight of each data point is the accumulated weight of the SAX
features that it maps to. These weights can be mapped back to the original time
series to create a saliency map to highlight the time series parts important for
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the classification decision. We call the saliency map explanation obtained this
way, MrSEQL-SM. For using the weight vector from MrSEQL-SM, we take the
absolute value of weights to obtain a vector of non-negative weights.

CAM. CAM [36] is a post-hoc explanation method commonly used to explain
deep networks that have convolutional layers and a global average pooling (GAP)
layer just before the final output layer. With this very specific architecture, the
weights from the GAP layer can be used to reveal the parts of the time series
that are important for the classifier to make a prediction. Thus, these weights
are used to produce the saliency mapping of the weight vector to the original
time series.

LIME. LIME [24] is a post-hoc explanation method that can be used to explain
a black-box classifier’s decision for a local example. To explain the local decision
of a model, LIME perturbs that local example (X) multiple times and weighs the
perturbed examples (X ′) by their proximity to X. It finally gets the prediction
of the original model for X ′ and fits an explainable classifier, usually a linear
model, to estimate the local decision boundary of the original classifier. LIME
does not explain the classification decision globally, but only locally around a
specific example. Due to this aspect, this explanation method is computationally
expensive as it has to be trained for each test example, hence we evaluate it with
only a subset of the datasets used for experiments.

2.3 Explanation in Other Machine Learning Domains

Interpretable machine learning is a rapidly growing area of machine learn-
ing research. Besides inherently interpretable models (such as linear regres-
sion and decision trees), there are techniques developed for explaining complex
machine learning models, ranging from feature-based [2,10], local surrogate [24],
to example-based explanations [25,34]. In the context of this work, we focus
on studying explanation methods within the scope of saliency map explana-
tion. Saliency maps were originally used in Computer Vision to highlight certain
properties of the pixels in an image [30]. The success of black-box deep neural
networks in image recognition tasks [12,17,33] paved the way for the growth of
post-hoc explanation methods designed to explain deep learning models. Notable
works of this family include Class Activation Map [36], Gradient-weighted Class
Activation Map (Grad-CAM) [28] and Guided Backpropagation (GBP) [32]. This
growing list of techniques to explain deep learning models poses the challenge
of assessing the quality of these explanation methods. The work by [1] attempts
to visually and statistically evaluate the quality of a few saliency-based expla-
nations for deep learning models, by tracking the changes of the saliency maps
when the model parameters and test labels are randomized. Interestingly, they
show that some explanation methods provide unchanged explanations even when
both the model parameters and the data are random.
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3 Research Methods

In this section, we first describe the perturbation process we propose for eval-
uating the informativeness of a TSC explanation method. We then outline two
perturbation approaches and finally introduce a novel measure to quantify and
compare the informativeness of TSC explanation methods.

3.1 Explanation-Driven Perturbation

The goal of providing a TSC explanation is to focus on the discriminative parts of
the time series. If the explanation is truly informative, it should point out those
parts of the time series that are most relevant for the classification decision.
Consequently, if we perturb these parts, then the time series will be harder
to classify. The more informative the explanation, the higher the decrease in
accuracy we expect, since we knock out the important information contained
in the data, for making a classification decision. In this section we provide an
approach for quantifying the informativeness of an explanation, by perturbing
the data points, as guided by the explanation.

Discriminative weights are identified by a threshold k (0 ≤ k ≤ 100) that rep-
resent the (100 − k)-percentile of the non-negative weight vector (w) that explains
a time series. This threshold allows us to focus on the highest magnitude weights
in the vector, e.g., k = 10 means that we focus on the top 10% highest weights
in the vector. With a specific value of k, the discriminative parts of the time
series are those parts where wt belongs to the (100 − k)-percentile discriminative
weights. This part is important because the weight magnitude captures informa-
tion about the discrimination power of the corresponding data point in the time
series. Similarly, with the same threshold k, the non-discriminative parts of the
time series are parts which have wt in the k-percentile of the time series (e.g., for
k = 10 these are the bottom 10% weights with lowest magnitude) (Fig. 3).

