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Preface

This book contains the second volume of the refereed proceedings of the 11th
International Conference on Optimization and Applications (OPTIMA 2020)1.

As usual, the conference was planned to be held in Montenegro on the shores of the
Adriatic Sea, but the pandemic of COVID-19 disrupted our plans. Nevertheless, we
could not cancel the conference, since it was dedicated to the 70th anniversary of one of
its founders, the outstanding scientist, academician of the Montenegrin Academy of
Sciences and Arts Prof. Milojica Jacimovic. Therefore, the Program Committee
(PC) decided to organize the conference fully online, during September 30 – October 2,
2020, at the Dorodnitsyn Computing Center of the Federal Research Center “Computer
Science and Control” of the Russian Academy of Sciences, Moscow, Russia.

Despite the new technical difficulties, the conference was successful. A number of
vivid results were presented, many submissions passed a competitive selection and
were recommended by the international PC for publication in two volumes in
Springer LNCS and CCIS series, respectively. In response to the call for papers, the PC
received 108 submissions from the participants. Among them, 23 full papers were
selected by the PC for publication in the first proceedings volume published in
Springer LNCS, vol. 12422. After the accurate revision by the authors, 18 out of the 37
remaining papers were selected by the PC for publication in this second volume. Thus,
the acceptance rate for this volume was about 49%. All these papers significantly
improved in response to peer reviews and discussions at the conference.

This year, the majority of the participants were still from Russia, although we are
pursuing a consistent policy of increasing the number of representatives from other
countries. At present, the expert community and the composition of the participants are
represented by representatives of 25 countries including Argentina, Australia, Austria,
Belarus, Belgium, Croatia, Finland, France, Germany, Greece, India, Israel, Italy,
Kazakhstan, Montenegro, The Netherlands, Poland, Portugal, Russia, Serbia, Sweden,
Taiwan, Ukraine, the UK, and the USA.

The conference was opened with the special session dedicated to the anniversary of
Prof. Milojica Jacimovic, one of the founders of the conference.

The scientific program of the conference featured five plenary lectures given by
outstanding scientists

– Prof. Boris T. Polyak and Ilyas Fatkhullin (Institute for Control Science, Russia),
“Static feedback in linear control systems as optimization problem”

– Prof. Alexey Tret’yakov (Siedice University of Natural Sciences and Humanities,
Poland), “P–regularity Theory: Applications to Optimization”

– Prof. Andrei Dmitruk (CEMI, RAS and MSU, Russia), “Lagrange Multipliers Rule
for a General Extremal Problem with an Infinite Number of Constraints”

1 http://www.agora.guru.ru/optima-2020.

http://www.agora.guru.ru/optima-2020


– Prof. Nikolai Osmolovskii (Systems Research Institute, Poland), “Quadratic
Optimality Conditions for Broken Extremals and Discontinuous Controls”

– Prof. Panos M. Pardalos, (University of Florida, USA), “Sustainable interdependent
networks”

This year, presentations on contributed papers were partitioned into six sessions. For
the session “Mathematical programming,” all the papers were published in the first
volume of these proceedings. Five remaining sessions are (partially) presented in this
second volume. Among them are sessions on combinatorial and discrete optimization,
optimal control, optimization in economics, finance, and social sciences, and global
optimization; applications. The track “Combinatorial and discrete optimization” was
dedicated to the memory of Prof. Alexander Kel’manov (1952–2019), who made a
significant contribution to the organization of previous OPTIMA conferences.

We would like to thank all the authors for submitting to OPTIMA 2020, the
members of the PC, and external reviewers for their efforts in providing exhaustive
reviews. We would also like to express special gratitude to all the invited plenary
speakers.

November 2020 Nicholas Olenev
Yuri Evtushenko
Michael Khachay
Vlasta Malkova
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Lagrange Multipliers Rule for a General
Extremum Problem with an Infinite Number

of Constraints

Andrei Dmitruk

CEMI RAS and MSU, Russia
https://www.researchgate.net/profile/Andrei_Dmitruk

Abstract. We consider a general optimization problem with equality and
inequality constraints in a Banach space. The first is given by a level set of a
nonlinear operator into another Banach space, and the latter by inclusions of
images of smooth operators into closed convex sets (possibly cones) with
nonempty interiors lying in some other Banach spaces. This statement covers a
wide range of optimization problems both in pure mathematics and in appli-
cations. Some of its particular cases were considered earlier by many authors.
We prove a first-order necessary optimality condition in the form of Lagrange
multipliers rule, where the multipliers at the inequality constraints are elements
of the normal cones at the corresponding points of these sets. This form is
transparent for learning and convenient for application. The proof is
self-contained, it uses basic facts of functional analysis and follows the line of
Dubovitskii—Milyutin approach. As an application of the result, we consider an
optimal control problem with state constraints, in which we obtain necessary
conditions for a weak minimum.
This is joint work with Nikolai Osmolovskii.
Published in “Recent Advances of the Russian Operations Research Society”

(F.Aleskerov and A.Vasin eds.), Cambridge Scholars Publishing, 2020,
p. 212–232. ISBN-13: 978-1-5275-4792-6.



Quadratic Optimality Conditions for Broken
Extremals and Discontinuous Controls

Nikolai Osmolovskii

Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
osmolovski@uph.edu.pl

https://www.researchgate.net/profile/Nikolai_Osmolovskii

Abstract. The talk is devoted to second-order conditions for broken extremals in
variational calculus problems and for discontinuous controls in optimal control
problems. A characteristic feature of the conditions under discussion is the
absence of a gap between necessary and sufficient conditions. The conditions are
formulated as sign-definiteness of a quadratic form on the so-called critical cone.
In the first part of the talk, quadratic conditions for broken extremals are for-
mulated in the simplest problem of the calculus of variations. In the second, we
consider the optimal control problem with regular mixed constraints on the state
variable and control, and the quadratic conditions for a strong local minimum
are formulated for it in the case of piecewise continuous control.



Sustainable Interdependent Networks

Panos M. Pardalos

University of Florida, USA
pardalos@ufl.edu

http://www.ise.ufl.edu/pardalos/

Abstract. Sustainable interdependent networks have a wide spectrum of
applications in computer science, electrical engineering, and smart infrastruc-
tures. We are going to discuss the next generation sustainability framework as
well as smart cities with special emphasis on energy, communication, data
analytics, and financial networks. In addition, we will discuss solutions
regarding performance and security challenges of developing interdependent
networks in terms of networked control systems, scalable computation plat-
forms, and dynamic social networks.
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Static Feedback in Linear Control Systems
as Optimization Problem

Boris T. Polyak

Institute for Control Science, Moscow, Russia
boris@ipu.ru

https://www.researchgate.net/profile/Boris_Polyak2

Abstract. The linear quadratic regulator is the fundamental problem of optimal
control. Its state feedback version was set and solved in the early 1960s.
However, the static output feedback problem has no explicit-form solution. It is
suggested to look at both of them from another point of view as a matrix
optimization problem, where the variable is a feedback matrix gain. The prop-
erties of such a function are investigated, it turns out to be non-convex, with the
possible non-connected domain. Moreover, it is not L-smooth on the entire
domain but has this property on sublevel sets. Nevertheless, a specially adopted
gradient method for its minimization converges to the optimal solution in the
state feedback case and to a stationary point in the output feedback case. The
results can be extended for the general framework of the reduced gradient
method for optimization with equality-type constraints. Directions for future
research are addressed.
This is joint work with Ilyas Fatkhullin.



P-regularity Theory: Applications
to Optimization

Alexey Tret’yakov1,2,3

1 System Research Institute, Polish Academy of Sciences, Poland
2 Siedlce University, Faculty of Sciences, 08-110 Siedlce, Poland,

3 Dorodnicyn Computing Centre, FRC CSC RAS, Russia
tret@ap.siedlce.pl

https://www.researchgate.net/profile/Alexey_Tretyakov

Abstract. We present recent advances in the analysis of nonlinear structures and
their applications to nonlinear optimization problems with constraints given by
nonregular mappings or other singularities obtained within the framework of the
p-regularity theory developed over the last 20 years. In particular, we address
the problem of description of the tangent cone to the solution set of the operator
equation, optimality conditions, and solution methods for optimization prob-
lems.
This is joint work with Yuri Evtushenko and Vlasta Malkova.
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Global Optimization Method
with Numerically Calculated Function

Derivatives

Victor Gergel and Alexander Sysoyev(B)

Lobachevsky State University of Nizhny Novgorod,
Nizhny Novgorod, Russian Federation

gergel@unn.ru, alexander.sysoyev@itmm.unn.ru

Abstract. The paper proposes a method for solving computationally
time-consuming multidimensional global optimization problems. The
developed method combines the use of a nested dimensional reduction
scheme and numerical estimates of the objective function derivatives.
Derivatives significantly reduce the cost of solving global optimization
problems, however, the use of a nested scheme can lead to the fact that
the derivatives of the reduced function become discontinuous. Typical
global optimization methods are highly dependent on the continuity of
the objective function. Thus, to use derivatives in combination with a
nested scheme, an optimization method is required that can work with
discontinuous functions. The paper discusses the corresponding method,
as well as the results of numerical experiments in which such an opti-
mization scheme is compared with other known methods.

Keywords: Multidimensional optimization · Global search
algorithms · Lipschitz condition · Numerical estimations of derivative
values · Dimensionality reduction · Discontinuous functions ·
Numerical experiments

1 Introduction

The global (or multiextremal) unconstrained optimization problem [5,6,15,17,
19–21,28,30–32] can be stated as follows

ϕ(y∗) = min{ϕ(y) : y ∈ D}, (1)

where search domain D represents an N -dimensional hyperinterval:

D = {y ∈ IRN : ai ≤ yi ≤ bi, i = 1, N}.

The objective function ϕ(y) is assumed to be a multiextremal one. Also one
of the commonly used assumptions is that the minimized function satisfies the
Lipschitz condition

|ϕ(y2) − ϕ(y1)| ≤ L‖y2 − y1‖, y1, y2 ∈ D. (2)

Supported by Russian Foundation for Basic Research (grant 19-07-00242).

c© Springer Nature Switzerland AG 2020
N. Olenev et al. (Eds.): OPTIMA 2020, CCIS 1340, pp. 3–14, 2020.
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where L > 0 is the Lipschitz constant, and ‖ · ‖ denotes the Euclidean norm in
IRN .

The Lipschitz condition corresponds to the assumption of a limited variation
of the function value at limited variations of its parameters. This condition allows
making the estimates of potential behaviour of the function ϕ(y) based on a finite
set of its values computed at some points in the search domain D.

To solve problem (1) numerically, optimization methods usually generate a
sequence of points yk, which converges to the global optimum y∗. The amount of
computation can grow exponentially with an increase in the number of variable
parameters N .

One approach to reduce computational costs is to use differentiability of the
objective function. In this case the fulfilment of the Lipschitz condition (2) may
be expanded onto the partial derivatives ϕ′

i(y), 1 ≤ i ≤ N of the objective
function as well i.e.

|ϕ′
i(y2) − ϕ′

i(y1)| ≤ Li‖y2 − y1‖, y1, y2 ∈ D, 1 ≤ i ≤ N, (3)

where Li > 0, 1 ≤ i ≤ N are the corresponding Lipschitz constants for the
partial derivatives ϕ′

i(y), 1 ≤ i ≤ N [1,2,8–10,16,23,24,26].
However, in some applied optimization problems the computing of the deriva-

tives may be restricted or even impossible. In this case the usage of the global
optimization methods, in which the necessary values of derivatives are computed
numerically may be useful [10,12,13,18].

A widely used approach to solve the problem of multidimensional opti-
mization is to reduce it to one-dimensional. This reduction may be based
on using Peano (space-filling) curves [22,30], the nested multistep reduction
scheme [4,25], the diagonal generalization technique [9,21,24], etc. Thus, one-
dimensional optimization algorithms can be effectively applied in the multi-
dimensional case [1,2,4,7,8,10]. It is known that using the nested multistep
reduction scheme can lead for executing some redundant global search itera-
tions [4,25,30]. This deficiency can be diminished by using the values of deriva-
tives of the objective function – see the results of numerical experiments given
in Sect. 5.

In this paper, the global optimization algorithm utilizing the numerical
derivatives of the objective function ϕ(y) is considered. In Sect. 2, the base
one-dimensional algorithm utilizing the numerical derivatives is given. Section 3
introduces a nested dimension reduction scheme that allows one to generalize
the proposed one-dimensional algorithm to solving multidimensional global opti-
mization problems. Section 4 describes an approach of usage derivatives in com-
bination with a nested scheme, that can work with discontinuous functions. In
Sect. 5, the results of the numerical experiments are considered, which confirm
the developed approach to be promising.
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2 One-Dimensional Global Optimization Algorithm
Utilizing Numerical Derivatives

The proposed optimization algorithm is based on the adaptive global method
using derivatives (AGMD) [8,9], designed to solve one-dimensional global opti-
mization problems

ϕ(x∗) = min{ϕ(x) : x ∈ [a, b]}. (4)

The adaptive global method using numerical derivatives (AGMND) is a mod-
ification of AGMD, in which the values of the first derivative of the objective
function are replaced by their numerical estimates [9,12].

Consider the computational scheme of the AGMND. The first two iterations
are performed at the boundary points a and b. Then let k, k > 1 iterations of the
global search were completed, and the values of the objective function ϕ(x) have
been computed at each iteration (hereinafter, these computations will be called
trials). The test point of the next (k + 1) optimization iteration is determined
by the following rules.

Rule 1. Renumber the points of previous trials by subscripts in increasing order

a = x0 < x1 < . . . < xi < . . . < xk = b. (5)

Rule 2. Compute the numerical estimations of the first derivatives of ϕ(x) at
the points of the executed search iterations xi, 0 ≤ i ≤ k according to the
expressions:

żi =

{
zi+1−zi

xi+1−xi
, i = 0,

zi−zi−1
xi−xi−1

, 1 ≤ i ≤ k,
(6)

hereinafter zi, 0 ≤ i ≤ k denotes ϕ(xi).

Rule 3. Compute the estimation of the Lipschitz constant from (3) for the first
derivative of the optimized function

m =
{

rM, M > 0,
1, M = 0,

(7)

where
M = max(Mi), 1 ≤ i ≤ k, (8)

Mi = max

⎧⎨
⎩

|żi − żi−1|/|xi − xi−1|,
−2[zi − zi−1 − żi−1(xi − xi−1)]/(xi − xi−1)2|,
2[zi − zi−1 − żi(xi − xi−1)]/(xi − xi−1)2|,

(9)

and r > 1 is the reliability parameter of the algorithm.

Rule 4. Compute the characteristic R(i) for each interval (xi−1, xi), 1 ≤ i ≤ k
according to the following expressions to estimate the minimum possible values
of ϕ(x) in the interval ((xi−1, xi)

R(i) =
{

ϕ̂i(x̂i), x̂i ∈ [x̄i, ¯̄xi],
min(ϕ̂i(x̄i), ϕ̂i(¯̄xi)), x̂i /∈ [x̄i, ¯̄xi],

(10)
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where

x̂i =
−żi−1 + m(x̄i − xi−1) + mxi

m
, (11)

and the auxiliary functions (minorants) ϕ̂i(x), 1 ≤ i ≤ k take the form

ϕ̂i(x) =

⎧⎨
⎩

ϕ̂i1(x) = zi−1 + żi−1(xi − xi−1) − 0.5m(x − xi−1)2, x ∈ (xi−1, x̄i)
ϕ̂i2(x) = Ai(x − x̄i) + 0.5m(x − x̄i)2 + Bi, x ∈ [x̄i, ¯̄xi],
ϕ̂i3(x) = zi − żi(x − xi) − 0.5m(x − xi)2, x ∈ (¯̄xi, xi],

(12)
where

Ai = żi−1 − m(x̄i − xi−1),
Bi = ϕ̂i1(x̄i),

x̄i = (zi−1−żi−1xi−1)−(zi−żixi)+m(x2
i −x2

i−1)/2−md2
i

m(xi−xi−1)+(żi−żi−1)

¯̄xi = (zi−1−żi−1xi−1)−(zi−żixi)+m(x2
i −x2

i−1)/2+md2
i

m(xi−xi−1)+(żi−żi−1)

di = (xi − xi−1)/2 − (żi − żi−1)/2m.

(13)

Each characteristic R(i), 1 ≤ i ≤ k calculated in this way is an estimation
of the minimum possible value of the minorant ϕ̂i(x) from (12) in the intervals
[xi−1, xi] and the estimation of the minimum possible values of ϕ(x) in these
intervals.

Rule 5. Find the interval (xt−1, xt) with the minimal characteristic R(t)

R(t) = min{R(i) : 1 ≤ i ≤ k}. (14)

In the case when there are several intervals satisfying (14), for definiteness,
the interval with the minimum number t is taken.

Rule 6. Compute the next point of the next trial xk+1 accordingly

xk+1 =

⎧⎨
⎩

x̂t, x̂t ∈ [x̄t, ¯̄xt],
x̄t, ϕ̂(x̄t) ≤ ϕ̂(¯̄xt),
¯̄xt, ϕ̂(x̄t) > ϕ̂(¯̄xt).

(15)

The stopping condition is defined by the following relation

|xt − xt−1| ≤ ε, (16)

where ε is the accuracy, ε > 0. The minimum computed value of the objective
function is accepted as the current estimate of the global minimum value i.e:

ϕ∗ = min{zi : 0 ≤ i ≤ k}. (17)

Note 1. The computing of the numerical estimations żi, 0 ≤ i ≤ k of the
first derivative of the function ϕ(x) can be performed also using the three-point
approximating expressions:

żi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
H2

1

(
−(2 + δ2)z0 + (1+δ2)

2

δ2
z1 − 1

δ2
z2

)
, i = 0,

1
Hi+1

i

(
−δi+1zi−1 + δ2

i+1−1

δi+1
zi + 1

δi+1
zi+1

)
, 1 < i < k,

1
Hk

k−1

(
δkzk−2 − (1+δk)

2

δk
zk−1 + (2δk+1)

δk
zk

)
, i = k,

(18)
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where Hi+1
i = hi +hi+1, δi+1 = hi+1

hi
and hi = xi −xi−1, see [13]. These formula

used three points of trials, and can be used in the Rule 2 if k > 2.

Note 2. For the applicability of the computational scheme described above, the
fulfilment of the following inequalities

xi−1 < x̄i < ¯̄xi < xi (19)

for all intervals (xi−1, xi), 1 ≤ i ≤ k is necessary. If the estimate of the Lipschitz
constant m computed in (7) is insufficient and the condition (19) is violated for
some 1 ≤ i ≤ k the value m should be refined. Thus, the maximum root of the
equations{

−(zi − zi−1) + 0.5(żi + żi−1) + 0.25m(xi − xi−1)2 − (żi−żi−1)
2

4m = 0,

(zi − zi−1) − 0.5(żi + żi−1) + 0.25m(xi − xi−1)2 − (żi−żi−1)
2

4m = 0,
(20)

was selected as m in this case for AGMD [8].

3 Nested Dimensionality Reduction Scheme

One approach to solve multidimensional optimization problems is dimension
reduction, which allows to use effective one-dimensional optimization methods.
In this paper, dimension reduction is performed using the well-known nested
scheme [4,25,28,30,31]. According to this scheme, the solving of a multidimen-
sional optimization problem (1) can be obtained by solving a series of nested
one-dimensional problems:

min{ϕ(y) : y ∈ D} = min
[a1,b1]

. . . min
[aN ,bN ]

ϕ(y1, . . . , yN ). (21)

In other words the solving of problem (1) is reduced to solving a one-
dimensional problem:

ϕ(y∗) = min
y∈D

= min
y1∈[a1,b1]

ϕ̃1(y1), (22)

where

ϕ̃i(yi) = ϕi(y1, . . . , yi) = min
yi+1∈[ai+1,bi+1]

ϕi(y1, . . . , yi, yi+1), 1 ≤ i ≤ N,

ϕ̃N (y1, . . . , yN ) = ϕ(y1, . . . , yN ).
(23)

The one-dimensional function in (22) is constructed according to a general
recursive scheme – in order to compute the values ϕ̃1(y1) for some given value
of the variable y1 = ŷ1 it is necessary to minimize the function

ϕ̃2(y2) = ϕ2(ŷ1, y2). (24)
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With respect to y2 the function ϕ̃2(y2) is a one-dimensional one as well since
the value of the variable y1 is given and fixed one. Next, in turn, in order to
compute the value of ϕ̃2(y2) at the point y2 = ŷ2, it is necessary to minimize
the function

ϕ̃3(y3) = ϕ3(ŷ1, ŷ2, y3), (25)

and so forth.
Additional information on the nested dimensionality reduction scheme and

its applications for solving the multidimensional global optimization problems
can be found, for example, in [4,25,30,31].

4 Global Optimization Algorithm for Discontinuous
Functions

To solve problem (1), the method with derivatives can only be used if the objec-
tive function is smooth. But one-dimensional functions ϕ̃i(yi), 1 ≤ i < N from
(23) (except the function of the last decomposition level ϕ̃N (yN )) in the nested
reduction scheme can be non-smooth at some points i.e. the derivatives of these
functions can be discontinuous at these points.

Strictly speaking, the AGMND method described in Sect. 2 can only be used
to minimize one-dimensional function ϕ̃N (yN ) at the last level of decomposi-
tion. The paper [11] presents the results of experiments comparing a number of
optimization methods, which showed that the AGMND method provides good
efficiency even in the case of nonsmooth reduced functions. But with increas-
ing the problem dimensionality (N) the number of discontinuity points of the
derivatives can grow exponentially and increase the number of executed trials.

To handle the discontinuity problem one can use the combined method which
uses AGMND to minimize the one-dimensional function ϕ̃N (yN )) and any one-
dimensional method without derivatives for the remaining functions ϕ̃i(yi), 1 ≤
i < N .

Another way is to use an optimization method that can work with discon-
tinuous functions. As such a method, the paper considers the modified Strongin
algorithm [29]. Consider its computational scheme.

The first iteration is performed at any point in the interval (a, b). Then let
k, k > 1 iterations of the global search were completed. The test point of the
next (k + 1) optimization iteration is determined by the following rules.

Rule 1. Renumber the points of previous trials by subscripts in increasing order

a = x0 < x1 < . . . < xi < . . . < xk = b. (26)

Rule 2. Compute

μi =
|zi − zi−1|
|xi − xi−1| , 1 ≤ i ≤ k. (27)

Rule 3. Reorder μi values in descending order
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μ(1) > μ(2) > . . . > μ(k) (28)

and determine a minimal number p such that

μ(p)
μ(p + 1)

≥ Q, 1 ≤ p < qk, (29)

where q and Q are given numbers (0 < q < 1 < Q).
Construct a subset of numbers

J = {i : 1 ≤ i ≤ k, μi = μ(j), 1 ≤ j ≤ p} (30)

of those intervals to which sufficiently large μi correspond.

Rule 4. Set for all intervals

δi =
{

sign(zi − zi−1), i ∈ J,
0, i /∈ J,

1 ≤ i ≤ k. (31)

Rule 5. Compute the estimation of the Lipschitz constant

μ = max(μi), 1 ≤ i ≤ k (32)

and the characteristic R(i) for each interval (xi−1, xi), 1 ≤ i ≤ k

R(i) = (1 + |δi|)Δi + (1 − |δi|) (zi − zi−1)2

(rμ)2Δi
− 2

(1 − δi)zi + (1 + δi)zi−1

rμ
, (33)

where Δi = xi − xi−1.

Rule 6. Find the interval (xt−1, xt) with the maximal characteristic R(t)

R(t) = max{R(i) : 1 ≤ i ≤ k}. (34)

Rule 7. Compute the next point of the next trial xk+1 accordingly

xk+1 =
xt + xt−1

2
− (1 − |δt|)zt − zt−1

2rμ
. (35)

5 Results of Numerical Experiments

The first experiment was performed on a series of 20 one-dimensional test global
optimization problems accumulated in [14]. In this experiment we compared
the following methods: the Galperin Algorithm (GA) [7], the Piyavskii-Shubert
Algorithm (PA) [22,27], the Strongin Algorithm (SA) [28,30], the Brent Algo-
rithm (BA) [3], AGMD, AGMND and Discontinuous modification of the Strongin
Algorithm (DSA) described in Sect. 4.
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Table 1. The results of comparison of one-dimensional methods of global optimization

GA PA SA BA AGMD AGMND DSA

1 377 149 127 43 27 16 80

2 308 155 135 24 27 12 45

3 581 195 224 153 98 59 82

4 923 413 379 16 27 11 69

5 326 151 126 45 23 17 26

6 263 129 112 123 39 25 521

7 383 153 115 23 25 12 39

8 530 185 188 148 88 45 88

9 314 119 125 44 26 13 97

10 416 203 157 27 25 10 66

11 779 373 405 47 41 26 142

12 746 327 271 30 37 21 38

13 1829 993 472 69 89 19 93

14 290 145 108 34 30 15 31

15 1613 629 471 50 47 29 96

16 992 497 557 109 75 23 304

17 1412 549 470 124 65 12 134

18 620 303 243 8 21 10 84

19 302 131 117 21 21 13 47

20 1412 493 81 99 32 25 277

Average 780.80 314.60 244.15 61.85 43.15 20.65 117.95

The purpose of this experiment is to determine whether it is possible to use
the DSA method to solve problems in which the objective function is smooth.
Numerical results are presented in Table 1, which shows the number of iterations
performed by each algorithm to solve test optimization problems with a given
accuracy.

Analyzing the results, it should be taken into account that all the considered
methods at each iteration calculate the value of the objective function, except
for the AGMD method, in which the value of the first derivative is calculated.

Table 1 shows the significant superiority of the AGMND method over all oth-
ers, including the BA and AGMD methods. We also see that the DSA method is
in fourth place in terms of the average number of iterations, and in problems 20
and 6 it takes fifth and seventh positions, respectively. So the numerical results
show that it is inefficient to use a method that takes into account possible discon-
tinuities of the function to solve one-dimensional global optimization problems
with smooth objective functions.
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The second experiment was performed on a series of 100 well-known two-
dimensional multiextremal test functions [28,30,31] defined by the relations:

ϕ(y1, y2) = −
⎧⎨
⎩

( 7∑
i=1

7∑
j=1

[Aijaij(y1, y2) + Bijbij(y1, y2)]
)2

+
( 7∑

i=1

7∑
j=1

[Cijaij(y1, y2) + Dijbij(y1, y2)]
)2

⎫⎬
⎭

1
2

,

aij(y1, y2) = sin(πiy1) sin(πjy2),
bij(y1, y2) = cos(πiy1) cos(πjy2),

(36)

where 0 ≤ y1, y2 ≤ 1, were used. The values −1 ≤ Aij , Bij , Cij ,Dij ≤ 1 are
the independent random generated parameters distributed uniformly over the
interval [−1, 1].

Taking into account the presented results, in this experiment only algo-
rithms with the best performance were used (namely, SA, BA, AGMD, AGMND
together with the nested dimension reduction scheme). Also we evaluated the
efficiency of three combined methods: SA-D, SA-ND, DSA-ND. In these meth-
ods SA (or DSA) method was applied to optimize the reduced one-dimensional
functions ϕ̃1(y1) from (23) and AGMD or AGMND method was used to optimize
the functions ϕ̃2(y2). Additionally, the experiment involved a version of the SA
algorithm with dimension reduction using Peano space filling curves (SA-P).

In all SA-based methods, an adaptive scheme of computing the reliability
parameter r from (7) was applied: r = 3 + 10/k where k is the number of
executed trials. The accuracy of solving the optimization problems was ε = 0.001.

The average number of iterations executed by each method until the stopping
condition is satisfied when solving 100 test problems (36) is presented in Table 2.

Table 2. Average number of executed iterations when solving 100 test problems (36)

SA BA AGMD AGMND SA-D SA-ND DSA-ND SA-P

Average 1974.75 2626.31 824.18 494.74 924.86 754.34 1022.48 696.69

These results demonstrate that the AGMND method shows the best perfor-
mance (the smallest number of trials). The next most efficient method is SA-P.
The combined SA-ND and AGMD methods show similar characteristics with
a slight advantage of SA-ND. BA effectiveness is the smallest. Again, for the
correct analysis of the results obtained, it should be kept in mind that in the
AGMD method, each trial includes the calculation of derivatives, while in the
GSA, BA and AGMND methods only objective functions are calculated.

Also we can see that the effectiveness of the DSA-ND method is lower than
all others except for SA and BA methods.
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For a more detailed comparison of the effectiveness of the AGMD and SA-
ND methods, the operational characteristics were constructed according to the
experimental results. The operational characteristic is a graph of the number of
solved problems (the ordinate axis) vs the number of executed trials (the abscissa
axis) [28,30,31]. The operational characteristics of the compared methods are
presented in Fig. 1.

Fig. 1. Operational characteristics of the compared optimization methods. The vertical
axis is the percentage of problems solved with the required accuracy, the horizontal
axis is the number of executed trials

As you can see, DSA-ND solved 75% problems faster than AGMND method,
but later reached 100% solvability. The comparison results show that the
AGMND method demonstrates higher efficiency in solving multidimensional
problems than the DSA-ND, even taking into account the possible discontinuity
of the reduced functions ϕ̃1(y1) from (23).

6 Conclusion

In this paper, an efficient approach for solving computationally time-consuming
multidimensional global optimization problems is proposed.

The developed method combines the use of a nested dimensional reduction
scheme and numerical estimates of the objective function derivatives. As known
derivatives significantly reduce the cost of solving global optimization problems.
However, the use of a nested scheme can lead to the fact that the derivatives of
the reduced function become discontinuous. Thus, to use derivatives in combi-
nation with a nested scheme, we can choose one of three possible approaches:
1) use the method with derivatives despite the possible non-smoothness of the
reduced functions, 2) use methods that combine the use of derivatives to min-
imize the one-dimensional function ϕ̃N (yN )) and any one-dimensional method
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without derivatives for other functions ϕ̃i(yi), 1 ≤ i < N from (23) , 3) use a
method that can work with discontinuous functions.

The paper discusses the methods corresponding to all the indicated
approaches, presents the results of numerical experiments comparing the effec-
tiveness of the selected methods on one-dimensional and two-dimensional opti-
mization problems.
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Abstract. Identification of quasilinear recurrence equations (QRE) may
be reduced to the problem of regression analysis with mutually depen-
dent observable variables. It is possible to use the generalized least devi-
ations method (GLDM) for such problems. GLDM-estimation consists
of solving the sequence of the WLDM-estimation problems. We propose
the algorithm to solve the WLDM-estimation problem. Computational
complexity of this algorithm does not exceed the quantity O(N2T +T 2),
where N is the number of coefficients in the considered equation, T is the
number of observed readings. The computational complexity of solving
practical GLDM estimation problems does not exceed O(N3T + NT 2).
Results of computational experiments to solve the problem of identify-
ing the recurrence equation of the stock market index in Iraq by original
data from the site “ISX-IQ.net” are presented. This results show the
possibility to apply a second order quasilinear recurrence equation with
quadratic nonlinearity for these purposes. Perhaps increasing the order of
the recurrence equation and the accuracy of the calculations give better
results.

Keywords: Least deviation method · Autoregressive model · Linear
programming · Gradient projection method · Computational
complexity

1 Introduction

We consider the problem to determine the coefficients

a1, a2, a3 . . . , am, b1, b2, b3 . . . , bn ∈ R

of a quasilinear autoregressive model

yt =
m∑

j=1

ajgj{yt−k}mk=1 +
n∑

j=1

bjxtj + εt, t = 1, 2, . . . , T (1)
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by up-to-date information about of values of state variables (i.e. endogenous vari-
ables) {yt ∈ R}Tt=−m+1 and values of control variables (i.e., exogenous variables)
{xt1, xt2, . . . , xtn ∈ R}Tt=1 at time instants t, where gj : Rm → R, j = 1, 2, . . . m
are given functions, and {εt ∈ R}Tt=1 are random errors.

Following the work [16], let us introduce the new notation

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

. . .
am

b1
b2
. . .
bn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Xt =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1{yt−k}mk=1

g2{yt−k}mk=1

. . .
gm{yt−k}mk=1

x1 t

x2 t

. . .
xn t

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; t = 1, 2, . . . , T ; N = n + m,

in order to make mathematical expressions less cumbersome.
In these terms, Eq. (1) takes the form

yt = ATXt + εt, t = 1, 2, . . . , T. (2)

As a rule, system (1), and system (2), are incompatible, and methods for opti-
mizing the loss function of a suitable form are used to solve it. The most known
method for determining the coefficients of the regression equation is the least
squares method (LSM)

A∗ = arg min
A∈RN

T∑

t=1

(
ATXt − yt

)2
. (3)

LSM is the parametric method and requires a number of strict restrictions: the
determinism of variables, the independence and normality of the distribution of
measurement errors [3,7,12]. Even minor violations of these prerequisites criti-
cally reduce the effectiveness of LSM estimations [6].

If we allow errors in the measured values of endogenous variables yt, t =
1, 2, . . . , T , then their presences in the values of the functions gj{yt−k}mk=1 are
obvious. Moreover, these errors have to be mutually correlated, and have prob-
ability distributions different from the normal distribution. This makes the clas-
sical solution schemes based on the LSM and its variations ineffective. The esti-
mates of the autoregressive equation factors is substantially complicated by the
ill-conditioning of the equation systems representing the necessary conditions for
the minimum of the sum of the squares of the deviations, while the estimates
become insolvent.

An alternative to LSM is the Least Deviations Method (LDM) [2,4,5,12,20]

A∗ = arg min
A∈RN

T∑

t=1

∣∣ATXt − yt
∣∣ . (4)
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Its possible generalizations are Weighted Least Deviation Method (WLDM) [13]

A∗ = arg min
A∈RN

T∑

t=1

(
pt

∣∣ATXt − yt
∣∣) for prefixed pt ∈ R

+, (5)

and the Generalised Least Deviations Method (GLDM)[19,23]

A∗ = arg min
A∈RN

T∑

t=1

ρ
(∣∣ATXt − yt

∣∣) for convex up differentiable function ρ(∗).

(6)
Problems (4) and (5) are piecewise linear programming problems and may

be reduced to a linear programming problem. Algorithms for the exact solu-
tion of LDM estimation problems (4) are described in [22]. This algorithm has
computational complexity O(N2T 2+N4T ln T +N2T ln2 T ). But this algorithm
application for solving WLDM problem (5) and selecting weight factors for it
are not clear.

Problem (6), i.e. problem of GLDM estimation, is a concave optimization
problem. GLDM estimates are robust to the presence of a correlation of values
in {Xj t : t = 1, 2, . . . , T ; j = 1, 2, . . . , N}, and (with appropriate settings) are
the best for probability distributions of errors with heavier (than normal distri-
bution) tails [19]. All the above shows the feasibility of solving the identification
problem (1) by method (6).

The established in [14–16] results allow us to reduce the problem of deter-
mining GLDM estimation to an iterative procedure with WLDM estimates.

The method to increase effectiveness of the QRE identification algorithm
is proposed in this paper. The proposed method is based on the solution of the
modified dual linear programming problem, and has a computational complexity
of not more than O(N3 · T + N · T 2) by taking into account the specifics of this
problem.

In Sect. 2, the way of reducing WLDM problem (5) to simple structure
problem (13) solved by algorithm PrGrad with computational complexity
O(T · N2 + T 2) is described. Algorithm WLDM-estimator to solve WLDM
problem (5) with problem (13) solutionis is suggested in Sect. 3. Section 4 is
devoted to the algorithm of GLDM estimation [14] in terms of this paper. The
results of computational experiments for problem of identifying the recurrence
equation of the stock market index in Iraq are presented in Sect. 5. All the results
are summarized in Sect. 6.

2 WLDM Estimation Problem

WLDM estimation algorithm to identify Eq. (1) leads to the solution of the
optimization problem (5) for given Xt ∈ R

N , yt, pt ∈ R, t = 1, 2, . . . T .
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This problem is equivalent to the linear programming problem

T∑

t=1

ptzt → min
A∈RN , z∈RT

, (7)

ATXt + zt ≥ yt, t = 1, 2, . . . , T, (8)

−ATXt + zt ≥ −yt, t = 1, 2, . . . , T, (9)

Dual for (7)–(9) problem has form

T∑

t=1

(ut − vt) yt → max
u,v∈RT

, (10)

T∑

t=1

Xjt (ut − vt) = 0, j = 1, 2, . . . , N, (11)

ut + vt = pt, ut, vt ≥ 0, i = 1, 2, . . . , T, (12)

Let us introduce variables wt = ut − vt, t = 1, 2, . . . , T . Conditions (12) imply

ut =
pt + wt

2
, vt =

pt − wt

2
, t = 1, 2, . . . , T.

