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Abstract. An optimization problem that arises during tool path rout-
ing for CNC sheet cutting machine is considered for the case when parts
are bounded by line segments and circular arcs and pierce points lay on
the bounds. Technique of continuous cutting is used, i.e. each contour is
cut as a whole from any starting point. The task of tool path length min-
imization is reduced to the task of air move length minimization which is
shown to be equivalent to finding the shortest broken line with vertices
on non-nesting disjoint contours on the plane. The algorithm of build-
ing such a broken line for a fixed order of contour processing is devised
and proved to deliver local minimum. Some sufficient conditions for this
minimum to be global are discussed. A heuristic algorithm for finding
the optimal contour cutting order is proposed based on Variable Neigh-
borhood Search approach. Results of a computational experiment and a
comparison with the exact solution of GTSP problem are presented.

Keywords: Tool path problem · Continuous cutting problem · Local
search · Sufficient conditions of global extremum · Heuristic · Discrete
optimization · Variable neighborhood search · GTSP

1 Introduction

A number of optimization problems arise during development of control pro-
grams for CNC sheet cutting machines. One of them is the task of minimizing
the tool air move, which in some special cases can be reduced to the prob-
lem of finding the shortest polyline with vertices on flat contours. Contours are
interpreted as the boundaries of flat parts. The location of the contours on the
plane is determined during the solution of the “nesting” problem. Both tasks are
generally NP-hard.
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In its turn, the task of minimizing tool air move is a subtask of another
optimization problem – the task of optimizing the tool path when cutting flat
parts. Its exact solution cannot be obtained for problems that actually arise
in production (for hundreds of parts/contours) in a reasonable time, therefore,
various heuristics are typically applied to get solutions of acceptable quality. At
the same time, the issues of developing algorithms that provide optimal solutions
for some problem cases, as well as evaluating the quality of their solutions in
comparison with the optimal solution, remain unresolved and are of significant
scientific interest.

The general problem of optimizing the tool path when cutting 2D objects
on CNC machines, which consists in minimizing cutting time and cost, includes
a whole range of different optimization tasks. A classification of such problems
can be found in [9,13,22], see Fig. 1.

– Continuous Cutting Problem (CCP): each closed contour (that bounds a part)
is cut out entirely by one movement of the torch, but cutting can start from
any point (and finishes at the same point).

– Generalized Traveling Salesman Problem (GTSP): cutting can start only at
one of the predefined points on the contour, the contour must be cut entirely.

– Endpoint Cutting Problem (ECP): cutting can start only at one of the prede-
fined points on the contour, and the contour can be cut in several approaches,
in parts.

– Segment Continuous Cutting Problem (SCCP): the notion of a cutting seg-
ment is introduced, which is a generalization of a contour; it can be either a
part of a contour or a combination of several contours or their parts. Each
segment is cut out entirely, thus CCP ⊂ SCCP .

– Generalized Segment Continuous Cutting Problem (GSCCP): segment cut-
ting (SCCP), but the selection of segments is not fixed in advance, but is
subject to optimization

– Intermittent Cutting Problem (ICP): the most general cutting problem
described in the literature, when contours can be cut in parts, in several
approaches, and cutting can begin at any point in the contour.

Tool path optimization problems in practice often reduce to discrete opti-
mization problems by discretizing the contours to be cut with a certain step ε,
that is, they reduce to ECP [8,14,24] or its special case, GTSP [3,18,27,28].
CCP can also be reduced to GTSP. In this case, however, the total error in the
air move length reaches N · ε, where N is the number of contours. To guarantee
the accuracy of the result of δ, it is necessary to choose a small ε ≈ δ/N , so the
total number of points on the contour grows (as O(N)) and the exhaustive search
becomes exponential. Nevertheless, such problems can be successfully solved, for
example, by the dynamic programming (DP) method, for small N ≈ 30 even
precisely (see, in particular [6]).

Tool path routing without using discretization (CCP) is further considered
in this paper. The publications on this subject are rare. [1,26] can be noted,
where heuristic algorithms are proposed.
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Fig. 1. Classification of Cutting Problems

1.1 Technological Constraints

The need to execute the tool path on a CNC sheet cutting machine imposes a
number of technological limitations on it.

The so-called “precedence constraint” is by far most popular in the literature.
It is caused by the fact that after cutting a closed contour, its interior is usually
not held by anything and can freely shift, rotate and even fall. For this reason,
the internal contours of parts must be cut before the external contours containing
them, and parts located in the holes of large parts even earlier.

Finally, most cutting technologies require that the cutting not be carried
out strictly along the contour, but with some indentation. This shift can be
performed both during the solution of the routing problem, and after – at the
stage of generating the control program for the CNC cutting machine or even
by the machine itself during the cutting process. In addition, the pierce point
(tool switch-on point) should generally be located even further from the contour
to avoid part damage. However, this work completely ignores this requirement.
Thus, it is further assumed that the tool moves exactly along the contour of
the part and the pierce point is located directly on the contour (as well as the
switch-off point of the tool).