Fig. 3. Distribution of a hypothetical explanation weight vector with its non-
discriminative weight area (Area A) and discriminative weight area (Area B).

We perturb a time series by adding Gaussian noise to its original signal. If
the time series is represented by a vector x and the entire series is perturbed,
the noisy time series would be represented by the new xperturbed vector
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xperturbed = x + N (μ, σ2)

If a time series is normalized, the distribution for the Gaussian noise would be
sampled from N (0, σ1). The parameter σ1 controls the magnitude of the noise.

In a similar fashion, the time series can also be selectively perturbed in
accordance to a condition. In this case, we can perturb parts of the time series
based on the corresponding weights in the explanation vector and keep the rest
of the time series unchanged. With this logic of perturbing the time series (in
accordance to a given weight vector), we selectively add noise to the time series
as follows:

– Type 1 : Perturbation applied only to discriminative region.
– Type 2 : Perturbation applied only to non-discriminative region.

3.2 Method 1: Evaluating a Single Explanation Method

We propose an experiment to evaluate the informativeness of one explanation
method. We aim to answer the question: Is the explanation method truly informa-
tive? In this experiment, we first build a time series classifier using the original,
non-perturbed training time series. This classifier serves as the evaluation classi-
fier for the explanation method, i.e., a referee classifier. In addition, we use the
explanation method that we want to evaluate, to generate multiple versions of
the test dataset, each corresponding to a value of the threshold k (0 ≤ k ≤ 100).
For each value of k, we generate two perturbed test sets: one is only perturbed
with Type 1 noise, the other is only perturbed with Type 2 noise. Using the
referee classifier, we measure the accuracy in each perturbed test dataset. The
entire process is summarized in Fig. 4.

Fig. 4. Process of creating explanation-driven perturbed test sets and evaluating the
explanation method using a referee classifier.

If the explanation method being evaluated is indeed informative, we expect
that the perturbation of the discriminative parts (test datasets with Type 1
noise) reduces the classifiers accuracy more than the perturbation of the non-
discriminative parts (test datasets with Type 2 noise).
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3.3 Method 2: Comparing Multiple Explanation Methods

In contrast to the previous experiment, here we propose an experiment to com-
pare multiple explanation methods by their informativeness. We follow the same
process of creating noisy test sets as in Fig. 4, however, the perturbed test sets
are now created differently. Instead of adding noise to both the discriminative
and non-discriminative parts to create two different test sets for each k, we only
add noise to the discriminative parts of the test time series. Since we have mul-
tiple explanation methods, at a same threshold k (0 ≤ k ≤ 100), we now have
multiple versions of perturbed test datasets, each corresponding to a weight
profile (i.e., explanation) obtained from one explanation method.

Among the evaluated explanation methods, a perturbation based on a more
informative explanation should hurt the referee classifier more than the others.
In Fig. 5, we hypothetically have two explanation methods with the red and
blue lines representing the classification accuracy when test datasets are per-
turbed with either of the methods. Here, the explanation method controlling
the perturbation of the test dataset with the resulting accuracy drawn in red
is considered more informative, since perturbing the time series based on this
explanation hurts the referee classifier more.

Fig. 5. Change of accuracy when the test set is perturbed with a threshold k.

As the vector of weights used as information to perturb the test dataset
can be generated from any explanation method and independent of the referee
classifier used to measure the change in accuracy, Method 1 and Method 2
are model-agnostic techniques to evaluate any TSC explanation method.