It is following (12) that −pt ≤ wt ≤ pt, t = 1, 2, . . . , T . Therefore optimal value
of the problem (10)–(12) is equal to optimal value of problem

T∑

t=1

wt · yt → max
w∈RT

, (13)

T∑

t=1

Xjtwt = 0, j = 1, 2, . . . , N, (14)

−pt ≤ wt ≤ pt, t = 1, 2, . . . , T. (15)

The admissible set of problem (13) is intersection of T -dimensional cuboid
(15) and (T − N)-dimensional linear subspace (14). Let us consider the usage of
the gradient projection method [11,21] to solve problem (13).

The algorithm is described below.

PrGrad

Input: X = {Xt ∈ R
N}t∈T , p ∈ R

+T , y ∈ R
T .

Output: w∗ = arg maxw∈RT

∑T
i=1 wi · yi, R = {t ∈ T : |w∗

t | = pt}.

Step 1. Initialization.
w := {wi = 0 : i = 1, 2, . . . , T}; R := ∅; /* Starting point */
g := y − XT

(([
XXT

]−1
X

)
y
)
; /* Projection of gradient */
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Step 2. Current iteration
Do

(α∗, t∗) := arg max
α, t

{α > 0 : −pt ≤ wt + αgt ≤ pt} /*Step parameters*/

w := w + α∗g; gt∗ := 0; R := R ∪ {t∗};/* Next Point */
While (α∗ 	= 0) /* The stop criteria */

Return w∗ = w, R∗ = R.
End of PrGrad

Theorem 1. The algorithm PrGrad solves the problem (13)–(15). Its compu-
tational complexity does not exceed the quantity O(T · N2 + T 2).

Proof. Each k-th iteration of the algorithm consists of an admissible movement
from the current point w(k) to the next point w(k+1) = w(k)+α∗g(k) in the direc-
tion g(k) equal to projection of objective function gradient y to intersection set
of the equations system (14) solutions, and set of solutions for active constraints
system

R(k) =
{

t :
∣∣∣w(k)

t

∣∣∣ = pt

}

from inequality system (15). Obviously, the points of the sequence constructed
in this way are valid.

It is following from the description of the algorithm that

– Slater condition holds because w = 0 is the interior point of the problem
admissible set,

– the necessary condition (α∗ = 0) of the local maximum holds,
– the sufficient condition w

(k)
t yt > 0 for all t ∈ R(k) ( i.e. the gradient y cannot

be represented as a non-negative linear combination of gradients of active
constraints) holds,

take place after cycle While termination. Therefore, in accordance with the
Kuhn-Tucker theorem, solution w(k) is optimal. This proves the first proposition
of the theorem.

Let’s estimate the computational complexity of Step1. The computational
complexity of multiplying the (N × T )-matrix by the (T × N)-matrix, i.e. com-
puting the matrix in square brackets does not exceed the quantity O(T · N2).
The complexity of the inverse of the obtained (N×N)-matrix does not exceed the
value O(N3). Consequently, computational complexity of calculation algorithm

g = y − XT
(([

XXT
]−1

X
)

y
)

does not exceed O(T · N2) because T > N .
Computational complexity of cycle While body is no more O(T ), and it is

executed no more than T times. Therefore computational complexity of Step1
is no more than O(T 2), and computational complexity of algorithm PrGrad is
no more than O(T ·N2+T 2). This proves the second proposition of the theorem.
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3 Improved WLDM-Estimation Algorithm

If (w∗, R∗) result of algorithm PrGrad then w∗ is optimal solution of problem
(13)–(15), and optimal solution of problem (10)–(12) is equal

u∗
t =

pt + w∗
t

2
, v∗

t =
pt − w∗

t

2
, t = 1, 2, . . . , T.

The complementarity condition for a pair of mutually dual problems (7)–(9) and
(10)–(12) implies

yt =

⎧
⎨

⎩

(A∗)TXt, if t 	∈ R∗,
(A∗)TXt + z∗

t , if (t ∈ R∗, w∗
t = pt),

(A∗)TXt − z∗
t , if (t ∈ R∗, w∗

t = −pt),
t = 1, 2, . . . , T. (16)

In fact, solution (A∗, z∗) of linear equation system (16) is the optimal dual
solution of problem (13)–(15) and an optimal solution of the problem (7)–(9),
so the following theorem is proved.

Theorem 2. Let w∗ be optimal solution of problem (13)–(15), let (A∗, z∗) be
solution of linear equation system (16), then A∗ is the optimal solution to the
problem (5).

Algorithm of WLDM estimation is described below.

WLDM-estimator

Input: X = {Xt ∈ R
N}t∈T , p ∈ R

+T , y ∈ R
T .

Output:
Estimation A∗ ∈ R

N of autoregressive equation (5) factors;
Residuals z ∈ R

T of equations system (16).

Step 1. Let (w∗, R∗) = PrGrad (X, p, y).
Step 2. Let A∗ be a solution of linear equations

(A∗)TXt = yt, t : t 	∈ R∗.

Step 3 Let z∗ = (A∗)TX − y be residuals of equations system (16).
Return (A∗, z∗).
End of WLDM-estimator

Theorem 3. The algorithm WLDM-estimator solves the problem (5). Its
computational complexity does not exceed the quantity O(T · N2 + T 2).

Proof. Let us consider the system of equations

(A∗)TXt = yt, t : t 	∈ R∗ (17)

that is solved at Step 2. Number of equations of this system is equal to the
number K = |{t : t 	∈ R∗}| of the unfixed dual variables by algorithm PrGrad.
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It is obvious that the number M of coordinates with cuboid extreme values is
not less than (T −N) at the extreme points of intersection of the T -dimensional
cuboid (15) and the (T − N)-dimensional linear manifold (14). Therefore, the
number of free dual variables is equal to K = T − M ≤ N .

From the description of the algorithm PrGrad, it can be seen that the set
R∗ has a minimum power, i.e. it is equal to (T − N).

Existence of a solution to problem (5) and also equivalence of the problems
(5) and (7)–(9) imply that system (17) is compatible.

Thus, system (17) is the compatible system of N equations with N unknowns.
The solution of this system can be found by the Jordan-Gauss algorithm in a time
not exceeding O(N3). It follows from Theorem 1 that computational complexity
of Step 1 does not exceed O(T ·N2 +T 2). The validity of the theorem by virtue
of the inequality T > N .

4 GLDM Estimation Problem

Problem (6) of GLDM estimation is a concave optimization problem. GLDM-
estimates are robust to the presence of a correlation of values in {Xj t : t =
1, 2, . . . , T ; j = 1, 2, . . . , N}, and (with appropriate settings) like the best for
probability distributions of errors with heavier (than normal distribution) tails
[19]. The above shows the feasibility of solving the identification problem (1) by
method (6).

The established in [14,15] results allow us to reduce the problem of deter-
mining GLDM estimation to an iterative procedure with WLDM estimates.

Let us consider the algorithm of GLDM estimation [14] in terms of this paper.

GLDM-estimator

Input: number of measures T ∈ N; (N × T ) matrix X = {Xt ∈ R
N}t∈T ;

convex upwards twice continuously differentiable function ρ(∗) : R
+ → R

+.
Output:
estimation of coefficients A∗ ∈ R

N of autoregressive equations (1) and/or (2).

Step 1.
For all t ∈ {1, 2, . . . , T} do pt = 1;
k := 0;

(
A(k), z(k)

)
:= WLDM-estimator (X, p, y) .

Step 2.
Do

For all t ∈ {1, 2, . . . , T} do pt := ρ′(z(k)t );
k := k + 1;

(
A(k), z(k)

)
:= WLDM-estimator (X, p, y) .

While
(
A(k) 	= A(k−1)

)
.

Return A∗ := A(k).
End of GLDM-estimator
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The description of the algorithm GLDM-estimator shows that its com-
putational complexity is proportional to the computational complexity of the
algorithm for solving of WLDM problem (5).

Multiply computational experiments show that the average number of itera-
tions of algorithm GLDM-estimator is equal to the number of coefficients in
the identified equation. If this hypothesis is true then computational complexity
in solving practical problems does not exceed O(N3T + NT 2).

5 Computational Experiment

Computational experiments involving the construction of the solution for Cauchy
problem to some quasi-linear difference equation and subsequent identification of
this equation by the constructed solution shows the high quality of the proposed
algorithm [10]. Here we present the results of computational experiments to solve
the problem of identifying the unknown recurrence equation of the stock market
index in Iraq According to the original data from the site “ISX-IQ.net” [1].

Let us consider three mathematical models:

– model 10-Freedom

yt = a(0) +
(
a
(1)
1 yt−1 + a

(1)
2 yt−2

)
+

(
a
(2)
11 y2

t−1 + a
(2)
12 yt−1yt−2 + a

(2)
22 y2

t−2

)

+
(
a
(3)
111y

3
t−1 + a

(3)
112y

2
t−1yt−2 + a

(3)
122yt−1y

2
t−2 + a

(3)
222y

3
t−2

)
, t = 2, 3, . . . , T ; (18)

– model 5-Freedom

yt =
(
a
(1)
1 yt−1 + a

(1)
2 yt−2

)
+

(
a
(2)
11 y2

t−1 + a
(2)
12 yt−1yt−2 + a

(2)
22 y2

t−2

)
,

t = 2, 3, . . . , T ; (19)

– model 2-Freedom

yt =
(
a
(1)
1 yt−1 + a

(1)
2 yt−2

)
, t = 2, 3, . . . , T. (20)

Input data for algorithm GLDM-estimator are the following.

– As endogenous variables are used of one hundred and eighty one (181) con-
secutive counts of Iraq stock market daily index Yt : t = 0, 1, 2, . . . , 180
presented at Fig. 1.

– Set of exogenous variables is empty.
– Convex upwards twice continuously differentiable function

ρ(∗) : R
+ → R

+ : ρ(z) = arctan z.

Identification results are presented in Table 1. It shows that

– model 2-Freedom gives the lowest value of the loss function;
– model 5-Freedom gives the maximum value of the loss function;
– coefficients of all models are significant;
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Fig. 1. Observed time series

Table 1. The identification results

Factors Model

10-Freedom 5-Freedom 2-Freedom

a(0) 0.000000e+000

a
(1)
1 5.026171e+001 −6.008402e+000 3.134622e−001

a
(1)
2 4.501042e+001 8.017241e+000 6.856777e−001

a
(2)
11 1.676391e−001 3.732025e−003

a
(2)
12 −2.386618e−001 −1.651187e−003

a
(2)
22 8.436132e−002 −3.090063e−003

a
(3)
111 −7.228885e−005

a
(3)
112 5.538078e−005

a
(3)
122 5.964459e−005

a
(3)
222 −4.982450e−005

Value of loss function 3.914645e+001 4.118230e+001 3.624738e+001

GLDM number of iterations 10 5 6

– the number of iterations of the algorithm is approximately proportional to
the number N of model coefficients.

Most likely, the increasing of the loss function value with an increasing of freedom
degrees number N is due to a cubic (O(N3)) increasing our calculations, and
therefore significant accumulated calculation errors but not model quality.

The purpose of identifying the equations (18)–(20) is enabling to use the
model values of endogenous variables for predicting possible values of corre-
sponding endogenous variables in the future.

Let K be the prediction horizon, and yt = F (yt−1, yt−2) be one of the model
functions (18)–(20). The modal values of endogenous variables ỹt for time counts
t, t + 1, . . . , t + K are
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ỹ
(K)
t = F (yt−1, yt−2) ,

ỹ
(K)
t+1 = F

(
ỹ
(K)
t , yt−1

)
,

ỹ
(K)
t+k = F

(
ỹ
(K)
t+k−1, ỹ

(K)
t+k−2

)
, k = 2, 3, . . . ,K.

Average prediction error for prediction horizon K is equal to

E(K) =
1

T − K + 1
·
T−K∑

t=0

(
ỹ
(K)
t+K − yt+K

)
,

and average absolute prediction error for prediction horizon K is equal to

D(K) =
1

T − K + 1
·
T−K∑

t=0

∣∣∣ỹ(K)
t+K − yt+K

∣∣∣ .

Table 2. The average error over the forecast horizon

Forecast horizon K Model

10-Freedom 5-Freedom 2-Freedom

E(K) D(K) E(K) D(K) E(K) D(K)

1 4.296E−02 6.841E+00 9.050E−01 7.565E+00 −8.621E−01 3.323E+00

2 9.617E−01 8.567E+00 1.660E+00 8.953E+00 −1.531E+00 9.773E+00

4 5.142E−01 8.256E+00 7.483E−01 8.359E+00 −2.820E+00 1.282E+01

8 4.852E−01 8.282E+00 8.851E−01 8.281E+00 −5.446E+00 1.318E+01

16 5.350E−01 8.459E+00 9.354E−01 8.453E+00 −1.063E+01 1.700E+01

32 7.543E−01 8.982E+00 1.154E+00 8.986E+00 −2.076E+01 2.434E+01

64 −2.572E−01 8.278E+00 1.413E−01 8.268E+00 −4.131E+01 4.170E+01

128 −1.384E−01 6.264E+00 2.517E−01 6.224E+00 −7.695E+01 7.695E+01

Table 2 shows values E(K) and D(K) for the constructed models. Prediction
results are presented in Table 2 show that

– for the linear model 2-Freedom the dependence of errors E(K) and D(K) on
the value K of the forecast horizon is monotonous;

– for nonlinear models 5-Freedom and 10-Freedom the dependence of errors
E(K) and D(K) on the value K of the forecast horizon is non-monotonic, in
particular, the prediction errors for the extreme values of K ∈ {1, 128} less
than for intermediate values K ∈ {2, 4, 8, 16, 32, 64};

– consistency of the 5-Freedom and 10-Freedom models for all K;
– 10-Freedom model gives the smallest prediction errors.

The computational experiment conducted in this paper is based on the usage
of standard 32-bit numeric data types. Perhaps increasing the order of the recur-
rence equation and the accuracy of the calculations [17,18] will give better
results.
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6 Conclusion

Algorithm WLDM-estimator to solve the WLDM-estimation problem is pro-
posed. Computational complexity of the algorithm does not exceed the quantity
O(N2T + T 2), where N is the number of coefficients in the studied equation, T
is the number of observed readings. It is possible to use the QRE identification
algorithm GLDM-estimator based on generalized least deviations method.
GLDM-estimator solves the sequence of the WLDM-estimation problems.
The computational complexity of solving practical problems does not exceed
O(N3T + NT 2).

Results of computational experiments to solve the problem of identifying the
recurrence equation of the stock market index in Iraq by original data from
the site “ISX-IQ.net” show the possibility to apply a second order quasilinear
recurrence equation with quadratic nonlinearity for these purposes.

To solve more complex problems, for example such as presented in papers
[8,9], increasing the order of the recurrence equation and the accuracy of the
calculations [17,18] are required.
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Abstract. This paper is devoted to the problem of determining the
workspace of robots. We consider an approach to the development of a
numerical method for approximating the set of solutions of a system of
nonlinear inequalities based on the concept of non-uniform coverings. An
approach is proposed based on the transformation of non-uniform cover-
ing sets into a set of partially ordered sets of integers to reduce compu-
tational complexity. An algorithm for transforming boxes of a covering
set is presented. The approach has been tested for a 3-RPS robot. The
results of the mathematical simulation and analysis of the effectiveness
of the proposed approach based on an estimate of the reduction in the
amount of numbers describing the covering set are presented.

Keywords: Robot workspace · Parallel robot · Non-uniform
covering · Optimization algorithm

1 Introduction

Deterministic methods allow us to solve global optimization problems with an
estimate of the value of the approximate solution found from the optimum.
However, the actual problem in applying these methods is often considerable
computational complexity. The development of approaches to reduce it is an
urgent task.

The method of non-uniform coverings [1] is one of famous deterministic
method. It was proposed by Yu.G. Evtushenko in 1971 to solve problems with
box constraints. This method can be easily automated and applied to solve a
number of various problems, including in the field of robotics. One of them is
the definition of the workspace of robots, within which there should be a work-
ing tool when performing technological operations. The workspace is one of the
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key characteristics of robots, including parallel ones. The issues of structural
synthesis, methods for studying the workspace, and optimizing the trajectory of
movement of such mechanisms are considered in detail in [2–4]. The application
of the method of non-uniform coverings to determine the workspace is consid-
ered in [5–8]. In [7], a comparison of two approaches is considered, one of which
is based on the use of a system of inequalities to describe the design constraints
of the robot, and the other on the use of a system of equations. Using the sys-
tem of equations gj(x) = 0, j ∈ {1,m}, the workspace is described by the set
QE of n-dimensional boxes Pi, including the set of solutions of the system, i.e.,
QE =

⋃
i∈I Pi. x is n-dimensional vector of variables. For each Pi from QE , the

system of equations holds:
⎧
⎪⎨

⎪⎩

maxj=1,...,m minx∈Pi
gj(x) ≤ 0,

minj=1,...,m maxx∈Pi
gj(x) ≥ 0,

d(Pi) ≤ δ.

(1)

Using the system of inequalities gi(x) ≤ 0, j ∈ {1,m} the workspace is described
by the union of two sets: QE = QI ∪ QJ , where QI is the inner approximation
set that is included in the set of solutions of the system of inequalities, QJ is the
boundary set. For each Pi from QI , the following condition holds

max
j=1,...,m

max
x∈Pi

gj(x) ≤ 0. (2)

For each Pi from QJ , the system of inequalities holds:
⎧
⎪⎨

⎪⎩

maxj=1,...,m maxx∈Pi
gj(x) > 0,

maxj=1,...,m minx∈Pi
gj(x) ≤ 0,

d(Pi) ≤ δ.

(3)

One of the tools for implementing the method is iterative bisection. With
each division, the box decreases by 2 times, respectively, the ratio of the sizes of
the initial box and one of the boxes forming an approximation of the workspace
can be estimated by the degree of division d, and the ratio itself is 2d. With an
increase in the degree of division d, the number of boxes, the combination of
which describes the workspace, increases. Due to the increase in computational
complexity for processing an approximated workspace of higher accuracy, the
problem arises of reducing it by transforming the resulting set of boxes describ-
ing the workspace. As part of this work, an approach is proposed for transforming
a covering set obtained using the method of non-uniform coverings into a par-
tially ordered set of integers. It includes two components: reducing the number
of boxes and the transition from the space of real numbers to the space of inte-
gers. Application of the proposed approach and assessment of its effectiveness is
considered on the problem of determining the workspaces of the 3-RPS robot.
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2 Covering Sets Transformation to Partially Ordered
Integer Sets

Consider the set of boxes that form the workspace. We introduce the following
notation: δQE is the boundary of the set QE , QA = δQE ∪ (Rn/QE) is the outer
region for which the condition holds

max
j=1,...,m

min
x∈Pi

gj(x) ≤ 0. (4)

Proposition 1. For any point x = (x1, .., xn), x ∈ QE , there exist points
a = (a1, .., an), a ∈ QJ and b = (b1, .., bn), b ∈ QJ , for which the following
system is satisfied:

{
a1 ≤ x1 ≤ b1,

xi = ai = bi, i ∈ {2, n}.
(5)

Proof. Let us prove the statement “by contradiction”. Assume that in QJ there
is no point a for which system (5) is satisfied. In this case, given that QE is
a finite set, there is a point a, a ∈ δQE , with c /∈ QJ for which the system
is satisfied. Since QE = QI ∪ QJ , then the point a ∈ QI . Therefore, the con-
dition maxj=1,...,m gj(x) ≤ 0 is fulfilled for it. Since a ∈ δQE , the condition
maxj=1,..,m gj(x) > 0 must be satisfied. Similarly, the conditions must be satis-
fied for point b. This contradicts the assumption and the statement is proved.

In other words, statement 1 shows that between the elements of the sets
QI and QA the elements of the set QJ are necessarily located. Therefore, it is
possible to describe the workspace as a set of boxes using the following approach.
We introduce the following notation for the boundaries of the box:

xi ≤ x1 ≤ xi, i ∈ {1, n}. (6)

We denote two subsets in the set QJ as QJ1 and QJ2. The subset QJ1 includes
only those boxes at the boundary of which there is a point x = (x1, .., xn) for
which the system is satisfied:

⎧
⎪⎨

⎪⎩

x ∈ δQE ,

x1 = x1,

xi ≤ x1 ≤ xi, i ∈ {2, n}.

(7)

The condition for the subset QJ2 is similar, but for it c1 = x1.
It should be noted that the number m of boxes in the subsets QJ1 and QJ2

is equal to each box P(k,J1), k ∈ 1, m from QJ1 corresponds to the box P (k, J2),
k ∈ {1,m} from QJ2 with equal values (xi), , i ∈ {2, n} and (xi), i ∈ {2, n}, while
for all points x = (x1, .., xn) for which the condition x(i,J1) < xi < x(i,J2), i ∈
{1, n}, x ∈ QE is true. The set of QF is the set of boxes,

P(k,F ) = [x : xi,j1,k ≤ xi ≤ xi,j2,k, i], k ∈ {1,m}. (8)
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The n-dimensional box is described by 2n real numbers. The proposed app-
roach to the transformation of boxes allows us to describe boxes with a smaller
amount of numbers, while integers. First, we consider this concept in the gen-
eral case of transforming the set of real numbers Y into the set of integers Z
with the approximation accuracy δ (Fig. 1). For each of the points of the set, its
coordinates in the space of integers are calculated:

x
(j)′

i =

[
xj

i

δ

]

, x(j) ∈ R, x(j)′ ∈ Z. (9)

Fig. 1. The transformation of the cover set into the space of integers.

Moreover, the Hausdorff distance between the sets depends on δ

0 < h(Y,Z) ≤
√∑

i

|δi|2. (10)

The integers of one of the coordinates are likewise combined into intervals,
for each of which the values of the remaining coordinates are equal.

Let us consider the application of this concept to the transformation of the
set of boxes QF to QZ . For QF and QZ the following holds:

hmax(QF , QZ) =
√∑

|δi|2. (11)
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Fig. 2. Hausdorff distance between the sets Y and QZ .

The accuracy of determining the workspace allows us to estimate the Haus-
dorff distance between the sets QZ and Y (Fig. 2).

The maximum distance hmax(Y,QZ) is defined as

hmax(Y,QZ) = hmax(Y,QF ) + hmax(QF , QZ). (12)

Define hmax(Y,QF ). We denote the limitations of the original box when
defining the workspace as

x
(0)
i ≤ xi ≤ x

(0)
i , i ∈ {1, n}. (13)

The sizes of the boxes of the set QJ , taking into account (13), are defined as

Δi =
x
(0)
i − x

(0)
i

2d
. (14)

Given that hmax(Y,QF ) = hmax(Y,Qj), we obtain:

hmax(Y,QF ) =

√
√
√
√
√

∑
∣
∣
∣
∣
∣
∣

x
(0)
i − x0

i

2d

∣
∣
∣
∣
∣
∣
. (15)

We substitute (11) and (15) into (12):

hmax(Y,QZ) =

√
√
√
√
√

∑
∣
∣
∣
∣
∣
∣

x
(0)
i − x0

i

2d

∣
∣
∣
∣
∣
∣
+

√∑
|δi|2. (16)

In order to reduce the Hausdorff distance, we modify the formula
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x′
i =

⎡

⎣ 2dxi + ki

x
(0)
i − x

(0)
i

⎤

⎦ , xi ∈ R, x′
i ∈ Z. (17)

where ki- bias coefficients, which are determined by the formula:

ki =

⎛

⎝

⎡

⎣
2dxk

i

x
(0)
i − x

(0)
i

+ 0, 5

⎤

⎦

⎞

⎠

⎛

⎝
x
(0)
i − x

(0)
i

2d

⎞

⎠ − x
(k)
i , i ∈ {1, n}. (18)

In this case, hmax(QF , QZ) = 0 (Fig. 3).

Fig. 3. The Hausdorff distance between the sets Y and QZ taking into account the
displacement coefficients.

We introduce the following variables:

a1 =

⎡

⎣
2dxi + ki

x
(0)
i − x

(0)
i

⎤

⎦ , ai =

⎡

⎣ 2dxi + ki

x
(0)
i − x

(0)
i

− 0, 5

⎤

⎦ . (19)

It is worth noting that an additional coefficient of 0.5 is added to exclude round-
ing of the upper boundary value to the next integer.

3 Application of the Developed Approach to Determine
the Workspace of the 3-RPS Robot

Consider the application of the method of non-uniform coverings to determine
the workspace of the planar 3-RPS mechanism (Fig. 4), which consists of three
kinematic chains containing variable-length rods pivotally attached to a fixed
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base at the vertices of an equilateral triangle. The other ends of the rods are
pivotally mounted at the vertices of an equilateral triangle on a movable plat-
form. The abbreviation 3-RPS means that three chains is composed of a revolute
joint, an actuated prismatic joint and a spherical joint mounted in series. The
input coordinates are the rod lengths (l1, l2, l3), the output coordinates are the
position of the geometric center of the moving platform in Cartesian coordinates
(x, y) associated with the center of the base of the mechanism, and its rotation
angle (ϕ) relative to the axis perpendicular to the plane of the base. R and r are
the radii of circles describing triangles and, respectively. This mechanism can be
used to position the workpiece during machining.

Fig. 4. Scheme of a planar 3-PRS mechanism.

Define the workspace of the 3-RPS mechanism. To do this, we introduce
restrictions on the geometric parameters of the mechanism

lmin ≤ li ≤ lmax. (20)

where lmin, lmax are determined by the design parameters of the mechanism,
li is the current length of the i-th rod, If the points Ai and Bi are located at
the vertices of equilateral triangles, then the change in the length of the rods is
determined by the formulas
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l21 =

(

x +
r

2
(sϕ −

√
3cϕ) +

√
3R

2

)2

+
(

y − r

2
(
√

3sϕ + cϕ) +
R

2

)2

, (21)

l22 =

(

x +
r

2
(sϕ +

√
3cϕ) −

√
3R

2

)2

+
(

y +
r

2
(
√

3sϕ − cϕ) +
R

2

)2

, (22)

i23 = (x − rsϕ)2 + (y + rcϕ − R)2 , (23)

where sϕ = sin ϕ, cϕ = cos ϕ.
Algorithms for approximating the set of solutions of nonlinear inequalities

were considered earlier in the authors’ work [7]. To speed up the calculations,
multithreaded calculations using the OpenMP library are used. This is consid-
ered in more detail in [9].

The simulation results for R = 400 mm, r = 50 mm, l1,2,3 [200 mm, 500 mm]
are presented in Fig. 5. The calculation time for approximation accuracy δ =
4 mm, the grid dimension for calculating 16 × 16 × 16 functions using parallel
computing into 8 flows on a personal computer was 57 s.

Fig. 5. The workspace of 3-PRS mechanism with a fixed angle ϕ = 0◦: the blue area
is the internal approximation, the yellow is the boundary

Dependence of the number of boxes on the degree of division for two-
dimensional space (at a fixed angle ϕ = 0◦) and three-dimensional space is
shown in Table 1.

The table shows that, starting from the degree of division d = 6, the increase
in the number of boxes approaches 2 for n = 2 and 4 for n = 3. We use the
proposed approach to transforming the covering set.
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Table 1. Dependence of the number of boxes on the degree of division.

Divide level d n = 2 n = 3

Number of boxes Increase in number Number of boxes Increase in number

0 1 – 1 0

1 4 4 8 8

2 4 1 16 2

3 4 1 32 2

4 4 1 64 2

5 16 4 334 5,094

6 34 2,125 1518 4,54

7 80 2,353 6410 4,246

8 168 2,1 26766 4,174

9 362 2,155 109390 4,089

10 732 2,022 441814 4,042

11 1504 2,055 1776510 4,021

12 3010 2,001 7124464 4,011

13 6050 2,010 28000055 4,005

Fig. 6. The workspace before and after transformation of the covering set.

In Fig. 6 shows a visualization of the workspace symmetrical about the Y
axis. The left half is described by the sets QI and QJ , the right half is described
by the set QF .

The transformation time for an approximation accuracy of δ = 4 mm with-
out using parallel computing was 3 min 30 s, that is, the total simulation time
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Fig. 7. Dependence of the number of boxes on the degree of division.

increased by 4.68 times, while the number of boxes decreased from 441 814 to 86
027, that is, 5.13 times. Evaluating the effectiveness of the approach, it is worth
noting that the time of each stage depends on many factors, such as paralleliza-
tion, the use of various libraries, data structures in software implementation.
However, the most important thing is to reduce the number of boxes and the
numbers that describe them. This allows to store and use better quality approx-
imations with the same computational resources. The decrease in the number
of boxes for two-dimensional and three - dimensional space is shown in Fig. 7.
Number n means dimension, {Qi+Qj} are 2 sets of boxes before transformation,
Qf - transformed set.

As can be seen from the figure, when using the proposed approach, the num-
ber of boxes significantly decreased. With a degree of division of 212, the number
of boxes for two-dimensional space decreased by 86.7% from 3010 to 400, for
three-dimensional - by 80.5% from 6 991 738 to 1 363 683. At the same time,
boxes of the covering set are described by fewer numbers. For three-dimensional
space, the set of numbers describing the workspace decreased by 90.2% from 41
950 428 to 4 099 241.

4 Conclusion

The proposed approach to the transformation of sets to reduce the number of
covering boxes describing the workspace has shown its effectiveness. The app-
roach has been tested on various dimensions of the problem. The approach’s
application for the degree of division of boxes 212 allowed reducing the num-
ber of boxes of 3-RPS robot workspace from 6 991 738 to 1 363 683, that is,
by 80.49%. The amount of numbers describing each of the transformed boxes
has also been reduced. Thus, the overall reduction of numbers describing the
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workspace has been reduced from 41 950 428 to 4 099 241, that is, by 90.2%. A
further area of research is to accelerate the transformation time.
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Abstract. This paper proposes an extension of global optimization
algorithm for solving a set of problems with non-convex constraints. The
uniform convergence inherent to the algorithm allows for the optimal
distribution of the computational resources, since the number of errors
in numerical solutions decreases at approximately equal rate for all prob-
lems processed by the algorithm. The algorithm assigns a priority level
to each problem and, with every iteration, performs the computations of
the objective functions for several problems in parallel. After the algo-
rithm is terminated at any given time, it obtains solutions of similar
quality for all the problems of the set. Such sets appear when the global
optimization problem has a discrete parameter or, for example, when a
multicriteria optimization problem is solved by scalarization techniques.
The algorithm employs Peano-type space-filling curves for the reduction
of the multidimensional optimization problems to the one-dimensional
ones. The efficiency of the implemented algorithm was tested using the
sets of artificially generated global optimization problems, as well as a
series of problems obtained as a rescult of scalarization of a multicriteria
optimization problem. Additional numerical experiments also confirmed
the uniform convergence of the proposed method.

Keywords: Global optimization · Non-convex constraints · Uniform
convergence · Derivative-free optimization · Parallel computing

1 Introduction

Global optimization problems with non-convex constraints are considered as one
of the most difficult optimization problems. Finding of the global minimum of
a function with several variables often appears to be more difficult than a local
optimization in a thousand-dimensional space. The simplest gradient descent
method could be sufficient for the latter, however, to guarantee that the global
optimum is found, the optimization methods have to accumulate the information
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on the behavior of the objective function in the entire search domain [7,11,13,20].
In some cases, for instance, for DC or QP problems, more effective methods and
even analytical optimality conditions could be applied [5,14], but these methods
are barely applicable for black box functions (i.e., an analytical representation
of the functions is not available).

Solving a series of such problems with limited computational resources is
even more difficult: besides the search of the global extremum, the computational
resources have to be distributed in such a way that the location of the global
extremum would be estimated with approximately equal quality for all problems
being solved at the same time. Usually, a series of q problems is solved either
sequentially or in parallel by sets of p � q problems where p is the number of
parallel computational devices. Such an approach creates a situation when at
every given moment there exist problems for which the global optimum is not
obtained yet, while the optimum for the problems from the beginning of the set
may be estimated even with excess precision.

This paper considers a parallel global optimization method developed at
the Lobachevsky State University of Nizhny Novgorod for simultaneous solving
of a set of problems [3] and in particular, its generalization to cover the non-
convex constraints. The index scheme [16,20] which is applied to account for the
constraints, allows operating with partially defined objective functions and con-
straints, and its efficiency is on par with similar approaches [1]. The convergence
of the algorithm to the global optimizers in all problems was proved theoreti-
cally, the efficiency of the implemented algorithm was demonstrated on sets of
problems generated by a special mechanism. This mechanism generates sets of
problems with predefined dimensionality and predefined number of non-convex
constraints [9]. Besides the artificially generated problems, the method was also
tested on sets of multicriteria optimization problems with nonlinear constraints
solved by criteria convolution method [6].

The paper is structured as follows. Section 2 provides the statement of the
problem. Section 3 gives a description of the parallel optimization method. Sub-
section 3.1 describes the sufficient conditions of convergence of the considered
method. The results of the numerical experiments confirming the efficiency of
considered method are presented in Section 4. Conclusion gives a short summary
of the results of the study and proposes the directions for further improvement
of the software implementation of the considered method.

2 Statement of the Global Optimization Problem

This paper considers the following problem: to find the global minimum of an
N -dimensional function ϕ(y) in a hyperinterval D

ϕ(y∗) = min{ϕ(y) : y ∈ D}, (1)

D = {y ∈ RN : ai � xi � bi, 1 � i � N}.

In order to produce an estimate of the global minimum based on a finite number
of computations of the function values, the rate of variation of ϕ(y) in D has to
be limited. As a rule, the Lipschitz condition
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|ϕ(y1) − ϕ(y2)| � L‖y1 − y2‖, y1, y2 ∈ D, 0 < L < ∞,

is accepted as such a limitation.
There are various methods for solving the considered multidimensional prob-

lem directly [11,17] as well as efficient methods for solving the univariate prob-
lems [12,20]. This paper considers a one-dimensional method, which is applied
jointly with the dimensionality reduction scheme. The use of space filling curve
(or evolvent) y(x), where

{y ∈ RN : −2−1 � yi � 2−1, 1 � i � N} = {y(x) : 0 � x � 1}, (2)

is a well-known scheme of dimensionality reduction of the initial problem for the
global optimization algorithms [18]. A mapping of the type (2) allows reducing
a multidimensional problem to a univariate one at the expense of worsening its
properties. In particular, the one-dimensional function ϕ(y(x)) is not a Lipschitz
function but a Holder one:

|ϕ(y(x1)) − ϕ(y(x2))| � H|x1 − x2|
1
N , x1, x2 ∈ [0, 1],

where the Hölder constant H is related to the Lipschitz constant L as

H = 2L
√

N + 3.

The feasible domain can also be defined by the constraints that essentially
complicate the problem. The problem statement in this case will take the fol-
lowing form:

ϕ(y∗) = min{ϕ(y) : y ∈ G}, G = D ∩ {y : gj(y) � 0, 1 � j � m}. (3)

Let us set gm+1(y) = ϕ(y). Hereafter, we shall assume all functions gk(y), 1 �
k � m + 1, to satisfy the Lipschitz condition on the hyperinterval D.

Further, let us consider solving a series of q problems of the kind (3):

min {ϕ1(y), y ∈ G1} ,min {ϕ2(y), y ∈ G2} , ...,min {ϕq(y), y ∈ Gq} . (4)

Similar to [3], this work aims to formulate a method that will ensure a uniform
convergence of the solutions of all problems in the series. Here and below, a
uniform convergence implies a proportional decrease of the distance between the
best iteration point and the global optimizer in all the problems in the series:

∃ε > 0 : ∀s > 1,∀i, j ∈ {1, . . . , q} ‖ỹi(s)∗ − yi ∗ ‖∞
‖ỹj(s)∗ − y∗

j ‖∞
� ε, (5)

where s is the number of steps of the optimization method, ỹi(s)∗ is the best
iteration point in the problem i from the set (4) at the step s.
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3 Description of the Global Optimization Method

Taking into account the dimensionality reduction scheme (2), let us assume that
the method requires finding the global minimum of the function ϕ(x), x ∈ [0, 1],
which satisfies the Hölder condition with the constraints gj(x), which in turn
satisfy this condition in the interval [0, 1].