2 Continuous Cutting Problem

Consider the Euclidean plane R
2 and its region B bounded by a closed contour

(rectangle in most cases), which is a model of the sheet material to be cut. Let
N pairwise disjoint flat contours {C1, C2, ..., CN} be given inside B, bounding
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n parts {A1, A2, ..., An}. A part can be limited by either one contour or several
(external and internal holes), so that in general n ≤ N .

The contours Ci can have an arbitrary shape, but we will only consider the
case when they consist of (a finite number of) segments of lines and arcs of
circles, which is determined by the existing technological equipment. In case
when the contours consist only of line segments, the continuous cutting problem
is reduced to one of the variants of the Touring Polygon Problem (TPP), see
[10].

Further, two points are set in region B (usually at its boundary), we denote
them as M0, MN+1 (almost always M0 = MN+1), which represent the beginning
and end of the cutting route.

Continuous Cutting Problem is to find:

1. N pierce points Mi ∈ Ci, i ∈ 1, N
2. Contour Ci traversal order, i.e. permutations of N elements I = (i1, i2, ..., iN )

The result of solving the problem will be the route {M0,Mi1 ,Mi2 , . . . MiN ,
MN+1}. The objective function in this case is greatly simplified in comparison
with the general cutting problem and is reduced to minimizing the air move
length.

L =
N∑

j=0

|MijMij+1 | (1)

L → min

Where, for sake of simplicity, we introduce the notation Mi0 = M0, MiN+1 =
MN+1.

In addition, we will solve the optimization problem with an additional con-
straint, the so-called “precedence constraint”. Although the contours Ci do not
intersect, they can be nested into each other, i.e., C̃a ⊂ C̃b, where C̃a denotes a
2-dimensional figure bounded by the contour Ca (in the more familiar notation
Ca = ∂C̃a). In the general tool path routing problem, this can be caused by two
different circumstances (holes in parts and placement of smaller parts in holes
larger to save material), but in this case these options are processed the same
way.

If one contour is located inside another, then the nested contour must be cut
out (visited) earlier than the outer one: C̃a ⊂ C̃b ⇒ ia < ib in the permutation
I = (i1, i2, ..., iN ). Thus, not all permutation of the contours are feasible.

3 CCP-Relax Algorithm to Solve Continuous Cutting
Problem

The proposed solution algorithm consists of several stages, easily associated with
the nature of the problem being solved:
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1. Removal of external contours. To automatically comply with the prece-
dence constraint, we start by removing all contours containing nested ones.
This generally leads to a reduction (significant in some cases) of the size of
the problem (from N to some N ′), and thus reduces the calculation time in
the second and especially the third stage.

2. Continuous optimization. Assuming the order of contours processing
I = (i1, i2, ..., iN ) fixed we look for the coordinates of the pierce points
Mi ∈ Ci, minimizing the total air move length (1).
For every pierce point Mi we find it’s optimal position, while others remain
motionless. This relaxation is repeated a few times until converged. In prac-
tice, it happens very fast in O(N) time and is therefore used as a subroutine
in the next step.

3. Discrete optimization. We use Variable Neighborhood Search (VNS, see
[12]) to find contours processing order I = (i1, i2, ..., iN ).
This step in fact solves famous Travelling Salesman Problem with special
distance function, calculated at the previous step:

L(I ′) = min
M1,M2...MN

L(M1,M2 . . . MN |I ′)

Note, that other heuristics for discrete optimization may be used at this step
as well. For instance, one can use modern solvers to first solve GTSP prob-
lem, associated with CCP, and then apply continuous relaxation (previous
step) to convert solution of GTSP to that of CCP. This idea deserves further
investigation.

4. Recovery of removed contours. Having got the tool path that visits
“inner” contours (remained after first step), we find piercing points for other
contours by simple intersecting them with the tool path. Of multiple points
we select one (for each contour) so as to meet precedence constraint.
This is straightforward step of linear time complexity.

For detailed explanation of the CCP-Relax algorithm steps refer to [20].

3.1 Optimality of Continuous Optimization Problem Solution

From a practical point of view, the described algorithm turns out to be quite
workable – it generates high-quality tool path routes in an acceptable time, but
this is an empirical result. The theoretical justification of the properties of the
resulting routes is interesting. The greatest difficulty is, of course, the third step
of the algorithm – discrete optimization, both from a theoretical and a practical
point of view. This work focuses the second step of the algorithm – continuous
optimization.

Remark 1. Figure 2 shows an example where a trajectory that is not improved
by shifts of vertices individually may not deliver a global minimum.