3.4 Informativeness of an Explanation: An Evaluation Measure

We quantify the informativeness of an explanation using the relationship between
the accuracy of a referee classifier on test datasets perturbed at different levels
k of noise. We calculate the impact of the explanation methods by estimating
the area under the (explanation) curve described by accuracy at different per-
turbation levels k, using the trapezoidal rule. Since these values represents the
reduction of the accuracy when noise is added to the time series, hereafter we
call this metric Explanation Loss or eLoss for short. With this naming conven-
tion, one explanation method with lower eLoss will be considered better than
another with higher eLoss.
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eLoss =
1
2
k

t∑

i=1

(acci−1 + acci)

where k denotes the values of each step normalized to 0–1 range; t denotes the
number of steps (t = 100

k ); acci is the accuracy at step i. If we perturb the
dataset with t steps, we will have a total of t+1 data points for accuracy scores.
The step for k = 0 corresponds to the original test dataset, while the step for
k = 100 corresponds to adding noise to the entire time series.

Evaluating a Single Explanation Method. The eLoss can serve as a mea-
sure to evaluate the informativeness of one explanation method. In particular,
we estimate the eLoss of the accuracy curve produced by Type 1 and Type 2
noise. If the explanation method is informative, the Type 1 eLoss (eLoss1) is
expected to be less than Type 2 eLoss (eLoss2). Alternatively, we can define
this difference with ΔeLoss:

ΔeLoss = eLoss2 − eLoss1.

If ΔeLoss is positive, then the explanation method is computationally informative
as captured by a referee classifier, otherwise the explanation method is deemed
uninformative (i.e., the data points singled out by the explanation do not provide
useful information to the classifier).

Comparing Multiple Explanation Methods. In the case where multiple
explanation methods are presented for evaluation, we compare Type 1 eLoss
(eLoss1) for all explanation methods using an independent referee classifier.
The explanation method that achieves the lowest eLoss1 is the computationally
most informative explanation method among the candidate methods.

4 Experiments

In this section, we present the results of applying our evaluation methodology
using the following publicly available TSC datasets: CBF, Coffee, ECG200, Gun-
Point from UCR [7] and the CMJ dataset1. TSC explanations for these datasets
have been examined in depth by the previous works [15,18,29], hence they are
suitable for demonstrating our approach. Table 2 summarizes these datasets.

We evaluate three TSC explanation methods: MrSEQL-SM, CAM based on
ResNet (ResNet-CAM ) and LIME based on the Mr-SEQL classifier (Mr-SEQL-
LIME ). We also train three referee classifiers, Mr-SEQL [18], ROCKET [8],
and WEASEL [27], in order to computationally evaluate the usefulness of these
explanation methods. Due to a high computational cost for LIME, we evaluate
LIME only with the CMJ and GunPoint datasets. The code and settings for all
our experiments are available at https://github.com/mlgig/explanation4tsc.

1 Retrieved from: https://github.com/lnthach/Mr-SEQL/tree/master/data/CMJ.

https://github.com/mlgig/explanation4tsc
https://github.com/lnthach/Mr-SEQL/tree/master/data/CMJ
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Table 2. Summary of TSC datasets used to evaluate explanation methods.

Dataset Train size Test size Length Type No. classes

CBF 30 900 128 Simulated 3

CMJ 419 179 500 Motion 3

Coffee 28 28 286 SPECTRO 2

ECG200 100 100 96 ECG 2

GunPoint 50 50 150 Motion 2

4.1 Experiment 1: Evaluation of a Single Explanation Method

Table 3 summarizes the results for the evaluation of the three explanation
methods with the three referee classifiers over the five TSC datasets. We cal-
culate the difference between Type 2 eLoss and Type 1 eLoss (ΔeLoss) with
the explanation-driven perturbation approach. We expect ΔeLoss to be positive
when the explanation method is informative.

Table 3. Summary of ΔeLoss of three explanation methods on five different TSC prob-
lems. Positive values suggest the findings of the explanation method are informative
according to the referee classifier. Negative values suggest otherwise.