The index algorithm of global search (IAGS) for solving one-dimensional
problems considered here implies construction of a sequence of points xk, at
which the values of index function zk are calculated. The index scheme [20] was
used to account for the latter. Let us assume that each function gi(x), 1 � i �
m+1, is defined and computable only in the corresponding subrange Qi ∈ [a, b],
where ϕ(x) is denoted as gm+1(x) and

Q1 = [0, 1], Qi+1 = {x ∈ Qi : gi(x) � 0} , 1 � i � m, Qm+2 = ∅ (6)

Considering the definition (6) the initial problem can be rewritten as

ϕ(x∗) = min{gm+1(x) : x ∈ Qm+1}.

The index scheme assigns a number called index ν(x) to each point of the
search sequence xk:

ν(x) = i : x ∈ Qi, x �∈ Qi+1, 1 � i � m + 1. (7)

In order to obtain the index of the point x we have to perform a trial defined
via the following steps:

1. Sequentially compute functions gi(x), 1 � i � m until for some i∗ gi∗(x) > 0
or until i = m + 1. Set ν(x) = i∗ or ν(x) = m + 1 if gi(x) � 0, 1 � i � m.
Therefore, ν(x) is the number of the first violated constraint at the point x
or m + 1 if all the constraints are satisfied at x.

2. Return pair ν(x), z = gν(x)(x) as a result of the trial.

This approach to trials allows reducing the initial problem with functional
constraints to an unconstrained problem of minimization of a discontinuous func-
tion:

ψ(x∗) = minx∈[0,1] ψ(x),

ψ(x) =

{
gν(x)/Hν , ν < M,

(gM (x) − g∗
M )/HM , ν = M.

Here M = max {ν(x) : x ∈ [0, 1]} and g∗
M = min {gM (x) : x ∈ QM}. Because of

the definition of the number M , the problem of finding g∗
M always has a solution.

If M = m+1, then g∗
M = ϕ(x∗). The function ψ(x) satisfies the Hölder condition

on the set Q1 with the constant 1, and ψ(x) can have jump discontinuities at
the boundaries of the sets Qi, 1 � i � m + 1. Despite the values of the Hölder
constants Hk and the value g∗

M are not known in advance, they can be estimated
in the course of solving the problem. A set of triples {(xk, νk, zk)}, 1 � k � n,
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constitutes the search information accumulated by the method upon execution
of n steps.

At the first iteration of the method, the trial is performed in the arbitrary
internal point x1 of the interval [0, 1]. The indices of the points 0 and 1 are
considered to be zero indices, the values z at these points are undefined. Let us
assume that k � 1 iterations of the method have been performed. In the course
of this performance the trials were conducted at k points xi, 1 � i � k. Then,
the points xk+1 of the search trials of the next (k + 1)th iteration are defined
according to the rules:

Step 1. Reassign lower indices to the points of the set Xk = {x1, . . . , xk} ∪
{0}∪{1}, which includes the boundary points of the interval [0, 1] as well as the
points of preceding trials in the order of increasing coordinate values, i.e.

0 = x0 < x1 < . . . < xk+1 = 1, (8)

and compare them with the values zi = gν(xi), ν = ν(xi), i = 1, k computed at
these points.

Step 2. For each integer number ν, 1 � ν � m+1, determine the correspond-
ing set Iν of the lower indices of the points, at which the values of the functions
gν(x) are computed:

Iν = {i : ν(xi) = ν, 1 � i � k}, 1 ≤ ν � m + 1,

and determine the maximum value of the index M = max{ν(xi), 1 ≤ i ≤ k}.
Step 3. Compute current estimate for the unknown Hölder constant:

μν = max

{
|gν(xi) − gν(xj)|

(xi − xj)
1
N

: i, j ∈ Iν , i > j

}
. (9)

If the set Iν contains less than two elements or if the value μν is equal to zero,
then assume μν = 1.

Step 4. For all the nonempty sets Iν , ν = 1,M compute the estimates

z∗
ν =

{
min{gν(xi) : xi ∈ Iν}, ν = M,

0, ν < M.
(10)

Step 5. For each interval (xi−1, xi), 1 � i � k compute the characteristic

R(i) =

⎧⎪⎪⎨
⎪⎪⎩

Δi + (zi−zi−1)
2

(rνμν)2Δi
− 2 zi+zi−1−2z∗

ν

rνμν
, ν = ν(xi) = ν(xi−1),

2Δi − 4 zi−1−z∗
ν

rνμν
, ν = ν(xi−1) > ν(xi),

2Δi − 4 zi−z∗
ν

rνμν
, ν = ν(xi) > ν(xi−1),

(11)

where Δi = (xi −xi−1)
1
N . The values rν > 1, ν = 1,m are the parameters of the

algorithm. They define the products rνμν used in computing the characteristics
as the estimates of the unknown Hölder constants.
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Step 6. Select the maximum characteristic:

t = arg max
1�i�k+1

R(i). (12)

Step 7. Perform the next trial in the middle of the interval (xt−1, xt) if the
indices of its end points are not the same: xk+1 = 1

2 (xt + xt−1). Otherwise,
perform the trial at the point

xk+1 =
1
2
(xt + xt−1) − sgn(zt − zt−1)

|zt − zt−1|N
2rνμN

ν

, ν = ν(xt) = ν(xt−1),

and then increment k by 1.
The algorithm stops if the condition Δt � ε is satisfied. Here ε > 0 is a

predefined precision. The values

ϕ∗
k = min

1�i�k
ϕ(xi), x∗

k = arg min
1�i�k

ϕ(xi) (13)

are assumed as the estimates of the global solution.
Next, following the approach described in [3], we shall use q copies of IAGS

working synchronously to solve the problem series (4). The only difference is
that when selecting the interval with the maximum characteristic at Step 6,
the choice will be made from all intervals, which were generated by q copies of
IAGS. If the maximum characteristic corresponds to the ith problem, then Step
7 is performed in the ith copy of the method while the other copies stay idle. This
way, at every iteration the trial is performed for the most promising problem in
terms of the characteristics (11). This allows distributing the resources of the
method among the problems dynamically. Let’s denote this method as MIAGS.

The parallel modification of the method does not differ from the one consid-
ered in [3] and consists in the selection of p intervals at Step 6 and performing
p trials in parallel at the following step. All resources of the method within
the framework of the iteration may be focused on a single problem as well as on
l � p problems simultaneously (depending on the problem, to which the intervals
selected by the method belong).

3.1 Convergence Conditions

The conditions of convergence of the method described in Section 3 in case of
q = 1 are given in [20].

Theorem 1. (Sufficient convergence conditions) Let us assume that the fol-
lowing conditions are true:

1. D �= ∅, the problem (3) has a solution.
2. Functions gj(y) � 0, 1 � j � m + 1, are Lipschitz functions with respective

constants Li over the domain D (here gm+1(y) = ϕ(y)).
3. If k from (8) is sufficiently large, the values μν from (9) satisfy the inequalities

rνμν > 23−1/NLν

√
N + 3, 1 � ν � m + 1. (14)
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Then any limit point y of the sequence {yk} = {y(xk)} generated by the index
method, the problem (3) is feasible and satisfies the conditions

ϕ(y) = inf{ϕ(yk) : gi(yk) � 0, 1 � i � m, k = 1, 2, . . . } = ϕ(y∗). (15)

Remark 1. From the relationship between the Hölder and Lipschitz constants
and from the condition (15) it follows that the parameters rν from (11) should
satisfy the condition

rν > 22−1/N . (16)

Theorem 2. (On the convergence conditions of MIAGS) Let the conditions 1-
3 of the Theorem 1 for each problem i, 1 � i � q from (4), be true i.e. each
problem can be solved by IAGS. Then solving all of the q problems by MIAGS
will generate q infinite sequences {yk

i }, 1 � i � q, such that

ϕi(yi) = inf{ϕ(yk
i ) : gi

j(y
k
i ) � 0, 1 � j � mi, k = 1, 2, . . . } = ϕi(y∗

i ).

Proof. Let us consider two random problems from the set (4)

min{ϕ(y) : y ∈ D1, gϕ
j (y) � 0, 1 � j � m1},

min{ψ(y) : y ∈ D2, gψ
j (y) � 0, 1 � j � m2}.

(17)

Let us denote the characteristics (11) for the first problem as Rϕ(i) and for the
second problem as Rψ(j). Considering that, we have:

Rϕ(tϕ) = max1�i�k Rϕ(i),
Rψ(tψ) = max1�j�s Rψ(j), (18)

where k corresponds to the number of trials in the first problem and s corre-
sponds to the number of trials in the second problem. The sequence of trials {vk}
corresponds to the first problem and the sequence of trials {us} corresponds to
the second problem. The values zk = gϕ

ν (vk), ν = ν(vk) correspond to the trial
points {vk}, and the values ws = gψ

ν (us), ν = ν(us) correspond to the trial points
{us}.

When the two problems are solved simultaneously, the algorithm selects an
interval for the next trial according to the condition:

R(t) = max{Rϕ(i), Rψ(j)}. (19)

Let the algorithm solve two problems and the iterations counter be l =
k + s, l = 0, 1, 2, . . .. Then, since Theorem 1 is true for all the problems , at least
one of the sequences {vk} and {us} will be infinite (let it be {vk}). If we can
prove that both sequences are infinite, this will demonstrate the convergence in
both considered problems.

Let us take a limit point v ∈ [vi−1, vi], where i = i(k). The indices vi−1 , vi

can be equal or different, but, because of convergence, if k is large enough they
will be stable. In the first case the algorithm will use the first branch of the rule
(11), otherwise it will use one of the two other branches.
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Let us consider the first case: from (9)

|zi − zi−1|
Δi

� μϕ,ν .

Having considered that we can establish an upper bound:

(zi − zi−1)2

r2
νμ2

ϕ,νΔi
=

(zi − zi−1)2Δi

(rνμϕ,νΔi)2
� Δi

r2
ν

.

Therefore using the first branch of form rule (11) we get an inequality

Rϕ(i) � Δi(1 +
1
r2
ν

) − 2(zi + zi−1 − 2z∗
ν)

rνμϕ,ν
. (20)

Because v is the limit point of the sequence {vk} and ϕ(y(v)) � z∗
ν , ν = m + 1

or z∗
ν = 0, ν < m + 1 and zi−1, zi → 0 at k → ∞:

Δi → 0, zi + zi−1 − 2z∗
ν → 0. (21)

In the second case (when one of the other two branches of the rule (11) is applied)
we have

Rϕ(i) = 2Δi − 4
zi − z∗

ν

rνμϕ,ν
.

If z∗
ν �= 0 then zi − z∗

ν � 0 and

Rϕ(i) = 2Δi − 4
zi − z∗

ν

rνμϕ,ν
� 2Δi. (22)

Otherwise because v is a feasible point zi → 0 at k → ∞.
From (20) (21) (22) for any small δ > 0 there exists a large value of k such

that
Rϕ(i) � δ. (23)

Let α = max{ν(u) : u ∈ {us}}. Because α is currently the highest index in
the search sequence {us} and according to the rule (10), ∃j : w∗

α = wj .
If ν(wj−1) = ν(wj) = α then the first branch of the rule (11) is applied and

Rψ(j) = Δj + (wj−wj−1)
2

r2
αμ2

ψ,αΔj
− 2(wj+wj−1−2w∗

α)
rαμψ,α

�
� Δj − 2(wj+wj−1−2w∗

α)
rαμψ,α

= Δj − 2Δj(wj−1−wj)
rαμψ,αΔj

�
� Δj − 2Δj

rα
= Δj

(
1 − 2

rα

)
.

(24)

If ν(wj−1) �= ν(wj) = α then ν(wj−1) < α and the third branch of the rule
(11) is applied:

Rψ(j) = 2Δj − 4
wj − w∗

α

rαμψ,α
= 2Δj > 0. (25)
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Taking into account the Remark 1, (24), (25) we can conclude that such an
interval exists that Rψ(j) > 0. At the same time, (23) is true and the inequality

Rψ(j) > Rϕ(i)

will be true when the value k is large enough. Thus the next scheduled iteration
is performed for the second problem with objective ψ(y), i.e. sequence {vs} will
be infinite as well.

Since we considered two arbitrary problems from the given set of q problems,
the theorem is true for any pair of problems from the set. By induction, the
theorem is also true for the whole set. �

4 Results of Numerical Experiments

The use of set of test problems with known solutions generated by a random
mechanisms is one of the commonly accepted approaches to the comparison of
optimization algorithms [4]. Experiments presented in this paper were based on
two generators of problems of different nature [8,10] were used. These gener-
ators produce problems without nonlinear constraints. Therefore, the GCGen1

[9] system was to be used to supplement these generators. This system allows
generating problems with constraints based on arbitrary nonlinear functions.

The GCGen system comes with the examples of its application and construc-
tion of sets of problems each consisting of an objective function and two con-
straints generated by FGR [10] or GKLS [8] generator. GKLS [8] allows obtaining
the functions of predefined dimensionality and with predefined number of global
optimums. In combination with GCGen, the following sets of problems were
generated:

– 100 2-dimensional problems with two constraints;
– 100 3-dimensional problems with two constraints
– 20 4-dimensional problems with two constraints;
– a mixed class consisting of 50 problems with two-dimensional GKLS functions

and 50 problems with FGR. This set is generated in order to demonstrate that
the efficiency of the method is preserved at essentially varying properties of
the problems.

Examples of contour plots of the considered problems are presented in Fig. 1.
The feasible domain is highlighted.

A test problem was considered to be solved if the optimization method
executes the next trial yk in the δ-vicinity of the global minimizer y∗, i.e.∥∥yk − y∗∥∥ � δ = 0.01 ‖b − a‖, where a and b are the left and right bound-
aries of the hypercube from (1). If this relation is not fulfilled after the limit of
number of iterations had been reached, the problem was considered to be not
solved.
1 The original code of the system can be accessed at https://github.com/UNN-ITMM-

Software/GCGen

https://github.com/UNN-ITMM-Software/GCGen
https://github.com/UNN-ITMM-Software/GCGen
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(a) Solution inside feasible domain (b) Solution at the boundary of feasible area

Fig. 1. Contour plots and trial points of IAGS in two synthetic problems

When evaluating the quality of the method and its implementation, besides
increased computation speed due to parallelization,we shall also account for the
mean maximum distance (in terms of l∞-norm) from the current estimate of
the optimum to its actual position computed on the set of problems (4): Davg

and Dmax. The dynamics of these magnitudes in the course of the optimization
shows how uniformly the method distributes the resources among the problems.

The parallel method was implemented in C++ with the use OpenMP tech-
nology for parallelization of the trial execution process in the shared memory.
All numerical experiments were carried out using a computer with the following
configuration: Intel Core i7-7800X, 64 GB RAM, Ubuntu 16.04 OS, GCC 5.5
compiler.

4.1 Solution Results of Generated Problems

The solution results of test problems by the sequential and parallel versions of
the MIAGS are presented in Table 1. For all two-dimensional classes of problems,
the parameter r = 4.7. In the case of the three and four-dimensional problems,
r = 4.7. The convergence speed was improved by applying ε-reservation tech-
nique from [20] Chapter 8.3 with ε = 0.1. In all the experiments, an additional
computational load was introduced into the objective function and constraints
to get the duration of a single call of a problem function equal to approximately
1 ms.

Table 1 shows that the speedup in the iterations Si = iters(p=1)
iters(p=i) increased

linearly with increasing number of threads p, whereas the speed of calculations
St = time(p=1)

time(p=i) increased at a lower rate, which points to a non-ideal implemen-
tation of the algorithm. The actual speedup, the upper limit for which is Si, can
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be increased by the optimization of the interaction between the copies of IAGS.
We plan to test this approach in our future works.

Table 1. Results of experiments on the sets of synthetic problems

Problem class p Number of iterations Time, s Si St

GKLS & FGR based 1 51434 90.20 - -

2 25698 56.96 2.00 1.58

4 13015 36.67 3.95 2.46

6 8332 26.85 6.17 3.36

GKLS based 2d 1 59066 97.53 - -

2 29060 60.56 2.04 1.61

4 14266 38.92 4.14 2.51

6 9436 29.53 6.26 3.30

GKLS based 3d 1 782544 1117.55 - -

2 397565 752.92 1.97 1.48

4 208073 526.67 3.76 2.12

6 142089 445.45 5.50 2.51

GKLS based 4d 1 14021720 15806.6 - -

2 6313070 7254.85 2.22 2.18

4 3479344 4932.55 4.03 3.20

6 2783339 3955.38 5.04 3.99

In order to demonstrate the uniform convergence of MIAGS, all test prob-
lems have been solved by IAGS as well. IAGS is comparable with other stochas-
tic and deterministic derivative-free global optimization algorithms [19]. Thus,
it provides a strong baseline in solving a single global optimization problem.
Figure 2 presents the plots of mean and maximum distances from the actual
optima to the current estimates of the optima when solving a series of problems
generated by two different generators separately (solid line) and jontly (dashed
line). Despite the essential differences in the structure of problems, the MIAGS
decreased the maximum deviations of the estimates from the optima, as well as
the mean optima much faster. It evidences that the uniform convergence over
the whole set of problems has been achieved. In the case of the sequential solving
of the problems, the magnitude Dmax takes its maximum value until the last
problem is solved.

4.2 Example of Solving a Multicriteria Problem

In order to demonstrate the efficiency of the approach in the balancing of the
load, let us consider an example, in which a set of problems of the kind (4)
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(a) Dmax (b) Davg

Fig. 2. Dynamics of Davg and Dmax in the course of solving a set of the two- dimen-
sional problems generated by two different generators GKLS and FGR

is generated as a result of scalarization of a multicriteria optimization problem
with constrains.

Let us consider a test problem from [21]:

Minimize

{
f1(y) = 4y2

1 + 4y2
2

f2(y) = (y1 − 5)2 + (y2 − 5)2 , y1 ∈ [−1, 2], y2 ∈ [−2, 1],

s.t.{
g1(y) = (y1 − 5)2 + y2

2 − 25 � 0,
g2(y) = −(y1 − 8)2 − (y2 + 3)2 + 7.7 � 0.

(26)

Let us use the Germeyer convolution for the scalarization of the problem
(26). After the convolution, the scalar objective function takes the form:

ϕ(y, λ1, λ2) = max{λ1f1(y), λ2f2(y)}, (27)

where λ1, λ2 ∈ [0, 1], λ1 + λ2 = 1. Testing all possible convolution coefficients
allows finding the whole set of Pareto-optimal solutions of the problem (26). For
the numerical construction of the Pareto set, let us select 100 sets of coefficients
(λ1, λ2) so that λi

1 = ih, λi
2 = 1 − λi

1, h = 10−2, i = 1, 100.
Computational resources were limited to 2500 trials. The set of auxiliary

scalar problems was solved by two methods:

– each problem was solved separately using IAGS with a preset limit of 25 trials.
This way, the computational resources were distributed among the problems
uniformly;

– all problems were solved simultaneously using MIAGS with a preset limit of
2500 trials.

In both cases, the parameter r = 4.
The plots of solutions obtained by each method are presented in Fig. 3a and

Fig. 3b. All plots agree with the ones presented in [21] qualitatively (the authors
did not provide any other information to compare). The Pareto curve in Fig. 3a
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(a) IAGS, separate solving of the problems (b) MIAGS for the set of problems

Fig. 3. Numerical estimates of Pareto set in the problem (26), obtained after 2500
trials

has concavities that do not match the solution presented in [21], which means
there are not enough resources for solving some auxiliary problems. To evaluate
the quality of solution, the index Spacing(SP ) [15] featuring the density of the
points approximating the Pareto set was computed.

SP (S) =
√

1
|S|−1

∑|S|
i=1(d − di)2, d = mean{di},

di = minsi,sj∈S:si �=sj
||F (si) − F (sj)||1, F = (f1, f2).

When problems were solved separately SPsingle = 0.984, when the load balanc-
ing method was applied SPmulti = 0.749, which evidences a better quality of the
approximation of the solution.

5 Conclusion

This paper demonstrates how the support of the non-convex constraints can be
implemented in the algorithm to solve a set of the global optimization prob-
lems. This study allowed to find the sufficient conditions of convergence for the
developed method. The numerical experiments conducted within this research
demonstrate the advantages of the considered approach over separate solution
of the problems. The efficiency of joint solution of a set of problems was demon-
strated on the example a multicriteria problem with nonlinear constraints. Fur-
ther research in this direction should improve current implementation of the
algorithm by reducing the support costs of the search information for the set of
problems. This, in turn, should improve the calculation speed due to paralleliza-
tion. There are also plans to implement a version of considered algorithm in the
distributed memory according to the scheme described in [2].
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Abstract. The paper considers the problem of scheduling software mod-
ules on a multi-core processor, taking into account the limited bandwidth
of the data bus and the precedence constraints. Two problem formula-
tions with different levels of problem-specific detail are suggested and
both shown to be NP-hard. A mixed integer linear programming (MILP)
model is proposed for the first problem formulation, and a greedy algo-
rithm is developed for the second one. An experimental comparison of
the results of the greedy algorithm and the MILP solutions found by
CPLEX solver is carried out.

Keywords: Multi-core processor · Data bus · Scheduling · Greedy
algorithm · Mixed integer linear programming

1 Introduction

The goal of the paper is to investigate resource constraint scheduling problems
that arise when developing a program for a multi-core processor. In this case,
it is necessary to schedule the execution of software modules on the processor
cores, taking into account the restrictions on the data bus bandwidth. The data
bus is a part of the system bus that is used to transfer data between computer
components, in this particular case, between the CPU and the random access
memory (RAM). Different software modules need different amount of data flow
via data bus, therefore in the case of simultaneous execution of several modules,
each one of them can take longer time than in the case of single-thread execution.
The problem of scheduling software modules on a multi-core processor w.r.t the
limited bandwidth of the data bus is important for processor manufacturers and
parallel software developing companies, since the more efficiently the data bus
is used, the higher the software performance.

From the point of view of scheduling theory, the problem of allocating
the software modules to processor cores with respect to the limited data bus
bandwidth is similar to the scheduling problems with renewable resources (see
e.g. [12]), but unlike those problems, in our case the resource constraint (data
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bus bandwidth) does not exclude some infeasible combinations of jobs (software
modules) but rather increases their execution times. A distinctive feature of our
problem is that each job would be processed at different speeds depending on
its requirement of the data bus bandwidth and the loading of the data bus by
the simultaneous jobs on other cores.

There are a number of approaches to task scheduling with variable processing
times in the literature. First of all, in the area of parallel software development
for multi-core processors, such problems are usually solved using fast heuristics,
which work in the online mode, i.e. the jobs arrive sequentially and only a limited
number of jobs is considered in each moment. The task scheduling heuristics
proposed in [10,18] and some other works are based on the principle that tasks
should be allocated on the CPU cores in a complementary fashion, so that the
tasks with most different resource consumption requirements are co-scheduled
for simultaneous execution (in [10,18] such resources imply the usage of data
bus bandwidth and the cache utilization at different levels).

The tasks scheduling method proposed in [7] is based on the co-run degra-
dation coefficients, equal to an increase in the execution time of an application
when it shares a cache with a co-runner, relative to running solo. In the case of
dual-core CPUs, the threads may be represented as nodes connected by edges,
and the weights of the edges are given by the sum of the mutual co-run degra-
dations between the two threads. Then, under some simplifying assumptions,
an optimal schedule may be found by solving a min-weight perfect matching
problem. In the case of greater number of cores per CPU, the problem is shown
to be NP-hard and several heuristic approximation algorithms are suggested.
Although the methodology from [7] and the corresponding algorithms would
be too expensive to use online, they are acceptable for offline evaluation of the
quality of other approaches.

Authors of [17] propose a novel fairness-aware thread co-scheduling algorithm
based on non-cooperative game to reduce L2 cache misses. The execution time
of a thread varies depending on which threads are running on other cores of
the same chip, because different thread combinations result in different levels of
cache contention. In [16], the cache on each of m chips is shared by u cores on the
each chip. The execution speed of a job running on a chip depends on what jobs
are placed on the same chip. The number of jobs is equal to the total number
of cores, all the jobs start at the same time. It is proved that the problem is
NP-hard and a series of algorithms is presented to compute or approximate the
optimal schedules.

In the production scheduling applications, the problem formulations with
variable processing times are also important, e.g. in [9], a coke production
scheduling problem is considered, where jobs influence on the processing time of
other jobs due to increased production unit temperature. The authors of [9] con-
struct an integer programming model to minimize the makespan, propose several
heuristics, including a genetic algorithm, and compare their performance.

In the scheduling theory, similar problem formulations may be found in the
area of scheduling with controllable processing times. The models and methods
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for the case of preemptive scheduling are surveyed in [15]. In [13], the problem of
job scheduling on identical parallel machines is considered, where the processing
time of jobs is controlled by allocating a non-renewable shared limited resource. It
is proved that if job preemptions are allowed, then the problem of minimizing the
makespan time is solvable in O(n2) operations. In the present paper, however, we
consider a non-preemptive problem formulation. Since the data bus bandwidth
is a renewable resource, we refer to [8] and [2] for the surveys on problems with
renewable resources, where the resource allocations may vary over time. The
case of discrete resources is considered in [2], and the continuous resources are
considered in [8]. The latter paper contains a problem formulation similar to our
formulation F1 considered below, however in [8] it is supposed that the amount
of resources allocated to each job is limited, but continuous and decided by
the scheduler at each moment of time. In our case, the jobs execution speeds
are completely defined by the set of co-scheduled jobs on the other cores (or
machines in the traditional scheduling terminology). In a recent work [1], the
authors focus on assignment of shared continuous resources to the processors,
while the job assignment to processors and the ordering of the jobs is fixed.
These are the main differences to the problem considered in our paper. One more
difference is that unlike [1], we make a continuous time assumption. The authors
of [1] show that, even for unit size jobs, finding an optimal solution is NP-hard
if the number of processors is a part of the input, however a polynomial-time
algorithm for any constant number of processors and unit size jobs exists.

In the present paper, two mathematical problem formulations for the problem
of allocating the software modules to processor cores are proposed with different
levels of problem-specific detail and both shown to be NP-hard. A mixed integer
linear programming (MILP) model using the concept of event points (see e.g. [4])
is proposed for the more detailed problem formulation, and a greedy algorithm
is developed for the other one. A comparison of the greedy algorithm results and
the MILP solutions found by CPLEX solver is carried out.

The paper has the following structure. Two problem formulations are pro-
posed in Sect. 2. NP-hardness of both problem formulations is shown in Sect. 3.
A mixed integer linear programming model for the first problem formulation is
suggested in Sect. 4. The greedy heuristic for the second problem formulation is
described in Sect. 5. Methods of real-life input data generation and testing are
explained in Sect. 6. The results of computational experiments are presented in
Sect. 7. Concluding remarks are given in Sect. 8.

2 Problem Formulations

Informally, our problem is to schedule execution of software modules (jobs) on
a number of processor cores, while there is one resource of a renewable type,
the bandwidth of the data bus, and the precedence constraints for execution of
these modules are given as a partial order on the set of jobs, and the objective is
to minimize the makespan. Here we assume that each module creates a uniform
data flow through the data bus, so that the amount of information sent by a
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module through the data bus in both directions (from CPU to RAM and back)
is proportional to the fraction of the completed job (i.e. the ratio of the executed
elementary operations of a job to the total number of elementary operations in
this job). Examples of software modules with (almost) uniform data flow may be
the computational routines with multiple repetitions of the same loop or copying
large data arrays.

Formulation F1. There are m jobs, c processor cores. The jobs are performed
with no preemption and do not migrate from one core to another during the
execution. No more than one job can be performed on a single core.

For each job p, p = 1, ...,m, let sp denote its processing time under ideal
conditions. Here and below, by ideal conditions we mean job execution when no
other job is performed simultaneously.

We will call a configuration any set of jobs which may be performed simulta-
neously on different cores, taking into account the partial order on the set of jobs
(a configuration can not contain a pair of jobs where one job precedes another
according to the partial order) and the restrictions on the number of cores. Let
K denote the set of all configurations. Suppose that in zero configuration no job
is performed. Clearly, the partial order on the set of jobs also induces a partial
order on the set of configurations K.

Let us call a processing speed of job p in configuration k ∈ K the ratio of the
time of full execution of job p under ideal conditions to the time of full execution
of job p, if p was executed all this time in configuration k. Throughout each
configuration, the speed of all jobs is supposed to be constant, but the processing
speed of a job may vary during its execution, depending on the configuration
in which it is performed. The configuration can be changed in two cases: the
first case is when one of the jobs in the current configuration has completely
completed and the second case is when some job(s) is added to the current
configuration. If the configuration is changed, the speed of those jobs that are
still in progress may change.

So, for each configuration of k ∈ K we know which jobs it consists of. For
each job p in configuration k, the speed of its execution vpk is known.

The problem consists in scheduling the jobs on the processor cores with the
minimum makespan (i.e. the time of completion of all jobs).

Since the number of configurations can be very large (up to
∑c

i=0

(
m
i

)
,

depending on the partial order), the problem formulation F1 can be simpli-
fied by introducing the assumption that the job execution speeds are calculated
based on their actual consumption of the data bus. In practice, the job speed
depends on a large number of factors such as the number of memory access
channels for the processor, the number of processor cache levels and their free
volume, the processor frequency and its temperature (depending on the specific
processor and related components). Explicit consideration of all these factors is
beyond the scope of this paper. Based on practice, we suggest another prob-
lem formulation which is based on the jobs usage of data bus bandwidth. This
problem formulation can be written as follows.
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Formulation F2. There are m jobs, c processor cores and one renewable
resource, the data bus. Just like in Formulation F1, the jobs are performed
without preemption or migration from one core to another, and a partial order
on jobs is given. It is required to schedule the jobs on the processor cores with
the minimum makespan.

Now we suppose that for each job p, p = 1, ...,m, the percentage of data bus
consumption bp under ideal conditions is known. During the execution of job p,
a smaller percentage of the data bus can be allocated than bp if other jobs are
simultaneously performed on other cores. Denote by zpk the actually allocated
percentage of the data bus to job p in configuration k. In practice, the distribu-
tion of values zpk among the threads is very hardware-specific and depends on
many factors, which we can not afford to take into account (see e.g. [11]). As
a simple approximation, we assume that the data bus bandwidth allocation to
jobs in any configuration k may be found by Algorithm 1, described below. The
speed vpk of execution of job p in the configuration k is then proportional to the
ratio zpk/bp.

Algorithm 1. Calculation of data bus consumption for a given configuration

Step 0. Put the percentage of the free data bus freePercent := 100% (the
entire data bus is free) and set the number of jobs for which the data bus is not
allocated, jobsCount to be the number of jobs in configuration k.

Step 1. While jobsCount is not 0, do:
1.1 Calculate a percentage of data bus that can be allocated to each job:

percent := freePercent/jobsCount.
1.2 If the configuration has such a job p that bp < percent, then put:

zpk := bp,
freePercent := freePercent − bp,
jobsCount := jobsCount − 1.

If no such job is found, then put zpk := percent for each remaining
job and jobsCount := 0.

Step 3. Output computed values zpk.

This method of capacity allocation is different from the concurrent network
flow allocation, well-known in multicommodity flow problems (see e.g. [14]),
where the ratio of the flow of each commodity to the predefined flow demand
for that commodity must be the same for all commodities. We expect that the
capacity allocation represented by Algorithm 1 is more adequate to the case of
data bus information flows because in this case a software module has no explicit
way to communicate its flow demand to the system.

3 Problem Complexity

We will show that the decision versions in both formulations contain an NP-
complete special case of Multiprocessor Scheduling problem [3] as a special
case. Here is a formulation of this problem:
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Given a set T of tasks, number w ∈ Z
+ of processors, length l(t) ∈ Z

+ for
each t ∈ T , and a deadline D ∈ Z

+, is there a w-processor schedule for T that
meets the overall deadline D?

In [3] it is also proved that the Multiprocessor Scheduling problem
remains NP-complete in the special case of w = 2.

Proposition 1. The problem of multi-core processor scheduling with respect to
data bus bandwidth is NP-hard for both formulations F1 and F2.

Proof. The Multiprocessor Scheduling problem is a special case of the
decision version of the problem of multi-core processor scheduling with respect
to data bus bandwidth in Formulation F2 in the special case where: (i) jobs do
not slow each other, (ii) there is no partial order constraint, and (iii) the set of
tasks T is equal to the set of jobs, assuming that the number of processors is
the number of cores.

To prove the NP-hardness of the problem in Formulation F1, put the number
of cores equal to 2. In this case, the number of configurations is 1 + m + m(m−1)

2
and, therefore, the input size of the problem in question is limited by a polyno-
mial of the input size of the Multiprocessor Scheduling problem. �

4 Mixed Integer Linear Programming Model

Consider a mixed integer linear programming (MILP) model for the first problem
formulation. We define the concept of an event point similar to that introduced
in [4]. In this paper, an event point characterises a time interval in which a
single configuration is performed. It is defined by the number of the interval, its
duration and the configuration used in it.

Let P = {1, ...,m} denote the set of all jobs. The following set of parameters
may be computed on the basis of an instance given in Formulation F1:

• qpk = 1 if and only if job p is performed in configuration k, 0 otherwise.
• aij = 1 if and only if configuration i should run after configuration j, 0 oth-

erwise.
• Tmax is an upper bound on the duration of any configuration at any event

point.

Let us denote by N = {0, 1, 2, ..., e} the set of all event points, where e is the
maximal index of event points, and introduce the problem variables:

• tnk is duration of execution of configuration k at the event point n.
• dnk = 1 if and only if configuration k is performed at the event point n,

0 otherwise. For consistency of the MILP model, we assume that the zero
configuration is performed at the zero point of events. Then d00 = 1 and
d0k = 0, k ∈ K.

• ypn = 1 if and only if job p started at the event point n, 0 otherwise.
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Then the MILP model can be written as follows:

min
∑

n∈N

∑

k∈K

tnk, (1)

tnk ≥ 0, n ∈ N, k ∈ K, (2)

tnk ≤ dnkTmax, n ∈ N, k ∈ K, (3)

∑

k∈K

dnk = 1, n ∈ N, (4)

∑

n∈N

∑

k∈K

tnkvpk = sp, p ∈ P, (5)

∑

k∈K

dnkqpk −
∑

k∈K

dn−1,kqpk ≤ ypn, p ∈ P, n ∈ N, (6)

∑

n∈N

ypn = 1, p ∈ P, (7)

ak1,k2dn1,k2(n1 + 1) ≤ ak1,k2(dn2,k1 + (1 − dn2,k1)e)n2, k1, k2 ∈ K, n1, n2 ∈ N,
(8)

dnk ∈ {0, 1} , ypn ∈ {0, 1} , p ∈ P, n ∈ N, k ∈ K. (9)

The objective function (1) defines the makespan criterion. Inequality (2)
guarantees that the duration of execution of configuration k at the event point n
is non-negative, and inequality (3) guarantees that the duration of execution of
configuration k will be zero only if this configuration is not executed at the event
point n, otherwise it will be no more than Tmax. Equality (4) means that one
and only one configuration is performed at each event point, and equality (5)
means that each job must be completed completely. Inequality (6) and equal-
ity (7) guarantee continuity of job. Inequality (8) sets a partial order between
configurations. Expression (9) describes the range of the dnk and ypn variables.

Proposition 2. There is an optimal solution to MILP model (1)–(9)
using 2m + 1 event points, which defines an optimal schedule in Formulation F1.

Proof. Note that each event point corresponds to a change of configurations,
and a change only occurs when any job (or several jobs) has begun or has ended.
Suppose that at each event point only one job begins or ends, then it is easy to
see that in this case 2m event points are needed. We also take into account that
we need a zero point of events, the point at which no configuration is performed.
This implies that in the case when no two jobs start and end at the same time,
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the number of event points is 2m + 1. In any other case, a smaller number of
event points would be required. �

Thus, in what follows we assign e := 2m.
It is worth noting that the solutions to MILP model (1)–(9) prodive the

information about which configurations are performed at which event point, but
do not contain the distribution of jobs to the cores. For scheduling the execution
of jobs on the processor cores (as Formulation F1 requires), the following Algo-
rithm 2 is proposed which takes as input k1, k2, . . . , kh, configurations sorted by
execution order, as well as their execution time lk1 , lk2 , ..., lkh

and the number of
cores c. The algorithm returns the staring time up and the completion time fp
for each job p.

Algorithm 2. Jobs scheduling on the basis of MILP solution

Step 1. For each job p from k1 assign a free core and set up := 0
Step 2. For each ki, i = 2, ..., h do:

2.1 For each job p ∈ ki ∩ ki−1, keep the same core.
2.2 For each job p ∈ ki−1\ki free the core on which job p was performed,

and set fp :=
∑i−1

j=1 lki
.