We were able to formulate some statements regarding the quality of continu-
ous optimization solutions at Step 2 of CCP-Relax algorithm. We present them
here without proof, which will be published in a separate paper.
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M3M0

C2C1

Global minimum

Local minimum

Fig. 2. Two tool paths delivering local minimum

We consider the case of fixed order of contours processing I = (i1, i2, ..., iN ).
and apply Step 2 of CCP-Relax algorithm to get broken line L∗, visiting all the
contours Ci in the said order.

Proposition 1. If we move several adjacent vertices of the broken line L∗ so
that they remain on the same segments of the contours, then the length of the
resulting broken line will not decrease.

This statement means that the algorithm always delivers a local minimum,
however not yet global, as for example in Fig. 2.

To guarantee the latter, the following sufficient condition may be required:

Condition 1. Let one of the following requirements be satisfied for every pierc-
ing point Mi:

1. Segment Mi−1Mi+1 intersects the contour Ci, i.e. Mi ∈ Mi−1Mi+1

2. The tangent at Mi to the ellipse with foci Mi−1 and Mi+1 and passing through
Mi separates the ellipse and the contour Ci.

Proposition 2. Let Condition 1 is satisfied for (every vertex of) L∗.
If we move several adjacent vertices of the broken line L∗ so that they remain

on the contours, then the length of the resulting broken line does not decrease,
that is, the broken line L∗ delivers a global minimum.

Remark 2. Suppose that besides the trajectory L∗, there is another trajectory
delivering a global minimum. Then it follows from the last statement that they
coincide as lines, that is, the difference can only be at the points of intersection
with the contours.

Condition 1 is easily verified programmatically, but it can be simplified so
that in most practical cases to be checked simply visually.
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Condition 2. When segment Mi−1Mi+1 doesn’t intersects the contour Ci but

1. If the vertex Mi is the internal point of the linear segment of the contour and
the entire contour Ci is on one side of the that segment line (which is the
tangent from Condition 1; otherwise there must be a better M ′

i ∈ Ci).
2. If the vertex Mi is terminal (belongs to two linear segments of the contour; is

also vertex of Ci), and the entire contour is inside the corner with the rays
from the point Mi along these segments.

3. If the region C̃i bounded by the contour Ci is convex.

4 New Approach to Intermittent Cutting Problem

Intermittent Cutting Problem is the most complex and general of all varieties
of cutting problems. It can be approached to both from theoretical positions as
well as by using some practical techniques.

In addition to standard cutting technique (which in fact leads to Continuous
Cutting Problem), some others are often used, for instance, “multi-segment”
and “multi-contour” cutting. The former cuts single contour of a part in several
passes, using several piercing points. The latter cuts a few contours at once, as
seen at Fig. 3.

Fig. 3. Example of complex cutting segment for six parts/contours

In order to apply those technique we introduce a notion (see [21]):
Cutting Segment S =

−−−→
MM∗ is a tool trajectory from piercing point M up to

point of switching tool off M∗.
Cutting segment is used to contain single contour, but this is not the case

any more. It also can be a part of contour (for multi-segment cutting) as well as
several contours at once (i.e. multi-contour cutting).

In fact, multi-contour cutting example at Fig. 3 can also represent a single
cutting segment in some bigger cutting problem instance.
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Since the cutting direction is defined for the cutting segment, we need a more
general concept:

Basic Segment BS is a part of cutting segment S =
−−−→
MM∗ without lead-in

and lead-out trajectory (the very beginning and ending parts of segment, where
tool approaches contour of a part and leaves it). Basic segment has no direction
and contains only geometry of contours to cut.

Using the concept of basic segment, we can now formulate a generalization
of CCP:

Segment Continuous Cutting Problem (SCCP ) is a cutting problem with
fixed set (as well as number of) basic cutting segments: SCCP =

{
BSi

}
.

CCP-Relax algorithm described above can be applied to solve SCCP problem
in the same way as for CCP problem for which it was originally designed.

And now, note that for predefined nesting (i.e. fixed positioning of parts’
contours on the plain), the whole ensemble of basic segments can be generated
by combining and dividing contours into different segments. See, for instance,
Fig. 4, where multi-contour segments are filled with black color. This leads us to
even more general:

(a) Standard cutting, 45 segments (b) Multi-contour cutting, 39 segments

Fig. 4. Ensemble of Segment Cutting Problems

Generalized Segment Continuous Cutting Problem (GSCCP ) is that ensem-
ble of several SCCP problems for the same nesting: GSCCP = {SCCPi}.