Dataset Explanation method Referee classifier

Mr-SEQL ROCKET WEASEL

CBF MrSEQL-SM 0.0001 0.002 0.0126

ResNet-CAM −0.0005 0.0007 0.0141

CMJ MrSEQL-SM 0.0045 0.0709 0.1151

ResNet-CAM −0.0006 −0.0028 0.0106

MrSEQL-LIME 0.0084 0.0475 0.0531

Coffee MrSEQL-SM 0.0286 0.0 0.0

ResNet-CAM 0.0179 0.0 0.0143

ECG200 MrSEQL-SM 0.033 −0.001 0.024

ResNet-CAM −0.011 −0.003 0.038

GunPoint MrSEQL-SM 0.0026 0.1373 0.0273

ResNet-CAM 0.0067 0.0967 −0.002

MrSEQL-LIME 0.002 0.0714 0.0007

To visualize the difference between Type 1 eLoss and Type 2 eLoss, we
also present this information in the form of the accuracy curve for the GunPoint
dataset (Fig. 6) and the CMJ dataset (Fig. 7). In each of the figures, we draw the
accuracy curve in the case when noise is added to the most discriminative parts
(Type 1 ) and non-discriminative parts (Type 2 ). We note that if the Type 1 curve
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Fig. 6. Comparison of accuracy for Type 1 (red) and Type 2 (blue) perturbation for
each explanation method and referee classifier for the GunPoint dataset. (Color figure
online)

is below the Type 2 curve, the explanation method is considered informative. If
this trend is consistent across the referee classifiers, the evidence that the method
is informative has more support. If we focus on evaluating the MrSEQL-SM
explanation method for the GunPoint dataset, we observe that the Type 1 curve
is always below the Type 2 curve for all three referee classifiers, thus we expect
that this explanation method is informative. This information is consistent with
the metric ΔeLoss in Table 4, when ΔeLoss is positive for all classifiers.

4.2 Comparison of Multiple Explanation Methods

In this experiment, we aim to compare the different explanation methods for a
specific dataset. Instead of comparing the eLoss for the case when noise is added
to the discriminative parts (Type 1 ) and non-discriminative parts (Type 2 ) of
the time series for one explanation method, here we compare the eLoss for Type
1 (eLoss1) perturbation across different explanation methods. An explanation
method is considered more informative if it has a smaller eLoss1 for the same
referee classifier.
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Fig. 7. Comparison of accuracy for Type 1 (red) and Type 2 (blue) perturbation
for each explanation method and referee classifier for the CMJ dataset. (Color figure
online)

We visualize this eLoss1 in Fig. 8 in which the explanation curve of the three
examined explanation methods are compared for the dataset CMJ (upper charts)
and GunPoint (lower charts). We notice that the different in eLoss1 is dependent
on the referee classifier used to examine the change of the accuracy in the noisy
test dataset. Given the same noisy datasets, the referee classifiers yield different
classification accuracy. With the CMJ dataset, it is difficult to conclude which
explanation method is most informative from Fig. 8, since the three lines are
closely placed. This result is consistent with the comparison of eLoss1 in Table 4.
We can conclude that the three explanation methods are computationally similar
in informativeness, although MrSEQL-SM is slightly more informative than the
other two methods (its eLoss1 is lowest for two referee classifiers).

4.3 Sanity Checks for Experiment Results

Although the evaluation measures show that one explanation method is more
informative than another, we want to verify this conclusion by performing a
sanity check step. In this step, we plot a few classification examples and their
explanations by the methods evaluated previously. We choose to perform this
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Table 4. Summary of eLoss1 of three explanation methods on five different problems.
Lower value (column-wise) suggests the explanation method is better in explaining the
problem according to the referee classifier.