2.3 For each job p ∈ ki\ki−1 assign a free core and set up :=
∑i−1

j=1 lki
.

5 Greedy Algorithm

In view of the fact that the problem is NP-hard, a constructive heuristic has been
proposed for formulation F2. In what follows, this heuristic is called the greedy
algorithm, because it assigns jobs to all cores, not allowing them to stand idle,
if possible. At each iteration, the algorithm selects a set of jobs (configuration)
to perform, trying to select jobs so that when allocation the data bus between
them, each job gets the most closest share of the data bus to the one it needs,
but at the same time the maximum possible number of cores should be loaded.
After selecting a configuration, the greedy algorithm determines the completion
of which of the selected jobs will lead to switching the next configuration. To
this end, firstly, the algorithm calculates what percentage of the data bus will
be allocated to each job, and then, on the basis of these data, it determines
the speed of processing the selected jobs. To give a detailed description of the
greedy algorithm, let us denote by k1, k2, ..., ki, ... the sequence of configurations
generated by the greedy algorithm, and denote by durationi the duration of the
configuration ki. Then the algorithm can be written as follows.

Algorithm 3. Greedy algorithm

Step 0. Put percentage of free data bus freePercent := 100% (the entire
data bus is free); number of free cores freeCores := c (all cores are free);
i := 1; ki := ∅; durationi := 0; time remaining for job p to completion under
ideal conditions leftT imep := sp; a set of all jobs that have not started yet:
jobs := {1, ...,m}
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Iteration i. Repeat Steps 1–7:
Step 1. While freePercent > 0 and freeCores is not 0, repeat 1.1.-1.2:

1.1. Find an admissible (not started earlier and not forbidden by the
partial order) job p ∈ jobs for which the value |freePercent − bp| is minimal. In
other words, find such valid job p ∈ jobs, which has the bus requirement closest
to freePercent. If no such job is found, then go to Step 3.

1.2. Put
freePercent := freePercent − bp;
freeCores := freeCores − 1;
jobs := jobs − {p};
ki := ki ∪ {p}.

Step 2. While freeCores is not 0, repeat 2.1.-2.2:
2.1. Find an admissible job p ∈ jobs that has the lowest data bus con-

sumption. If no valid job is found, then go to Step 3.
2.2. Put

freeCores := freeCores − 1;
jobs := jobs − {p};
ki := ki ∪ {p}.

Step 3. If ki = ∅, then go to Step 8. Otherwise, distribute the data bus
capacity between the jobs according to Algorithm 1, which gives the value zpki

– allocated percentage of the data bus to job p in configuration ki.
Step 4. Calculate processing speed vpki

of all jobs p ∈ ki in configuration ki:
vpki

:= zpki
/bp.

Step 5. Determine which job will be fully completed first in the chosen
configuration and set the duration of the configuration ki equal to the duration
of this job in the configuration ki:

durationi := minp∈ki
{leftT imep/vpki

}.
Step 6. For all p ∈ ki, for which leftT imep/vpki

is equal to durationi, set
leftT imep := 0.

Step 7. Put
freeCores := c;
freePercent := 100%;
ki+1 := ∅.

For all p ∈ ki, for which leftT imep/vpki
is not equal to durationi, put

leftT imep := leftT imep − durationivpki
/sp;

ki+1 := ki+1 ∪ {p};
i := i + 1;
freePercent := freePercent − bp;
freeCores := freeCores − 1.

Step 8. Distribute the jobs among the cores according to Algorithm 2.

It is not difficult to see that the greedy algorithm constructs a feasible sched-
ule and may be implemented with time complexity O(n2).
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6 Methods of Data Generation and Schedules Testing

All calculations described in Sects. 6 and 7 were carried out on a computer with
16 GB of RAM and Intel Core i7-8565U 1.80 GHz CPU. The operating system
used was Windows 10 version 1909. The number of threads used for calculations
did not exceed the number of processor cores, so the impact of other processes
and the operating system itself can be considered insignificant. Turbo Boost [6]
and Hyper-threading [5] options were turned off in order to be sure that the CPU
temperature and other uncontrolled factors do not influence the jobs processing
times. All the programs described below were implemented in C++. For the
computational experiment, the following procedures taken from the Intel MKL
(Math Kernel Library) are used as jobs:

– copying a vector to another vector,
– calculation of the sum of magnitudes of the vector elements,
– calculation of a vector-scalar product and adding the result to a vector,
– calculation of the QR factorization of a matrix.

The choice of such procedures is due to the fact that they consume the data
bus in different ways. The input data to the procedures has different sizes (for
procedures with vectors, this is the vector length, for procedures with matrices,
this is the matrix size). For vectors, the dimensions from 10 to 70 million elements
were used, for matrices, the dimensions varied from 1000 to 1300. Such sizes are
due to the requirement that the jobs data should not be kept in the processor’s
cache and their durations should not be too small (otherwise large measurement
errors can occur) and they should not be too large (otherwise the measurements
will take too much CPU time).

Input parameters for the generator:

– The number of jobs for which a schedule needs to be made. Values used: 4, 6,
7, 8, 10 (finding optimal solutions for 11 or more jobs takes about one hour,
and for 13 and more jobs the generated model size is more than 26 Gb).

– Partial order to be generated for the jobs. Values used: (i) with a trivial partial
order (no dependencies between the jobs), (ii) constructed at random (With
probability 0.5 we decide that a job p1 should be performed after job p2. To
avoid cycles, only pairs of jobs (p1, p2) where (p1 > p2) are considered.), (iii) a
binary tree, and (iv) one-to-many-to-one.

– Number of cores. Values used: 2, 3, 4.

6.1 Calculation of the Data Bus Consumption

All data, except for the data bus consumption by each job, necessary for the
greedy algorithm, was taken from the examples generated in Sect. 6: the number
of time units needed for each job, the partial order, and the number of cores. To
calculate the percentage of the data bus consumed by job p, we used a program
that works as follows:
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– Job p was started simultaneously in c copies (c is equal to the number of cores
on the computer used), after that the speed s∗

p of the job was calculated as
the execution time of job p under ideal conditions, divided by the execution
time of job p along with (c − 1) copies of the same job, then 100%

s∗
pci

is taken as
the desired data bus consumption.

– If c copies of job p running simultaneously did not slow down each other, then
this job was started with (c − 1) copies of job g, which has the highest data
bus consumption. In this case, the percentage of data bus consumption by job
p can be found as follows: 100% − (c − 1)x, where x is the percentage of the
data bus required by job g, multiplied by the speed of g in this configuration.
If, in this case, no job has slowed down, then job p in any configuration does
not affect the speed of other jobs, therefore, the data bus consumption by
job p can be set equal to 0.

6.2 Experimental Measurement of Makespan for the Constructed
Schedules

Using the generator from Subsect. 6, we calculated the real speed of jobs in
various configurations. However, the greedy algorithm calculates these speeds
based on data on the consumption of the data bus by each job according to
formulation F2. In order to understand how adequate the completion times are
estimated in the MILP model using formulation F1 and in the greedy algo-
rithm using formulation F2, and how the greedy solutions compare to the MILP
solutions, a program code was written that simulated the execution of a given
schedule on the processor cores.

In this testing program, threads are created in an amount equal to the number
of cores of the simulated processor. Each thread is passed a job queue in the
order in which they need to be executed. Before starting to perform the next
job, the thread expects the completion of all previous jobs. If the core should
be idle between performing two jobs, then a fictitious job is added to the queue
between the corresponding jobs.

7 Computational Experiment

Schedules constructed using GAMS modeling system with MILP model (1)–(9)
were tested using the program described in Subsect. 6.2. Figure 1 shows the
histogram of relative deviation (in percentage) of the makespan calculated by
the CPLEX package from the measured makespan. In total, 964 schedules were
tested, in all of them the deviation does not exceed 11%, in 98% of them it does
not exceed 10%, and in 73% it does not exceed 5%.

Schedules constructed by the greedy algorithm were also tested using the
program described in Subsect. 6.2. Figure 2 shows a histogram of relative devi-
ation (in percentage) of completion time reported by the greedy algorithm from
the real completion time.
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Fig. 1. Histogram of relative deviation of the minimum completion time in formula-
tion F1 from the real completion time

Fig. 2. Histogram of relative deviation of completion time reported by the greedy
algorithm from the real completion time

In total 984 schedules with different number of jobs, different partial orders,
and different number of cores were tested. In most of the cases (95%), the
makespan evaluation computed in greedy algorithm differs from that obtained
in the experiment by no more than 10%, and in 73% of cases by at most 5%.
In 100% of cases the deviation does not exceed 14%. Such results show a fairly
high accuracy of evaluation of the jobs processing time in the greedy algorithm.

Let us denote by r := ga f2real

opt f1real
the ratio of the real measured makespan of the

greedy schedules (ga f2real) in formulation F2 to the real measured makespan of
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the optimal schedules (opt f1real) in formulation F1. Figure 3 shows a box-plot
diagram of r ratio for different numbers of jobs.

Fig. 3. Ratio of the real measured makespan for greedy schedules in formulation F2 to
the measured makespan of optimal schedules in formulation F1

For each number of jobs, 192 schedules with different partial orders and
number of cores were tested. It can be noted that the median ratio r for each
number of jobs is close to 1.05, which allows us to conclude that the greedy
algorithm is highly accurate. It is also worth noting that even in the worst cases,
the makespan of greedy schedule exceeds the mistaken found by the MILP model
in formulation F1 not more than by a factor of 1.4. In Fig. 3, one can also see
that in some cases the solutions of the greedy algorithm in real life turn out to be
faster than the optimal solutions, however, the difference does not exceed 10%
and may be related to the error in calculating the input data of the problem and
in testing of the obtained solutions.

Tables 2 and 1 show the CPU time of the greedy algorithm (Table 2) and the
CPU time of the CPLEX package (Table 1) for different types of partial order
and different numbers of jobs. The CPLEX package most quickly finds solutions

Table 1. Average CPU time of the CPLEX package

4 jobs 6 jobs 7 jobs 8 jobs 10 jobs

No ordering 0.4 s 4.3 min 13 min 16 min 15.5 min

One to many to one 0.2 s 3 s 26 s 6.3 min 14.8 min

Random order 0.2 s 3.6 s 18 s 32 s 3.6 min

Bitree order 0.2 s 4 s 1.5 min 7.2 min 16 min
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Table 2. Average CPU time of the greedy algorithm

4 jobs 6 jobs 7 jobs 8 jobs 10 jobs

No ordering 2.5 µs 3.9 µs 4.8 µs 6.4 µs 8.1 µs

One-to-many-to-one 2.5 µs 4.6 µs 5.8 µs 6.9 µs 9.6 µs

Random order 2.6 µs 4.4 µs 6.2 µs 7.7 µs 11.4 µs

Bitree order 2.8 µs 4.5 µs 6 µs 6.9 µs 9.5 µs

for jobs with random partial order, since this type of partial order is usually
more constraining than others, and most slowly for the trivial partial order. The
greedy algorithm, on the contrary, works faster with trivial partial order, and
slower for the random partial order. Still for all types of partial order and for
any number of jobs it is much faster than CPLEX.

8 Conclusions

In the paper, the problem of multi-core processor scheduling was analyzed taking
into account the bandwidth limitations of the data bus. Two problem formula-
tions are suggested. A mixed integer linear programming model is proposed for
the first problem formulation and the MILP solutions were found by CPLEX
solver. A greedy algorithm for approximate solving the problem is proposed for
the second problem formulation.

The schedules found by the CPLEX package and the greedy algorithm were
tested using a program simulating the execution of jobs on the processor cores.
The greedy algorithm has only a quadratic running time and a fairly high accu-
racy: a real-life testing showed that in 83% of the cases the makespan of a greedy
schedule deviated from the optimal solution of MILP model less than by 10%,
and in 60% of the cases the deviation was less than by 5%. We can conclude
that the proposed algorithm of calculation of data bus consumption for a given
configuration and the method of calculating the speed of jobs based on these
data are close to what happens in real life.

Acknowledgment. The work was funded by project 0314-2019-0019 of Russian
Academy of Sciences (the Program of basic research I.5).
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Abstract. An optimization problem that arises during tool path rout-
ing for CNC sheet cutting machine is considered for the case when parts
are bounded by line segments and circular arcs and pierce points lay on
the bounds. Technique of continuous cutting is used, i.e. each contour is
cut as a whole from any starting point. The task of tool path length min-
imization is reduced to the task of air move length minimization which is
shown to be equivalent to finding the shortest broken line with vertices
on non-nesting disjoint contours on the plane. The algorithm of build-
ing such a broken line for a fixed order of contour processing is devised
and proved to deliver local minimum. Some sufficient conditions for this
minimum to be global are discussed. A heuristic algorithm for finding
the optimal contour cutting order is proposed based on Variable Neigh-
borhood Search approach. Results of a computational experiment and a
comparison with the exact solution of GTSP problem are presented.

Keywords: Tool path problem · Continuous cutting problem · Local
search · Sufficient conditions of global extremum · Heuristic · Discrete
optimization · Variable neighborhood search · GTSP

1 Introduction

A number of optimization problems arise during development of control pro-
grams for CNC sheet cutting machines. One of them is the task of minimizing
the tool air move, which in some special cases can be reduced to the prob-
lem of finding the shortest polyline with vertices on flat contours. Contours are
interpreted as the boundaries of flat parts. The location of the contours on the
plane is determined during the solution of the “nesting” problem. Both tasks are
generally NP-hard.
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In its turn, the task of minimizing tool air move is a subtask of another
optimization problem – the task of optimizing the tool path when cutting flat
parts. Its exact solution cannot be obtained for problems that actually arise
in production (for hundreds of parts/contours) in a reasonable time, therefore,
various heuristics are typically applied to get solutions of acceptable quality. At
the same time, the issues of developing algorithms that provide optimal solutions
for some problem cases, as well as evaluating the quality of their solutions in
comparison with the optimal solution, remain unresolved and are of significant
scientific interest.

The general problem of optimizing the tool path when cutting 2D objects
on CNC machines, which consists in minimizing cutting time and cost, includes
a whole range of different optimization tasks. A classification of such problems
can be found in [9,13,22], see Fig. 1.

– Continuous Cutting Problem (CCP): each closed contour (that bounds a part)
is cut out entirely by one movement of the torch, but cutting can start from
any point (and finishes at the same point).

– Generalized Traveling Salesman Problem (GTSP): cutting can start only at
one of the predefined points on the contour, the contour must be cut entirely.

– Endpoint Cutting Problem (ECP): cutting can start only at one of the prede-
fined points on the contour, and the contour can be cut in several approaches,
in parts.

– Segment Continuous Cutting Problem (SCCP): the notion of a cutting seg-
ment is introduced, which is a generalization of a contour; it can be either a
part of a contour or a combination of several contours or their parts. Each
segment is cut out entirely, thus CCP ⊂ SCCP .

– Generalized Segment Continuous Cutting Problem (GSCCP): segment cut-
ting (SCCP), but the selection of segments is not fixed in advance, but is
subject to optimization

– Intermittent Cutting Problem (ICP): the most general cutting problem
described in the literature, when contours can be cut in parts, in several
approaches, and cutting can begin at any point in the contour.

Tool path optimization problems in practice often reduce to discrete opti-
mization problems by discretizing the contours to be cut with a certain step ε,
that is, they reduce to ECP [8,14,24] or its special case, GTSP [3,18,27,28].
CCP can also be reduced to GTSP. In this case, however, the total error in the
air move length reaches N · ε, where N is the number of contours. To guarantee
the accuracy of the result of δ, it is necessary to choose a small ε ≈ δ/N , so the
total number of points on the contour grows (as O(N)) and the exhaustive search
becomes exponential. Nevertheless, such problems can be successfully solved, for
example, by the dynamic programming (DP) method, for small N ≈ 30 even
precisely (see, in particular [6]).

Tool path routing without using discretization (CCP) is further considered
in this paper. The publications on this subject are rare. [1,26] can be noted,
where heuristic algorithms are proposed.
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Fig. 1. Classification of Cutting Problems

1.1 Technological Constraints

The need to execute the tool path on a CNC sheet cutting machine imposes a
number of technological limitations on it.

The so-called “precedence constraint” is by far most popular in the literature.
It is caused by the fact that after cutting a closed contour, its interior is usually
not held by anything and can freely shift, rotate and even fall. For this reason,
the internal contours of parts must be cut before the external contours containing
them, and parts located in the holes of large parts even earlier.

Finally, most cutting technologies require that the cutting not be carried
out strictly along the contour, but with some indentation. This shift can be
performed both during the solution of the routing problem, and after – at the
stage of generating the control program for the CNC cutting machine or even
by the machine itself during the cutting process. In addition, the pierce point
(tool switch-on point) should generally be located even further from the contour
to avoid part damage. However, this work completely ignores this requirement.
Thus, it is further assumed that the tool moves exactly along the contour of
the part and the pierce point is located directly on the contour (as well as the
switch-off point of the tool).

2 Continuous Cutting Problem

Consider the Euclidean plane R
2 and its region B bounded by a closed contour

(rectangle in most cases), which is a model of the sheet material to be cut. Let
N pairwise disjoint flat contours {C1, C2, ..., CN} be given inside B, bounding
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n parts {A1, A2, ..., An}. A part can be limited by either one contour or several
(external and internal holes), so that in general n ≤ N .

The contours Ci can have an arbitrary shape, but we will only consider the
case when they consist of (a finite number of) segments of lines and arcs of
circles, which is determined by the existing technological equipment. In case
when the contours consist only of line segments, the continuous cutting problem
is reduced to one of the variants of the Touring Polygon Problem (TPP), see
[10].

Further, two points are set in region B (usually at its boundary), we denote
them as M0, MN+1 (almost always M0 = MN+1), which represent the beginning
and end of the cutting route.

Continuous Cutting Problem is to find:

1. N pierce points Mi ∈ Ci, i ∈ 1, N
2. Contour Ci traversal order, i.e. permutations of N elements I = (i1, i2, ..., iN )

The result of solving the problem will be the route {M0,Mi1 ,Mi2 , . . . MiN ,
MN+1}. The objective function in this case is greatly simplified in comparison
with the general cutting problem and is reduced to minimizing the air move
length.

L =
N∑

j=0

|MijMij+1 | (1)

L → min

Where, for sake of simplicity, we introduce the notation Mi0 = M0, MiN+1 =
MN+1.

In addition, we will solve the optimization problem with an additional con-
straint, the so-called “precedence constraint”. Although the contours Ci do not
intersect, they can be nested into each other, i.e., C̃a ⊂ C̃b, where C̃a denotes a
2-dimensional figure bounded by the contour Ca (in the more familiar notation
Ca = ∂C̃a). In the general tool path routing problem, this can be caused by two
different circumstances (holes in parts and placement of smaller parts in holes
larger to save material), but in this case these options are processed the same
way.

If one contour is located inside another, then the nested contour must be cut
out (visited) earlier than the outer one: C̃a ⊂ C̃b ⇒ ia < ib in the permutation
I = (i1, i2, ..., iN ). Thus, not all permutation of the contours are feasible.

3 CCP-Relax Algorithm to Solve Continuous Cutting
Problem

The proposed solution algorithm consists of several stages, easily associated with
the nature of the problem being solved:
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1. Removal of external contours. To automatically comply with the prece-
dence constraint, we start by removing all contours containing nested ones.
This generally leads to a reduction (significant in some cases) of the size of
the problem (from N to some N ′), and thus reduces the calculation time in
the second and especially the third stage.

2. Continuous optimization. Assuming the order of contours processing
I = (i1, i2, ..., iN ) fixed we look for the coordinates of the pierce points
Mi ∈ Ci, minimizing the total air move length (1).
For every pierce point Mi we find it’s optimal position, while others remain
motionless. This relaxation is repeated a few times until converged. In prac-
tice, it happens very fast in O(N) time and is therefore used as a subroutine
in the next step.

3. Discrete optimization. We use Variable Neighborhood Search (VNS, see
[12]) to find contours processing order I = (i1, i2, ..., iN ).
This step in fact solves famous Travelling Salesman Problem with special
distance function, calculated at the previous step:

L(I ′) = min
M1,M2...MN

L(M1,M2 . . . MN |I ′)

Note, that other heuristics for discrete optimization may be used at this step
as well. For instance, one can use modern solvers to first solve GTSP prob-
lem, associated with CCP, and then apply continuous relaxation (previous
step) to convert solution of GTSP to that of CCP. This idea deserves further
investigation.

4. Recovery of removed contours. Having got the tool path that visits
“inner” contours (remained after first step), we find piercing points for other
contours by simple intersecting them with the tool path. Of multiple points
we select one (for each contour) so as to meet precedence constraint.
This is straightforward step of linear time complexity.

For detailed explanation of the CCP-Relax algorithm steps refer to [20].

3.1 Optimality of Continuous Optimization Problem Solution

From a practical point of view, the described algorithm turns out to be quite
workable – it generates high-quality tool path routes in an acceptable time, but
this is an empirical result. The theoretical justification of the properties of the
resulting routes is interesting. The greatest difficulty is, of course, the third step
of the algorithm – discrete optimization, both from a theoretical and a practical
point of view. This work focuses the second step of the algorithm – continuous
optimization.

Remark 1. Figure 2 shows an example where a trajectory that is not improved
by shifts of vertices individually may not deliver a global minimum.

We were able to formulate some statements regarding the quality of continu-
ous optimization solutions at Step 2 of CCP-Relax algorithm. We present them
here without proof, which will be published in a separate paper.
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M3M0

C2C1

Global minimum

Local minimum

Fig. 2. Two tool paths delivering local minimum

We consider the case of fixed order of contours processing I = (i1, i2, ..., iN ).
and apply Step 2 of CCP-Relax algorithm to get broken line L∗, visiting all the
contours Ci in the said order.

Proposition 1. If we move several adjacent vertices of the broken line L∗ so
that they remain on the same segments of the contours, then the length of the
resulting broken line will not decrease.

This statement means that the algorithm always delivers a local minimum,
however not yet global, as for example in Fig. 2.

To guarantee the latter, the following sufficient condition may be required:

Condition 1. Let one of the following requirements be satisfied for every pierc-
ing point Mi:

1. Segment Mi−1Mi+1 intersects the contour Ci, i.e. Mi ∈ Mi−1Mi+1

2. The tangent at Mi to the ellipse with foci Mi−1 and Mi+1 and passing through
Mi separates the ellipse and the contour Ci.

Proposition 2. Let Condition 1 is satisfied for (every vertex of) L∗.
If we move several adjacent vertices of the broken line L∗ so that they remain

on the contours, then the length of the resulting broken line does not decrease,
that is, the broken line L∗ delivers a global minimum.

Remark 2. Suppose that besides the trajectory L∗, there is another trajectory
delivering a global minimum. Then it follows from the last statement that they
coincide as lines, that is, the difference can only be at the points of intersection
with the contours.

Condition 1 is easily verified programmatically, but it can be simplified so
that in most practical cases to be checked simply visually.
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Condition 2. When segment Mi−1Mi+1 doesn’t intersects the contour Ci but

1. If the vertex Mi is the internal point of the linear segment of the contour and
the entire contour Ci is on one side of the that segment line (which is the
tangent from Condition 1; otherwise there must be a better M ′

i ∈ Ci).
2. If the vertex Mi is terminal (belongs to two linear segments of the contour; is

also vertex of Ci), and the entire contour is inside the corner with the rays
from the point Mi along these segments.

3. If the region C̃i bounded by the contour Ci is convex.

4 New Approach to Intermittent Cutting Problem

Intermittent Cutting Problem is the most complex and general of all varieties
of cutting problems. It can be approached to both from theoretical positions as
well as by using some practical techniques.

In addition to standard cutting technique (which in fact leads to Continuous
Cutting Problem), some others are often used, for instance, “multi-segment”
and “multi-contour” cutting. The former cuts single contour of a part in several
passes, using several piercing points. The latter cuts a few contours at once, as
seen at Fig. 3.

Fig. 3. Example of complex cutting segment for six parts/contours

In order to apply those technique we introduce a notion (see [21]):
Cutting Segment S =

−−−→
MM∗ is a tool trajectory from piercing point M up to

point of switching tool off M∗.
Cutting segment is used to contain single contour, but this is not the case

any more. It also can be a part of contour (for multi-segment cutting) as well as
several contours at once (i.e. multi-contour cutting).

In fact, multi-contour cutting example at Fig. 3 can also represent a single
cutting segment in some bigger cutting problem instance.
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Since the cutting direction is defined for the cutting segment, we need a more
general concept:

Basic Segment BS is a part of cutting segment S =
−−−→
MM∗ without lead-in

and lead-out trajectory (the very beginning and ending parts of segment, where
tool approaches contour of a part and leaves it). Basic segment has no direction
and contains only geometry of contours to cut.

Using the concept of basic segment, we can now formulate a generalization
of CCP:

Segment Continuous Cutting Problem (SCCP ) is a cutting problem with
fixed set (as well as number of) basic cutting segments: SCCP =

{
BSi

}
.

CCP-Relax algorithm described above can be applied to solve SCCP problem
in the same way as for CCP problem for which it was originally designed.

And now, note that for predefined nesting (i.e. fixed positioning of parts’
contours on the plain), the whole ensemble of basic segments can be generated
by combining and dividing contours into different segments. See, for instance,
Fig. 4, where multi-contour segments are filled with black color. This leads us to
even more general:

(a) Standard cutting, 45 segments (b) Multi-contour cutting, 39 segments

Fig. 4. Ensemble of Segment Cutting Problems

Generalized Segment Continuous Cutting Problem (GSCCP ) is that ensem-
ble of several SCCP problems for the same nesting: GSCCP = {SCCPi}.

By introducing the class of GSCCP , we have significantly expanded the
existing classification of tool path problem for CNC sheet cutting machines.
Actually SCCP and GSCCP are ICP subclasses containing all tasks with finite
sets of basic cutting segments, i.e. CCP ⊂ SCCP ⊂ GSCCP ⊂ ICP .
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General Scheme for GSCCP Solving

Assuming an ensemble {SCCPi} of base segment sets SCCPi =
{
BSj

}
, i ∈

1, T , j ∈ 1,Ki to be known, the following scheme for GSCCP solving is presented:

– Each task SCCPi is solved independently with one of existing algorithms, for
instance:
1. CCP-Relax, heuristic described above in Sect. 3.
2. DP-GTSP, exact algorithm based on Dymaic programming for the case

of relatively small problem dimensions, see [6]
3. Greedy-GTSP, iterative greedy heuristic algorithm, see [19]

For discrete algorithm to use, cutting segments can be pre-sampled as shown
at Fig. 5.

– The best solution is selected according to objective function (1).

Fig. 5. Corresponding GTSP problem for (S)CCP problem of Fig. 4, 425 points

For example, Fig. 6 shows two solutions of SCCP problems from Fig. 4 given
by CCP-Relax algorithm. It is easy to see that the two routes are indeed different.
Furthermore, the difference can be even more significant in a practical sense due
to different numbers of piercing points, since that operation is rather expensive
both in terms of time and cost.

5 Numerical Experiments

The quality assessment of the solutions of the described algorithm was carried
out on several cutting plans containing real parts. As a comparison base, we
used DP algorithm (see [6]) for solving the GTSP problem, which gives an exact
solution for small number of contours and special version of GNLS heuristic [25].
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(a) Standard cutting (b) Multi-contour cutting

Fig. 6. Solution of GSCCP Problem at Fig. 4

Figure 7 shows the exact solution, possible positions of the pierce points are
visible. Figure 8 shows the solution to the CCP problem for the same cutting
plan.

Fig. 7. Exact solution of GTSP, Job #464

It can be seen that both algorithms generated almost identical routes. The
main difference is caused by the discretization process to obtain the GTSP task.
Because of this, the segments of the route that are straight in the CCP solution
turn out to be slightly broken in the GTSP solution, hence total air move length
is slightly larger. Numerically, this is shown in Table 1 for several cutting plans.
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Fig. 8. Solution of CCP, Job #464

Table 1. Solution quality comparison

Job #229 #464 #3211 #20205

# of parts 11 14 17 115

# of contours 12 21 22 198

# of GTSP points 491 429 493 3917

LGTSP , m 7.729 4.743 4.557 26.098

LCCP , m 7.727 4.706 4.536 25.987

Figure 9 shows the solution to the CCP problem for large dimension (198
contours). Unlike the previous example, for large-dimensional problems it is
much more difficult to evaluate the accuracy of the obtained solution. Never-
theless, a comparison with the results of solving the corresponding task GTSP
can also serve as a way of estimation. GTSP is known to be NP-hard even on
the Euclidean plane [17]. Although it is clear that the bigger the predefined
partial order, the simpler the appropriate GTSP task, dependence of theoretical
complexity bounds on the properties of the precedence constraints has not yet
been insufficiently investigated. In this regard, we note two papers [7,23]. There
are two special types of the precedence constraints, for which polynomial time
complexity of the GTSP is proven theoretically. The first type of constraints was
introduced by E. Balas [2] for the classic TSP. Efficient exact algorithms for the
GTSP with precedence constraints of this type are proposed in recent papers
[4,5]. Tours that fulfill constraints of the second type are referred to as quasi-
and pseudo-pyramidal. Efficient parameterized algorithms for the GTSP with
such precedence constraints are proposed in [15,16]. In view of the above, we
can summarize that in the field of algorithmic analysis, the GTSP still remains
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weakly explored. In particular, the absence of efficient Mixed Integer Linear
Program (MILP) models for the GTSP makes it impossible to use modern opti-
mizers like Gurobi [11] for construction lower and upper bounds and examining
the heuristic solutions. This issue is also pending.

Fig. 9. Example of large problem solution, Job #20205

6 Conclusion

1. The problem of minimizing tool air move of CNC sheet cutting machines for
the routing problem from the CCP class is shown to be reduced to a problem
without precedence constraint, which reduces the number of contours and the
operating time of the algorithm

2. A heuristic algorithm for solving the CCP problem is proposed that does not
use contour discretization.

3. It was proved that the CCP-Relax algorithm for finding piercing points for a
fixed order of traversing the contours delivers a local minimum.

4. Several easily verified sufficient conditions are formulated and proved for the
specified algorithm to deliver global minimum of air move length.

5. CCP-Relax algorithm can be applied to solving more general problems
SCCP (Segment Cutting) and GSCCP (Generalized Segment Cutting), thus
approaches to solving general ICP cutting problem can be developed on its
basis.

The direction of further research is the development of the algorithm for the
general case where the pierce points are located outside the contours according
to the technological requirements of sheet cutting.
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12. Hansen, P., Mladenović, N., Moreno Pérez, J.A.: Variable neighbourhood search:
methods and applications. Ann. Oper. Res. 175(1), 367–407 (2010). https://doi.
org/10.1007/s10479-009-0657-6

13. Hoeft, J., Palekar, U.S.: Heuristics for the plate-cutting traveling salesman problem.
IIE Trans. 29(9), 719–731 (1997). https://doi.org/10.1023/A:1018582320737

14. Imahori, S., Kushiya, M., Nakashima, T., Sugihara, K.: Generation of cutter paths
for hard material in wire EDM. J. Mater. Process. Technol. 206(1), 453–461 (2008).
https://doi.org/10.1016/j.jmatprotec.2007.12.039

15. Khachai, M.Y., Neznakhina, E.D.: Approximation schemes for the generalized trav-
eling salesman problem. Proc. Steklov Inst. Math. 299(1), 97–105 (2017). https://
doi.org/10.1134/S0081543817090127

16. Khachay, M., Neznakhina, K.: Complexity and approximability of the Euclidean
generalized traveling salesman problem in grid clusters. Ann. Math. Artif. Intell.
88(1), 53–69 (2019). https://doi.org/10.1007/s10472-019-09626-w

17. Papadimitriou, C.H.: Euclidean TSP is NP-complete. Theor. Comput. Sci. 4, 237–
244 (1977)

18. Petunin, A.A., Chentsov, A.A., Chentsov, A.G., Chentsov, P.A.: Elements of
dynamic programming in local improvement constructions for heuristic solutions of
routing problems with constraints. Autom. Remote Control 78(4), 666–681 (2017).
https://doi.org/10.1134/S0005117917040087

https://doi.org/10.1023/A:1018939709890
https://doi.org/10.1023/A:1018939709890
https://doi.org/10.1134/S0081543818020074
https://doi.org/10.1134/S0081543818020074
https://doi.org/10.1134/S0081543816090054
https://doi.org/10.1016/j.ifacol.2016.07.767
https://doi.org/10.1080/00207543.2017.1421784
https://doi.org/10.1007/978-3-319-44914-2_10
https://doi.org/10.1007/s00170-016-8609-1
https://doi.org/10.1007/s00170-016-8609-1
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1007/s10479-009-0657-6
https://doi.org/10.1007/s10479-009-0657-6
https://doi.org/10.1023/A:1018582320737
https://doi.org/10.1016/j.jmatprotec.2007.12.039
https://doi.org/10.1134/S0081543817090127
https://doi.org/10.1134/S0081543817090127
https://doi.org/10.1007/s10472-019-09626-w
https://doi.org/10.1134/S0005117917040087


Algorithm for Shortest Path 83

19. Petunin, A.A., Chentsov, A.G., Chentsov, P.A.: About routing in the sheet cutting.
Bull. South Ural State Univ. Ser. Math. Model. Program. Comput. Softw. 10(3),
25–39 (2017). https://doi.org/10.14529/mmp170303

20. Petunin, A.A., Polishchuk, E.G., Ukolov, S.S.: On the new algorithm for solv-
ing continuous cutting problem. IFAC-PapersOnLine 52(13), 2320–2325 (2019).
https://doi.org/10.1016/j.ifacol.2019.11.552

21. Petunin, A.: General model of tool path problem for the CNC sheet cutting
machines. IFAC-PapersOnLine 52(13), 2662–2667 (2019)

22. Petunin, A.A., Stylios, C.: Optimization models of tool path problem for CNC
sheet metal cutting machines. IFAC-PapersOnLine 49(12), 23–28 (2016)

23. Saliy, Y.V.: Influence of predestination conditions on the computational complexity
of solution of route problems by the dynamic programming method. Bull. Udmurt
Univ. Maths. Mech. Comput. Sci. (1), 76–86 (2014)

24. Sherif, S.U., Jawahar, N., Balamurali, M.: Sequential optimization approach for
nesting and cutting sequence in laser cutting. J. Manuf. Syst. 33(4), 624–638 (2014)

25. Smith, S.L., Imeson, F.: GLNS: an effective large neighborhood search heuristic for
the generalized traveling salesman problem. Comput. Oper. Res. 87, 1–19 (2017).
https://doi.org/10.1016/j.cor.2017.05.010

26. Vicencio, K., Davis, B., Gentilini, I.: Multi-goal path planning based on the general-
ized Traveling Salesman Problem with neighborhoods. In: 2014 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pp. 2985–2990 (2014).
https://doi.org/10.1109/IROS.2014.6942974

27. Ye, J., Chen, Z.G.: An optimized algorithm of numerical cutting-path control in
garment manufacturing. Adv. Mater. Res. 796, 454–457 (2013). https://doi.org/
10.4028/www.scientific.net/AMR.796.454

28. Yu, W., Lu, L.: A route planning strategy for the automatic garment cutter
based on genetic algorithm. In: 2014 IEEE Congress on Evolutionary Computation
(CEC), pp. 379–386 (2014). https://doi.org/10.1109/CEC.2014.6900425

https://doi.org/10.14529/mmp170303
https://doi.org/10.1016/j.ifacol.2019.11.552
https://doi.org/10.1016/j.cor.2017.05.010
https://doi.org/10.1109/IROS.2014.6942974
https://doi.org/10.4028/www.scientific.net/AMR.796.454
https://doi.org/10.4028/www.scientific.net/AMR.796.454
https://doi.org/10.1109/CEC.2014.6900425


The Polyhedral-Surface Cutting
Plane Method of Optimization

over a Vertex-Located Set

Oksana Pichugina1(B) , Liudmyla Koliechkina2 ,
and Nadezhda Muravyova3

1 National Aerospace University “Kharkiv Aviation Institute”,
17 Chkalova Street, Kharkiv 61070, Ukraine

oksanapichugina1@gmail.com
2 University of Lodz, Uniwersytecka Str. 3, 90-137 Lodz, Poland

liudmyla.koliechkina@wmii.uni.lodz.pl
3 South Ural State University, 76 Lenin Prospekt, 454080 Chelyabinsk, Russia

muravevanv@susu.ru

Abstract. The Boolean set, permutation vector’s sets and many others
belong to a class of vertex-located sets (VLS) as they coincide with a ver-
tex set of their convex hull. A polyhedral-surface cutting plane method
(PSCM) for linear constrained optimization over VLS is offered. It uti-
lizes representability of a VLS as an intersection of a strictly convex
surface S with a polytope P . PSCM applies iteratively two steps dealing
with a polyhedral or a surface relaxation of the original problem. First,
a polyhedral relaxation is solved on P , and its solution x is verified on
belongingness to S. If it holds, the original problem has been solved.
Otherwise, a surface relaxation is considered, and a cut of x is formed
utilizing a polyhedral cone with apex at x given by active P -constraints
and an intersection of its extreme rays with the circumsurface S. Three
versions of PSCM and two ways to form the cuts are presented and illus-
trated. Applicability of PSCM to solve permutation-based and Boolean
linear optimization problems is justified. Area of practical applications
of the results is indicated.

