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Preface

Workshop Description

The European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML-PKDD) is the premier European machine
learning and data mining conference and builds upon over 18 years of successful events
and conferences held across Europe. This year, ECML-PKDD 2020, was planned to
take place in Ghent, Belgium, during September 14–18, 2020, but due to the
COVID-19 pandemic it was held in the same time period as a fully virtual event. The
main conference was complemented by a workshop program, where each workshop
was dedicated to specialized topics, cross-cutting issues, and upcoming research trends.
This standalone LNAI volume includes the selected papers of the 5th Workshop on
Advanced Analytics and Learning on Temporal Data (AALTD) held at ECML-PKDD
2020.

Motivation – Temporal data are frequently encountered in a wide range of domains
such as bio-informatics, medicine, finance, and engineering, among many others. They
are naturally present in emerging applications such as motion analysis, energy efficient
building, smart cities, dynamic social media, or sensor networks. Contrary to static
data, temporal data are of complex nature, they are generally noisy, of high dimen-
sionality, they may be non stationary (i.e. first order statistics vary with time) and
irregular (i.e. involving several time granularities) and they may have several invariant
domain-dependent factors such as time delay, translation, scale, or tendency effects.
These temporal peculiarities limit the majority of standard statistical models and
machine learning approaches, that mainly assume i.i.d data, homoscedasticity, nor-
mality of residuals, etc. To tackle such challenging temporal data, one appeals for new
advanced approaches at the bridge of statistics, time series analysis, signal processing,
and machine learning. Defining new approaches that transcend boundaries between
several domains to extract valuable information from temporal data is undeniably a hot
topic and it has been the subject of active research this last decade.

Workshop Topics – The aim of the workshop series on AALTD1 was to bring
together researchers and experts in machine learning, data mining, pattern analysis, and
statistics to share their challenging issues and advance in temporal data analysis.
Analysis and learning from temporal data covers a wide scope of tasks including
learning metrics, learning representations, unsupervised feature extraction, clustering,
and classification.

1 https://project.inria.fr/aaltd20/.

https://project.inria.fr/aaltd20/


For this fourth edition, the proposed workshop received papers that cover one or
several of the following topics:

– Temporal Data Clustering
– Classification of Univariate and Multivariate Time Series
– Early Classification of Temporal Data
– Deep Learning and Learning Representations for Temporal Data
– Modeling Temporal Dependencies
– Advanced Forecasting and Prediction Models
– Space-Temporal Statistical Analysis
– Functional Data Analysis Methods
– Temporal Data Streams
– Interpretable Time-Series Analysis Methods
– Dimensionality Reduction, Sparsity, Algorithmic Complexity, and Big Data

Challenge
– Bio-Informatics, Medical, Energy Consumption, on Temporal Data

Outcomes – AALTD 2020 was structured as a full-day workshop. We encouraged
submissions of regular papers that were up to 16 pages of previously unpublished
work. All submitted papers were peer reviewed (double-blind) by two or three
reviewers from the Program Committee, and selected on the basis of these reviews.
AALTD 2020 received 29 submissions, among which 15 papers were accepted for
inclusion in the proceedings. The papers with the highest review rating were selected
for oral presentation, and the others were given the opportunity to present a poster
through a spotlight session and a discussion session. The workshop had an invited talk
“Scalable Machine Learning on Large Sequence Collections”2 given by Professor
Themis Palpanas of the French University Institute (IUF) and University of Paris,
France.

We thank all organizers, reviewers, and authors for the time and effort invested to
make this workshop a success. We would also like to express our gratitude to the
members of the Program Committee. We thank the Organizing Committee of
ECML-PKDD 2020 and the technical staff who helped us to make the virtual AALTD
a successful workshop. Sincere thanks are due to Springer for their help in publishing
the proceedings. Lastly, we thank all participants and speakers at AALTD 2020 for
their contributions, their collective support has made the workshop a really interesting
and successful event, even under the challenging circumstances of a global pandemic.

November 2020 Vincent Lemaire
Simon Malinowski
Anthony Bagnall
Thomas Guyet

Romain Tavenard
Georgiana Ifrim

2 https://project.inria.fr/aaltd20/invited-speaker/.
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On the Usage and Performance of the
Hierarchical Vote Collective of

Transformation-Based Ensembles Version
1.0 (HIVE-COTE v1.0)

Anthony Bagnall(B), Michael Flynn, James Large, Jason Lines,
and Matthew Middlehurst

University of East Anglia, Norwich, UK
ajb@uea.ac.uk

Abstract. The Hierarchical Vote Collective of Transformation-based
Ensembles (HIVE-COTE) is a heterogeneous meta ensemble for time
series classification. Since it was first proposed in 2016, the algorithm
has undergone some minor changes and there is now a configurable, scal-
able and easy to use version available in two open source repositories. We
present an overview of the latest stable HIVE-COTE, version 1.0, and
describe how it differs to the original. We provide a walkthrough guide
of how to use the classifier, and conduct extensive experimental evalua-
tion of its predictive performance and resource usage. We compare the
performance of HIVE-COTE to three recently proposed algorithms.

Keywords: Time series · Classification · Heterogeneous ensembles ·
HIVE-COTE

1 Introduction

The Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-
COTE) is a heterogeneous meta ensemble for time series classification. The key
principle behind HIVE-COTE is that time series classification (TSC) problems
are best approached by careful consideration of the data representation, and that
with no expert knowledge to the contrary, the most accurate algorithm design
is to ensemble classifiers built on different representations.

HIVE-COTE was first described in 2016 [14,15]. At the time, HIVE-COTE
was significantly more accurate on average than other known approaches [3]
on the 85 datasets that were then the complete UCR archive [6]. HIVE-COTE
was an improvement over the 2015 version, called just COTE on publication [4]
but later renamed Flat-COTE to differentiate it from its successor. Flat-COTE
is a standard ensemble of a range of classifiers built on different representa-
tions. It was itself a natural extension of the Elastic Ensemble [13] which only
contains nearest neighbour classifiers using different distance measures. HIVE-
COTE takes a more structured approach than Flat-COTE. The original HIVE-
COTE, which we will henceforth refer to as HIVE-COTE alpha, contained the
c© Springer Nature Switzerland AG 2020
V. Lemaire et al. (Eds.): AALTD 2020, LNAI 12588, pp. 3–18, 2020.
https://doi.org/10.1007/978-3-030-65742-0_1
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4 A. Bagnall et al.

following classification modules: Elastic Ensemble (EE) [13]; Shapelet Transform
Classifier (STC) [11]; Time Series Forest (TSF) [8]; and Bag of Symbolic-Fourier-
Approximation Symbols (BOSS) [19]. Each module is encapsulated and built on
the train data independently of the others. For new data, each module passes an
estimate of class probabilities to the control unit, which combines them to form
a single prediction. It does this by weighting the probabilities of each module by
an estimate of its testing accuracy formed from the training data.

Our goal with HIVE-COTE alpha was to achieve the highest level of accuracy
without concern for the computational resources. This has lead to the perception
that HIVE-COTE is very slow and does not scale well. Whilst this is true if
used in its basic form, it is in fact very simple to restructure HIVE-COTE so
it achieves the same level of accuracy in orders of magnitude less time. We
have made many small changes to HIVE-COTE with the goal of making it
scalable and more useful. We describe these improvements and encapsulate them
as HIVE-COTE version 1.0. The changes in HIVE-COTE are both algorithmic
and engineering in nature.

The two slowest components of HIVE-COTE alpha are STC (in its old for-
mat) and EE. STC used to conduct a full enumeration of all possible shapelets.
We have found that this enormous computational effort is not only unnecessary,
but often results in over-fitting. EE requires cross validation of numerous nearest
neighbour classifiers and is very slow on training and testing. EE resulted from
a comparative study of nearest neighbour distance measures. Our hypothesis
was there was no significant difference between the numerous distance measures
and dynamic time warping when used in nearest neighbour classifiers, which is
true. We only ensembled as an afterthought. We were surprised to see significant
improvement. Its design was necessarily ad hoc to avoid over-fitting. We have
found that dropping EE all together does not make HIVE-COTE much worse.
The main changes are:

1. STC no longer fully enumerates the shapelet space.
2. EE is dropped altogether from HIVE-COTE.
3. The STC, BOSS and RISE components include revisions to improve efficiency.
4. All components and HIVE-COTE 1.0 itself are now contractable (you can set

a run time limit), checkpointable (you can save a version to continue building
later) and tuneable (select parameters based on train set performance).

5. HIVE-COTE 1.0 can be threaded, built from existing results and easily con-
figured.

The aim of this report is to describe the changes, showcase the usage of
HIVE-COTE and to present some new benchmark results that should be used
in all future experiments, and to demonstrate the scalability of HIVE-COTE.

2 HIVE-COTE 1.0 Design

Figure 1 provides an overview of the HIVE-COTE structure. The top level
ensemble structure and the implementation of each component are described
below.
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Fig. 1. An overview of the ensemble structure of HIVE-COTE 1.0. Each module pro-
duces an estimate of the probability of membership of each class. The control unit
(CAWPE) combines these probabilities, weighted by an estimate of the quality of the
module found on the train data.

2.1 Ensemble Structure

HIVE-COTE adopts the Cross-validation Accuracy Weighted Probabilistic
Ensemble (CAWPE) ensemble structure [12], summarised in Algorithm 1.
CAWPE uses an estimate of the accuracy of each classifier to weight the prob-
ability estimates of each component. It constructs a tilted distribution through
exponentiation (using α) to extenuate differences in classifiers. The weight for
each component is found either through ten fold cross validation, or, if the clas-
sifier has the capability to estimate its own performance, internally.

Algorithm 1. HIVE-COTE classify(A test case x)
Return: prediction for case x
Parameters: A set of classifiers < M1, . . . , Mk >, an exponent α, a set of weights wi,

and the number of classes c
1: {p̂1, . . . , p̂c} = {0, . . . , 0}
2: for i ← 1 to k do
3: for j ← 1 to c do
4: q̂j ← p̂((y = j|Mi,x)
5: p̂j ← p̂j + wα

i · q̂j

6: return argmaxj=1...cp̂j
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2.2 Time Series Forest (TSF)

TSF [8] aims to capture basic summary features from intervals of a time series.
For any given time series of length m there are m(m − 1)/2 possible intervals
that can be extracted. TSF takes a random forest-like approach to sampling
these intervals. A formal description of TSF is provided in Algorithm 2.

For each tree, r intervals are randomly selected (lines 5–7), each with a
random start position and length. Each interval is summarised by the mean,
standard deviation and slope (lines 8–11), and the summaries of each interval
are concatenated into a single feature vector of length 3r for each time series. A
decision tree is built on this concatenated feature vector (line 12). New cases are
classified using a majority vote of all trees in the forest. The version of TSF used
in the bake off [3] employed the random tree used by random forest. However,
the decision tree described in [8] has some minor differences to the random tree.
It makes no difference in terms of accuracy, but the tree from [8], the time series
tree, has advantages in terms of interpretability. Hence, the current version of
TSF uses the original version, which we call TimeSeriesTree. Contracting is
enforced by the method timeRemaining. TSF simply builds until it has the
required number of trees or the time runs out.

Algorithm 2. buildTSF(A list of n cases length m, T = (X,y))
Parameters: the number of trees, k; the minimum interval length, p; the number of

intervals per tree, r. (default k ← 500, p ← 3, and r ← √
m)

1: Let F = (F1 . . .Fk) be the trees in the forest
2: i ← 1
3: while i < k and timeRemaining() do
4: Let S be a list of n cases (s1 . . . sn) with 3r attributes
5: for j ← 1 to r do
6: b ← randBetween(1, m − p)
7: e ← randBetween(b + p, m)
8: for t ← 1 to n do
9: st,3(j−1)+1 ← mean(xt, b, e)

10: st,3(j−1)+2 ← standardDeviation(xt,b, e)
11: st,3(j−1)+3 ← slope(xt, b, e)
12: Fi.buildTimeSeriesTree(S, y)

2.3 Random Interval Spectral Ensemble (RISE)

Like TSF, RISE [15] is a tree based interval ensemble. Unlike TSF, it uses a
single interval for each tree, and it uses spectral features rather than summary
statistics. RISE was recently updated to be faster and contractable [10]. During
the build process, summarised in Algorithm 3, a single random interval is selected
for each tree. The first tree is a special case in which the whole series is used
(lines 5 and 6). Otherwise, an interval with length that is a power of 2 (line
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9) is chosen. The same interval for each series is then transformed using the
Fast Fourier Transform (FFT) and Auto Correlation Function (ACF). This is a
change on the original RISE which also used the partial autocorrelation function
(PACF) and autoregressive (AR) model features. Restriction to the Fourier and
ACF coefficients does not decrease accuracy, but makes the algorithm much
faster. The power spectrum coefficients are concatenated with the first 100 ACF
coefficients to form a new training set. In the tsml implementation of RISE
the base classifier used is the RandomTree classifier used by random forest (line
13). In the test process class probabilities are assigned as a proportion of base
classifier votes.

RISE controls the contract run time by creating an adaptive model of the
time to build a single tree (lines 4 and 14). This is important for long series
(such as audio), where very large intervals can mean very few trees. Details are
in [10].

Algorithm 3. buildRISE(A list of n cases of length m, T = (X,y))
Parameters: the number of trees, k; the minimum interval length, p. (default k ←

500, p ←min(16, m/2))
1: Let F ←< F1 . . .Fk > be the trees in the forest.
2: i ← 1
3: while i < k and timeRemaining() do
4: buildAdaptiveTimingModel()
5: if i = 1 then
6: r ← m
7: else
8: max ← findMaxIntervalLength()
9: r ← findPowerOf2Interval(p, max)

10: b ← randBetween(1, m − r)
11: T′ ← removeAttributesOutsideOfRange(T,b, r)
12: S ← getSpectralFeatures(T′)
13: Fi.buildRandomTreeClassifier(S,y)
14: updateAdaptiveModel(r)
15: i ← i + 1

2.4 Bag of SFA Symbols (BOSS)

Dictionary based classifiers convert real valued time series into a sequence of
discrete symbol words, then base classification on these words. Commonly, a
sliding window of length w is run across a series. For each window, the real
valued series of length w is converted through approximation and discretisation
processes into a symbolic string of length l (referred to as a word), which consists
of α possible letters. The occurrence in a series of each word from the dictionary
defined by l and α is counted and, once the sliding window has completed, the
series is transformed into a histogram. Classification is based on the histograms
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of the words extracted from the series, rather than the raw data. The BOSS [19]
ensemble was found to be the most accurate dictionary based classifier in the
bake off [3]. Hence, it forms our benchmark for new dictionary based approaches.

Algorithm 4 gives a formal description of the bag forming process of an
individual BOSS classifier. Windows may or may not be normalised (lines 6 and
7). Words are created using Symbolic Fourier Approximation (SFA) (lines 8–13).
SFA first finds the Fourier transform of the window (line 8), ignoring the first
term if normalisation occurs (lines 9–12). It then discretises the first l Fourier
terms into α symbols to form a word in the method SFAlookup, using a bespoke
supervised discretisation algorithm called Multiple Coefficient Binning (MCB)
(line 13). Lines 14–16 implement the process of not counting self similar words:
if two consecutive windows produce the same word, the second occurrence is
ignored. This is to avoid a slow-changing pattern relative to the window size
being over-represented in the resulting histogram.

BOSS uses a non-symmetric distance function in conjunction with a nearest
neighbour classifier. Only the words contained in the test instance’s histogram
(i.e. the word count is above zero) are used in the distance calculation, but it is
otherwise the Euclidean distance.

Algorithm 4. baseBOSS(A list of n time series of length m, T = (X,y))
Parameters: the word length l, the alphabet size α, the window length w, normali-

sation parameter z
1: Let H be a list of n histograms (h1, . . . ,hn)
2: Let B be a matrix of l by α breakpoints found by MCB
3: for i ← 1 to n do
4: for j ← 1 to m − w + 1 do
5: s ← xi,j . . . xi,j+w−1

6: if z then
7: s ←normalise(s)
8: q ← DFT(s, l, α,p) { q is a vector of the complex DFT coefficients}
9: if z then

10: q′ ← (q2 . . . ql/2+1)
11: else
12: q′ ← (q1 . . . ql/2)
13: r ← SFAlookup(q′,B)
14: if r �= p then
15: pos ←index(r)
16: hi,pos ← hi,pos + 1
17: p ← r

The final classifier is an ensemble of individual BOSS classifiers. The original
BOSS ensemble built all models over a pre-defined parameter space for w, l, z
and α and retained all base classifiers with accuracy of 92% or higher of the
best. This introduces instability in memory usage and carries a time overhead.
HIVE-COTE 1.0 uses Contractable BOSS (cBOSS) [17] as its dictionary based
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classifier. cBOSS changes the method used by BOSS to form its ensemble to
improve efficiency and allow for a number of usability improvements. cBOSS
was shown to be an order of magnitude faster than BOSS on both small and
large datasets from the UCR archive while showing no significant difference in
accuracy [17]. It randomly samples the parameter space without replacement
(line 8), subsamples the data for each base classifier (line 10), and retains a fixed
number of base classifiers. An exponential weighting scheme based on train accu-
racy, such as the one used in HIVE-COTE, is introduced for ensemble members.

Algorithm 5. cBOSS(A list of n cases length m, T = (X,y))
Parameters: the maximum number of base classifiers, k; the number of parameter

samples, s; the proportion of cases to sample, p. (default k ← 50; s ← 250; p ← 0.7)

1: Let w be window length, l be word length, z be normalise/not normalise and α be
alphabet size.

2: Let B ←< B1 . . .Bk > be a list of k BOSS classifiers
3: Let W ←< w1, . . . , wk > be a list of classifier weights
4: Let R be a set of possible BOSS parameter combinations
5: i ← 0, minAcc ← ∞, idx ← −1
6: while i < s and |R| > 0 and timeRemaining() do
7: [l, α, w, z] ← randomSampleParameters(R)
8: R = R \ {[l, α, w, z]}
9: T′ ← subsampleData(T, p)

10: cls ← baseBOSS(T′, l, α, w, z)
11: acc ← estimateAccuracy(T′,cls) { estimate accuracy on train data}
12: if i < k then
13: Bi ← cls, wi ← acc4

14: if acc < minAcc then
15: minAcc ← acc, idx ← i
16: else if acc > min acc then
17: Bidx ← cls, widx ← acc4

18: [minAcc, idx] ← findLowestAcc(B)
19: i ← i + 1

2.5 Shapelet Transform Classifier (STC)

There are two significant changes to the STC used in HC 1.0. Firstly, it only fully
enumerates the shapelet space when there is sufficient time to do so. Secondly, it
uses a Rotation Forest classifier [18] rather than a heterogeneous ensemble. The
shapelet transform is highly configurable: it can use a range of sampling/search
techniques in addition to alternative quality measures. We present the default
settings and direct the interested reader to the code. The amount of time for the
shapelet search is now a parameter. The algorithm calculates how many possible
shapelets there are in a data set, then estimates how many shapelets it can sam-
ple from each series. After searching, it updates its timing model using simple
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reinforcement learning. These operations are encapsulated in operations esti-
mateNumberOfShapelets (line 7) and updateTimingModel (line 11). Shapelets
are randomly sampled in the method sampleShapelets (line 8). If the algorithm
is allowed more shapelets than the series contains, it evaluates them all. We have
experimented with a range of alternative neighbourhood search algorithms, but
nothing is much better than random search. Once the shapelets are generated,
they are evaluated using information gain (line 9). We use a one vs all evalua-
tion for multi-class problems [5]. Overlapping shapelets are removed in line 10,
before the candidates are merged into the overall pool, with the weakest mem-
bers of the population being deleted. Once the search is complete, the transform
is performed (line 13) and the classifier constructed (line 14).

Algorithm 6. STC(A list of n cases length m, T = (X,y))
Parameters: the maximum number of shapelets to keep, k; the shapelet search time,

t. (default k ← 1000, t ← 1 hour.
1: Let S be a list of up to k shapelets
2: Let R be a rotation forest classifier.
3: i ← 0
4: minIG ← 0
5:
6: while shapeletTimeRemaining(t) do
7: p ← estimateNumberOfShapelets(t, m, n)
8: S′ ← sampleShapelets(xi,p)
9: s ← evaluateShapelets(S′,T)

10: S′ ← removeSelfSimilar(S′, s)
11: updateTimingModel()
12: S ← merge(S,S′)
13: X′ ← shapeletTransform(X,S)
14: R.buildRotationForest(X′,y)

3 HIVE-COTE 1.0 Usability

We help maintain two toolkits that include time series classification functionality.
sktime1 is an open source, Python based, sklearn compatible toolkit for time
series analysis. sktime is designed to provide a unifying API for a range of
time series tasks such as annotation, prediction and forecasting (see [16] for
a description of the overarching design of sktime and [1] for an experimental
comparison of some of the classification algorithms available). The Java toolkit
for time series machine learning, tsml2, is Weka compatible and is the descendent
of the codebase used to perform the bake off. The two toolkits will eventually
converge to include all the features described here. Experiments reported in this
paper are conducted with tsml, as it has more functionality.
1 https://github.com/alan-turing-institute/sktime.
2 https://github.com/uea-machine-learning/tsml.

https://github.com/alan-turing-institute/sktime
https://github.com/uea-machine-learning/tsml
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3.1 Java Implementation of HIVE-COTE 1.0 in tsml

The HIVE COTE class is in the package tsml.classifiers.hybrids and can
be used as any other Weka classifier. The default configuration is that
described in this paper. The code described here is all available in the class
EX07 HIVE COTE Examples with more detail and comments. A basic build is
described in Listing 1.1. It cannot handle missing values, unequal length series
or multivariate problems yet.

1 HIVE_COTE hc = new HIVE_COTE ();

2 //this setup called in default constructor in April 2020

3 hc.setupHIVE_COTE_1_0 ();

4 Instances [] trainTest =

5 DatasetLoading.sampleItalyPowerDemand (0);

6 hc.buildClassifier (trainTest [0]);

Listing 1.1. A most basic way of using HIVE-COTE 1.0 in tsml

We rarely build the classifier in this way. Instead, we build the compo-
nents and post process the meta ensemble. This is most easily done using our
Experiments class, which formats the output in a standard way. An example
code snippet is in Listing 1.2. Details on optional input flags not given below
can be found in the code.

1 String [] settings=new String [6];

2 //Where to get data

3 settings [0]="-dp=src/main/java/experiments/data/tsc/";

4 //Where to write results

5 settings [1]="-rp=Temp/";

6 // Whether to generate train files or not

7 settings [2]="-gtf=true";

8 // Classifier name: See ClassifierLists for valid options

9 settings [3]="-cn=TSF";

10 // Problem file

11 settings [4]="-dn=Chinatown";

12 // Resample number: 1 gives the default train/test split

13 settings [5]="-f=1";

14 Experiments.ExperimentalArguments expSettings =

15 new Experiments.ExperimentalArguments(settings);

16 Experiments.setupAndRunExperiment(expSettings);

Listing 1.2. Using Experiments.java to build a single component.

HIVE COTE can read component results directly from file using syntax of the
form given in Listing 1.3. It will look in the directory structure created by Exper-
iments. Currently, this file loading method requires all the classifier results to be
present in order to build.

1 HIVE_COTE hc=new HIVE_COTE ();

2 hc.setBuildIndividualsFromResultsFiles(true);

3 hc.setResultsFileLocationParameters ("C:/Temp/", "Chinatown"

, 0);
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4 String[] components ={"TSF","RISE","cBOSS","STC"};

5 hc.setClassifiersNamesForFileRead (components);

Listing 1.3. Building HIVE-COTE from existing results files

HIVE COTE is configurable for different components, threadable (see Listing 1.4)
and contractable (see Listing 1.5). In sequential mode, it simply divides the time
equally between components. When threaded, it gives the full contract time to
each component. It does not yet thread individual components; it is on our
development list. You can set the maximum build time for HIVE COTE if the
components all implement the TrainTimeContractable interface.

1 HIVE_COTE hc = new HIVE_COTE ();

2 EnhancedAbstractClassifier [] classifiers =

3 {new RISE(), new TSF()};

4 String[] names = {"RISE","TSF"};

5 hc.setClassifiers(c, names , null);

6 hc.enableMultiThreading (2);

Listing 1.4. Threaded build of HIVE-COTE with bespoke classifiers

1 //Ways of setting the contract time

2 HIVE_COTE hc = new HIVE_COTE ();

3 //Minute , hour or day limit

4 hc.setMinuteLimit (10);

5 // Specify units

6 hc.setTrainTimeLimit (30, TimeUnit.HOURS);

7 //Or just give it in nanoseconds

8 hc.setTrainTimeLimit (10000000000L);

Listing 1.5. Contracting HIVE-COTE for a rom existing results files

Finally, HIVE COTE is tuneable. Our method of implementing tuned classifiers is
to wrap the base classifier in a TunedClassifier object which interacts through
the method setOptions. An example of tuning the α parameter is given in
Listing 1.6. We advise tuning using results loaded from file. We have found
tuning α makes no significant difference. We have not finished evaluating tuning
which components to use.

1 HIVE_COTE hc=new HIVE_COTE ();

2 hc.setBuildIndividualsFromResultsFiles(true);

3 hc.setResultsFileLocationParameters (resultsPath , dataset ,

fold);

4 hc.setClassifiersNamesForFileRead (cls);

5 TunedClassifier tuner=new TunedClassifier ();

6 tuner.setClassifier(hc);

7 ParameterSpace pc=new ParameterSpace ();

8 double [] alphaVals ={1,2,3,4,5,6,7,8,9,10};

9 pc.addParameter("A",alphaVals);

10 tuner.setParameterSpace(pc);

Listing 1.6. Tuning HIVE-COTE α parameter from existing results files
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3.2 Python Implementation of HIVE-COTE 1.0 in sktime

A Python implementation of HIVE-COTE is under development and available
in sktime. As previously discussed, this version of the algorithm is less mature in
terms of its development and the results reported in this paper are from the Java
version of the algorithm. The sktime implementation is in an alpha state, and
will eventually converge on the same functionally as the more developed Java
implementation, but currently has a number of limitations (such as building from
file and running constituents in parallel). Further, the Python implementations
of the constituent classifiers are less efficient than the Java implementations, and
as such, HIVE-COTE 1.0 in sktime is slower than the tsml implementation on
equivalent inputs.

The interface and basic usage of HIVE-COTE in sktime is very similar to
that of tsml. The terminology is slightly different however as the sktime version
uses fit and predict derived from scikit-learn while the Java version uses build
and classify from Weka/tsml. Notionally the process of constructing and making
predictions with HIVE-COTE are equivalent and a simple example of fitting and
predicting with HIVE-COTE in sktime is given in Listing 1.7. The most up-
to-date implementation of HIVE-COTE can be found in the sktime toolkit on
GitHub under the hive-cote branch3.

1 def basic_hive_cote(data_dir , dataset_name):

2 # using the default constructor for the HIVE -COTE

class

3 hc = HIVE -COTE()

4

5 # loading training data

6 train_x , train_y = load_data(

7 data_dir + dataset_name + "_TRAIN.ts")

8

9 # building HIVE -COTE 1.0 sequentially

10 hc.fit(train_x , train_y)

11

12 # loading testing data

13 test_x , test_y = load_data(

14 data_dir + dataset_name + "_TEST.ts")

15

16 # predict class values of the test data

17 preds = hc.predict(train_x)

18

19 # calculate the test accuracy

20 acc = accuracy_score(self.train_y , preds)

Listing 1.7. A simple example of using HIVE-COTE 1.0 in sktime

3 https://github.com/alan-turing-institute/sktime/blob/hive cote/sktime/contrib/
meta/ensembles.py.

https://github.com/alan-turing-institute/sktime/blob/hive_cote/sktime/contrib/meta/ensembles.py
https://github.com/alan-turing-institute/sktime/blob/hive_cote/sktime/contrib/meta/ensembles.py
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4 Performance

5 4 3 2 1

1.4688 HC 1.0
2.6875 STC
3.3929 cBOSS

3.6161RISE
3.8348TSF

Fig. 2. Critical difference diagram for HIVE-COTE 1.0 and its four components on
112 UCR TSC problems. Full results are available from www.timeseriesclassification/
results.php

To measure performance of the new HIVE-COTE, we evaluate each compo-
nent and the algorithm itself on 112 of the 128 UCR archive datasets. These 112
datasets are all equal length and have no missing values. Figure 2 shows the crit-
ical difference diagram for HIVE-COTE 1.0 (HC 1.0) and its four components.
This broadly mirrors the performance presented in [15]. We have compared the
results of the four components to the original results and found there is no sig-
nificant difference. Comparison of HIVE-COTE alpha version and 1.0 identify a
small, but significant, difference. Removing EE makes HIVE-COTE worse on 48
and better on 33 of the 85 datasets used in the original experiments. The mean
reduction in accuracy is 0.6%. The differences in accuracy on specific problems
identify those where a distance based approach may be the best. MedicalIm-
ages, SonyAIBORobotSurface1, WordSynonyms and Lightning7 were all more
than 5% less accurate with EE removed. We are trading this small loss in aver-
age accuracy for significant gains in run time and reduction in memory usage.
We have explored ways of making EE more efficient, but as yet none of these
approaches have met the criteria for maintaining accuracy and providing suffi-
cient speed up. Since HIVE-COTE alpha was proposed, three new algorithms
have achieved equivalent accuracy. TS-CHIEF [20] is a tree ensemble that embeds
dictionary, spectral and distance based representations. InceptionTime [9] is a
deep learning ensemble, combining five homogeneous networks each with ran-
dom weight initialisations for stability. ROCKET [7] uses a large number (10,000
by default) of randomly parameterised convolution kernels in conjunction with
a linear ridge regression classifier. We use the configurations of each classifier
described in their respective publications. Figure 3 shows the critical difference
diagram for these three classifiers and HC 1.0. There is no significant difference
between any of them. The differences between HIVE-COTE and the other three
are summarised in Table 1. TS-CHIEF is the most similar to HIVE-COTE, with
an average accuracy just 0.25% lower and a high correlation between accuracies.
ROCKET has a high variation in performance, as reflected in the high standard

www.timeseriesclassification/results.php
www.timeseriesclassification/results.php
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4 3 2 1

2.3991 TS-CHIEF
2.4725 ROCKET2.5367HC 1.0

2.5917InceptionTime

Fig. 3. Critical difference diagram for current state of the art on 109 UCR TSC prob-
lems.

deviation of differences and the difference between the mean and median of the
differences. It also has the lowest correlation to HC 1.0.

Table 1. Summary of differences in accuracy between HIVE-COTE and the other
three algorithms. A negative difference indicates HIVE-COTE is more accurate.

Mean Median Std Dev of differences Correlation

TS-CHIEF −0.25% 0.00% 3.801 95.54%

InceptionTime −0.65% 0.00% 5.82 89.46%

ROCKET −1.41% 0.05% 8.64 80.28%

Table 2 shows the results for problems with the 10 biggest differences between
HIVE-COTE and ROCKET. ROCKET does very poorly on some problems
(hence the large average difference in Table 1). InceptionTime also shares this
characteristic of occasionally simply failing on a problem. It is not obvious why
this happens to both ROCKET and InceptionTime. It may be the result of over-
fitting. It is worthwhile considering the run time of these algorithms. However,
comparisons are made more difficult because of the different software. HIVE-
COTE and TS-CHIEF are both built using tsml, so are directly comparable.
Table 3 summarises the time taken to train the classifiers on 109 UCR prob-
lems. Three problems (HandOutlines, NonInvasiveFetalECGThorax1 and Non-
InvasiveFetalECGThorax2) are omitted because TS-CHIEF did not complete
within 7 days (the job limit on our cluster). Of the HC-1.0 components, STC
is by far the slowest. This is caused by the classifier, Rotation Forest, not the
transform, which is contracted to take at most one hour. The STC design prin-
ciple is to choose a large number of shapelets (up to 1000) and let the classi-
fier sort out their importance. Rotation forest is on average the best approach
for problems with all real valued attributes [2], and we have developed a con-
tracted version that can, if necessary, be used to control the build time (see List-
ing 1.6). Most of the extra computation required by HIVE-COTE is in forming
the estimates of the accuracy on the train data. TS-CHIEF is the slowest algo-
rithm, but it is approximately the same as HIVE-COTE. We do not have reliable
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Table 2. Accuracy for ten problems with the biggest difference between HIVE-COTE
and ROCKET (five negative and five positive differences).

TS-CHIEF ROCKET HC 1.0 InceptionTime

PigAirwayPressure 96.01% 19.55% 95.77% 92.21%

SemgHandMovementCh2 88.50% 65.26% 88.90% 55.10%

EthanolLevel 60.56% 62.53% 84.90% 87.55%

CinCECGTorso 95.34% 86.41% 99.37% 83.28%

ScreenType 59.42% 60.90% 72.42% 70.56%

FiftyWords 84.27% 82.51% 77.16% 82.68%

ChlorineConcentration 66.08% 79.61% 73.39% 86.36%

MedicalImages 79.91% 80.51% 74.04% 79.63%

WordSynonyms 79.37% 76.44% 69.32% 75.18%

SonyAIBORobotSurface1 88.97% 95.81% 82.63% 95.42%

single-core times for ROCKET, which is run in sktime. It is undoubtedly faster
than HIVE-COTE and TS-CHIEF though, by at least an order of magnitude.

Table 3. Time in hours to train a classifier for 112 of the UCR problems on a single
core.

TSF cBOSS RISE STC HC 1.0 TS-CHIEF

Mean 0.13 0.11 0.15 2.30 4.26 5.75

Total 14.15 12.31 16.05 251.12 464.49 626.33

Test time can be a factor for deploying classifiers in time critical situations.
Table 4 summarises the time (in minutes) taken to predict the test cases. STC
is the slowest component when testing, again caused by the classifier not the
transform. TS-CHIEF is the slowest in testing.

Table 4. Time in minutes to make predictions on the test data for 109 of the UCR
problems

TSF cBOSS RISE STC HC 1.0 TS-CHIEF

Mean 0.01 0.08 0.07 0.62 0.78 4.09

Total 1.42 8.63 7.09 67.50 84.64 445.55

We can also measure maximum memory usage of the classifiers, as this is also
often a serious bottleneck for scalability. Table 5 summarises the memory usage
of the six tsml classifiers. The pattern is similar to that observed with run time.
TSF, RISE and cBOSS have a light memory footprint. STC, and hence HIVE-
COTE, have a larger memory usage. TS-CHIEF is the most memory hungry, and
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it seemingly does not scale well in terms of memory. For, example, on the 11 prob-
lems where HIVE-COTE required more than 1 GB, TS-CHIEF required approx-
imately four times the memory. The highest memory usage on the 109 problem it
could complete was 18 GB on FordA and FordB. It seems highly likely that the
memory usage of TS-CHIEF could be improved without loss of accuracy.

Table 5. Memory usage in MB for 109 UCR problems

TSF cBOSS RISE STC HC 1.0 TS-CHIEF

Mean 162 255 263 1,464 1,618 2,004

Max 1061 3432 740 3,533 4,426 18,532

5 Conclusions

The purpose of this report is to present a more practical version of HIVE-COTE
and compare it to recent advances in the field of TSC. On average, there is
no real difference between InceptionTime, TS-CHIEF, ROCKET and HIVE-
COTE in terms of accuracy. ROCKET is undoubtedly the fastest, but it is prone
to fail badly on the occasional data set. InceptionTime is slow and requires a
GPU. It also fails on some data sets. HIVE-COTE and TS-CHIEF are broadly
comparable. HIVE-COTE is presently more configurable and controllable.

We hope the results presented here and on the accompanying website serve
to act as a baseline comparison for any new research in the field in the future.
We have presented HIVE-COTE as is, without improvements that we have been
working on. Our next goal is to find a more accurate version that is comparable in
run time and memory usage, and to demonstrate scalability by introducing some
much larger problems into the UCR archive. We are also developing versions that
can handle unequal length series and multivariate TSC problems.
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Abstract. Time series ordinal classification is one of the less studied
problems in time series data mining. This problem consists in classifying
time series with labels that show a natural order between them. In this
paper, an approach is proposed based on the Shapelet Transform (ST)
specifically adapted to ordinal classification. ST consists of two different
steps: 1) the shapelet extraction procedure and its evaluation; and 2) the
classifier learning using the transformed dataset. In this way, regarding
the first step, 3 ordinal shapelet quality measures are proposed to assess
the shapelets extracted, and, for the second step, an ordinal classifier is
applied once the transformed dataset has been constructed. An empirical
evaluation is carried out, considering 7 ordinal datasets from the UEA &
UCR Time Series Classification (TSC) repository. The results show that
a support vector ordinal classifier applied to the ST using the Pearson’s
correlation coefficient (R2) is the combination achieving the best results
in terms of two evaluation metrics: accuracy and average mean absolute
error. A final comparison against three of the most popular and compet-
itive nominal TSC techniques is performed, demonstrating that ordinal
approaches can achieve higher performances even in terms of accuracy.

Keywords: Time series · Ordinal classification · Ordinal regression ·
Shapelet quality measures

1 Introduction

Time Series Ordinal Classification (TSOC) refers to a prediction problem where
the objective is to classify time series with an ordinal label, i.e. the set of
labels includes a natural order relationship. In this context, ordinal classifica-
tion [12] covers those supervised problems where the target variable is discrete
and includes a natural order relationship among the labels. Ordinal classifica-
tion problems can be found in several fields, such as meteorological prediction
[10,11], or medical research [19], among others.
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On the other hand, time series consists of data points collected chronologi-
cally. In the last years, a countless number of novel approaches in the nominal
Time Series Classification (TSC) field have been presented. According to [2],
TSC has been tackled from several points of view, depending on the discrimina-
tory features the approach is trying to find. One of these techniques are shapelets
[25], phase independent subsequences of the original time series able to differ-
entiate between classes, i.e. a class can be distinguished depending on whether
the shapelets could be found in the original time series or not. Further research
was done by Hills et al. in [13], where the Shapelet Transform (ST) was firstly
proposed, in which the best k shapelets (ordered by using a shapelet quality
measure) are used to build a transformed dataset in which the attributes are
the distances between the shapelets and the original time series. After that, an
effective classifier can be applied to the transformed dataset.

Focusing on the proposal of Hills et al. in [13], the ST pipeline can be divided
into two main steps: 1) the shapelet extraction procedure and 2) the classifier
learning using the transformed dataset as input. Regarding the first step, the
best k shapelets are selected by using a shapelet quality measure. In order to
adapt this approach to the ordinal setting, in this paper, we propose 3 different
metrics to measure the ordinal quality of the shapelets, and we compare them
against the state-of-the-art Information Gain metric. The second step is adapted
by considering an ordinal classifier, instead of using a nominal one, with the
objective of exploiting the natural order relationship of the labels. We compare
the results obtained against two nominal state-of-the-art techniques.

In this way, the main objectives of this paper are to establish a baseline for
TSOC using ST and to demonstrate that, for those ordinal datasets included in
the most popular TSC repository, ordinal approaches are able to achieve better
performance than standard TSC techniques in terms of accuracy.

2 Background

Time series is a series of data points arranged in time, i.e. the values of the
time series are chronological. In a more formal way, the i-th time series object is
defined as Ti = {ti1, ti2, . . . , tin}, where n is the length of the time series (note
that we only consider equal-length time series). Therefore, a time series dataset
is composed of N time series, being defined as T = {T1,T2, . . . ,TN}.

In this paper, we are considering ordinal TSC problems: each time series
is associated with a label Ci ∈ Y , where the set of ordinal labels is Y =
{C1, C2, . . . , CQ}, including Q > 2 categories. An order relationship between the
labels is found in the problem, i.e. the constraint C1 ≺ C2 ≺ . . . ≺ CQ should
be satisfied.

2.1 Time Series Shapelets

TSC is a very popular field of research in time series data mining [2]. One of
the most recent approaches in this field consists in an ensemble including several
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modules, each one based on a different transformation applied to the original
time series dataset, prior to the classification step. One of the first proposals was
the shapelet module. A shapelet [25] is a phase independent subsequence of the
original time series. The original approach finds all possible shapelets through an
enumerative search, which is particularly slow, and then embeds the shapelets
in a decision tree without a significant improvement in performance. From this
starting point, several approaches have been published in the literature, including
[3,9,13], among others. In this paper, we focus on the ST [13], a two-phase
approach that uses the extracted shapelets to transform the original dataset, in
which the transformed attributes represent the similarity in shape between the
original time series and the shapelets obtained, and then applies a classifier to
the transformed dataset.

More formally, a shapelet sj = {s1, s2, . . . , sl} is a subsequence of a time series
Tj , where l ≤ n and the subscript j is used to explicitly show that the shapelet s
is a subsequence of time series Tj . The main pipeline for the shapelet extraction
procedure consists of three parts [13]: first of all, a set of candidates is randomly
generated satisfying several constraints, then, the distance between each shapelet
and the original time series is computed to, finally, measure the shapelet quality.
The last version of ST [3] proposes new constraints for the shapelet extraction,
such as balancing the number of shapelets extracted per class. Moreover, the
Euclidean distance is used to measure the similarity between the set of shapelets
and the original time series; this distance is computed as the minimum of the
distances between the shapelet and all the subsequences with the same length
of the shapelet. Finally, the Information Gain (IG) [22] is used to assess the
shapelet quality and retain those with higher IG. The formulation is detailed
in [13].

In order to consider the natural order between the labels, we propose to
consider three different shapelet quality measures. The main idea is to extract
shapelets able to reduce the misclassification errors involving more jumps in the
ordinal scale:

– Ordinal Fisher (OF) score [20] is an ordinal adaptation of the Fisher score
[7]. This measure gives higher penalisation for distant classes in the ordinal
scale, therefore, distant classes should be associated with higher distances. It
is defined as:

OF (sj) =

∑Q
k=1

∑Q
j=1 |O(Ck) − O(Cj)|(x̄k − x̄j)2

(Q − 1)
∑Q

k=1(Sk)2
, (1)

where O(Cq) is the position of the category Cq in the ordinal scale, i.e.
O(Cq) = q, and x̄k and Sk are the mean and standard deviation of the dis-
tances according to the evaluated shapelet sj when considering only the time
series of the class Ck.

– The Pearson’s correlation coefficient (R2) calculates the correlation between
dsj ,Ti

and cyj ,yi
, i ∈ {1, . . . , N}, where dsj ,Ti

are the distances from the
shapelet sj to the original times series Ti, and cyj ,yi

are the differences of
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the corresponding class values cyj ,yi
= |O(Cj) − O(Ci)|, where yj is the class

of Tj (the time series from which the shapelet sj is extracted) and yi is the
class of Ti. In this way, R2 is defined as:

R2(s) =
N∑

i=1

S(dsj ,Ti
, csj ,Ti

)
Sdsj ,Ti

Scsj ,Ti

, (2)

where S(·) is the covariance of two variables.
– Similarly, the Spearman’s correlation coefficient (ρ) computes the correlation

between two categorical or continuous variables, following the idea presented
for the R2 quality measure. Therefore, ρ is defined as:

ρ(s) = 1 − 6
∑N

i=1(R(dsj ,Ti
) − R(csj ,Ti

))2

N(N2 − 1)
, (3)

where R(x) is the rank of x in the set of all values obtained.

2.2 Ordinal Classification

Once the transformed dataset is constructed (each new attribute j represents the
distance between time series i and shapelet j), a classifier is applied to it. One
of the main objectives of this paper is to demonstrate that ordinal classifiers can
lead to a better performance than nominal ones, given their ability to consider
the natural order between the labels. In this way, three different support vector
machine techniques have been chosen, using the ORCA framework [21]1:

– In order to perform comparisons, we first consider nominal Support Vector
Classifier (SVC) [14] with two options: one versus one formulation (SVC1V1)
and one versus all paradigm (SVC1VA). These two nominal classifiers are
very popular in the state-of-the-art, given their accuracy for both binary and
nominal multiclass problems.

– On the other hand, an ordinal technique is considered: the Support Vector
Ordinal Regression (SVOR) [23] methodology, which is the adaptation of
SVC to ordinal classification. Specifically, in this paper we have chosen the
SVOR version considering IMplicit constrains (SVORIM) [4]. This approach
computes the discriminant parallel hyperplanes for the data and a set of
thresholds by imposing implicit constraints in the optimization problem.

In order to assess the performance of ordinal classification problems, there
are several metrics that can be considered [5]. In this paper, apart from the
accuracy, which is the standard evaluation metric for nominal classification, a
specific ordinal evaluation metric should be considered to avoid ignoring order
information. In this sense, the misclassification errors are not equally penalised,
giving more cost to those misclassified patterns in farther classes. Therefore, we
have considered the Correct Classification Rate (CCR), also known as accuracy,
which is the global performance of a classifier and the Average Mean Absolute
Error (AMAE) [1], which measures the ordinal classification errors made for
each class.
1 ORCA is available in the repository https://github.com/ayrna/orca.

https://github.com/ayrna/orca
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3 Experimental Results and Discussion

This section exposes the ordinal time series datasets considered, as well as the
experimental settings used. Moreover, the results achieved for the three classifiers
applied to the four versions of ST using different shapelet quality measures are
also shown, along with a comparison of the best ordinal ST approach to the
main state-of-the-art algorithms in nominal TSC2.

3.1 TSOC Datasets

Table 1 shows 7 datasets appropriately selected from the popular UEA & UCR
TSC repository3, given their ordinal nature. All of them belong to the field of
bone age estimation [6], except the EthanolLevel dataset, which is obtained from
the detection of forget spirits using non-intrusive methods [15].

Apart from the main information of the datasets, the Imbalance Ratio (IR)
[18] is also included in Table 1. This feature shows whether the distribution of
patterns in the datasets is imbalanced, i.e. most of the patterns belongs to a
given class (high values for IR). In these cases, trivial classifiers can achieve high
values of accuracy.

Table 1. Characteristics of the datasets used in the experiments.

Dataset #Classes (Q) #Train #Test Length %IR

DistalPhalanxOutlineAgeGroup 3 400 139 80 1.532

DistalPhalanxTW 6 400 139 80 1.577

EthanolLevel 4 504 500 1751 0.750

MiddlePhalanxOutlineAgeGroup 3 400 154 80 0.881

MiddlePhalanxTW 6 399 154 80 1.276

ProximalPhalanxOutlineAgeGroup 3 400 205 80 0.951

ProximalPhalanxTW 6 400 205 80 2.203

3.2 Experimental Settings

The ST algorithm has been run for one hour during shapelet search. This algo-
rithm has been run with the default values. In the case of ST using IG as shapelet
quality measure, an inferior limit of IG = 0.05 is used to discard very low-
quality shapelets. Furthermore, aiming to reproduce the same behaviour for the
remaining shapelet quality measures, the lowest-quality 10% shapelets are also
discarded.

2 All the code used in this paper is available in the repository https://github.com/
dguijo/TSOC.

3 http://www.timeseriesclassification.com/.

https://github.com/dguijo/TSOC
https://github.com/dguijo/TSOC
http://www.timeseriesclassification.com/
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Regarding the datasets, the standard train and test data splits given in the
UEA & UCR TSC repository are used. Moreover, it is worthy of mention that
the models are adjusted using only the training set, whereas the test set is only
used to evaluate the learned models.

With respect the classifiers, they have been run once, given their deter-
ministic nature. Moreover, their sensitive hyper-parameters have been adjusted
using a nested 10-fold cross-validation approach, considering AMAE as the
parameter selection criteria, due to the fact that CCR ignores ordinal informa-
tion. Given that the three classifiers are SVM-based, the same range of values
{10−3, 10−2, . . . , 103} has been used to adjust both the cost parameter and the
kernel width.

Finally, the main code for the ST and for the IG shapelet quality measure
was obtained from sktime toolkit [17]4.

3.3 Results

In Table 2, the results achieved for the four versions of the ST using different
shapelet quality measures are shown. Concretely, the performances of the three
classifiers applied to the transforms are presented in terms of CCR and AMAE.
Furthermore, in order to compare the results in a more global way, we have
included the average ranking and the number of datasets in which the respective
shapelet quality measure is able to reach to the best performance (#Wins).

As can be seen in Table 2, the ST using R2 as shapelet quality measure is the
one achieving the best results for most of the datasets and classifiers. Specifically,
in terms of CCR, the R2 measure obtains an average ranking of 1.95, followed
by ρ (2.36). Regarding number of wins, the ST combined with R2 reaches to the
best results in 11 cases, whereas ST using either ρ or IG ties in 8 cases. On the
other hand, in terms of AMAE, the ST combined with R2 also achieves the best
results, achieving an average ranking of 1.74 with 11 wins, whereas the second
best approach is the standard ST using the IG as shapelet quality measure, with
an average ranking of 2.38 and 8 wins. Therefore, it is clear that ST using R2

as shapelet quality measure achieves the best results without much dependence
on the classifier used.

3.4 Comparison Against the State-of-the-Art Algorithms in TSC

In order to establish a comparison against the main state-of-the-art algorithms
in TSC, the following three algorithms have been used (which achive the best
results up-to-the-knowledge of the authors):

– The Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-
COTE) [16] is a meta-ensemble composed of five different modules with sev-
eral algorithms in each one. These modules rely on the idea of transforming
the original dataset prior to classification, such as ST, among others.

4 sktime is available in the repository https://github.com/alan-turing-institute/
sktime.

https://github.com/alan-turing-institute/sktime
https://github.com/alan-turing-institute/sktime
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Table 2. CCR and AMAE results achieved by the four ST methods (OF, ρ and R2

are the proposals in this paper).

Classifier Dataset CCR AMAE

IG OF ρ R2 IG OF ρ R2

SVORIM DistalPhalanxOutline 75.54 74.82 75.54 75.54 0.2277 0.2665 0.2443 0.2277

DistalPhalanxTW 68.35 69 .06 65.47 69.78 0.4671 0.5045 0.5264 0 .4822

EthanolLevel 71.40 46.00 62.00 62 .40 0.2938 0.6067 0.3988 0 .3973

MiddlePhalanxOutline 62.99 62.99 63.64 63.64 0.5484 0 .5521 0.5791 0.5676

MiddlePhalanxTW 56.49 54.55 53.90 56.49 1.0137 1.0308 1 .0039 0.9851

ProximalPhalanxOutline 86 .34 84.88 86 .34 87.32 0 .1824 0.2254 0.1978 0.1744

ProximalPhalanxTW 74.63 76 .10 79.02 76 .10 0.5371 0.4989 0 .4521 0.4198

SVC1V1 DistalPhalanxOutline 75.54 74.82 75.54 74.82 0.2277 0.2334 0.2277 0.2334

DistalPhalanxTW 69 .06 69 .06 66.91 70.50 0.5600 0 .5046 0.5440 0.4614

EthanolLevel 69.00 48.80 58.20 61 .00 0.3301 0.6795 0.4632 0 .4294

MiddlePhalanxOutline 61.04 61.04 61 .69 62.34 0.5827 0.5775 0 .5737 0.5636

MiddlePhalanxTW 59.09 56.49 59.09 59.09 0 .8785 0.8962 0.8963 0.8541

ProximalPhalanxOutline 85 .85 86.34 85 .85 85 .85 0 .1858 0.1820 0.2016 0 .1858

ProximalPhalanxTW 76.59 78 .54 80.98 72.68 0.5104 0.4836 0.4536 0 .4569

SVC1VA DistalPhalanxOutline 75.54 74.10 74 .82 74.10 0.2277 0.2572 0 .2546 0.2778

DistalPhalanxTW 66.19 68 .35 67.63 69.06 0.5972 0 .5158 0.5702 0.4893

EthanolLevel 67.60 47.20 56.40 58 .80 0.3444 0.7630 0.5178 0 .4794

MiddlePhalanxOutline 62 .34 61.04 62 .34 63.64 0 .5636 0.5723 0.5699 0.5561

MiddlePhalanxTW 55.19 49.35 57.79 56 .49 1.0677 1.1290 0 .9689 0.9541

ProximalPhalanxOutline 85 .85 85.37 85 .85 86.34 0 .1858 0.1896 0 .1858 0.1820

ProximalPhalanxTW 75.61 76 .59 80.98 76 .59 0.5362 0.4852 0.3825 0 .4446

Average ranking 2.48 3.22 2 .36 1.95 2 .38 3.24 2.64 1.74

#Wins 8 1 8 11 8 1 3 11

– InceptionTime [8] is an ensemble of deep Convolutional Neural Networks
(CNN) models, inspired by the Inception-v4 architecture. In this model, sev-
eral filters of different lengths are applied simultaneously to an input time
series.