By introducing the class of GSCCP , we have significantly expanded the
existing classification of tool path problem for CNC sheet cutting machines.
Actually SCCP and GSCCP are ICP subclasses containing all tasks with finite
sets of basic cutting segments, i.e. CCP ⊂ SCCP ⊂ GSCCP ⊂ ICP .
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General Scheme for GSCCP Solving

Assuming an ensemble {SCCPi} of base segment sets SCCPi =
{
BSj

}
, i ∈

1, T , j ∈ 1,Ki to be known, the following scheme for GSCCP solving is presented:

– Each task SCCPi is solved independently with one of existing algorithms, for
instance:
1. CCP-Relax, heuristic described above in Sect. 3.
2. DP-GTSP, exact algorithm based on Dymaic programming for the case

of relatively small problem dimensions, see [6]
3. Greedy-GTSP, iterative greedy heuristic algorithm, see [19]

For discrete algorithm to use, cutting segments can be pre-sampled as shown
at Fig. 5.

– The best solution is selected according to objective function (1).

Fig. 5. Corresponding GTSP problem for (S)CCP problem of Fig. 4, 425 points

For example, Fig. 6 shows two solutions of SCCP problems from Fig. 4 given
by CCP-Relax algorithm. It is easy to see that the two routes are indeed different.
Furthermore, the difference can be even more significant in a practical sense due
to different numbers of piercing points, since that operation is rather expensive
both in terms of time and cost.

5 Numerical Experiments

The quality assessment of the solutions of the described algorithm was carried
out on several cutting plans containing real parts. As a comparison base, we
used DP algorithm (see [6]) for solving the GTSP problem, which gives an exact
solution for small number of contours and special version of GNLS heuristic [25].
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(a) Standard cutting (b) Multi-contour cutting

Fig. 6. Solution of GSCCP Problem at Fig. 4

Figure 7 shows the exact solution, possible positions of the pierce points are
visible. Figure 8 shows the solution to the CCP problem for the same cutting
plan.

Fig. 7. Exact solution of GTSP, Job #464

It can be seen that both algorithms generated almost identical routes. The
main difference is caused by the discretization process to obtain the GTSP task.
Because of this, the segments of the route that are straight in the CCP solution
turn out to be slightly broken in the GTSP solution, hence total air move length
is slightly larger. Numerically, this is shown in Table 1 for several cutting plans.
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Fig. 8. Solution of CCP, Job #464

Table 1. Solution quality comparison

Job #229 #464 #3211 #20205

# of parts 11 14 17 115

# of contours 12 21 22 198

# of GTSP points 491 429 493 3917

LGTSP , m 7.729 4.743 4.557 26.098

LCCP , m 7.727 4.706 4.536 25.987

Figure 9 shows the solution to the CCP problem for large dimension (198
contours). Unlike the previous example, for large-dimensional problems it is
much more difficult to evaluate the accuracy of the obtained solution. Never-
theless, a comparison with the results of solving the corresponding task GTSP
can also serve as a way of estimation. GTSP is known to be NP-hard even on
the Euclidean plane [17]. Although it is clear that the bigger the predefined
partial order, the simpler the appropriate GTSP task, dependence of theoretical
complexity bounds on the properties of the precedence constraints has not yet
been insufficiently investigated. In this regard, we note two papers [7,23]. There
are two special types of the precedence constraints, for which polynomial time
complexity of the GTSP is proven theoretically. The first type of constraints was
introduced by E. Balas [2] for the classic TSP. Efficient exact algorithms for the
GTSP with precedence constraints of this type are proposed in recent papers
[4,5]. Tours that fulfill constraints of the second type are referred to as quasi-
and pseudo-pyramidal. Efficient parameterized algorithms for the GTSP with
such precedence constraints are proposed in [15,16]. In view of the above, we
can summarize that in the field of algorithmic analysis, the GTSP still remains
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weakly explored. In particular, the absence of efficient Mixed Integer Linear
Program (MILP) models for the GTSP makes it impossible to use modern opti-
mizers like Gurobi [11] for construction lower and upper bounds and examining
the heuristic solutions. This issue is also pending.

Fig. 9. Example of large problem solution, Job #20205

6 Conclusion

1. The problem of minimizing tool air move of CNC sheet cutting machines for
the routing problem from the CCP class is shown to be reduced to a problem
without precedence constraint, which reduces the number of contours and the
operating time of the algorithm

2. A heuristic algorithm for solving the CCP problem is proposed that does not
use contour discretization.

3. It was proved that the CCP-Relax algorithm for finding piercing points for a
fixed order of traversing the contours delivers a local minimum.

4. Several easily verified sufficient conditions are formulated and proved for the
specified algorithm to deliver global minimum of air move length.

5. CCP-Relax algorithm can be applied to solving more general problems
SCCP (Segment Cutting) and GSCCP (Generalized Segment Cutting), thus
approaches to solving general ICP cutting problem can be developed on its
basis.

The direction of further research is the development of the algorithm for the
general case where the pierce points are located outside the contours according
to the technological requirements of sheet cutting.
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