Keywords: Linear combinatorial optimization · Cutting plane
method · Vertex-located set · Polyhedral relaxation · Surface
relaxation · Circumsurface

1 Introduction

Cutting plane methods (CPM) play a special role in Integer Programming and
Convex Optimization. Their main advantage is that they iteratively decrease a
search domain to a convex hull of feasible region E of an optimization problem
until a current point x be a feasible point and, respectively, an optimal solu-
tion. In each iteration, CPM does not require evaluation constraints’ functions
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and only query a separating oracle, if a condition x ∈ E is met, and search
for a cutting plane for a point x if the condition does not hold. This makes
CPM attractive when dealing with large-dimension problems and problems with
numerous constraints. However, the need to solve a linear programming relax-
ation in polynomial time, querying the oracle, and finding the cut, as well as
issues of slow convergence of CPM restrict the area of applications.

Typically, CPM is associated with Integer Linear Programming, where
LP relaxation is solved on each iteration, the oracle verifies the integrity of
x-coordinates, and a Gomory’s cutting plane is added to constraints constructed
in such a way that new current point has integral coordinates and the number
of the coordinates increases throughout the iterative process. Gomory’s cuts use
an absence of integral points inside integer-grid cells. If a linear combinatorial
problem is solved instead of integer optimization one, where a feasible region E
is a finite point configuration [8] associated with a set of combinatorial nature
(permutations, partial permutations, combinations, etc.), Gomory’s cuts need
adaptation, which takes into account an absence of feasible points in some nodes
of the integer grid and ensures convergence of the method to x ∈ E. These
“combinatorial” modifications of the Gomory Cutting Plane Method require
using essentially structural properties if E is highly dependent on a type of
combinatorial nature of the set as well as on geometric properties of E and
associated combinatorial polytope P = convE. Respectively, they need deep
studying structural and geometric properties of images of combinatorial spaces
in Euclidean space (further referred to as C-sets [18]), as well as the behavior
of various classes of functions on the sets. These two research fields, along with
developing combinatorial optimization algorithms and a search for applications
are an area of research of Euclidean Combinatorial Optimization (ECO) [24–26].

This paper is dedicated to developing a CPM for linear combinatorial pro-
grams on sets inscribed into a convex surface. It generalizes and extends results
on CPM for combinatorial optimization [1,5,19,20] and results of our work
related to exploring properties of such sets and their applications [15,17,18,21].

2 Problem 1 Statement and Properties

Consider the following discrete optimization problem:

minimize cx, (1)
subject to Ax ≤ B, (2)

x ∈ E ⊂ R
n, (3)

1 < |E| < ∞, (4)

where A ∈ R
m×n, c, x ∈ R

n, B ∈ R
m,

m is fixed. (5)

In addition, there exists f : Rn → R
1, f is a strictly convex function such

that
S = {x ∈ R

n : f(x) = 0} , (6)
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E ⊂ S. (7)

Also, assume that there exists a polynomial separating oracle (further
referred to as the oracle):

∃φ(x, P ) (8)

examining if a point x ∈ R
n belongs to a polytope:

P = conv E (9)

(further referred to as a combinatorial polytope). If not, it generates a cutting
plane for the point x in the form of a P -facet inequality.

Problem (1)–(4) is a generic linear combinatorial optimization problem
(LCOP) on a set E, which is not a singleton. The additional constraints (6),
(7) means that E is inscribed into a strictly convex surface [22], i.e., the one
given by a strictly convex function f(x). Note that from these two constraints
follows that the search domain E coincides with a vertex set of P . Following the
terminology introduced in [28], E is a vertex-located set (VLS), i.e. E = vert P .
Moreover, the conditions (6), (7) imply that E is a surface located set (SLS) [17].
Thus, we pose LCOP on an SLS-subclass of VLS satisfying (8). That is why,
when solving the problem (1)–(8) (further referred to Problem 1) we will use
features of the oracle as well as of a circumsurface S and its inducing function
f(x).

Problem 1 belongs to a class of ECO-problems [25], for which powerful tools
are developed based on combining Euclidean space properties with structural
features of special classes of E [13,15–17,24,26,29]. Problem 1 is a LCOP on a
VLS E. For its exact solutions, ECO-methods such as the Combinatorial Cut-
ting Plane Method (CCM) [5] and different Branch & Bound (B&B) techniques
[11,27] are applicable. The additional assumption about the surfaced locality of
E allows using the Polyhedral-Surface Methods (PSM) for optimization, namely,
the Greedy PSM for an approximate solution and the Branch and Bound PSM
for exact [16,17]. Note that these PSM require adaptation to constrained prob-
lems. An important step of the PSM-implementation is solving a polyhedral
relaxation problem, where (3) is replaced by x ∈ P (further Problem 2) yield-
ing a linear program on P . In order to solve Problem 2 easier than Problem
1, some properties of P need to be used, such as its H-representation (further
referred to as Property 1 ), the separating oracle (8) (further Property 2 ). Note
that Property 2 means that Problem 2 is polynomially solvable.

A special mathematical field – Polyhedral Combinatorics – works on deriv-
ing H-representations of polytopes associated with combinatorial sets embedded
in Euclidean space in order to utilize them in linear optimization [2]. Another
direction is a search of the separating oracles of polynomial complexity for combi-
natorial polytopes (further Problem 3) [10,23,26] since it is allows single outing
classes of combinatorial problems whose polyhedral relaxation is polynomially
solvable by the Ellipsoid Method.
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Many combinatorial sets having Properties 1, 2 are known [15,18,21].
Despite the presence of constraints (6)–(8), Problem 1 covers a vast class of

practical and theoretical problems including linear Boolean and permutation-
based optimization problems [4,7,14,17], which practical applications include
telecommunication, VLSI design, warehouse location, military defence, social
networks, molecular interaction networks, image processing, computer vision,
scientific computing, sparse matrix computation, physics, parallel programming,
compiler optimization, load balancing, route planning, and many other problems
of optimal planning and geometric design [2,4,6,10,12,24].

Indeed, it is known [16] that the Boolean vector set (the Boolean C-set)
Bn = {0, 1}n is inscribed in a hypersphere centered at point (0.5, ..., 0.5), namely,
Bn ⊂ S = Sr(0.5 · e), where e is a vector of units, r =

√
n
2 .

At the same time, a set of permutation vectors induced by a multiset G
(the general multipermutation C-set [18,21]): Enk(G) = {x = (x1, ..., xn) :
{x1, ..., xn} = G}, where G ⊂ R

1, G =
{{gi}i∈Jn={1,...,n} : g1 ≤ . . . ≤ gn

}
, a

ground set of G is S(G) = {{ei}i∈Jn
: e1 < . . . < ek}, is inscribed into a family

of hyperspheres centered on the ray ae, where a ∈ R
1 is a parameter, namely,

Enk(G) ⊂ S = Sr(a)(a · e), where r(a) =
(∑n

i=1 (gi − a)2
)1/2

.
So, in Boolean and permutation-based linear problems, a search domain:

E ∈ {Bn, Enk (G)} (10)

is SLS called a spherically located set (SpLS) [20]. In addition, for polytopes
Dn = conv Bn, Pnk (G) = conv Enk (G), the condition (8) is satisfied. Indeed,
Dn is the unit hypercube [0, 1]n given by 2n constraints, whose feasibility can be
easily verified and violated constraints are derived. Pnk(G) is a multipermutohe-
dron [21] given by a system

∑n
i=1 xi =

∑n
i=1 gi,

∑
i∈ω xi ≥ ∑j

i=1 gi, j = |ω| ⊂ Jn

of 2n − 2 constraints [29]. Nevertheless, the polytope has Property 2.

Lemma 1. [26] If x ∈ R
n, such that

x1 ≤ . . . ≤ xn, (11)

then x ∈ Pnk (G) if and only if the following constraints are satisfied:

n∑

i=1

xi =
n∑

i=1

gi,

j∑

i=1

xi ≥
j∑

i=1

gi, j ∈ Jn−1. (12)

It can be seen that the ordering (11) is polynomially doable as well as verifi-
cation of the condition (12). Note that (12) consists of Pnk (G)-constraints only.
Thus the oracle (8) is found. If the condition x ∈ P is violated, it induces a
cutting plane for x among constraints (12) of the polytope P .

The subclass (1)–(4), (10) of Problem 1 can be further extended to: sets
of permutation and multi-permutation matrices [3]; a signed permutation C-set
[15]; an even Boolean C-set [9], Boolean partial permutation C-set [21], and other
vertex-located classes of partial permutation C-sets [21]; the even permutation
set [29], and other subsets of Enk (G) [21,26].
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Note that the conditions (6), (7) of surface locality and (9) of vertex locality
are equivalent. However, in an optimization approach described below, a circum-
surface S will be taken into account substantially. For the general case, its search
is a separate task. If it is possible to find a family of such surfaces, interest is the
question of choosing one of them, which utilizing is more beneficial in solving
problems on SLS, e.g., Problem 1.

This paper presents a cutting plane method to solve Problem 1, which is
based on utilizing the absence of feasible points inside a strictly convex body:

C = conv S. (13)

In particular, from (13), it follows that there are no feasible points in an
interior of P and its faces of any dimension.

3 A Polyhedral-Surface Cutting Plane Method
Description

Problem 1 is writable in the form of (1), (6)–(8),

x ∈ E′, (14)

where

E′ = {x ∈ E : Ax ≤ B} , (15)

and E satisfies the constraint (4).
Let S′ be a convex surface, where E′ lies, i.e., there exists a convex function

ϕ(x) : Rn → R
1 such that

S′ = {x ∈ R
n : ϕ(x) = 0} , (16)

E′ ⊂ S′.

Note that such a surface exists, since E′ ⊆ E ⊂ S′. As S′, either the boundary
ΓP of the combinatorial polytope P or the boundary ΓP ′ of the polytope P ′

can also be chosen, where

P ′ = conv E′. (17)

Let 〈x∗, z∗〉 = 〈x∗, cx∗〉 be an optimal solution to Problem 1.

Remark 1. Without loss of generality, we assume that P ′ is full-dimensional
polytope:

dim P ′ = n, (18)

otherwise, we make a projection into dim P ′-space first.
This means that (4) can be replaced by

n + 1 < |E| < ∞.

Let a convex surface S′ is chosen from a set:

S′ ∈ {S, ΓP, ΓP ′}. (19)
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3.1 PSCM(S′) Outline

– Step 1. Initialization: set iteration j = 0, P
′j = P ′.

– Step 2. Solve a linear program (1),

x ∈ P
′j , (20)

(further referred to as Problem 2.j) and, in case of its feasibility, find the
problem solution

〈
xj , zj

〉
=

〈
xj , cxj

〉
. Otherwise, Problem 1 is infeasible.

Terminate.

Remark 2. If H-representation of P includes polynomial on n number of con-
straints, we solve Problem 2.j involving the whole H-representation, otherwise,
the consequent inclusion of constraints method (CICM) [26] is applied (see Sub-
sect. 3.2). To the corresponding Problem 1 in these two cases, we will refer to as
Problem 1.1 and Problem 1.2, respectively.

– Step 3. Check the following condition xj ∈ S, which is here equivalent to

xj ∈ E. (21)

– Step 3.1. If (21) holds, then 〈x∗, z∗〉 =
〈
xj , zj

〉
. Respectively, Problem 1

has been solved. Terminate.
– Step 3.2. If (21) does not hold, we construct a cutting plane

ajx ≤ bj (22)

for the point xj /∈ E, according to a chosen cutting plane scheme from
those described in Subsect. 3.3.

– Step 3.3. Set P
′j+1 = {x ∈ P

′j : ajx ≤ bj}, j = j + 1, go to Step 2.

3.2 CICM for Problem 2.j Solution

We describe how CICM can be applied for solving Problem 2.j and getting a
tuple

〈
x0, z0

〉
.

– Step 0. Initialization: set iteration t = 0, a search domain is D
′t = {x ∈ D :

x satisfies (2)}, where D =
n∏

i=1

[αi, βi],−∞ < αi < βi < ∞, i ∈ Jn: D ⊃ E.

– Step 1. Main stage: solve a linear program (1),

x ∈ Dt. (23)

– If it is infeasible, then Problem 2 is infeasible. Terminate.
– Otherwise, to the problem solution yt, apply the oracle φ(yt, P ).

. If yt ∈ P , then xj = yt, zj = cyt, hence Problem 2 has been solved.
Terminate.
. If yt /∈ P , the violated facet constraint ax ≤ b of P generated by the
oracle is added to the current system of constraint yielding:

D
′t+1 = {x ∈ D

′t : ax ≤ b}. (24)

Set t = t + 1, go to Step 1.
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3.3 Cutting Plane Construction Schemes

In order to form a cutting plane (22), we single out a set:

A
′jx ≤ B

′j (25)

of active P
′j-constraints at point xj . Normally, (25) includes some additional

constraints (2) and a part of P -constraints.

Remark 3. If we deal with Problem 1.2 and apply the CICM for getting xj ,
special techniques are needed for deriving the linear system (25), since, generally,
a few P -constraints are involved in search of xj . To the problem of forming this
system, we will refer to as Problem 4.

Next, we consider the polyhedral cone (25) (further Conej) and a part of
surface S′ cut out by this cone denoting it by Sj : Sj = S′ ∩ Conej .

Clearly that E′ ⊂ Sj , and the point xj can be cut off in any way not affecting
Sj . At the same time, forming a cut of xj , we aim to build a strong one. Thus,
the cutting plane (22) will be constructed in such a way that

ajxj > bj , (26)

∀x ∈ Sj ajx ≤ bj . (27)

Conej has apex at xj and edge set:

Ej =
{[

xj , yji
]
, i ∈ Jkj

}
, (28)

where
NSj (xj) = {yji}i∈Jkj

⊂ Sj (29)

is a neighborhood of xj , kj =
∣
∣NSj (xj)

∣
∣. Thus, the neighborhood NSj (xj) of the

point xj is defined as a set of endpoints of edges of P j with the origin at xj and
endpoints on the surface Sj . In other words, extreme rays of Conej intersect S
at points of the set (29).

Assume that aj , bj satisfy (26). By construction,

NSj (xj) ⊆ Sj , (30)

hence (27) entails

∀x ∈ NSj (xj) ajx ≤ bj . (31)

From convexity of the surface Sj follows that the reverse is also true, i.e.,
(31) results in (27). Therefore, further, we replace the conditions (26), (27) by
(26), (31) for verification that a cut under consideration is strong and valid.

Lets analyze ways to construct the cut (22) depending on kj , which satisfies
inequality kj ≥ n + 1 by (18):
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1. If xj is a nondegenerate vertex of P j , i.e.,

kj = n + 1, (32)

then the bounding hyperplane

Πj : ajx = bj (33)

for the strong valid cutting plane (22), (26), the plane bounding (31) is built
through all points (29). In this case, inequality (31) holds as equality:

∀x ∈ NSj (xj) ajx = bj . (34)

2. If xj is a degenerate vertex of P j , i.e.,

kj > n, (35)

then there is an ambiguity in the choice of an n-subset Xj ⊂ NSj (xj) through
which the hyperplane Πj is constructed. Following a certain scheme of choos-
ing Xj and constructing a cutting plane presented in Subsect. 3.4, select
Xj : Xj ⊂ NSj (xj) : |Xj | = n + 1, where Xj are the first best ones with
respect to a criterion K.

Now, we form a cutting plane (22) such that the corresponding separating
hyperplane (33) passes through the points of Xj :

Xj ⊂ Πj . (36)

In this case, (34) is replaced by

∀x ∈ Xj ajx = bj , (37)

while the condition

∀x ∈ N ′
Sj (xj) = NSj (xj)\Xj ajx ≤ bj (38)

requires verification.
If condition (38) of the validity of the cut (22) does not hold, there exists

yji ∈ N ′
Sj (xj) : ajx > bj . We replace the worst point yji′ ∈ Xj according to the

criterion K by yji: Xj ← {yji} ∪ Xj\{yji′}.
Now, the process of formation Πj and validation that the corresponding

cutting plane is valid is repeated iteratively until a valid cut (22) is formed.

3.4 Selecting Xj

We will offer two ways to choose the set (36) resulting in forming two types of
the cutting plane (22). For that, we introduce ordering of elements of (29) in
such a way that

zj1 ≤ zj2 ≤ . . . ≤ zjkj , where zji = cyji, i ∈ Jkj
;

rji1 ≤ rji2 ≤ . . . ≤ rjikj ,
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where zji = cyji, rjil =
∣
∣xj − yjil

∣
∣, i, l ∈ Jkj

.

Way 1: Xj =
{
xji

}
i∈Jn+1

,

i.e., Xj includes n+1 points of NSj (xj) with the smallest values of the objective
function. This means that the criterion K : cx → min.

Way 2: Xj =
{
xjil

}
l∈Jn+1

,

i.e., Xj consists of n+1 of the NSj (xj)-points closest to xj . Here, K : rji → min.

4 PSCM(S′)-Versions

Depending on a choice of the circumsurface S′ in (19), we come to three versions
of our method.

4.1 Modified Combinatorial Cutting Plane Method (MCCM)

If S′ = ΓP ′, we get PSCM(ΓP ′). On initial iteration, j = 0, the edges (28) go
from xj to adjacent vertices of the polytope P ′. Thus the neighborhood (29) of
x0 is a set of all adjacent vertices of P ′. To the PSCM(ΓP ′), we will refer to as
the Modified Combinatorial Cutting Plane Method (MCCM).

Let N be the maximum number of PSCM-iterations. In the title, the following
fact is reflected. If we deal with Problem 1.1 and, for all

xj , j ∈ J0
N = Jn ∪ {0}, (39)

(32) holds, i.e., all solutions of polyhedral relaxations of Problem 1 are nonde-
generate, our method is reduced to the Combinatorial Cutting Plane Method
(CCM) of linear optimization over vertex located sets [5].

In [5], the cutting plane is derived from the last simplex tableau in the form
of inequality:

∑

j∈J

xj

Θj
≥ 1, (40)

where J is a set of non-basic variables at xj , Θj = min
i:aij>0

bi
aij

, j ∈ J.

The disadvantage of CCM is that, in case if among (39) are degenerate ver-
tices, the authors propose to use standard techniques of resolving degeneracy in
linear programming such as perturbation. An issue is that it results in replacing
the search domain P j by a simple polytope in the vicinity of xj , which leads
to slow convergence of the method. Note that, in combinatorial optimization,
degeneracy is quite common since, among combinatorial polytopes, simple poly-
topes form a minor subclass. With this regard, MCCM offers a new technique
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to resolve degeneracy constructing the set NSj (xj) and constructing the cut
through its proper subset. Another issue preventing utilizing the cutting plane
(40) is that it does not analyze all active constraints as xj in case if Problem 1.2
is solved. In contrast, MCCM assumes that Problem 3 of deriving active con-
straints (25) has been solved. Let us denote

dji = yji − xj , i ∈ Jkj
− (41)

direction vectors of the edges (28), where NSj (xj) is associated with MCCM.

4.2 Combinatorial Polytope Cutting Plane Method (CPCM)

MCCM utilizes an absence of feasible points in an interior of the polytope P ′ and
its faces. The next PSCM-version uses an observation that no feasible points are
in an interior of the combinatorial polytope P as well as inside its faces. Thus
choosing S′ = ΓP , we come to PSCM(ΓP ). Similarly to MCCM, if j = 0,
the edges (28) start at xj and extend to the intersection with a boundary of a
polyhedron found from P by excluding its constraints active at x0. As a result,
it yields a set of intersections of extreme rays of Conej with a boundary of the
combinatorial polytope P as a neighborhood of x0. Therefore, to this version of
PSCM we will refer to as the Combinatorial Polytope Cutting Plane Method
(CPCM).

In order to apply CPCM, a problem of finding the closest facet of a combina-
torial polytope P to a point x in a certain direction d (further Problem 5) needs
to be solved. It can be stated as follows: find a hyperplane p : αx = β such as
minimize |y − x|, where p is a facet of P , y ∈ p, ∃λ > 0 : y = x + λd.

In order to form NSj (xj) ⊂ ΓP , Problem 5 is solved for x = xj , d = dji,
where dji is found by (41) for each i ∈ Jkj

, j ∈ J0
N .

4.3 Surface Cutting Plane Method (SCM)

Finally, observe that no point of E in an interior of the convex body (13) and
apply it in the final version of PSCM, where S′ = S. This version PSCM(S)
is titled the Surface Cutting Plane Method (SCM). Here, the edges [xj , yji] =
= [xj , xj + dji], i ∈ Jkj

are extended until extreme rays of Conej intersect ΓP
first and then reach the surface S. SCM requires solving Problem 6 consisting in
finding an intersection of a half-line starting at xj having the direction vectors
(41) with the strictly convex surface S.

5 PSCM Illustration and PSCM-Versions Comparison

In Figs. 1, 2 and 3, the above versions of PSCM are illustrated. Here, the com-
binatorial polytope P is a reqular pentagon (a dotted line), S is a circle circum-
scribed around P , there are four additional constraints (2) resulting in forming
a heptagon as the polytope P ′ (shadowed region).



94 O. Pichugina et al.

In Fig. 1, an illustration for MCCM is given. It is seen that seven iterations
are required to get an optimal solution x∗. Thus, all vertices of P ′ are explored
and utilized. In Fig. 2, CPCM is illustrated. It can be seen that for getting x∗

six iterations are sufficient. Finally, in Fig. 3, the work of SCM is shown, in
particular, that x∗ is found in five iterations.

For x0, it can be observed that the cutting plane produced by SCM dominates
the CMCM-cut. Respectively, the later dominates the cutting plane induced
by MCCM. The reason is an extend of prolongation of P ′-edges – the highest
corresponds to SCM, the next highest one – to CPCM.

The question arises, is it always SCM-cuts dominate CPCM-ones and
MCCM-cutting planes are dominated by CPCM-ones.

Fig. 1. PSCM(ΓP ′) = MCCM Fig. 2. PSCM(ΓP ) = CPCM

Theorem 1. If the polyhedral cone (25) is simplicial, i.e., (32) holds, and S,
S ′ are convex surfaces circumscribed around E such that

conv(S) ⊂ conv(S ′),

then the PSCM(S ′)-cut of xj dominates the PSCM(S)-one.
Proof. Let the neighborhoods of xj be

NS(xj) = {yji}i∈Jn+1 , NS′(xj) = {y
′ji}i∈Jn+1 .

cx = cxj is a supporting plane hence ∀i ∈ Jn+1 cyji ≥ cxj or, in terms of (41),

cdji ≥ 0, i ∈ Jn+1. (42)

The points of NS′(xj) can be represented as follows:

y
′ji = x + kjidji, where kji ≥ 1, i ∈ Jn+1. (43)
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Fig. 3. PSCM(S) = SCM

From that, by (42), (43), c(y
′ji − yji) = c(x + kjidji) − c(x + kjidji) =

= (kji − 1)cdji ≥ 0, i ∈ Jn+1, hence

cy
′ji ≥ cyji, i ∈ Jn+1. (44)

On the next iteration, xj+1 will be an element of NS′(xj) or NS′(xj),
respectively, with the smallest objective function value. In particular, zj+1 =
min

i∈Jn+1
cyji, xj+1 = arg min

i∈Jn+1
cyji will be a solution to Problem 2.j by PSCM(S),

while z
′j+1 = min

i∈Jn+1
cy

′ji, x
′j+1 = arg min

i∈Jn+1
cy

′ji will be the one by PSCM(S ′).

From (44) follows that min
i∈Jn+1

cy
′ji ≥ min

i∈Jn+1
cyji, i ∈ Jn+1, i.e.,

z
′j+1 ≥ zj+1. (45)

Thus the cut induced by PSCM(S ′) dominates the PSCM(S)-cutting plane.

Corollary 1. If the polyhedral cone (25) is simplicial, then the PSCM(ΓP )-
cutting plane of xj dominates the PSCM(ΓP ′)-one and is dominated by the
PSCM(S)-cutting plane.

Theorem 1 formulates a sufficient condition of domination SCM-cuts over
CPCM-ones, and domination of the later over MCCM-cutting planes. An issue
of extending it onto degenerate case is that, in this situation, when the bounding
plane (33) intersects extreme rays, the only n+1 of them is guaranteed to be on
Sj . Because now zj+1 = min

i∈Jkj

cyji, z
′j+1 = min

i∈Jkj

cy
′ji, the condition (45) requires

additional verification. The advantage of using the SCM-cutting plains does not
limited by their depth. Another plus is a possibility of constructing the cutting
planes using only a part of active constraints at xj sufficient for a formation
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this vertex. The information can be extracted from the last simplex tableau,
and solving Problem 4 does not need. It is especially useful when we deal with
Problem 1.2, i.e., polytopes under consideration are given by an exponential
number of constraints, and we solve the corresponding Problem 2 by CICM.

6 PSCM-Specifics for Boolean and Permutation-Based
LCOP

On E = Bn, Problem 1 becomes Problem 1.1. Thus Problem 3 is directly solv-
able, while solutions to Problems 5, 6 can be found in [19]. For the set, CPC and
SCM are closely connected to spherical and intersection cuts [1] assuming that
this problem is solved as ILP.

On E = Enk(G), Problem 1 belongs to the Problem 1.2-subclass. Solving
Problem 2.j, it is suggested to choose D = {x ∈ R

n : g1 ≤ xi ≤ gn, i ∈ Jn,
xe = g1 + ... + gn}. Solutions to Problem 4 are directly derived from the
last simplex tableau if (11) satisfies x1 < . . . < xn. If there are repetitions of
x-coordinates, some inequalities from other units of Pnk(G)-inequalities needs
verification. A method to solve Problem 5 is presented in [27]. dim(Pnk(G)) =
= n − 1, thus a projection onto R

n−1 is needed before applying PSCM. It can
be done in two ways: a) an orthogonal projection when the feasible set remains
SpLS [24] while a structure of constraints become more complicated; b) a pro-
jection resulting in a n − 1-partial permutation C-set, which is well studied [29],
ellipsoidally located and SpLS for k = 2 only. This means that Problem 6 is
easly solvable in both the cases.

7 Conclusion

The paper presents the Polyhedral-Surface cutting plane method (PSCM) for lin-
ear constrained optimization over a combinatorial set E inscribed into a strictly
convex surface (Problem 1). It essentially uses geometric features of a feasible
domain, the corresponding polytope P , and the circumsurface S. Among the
properties is a vertex locality of E resulting in its representation E = P ∩ S
and ability to combine in PSCM polyhedral and surface relaxations Problem 1.
There are offered two ways of constructing the cutting planes and three variants
of PSCM depending on a choice of a surface involved from a set {S, ΓP, ΓP ′},
where P ′ is a convex hull of the feasible domain. Two of them generalize well-
known spherical and intersection cuts of E. Balas. For a cut of nondegenerate
vertex, it is justified domination of PSCM(S)-cuts over the ones induced by
PSCM(ΓP ′) and PSCM(ΓP ). For Boolean and permutation-based problems,
the applicability of PSCM is established. Auxiliary problems are formulated
required solution for extending PSCM onto other classes of surface located sets.
Graphic Illustration of the PSCM-versions is provided, and an area of PSCM-
applications is outlined.
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Abstract. The operator equations of the maximum principle are con-
structed in nonlinear optimal control problems in the form of fixed point
problems in the control space. The equivalence of operator equations
to the condition of the maximum principle is shown. The constructed
operator forms of the maximum principle make it possible to apply and
modify the well-known apparatus of the theory and methods of fixed
points to search for extreme controls. The control operators under con-
sideration define new iterative algorithms for finding extreme controls.
The proposed iterative algorithms of fixed points of the maximum princi-
ple have the property of nonlocality of successive control approximations
and the absence of a parametric procedure for improving the approxima-
tion at each iteration, which is characteristic of the well-known standard
gradient type methods.

Keywords: Controllable system · Operator of control · Maximum
principle · Fixed point problem · Iterative algorithm

1 Introduction

A well-known approach for solving optimal control problems is the construction
and solution of systems of necessary conditions for optimal control. In particular,
they construct and solve the boundary value problem of the maximum princi-
ple [1,2]. Another method is to build relaxation control sequences based on the
sequential solution of problems of local control improvement. Under certain con-
ditions, such sequences converge to extreme controls, i.e. satisfying the necessary
conditions for optimality. An example of this approach is the well-known gradient
methods [1–3].

The article considers a new approach to the search for extremal controls,
which consists of constructing the necessary conditions for optimality of control
in the form of operator equations, interpreted as fixed point problems in the
control space. This form allows you to apply and adapt the theory and algo-
rithms known in computational mathematics [4] to search for fixed points of
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constructed operator equations. The fixed-point operator approach is illustrated
in the framework of the class of optimal control problems with a free right end.
The constructed operator forms of the maximum principle allow one to construct
new iterative algorithms for searching for extreme controls. In [5–7], fixed point
problems and methods were proposed based on the operation on the maximum
of the Pontryagin function. In this paper, the fixed point approach under con-
sideration is supplemented by new operator equations of the maximum principle
based on maximum operators and projection operators.

2 Optimal Control Problem with a Free Right End

To illustrate the possibility of constructing new operator forms of necessary con-
trol optimality conditions, we consider the well-known classical optimal control
problem with piecewise continuous controls [1–3], for which new forms of opti-
mality conditions and the proposed fixed-point approach have a simple descrip-
tion.

The optimal control problem is considered:

Φ(u) = ϕ(x(t1)) +
∫

T

F (x(t), u(t), t)dt → inf
u∈V

, (1)

ẋ(t) = f(x(t), u(t), t), x(t0) = x0, u(t) ∈ U, t ∈ T = [t0, t1], (2)

where x(t) = (x1(t), ..., xn(t)) – state of a system, u(t) = (u1(t), ..., um(t)) –
control. The set of admissible controls consists of piecewise continuous functions
taking values in a convex compact set U ⊂ Rm:

V = {v ∈ PC(T ) : v(t) ∈ U, t ∈ T}.

The initial state x0 and time interval T are set.
The following notation is used: qx – partial derivative of the first order of the

function q for the corresponding argument x; 〈x, y〉 =
n∑

i=1

xiyi – a scalar product

of vectors x,y in Euclidean space En; ‖x‖ – norm of a vector in Euclidean space.
It is assumed that the function ϕ(x) is continuously differentiable on

Rn; functions F (x, u, t), f(x, u, t) and their derivatives Fx(x, u, t), Fu(x, u, t),
fx(x, u, t), fu(x, u, t) are continuous in the totality of arguments on the set
Rn × U × T ; the function f(x, u, t) satisfies the Lipschitz condition for x in
Rn × U × T with a constant L > 0:

‖f(x, u, t) − f(y, u, t)‖ ≤ L ‖x − y‖ .

Consider the Pontryagin function with an adjoint variable ψ ∈ Rn

H(ψ, x, u, t) = 〈f(x, u, t), ψ〉 − F (x, u, t).

The standard conjugate system has the form:

ψ̇(t) = −Hx(ψ(t), x(t), u(t), t), ψ(t1) = −ϕx(x(t1)).



Operator Forms of the Maximum Principle and Iterative Algorithms 103

For an admissible control v ∈ V , we denote x(t, v), t ∈ T – the solution of
system (2); ψ(t, v), t ∈ T – adjoint system solution for u(t) = v(t), x(t) = x(t, v),
t ∈ T .

Using function

u∗(ψ, x, t) = arg max
w∈U

H(ψ, x,w, t), ψ ∈ Rn, x ∈ Rn, t ∈ T. (3)

the well-known necessary condition for optimal control (maximum principle)
[1–3] can be represented in the following form:

v(t) = u∗(ψ(t, v), x(t, v), t), t ∈ T. (4)

Relation (4) on the set of admissible controls is equivalent to the boundary
value problem of the maximum principle in the state space:

ẋ(t) = f(x(t), u∗(ψ(t), x(t), t), t), x(t0) = x0, (5)

ψ̇(t) = −Hx(ψ(t), x(t), u∗(ψ(t), x(t), t), t), ψ(t1) = −ϕx(x(t1)). (6)

Equivalence is understood in the following sense.
Let a pair (x(t), ψ(t)), t ∈ T be a solution to the boundary value problem

(5), (6). Then the output control generated by rule (3) v(t) = u∗(ψ(t), x(t), t)
satisfies condition (4). Conversely, let control v ∈ V be a solution to a problem
(4). Then the formed pair of functions (x(t, v), ψ(t, v)), t ∈ T by their definition,
satisfies the boundary value problem (5), (6).

In the general case, the right-hand sides of the boundary-value problem (5),
(6) are discontinuous and multi-valued in phase variables x, ψ.

The maximum principle (4) implies the weakened necessary optimality condi-
tion, known as the differential maximum principle [2,3], which can be represented
in the form of inequality:

〈Hu(ψ(t, u), x(t, u), u(t), t), w − u(t)〉 ≤ 0, w ∈ U, t ∈ T. (7)

We introduce the map wα, α > 0 using the relation

wα(ψ, x, u, t) = PU (u + αHu(ψ, x, u, t)), ψ ∈ Rn, x ∈ Rn, u ∈ U, t ∈ T,

where PU is the set U projection operator in the Euclidean norm

PU (z) = arg min
w∈U

(‖w − z‖), z ∈ Rm.

Based on the Lipschitz condition for the operator PU the function wα is
continuous in the aggregate. (ψ, x, u, t) ∈ Rn × Rn × U × T .

The differential maximum principle (7) for control u ∈ V through a mapping
wα can be written in the following form:

u(t) = wα(ψ(t, u), x(t, u), u(t), t), t ∈ T, α > 0. (8)
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Note that for (7) to be satisfied, it suffices to check condition (8) for at least
one α > 0. Conversely, condition (7) implies the fulfillment of (8) for all α > 0.

We single out an important for applications subclass of linear control prob-
lems (functions f(x, u, t), F (x, u, t) are linear in u). In a linear control problem,
the differential maximum principle (7) is equivalent to the maximum principle
(4), and to search for controls satisfying the maximum principle, one can use
the projection form (8) of the differential maximum principle, which is simpler
in terms of smoothness than the condition of the maximum principle (4).

3 Operator Equations Based on a Maximum Operation

The condition of the maximum principle (4) can be interpreted as the problem
of a fixed point of some control operator:

v = G∗
1(v), v ∈ V.

in which the operator G∗
1 can be formalized as a superposition of three mappings.

The first mapping X is defined using the relation

X(v) = x, v ∈ V, x(t) = x(t, v), t ∈ T.

We construct the second map Ψ in the same way:

Ψ(v) = ψ, v ∈ V, ψ(t) = ψ(t, v), t ∈ T.

We construct the third mapping V ∗ in the form

V ∗(ψ, x) = v∗, ψ ∈ C(T ), x ∈ C(T ), v∗(t) = u∗(ψ(t), x(t), t), t ∈ T,

where C(T ) is the space of continuous functions on T .
As a result, problem (4) can be represented as an operator equation in the

control space:
v = V ∗(Ψ(v),X(v)), v ∈ V. (9)

Equation (9) can be written in the canonical form of the problem of a fixed point
with an operator G∗

1 defined as a superposition:

G∗
1(v) = V ∗(Ψ(v),X(v)).

We construct new operator problems on a fixed point equivalent to the bound-
ary value problem of the maximum principle (5), (6), and condition (4).