– Time Series Combination of Heterogeneous and Integrated Embedding For-
est (TS-CHIEF) [24] is an ensemble classifier integrating the most effective
embeddings of time series, using tree-structured classifiers.

All these three ensembles are highly competitive in terms of accuracy,
although HIVE-COTE is the one achieving the best performance in terms of
CCR. However, the main advantages of InceptionTime and TS-CHIEF are their
scalability and efficiency.

Table 3 shows the comparison carried out in terms of CCR, given that it is the
main goal of TSC. Specifically, the results shown for the ST are those in which
the Pearson’s correlation coefficient (R2) is used as the shapelet quality measure,
considering different classifiers applied to the transformed dataset: SVC1V1,
SVC1VA and SVORIM. Moreover, the results shown for the InceptionTime and
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TS-CHIEF algorithms are those presented in the original papers (though we
have run the TS-CHIEF algorithm for the EthanolLevel dataset, given that it is
included in the cited work). For HIVE-COTE, they were obtained using the last
version of the algorithm, because it has been recently improved.

Table 3. Comparison in terms of CCR of different classifiers applied to the ST using
R2 as quality measure against the state-of-the-art algorithms in TSC.

SVC1V1 SVC1VA SVORIM HIVE-COTE InceptionTime TS-CHIEF

DistalPhalanxOutline 74 .82 74.10 75.54 75.54 73.38 74.10

DistalPhalanxTW 70.50 69.06 69 .78 67.63 68.35 68.35

EthanolLevel 61.00 58.80 62.40 71 .40 81.40 52.80

MiddlePhalanxOutline 62 .34 63.64 63.64 59.09 55.19 59.09

MiddlePhalanxTW 59.09 56 .49 56 .49 55.84 51.30 55.85

ProximalPhalanxOutline 85.85 86 .34 87.32 84.39 84.88 84.88

ProximalPhalanxTW 72.68 76.59 76.10 80 .00 77.56 81.46

Average ranking 3 .00 3.21 2.36 3.79 4.43 4.21

#Wins 2 1 3 1 1 1

As can be seen in Table 3, SVORIM achieves the best results or the second
best in most of the datasets, with 3 wins and an average ranking of 2.36, con-
siderably better than the rest of approaches. SVC1V1 is the second one with
an average ranking of 3.00 and 2 wins. The remaining techniques only have
1 win and their average rankings are much worse. Furthermore, all the classi-
fiers applied to the ST combined with R2 shapelet quality measure (SVC1V1,
SVC1VA and SVORIM) achieve a higher performance than state-of-the-art TSC
methods.

Some facts must be outlined from the results shown in Table 3: 1) The com-
bination of the ordinal classifier SVORIM with ST R2 quality measure obtains
the best performance in terms of CCR. 2) Nominal classifiers, SVC1V1 and
SVC1VA, are taking advantage of the ordinal information induced by the ST
combined with R2 and also obtain competitive results, better than those of the
ensemble approaches. 3) HIVE-COTE and TS-CHIEF results are very similar
for almost all the datasets, being HIVE-COTE slightly better. 4) InceptionTime
is the algorithm obtaining the worse results, because the datasets include short
time series. The only exception is EthanolLevel, with length equal to 1751, for
which InceptionTime is the one obtaining the best performance.

4 Conclusions

This paper presents a novel approach to Time Series Ordinal Classification using
the Shapelet Transform (ST). To obtain the k best shapelets for the ST, 3 dif-
ferent ordinal shapelet quality measures are proposed, exploiting the order of
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labels: Ordinal Fisher (OF), Pearson’s correlation coefficient (R2) and Spear-
man’s correlation coefficient (ρ). These approaches are then compared against
Information Gain (IG), which is the one used by the standard ST.

On the other hand, regarding the second step of ST in which a classifier
is applied to the transformed data, this paper proposes the use of an ordinal
support vector classifier, which is compared against the corresponding nominal
versions.

Finally, a comparison against some of the best state-of-the-art techniques in
TSC is included: HIVE-COTE, TS-CHIEF and InceptionTime. In this way, the
best ordinal approach presented in this paper (ST using R2 as shapelet quality
measure combined with the support vector ordinal classifier) is able to obtain a
better accuracy rank than the alternative nominal TSC techniques.

Possible lines of future research are to include the ordinal information of
the labels in other points of the ST process and to adapt other modules of the
HIVE-COTE meta-ensemble to ordinal classification.
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12. Gutiérrez, P.A., Pérez-Ortiz, M., Sánchez-Monedero, J., Fernández-Navarro, F.,
Hervás-Mart́ınez, C.: Ordinal regression methods: survey and experimental study.
IEEE Trans. Knowl. Data Eng. 28(1), 127–146 (2016). https://doi.org/10.1109/
tkde.2015.2457911

13. Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time
series by shapelet transformation. Data Min. Knowl. Disc. 28(4), 851–881 (2013).
https://doi.org/10.1007/s10618-013-0322-1

14. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector
machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002). https://doi.org/10.
1109/72.991427

15. Large, J., Kemsley, E.K., Wellner, N., Goodall, I., Bagnall, A.: Detecting forged
alcohol non-invasively through vibrational spectroscopy and machine learning. In:
Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD
2018. LNCS (LNAI), vol. 10937, pp. 298–309. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-93034-3 24

16. Lines, J., Taylor, S., Bagnall, A.: Time series classification with HIVE-COTE: The
hierarchical vote collective of transformation-based ensembles. ACM Trans. Knowl.
Disc. Data 12(5), 1–35 (2018). https://doi.org/10.1109/icdm.2016.0133
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Abstract. Discriminant chronicle mining (DCM) [6] tackles temporal
sequence classification by combining machine learning and chronicle min-
ing algorithms. A chronicle is a set of events related by temporal bound-
aries on the delay between event occurrences. Such temporal constraints
are poorly expressive and discriminant chronicles may lack of accuracy.

This article generalizes discriminant chronicle mining by modeling
complex temporal constraints. We present the generalized model and we
instantiate different generalized chronicle models. The accuracy of these
models are compared with each other on simulated and real datasets.

Keywords: Temporal patterns · Discriminant patterns · Sequence
classification

1 Introduction

Temporal sequences, i.e., sequences of timestamped events, are broadly encoun-
tered in various applications. They may represent customer purchases, logs of
monitoring systems, or patient care pathways and their analysis is highly valu-
able to support experts 1) to better understand underlying processes and 2)
to decide future actions. Face to the large amount of such data, sequence min-
ing techniques have been proposed to extract interesting behaviors. While most
sequence mining approaches are dedicated to the extraction of frequent behav-
iors, few pattern mining approaches deal with discriminant patterns. Discrim-
inant patterns address the task of sequence classification. In a set of labeled
sequences, a discriminant pattern associated to a label L occurs more likely
in sequence labeled with L than in the other sequences. Discriminant patterns
describe the classes of sequences but they can also be used to predict labels of
new sequences.

In this work, we assume that temporal information is an important feature
to accurately discriminate behaviors. For instance, knowing the delay between
two successive visits on a commercial web site may distinguish loyal customers
from the others. The sequence of visited pages may be the same, it is the delay
between the visit that witnesses the customer loyalty.
c© Springer Nature Switzerland AG 2020
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Dauxais et al. [6] introduced chronicles to discriminate temporal behaviors
in temporal sequences. A chronicle is a set of events linked by temporal rela-
tions imposing numerical bounds on delays between events. We showed that the
temporal information captured by chronicles improves the accuracy of sequence
labeling.

Mining discriminant chronicles is similar to a regular classification problem.
It consists in finding suitable boundaries on the temporal delay to accurately
discriminate classes. But, chronicles express very simple boundaries, i.e., delays
belonging to an interval.

In this article, we extend the expressiveness of the temporal constraints dis-
covered in chronicles to study the discriminatory power of different types of
temporal constraints. The main contribution is the proposal of the generalized
discriminant chronicles (GDC). GDC is a meta-model that enables to represent
different types of patterns, characterized by their modeling of temporal rela-
tions between events. Our framework includes a unified GDC mining procedure
inspired by the DCM algorithm [6] and a unified decision procedure to label new
sequences. The experiments compare the accuracy of four instances of GDC on
simulated and real datasets.

2 Related Works

Sequential patterns have been studied since the early stage of the field of pattern
mining [18]. Mabroukeh et al. [13] review the most efficient sequential pattern
approaches. All of them are based on the anti-monotonicity property of the
pattern support which states that larger patterns occur fewer times in sequences.

In temporal sequences, events are timestamped and our assumption is that
the temporal dimension is a key dimension to accurately characterize interest-
ing behaviors. While sequential patterns capture only information about the
order of occurrences of events, temporal patterns capture a more expressive
temporal information. Different proposals have been made to enrich sequen-
tial patterns with more complex temporal information. Mannila et al. proposed
episodes [14] as a pattern type which could combine parallel or serial events.
Hoeppner et al. [11] introduced Allen’s temporal logic to specify the temporal
relations between interval events. Two events are not necessarily sequentially
ordered, they could “overlap” or “be covered”. The temporal relations that are
discovered are qualitative. In temporally annotated sequences (TAS) [10] the
successive events are constrained by numerical duration extracted by combining
a density clustering technique. The chronicle model [5] is at a crossroad between
episode and TAS. It is a partial temporal order applied on pattern events con-
strained by numerical temporal intervals. This pattern model is more general
than sequential patterns, TAS and episodes.

Finally, quantitative episodes [15] are tree-based patterns that are graphi-
cally similar to chronicles but formally more similar to sets of TAS. Indeed, a
quantitative episode represents a set of TAS that are all specifying the same
sequential pattern. This set of TAS is represented by a tree rooted on the first
event of the sequential pattern for which each path leading to a leaf is a TAS.
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Sequence classification has been addressed with statistical approaches such
as HMM but also with machine-learning approaches such as recurrent neural
networks (LSTM) [12].

Bringmann et al. [3] reviewed “pattern-based classification” that combines
pattern mining algorithms and machine learning algorithms to classify structured
data, such as sequences. This problem is quite similar to the subgroup discovery
task [2]. The main difference between both approaches is that subgroup discovery
is meant in a descriptive way whereas pattern-based classification is meant in a
predictive way.

The main steps of pattern-based classification are the following (1) a pattern
mining step building a vector representation of sequences based on the presence
or absence of some extracted patterns; and (2) a machine learning algorithm
building a classifier based on the vector representations of labeled sequences.
The use of a final classifier makes the results difficult to interpret. For this
reason, we focus our interest on the extraction of discriminant patterns, i.e.,
patterns that can be interpreted by their own as a discriminant behavior.

The proposed approaches are based on interestingness measures different
from frequency and capturing the differences between occurrences with subsets
of sequences. The most-used measures are growth rate [7] and disproportion-
ality [1]. The BIDE-D algorithm [9] extracts discriminant sequential patterns
instead of frequent ones. This technique allows to use a smaller pattern set
than the frequent one with a similar accuracy. Recently, the DCM algorithm [6]
extended the discriminant sequential pattern mining with chronicles. But tempo-
ral constraints of chronicles (i.e., inter-event duration, so-called time gap, within
an interval) is maybe too simple to capture complex temporal relationships, and
mining patterns with more complex temporal constraints may improve classifi-
cation accuracy.

3 Discriminant Chronicle Mining

Let E be a set of event types totally ordered by ≤E. An event is
a pair (e, t) such that e ∈ E and t ∈ R. A sequence is a tuple
〈SID, 〈(e1, t1), (e2, t2), . . . , (en, tn)〉, L〉 where SID is the sequence index,
〈(e1, t1), (e2, t2), . . . , (en, tn)〉 a finite sequence of events and L ∈ L where L is a
label set. Sequence events are ordered by timestamps and by labels if equality.

Table 1 represents a set of six sequences containing five event types (A, B,
C, D and E) and labeled with two different labels L = {+,−}. In such case ≤E

is the lexicographic order.
A chronicle is a couple (E , T ) such that: E = {{e1 . . . en}}, ei ∈ E and ei ≤E ej

for all 1 ≤ i < j ≤ n. E is a multiset, i.e. E can contain several occurrences of a
same event type. T is a set of temporal constraints, i.e. expressions of the form
(ei, i)[t−, t+](ej , j) such that i, j ∈ [n], i < j and t−, t+ ∈ R ∪ {−∞,+∞}}. A
temporal constraint specifies acceptable delays between the occurrences of the
multiset events.
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Table 1. Sequences labeled with two classes {+, −}.

SID Sequence Label

s1 (A, 1), (B, 3), (A, 4), (C, 5), (C, 6), (D, 7) +

s2 (B, 2), (D, 4), (A, 5), (C, 7) +

s3 (A, 1), (B, 4), (C, 5), (B, 6), (C, 8),(D, 9) +

s4 (B, 4), (A, 6), (E, 8), (C, 9) −
s5 (B, 1), (A, 3), (C, 4) −
s6 (C, 4), (B, 5), (A, 6), (C, 7), (D, 10) −

A

B
[-1,

3]

C

[-3,5]

[-2,2]

D
[4,5]

C
[1,3]

A

B
[2,3

]

C

[4,5]

[-2,2] A

C

[-3,1]

C
[2,4]

Fig. 1. Examples of three chronicles occurring in Table 1 (detailed in the text). From
left to right, the chronicles C, C1 and C2.

A chronicle C = (E = {{e′
1, . . . , e′

m}}, T ) occurs in a sequence s = 〈(e1, t1), . . . ,
(en, tn)〉, denoted C ∈ s, iff there exists an injective function f : [m] �→ [n]
such that 1) s̃ = 〈(ef(1), tf(1)), . . . , (ef(m), tf(m))〉 is a subsequence of s, 2)
∀i, e′

i = ef(i) and 3) ∀i, j, tf(j) − tf(i) ∈ [t−, t+] where ef(i)[t−, t+]ef(j) ∈ T .
An occurrence of C in s is a list of timestamps O = 〈o1, . . . , om〉 where ∀i ∈
[m], oi = tf(i) ∈ R.

The support of a chronicle C in a set of sequences S is the number of sequences
in which C occurs:

supp(C,S) = |{s ∈ S | C ∈ s}|.
Figure 1 illustrates three chronicles represented by graphs. Chronicle C =

(E , T ) where E = {{A,B,C,C,D}} and T = {(A, 1)[−1, 3](B, 2), (A, 1)[−3, 5](C, 3),
(B, 2)[−2, 2](C, 3), (B, 2)[4, 5](D, 5), (C, 3)[1, 3](C, 4)} is illustrated at the top left.
Chronicle C (see Fig. 1 on the left), occurs in sequences s1, s3 and s6 of Table 1.
We notice there are two occurrences of C in sequence s1. Nonetheless, its support
is supp(C,S) = 3. The two other chronicles, denoted C1 and C2, occur respectively
in sequences s1 and s3; and in sequence s6. Their supports are supp(C1,S) = 2
and supp(C2,S) = 1.

Frequent chronicle mining consists in extracting all chronicles C in a dataset
S such that supp(C,S) ≥ σmin [5]. The DCM algorithm extracts discriminant
chronicle [6]. A discriminant chronicle occurs at least gmin times more in the
set of positive sequences, i.e. sequences labeled with +, than in the set of nega-
tive sequences (labeled with −). Then, it can be represented as a classification
rule C ⇒ + specifying that sequences in which C occurs more likely belongs to
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class +. In this mining task, the user has to specify two thresholds: the minimum
frequency threshold σmin and the minimal growth rate gmin ≥ 1.

4 Generalized Discriminant Chronicles (GDC)

We now introduce the generalized discriminant chronicle (GDC) meta-model.
The GDC meta-model defines an abstract pattern model of temporal behaviors.
Next section instantiates different concrete approaches within a unified frame-
work of generalized discriminant chronicle, i.e. a GDC model and a mining
algorithm (see Sect. 4.2).

Let L be a set of labels and E be a set of event types, a generalized discrim-
inant chronicle (GDC) is a couple (E , μ), where E is a multiset of event types
and μ : R|E| �→ [0, 1]|L| is an occurrence assessment function.

The occurrence assessment function intuitively gives the confidence measure
that a multiset witnesses each label. For some occurrence O ∈ R

|E| of multiset
E in a sequence, μ (O) = [p1, p2, . . . , p|L|] where ∀i, μi (O) = pi ∈ [0, 1] gives the
confidence measure that O belongs to the i-th class. In case it sum to 1, this
vector can be interpreted as a probability distribution.

GDC generalizes the previous definition of chronicles in two manners: 1) the
occurrence assessment function is a generalization of the temporal constraints,
2) the weighted vector of decisions [0, 1]|L| is the generalization of the association
of a chronicle to a label (C ⇒ L, L ∈ L).

In particular, it is possible to encode the discriminant chronicle (E , T ) ⇒ Ll,
where Ll ∈ L is the l-th sequence class, as a GDC using μT defined such that
for some occurrence O = {oi}i∈[|E|] of E :

μT (O) =
{
1l if ∀ei[a, b]ej ∈ T , a ≤ oj − oi ≤ b
0 otherwise

where 1l is a vector of zeros except at position l (value 1), and 0 is a vector
of zeros. The size of these two vectors is |L|.

4.1 Taking Decisions with Generalized Discriminant Chronicles

This section describes how generalized discriminant chronicles are used to auto-
matically classify new sequences. Let C = (E , μ) be a GDC and s be a sequence
to classify such that there exists at least one occurrence O ∈ R

|E| of multiset E .
Then, decision vector is given by μ(O). But the multiset E may occur several
times in s. All decisions have to be combined and the final classification decision
for sequence s, denoted dC(s) ∈ L, is the class label with the largest confidence
value:

dC(s) = argmax
l∈L

(
max

O
μl(O)

)
(1)

where maxO μl (O) denotes the maximum confidence value obtained for label
l ∈ L for all occurrences O of the multiset. The function dC(s) enables to use a
GDC as a decision rule. It decides which class a sequence belongs to.
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Fig. 2. Examples of multiple occurrences of two chronicles C and C′ to be combined
to make the final decision. A “rake” illustrates item positions in the sequence of one
occurrence of the multiset.

The class label can also be decided from a set of chronicles C = {Ci}1≤i≤n. In
this case, each chronicle yields its own decision, and they are merged into a final
decision. The decision procedure we propose, denoted dC(s) – with a collection
of chronicles as subscript, is a linear combination of the number of occurrences
of a chronicle Ci in s labeled with lj ∈ L, more formally:

dC(s) = argmax
j∈L

(
n∑

i=1

αi,jν
j
Ci

(s) + βj

)
(2)

where αi,j ∈ R and βi,j ∈ R are parameters, and νj
Ci

(s) is the number of
occurrences of chronicle Ci in sequence s that suggests classifying the sequence
in class j (i.e. dCi

(s) = j):

νj
Ci

(s) =
∣∣∣∣
{

O ∈ R
|E|

∣∣∣∣argmax
l∈L

(μl(O)) = lj

}∣∣∣∣ (3)

Figure 2 illustrates a sequence s classified with a set of two chronicles C
and C ′, and |L| = 3. Chronicle C occurs twice in s and C ′ occurs thrice, O =
{oC1 , oC2 , oC

′
1 , oC

′
2 , oC

′
3 }. The figure illustrates respective decision vectors.

In this case, νC = [0, 0, 2] because the majority class in the two occurrences
of chronicle C is the third one, and νC′ = [0, 1, 2]. Assuming βj = 0 and αi,j =
1, ∀i, j, then the predicted class is dC(s) = 3 because

∑n
i=1 αi,3ν

3
Ci

(s) + β3 = 4
is the largest predicted value among possible classes.

The intuition is that the contribution to the final decision of chronicle Ci

is more important if this chronicle appears several times in the sequence. Com-
bining the numbers of occurrences is preferred to the combination of confidence
measures to prevent from bias due to chronicles with low recall (i.e. poorly
informative) but with possible high confidence.

In practice, the αi,j and βj parameters are not set up manually but learned
from data as explain in next section.
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Fig. 3. Overall procedure of sequence classifier learning.

4.2 Learning Generalized Discriminant Chronicles Classifiers

The overall procedure dedicated to learn the sequence classifier is given in Fig. 3.
This procedure extracts both a set of γ discriminant chronicles, denoted C, and
parameters values of decision function (see Eq. 2). First of all, the learning
dataset is split into two separated bunches of sequences.

One dataset is used to extract a set of discriminant chronicles C = {Ci}.
A subset of the γ most discriminant chronicles, denoted C, is selected from C.
According to BIDE-D [9], reducing the set of chronicles prevents from overfit-
ting. The second dataset is used to learn the decision procedure. In case of a
dataset with two classes (L = {+,−}), Eq. 2 can be seen as a linear classifica-
tion problem. Then, a linear-SVM classifier learns the αi,j and βj parameters.
In practice, a linear-SVM classifier is also used for a multi-class setting param-
eters and its model serves as decision function that takes the final classification
decision.

We now come back to the mining of generalized discriminant chronicles. This
algorithm is based on the original DCM algorithm [6]. Algorithm 1 gives the
general principle of GDC mining from a dataset of labeled sequences S. The
two main parameters are σmin, a minimal support threshold used to prevent
from generating too much poorly-representative chronicles and gmin, a minimal
growth rate threshold. The overall principle from learning multiple-class chroni-
cles is the one class against all. For some class L, the minimal growth rate gmin

indicates that a GDC occurs at least gmin times more in sequences of class L
than in all other sequences.

Algorithm 1 extracts GDC for each class L in two main steps. It firstly
extracts M, the set of frequent multisets in the sequences of class L. Then,
ExtractDTC learns a μ function from the list of occurrences of a frequent
multiset. There is a unique μ per multiset. Its principle is first to build a time-
gap table [19] from all occurrences of a multiset and, second, to learn a temporal
model from the time-gap table. Each time-gap occurrence is labeled by the label
of its sequence and any standard machine learning algorithm can learn the μ
function.

The DCM algorithm [6] is based on rule induction (e.g. Ripper [4]) to learn
temporal constraints of a chronicle (T ). It is a specific case of a μT function that
fits the requirements of the original model of chronicle. Next section introduces
alternative classes of occurrence assessment functions.
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Algorithm 1. Generalized discriminant chronicle mining
Require: S: labeled sequence sets, L: set of labels, σmin: minimal support threshold,

gmin: minimal growth threshold
1: C ← ∅ � C is the discriminant chronicle set
2: for all L ∈ L do
3: M ← ExtractMultiSet(SL, σmin)
4: for all ms ∈ M do
5: for all μ ∈ ExtractDTC(S, L, ms, gmin, σmin) do
6: C ← C ∪ {(ms, μ)} � Add a new GDC

7: return C

5 Examples of GDC Instances

This section illustrates several types of patterns that can be represented by GDC:
discriminant sequential patterns, discriminant episodes, SVM-DC and DT-DC.
The first two types of patterns illustrate the ability of GDC to model existing
patterns (less expressive than the original discriminant chronicles) and the last
two models illustrate meaningful generalizations of temporal constraints. In the
remaining of this section, we briefly present each of these models as instances of
the GDC.

Discriminant episodes and sequences An episode is a set of events ordered tem-
porally by a partial order ≤E . If ≤E is a total order, the episode is a sequential
pattern. Such classical temporal patterns have been used for mining discrimi-
nant behaviors respectively by Fabrègue et al. [8] and by Fradkin et al. [9]. A
discriminant episode is an episode associated to a label L ∈ L. Such discrimi-
nant patterns could be represented by a GDC model instance by the following
occurrence assessment function:

μT (o) =
{
1L if ∀(i, j), i ≤E j ⇒ oi ≤ oj
0 otherwise (4)

For example, a multiset E = {{A,B,C}} ordered by ≤E such that B ≤E A and
B ≤E C specifies an episode representing sequences where B occurs before events
A and C, no matter the order between A and C. While associated to a label, it
becomes a discriminant episode. Expressed with chronicle temporal constraints,
we have T = {(A, 1)[−∞, 0](B, 2), (A, 1)[−∞,∞](C, 3), (B, 2)[0,∞](C, 3)}.

Decision Tree Discriminant chronicles (DT-DC). A discriminant chronicle is
characterized by temporal constraints on the time gaps (T ). A constraint (e, i)
[t−, t+](e′, j) enforces the time gap δ between some occurrences of events e and
e′ to belong to the interval [t−, t+]. But chronicle does not allow disjunctions
of constraints. For instance, it is not possible to specify that δ may belong to
[t−, t+] ∪ [t′−, t′+].

The DT-DC model replaces the conjunctive rule learning algorithm by
a decision tree, such as C4.5 [17]. For example, let’s consider a dataset
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Fig. 4. Illustration of temporal discrimination power of the different instances of GDC.
Planes (x, y) represent a pair of temporal constraints for some sequences (A, t0)(B, t0 +
x)(C, t0 + x + y). Positive sequences are those with (x, y) values in the green region,
negative sequences have (x, y) values in the red region. The bold-green lines represent
the separation boundaries learned by a GDC depending on the type of occurrence
assessment function, μ. From left to right: discriminant episodes (temporal constraints
with shape [0, +∞]), chronicles (three chronicles with temporal constraints represented
by rectangles), DT-DC (a single shape combining several rectangles), linear-SVM (a
single chronicle, with generalized linear boundaries).

of positive sequences matching temporal constraints (A, 1)[2, 3](B, 2) and
(A, 1)[7, 9](B, 2) and a dataset of negative sequences matching the temporal con-
straint (A, 1)[2, 9](B, 2). In this case, two chronicles would be discriminant (one
per interval, [2, 3] and [7, 9]). On the opposite, a single DT-DC will capture the
disjunction of intervals in the same model. The expected benefit of this model
is a better generalization power.

SVM Discriminant chronicles (SVM-DC). SVM Discriminant chronicles illus-
trate the case of a complex learnable occurrence assessment function μ, i.e. a
μ modeled by a multi-class SV M classifier. Compared to the previous types
of patterns, SVM-DC is not limited to linear boundaries to separate examples
(time gaps of multiset occurrences) and is a good candidate for yielding accurate
patterns.

It is worth noticing that any machine learning model yields a new type of
discriminant temporal patterns based on the GDC. The above GDC instances
show the potential variety of temporal constraints that GDC can model. Figure 4
illustrates the shape of boundaries defined by occurrence assessment functions
of a chronicle learned from a synthetic dataset.

6 Experiments

In this part, we compare different results in pattern-based classification using
discriminant episodes, discriminant chronicles, DT-DC and SVM-DC. The goal
of these experiments is to highlight the impact of the GDC model choice on the
accuracy of decision functions presented in Sect. 4.1: dC(s) and dC(s). In the
experiments we analyze the classification power of individual GDC (i.e. dC(s))
and of a set of GDC (i.e. dC(s)).
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The DT-DC and SVM-DC mining algorithms are implemented in Python
using scikit-learn library [16]. The algorithm dedicated to discriminant chronicle
mining is implemented in C++.1

6.1 Experimental Setup

The different experiments compare mean accuracy of different GDC models
obtains by cross-validation on synthetic and real datasets.

A 5-cross-validation is performed on each dataset for the parameters
σmin and gmin of the mining step described in Sect. 3 and the parameter γ
described in Sect. 4.2. The domains used for σmin, gmin and γ are respectively
{0.2, 0.3, 0.4, 0.5, 0.6}, {1.4, 1.6, 1.8, 2, 3} and {90,+∞}. γ = +∞ means that
all discriminant chronicles are kept. To improve the computation time, a fourth
parameter is introduced for the mining step: the maximal size of extracted chron-
icles max size. This parameter constrains the maximal number of events that a
GDC, i.e. its multiset, can contain. The domain of this parameter is {3, 4, 5, 6}.

The real datasets are the UCI datasets presented in the BIDE-D experi-
ments [9]: asl-bu, asl-gt and blocks. These datasets are part of the standard
benchmark for pattern-based classification approaches.

We generated two collections of synthetic datasets:

– A first collection of datasets is based on the principle illustrated by Fig. 4.
Random sequences 〈(A, 0)(B, x)(C, x + y)〉 have been generated: the event A
occurs at time 0 in each sequence and the time gaps between A and B and
between B and C are randomly generated in the interval [0, 15]. The label of
the sequence is generated depending on the temporal constraints. According
to Fig. 4, positive examples having time gaps located in one of the three green
squares. Coordinates of the square corners are (1, 1), (6, 6); (5, 5), (10, 10) and
(9, 9), (14, 14). Each dataset contains 150 positive and 150 negative sequences.

– A second collection of datasets is based on random sequences with shape
〈(A, tA) (B, tA + x)(C, tC)(D, tC + k × x)〉 where x ∈ [1, 9], tA = 15 and tC ∈
[1, 29]. The two sequence classes are distinguished by the k factor: k = 2 for
positive sequences while k = 1 for negative ones. Each dataset contains 100
positive and 100 negative sequences.

To ease the comparison between DT-DC and discriminant chronicles as indi-
vidual patterns, we choose to use each node of the extracted trees as discriminant
temporal constraint. This prevents from comparing the classification power of
the decision-tree algorithm and the rule learning algorithm (Ripper). Further-
more, decision trees produce more discriminant chronicles than Ripper because
tree nodes are more redundant.

1 All software sources and datasets are available at https://gitlab.inria.fr/ydauxais/
GDC-PBC.

https://gitlab.inria.fr/ydauxais/GDC-PBC
https://gitlab.inria.fr/ydauxais/GDC-PBC
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Table 2. The five most accurate parameter sets for discriminant chronicles on the first
synthetic dataset. The number attribute is the total number of chronicles extracted in
the 5 runs.

σmin gmin Accuracy Support Number

0.2 1.6 0.92(±0.04) 33.15(±6.95) 5.2(±0.40)

0.2 2 0.88(±0.06) 36.77(±7.79) 4.4(±0.49)

0.2 1.8 0.86(±0.05) 35.41(±8.20) 4.4(±0.80)

0.2 3 0.85(±0.03) 36.57(±7.55) 4.2(±0.40)

0.2 1.4 0.83(±0.04) 36.67(±7.04) 4.8(±0.75)

6.2 Results

Let us first present results obtained by the GDC instances on the first synthetic
datasets. For this experiment, we only consider the extracted chronicles with
multiset {{A,B,C}}. Thus, only one DT-DC and one SVM-DC are extracted for
each run, but the number of discriminant chronicles depends on the setting (see
Table 2). The three squares defining the positive occurrences may be represented
by three discriminant chronicles but it is more difficult to represent the nega-
tive occurrences because some of them are not included in a frequent rectangle
containing only negative occurrences.

The unique DT-DC represents almost perfectly the discriminant behavior
used to generate the dataset with a mean accuracy of 0.99(±0.02). This result
was expected because of the dataset structure (squares with boundaries orthog-
onal to the axis) fits the discrimination capabilities of decision trees.

No SVM-DC are extracted for the default parameters of gmin. Our explana-
tion is that concavities in the shape containing positive occurrences disadvantage
linear SVM. Relaxing the constraint of gmin, SVM-DC reaches a mean accuracy
of 0.48(±0.05). This shows experimentally that DT-DC can be more accurate
than SVM-DC for some datasets. No discriminant episodes are extracted from
these datasets. It was expected from their design as each sequence only contains
the items A, B and C, and always in the same order. Some discriminant episodes
could be extracted from the negative sequences like the one representing A and
B occurring at the same time but these patterns are rare and thus they are not
extracted using the defined parameters. It is an example of the need to generalize
such a simple model in order to catch more complex behaviors.

We compared these results with the discriminant chronicles obtained using
DCM. Among the discriminant chronicles extracted using DCM, discriminating
positive occurrences from negative ones generates three perfectly discriminant
chronicles representing the three squares used to generate the data with parame-
ters σmin = 0.2, gmin = 3 and considering only the multiset {{A,B,C}}. Discrimi-
nating the negative occurrences from the positive ones with DCM generates two
perfectly discriminant chronicles representing the largest rectangles of negative
occurrences on the top left and on the bottom right of the Fig. 4. Then, the
mean accuracy of discriminant chronicles is 1 and, contrary to DT-DC, some
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Table 3. Five most accurate parameter sets for regular discriminant chronicles on
the second synthetic dataset. The attribute number is the total number of chronicles
extracted in the 5 runs.

σmin gmin Accuracy Support Number

0.3 3.0 1 10.5(±3.46) 16

0.2 1.8 0.95(±0.13) 8.19(±3.64) 37

0.2 1.6 0.90(±0.17) 12.9(±8.86) 31

0.6 1.6 0.79(±0.17) 18.8(±10.79) 11

0.6 1.4 0.72(±0.17) 20.4(±10.48) 10

negative occurrences are not covered by these chronicles. This perfect accuracy
is correlated to the strategy of Ripper that does not reuse covered occurrences to
build a new temporal constraint. The remaining occurrences are so considered
too few to be used for building a new constraint. The accuracy is better due to
the partial coverage of the dataset made by discriminant chronicles.

We present the same experiment on the second collection of datasets. These
datasets are generated to favor the SVM-DC model with boundaries that corre-
lates linearly the time gaps. Again, we only considered the extracted chronicles
with multiset {{A,B,C,D}}. For the simplest dataset, the single extracted SVM-
DC obtained the accuracy of 1 for the 5 runs. The extracted DT-DC obtained an
mean accuracy of 0.99(±0.02). Thus, SVM-DC accuracy is not better than DT-
DC, but, DT-DC builds a very large decision tree that overfits the boundaries,
which is not suitable in real applications.

Table 3 shows the results of regular discriminant chronicles. We observe that
the most accurate parameter sets extract chronicles with a small support and
the least accurate parameter sets extract chronicles with a bigger support. We
do not present results for discriminant episodes because not any discriminant
episodes are extracted. This shows the limit of a too simple model.

Let us now present the results obtained by the three GDC models as indi-
vidual patterns and as pattern sets on real datasets. An overview of the clas-
sification power of the individual patterns of DT-DC, discriminant chronicles
and discriminant episodes is given by Table 4. It shows that DT-DC patterns
are individually less accurate than discriminant chronicles obtained from the
same decision trees. Discriminant episodes are also individually more discrim-
inant than discriminant chronicles. The intuition behind these results is that
decision trees overfit more the datasets than temporal constraints or sequen-
tial orders. Temporal constraints and sequential orders gather only dense sets
of occurrences, represented as squares on Fig. 4, but decision trees generalize
examples and gather too dissimilar occurrences.

Conversely to the accuracy, the mean support is higher for DT-DC than
for discriminant chronicles and discriminant episodes. Each DT-DC covers more
examples than the two other types of patterns. Furthermore, the coverage of
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Table 4. Comparison table of DT-DC, discriminant chronicles and discriminant
episodes for the 5 best parameter sets in terms of mean accuracy on asl-bu.

σmin gmin max size Accuracy Support

Discriminant episodes 0.3 2.0 3 0.92(±0.14) 5.62(±8.60)

0.3 1.8 4 0.86(±0.19) 5.24(±7.65)

0.6 3.0 3 0.86(±0.20) 2.96(±5.54)

0.6 1.8 4 0.83(±0.18) 11.41(±9.71)

0.3 1.6 3 0.83(±0.22) 4.41(±5.94)

Discriminant chronicles 0.3 2.0 3 0.64(±0.37) 3.16(±2.91)

0.3 1.8 4 0.60(±0.40) 2.69(±2.68)

0.6 3.0 3 0.59(±0.33) 5.74(±7.01)

0.3 1.6 3 0.58(±0.38) 3.67(±3.28)

0.6 1.8 4 0.57(±0.34) 3.83(±3.37)

DT-DC 0.5 2.0 5 0.38(±0.28) 8.12(±6.57)

0.6 3.0 5 0.37(±0.25) 8.61(±6.34)

0.2 1.6 3 0.36(±0.34) 5.99(±5.68)

0.5 1.8 3 0.34(±0.21) 13.2(±8.19)

0.5 1.8 4 0.33(±0.23) 10.0(±7.40)

discriminant episode is worse than DT-DC due to their poor expressiveness of
temporal behaviors.

These accuracy results are extreme because we did not use the decision tree
parameter constraining a leaf to have a minimal support. For example, if this
parameter is set to fmin, a decision tree can be seen as a set of discriminant
chronicles for a unique multiset.

To illustrate the importance of this parameter, we can compare the two
accuracy distributions. Figure 5 at top left shows the accuracy distribution of
DT-DC for the most accurate parameter set. The distribution at bottom right
is the accuracy distribution of discriminant chronicles for the most accurate
parameter set. The distribution at bottom left is the accuracy distribution of
DT-DC for the best discriminant chronicle parameter set with a mean accuracy
of 0.23(±0.25). The distribution at top right is the accuracy distribution of
discriminant chronicles for the best DT-DC parameter set with a mean accuracy
of 0.32(±0.39).

We first notice that the accuracy distributions of discriminant chronicles and
DT-DC are almost similar. These histograms show three main peaks: patterns
that obtained the accuracy of 0, 0.5 and 1. It makes sense considering that both
types of patterns were extracted by the same algorithm. The differences between
the mean accuracy are mainly in the proportion of patterns with accuracy equals
to 0 and equals to 1. Proportionally to the number of 1-accuracy patterns, the
peak of 0-accuracy is higher for DT-DC than for discriminant chronicles. This
means that the proportion of patterns that always make wrong decisions is higher
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Fig. 5. Accuracy distribution for DT-DC and discriminant chronicles with parameters
σmin = 0.5, gmin = 2 and max size = 5 for the first row and σmin = 0.3, gmin = 2
and max size = 3 for the second one.

Table 5. Best accuracy results in SVM-DC-based and discriminant chronicle-based
classification and computation times with σmin = 0.4, max size = 3 and gmin = 2.

Dataset SVM-DC Discriminant chronicles

Accuracy CPU time (s) Accuracy CPU time (s)

asl-bu 0.73(±0.05) 15.2(±0.34) 0.68(±0.06) 16.4(±0.37)

asl-gt 0.42(±0.02) 386(±8.37) 0.32(±0.01) 7.70(±0.22)

blocks 0.98(±0.05) 25.4(±2.58) 1.00(±0.00) 11.0(±0.13)

for DT-DC than for discriminant chronicles and, thus, that DT-DC overfit more
the datasets than discriminant chronicles. The same behavior is observed in most
of the experiments.

Finally, Table 5 shows the accuracy of SVM-DC and discriminant chronicles
for real datasets: asl-bu, asl-gt and blocks. The parameters used for these results
were obtained through a grid search. The involved parameters are σmin, gmin

and γ but also the C parameter of the global linear SVM classifier. Table 5
shows that SVM-DC produces patterns with better accuracy than discriminant
chronicles on asl-bu and asl-gt. For blocks, discriminant chronicles are not more
accurate than SVM-DC but the discriminant chronicles are discriminant enough
to describe such a simple dataset. A classifier based on chronicles is perfect to
classify the blocks sequences.

These results show that combining decisions of discriminant chronicles makes
discriminant less competitive than SVM-DC, even if discriminant chronicles are
individually accurate. Thereby, we cannot conclude from previous results that
discriminant chronicles are the most accurate GDC. Indeed, chronicles do not
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involve all the occurrences of a multiset and represent very specific discriminant
behaviors. But in a pattern-based classification context, a set of very discriminant
chronicles is not sufficient to cover the whole dataset and so to obtain a good
accuracy. This leads to a typical overfitting situation.

Finally, Table 5 also gives the mean computation times for both approaches.
These times are strongly related to the computing times of machine algorithms
which vary a lot depending on datasets. Discriminant chronicle mining (DCM)
is faster in most cases thanks to a particular implementation effort for this
approach.

7 Conclusion and Perspectives

This article presents a generalization of the model of discriminant chronicles.
The model of generalized discriminant chronicles (GDC) proposes to combine
a multiset pattern and a decision function learned from the temporal duration
between occurrences of a multiset pattern. Initially, discriminant chronicles were
extracted using a rule learner and their temporal boundaries were intervals. Such
a representation may be too restrictive an assumption on how to discriminate
temporal sequences and, thus, had to be generalized.

We demonstrate the expressiveness of the framework by showing that it
can model classical patterns (episodes, sequential patterns and chronicles) and
episodes, sequential patterns and new types of patterns. DT-DC are based on
decision tree classifiers and SVM-DC are based on a SVM classifier.

The experiments show that individual chronicles have good accuracy but
SVM-DC overtakes the combination of chronicles on real datasets. An interest-
ing perspective of this work is to blend different types of chronicles within the
same combination. Furthermore, comparison in terms of interpretability between
several GDC instances would be interesting. Indeed, chronicles are attractive for
its interpretability, thanks to its graphical representation. However, new tem-
poral patterns like DT-DC or SVM-DC can not be graphically represented so
simply. Then it would be possible to suggest GDC instances that would offer a
tradeoff between prediction accuracy and interpretability.

Acknowledgements. This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
program (grant agreement No [694980] SYNTH: Synthesising Inductive Data Models).

References

1. Asker, L., Boström, H., Karlsson, I., Papapetrou, P., Zhao, J.: Mining candidates
for adverse drug interactions in electronic patient records. In: Proceedings of the
International Conference on PErvasive Technologies Related to Assistive Environ-
ments (PETRA), pp. 22:1–22:4 (2014)

2. Atzmueller, M.: Subgroup discovery. Wiley Interdisc. Rev. Data Min. Knowl. Disc.
5(1), 35–49 (2015)



Generalized Chronicles for Temporal Sequence Classification 45

3. Bringmann, B., Nijssen, S., Zimmermann, A.: Pattern-based classification: a uni-
fying perspective. In: Proceedings of the LeGo Workshop “From Local Patterns to
Global Models”, p. 10 (2009)

4. Cohen, W.W.: Fast effective rule induction. In: Proceedings of the International
Conference on Machine Learning, pp. 115–123 (1995)

5. Cram, D., Mathern, B., Mille, A.: A complete chronicle discovery approach: appli-
cation to activity analysis. Expert Syst. 29(4), 321–346 (2012)

6. Dauxais, Y., Guyet, T., Gross-Amblard, D., Happe, A.: Discriminant chronicles
mining - application to care pathways analytics. In: Proceedings of 16th Conference
on Artificial Intelligence in Medicine (AIME), pp. 234–244 (2017)

7. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and dif-
ferences. In: Proceedings of the International Conference on Knowledge Discovery
and Data Mining (KDD), pp. 43–52 (1999)
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Abstract. Predicting the amount of sales in the future is a fundamen-
tal problem in the replenishment process of retail companies. Models for
forecasting the demand of an item typically rely on influential features
and historical sales of the item. However, the values of some influential
features (to which we refer as non-plannable features) are only known
during model training (for the past), and not for the future at prediction
time. Examples of such features include sales in other channels, such as
other stores in chain supermarkets. Existing forecasting methods ignore
such non-plannable features or wrongly assume that they are also known
at prediction time. We identify non-plannable features as privileged infor-
mation, i.e., information that is available at training time but not at
prediction time, and design a neural network to leverage this source of
data accordingly. We present a dual branch neural network architecture
that incorporates non-plannable features at training time, with a first
branch to embed the historical information, and a second branch, the
privileged information (PI) branch, to predict demand based on privi-
leged information. Next, we leverage a single branch network at predic-
tion time, which applies a simulation component to mimic the behavior
of the PI branch, whose inputs are not available at prediction time. We
evaluate our approach on two real-world forecasting datasets, and find
that it outperforms state-of-the-art competitors in terms of mean abso-
lute error and symmetric mean absolute percentage error metrics. We
further provide visualizations and conduct experiments to validate the
contribution of different components in our proposed architecture.

1 Introduction

Demand forecasting aims to predict future sales and has the potential to signif-
icantly improve supply chain management. An accurate forecast prevents over-
stocking and reduces costs, waste, and losses. At the same time, it also avoids
understocking and thereby helps to prevent unfulfilled orders and unsatisfied
customers [7,29]. In practice, demand forecasting is modeled as a time series
forecasting (TSF) problem, where the goal is to predict future sales volumes
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based on historical sales and influential features [5]. Following the success of
deep neural networks in sequence-to-sequence tasks such as machine transla-
tion [28], recent work has studied the effectiveness of neural networks for TSF
in general [16,21,23], and demand forecasting in particular [8,11,20].

We divide influential features into two categories, based on their availability
at the time of forecast. Plannable features are known for the past and the future;
examples are time-dependent features such as calendar events, or static features
such as product characteristics. Non-plannable features are time-dependent and
only known for the past, e.g., sales in other stores. Many neural-based approaches
use an encoder-decoder structure to map the history of a time series to its future.
A common strategy when treating influential features is to feed their historical
values to the encoder, either alongside the historical sales data [11], or to a
different layer that is responsible for encoding them [8]. The decoder then either
uses their future values to produce the forecast [11,31], or assumes that they
are unknown [8]. Neither of these schemes is ideal for non-plannable features.
Using future values of influential features in the decoding stage makes sense
for plannable features, but the approach is not applicable for non-plannable
features. A model trained in that way is not applicable in a real world setting
as the non-plannable features are not known at prediction time. Simply ignoring
non-plannable features – both at training and prediction time – is not optimal
either as they carry important information that should be leveraged at the time
of training the model.

In this paper, we therefore propose an indirect approach to model the effects
of non-plannable features, and treat them as privileged information [18], i.e.,
information that is available at the time of training the model but not at pre-
diction time (Sect. 3.1). We introduce a neural network architecture to capture
the effect of these features at training time, and use this effect to produce a
forecast at prediction time (Sect. 3.2). To this end, we propose two different
network architectures for training and prediction. At the time of training, the
network has two different branches. The first branch is responsible for modeling
the effect of historical sales and plannable features, while the second branch uses
non-plannable features as input to produce a forecast based on them. At pre-
diction time, the second branch is not available, and is replaced by a simulation
network, which is trained to mimic its behavior (Sect. 3.3).

Our experimental evaluation demonstrate that the proposed model outper-
forms state-of-the-art baselines on several datasets in terms of mean absolute
error and symmetric mean absolute percentage error. Our experiments show
that the proposed network is not only able to learn from non-plannable features
at training time, but can also embed this type of information for use at prediction
time.

We summarize the contributions of our research as follows:

– We categorize the influential features for demand forecasting into two cate-
gories, based on their availability for the time of forecast. We propose to treat
the non-plannable features as privileged information (Sect. 3.1).
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– We design a novel neural network architecture that is able to leverage privi-
leged information. To this end, we propose to use two different networks for
training and prediction time, where the network at prediction time simulates
the effect of the unknown privileged information (Sect. 3.2).

– We conduct extensive experiments on two publicly available datasets. Our
experimental results show that our approach outperforms state-of-the-art
baselines for demand forecasting in the majority of cases in terms of
mean absolute error and symmetric mean absolute percentage error met-
rics (Sect. 5).

2 Related Work

Time Series Forecasting. Prior work on time series forecasting (TSF) mostly
focuses on linear approaches [22], such as Auto-Regressive Integrated Moving
Average (ARIMA) model [6], with a solid underlying theory and relatively few
parameters. However, linear methods cannot model non-linear temporal depen-
dencies and complex relationships between different dimensions of a time series.
Recently, neural network-based approaches have found their way into TSF. The
most dominant type of network used are recurrent neural networks (RNNs) and
long short-term memory networks (LSTMs) [2,4,21,23,25]. Convolutional neu-
ral networks (CNNs) are also considered in the literature [14,24], and some work
studies networks with both recurrent and convolutional components [16,32].

For the task of demand forecasting, state-of-the-art approaches mostly
employ neural-based models. TADA [8] uses different LSTM layers to model
different kinds of influential features, and the multimodal-attention model pro-
posed in [11] uses a bidirectional LSTM with an attention mechanism to better
capture latent patterns in historical data. To incorporate the impact of substi-
tutable products with respect to the target product, DSF [20] uses a sequence-
to-sequence structure with gated recurrent units.

Our focus is on modeling non-plannable features. In previous work, non-
plannable features are either treated as plannable, i.e., with the unrealistic
assumption that their future values are known at prediction time, or are only
used as historical data. None of these approaches is able to incorporate non-
plannable features in a realistic manner. In contrast, we propose a neural archi-
tecture, that (1) is capable of modeling non-plannable features, and (2) has dif-
ferent components for historical sales and influential features, which are usually
treated in the same way in previous work.

Learning Under Privileged Information. The learning under privileged
information (LUPI) framework was originally proposed for support vector
machines [30]. The idea was again popularized in [18], where it was unified
with knowledge distillation for neural networks. Most of the work done in this
area is in the field of computer vision [9,12,17], with teacher-student networks
as the dominant approach. Teacher-student networks are mostly based on distill-
ing knowledge from a ‘teacher’ network to a ‘student’ network at training time
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through the loss function, which makes sense for classification problems [18],
where class probabilities produced by the teacher network are treated as ‘soft
targets’ for training the student network.

To the best of our knowledge, LUPI has never been used in time series fore-
casting and utilizing existing LUPI frameworks is not straight-forward in a fore-
casting scenario. In this work, we propose a network architecture to leverage
non-plannable features. We achieve this with two different networks at training
and prediction time. In contrast to common teacher-student networks, our second
network is not guided by a loss component, but learns a simulation component
that mimics the output of the missing branch.

3 A Privileged Information-Aware Neural Network

We present a dual branch neural network architecture for demand forecasting.
It incorporates non-plannable features as privileged information (PI) at training
time, with a first branch (the historical branch) that embeds historical informa-
tion and plannable features via dilated causal convolutional layers, and a second
branch, the PIBranch, which leverages fully-connected feed-forward layers to
predict sales based on privileged information. At prediction time, we apply a
slightly different single branch network with a simulation component to mimic
the behavior of the PIBranch, whose inputs are not available at prediction time.

3.1 Problem Statement

The goal of a demand forecasting model is to predict the amount of sales in the
future. Many different settings exist for building a forecasting model. Without
loss of generality, we consider the case of multiple stores and multiple items, and
forecast the demand of each item per store. Formally, for an arbitrary target
product in a target store, the goal of the forecasting model is to predict

{ŷt}T+Δ
t=T+1 = {ŷT+1, . . . , ŷT+Δ},

where T is the length of history being considered, Δ is the forecast horizon,
and ŷt ∈ R denotes the predicted sales of the target item in the target store at
time t. Future sales are affected by both the history of sales in the past, and
other influential features. Influential features can be divided into two categories.
Plannable features are known both for the past and the future; they can be
static, such as product-dependent features like category and brand, or time-
dependent, such as promotional campaigns and calendar events. Future values
of non-plannable features are not known at the time of forecast; examples include
behavior data from users on an online shopping website, sales of similar items
in the same store, or sales of the same item in other stores.
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Prediction Time:

Training Time:
1

History Forecast Horizon

History Forecast Horizon

Time

Fig. 1. The ‘walk-forward’ training scheme. A history of length T is used for training,
and validation is performed on [T +1, T +Δ]. For predication time, the history is shifted
Δ steps, and [T + Δ + 1, T + 2Δ] is used as forecast horizon.