Dataset Explanation method Referee classifier

Mr-SEQL ROCKET WEASEL

CBF MrSEQL-SM 0.9991 0.9941 0.6018

ResNet-CAM 0.9993 0.9945 0.6041

CMJ MrSEQL-SM 0.9441 0.8422 0.6899

ResNet-CAM 0.9453 0.8735 0.6972

MrSEQL-LIME 0.9441 0.8612 0.7385

Coffee MrSEQL-SM 0.9625 1.0 0.9786

ResNet-CAM 0.9696 1.0 0.9821

ECG200 MrSEQL-SM 0.811 0.9065 0.7565

ResNet-CAM 0.838 0.9035 0.7385

GunPoint MrSEQL-SM 0.9477 0.7567 0.543

ResNet-CAM 0.961 0.7773 0.5257

MrSEQL-LIME 0.9677 0.7953 0.573

Fig. 8. Comparison of accuracy for Type 1 perturbation based on three explanation
methods (MrSEQL-SM, ResNet-CAM and Mr-SEQL-LIME) for GunPoint and CMJ
datasets and three referee classifiers. Lower curve is better.

step with the CMJ dataset, for which the explanations are verified by a domain
expert [18].

Figure 9 presents the saliency maps generated by three explanation methods
for examples from the three motion classes in CMJ. Here we clearly see that
these methods give different explanations. MrSEQL-SM seems to provide the
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Fig. 9. Saliency maps produced by three explanation methods for example time series
from the three classes of the CMJ dataset.

most informative/correct explanations that highlight the low, middle parts of
the class NORMAL, the hump, middle parts of the class BEND, and the very
high peak, middle parts of the class STUMBLE. MrSEQL-LIME gives a similar
picture since it tries to explain the same classifier as MrSEQL-SM. ResNet-CAM
does not clearly highlight similar parts in this dataset. This sanity check confirms
the quantitative results in the previous experiments.

5 Discussion

In this section, we holistically interpret the experiment results with regard to
informativeness and other perspectives. With the notion of informativeness, we
set up the experiments based on an explanation-driven perturbation approach.
This approach allows us to assess the contributing significance of the discrimi-
native parts for a referee classifier. The results show that, with a given dataset,
we are able to some extent evaluate and quantify the informativeness of differ-
ent TSC explanation methods. There is scope though for further study of other
perturbation approaches as well as the use of other referee classifiers in order to
reach more significant differences in informativeness levels.

Stability of Explanation. Performing the experiment repeatedly, we notice
that not all explanation methods provide consistent results. Methods that
depend on certain level of randomization such as CAM (with randomized weight
initialization) and LIME (with randomized local examples to estimate explana-
tions) are generating slightly different explanations in different runs. For meth-
ods that are characterized by many hyperparameters like LIME, this stability of
explanation is also dependent on these parameters, such as the number of local
examples that it generates.
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Robustness of Referee Classifier. We observe that some TSC methods are
more sensitive to noise than others (Fig. 6, 7, 8). In our experiment, ROCKET
and WEASEL seem to be more noise-sensitive than Mr-SEQL. This sensitivity
results in higher value of ΔeLoss when the method is tested with these noise-
sensitive classifiers.

Computational Cost. It is worth mentioning that methods that locally gener-
ate explanations are computationally expensive. While MrSEQL-SM and CAM
conveniently use the trained model internals to compute explanations for a new
example, LIME generates multiple perturbations of the new example and reclas-
sifies it to generate an explanation, which leads to high computational cost.

6 Conclusion

This work aims to provide an objective evaluation methodology to gauge the
informativeness of explanation methods. Our experiment results show that it is
feasible to quantitatively assess TSC explanation methods and the sanity checks
visually confirm the experiment results. We envision that this technique is help-
ful when a user wants to assess an existing explanation method in the context of
a given application, or wishes to evaluate different methods and opt for one that
works best for a specific use case. In the scope of this work, we primarily evalu-
ate three explanation methods which collectively represents different approaches
to explain TSC decisions, though there are many other methods worth explor-
ing. With the application of human activity recognition in mind, we believe
that advancement in this area can potentially help many people who can thus
conveniently access high quality technology to directly improve their lives.
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