We introduce the mapping X∗ as follows:

X∗(ψ) = x, ψ ∈ C(T ), x ∈ C(T ),

where x(t), t ∈ T is the solution to the special Cauchy problem

ẋ(t) = f(x(t), u∗(ψ(t), x(t), t), t), x(t0) = x0.
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Consider the operator equation

v = V ∗(Ψ(v),X∗(Ψ(v))), v ∈ V. (10)

Indeed, let v ∈ V be a solution to Eq. (9), i.e. a pair (x(t, v), ψ(t, v)), t ∈ T
is a solution to the boundary value problem (5), (6).

Then the function x(t, v), t ∈ T is a solution to the Cauchy problem

ẋ(t) = f(x(t), u∗(ψ(t, v), x(t), t), t), x(t0) = x0,

i.e. X(v) = X∗(Ψ(v)). Hence we get that

V ∗(Ψ(v),X∗(Ψ(v))) = V ∗(Ψ(v),X(v)) = v.

Conversely, let v ∈ V be a solution to Eq. (10), i.e.

v(t) = u∗(ψ(t, v), x(t), t),

where x(t), t ∈ T is the solution to the special Cauchy problem

ẋ(t) = f(x(t), u∗(ψ(t, v), x(t), t), t), x(t0) = x0.

Hence, x(t) = x(t, v), t ∈ T , i.e. X∗(Ψ(v)) = X(v). Thus we get:

V ∗(Ψ(v),X(v)) = V ∗(Ψ(v),X∗(Ψ(v))) = v.

Consider a control operator G∗
2 in the form of a superposition of mappings:

G∗
2(v) = V ∗(Ψ(v),X∗(Ψ(v))).

Then the operator Eq. (10) is represented in the form of the canonical problem
of a fixed point:

v = G∗
2(v), v ∈ V.

In pointwise form, problem (10) can be written as:

v(t) = u∗(ψ(t, v), x(t, V ∗(Ψ(v),X∗(Ψ(v)))), t), t ∈ T.

We obtain another operator problem of a fixed point equivalent to the bound-
ary value problem of the maximum principle and condition (4) using the following
mapping:

Ψ∗(x) = ψ, x ∈ C(T ), ψ ∈ C(T ),

in which ψ(t), t ∈ T is a solution to the special conjugate Cauchy problem

ψ̇(t) = −Hx(ψ(t), x(t), u∗(ψ(t), x(t), t), t), ψ(t1) = −ϕx(x(t1)).

Consider the operator equation

v = V ∗(Ψ∗(X(v)),X(v)), v ∈ V. (11)
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Similarly to the above argument, one can show the equivalence of Eqs. (11) and
(9).

We construct the control operator G∗
3 by the formula:

G∗
3(v) = V ∗(Ψ∗(X(v)),X(v)).

Then Eq. (11) is represented in the canonical form of the fixed point problem

v = G∗
3(v), v ∈ V.

In pointwise form, problem (11) is written as:

v(t) = u∗(ψ(t, V ∗(Ψ∗(X(v)),X(v))), x(t, v), t), t ∈ T.

Thus, based on the above reasoning, the following statement can be formu-
lated.

Theorem 1. The operator Eqs. (9), (10), (11) are equivalent to the condition
of the maximum principle (4).

4 Operator Equations Based on Projection Operation

The condition of the differential maximum principle in projection form (8) can be
represented in the form of equivalent operator equations on the set of admissible
controls, interpreted as fixed point problems.

We introduce the auxiliary operator V α, α > 0 by the relation

V α(ψ, x, v) = vα, ψ ∈ C(T ), x ∈ C(T ), v ∈ V,

vα(t) = wα(ψ(t), x(t), v(t), t) = PU (v(t) + αHu(ψ(t), x(t), v(t), t)), t ∈ T.

Define the operator Xα, α > 0:

Xα(ψ, v) = xα, ψ ∈ C(T ), v ∈ V, xα(t) = xα(t, ψ, v), t ∈ T,

where xα(t, ψ, v), t ∈ T is the solution to the Cauchy problem:

ẋ(t) = f(x(t), wα(ψ(t), x(t), v(t), t), t), x(t0) = x0.

Build the operator Ψα, α > 0:

Ψα(x, v) = ψα, x ∈ C(T ), v ∈ V, ψα(t) = ψα(t, x, v),

where ψα(t, x, v), t ∈ T is the solution of the conjugate Cauchy problem:

ψ̇(t) = −Hx(ψ(t), x(t), wα(ψ(t), x(t), v(t), t), t), ψ(t1) = −ϕx(x(t1)).

Based on the mappings introduced earlier Ψ : u → ψ(t, u), t ∈ T and X :
u → x(t, u), t ∈ T we construct the operators Gα

1 ,Gα
2 ,Gα

3 in the form:

Gα
1 (v) = V α(Ψ(v),X(v), v), v ∈ V,
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Gα
2 (v) = V α(Ψ(v),Xα(Ψ(v), v), v), v ∈ V,

Gα
3 (v) = V α(Ψα(X(v), v),X(v), v), v ∈ V.

We consider three operator equations in the form of fixed point problems

v = V α(Ψ(v),X(v), v) = Gα
1 (v), v ∈ V, α > 0, (12)

v = V α(Ψ(v),Xα(Ψ(v), v), v) = Gα
2 (v), v ∈ V, α > 0, (13)

v = V α(Ψα(X(v), v),X(v), v) = Gα
3 (v), v ∈ V, α > 0. (14)

Similarly to the previous section, the following statement can be obtained.

Theorem 2. The operator Eqs. (12), (13), (14) are equivalent to the condition
of the differential maximum principle (8).

5 Iterative Algorithms Based on Maximum Operators

The search for extremal controls satisfying the necessary conditions for optimal-
ity of control (9)–(11) and (12)–(13) can be considered as a search for solutions to
the corresponding fixed point problems in the control space. A well-known app-
roach to analyzing the existence of solutions to fixed point problems in a Banach
space is the construction of iterative processes converging to solving fixed point
problems. In this case, the conditions for the convergence of iterative processes
are determined based on the well-known principle of squeezed mappings.

As an example, consider the fixed point problem:

v = G(v), v ∈ VE , (15)

in which G : VE → VE is an operator acting on a set VE in a full normed space
E with norm ‖ · ‖E .

For the numerical solution of problem (15) one can consider the method of
simple iteration at k ≥ 0, having the form:

vk+1 = G(vk), v0 ∈ VE (16)

The conditions for the convergence of the iterative process (16) to the solution
of problem (15) can be easily obtained similarly to [4].

A similar analysis of the existence of solutions to fixed point problems (9)–
(11) and (12)–(13) based on this approach should also be carried out in Banach
control spaces.

Analysis of solutions to the problem (9)–(11) can be considered in a wider
Banach space of measurable functions:

V ⊂ VL = {v ∈ L∞(T ) : v(t) ∈ U, t ∈ T}
with the norm ‖v‖∞ = ess sup

t∈T
‖v(t)‖, v ∈ VL. For this, it is necessary to gen-

eralize the optimal control problem (1), (2) by extending the set of piecewise
continuous controls to the specified set of measurable controls.
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The corresponding methods of simple iteration for finding solutions to prob-
lems (9)–(11) have the following form for k ≥ 0:

vk+1 = V ∗(Ψ(vk),X(vk)), v0 ∈ VL, (17)

vk+1 = V ∗(Ψ(vk),X∗(Ψ(vk))), v0 ∈ VL, (18)

vk+1 = V ∗(Ψ∗(X(vk)),X(vk)), v0 ∈ VL. (19)

In pointwise form, the first method has the form:

vk+1(t) = u∗(ψ(t, vk), x(t, vk), t), v0 ∈ VL, t ∈ T.

According to the definition of mappings, the following relation holds:

X(V ∗(Ψ(v),X∗(Ψ(v)))) = X∗(Ψ(v)), v ∈ VL. (20)

Indeed, for anyone p ∈ C(T ) by definition we get:

X∗(p)|t = x(t), t ∈ T,

where x(t), t ∈ T is a solution to the Cauchy problem:

ẋ(t) = f(x(t), u∗(p(t), x(t), t), t), x(t0) = x0.

Further, according to the definition, we have:

V ∗(p,X∗(p))|t = u∗(p(t), x(t), t), t ∈ T,

where x(t), t ∈ T is a solution to the Cauchy problem:

ẋ(t) = f(x(t), u∗(p(t), x(t), t), t), x(t0) = x0.

Hence,
x(t) = X∗(V ∗(p,X∗(p)))|t, t ∈ T.

Thus, from pointwise equalities we obtain the operator equality:

X(V ∗(p,X∗(p))) = X∗(p), p ∈ C(T ),

from which follows (20).
According to the iterative process, from (20) it follows:

X∗(Ψ(vk)) = X(V ∗(Ψ(vk),X∗(Ψ(vk)))) = X(vk+1).

Therefore, the second method of simple iteration (18) is presented in the follow-
ing implicit form:

vk+1 = V ∗(Ψ(vk),X(vk+1)), v0 ∈ VL, (21)

or in pointwise form:

vk+1(t) = u∗(ψ(t, vk), x(t, vk+1), t), v0 ∈ VL, t ∈ T
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To evaluate the computational efficiency of iterative algorithms, it is impor-
tant to note that the complexity of implementing one iteration of implicit meth-
ods (18), (19) is similar to the complexity of implementing the explicit method
(17) and consists of two Cauchy problems for phase and conjugate variables.

Indeed, at the k-th iteration in the process (18) after calculating the solution
of the Cauchy problem ψ(t, vk), t ∈ T the solution of the phase system x(t), t ∈ T
is found:

ẋ(t) = f(x(t), u∗(ψ(t, vk), x(t), t), t), x(t0) = x0.

Then the output control is built according to the rule:

vk+1(t) = u∗(ψ(t, vk), x(t), t), t ∈ T.

Moreover, by virtue of the construction, the relation is satisfied:

x(t) = x(t, vk+1), t ∈ T.

Similarly, at the k-th iteration of the process (19) after calculation x(t, vk), t ∈
T a solution ψ(t), t ∈ T is found for the conjugate system:

ψ̇(t) = −Hx(ψ(t), x(t, vk), u∗(ψ(t), x(t, vk), t), t), ψ(t1) = −ϕx(x(t1, vk)).

Then the output control is built according to the rule:

vk+1(t) = u∗(ψ(t), x(t, vk), t), t ∈ T,

for which, by construction, the relation holds:

ψ(t) = ψ(t, vk+1), t ∈ T.

Note that only at the initial iteration of process (18) with k = 0 for calculation
ψ(t, v0), t ∈ T it is necessary to solve the additional Cauchy problem in order to
obtain a solution x(t, v0), t ∈ T .

Comparing the proposed algorithms with other well-known iterative methods
of the maximum principle, we note that the method (17) is equivalent to the
simplest method of successive approximations [8]. No known analogs of iterative
fixed-point methods (18) and (19) have been found in the literature.

To comparatively highlight the characteristic features of the proposed fixed-
point operator methods (17)–(19), we consider the structure of two common
known maximum principle methods in the notation used.

The standard method of conditional gradient [2,3] is described by the rela-
tions:

v̄k(t) = u∗(ψ(t, vk), x(t, vk), t), t ∈ T, v0 ∈ V, k ≥ 0,

vλ
k (t) = vk(t) + λ(v̄k(t) − vk(t)), t ∈ T,

λ ∈ [0, 1] : Φ(vk
λ) ≤ Φ(vk) ⇒ vk+1(t) = vk

λ(t), t ∈ T.

The needle linearization method [3] is characterized by the relations:

v̄k(t) = u∗(ψ(t, vk), x(t, vk), t), t ∈ T, v0 ∈ V, k ≥ 0,
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gk(t) = Δv̄kH(ψ1(t, vk), x1(t, vk), vk(t), t), t ∈ T,

λmin = inf
t∈T

gk(t), λmax = sup
t∈T

gk(t),

vk
λ(t) =

{
vk(t), gk(t) ≤ λ,

v̄k(t), gk(t) > λ,
, λ ∈ [λmin, λmax], t ∈ T,

λ ∈ [λmin, λmax] : Φ(vk
λ) ≤ Φ(vk) → vk+1(t) = vk

λ(t), t ∈ T.

A characteristic feature of these known methods is the search for a first
approximation of control, which then varies in the vicinity of the improved con-
trol in order to improve the target functional of the problem.

Thus, in the proposed fixed-point operator methods, in contrast to the known
gradient methods and maximum principle methods, relaxation by the objective
functional at each iteration of the methods is not guaranteed. The nonlocality
of successive control approximations and the absence of a rather laborious oper-
ation of convex or needle-shaped variation of the control in the vicinity of the
current control are compensated for the relaxation property.

6 Iterative Algorithms Based on Projection Operators

The search for solutions to problems (12)–(14) can be investigated in a narrower
Banach space of continuous controls:

VC = {v ∈ C(T ) : v(t) ∈ U, t ∈ T} ⊂ V

with the norm ‖v‖C = max
t∈T

‖v(t)‖, v ∈ VC .

Such a narrowing of the solution search space is admissible if converging
iterative processes are constructed in the class of continuous admissible controls.

Simple iteration methods for solving problems (12)–(14) in the space of con-
tinuous controls have the following form for k ≥ 0:

vk+1 = V α(Ψ(vk),X(vk), vk), v0 ∈ VC , α > 0, (22)

vk+1 = V α(Ψ(vk),Xα(Ψ(vk), vk), vk), v0 ∈ VC , α > 0, (23)

vk+1 = V α(Ψα(X(vk), vk),X(vk), vk), v0 ∈ VC , α > 0. (24)

It can be easily shown, due to the properties of the design operation, that
if v0 ∈ VC , then successive approximations of the control for k > 0 will also be
continuous controls.

In a point form, the iterative method (22) takes the form:

vk+1(t) = wα(ψ(t, vk), x(t, vk), vk(t), t), v0 ∈ VC , α > 0, t ∈ T.

Similarly to obtaining relation (20) in the previous section, we can obtain
the following operator relation:

X(V α(p,Xα(p, v), v)) = Xα(p, v), p ∈ C(T ), v ∈ VC .



Operator Forms of the Maximum Principle and Iterative Algorithms 111

From here we have:

Xα(Ψ(vk), vk) = X(V α(Ψ(vk),Xα(Ψ(vk), vk), vk)) = X(vk+1).

Thus, the second method of simple iteration (23) to search for fixed points
of the differential maximum principle can be written in the implicit form:

vk+1 = V α(Ψ(vk),X(vk+1), vk), v0 ∈ VC , α > 0.

In a point form, iterative methods of the differential maximum principle takes
the form:

vk+1(t) = wα(ψ(t, vk), x(t, vk), vk(t), t), v0 ∈ VC , α > 0, t ∈ T.

The complexity of the computational implementation of one iteration of
explicit and implicit projection methods (22)–(24) consists of two Cauchy prob-
lems for phase and conjugate variables.

Similarly to [5], we can formulate simple conditions for the convergence of
iterative processes (22)–(24) with continuous initial approximations to contin-
uous solutions of the corresponding fixed point problems for sufficiently small
projection parameters α > 0.

No well-known analogs of projection iterative fixed-point methods (22)–(24)
were found in the literature.

To compare the developed projection methods of fixed points, we will present
in the notation used the standard gradient projection method with α > 0 [2,3]:

vk
α(t) = wα(ψ(t, vk), x(t, vk), vk(t), t), t ∈ T, v0 ∈ V, k ≥ 0,

α ∈ (0,∞) : Φ(vk
α) ≤ Φ(vk) ⇒ vk+1 = vk

α.

At each iteration of the gradient gradient projection method under consid-
eration, the projection parameter is varied to provide improved control.

In the constructed fixed-point projection methods, in contrast to the stan-
dard gradient projection method, the design parameter α > 0 is fixed in the
iterative process of successive control approximations. Thus, at each iteration
of the proposed methods, relaxation with respect to the objective functional
is not guaranteed, but this property is compensated by the nonlocality of suc-
cessive control approximations, the absence of the operation of varying control
in the vicinity of the current approximation to provide an improvement in the
functional.

7 Conclusion

The main result of this work is to obtain new operator forms of known necessary
optimality conditions in the considered class of optimal control problems. The
obtained operator forms can be interpreted as fixed point problems and allow
developing a new approach to the search for extremal controls, which consists of
constructing iterative algorithms for solving the indicated fixed point problems.

The proposed new fixed point approach for finding extreme controls is char-
acterized by the following main features.
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1. Nonlocality of successive control approximations in constructed iterative pro-
cesses for searching for extremal controls.

2. Absence of a laborious procedure of needle or convex variation of control
at each iteration of successive approximations, which is typical for gradient
control methods.

3. The computational complexity of each iteration of successive control approxi-
mations is estimated by solving two Cauchy problems for phase and conjugate
variables.

4. Computational stability of the calculation of fixed point problems, which
is determined by a separate calculation of alternating phase and conjugate
systems.

The indicated properties of the proposed approach for the search for extreme
controls are important for increasing the efficiency of solving optimal control
problems and determine the direction of developing new methods for optimizing
controlled systems.
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Abstract. The problem of the control system general synthesis is con-
sidered. This problem in general case requires finding the solution in the
form of multidimensional function of a vector argument. Placing this
control function into the right-hand part of differential equations of the
control object model allows receiving the system of differential equations
which partial solution from any initial condition of the given set is always
optimal trajectory for the given quality criterion. In this paper, the prob-
lem of control general synthesis is solved based on the approximation of
the set of optimal control problem solutions for different initial condi-
tions. These solutions are called extremals. Previously, to solve the gen-
eral synthesis problem, symbolic regression methods were used without
approximation of extremals. Therefore it was often impossible to esti-
mate the proximity of the found solution to the optimal one. To avoid
this issue in this work initially we solve the optimal control problems for
different initial conditions, and then these solutions are approximated
by the symbolic regression method. In a presented computational exper-
iment the proposed approach is used to solve the problem of the control
system general synthesis for the mobile robot moving in the area with
obstacles.
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The problem of control general synthesis is a very complex one for the numerical
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control vector with this function in the right-hand part of differential equations
of the control object mathematical model the system of differential equations is
obtained each partial solution of which for any initial conditions from the given
domain is a solution of the optimal control problem. Such function may be non
differentiable and may have a discontinuity of the first kind. The searching of
the problem solution in the class of differentiable continuous functions contra-
dicts the practical control systems. Often the controls for a real object can be
discontinuous and not smooth.

Previously, in regression problems, the researcher defined the required func-
tion accurate to parameter values. Then, optimization algorithms were used to
search the optimal values of these parameters. Last decade for solving the prob-
lem of the control system general synthesis symbolic regression methods are
used [2,3]. Symbolic regression methods allow to search for the structure of a
mathematical expression. These methods encode the possible solution, which in
our case is the mathematical expression for the searched control function, and
search for the optimal code by some evolutionary algorithms [4], in most cases
by a genetic algorithm which search for a mathematical expression on a set of
codes [5]. All symbolic regression methods are differed by the form of codes.
The main operations of genetic algorithm like crossover and mutation depend
on coding rules of the specific symbolic regression method. At the moment there
are over 10 different symbolic regression methods.

The main drawback of direct approaches for solving the problem of optimal
control general synthesis based on symbolic regression methods is that genetic
algorithm doesn’t provide an information about the proximity of a found solution
to the optimal one. The solution found by symbolic regression method is the best
one from all checked possible solutions during the search process. Note that in
order to check one possible solution it is necessary to place it in the right-hand
part of system of differential equations of control object model and integrate this
system for all given initial conditions.

To eliminate this defect we suggest a two-step approach to solve the problem
of the control system general synthesis. At the first step we solve the optimal
control problem for all given initial conditions. As a result we receive a set of
extremals that are discretely stored in a computer memory as control vectors
and state space vectors in some time moments. As the result we got a set of
points in the state space for each optimal control problem. At the second step
we approximate these solutions by symbolic regression method [6]. So the value
of quality criterion for the approximation is an estimation of proximity of the
found solution to the optimal one.

Unlike previous approaches for solving the problem of optimal control general
synthesis using symbolic regression methods, the suggested approach allows to
estimate the proximity of the found solution to the optimal one in terms of the
value of quality criterion, since for each initial condition we have a previously
solved optimal control problem with the corresponding quality criterion value.

In this paper the problem of the control system general synthesis statement
and the numerical method for its solution based on the approximation of the
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extremals are described. The optimal control problem statement and some evo-
lutionary algorithms for its direct solution are presented. Next a symbolic regres-
sion method is described briefly and computational experiment of solving the
problem of the control system general synthesis using proposed approach is pre-
sented.

2 Statement of the Problem of the Control System
General Synthesis

A mathematical model of the control object is given

ẋ = f(x,u), (1)

where x is a state space vector, x ∈ R
n, u is a control vector, u ∈ U ⊆ R

m, U is
bounded closed set, m ≤ n.

A domain of initial conditions is

X0 ⊆ R
n, (2)

Terminal conditions are

x(tf (x0)) = xf ∈ R
n, (3)

where tf (x0) is a time of archiving the terminal conditions xf from initial con-
dition x0 ∈ X0. ∀x0 ∈ X0, tf (x0) is limited, tf (x0) ≤ t+, t+ is a given maximum
time for archiving the terminal state (3). If a possible solution doesn’t provide
reaching the terminal state (3) in time t+ then the control process forcibly ends.

A quality criterion is

J =

n
︷ ︸︸ ︷
∫

. . .

∫

X0

∫ tf (x
0)

0

f0(x(t),u(t))dtdx1 . . . dxn → min
u∈U

, (4)

It is required to find a control as a function of state space vector

u = h(x) ∈ U (5)

such that any partial solution of the system of differential equations

ẋ = f(x,h(x)) (6)

from the domain (2) achieves the terminal conditions (3) and provides an optimal
value of the criterion (4).

In order to create a numerical computational algorithm for solving this prob-
lem we have to reformulate the problem statement. Let us replace the domain of
initial conditions (2) with a finite set of initial conditions, then replace multiple
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integrals with a sum of integrals for each initial condition from a finite set and
define the procedure of calculation of the terminal time of the control process

X̃0 = {x0,1, . . . ,x0,M}, (7)

J̃ =
M
∑

j=1

∫ tf (x
0,j)

0

f0(x(t),u(t))dt → min
u∈U

, (8)

where

tf (x0,j) =
{

t, if t < t+and
∥

∥xf − x(t,x0,j)
∥

∥ ≤ ε0
t+, otherwise , (9)

ε0 is a small positive value, x(t,x0,j) is a solution of the system of differential
Eqs. (6) with initial condition x0,j ∈ X̃0, 1 ≤ j ≤ K.

The problem solution allows to receive an optimal control ũ = h(x) and tra-
jectory x̃(t,x0) for any initial condition from the given set ∀x0 ∈ X̃0. If we are
considering the control function as a function of time, ũ = h(x(t,x0)), then this
control function is the solution of the partial optimal control problem. Let us
consider that the synthesis problem (1)–(8) is solved if the found control func-
tion (5) allows to determinate optimal solutions for all given initial conditions
from the set (7) as well as for other initial conditions from the domain (2).

In our review we don’t consider analytical and semi-analytical methods such
as solution of the Bellman equation [7]. It is obvious that this won’t suite for
the most cases. Semi-analytical methods, e.g. the method of backstepping [8]
or the method of analytical design of aggregated controllers [9], require some
certain properties of a mathematical model and can be used only for providing
the stability of a control object in the terminal state (3) without calculations of
functionals (4) or (8).

The problem (1)–(8) can be solved only by numerical methods of symbolic
regression. We assume that it also can be solved by an artificial neural network
(ANN), but we don’t know any related works with such solution. Moreover, the
solution of this problem by ANN won’t provide us with a mathematical equation
for further analysis and studies.

Symbolic regression methods apply complex, compute-intensive procedures
and allow to find solutions in the form of mathematical expression. Sometimes
the mathematical expression found by these methods can be a more than a few
dozen lines. But this is not the main weakness of symbolic regression methods.
Solutions in these methods are found by evolutionary algorithms. The main
drawback of symbolic regression methods and of all evolutionary algorithms in
general is that we don’t get the proximity of the found solution to the optimal
one. Despite evolutionary algorithms can be considered as methods of random
search, studies show that any evolutionary algorithm performs better than any
random search algorithm [10]. If evolutionary algorithms are used in solving the
optimization problem we believe that it is likely that term “training” should be
used instead of the term “search”.

In this work initially the optimal control problem is solved numerically for
each initial condition from the set (7) forming a training data set. Then sym-



Control System General Synthesis by Approximation of a Set of Extremals 117

bolic regression method is used to approximate the data set. Drawing analo-
gies to neural networks technologies, this approach is similar to training with
a teacher (supervised learning) in contrast to the direct solving the synthesis
problem with the same symbolic regression method. A direct solution is similar
to training without a teacher (unsupervised learning). A preliminary solution
of multiple optimal control problems from different initial conditions for the
synthesis problem can be named as a procedure of obtaining training set.

3 Solution of the Optimal Control Problem

Consider the optimal control problem statement. A mathematical model of a
control object is given in (1).

There is only one initial condition

x(0) = x0 ∈ X̃0, (10)

The terminal condition is given in (3).
The quality criterion is

J1 =
∫ tf

0

f0(x(t),u(t))dt → min
u∈U

, (11)

where terminal time tf is determined by formula (9).
It is known that for a numerical solution of the optimal control problem

there are two approaches: direct and indirect. The first approach is to transform
the original optimization problem in infinite-dimensional space into a nonlin-
ear programming problem. An indirect approach involves the application of the
Pontryagin maximum principle, that modifies the optimal control problem into
a boundary value problem. It has been shown in many computational experi-
ments that applying the Pontryagin maximum principle makes sense for ana-
lytical solutions if they can be found. For numerical solutions the maximum
principle doesn’t give any advantages [11]. Therefore, we use a direct approach
to solve the optimal control problem.

Set an interval on the time axis Δt. For a limited time t+ we have no more
than

K =
⌈

t+

Δt

⌉

(12)

intervals.
The required control function is represented in the form of a piecewise linear

approximation in each time interval considering the control constraints

ui(t) =

⎧

⎨

⎩

u+
i , if ũi > u+

i

u−
i , if ũi < u−

i

ũi, otherwise
, (13)

where
ũi =

qj+K(i−1)+1 − qj+K(i−1)

Δt
(t − (j − 1)Δt) + qj+K(i−1), (14)

i = 1, . . . ,m, j = 1, . . . , K.
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To solve the optimal control problem it is necessary to find the values of
(K + 1)m parameters

qi = [q1 . . . qm(K+1)]T . (15)

To find a solution an evolutionary algorithm is used.
All evolutionary algorithms include the following steps [12]:

– generation of possible set of solutions which is called a population;
– calculation of quality criterion value for each possible solution;
– variation or evolution of all or some subset of possible solutions;
– substitution of population elements: if a new possible solution is better than

the old one before evolution, then substitution of the old possible solution
with the new one.

One loop of all steps of evolutionary algorithm is a one generation. After
several generations the best solution is determined and it is considered as a
solution of the optimization problem. A number of generations and a number of
elements in the initial population are the main parameters of all evolutionary
algorithms.

Currently there are more than fifty evolutionary algorithms. Mostly they
have exotic names, e.g. names after an animal or a nature phenomenon that
inspired algorithm’s creator. The most well-known of these algorithms is genetic
algorithm [5,12]. It works with codes of possible solutions, so it can be used for
searching for the optimal solution in a non-numerical space, where there is no
metric norm for the distance between two possible solutions. This property of
genetic algorithm is due to the evolution procedure, which carries crossover and
mutation operators. These operators don’t use arithmetic operations of summa-
tion, subtraction, multiplication or division.

All evolutionary algorithms differ by the third step - the evolution. The more
information about the distribution of the quality criterion in the search space
is used for evolution, the better evolutionary algorithm works for complex opti-
mization problems. There are many evolutionary algorithms that work better
than genetic algorithm in a metric search space, e.g. Particle Swarm Optimiza-
tion algorithm (PSO) [12,13]. In this algorithm each possible solution is called
particle. At particle’s evolution step it uses information about the particle with
current best value of quality criterion in the whole population, about the particle
with best value of quality criterion among randomly selected particles and about
own best value of quality criterion obtained in previous steps. The drawback of
PSO algorithm and of many other evolutionary algorithms is the presence of
a certain number of additional constant parameters that together with basic
parameters must be configured for each specific optimization problem.

In this work we use Grey Wolf Optimizer algorithm (GWO) [12,14]. This
algorithm uses only basic parameters of evolutionary algorithms, which are a
number of generations and a number of elements in the population. Three solu-
tions with the best values of quality criterion in current step are used for evolu-
tion of each possible solution. We modified this algorithm and made the number
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of chosen best current solutions used for evolution as an additional parameter
of GWO algorithm.

GWO algorithm has the following steps:
1. Generate an initial population

Q = {q1, . . . ,qH}, (16)

where
qri·j = ξ(q+i − q−

i ) + q−
i , (17)

r = 1, . . . , H, j = 1, . . . ,K +1, ξ is a random number from the interval [0; 1], q−
i

and q+i are the minimum and the maximum values of parameters of the control
function (13) respectively, i = 1, . . . ,m.

2. Calculate the value of quality criterion (11) for each possible solution

F = {f1 = J1(q1), . . . , fH = J1(qH)}, (18)

where J(qr) is the value of criterion (11) of the solution of system (1) with
control function (13) obtained using vector qr.

Set the current value of generations iterator to g = 1.
3. Determine a set of N indices of the best possible solutions

I = {r1, . . . , rN}, (19)

where
fr1 ≤ . . . ≤ frN ≤ ∀fr, r ∈ {1, . . . , H} \ I. (20)

4. Select a random possible solution from the population

r = ξ(H) (21)

where ξ(H) is a random integer number from 1 to H.
Calculate the following value

A =
N

∑

i=1

m(K+1)
∑

j=1

qrij − L(2ξ − 1)|2ξqrij − qrj |, (22)

where
L = 2 − 2g

P
. (23)

Perform an evolution of a possible solution qr

q̃ri =
A

N
, i = 1, . . . ,m(K + 1). (24)

Calculate the value of criterion (11) for a new vector q̃r. If J1(q̃r) < fr, then
replace the old vector qr with the new vector q̃r,

q ← q̃r, fr ← J1(q̃r). (25)

Repeat the step 4 R ≥ H times.
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5. Increase the value of generations iterator

g ← g + 1 (26)

and go to the step 3.
Repeat steps 3–5 P times.
In the end, after all iterations, the solution of the optimal control problem is

a control function (13) obtained using the best solution among possible solutions
in Q.

Our modified GWO algorithm has the following parameters: H is a number of
possible solutions in a population; P is a number of generations; R is a number of
evolutionary changes in one generation; N is a number of the best possible solu-
tions used to perform an evolution. Our experience shows that GWO algorithm
performs very well and highly suitable for solving the optimal control problem
based on a direct approach.

4 Approximation of the Set of Extremals

As the optimal control problem was solved for each initial conditions from the
set (7) we have all the received optimal controls and trajectories in the state
space stored. The storage of discrete data was provided by determination of
time interval Δst

D = {D1, . . . ,DK}, (27)

where

Di = {(ũ(0), x̃0,i), (ũ(Δst), x̃(Δst)), . . . , (ũ(WiΔst), x̃(WiΔst))}, (28)

Wi =
⌊

tf (x0,i)
Δst

⌋

+ 1, (29)

i = 1, . . . , K.
To solve the problem of the control system general synthesis it is necessary

to find a control function in the form (5) that minimize quality criterion

J2 =
K

∑

i=1

Wi
∑

j=2

(x((j − 1)Δst,x0,i) − x̃((j − 1)Δst))2 → min
h(x)

, (30)

where x((j − 1)Δst,x0,i) is a solution of the system (6) at the moment t =
(j−1)Δst with initial condition x0,i, j = 2, . . . ,Wi, i = 1, . . . ,K. Here a starting
point of calculation of the sum (29) is j = 2, since the control object’s state at
the moment t = 0 coincide for both the problem of the control system synthesis
and the optimal control problem.

To solve the stated problem of the control system general synthesis, which is
a search for a control function in the form (5) that minimize the quality criterion
(30) we propose to use symbolic regression methods.
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Symbolic regression methods search for a mathematical expression of a func-
tion in the form of specific code using genetic algorithm. The most popular
method of symbolic regression is genetic programming (GP) [15]. GP encodes
a mathematical expression in the form of computation tree. Elementary math-
ematical functions and arithmetic operations are located in nodes of the tree.
Arguments of mathematical expression and constant parameters are located on
leaves of the tree. The drawback of GP is that different mathematical expressions
have different length of their codes. This is inconvenient for programming, since
each code in a set of mathematical expression codes has a different length and its
length can be changed after any of crossover operation. The second drawback of
GP is that if an argument has to be written more than once in a mathematical
expression, then it must also be located on the set of leaves several times.

There are many other symbolic regression methods that do not have these
drawbacks. For example, in Cartesian genetic programming (CGP) [16] and in
network operator (NOP) [2,4] a mathematical expression is represented in a
constant-length code. This length does not change after crossover operations.
In NOP a mathematical expression is represented in the form of a directed
graph. Arguments are located at source nodes. Any argument appears in a source
node only once, but this argument can appear several times in a mathematical
expression. In CGP a mathematical expression is represented in the form of an
integer matrix. Each column of the matrix is a call of an elementary function.

For comparison let us give an example of GP, CGP, and NOP codes for the
mathematical expression

y = c1 sin(x1) + x1 cos(c2x1 + x2). (31)

A set of arguments for this expression is

F0 = {x1, x2, c1, c2}. (32)

A set of elementary functions is

F = {f1(z) = z, f2(z) = sin(z), f3(z) = cos(z),
f4(z1, z2) = z1 + z2, f5(z1, z2) = z1z2} . (33)

GP graph for the mathematical expression (31) is shown in Fig. 1. Here three
inclusion of the argument x1 in the mathematical expression required three leaves
on the tree with this argument.

CGP code for the mathematical expression (31) is

Y =

⎡

⎣

2 5 5 4 3 5 4
x1 c1 c2 3 4 x1 6
0 1 x1 x2 0 5 2

⎤

⎦ . (34)

Here, the first line contains the numbers of functions. The second and the third
lines contain arguments of functions. In the case when the second argument
is not needed to call the function, zero is written. Arguments of functions are



122 A. Diveev and S. Konstantinov

Fig. 1. Genetic programming graph for the mathematical expression

elements from the set (32) or the column number of this matrix, in which the
function was already called.

NOP graph for the mathematical expression (31) is shown in Fig. 2. Argu-
ments in this graph are located in source nodes, the numbers of functions of
two arguments are located in remaining nodes. The numbers of functions of one
argument are located on graph edges. The result of calculation is at the output
node.

Fig. 2. Network operator graph for the mathematical expression

5 Computation Experiment

Consider the solution of the problem of the control system general synthesis for
a mobile robot.
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A mathematical model of the control object is given in the following form [17]

ẋ1 = 0.5(u1 + u2) cos(x3),
ẋ2 = 0.5(u1 + u2) sin(x3),
ẋ3 = 0.5(u1 − u2),

(35)

where the control u = [u1 u2]T is constrained

u−
i ≤ ui ≤ u+

i : i = 1, 2. (36)

u−
i = −10, u+

i = 10, i = 1, 2.
Domain of initial conditions is

X0 = {x−
i ≤ xi ≤ x+

i : i = 1, 2, 3}. (37)

where x−
1 = −2.5, x−

2 = −2.5, x−
3 = −5π/12, x+

1 = 2.5, x+
2 = 2.5, x+

3 = 5π/12.
Terminal state is

xf = [0 0 0]T . (38)

Quality criterion shows the time of reaching the terminal state (38)

J =
∫ x+

1

x−
1

∫ x+
2

x−
2

∫ x+
3

x−
3

∫ tf (x
0)

0

dt =
∫ x+

1

x−
1

∫ x+
2

x−
2

∫ x+
3

x−
3

tf (x0) → min
u=h(x)

. (39)

According to the proposed method, the optimal control problem should ini-
tially be solved for some set of initial conditions. Let us replace the domain (37)
with the set of M = 24 initial conditions

X̃0 = {x0,1 = [2.5 2.5 0]T ,x0,2 = [0 2.5 0]T ,
x0,3 = [−2.5 2.5 0]T ,x0,4 = [−2.5 0 0]T ,
x0,5 = [−2.5 − 2.5 0]T }.x0,6 = [0 − 2.5 0]T ,
x0,7 = [2.5 − 2.5 0]T ,x0,8 = [2.5 0 0]T ,
x0,9 = [2.5 2.5 5π/12]T ,x0,10 = [0 2.5 5π/12]T ,
x0,11 = [−2.5 2.5 5π/12]T ,x0,12 = [−2.5 0 5π/12]T ,
x0,13 = [−2.5 − 2.5 5π/12]T ,x0,14 = [0 − 2.5 5π/12]T ,
x0,15 = [2.5 − 2.5 5π/12]T ,x0,16 = [2.5 0 5π/12]T

x0,17 = [2.5 2.5 − 5π/12]T ,x0,18 = [0 2.5 − 5π/12]T ,
x0,19 = [−2.5 2.5 − 5π/12]T ,x0,28 = [−2.5 0 − 5π/12]T ,
x0,21 = [−2.5 − 2.5 − 5π/12]T ,x0,22 = [0 − 2.5 − 5π/12]T ,
x0,23 = [2.5 − 2.5 − 5π/12]T ,x0,24 = [2.5 0 − 5π/12]T }.