We design a forecasting model that incorporates both types of feature along-
side the historical sales. Formally:

{ŷt}T+Δ
t=T+1 = F

({yt}T
t=1, {xp

t }T+Δ
t=1 , {xnp

t }T
t=1

)
, (1)

where F (·) is a non-linear mapping function that we learn, and

{yt}T
t=1 = {y1, y2, . . . , yT } (2)
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2, . . . ,x
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denote the historical sales of the target item, and the corresponding plannable
features xp ∈ R

n and non-plannable features xnp ∈ R
m for the item, respectively,

with the corresponding feature dimensions n and m.
For training our model, we adopt the ‘walk-forward’ training schema that

is a common choice for time series data [8,15,27]. In this approach, which we
illustrate in Fig. 1, we apply a sliding window to divide the data into history
and forecast horizon, and shift this sliding window Δ steps from training time
to prediction time. In other words, assuming the length of the whole dataset is
T +2Δ and T � Δ is the length of the sliding window, the [1, T ] interval is used
as the history training time, the [T + 1, T + Δ] interval is used as the forecast
horizon at training time (i.e., the validation window), the [Δ + 1, T +Δ] interval
is used as the history at prediction time and finally, the [T + Δ + 1, T + 2Δ]
interval is used as the forecast horizon at prediction time.

We evaluate our model on the forecast horizon at prediction time, for which
the non-plannable features are not available. For training and hyperparameter
selection, we leverage the history and the validation window, for which non-
plannable features are known. This assumption is inline with real world cases,
where a forecasting model is trained on the past data, for which the values of all
influential features are already known. We rephrase Eq. 1 into Eq. 5 at training
time and into Eq. 6 at prediction time in order to account for this setup:

{ŷt}T+Δ
t=T+1 = F1

({yt}T
t=1, {xp

t }T+Δ
t=1 , {xnp

t }T+Δ
t=1

)
(5)

{ŷt}T+2Δ
t=T+Δ+1 = F2

({yt}T+Δ
t=Δ+1, {xp

t }T+2Δ
t=Δ+1

)
, (6)
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where F1(·) is the function that we learn at training time and F2(·) is the function
that we apply at prediction time to produce the forecast.

3.2 Architecture Overview

We model non-plannable features as privileged information (PI), i.e., information
that is available at the training time but not available at prediction time. This
approach requires different forecasting models for training and prediction time.
We therefore propose: a Dual Branch PI Aware Neural Network (DB-PIANN)
to embed both the historical sales and PI at training time, and a Single Branch
PI Aware Neural Network (SB-PIANN) to produce the forecast at prediction
time. Figure 2a illustrates the architecture of DB-PIANN. Historical sales and
plannable features are fed into one branch of the network, while privileged infor-
mation is fed into a different branch. The outputs of these two branches are then
merged with a combination layer, and fed into the output module to produce
the forecast. The unavailablity of the PI for the future implies that we cannot
produce a forecast with DB-PIANN at prediction time. However, only the input
to the privileged information branch (PIBranch) is missing at prediction time,
and we can still utilize the historical branch (HiBranch) of DB-PIANN.

We tackle this challenge by training an additional simulation network to
mimic the behavior of the missing PI Branch. This network takes the output
of the historical branch as input, and learns to reproduce the output of the
combination layer. Figure 2b details the architecture of the SB-PIANN. The
difference to DB-PIANN is that the PIBranch and the combination layer are
replaced with the simulation network; the other branch is identical. DB-PIANN
and SB-PIANN model F1(·) and F2(·) in Eq. 5 and Eq. 6, respectively.

HiBranch

PIBranch

combination layer

output module

...

...

...

...

..................

Produces the forecast.

Combines the outputs of HiBranch and
PIBranch.

Models the effects of non-plannable
features.

Models the effects of historical sales,
alongside plannable features.

(a) DB-PIANN (dual branch)

HiBranch

simulation module

output module

...

...

..................

Module identical to DB-PIANN. Produces
the forecast.

Since the inputs to the PIBranch are not
available at the prediction time, the PIBranch
and the combination layer are replaced by a
simulation module that is trained to mimic
the effects of PI, by estimating the output
of the combination layer based on the
output of HiBranch.

Module identical to DB-PIANN.
Models the effects of historical sales,
alongside plannable features.

(b) SB-PIANN (single branch)

Fig. 2. Neural network architectures for PI-aware demand forecasting. Figure 2a illus-
trates the architecture of DB-PIANN applied at training time and Fig. 2b details the
architecture of the SB-PIANN, which we leverage at prediction time
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3.3 Architecture Details

Next, we introduce the details of DB-PIANN and SB-PIANN. As illustrated in
Fig. 2a, DB-PIANN consists of four modules: (1) a historical branch (HiBranch),
which is responsible for modeling the effects of historical sales data, along with
plannable features, (2) a privileged information branch (PIBranch), which takes
care of non-plannable features, (3) a combination layer, which combines the
outputs of the two previous branches, and (4) an output module, which produces
the final forecasts.

Based on these definitions, we break up Eq. 5 as follows:

{ŷt}T+Δ
t=T+1 = F1

({ct}T+Δ
t=T+1

)
, (7)

where F1 is the output module, and {ct}T+Δ
t=T+1 is the output of the combination

layer, defined as:
{ct}T+Δ

t=T+1 = {zt + ut}T+Δ
t=T+1, (8)

where {zt}T+Δ
t=T+1 and {ut}T+Δ

t=T+1 are the outputs of the HiBranch and PIBranch,
respectively (Fig. 2a).

Historical Branch. The input of this branch, namely N1, consists of the his-
torical sales of an item yt with of length T , and the plannable features xp

t of
length T + Δ corresponding to that item. The output of this branch, zt, has the
length of Δ, and will be fed to the combination layer. Formally:

{zt}T+Δ
t=T+1 = N1

({yt ⊕ xp
t }T

t=1, {xp
t }T+Δ

t=T+1

)
, (9)

where ⊕ denotes the concatenation operation. With this definition, HiBranch
can be applied in SB-PIANN at prediction time, where we shift the time Δ

steps. However, one cannot include non-plannable features as well at prediction
time, since their values are unknown for the forecast horizon.

We choose a stack of dilated causal 1D convolution layers [19] for the histor-
ical branch, followed by two fully-connected feed-forward layers to produce the
final output of the branch. Formally:

N1

({yt ⊕ xp
t }T

t=1, {xp
t }T+Δ

t=T+1

)
= Wh

2 ReLU(Wh
1 cL1 + bh

1 ) + bh
2 , (10)

where cL1 is the output of the last convolutional layer, and Wh
1 , bh

1 , Wh
2 , and bh

2

are the weights and biases of the first and second feed-forward layer.
Causal convolutions are typically faster to train compared to RNNs and

LSTMs (the common choice for sequence to sequence problems), since they do
not have any recurrent connections [3]. Dilated convolutions allow us to process
a long sequence without exponentially increasing the number of layers, by skip-
ping input values with a certain step size. This is especially useful for the case
of demand forecasting, where the history of the data is relatively long. More
formally, for a sequence input x and a filter f with size k, a causal dilated
convolution operation g on element s of the sequence is defined as:

g(s) = (x ∗d f)(s) =
k−1∑

i=0

f(i) · xs−d·i, (11)
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where d is the dilation factor. Following [19], we increase d exponentially with
the depth of the network, i.e., d = O(2j) at level j of the network, where j ∈
{0, . . . , L1 − 1} and L1 denotes the number of layers. All parameters are shared
across the whole forecast horizon.

The historical branch N1 operates on a rolling basis, meaning that the output
zt ∈ R is produced one step at a time and is concatenated to the history in the
input, which is is then shifted one step forward, and fed back into the first
convolutional layer, until the end of the forecast horizon is reached (see Fig. 2a).

Privileged Information Branch. The input of this branch, namely N2, are
the non-plannable features with a length of Δ, and the output of this branch,
ut, (also of length Δ), will be fed to the combination layer. To make use of all
the available training data, we apply a sliding window of length Δ and move it
forward one step at a time, until we reach the end of the training interval, i.e.,
T + Δ. For the PIBranch N2, we leverage fully-connected feed-forward layers
with dropout [26] applied after each hidden layer. We use a ReLU activation
function for the hidden layers, and a linear fully-connected layer for the output.
Formally:

{ut}i+Δ
t=i = N2({xnp

t}i+Δ
t=i ) = Wnp

L2
ReLU(Wnp

l xl + bnp
l ) + bnp

L2
, (12)

where 1 � i � T is the start of the sliding window, L2 denotes the number
of layers, and Wnp

l and bnp
l are the weights and biases of the l-th layer for

l ∈ {1, . . . , L2}; xl is the input of the l-th layer, which is the output of the
previous layer for l ∈ {2, . . . , L2}, and equal to {xnp

t}T+Δ
t=T+1 for l = 1.

Note that the PIBranch cannot be used in SB-PIANN at prediction time,
since its input values are unknown for the forecast horizon.

Output Module. In SB-PIANN, this module consumes the output of the com-
bination layer, and produces the predicted sale values for the validation period.
We again apply fully-connected feed-forward layers:

{ŷt}T+Δ
t=T+1 = F1({ut + zt}T+Δ

t=T+1) = W o
L3

ReLU(W o
l sl + bo

l ) + bo
L3
, (13)

where W o
l and bo

l are the weights and biases of the l-th layer for l ∈ {1, . . . , L3},
sl is the input of l-th layer, which is the output of the previous layer for l ∈
{2, . . . , L3}, and equal to {ut + zt}T+Δ

t=T+1 for l = 1.
Together, the definitions of the aforementioned modules complete the archi-

tecture of DB-PIANN, according to Eq. 7.

SB-PIANN. Next, we define our second architecture SB-PIANN, which is going
to produce the forecast at prediction time. We break down Eq. 6 as follows:

{ŷt}T+2Δ
t=T+Δ+1 = F2

({yt}T+Δ
t=Δ+1, {xp

t}T+2Δ
t=Δ+1

)

= F1

(
S({zt}T+2Δ

t=T+Δ+1)
)

= F1

(
S(N1

({yt ⊕ xp
t }T+Δ

t=Δ+1, {xp
t }T+2Δ

t=T+Δ+1

)
)
)
,

(14)

where S is the simulation module, which we define in Eq. 15 below, N1 refers
to the historical branch defined in Eq. 10, and F1 depicts the output module,
defined in Eq. 13.
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Simulation Module. The purpose of the simulation module is to replace the
missing PIBranch of DB-PIANN. As we cannot use the PIBranch at prediction
time, one of the inputs of the combination layer is not available at prediction
timeas well (see Fig. 2). Therefore, we train a feed-forward neural network to
estimate the output of the combination layer based on the output of HiBranch.
Formally:

S({zt}T+2Δ
t=T+Δ+1) = W s

L4
ReLU(W s

l pl + bs
l ) + bs

L4
, (15)

where W s
l and bs

l are the weights and biases of the l-th layer for l ∈ {1, . . . , L4}.
pl is the input of l-th layer, which is the output of the previous layer for l ∈
{2, . . . , L4}, and equal to {zt}T+2Δ

t=T+Δ+1 for l = 1.

3.4 Learning Process

Many options exist for training a forecasting model for a collection of time series,
such as the sales per item per store in our case. Following previous work [8,23],
we train a single model for all of the items; each training sample contains the
sales of a single item in a single store, along with its corresponding influential
features.

Table 1. Dataset statistics.

Dataset Items Stores #time series Time series’ length

Favorita 1, 656 54 11, 614 365

Dunnhumby 1, 101 26 8, 825 117

We train the PIBranch N2 and the historical branch N1 separately, and
then train DB-PIANN using the learned models, as outlined in the previous
section. We subsequently train the simulation network S in isolation. With this
scheme, SB-PIANN does not actually need training and can be composed from
the previously learned modules, i.e., HiBranch, the simulation module and the
output module. We leverage the mean absolute error between the predicted
values and the actual values as objective function to train all the components
of our architecture. All of our proposed modules are smooth and differentiable,
which allows us to learn their parameters by standard back propagation. With
mean absolute error as the objective function, we define the loss for each module
as follows:

L =
1
N

( N∑

n=1

T+Δ∑

t=T+1

| ya
nt − yp

nt |
)
, (16)

where N is the number of training samples, n is an index for the samples, ya
nt

is the label for sample n at time t, and yp
nt is the output of the corresponding
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module. Specifically, when training the HiBranch, PIBranch, and output module,
ya

nt is equal to the actual sales of the training sample n at time t, and yp
nt is equal

to the corresponding value of zt, ut, and ŷt for sample n. For the simulation
module, ya

nt translates to the corresponding values of zt + ut of sample n.

4 Experimental Setup

Datasets. Unfortunately, most of the sales datasets from existing work are not
publicly available. For example, we could neither obtain the ‘One Stop Ware-
house’ dataset from [8], the Amazon Demand Forecasting dataset from [31], nor
the JD50K Online Sales Forecasting dataset from [11].

We therefore evaluate the performance of SB-PIANN on two publicly avail-
able datasets to ensure reproducibility. Both datasets contain sales numbers at
the product and store level; we therefore set the goal of predicting the sales
per product per store for a certain forecast horizon. Here, for a target item in
a target store, we treat its sales in other stores as the privileged information.
The Favorita dataset contains daily sales of thousands of items across 54 stores
located in Ecuador.1 We use the data from the 15th of August 2016 to the 15th
of August 2017, and only consider items that have less than five days of sales
data missing.2 We also use the The Complete Journey dataset published by
Dunnhumby.3 This dataset contains around 300 million transactions for ∼5,000
items across ∼760 distinct stores, spanning more than two years of history. We
randomly select a subset of items and stores for our experiments, and aggregate
sales on a weekly basis to reduce the sparsity. The statistics of the datasets are
shown in Table 1. Not all of the items are sold in all of the stores, so the total
number of time series, i.e., training samples, is different from the number of
items multiplied by the number of stores.

Influential Features. Our design of the network architecture does not restrict
the types of influential features that our approach can incorporate. However,
we work with non-plannable features only in the experiments, as their effect on
the forecast is the focus of this paper. For such non-plannable features, we rely
on the sales of an item in other stores. In many demand forecasting datasets,
including both of the datasets that we use, the retail company has more than
one store, and the sales of a target item in other stores can help to forecast the
demand in the target store. Formally:

xnp
t = {(xs0

t , xs1
t , . . . , xsn

t )}, (17)

where n is the number of stores and xsi
t denotes the sales for the target item in

store si at time t.
1 https://www.kaggle.com/c/favorita-grocery-sales-forecasting/data.
2 The same dataset is used in [8], however the authors do not mention how they

created a subset of the original dataset in their paper. Nevertheless, we achieve a
comparable performance with their method on our version of the data.

3 https://www.dunnhumby.com/careers/engineering/sourcefiles.

https://www.kaggle.com/c/favorita-grocery-sales-forecasting/data
https://www.dunnhumby.com/careers/engineering/sourcefiles
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Training and Testing. Analogous to previous work, we use the walk-forward
strategy [8,27] for the train-test split, as detailed in Sect. 3.3. Following this
strategy, we split the data according to the time dimension, and not based on
stores and items. Given a time series with a total size of T for the history of sales
data and Δ steps to predict, we use [1, T ] as the training data, [T + 1, T + Δ]
for validation and [T + Δ + 1, T + 2Δ] for testing (as illustrated in Fig. 1). We
experiment with Δ ∈ {2, 8, 16}.

Implementation Details. Our models are implemented using the Keras frame-
work [10] with TensorFlow as backend [1]. We use mini-batch stochastic gradient
descent (SGD) together with the Adam optimizer [13] to train the models. We
set the batch size to 32, and stop training when the loss on the validation set
converges. All the methods run on a Linux server with an Intel Xeon CPU, and
a GeForce GTX 980 (Maxwell GM204) GPU. The GPU code is implemented
using CUDA 9.

Metrics. We consider two metrics for evaluation: mean absolute error
(MAE) = 1

N×Δ

∑N
n=1

∑T+2Δ
t=T+Δ+1 |yt − ŷt| and symmetric mean absolute per-

centage error (SMAPE) = 100
N×Δ

∑N
n=1

∑T+2Δ
t=T+Δ+1

|yt−ŷt|
(|yt|+|ŷt|)/2 , where yt and ŷt

denote real and predicted sales, respectively.

Parameter Settings. For all of the parameters of the networks, we conduct
a grid search and leverage the parameters with the best performance on the
validation set. For the feed-forward modules, we conduct a grid search over
{1, 2, 3, 4} for the number of hidden layers, {16, 32, 64, 128, 256, 512} for the
number of nodes in each hidden layer, and {0.1, 0.2, 0.3, 0.4} for the dropout
rate. For the convolutional layers, we search over {16, 32, 64} for the number of
filters, {2, 4, 8, 16} for the filter size, and {4, 5, 6, 7, 8} for the number of layers.

5 Experimental Results

5.1 Capturing the Effects of Privileged Information

Our first set of experiments addresses the following research question: To what
extent is the proposed model, SB-PIANN, able to capture the effect of privileged
information? We conduct experiments with different components of our pro-
posed model to answer our first research question. The purpose of these exper-
iments is to reveal the importance of privileged information and to quantify its
impact on the final performance of SB-PIANN. We compare its performance to
that of the HiBranch and PIBranch in isolation, as well to the “oracle” perfor-
mance of DB-PIANN. DB-PIANN’s performance is only reported for the sake
of comparison; the model cannot be used for prediction in real world cases due
to the unavailability of the values of non-plannable features at prediction time.

Results and Discussion. Table 2 shows the performance of HiBranch,
PIBranch, SB-PIANN and DB-PIANN in terms of MAE and SMAPE, on
testing time intervals, i.e., [T + Δ + 1, T + 2Δ]. The results are reported for
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Table 2. Performance of SB-PIANN and DB-PIANN and their components on the
Favorita and Dunnhumby datasets. ∗ indicates that a component is significantly out-
performed by SB-PIANN; − indicaties that there is no significant difference between
DB-PIANN and SB-PIANN (student t-test, α = 0.05).

Method Δ = 2 Δ = 8 Δ = 16

MAE SMAPE MAE SMAPE MAE SMAPE

Favorita dataset

HiBranch 6.126∗ 38.840∗ 6.494∗ 38.563∗ 7.278∗ 38.794∗

PIBranch 6.415∗ 38.235∗ 6.664∗ 39.692∗ 7.080∗ 38.431∗

SB-PIANN 6.069 37.139 6.277 38.102 6.868 38.241

DB-PIANN 5.985− 36.956− 6.052− 37.304− 6.752− 37.314−

Dunnhumby dataset

HiBranch 3.593 43.042∗ 3.661∗ 44.348∗ 4.079∗ 50.289∗

PIBranch 3.669∗ 44.108∗ 3.640 44.006 3.691 45.059

SB-PIANN 3.558 42.567 3.612 43.506 4.059 49.540

DB-PIANN 3.555− 42.531− 3.601− 43.384− 3.899− 47.817−

all Δ settings on the Favorita and Dunnhumby datasets. We compare the per-
formance of two different branches for different forecast horizons. We observe
that the performance of the PIBranch is comparable to that of the HiBranch for
shorter forecast horizons, i.e., 2 and 8, and outperforms HiBranch for the longest
forecast horizon. This shows that the PIBranch is capable of predicting the sales
at least as well as HiBranch, and is more robust with respect to forecast hori-
zon. We attribute the ability of PIBranch to predict future sales to two aspects:
First, we note that the historical sales data are not taken into account in the
PIBranch, and the forecast is produced solely based on the privileged informa-
tion. This indicates the usefulness of this information for demand forecasting.
Second, the obtained performance points out the effectiveness of the proposed
network to model the effects of privileged information. In other words, a deep
feed-forward neural network is capable of producing a forecast based on the sales
of products in other stores, and this forecast is comparable to and in some cases
superior to the one based on the historical sales.

We also report the performance of DB-PIANN, while noting (again) that it
cannot be used in a real world setting, as it requires the privileged information,
which is not available at prediction time. DB-PIANN outperforms individual
branches on both datasets and for all of the forecast horizons, which shows that
it is able to leverage both the historical sales and the privileged information
to produce the final forecast. The performance gain also indicates that both
branches contribute positively to the final forecast; their contribution is not
overlapping, and they are both essential to achieve the highest performance.

Finally, we observe that the performance of SB-PIANN is better than that
of HiBranch and is relatively close to DB-PIANN, on both datasets and for all
forecast horizons. Recall that SB-PIANN is not using the inputs of the PIBranch,



58 M. Ariannezhad et al.

(a) (b)

Fig. 3. Forecasts produced by HiBranch, PIBranch and SB-PIANN, along with the
actual sales, for sample products. Fig. 3a is taken from Favorita and Fig. 3b is selected
from Dunnhumby. y axis shows the sales and x axis is the time. Fig. 3a and Fig. 3b
show the improved forecasts using PI.

and indirectly models the effects of privileged information via the simulation
component. The close performance of SB-PIANN to that of DB-PIANN shows
that the proposed approach is able to embed the PI from train to test time
effectively. In other words, the simulation component is capable of transferring
the effects of privileged information absorbed in the train time to the prediction
time. The superiority of SB-PIANN compared to the HiBranch supports the
hypothesis that utilizing the privileged information leads to a better performance
than a forecast that only relies on the historical data.

To gain more insights into forecasts by our proposed method, we visualize
a few examples in Fig. 3. Each figure shows the demand for a product in a
store, taken from both Favorita and Dunnhumby. We show 101 days of history
for both datasets. The history of sales as well as the actual sales in the future
are plotted, along with forecasts made by PIBranch, HiBranch, and SB-PIANN.
We observe that the forecast based on PI has a different trend from the one
based on the history of sales. This might be a result of an event that affects the
sales of the product in the stores, and leads to a better prediction for the future
sales, compared to the forecast of HiBranch, which is based on the history of
sales in the target store. We can also recognize that SB-PIANN picks-up on this
difference, and its forecast is superior to that of HiBranch.

5.2 Comparison to Existing Approaches for Demand Forecasting

Next, we focus on the following question: How effective and accurate is SB-
PIANN for the task of demand forecasting? We compare SB-PIANN to the
following state-of-the-art neural network-based forecasting models:

DA-RNN [21]. This dual-stage attention-based RNN method is proposed for
time series prediction. It uses an encoder-decoder structure with two different
attention mechanisms. In this model, the PI are available also for the future.
However, this is an unrealistic assumption; we use this model as the baseline to
evaluate the ability of our model in making use of PI.

LSTNet [16]. The long- and short-term time-series network uses both CNNs and
RNNs to capture both short-term and long-term trending patterns of the time
series. It also has an auto-regressive component. The architecture is proposed
for multi-variate TSF, therefore we build a model for each item and forecast for
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the target stores simultaneously. For LSTNet, we only make use of the historical
values of PI for both training and test time.

TADA [8]. An encoder-decoder based architecture that uses two LSTM branch-
es for encoding different types of feature. Since the method was tested on the
Favorita dataset, we also report their results based on their original division
of features for this dataset. For the Dunnhumby dataset, we randomly divide
the data from other stores into two categories. We again only make use of the
historical values of PI available for both training and test time.

All baselines report superior performance compared to auto-regressive models,
decision tree models, and simpler neural network-based approaches. We therefore
omit these methods from our evaluation. Aside from their state-of-the-art per-
formance, we chose these methods as baseline to cover a wide range of possible
approaches. Specifically, they apply different training schemes; DA-RNN trains
a model per time-series, LSTNet trains a model per store, and TADA uses an
approach similar to ours, training a single model for all of the data. They also
differ in the ways they treat the PI. For DA-RNN, the assumption is that these
features are available for both history and the future (which is not true in real
world settings), while the other two only use the historical values of the PI.

Implementation Details. For the baseline implementation, we asked the
authors of TADA and DA-RNN for the code and they kindly provided us with
their own implementation. For LSTNet, we leverage the code which is made
publicly available by the authors.4 We use the same testing environment as SB-
PIANN for the baselines, as outlined in Sect. 4.

Table 3. Comparison of neural network-based forecasting methods on the Favorita
and Dunnhumby datasets. ∗ indicates that a method is significantly outperformed by
SB-PIANN (student t-test, α = 0.05).

Method Uses PI Δ = 2 Δ = 8 Δ = 16

Train Test MAE SMAPE MAE SMAPE MAE SMAPE

Favorita dataset

DA-RNN + + 9.343∗ 48.864∗ 8.583∗ 46.174∗ 8.709∗ 43.132∗

LSTNet − − 6.619∗ 40.509∗ 7.481∗ 43.920∗ 8.332∗ 45.016∗

TADA − − 6.428∗ 36.744 7.431∗ 41.389∗ 8.463∗ 43.165∗

SB-PIANN + − 6.069 37.139 6.277 38.102 6.868 38.241

Dunnhumby dataset

DA-RNN + + 4.535∗ 52.779∗ 3.995∗ 47.154∗ 4.168∗ 48.942

LSTNet − − 4.134∗ 48.484∗ 4.818∗ 55.310∗ 5.673∗ 59.864∗

TADA − − 4.367∗ 49.018∗ 5.777∗ 63.834∗ 8.251∗ 78.055∗

SB-PIANN + − 3.558 42.567 3.612 43.506 4.059 49.540

4 https://github.com/laiguokun/LSTNet.

https://github.com/laiguokun/LSTNet


60 M. Ariannezhad et al.

Results and Discussion. Table 3 shows the performance of SB-PIANN com-
pared to the baselines for different forecast horizons on Favorita and Dunnhumby,
respectively. The best performance is highlighted with bold face. In almost all
cases, SB-PIANN outperforms the baselines in terms of MAE and SMAPE. We
observe that the performance of all methods starts to drop with the increase of
the forecast horizon, but SB-PIANN is more robust with respect to the length of
the forecast horizon. In all cases, the performance is better on Favorita than on
Dunnhumby in terms of SMAPE. This might be due to the fact that the sales
data in Dunnhumby is more scarce.

According to the results, SB-PIANN even outperforms DA-RNN, which
makes the unrealistic assumption of having the PI available at prediction time.
The fact that SB-PIANN outperforms even DA-RNN shows the effectiveness
of our proposed approach to leverage privileged information. The lower perfor-
mance of DA-RNN might also be a result of its training scheme, i.e., building a
forecast model per time series. In this scenario, the model cannot learn from the
similarity and differences between different products and stores.

While the special type of PI that we experiment with, i.e., sales in other
stores, suggests the use of a multi-variate TSF model, our experiments show that
compared to LSTNet, a state-of-the-art model proposed for the multi-variate
TSF, SB-PIANN, performs better in all cases. On the Favorita dataset, we com-
pare the performance of SB-PIANN with the original version of TADA, i.e.,
using the definition that the authors propose for internal and external features.
In this version, a set of 13 attributes are used as features, such as the location
of the stores and the oil price. In our approach, we only rely on the sales of the
items in other stores as features, and we observe that our model performs signif-
icantly better in terms of both error metrics, while using no manual categoriza-
tion of features. The gain in performance is more significant on the Dunnhumby
dataset, which indicates the limitation of TADA when the division of features
into internal and external as required by TADA is not straightforward. In other
words, the performance of TADA degrades when influential features cannot be
characterized as internal and external, and accordingly, cannot be fed into the
corresponding LSTM layers.

6 Conclusions and Future Work

Demand forecasting is a fundamental problem in the replenishment process of
retail companies. Models for forecasting the demand for a product usually con-
sider patterns in the history of sales data and influential features. Such influential
features can be divided into two categories: plannable features that are known for
the past and the future, and non-plannable features, for which the future values
are unknown. Neural forecasting models usually ignore non-plannable features
when predicting the amount of sales in the future.

In this paper, we identify non-plannable features as privileged information
and design a novel neural network to utilize them. We propose two different
network architectures for training and prediction time. At the time of training,
the network has two different branches to model the effect of historical sales and
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non-plannable features. At prediction time, the second branch is not available,
and is replaced by a simulation network that is trained to mimic its behavior.
We extensively evaluate our proposed approach on two real-world forecasting
datasets, and find that it outperforms state-of-the-art baselines in terms of mean
absolute error and symmetric mean absolute percentage error metrics.

While our proposed architecture is capable of plannable features, our focus
in this paper is on modeling non-plannable features. In future work, it will be
appealing to study different approaches to incorporate plannable features in the
model; aside from treating them as an extra dimension of the historical sales, they
can be fed into the PIBranch, or an extra dedicated branch. Moreover, although
we make no specific assumptions about the type of non-plannable features in our
model, we rely on a single type of non-plannable features in our experiments.
We also aim to investigate the impact of more sources of privileged information.

Code and Data. To facilitate the reproducibility of the reported results, this
work only made use of publicly available data and our experimental implemen-
tation is publicly available at https://github.com/mzhariann/PIANN.
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Abstract. Traffic forecast is a problem of high interest due to its impact
on mobility and inherent socio-economic aspects of people’s lives. Par-
ticularly for adaptive traffic light systems, the ability to predict traffic
throughput in intersections enables fast adaptation, thus reducing traffic
jams. In this work, we propose a novel approach for traffic forecast-
ing, termed Graph Augmented Neural Network Spatio-TEmporal Rea-
soner (GANNSTER), which fuses spatial information, given by the traffic
network topology, with temporal reasoning and learning capabilities of
recurrent neural networks. Our modelling contribution is supplemented
by the public release of a novel real-world dataset containing urban traf-
fic throughput in intersections. We comparatively evaluate GANNSTER
against state-of-the-art models for traffic forecast and demonstrate its
superior performance.

Keywords: Deep learning · Graph neural network · Traffic forecast

1 Introduction

Traffic congestion resulting from growing traffic volumes in urban areas has a
major impact on life, ranging from socio-economic to environmental aspects,
such as air pollution, commute time, and waste of energy. One key method for
reducing congestion is to optimize the traffic light control accordingly based on
the current traffic situation, but also the expected traffic in the near future.
For instance, accurate traffic flow forecasts can be used to improve traffic light
control, therefore reducing the formation of jams or minimizing their effects.

Forecasting traffic flow, however, constitutes a complex problem. Traffic
depends on a large variety of factors, for instance, the length of the traffic light
phases, the type of vehicles, the driver behaviour, and the variety of weather
conditions. Additionally, datasets present high variability between consecutive
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readings from the road sensors. Such variability of consecutive measurements
is illustrated with an example in Fig. 1. Said measurements may be subject to
noise due to unforeseen external conditions (e.g. untrimmed trees, poor visibility
at night, vandalism, etc.).

Fig. 1. Example for car throughput in an urban intersection. Data is aggregated every
five minutes. Each line represents 24 h of data for one traffic sensor.

A variety of different techniques for traffic forecasting have been proposed,
ranging from statistical methods [1] to Deep Learning models [13,18]. Deep
Learning (DL) methods have proved their potential in learning from large
amounts of data. For instance, DL excels in describing sequences of temporally
dependent values [4,12], hierarchical visual processing [15] and data generation
[24]. While these studies present promising results in restricted scenarios, they
fail to capture the spatio-temporal relationships in the data. In an attempt
to introduce this dimension into the model, there has been a large amount
of work addressing methods to embed graph structures into neural networks
[2,7,10,14,28,33]. Some of this work has been applied in the traffic domain, but
most of it focuses on forecasting the average speed of vehicles driving through
detectors on highways rather than throughput of urban traffic.

In this work, we address the challenge of urban traffic flow forecasting, and
introduce GANNSTER: Graph Augmented Neural Network Spatio-TEmporal
Reasoner, a novel deep learning model and system that exploits both tempo-
ral and spatial information through embedded graphs for predicting traffic flow.
The primary purpose of GANNSTER is to provide traffic flow predictions to
be used for traffic light logic optimization. Since traffic light logic optimization
requires predictions at most about one hour ahead, GANNSTER focuses on this
short-term prediction horizon.
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Our main contributions are:

– GANNSTER, a neural network-based system, that embeds and exploits the
temporal and spatial relations in a road network for throughput prediction
across intersections.

– The comparative evaluation of GANNSTER against relevant state-of-the-art
models on a novel real-world dataset. Our evaluation results show that our
approach generally yields higher accuracy than the other evaluated methods.

– A new real-world dataset, MUSTARD-S (Multi-cross Urban Signalized Traffic
Aggregated Region Dataset - Small), which contains road traffic data recorded
over 55 days and 6 intersections.

We start by describing related work employing recurrent neural networks,
graph neural networks and other methods for traffic forecasting in Sect. 2. Fol-
lowing, in Sect. 3, we introduce GANNSTER. The experiments, along with their
methodology, are introduced in Sect. 4. We present and discuss the evaluation
and experimental results in Sect. 5. Finally, Sect. 6 concludes the paper and
discusses opportunities for future work.

2 Related Work

The proposed system taps into efficient solutions for traffic forecasting and
explores how the new breed of graph neural networks can tackle the inherent
dynamics of such a complex process. In the following, we provide an overview of
key state-of-the-art approaches.

2.1 Traffic Forecasting

Most of the traffic forecasting approaches use statistical methods [1,9]. While
these types of models work well on small datasets, the increasing number of
traffic sensors, data quantities and heterogeneity, and computational power has
made them obsolete. Recent approaches use machine learning techniques for
detecting non-linear relations among the traffic variables. For instance, works
using Support Vector Regression [25] tend to outperform statistical methods in
terms of accuracy by learning a linear function in the space induced by a non-
linear kernel which corresponds to a non-linear function in the original space.
Following the trend from the machine learning community, researchers turned
towards DL for traffic forecasting [22,26]. While outperforming both statistical
and machine learning methods, base DL methods fail to exploit temporal and
spatial information. With the rise of recurrent neural networks, and particularly
Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) [4,12],
researchers added the temporal dependency to the Eq. [20,31]. Yet, such sys-
tems still fail to capture the spatial information. In an attempt to add spatial
information, some models incorporated convolutional neural networks [19,30,32],
with the downside of not being able to accurately represent the road network
topology.



66 C. Salort Sánchez et al.

2.2 Graph Neural Networks

Recent trends demonstrated an increasing interest in combining DL techniques
and graphs. Whereas most data problems lie in a Euclidean space, that is not the
case for graph data. Therefore some of the data assumptions do not hold (e.g.
hierarchical representation, flatness, flexible operations with fewer dimensions).

To bypass these difficulties, some approaches included the use of graph-
structured spatial information, such as the PATCHY-SAN that extracted locally
connected regions from graphs using learned feature representations competi-
tive with state-of-the-art graph kernels [21]. GraphSAGE is another approach
that employs inductive learning to leverage graph node attribute information
to efficiently generate representations of previously unseen data [10]. Another
remarkable approach leverages Diffusion Convolution Networks that introduce
a novel diffusion-convolution operation and diffusion-based representations that
can be learned from graph-structured data and used as an effective basis for
node classification [17]. Finally, Attention Based Methods stand out, particularly
self-attention mechanisms, that relate different positions of a single sequence to
compute a representation of the same sequence [27]. Among these, the method
that has gained more popularity relies on generalizing convolutional neural net-
works [16] using spectral graph theory. This idea was first introduced in [3],
with Graph Convolutional Networks (GCN). Several works [6,11,14] have been
built on top of these principles using different approximations from spectral
graph theory. These methods have been successfully applied to a growing set of
problems, such as link prediction in optimizing networks [14], and representing
three-dimensional protein structures [7]. A more detailed description of general
GCN can be found in [28,33].

2.3 Graph Neural Networks for Traffic Forecasting

With the evolution of graph-based neural networks, a new opportunity to tackle
traffic forecast problems arose. The work in [29] proposes Spatio-Temporal GCN
(STGCN) to combine graph convolutions and gated temporal convolutions for
extracting the most relevant spatial and temporal features coherently. By equip-
ping a neural network with attention mechanisms, the work in [8] enabled focus-
ing on a subset of inputs and features. Basically, by computing masks used to
multiply features, the work proposes an attention mechanism with three inde-
pendent temporal components, namely recent data, daily data, and weekly data,
fused to generate the final traffic forecast. The work in [17] introduces Diffusion
Convolutional Recurrent Neural Networks (DCRNN), a model employing bidi-
rectional random walks on a graph to learn its spatial dependencies, and an
encoder-decoder with scheduled sampling architecture to detect the temporal
dependencies. Our method differs structurally from this approach, as we train the
model directly, and propose an alternative convolution-based approach. Another
important aspect is the fact that DCRNN uses a weighted graph based on the
distance between sensors, which we avoid to reduce the amount of information
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needed about the network. Finally, the work in [5] proposes Traffic Graph Con-
volutional LSTM (TGC-LSTM), a model based on LSTM, that uses Free-Flow
Reachability (FFR) matrices in the graph convolution to provide extra informa-
tion to the model. Similarly to our work, TGC-LSTM uses k-walks matrices, but
without considering previous temporal values. Furthermore, our model does not
depend on any extra information other than the adjacency matrix.

3 GANNSTER

In this section, we detail the structure of GANNSTER and the graph encoding of
the road network to exploit spatio-temporal dependencies for traffic predictions.
We start by introducing the road graph and definitions used throughout this
section.

3.1 Road Graph

The road network structure is crucial for producing accurate traffic forecasts. For
instance, knowing that a road segment is unidirectional often allows reasonably
accurate predictions for the next intersection reached by a vehicle driving on
that road. While this is intuitive for humans, such properties need to be carefully
encoded into the model to enable forecasts.

Fig. 2. Possible paths for a car entering intersection A. There are four possible direc-
tions, and four possible turns. As an example, a car entering (A, north, left) has four
possible destinations: (B, west, {any direction}).
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Figure 2 depicts an example of the graph derived from a map with four
intersections. For the sake of readability, possible paths are only plotted for
intersection A. Each intersection can be entered from four possible directions
(north, east, south, and west), and can be left into four directions (by turning left,
right, going straight, and turning around). Note that the topology in the depicted
example was solely chosen for clarity, and other road structures can be encoded
similarly. In the following subsection, we formally define the construction of the
road graph.

3.2 Definitions

We define the road graph as a directed graph G = (V, E), where each vertex

v = (intersection, source direction, turn) ∈ V (1)

represents one concrete possibility for traversing an intersection (coming from a
specific direction and taking a specific turn). We define that a directed edge

e = (vorigin, vdestination) ∈ E (2)

exists if and only if an intersection can be traversed as specified by vdestination
directly after traversing the same or a different intersection as specified by vorigin.
We assume that sensors are installed at intersections counting vehicles for each
possible source and turning direction (i.e., at each node in G.). For brevity, we
further define N = |V|.

Throughout this work, we assume a discrete time model with equally-sized
steps of five minutes. We define the system state at a specific time step t to
consist of the the number of vehicles detected by each sensor since the previous
time step, and we denote the system state at time t as x(t) ∈ R

N . We assume
that, at any time, the recent history of system states is available, that is, the
ordered sequence of system states from the T ′ most recent time steps is known.
We define the prediction horizon as the number of steps (starting from the last
known state) for which the system state shall be predicted, and denote it as T .
Based on this notation, the forecasting problem can be phrased as the problem
of finding a function h that satisfies

[x(t−T ′+1), . . . , x(t);G] h−→ [x(t+1), . . . , x(t+T )]. (3)

We let A ∈ R
N×N denote the adjacency matrix of G defined in the common

way, that is, Ai,j = 1 if (vi, vj) ∈ E , 0 otherwise. Note that A is not necessarily
symmetric since the edges in G are directed.

We define a walk as a sequence of edges [e1 = (v0, v1), . . . , ei = (vi−1, vi)],
which connects a sequence of vertices in the graph. With Mk denoting the k’th
power of a matrix M , given the adjacency matrix A of G, the matrix Ak rep-
resents the number of possible walks of degree k. That is, Ak

i,j represents the
number of walks from vertex vi to vj with length k. In a road traffic graph, this
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can be interpreted as the multitude of nodes that can be reached in k time steps
by a vehicle originally detected in vertex vi.

We define the k-walk matrix as

Âk
i,j = min(Ak

i,j , 1), (4)

such that Âk
i,j = 1 if there is at least one k-degree walk from vi to vj , and

Âk
i,j = 0 otherwise. Each row and column of this matrix represents one vertex in

the graph, and the matrix represents the final vertex (columns) where a vehicle
can arrive starting from the initial vertex (row) in k steps. After multiplying Âk

with the system state, we obtain Âkxt−k, a vector representing the maximum
amount of cars that can arrive at a particular node from any node in the network
in k steps.

We let Dk ∈ R
N×N denote the degree matrix of Âk: Dk

ii =
N∑

j=1

Âk
i,j . This

diagonal matrix represents the number of edges that can be reached in exactly k
steps starting from the vertex vi. The inverse of the degree matrix is represented
by D−k.

The GANNSTER model utilizes a similar approach to the Graph Convolution
operation defined in [11,14], using the adjacency matrix as Âx(t) to extract local
information from previous steps.

3.3 GANNSTER Model

GANNSTER incorporates both temporal and spatial information by leveraging
a combination of Graph Convolutions and Recurrent Neural Networks (RNN).

Temporal Information. GANNSTER utilizes RNNs, an established type of
DL structures designed for use with temporal data. GANNSTER is agnostic to
concrete type of RNN, and in this work, we instantiate GANNSTER in combi-
nation with LSTM and GRU. RNNs are well-suited for processing sequence data
for predictions but suffer from short-term memory. LSTMs and GRUs mitigate
short-term memory using gates that regulate the flow of information flowing
through the sequence chain. In addition to the temporal traffic information, in
either case, we augment the input vector for the t-step with additional informa-
tion from the graph representing the road network.

Spatio-Temporal Information. Road topology contains rich implicit infor-
mation (e.g. adjacency, connectivity, directions). Our objective is to incorporate
this spatio-temporal information into the RNN components of GANNSTER.

In Fig. 3 we can see a vehicle, currently positioned in (A, west, straight), at
time t. Let’s assume that, in one timestep, it can move one intersection. Then,
due to the road topology, we know that the vehicle will be in (C, west, any
direction) at time t + 1. Furthermore, at time t + 2 the vehicle can be in (A,
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Fig. 3. Vehicle located in (A, west, straight), and possible paths in one timestep (blue)
and in two timesteps (red). (Color figure online)

east, any), (B, south, any), (D, north, any) or (E, west, any). This information
can be used by the model to improve forecast accuracy.

We will use the matrix Âk to incorporate spatio-temporal information. As
it represents the possible k-walks, when computing the product Âkx(t−k), we
obtain the number of vehicles from k timesteps ago and k hops away from i at
position i. This represents a rich new source of information that constitutes the
base for our model.

GANNSTER Network. GANNSTER embeds the graph structure along with
the temporal information into the model. We define the parameter K as the
number of past steps that will be considered in the model.

We define a GANNSTER vector as

GANNSTERt =
K�

k=0

(D−kÂkx(t−k)) (5)

where
�

represents vector concatenation. The vector described in Eq. 5 will
be the input of the RNN. In cases where (t − k) < (t − T ′ + 1), i.e. the input
information for the model is not available because it is too old, we use x(t−k) = 0.
We use D−k to normalize the number of cars in previous steps.

Figure 4 shows the architecture used by GANNSTER, when used jointly with
LSTM. As explained before, other RNN structures can be used. We use many to
many sequence prediction. The main difference with plain RNN architectures is
the addition of the spatio-temporal information as input. Please note that, for
the case K = 0, GANNSTERLSTM becomes a normal LSTM model. Analogous
to other RNN-based systems, we can stack L blocks. We explored large scale
structures and added a dropout layer between blocks. We only use GANNSTER
vectors in the first block. In posterior blocks, the hidden space dimension does
not necessarily match the input space dimension and therefore the k-walk matrix
loses its meaning.



GANNSTER for Traffic Forecasting 71

Fig. 4. GANNSTER architecture.

4 Experimental Evaluation

We conducted an experimental evaluation of GANNSTER to assess the perfor-
mance in terms of forecasting accuracy. For comparison, we included state-of-
the-art models that incorporate topological information about the road network
encoded as graph, as well as simpler baseline models in our evaluation. In con-
trast to GANNSTER and the state-of-the-art methods, the baseline methods
are oblivious to the structure of the road network, and hence, the comparison
to them may indicate the performance benefit stemming from the additional
topological information. For evaluating the performance in an urban setting, we
introduce a novel dataset, MUSTARD-S (Multi-cross Urban Signalized Traffic
Aggregated Region Dataset - Small), which we describe next.

4.1 MUSTARD-S

We present MUSTARD-S (Multi-cross Urban Signalized Traffic Aggregated
Region Dataset - Small), a dataset consisting of 55 days of traffic throughput at
six intersections in a city in China. We are working to increase the size of the
dataset, and will be made public once available. The road network underlying
this dataset is depicted in Fig. 5.

4.2 Experimental Settings

For training, we use a 80/10/10 train/validation/test split. Due to the time
dependency of the data samples, we chose a sequential split. For all models, we
train for up to 400 epochs, with an initial learning rate of 0.0001, and Mean
Squared Error (MSE) as a loss function. We have a patience mechanism for
updating the learning rate. Once the validation error does not improve by at
least 0.00001 for 10 iterations, we decrease the learning rate by a factor of 10,
resort to the iteration that achieved the best accuracy in validation and resume
training from that state on. We stop training after the learning rate was updated
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Fig. 5. MUSTARD-S map. Named intersections are considered in the study.

twice, or the epoch limit is reached. We normalize the dataset using Z-score.
History size is one hour of data (12 data points) for all models. We consider a
prediction horizon of 5, 15, 30, 45 and 60 minutes, respectively, into the future
(i.e. 1, 3, 6, 9 and 12 values).

We considered the following models in our evaluation:

– Näıve Baseline. The prediction is the last value observed, regardless of the
prediction horizon.

– DNN. It is a one layer dense neural network. The first layer has N ·T ′ nodes,
output layer has N · T , where N is the number of vertices |V| in the road
graph, T ′ is the history size, and T is the number of steps to predict.

– LSTM, GRU. Vanilla three layers stacked LSTM and GRU, with a hidden
state of 128 nodes, dropout of 0.2, as implemented in PyTorch.

– TGC-LSTM. We use most of the same parameters as in [5]. We use K = 3,
i.e. 3 steps behind. For the FFR matrix we use Âk as a proxy.

– GANNSTER-LSTM, GANNSTER-GRU, our proposed models, in LSTM and
GRU flavours. Implemented using two layers stacked, with a hidden dimen-
sion of 128, and dropout of 0.2, and using the adjacency matrix for the
GANNSTER vectors. We use K = 3, that is, 3 steps behind, as a sufficient
history intake.

All models have been implemented using PyTorch [23]. Source code avail-
able at https://github.com/csalort/GANNSTER. The metrics used for forecast
comparison are Mean Absolute Percentage Error (MAPE), Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) for n samples, given ground truth
y and prediction ŷ:

https://github.com/csalort/GANNSTER
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MAE =
1
n

n∑

i=1

|y − ŷ| (6)

MAPE =
1
n

n∑

i=1

∣
∣
∣
∣
y − ŷ

y

∣
∣
∣
∣ · 100 (7)

RMSE =

√
√
√
√ 1

n

n∑

i=1

(y − ŷ)2 (8)

All experiments were conducted on a KunLun Mission Critical Server with
768 cores (equipped with Intel(R) Xeon(R) CPU E7-8890 v4 @ 2.20 GHz) and
12 TB of RAM.

5 Results and Discussion

Table 1 presents the results of the forecast experiments on the MUSTARD-
S dataset, given as error between ground truth and prediction. First, we can
observe that the forecasting accuracy generally drops as the prediction horizon
is widened. We can also see that all the models have relatively poor perfor-
mance, especially regarding to MAPE. This confirms our hypothesis that the
high variability of the measurements create a challenging forecast environment.

Table 1. MUSTARD-S results. Best performance highlighted in bold.

GANNSTER TGC-LSTM LSTM GRU DNN Näıve baseline

GRU LSTM

5min MAE 2.346 2.373 3.340 2.628 2.624 2.390 2.551

MAPE 42.769 42.525 69.097 41.460 42.165 43.374 50.000

RMSE 4.055 4.144 7.763 5.651 5.629 4.259 4.884

15min MAE 2.444 2.407 3.340 2.658 2.659 2.458 2.587

MAPE 43.377 43.010 69.077 41.781 42.598 44.493 50.377

RMSE 4.294 4.246 7.763 5.688 5.685 4.398 4.957

30min MAE 2.476 2.443 3.340 2.703 2.691 2.529 2.687

MAPE 43.979 43.394 69.068 42.485 43.605 45.848 51.404

RMSE 4.366 4.345 7.763 5.743 5.736 4.535 5.249

45min MAE 2.567 2.598 3.341 2.738 2.738 2.605 2.806

MAPE 45.238 45.282 69.077 43.008 44.467 47.354 52.645

RMSE 4.634 4.817 7.765 5.795 5.792 4.690 5.618

60min MAE 2.619 2.709 3.341 2.799 2.814 2.676 2.931

MAPE 46.192 47.126 69.147 44.753 46.210 48.786 54.053

RMSE 4.825 5.116 7.764 5.937 5.899 4.852 6.017

The Näıve baseline is one of the models performing worst. This type of model
is unable to adapt to the variability of the measurements. Similar results can
be observed for the DNN. While both models yield low MAPE results, they
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perform above average in the remaining metrics. This may be caused by an
overfit during hours of low traffic, generating an overly low prediction model.
On the contrary, RNN performs much better in MAPE. RNN can better adapt
to traffic peaks and have some of the best scores in MAPE. Interestingly, the
LSTM performs best in terms of MAPE. This is because MAPE results in a
disproportionately high error in case of relatively small (true and predicted)
traffic volumes. LSTM is similar to real values when there is not much traffic,
but when the number of cars increases it stops performing so well. TGC-LSTM,
the state-of-the-art model, performs quite poorly. Our hypothesis is that using
Â as a proxy for the FFR matrix hurts the model. It performs worse than
all the baselines, thus making it unsuitable for the properties of the dataset.
Our models, GANNSTERGRU and GANNSTERLSTM, are the best performers
in two out of the three metrics, and rank second in the remaining. Moreover,
the accuracy improvements of GANNSTERGRU and GANNSTERLSTM over
GRU and LSTM, respectively, can be attributed to the incorporation of the
spatio-temporal information into the model. GANNSTER-models improve the
forecast with respect to both baselines and state-of-the-art, therefore being the
best suited model for the problem at hand.

6 Conclusion and Future Work

In this paper, we present GANNSTER, a graph-based RNN model designed to
forecast road traffic. Our experimental evaluation compares GANNSTER with
state-of-the-art methods and baselines on a real-world dataset, which has been
made public. We demonstrate through a performance analysis that GANNSTER
outperforms the state-of-the-art in traffic flow forecast.

Our future lines of research include the possibility to use GANNSTER
on “hidden traffic metrics”, by further exploiting the intrinsic spatio-temporal
mechanisms at its core. A different line of research is to incorporate more long-
term traffic dynamics into GANNSTER to support a prediction horizon of days,
enabling additional use-cases, such as improved city planning. Finally, we aim to
extend the traffic datasets we used for evaluation, covering a larger area over a
longer time, thus exploring the dynamics and robustness of the system at scale.
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Abstract. In this paper we focus on explanation methods for time series
classification. In particular, we aim to quantitatively assess and rank
different explanation methods based on their informativeness. In many
applications, it is important to understand which parts of the time series
are informative for the classification decision. For example, while doing
a physio exercise, the patient receives feedback on whether the execution
is correct or not (classification), and if not, which parts of the motion
are incorrect (explanation), so they can take remedial action. Comparing
explanations is a non-trivial task. It is often unclear if the output pre-
sented by a given explanation method is at all informative (i.e., relevant
for the classification task) and it is also unclear how to compare expla-
nation methods side-by-side. While explaining classifiers for image data
has received quite some attention, explanation methods for time series
classification are less explored. We propose a model-agnostic approach
for quantifying and comparing different saliency-based explanations for
time series classification. We extract importance weights for each point in
the time series based on learned classifier weights and use these weights
to perturb specific parts of the time series and measure the impact on
classification accuracy. By this perturbation, we show that explanations
that actually highlight discriminative parts of the time series lead to sig-
nificant changes in classification accuracy. This allows us to objectively
quantify and rank different explanations. We provide a quantitative and
qualitative analysis for a few well known UCR datasets.

Keywords: Time series classification · Explainable machine learning ·
Evaluation · Comparing explanations · Saliency maps

1 Introduction

In the last decade, machine learning systems have become more ubiquitous and
highly integrated with our daily life due to the increased availability of per-
sonal computing and wearable devices. Machine learning methods, including
those dealing with time series data, have grown in complexity, performance,
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and impact. Among many applications [22,23], Time Series Classification (TSC)
algorithms are more commonly used nowadays in human activity recognition [3]
tasks, which often require explanations for certain critical decisions [6,14]. This
explanation is usually presented in the form of a saliency map [1], highlighting
the parts of the time series which are informative for the classification decision.

Recent efforts both in designing intrinsically explainable machine learning
algorithms, as well as building post-hoc methods explaining black-box algo-
rithms, have gained significant attention [20,24,28,31,36]; yet, these efforts
present us with a new challenge: How to assess and objectively compare such
methods? In other words, if two methods give different explanations, e.g., two
different saliency maps, which method and explanation should we trust more?
Assessing and comparing explanations is a non-trivial problem and requires a
solution.

In this work, we consider explanation and its informativeness within a defined
computational scope, in which a more informative explanation means a higher
capability to influence classifiers to correctly identify a class. With this definition,
we aim to objectively quantify and compare the informativeness of different
explanations, hence alleviating the need for, or at least reducing some of the
effort for, conducting user-studies which are very difficult to reproduce [9]. We
focus on quantitatively evaluating explanation methods for the TSC task. In
this paper, we only consider methods that produce explanations in the form
of saliency maps. In particular, we introduce a model-agnostic methodology to
quantitatively assess and rank different saliency maps based on a concept of
informativeness which we define in this paper.

In our experiments, we consider three popular and recent saliency-based
explanation methods representing two approaches for generating explanations
(i.e., model internals from an intrinsically explainable model and post-hoc expla-
nations) and two scopes of explanations (i.e., global explanation for the entire
dataset and local explanation for the prediction on a specific test example). As
illustrated in Fig. 1, such methods often produce significantly different expla-
nations and subsequently call for a methodology and evaluation measure for
comparison.

Fig. 1. Saliency map explanations for a motion time series obtained using different
explanation methods. In this figure, the most discriminative parts are colored in deep
red and the most non-discriminative parts are colored in deep blue. (Color figure online)
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Our methodology stems from the idea that highly informative explanations
correctly identify areas of the time series that are relevant for a classifier, thus
perturbing such parts will result in a reduced capability of classifiers for making
correct decisions. We focus on two scenarios in which the informativeness of
explanation methods should be evaluated: when a single explanation method is
presented and we want to know whether such method is actually informative,
and when multiple explanation methods are presented and we wish to compare
them.

The evaluation of a single explanation method compares the changes in
classification performance under two settings: when the time series perturbation
happens at either the discriminative and non-discriminative parts, as detected
by the explanation method to be evaluated. If the method is informative, we
expect that the accuracy will drop more significantly when the discriminative
parts are perturbed. In contrast, for the comparison of multiple explanation
methods we compare the classification performance only when the perturbation
happens at the discriminative parts of the time series. The more informative
method should trigger a more significant drop in accuracy. In both scenarios, we
quantify the effect of change in performance by an evaluation measure which
estimates the difference of the changes across multiple thresholds for identifying
discriminative parts. We verify our experiment results with a sanity-check step,
in which we visualize and compare the saliency maps for multiple examples of a
dataset with known ground truth.

Our experiments show that explanations actually highlighting discrimina-
tive parts of the time series (i.e., that are more informative) lead to significant
changes in classification accuracy, reflected by our proposed evaluation measure
for quantifying this behaviour. While there is no one-size-fits-all ideal explanation
method that perfectly highlights the discriminative parts in all TSC problems
and datasets, our evaluation methodology provides a guideline to objectively
evaluate any potential TSC saliency-based explanation methods for specific use
cases, and safely reject those that fail both of the aforementioned steps.

Our main contributions are as follows:

1. We propose a new methodology and evaluation measure designed to enable
us to objectively quantify and compare the informativeness of different expla-
nation methods for the TSC task.

2. We empirically analyse our evaluation methodology with three representative
explanation methods and three “referee” TSC algorithms.

3. We provide a discussion of the quantitative and qualitative assessment of
various TSC explanation methods across several TSC benchmark datasets,
and propose some directions for future work in this area.

2 Related Work

2.1 Time Series Classification

Although many TSC studies have been published in the past, very few of them
focused on explainability. The list of TSC algorithms typically starts with the
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famous baselines 1NN-Euclidean and 1NN-DTW [16]; both are a combination of
a nearest neighbour classifier and a distance measure. In most of the literature in
this field, they are the benchmark classifiers due to their simplicity and accuracy.
For this type of classifier, one can explain the classification decision on a time
series by examining its nearest neighbour in the training data. However, we are
not aware of any TSC studies that have investigated this prospect in depth.

Recent TSC papers have explored many other directions which include
interval-based, shapelet-based, dictionary-based, and autocorrelation-based
methods [4]. Nevertheless, only shapelet-based and dictionary-based classifiers
in this group have shown the potential for explainability. Shapelet-based clas-
sifiers revolve around the concept of shapelets, segments of time series which
can generalize or discriminate the classes. Examples of shapelet-based classifiers
include Shapelet Transform [5] and Learning Shapelets [11]. It is theoretically
possible to use shapelets as an explanation mechanism for these classifiers, but
this was not considered in depth in previous studies, beyond a high-level qual-
itative discussion. On the other hand, dictionary-based classifiers have made
significant breakthroughs with the introduction of SAX-VSM [29], BOSS [26],
WEASEL [27], and Mr-SEQL [18]. The SAX-VSM work, although inferior to
the latter in terms of accuracy, presented some attempts to explain the classifier
by highlighting the highest-scored subsequences of the time series, which is a
form of saliency mapping. Similar bids to explain the classification decision were
made by SAX-VFSEQL [21] and its successor Mr-SEQL which are also classi-
fiers from this group. Two other important families of TSC algorithms are deep
learning, e.g., ResNet [15] and ensemble methods, e.g., HIVE-COTE [4]; they
are generally well-known for being highly accurate. While not many attempts
have been made to explain ensemble TSC methods, deep neural networks with
convolutional layers can produce a saliency map explanation of the time series
classification by using the Class Activation Map (CAM) method [36]. This option
was explored in [35] and [15].

2.2 Explanation in Time Series Classification

Saliency Maps. Saliency mapping is a visualisation approach to highlight parts
of a time series that are important for the TSC model in making a prediction.
Such mappings are often produced by matching a time series with a vector of
weights (w) using a color map. This vector of weights has a corresponding weight
value for each data point in the time series. The saliency map (characterized by
the vector of explanation weights) and the method to produce the vector of
weights for the mapping, are hereafter respectively called TSC explanation and
explanation method. Figure 2 (bottom right) shows an example saliency map in
which the vector of explanation weights is matched to the original time series
using a heatmap. The explanation weight is non-negative since its magnitude
reflects the discriminative power of the associated data point in the time series.

In this work, we explore three TSC explanation methods using the concept
of explanation seen as a vector of weights: MrSEQL-SM, CAM, and LIME.
These methods represent three distinct approaches for producing saliency-based
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explanations in the form of highlighting the discriminative parts of a time series.
We summarize the properties of these explanation methods in Table 1.

Table 1. Summary of TSC explanation methods properties.

Explanation method Type Model-specific Explanation scope

MrSEQL-SM Intrinsic Yes Global

CAM Post-hoc Yes Local

LIME Post-hoc No Local

Fig. 2. The saliency map explanation MrSEQL-SM obtained from the MrSEQL linear
classifier.

MrSEQL-SM. Mr-SEQL [18] is an efficient time series classification algorithm
that is intrinsically explainable, since it learns a linear model for classification.
The algorithm converts the numeric time series vector into strings, e.g., by using
the SAX [19] transformation with varying parameters to create multiple symbolic
representations of the time series. The symbolic representations are then used as
input for SEQL [13], a sequence learning algorithm, to select the most discrimi-
native subsequence features for training a classifier using logistic regression. The
symbolic features combined with the classifier weights learned by logistic regres-
sion make this classification algorithm explainable (Fig. 2). For a time series,
the explanation weight of each data point is the accumulated weight of the SAX
features that it maps to. These weights can be mapped back to the original time
series to create a saliency map to highlight the time series parts important for



82 T. T. Nguyen et al.

the classification decision. We call the saliency map explanation obtained this
way, MrSEQL-SM. For using the weight vector from MrSEQL-SM, we take the
absolute value of weights to obtain a vector of non-negative weights.

CAM. CAM [36] is a post-hoc explanation method commonly used to explain
deep networks that have convolutional layers and a global average pooling (GAP)
layer just before the final output layer. With this very specific architecture, the
weights from the GAP layer can be used to reveal the parts of the time series
that are important for the classifier to make a prediction. Thus, these weights
are used to produce the saliency mapping of the weight vector to the original
time series.

LIME. LIME [24] is a post-hoc explanation method that can be used to explain
a black-box classifier’s decision for a local example. To explain the local decision
of a model, LIME perturbs that local example (X) multiple times and weighs the
perturbed examples (X ′) by their proximity to X. It finally gets the prediction
of the original model for X ′ and fits an explainable classifier, usually a linear
model, to estimate the local decision boundary of the original classifier. LIME
does not explain the classification decision globally, but only locally around a
specific example. Due to this aspect, this explanation method is computationally
expensive as it has to be trained for each test example, hence we evaluate it with
only a subset of the datasets used for experiments.

2.3 Explanation in Other Machine Learning Domains

Interpretable machine learning is a rapidly growing area of machine learn-
ing research. Besides inherently interpretable models (such as linear regres-
sion and decision trees), there are techniques developed for explaining complex
machine learning models, ranging from feature-based [2,10], local surrogate [24],
to example-based explanations [25,34]. In the context of this work, we focus
on studying explanation methods within the scope of saliency map explana-
tion. Saliency maps were originally used in Computer Vision to highlight certain
properties of the pixels in an image [30]. The success of black-box deep neural
networks in image recognition tasks [12,17,33] paved the way for the growth of
post-hoc explanation methods designed to explain deep learning models. Notable
works of this family include Class Activation Map [36], Gradient-weighted Class
Activation Map (Grad-CAM) [28] and Guided Backpropagation (GBP) [32]. This
growing list of techniques to explain deep learning models poses the challenge
of assessing the quality of these explanation methods. The work by [1] attempts
to visually and statistically evaluate the quality of a few saliency-based expla-
nations for deep learning models, by tracking the changes of the saliency maps
when the model parameters and test labels are randomized. Interestingly, they
show that some explanation methods provide unchanged explanations even when
both the model parameters and the data are random.
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3 Research Methods

In this section, we first describe the perturbation process we propose for eval-
uating the informativeness of a TSC explanation method. We then outline two
perturbation approaches and finally introduce a novel measure to quantify and
compare the informativeness of TSC explanation methods.

3.1 Explanation-Driven Perturbation

The goal of providing a TSC explanation is to focus on the discriminative parts of
the time series. If the explanation is truly informative, it should point out those
parts of the time series that are most relevant for the classification decision.
Consequently, if we perturb these parts, then the time series will be harder
to classify. The more informative the explanation, the higher the decrease in
accuracy we expect, since we knock out the important information contained
in the data, for making a classification decision. In this section we provide an
approach for quantifying the informativeness of an explanation, by perturbing
the data points, as guided by the explanation.

Discriminative weights are identified by a threshold k (0 ≤ k ≤ 100) that rep-
resent the (100 − k)-percentile of the non-negative weight vector (w) that explains
a time series. This threshold allows us to focus on the highest magnitude weights
in the vector, e.g., k = 10 means that we focus on the top 10% highest weights
in the vector. With a specific value of k, the discriminative parts of the time
series are those parts where wt belongs to the (100 − k)-percentile discriminative
weights. This part is important because the weight magnitude captures informa-
tion about the discrimination power of the corresponding data point in the time
series. Similarly, with the same threshold k, the non-discriminative parts of the
time series are parts which have wt in the k-percentile of the time series (e.g., for
k = 10 these are the bottom 10% weights with lowest magnitude) (Fig. 3).

Fig. 3. Distribution of a hypothetical explanation weight vector with its non-
discriminative weight area (Area A) and discriminative weight area (Area B).

We perturb a time series by adding Gaussian noise to its original signal. If
the time series is represented by a vector x and the entire series is perturbed,
the noisy time series would be represented by the new xperturbed vector
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xperturbed = x + N (μ, σ2)

If a time series is normalized, the distribution for the Gaussian noise would be
sampled from N (0, σ1). The parameter σ1 controls the magnitude of the noise.

In a similar fashion, the time series can also be selectively perturbed in
accordance to a condition. In this case, we can perturb parts of the time series
based on the corresponding weights in the explanation vector and keep the rest
of the time series unchanged. With this logic of perturbing the time series (in
accordance to a given weight vector), we selectively add noise to the time series
as follows:

– Type 1 : Perturbation applied only to discriminative region.
– Type 2 : Perturbation applied only to non-discriminative region.

3.2 Method 1: Evaluating a Single Explanation Method

We propose an experiment to evaluate the informativeness of one explanation
method. We aim to answer the question: Is the explanation method truly informa-
tive? In this experiment, we first build a time series classifier using the original,
non-perturbed training time series. This classifier serves as the evaluation classi-
fier for the explanation method, i.e., a referee classifier. In addition, we use the
explanation method that we want to evaluate, to generate multiple versions of
the test dataset, each corresponding to a value of the threshold k (0 ≤ k ≤ 100).
For each value of k, we generate two perturbed test sets: one is only perturbed
with Type 1 noise, the other is only perturbed with Type 2 noise. Using the
referee classifier, we measure the accuracy in each perturbed test dataset. The
entire process is summarized in Fig. 4.

Fig. 4. Process of creating explanation-driven perturbed test sets and evaluating the
explanation method using a referee classifier.

If the explanation method being evaluated is indeed informative, we expect
that the perturbation of the discriminative parts (test datasets with Type 1
noise) reduces the classifiers accuracy more than the perturbation of the non-
discriminative parts (test datasets with Type 2 noise).
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3.3 Method 2: Comparing Multiple Explanation Methods

In contrast to the previous experiment, here we propose an experiment to com-
pare multiple explanation methods by their informativeness. We follow the same
process of creating noisy test sets as in Fig. 4, however, the perturbed test sets
are now created differently. Instead of adding noise to both the discriminative
and non-discriminative parts to create two different test sets for each k, we only
add noise to the discriminative parts of the test time series. Since we have mul-
tiple explanation methods, at a same threshold k (0 ≤ k ≤ 100), we now have
multiple versions of perturbed test datasets, each corresponding to a weight
profile (i.e., explanation) obtained from one explanation method.

Among the evaluated explanation methods, a perturbation based on a more
informative explanation should hurt the referee classifier more than the others.
In Fig. 5, we hypothetically have two explanation methods with the red and
blue lines representing the classification accuracy when test datasets are per-
turbed with either of the methods. Here, the explanation method controlling
the perturbation of the test dataset with the resulting accuracy drawn in red
is considered more informative, since perturbing the time series based on this
explanation hurts the referee classifier more.

Fig. 5. Change of accuracy when the test set is perturbed with a threshold k.

As the vector of weights used as information to perturb the test dataset
can be generated from any explanation method and independent of the referee
classifier used to measure the change in accuracy, Method 1 and Method 2
are model-agnostic techniques to evaluate any TSC explanation method.

3.4 Informativeness of an Explanation: An Evaluation Measure

We quantify the informativeness of an explanation using the relationship between
the accuracy of a referee classifier on test datasets perturbed at different levels
k of noise. We calculate the impact of the explanation methods by estimating
the area under the (explanation) curve described by accuracy at different per-
turbation levels k, using the trapezoidal rule. Since these values represents the
reduction of the accuracy when noise is added to the time series, hereafter we
call this metric Explanation Loss or eLoss for short. With this naming conven-
tion, one explanation method with lower eLoss will be considered better than
another with higher eLoss.
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eLoss =
1
2
k

t∑

i=1

(acci−1 + acci)

where k denotes the values of each step normalized to 0–1 range; t denotes the
number of steps (t = 100

k ); acci is the accuracy at step i. If we perturb the
dataset with t steps, we will have a total of t+1 data points for accuracy scores.
The step for k = 0 corresponds to the original test dataset, while the step for
k = 100 corresponds to adding noise to the entire time series.

Evaluating a Single Explanation Method. The eLoss can serve as a mea-
sure to evaluate the informativeness of one explanation method. In particular,
we estimate the eLoss of the accuracy curve produced by Type 1 and Type 2
noise. If the explanation method is informative, the Type 1 eLoss (eLoss1) is
expected to be less than Type 2 eLoss (eLoss2). Alternatively, we can define
this difference with ΔeLoss:

ΔeLoss = eLoss2 − eLoss1.

If ΔeLoss is positive, then the explanation method is computationally informative
as captured by a referee classifier, otherwise the explanation method is deemed
uninformative (i.e., the data points singled out by the explanation do not provide
useful information to the classifier).

Comparing Multiple Explanation Methods. In the case where multiple
explanation methods are presented for evaluation, we compare Type 1 eLoss
(eLoss1) for all explanation methods using an independent referee classifier.
The explanation method that achieves the lowest eLoss1 is the computationally
most informative explanation method among the candidate methods.

4 Experiments

In this section, we present the results of applying our evaluation methodology
using the following publicly available TSC datasets: CBF, Coffee, ECG200, Gun-
Point from UCR [7] and the CMJ dataset1. TSC explanations for these datasets
have been examined in depth by the previous works [15,18,29], hence they are
suitable for demonstrating our approach. Table 2 summarizes these datasets.

We evaluate three TSC explanation methods: MrSEQL-SM, CAM based on
ResNet (ResNet-CAM ) and LIME based on the Mr-SEQL classifier (Mr-SEQL-
LIME ). We also train three referee classifiers, Mr-SEQL [18], ROCKET [8],
and WEASEL [27], in order to computationally evaluate the usefulness of these
explanation methods. Due to a high computational cost for LIME, we evaluate
LIME only with the CMJ and GunPoint datasets. The code and settings for all
our experiments are available at https://github.com/mlgig/explanation4tsc.

1 Retrieved from: https://github.com/lnthach/Mr-SEQL/tree/master/data/CMJ.

https://github.com/mlgig/explanation4tsc
https://github.com/lnthach/Mr-SEQL/tree/master/data/CMJ
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Table 2. Summary of TSC datasets used to evaluate explanation methods.

Dataset Train size Test size Length Type No. classes

CBF 30 900 128 Simulated 3

CMJ 419 179 500 Motion 3

Coffee 28 28 286 SPECTRO 2

ECG200 100 100 96 ECG 2

GunPoint 50 50 150 Motion 2

4.1 Experiment 1: Evaluation of a Single Explanation Method

Table 3 summarizes the results for the evaluation of the three explanation
methods with the three referee classifiers over the five TSC datasets. We cal-
culate the difference between Type 2 eLoss and Type 1 eLoss (ΔeLoss) with
the explanation-driven perturbation approach. We expect ΔeLoss to be positive
when the explanation method is informative.

Table 3. Summary of ΔeLoss of three explanation methods on five different TSC prob-
lems. Positive values suggest the findings of the explanation method are informative
according to the referee classifier. Negative values suggest otherwise.

Dataset Explanation method Referee classifier

Mr-SEQL ROCKET WEASEL

CBF MrSEQL-SM 0.0001 0.002 0.0126

ResNet-CAM −0.0005 0.0007 0.0141

CMJ MrSEQL-SM 0.0045 0.0709 0.1151

ResNet-CAM −0.0006 −0.0028 0.0106

MrSEQL-LIME 0.0084 0.0475 0.0531

Coffee MrSEQL-SM 0.0286 0.0 0.0

ResNet-CAM 0.0179 0.0 0.0143

ECG200 MrSEQL-SM 0.033 −0.001 0.024

ResNet-CAM −0.011 −0.003 0.038

GunPoint MrSEQL-SM 0.0026 0.1373 0.0273

ResNet-CAM 0.0067 0.0967 −0.002

MrSEQL-LIME 0.002 0.0714 0.0007

To visualize the difference between Type 1 eLoss and Type 2 eLoss, we
also present this information in the form of the accuracy curve for the GunPoint
dataset (Fig. 6) and the CMJ dataset (Fig. 7). In each of the figures, we draw the
accuracy curve in the case when noise is added to the most discriminative parts
(Type 1 ) and non-discriminative parts (Type 2 ). We note that if the Type 1 curve
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Fig. 6. Comparison of accuracy for Type 1 (red) and Type 2 (blue) perturbation for
each explanation method and referee classifier for the GunPoint dataset. (Color figure
online)

is below the Type 2 curve, the explanation method is considered informative. If
this trend is consistent across the referee classifiers, the evidence that the method
is informative has more support. If we focus on evaluating the MrSEQL-SM
explanation method for the GunPoint dataset, we observe that the Type 1 curve
is always below the Type 2 curve for all three referee classifiers, thus we expect
that this explanation method is informative. This information is consistent with
the metric ΔeLoss in Table 4, when ΔeLoss is positive for all classifiers.

4.2 Comparison of Multiple Explanation Methods

In this experiment, we aim to compare the different explanation methods for a
specific dataset. Instead of comparing the eLoss for the case when noise is added
to the discriminative parts (Type 1 ) and non-discriminative parts (Type 2 ) of
the time series for one explanation method, here we compare the eLoss for Type
1 (eLoss1) perturbation across different explanation methods. An explanation
method is considered more informative if it has a smaller eLoss1 for the same
referee classifier.
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Fig. 7. Comparison of accuracy for Type 1 (red) and Type 2 (blue) perturbation
for each explanation method and referee classifier for the CMJ dataset. (Color figure
online)

We visualize this eLoss1 in Fig. 8 in which the explanation curve of the three
examined explanation methods are compared for the dataset CMJ (upper charts)
and GunPoint (lower charts). We notice that the different in eLoss1 is dependent
on the referee classifier used to examine the change of the accuracy in the noisy
test dataset. Given the same noisy datasets, the referee classifiers yield different
classification accuracy. With the CMJ dataset, it is difficult to conclude which
explanation method is most informative from Fig. 8, since the three lines are
closely placed. This result is consistent with the comparison of eLoss1 in Table 4.
We can conclude that the three explanation methods are computationally similar
in informativeness, although MrSEQL-SM is slightly more informative than the
other two methods (its eLoss1 is lowest for two referee classifiers).

4.3 Sanity Checks for Experiment Results

Although the evaluation measures show that one explanation method is more
informative than another, we want to verify this conclusion by performing a
sanity check step. In this step, we plot a few classification examples and their
explanations by the methods evaluated previously. We choose to perform this
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Table 4. Summary of eLoss1 of three explanation methods on five different problems.
Lower value (column-wise) suggests the explanation method is better in explaining the
problem according to the referee classifier.

Dataset Explanation method Referee classifier

Mr-SEQL ROCKET WEASEL

CBF MrSEQL-SM 0.9991 0.9941 0.6018

ResNet-CAM 0.9993 0.9945 0.6041

CMJ MrSEQL-SM 0.9441 0.8422 0.6899

ResNet-CAM 0.9453 0.8735 0.6972

MrSEQL-LIME 0.9441 0.8612 0.7385

Coffee MrSEQL-SM 0.9625 1.0 0.9786

ResNet-CAM 0.9696 1.0 0.9821

ECG200 MrSEQL-SM 0.811 0.9065 0.7565

ResNet-CAM 0.838 0.9035 0.7385

GunPoint MrSEQL-SM 0.9477 0.7567 0.543

ResNet-CAM 0.961 0.7773 0.5257

MrSEQL-LIME 0.9677 0.7953 0.573

Fig. 8. Comparison of accuracy for Type 1 perturbation based on three explanation
methods (MrSEQL-SM, ResNet-CAM and Mr-SEQL-LIME) for GunPoint and CMJ
datasets and three referee classifiers. Lower curve is better.

step with the CMJ dataset, for which the explanations are verified by a domain
expert [18].

Figure 9 presents the saliency maps generated by three explanation methods
for examples from the three motion classes in CMJ. Here we clearly see that
these methods give different explanations. MrSEQL-SM seems to provide the
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Fig. 9. Saliency maps produced by three explanation methods for example time series
from the three classes of the CMJ dataset.

most informative/correct explanations that highlight the low, middle parts of
the class NORMAL, the hump, middle parts of the class BEND, and the very
high peak, middle parts of the class STUMBLE. MrSEQL-LIME gives a similar
picture since it tries to explain the same classifier as MrSEQL-SM. ResNet-CAM
does not clearly highlight similar parts in this dataset. This sanity check confirms
the quantitative results in the previous experiments.

5 Discussion

In this section, we holistically interpret the experiment results with regard to
informativeness and other perspectives. With the notion of informativeness, we
set up the experiments based on an explanation-driven perturbation approach.
This approach allows us to assess the contributing significance of the discrimi-
native parts for a referee classifier. The results show that, with a given dataset,
we are able to some extent evaluate and quantify the informativeness of differ-
ent TSC explanation methods. There is scope though for further study of other
perturbation approaches as well as the use of other referee classifiers in order to
reach more significant differences in informativeness levels.

Stability of Explanation. Performing the experiment repeatedly, we notice
that not all explanation methods provide consistent results. Methods that
depend on certain level of randomization such as CAM (with randomized weight
initialization) and LIME (with randomized local examples to estimate explana-
tions) are generating slightly different explanations in different runs. For meth-
ods that are characterized by many hyperparameters like LIME, this stability of
explanation is also dependent on these parameters, such as the number of local
examples that it generates.
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Robustness of Referee Classifier. We observe that some TSC methods are
more sensitive to noise than others (Fig. 6, 7, 8). In our experiment, ROCKET
and WEASEL seem to be more noise-sensitive than Mr-SEQL. This sensitivity
results in higher value of ΔeLoss when the method is tested with these noise-
sensitive classifiers.

Computational Cost. It is worth mentioning that methods that locally gener-
ate explanations are computationally expensive. While MrSEQL-SM and CAM
conveniently use the trained model internals to compute explanations for a new
example, LIME generates multiple perturbations of the new example and reclas-
sifies it to generate an explanation, which leads to high computational cost.

6 Conclusion

This work aims to provide an objective evaluation methodology to gauge the
informativeness of explanation methods. Our experiment results show that it is
feasible to quantitatively assess TSC explanation methods and the sanity checks
visually confirm the experiment results. We envision that this technique is help-
ful when a user wants to assess an existing explanation method in the context of
a given application, or wishes to evaluate different methods and opt for one that
works best for a specific use case. In the scope of this work, we primarily evalu-
ate three explanation methods which collectively represents different approaches
to explain TSC decisions, though there are many other methods worth explor-
ing. With the application of human activity recognition in mind, we believe
that advancement in this area can potentially help many people who can thus
conveniently access high quality technology to directly improve their lives.
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Abstract. The discovery of subsets of data that are characterized by
models that differ significantly from the entire dataset, is the goal of
exceptional model mining. With the increasing availability of tempo-
ral data, this task has clear relevance in discovering deviating temporal
subprocesses that can bring insight into industrial processes, medical
treatments, etc. As temporal data is often noisy, high-dimensional and
has complex statistical dependencies, discovering such temporal subpro-
cesses is challenging for current exceptional model mining methods. In
this paper, we introduce Temporal Exceptional Model Mining to cap-
ture multiple and complex relationships among temporal variables of a
dataset in a principled way. Our contributions are as follows: (i) we define
the new task of temporal exceptional model mining; (ii) we characterize
the discovery of exceptional temporal submodels using dynamic Bayesian
networks by means of a new distance measure, (iii) we introduce a search
procedure for exceptional dynamic Bayesian networks optimized by prop-
erties of the proposed distance, and (iv) the practical value of the pro-
posed method is demonstrated based on simulated data and process data
of funding applications and by comparisons with other exceptional model
mining methods.

Keywords: Machine learning · Graphical models · Bayesian
networks · Temporal data · Subgroup discovery · Exceptional model
mining

1 Introduction

In many domains such as health care, engineering and workflow processes, there
is an increasing availability of temporal data, often mixed with non-temporal
ones, such as gender and geographical location. In such cases there may be a
need for discovering subgroups with deviant temporal dynamics [6,12].
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Examples are male patients for which some symptom takes longer to wane in
comparison to female patients, or workflow processes of department A having
excessive payment failures in comparison to other departments. This identifica-
tion is clearly relevant, e.g., to support treatment selection, cost reduction and
fraud detection.

As temporal data is often noisy, high-dimensional and has complex statistical
dependencies, discovering deviant subprocesses is challenging making many stan-
dard statistical and machine learning methods unsuitable. Exceptional model
mining (EMM) [2,9,10] allows for the discovery of exceptional (i.e., deviant)
models from temporal data, however restricted to a single temporal observation
modeled as a Markov chain (MC) [12]. The MC representation imposes severe
limitations for temporal settings, as correlations among multiple observations
are invisible as they are collapsed into a single observation. Moreover, scaling
to larger problems with MCs is infeasible due to the required number of param-
eters. On the other hand, temporal submodels with latent variables have been
investigated [16], yet interpreting latent states is often not trivial.

One distinguishing feature of EMM is that it supports interpreting model
differences, explaining why an object belongs to a subgroup. The challenge now
is: how to represent exceptional temporal subprocesses in EMM with reason-
able generality, and yet in an interpretable way? In this paper, we introduce
the task of temporal exceptional model mining (TEMM) for the discov-
ery of exceptional temporal subprocesses. Our definition of TEMM enables the
representation of a range of temporal subprocesses. We demonstrate TEMM by
means of dynamic Bayesian networks (DBNs) [8] to represent temporal submod-
els. DBNs are graphical models that fulfill several properties: they can capture
arbitrary probability distributions, and are interpretable.

The contributions of this paper are as follows. First, TEMM is presented as
a setting for representing exceptional temporal subprocesses in EMM. Then, a
distance function that measures the exceptionality of a DBN is introduced. We
give a procedure for searching for exceptional DBNs in data that is optimized by
exploiting properties of the designed distance. An empirical evaluation demon-
strates the proposed method, by a broad comparison with baselines on simulated
data and a case based on real workflow process data.

This paper is organized as follows. A running example is described in Sect. 2.
In Sect. 3, we define the task of TEMM. In Sect. 4, we introduce a distance
measure and a search approach for exceptional DBNs. The experiments based
on simulations and real data are discussed in Sects. 5 and 6. In Sect. 7, the related
work is reviewed. The conclusions are discussed in Sect. 8.

2 Motivating Example: The Business Process Intelligence
Challenge

In the European Union farmers can apply for direct payments, which provide
basic income decoupled from production. A funding application is described by
Land Area and Number Parcels, is submitted in a Year and is handled by
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a Department. The workflow of an application is a set of documents (Doc
Type), each one having a state (Subprocess) that allows for certain actions
(Activity). For each document, there are one or more subprocesses. This is the
basis for the business process intelligence challenge (BPIC18) [4].

Typically, the workflow starts with the payment application document, with
activities such as mail exchange and validation. An application normally requests
subsidies for a number of parcels, stored in a (geo) parcel document. Checks
regarding the validity of parcels are stored in a department control parcels doc-
ument. The stated parcels are also aligned based on a known reference, and this
is kept in a reference alignment. The result of these and other checks are sum-
marized in the control summary. In any document, editing and calculations are
frequent activities. Eventually, a decision is made for the case, leading to payment
activities. Deviations can occur, e.g., a percentage of cases has an inspection doc-
ument with on-site or remote subprocesses, or the case might also be reopened
due to a legal objection. Figure 1 shows this workflow dynamics. Our general
goal is to identify the overall dynamics and whether there are subgroups of the
data whose dynamics is substantially different from the general one.

Doc Type

Subprocess

Activity

payment application

application

mail income → mail valid

geo parcel document

main → declared

init → create

control summary

main

init

department control
parcels
. . .

performed

payment appl.

calculate → decide
→ begin payment
→ finish payment

inspection

remote

plan → prepare external
→ performed

reference alignment

init → performed

Fig. 1. Typical workflow of the funding example (simplified). Each document occurs
with multiple subprocesses and activities. Dashed arrows show process deviations.

3 Temporal Exceptional Model Mining

In this section we describe relevant background notions and define the task of
temporal exceptional model mining.

3.1 Temporal Targets

In order to represent subgroups we define descriptor and target variables. The
set of descriptor variables is a set A of random variables {A1, . . . , Ak}, where
Ai is a descriptor variable and has a domain dom(Ai). We denote values of the
domain by lower-case letters such as ai ∈ dom(Ai). In standard SD, one models
next to A a single variable X called target variable, while in EMM a set of target
variables X = {X1, . . . , Xn} is used instead. For example, in EMM for regression
[10], the predictor and response variables are the target variables. In TEMM,
the target variables X are the result of a temporal process as defined next.
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Definition 1 (Temporal targets). Let X be a set of random variables. We
assume that there is a process that changes X at regular time points, resulting
in the variables X(0),X(1), . . .. The variable X

(t)
i denotes Xi at time t, and we

denote by X
(t1:t2)
i the variables Xi occurring from time t1 up to t2. The variables

X
(t)
i , for t ≥ 0, have the same domain. We call each X(t) a temporal target.

Based on Definition 1, we define the space of variables in TEMM as {A,X(0),
X(1), . . .}. In practice, a data point in TEMM corresponds to configurations of
A and a finite number of temporal targets. Based on this, we consider a multiset
D of data points (called dataset in the following), where the ith data point is
denoted by (a[i],x[i](0), . . . ,x[i](mi)), in which mi is its last temporal target.

Example 1. Reconsider the problem of Sect. 2 with descriptors A = {Year,
Department,Number Parcels,Land Area} and targets X = {Activity,
Doc Type, Subprocess}. Figure 2 shows an example of a data point.

ti
m

e

Year = 2016, Department = e7, Number Parcels = 37, Area = 97.85
Doc Type Subprocess Activity
payment application application mail income → mail valid
geo parcel document main initialize
geo parcel document declared create
control summary main initialize
reference alignment main initialize → performed
department control parcels main performed
payment application application initialize → calculate → decide → revoke decision

→ calculate → decide → begin payment → insert
document → finish payment

Fig. 2. A data point of the funding process. The temporal targets are {Doc type, Sub-
process, Activity}. Arrows indicate transitions between instances of temporal targets.
All the activities of a row are associated with the same Doc Type and Subprocess.

3.2 Subgroups

A subgroup can be described by different pattern languages, depending on the
data being explored and on the patterns one wishes to discover [5]. Although
other languages exist (see, e.g., [2,13]), the attribute-value pattern language
is still very relevant in EMM [6,14]. In this work, we use this propositional
language, which is defined based on the space of descriptor variables A as follows.

Definition 2 (Subgroup). Let D = {d1, . . . , dm} be a dataset with each
records di = (a[i],x[i](0), . . . ,x[i](mi)). Let ϕ denote an expression of the form
(Ap1 = ap1 ∧ · · · ∧ Apq

= apq
), where {p1, . . . , pq} ⊆ {1, . . . , k}. The subgroup

associated with ϕ is defined as:

Gϕ =
{
di ∈ D | (Ap1 [i] = ap1 ∧ . . . ∧ Apq

[i] = apq
)
}

(1)

We say that the number of descriptors of Gϕ is equal to q.
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We refer to a subgroup either by Gϕ, by the expression ϕ that defines it, or simply
by G if no confusion arises. For convenience, the domain of a binary descriptor
such as A is denoted by dom(A) = {a−, a+}. For example, an expression (a+

1 ∧
a+
2 ∧ a−

3 ) represents a subgroup with 3 binary descriptors. In Definition 2, a
subgroup is a subset of data points of D selected according to a propositional
expression formed by a conjunction of attribute-value pairs. If q = 1 we say that
the subgroup is unitary, otherwise the subgroup is specialized.

Definition 3 (Subgroup sequences). The subgroup sequences of a subgroup
Gϕ of D are given by:

S(Gϕ) = {x[i](0:mi) | di ∈ Gϕ} (2)

The size of subgroup Gϕ is
∑

di∈Gϕ

(mi + 1) and is denoted by |Gϕ|.

In TEMM, given a subgroup G a model shall be fitted on the subgroup’s
sequences S(G) and is called the subgroup model. When we wish to compare
subgroups in TEMM, we shall compare the subgroup models associated with
these subgroups, hence this comparison is based on the space of temporal targets.

3.3 Problem Statement

In TEMM, we wish to find all the subgroups G whose models have a distribution
that differs from the distribution of the subgroup model associated with the
rest of the data. Additionally, every subgroup G must have a minimal size, i.e.
|G| ≥ σ|D|, where σ ∈ [0, 1] is the minimal size threshold. One can also specify
a preference for more specialized or more general subgroups (see, e.g., [12]).

4 Exceptional Dynamic Bayesian Networks

In this work, dynamic Bayesian networks (DBNs) are studied as model class
to represent temporal subgroup models. Then, we define a distance notion for
DBNs, allowing for the discovery of exceptional dynamic Bayesian networks.

4.1 Dynamic Bayesian Networks

Dynamic Bayesian networks extend Bayesian networks (BNs) to model processes
with uncertainty [8]: the temporal targets of Definition 1. In order to keep the
model compact, a few assumptions are adopted in DBNs. We say that a dynamic
system over the temporal targets X is Markovian if P (X(t+1) | X(0:t)) =
P (X(t+1) | X(t)), for all t ≥ 0. This means that predicting the future state
depends only on the current state. Another useful assumption is time homo-
geneity, which holds in a dynamic system if the transitions P (X(t+1) | X(t))
are invariant for every t ≥ 0.



102 M. L. P. Bueno et al.

Definition 4 (Dynamic Bayesian network). A dynamic Bayesian net-
work M is a Markovian time-homogeneous system M = (B0,B→), where: (i)
B0 = (G0, P0) is a BN over the variables X(0) called initial network; (ii)
B→ = (G→, P→) is a BN over the variables {X(t+1),X(t)} called transition
network. The variables of X(t) have no parents in the transition network.

Based on the previous notions, a DBN can be unrolled for any discrete horizon
{0, . . . , m} with the following joint distribution:

P (X(0:m))=
n∏

i=1

P0(X
(0)
i | π(X(0)

i ))
m−1∏

t=0

n∏

i=1

P→(X(t+1)
i | π(X(t+1)

i )) (3)

where π(X(t)
i ) denotes the parents of node X

(t)
i in G0 or G→.

4.2 Distance Function

Definition 5 (Mismatch score). Let D be a dataset over {A, X(0), X(1), . . .}
and G,H be two subgroups of D. Further, let us denote by MG and MH the
dynamic Bayesian networks with maximum score given subgroups G and H
respectively. The mismatch score between MG and MH is:

mismatch(MG,MH) = (score(MG : G) − score(MH : G))
+ (score(MH : H) − score(MG : H))

(4)

where score(M : D) refers to the score of model M based on subgroup D.
Note that given a subgroup G, it holds by definition that score(MG : G) ≥
score(MH : G) for any model MH . In practice, it might be difficult to identify
the model MG of subgroup G, as we discuss in Sect. 4.3.

The mismatch score assess the error that a model makes when given data
different than that which gives the maximum score. Intuitively, if the DBNs of
subgroups G and H are similar one would expect a small mismatch, while a high
mismatch indicates the models to be highly different.

Proposition 1 (Weak identity of indiscernibles). Let MG be the DBN of
subgroup G of dataset D. Then it holds that:

mismatch(MG,MG) = 0 (5)

Note that a mismatch equal to zero does not imply that the subgroups G and H
are the same. This is because a dataset D is a multiset, hence G and H might
be associated with the same sequences while being two different parts of D.

Proposition 2 (Symmetry). Given the DBNs MG and MH of the subgroups
G and H of dataset D, it holds that:

mismatch(MG,MH) = mismatch(MH ,MG) (6)
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The proofs of Propositions 1 and 2 follow directly from Definition 5.

Proposition 3 (Non-negativity). Let MG and MH be the DBNs of the sub-
groups G and H of dataset D. Then it holds that:

mismatch(MG,MH) ≥ 0 (7)

Proof. From the assumptions of Definition 5, MG has the maximum score given
G, i.e., score(MG : G) ≥ score(MH : G) for any model MH . Analogously, it holds
that score(MH : H) ≥ score(MG : H) for any MG, which completes the proof.

In the next sections, these properties will appear useful for developing a search
strategy for identifying exceptional DBNs.

4.3 Scoring Function

In practice, DBNs can be learned by maximizing a penalized scoring function.
In this work, we use the Bayesian information criterion (BIC) [8] as scoring
function. The BIC of a model MG given data G is defined as follows:

BIC(MG : G) = 2 log L(MG : G) − |MG| log |G| (8)

where log L(MG : G) denotes the log-likelihood of the model MG, |MG| the num-
ber of parameters of MG, and |G| is the size of G. We assume that MG is fitted by
maximizing the BIC score on data G. We denote by BIC(MG : H), with H �= G,
the score of MG given data H different from data G that was used to fit MG.
The BIC score is the score term in Definition 5.

DBN learning is a hard computational problem. In practice, heuristic search
is often used. We refer the reader for further detail on DBN learning [8].

4.4 Exceptional Subgroups

We define next a general notion of exceptional DBNs.

Definition 6 (Exceptional subgroups). Given a dataset D, we define a
relation ex ⊆ 2D × 2D, called exceptionality. We say that G is an exceptional
subgroup with regard to a subgroup H, denoted by ex(G,H), if the distribution
of the DBN MG is different from the distribution of the DBN MH .

It is straightforward to verify that the exceptionality relation just defined is
symmetric and anti-reflexive. In EMM, the reference subgroup used for deter-
mining the exceptionality of a subgroup is typically the full data D, also referred
to as population [16]. This means that a subgroup of interest G would be com-
pared with D; however, this comparison is made more convenient by instead
comparing G with its complement Ḡ [5], which results in a comparison involving
two disjoint subgroups. This approach will be used in TEMM as well.
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4.5 Distribution of False Discoveries

In practice, one way to use Definition 6 for identifying exceptionality is to con-
sider the extent to which subgroup models differ from the population model.
In this case, we would like to identify models which are significantly different
from the population model. This is because the true distribution of subgroups is
unknown, and we therefore need to account for the error in the estimated model.

To determine how exceptional a subgroup G is, a sampling-based approach
with the distribution of false discoveries (DFD) [7,12] is used. Suppose G has size
|G|, then random subgroups of size |G| are drawn without replacement from D.
The mismatch distance of a random subgroup is computed by fitting a DBN on
its data and another DBN on the subgroup’s complement data. This procedure
approximates the distribution of mismatch distances of subgroups with size |G|.

By constructing a distribution of distances of random subgroups, we are able
to assess how unusual the mismatch distance of a subgroup G is. In order to do
so, we execute a hypothesis testing procedure as follows. By taking large enough
number of sampled subgroups, the resulting distribution of random mismatch
distances will be approximately Normal (see, e.g., [7,12]). We can then compute
a z-score for the mismatch of G, and then a p-value. If the p-value of G is smaller
than a significance level α, we conclude that G is an exceptional subgroup.

4.6 Subgroup Search

We introduce a bottom-up search method in Algorithm 1 to identify exceptional
subgroups from a dataset D. The central idea of Algorithm 1 is to specialize all
exceptional subgroups that have been found so far, until there are no exceptional
subgroups to be specialized. Each generated subgroup is predicted as exceptional
or non-exceptional using Algorithm 2 (Line 9). The algorithm does not special-
ize subgroups predicted as non-exceptional. For brevity sake, Line 8 generates
several subgroups, one for each value of the new descriptor.

Algorithm 1. Subgroup search
Input: D: a dataset {A,X(0), X(1), . . .}; σ: minimal size threshold; α: significance level.
Output: E: set of subgroups predicted as exceptional.

1: E ← ∅
2: F ← ∅ // Exceptional subgroups to further expand
3: C ← ∅ // Current subgroup
4: cand descs ← {A1, . . . , Ak}
5: do
6: E′ ← ∅
7: for all Ai ∈ get cand descriptors(c) do
8: G ← C ∪ {Ai = ai}, for each ai ∈ dom(Ai) // Specialize current subgroup C
9: if check size(G, D, σ) and exceptionality test(G, D, α) then
10: E′ ← E′ ∪ {G}

// Add new exceptionals and select new one for expansion
11: E ← E ∪ E′

12: F ← F ∪ E′

13: C ← select random(F )
14: F ← F − {C}
15: while F �= ∅
16: return E
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4.7 Exceptionality Test

Algorithm 2 predicts the exceptionality of a subgroup using the statistical test of
Sect. 4.5. The test assesses how unusual the mismatch of a subgroup is compared
to the distribution of mismatch distances of random subgroups, by constructing
a DFD. We sample 100 subgroups in our experiments to build each DFD.

Computing a DFD from the scratch is costly due to multiple DBN learning
calls. However, we can avoid this by noting that the DFD is a function of the
subgroup size, hence when asking for the DFD of a subgroup G we can reuse the
previously computed DFD of a subgroup H if |G| = |H|, which enables substan-
tial computation savings. Moreover, by Proposition 2 the mismatch distance is
symmetric, hence when we look up for a DFD in our table of stored DFDs, we
can look up for DFDs associated with size |G| and to DFDs associated with size
|D| − |G|. This yields additional computation savings.

Algorithm 2. Exceptionality test
Input: G: a subgroup; D: a dataset {A,X(0), X(1), . . .}; α: significance level.
Output: the exceptionality prediction of G.

1: MG ← learn dbn(S(G))
2: MḠ ← learn dbn(S(Ḡ))
3: d ← mismatch(MG, MḠ)

// Distribution of false discoveries
4: if dfd exists(|G|) then // By Proposition 2, also search for a DFD with size |D| − |G|
5: ds ← get stored mismatch distances(|G|) // Reuse DFD
6: else // Reuse not possible: compute DFD from scratch
7: Sample subgroups from D with size |G| and make ds ← ∅
8: for all sampled subgroup H do
9: MH ← learn dbn(S(H))
10: MH̄ ← learn dbn(S(H̄))
11: dH ← mismatch(MH , MH̄)
12: ds ← ds ∪ {dH}
13: store mismatch distances(|G|,ds)

14: Calculate the mean x and standard deviation s from the set of distances ds

15: z ← d − x

s
// z-score of the subgroup

16: Calculate the p-value corresponding to the z-score.
17: if p-value < α then
18: return true // Subgroup predicted as exceptional

19: return false // Subgroup predicted as non-exceptional

5 Experiments with Simulated Data

5.1 Data Generating Procedure

We consider two simulation scenarios for assessing the method1. First, the num-
ber of temporal targets n in X = {X1, . . . , Xn}, with Xi binary, is set to n = 10
inspired by previous research [12] which used Markov chains with 1,024 states.
Second, we consider 100 times more states for a broader evaluation, requiring

1 Source code and datasets available at: https://github.com/marcoslbueno/temm.

https://github.com/marcoslbueno/temm
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n = log2 100 · 1024 � 17 temporal targets. For each scenario, two ground truth
DBNs on X were built, with model structure generated by uniformly sampling
directed acyclic graphs and node parameters sampled from Beta distributions.
Data sequences were sampled from the DBNs, with duration of 10 time points.
The same amount of data was sampled from each DBN.

Next, we include the descriptor variable A1 such that A1 = a−
1 for all the

sequences from one DBN, and A1 = a+
1 for all the sequences of the other DBN.

We also added 5 binary descriptors R1, . . . , R5 to act as noisy variables, such
that the value of Ri on each sequence is assigned uniformly at random. Based
on this procedure, simulated data for a scenario consists of data points over
{A1, R1, . . . , R5, X(0), . . . ,X(9)}, where m = 9 (the last time point) and the
cardinality of X is n.

5.2 Evaluation

The ultimate goal of TEMM is to recover the exceptional subgroups. For evalua-
tion purposes, we see this as a classification problem on the space of descriptors,
such that each subgroup is either a positive or a negative instance. We assigned
ground truth labels to unitary subgroups as follows:

– Positive instances : subgroups (a+
1 ) and (a−

1 ), as the sequences of each come
from different DBNs, making these subgroups exceptional by definition.

– Negative instances: subgroups described by Ri, such as (r+1 ) and (r−
1 ) as they

contain sequences from both DBNs selected at random.

The predicted labels of unitary subgroups by Algorithm 1 are used to evaluate
the proposed method. The AUROC (area under the ROC curve) was computed,
allowing us to measure how well we can identify exceptional subgroups. We also
evaluated the specialized subgroups that Algorithm 1 generates if exceptional
unitary subgroups are found. Analogously, positive instances are specialized sub-
groups that include A1, and negative instances are all the other specialized sub-
groups. We evaluate unitary and specialized subgroups separately as the number
of specialized ones is typically much larger.

Baseline. Markov chains were used as baseline for representing the temporal
targets instead of DBNs. For both MC and DBNs, we applied the mismatch score
from Definition 5 to identify subgroups. To avoid zero probabilities, Laplace
smoothing with smoothing parameter λ = 1 is used in both MC and DBN
parameter estimation. The whole simulation process was executed 10 times for
better assessment, each time with different ground truth models.

5.3 Results

Figure 3a shows the results based on simulated data for unitary subgroups. Note
that the X axis shows the number of sequences in each ground-truth subgroup,
hence the total dataset size is twice that amount. The results suggest that the
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DBN and the MC representation achieved good results with datasets of n = 10
target variables (or 1,024 MC states). However, substantial differences arose with
n = 17 variables (or 131,072 MC states), a situation where DBNs were able to
provide optimal AUC values even with the minimal amount of data, as opposed
to MCs. In this case, MCs had to count on substantially larger amounts of data
in order to provide comparable AUC values to those of DBNs. The threshold
α = 0.05 was used in Algorithm 2.
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Fig. 3. Results of Markov Chains and DBNs on simulated data (10 simulations).

Figure 3b shows the mean number of specialized subgroups which include A1

and were labeled as exceptional. As the amount of data increases, the results
show that more subgroups were produced by both the MC and DBN represen-
tations. However, it is clear that DBNs were able to capture substantially more
specialized exceptional subgroups.