(40)

For each initial condition from the set (40) the optimal control problem is
solved using the following quality criterion

J3 = tf (x0.i) + max{|xf
i − xi(tf (x0.i))| : i = 1, 2, 3} → min

u(t)
, (41)

where tf (x)0,j , j = 1, . . . , 24, is defined in (9) considering t+ = 1s, ε0 = 0.01.
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To solve the optimal control problem (35)–(41) the time interval is set to
Δt = 0.1. Thus the dimension of a vector of parameters is m(K + 1) = 20,
q = [q1 . . . q20]T .

The search for solutions of the optimal control problems was performed using
GWO algorithm with the following parameters: H = 512, P = 8192, R = 512,
N = 8.

Projections of found 24 optimal trajectories or in other words extremals
onto the {x1, x2} plane are shown in Fig. 3. Table 1 shows values of the quality
criterion for each initial condition from the set (40).

Fig. 3. Projections of found optimal trajectories onto the {x1, x2} plane for 24 different
initial conditions

Table 1. Optimal values of the quality criterion for different initial conditions.

Initial condition x0 J3 Initial condition x0 J3 Initial condition x0 J3

[2.5 2.5 0]T 0.53 [0 2.5 0]T 0.57 [−2.5 2.5 0]T 0.53

[−2.5 0 0]T 0.25 [−2.5 − 2.5 0]T 0.53 [0 − 2.5 0]T 0.57

[2.5 − 2.5 0]T 0.55 [2.5 0 0]T 0.25 [2.5 2.5 5π/12]T 0.5

[0 2.5 5π/12]T 0.45 [−2.5 2.5 5π/12]T 0.7 [−2.5 0 5π/12]T 0.4

[−2.5 − 2.5 5π/12]T 0.49 [0 − 2.5 5π/12]T 0.45 [2.5 − 2.5 5π/12]T 0.7

[2.5 0 5π/12]T 0.39 [2.5 2.5 − 5π/12]T 0.7 [0 2.5 − 5π/12]T 0.46

[−2.5 2.5 − 5π/12]T 0.49 [−2.5 0 − 5π/12]T 0.39 [−2.5 − 2.5 − 5π/12]T 0.7

[0 − 2.5 − 5π/12]T 0.47 [2.5 − 2.5 − 5π/12]T 0.5 [0 0 − 5π/12]T 0.39

At the second step of the proposed method found optimal trajectories should
be approximated by symbolic regression method. In the considered computa-
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tional experiment we use Cartesian genetic programming. As mentioned above,
CGP is free from drawbacks inherent in GP and is well suited for solving the
considered problem.

The approximation of found extremals by CGP give us the following control
function

ui =

⎧

⎨

⎩

u+
i , ifũi ≥ u+

i

u−
i , ifũi ≤ u+

i

ũi, otherwise
, (42)

where

ũ1 = 3q1(x
f
1 − x1) + 2x2

3 + 8q3 arctan (Q) + 4q3(x
f
3 − x3), (43)

ũ2 = 6q1(x
f
1 − x1) + 6x2

3 − 8q3 arctan (Q) − 4q3(x
f
3 − x3), (44)

Q = q2(x
f
2−x2)

q1(x
f
1−x1)

, q1 = 6.8261, q2 = 10.92188, q3 = 15.99707, q4 = 9.85840.

Figure 4 shows projections onto the plane {x1, x2} of trajectories obtained
by the object movement using the stabilization system (42)–(44) from eight ini-
tial conditions [2.5 2.5 0]T , [0 2.5 0]T , [−2.5 2.5 0]T , [−2.5 0 0]T , [−2.5 − 2.5 0]T ,
[0 − 2.5 0]T , [2.5 − 2.5 0]T , [2.5 0 0]T (black lines) and points in the training set
(red dots).

Fig. 4. Projections onto the plane {x1, x2} of 8 trajectories obtained by the object
movement using found stabilization system

It can be seen in Fig. 4 that some extremals were approximated with insuf-
ficient accuracy. It is because the trajectories on which the object has to rotate
90◦ are the most difficult for the approximation.
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To confirm the results let us consider a solution which was obtained by the
object movement using the stabilization system from the initial state that was
not included in the training set of extremals, specifically

x(0) = [1.25 2.5 π/4]T . (45)

For this problem of moving the control object from the initial state (45) to
the terminal state (38) there were obtained and compared solutions using the
stabilization system (42)–(44) and using a direct approach to solve the optimal
control problem by evolutionary GWO algorithm.

Graphs of found solutions are showed in Fig. 5. The graphs of solution
obtained using the stabilization system (42)–(44) are showed in black, the graphs
of solution obtained using a direct approach to solve the optimal control problem
by evolutionary GWO algorithm are showed in red. Figure 6 shows the graphs
of control values.

Fig. 5. Graphs of the control object movement from the initial state [1.25 2.5 π/4]T to
the terminal state [0 0 0]T obtained using the stabilization system found with proposed
method (black) and using a direct approach to solve the optimal control problem by
evolutionary GWO algorithm (red), a – movement trajectory projection onto the plane
{x1, x2}; b – the graph x1(t); c – the graph x2(t); d – the graph x3(t)
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Fig. 6. Graphs of the control values obtained using the stabilization system found
with proposed method (black) and using a direct approach to solve the optimal control
problem by evolutionary GWO algorithm (red), a – u1(t); b – u2(t)

6 Conclusion

A solution to the problem of the control system general synthesis using symbolic
regression methods was considered. To ensure the proximity of found solution
to the optimal one, a control function was obtained by approximating a set of
optimal trajectories (extremals). Approximation was carried out with Cartesian
genetic programming. A computational experiment of the control system syn-
thesis using an approximation of the optimal trajectories set for a two-tracked
mobile robot was conducted. In the approximation step a set of twenty four
optimal trajectories obtained with grey wolf optimizer evolutionary algorithm
was used. Computational experiment showed that the control function found
allows one to obtain close to optimal control for the initial conditions that were
not considered during the approximation of optimal trajectories. The maximum
discrepancy of the quality criterion for the found solution is no more then 20%
from the optimal one.
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Abstract. The article is studying the solution of the optimal control
problem on the implementation. The problem here is that to implement
the received optimal control a stabilization system is needed. But con-
struction of such system makes changes to the mathematical model of
the control object, so that the received control is not more optimal for
that object. The paper introduces the concept of feasibility of control sys-
tems. An approach based on multi-point stabilization to receive feasible
solutions of the optimal control problem is proposed. According to the
approach, stabilization system synthesis is solved firstly. The synthesis
problem can be solved by any known analytical or technical method. In
the paper a symbolic regression method is used for the numerical solu-
tion of the synthesis problem. As far as the solution of synthesis prob-
lem is received, the differential equations of the model as one-parameter
mappings acquire the contraction property, which reduces small model
uncertainties. Then positions of stable points in the state space are found
such that when switching from one point to another in some time inter-
val the control object will move from initial conditions to terminal one
with an optimal value of a quality criterion. In the computational exper-
iment the efficiency of the proposed approach comparative to the direct
approach is shown in the presence of uncertainties.
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mathematical model of the control object. These changes are defined by a free
control vector and a compact set that determines restrictions on the control.

Different control functions can provide different properties of control system
or more exactly different properties of the system of differential equations. For
example, when we solve the optimal control problem and find the control function
as a function of time, we want that the system of differential equations of the
mathematical model of the control object has a partial solution that from the
given initial conditions hits the given terminal condition with the optimal value of
the quality criterion. This found solution, in fact, cannot be directly implemented
in practice. In real control systems to provide movement of the object on the
found optimal trajectory it is necessary to build a stabilization system. But
construction of the stabilization system changes the mathematical model of the
object and the received control might be not optimal for the new model.

From the mathematical point of view the synthesis of stabilization system is
an attempt to give an attractor property to the found optimal trajectory. As a
result, in the problem of optimal control, it is necessary not only to formulate
a requirement for solving the system of differential equations so that to achieve
the terminal state with an optimal value of the quality criterion, but also to
formulate additional requirements for the properties of this solution. The optimal
solution must be Lyapunov stable or have the attractor property [1]. It can be
that the attractor property for the optimal solution of the system of differential
equations is redundant, and other weaker requirements are needed to implement
the resulting solution.

This paper is devoted to the study of feasibility property of the solution of the
optimal control problem. Based on a qualitative analysis [2] of the solutions of
systems of differential equations, the concept of the feasibility of control systems
is introduced. Feasibility is a property of control in which small changes in the
model do not lead to a loss of quality. It is shown that the feasibility criterion
was not initially laid down in the formulation of the optimal control problem.

Following the principle of feasibility, it is proposed to solve the problem of
optimal control through the synthesis of a stabilization system. The stage of
synthesis of the stabilization system allows to embed the control in the object
so that the system of differential equations would have the necessary property
of feasibility. In this case, the equilibrium point can be changed after some time,
but the object maintains equilibrium at every moment of time.

A computational experiment is presented in which the sensitivity to distur-
bances of two controls obtained on the basis of the proposed approach and by a
direct method is compared.

2 Feasibility Principle

Hypothesis A. A mathematical model is feasible, if its errors do not increase
in time.
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Definition 1. The system of differential equations is practically feasible, if this
system as a one-parametric mapping obtains a contraction property in the imple-
mentation domain.

Consider a system of differential equations

ẋ = f(x), (1)

where x ∈ R
n.

Any ordinary differential equation is a recurrent description of a time func-
tion. A solution of the differential equation is a transformation from a recurrent
form to a usual time function.

Computer calculation of the differential Eq. (1) has a form

x(t + Δt) = x(t) + Δtf(x(t)), (2)

where t is an independent parameter, Δt is a constant parameter, and it is called
a step of integration.

The right side of the Eq. (2) is a one-parametric mapping from space R
n to

itself
F (x, t) = x(t) + Δtf(x(t)) : R

n → R
n. (3)

Let a compact domain D be set in the space R
n. All solutions of the differ-

ential Eqs. (1), that are of our interest, belong to this domain. Therefore, for the
differential Eqs. (1) the initial and terminal conditions belong to this domain

x(0) ∈ D ⊆ R
n, x(tf ) ∈ D ⊆ R

n, (4)

where x(tf ) is a terminal point of the solution (1).

Theorem 1. Let in the domain D for the mapping (3) the following property is
performed

ρ(xa(t),xb(t)) ≤ ρ(F (xa(t), t), F (xb(t), t)), (5)

where xa(t) ∈ D, xb(t) ∈ D, ρ(xa,xb) is a distance between two points in the
space R

n

ρ(xa,xb) =
∥
∥xa − xb

∥
∥ . (6)

Then the mathematical model (1) is feasible if the domain D ⊆ R
n according

to the hypothesis.

Proof. Let x(t) ∈ D is a known state of the system in the moment t and y(t) ∈ D
is a real state of the system in the same moment. The error of the state is

δ(t) = ρ(x(t),y(t)). (7)

According to the mapping (3)

δ(t + Δt) = ρ(F (x(t), t), F (y(t))). (8)

And according to the condition (5) of the theorem

δ(t) ≤ δ(t + Δt). (9)

This proves the theorem �
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The condition (5) shows that the system of differential equations as a one-
parametric mapping has contraction property.

Assume that the system (1) in the neighborhood of the domain D has one
stable equilibrium point, and there is no other equilibrium point in this neigh-
borhood

f(x̃) = 0, (10)

det(λE − A(x̃)) = λn + an−1λ
n−1 + . . . + a1λ + a0 =

n∏

j=1

(λ − λj) = 0, (11)

where E is a unit n × n matrix,

A(x̃) =
∂ f̃(x)
∂x

, (12)

λj = αj + iβj , (13)

αj < 0, i =
√−1, j = 1, . . . , n.

Theorem 2. If for the system (1) there is a domain D that includes one stable
equilibrium point (10)–(13), then the system (1) is practically feasible.

Proof. According to the Lyapunov’s stability theorem on the first approximation
the trivial solution of the differential equation (1)

x(t) = x̃ = constant (14)

is stable. This means, that, if any solution begins from other initial point x0 �= x̃,
then it will be approximated to the stable solution asymptotically

ρ(x(t + Δt,xa), x̃) ≤ ρ(x(t,xa), x̃), (15)

where x(t,xa) is a solution of the differential equation (1) from initial point xa.
The same is true for another initial condition xb

ρ(x(t + Δt,xb), x̃) ≤ ρ(x(t,xb), x̃). (16)

From here follows, that the domain D has a fixed point x̃ of contraction
mapping [2], therefore distance between solutions x(t,xa) and x(t,xb) also tends
to zero or

ρ(x(t + Δt,xa),x(t + Δt,xb)) ≤ ρ(x(t,xa),x(t,xb)). (17)

�
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3 The Synthesized Optimal Control Problem Statement
with Feasibility Conditions

It is given a mathematical model of the control object

ẋ = f(x,u), (18)

where x ∈ R
n, u ∈ U ⊆ R

m, U is a compact set, m ≤ n.
Initial conditions are given

x(0) = x0 ∈ R
n, (19)

The terminal conditions are given

x(tf ) = xf ∈ R
n, (20)

where tf is a time of hitting the terminal conditions, tf is not given, but limited

tf ≤ t+, (21)

t+ is given.
The quality criterion is given

J =

tf∫

0

f0(x(t),u(t)dt → min
u∈U

, (22)

It is necessary initially to find the control function in the form

u = h(x∗ − x), (23)

where x∗ is a constant point in the state space, x∗ ∈ R
n.

The control function (23) has the following properties:
A) There is a domain D ⊆ R

n, where the control function (23) satisfies the
restrictions on control

∀x∗ ∈ D → h(x∗ − x) ∈ U. (24)

B) The differential equation system

ẋ = f(x,h(x∗ − x)) (25)

has an equilibrium point x̃(x∗) with the properties (10)–(13), therefore the sys-
tem (25) is feasible according to definition 1.

At the second stage of the synthesized optimal control method it is necessary
to find the function

x∗ = v(t), (26)

which provides to the partial solution of the system (25) the property of achieve-
ment of the terminal conditions (20) from the initial conditions (19) with the
optimal value of the quality criterion (22).
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Note, that at the second stage the searched function (26) has a dimension
the same as the state space, and at the numerical solution the searched function
(26) can be searched as a piece-constant one.

v(t) = x∗,i, if (i − 1)Δ ≤ t < iΔ, (27)

where x∗,i are found optimal values of point coordinates in the domain D, i =
1, . . . ,K, Δ is a given time interval,

K =
⌊

t+

Δ

⌋

. (28)

The most difficult part of the problem statement (18)–(28) is to search the
control function in the form (23). This sub-problem belongs to the class of the
problems of control system general synthesis. It can be solved by any analytical,
technical, or numerical methods. Analytical methods such as the analytic design
of optimal controllers [3], the backstepping integrator [4,5] and the analytical
construction of aggregated controllers [6,7] can be used for determined class
of mathematical models (18) of control object. Engineers often use a technical
approach to the synthesis when the control function is given, as a rule, intuitively,
with the accuracy for values of parameters, that are searched by an optimization
algorithm.

Now there are numerical methods of the control system synthesis that allow
to find a mathematical expression for the control function. In recent years, sym-
bolic regression methods have been used to numerically solve the control synthe-
sis problem [8–15]. These methods search for a mathematical expression in the
form of a special code with the help of an evolutionary genetic algorithm. Now
more than ten symbolic regression methods are known. All these methods are
differed in coding of mathematical expression and crossover and mutation oper-
ations of the genetic algorithm. In the present paper one of the latest symbolic
regression method of variation Cartesian genetic programming is applied in the
computational example section.

4 Variation Cartesian Genetic Programming

Variation Cartesian genetic programming (VCGP) is a Cartesian genetic pro-
gramming with the application of the variation principle [16]. Therefore, let us
consider initially Cartesian genetic programming [10].

To code a mathematical expression by a symbolic regression method it is nec-
essary to set a set of elementary functions and to determine a set of arguments.
Assume that elementary functions can have one, two or three arguments

F = {f1 = f1(z), . . . , fl = fl(z1, z2, z3)}. (29)

Arguments of mathematical expression are variables and parameters

A = {a1 = x1, . . . , an = xn, an+1 = q1, . . . , an+p = qp}. (30)



Multi-point Stabilization Approach to the Optimal Control Problem 135

CGP-code of the mathematical expression is an integer matrix with four lines

C =

⎡

⎢
⎣

c1,1 . . . c1,L

...
...

...
c4,1 . . . c4,L

⎤

⎥
⎦ , (31)

where c1,i is the function number from the set of elementary functions (29),

c1,j ∈ {1, . . . , l}, j = 1, . . . , L, (32)

ci,j is the element number from the set of arguments (30) or n + p plus the
column number of the matrix (31) from 1 to j − 1,

ci,j ∈ {1, . . . , n + p + j − 1}, i = 2, 3, 4, j = 1, . . . , L. (33)

To decode the CGP-code an additional vector for storing the intermediate results
of calculations is used

y = [y1 . . . yL]T . (34)

To calculate the result of the mathematical expression the following formula is
applied

yj = fc1,j (ac2,j , ac3,j , ac4,j ), j = 1, . . . , L. (35)

If an elementary function has less than three arguments, then elements c3,j

or/and c4,j aren’t used. Total results of calculations are stored in the components
of the vector (34).

Consider an example

u = q1x1 + q2 exp(−x2) sin(q3x3). (36)

To code this mathematical expression the following sets are enough

F = {f1 = z, f2 = −z, f3 = exp(z), f4 = sin(z), f5 = z1 + z2, f6 = z1z2}. (37)

A = {a1 = x1, a2 = x2, a3 = x3, a4 = q1, a5 = q2, a6 = q3}. (38)

Let the matrix of the code (31) uses ten columns, L = 10,

C = [c1 . . . c10]. (39)

To code intermediate result, for example q1x1, we use the number of elements
from the set (37), (38)

c1 =

⎡

⎢
⎢
⎣

6
1
4
2

⎤

⎥
⎥
⎦

. (40)

Here the last element c1,4 = 2 isn’t used.
If we want to use result c1 then the number n+p+1 = 3+3+1 = 7 is used.
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In total the following code is obtained

C =

⎡

⎢
⎢
⎣

6 2 3 6 6 4 6 5 1 1
1 2 8 5 6 11 10 13 14 15
4 3 4 9 3 7 12 7 1 2
2 4 5 7 8 8 9 1 3 5

⎤

⎥
⎥
⎦

. (41)

The last two columns have the same values, because for code of the mathe-
matical expression (36) eight columns are enough, but we can’t know in advance
how many columns is needed.

The Variation Cartesian genetic programming uses the principle of small
variations of the basic solution [16]. A small variation of CGP-code is a change
of an element in the matrix (31). To write such small variations an integer vector
with three components is used.

w = [w1 w2 w3]T , (42)

where w1 is the line number of the matrix (31), w1 ∈ {1, 2, 3, 4}, w2 is the column
number of the matrix w2 ∈ {1, . . . , L}, w3 is a new value of the element cw1,w2 ,
if w1 = 1, then w3 ∈ {1, . . . , l}, else w3 ∈ {1, . . . , n + p + w2}.

For example, consider a small variation

w = [2 5 9]T , (43)

of the code (41)
In the new code the element c2,5 = 9 instead of 6 or

w ◦ C =

⎡

⎢
⎢
⎣

6 2 3 6 6 4 6 5 1 1
1 2 8 5 9 11 10 13 14 15
4 3 4 9 3 7 12 7 1 2
2 4 5 7 8 8 9 1 3 5

⎤

⎥
⎥
⎦

. (44)

The new code corresponds to the mathematical expression

ũ = q1x1 + q2 exp(−x2) sin(exp(−x2)x3). (45)

Genetic operations of crossover and mutation are performed on the sets of
variation vectors.

Let Wα and Wβ be two sets of variation vectors

Wa = {wa,1, . . . ,wa,d}, (46)

where a = α, β, d is a given length of the sets.
Let k be a crossover point, 1 ≤ k ≤ d. After crossover operation the following

two new sets of small variation vectors are obtained

Wγ = {wα,1, . . . ,wα,k−1,wβ,k, . . . ,wβ,d}, (47)

Wσ = {wβ,1, . . . ,wβ,k−1,wα,k, . . . ,wα,d}. (48)

Mutation operation is a random generation of a new vector of small variations
in the randomly selected position in the set of small variation vectors.
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5 Computational Experiment

Consider the optimal control problem for the group of two mobile robots
The mathematical model of control object is

ẋj
1 = 0.5(uj

1 + uj
2) cos(xj

3),
ẋj
2 = 0.5(uj

1 + uj
2) sin(xj

3),
ẋj
3 = 0.5(uj

1 − uj
2),

(49)

where j = 1, 2.
There are constraints on components of the control vectors

− 10 ≤ uj
i ≤ 10, (50)

where j = 1, 2, i = 1, 2.
The initial conditions are set

x1(0) = x0,1 = [0 0 0]T ,
x2(0) = x0,2 = [10 10 0]T .

(51)

The terminal conditions are set

x1(tf ) = xf,1 = [10 10 0]T ,
x2(tf ) = xf,2 = [0 0 0]T ,

(52)

where
tf = max{tf,1, tf,2}, (53)

tf,i =
{

t, if
∥
∥xf,i − xi

∥
∥ ≤ ε0 = 0.01

t+ = 2.1, otherwise . (54)

The quality criterion is set

J1 = tf + a1

2∑

k=1

2∑

j=1

tf∫

0

ϑ

(

rk −
√

(xj
1 − x1,k)2 + (xj

2 − x2,k)
)

+

a2

tf∫

0

ϑ

(

r0 −
√

(x1
1 − x2

1)2 + (x1
2 − x2

2)2
)

+

a3

2∑

j=1

√
√
√
√

3∑

i=1

(xf,j
i − xj

i )2, (55)

where ϑ(A) is Heaviside step function

ϑ(A) =
{

1, if A > 0
0, otherwise , (56)
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r1 = 3, r2 = 3, x1,1 = 5, x1,2 = 5, x2,1 = 1, x2,2 = 9, r0 = 2, a1 = 3, a2 = 3,
a3 = 2.5.

At the first stage, the control system synthesis problem was solved by the
Variation Cartesian genetic programming. The following control function was
obtained

uj
1 = A1 + B1 + sgn(A1)(exp(|A1|) − 1),

uj
2 = B1 − A1 − sgn(A1)(exp(|A1|) − 1),

(57)

where

A1 = q1(x
j,∗
3 − xj

3) + (xj,∗
2 − xj

2)sgn(xj,∗
2 − xj

2)
√

|xj,∗
2 − xj

2|,

B1 = 2(xj,∗
1 − xj

1) + q2sgn(xj,∗
1 − xj

1),

q1 = 3.109, q2 = 3.629.
At the second stage, there were found points in the state space

xj,∗,i = [xj,∗,i
1 xj,∗,i

2 xj,∗,i
3 ]T , (58)

where j = 1, 2, i = 1, . . . ,K.
Totally, three points k = 3 for each mobile robot were found.
The points in the space {x1, x2, x3} have the following coordinates: x1,∗,1 =

[4.0987 11.0967 0.05407]T , x2,∗,1 = [5.3720 4.2932 0.4370]T , x1,∗,2 =
[6.6806 7, 1450 − 0.2273]T , x2,∗,2 = [8.8362 1.7514 1.2929]T , x1,∗,3 =
[9.1204 11.9757 0, 4329]T , x2,∗,3 = [0.6469 − 1.0853 0.3649]T .

To search for the points the particle swarm optimization (PSO) algorithm
[17,18] was used. Constraints for components of points were

−2 ≤ xj,∗,i
1 ≤ 12,

−2 ≤ xj,∗,i
2 ≤ 12,

−π/2 ≤ xj,∗,i
3 ≤ π/2.

(59)

In the Fig. 1 the optimal trajectories on the plane {x1, x2} for mobile robots
are presented. Black lines are optimal trajectories of mobile robots, red circles
are the phase constraints, small black squares are found points. Value of the
functional (55) was 3.30865.

For comparative reasons this problem was solved as classical optimal control
problem with the same functional and constraints. The optimal trajectories on
the plane {x1, x2} are presented in the Fig. 2. Value of the functional (55) was
2.1133.

To solve the optimal control problem the piece-wise linear approximation of
control function was used. For this purpose axis t was cut on S intervals. In each
interval i the control function had the following description

uj
i =

⎧

⎨

⎩

u+
i , if ũi > u+

i

u−
i , if ũi < u−

i ,
ũi, otherwise

i = 1, 2, (60)
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Fig. 1. Optimal trajectories of mobile robots on the plane {x1, x2} with multi-point
stabilization approach

Fig. 2. Optimal trajectories of the classical optimal control problem
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where
ũ1
1 = qi +

qi+1 − qi

Δ1
(t − iΔ1), (61)

ũ1
2 = qi+S+1 +

qi+S+2 − qi+S+1

Δ1
(t − iΔ1), (62)

ũ2
1 = qi+2(S+1) +

qi+1+2(S+1) − qi+2(S+1)

Δ1
(t − iΔ1), (63)

ũ2
2 = qi+3(S+1) +

qi+1+3(S+1) − qi+3(S+1)

Δ1
(t − iΔ1), (64)

where Δ1 = 0.21 is a time interval, (i − 1)Δ1 ≤ t < iΔ1, i = 1, . . . , S = 10.
The optimal vector of parameters q = [q1 . . . q44]T has the following values:

q1 = 9.0114, q2 = 14.5534, q3 = 9.0927, q4 = 15.0562, q5 = −1.6654, q6 = 4.8062,
q7 = 18.9325,q8 = 17.3911, q9 = 10, 0004, q10 = 19.1062, q11 = −12.1493,
q12 = 10.2402, q13 = −6.4598, q14 = 17.3903, q15 = 13.1948, q16 = 19.7561,
q17 = 13.5359, q18 = 12.9466, q19 = −2.0334, q20 = 17.1134, q21 = 10.6389, q22 =
18.6662, q23 = 10.2027, q24 = −12.8039, q25 = −12.6042, q26 = −11.5764, q27 =
−17.5172, q28 = −13.9520, q29 = −11, 4665, q30 = 5.6480, q31 = −14.6277, q32 =
−13.9159, q33 = −17.9911, q34 = −14.4242, q35 = −14.4492, q36 = −18.1233,
q37 = −3.2920, q38 = −15.8916, q39 = −13.8078, q40 = −13.1822, q41 = 0.7941,
q42 = −16.1596, q43 = 13, 8797, q44 = 14.7533.

To check the feasibility property of the mathematical models of two robots
the random disturbances were included. Two kind of disturbances were used.
Disturbances of the right side of equation systems (49) and of initial conditions
(51). Disturbances are a random white noise arξ, where ξ is random value from
−1 to 1, a constant ar is a level of perturbation.

Ten computational experiments for each mathematical model (49) with the
synthesized optimal control and with optimal control as a function of time for
different noise levels were conducted. Evaluation of the influence of disturbances
was determined by the functional (55) change. The results of the experiments
are shown in Table 1 and Table 2. The last line in both tables shows results for
disturbances of initial conditions.

The results show that the optimal control is much more sensitive to distur-
bances than the proposed synthesized optimal control. Despite the fact that the
values of the functional for optimal control without disturbances were one and a
half times less than for the synthesized optimal control, under disturbances the
average value of the functional for the optimal control became two times worse
than for the synthesized optimal control.
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Table 1. Synthesized optimal control

No Noise level The best Average Standard deviation

1 0 3.0865 0 0

2 0.5 3.1275 3.4008 0.1969

3 1 3.1337 3.4100 0.2407

4 2 3.2503 4.2005 0.5108

5 0.1 3.1590 3.8847 0.5875

Table 2. Optimal control

No Noise level The best Average Standard deviation

1 0 2.1133 0 0

2 0.5 2.4302 6.4908 1.9916

3 1 7.2210 8.1248 1.0433

4 2 4.9516 8.4157 1.7849

5 0.1 4.6729 8.8921 1.7111

6 Conclusion

In the paper the definition of feasible control system is presented. The theorem
that a contraction mapping posses the property of decreasing model errors is
proved, therefore, all mathematical models with the stable equilibrium points
in the state space are feasible. To achieve feasibility of the control system the
synthesized optimal control method is proposed. In the work it is given the for-
mulation of the optimal control problem, which includes the stage of synthesis
of the stabilization system. After solution of the control synthesis problem the
system of differential equations with found control function in the right side
has always a stable equilibrium point in the state space. This means that the
system of differential equations is a contraction mapping. Therefore this control
system is feasible. On the second stage the optimal control problem is solved by
searching for the stabilization points’ positions. In the paper the new symbolic
regression method of Variation Cartesian genetic programming is proposed for
the solution of the control system synthesis problem. In the experimental part
the optimal control problem of two robots is considered. To solve this problem
two approaches were used, the synthesized optimal control and direct search
for optimal control on the base of approximation of control by piece-wise linear
functions. To search for positions of stabilization points in the state space and
parameters of the piece-wise linear functions, the particle swarm optimization
algorithm was used. The solution of the classical optimal control problem had
better value of the functional than the solution by the synthesized optimal con-
trol method. After that both solutions were studied in conditions of disturbances.
Experiments shown that the synthesized optimal control received solution that
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is more stable to disturbances, and this approach allows to receive practically
feasible solutions.
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Abstract. Numerous studies (mostly in economics) address the issue
of collective action dilemmas for public goods, but few focus on psycho-
logical factors that affect individual decisions, and can be instrumental
in designing effective mechanisms of public good provision. This paper
reports on a series of laboratory experiments where “human sociality” is
used as key variable in public goods type games. We show that once social
ties have been formed (even after short-term socialization) among group
members, it facilitates strategies that lead to much higher rates of public
goods provision, and, thus make collective action a success. Moreover,
the amount of participants who choose individual strategies decreases in
two times. That is, it solves the common problem of free-riders because
participants begin to exhibit more socially responsible character. We also
demonstrate that results hold in situations that involve risk, and females
tend to be better contributors to public goods than their male counter-
parts.

Keywords: Social dilemma · Cooperation · Sociality · Collective-risk
social dilemma · Free-riders

1 Introduction

Our world is arranged in such a way that everything is interconnected. Every
real decision has a response in the future, whether we like it or not. There-
fore, even in ancient civilizations, thoughts arose that it is necessary to preserve
what we have [1,2]. However, examples of irrational use of resources from the
world history suggest that public goods problems are still relevant and have
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not been fully studied yet [3–5]. Therefore, the question “How can we improve
the use of public goods?” is still actual. Shifting from individual strategies to
collective strategies is an important task for society. Is it possible? What mecha-
nisms can be involved in this process? Previously, it was found that in the Pris-
oner’s Dilemma game, introduction of social interaction between participants—
socialization—raises and maintains the level of cooperation [6,7]. Therefore, we
decided to check whether socialization would influence the behavior patterns and
decision-making in social dilemmas. For this purpose, we chose the problem of
the public goods using with the existence of collective risk.

The use of a modification of the commonly known public goods game [8–10]
was described for the first time by Milinski et al. [11], where it was presented
as collective-risk social dilemma [12]. The idea is that a group of individuals is
first given a certain resource – a collective or public good, from which, at the
first stage of the game, they can repeatedly take their own points. At the second
stage of the game, players in group invest in the collective good gradually. Their
goal is to reach the definite target sum, otherwise, they may lose all the points
with a certain degree of probability, which is a collective risk. In the described
study, the percentage of losses was 90%, 50%, and 10%. In the case of 90%, half
the groups achieved the target sum; in the case of 50%, it was only one group; in
the case of 10%, none of the groups. Tavoni et al. proposed to modify the game
by artificially dividing participants into “rich” and “poor” at the first stage of
the game [13]. This made it possible to prove that the “poor” cannot save the
collective good from collapse, if the “rich” do not contribute to the common
good in accordance with their available capital. Thus, it is reliably known that
the behavior of participants in this game will be affected by the probability of
loss and the initial economic situation of each participant prior to the stage of
contribution. In a review paper [14], it is stated that a lot of various factors can
affect players’ decisions in the public goods game; however, the factors listed
above are significant. Besides, it is assumed that participants contribute about
40–60% in a one-shot game or in the first period of finitely repeated game; then,
the participants drastically reduce their contributions, but do not reduce them
to zero; however, about 70% of participants do not contribute anything in the
last round, if this information is available. Those who believe that the rest will
cooperate are more likely to cooperate themselves. However, rational egoists will
not contribute anything regardless of what is happening around them [15,16].
It postulates the free-riders problem [17]. According to free riding hypothesis,
players should invest nothing in the collective good if the game is finite [18].

The next important factor affecting behavior in social dilemmas is gender.
In experiments by Nowell and Tinkler [19], using the design as in Isaac and
Walker [20,21], it was shown that all-female groups are more cooperative in
the public goods game than all-male or mixed groups. Although in other social
dilemmas, such as the Prisoner’s Dilemma, women cooperate in some cases less
than men [22,23]. In previous studies, we revealed that in groups of strangers,
females cooperate better than males, whereas in a socialized group, on the con-
trary, males are more cooperative [24].
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Since the dilemma is social, any information about other participants will
be taken into account, and further actions will be adjusted accordingly [25]. In
Frey and Meier [26], it was found that most players change their behavior to
prosocial when they know that at least one of them contributed at the previous
stages. However, some people have strictly fixed behavior patterns, i.e., they
contribute either always or never. A similar result was obtained at a ski resort
in Sweden [27]. The effect of the influence of other participants was described
in detail also in Fischbacher et al. [28]. Their paper introduces the concept of
conditional cooperators, viz., the tendency of people to increase their coopera-
tiveness when others commence to cooperate more. In their experiment, about
50% of people acted as conditional cooperators, although a third of the total
group were free riders. But there is no evidence that this behavior can be influ-
enced by the other external factors such as sociality. Although, it was found that
even a small amount of social interaction (socialization) in groups of strangers
increases cooperation in the Prisoner’s Dilemma and makes it comparable with
cooperation within a group of friends [6,7,29]. So, participants after socialization
have more a sustainable behavior regardless of the others’ behavior. A similar
study was performed by Keser and Van Winden [30] for the public goods game.
It was found that partners have much higher cooperation than strangers. How-
ever, there are no confirmed facts related to the way behavior of participants in
a collective-risk social dilemma will change if a group of strangers is socialized.
Will we observe the changes in strategies after socialization? Will the behavior
of males and females change in the same way?

We hypothesize that:

1. Socialization helps to reduce the number of the free-riders.
2. Socialized groups more often reach the required level of contribution than

non-socialized ones.
3. Males and females have the different strategies in the collective risk social

dilemmas games.

2 Materials and Methods

The experiments were conducted at the Laboratory of Experimental Economics
of the Moscow Institute of Physics and Technology. Students of MIPT (N =
96, 62 males) took part in the experiment. Participants for the experiments
were invited through advertisements in the group of laboratory on the social
networking site https://vk.com/ee phystech. In total, 8 experiments were per-
formed during the spring semester of 2016. Twelve participants were involved
in each experiment. Most of the students were initially unfamiliar with each
other. For this purpose, the faculty, course, group number and native town of
a participant were taken into account when recruiting participants. After the
end of each treatment, participants provided feedback about the experiments,
received payments and left the experimental facility. Tomsk State University
Human Subjects Committee approved the study procedures involving human
participants. Written informed consents were obtained from participants. To

https://vk.com/ee_phystech
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conduct the game, a specialized tool for designing and carrying out experiments
in a group of experimental economics, z-Tree, developed at the University of
Zurich, was used [31].

2.1 Experimental Procedure

Part 1. In each session the participants were randomly divided into two groups of
6 people each. Participants did not know with whom they were in the same group.
Then, participants were invited to play a game in a computer. The description
of the game will be presented below.