Figure 4b shows a fragment of subgroups from a simulation iteration using
DBNs, together with their mismatch distances. This shows that the method is
robust at identifying exceptional subgroups even when most of other subgroups
are noisy subgroups. Moreover, the mismatch distances of exceptional subgroups
are usually very different from those of non-exceptional subgroups.

5.4 Impact of (dis)similar Models on Prediction

Now we consider simulations where we control the similarity of the ground truth
models. To this end, the second ground truth DBN was defined by copying
the structure and parameters of the first DBN. Then, for each variable Xi in
the second DBN let p ← P (X(0)

i = x−
i | π(x(0)

i )) and p′ ← P (X(0)
i = x+

i |
π(x(0)

i )). Then, these parameters are changed by picking at random a real number
called change from the interval [0,min(δ, 1−p)], with uniform probability, where
δ ∈ [0, 1] is the maximal change threshold. Next, we set p ← p + change and
p′ ← p′ − change. The lower the threshold δ, the more similar the DBNs are.

Except for the way ground truth DBNs are generated, we follow the data
generating procedure of Sect. 5.1 and restrict ourselves to learning DBNs and
use n = 17 temporal targets. Figure 4a shows the AUROC of simulations based
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on different δ values. The results suggest that extreme cases (low δ, little data)
are challenging for the proposed method. In the remainder cases, the method
achieved good to optimal results, which suggests that the method is robust at
detecting exceptional behavior.
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(a) X axis: Number of sequences in
dataset; Y axis: AUROC for different val-
ues of δ (maximal change threshold).

Subgroup Size z-score p-value
Labels
(P&T)

(a+
1 ) 0.50 195.8 � 0 1 1

(a−
1 , r−2 ) 0.27 49.4 � 0 1 1

(a+
1 , r+1 , r+2 ) 0.11 15.1 � 0 1 1

(r−2 ) 0.49 -1.2 0.22 0 0
(r−3 ) 0.49 0.5 0.64 0 0

(b) A simulation iteration (n = 17, 80
data sequences). Size = subgroup size
normalized by |D|, Labels (P&T) = pre-
dicted and true labels respectively. Label
1 (0) = positive (negative) instance.

Fig. 4. Results of DBNs on simulated data with varying similarity of ground truth.

6 Data of Funding Applications

In order to evaluate the proposed TEMM method, we consider data from the
business process intelligence challenge (BPIC18) [4], already briefly described in
Sect. 2. The BPIC18 dataset contains event log data of applications submitted
to the European Union for direct payments for German farmers in 2015–2017.
The goal of applying TEMM to the BPIC18 data is to identify subgroups whose
dynamics of events is exceptional.

6.1 Data

Each application in the BPIC18 data is associated with descriptor variables
(domain size) as follows: Land Area (437), Department (4), Number of
Parcels (74), Redistribution (2), Year of Submission (3), Success (2),
Small Farmer (2), and Young Farmer (2). Applications are also associ-
ated with events related to workflow activities, where an event is described
by the multinomial variables (domain size): Doc Type (8), Subprocess (8)
and Activity (33). From the original set of 41 activities, we filtered out some
repetitive and generic activities, such as editing and save.

Each application is associated with one or more events, which are the tem-
poral targets of the data. Hence, the ith data point of this dataset has the
form {Land Area, . . . ,Young Farmer, Activity(0:mi), . . . ,Subprocess(0:mi)}. The
BPIC18 dataset has 4,800 applications randomly selected from the original
dataset, with an equal number of applications per year. There are 145,980
events in total (mean [StDv] length of each application: 30.4 [8.4] events). Again,
Laplace smoothing with λ = 1 was used in model learning.
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6.2 Discovered Subgroups

Table 1a shows an excerpt of the exceptional subgroups discovered from the
BPIC18 data based on a minimal size σ = 0.05. The results show that the
most exceptional subgroups are unitary and described by a particular year, be
it 2015, 2016 or 2017. This suggests that significant changes took place in appli-
cation dynamics across years manifested in the sequential behavior of the target
variables. This could be explained, e.g., by changes in the business process and
funding policies. Each department also has its own dynamics, as all unitary sub-
groups with this descriptor were exceptional. However, their exceptionality was
not as strong as that of year subgroups.

Table 1. Results on the BPIC18 dataset, where 38 exeptional subgroups were discov-
ered. For better visualization, only the 5 most exceptional specialized subgroups are
shown. All p-values < 0.001, except (Number Parcels=1).

Exceptional subgroups Size z-score

Year=2015 0.37 2461.47

Year=2016 0.33 1327.07

Year=2017 0.30 2411.69

Department=4e 0.32 33.28

Department=e7 0.28 35.03

Department=6b 0.25 24.29

Department=d4 0.16 28.00

Number Parcels=2 0.06 12.15

Number Parcels=3 0.06 25.10

Number Parcels=1 0.05 2.15

Year=2015 ∧ Young Farmer=False 0.34 2107.47

Year=2017 ∧ Young Farmer=False 0.27 1844.72

Year=2016 ∧Young Farmer=False 0.30 1144.32

Department=4e ∧Year=2015 0.11 730.81

Department=e7 ∧ Year=2015 0.11 647.71

(a) Size = subgroup size normalized by |D|.

Doc Type 2015 2016 2017

payment application 16 20.8 12.1

entitlement application 10.5 0.3 0.1

parcel document 2.6 0 0

control summary 1 1 1

reference alignment 2.2 2.1 2

department control parcels 1 1 0

inspection 0.6 1 0.8

geo parcel document 0 3.8 11.3

(b) Average number of document types per

application in each year.

6.3 Comparison to Previous Analyses

While the ground truth exceptional subgroups are not available for the BPIC
dataset, there is evidence that the subgroups described by year as shown in
Table 1a are exceptional. First, the BPIC18 data provider [4] claims that the
underlying process changed between years due to changes implemented in the
structure of the application procedure. This is in line with previous research [15]
on this dataset, where concept drifts were identified precisely between each year
of the data. Other research [19] has analyzed how the workflow of applications
submitted in different years has changed, also suggesting that differences exist
in these workflow structures. Based on these previous analyzes, we conclude the
proposed method is able to detect true exceptional subgroups.

Differently than the other analyses from the literature on the BPIC18 data,
the method proposed in this paper can be seen as a principled one due to its
statistical foundations.
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6.4 Subgroup Differences

Based on subgroup’s data, Table 1b shows the frequency of each Doc Type value
for the most exceptional subgroups. One strong difference is that the geo parcel
document vanished in applications from 2015, while it was increasingly used in
applications from 2016 and 2017. On the other hand, the parcel document was
adopted only in 2015, and the document control parcels vanished in 2017. All
these changes are expected due to known changes in the funding process [4].

Table 1b also reveals a remarkable reduction in the frequency of entitlement
application over the years. This could reflect that subprocesses such as objection
and change of entitlement application are moved to application payment, as the
latter is the only other type of document which has such subprocesses. Other
changes include more inspections in 2016 and 2017, which might indicate changes
in funding policies as only a small percentage of cases are to be inspected.

7 Related Work

As a generalization of SD, exceptional model mining [6] is an active area of
research and has been applied to different target variable representations. Earlier
research includes the discovery of exceptional linear regression models [10] and
the discovery of subgroups with Bayesian networks that have significant struc-
tural differences [5]. A more specialized usage of EMM is tailored at sequential
problems, yet over a single target, where discrete Markov chains with signifi-
cantly different transition patterns have been investigated [12].

The aforementioned EMM research can be seen as parameter-based
approaches, because subgroups are characterized based on the unusualness of
model parameters, such as regression slope and network structure. On the other
hand, model-based subgroup discovery [16] is an evaluation-driven approach that
compares the distribution of subgroups by means of proper scoring rules. The
latter is related to data mining research where the minimum description length
(MDL) was applied to identify differences between databases [18]. In this paper
we consider more general model selection criteria, where MDL is a special case.

Some body of research has dealt with subgroup search, whose aims include
making the search more efficient and reducing the number of redundant sub-
groups. Research has been done on providing bounds for some interestingness
scores in the context of numerical targets that can be used for search prun-
ing [11]. Subgroup search has also been formulated in terms of game theory [3],
which allows for guiding the search toward the interestingness of subgroups while
improving the lack of diversity that search might face.

Other extensions to SD and EMM operate on data other than the common
attribute-value data. The approach in [13] is tailored for relational data and can
extract very general structured patterns of subgroups. More recently, exceptional
graph mining [2] has been proposed to allow for the discovery of graph neigh-
borhoods that are similar internally but exceptional to the general attributed
graph (i.e. graphs with non-trivial vertices such as a list of attribute-value pairs).
Recently, EMM has been applied to finding subsets of data related to exceptional
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convolutional layers in convolutional neural networks [17], which might help the
interpretation of such models.

The proposed mismatch score can be seen as a data-based score, as it is com-
puted based on goodness-of-fit scores (the BIC score). By opposition, previous
research [12] for discovering exceptional MCs used a measure based on statis-
tical distance between transition distributions. While structure learning is not
required for MC learning, the number of parameters in DBNs is typically sub-
stantially lower due to its factorized representation. As experiments have shown,
this parameter issue makes the MC representation to scale poorly, particularly
when the number of temporal targets n is larger and there is a less data for model
learning. Furthermore, the DBN-based search made substantially less mistakes
in the simulations, which makes this representation suitable for TEMM.

One task that has some resemblance to TEMM is sequential pattern mining
[1]. However, the mined rules might not correspond to actual subgroups or even
actual processes from the dataset, as opposed to TEMM and subgroup discovery.
This makes it not possible to directly compare the results of these approaches.

8 Conclusions

In this paper, we proposed temporal exceptional model mining to enable the
representation of temporal observations in EMM in a principled way. For cap-
turing the temporal dependencies in TEMM, dynamic Bayesian networks were
used, which allows for an intuitive and interpretable model class for TEMM.

The proposed method was empirically evaluated on simulated data and pro-
cess data based on funding applications, showing that the identifiability of the
method in different scenarios is robust. Our method was able to discover excep-
tional subgroups from the funding data in accordance to previous research, as
well other, yet less exceptional subgroups. Furthermore, our approach solved this
practical problem in a more principled manner.

As future work, we would like to explain in more detail why models are
considered as exceptional. This could involve looking at relevant structural or
numerical parameters of the DBNs. We wish to quantify the savings of the opti-
mizations employed during search to reduce the computation of distribution of
false discoveries. Finally, we would like to investigate if further improvements to
the search algorithm are possible based on properties of the mismatch distance.
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9. Herrera, F., Carmona, C.J., González, P., del Jesus, M.J.: An overview on subgroup
discovery: foundations and applications. Knowl. Inf. Syst. 29(3), 495–525 (2011).
https://doi.org/10.1007/s10115-010-0356-2

10. Leman, Dennis., Feelders, Ad, Knobbe, Arno: Exceptional model mining. In: Daele-
mans, Walter, Goethals, Bart, Morik, Katharina (eds.) ECML PKDD 2008, Part
II. LNCS (LNAI), vol. 5212, pp. 1–16. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87481-2 1

11. Lemmerich, F., Atzmueller, M., Puppe, F.: Fast exhaustive subgroup discovery
with numerical target concepts. Data Min. Knowl. Disc. 30(3), 711–762 (2016)

12. Lemmerich, F., et al.: Mining subgroups with exceptional transition behavior. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2016, pp. 965–974 (2016)

13. Lemmerich, F., et al.: Mining subgroups with exceptional transition behavior. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2016, pp. 965–974 (2016)
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Abstract. This paper aims at presenting years of solar irradiation data
together with meteorological data acquisition localized in the French
region of La Réunion Island (SW Indian Ocean). The publicly avail-
able data take the form of multivariate time series data with one-minute
sampling rate over eight years – with still ongoing acquisition. We also
present typical analytics tasks that are related to solar energy application
domain as well as general time series analytics tasks that are suitable for
these data. Thus, we aim at drawing the attention of the time series data
mining community to these valuable data.

Keywords: Solar irradiation data · Multivariate time series data ·
Open data

Preamble. This paper is a resource track paper. Its aim is mainly to describe an inno-
vative data set to (i) support research on the solar irradiation topic; (ii) to potentially
suggest novel evaluation tasks; (iii) to encourage novel methods and/or algorithms.
The concerned data set is already available under reasonably liberal terms and we
hope sufficiently well-documented. We also suggest some open research and valuable
applications.

1 Introduction

The European Union long-term climate strategy aims to be climate-neutral by 2050,
i.e., an economy with net-zero greenhouse gas emissions [3]. As one of the most remote
regions of EU, La Réunion island, a French overseas department, has implemented
a EU-consistent multiannual energy program which main goal is electric energy self-
sufficiency in the horizon 2030 [6]. Indeed, as an island (SW Indian Ocean), its isolated
position prevents from being interconnected with the metropolitan power grid – thus
leading to high dependency from fossil fuels for electricity production.

However, as a tropical island, La Réunion presents a high potential of renewable
energies: besides biomass and wind exploitation, solar resource has attracted much
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V. Lemaire et al. (Eds.): AALTD 2020, LNAI 12588, pp. 113–121, 2020.
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attention in the past decade. In order to estimate the solar energy potential of the
island, a local research team has led a solar resource research programme for the use of
solar resource as a stable source of energy and to ensure its management in a reliable
and efficient way for its integration into an electrical power grid [4].

In this paper, we present the data acquired during the last decade through the
research programme. Sensors used for solar irradiation and meteorological parameters
measurement are presented in Sect. 2. Section 3 is dedicated to the full description of the
publicly available data. We discuss the main domain applications using the available
data in Sect. 4 before concluding.

2 Data Acquisition

In order to obtain a representative view of the solar energy potential, several measure-
ment stations has been spread out over the island. More precisely, six stations have
been installed, mainly on EDF1 power plants sites located along the leeward coast of
the island which also concentrates most of the inhabitants (see Fig. 1):

1. Moufia (reference station of the Université de La Réunion, Saint-Denis)
2. Bois de Nèfles (EDF site, Saint-Denis)
3. Saint-André (EDF site, Saint-André)
4. Port-Est (EDF site, Le Port)
5. Saint-Leu (EDF site, Saint-Leu)
6. Saint-Pierre (EDF site, Saint-Pierre)

Fig. 1. Localisation of the 6 measurement stations over La Réunion.

1 Electricité De France.
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Fig. 2. Global, direct and diffuse components of solar irradiance.

2.1 Measuring Irradiation and Meteorological Parameters

Each station has roughly the same set-up (hardware and software) that can be split into
three main parts: the measuring tools, the control system and the supporting struc-
ture. Here, we focus on the measuring tools while more technical setup are available in
Appendix A.

Measuring tools - Ground-based measurements come from two sensors:

– 1 pyranometer SPN1 (manufacturer: Delta-T Devices) which simultaneously
measures:
• the GHI (Global Horizontal Irradiance in W/m2)
• and the DHI (Diffuse Horizontal Irradiance in W/m2).

These two components of solar irradiation are illustrated in Fig. 2.
Finally, the BHI (Beam Horizontal Irradiance in W/m2) may be easily obtained
by difference of the previous two.

GHI = BHI + DHI

One can also compute the DNI (Direct Normal Irradiance in W/m2) by introduc-
ing the zenith angle Θ:

DNI =
BHI

cos Θ

– 1 weather transmitter WXT520 (manufacturer: Vaisala) which measures five
meteorological parameters:
• air temperature (◦C),
• atmospheric pressure (Pa),
• relative humidity (%),
• wind speed (m/s)
• and wind direction (◦)

These two measurement tools are illustrated in Fig. 3.
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Fig. 3. Main measurement tools: (left) SPN1 pyranometer and (right) WXT520
weather transmitter.

3 Available Data

The six stations have been installed in 2012. Thus, eight years of historical data are
now available. Considering the seven parameters, (GHI and DHI, plus 5 meterological
parameters), the data takes the form of multivariate time series (MTS). As the sampling
rate is one minute, the MTS data contains more than 150 millions data points. A short
extract in csv format is shown in Fig. 4.

Fig. 4. Multivariate data sample in csv format for a short 10-min. period on
may 1st, 2014. Timestamp (date and time), FD Avg (diffuse), FG Avg (global),
Patm Avg (atmospheric pressure), RH Avg (relative humidity), Text Avg (Temper-
ature), WD MeanUnitVector (wind direction) and WS Mean (wind speed).
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Typical Irradiation Data Shapes - Given the tropical climate of the island, at
least four typical days might be observed when regarding GHI and DHI parameters.
We illustrate these cases in Fig. 5: (a) a sunny day is identified by a hill-form GHI curve
(with the maximum around noon) and a high difference with DHI almost flat curve;
(b) a cloudy day when GHI is confounded with DHI; (c) intermittency (e.g., frequent
cloud pass) is characterized by a high variability in GHI; and (d) a sequence of the
three previous phenomenons.

Fig. 5. GHI (red) and DHI (orange) evolution during four typical days : (a) sunny,
(b) cloudy, (c) intermittent then cloudy, (d) sequence of sunny, intermittency, cloudy
periods. (Color figure online)
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4 Valuable Applications

Solar Energy Domain - As pointed out in [4], using solar resource as an electrical
and stable source of energy is not an easy task. It raises three scientific and technical
issues that are still open:

1. the prediction of solar irradiation despite its variability
2. the management of the solar photovoltaic production through storage systems to

reduce the impact of the intermittent nature of the solar resource
3. the integration of the solar resource into a power grid in order to meet the local

energy needs and to cope with the load fluctuations

The first problem, the prediction of solar irradiation, is particularly important as
it is a precondition for the success of the two others. From a data science point of view,
it may directly be formalized as a forecasting problem when considering either short,
mid or long term prediction (e.g., 1 h, 6 h or a day ahead forecasting).

General Machine Learning/Data Mining - Besides daily clustering or short,
mid, long term forecasting of solar irradiation, which correspond to core ML/DM tasks
for MTS, one can benefit from this large-scale MTS data source for the evaluation of
other classical ML/DM tasks like, e.g.:

– correlation analysis between irradiation parameters and meteorological parameters
(more generally, between the various dimensions of MTS)

– outlier detection/extreme values analysis for MTS
– MTS missing values imputation,
– MTS data compression
– similarity-based query optimisation
– advanced visualisation techniques for large-scale MTS data

Solar Irradiation Data: a Challenging Data Set - A two-year piece of these
data (2014–2015) has been suggested as an open challenge data set for the annual
data mining challenge of the 2018 French data mining and management conference
(EGC 2018) [2]. For this open challenge, two selected and award-winning papers have
addressed the irradiation data clustering and prediction problems:

– Per, Dalleau and Smail-Tabbone [5] has explored the challenge data in multiple
ways: Prior exploratory data analyses have enabled the statistical comparison of
characteristics of cities with respect to the measured weather variables (diffuse and
overall solar fluxes, atmospheric pressure, moisture, temperature, wind speed and
direction). Data was preprocessed and univariate time-series and multivariate time-
series aggregated over hours or days were analyzed in order to build simple and
effective prediction models. A classical clustering approach was performed. Groups
of days sharing weather parameters in common were found by two biclustering
algorithms. The characterisation of found biclusters and their succession displayed
in a calendar-based visualization tool have helped assess their interest.

– Bruneau, Pinheiro and Didry [1] focus on short-term prediction, i.e., the prediction
of solar irradiance one hour ahead. The authors have tested the value of using
recently observed data as input for prediction models, as well as the performance
of models across sites. After a data cleaning and normalization pre-processing step,
they combine a variable selection step based on AutoRegressive Integrated Moving
Average (ARIMA) models, to end up with general purpose regression techniques
such as neural networks and regression trees.
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5 Conclusion

In this data paper, we have presented eight years of solar irradiation data together with
meteorological data. The raw data takes the form of multivariate times series with one-
minute sampling rate. While the data acquisition is still active, we think the already
available data is a valuable support for advanced analytical tasks such as daily solar
irradiance clustering or forecasting, as well as other general analytical tasks. Thus, we
hope to see many papers using these data in the future.

Acknowledgments. Publicly available data come from recent successive research
projects, RCI-GS and GeoSun, with financial support from Europe, Regional Reunion
Island Council and the French government through the ERDF (European Regional
Development Fund).

Permanent link to La Réunion Island solar irradiation Data -
https://doi.org/10.5281/zenodo.3898530

A Technical Setup

Data logging - The control system contains the following equipment (see Fig. 6):

Fig. 6. Equipment of a control system unit.

https://doi.org/10.5281/zenodo.3898530
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– 1 waterproof IP64 enclosure (manufacturer: Legrand), size 400 mm × 300 mm ×
250mm, in fiberglass or coated metal.

– 1 datalogger CR1000 (manufacturer: Campbell Scientific), a programmable device
that handles sensors measurements, drives communication and stores data and
programs.

– 1 Ethernet interface NL 115 (manufacturer: Campbell Scientific) with memory
module.

– 1 CompactFlash memory card 500 MB

The station may be powered through 230 VCA grid or by renewable energy using
solar panel and battery. Communication between station and server may be ensured
by a GPRS link (in that case, a modem with a SIM card needs to be added in the local
cabinet in connection with the CR1000 logger).

Supporting Structure - Ground-based stations network hosts two types of stations
depending of environmental conditions. In EDF power plant sites, a 10-m high foldable
mast (see Fig. 7) is used as well as a metallic enclosure.

Fig. 7. 10-m high foldable mast supporting a measurement station.

In other places, a compact and easily transportable station is used (see Fig. 8). In
any case, the whole station is designed and fabricated to bear cyclones winds up to
250 km/h.
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Fig. 8. A compact and easily transportable station setup.
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Abstract. Visual analytics combines advanced visualisation methods
with intelligent analysis techniques in order to explore large data
sets whose complexity, underlying structure and inherent dynamics are
beyond what traditional visualisation techniques can handle. The ulti-
mate goal is to expose relevant patterns and relationships from the data,
since not everything can be exposed easily through intelligent analysis
techniques. On the contrary, the human eye can outperform algorithms
in grasping and interpreting subtle patterns, provided it is supported by
intelligent visualisations.

In this paper, we propose three novel visual analytics techniques for
analysing spatio-temporal data. First, we present a fingerprinting tech-
nique for discovering and rapidly interpreting temporal and recurring
patterns by use of circular heat maps. Next, we present a technique sup-
porting comparisons in time or space by use of circular heat map sub-
traction. Finally, we propose a technique enabling to characterise and
get insights of the temporal behaviour of the phenomenon under study
by use of label maps.

The potential of the proposed approach to reveal interesting patterns
is demonstrated in a case study using traffic data, originating from mul-
tiple inductive loops in the Brussels-Capital Region, Belgium.

Keywords: Visual analytics · Temporal statistical analysis ·
Spatio-temporal clustering · Traffic · Covid-19

1 Introduction

Although the recent advances in AI and in particular deep learning techniques
made the exploitation of large volumes of data widely accessible, their black box
nature does not offer an intuitive way of getting a deeper understanding of the
underlying mechanisms of the phenomenon under study. This is usually pursued
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via statistical analysis and visualisation techniques, such as correlation analysis,
histograms, box- and time-plots, etc. However, such traditional techniques are
rather limited when dealing with complex data sets consisting of multivariate
spatio-temporal data covering large periods of time.

Visual analytics combines advanced visualisation methods with intelligent
analysis techniques in order to explore large data sets whose complexity, under-
lying structure and inherent dynamics are beyond what traditional visualisation
techniques can handle. The ultimate goal is to expose relevant patterns and
relationships from the data since not everything can be revealed easily through
intelligent analysis techniques. On the contrary, the human eye can outperform
algorithms in grasping and interpreting subtle patterns, provided it is supported
by intelligent visualisations. Complex data sets need therefore to be manipulated
in an intelligent way in order to reveal and highlight the underlying patterns and
relationships. This is exactly what visual analytics is about, i.e. advanced data
analysis techniques combined with (interactive) visualisation algorithms in order
to support the analytical reasoning for decision making.

This paper is concerned with novel visual analytics techniques for spatio-
temporal data. First, we present a fingerprinting technique for discovering tem-
poral and recurring patterns by use of circular heat maps. Next, we present a
technique supporting comparisons in time or space by use of circular heat map
subtraction. Circular heat maps facilitate rapid identification and interpretation
of temporal patterns. Finally, we propose a technique enabling to characterise
and get insights of the temporal behaviour of the phenomenon under study by
use of label maps.

The techniques are application-agnostic and can be used for exploring and
extracting relevant insights from spatio-temporal data in domains as traffic, solar
and wind energy, electricity consumption, etc. The potential of the proposed
approach to reveal interesting patterns is illustrated on recent publicly avail-
able traffic count data from the Brussels-Capital Region in Belgium, includ-
ing the lockdown period imposed by the Covid-19 measures. The latter offers
more opportunities for discovering some intriguing trends in the otherwise pretty
monotone and typically dense Brussels’s traffic.

The rest of the paper is organised as follows. Section 2 presents a literature
study of related work, together with a motivation of the rationale of this work.
Both the used and novel proposed methods are explained in Sect. 3. Section 4
illustrates the proposed methods on a case study of Brussels traffic data. Finally,
Sect. 5 concludes the paper with some possible extensions for further research.

2 Rationale and Related Work

2.1 Rationale

In many application domains, data sets explicitly include a location component,
often next to a temporal component. Examples of such spatio-temporal data
sets can be found in the renewable energy, mobility or environmental domains.
Extracting trends and insights from such data sets by using statistical methods
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only is not sufficient, as these typically do not exploit the spatial information,
nor correlate it with the temporal information. For this reason, visual analytics
can serve as the key means to support users in exploring aspects of interest
within such data. The use of well-thought visualisations (think of aspects as
colours, shapes, positioning, etc.), of suitably processed data (normalisation,
aggregation, data imputation, clustering, etc.), explicitly linking the spatial and
temporal information, enables the user to derive insights beyond what standard
statistical methods can achieve. It optimally supports the competences of the
human eye to detect and interpret visual structures, and is hence instrumental
in more advanced exploitation of such data, as it facilitates the understanding
of the underlying mechanisms of the phenomenon under study.

(a) Naive approach (b) Smart colour usage

Fig. 1. Two ways to visualise retained Brussels traffic by Covid-19 restrictions (Color
figure online)

We illustrate this with a real-life example. In January 2020, we started gather-
ing publicly available traffic data captured at 55 locations in the Brussels-Capital
Region, Belgium, without having the slightest suspicion that the escalation of
the Covid-19 pandemic would deliver interesting data to analyse. The lockdown
measures introduced on March 13th imposed serious restrictions on traffic, per-
mitting only limited commuting. As expected, the overall traffic volume reduced
dramatically during this period. Figure 1a and Fig. 1b illustrate the percentage
of traffic volume retained during the first 4 weeks of the lockdown in comparison
to the period before, for all the observed locations. In these figures, the higher the
colour intensity of the small circles denoting the different locations, the higher
the percentage of regular traffic that was retained for this location. In the naive
approach of Fig. 1a, only tints of red are used, which does not reveal much.
However, using a colour range with two colours as in Fig. 1b allows to zoom in
deeper in the data. In that figure, the border between blue and red is fixed on the
mean retained traffic over all the locations on the map. In this way, the blue cir-
cles denote locations where a bigger reduction of traffic was observed during the
lockdown restrictions. One can now clearly see that the ring road around Brus-
sels’s city centre retains proportionally more traffic volume than the residential
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areas around it. This means that the functional traffic in the Brussels-Capital
Region has been less impacted by the Covid-19 restrictions than the recreational
traffic. This example illustrates that even basic data analysis can provide more
value to existing visualisation methods.

2.2 Related Work

Visual Analytics. The availability of large amounts of data and the ability
to analyse and understand it is becoming ever more relevant and important. By
automatically exposing the underlying information, via advanced data analysis,
one is able to take much more informed decisions. This is useful in some domains,
such as marketing, but vital in the field of medical research and political deci-
sions. For instance, the National Visualisation and Analytics Centre (NVAC)
from the United States has the mission to use next-generation technologies to
reduce the risk of terrorism. In 2006, NVAC assembled a panel of about 40
leading experts from government agencies, industry and academia to outline an
R&D agenda [14] with the explicit goal to advance the state of the science to
enable analysts to detect the expected and discover the unexpected from massive
and dynamic information streams and databases consisting of data of multiple
types and from multiple sources, even though the data is often conflicting and
incomplete. The agenda also defined visual analytics as a multidisciplinary field
that includes the following focus areas: (i) analytical reasoning techniques, (ii)
visual representations and interaction techniques, (iii) data representations and
transformations, (iv) techniques to support production, presentation, and dis-
semination of analytical results.

Statistical Visualisations. Data visualisation is typically concerned with
depicting some statistics. There is a wide range of classical approaches available,
going from very basic ones (e.g. scatter plots) to complex multi-plot visualisa-
tions. Depending on the application context and the data analytics workflow con-
sidered, suitable visualisations can be selected [17]. However, researchers should
not refrain from experimenting beyond the traditional approaches by combining
multiple known visualisations into one comprehensive plot. For instance, Allen
et al. [1] proposed to augment a violin plot with scatter plots and similar statis-
tics as in a box plot. Furthermore, they proposed possible extensions on their so
called rainbow plots by changing orientations and dividing the data in separate
groups. These plots succeed in bringing many pieces of information together in
an orderly manner in one visual. Another example is shown in the research of
Zhao et al. [18], where the advantage of integrating classical line charts into
circular heat maps is illustrated.

Constructing appropriate visualisations can be hard and time consuming.
For this reason, research has been conducted on constructing powerful recom-
mendation tools which guide users into obtaining relevant visualisations for their
specific analytical task [8,16]. Although promising results have been obtained,
the main difficulty resides in transferring the specific intent of the research to
the recommendation tool.



126 M. Dhont et al.

Visualisation of Spatio-Temporal Data. Sensors which capture data at a
fixed frequency are omnipresent. To exploit the (multivariate) time-sensitive data
they generate, the time aspect is often treated similar as the sensor measures
themselves. However, time requires a special treatment since it is not simply a
measure. For this purpose, a range of special-purpose time-sensitive visualisation
techniques have been developed and proven to be effective. To decide which
technique is useful in a certain situation, one needs to consider aspects as whether
the data is dynamic, consists out of events, is multivariate, etc. [11]

Real-world time series data is often enriched with position information, but
visualising such data is hard, e.g. visualising dynamically changing data across
different geographical locations. Rodrigues et al. [10] proposed a basic two-tier
interface to tackle such challenges, which they validated on data concerning
energy production of power plants. In the first tier, users see a geographical map
indicating information with only few details. To access the second tier, users can
select a location, resulting in charts of the energy production.

Spatio-temporal data can also be found in the mobility domain. Tang et al.
[13] proposed a method to extract, by an interactive visual analysis system,
characteristics on specific areas based on GPS data originating from taxis. They
used maps to visualise the main traffic flows and heat maps to observe traffic
distribution over time. The resulting visualised characteristics can e.g. assist the
business development process in choosing locations for new stores.

In [18], Zhao et al. illustrated the convenience of multiple variants on circu-
lar heat maps in spatio-temporal data sets. Sun et al. [12] developed a method
to embed spatio-temporal information in a map, by the use of on bidirectional
line charts on road sections. Andrienko and Andrienko [2] investigated aggre-
gation strategies in case of spatio-temporal data for both traffic-oriented and
movement-oriented visualisations. As visualisations, they proposed multiple vari-
ants of directed graphs and heat maps.

3 Methods

This section describes the methods used and proposed in this paper. First of all,
Sect. 3.1 describes how cluster analysis is typically performed, as clustering is
used in Sect. 3.4 and later in Sect. 4. The remaining subsections describe the
visual analytics methods proposed in this paper: temporal fingerprinting through
circular heat maps (Sect. 3.2), spatio-temporal comparison through circular heat
map subtraction (Sect. 3.3), and temporal behaviour characterisation through
label maps (Sect. 3.4).

3.1 Cluster Analysis

Clustering approaches are often used in data science to gain valuable insights by
observing which data objects are grouped together. To divide data objects into
disjoint clusters, the most commonly used partitioning algorithms require that
the number of clusters (k) is determined, either beforehand or when determining
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the best cut in the dendrogram in case of hierarchical clustering [9]. This rep-
resents a challenge, since there is often a lack of prior knowledge to decide this
number. Determining a correct, or suitable, k is a hard problem in a real-world
data set. To address this issue, researchers usually generate clustering results for
multiple values of k, and subsequently assess the quality of the obtained cluster-
ing solutions. In situations where no prior knowledge is available, assessing the
quality of these solutions can be done using several measures, related to e.g. the
compactness and separation properties of the solution (Davis-Bouldin Index [4]),
the connectedness (Connectivity [5]), or the ratio of the within-cluster variance
with the overall-between cluster variance (Calinski-Harabasz Index [3]). In prac-
tice, a majority voting approach is often used, combining the results of multiple
such validation measures to identify the most optimal number of clusters.

3.2 Temporal Fingerprinting Through Circular Heat Maps

The analysis of temporal data can often benefit from comparison between recur-
ring time periods as days, weeks, months, etc. which allows to identify trends and
seasonality. This is particularly relevant for applications where the monitored
phenomenon can be naturally divided in such periods e.g. periodic electricity
consumption of households, traffic intensity, yield of photovoltaic (PV) plants,
production efficiency of different shifts in a factory, etc.

In order to visualise such trends and patterns explicitly, we have developed a
general methodology allowing to convert time series data into a series of circular
heat maps covering recurring time periods. Each heat map can be interpreted
as a characteristic fingerprint facilitating rapid perception of the behaviour of
the phenomenon under study for the time period covered by the heat map. The
choice of a circular heat map, instead of a simple line chart or a classical rect-
angular heat map for example, is motivated by its ability of depicting several
dimensions or views therein (i.e. days of the week, hours of the day, vehicle
counts) in a visually very compact fashion. This compact representation enables
a viewer to quickly find patterns in the data without requiring to focus on dif-
ferent potentially far apart points in the figure. Its circular nature also enables
to easily highlight patterns occurring at the limits of the circular dimension (e.g.
around midnight). Furthermore, through the use of the small multiples visual-
isation technique [15]—a set of similar thumbnail-sized figures which represent
the same phenomenon along a different partitioning of the data—, they facilitate
comparisons and the highlight of differences. More precisely, by constructing a
small multiple from a collection of fingerprints one is able to do a comparison
between fingerprints in different time periods or other multiple phenomena (e.g.
occurring in different spatial locations).

In Fig. 2a, such a circular heat map small multiple is generated for depicting
the electricity consumption of a university building in Arizona for 5 consecutive
months. In this example, each circular heat map depicts the days of the week
as concentric circles starting with Monday in the inner circle, followed by Tues-
day in the next circle and so on until placing Sunday in the outermost circle.
The circles are divided in 24 sectors of 1 h, ordered clockwise and starting with
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(a) Fingerprints of consecutive months in 2016

(b) Difference between consecutive months (red: increase, green: decrease)

Fig. 2. Energy consumption fingerprints for a university building (Data source: energy
consumption at Arizona State University (ASU), https://www.kaggle.com/pdnartreb/
asu-buildings-energy-consumption/activity)

midnight at 12 am. The colour of a sector indicates the observed consumption,
the darker the colour the higher the observed consumption. In the leftmost fin-
gerprint (April), one can observe that the highest energy consumption occurs
between 4 am and 7 pm during weekdays. Thanks to the small multiple, we can
observe that the overall consumption pattern is consistent across the months,
but the actual consumption increases steadily.

3.3 Spatio-temporal Comparison Through Circular Heat Map
Subtraction

Detecting Differences in Time. The use of circular heat maps and small
multiples as illustrated in Fig. 2a is well-suited for monitoring evolution in time.
One can go even further and subtract the values from two heat maps in order
to reveal and highlight better their differences. Subsequently, a heat map with
one colour (e.g. white) representing identical values and two diverging colours
representing the positive and negative differences can offer a very insightful view.

Depending on the application context, two different subtracting approaches
can be considered. For both of them, let us consider a sequence of heat maps
covering the same time duration (e.g. a week or a month).

– Compare each heat map in the sequence with the heat map from the pre-
vious period (by subtracting the latter from the former). For this, it is
essential that the heat maps are ordered chronologically in time. In this way,
by explicitly highlighting the differences between consecutive time periods,
one can more clearly observe local changes. For instance, the fingerprints of
Fig. 2a are subtracted from each other, resulting in Fig. 2b. Note that the
clear increase of daily consumption between May, June and July and the

https://www.kaggle.com/pdnartreb/asu-buildings-energy-consumption/activity
https://www.kaggle.com/pdnartreb/asu-buildings-energy-consumption/activity
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slight decrease between July and August can be spotted immediately in Fig.
2b, which is much less obvious in Fig. 2a.

– Compare each heat map in the sequence with a reference (baseline) heat
map (again, by subtracting the latter from the former) to detect global dif-
ferences in performance. In this way, by examining the resulting sequence of
multiple subtracted heat maps from different time periods (e.g. each week),
one can quickly identify which period deviates the most from the expected
pattern. Figure 3a shows as baseline the average weekly energy consumption
pattern of the university building over the full time period. Figure 3b provides
the quarterly differences w.r.t. this baseline as a sequence of subtracted heat
maps. The observed increase in energy during Q2 and Q3 could be due to the
use of air conditioning during warmer months.

(a) Baseline (b) Quarterly differences (red: increase, green: decrease)

Fig. 3. Quarterly differences of energy consumption, compared to the overall averaged
baseline, for a university building

Detecting Differences in Space. The previous examples strongly emphasise
the time aspect. However, our fingerprinting approach can also be applied for
analysing data along the spatial component. For example, it is possible to capture
temporal patterns (e.g. weekly electricity consumption) in a representative heat
map and subsequently, link multiple locations together into the spatial dimension
by constructing a sequence of heat maps covering the same time period for all
the considered locations. Note that this is another example of the use of small
multiples, and many different variables could be used to construct it (e.g. PV
power production per weather condition).

Figure 4 provides the fingerprints of the electricity consumption in Febru-
ary 2016 for 4 different buildings of Arizona State University1. One can clearly
1 Data source: energy consumption at Arizona State University (ASU), https://www.

kaggle.com/pdnartreb/asu-buildings-energy-consumption/activity.

https://www.kaggle.com/pdnartreb/asu-buildings-energy-consumption/activity.
https://www.kaggle.com/pdnartreb/asu-buildings-energy-consumption/activity.
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observe 4 quite different consumption patterns: a more intense consumption
occurring during the day on weekdays, esp. during afternoons, (heat map labelled
with an A); a higher consumption during evenings, both during weekdays and
weekends (heat map B); a slightly higher consumption at night and on Mondays
(heat map C); and a high consumption spread over all days and hours, but more
intense during evenings and at night (heat map D).

Fig. 4. Electricity consumption of 4 university buildings in February 2016

3.4 Temporal Behaviour Characterisation Through Label Maps

The temporal behaviour of a complex phenomenon often consists of a limited
set of distinct characteristic profiles, e.g. a wind turbine goes through different
operating modes or traffic undergoes peak and off-peak periods. Such charac-
teristic profiles can be extracted from the data using clustering techniques, as
shown in the work of Iverson [6] on inductive system health monitoring. It mod-
els the relationship between the different variables by considering whether or
not their values are sufficiently similar, independent of the temporal component.
This results in a limited number of groups that characterise regular but differ-
ent behaviour. As a result, each timestamp is assigned a particular label that
corresponds to this characteristic behaviour profile.

In a second step, such regular behaviour profiles can be used for different
purposes e.g. rapid annotation, detecting deviations, understanding state transi-
tions in time, etc. To this extent, we propose to visualise the resulting behaviour
characterisation using a label map, a matrix-like visualisation where each col-
umn represents a fine-grained view on the time dimension (e.g. a timestamp such
as hour of the day), each row a coarser-grained view on time encompassing all
the columns of the row (e.g. a day), and each cell is painted with the colour of
the profile to which each timestamp belongs. The choice of such a visualisation,
instead of a line chart or a circular heat map for example, is motivated by its
ability of clearly depicting behaviour expected to be seen in a recurrent fashion
(e.g. every day) on the different rows of the matrix. Furthermore, by just adding
new rows, the visualisation can be directly used for real-time monitoring.

Figure 5 illustrates a label map in the previously introduced context of
the electricity consumption data of a university building. In this visualisation,
columns depict timestamps during one day and rows depict individual days.
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Through clustering, five behaviour profiles have been identified. By looking at
when the clusters occur, we can observe a (to be expected) clear repetitive weekly
pattern, consisting of low consumption during night and weekend (blue/E), high
consumption during working hours (yellow/B), and three other profiles most
probably related to maintenance operations. The visualisation reveals a change
starting on July 18th, where the extent of cluster B (yellow) is reduced; this
might be due to the start of the summer holidays.

Fig. 5. Evolution of electricity consumption modes in a university building (Color
figure online)

4 Case Study on Brussels Traffic

In this section we illustrate how the proposed methods from Sect. 3 can be used
to derive relevant insights from spatio-temporal data.

4.1 Data

Our analysis is based on open traffic data from the Brussels-Capital Region,
Belgium. We started gathering the data in the beginning of 2020. The lockdown
measures introduced on March 13th imposed serious restrictions on the traffic in
Brussels, permitting only limited commuting. In this way, the observed traffic
after the introduction of the measures can be considered as an opportunity to
derive some characteristic blueprints of the traffic in Brussels. Since the second
half of May, the Covid-19 restrictions were gradually being relaxed, traffic was
slowly returning to ’normal’ and allowed us to observe the emergence of traffic
volumes associated to different activities.

The data contains vehicle counts, average speed measurements and occu-
pancy (percentage of road covered) of 55 busy locations in Brussels. The locations
can be observed in Fig. 1. Each location represents one direction of a road and
combines the information of all available lanes in that direction. The obtained
data has a one minute granularity and originates from both ANPR cameras and
inductive loops. We collected the data in real-time from a publicly available API
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of Brussels Mobility2 over a time span from mid January 2020 until the first
week of June 2020.

4.2 Unravelling Volume Patterns of Brussels Traffic

Weekly Traffic Intensity Patterns. City traffic is strongly dependent on the
day of the week. Therefore, the fingerprinting approach proposed in Sect. 3.2
can be applied by segmenting the data per week. In this way, a weekly traffic
intensity fingerprint can be extracted for each monitored location in the form
of a circular heat map. Like before, we depict in the circular heat maps the
days of the week as concentric circles starting with Monday in the inner circle,
followed by Tuesday in the next circle and so on until placing Sunday in the
outermost circle. The circles are divided in 24 sectors of 1 h (i.e. vehicle counts
are aggregated per hour), ordered clockwise starting with midnight at 12 am.

Such a representation allows to easily compare weekly patterns of different
locations for different time periods. For instance, Fig. 6 depicts the typical weekly
patterns derived for 4 different locations in Brussels for 2 different periods before
and during the Covid-19 lockdown (i.e. the corresponding weeks are aggregated
into one weekly pattern per location). The same colour scale is used for all the
four locations, which facilitates objective comparison across them. It is clear that
Troontunnel has more traffic than Belliardtunnel, which has on its turn more
traffic than Keizer Karellaan and Vleurgattunnel. This pattern is apparent before
as well as during the lockdown. It is also interesting to zoom into the specificity
of the weekly traffic behaviour. For instance, despite the well manifested differ-
ence in the overall traffic intensity between Vleurgattunnel and Belliardtunnel,
a very clear morning peak (dark sector between 7 and 9 am) can be detected
for both locations during the working days in the pre-Covid-19 period, while
the evening peak (dark sector between 4 and 6 pm) is well established only for
Belliardtunnel. During the lockdown, this morning peak during working days
is still observable (except for Vleurgattunnel), indicating that some work com-
muting was still happening through those locations. The third row of the figure
depicts the difference between the pre-Covid-19 situation of the top row and the
full lockdown situation of the second row. This allows us to observe that night
traffic during the weekend days has disappeared completely (esp. visible for the
Troontunnel and the Belliardtunnel), that the weekend days had a larger reduc-
tion in traffic compared to weekdays for the Troontunnel, and that the reduction
was also stronger for rush hours in both Troontunnel and Belliardtunnel.

It is also interesting to study the traffic intensity evolution. In Fig. 7, char-
acteristic weekly fingerprints are depicted based on aggregating vehicle counts
over all available locations from the 10th until the 15th week of 2020. The week
number of each fingerprint is shown in its left upper corner. By examining these
fingerprints one can detect easily the introduction of the first Covid-19 restric-
tions on the Saturday of week 11, and the introduction of the full lockdown on

2 https://data-mobility.brussels/traffic/api/counts/.

https://data-mobility.brussels/traffic/api/counts/
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Fig. 6. Vehicle counts before and during the Covid-19 restrictions at 4 locations

Fig. 7. Weekly evolution of vehicle counts in Brussels (week 10 until week 15)

Wednesday at 12 am in week 12. Moreover, by comparing week 10 (pre-Covid-
19) with weeks 13, 14 and 15 (full lockdown), it is interesting to observe that
the biggest reduction in traffic is obtained during the weekend. The intensity of
colours during weeks 13, 14 and 15 is also very similar, indicating that people
consistently obeyed the imposed restrictions.

Traffic Volume Disaggregation. The collected data spans over a time period
covering 3 distinct traffic situations: 1) normal traffic referring to regular work-
school weeks; 2) carnival holidays referring to the school vacation in week 9,
which excludes school-related traffic and some work-related traffic due to parents
taking vacation—at the same time, those families have more time for recreational
trips (e.g. city trips, sport, shopping, etc.); and 3) lockdown weeks referring
to the period of activity restrictions due to the Covid-19 measures, including
only work related traffic which cannot be performed via teleworking and other
minimal essential traffic (e.g. shopping for food).

The Covid-19 restrictions were gradually relaxed since the second half of
May. Traffic was slowly returning to ’normal’ and allowed us to observe the emer-
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gence of traffic volumes associated to different activities. Following the approach
described above, we have generated characteristic weekly fingerprints for differ-
ent time periods depicted in the upper row of Fig. 8. Each of these fingerprints
depicts the hourly traffic intensity throughout the (averaged) week. Our baseline
(100% traffic volume) is constructed by averaging over 5 ‘regular’ work-school
weeks, excluding school holidays, in January and February 2020. The second
fingerprint (Carnival holidays) refers to the school vacation in week 9, while the
remaining fingerprints average traffic intensities over the different phases of the
lockdown period, i.e. complete lockdown between March 14th and April 17th,
followed by opening of selected shops, re-starting of companies’ activities and
re-opening of all other shops. The percentage of the remained traffic (compared
to the normal traffic) per week is shown in the centre of each fingerprint.

Fig. 8. Upper row: grouped fingerprints of vehicle counts in Brussels. Bottom row:
disaggregated fingerprints from above (green: reduction, red: increase) (Color figure
online)

Comparing the characteristic fingerprints allows to disaggregate the overall
traffic volume into separate intensities associated with different activities. This
is realised in the lower part of Fig. 8, which depicts the result of subtracting each
weekly fingerprint in the top part of the figure from the fingerprint immediately
on its left. This highlights better the time slots where traffic has increased (red)
or decreased (green) compared to the previous fingerprint. For instance, since
the introduction of the first relaxation measures on April 18th, when people
were allowed again to go to do-it-yourself and garden shops, traffic increased on
average with 7% (3rd fingerprint on the bottom row). It is remarkable that this
increase in traffic can also be observed on Sunday, when shops are closed. This
seems to suggest that the traffic might not be exclusively for shopping, but that
people perhaps stopped following travel restrictions strictly.
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4.3 Insightful Blueprints of Brussels Traffic

The purpose of the following analysis is to get better insights of different traffic
modes of the small ring of Brussels, which is actually a sequence of many tunnels
crossing Brussels from one side to the other and is notoriously known for frequent
traffic problems.

Traffic Profile Extraction. Our analysis focuses on 16 locations of the small
ring of Brussels. Our first aim is to identify characteristic traffic modes when
considering all the 16 locations as one connected trajectory of tunnels. For this
purpose, we perform the following steps:

– We consider only data from the weeks before the Covid-19 restrictions and
exclude the carnival holidays. We order the data set in such a way that the
locations are sequentially ordered as they spatially appear in reality.

– We associate with each timestamp a vector of 48 dimensions, based on the
vehicle count, speed and road occupancy measurements that are available for
each location.

– We average for each timestamp the measures over a rolling time window of
10 min, in order to achieve more resilient, but still fine-grained (per minute)
results, Since this real-world data contains missing timestamps, this approach
enables us to still use an estimation by taking the average of the non-missing
values within the 10 min time window.

– We scale each of the measures by the min-max normalisation [7]. This way all
values will be between 0 and 1, resulting in equal weights during clustering.

– We cluster these vectors using k-means clustering using the Euclidean dis-
tance, resulting in clusters (of timestamps) representing characteristic traffic
modes. The number of clusters was determined by majority voting of multiple
validation measures, as explained in Sect. 3.1, resulting in 5 clusters.

In order to facilitate the semantic interpretation of the clusters (or traffic
modes), we label them as follows: Mode A: Night traffic (avg. occupancy 7%);
Mode B: Morning rush hour peak (avg. occupancy 26%); Mode C: Day traffic
outside rush hours (avg. occupancy 22%); Mode D: Evening rush hour peak
(avg. occupancy 28%); Mode E: Early morning and late evening traffic (avg.
occupancy 15%). Remark that, in practice, occupancy is never close to 100%
since this would require all vehicles to touch each other.

Temporal Traffic Blueprints. In a second step, we use the traffic modes
previously identified and visualise them in a label map. Figure 9 shows a label
map as proposed in Sect. 3.4, which labels each timestamp using the 5 labels
identified above. Note that the grey zones in the plot are caused by missing data
stretc.hing over more than the 10 min time window.

This visualisation allows to observe the following interesting phenomena:

– Traffic during the first weeks of the lockdown was significantly reduced, resem-
bling low intensity night traffic (mode A).
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Fig. 9. Evolution of traffic clusters (modes) in Brussels

– During lockdown relaxations, traffic gradually evolved towards what is nor-
mally light traffic in the late evening and early morning (mode E)

– Day traffic outside rush hours (mode C) emerges in a similar way as mode E
while lockdown measures are relaxed, initially starting at specific periods in
the afternoon but slowly unrolling forward covering the whole afternoon.

– The afternoon rush hour (mode D) which can normally be observed between
15:00 and 18:00 completely disappeared during the lockdown and has since
(almost) not yet reappeared.

5 Conclusion and Future Work

In this work, we proposed a range of visual analytics methods dedicated to spatio-
temporal data. The power of the proposed visualisations lies in the transforma-
tion of data analytics results into well-thought visual representations revealing
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underlying insights. Questions as how to aggregate data, partition data, nor-
malise data, represent it as a feature vector, etc. are the key to arrive at insightful
visual representations facilitating the human eye’s discovery process.

There are still many opportunities to expand this research, e.g. increase the
intelligibility of visuals by making them interactive. Enabling to zoom in on
time periods of interest or to change dynamically some parameters might be
very valuable in supporting human-in-the-loop data exploration.
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Abstract. In this study, we propose a novel data analysis approach
that can be used for multi-view analysis and integration of heteroge-
neous temporal data originating from multiple sources. The proposed
approach consists of several distinctive layers: (i) select a suitable set
(view) of parameters in order to identify characteristic behaviour within
each individual source (ii) exploit an alternative set (view) of raw param-
eters (or high-level features) to derive some complementary representa-
tions (e.g. related to source performance) of the results obtained in the
first layer with the aim to facilitate comparison and mediation across the
different sources (iii) integrate those representations in an appropriate
way, allowing to trace back similar cross-source performance to certain
characteristic behaviour of the individual sources.

The validity and the potential of the proposed approach has been
demonstrated on a real-world dataset of a fleet of wind turbines.

Keywords: Data integration · Data mining · Temporal data
clustering · Multi-view learning

1 Introduction

Mining data collected from continuous monitoring of industrial assets in the field
allows to derive relevant insights about their operations and performance. Such
complex real-world datasets are usually composed of heterogeneous subsets (or
multi-views) of parameters, which should be considered explicitly during analysis
in order to exploit fully the richness of the data. For instance, the performance
of an industrial asset is impacted by a diverse set of factors e.g. operating modes
concerned with the internal working of the asset and exogeneous factors such as
weather conditions. However, it is not trivial to directly link or trace back certain
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performance to distinct operating modes due to the multitude of influencing
factors, which are often also highly interdependent.

In addition, real-world datasets often originate from different sources, which
may differ in period coverage, resolution, data quality, technical configuration,
etc. Pooling multi-source datasets together, which is often done to increase statis-
tical representativeness, requires standardization and normalization, which often
leads to information loss and may mask source-specific features. For instance,
mining for distinct operating modes is more appropriate to be pursued per asset,
rather than pooling everything together, since not all assets might go through
all operating modes. This implies that one might need to approach multi-source
analysis in an incremental fashion rather than aiming for brute force integration
of all the available data.

Classical data mining and analysis approaches have still some shortcomings
in this aspect aiming at delivering a total integration solution at once. An alter-
native approach is to exploit the multi-view nature of the data. Some
rewarding techniques of multi-view mining have been already proposed in the
literature [1,14]. However, they all were concerned with single-source datasets
and dedicated to one specific mining approach (e.g. clustering, deep learning or
classification). This research provides a general analysis methodology, which is
agnostic to the specific mining techniques used and focuses on the following key
aspects: initial individual analysis per source in order to preserve the richness
and the authenticity of each source; individual mediation analysis per source
aiming at bringing the sources closer together; cross-source integration analysis
aiming at leveraging analysis results across the sources without compromising
their individual characteristics.

More concretely, the proposed approach consists of several distinctive layers:
(i) select a suitable set (view) of parameters in order to identify characteristic
behaviour within each individual source (ii) exploit an alternative set (view) of
raw parameters (or high-level features) to derive some complementary represen-
tations (e.g. related to source performance) of the results obtained in the first
layer with the aim to facilitate comparison and mediation across the different
sources (iii) integrate those representations in an appropriate way, allowing to
trace back similar cross-source performance to certain characteristic behaviour
of the individual sources.

The validity and the potential of the proposed approach have been demon-
strated on a real-world dataset of a fleet of wind turbines. We have been able
to identify distinctive profiles of production performance and subsequently, have
been able to establish an explicit link between those performance profiles and
well characterised operating modes.

The rest of the paper is organised as follows. Section 2 reviews related work
and discusses the rationale motivating the proposed approach. Section 4 intro-
duces the used methods and formally describes the proposed layered integration
approach. Data and experimental setting used for the evaluation purposes are
explained in Sect. 5. Section 6 presents the evaluation of the proposed approach
and discusses the obtained results. Section 7 is devoted to conclusions and future
work.
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2 Related Work and Rationale

Multi-view datasets consist of multiple data representations or views, where
each one may contain several features [5]. There are many scenarios where data
can be described from multiple views [14]. In such multi-view scenarios it is
more interesting to consider the diversity of different views rather than simply
concatenating them. Furthermore, remote sensor technologies are very accessible
these days, resulting in the appearance of high frequency sensor data collected
for all kinds of environments and assets. Despite the accelerated development of
mining techniques for multi-source data, managing and interpreting multi-source
data is still very challenging [15].

One way to exploit multi-source data is by data integration. Data integration
is the combination of data from distinct data sources into a meaningful and useful
format. It can either aim to bring data together for the purpose of visualization
or fuse them together in one integrated dataset. Three main approaches have
been developed [6]: (i) Schema mapping : a global mediating schema is used,
e.g. by defining mappings between the distinct schemas of each data source;
(ii) Record linkage: records that refer to the same entry across distinct data
sources are matched together; (iii) Data fusion: data from distinct data sources
are combined by probabilistic algorithms. One major risk in constructing an
integrated dataset is the risk on losing source-specific characteristics.

2.1 Challenges Related to Real-World Datasets

In this research, we consider real-world datasets originating from multiple data
sources, e.g. fleet data. An asset within the fleet captures data from multiple
sensors and each sensor can moreover have a different accuracy and reliability.
Two main issues arise when one wants to mine such complex real-world datasets.

First of all, exploiting fully all the properties of the captured data is not
trivial since it is composed out of several heterogeneous subsets of param-
eters. Consider data generated by wind turbines, consisting of sensor data of
operational parameters, such as oil temperature and rotor speed, on the one
hand, and data about power production in function of different exogeneous fac-
tors such as wind speed and outside temperature, on the other hand. Mining
such data considering all the parameters at once is often not the best thing to
do since the operational parameters are typically analysed in time, while the
power production is better monitored as a function of the weather conditions.

In addition, taking into account and combining the information from the dif-
ferent sources, such as the fleet of turbines, is far from trivial. Each source may
differ in period coverage, resolution, data quality, technical configuration, etc. To
optimally use all information one could pool all multi-source datasets together.
However, this requires suitable standardisation and normalisation, which could
lead to information loss and may mask source-specific parameters. As example
one may want to cluster timestamps according to their behaviour in case of wind
turbines. However, rather than pooling everything together it is more appropri-
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ate to do that per turbine since not all turbines might go through all operating
modes and pooling data would lead to noise/sub-optimal clusters.

2.2 Multi-view Learning

Multi-view learning is a semi-supervised approach that aims to obtain better
performance by using the relationship between different views [14]. Multi-view
unsupervised learning and specifically multi-view clustering has attracted great
attention recently due to availability of inexpensive unlabelled data in many
application domains [5]. The goal of multi-view clustering is to find groups of
similar objects based on multiple data representations. In the past, multi-view
clustering approaches have shown to outperform the single-view clustering app-
roach in case of true single-source multi-view datasets. A multi-view clustering
approach uses a conditional independence assumption of the different views [1].
However, a perfect conditional independence of different views is almost impos-
sible in real-world datasets. Fortunately, in [7] one illustrates that in a more
realistic case where each group (layer) of parameters is not perfectly indepen-
dent, a similar approach can also be applied to outperform single-view clustering.
The latter is called multi-layer clustering. However, a point of attention in those
hierarchical clustering approaches is the tendency to construct too small clus-
ters [1].

Hierarchical approaches are not only advantageous in cluster tasks, but can
be used in all kinds of data mining strategies. In [14], a comparison is made con-
cerning multiple multi-view learning techniques. The authors’ main conclusion is
that multi-view learning is effective and promising in practice, but there is still
a lot of work to be done to make them useful in a wide variety of applications.

In this paper we propose a multi-layer data analysis methodology which
cleverly benefits from the multi-view approach and demonstrates its potential to
deal with multi-source data when applied in a well designed incremental fashion.

3 Use Case Context and Ambition

The proposed layered integration methodology is demonstrated on public sen-
sor data originating from a fleet of wind turbines. The initial ambition of the
studied experimental scenario is to identify and characterise potentially differ-
ent operating modes across the fleet. Notice that wind turbines can have several
different operating modes, e.g. working at full speed, reduced speed in order to
limit the noise burden on the surroundings, tailored production due to oversup-
ply on the net and others. Subsequently, the ultimate goal is to derive distinctive
profiles of production performance and establish an explicit link between those
performance profiles and the characterised operating modes.

Two main types of input data sources are used to capture the operation
of a wind turbine: operational (endogeneous) and environmental (exogeneous)
parameters. The former are referring to sensors measuring the internal working
of the turbine, such as oil temperature and rotor speed, while the latter are
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considering different exogeneous factors impacting the production, such as wind
speed and temperature. The performance of a wind turbine is typically expressed
in terms of the produced active power as a function of the wind speed, called
power curve and visualised as depicted in Fig. 2b. A power curve typically has an
S shape. Based on this curve, one can derive roughly the expected active power
based on a certain wind speed. It is not trivial/possible to determine whether a
particular production performance is as expected or there is some deviation since
the impact of the internal working of the turbine is not explicitly considered.
The same active power output may be induced by different operating modes of
the turbine given the same exogeneous context.

The ultimate goal of our analysis is to derive an explicit link between the
internal working modes (different compositions of the endogeneous parameters)
and the expected output (active power) at fleet level. This will enable for quan-
titative labelling of the turbine operation with respect to the whole fleet, e.g.
“as the rest of the fleet”, “under-performing”, “better than the fleet”.

4 Methods and Proposed Approach

4.1 Clustering Analysis

Three partitioning algorithms are commonly used for data analysis to divide the
data objects into k disjoint clusters [10]: k-means, k-medians, and k-medoids
clustering. The three partitioning methods differ in how the cluster center is
defined. In k-means clustering, the cluster center is defined as the mean data
vector averaged over all objects in the cluster. In k-medians, the median is cal-
culated for each dimension in the data vector to create the centroid. Finally, in
k-medoids clustering, the cluster center is defined as the object with the smallest
sum of distances to all other objects in the cluster.

The partitioning algorithms contain the number of clusters (k) as a param-
eter and their major drawback is the lack of prior knowledge for that number
to construct. Unfortunately, determining a correct, or suitable, k is a difficult
problem in a real-world dataset. For such cases, researchers usually generate
clustering results for different numbers of clusters, and subsequently assess the
quality of the obtained clustering solutions.

In the context of the presented study, we have no prior knowledge about the
underlying structure of the data. Thus, we use four internal validation measures
for analyzing the data and select the optimal clustering scheme. We have selected
two validation measure for assessing compactness and separation properties -
Silhouette Index [11] and Davis-Bouldin Index [4], one for assessing connectedness
- Connectivity [8], and one for assessing the ratio of the within-cluster variance
with the overall-between cluster variance - Calinski Harabasz Index [3].

4.2 Kernel Density Estimation (KDE)

As the name suggests KDE is a non-parametric method to estimate the probabil-
ity density function of a random variable density by use of a kernel. Practically,
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the KDE f ′
b is constructed by averaging the sum of a density estimation for each

sample X1,X2...Xn, as shown in Eq. (1). In this formula, K is a kernel function
of choice, which needs to be symmetric around zero. Often one uses a Gaussian
kernel (see Eq. (2)) [12].
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In Eq. (1), the hyperparameter bandwidth b acts as a smoothing factor.
A large b will spread the kernel function, resulting in a very smooth KDE.
However, if b gets too large, a lot of information is smoothed out. Since the
ground truth is often unknown, some rules of thumb have been developed in
the past. Amongst others, Silverman’s rule is often used. This rule is defined as
b = (n(d + 2)/4)−1/(d+4), with d the number of dimensions [13].

4.3 Hypercube Binning Approach

The hypercube approach is a method to characterise (discretize) data by a multi
dimensional binning approach. A hypercube is defined as a cube of N dimen-
sions. Hypercube binning can be very useful when analysing multi-dimensional
data since by dividing the parameter space into cubes, one can derive proper-
ties of interest for each cube. These properties might be for example the median,
standard deviation or even the KDE of a (not yet used) parameter. The assump-
tion is that the data points characterized with similar parameter values (so they
end up in the same hypercube), exhibit similar properties.

4.4 Layered Multi-view Analysis: General Approach

In this study, we propose a novel approach for analysing complex real-world time
series data. It is inspired by some previous study of Boeva et al. [2] dealing with
the analysis of high-dimensional multivariate data generated in several different
experiments. We have conceived a more generic approach, based on the idea
that different in nature data parameters form distinctive views of the data and
should be considered for separate analysis in a multilayered fashion.

Suppose that a particular phenomenon (e.g. biological/chemical process,
physical asset, etc.) is monitored in time via multiple data capturing measure-
ments of different nature (e.g. experimental setup, machine configuration, high-
throughput measurements, operational parameters, exogeneous factors, etc.).
This will result in collecting measurements of several parameters that each con-
tains part of the relevant information. Furthermore, data analysis can often ben-
efit from considering (pooling together) data from multiple observations/sources
of the phenomenon under study, e.g. in case of biological or chemical processes
multiple datasets generated in different experimental conditions are frequently
explored together, while in industrial contexts datasets originating from a port-
folio or a fleet of industrial assets are often consolidated for analysis.
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Subsequently, let us assume that we have access to data of N different sources
(e.g. a fleet of wind turbines) of the phenomenon under study monitored via n
different types of parameters, which are the same across the different observa-
tions/sources, while the time periods covered, the data quality and the capturing
resolution are not necessary the same and may vary across the sources.

Formally, the main steps (layers) of the proposed multi-view data analysis
approach are explained in the subsections below. The overall data corpus is
composed of N different datasets (multi-variate time series) D1,D2, . . . , DN ,
one per source i (i = 1, 2, . . . , N). Each individual dataset is composed of n time
series Di = {Di1,Di2, . . . , Din}, one per monitored parameter.

Individual Analysis Layer (View 1). This layer is concerned with individual
per source data analysis, focusing on a subset of relevant parameters allowing to
drill down for insights without the necessity to compromise across all sources.

(a) Select a subset of p common in nature parameters across the different sources
based on the following criteria:
• the selected subset of parameters provides comprehensive view about a

particular aspect(s) (e.g. behavioural, operational or other characteristics)
of the studied phenomenon

• it is feasible to pool together per individual source the corresponding time
series for analysis (e.g. cover the same time window and have the same
resolution per observation).

(b) For each source i, the corresponding time series Dij1 ,Dij2 , . . . , Dijp , one per
monitored parameter j, (j = 1, 2, . . . , p), are subsequently integrated into a
dataset Dip of dimensions p by ti (the size of the covered time window per
source i), (i = 1, 2, . . . , N).

(c) Subsequently, each matrix Dip per source i, (i = 1, 2, . . . , N) is individually
subjected to a suitable analysis (e.g. clustering, regression or classification).

(d) Thus, for each source i, (i = 1, 2, . . . , N), the foregoing data analysis step
has generated a set of results or data models (e.g. clusters or regression
functions) Ri1, Ri2, . . . , Riki

, where ki is a source specific parameter.

Mediation Analysis Layer (View 2). This analysis layer is building upon the
results from the previous layer by considering an alternative subset of parameters
(view) allowing to derive comparative insights across the sources.

(a) Select a subset of q parameters across all sources based on the criteria:
• the parameters offer an alternative complementary view (representation)

of the results obtained per source in the individual analysis layer
• the obtained complementary representations allow for follow up compar-

ative analysis across the different sources.
(b) For each source i, the corresponding time series Dij1 ,Dij2 , . . . , Dijq , one per

selected parameter j, (j = 1, 2, . . . , q), are subsequently joined together
to construct a complementary dataset CDili for each result Rili , (li =
1, 2, . . . , ki, i = 1, 2, . . . , N).
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(c) Subsequently, each complementary dataset CDili per source i, is subjected
to a suitable further analyse (e.g. profiling or clustering) leading to comple-
mentary results CRili , (li = 1, 2, . . . , ki, i = 1, 2, . . . , N). The latter can be
easily interpreted and compared across the different sources and are uniquely
associated with the corresponding results obtained from the previous layer.

Integration Analysis Layer (Linking the Views). This analysis layer is
concerned with leveraging the results obtained in the previous analysis layers
across the different sources. The ultimate goal is to derive an explicit link between
the results generated in the different views.

(a) The results, obtained for each source in the mediation layer, are pooled
together, i.e., the following dataset is composed CRili , (i = 1, 2, . . . , N ,
li = 1, 2, . . . , ki) and subjected to consolidation, e.g. grouping similar results.
In this way a cross-source integration is achieved delivering a smaller number
of representative, across the different sources, results Sr (r = 1, . . . , m)
where m ≤ k1 + . . . + ki since each Sr is derived from a subset of CRili .

(b) Subsequently, for each Sr (r = 1, . . . ,m) a unique link can be established
with different subsets of the initial results obtained in the very first individ-
ual analysis layer i.e. Rili , (i = 1, 2, . . . , N , li = 1, 2, . . . , ki). For instance,
Sr can potentially define some unique representations or labels of distinctive
classes formed by the corresponding Rili subsets.

4.5 Layered Multi-view Analysis: Instantiated in the Use Case

The layered multi-view analysis approach, introduced in Sect. 4.4, is instantiated
for the considered fleet of wind turbines use case described in Sect. 3. The overall
approach is visualised in Fig. 1.

Recall that, two main types of input data sources are used to capture the
operation of a wind turbine: operational (endogeneous) and environmental (exo-
geneous) parameters. The former are referring to sensors measuring the internal
working of the turbine, such as oil temperature and rotor speed, while the latter
are considering different exogeneous factors impacting the production, such as
wind speed, wind direction and temperature.

Individual Analysis Layer: Operating Mode Characterisation (Internal
View). This layer is concerned with data analysis only from the perspective of
the internal working of each turbine detached from the other influencing factors
i.e. based solely on the operational parameters. The aim is to derive clusters
of timestamps with characteristic operating behaviour (operating modes) per
turbine. Rather than pooling everything together, it is more appropriate to do
that per turbine since it may occur that not all turbines go through all operating
modes for the considered time period and pooling data would lead to noise/sub-
optimal clusters. Moreover, the datasets constructed per turbine may differ in
period coverage since considering only the common period coverage may lead to
a substantial reduction of the data and also mask some source-specific features.
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Fig. 1. Layered integration approach for the use case of fleet of wind turbines.

Subsequently for each turbine, a number of clusters are derived grouping
together timestamps for which the values of the operational parameters relate
to each other in a similar way. It is not necessarily expected that the same number
of clusters will be derived for each turbine since as already mentioned above not
all turbines go through all operating modes for the considered time periods. The
assumption is that each cluster is representing a distinctive operating mode of the
turbine. Each cluster will define a range of allowable values for each operational
parameter and thus generates parametric characterisation of the mode. In this
way, the pool of clusters produced for the fleet leads to the construction of a
repository of operating modes as depicted in the left panel of Fig. 1.

Mediation Layer: Performance Profiling (Exogeneous View). In this
layer, we pursue a way to derive an alternative representation of each operating
mode in terms of expected performance. The richness of our multivariate data
allows to consider an alternative view for each cluster of timestamps generated
in the previous layer. For instance, it can be useful for monitoring purposes to
have an estimation of how likely is to observe certain production output for a
given exogeneous context (i.e., wind speed, wind direction and temperature).

Thus for each cluster of timestamps, from the previous layer, a dedicated
dataset can be constructed, composed of the corresponding values for wind speed,
wind direction, temperature and active power. Such a dataset can be used to
derive some performance profile per cluster estimating the expected production
of active power. However, the active power behaviour might vary substantially
for different exogeneous contexts or in other words for different combinations
of the values of the 3 parameters wind speed, wind direction and temperature.
Therefore, we will be pursuing the construction of performance profile per cluster
in an incremental fashion by using the hypercube binning approach in order to
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limit as much as possible the impact of the exogeneous factors. The approach is
described in more details below:

1. Hypercube binning In order to split the active power points into subsets pro-
duced in similar context, i.e. exogeneous parameters with similar values, the
hypercube binning approach as explained in Sect. 4.3 is applied on each clus-
ter dataset. The number of generated hypercubes depends on the granularity
of the binning step. The higher the granularity, the more hypercubes will be
constructed per cluster, the less points will be contained at average in each
hypercube.

2. Individual probability distributions per hypercube As described in the previous
step, each hypercube represents a group of similar points from perspective of
the exogeneous context. Subsequently, the probability density of the active
power can be estimated using the KDE approach from Sect. 4.2

3. Mixture probability distributions per cluster The individual distributions
derived in the previous step per hypercube in a given cluster are subsequently
combined to form mixture distributions for this cluster.

The derived mixture distributions per cluster (see the middle panel of Fig. 1) can
be interpreted as distinctive probabilistic profiles of the expected performance
in terms of active power produced. It is also important to note that the actual
operating mode (the ranges of allowable values for each operational parame-
ter) generating this performance profile can be traced back through the cluster
characterisation in the previous layer.

Integration Layer: Fleet-Wide Performance Labeling (Mixed View).
As result of the previous two layers, a repository of operating modes can be con-
structed, where each operating mode is: 1) characterised in terms of allowable
ranges of the operational parameters; 2) associated with a probabilistic profile of
expected production. However, the different operating modes have been derived
by treating the data of each turbine separately, which does not allow for knowl-
edge transfer and model leverage across the fleet. For instance, considering each
set of characterised operating modes per turbine separately is much too limiting
since some operating modes might not be observed for some turbines for the con-
sidered time window. The latter does not exclude that they might occur in the
future. Subsequently, not sharing the operating mode characterisations across
the fleet might result into too high rate of unseen operating modes per turbine
or in other words high rate of false detection of anomalous operation. Moreover,
it is also expected that several different operating modes might be exhibiting
very similar production performance.

It is interesting to investigate how many distinct classes/profiles of produc-
tion performance are detectable at fleet level. The associated with each operating
mode probabilistic profiles of expected production can be compared directly with
each other since they all are probability density functions of the active power.
Subsequently, all the profiles are pooled together and subjected to clustering.
In this way, several distinctive profiles of production performance are derived
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across the fleet (see the right panel of Fig. 1) and subsequently, an explicit link
between those performance profiles and the characterised operating modes can
be established.

5 Dataset and Implementation

The proposed approach has been validated using public SCADA1 data originat-
ing from a wind turbine fleet of Engie, located in La Haute Borne. The dataset
contains measurements of a fleet of 4 wind turbines collected with a 10-minute
interval for 31 parameters, listed on GitHub. The data is collected between Jan-
uary 2009 and March 2017.

5.1 Data Preprocessing

Eliminating Correlated Parameters. Some of the monitored parameters in
the Engie dataset produce values which are highly correlated due to several rea-
sons 1) monitoring the same phenomenon with multiple sensors, e.g. the nacelle
of each turbine is equipped with 2 different anemometers both measuring the
wind speed; 2) derived parameters, e.g. the measured wind speed by the two
nacelle anemometers is used to calculate the average wind speed; 3) internal
dependencies between some parameters, e.g. generator speed and generator con-
verter speed. Therefore in order to avoid over-fitting, only one parameter of the
correlated parameters is kept in the experimental dataset, e.g. only the average
wind speed is retained, while the values captured by each of the two nacelle
anemometers are removed.

Removing Noise. Considering that we are dealing with a real-world dataset, it
is expected that the data will contain a substantial amount of noise, e.g. outliers,
extreme values, etc., which will impact negatively the outcome of the mining
if they are not removed. Several different filters based on the most important
output parameter active power are applied in order to remove points with an
unlikely active power based on their input parameters, by considering each wind
turbine separately.

In Fig. 2 one can see the effect of this cleaning approach on the power curve
based on data from one of the wind turbines in the fleet.

Standardisation. The different parameters monitored have values with very
different ranges (e.g. the generator bearing temperature varies between −5 and
80 degrees of Celsius, while the generator speed has values between 0 and 1800
rpm), and are of different nature (angular versus non-angular). This makes it
very difficult to compare and estimate similarity between parameter values (fea-
ture vectors) in time since most of the distance metrics will not perform well.
1 Supervisory control and data acquisition (SCADA) is an architecture to control

industrial systems by use of both external and internal sensors (sources).

https://github.com/dataInnovationScientist/LIAMVARWD
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(a) Original (raw) data (b) Cleaned data

Fig. 2. Power curve of the remained and cleaned points in one of the wind turbines.

Therefore, angular parameters are transformed into two non-angular values by
there sine and cosine value. In the case of the wind direction parameter, we
multiply the sine and cosine values with their wind direction. By doing this the
information of both wind speed and wind direction are captured into the two
new variables. Additionally, min-max normalisation [9] is applied on the param-
eters across the time window selected for analysis, per wind turbine. In this way,
all parameter values are scaled relatively within the same turbine between 0 and
1, which is resulting in much more homogeneous feature vectors per timestamp.

5.2 Implementation and Availability

The proposed Layered Multi-view Analysis methodology has been implemented
in Python version 3.6. In our experiments we have used four different cluster
validation measures: Silhouette Index, Calinski-Harabasz Index, Davies-Bouldin
Index and Connectivity. The first three indices and k-means clustering are used
from the Python library Scikit-learn. Connectivity Index, min-max normaliza-
tion and hypercube binning algorithm have been implemented in Python accord-
ing to their original descriptions (see Sect. 5.1). Methods from Python Matplotlib
and Seaborn libraries are used for visualisation. We have also used the implemen-
tation of KDE and Silverman rule provided by Python SciPy. Finally, Python
Pandas library is used for its DataFrame implementation and NumPy library
for a couple of mathematical manipulations.

The executable of the Layered Multi-view Analysis algorithm and the experi-
mental results are available on GitHub. The datasets can be found in the website
of Engie.

6 Results and Discussion

The original public SCADA data of a fleet of 4 turbines have been downloaded
and pre-processed individually per turbine applying the different steps described
in Sect. 5.1. The binning method used for the removal of outliers utilised bin
widths of 0.33 m/s for wind speed and 9 degrees for wind direction. The extreme

http://scikit-learn.org/stable/
https://github.com/dataInnovationScientist/LIAMVARWD
https://opendata-renewables.engie.com/explore/
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active power filter was set in such a way that all points with active power
more than 500 kW higher than the expected, or more than 1250 kW lower
than expected have been removed. A smaller upper threshold is used since the
expected active power is quite close to the theoretical maximum which a wind
turbine can produce, so there is a certainty that those points are noise.

Fig. 3. Torque curves of the operating modes for one of the wind turbines.

In summary, our pre-processed experimental dataset is covering a period of
about 8 years and is split in 4 different datasets, one per turbine in the fleet.
In this section we represent and discuss the results obtained by applying the
proposed multi-view data analysis approach as outlined in Sect. 4.5.

6.1 Individual Analysis Layer: Operating Mode Characterisation

This layer is concerned with the internal working of wind turbine. The following
selection of 12 endogeneous parameters, which are the ones retained after elim-
inating correlated parameters (Sect. 5.1), are considered: sine and cosine of the
pitch angel, generator speed, generator bearing temperature 1 and 2, generator
stator temperature, gearbox bearing 1 and 2 temperature, gearbox inlet temper-
ature, gearbox oil sump temperature, rotor bearing temperature and torque.

In what follows, we will refer to the 12 parameters as p1, p2, . . ., p12 following
the order in which they are listed. Subsequently, the k-means clustering algo-
rithm has been applied on the 4 datasets, one per turbine, composed of the 12
parameters. The optimal amount of clusters (k) per turbine was determined by
applying a majority voting (Sect. 4.1), resulting in k = 3 for two of the turbines
and k = 4 for the other two. The difference between the obtained clusters is
illustrated in terms of the behaviour of the torque curve (torque as a function
of the generator speed), as depicted for one of the four turbines in Fig. 3. The
torque curve being derived from an endogeneous parameter is better suited to
illustrate difference in operational behaviour rather than the most frequently
used power curve.

In total, 14 clusters (operating modes) have been derived. The assumption
is that each cluster is representing a distinctive operating mode of the turbine.
Each operating mode is characterised in terms of the allowable ranges of each of
the 12 internal parameters. Those can be consulted on our GitHub repository.

https://github.com/dataInnovationScientist/LIAMVARWD
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(a) Hypercubes (b) Data points

Fig. 4. Percentage of retained data per cluster after removal of sparse hypercubes.

Fig. 5. Performance profiles per operating mode for wind turbine 2.

6.2 Mediation Layer: Performance Profiling

In this layer, performance profiles are derived for each operating mode following
the steps outlined in Sect. 4.5. The corresponding values for temperature, wind
speed and wind direction (after their non-angular transformation as stated in
Sect. 5.1) per cluster are binned together using the hypercube approach (see Sect.
4.3) and the corresponding active power values per hypercube are used to com-
pute a KDE using Gaussian kernel with Silverman’s rule (see KDE Sect. 4.2).

Although it was expected that the KDE computation might be influenced
by the number of points in each hypercube, or indirectly by the binning gran-
ularity, experiments with different sizes of the hypercubes demonstrated very
robust KDE computation w.r.t. varying bin sizes. The results presented in the
study have been obtained by splitting the solution space into 2250 equal size
hypercubes, where each operating mode has around 500 hypercubes containing
data points. Subsequently, sparse hypercubes (with less than 10 points) have
been removed for the sake of statistical representativeness. The latter did not
lead to substantial information loss since as it can be witnessed in Fig. 4, the
retained around 5% of the hypercubes for each cluster contain more than 97%
of the original data points.

Subsequently, the mixture probability distribution for each cluster (operating
mode) is derived as outlined in Sect. 4.5. Figure 5 depicts for one of the turbines
the individual probability distributions derived for the different hypercubes and
the corresponding mixture probability distributions per cluster.
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Fig. 6. Fleet-wide performance profiles and their corresponding individual components.

6.3 Integration Layer: Fleet-Wide Performance Labelling

In this layer, the obtained performance profiles (mixture distributions) per indi-
vidual operating mode have been pooled together and subjected to k-means
clustering. The optimal number of clusters k = 3 has been derived as previously
described by applying a majority voting (Sect. 4.1). Subsequently, 3 fleet-wide
performance profiles (higher level mixture distributions) have been computed
for the three clusters by combining the corresponding performance profiles (mix-
ture distributions). The mixture weights have been computed as the number of
points in the corresponding cluster from layer 1, normalised by the total number
of points in the given fleet-wide cluster. The resulting very distinctive fleet-wide
performance profiles (A, B and C) are depicted in Fig. 6.

Note that each of the fleet-wide performance profiles can be traced back
to a subset of individual operating modes (by use of the table constructed in
Sect. 6.1 and available for consultation on our GitHub repository), resulting in
fleet-wide (composite) operating modes, which we also denote with A, B and
C: A = {1, 3, 5, 6, 8, 9, 12, 13}; B = {2, 4, 10, 14}; C = {7, 11}. It is interesting
to observe that the composite operating mode linked to profile C can be traced
back to only two of the four wind turbines.

The derived fleet-wide (composite) operating modes, each associated with a
very distinctive performance profile (see Fig. 6), can now be used to label the fleet
data as follows: 1) for each timestamp, consider the values of the 12 operational
parameters; 2) determine to which operating mode they can be assigned (based
on the table constructed in Sect. 6.1); 3) identify the composite operating mode
to which the identified mode belongs; 4) subsequently, assign the corresponding
letter A, B, C or D (not seen) to the timestamp. In this way, each dataset per
turbine can be converted into A, B, C or D code (as a DNA sequence), which
can be very insightful for monitoring purposes (e.g. long periods of B would
signify optimal performance), but is also a powerful representation enabling more
advanced applications, e.g.: mining the fleet data for interesting patterns such
as transitions between operating modes; zooming in periods with too many Ds;
training a predictor of expected production on historical data to be used to
detect deviations during real-time operations.

https://github.com/dataInnovationScientist/LIAMVARWD
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7 Conclusion and Future Work

We have proposed a novel data analysis approach that can be used for multi-
view analysis and integration of heterogeneous real-world datasets originating
from multiple sources. The validity and the potential of the proposed approach
has been demonstrated on a real-world dataset of a fleet of wind turbines. The
obtained results are very encouraging. The method is very efficient and robust in
detecting characteristic operating modes across the fleet. Subsequently, distinc-
tive performance profiles are derived and associated with each operating mode,
which enable converting the fleet data into powerful letter code suitable for more
advanced mining.

For future work, we are interested to extend our research in the following
directions: 1) fine-tune the method by using e.g. an adaptive hypercube binning;
2) testing different experimental scenarios e.g. comparing different time periods
from the same wind turbine; 3) consider additional validation use cases dealing
with multi-source datasets e.g. mobility or manufacturing data; 4) extend further
the method by exploiting the possibility to covert the fleet data into letter code.
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Abstract. Dutch water authorities are responsible for, among others, the
management of water levels in waterways. To perform their task properly,
it is important that data is of high quality. We compare several univariate
and multivariate methods for real time outlier detection in time series data
of water sensors from Dutch water authority “Aa en Maas”. Their per-
formance is assessed by measuring how well they detect simulated spike,
jump and drift outliers. This approach allowed us to uncover the outlier
parameter values (i.e. drift or jump magnitude) at which certain detection
thresholds are reached. The experiments show that the outliers are best
detected by multivariate (as opposed to univariate) models, and that a
multi-layer perceptron quantile regression (QR-MLP) model is best able
to capture these multivariate relations. In addition to simulated outliers,
the QR-MLP model is able to detect real outliers as well. Moreover, spe-
cific rules for each outlier category are not needed. In sum, QR-MLP mod-
els are well-suited to detect outliers without supervision.

Keywords: Outlier detection · Time series · Quantile regression ·
Synthetic evaluation · Machine learning

1 Introduction

Data validation is an important issue for water authorities in the Netherlands.
These regional government bodies are responsible for, among others, sewage treat-
ment, dyke management and the management of water levels in waterways. It
has been shown that validation pipelines along with implementation advice result
in more reliable policy advice, improved operational management and enhanced
assessment of current management practices [18]. We examine water data from
Waterschap Aa en Maas, one of the 21 water authorities in the Netherlands.

To improve data quality, we try to separate outliers from ‘real’ data points. Our
focus is on real-time outlier detection in time series of water sensor measurements.
The sensor data consists of time series with fixed intervals between measurements.
Different sensors can output time series that are correlated with each other. Here,

Made possible by Ynformed and Waterschap Aa en Maas.

c© Springer Nature Switzerland AG 2020
V. Lemaire et al. (Eds.): AALTD 2020, LNAI 12588, pp. 155–170, 2020.
https://doi.org/10.1007/978-3-030-65742-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65742-0_11&domain=pdf
http://orcid.org/0000-0002-5884-4367
http://orcid.org/0000-0002-7067-6394
http://orcid.org/0000-0003-4525-1949
https://doi.org/10.1007/978-3-030-65742-0_11


156 L. van de Wiel et al.

we can use time series from one or multiple sensors to predict other sensor values. If
a big difference between the predicted and observed value occurs, the value may be
classified as an outlier [1]. It is important that outliers are detected in real-time, as
it enables taking immediate action to resolve possible issues, such as misbehaving
sensors or a change in the sensor environment.

Our research focuses on finding which methods can be applied to detect
outliers in an unlabelled, unvalidated data set of multivariate time series in a
real-time setting. The data is unvalidated; it is raw sensor data that has not
gone through any processing steps to improve quality. The data is generally also
unlabelled, which means that domain experts have not indicated whether outliers
occur. An exception to this is in a few time series that we used for analysis.

We compare different regression-based methods, that predict sensor values
given (1) only the sensors history (‘univariate’), or (2) given only measurements
of other sensors (‘multivariate’). Outliers are then determined when the observed
data deviates too much from the predicted value. The univariate approach is
simpler and can be implemented more easily in practice. Yet, this method runs
the risk of carrying past outliers (such as drift) into the future. This would then
correctly predict outlying sensor behaviour, thereby failing to label it as outlying.
We expect the multivariate approach to solve this problem, as it is not informed
about the potentially outlying target history.

2 Data Overview

The data from Aa en Maas comprises water height data in weirs, with a mea-
surement frequency of 15 min. At these weirs, we have access to water height on
the upper part and the lower part of the weir, and also to water flow rate and
weir shutter height. We used water heights on the upper part of the weirs for
the analysis. These time series (which are the exceptions described in Sect. 1)
were designated by domain experts as not containing any outliers. We gathered
all data between 05-06-2015 and 01-07-2019.

An example of water height data on the upper part of a specific set of weirs
is shown in Fig. 11. We see that this data is not without errors. For example, the
“108HOL upper” time series (bottom line) has a strange swing around October
2018. Some other minor spikes can also be encountered in this same series. Fur-
thermore, missing values can occur, as seen near the end of the “108IJZ upper”
time series. This data set has relatively few missing values (approximately 2500);
other sensor sets have more.

The data of Fig. 1 is of relatively high quality. However, when looking at
other sensor sets, time series seem more noisy. In addition, other sensors had
more missing data. To evaluate outlier detection capabilities under varying data
quality conditions, we selected multiple sensors that had varying data qualities.
We chose four weirs for the analysis and model evaluation. These weirs are
102BFS, 103HOE, 104OYE and 201D. For each target time series, we used four
other time series as features in multivariate modelling, see Sect. 3.1.
1 This data is not used in our main experiments.
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Fig. 1. An example of available water height data. These six sensors are all on the same
body of water and are relatively close to each other (about 6 km as biggest distance).

3 Experiment Setup

3.1 Outlier Detection Pipeline

Sensor Selection. We first discarded all sensors that had more than 10%
missing values. Then, for each target sensor, from the hundreds of sensors we
selected four sensors that correlated most with the target and used those as
predictors. This ensures decent model performance while reducing the danger of
overfitting.

Imputation. The data set contained missing values, which can be the result of
sensor network issues or sensor malfunctioning, for example. We imputed rather
than discarded these values to ensure evenly spaced time series. To determine
the best suited imputation method for our problem, we benchmarked various
methods. For this, we simulated gaps (of similar duration distributions compared
to the actual missing gaps) in the time series and measured how well a MICE
procedure [17] with different estimators (extra trees, linear regression, Bayesian
ridge, KNN, random forests and MTSDI [8]) was able to reproduce the missing
values. This showed that the linear regression estimator worked best.

Feature Engineering. For most multivariate experiments, we used rolling lag,
min, max and mean features with time steps of 15 and 30 min and 1, 2, 4, 8 and
16 h. In the univariate setting, only the mean values over a prolonged period
of time turned out to be useful. For most univariate models we used the mean
values of window sizes [64 h, 128 h, . . . , 1048 h]. The used features per model
type are described in Table 1.

Feature Scaling. To stabilise and enhance model training, we scaled all features
to unit variance and zero mean.
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Table 1. Features per model type. Models are described in Sect. 4. The five multivariate
models are linear regression (LR), MLP, Perceptron (P), QRF and RNN. The five
univariate models are LR, MLP, P, AR and isolation forests (IF).

Algorithm LR MLP P QRF RNN LR MLP P AR IF

Uni-(U)/Multivariate(M) M M M M M U U U U U

Use feature engineering ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓

Use raw lag values ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Use target sensor itself ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Use correlated sensors ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Modelling and Predicting (ab)normal Behaviour. The models used can
be divided into two categories. The first one is regression-based models, where a
prediction for a target variable is made (possibly accompanied by quantile val-
ues). We can compare this against the actual value and then calculate residuals.

The other category is direct classification. This approach looks at data and
then directly determines whether it is an outlier or not.

Outlier Classification. Most of our regression-based models use quantile
regression. To perform outlier detection when using these models, we applied
the Western Electric rules [19]. We applied Rule 1 and a variation of Rule 2.
Rule 1 indicates a single point that falls outside of the 3σ-limit as outlying. Rule
2 does this if two out of three successive points fall beyond the 2σ-limit.

The original Rule 2 led to a high number of false positives. Our improved
approach was to look at predictions averaged over the span of a day, and check
whether this exceeds the averaged values of the 2nd quantile. Minor short-lived
errors now get smoothed out and we get a more accurate way of describing a
gradual change. This is described in Algorithm 1. The first three lines down-
sample the target time series and the upper and lower 2nd quantile (which were
outputted by the quantile regression model) from a frequency of 15 min to daily
data. The next line performs the detection: if the downsampled time series is
above the upper limit, or below the lower limit, an outlier is classified. Eventu-
ally, this data is upsampled to a frequency of 15 min and returned.

Algorithm 1. Drift detection by downsampling.
1: function Drift detection(yin, q2upper, q2lower)
2: ydaily ← downsample to day(yin)
3: q2upper ← downsample to day(q2upper)
4: q2lower ← downsample to day(q2lower)
5: outliers daily ← (ydaily > q2upper) ∪ (ydaily < q2lower)
6: return upsample to 15min(outliers daily) � Outliers per 15 minutes.

3.2 Synthetic Evaluation

Correctly recognising outliers is crucial. Therefore, we decided to use the Fβ-
score with β = 2 to evaluate performance.
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Experts of the water authority established that no outliers are present in the
test data of the four time series. This is beneficial for the synthetic evaluation, as
already present outliers might interfere with the ones we introduce. The synthetic
evaluation method entails that we altered the data to simulate outliers that might
happen in reality. Such a method has been applied before in the literature [14].

We studied common outlier definitions to get an idea for outlier categories in
water time series data [10,18]. We focused on three synthetic outlier categories
because they were regarded to be important by the domain experts:

– Jumps: A period of data which is increased or decreased by a constant value.
After the period has ended, the data values return back to the original range.

– Extreme values: Isolated data points which are increased or decreased by
a constant value.

– Linear drift: The occurrence of a series which has a gradual linear trend
upwards or downwards.

To perform synthetic evaluation for jumps and linear drift, we created mul-
tiple test series with different outliers in it. We used one specific drift or jump
and then moved this outlier throughout the data, with each movement yielding
a new series. We alternated between outliers oriented upwards and downwards.
For each test case, we created 100 of these series. We used multiple outlier gener-
ation values (in meters), which were 0.02, 0.05, 0.1, 0.2 and 0.3. Jumps had the
duration of approximately 1.5 months, whereas drifts lasted for approximately
6 months. Examples are shown in Fig. 2.

(a) Original time series without added
outliers.

(b) Added drift (December 2018 - April
2019).

(c) Added jump (February 2019 - middle
of March 2019).

(d) Added extremes.

Fig. 2. Outlier examples in sensor 104OYE for outlier value 0.2. For jump and drift,
this is 1 of the 100 created series.
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4 Modelling and Hyper-Parameter Tuning

In this section we give a short description of the models and algorithms used
in this study, and how we tuned their hyper-parameter settings. Input features
were used as described in Table 1. The data set is divided into training (60% of
the data), validation (20%) and testing (20%) sets. The training data is used to
fit different models which are described in this section. The validation data is
used to perform hyper-parameter tuning. The test data is used to assess model
performance. Model evaluation is performed through a synthetic outlier app-
roach (see Sect. 3.2). According to the 60%–20%–20% split, this means that the
training data is in the range of 05-06-2015–13-11-2017, the validation data ends
at 06-09-2018 and the testing data ends at 01-07-2019.

An important distinction is between univariate models that only use a sen-
sor’s own history to predict future values, and multivariate models that use the
values of other sensors. An advantage of the univariate approach is that it is
always applicable as no other time series are needed. Furthermore, large sudden
changes in values might be easy to track. If we use a multivariate approach, we
ignore a sensor’s own history and base the detection on other sensor time series.
We do this to prevent consistently predicting the same value as currently present
(working like a persistence model), which will fail to detect drift. An advantage of
the multivariate approach is that we can detect (gradual) changes which happen
in only one sensor. If a sensor is slowly drifting, for example, a multivariate app-
roach could detect this based on data from other sensors, whereas a univariate
approach may be unable to detect this successfully.

4.1 Regression-Based Models

Autoregressive (AR) Models. AR models [2] are often used in practice
for time-series modelling, but are applied in outlier detection as well [10]. We
implemented AR models for univariate modelling.

We experimented with different lags used for prediction. Depending on the
target sensor, a minimum number of 3–5 lags was needed before the model
stabilised. Further lags had little influence, so 5 lags were picked. If a predicted
value deviated too much from the observed value, it was classified as an outlier.
Based on experiments, we selected a threshold of 4 cm. Lower values gave us too
many false alarms, with higher values we missed too many genuine outliers.

Water levels are not changing a lot in successive measurements. So, the mod-
els learn coefficients which favour predicting a similar value as the current one.

Linear Regression. We used linear regression with Lasso penalty [16]. We used
the validation set to determine the ideal value for Lasso penalty λ. Validation
loss for λ-values in [3.0, 1.0, 0.3, ..., 0.001, 0.0003] was reported. It is useful to
use a λ-value which scores well, but also is relatively large. Based on the 1SE
rule and the modelling ability of promising sensors, we decided to use a λ-value
of 0.03 throughout the experiments.

An issue when using linear regression for outlier detection is in defining the
outlier detection threshold. We opted for a quantile approach so we could use
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the same classification rules as in Sect. 3.1. To calculate the quantiles, we added
or subtracted the standard deviation of the target time series multiplied by a
scalar value to the prediction. This is shown in Eq. 1.

qi = ŷ ± i

2
σ̂(ytrain) | i ∈ {1, 2, 3} (1)

A disadvantage is that this will lead to a fixed quantile width for the whole
model. Varying quantile width is desirable, as uncertainty about the predictions
can differ throughout the data.

Quantile Regression Forests (QRF). Parameter values of the QRF algo-
rithm [13] were based on experiments. We used 1000 different trees in total. For
each tree, we used the same parameter settings: A node needs to have at least
40 samples in it for it to be considered for a split, a resulting leaf node must
have at least 20 samples and the maximum number of considered features per
split is one third of the total number of features.

4.2 Neural Network-Based Approaches

To perform neural network architecture tuning systematically, we used the
Hyperband algorithm [11]. In the multivariate experiments we averaged the pre-
dictions of 10 different neural networks. This ensemble approach is chosen as
random weight initialisation has a sizeable effect on the model. In the univariate
experiments the ensemble size is lowered to 5, to keep running times acceptable.
Many extra predictions are needed because the input of the testing data changes
for each outlier time series, which was not the case in the multivariate modelling.

Quantile Regression: Multi Layer Perceptron. The quantile regression
multi layer perceptron (QR-MLP) model is a neural network with hidden layers
that only uses dense layers. Multiple output nodes are used to calculate values
for different quantiles. We use the pinball loss function [9,15] where all the
quantiles are taken into account. In the algorithm runs, we used early stopping
with a patience value of 5 and a mini-batch size of 128.

The Hyperband algorithm used 5 executions per trial, 3 Hyperband itera-
tions, a factor of 3 and max epochs of 30. In the end, 270 trials were run. It
selected the number of layers (1, 2, 4 or 8), number of neurons per layer (16,
32, 64, 128 or 256), dropout (0.0, 0.1, 0.2, 0.3 or 0.4) and learning rate of the
network (0.005, 0.001, 0.0005, 0.0001, 0.00005 or 0.00001).

It was not possible to find one general network architecture that works in
all cases. There seems to be some correlation between the validation loss and
the network complexity. For example, sensor 104OYE can be modelled relatively
well and only uses one layer. On the other end of the spectrum we see 102BFS
(which was selected to test the impact of its low correlation with other sensors),
which has high validation loss and needs more complex models. We decided
to use a different architecture for each sensor. Due to computational and time
restraints, we were not able to optimise different numbers of neurons per layer.
The resulting architectures are shown in Table 2.
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Table 2. QR-MLP model architectures per sensor.

Sensor Dropout Learning rate Number of
layers

Neurons
per layer

Average
validation loss of
final model

104OYE 0.4 0.0005 1 128 0.1820

103HOE 0.0 0.005 1 256 0.8790

201D 0.4 0.005 2 128 0.9580

102BFS 0.4 0.00005 8 128 1.5330

Quantile Regression: Perceptron Model. A baseline neural network model
in the form of a QR-perceptron model was created. This network has no hidden
layers. It is somewhat similar to the linear regression model, but like in the
QR-MLP model, we use the pinball loss function with multiple output nodes.
We thus still have varying quantile width. The only hyper-parameter that needs
to be tuned is the learning rate. An exhaustive grid search is now possible.
Experiments showed that a relatively large learning rate of 0.005 works best for
this kind of model. This value was used for all the QR-perceptron models.

Quantile Regression: RNNs. These networks used RNN layers instead of
dense layers. We let the tuner decide if a GRU [3] or LSTM [7] kind of RNN
layer should be used. For speed, we now use at most 4 layers, a batch size of 2048
and a window size of 32. A difference with the other multivariate approaches,
is that since we have a RNN, all these 32 values are used in every step. Also,
this disallows us from explicitly modelling features like the minimum and mean
features.

Again, there did not seem to be a best overall network architecture. Moreover,
it seems that neither LSTM- nor GRU-layers work best for every network. We
use a different network architecture per sensor, as shown in Table 3.

Table 3. RNN model architectures per sensor

Sensor RNN type Dropout Learning rate Number
of layers

Neurons
per layer

Average
validation loss
of final model

104OYE GRU 0.1 0.0005 1 256 0.2060

103HOE LSTM 0.0 0.005 1 256 0.9401

201D LSTM 0.4 0.001 4 64 1.3292

102BFS LSTM 0.2 0.0001 4 64 1.2330

4.3 Direct Classification Model: Isolation Forests (IF)

The isolation forest model [12] is often applied in the literature [5]. When using
multivariate feature sets, we can only look at outliers of a whole system (like a
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group of 5 sensors), instead of at outliers of a single sensor. Also, it is mandatory
to incorporate the history of the target sensor. Since we want to know if a specific
sensor is behaving strangely, this method is only suited for our univariate setting.

We have performed hyper-parameter tuning to determine the ideal value of
the contamination parameter. If we set the contamination value too low, we will
detect few outliers. If it is set too high, the precision of our model will drop. Our
experiments suggested a value of 0.07.

5 Results

In this section, we first describe illustrative examples for the univariate and
multivariate models. Then, we compare these models. We end this section with
a description of the practical impact of the best performing ones.

5.1 Illustrative Examples: Univariate Results

The QR-RNN and QRF models have not been applied to the univariate mod-
elling experiments, since this became prohibitively slow. We applied the linear
regression, QR-MLP, QR-Perceptron, AR and IF models here. We show the
visual results of one specific time series of sensor 104OYE in Fig. 3. We added a
jump of 0.2 m from February 2019 to the middle of March 2019.

Results QR-MLP. For the univariate QR-MLP models, we used the same
architecture for each sensor, as we do not have to take into account correlated
time series. This was the same architecture that was used for 104OYE in multi-
variate QR-MLP modelling, as described in Table 2. Figure 3a shows that some
parts of the added jump can be detected, but this is certainly not the case for
the sequence of outliers as a whole.

(a) Using the univariate QR-MLP model. (b) Using the AR model.

Fig. 3. Plots of sensor 104OYE, with added jump.
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Results AR. AR model performance is shown in Fig. 3b. We see here that the
begin and end points of the added outlier sequence can be detected. The period
in between can not be detected, though. Also, some other sudden changes in the
time series have been classified as outliers.

5.2 Illustrative Example: Multivariate Results QR-MLP

We compared the multivariate linear regression, QR-MLP, QR-Perceptron, QRF
and QR-RNN models. Figure 4 shows the results of the same 104OYE time
series with added jump, now modelled multivariately by QR-MLP. This jump is
detected well, but some false positives are also present. Some outliers may have
been missed by the domain experts. This is most visible around November 2018.
Results of drifts detection for all outlier values are shown in Fig. 5.

Fig. 4. Quantile plot of sensor 104OYE, with added jump using the QR-MLP model.

Fig. 5. Bar plots of QR-MLP model scores of sensor 104OYE for all outliers values for
drifts. The legend shows the proportion totally missed, which indicates the proportion
of the outlier sequences missed completely. This value is 0 for each outlier value.
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5.3 Comparison of Univariate and Multivariate Modelling
Techniques

The F2 scores of all models are shown in Fig. 6. This figure shows how well dif-
ferent multivariate and univariate models score on different outlier categories for
different sensors. We see some clear differences. To compare the performance of
these different models, we followed a two-step approach [4]. First, a Friedman
Aligned Ranks test was performed to check whether there are significant dif-
ferences between the distributions of the results of the models [6]. If this test
yielded a significant difference, we used the Nemenyi test to compare all models
pairwise.

Fig. 6. Bar plots of model performance on all data sets, univariate and multivariate
combined for outlier value 0.2.

We used the Friedman Aligned Ranks test in 8 scenarios. One of them con-
sisted of all sensors and outlier categories and sizes. We also divided the data by
outlier category and by sensor. All these distributions are significantly different
from each other (see Table 4). This is expected, as we compare many models
which have very different performances as is visible in Fig. 6.

Table 4. Friedman Aligned Ranks results (α = 0.05) of all experiments.

Sensors All All All All 102BFS 103HOE 104OYE 201D

Outliers All Drift Jump Extremes All All All All

χ2 118.936 100.000 115.084 60.752 38.274 36.949 39.365 51.748

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Significant? Yes Yes Yes Yes Yes Yes Yes Yes



166 L. van de Wiel et al.

We now perform the Nemenyi test to see which models have significantly
different performance. The results are shown in Fig. 7. On the horizontal axis, the
average ranking of the algorithms is shown. The further a model is to the left on
the x-axis, the better it is scoring on average. Algorithms that are connected by a
bold line are not differing significantly from each other. In the overall comparison
of Fig. 7a, the five multivariate models outperform the five univariate ones. This
is because they score better in drift and jump detection scenarios. If we want
a single model to detect all outlier types, then the multivariate QR-MLP or
QR-perceptron model seems the best choice. In the extreme outlier category
(Fig. 7b), however, AR seems to perform exceptionally well. This is due to the
fact that AR almost works like a persistence model and can detect a large sudden
change easily.

(a) All data. (b) All sensors, only extremes.

Fig. 7. Nemenyi test results for univariate and multivariate models combined.

5.4 Comparison of Multivariate Modelling Techniques

As the multivariate models outperform the univariate ones in most cases, we
zoom in further on the multivariate ones. Figure 8 gives an overview of the F2-
score results of multivariate models for outlier value 0.2 m. Note that the F2-score
for extremes is low in all cases. This may be explained by the fact that fewer
outliers are added here than in the other categories. In the drift category, 17520
outlier points are added. In the jump category this number is 4320 and when
using extremes, only 100. The total number of true positives differs greatly per
method, so the roughly constant number of false positives can severely impact
precision and thus the F2-score.

We see some big differences between the models, but we also note that model
performance differs greatly per sensor. Results of the Friedman Aligned Ranks
test are shown in Table 5.

In Fig. 9, the Nemenyi test result for all data is shown. QR-MLP and QR-
perceptron are significantly different from QR-RNN. Other comparisons showed
similar results. Since QR-MLP and the QR-perceptron model perform decently
most of the time, these could be go-to algorithms.
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(a) 104OYE (b) 103HOE

(c) 102BFS (d) 201D

Fig. 8. Bar plots of model performance of multivariate models on all data sets for
outlier value 0.2.

Table 5. Friedman Aligned Ranks test results (α = 0.05) in multivariate experiments.

Sensors All All All All 102BFS 103HOE 104OYE 201D

Outliers All Drift Jump Extremes All All All All

χ2 14.947 10.556 8.399 4.384 3.287 4.273 11.549 22.646

p-value 0.005 0.032 0.078 0.357 0.511 0.370 0.021 0.000

Significant? Yes Yes No No No No Yes Yes

Fig. 9. Nemenyi test results for multivariate models.
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5.5 Practical Impact

An advantage of the multivariate QR-MLP model is that it generalises to many
different kinds of outliers. In Fig. 10, domain experts annotated the subsequence
between middle September 2018 and middle October 2018 as outlying. This is
detected nicely (indicated by the red dots).

Fig. 10. Outlier detection plot of 108HOL modelled by the multivariate QR-MLP
model. No synthetic outliers were added. Although the already present outlier around
October 2018 can not be detected fully, it still can be detected well.

Domain experts stated that jump values and extreme values of 0.2 m are
reasonable in real life. We can derive from Fig. 6 that the performance of the
best performing models is satisfactory in many cases. The domain experts also
stated that a drift is generally in between 0.05 m–0.10 m over the period of a
year. This roughly corresponds to the two categories of outlier values 0.02 m and
0.05 m. Outliers for these values are harder to detect, as seen in Fig. 5. However,
this judgement is (too) harsh, as the algorithms do detect almost every drift
sequence after some time. The experts stated that periodical checks for the
occurrence of drift are normally performed yearly. Our models need one month
on average to detect drift of value 0.05 m, which leads to improvements over a
manual periodical check.

6 Conclusion and Future Work

In this work, we applied multivariate and univariate real-time outlier detection
models in unlabelled water height time series. Instead of only cleaning histori-
cal data, the trained models can be used to monitor sensor measurements and
directly signal outlying values. The key contribution of this work is the system-
atic comparison of algorithms and the easily parametrisable synthetic validation
scenarios which were constructed in cooperation with domain experts.
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We showed that multivariate approaches work better than univariate
approaches for jump and drift outlier types. For extreme values however, univari-
ate approaches appear to outperform multivariate ones. Yet, we think that this
result will not hold in practice, because it partly is an artefact of our synthetic
evaluation procedure. Univariate outlier models basically function by signalling
large instantaneous changes. This indeed highlights extreme values, but may fail
to detect slightly more gradual ones. Also, natural (more gradual) jumps in the
data will be missed. As we only added instantaneous extreme outliers, many true
positives were present. Few other already present data points changed so quickly,
so few false positives were present. Thus, this category of models performed well
in our simulations. In real life however, extreme values occur less frequently, and
natural jumps are more apparent. Therefore, these models are likely to result in
inadequate performance when implemented in practice.

It should be noted that the multivariate modelling approach is not applicable
for all sensors (like 102BFS). A multivariate approach is only suitable when
sufficiently correlating series are available.

Within the category of multivariate models, we found that the QRF app-
roach and the QR-RNN models performed poorly. The QRF model resulted in
very jagged quantile boundaries, which resulted in the misclassification of many
data points. The QR-RNN model often resulted in very wide quantiles, which
worsened performance. Linear regression performed relatively decently, although
the fixed quantile width remains an issue. In the end, we can conclude that the
QR-MLP and the QR-perceptron models performed the best overall.

To get a better overview how well these different models work in practice, it
is recommended that a pilot program is carried out to test the performance in a
more practical setting.

Our extreme values scenario had some artefacts. Although we selected a
realistic outlier value in cooperation with the domain experts, it is worthwhile
to investigate more realistic scenarios. An example is a more gradual extreme
value. This is fundamentally different from drift, as a gradual extreme value
could occur in a few time steps, in contrast to a duration of multiple months.
Research into a combination of different (extreme) outlier categories may also
be useful.

It may be a fruitful idea to use different models to detect different outlier
categories. For example, combining the results of an AR model and a multivariate
QR-MLP model could work to detect extreme values, jumps, and drifts.

An interesting research subtopic regards determining outlier causes. An out-
lier can be caused by multiple factors. Different kinds of outliers might require
different means of alleviation. It is of interest to determine these different causes
with additional techniques.

Another noteworthy subtopic concerns propagating sensor errors. If a sensor
malfunctions, this will not only affect its own predictions, but will affect all other
sensor predictions that make use of the values of this malfunctioning sensor as
a predictor variable as well. Further research is needed to make accurate claims
about this phenomenon.
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Abstract. The increasing accessibility and precision of Earth observa-
tion satellite data offers considerable opportunities for industrial and
state actors alike. This calls however for efficient methods able to pro-
cess time-series on a global scale. Building on recent work employing
multi-headed self-attention mechanisms to classify remote sensing time
sequences, we propose a modification of the Temporal Attention Encoder
of Garnot et al. [5]. In our network, the channels of the temporal inputs
are distributed among several compact attention heads operating in par-
allel. Each head extracts highly-specialized temporal features which are
in turn concatenated into a single representation. Our approach out-
performs other state-of-the-art time series classification algorithms on
an open-access satellite image dataset, while using significantly fewer
parameters and with a reduced computational complexity.

Keywords: Time sequence · Self-attention · Multi-headed attention ·
Sentinel satellite

1 Introduction

Time series of remote sensing data, such as satellites images taken at regular
intervals, provide a wealth of useful information for Earth monitoring. However,
they are also typically very large, and their analysis is resource-intensive. For
example, the Sentinel satellites gather over 25 Tb of data every year in the EU.
While exploiting the spatial structure of the data poses a challenge on its own, we
focus in this paper on the efficient extraction of discriminative temporal features
from sequences of spatial descriptors.

Among the many possible approaches to handling time-series of remote sens-
ing data, one can concatenate observations in the temporal dimension [7], use
temporal statistics [8], histograms [1], time-kernels [12], or shapelets [16]. Prob-
abilistic graphical models such as Conditional Random Fields can also be used
to exploit the temporal structure of the data [2].

Deep learning-based methods are particularly well-suited for dealing with the
large amount of data collected by satellite sensors. Neural networks can either
c© Springer Nature Switzerland AG 2020
V. Lemaire et al. (Eds.): AALTD 2020, LNAI 12588, pp. 171–181, 2020.
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model the temporal dimension independently of the spatial dimensions with
recurrent Neural Networks [4] or one-dimensional convolutions [9], or jointly
with convolutional recurrent networks [10] or 3D convolutions [6].

More recently, the self-attention mechanism introduced by Vaswani et al. [13],
initially developed for Natural Language Processing (NLP), has been successfully
used and adapted to remote sensing tasks [5,11]. In Sect. 2.1, we present these
approaches and their differences in greater details.

In this paper, we introduce the Lightweight Temporal Attention Encoder
(L-TAE), a novel attention-based network focusing on memory and computa-
tional efficiency. Our approach is based on the Temporal Attention Encoder
(TAE) of Garnot et al. [5], with several modifications meant to avoid redun-
dant computations and parameters, while retaining a high degree of expressive-
ness. We evaluate the performance of our approach on the open-access dataset
Sentinel2-Agri [5], consisting of satellite image time series annotated at par-
cel level (Fig. 1). With an equal parameter count, our algorithm outperforms
all state-of-the-art competing methods in terms of precision and computational
efficiency. Our method allows for efficient parameters usage, as our L-TAE out-
performs TAEs with close to 10 times the parameter count, as well as recurrent
units over 300 times larger.

Fig. 1. Example image time series of the Sentinel2-Agri dataset for two parcels of the
Winter cereal and Spring cereal classes, taken from [5]. The dots on the horizontal axis
represent the unevenly distributed acquisition dates over the period of interest.

2 Method

Throughout this section, we consider a generic input time series of length T
comprised of E-dimensional feature vectors e = [e(1), · · · , e(T )] ∈ R

E×T . For
example, such vectors can be a sequence of learned embeddings of super-spectral
satellite images.

2.1 Multi-headed Self-attention

In its original iteration [13], self-attention—initially designed for text
translation—consists of the following steps:
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Fig. 2. The proposed L-TAE module processing an input sequence e of T vectors of
size E, with H = 3 heads and keys of size K. The channels of the input embeddings
are distributed among heads. Each head uses a learnt query q̂h, while a linear layer
FCh maps inputs to keys. The outputs of all heads are concatenated into a vector with
the same size as the input embeddings, regardless of the number of heads.

(i) compute a triplet of key-query-value k(t), q(t), v(t) for each position t of the
input sequence with a shared linear layer applied to e(t),

(ii) compute attention masks representing the compatibility (dot-product)
between the queries at each position and the keys corresponding to pre-
vious elements in the sequence,

(iii) associate to each position of the sequence an output defined as the sum of
the previous values weighted by the corresponding attention mask.

This process is done in parallel for H different sets of independent parameters—
or heads—whose outputs are then concatenated. This scheme allows each head
to specialize in detecting certain characteristics of the feature vectors.

Rußwurm et al. [11] propose to apply this architecture to embed sequences
of satellite observations by max-pooling the resulting sequence of outputs in
the temporal dimension. Garnot et al. [5] introduce the TAE, a modified self-
attention scheme. First, they propose to directly use the input embeddings as
values (v(t) = e(t)), taking advantage of the end-to-end training of the image
embedding functions alongside the TAE. Additionally, they define a single master
query q̂ for each sequence, computed from the temporal average of the queries.
This master query is compared to the sequence of keys to produce a single
attention mask of dimension T used to weight the temporal mean of values into
a single feature vector.

2.2 Lightweight Attention

We build on this effort to adapt multi-headed self-attention to the task of
sequence embedding. Our focus is on efficiency, both in terms of parameter
count and computational load.
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Channel Grouping: We propose to split the E channels of the input elements
into H groups of size E′ = E/H with H being the number of heads1, in the
manner of Wu et al. [14]. We denote by e

(t)
h the groups of input channels for the

h-th group of the t-th element of the input sequence (1).
We encode the number of days elapsed since the beginning of the sequence

into an E′-dimensional positional vector p of characteristic scale τ = 1000 (2).
In order for each head to access this information, p is duplicated and added to
each channel group. Each head operates in parallel on its corresponding group
of channels, thus accelerating the costly computation of keys and queries. This
also allows for each head to specialize alongside its channel group, and avoid
redundant operations between heads.

Query-as-Parameter: We define the K-dimensional master query qh of each head
h as a model parameter instead of the results of a linear layer. The immediate
benefit is a further reduction of the number of parameters, while the lack of
flexibility is compensated by the larger number of available heads.

Attention Masks: As a result, only the keys are obtained with a learned linear
layer (3), while values are bypassed (v(t) = e(t)), and the queries are model
parameters. The attention masks ah ∈ [0, 1]T of each head h are defined as the
scaled softmax of the dot-product between the keys and the master query (4).
The outputs oh of each heads are defined as the sum in the temporal dimension
of the corresponding inputs weighted by the attention mask ah (5). Finally,
the heads outputs are concatenated into a vector of size E and processed by a
multi-layer perceptron MLP to the desired size (6).

In Fig. 2, we represent a schematic representation of our network. The differ-
ent steps of the L-TAE can also be condensed by the following operations, for
h = 1 · · · H and t = 1 · · · T :

e
(t)
h =

[
e(t) [(h − 1)E′ + i]

]E′

i=1
(1)

p(t) =
[
sin

(
day(t)/τ

i
E′

)]E′

i=1
(2)

k
(t)
h = FCh(e(t)h + p(t)) (3)

ah = softmax
(

1√
K

[
qh · k

(t)
h

]T
t=1

)
(4)

oh =
T∑

t=1

ah[t]
(
e
(t)
h + p(t)

)
(5)

o = MLP([o1, · · · , oH ]) . (6)

2.3 Spatio-Temporal Classifier

Our proposed L-TAE temporal encoder is meant to be learned alongside a spatial
encoding module and a decoder module in an end-to-end fashion (7). The spatial
1 E and H are typically powers of 2 and E > H, ensuring that E′ remains integer.
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encoder S maps a sequence of raw inputs X(t) to a sequence of learned features
e(t), computed independently at each position of the sequence. The temporal
module then maps this sequence to a single embedding o. Lastly, the decoder D
maps o to a target vector y, such as class logits for classification.

[
X(t)

]T
t=1

S�−−−−→
[
e(t)

]T
t=1

L-TAE�−−−−−−→ o
D�−−−−−→ y . (7)

3 Numerical Experiment

3.1 Dataset

We evaluate our proposed method with the public dataset Sentinel2-Agri [5],
comprised of 191 703 sequences of 24 superspectral images of agricultural parcels
from January to October, as represented in Fig. 1. The acquisitions have a spatial
resolution of 10 m per pixel and 10 spectral bands. Each parcel is annotated
within a 20 class nomenclature of agricultural crops.

3.2 Metric and Protocol

We evaluate the performance of our algorithm with two metrics measured at
parcel-level: Overall Accuracy (OA) and mean Intersection-over-Union (mIoU),
averaged over the class set (macro-averaging).

Given that the dataset is unbalanced (4 classes represent 90% of the samples)
the mIoU gives a more faithful assessment of the performance.

We propose two evaluation protocols to assess the efficiency of our proposed
light-weight temporal attention encoder:

• We assess the performance of our method and several state-of-the-art parcel
classification algorithms on the dataset Sentinel2-Agri. In order to perform
a fair comparison, we chose configurations corresponding to around 150k
parameters for all methods. We report the results in Table 1 alongside the
theoretical number of floating point operations (in FLOPs) required for the
sequence embedding modules to process a single sequence at inference time.

• We complement this first experiment by comparing the performance of dif-
ferent configurations of sequence embedding algorithms, and plot the per-
formance with respect to the number of parameters. In order to remove the
effects of the different spatial encoders, we use the same spatial encoder (a
pixel set encoder [5]) in all experiments. We only adapt the last linear layer
of the spatial encoder to produce embeddings of the desired dimensions.

3.3 Evaluated Methods

We evaluate the performance of recent algorithms operating on satellite image
time series to assess the relative improvement offered by our method.

PSE+TAE. The approach proposed by Garnot et al. [5]. They use a Pixel-Set
Encoder (PSE) module to encode each image independently, and process the
resulting sequence of embeddings with a TAE. The decoder is a 2-layer MLP.
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PSE+L-TAE. Our proposed method. We keep the same architecture as the
PSE+TAE, and replace the TAE by our L-TAE network.

CNN+GRU. A similar approach [4] to PSE+TAE, with a CNN instead of the
PSE and a Gated Recurrent Unit [3] instead of the TAE.

CNN+TempCNN. Another variation, with a two-dimensional CNN to encode
the images and a one-dimensional CNN processing the temporal dimension inde-
pendently. This architecture is based on the work of Pelletier et al. [9].

Transformer. Rußwurm et al. were the first to introduce self-attention methods
to the classification of remote sensing images. In their work[11], the statistics of
images are simply averaged over the parcels’ pixels, while the resulting sequence
is processed by a Transformer network [13]. The output sequence of embeddings
is max-pooled along the temporal dimension to produce a single embedding.

ConvLSTM. Rußwurm et al. [10] combine the embedding of the spatial and
temporal dimensions by using a ConvLSTM network [15]. This work has been
adapted to process parcels instead of pixels [5].

Random Forest. We use the temporal concatenation scheme of Bailly et al.
to train a random forest of 100 trees using the parcel-wise mean and standard
deviation of the spectral bands.

3.4 Analysis

In Table 1, we report the performances of competing methods (taken from [5])
and L-TAE, all obtained with a 5-fold cross-validation scheme. Our L-TAE archi-
tecture outperforms other methods on this dataset both in overall accuracy and
mIoU. While the OA is essentially unchanged compared to the TAE, the increase
of 0.8 mIoU points is noteworthy since our model is not only simpler but also
less computationally demanding by almost an order of magnitude.

We would like to emphasize that FLOP counts do not necessarily reflect the
computational speed of the model in practice. In our non-distributed implemen-
tation, the total inference times are dominated by loading times and the spatial
embedding module. However, this metric serves to illustrate the simplicity and
efficiency of our network.

Furthermore, our network maintains a high precision even with a drastic
decrease in the parameter count, as illustrated in Fig. 3. We evaluate the four
best performing sequence embedding modules (L-TAE, TAE, GRU, TempCNN)
in the previous experiment with different configurations, ranging from 9k to 3M
parameters. These algorithms all operate with the same decoder and spatial
module: a PSE and decoder layer totaling 31k parameters. The smallest L-TAE
configuration, with only 9k parameters, achieves a better mIoU score than a
TAE with almost 110k parameters, a TempCNN with over 700k parameters,
and a GRU with 3M parameters. See Table 4 in the Appendix for the detailed
configurations corresponding to each points.
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Table 1. Performance of our model and competing approaches parameterized to all
have 150k parameters approximately. MFLOPs is the number of floating points opera-
tions (in 106 FLOPs) in the temporal feature extraction module and for one sequence.
This only applies to networks which have a clearly separated temporal module.

OA mIoU MFLOPs

PSE+L-TAE (ours) 94.3 ± 0.2 51.7 ± 0.4 0.18

PSE+TAE [5] 94.2 ± 0.1 50.9 ± 0.8 1.7

CNN+GRU [4] 93.8 ± 0.3 48.1 ± 0.6 3.6

CNN+TempCNN [9] 93.3 ± 0.2 47.5 ± 1.0 0.81

Transformer [11] 92.2 ± 0.3 42.8 ± 1.1 1.1

ConvLSTM [10] 92.5 ± 0.5 42.1 ± 1.2 –

Random Forest [2] 91.6 ± 1.7 32.5 ± 1.4 —

Fig. 3. Performance (in mIoU) of different approaches plotted with respect to the
number of parameters in the sequence embedding module. The number of parameters
is given on a logarithmic scale. The shaded areas depict the observed standard deviation
of mIoU across the five cross-validation folds. The L-TAE outperforms other models
across all model sizes, and the smallest 9k-parameter L-TAE instance yields better
mIoU than the 100k-parameter TAE model.

In Fig. 4, we represent the average attention masks of a 16-head L-TAE for
two different classes. We observe that the masks of the different heads focus on
narrow and distinct time-extents, i.e. display a high degree of specialization. We
also note that the masks are adaptive to the parcels crop types. This suggests
that the attention heads are able to cater the learned features to the plant types
considered. We argue that our channel grouping strategy, in which each head
processes distinct time-stamped features, allows for this specialization and leads
to an efficient use of the trainable parameters.

3.5 Ablation Study and Robustness Assessment

In Table 2, we report the performance of our proposed L-TAE architecture with
different configurations of the following hyper-parameters: number of heads H,
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Fig. 4. Average attention masks of the L-TAE for parcels of classes Spring Cereal
(left) and Summer Cereal (right), for a model with 16 heads (from top to bottom).
The masks illustrate how each head focuses on short temporal intervals which depend
on crop type.

dimension of keys K, and number of channels E in the input sequence. We note
that our model retains a consistent performance throughout all configurations.

Number of Heads: The number of heads seems to only have a limited effect
on the performance. We hypothesize that while a higher number of heads H is
beneficial, a smaller group size E′ is however detrimental.

Key Dimension: Our experiments show that smaller key dimensions than the
typical values used in NLP or for the TAE (K = 32) perform better on our
problem. Even 2-dimensional keys allow for the L-TAE to achieve performances
similar to the TAE.

Input Dimension: The variation in performance observed with larger input
embeddings is expected: it corresponds to a richer representation. However, the
returns are decreasing on the considered dataset with respect to the number of
incurred parameters.

Query-as-Parameter. In order to evaluate the impact of our different design
choices, we train a variation of our network with the same master-query scheme
than the TAE. The larger resulting linear layer increases the size of the model for
a total of 170k parameters, resulting in a mIoU of only 49.7. This indicates that
the query-as-parameter scheme is not only beneficial in terms of compactness
but also performance.
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Table 2. Impact of several hyper-parameters on the performance of our method.
Underlined, the default parameters values in this study; in bold, the best performance.

H Params. mIoU K Params. mIoU E Params. mIoU
2 114k 51.6 2 118k 50.7 32 46k 49.6
4 118k 51.0 4 127k 51.3 64 59k 49.6
8 127k 51.2 8 143k 51.7 128 65k 51.1
16 143k 51.7 16 176k 50.8 256 143k 51.7
32 176k 51.2 32 242k 51.2 512 254k 51.4

3.6 Computational Complexity

In Table 3, we report the asymptotic complexity of different sequence embedding
algorithms. For the L-TAE, the channel grouping strategy removes the influence
of H in the computation of keys and outputs compared to a TAE or a Trans-
former. The complexity of the L-TAE is also lower than the GRU’s as M , the
size of the hidden state, is typically larger than K (130 vs 8 in the experiments
presented in Table 1).

Table 3. Asymptotic complexity of different temporal extraction modules for the com-
putation of keys, attention masks, and output vectors. For the GRU, the complexity
of the memory update is given in the Keys and Mask columns. X is the size of the
output vector. M is the size of the hidden state of the GRU.

Method Keys Mask Output

L-TAE O(TEK) O(HTK) O(EX)

TAE O(HTEK) O(HTK) O(HEX)

Transf O(HTEK) O(HT 2K) O(HEX)

GRU O (MT (E + M)) O(MX)

4 Conclusion

We presented a new lightweight network for embedding sequences of observa-
tions such as satellite time-series. Thanks to a channel grouping strategy and
the definition of the master query as a trainable parameter, our proposed app-
roach is more compact and computationally efficient than other attention-based
architectures. Evaluated on an open-access satellite dataset, the L-TAE performs
better than state-of-the-art approaches, with significantly fewer parameters and
a reduced computational load, opening the way for continent-scale automated
analysis of Earth observation.

Our implementation of the L-TAE can be accessed in the open-source repos-
itory: github.com/VSainteuf/lightweight-temporal-attention-pytorch.

Acknowledgments. This research was supported by the AI4GEO project: http://
www.ai4geo.eu/ and the French Agriculture Paying Agency (ASP).

http://github.com/VSainteuf/lightweight-temporal-attention-pytorch
http://www.ai4geo.eu/
http://www.ai4geo.eu/


180 V. S. F. Garnot and L. Landrieu

Appendix

In Table 4, we give the exact configurations used to obtain the values in Fig. 3.

Table 4. Configurations of the L-TAE, TAE, GRU, and TempCNN instances used to
obtain Fig. 3.

Parameters E H K MLP
L-TAE
9 k 128 8 8 128
34 k 128 16 8 128 - 128
112 k 256 16 8 256 - 128
288 k 512 32 8 512 - 128
740 k 1024 32 8 1024 - 256 - 128
3840 k 2048 64 8 2048 - 1024 - 256 - 128
TAE
19 k 64 2 8 128 - 128
39 k 64 4 8 256 - 128
76 k 128 4 8 512 - 128
195 k 256 4 8 1024 - 128
360 k 256 4 8 1024 - 256 - 128
641 k 256 8 8 2048 - 256 - 128
2592 k 1024 8 16 8192 - 256 - 128

Parameters Hidden Size Parameters Kernels FC
15k 32 14k 16 - 16 - 16 16 - 16
37k 64 45k 32 - 32 - 32 32 - 32
134k 156 136k 64 - 64 64
296k 256 296k 128 - 128 64
636k 400 702k 128 - 128 - 128 180
3545k 1024 3362k 64 - 128 - 256 512 - 128
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Abstract. Intelligent planning, control and forecasting of electricity
usage has become a vitally important element of the modern concep-
tion of the energy grid. Electricity smart-meters permit the sequential
measurement of electricity usage at an aggregate level within a dwelling
at regular time intervals. Electricity distributors or suppliers are inter-
ested in making general decisions that apply to large groups of cus-
tomers, making it necessary to determine an appropriate electricity usage
behaviour-based clustering of these data to determine appropriate aggre-
gate load profiles. We perform a clustering of time series data associated
with 3670 residential smart meters from an Irish customer behaviour
trial and attempt to establish the relationship between the characteris-
tics of each cluster based upon responses provided in an accompanying
survey. Our analysis provides interesting insights into general electricity
usage behaviours of residential consumers and the salient characteristics
that affect those behaviours. Our characterisation of the usage profiles
at a fine-granularity level and the resultant insights have the potential
to improve the decisions made by distribution and supply companies,
policy makers and other stakeholders, allowing them, for example, to
optimise pricing, electricity usage, network investment strategies and to
plan policies to best affect social behavior.

Keywords: Smart-meter · Load-profiling · Time series clustering

1 Introduction

Accurately characterizing the daily load profile of electricity usage has the poten-
tial to considerably improve the decision making for electricity suppliers and dis-
tributors, customers, policy makers and various other stakeholders. For instance,
it can help suppliers to optimise pricing, distributors to develop better distribu-
tion strategies, manage the peak demand and find ways to flatten the peak and
it can support policy makers to align climate action plans with cleaner energy
initiatives.

In particular, a careful analysis of the smart meter time series data, with
a view to learn insights for characterizing the daily load profile of residential
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customers has potential to assist the various stakeholders in taking a data-
driven approach to their decision making. However, extracting these insights and
understanding the connections between electricity usage, the dwelling and the
consumer behaviour is non-trivial. The smart meter time series data at the indi-
vidual dwelling level are noisy but when aggregated to groups of users evaluated
over time can reveal patterns of behaviours. Such patterns, or representative load
profiles, indicate when the peak demand may occur for groups of customers, and
are used by electricity market operators to schedule generation to meet demand.
There are opportunities to encourage users to moderate their electricity usage
patterns so as to reduce aggregate peak demand, but first we need to develop
an understanding of the representative load profiles.

In this paper, we consider the case when the user remains in control of their
electricity usage, rather than an intelligent energy management system. We take
the perspective of an electricity supplier or policy maker wishing to understand
residential consumers electricity usage. We base our work on a smart meter cus-
tomer behaviour trial which was carried between 2009 and 2011 [6]. Participants
retained total autonomy over the scheduling of their electricity usage during
the trial. For each participant, a survey was carried out before and after the
installation to determine the characteristics of the building construction and the
household composition, as well as their attitudes to the electricity usage and
expected benefits of a smart meter. This multivariate data-set of smart meter
time series and survey responses provides a unique opportunity to study the
relationship between the characteristics of a dwelling and its electricity con-
sumption pattern, when the consumption information is accessible to the users.
Policy makers would be interested know which of the survey features best explain
consumer electricity usage patterns. Analysis of survey responses using explain-
able techniques provides actionable insights that can be targeted in electricity
efficiency programmes.

The smart meter usage data are stochastic and high-dimensional. In order
for actors in the electricity market to incorporate these data into data-driven
decision-making processes, we must consider how to reduce the dimensionality,
model the data and extract useful insights. In this paper, we explore appropriate
schemes for carrying this out and to answer the following research questions:

1. Can we create representative load profiles for clusters of smart meter users
based on time series electricity usage?

2. Can we characterise the cluster representative load profile using information
in the survey?

3. What insights do the cluster characteristics provide to support the develop-
ment of climate action and electricity usage incentives?

We address these research questions by first performing a careful clustering of
the normalized electricity load time-series to learn the behavioural daily patterns
of residential customers. Then, we learn a classification model to map the survey
features to the clusters. In the process, we focus on the importance of various
survey features and learn crucial insights from this analysis. Our insights can
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be valuable for distribution and supply companies, policy makers and various
stakeholders in the energy business. For instance, we learn that one of the most
important features in predicting the daily load cluster is “how strongly they feel
that they can convince other occupants of the building to reduce their energy
usage”. Given that the survey has many detailed characteristics of the build-
ing and the household, the consistent importance of this feature across many
different classification models is surprising. This, itself, is an important finding
for a country like Ireland, which has traditionally struggled to get value out of
retro-fitting houses for energy efficiency improvements [16]. Our finding suggests
that a marketing campaign to change the attitudes of people towards energy
efficiency may be effective in modifying the daily usage pattern of residential
customers.

Outline. This rest of the paper is structured as follows: Sect. 2 describes the
related work, Sect. 3 details the structure of the time series and describes the
survey data and the problem outline, Sect. 4 concerns the clustering of the time
series and the creation of aggregate load profiles and the process of mapping
survey responses to their corresponding time series cluster, Sect. 5 illustrates
the experimental results and provides an exposition on these results and Sect. 6
presents our conclusions.

2 Related Work

In this section, we review the literature related to the usage of time series clus-
tering for smart meter data. We briefly survey (i) the techniques developed for
time-series clustering in general, then (ii) cover the work related to the usage
of time-series clustering for smart meter electricity data with a specific focus
on the Irish customer behaviour trial data and (iii) characterization of smart
meter load profile of residential users based on the attributes of the residential
building.

Time-Series Clustering. Clustering of time-series data has been an active area
of research over the last few decades and many good techniques have been devel-
oped (c.f. [2,11,17] for surveys and [13] for some recent work). The challenge in
clustering the smart meter data stems from:

1. Electricity usage time series is inherently noisy. Such noise emerges natu-
rally from the stochasticity of human lifestyles, but also from climactic and
weather conditions, and even possibly the purposeful injection of noise to
ensure privacy [9]).

2. Time-series differ in length. While this challenge is typically addressed using
dynamic time warping measures (as highlighted in the review [7]), these meth-
ods are sensitive to noise, making the resolution of the first challenge even
more challenging.

3. We are not interested in clustering based on the total usage, but in identi-
fying different shapes of the standardised time-series, corresponding to the
different daily patterns of the consumers. The tasks of clustering based on
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total usage and learning to forecast the load based on attributes of the house-
hold are relatively easier, our task of learning the daily pattern of a household
is significantly more difficult.

4. For the public policy bodies and industry analysts to be able to act on the
models and the resultant insights, the clustering of the time series and the
mapping of the survey data to the clusters should be as interpretable as
possible.

Analysis of Smart Metering Infrastructure. The installation of smart metering
infrastructure in recent years has sparked interest in the desire to develop meth-
ods to draw insights from the data that is being collected. This includes not
only electrical smart meters, but also water and gas smart meters [4,5,12,15].
Understanding how groups of consumers behave makes it possible to plan infras-
tructure projects, develop pricing strategies and identify anomalous behaviours.
Naturally, clustering can be performed trivially for cases of separating commer-
cial and industrial consumers from residential consumers, as well as by grouping
by consumption magnitude. In contrast to most existing works, our focus is on
the considerably more difficult task of learning the behaviour-based clusters to
better understand how consumers consume. Such a clustering reveals the differ-
ent daily usage patterns of residential customers and enables us to learn which
features of the buildings, households and people’s attitudes best discriminate
between the different clusters, revealing crucial insights for policy makers.

Clustering the Time-Series Daily Usage Pattern from Household. While there
is considerable body of work on clustering residential electricity customers using
load time series (see e.g., [14]), there is very little work on correlating it with the
features of the household and building, leave aside our goal of inferring the usage
pattern from the household and building features. Lavin and Klabjan [10] con-
structed mean normalised daily energy profiles for each meter in their data-set
of commercial and industrial buildings in the United States. They noted that the
daily usage pattern could be used to determine the work schedule in the commer-
cial buildings. Note that our focus is on the significantly more challenging task
of learning the behavioural usage pattern from the household and building fea-
tures. Alonso et al. [1] focused on scalable clustering of the time-series by reduc-
ing their time series representation to autocorrelation coefficients. They showed
that the clusters that they obtained correlated well with the geo-demographic
data related to the class and social status of individuals. In contrast, we take
the study to the next level and attempt to infer the usage pattern from a range
of features and identify the features that are most discriminatory. In Flath et al.
[8], standard normalised daily load and weekly profiles for nine scenarios recog-
nised by the German energy industry were computed as features from time series
data. These previously known load profiles were used to perform clustering of
the time-series data from a pricing perspective. However, they do not seek to
explain the underlying characteristics of the buildings to which the smart meters
are connected. Also, in contrast to their work, we identify the importance of each
feature in identifying the usage patterns without any assumptions a priori.
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Analysis of Irish Customer Behaviour Trial Data. There has also been some
work on the analysis of the Irish customer behaviour trial data [6] that we use in
this study. Carroll et al. [5] derived statistical features from the time series over a
period of six months and attempted to solve the problem of inferring composition
of a household living in a building based on the features that characterise the
electricity usage behaviour of the smart meter time series. In contrast, this paper
focuses on the significantly more challenging task of learning the usage behaviour
from the features obtained using the associated survey.

A closely related work is that of McLoughlin et al. [12], who performed sub-
sequence clustering of the CER [6] residential electricity smart meter time series
by considering the first six months of recordings for each meter using self organ-
ising maps. However, they focused on the regression models and more crucially,
ignored the features corresponding to how often the household appliances were
used (only using if appliances such as washing machine were present in the house-
hold) and the attitudes of the occupants towards energy saving and metering
measures. In contrast, we found that these features were the most important
in discriminating between the different usage patterns of household customers.
Azaza and Frederik [3] analyse the same data-set, using self-organizing maps
and hierarchical methods, clustering the time series using daily mean energy
usage profiles. But they only attempt to understand each cluster from an energy
usage perspective, not a building composition perspective. In contrast, our study
addresses the challenging task of learning the clusters of daily usage patterns
from the accompanying survey data.

3 Smart Meter Characterisation and Classification
Problem

In this work we are concerned with the creation of electricity load profiles for
residential electricity consumers. Associating a load profile to each customer
allows distributors and suppliers to anticipate expected user behaviour, plan
infrastructure and targeted interaction strategies accordingly.

We first perform a clustering of the residential consumers into relatively
large and roughly equal-sized clusters based on a transformation of their smart
meter time series electricity usage. We then construct a mapping from the sur-
vey responses to these clusters to characterise the clusters. Finally we analyse
the load profiles for these clusters and the salient survey questions to better
understand the cluster behaviour and potential for targeted electricity savings
interventions.

Dataset. For this study, we use a data-set [6] obtained from a customer
behaviour trial that was carried out between 2009 and 2011. This trial was car-
ried out in a range of Irish residential and commercial buildings to observe the
response to the installation of smart meters. Participants retained total auton-
omy over the scheduling of their electricity usage during the trial. For each par-
ticipant, a survey was carried out before and after the installation to determine
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the characteristics of the building construction, the composition of the house-
hold, as well as attitudes to the energy usage and expected benefits of a smart
meter.

The trial includes 6445 participants, of which 4225 were residential partici-
pants. From these residential participants, we filtered out the ones with suspected
instrumentation faults as well as those for whom incomplete survey responses
could not be reasonably imputed. This resulted in a total of 3670 participants
that were considered for our work. Each residential smart meter is assigned to
one building, representing a single household.

The smart meter time series data was collected at a half-hour granularity,
that is, the power consumed over each half hour interval for the duration of the
study was recorded for each participant. This corresponds to 48 time slots per
day, over the course of 535 days, a univariate uniformly-sampled sequence. Some
time series, however, were incomplete, meaning that they are not all of the same
length; they did not begin or terminate at the same time as those that extended
over the entire duration. For each participant i, therefore, we have a real-valued
vector Xi ∈ R

di . The vast majority of these univariate time series have more
than ten thousand elements.

For each participant i, there is a unique smart meter time series Xi as well
as a unique survey response Zi, forming a complete data-set D = {(Xi, Zi)}3670i=1 .
Each residential participant completed a survey prior to and subsequent to the
eighteen month trial. For our analysis, we only retain responses from the pre-
survey questionnaire and only if they concern the household composition (the
number of people who live in the household), the characteristics of the building
or its contents, or if they indicate the attitude of the respondent to the expected
outcome of the trial. Questions that have categorical answers are one-hot encoded
and questions that admit ordinal responses are normalised by the maximum
possible value, or recorded value, if there is no maximum. This results in a 110-
dimensional response vector Ẑi ∈ R110 to be associated with each smart meter
time series.

4 Methodology

Extracting clusters from the data is equivalent to finding a label yi for each of the
pairs (Xi, Zi). In this section we outline the feature extraction methods we use to
find a fixed length feature vector X̂i to characterise each smart meter time series
and cluster them into pairs (X̂i, yi). We then discuss how, having constructed
feature vectors Ẑi from the survey data, we find some model p(yi|Ẑi; θ).

4.1 Time Series Clustering

In order to derive insights from the smart meter time series upon which decisions
can be made, they must be reduced significantly in dimension. It follows that it is
desirable to construct a small number of clusters for which analysis can be carried
out. This amounts to using unsupervised methods to determine some mapping
f : X̂ → k, where k ∈ {{0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}} and X̂ ≡ {X̂i}3670i=1 .
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Three major paradigms are recognised for the clustering of time series data:
whole-series (raw) clustering, extracted feature clustering and model-based clus-
tering [11]. These residential electricity usage time series, driven by stochastic
variables such as local weather conditions and human activities, are subject to a
significant degree of noise, making the first of these approaches undesirable for
clustering. In addition, it is preferable that the clustering of the time series is
easily interpretable, so that decisions made on the basis of the generated clus-
ters are reliable, enabling the public policy bodies and analysts to act on the
resultant models. It is, therefore, desirable to compute a feature representation
that captures the behaviour of each time series and its peculiarities.

For each time series Xi we know the mapping gi : Xi → {0, 1, ..., 47}mi , where
mi is the number of days for which observations of the meter i were made. That
is, we have an exact mapping between each recorded power consumption value
and the time of day at which it was recorded. We also know the correspondence
between each measurement and the day and year it was recorded. This allows
us to construct fixed-length, representations of the load corresponding to fixed
time periods. Consider, for example, that a smart meter is observed n times per
day at regular intervals over a period of m days, then we can represent each
measurement in a matrix X ∈ R

n×m. Such a representation contains exactly
the same information as the one-dimensional representation, but we can reduce
it to obtain the mean energy usage per time slot according to:

R
n � X̂j =

1
m

m∑

i=1

Xij .

We can also construct similar features, in order to take into account the differ-
ences in behaviour that can be observed during weekdays and weekends, or on
a weekly/monthly basis. These representations are static and can be easily used
as feature vectors for static clustering algorithms.

In this work, clustering was performed using the k-means clustering algo-
rithm; various clustering algorithms were tested, such as agglomerative and other
density-based methods, but k-means produced the most well-separated clusters,
as indicated by computation of Silhouette indices. A variety of static representa-
tions of the time series data, such as those discussed in the previous paragraph,
were chosen as the feature vectors upon which the clustering was performed. We
proceeded with an �2 norm as a dissimilarity measure. In order to determine the
number of clusters, trial clusterings were performed for three, four and five clus-
ters, which suggested that clustering would be most appropriate with only three
clusters. A relatively small number of clusters is desirable in this setting because
it is convenient, for example, to have small representative customer groups when
designing customer tariffs. We also found that with a higher number of clusters,
the clusters themselves became less meaningful.

4.2 Survey Classification

The unsupervised clustering of the smart meter time series allows us to assign
a label to each smart meter, indicating the membership of each smart meter
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to a electricity usage pattern clustering. These labels are then used to train a
classification model in a supervised manner, to construct a mapping h : Ẑ → k,
where Ẑ ≡ {Ẑi}3670i=1 , between the survey responses and the learned clusters.
Constructing a mapping in this manner allows one to better understand the elec-
tricity usage patterns of a residential consumer using limited information about
building characteristics. It is of interest to the electricity market to determine
the most important of these features, so that targeted incentives and appropriate
energy policies and climate plans can be designed.

Feature importance can be determined using wrapper methods, though these
feature search methods can be computationally expensive if performed exhaus-
tively. Instead, we perform our feature search using step backwards feature selec-
tion for the classification models. We perform the classification of the survey fea-
tures using random forest classifiers and k-nearest neighbours classifiers, owing
to the limited data available, their simplicity (and hence ease of interpretation),
and in the case of the random forest models, so that we may also observe the
feature importance values that are naturally computed during the learning pro-
cess.

Classification Feature Selection. Evaluating the feature importance using
wrapper methods requires some level of care. Since multiple features can cor-
respond to a one-hot encoding of the same survey question, and since we are
interested in determining the most important survey question, we must take
care to ensure that the backwards greedy feature selection process selects fea-
tures by greedily searching through questions rather than elements of the survey
vectors. This is achieved by creating a custom scikit-learn estimator to imple-
ment the fitting logic and using mlxtend to perform the wrapper method search.
For each model we perform step backwards greedy feature selection, we use five-
fold cross-validation and use ROC-AUC as the scoring measure.

5 Experimental Results

All experiments were carried out on a machine with 15.5 GB of RAM, with
Ubuntu 18.04 and a six core Intel R© CoreTM i7-9750H CPU 2.60 GHz proces-
sor. Each clustering and classification task was performed using tools from the
Scikit-Learn Python package. Feature importance extraction was achieved using
the MLXtend Python package. Due to limited time and a lack of code availabil-
ity, it was not possible to make methodological comparison with the works of
McLoughlin et al., Lavin and Klabjan, or Alonso et al. [1,10,12].

5.1 Feature Vectors

A variety of fixed-length feature vectors were constructed to test their usefulness
for constructing clusters from the smart meter time series. The vector we denote
by d ∈ R

48 contained 48 elements (corresponding to the 48 half-hours in a day),
each representing the mean electricity consumption in kilowatt-hours for the
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corresponding time-slot over the entire eighteen-month period of observation.
That is, this vector represented the mean behaviour for a day over all recorded
days. This vector was then normalised by dividing the value of each element by
the sum of the values, so that the clustering would be agnostic of the magnitude
of the electricity consumption. The vector denoted by m ∈ R

108 contains the
vectors dw ∈ R

48 and de ∈ R
48, which are the same as d but computed only

over weekdays and weekend days respectively, along with a vector n ∈ R
12

representing the total energy usage for each month, normalised similarly. We also
use the feature vector w ∈ R

336, which contains the mean value of electricity
usage for each time-slot over an entire week, representing the “typical week”.
Finally, we also make comparison with the statistical feature vector s ∈ R

21

described in [5].
The survey data were normalised such that the maximum value that any

element could take was unity and the minimum value was zero. The survey
posed a respondent questions relating to the occupation, ages and number of
residents in the house, whether they were present during the day, the age of the
house, whether certain appliances were within it and how often they were used,
as well as attitudes toward and expectations of the installation of the smart
meter. For categorical features, such as the BER energy efficiency rating, a one-
hot encoding was used. For discrete, ordinal features, their values were divided
by the maximum possible value. In the case of the year of construction, this
meant that the values were divided by 2009, the year that the study began, and
re-scaled so that they took a minimum of zero. Such an assumption requires
that new values falling outside this range much be clamped to the minimum
and maximum values observed in this study. When values were unknown, they
were imputed if imputation could be deemed reasonable. This resulted in a 110-
dimensional vector, containing responses to the questions 200, 300, 420, 430,
43111, 4312, 4311, 4321, 4332, 433, 4352, 453, 6103, 460, 470, 4701, 471, 4801,
49002, 49004, 450, 452, 310, 401, 405, 410, and 4704. The statement of these
questions and the permitted responses are given in AppendixA.

5.2 Behaviour Clusters

A number of algorithms were tested for clustering, but it was found that k-means
with a �2 norm produced approximately equal-sized clusters reliably. We chose
to partition the residential participants into three clusters, based on observations
of cluster quality using the silhouette score. We performed the clustering on all
3670 feature vectors and obtain labels for each feature vector representation.

Figure 1 shows results for the clusters, the representative load profiles is the
mean of the average daily electricity usage patterns for all members of clusters.
We can see for the feature representations d and w that the produced clus-
ters have approximately equal sizes and that the three clusters behave similarly
in terms of average daily electricity usage. Differentiation between clusters is
reflected in the usage curves, where one cluster exhibits strongly the expected
diurnal electricity consumption pattern, where as the other shows much more
consistent electricity usage throughout the day. Using the features m produces
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Fig. 1. Mean of the average daily electricity usage patterns for all members of clusters
produced with a k means run. The shaded regions illustrate the variance of these mean
values within the cluster and the thickness of the lines illustrate the relative sizes of the
clusters, with the cluster having the most members represented by the thickest line.

two clusters of approximately equal size, and one smaller cluster. The behaviour
of these clusters appears similar on average, but as we show later, we can estab-
lish membership of these more reliably from the information provided in the
survey. The clusters produced from the features s demonstrate clusters that
can be separated using consumption magnitude. Two of the clusters consume,
in general, approximately equal magnitudes of electricity and illustrate some
structural differences in their behaviour, however.

In order to assess the differentiating characteristics of each cluster, we anal-
ysed the survey responses associated with each meter. This was performed by
determining a mean feature vector for each cluster and computing the variance
between the mean question responses of different clusters, enabling us to identify
the most discriminating questions. In Fig. 2, we illustrate this by plotting the
variance across the mean question response of different clusters, which indicates
the discriminating potential of different questions. We observe that for all feature
vector representations, the usage rates and ownership of specific appliances turn
out to be important for characterising the membership of each cluster, as indi-
cated by questions 49001 and 49004 (see AppendixA). Interestingly, one of the
most important discriminating questions is question 405, asking if the household
has access to the internet or not, suggesting that users with access to internet
in 2009–2011 time period had a considerably different electricity usage pattern
compared to those that didn’t have internet access.
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Fig. 2. Variance between the mean question response of different clusters, as a proxy
to assess the discriminating potential of these survey questions in characterising the
clusters – We consider the questions with high variance between their mean clus-
ter responses as more discriminatory between clusters and the questions with similar
answers across the different clusters as being less discriminatory.

5.3 Cluster Classification

Having been computed using normalised electricity usage vectors, the clusters
produced are characterised by the attributes of the occupants of each building,
and to a lesser extent the attributes of the building itself. This becomes further
clear when we present the feature importance values based on the accompanying
survey. It is possible to demonstrate which attributes these are by producing a
histogram of survey responses for each cluster. In Fig. 3, we can see that cluster
0 is much more likely to respond with option 1 for the employment question,
indicating that they are employed, whereas clusters 1 and 2 have a large fraction
of responses with option 6, indicating that they are retired. Similarly, we can see
that cluster 1 is more likely to have one or two people over the age of 15 within
the building during the day time, and more likely to have fewer bedrooms.

Inspecting the characteristics of those residential buildings that have been
clustered shows that the population is more likely to be distinguished by the
composition of the occupants, the respondent’s expectations and attitudes and
the usage frequency of appliances within the residence than by the construction
of the residence. In Fig. 3, we see that for clusters produced from the features m,
the usage pattern corresponding to cluster one can be explained by the higher
likelihood that it contains occupants who have reached pensionable age and who
are less likely to have younger residents.

For the classification task, the cluster labels were used as supervised learn-
ing targets. Labels corresponding to the cluster embedding for each feature
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Fig. 3. Histograms illustrating the response frequencies for each cluster for select survey
questions, where the clusters were constructed with the features m.

representation were tested, to determine which ones could be used to create clus-
ters that facilitated the classification task well. The training data consisted of
75% of the participants, with the training and validation sets split evenly between
the remaining 25% of the participants. The k-nearest neighbours model was
tested for a variety of k values to determine the best values of k ∈ {1, 2, ..., 150}.
The quality of each clustering model was determined using the testing and vali-
dation ROC-AUC and accuracy scores. In each case, the �2 norm was used as a
measure of dissimilarity. Random forest models were constructed with between
100 and 1000 decision trees, using the information gain splitting technique. No
maximum depth was specified and all other parameters were left as their default
values according to the implementation in the scikit-learn package.

In Fig. 4 we evaluate the ROC-AUC score for the k nearest neighbours mod-
els on the testing sets for a variety of values of k. In each case where a valid
ROC-AUC score could not be computed, a point is omitted. In general, clas-
sification accuracy is relatively low, but can be improved for larger values of
k, especially when computing clusters using the features m. We note that this
survey was not designed specifically for predicting the electricity usage patterns
of the households and the relatively lower accuracy in our results is likely the
result of the limited relevance of the survey questions to the underlying driving
forces of electricity consumption profiles.

In Fig. 5 we present the testing ROC-AUC scores for a variety of forest sizes.
In several cases, the scores for the clusters generated using the statistical features
are best, but this is unsurprising since variables corresponding to larger buildings
will allow it to make distinctions more easily. We are not interested in magnitude
profiling, so we ignore the statistical feature models when evaluating feature
importance.
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Fig. 4. ROC-AUC scores computed for k nearest neighbours classification for a range
of values of k. Scores are computed for each of the feature representations.

Fig. 5. ROC-AUC scores computed for the random forest classification models of var-
ious sizes. Scores are computed for each of the feature representations.

5.4 Feature Importance

Determination of the most important survey questions for correct classification
of residential homes can be achieved by using a multitude of search algorithms,
but performing this efficiently is difficult.

Evaluating the feature importance using wrapper methods requires some level
of care. Since multiple features can correspond to a one-hot encoding of the same
survey question, and since we are interested in determining the most important
survey question, we must take care to ensure that the backwards greedy feature
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selection process selects features by greedily searching through questions rather
than elements of the survey vectors. This is achieved by creating a custom Scikit-
Learn estimator to implement the fitting logic and using MLXtend to perform
the wrapper method search.

Feature importance values can be extracted from the random forest model
implementation in scikit-learn. These indicate that the survey responses are dom-
inated by few very important questions that translate to powerful features. Ques-
tion 49004, is determined to be the most important, asking the respondent to
indicate how often they use a variety of household appliances each day. Surpris-
ingly, Question 4352, the next most important feature for the classification asks
the participant how strongly they feel, either positively or negatively, that they
can convince other occupants of the building to reduce their energy usage. The
next three features included questions 49002, 49001 and 453 related to questions
about how many entertainment devices of various kinds are in the home, how
many household appliances of various types are in the home, and the year of
construction. The most important single survey question was question 453. In
Fig. 6 we can see that these five survey features remain the most important,
irrespective of the features used to generate the clusters.

Performing backwards greedy feature selection for the variety of k-nearest
neighbours models and random forest models outlined in the experiments above
indicates that the features corresponding to these five questions are invariably
the most important for classification accuracy. Although this has been computed
for a limited spectrum of classification models, this suggests that these questions
are, in general, the most important for classifying into the clusters constructed
with relative electricity usage features.

Fig. 6. Relative importance scores of survey questions, computed by the random for-
est classifiers. Importance values are computed for each case of the features used to
determine the clusters.
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6 Conclusions

In this work, we constructed a clustering of smart-meter time series for residen-
tial homes based individual average load profiles, deriving representative load
profiles for the entire cluster. Using the cluster labels, we trained classification
models to predict cluster membership using only occupancy, building construc-
tion and attitudinal survey responses. We identified the most relevant survey
questions for performing such a classification, and those that are not, assigning
relative importance values to each question obtained using random forest clas-
sifiers. We confirmed these results by performing step backwards greedy feature
selection, identifying usage of appliances, age of the building and attitudes of
occupants towards energy usage as some of the most important characteristics
to explain energy usage patterns. Unlike previous studies, we found that one of
the most important characteristics of occupants of a residential household that
influences their consumption behaviour is reflected by how likely it is that they
feel they can convince other occupants to reduce their electricity consumption.
The fact that a feature based on attitude of the people is more crucial to deter-
mining the electricity usage patterns compared to many other features based
on characterizing the household and the building has important implications for
policy makers, particularly in Ireland, where the returns on retro-fitting houses
(as part of the climate action plan) has been found to be very poor. Our study
suggests that a marketing campaign to alter the behavioural attitudes of people
might be more effective in altering the usage patterns of residential customers.

It remains to determine precisely which questions would be more effective
for improving the classification accuracy. Further work could be carried out
to test alternative questions that will enable us to more accurately map the
characteristics of a household to its energy usage patterns.

Acknowledgement. This work was funded by Science Foundation Ireland through
the SFI Centre for Research Training in Machine Learning (18/CRT/6183).

A Survey Questions

Answers to the following questions were retained for use as features in the clas-
sification task. Note that questions 49003,1, 49003,2, 49003,3, 49003,4, 490004,
4900004, 4900005, 4900006, 4900007, 4900008, are encoded as question 49004
in the above results (that is, questions 46-55 below). Similarly, question 4551 is
encoded as 455 in the results above.
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Abstract. IoT data, that most often carry a temporal dimension, can
be exploited from an analysis perspective or from a forecasting one. In
this paper, we propose a predictive approach to address the problem
of data trustworthiness in a data stream generated by a Smart Home
application. We describe an online Ensemble Regression model that per-
forms prediction in assigning a trust score to a target temporal value in
real-time. Experiments conducted with data retrieved from the UCI ML
repository demonstrate the performance of the model, while assessing
data accuracy.

Keywords: Data trustworthiness · Smart home · Data stream

1 Introduction

Among the large spectrum of IoT applications, time-series data generated by
a set of sensors and actuators are integrated to form a data stream. Smart
Homes are probably the trendiest domain where data stream can be exploited
in different ways such as remote control of home appliances, or even securing a
house, assuming the data is reliable. Unfortunately, like any data gathered from
hardware devices, sensor data stream may rise quality issues such as inaccuracy
or incompleteness [21], leading to difficulties in a decision making process. Within
this landscape, trusting the data is a key issue for helping stakeholders involved
in such process.

Trust can be handled through the concept of Data Trustworthiness (DT)
for which there is no unified definition in the literature: for example, [16] con-
siders that DT assessment should be consistent with quality dimensions such
as accuracy, timeliness and completeness; [18,28] highlights accuracy as a DT
evaluation while [1] emphasizes on subjectivity and accuracy.

In this paper, we consider accuracy as the main quality dimension for assess-
ing data trustworthiness in a Smart Home application, assuming that data
arrives on time and the data is complete. Data accuracy, which refers to the
correctness of sensor measurements [21], has been recognized as the most impor-
tant dimension in several papers [1,16,18,28]. It is worth noticing that accuracy
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is an objective description while DT is a subjective estimation based on some
assumptions (i.e., data follows a specific probability distribution). Considering
the accuracy dimension and subjectivity, we borrow DT definition from [1] that
is: “Data Trustworthiness in IoT Networks is the subjective probability that data
observed by a user is consistent with the data at the source”. Note that this def-
inition is generic enough that leaves the door open to several implementations,
depending on the context and on the probability distribution(s) one may adopt.

The remainder of the paper is organized as follows: Sect. 2 reviews some
related work. In Sect. 3, we describe our approach. Section 4 illustrates the exper-
imental results. Finally, we conclude and present some perspectives in Sect. 5.

2 Related Work

DT can be assessed by means of data similarity such as in [13] where authors
propose a pattern-wise method: a target (sensor) value is considered as reliable
if it co-occurs more frequently with the value of its neighbor sensor. However,
this method is rather suitable for value states (such as 0/1 represents whether
it is raining) than for continuous values (such as temperature). Won et al. [28]
consider that if multiple sensors measure the same value of interest at different
indoor locations, the difference between the measured values is proportional to
the distance between sensors. DT is inversely proportional to the weighted sum
of the difference between test data and neighbor sensor values: the smaller is the
distance between sensors, the greater is the weight.

All the above works [13,28] make the same assumption that simi-
lar/redundant data support each other for gaining trust. But there aren’t always
redundant sensors in a smart home: for example, there may be only one humidity
sensor per room.

Provenance-based methods rely on differentdata lineage dimensions. In [6],
inter-dependency between five items is considered: (a) data similarity, (b) data
conflict, (c) path similarity, (d) data deduction, (e) provider reputation. Authors
propose an iterative process for computing a trust score: at each iteration, the
trustworthiness of data and provider is adjusted according to the above five ele-
ments. This work is extended by Wang et al. [27] in integrating the user’s feedback:
data received by the user come with a ‘reported trust’, and the user will provide
its ‘adjusted trust’ after accepting the data. If the difference between ‘reported
trust’ and ‘adjusted trust’ is too large, the provider’s reputation decreases. Lim
et al. [22] also extended work of [6] in providing a cyclic trust computation frame-
work suitable for data streams: (a) the more trusted data reported by the sensor,
the higher is the (provider’s) reputation; (b) data trust depends both on data sim-
ilarity, provenance similarity and sensor reputation.

The idea behind the provenance-based approach [6,22,27] is the same: the
more a data has similar redundant data with different lineages, the more this
data is trusted. However, a Smart Home is often an Ad Hoc network [23] where
there is a unique data lineage from the sensor to the gateway [21].
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More recent works [1,15] promote regression based methods. In [15] a
static city weather data set is analysed: authors propose a method that estimates
the value of a target sensor by means of the values of its surrounding sensors.
If the residual between the estimation and the real value exceeds a predefined
threshold, then the (target) value is considered as untrusted, the residual being
the difference between the predicted value and the real value. Adams et al.
[1] revisit the work of [15] in considering that the residual follows a Gaussian
distribution. A Cumulative Distribution Function takes the residual as input
and outputs a trust score: if this score exceeds a threshold, the received data is
trusted. Work in [1] shows that Linear Regression outperforms Random Forest
Regression, Gradient Boosted Machine and Multi-Layer Perceptrons.

These works [1,15] share the idea that a small residual (i.e., the model made
a good prediction) leads to a high trust score.

We found the approach described in [1] appealing although it does not
take into account data stream characteristics (timeliness, non-stationarity, etc.).
Especially, due to seasonal changes, or changes in user habits, the underlying
distribution parameters (e.g., means, variance, correlation) of smart home data
usually changes over time, which is called the non-stationarity feature of the data
stream [26]. Non-stationarity of the data stream leads to a significant degrada-
tion of the performance of the prediction/classification model, which is known
as concept drift. Although the work of [1] does not take into account the non-
stationarity of data stream and the concept drift, we believe it is a good start
assuming we could transpose it to target (IoT) data streams.

In the next section, we describe DTOM, a Data Trustworthiness Online
Method to evaluate a trust score of (a batch of) data in a real-time data stream.
DTOM is based on the work [1] but differs by the following points: (1) DTOM is
based on an Online Ensemble Regression model which is suitable for the analysis
of online streams; (2) DTOM has a heuristic update strategy: Updated using the
data from the top 50% of trust rankings per batch, and (3) DTOM has been
evaluated with various real inaccurate data ratios while [1] use a (simulated)
inaccurate fixed data ratio.

3 Data Trustworthiness Online Model: DTOM

In this section, we first provide a problem statement as well as algorithmic
details, then we describe the Online Ensemble Regression methods we adopted.

3.1 Problem Statement

Given f sensors, each sensor generates a value within a fixed period of time. A
value df ′,t′ is emitted by a sensor f ′, at time t′. If df ′,t′ has quality (accuracy
dimension) issue, its accuracy level daf ′,t′ is 0, otherwise, it is 1. Our model will
give an estimated DT dtsf ′,t′ ∈ [0, 1] (denoted as a Trust Score) by Eq. 1 from [1].
Estimation of dtsf ′,t′ is the solution to problem minimizing |daf ′,t′ − dtsf ′,t′ |.
So, the problem of assessing DT can be considered as a Prediction problem.
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2σ2

)
dx, if drf ′,t′ < μ

2
σ

√
2π

∫ +∞
drf′,t′ EXP

(
− (x−μ)2

2σ2

)
dx, if drf ′,t′ ≥ μ

(1)

3.2 Design and Implementation

DTOM approach consists of three processes: initialization (offline phase), assess-
ment (online phase) and update (online phase).

Initialization: Given a sensor f ′, its historic data is noted as Yf ′ , and its reference
data (gathered from other sensors) is noted as Xf ′ . Yf ′ and Xf ′ are used to
initialize the ensemble Regression model (line 1, Algorithm 1). We calculate the
estimation d̂f ′,t′ of each historical data df ′,t′ . Then, we calculate the residual
drf ′,t′ between d̂f ′,t′ and df ′,t′ (line 2). The average (resp. standard deviation)
of the residual is denoted μ (resp. σ) (line 3, 4).

Algorithm 1. DTOM Initialization
Input: historic data of a sensor f ′, Yf ′ ; reference data of Yf ′ , Xf ′ ;
Output: the ensemble regression model Reg; the average of residuals, μ; the standard

deviation of residuals, σ.
1: an ensemble regression model reg is initialized with Yf ′ and Xf ′ .
2: setResiduals ← the training error (residual) of Reg with Yf ′ and Xf ′

3: μ ← average of setResidual
4: σ ← Standard deviation of setResidual
5: Return μ, σ, Reg;

Assessment: One data df ′,t′ arrives at a processing device (e.g., gateway) as
defined in Algorithm 2 (lines 2–5). The ensemble regression generates an esti-
mation d̂f ′,t′ (line 3) and gets the corresponding value of residual (line 4). The
corresponding trust score dtsf ′,t′ is calculated by Eq. 1 from [1] (line 5).

Update: the new data df ′,t′ is also buffered, with its reference data reff ′,t′ and
its trust score dtsf ′,t′ (line 6 in Algorithm 2). When the buffer is full (lines 7–18),
the data from the top 50% of trust rankings in the buffer is used to update the
regression (line 8), and the buffer is cleared (line 9).

3.3 Online Ensemble Regression

Online Ensemble Regression methods are suitable to our context especially for
handling concept drifts [8,10,20]. Online Ensemble Regression is a set of individ-
ual regression models whose predictions are combined to predict new incoming
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Algorithm 2. DTOM Assessment and Update
Input: New data from sensor f ′ at time t′, df ′,t′ ; the reference data of df ′,t′ , reff ′,t′ ;

ensemble regression model, Reg, Reg.predict is the prediction function of Reg; the
residual follows a Gaussian Distribution, N

(
μ, σ2

)
; A buffer is used to store the

data in each batch, and the upper limit of its capacity is also equal to the batch
size, noted as bufferSize.

Output: trust score of df ′,t′ , dtsf ′,t′ ∈ [0, 1].
1: myBuffer ← φ // The buffer cache is empty
2: if new data df ′,t′ is generated then

3: d̂f ′,t′ ← Reg.predict(reff ′,t′) // generates an estimation of df ′,t′

4: drf ′,t′ ← df ′,t′ − d̂f ′,t′ // get the residual
5: dtsf ′,t′ = F (drf ′,t′ , μ, σ) // as Equation 1
6: myBuffer ← myBuffer ∪ (df ′,t′ , reff ′,t′ , dtsf ′,t′) //new data, its reference

data and its trust score are buffered
7: if |myBuffer| ≥ bufferSize then // when the buffer is full
8: Reg ← Reg update with the data from the top 50% of trust rankings in

myBuffer
9: myBuffer ← φ //the buffer is cleared

10: end if
11: end if
12: Return dtsf ′,t′ ;

instances in real time. There are several online regression models in the literature
[2–4,7,12,14,17,19,24,25,29].

Online ensemble regression methods may adopt the following strategies to
accommodate concept drift (the strategies chosen for each model are shown in
Table 1):

– M1) Modification of basic models’ weights: The better the performance of
the basic model in the latest data, its voting weight increases, otherwise the
weight decreases.

– M2) Modification of basic models’ parameters: If the basic model is updatable,
its parameters are adjusted with new data.

– M3) Modification of basic models’ parameters: If the loss of the entire ensem-
ble regressions exceeds a threshold, new basic models are added to improve
performance.

– M4) Modification of basic models’ parameters: Poorly performing or too old
basic models are removed to reduce the computational burden.

– A1) Selecting instances: Incorrectly predicted data is used to update the
model because it may represent the trend of data changes.

– A2) Weighting instances: Incorrectly predicted data gets more weight that
affect the model update.

As illustrated in Table 1, Online Ensemble Regression methods can be
updated in 1) using a single piece of data (denoted “simple”) or 2) multiple
pieces (denoted “batch”). In terms of “explanatory”, Online Ensemble Regres-
sion methods can be divided into two categories [25]: 1) implicit, online regression
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model does not use detection techniques of a concept drift, but is continuously
updated with new4 data; 2) explicit, the update mechanism is triggered only
when the concept drift is confirmed by the concept drift detection module. Some
Online Ensemble Regression methods use a sliding window, while others don’t
(see Table 1). Most methods limit the number of base models except for [29].

In order to choose an Ensemble method, we adopted the following criteria
(models that meet the criteria are marked with * in Table 1):

– No re-accessible historic data is one of the main differences between data
streams and static data [20]. Data is accessed only once and then discarded
to limit memory and storage space usages [9].

– Batch-by-Batch update has better stability than instance-by-instance [3,8]
and is less sensitive to inaccurate data [3].

– Implicit method is more suitable than the explicit one (such as concept
detection) in noisy data streams [20], because the latter may cause too many
false alarms [8,20].

– Limited number of basic models reduce the storage burden [20].

As illustrated in Table 1, AddExp [19] and B-NNRW [3] are the methods
that meet our criteria. AddExp uses a loss bound to obtain the error model, and
adjusts the expert’s weights according to their actual losses (M1). Each expert
updates upon new arrival data (M2). If the overall performance (loss bound) is
below (above) a predefined threshold, a new expert is added (M3). The pruning
strategy is weakest-first or oldest-first (M4).

Note that the original version of AddExp was designed to update instance-
by-instance, but AddExp can be easily extended to update Batch-by-Batch
[25]. The original AddExp does not reveal which instances should be taken for
training a new basic model [5]. However, for “Batch-by-Batch update”, it can
train/initialize a new basic model by Boosting/Bagging the instances in the cur-
rent batch (A1, A2). One limitation of AddExp is that its predictions are in [0, 1]
interval. Another limitation is that it depends on a number of hyper-parameters,
as follows: 1) factor of decreasing weight β: the weight of basic model is updated
as ωt+1,i = ωt,iβ

|ξt,i−yt|; 2) loss required to add new expert τ : if |ŷt − yt| > τ ,
a new expert is added; 3) factor of new expert weight γ: the weight of the new
basic model is equal to γ

∑Nt

i=1 ωt,i |ξt,i − yt|. Where, ωt,i is the weight of basic
model i in time t; yt is the dependent variable; ξt,i is the estimation of yt by
basic model i; Nt is number of overall experts; ŷt is the estimation of AddExp
(over all basic models).

B-NNRW, a Boosting/Bagging ensemble method is based on NNRW (A1,
A2), a Neural Network with Random Weights where the weights between the
input layer and the hidden layer are fixed. NNRW does not update and adopts
a linear assumption. Therefore, B-NNRW also adopts the linear assumption and
adjusts its weights according to their loss in the last batch of data (M1). Pruning
(M3) and adding (M4) basic models are also used to maintain the performance of
the whole system. B-NNRW also relies on some hyper parameters such as 1) the
pruning rate q: only Q models with the lowest error are eligible to participate in
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Table 1. Online regression methods with their characteristics

Method Description New data

size

Explanatory Sliding

window

Adaption # basic

model

*AddExp [19] Additive expert

ensembles

regression

*both *implicit *no M1, M2,

M3, M4

*limited

ILLSA [17] Incremental
Local Learning
Soft Sensing
Algorithm

*batch *implicit yes M1, M3,
M4

*limited

OWE [25] On-line
Weighted
ensembles
regression

simple *implicit yes M1, M3,
M4, A1

*limited

R-FIMT-DD [14] Ensemble of
Incremental
Hoeffding-based
trees

simple explicit *no M2, A1 *limited

AMRules [2] Ensemble of
randomized
adaptive model
rules

simple explicit *no M3, M4 *limited

DOER [24] Dynamic and
Online
Ensemble
Regression

simple *implicit yes M1, M2,
M3, M4

*limited

VHPRE [4] Vertical and
Horizontal
Partitioning for
Data Stream
Regression
Ensemble

simple explicit *no M1, M3,
M4

*limited

ARF-Reg [12] Adaptive
Random Forest
(ARF) for
regression

simple explicit *no M2, M3,
M4

*limited

Online-DNNE [7] Neural network
ensembles with
random weights
based

simple *implicit *no M2 *limited

*B-NNRW [3] Neural network
ensembles with
random weights
+ Bagging/
Boosting

*batch *implicit *no M1, M3,
M4, A1,
A2

*limited

Learn.++ R2C [29] Learn++.NSE
[8] + R2C

*batch *implicit *no M1 not
limited
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the final prediction, Q = q ∗M , M being the maximum number of basic models;
2) the replacement rate r: the number of new added models is r ∗ M .

4 Experimentation

4.1 Experimental Dataset

We conducted our experiments with the Appliances Energy Prediction dataset
retrieved from the UCI Machine Learning Repository data portal1 consisting
of the following attributes: energy assumption, humidity and temperature. For
illustration purposes, we focus on the RH2 sensor which is a humidity sensor in
a living room area.

Dataset Volume and Velocity: One humidity sensor and one temperature sen-
sor are installed in each room and outside the building (18 sensors in total).
Data were averaged for 10 min period and gathered during 4.5 months (from
11/01/2016 to 05/27/2016) resulting in a total 12 MB CSV file with 19735
instances.

Simulated Untrusted Data (SUTD): Variance Fault (Gaussian noise) is one of
several types of faults that can be injected into a data stream (randomly selected
original data) to represent untrustworthy data [11]. [1] shows that the detection
of Variance Fault is more difficult than others, such as Stuck Fault (replaces
the true data value with a constant value), Offset (adds an a constant value to
the true data value). The percentage of noisy data injected into original data
(OD) varies from 5% to 65% (by step of 5%) for each experiment. Based on [1],
we define SUTD as follows: SUTD = OD + N(0, δ′), where N is a Gaussian
distribution and δ′ is the Standard Deviation of RH2 sensor data. Due to space
limitations, Fig. 1 (b–e) shows RH2 data for the first 24 h, respectively without
and with 5%, 35% and 65% of noise.

RH2 Sensor Data: Figure 1(a) displays RH2 data with some concept drifts
detected by Page-Hinckley Test2. We observe that from January to March, data
changes are relatively flat compared to April, May. Correspondingly, the con-
cept drift from January to March is less visible than for April, May. This smart
home sensor data with non-stationary nature (concept drift) will be used to
test whether DTOM can handle the concept drift to correctly assess DT in the
non-stationary data stream.

Reference Data: For RH2 sensor, the reference dataset is the data sent from
other 17 humidity/temperature sensors (not including energy assumption data),
and these sensors always generate correct data. Due to space limitations, Fig. 2
(a–d) shows an excerpt of RH6, T6, RH5, T5 sensor data with their statistical
description.

1 UCI https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction.
2 Details about Page-Hinkley method for concept drift detection are available at

https://scikit-multiflow.github.io/scikit-multiflow/.

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
https://scikit-multiflow.github.io/scikit-multiflow/


212 T. Peng et al.

Fig. 1. (a) RH2 data in living room, from January to May, 2016. Some concept drifts
are detected by Page-Hinckley Test, illustrated in circles. The first 24 h data in RH2
(b) without SUTD; with (c) 5% of SUTD; (d) 35% of SUTD; (e) 65% of SUTD.

Fig. 2. (a) Temperature sensor RH5 and (b) Humidity sensor T5 in bathroom; (c)
Temperature sensor RH6 and (d) Humidity sensor T6 outside the building.

Root Mean Square Error (RMSE). Equation 2 is a known measure that we use to
assess OD trust. The lower the RMSE value of ODs/SUTDs, the more accurately
their trust scores are estimated.

RMSE =

⎧
⎨

⎩

√
1

|ODs|
∑

df′,t′∈ODs (dtsf ′,t′ − 1)2, for ODs
√

1
|STUDs|

∑
df′,t′∈STUDs (dtsf ′,t′ − 0)2, for STUDs

(2)

Balanced-Accuracy (BACC). To further evaluate DTOM, data are classified
either as trustworthy or untrustworthy according to a threshold tth. Let us
set up: an OD is seen as a true positive (TP) if it is correctly classified as
‘trustworthy’ and a false negative (FN) otherwise, and that a SUTD is seen
as a true negative (TN) if it is correctly identified as ‘untrustworthy’ and a
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false positive (FP) otherwise. In this case, BACC (Eq. 3) indicates whether
the overall data is well classified and takes into account the unbalanced nature
of the dataset.

BACC = (Sensibility + Specificity)/2

where Sensibility =
#TP

#TP + #FN
and Specificity =

#TN

#TN + #FP

(3)

Trust Score. We can also directly observe the trust score of ODs/SUTDs to
determine whether they are correctly scored when the concept drift occurs. The
expected trust score for any OD is 1. Therefore, in the case of concept drift,
the higher (more accurate) of ODs’ trust score, DTOM adapts better to the
concept drift. Similarly, the expected trust score for any SUTD is 0. In the case
of concept drift, the lower (more accurate) SUTDs’ trust score, DTOM adapts
better to the concept drift.

4.2 Evaluation

In order to evaluate DTOM, we implemented AddExp and B-NNRW. We also
compared DTOM with linear regression (a static model), to show how DTOM
behaves in presence of concept drift. For any regressor, the first 5% data are
used for initialization. Trust threshold tth is determined by maximizing BACC.
For any Online Ensemble Regression: the maximum number of basic models is
25; instances are weighted by Boosting; buffer size is 100. The super-parameters
for each regressor are as follows:

– AddExp: factor of decreasing weight β = 0.5, factor of new expert weight
γ = 0.1, loss required to add new expert τ = 0.05 (see definitions in Sect. 3.3).
These super-parameter settings are the optimal values after tuning, i.e., the
same settings suggested in [19]. Basic regression models are SGD-Regressor
and Passive-Aggressive-Regressor3. Pruning strategy is the worst first [3].

– B-NNRW : Number of hidden nodes of NNRW is 16; the pruning rate p = 0.9
(optimal value between 1.0 and 0.7); the replacement rate r = 0.1 (optimal
value between 0.0 and 0.3) (see definitions in Sect. 3.3).

– Linear Regression: the first 5% data are taken for initialization; the trust
threshold tth is determined by maximizing BACC, but without update.

4.3 Results

In this subsection, we will discuss the numbers obtained for RMSE (trust score’s
accuracy) and BACC (OD/SUTDs’ classification) for all the above methods.

3 Available in Sklearn: https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/
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Fig. 3. (AddExp vs. B-NNRW vs. Linear Regression) performance with different SUTD
ratios (5%–65%) in RH2 data: (a) RMSE of ODs’ trust score; (b) RMSE of STUDs’
trust score; (c) BACC of overall data.

RMSE of ODs: As depicted in Fig. 3(a), the linear regression curve is close to
0.9 for all different SUTD ratios. This means that with linear regression, OD is
always wrongly evaluated with a relatively low trust score. The reason is that
the residuals between ODs and their prediction are unexpectedly too large. A
further explanation is that linear regression without updates cannot maintain
predictive power in non-stationary data streams, due to concept drift.

Note that for all SUTD ratios, B-NNRW curve is always lower, and therefore
better than AddExp. One possible explanation is that, for non-stationary data
stream, the prediction ability of B-NNRW is better than AddExp one.

For a SUTD ratio in the 5%–45% range, both B-NNRW and AddExp curves
are stable. In other words, B-NNRW and AddExp maintain their performance
as data quality declines. The reason is that 1) DTOM has successfully filtered
out most of low-quality data that is not used to update the Ensemble Regression
models, 2) B-NNRW and AddExp both have a certain tolerance for inaccurate
data.

However, when the SUTD ratio exceeds 50%, B-NNRW and AddExp curves
increase. This is because they both are updated by using the data from the top
50% of trust rankings in each batch. If the SUTD ratio is close to or higher than
50%, SUTDs inevitably interfere with its update process.

RMSE of SUTDs: Figure 3(b) shows that, for all SUTD ratios, SUTDs’ RMSE
of Linear Regression is close to 0.1.
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Figure 3(b) also shows that AddExp and B-NNRW performances are stable
when the SUTD ratio is within a 5% to 50% range, and B-NNRW ratio (which
is close to 0.02) is slightly lower (better) than AddExp (close to 0.03). Both
AddExp and B-NNRW behave better than linear regression.

When the proportion of SUTD is greater than 50%, AddExp curve increases
significantly. This means that AddExp loses performance: it is even worse
than Linear Regression. However, B-NNRW curve increases more slowly than
AddExp. One possible explanation is: 1) AddExp loses its predictive ability
due to updating with some SUTDs; 2) B-NNRW has a higher tolerance than
AdddExp for SUTD, and its prediction ability is less negatively impacted.

BACC: Figure 3(c) shows that, in all cases, Linear Regression BACC is stably
close to 0.55, which is lower than others. This means that nearly half of the data
is correctly classified.

For all SUTD ratio range values, we have shown that B-NNRW performs
better than AddExp, in comparison with ODs’ RMSE and of STUDs’ RMSE.
Therefore, BACC of B-NNRW is always higher (better) than AddExp. This
means that, a higher percentage of data is correctly classified with B-NNRW
than with AddExp.

From the 50%–65% SUTDs ratio, we showed that B-NNRW and AddExp
have lost performance in both ODs’ RMSE and STUDs’ RMSE, due to unavoid-
able update with SUTDs. Therefore, as the SUTD ratio increases from 50%,
both B-NNRW and AddExp BACC values decrease.

Fig. 4. (AddExp vs. B-NNRW vs. Linear Regression) performance with RH2 data
(25% SUTD ratios), in case of concept drift: (a) trust score of ODs; (b) trust score of
SUTDs. Up to 19 concept drifts were detected by Page-Hinckley Test (illustrated by
numbers and circles).
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Trust Score of ODs. We have shown that 1) when SUTDs ratio does not exceed
50%, the performance of B-NNRW and AddExp are stable; 2) with any SUTDs
ratio (5%–65%), the performance of Linear Regression is stable.

For illustration purposes, we arbitrarily choose a ratio of 25% SUTDs from
0% to 50%, and illustrate the ODs’ trust score generated by all regressors, as
illustrated in Fig. 4 (a). Before concept drift No.1, the linear regression curve is
even higher (better) than B-NNRW and AddExp ones. However, after concept
drift No.1, the linear regression curve is always close to 0.1, which is far from
the expected value of 1 for ODs. The reason is that the concept drift affects the
performance of Linear Regression because this method does not handle concept
drifts.

By observing Fig. 4 (a), both of B-NNRW or AddExp follow a downward
trend due to the concept drift. The decline of the curve means that performance
is reduced. However, after the performance degradation, the curves of both B-
NNRW and AddExp tend to return to the previous level. This ability comes
from the update process of Online Ensemble Regression, which enables DTOM
to deal with the concept drift.

In comparing B-NNRW with AddExp curves, we note that 1) when there is
no concept drift, the curves of both are closed; 2) when the concept drift occurs,
the curve of B-NNRW declines slightly than the AddExp one: this is illustrated in
Fig. 4 (a) concept drifts 1–3, 5–8, 10–19). This means that B-NNRW can adapt
to changes in the data stream more quickly than AddExp, and outperforms
AddExp (the same result is shown in Fig. 3 (a) with 25% STUDs ratio).

Trust Score of SUTDs. We still choose the 25% SUTDs ratio to illustrate the
SUTDs’ trust score generated by all regressors (see Fig. 4 (b)).

Before concept drift No. 1, the linear regression curve is lower (better) than
B-NNRW and AddExp. However, after concept drift No. 1 and before the concept
drift No. 2, the linear regression’s curve increase. After the concept drift No. 2,
the linear regression curve is slightly higher than B-NNRW and AddExp. After
the concept drift No. 3, the linear regression curve is significantly higher (worst)
than B-NNRW and AddExp. The reason is same as ODs’ trust score of linear
regression: we do not have an update mechanism to deal with a concept drift.

By observing Fig. 4 (b), most of the concept drifts lead to a relatively slight
increase in the curves of B-NNRW and AddExp (degraded performance). How-
ever, thanks to the update capacity of the online ensemble regression, upon
performance decline, the curves of B-NNRW and AddExp tend to return to the
previous level (close to 0).

Our experiments show: 1) when concept drift occurs relatively at low fre-
quency (concept drifts No. 1–8, in Jan., Feb. and Mar.), B-NNRW has a slight
advantage over AddExp (B-NNRW 0.001 vs. AddExp 0.003 in mean); 2) When
the frequency of concept drift occurs at a higher frequency (concept drifts No.
10–19, in Apr. and May), the curves of both increase (worst), but B-NNRW
keeps its advantage over AddExp (B-NNRW 0.003 vs. AddExp 0.004 in mean).
Hence, the overall performance of B-NNRW is better than AddExp (the same
result has been shown in Fig. 3 (b) with 25% STUDs ratio).
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5 Conclusion

In this article we described DTOM, an online model-based method for assessing
data trustworthiness in smart home (IoT) data streams. DTOM extends the work
of [1] in using Online Ensemble Regression, and in adopting a heuristic update
strategy: batch-by-batch, with the data from the top 50% of trust rankings in
each batch. DTOM has been implemented with B-NNRW and AddExp and
experimental results have been conducted with a real dataset.

The first outcome of the experimentation is that B-NNRW ensures Data
Trustworthiness for a vast majority of data in a non-stationary data stream,
while outperforming other regressors. The second outcome relates to DTOM
performance degradation when the SUTD ratio exceeds 50%, because SUTDs
will inevitably interfere with the regressor update process.

The work described in this paper is a first step towards developing efficient
real-time predictive methods for a data stream, i.e., the proposal of learning
methods that (1) can handle the drifts, and (2) cover a comprehensive set of
practical applications. However, the proposed methods have some limitations.
Indeed, our work is based on the assumption that the initialization phase has a
high-trust dataset. If a low-trust dataset is used during the initialization phase,
it is possible that 1) the distribution parameters of residuals may be incorrectly
estimated; 2) the parameters of the online Ensemble Regression model also may
be erroneous. Clearly there is room for improving these methods. One possible
research direction is that our proposed method requires only a small amount
of high-trust data for initialization. This amount may be provided by domain
experts at limited cost.
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Abstract. Time-series data in application areas such as motion capture
and activity recognition is often multi-dimension. In these application
areas data typically comes from wearable sensors or is extracted from
video. There is a lot of redundancy in these data streams and good clas-
sification accuracy will often be achievable with a small number of fea-
tures (dimensions). In this paper we present a method for feature subset
selection on multidimensional time-series data based on mutual informa-
tion. This method calculates a merit score (MSTS) based on correlation
patterns of the outputs of classifiers trained on single features and the
‘best’ subset is selected accordingly. MSTS was found to be significantly
more efficient in terms of computational cost while also managing to
maintain a good overall accuracy when compared to Wrapper-based fea-
ture selection, a feature selection strategy that is popular elsewhere in
Machine Learning. We describe the motivations behind this feature selec-
tion strategy and evaluate its effectiveness on six time series datasets.

Keywords: Time-series classification · Feature selection · Merit score

1 Introduction

Multi-dimension time-series data arises in various application areas such as
motion capture and activity recognition [9,11]. This data will often contain a
lot of redundancy with some of the data streams being highly correlated. For
this reason, it is important to be able to identify a subset of the features (data
streams) that is adequate to characterize the phenomenon under investigation.
This is a special case of the feature selection problem in Machine Learning (ML)
but in this case the ‘feature’ is a complete time-series rather than a feature in a
feature vector representation.

Time-series data is often not compatible with the standard ML feature selec-
tion strategies. Filter strategies are not directly applicable due to the nature of
the data and Wrapper methods can be computationally prohibitive (see Sect. 2
for more detail).

In this paper, a feature subset selection method for multivariate time series
is implemented with the aim of identifying the optimal feature subset to use for
classification. The method uses feature-feature correlations as well as feature-
class correlations based on mutual information (MI) which are then used to
c© Springer Nature Switzerland AG 2020
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calculate a merit score for each feature subset which will act as the basis upon
which to select the ‘best’ subset. The main novelty is that these correlations are
calculated on the outputs of classifiers trained on single features rather than on
the time-series data.

The following section of this paper presents an overview of existing feature
selection techniques. Section 3 describes the Merit Score based technique used for
time series (MSTS), Sect. 4 presents our evaluation of MSTS on selected datasets,
and finally Sect. 5 discusses the conclusions and scope for further work.

2 Feature Selection

In a data set of n dimensions there are 2n possible feature subsets. Feature
Selection techniques explore this space of feature subsets to find the ‘best’ subset.
Evaluation strategies can be divided into two broad categories:

– Filter methods use an external measure such as information gain or a χ2

statistic to score the informativeness of features. Then a selection criterion
will determine the best features to select according to this score, e.g. select
features scoring above a threshold or select the top m features.

– Wrapper methods for feature selection make use of the learning algorithm
itself to choose a set of relevant features. The Wrapper conducts a search
through the feature space, evaluating candidate feature subsets by estimating
the predictive accuracy of the classifier built on that subset. The goal of the
search is to find the subset that maximises this criterion.

Filter methods are not computationally expensive but are less accurate as fea-
tures are not evaluated in context. Wrapper methods can be very effective
because they evaluate what is important, the classification performance of differ-
ent feature subsets. However, because of the extent and nature of the evaluation,
Wrappers are computationally expensive.

2.1 Correlation Based Feature Selection Using Mutual Information

Correlation based feature selection (CFS) is a compromise between Filter and
Wrapper methods as it evaluates features in context but using correlation rather
than classification accuracy [5]. CFS is the default feature selection method in
Weka [4] and has been widely used. However, CFS is not usable with time-series
data because it requires data in a feature vector format. CFS assigns a merit
score MS to a feature subset as follows:

MS =
krcf√

k + k(k − 1)rff
(1)

Where rcf is the average correlation between the features in the subset and the
class label and rff is the average correlation between the selected features. k
represents the number of features in the subset. These correlations have been
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measured using techniques such as symmetrical uncertainty based on informa-
tion gain, feature weighting based on the Gini-index, and a method using the
minimum description length (MDL) principle [5]. Information gain based meth-
ods have worked well previously and hence the correlations in this paper will
be measured using Mutual Information (MI). MI has been widely used and has
produced successful results for feature selection [3]. Generally, as the MI between
two random variables increases, the greater the correlation between them will be.

MI is a concept that is used widely in information theory and is based on
Shannon’s entropy [13], which is a measure of the uncertainty of random vari-
ables. Given two continuous random variables X and Y , the entropy of X is
defined as:

H(X) = −
∫

p(x) log p(x) dx (2)

The entropy of X and Y is defined as:

H(X,Y ) = −
∫∫

p(x, y) log p(x, y) dx dy (3)

The MI between X and Y is defined as:

MI(X;Y ) =
∫∫

p(x, y) log
p(x, y)

p(x)p(y)
dx dy (4)

where p(x, y) is the joint probability density function of X and Y and p(x) and
p(y) are the probability density function of X and Y respectively.

Hence MI and entropy can be combined in the form:

MI(X;Y ) = H(X) + H(Y ) − H(X,Y ) (5)

In this paper, the adjusted mutual information (AMI) score is used to calculate
the correlations. The AMI score is an adjustment of the MI score to account for
chance [14]. The AMI score is defined as:

AMI(X,Y ) =
MI(X,Y ) − E[MI(X,Y )]

mean(H(X),H(Y )) − E[MI(X,Y )]
(6)

2.2 Feature Selection for Time-Series Data

A time series is a time based sequence of observations, xi(t); [i = 1, . . . , n; t =
1, . . . ,m], where i indexes the data gathered at time point t. The time series is
univariate when n is 1 and multivariate when n is greater than or equal to 2.
Multivariate time series can often be large in size and hence it is important to
have suitable methods for preprocessing the data prior to classification.

To deal with the high dimensionality of MTS, two common methods used
are feature extraction and feature subset selection. Feature extraction methods
involve the transformation or mapping of the original data into extracted fea-
tures. Feature subset selection involves reducing the number of features from the



A Feature Selection Method for Multi-dimension Time-Series Data 223

original dataset that is used for analysis by selecting only the features required
and removing the redundant features. One potential downfall of using feature
extraction methods is that there can be a loss of information compared to using
the original features. In this paper, the focus will be on feature subset selection
methods.

Many state of the art feature subset selection techniques such as Recursive
Feature Elimination (RFE) require each item to be inputted in the form of
a column vector [8]. Multivariate time series tend to naturally be represented
as a m × n matrix which makes these methods not ideal when working with
multivariate time series for correlation based feature selection as vectorising time
series data will lead to a loss of information about the correlation between the
features. Hence, although there has been a lot of work undertaken in the area of
multiple variable feature selection, there is limited work in feature selection for
multivariate time series (MTS).

Some correlation based methods have been implemented for feature subset
selection in time series. Many methods typically used to calculate correlation
such as Spearsman’s correlation and rank correlation can be effective for non-
time series data however has been shown to produce poor results when imple-
mented on time series [15].

Principal Component Analysis (PCA) is another technique that has been
used in multivariate feature selection which allows correlation information
between variables to be preserved. CLeVer is a technique which utilises prop-
erties of the descriptive common principal components for MTS feature subset
selection. This method uses loadings to weight the contribution of each feature to
the principal components. By ranking each feature by how much it contributes to
the principal components, this method aims to reduce the dimensionality while
retaining information related to both the original features and the correlation
amongst the features [16].

Mutual Information (MI) is a popular technique that has been used on MTS
data to measure correlation. MI is advantageous over other methods as it allows
for both linear and nonlinear correlation to be captured. The class separability
based feature selection (CSFS) algorithm uses MI between the original variables
as features for classification. Based on this, the ratio of between class scattering
to within class scattering is used to identify the contribution of a feature to the
classification, hence allowing the original variables to be ranked according to
their contribution to the classification [6].

MI is generally calculated in a pairwise manner which may not be ideal when
working with multidimensional data. To avoid this, some studies have used a
k-nearest neighbour (k-NN) approach to calculate the MI which avoids the need
to calculate the probability distribution function and therefore can be used on
the original multidimensional feature subset [7,10]. Many of the methods using
MI select the feature one by one using greedy search methods which may not
lead to the identification of the optimal subset. The MSTS approach taken in
this paper uses MI to evaluate correlation which is then used to calculate a merit
score for each subset from which the best subset is selected.
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3 CFS for Time-Series Data

CFS relies on the principle that “a good feature subset is one that contains
features highly correlated with the class, yet uncorrelated with each other” [5]. In
this context where we use time series data, we aim to find a subset with features
which are good predictors of the class while sharing little information with the
other features in the subset.

Typically, the correlation between the feature values themselves are calcu-
lated for use in CFS. As this is not feasible with time series data, we use the pre-
dictions of the class labels from each feature to help identify which features may
be more correlated. The correlations could be defined in various ways including
any distance measure between the feature-class and feature-feature class label
predictions or through the use of mutual information based approaches. While
investigating the best method to use to measure the correlations, initially the
single feature accuracy was used for feature-class correlation and Hamming dis-
tance was used for feature-feature correlations. However, we decided to take a
mutual information based approach for the correlations instead as it proved to
give better accuracy.

0 1 2 3 4 … 298 299

TRUE Predic ons (Ftrue) 2 2 5 3 6 … 4 3

Feature 1 Predic ons (F1) 2 3 5 3 6 … 4 4

Feature 2 Predic ons (F2) 2 2 1 4 6 … 4 4

Feature 3 Predic ons (F3) 2 2 5 1 6 … 5 3

Feature 4 Predic ons (F4) 2 2 5 5 6 … 4 4

(I) Make predictions using single feature

AMI(Fx,Fy) F1 F2 F3 F4 Ftrue

F1 0.19 0.17 0.19 0.65

F2 0.18 0.20 0.57

F3 0.23 0.61

F4 0.61

Merit 
Score(Fx,Fy) F1 F2 F3 F4

F1 0.79 0.82 0.82
F2 0.77 0.76
F3 0.78
F4

(II) Calculate feature-feature correlations 
and feature-class correlation using AMI 
score (Equation 6)

(III) Calculate Merit score using 
Equation 7 where k = 2

Fig. 1. Process taken to calculate the merit score of the ERing dataset for the 2-feature
subset case. This is a six class problem with class labels 1 to 6.

Figure 1 shows the process followed to calculate the MSTS where we initially
make a prediction using each of the features separately. The predictions are
then compared with the true labels using the Adjusted Mutual Information
(AMI) score (Eq. 6) to find the feature-class correlations and compared with the
predictions of the other features, again using AMI to find the feature-feature
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correlations (Fig. 1 (II)). Once the correlations have been identified, the merit
score can be calculated using a modified version of Eq. 1 as follows:

MSTS =
kYcf√

k + k(k − 1)Yff

(7)

where Ycf and Yff are correlations calculated on the class labels predicted for
the training data rather than on feature values as is the case in Eq. 1. Hence,
Ycf was calculated by averaging the feature-class AMI score of all the features
present in the subset. Yff is calculated as the average of the pairwise AMI scores
of each combination of features in the subset. The ‘best’ subset would ideally
be the one with the largest merit score. In this example there is a tie between
F1, F3 and F1, F4. - see Fig. 1 (III).

Following the merit score calculation, further evaluation is required to select
the ‘best feature subset’. To do this, we evaluate two strategies. The strategies
taken were:

1. Strategy 1. The merit scores are calculated for all possible feature subset
combinations (see Sect. 4.2). The feature subset with the highest merit score
was selected as the best feature subset.

2. Strategy 2. Merit scores are calculated as in Strategy 1. The top 5% of
the merit scores were selected and a Wrapper search was carried out on
the selected feature subsets to identify the feature subset with the highest
accuracy.

Further detail on how this algorithm was evaluated is presented in the following
section.

4 Evaluation

In our evaluation we aim to assess the effectiveness of MSTS to identify good
performing feature subsets and investigate how efficient this approach would be
in terms of computational cost.

4.1 Data Sets

Six datasets were used for evaluation and these were all taken from the UEA mul-
tivariate time series classification archive [1]. Five of these datasets are related to
activity recognition and motion capture with one dataset from the audio spectra
domain. All datasets were selected to have four or more dimensions. Four of the
six datasets consist of accelerometer and/or gyroscope data. The ArticularyWor-
dRecognition dataset has data obtained from an electromagnetic articulograph,
a small sensor placed on the tongue and the JapaneseVowels dataset was taken
from audio recordings. A summary of the datasets used for evaluation is shown
in Table 1.
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Table 1. Summary table of datasets used for evaluation

Total # of
samples

# of
classes

# of
variables

Time series
length

ArticularyWordRecognition (AWR) 575 25 9 24

JapaneseVowels (JW) 640 9 12 29

Cricket (Cr) 180 12 6 1197

ERing (ER) 60 6 4 65

NATOPS (NT) 360 6 24 51

RacketSports (RS) 303 4 6 30

4.2 Merit Score Evaluation

The evaluation of the merit score was undertaken for feature subsets up to and
including 4 features which was deemed sufficient as often MTS data only requires
a small number of features to obtain high accuracy. To calculate the merit score
for each dataset the following steps were taken:

1. Identify all unique feature subsets. All unique combinations of feature
subsets was identified and stored.

2. Calculate and store DTW distance matrix. The similarity measure used
for the time series in this paper is Dynamic Time Warping (DTW). DTW
allows for a mapping of the time series in a non-linear way and works to
find the optimal alignment between both series. DTW can be considered as a
one-to-many mapping [12]. As this is a computationally expensive task and
will be repeatedly used for cross-validation, it is calculated and stored in
advance.

3. Make class label predictions for each feature. A 1-NN classifier using
the stored DTW distances was used to do a 3-fold cross validation to make a
set of class predictions using each feature individually.

4. Calculate feature-class and feature-feature correlations. Calculate
the feature-feature correlations and feature-class correlations as explained in
Sect. 3.

5. Calculate Merit Scores using Eq. 7.

To compare the effectiveness of the merit score in identifying the optimal
subsets, the classification accuracy of each subset was also calculated using a 1-
NN-DTW classifier, which is often used as a benchmark technique whilst working
with time series [2]. A 3-fold cross validation was performed for each dataset.
Figure 2 shows the merit score against its subset accuracy for each feature
subset.

A positive trend is seen in Fig. 2 where a higher merit score generally cor-
responds to a higher accuracy. This trend is very visible in five out of six of
the datasets with the NATOPS dataset yielding a less promising correlation in
comparison with the other datasets. This behaviour may be due to the innate



A Feature Selection Method for Multi-dimension Time-Series Data 227

characteristics of the data which suggests that this approach may be more suit-
able for some datasets and domains than others. A slight feature subset size bias
(SS-bias) is seen in the datasets where the different subsets sizes are forming
clusters. However, overall the merit score gives a good indication of the better
performing feature subsets and if the highest merit score was selected, a sub-
set with a good classification accuracy would be selected as the ‘best’ subset,
although the optimal subset may not be selected. This is further evaluated in
Sect. 4.3

Fig. 2. MSTS vs subset accuracy for each feature subset combination for the six
datasets
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4.3 Feature Subset Selection

Following the merit score calculation, the two strategies where we take the high-
est merit score to represent the best feature subset (Strategy 1) and we take
the top 5% of merit scores and undertake a search through this to find the best
feature subset (Strategy 2) were both implemented on the datasets. For all eval-
uations of performance a 3-fold cross validation using 1-NN-DTW was used on
the selected feature subsets. Figure 3 shows a comparison between the best accu-
racy and computational time required by the two strategies undertaken using
the merit score and compares this with that from an exhaustive search through
all unique feature combinations. The computational time recorded for the two
MSTS approaches includes the calculation of the merit score itself and the 1-NN-
DTW search using either the best feature subset or through all feature subsets
which belong to the top 5% of the merit scores. The computational time recorded
for the exhaustive search includes the calculation of accuracy for all unique fea-
ture subsets. The unique feature subsets possible for each dataset and the DTW
distance matrices are both calculated and saved in advance as they are common
to both approaches, hence they have not been included in the computational
time calculations.

From the results it can be seen that for most cases, the best subset was able
to be obtained using the MSTS strategy 2 where the top 5% of merit scores were
used. Although strategy 1 is also able to obtain a good accuracy in most cases, the
best feature subset is only found using this strategy for the ERing dataset. The
exception where the MSTS strategies did not work perfectly was in the NATOPS
dataset where the best accuracy obtained was about 4–5% less using the MSTS
and the Cricket dataset where the best accuracy obtained was less than 1%
below the optimal accuracy. The reasoning for the undesirable performance of
NATOPS can be seen in Fig. 2 where the NATOPS 4 variable subset has a less
positive relationship between merit score and subset accuracy in comparison with
the other datasets. The computational time required for the identification of the
best subset was faster using MSTS for all except the ERing dataset. As ERing
had the smallest number of dimensions (4 dimensions) this is not a surprising
result. As the number of dimensions increase it is evident that MSTS is highly
suitable to reduce computational cost as the larger datasets such as NATOPS (24
dimensions), JapaneseVowels (12 dimensions), and articularyWordRecognition
(9 dimensions) see a large reduction in time taken while using this approach.
As the time difference between the two MSTS strategies are minimal, strategy 2
where the top 5% of all merit scores are evaluated performs best overall giving
near perfect performance identification in 5 out of the 6 datasets.
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Fig. 3. Accuracy (Left) and computational time (Right) required for each of the
datasets using the two MSTS strategies vs an exhaustive search
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5 Conclusions and Future Work

In this paper, a feature subset selection technique based on merit scores is imple-
mented for multivariate time series. The technique employed here uses correla-
tions based on classifiers from single features to identify a subset with low feature
to feature correlation and high feature-class correlations. The evaluation carried
out in this paper suggests that this approach can lead to a considerable reduction
in the computational time required to identify a good subset. This approach is in
particular useful for very high dimension data as the reduction in computational
time by MSTS improves as the number of dimensions increases.

The results suggest good potential for this approach to be used as a fea-
ture selection technique for time series as a high accuracy yielding subset was
selected in each of the datasets that were evaluated. Of the datasets analysed,
near optimal results were obtained for five of the six datasets. Hence, the ques-
tion of whether the nature of the data impacts the effectiveness of the approach
is still unanswered. This will be investigated in the future with the aim of get-
ting a better understanding of under what conditions this technique will be most
effective.

To deal with very high dimension datasets, in our future work we will attempt
a greedy search through the features for the merit score calculation rather than
calculating the merit score for all subset combinations. Another direction for
further work is to explore the effectiveness of correlations based on subsets of
the available data, e.g. 100 samples with the aim of reducing the amount of
training data required to carry out the feature selection.

Acknowledgements. This work was funded by Science Foundation Ireland through
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