Part 2. The participants were asked to take part in an interaction, referred
to as socialization [6,32]. First, the participants remembered each other’s names
by means of the Snowball game, the rules of which are as follows: (1) all the par-
ticipants sit down in a circle, and then the first one calls out his or her name and
a personality characteristic, starting with the same letter as the name; the next
participant repeats the name and characteristic of the first participant and states
his or her own name and characteristic; (2) the game comes in chain order to the
closing player in the circle, who states all the names and characteristics; (3) in
the reverse order, the participants share personal information: native town, fac-
ulty, hobby, interests. Then, two captains were selected among the participants
on a voluntary basis, and the rest of the participants must choose which team,
i.e., which captain, they want to join. The participants were distributed among
the teams according to the following algorithm: (1) the 2 captains remain in the
audience, and the other 10 participants leave it; (2) the participants one by one
randomly enter the audience and say which team they want to join and why; (3)
the group is considered to be complete when it has 6 participants. At the end of
the socialization stage, the participants were given 5 min to work in groups to
find 5 common characteristics (eye color, favorite food or movie, etc.) and the
name for the group. This is the end of the socialization stage.

Part 3. In each session the participants played the same game as in part 1,
but they were already in the groups assembled in part 2. That is, in part 3 the
participants knew exactly, with whom they were in the same group.

The game presented to the participants was divided into two phases:
In Phase 1, a group of P participants initially had a common fund (collec-

tive good) with X points. During N periods, participants had the opportunity
to extract 0, 1, 2, 3 or 4 points from the common fund. After each periods
participants saw how many points were extracted by the other subjects in the
group. However, this procedure was anonymous. The following equation had to
be fulfilled:

N ∗ P ∗ 4 = X (1)

where N is the number of periods, P stands for the number of participants, and
X means the initial sum of points in the common fund.

After Phase 1, each participant had a certain total profit, which was equal
to the number of points he or she had extracted during N periods of Phase 1.
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The total sum of points extracted by all the participants was also known (it was
Y points).

In Phase 2, the participants had an opportunity to return (invest) points into
the common fund using the points received after Phase 1.

During N periods, the participants could contribute 0, 1, 2, 3 or 4 points to
the common fund. After each periods participants saw how many points were
contributed by the other subjects in the group. However, this procedure was
anonymous. The goal of a group of participants was to return (contribute) 53%
of the total sum extracted in Phase 1 (Y) [33]. If the required level of contribution
(0.53Y) was reached, then all the participants received the total number of points
that they had by the end of Phase 2 (i.e., the difference between individual
extraction and the participant’s individual contribution into the common fund).
If the group did not reach the required level of contribution (0.53Y), then it did
not receive anything (with a certain degree of probability). The probability of
losing everything – PLOSS - was determined based on the percentage between Y
and X:

If Y ≤ 25% of X, then PLOSS = 2/12,
If Y > 25% of X & ≤ 50% of X, then PLOSS = 6/12,
If Y > 50% of X & ≤ 75% of X, then PLOSS = 9/12,
Finally, if Y > 75% of X, then PLOSS = 11/12.

PLOSS were determined by drawing one card out of 12 cards, numbered from
1 to 12. If, as a result of drawing cards, the probability requirement was met,
then all the participants received the total number of points left by the end of
Phase 2. Otherwise, they lost all earned points.

In our experiments, each group consisted of P = 6 participants. The number
of game periods in 4 experiments was N = 10 periods; in the remaining 4 exper-
iments, N = 5 periods. Accordingly, in a 10-period game, the initial number of
points in the common fund is X = 240 points, in a 5-period game, X = 120
points.

In the first 4 experiments with 10-period games, the participants played one
game in part 1, and one game in part 3. In the next 4 experiments with a 5-period
game, the participants played two games in a row in part 1 and two games in part
3. The number of games was doubled in order to detect the possible trainability
effect.

2.2 Theoretical Results

Theoretically, it is to a participant’s advantage to extract 4 points in each period
in order to obtain all the points. As for Phase 2 (reverse contribution), the return
rate of 53% was not chosen by chance. If participants had to return 50%, then
the strategy would be obvious, viz., to return 2 points in each period. However,
taking into account the rate of 53%, at least a few participants should donate in
one of the periods more than 2 points to gain the necessary amount.
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2.3 Free-Riders

In order to calculate the number of free riders, the required level of contribution
per one subject is compared with the contribution of the subject. If a participant
contributes less more than on one the required contribution level per subject,
i.e. he or she decided to save money hoping on the other subjects, he or she is
considered as a free-rider.

3 Results and Discussion

3.1 Strategies, Social and Gender Influence

First of all, it was calculated the amount of the unsuccessful games, i.e., in
which participants could not reach the required level of contribution. In total, 24
games were played before socialization and 24 games after socialization. Before
socialization, the percentage of unsuccessful games was 41.7% (10 games from
24). After socialization, the percentage of unsuccessful games was 8.4% (2 games
from 24). Thus, participants started to choose the collective strategies rather
than individual.

Before socialization, the prevalence of the individual strategies was the main
reason of not reaching the required level of contribution. Participants tried to
save their money (individual strategy) hoping that there was someone who con-
tribute the missing part of the required amount (collective strategy). After social-
ization, participants in groups started to choose the similar strategies which led
to success.

If we consider Standard Deviation (SD) for extractions and contributions,
we can see that SD decreases after socialization. This can be interpreted as a
smaller data spread; i.e., participants begin to act more cohesively.

The standard deviation of the average level of extractions before socialization
is 0.74, but after socialization it equals to 0.27. Similarly, the standard deviation
for the average contribution levels before socialization is 0.61; after socialization,
0.30 (Table 1). It supports the idea that participants started “to think” in the
similar way.

Table 1. Average levels of extraction and contribution before and after socialization.

Game phases Game before socialization Game after socialization Z p-value

M SD M SD

Extraction 3.50 0.74 3.92 0.27 −6.95 <0.0001

Contribution 1.85 0.61 2.15 0.30 −5.06 <0.0001

Moreover, participants started to choose more logical but collective strategies
increasing the average levels of extraction (Z = −6.95, p < 0.001, Wilcoxon
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signed-rank test) and contribution (Z = −5.06, p < 0.001, Wilcoxon signed-rank
test).

Hence, socialization not only improves the responsibility of participants, but
also equalizes their strategies, making them consistent, which enables them to
attain the required level of contribution.

It is interesting to notice that the difference between males and females exists
only in the second games both before and after socialization in experiments
with 5 periods. Before socialization in the second game, females contribute 2.19;
and males, 1.76 (Table 2 and Table 3). This means that, statistically, females
contribute much more than males (Wilcoxon rank-sum test: Z = −2.17, p-value
= 0.03) (see Fig. 1).

Table 2. Average level of contribution among males in 5-period games.

Males’ contribution Game 1 Game 2 Z p-value

M SD M SD

Before socialization 1.60 0.70 1.76 0.62 −1.14 0.25

After socialization 2.04 0.38 2.13 0.32 −0.29 0.77

The table shows the difference between male’s contribution in Game 1 and
male’s contribution Game 2 before and after socialization (Wilcoxon signed-rank
test).

Table 3. Average level of contribution among females in 5-period games.

Females’ contribution Game 1 Game 2 Z p-value

M SD M SD

Before socialization 1.82 0.78 2.19 0.58 −2.4 0.02

After socialization 2.22 0.32 2.30 0.31 −1.3 0.2

The table shows the difference between female’s contribution in Game 1 and
female’s contribution Game 2 before and after socialization (Wilcoxon signed-
rank test).

After socialization in the second game, the contribution of females equals
2.30, which is significantly greater than the contribution of males, which equals
2.13 (Tables 2 and 3) (Wilcoxon rank-sum test: Z = −1.9, p-value = 0.05) (see
Fig. 2).

This result corresponds to the study [19]. So, not only in the public goods
game but also on in a collective risk social dilemma females are more cooperative.
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Fig. 1. Contributions in the second game before socialization for all participants, males
and females.

3.2 Free-Riders

One of the most important indicator of the behavior in collective dilemmas is
the amount of free-riders. Free-rider’s existing in the group is the cause of loss
everything in the game. Before socialization, it was 36% of the free-riders (38%
in the 10-period games and 34% in the 5-period games). After socialization,
the amount of free-riders decreased in two times and was equaled to 18% (21%
in the 10-period games and 14% in the 5-period games). Actually, this result
is strongly correlated with the result about increasing the level of successful
games after socialization. However, it emphasizes the socialization influence on
the decision making in collective dilemmas.

3.3 Learning Effect

Except for socialization, learning effect as well can influence the decision making
in social dilemmas. To exclude or include this factor there were experiments,
where subjects participated in the two similar games before and in the two
similar games after socialization.

The results show that there is not statistically significant difference between
contribution in game 1 and game 2 after socialization (Wilcoxon signed-rank
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Fig. 2. Contributions in the second game after socialization for all participants, males
and females.

test: Z = −0.96, p-value = 0.34). That is, the behavior during extraction phase
before and after socialization between game 1 and game 2 is different as well
as the behavior during contribution phase before socialization. It indicates that
learning effect can influence the decision making. However, it was found the
difference in learning effect between males and females.

Considering 5-period games, we can observe that, in part 1 before social-
ization, the behavior of male participants in two consecutive games coincides;
however, it differs from the behavior of participants in part 3 after socialization.

Table 4 shows that there is no difference in males’ extractions in the two
games before socialization, (Wilcoxon signed-rank test: Z = −1.23, p-value =
0.22). Besides, no difference for males is registered between the two games after
socialization (Wilcoxon signed-rank test: Z = −1.73, p-value = 0.083). However,
a certain difference between the last game before socialization and the first game
after socialization is observed (Wilcoxon signed-rank test: Z = −2,19, p-value =
0.03).

The table shows the difference between male’s extraction in Game 1 and
male’s extraction Game 2 before and after socialization (Wilcoxon signed-rank
test).
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Table 4. Average level of extraction among males in 5-period games.

Males’ extraction Game 1 Game 2 Z p-value

M SD M SD

Before socialization 3.20 1.01 3.58 0.63 −1.23 0.22

After socialization 3.90 0.33 3.97 0.15 −1.73 0.08

Regarding males’ contributions, here, we also see no difference between the
two games before and after socialization (Table 2). However, the last game before
socialization differs from the first game after socialization (Wilcoxon signed-rank
test: Z = −2.216, p-value = 0.0267).

The learning effect in relation to females should not be disregarded. For
instance, in the case of extraction, we observe a difference between games before
and after socialization (Table 5). Nevertheless, there is no statistical difference
between the last game before socialization and the first game after socialization
(Wilcoxon signed-rank test: Z = −1.14, p-value = 0.25).

Table 5. Average level of extraction among females in 5-period games.

Females’ extraction Game 1 Game 2 Z p-value

M SD M SD

Before socialization 3.14 0.96 3.63 0.49 −2.97 0.003

After socialization 3.77 0.40 3.94 0.16 −2.23 0.025

The table shows the difference between female’s extraction in Game 1 and
female’s extraction Game 2 before and after socialization (Wilcoxon signed-rank
test).

The first two games before socialization differ in terms of females’ contri-
bution (Wilcoxon signed-rank test: Z = −2.4, p-value = 0.02), but games after
socialization are not statistically distinguishable (Wilcoxon signed-rank test: Z =
−1.3, p-value = 0.2) (Table 3). Furthermore, the statistical test does not reveal
a difference in games before and after socialization (Wilcoxon signed-rank test:
Z = −0.14, p-value = 0.89).

4 Conclusion

Thus, in this study we focused on investigating the behavior patterns of people in
the case of using public goods with probability of collective risk under condition
of social influence as well as gender differences in behavior. It has been revealed
that socialized groups are more successful in games than non-socialized ones.
After socialization, participants tend to make decisions more cohesively than
before socialization. Implemented strategies are associated with organization and
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cooperation, which eventually leads a group to win, rather than to a critical
situation. Also, the amount of free-riders drops in two times after socialization,
that is participants started to choose collective strategies rather than individual.

In addition, based on the results of the experiments, it has been concluded
that on average females are more compliant in the case of using the public good.
For example, females sacrifice their personal gain in order to ensure success of the
whole group more often than males. However, the learning factor affects females
more strongly. In other words, retry of games leads to changes in strategies. On
the contrary, males demonstrate static behavior in relation to retry of games
under condition of unchanging social context.

Obviously, all these factors should be taken into consideration and server the
purposes of public projects, strategies for the development of modern society,
and promotion of the proper use of available resources [34–36].
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Abstract. The parametric concept of equilibrium in a finite coopera-
tive game of several players in a normal form is introduced. This concept
is defined by the partitioning of the players into coalitions. In this sit-
uation, two extreme cases of this partitioning correspond to the Pareto
optimal outcome and the Nash equilibrium outcome, respectively. The
parameter space of admissible perturbations in such problem is formed
by a set of additive matrices, with two arbitrary Hölder norms specified
independently in the outcome and criterion spaces. The analysis of qua-
sistability for a generalized optimal outcome under the perturbations of
the linear payoff function coefficients is performed. The limiting level of
such perturbations is found.

Keywords: Post-optimal analysis · Multiple criteria · Quasistability
radius · Parametric optimality

1 Introduction

The rapid development of various branches of information technology in econ-
omy and various social spheres, an important feature of which is their integrity,
high complexity and the presence of undefined factors, requires the creation of
adequate developments in the relevant areas of system analysis, management and
operations research. One of the main problems arising in this direction remains
the problem of making reasonable multi-purpose decisions in the conditions of
conflict. One of the effective tools of modeling such processes is the apparatus
of the mathematical game theory.

The goal of the game-theoretic model is to find classes of outcomes that
are rationally coordinated in terms of possible actions and interests of partici-
pants (players) or a group of participants (coalitions). For each game in normal
form, coalitional and non-coalitional equilibrium concepts (principles of optimal-
ity) are used, which usually lead to different game outcomes. In the theory of
non-antagonistic games there is no single approach to the development of such
concepts. The most famous one is the concept of the Nash equilibrium [1,2], as
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well as its various generalizations related to the problems of group choice, which
is understood as the reduction of various individual preferences into a single
collective preference.

In this paper, we introduce a parametrization of the equilibrium concept of
a finite game in normal form. The parameter of this parameterizations is the
method of dividing players into coalitions, in which the two extreme cases (a
single coalition of players and a set of single-player coalitions) correspond to the
Pareto optimal outcome and the Nash equilibrium outcome. Here, we study the
type of stability of the game under consideration to perturbations of the param-
eters of the player payoff functions, which is a discrete analog of the Hausdorff
upper semicontinuity property [3] of a multi-valued mapping that maps any
set of game parameters to the corresponding set of all generalized equilibrium
outcomes. As a result of the parametric analysis, the formula for the radius of
quasistability of the coalition game was found under the assumption that arbi-
trary norms are specified in the two-dimensional space of game parameters.

The paper is organized as follows. In Sect. 2, we formulate parametric opti-
mality and introduce basic concepts along with the notation. Section 3 contains
some auxiliary statements about norms and four lemmas used later for the proof
of the main result. In Sect. 4, we formulate and prove the main result regard-
ing the quasistability radius. Section 5 lists most important corollaries. Section 6
contains numerical examples about bi-matrix games illustrating the main results.

2 Main Definitions and Notation

Consider a game of several players in normal form, where every player i ∈ Nn =
{1, 2, . . . , n}, n ≥ 2 is choosing an action (strategy) xi ∈ R to play from the
finite set Xi, 2 ≤ |Xi| < ∞. The outcome of the game is a realization of the
strategies chosen by all the players. Given a set of all possible outcomes of the
game

X =
∏

j∈Nn

Xj ⊂ Rn,

for each player i ∈ Nn we define a linear payoff function

fi(x) = Cix, i ∈ Nn,

where Ci is the i-th row of a square matrix C = [cij ] ∈ Rn×n, x =
(x1, x2, . . . , xn)T , xj ∈ Xj , j ∈ Nn. We assume all players try to maximize
own payoffs simultaneously:

Cx = (C1x,C2x, ..., Cnx)T → max
x∈X

. (1)

Since individual objectives are usually conflicting, a certain parameterized opti-
mality principle will be introduced later.

A non-empty subset J ⊆ Nn is called a coalition of players. For a coalition
J and game outcome x0 = (x0

1, x
0
2, . . . , x

0
n) we introduce a set

V (x0, J) =
∏

j∈Nn

Vj(x0, J)
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where

Vj(x0, J) =

{
Xj if j ∈ J,

{x0
j} if j ∈ Nn\J.

Thus, Vj(x0, J) is the set of outcomes that are reachable by coalition J from
the outcome x0. It is clear that V (x0, Nn) = X and V (x0, k) = Xk for any x0.

In the space Rk of arbitrary dimension k ∈ N we introduce a binary relation
that generates the Pareto optimality principle.

y ≺P y′ ⇔ y ≤ y′ & y �= y′,

where y = (y1, y2, ..., yk)T ∈ Rk, y′ = (y′
1, y

′
2, ..., y

′
k)

T ∈ Rk. The symbol ≺, as
usual, denotes the negation of the relation ≺.

Let s ∈ Nn, and let Nn =
⋃

r∈Ns

Jr be a partition of the set Nn into s nonempty

sets (coalitions), i.e. Jr �= ∅, r ∈ Ns, and p �= q ⇒ Jp ∩Jq = ∅. For this partition,
we introduce a set of (J1, J2, ..., Js)-efficient outcomes according to the formula:

Gn(C, J1, J2, . . . , Js) =
{
x ∈ X :

∀r ∈ Ns ∀x′ ∈ V (x, Jr)
(
CJr

x≺P CJr
x′)},

(2)

where CJr
is a submatrix of matrix C consisting of rows that correspond to

players in coalition Jr. Sometimes for brevity, we denote this set by Gn(C).
Thus, preference relations between players within the same coalition is based

on Pareto dominance. Obviously, any Nn-efficient outcome x ∈ Gn(C,Nn) (s =
1, i.e. all players are united in one coalition) is Pareto optimal, i.e. efficient
outcome to game (1). Therefore, the set Gn(C,Nn) is the Pareto set:

Pn(C) =
{
x ∈ X : ∀x′ ∈ X

(
Cx≺P Cx′)}.

In the other extreme case, when s = n, Gn(C, {1}, {2}, ..., {n}) is a set of the
Nash equilibria [1,2]. This set is denoted by NEn(C). Thereby, we have

NEn(C) =
{

x ∈ X : � ∃k ∈ Nn � ∃x′ ∈ X
(
Ckx < Ckx

′ & xNn\{k} = x′
Nn\{k}

)}
.

We assume that the game is such that it has at least one Nash equilibrium.
It is easy to see that rationality of the Nash equilibrium is that no player

can individually deviate from the own equilibrium strategy choice while others
keep playing their equilibrium strategies. Strict axioms regarding perfect and
common (shared) knowledge are assumed to be fulfilled [4].

Thus, we have just introduced a parametrization of the equilibrium concept
for a finite game in normal form. The parameter s of this parameterizations is
the partitioning of all the players into coalitions J = (J1, J2, ..., Js), in which
the two extreme cases (a single coalition of players and a set of single-player
coalitions) correspond to finding the Pareto optimal outcomes Pn(C) and the
Nash equilibrium outcomes NEn(C), respectively.
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Denoted by Zn(C, J1, J2, . . . , Js), the game consists in finding the set
Gn(C, J1, J2, . . . , Js). Sometimes for brevity, we use the notation Zn(C) for this
problem.

Without loss of generality, we assume that the elements of partitioning Nn =⋃
r∈Ns

Jr be defined as follows:

J1 = {1, 2, . . . , t1},

J2 = {t1 + 1, t1 + 2, . . . , t2},

. . .

Js = {ts−1 + 1, ts−1 + 2, . . . , n}.

For any r ∈ Ns, let Cr denote a square submatrix of size |Jr| × |Jr|, consisting
of those matrix C elements locates at the crossings of rows and columns with
numbers Jr, and let P |Jr|(Cr) is the Pareto set of the problem

Crz → max
z∈XJr

,

where z = (z1, z2, . . . , z|Jr|)T , and XJr
is a projection of X onto Jr, i.e.

XJr
=

∏

j∈Jr

Xj ⊂ R|Jr|.

In particular case s = 1, we have Pn(C) = Gn(C,Nn). It is evident that all
matrices C(r), r ∈ Ns, form a diagonal block matrix C.

Due to the fact that the payoff linear functions Cix, i ∈ Nn are separable,
the following equality is valid:

Gn(C, J1, J2, . . . , Js) =
s∏

r=1

P |Jr|(Cr). (3)

Perturbation of the elements of the matrix C is imposed by adding matrices
B taken from Rn×n. Thus, the perturbed problem Zn(C + B) has the form

(C + B)x → max
x∈X

,

and the set of its (J1, J2, ..., Js)-efficient outcomes is Gn(C + B, J1, J2, . . . , Js).
In the space of game outcomes Rk, k ≥ 2, we define an arbitrary Hölder’s

norm lp, p ∈ [1,∞], i.e. by the norm of the vector a = (a1, a2, ..., ak)T ∈ Rk we
mean the number

‖a‖p =

⎧
⎪⎪⎨

⎪⎪⎩

(
∑

j∈Nk

|aj |p
)1/p

if 1 ≤ p < ∞,

max
{|aj | : j ∈ Nk

}
if p = ∞.
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The norm of the matrix C ∈ Rk×k with the rows Ci, i ∈ Nk, is defined as
the norm of a vector whose components are the norms of the rows of the matrix
C. By that, we have

‖C‖pq =
∥∥(‖C1‖p, ‖C2‖p, . . . , ‖Ck‖p)

∥∥
q
,

where lq, q ∈ [1,∞], is another Hölder’s norm, i.e. lp may differ from lq in general
case.

For an arbitrary number ε > 0, we define the set of perturbing matrices

Ω(ε) =
{
B ∈ Rn×n : ‖B‖pq < ε

}
.

Following [5], the quasistability radius of the game Zn(C, J1, J2, . . . , Js), n ≥
2, (called T4-stability radius in the terminology of [6,7]) is the number

ρ = ρnpq(J1, J2, . . . , Js) =

{
supΞ if Ξ �= ∅,

0 if Ξ = ∅,

where
Ξ =

{
ε > 0 : ∀B ∈ Ω(ε)

(
Gn(C) ⊆ Gn(C + B)

)}
.

Thus, the quasistability radius of the game Zn(C) determines the limit level
of perturbations of the elements of the matrix C that preserve optimality of all
the outcomes of the set Gn(C) of the original problem Zn(C) but new extreme
outcomes are allowed to arise in the perturbed problem Zn(C + B). The game
Zn(C) is called quasistable if the quasistability radius is positive.

3 Auxiliary Statements and Lemmas

In the outcome space Rn along with the norm lp, p ∈ [1,∞], we will use the
conjugate norm lp∗ , where the numbers p and p∗ are connected, as usual, by the
equality

1
p

+
1
p∗ = 1,

assuming p∗ = 1 if p = ∞, and p∗ = ∞ if p = 1. Therefore, we further suppose
that the range of variation of the numbers p and p∗ is the closed interval [1,∞],
and the numbers themselves are connected by the above conditions.

Further we use the well-known Hölder’s inequality

|aT b| ≤ ‖a‖p‖b‖p∗ (4)

that is true for any two vectors a = (a1, a2, . . . , an)T ∈ Rn and b =
(b1, b2, . . . , bn)T ∈ Rn.

Lemma 1. For any p ∈ [1,∞] the following formula holds

∀b ∈ Rn ∀σ > 0 ∃a ∈ Rn

(|aT b| = σ‖b‖p∗ & ‖a‖p = σ
)
.
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Proof. It is well-known (see e.g. [8]) that Hölder’s inequality becomes an equality
for 1 < p < ∞ if and only if

a) one of a or b is the zero vector;
b) the two vectors obtained from non-zero vectors a and b by raising their com-

ponents’ absolute values to the powers of p and p∗, respectively, are linearly
dependent (proportional), and sign (aibi) is independent of i.

When p = 1, inequality (4) transforms into the following inequality:

|
∑

i∈Nn

aibi| ≤ max
i∈Nn

|bi|
∑

i∈Nn

|ai|.

The last inequality holds as equality if, for example, b is the zero vector or if
aj �= 0 for some j such that |bj | = ‖b‖∞ �= 0, and ai = 0 for all i ∈ Nn\{j}.

When p = ∞, inequality (4) transforms into the following inequality:

|
∑

i∈Nn

aibi| ≤ max
i∈Nn

|ai|
∑

i∈Nn

|bi|.

The last holds as equality if, for example, b is the zero vector or if ai = σ sign (bi)
for all i ∈ Nn and σ > 0. �

Directly from (3), the following lemma follows.

Lemma 2. The outcome x ∈ X is (J1, J2, . . . , Js)-efficient, i.e.

x ∈ Gn(C, J1, J2, . . . , Js)

if and only if for any index r ∈ Ns

xJr
∈ P |Jr|(Cr).

Hereinafter, xJr
is a projection of vector x = (x1, x2, . . . , xn)T on coordinate

axes of Rn with coalition numbers Jr.
The norm ‖ · ‖ defined in space Rn is called monotone if for any vectors

y, y′ ∈ Rn
+ inequality y ≤ y′ implies ‖y‖ ≤ ‖y′‖. It is well-known (see e.g. [8])

that all Hölder’s norms lp, p ∈ [1,∞] are monotone.
Hereinafter, a+ is a projection of a vector a = (a1, a2, . . . , ak) ∈ Rk on a

positive orthant, i.e.
a+ = [a]+ = (a+

1 , a+
2 , . . . , a+

k ),

where + implies positive cut of vector a, i.e.

a+
i = [ai]+ = max{0, ai}.

Lemma 3. Given x �∈ Gn(C + B, J1.J2, . . . , Js), B ∈ Ω(ϕ), and ϕ > 0, then
there exist k ∈ Ns and z0 ∈ XJk

such that inequality

‖[Ck(xJk
− z0)]+‖q < ϕ ‖xJk

− z0‖p∗ (5)

holds.
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Proof. Since x �∈ Gn(C + B, J1.J2, . . . , Js), due to lemma 2, there exists index
k ∈ Ns such that

xJk
�∈ P |Jk|(Ck + Bk).

Thus, due to the fact of external stability of the Pareto set (see e.g. [9]), there
exists vector x0 ∈ P |Jk|(Ck + Bk) such that

(Ck + Bk)xJk
≤ (Ck + Bk)z0.

Then we have
(Ck

i + Bk
i )(xJk

− z0) ≤ 0, i ∈ Jk.

So, due to inequalities (4), we obtain

[Ck
i (xJk

− z0)]+ ≤ ‖Bk
i ‖p‖xJk

− z0‖p∗, i ∈ Jk. (6)

Let Jk = {i1, i2, . . . , iv}, 1 ≤ i1 ≤ i2 ≤ · · · ≤ iv ≤ n. Taking into considera-
tion (6) as well as the property of lq-norm monotonicity, we deduce inequalities
(5).

‖[Ck(xJk
−z0)]+‖q = ‖[Ck

i1(xJk
−z0)]+, [Ck

i2(xJk
−z0)]+, . . . , [Ck

iv (xJk
−z0)]+‖q ≤

‖Bk‖pq ‖xJk
− z0‖p∗ ≤ ‖B‖pq ‖xJk

− z0‖p∗ < ϕ ‖xJk
− z0‖p∗ . �

Lemma 4. Assume ∅ �= Jk ⊆ Nn, k ∈ Ns, z0, z ∈ XJk
, z0 �= z. Let matrix Ck

with rows Ck
i , i ∈ Jk, and vector η with positive elements ηi, i ∈ Jk, be such

that inequality
[Ck

i (z0 − z)]+ < ηi‖z0 − z‖p∗, i ∈ Jk (7)

holds, Then for any ε > ‖η‖q there exists matrix

Bk ∈ R|Jk|×|Jk|

such that
z0 �∈ P |Jk|(Ck + Bk),

‖Bk
i ‖p = ηi, i ∈ Jk,

‖Bk‖pq < ε.

Proof. Let ε > ‖η‖q. According to Hölder’s inequality (4), for any matrix Dk ∈
R|Jk|×|Jk| with rows Dk

i , i ∈ Jk, the following inequalities are valid:

Dk
i (z0 − z) ≤ ‖Dk

i ‖p‖z0 − z‖p∗, i ∈ Jk.

Therefore, for any index i ∈ Jk due to lemma 1 there exists matrix Bk with rows
Bk

i , i ∈ Jk such that
Bk

i (z0 − z) = −ηi‖z0 − z‖p∗,

‖Bk
i ‖p = ηi, i ∈ Jk.

From the above expressions taking into account (7), we deduce

(Ck
i + Bk

i )(z0 − z) ≤ [Ck
i (z0 − z)]+ − ηi‖z0 − z‖p∗ < 0, i ∈ Jk,

i.e. z0 �∈ P |Jk|(Ck + Bk), where ‖Bk‖pq = ‖η‖p < ε. �
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4 Quasistability Radius

For the game Zn(C, J1, J2, . . . , Js), n ≥ 2, s ∈ Nn and any p, q ∈ [1,∞], we
define

ϕ = ϕn
pq(J1, J2, . . . , Js) = min

x∈Gn(C)
min
r∈Ns

min
z∈XJr\{xJr}

‖[Cr(xJr
− z)]+‖q

‖xJr
− z‖p∗

.

It is obvious that ϕ ≥ 0.
Here we formulate the main result of this work. The analytical formula spec-

ified in the main theorem below provides and enumerative way of calculating the
quasistability radius, i.e. extreme level of perturbations preserving all outcomes
of the original (non-perturbed) game Zn(C, J1, J2, . . . , Js),. Why is it important
to have information about quasistability radius? First, if the radius of quasista-
bility is not equal to zero, it determines the equilibriums not only to the original
game, but also to a series of games with parameters located in the vicinity of
the radius. Second, for a number of particular cases one can potentially build
an algorithm for finding radii that uses and continues the same procedures that
were involved in the game solving, which actually means that the radius could
be potentially calculated along with the equilibrium of the game.

Theorem 1. For any p, q ∈ [1,∞], C ∈ Rn×n, n ≥ 2 and s ∈ Nn, the quasista-
bility radius of the game Zn(C, J1, J2, . . . , Js) is expressed by the formula:

ρ = ρnpq(J1, J2, . . . , Js) = ϕn
pq(J1, J2, . . . , Js).

Proof. First, we prove the inequality ρ ≥ ϕ. For ϕ = 0, this inequality is obvious.
Let ϕ > 0. Then according to the definition of the number ϕ, we have

∀x ∈ Gn(C) ∀r ∈ Ns ∀z ∈ XJr
\{xJr

}
(
‖[Cr(xJr

− z)]+‖q ≥ ϕ‖xJr
− z‖p∗ > 0

)
. (8)

Assume the opposite, i.e. assume that ρ < ϕ. Hence, there exists matrix
B ∈ Ω(ϕ) such that x �= Gn(C + B, J1, J2, . . . , Js). Thus, due to lemma 3 there
exist index k ∈ Ns and vector z0 ∈ XJk

such that strict inequality (5) holds.
Then it contradicts to inequality (8), i.e. we proved that ρ ≥ ϕ.

Further, we prove that ρ ≤ ϕ. Let ε > ϕ and Θ > 1 be such that

ε > Θϕ > ϕ.

Then according to the definition of the number ϕ, we have

∃x0 ∈ Gn(C) ∃k ∈ Ns ∃z ∈ XJk
\{x0

Jk
}

(
‖[Ck(x0

Jk
− z)]+‖q = ϕ‖x0

Jk
− z‖p∗

)
. (9)

Then there exists vector η with positive components ηi ∈ Jk such that

[Ck
i (x0

Jk
− z)]+ < Θ[Ck

i (x0
Jk

− z)]+ = ηi‖x0
Jk

− z‖p∗ , i ∈ Jk.
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‖η‖q = Θϕ < ε.

Using lemma 4, we deduce that there exists matrix Bk of size |Jk| × |Jk| with
rows Bk

i , i ∈ Jk such that

x0
Jk

�∈ P |Jk|(Ck + Bk),

‖Bk
i ‖p = ηi, i ∈ Jk,

‖Bk‖pq = ‖η‖q = Θϕ < ε.

Summarizing all the above and taking into account lemma 2, we conclude that
for x0 ∈ Gn(C) the following statement is true

∀ε > ϕ ∃B ∈ Ω(ε) (x0 �∈ Gn(C + B, J1, J2, . . . , Js)),

where B ∈ Rn×n is a matrix composed of the elements of matrix Bk located at
the crossings of rows Jk and columns Jk, and zeroes otherwise. Hence, for any
ε > ϕ it holds that ρ < ϕ. So, we have ρ ≤ ϕ. �

5 Corollaries

Corollary 1. For any p, q ∈ [1,∞], C ∈ Rn×n, n ≥ 2 the quasistability radius
of the game Zn(C,Nn) consisting in finding the Pareto set Pn(C) is expressed
by the formula:

ρnpq(Nn) = min
x∈Pn(C)

min
x′∈X\{x}

‖[C(x − x′)]+‖q
‖x − x′‖p∗

.

Corollary 1 implies that the game Zn(C,Nn) is quasistable if and only if the
Pareto set Pn(C) coincides with the Smale set [10] Sn(C) defined as:

Sn(C) = {x ∈ Pn(C) : Sn(x,C) = ∅},

where
Sn(x,C) = {x′ ∈ X\{x} : Cx = Cx′}.

From theorem 1 it follows

ρnpq({1}, {2}, . . . , {n}) = min
x∈NEn(C)

min
i∈Nn

min
z∈Xi\{xi}

‖[cii(xi − z)]+‖q
‖xi − z‖p∗

.

From here for any x ∈ NEn(C) and z ∈ Xi\{xi} the equalities hold

‖[cii(xi − z)]+‖q
‖xi − z‖p∗

=
‖cii(xi − z)‖q

‖xi − z‖p∗
= |cii|.

So, we get the following result.
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Corollary 2. For any p, q ∈ [1,∞], C ∈ Rn×n, n ≥ 2 the quasistability radius
of the game Zn(C, {1}, {2}, . . . , {n}) consisting in finding the Nash set NEn(C)
is expressed by the formula:

ρnpq({1}, {2}, . . . , {n}) = min{|cii : i ∈ Nn|}.

Corollary 2 implies that the game Zn(C, {1}, {2}, . . . , {n}) is quasistable if and
only if all the main diagonal elements of matrix C are different from zero. The-
orem 1 also implies the following result.

Corollary 3. The outcome x0 = (x0
1, x

0
2, . . . , x

0
n)T of the game with matrix C ∈

Rn×n, n ≥ 2 is the Nash equilibrium, i.e. x0 ∈ NEn(C) if and only if the
equilibrium strategy for each player i ∈ Nn is as follows:

x0
i =

⎧
⎨

⎩

max{xi : xi ∈ Xi} if cii > 0,
min{xi : xi ∈ Xi} if cii < 0,
xi ∈ Xi if cii = 0.

Corollary 3 implies that the game Zn(C, {1}, {2}, . . . , {n}) is quasistable if and
only if

|NEn(C)| = 1.

6 Numerical Examples

Consider several examples of bi-matrix games with two players. Let C ∈ R2×2

is a matrix with rows C1 and C2, and let Xi ∈ {0, 1}, i ∈ N2, x(1) = (0, 0)T ,
x(2) = (0, 1)T , x(3) = (1, 0)T , x(4) = (1, 1)T . These examples illustrate differ-
ent interrelations between quasistability radii for Nash and Pareto optimality
principles. Set p = q = ∞. The payoff functions are written as

[
(C1x

(1), C2x
(1)) (C1x

(2), C2x
(2))

(C1x
(3), C2x

(3)) (C1x
(4), C2x

(4))

]

Additionally, set (see corollaries 1 and 2)

ρ2(P 2(C)) = ρ2∞∞(N2) = min
x∈P 2(C)

min
x′∈X\{x}

max
i∈N2

‖Ci(x − x′)‖q
‖x − x′‖1 . (10)

ρ2(NE2(C)) = ρ2∞∞({1}, {2}) = min{|cii| : i ∈ N2}. (11)

Example 1. Let

C =
(

2 −6
−2 1

)
.

Then we have bi-matrix game Z2(C) with payoffs
[

(0, 0) (−6, 1)
(2,−2) (−4,−1)

]
.
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Therefore,
P 2(C) = {x(1), x(2), x(3)},

NE2(C) = {x(4)}.

It is evident that Pareto optimal outcome x(1) is not the Nash equilibrium.
This type of game is known as prisoner’s dilemma see (e.g. [4]). According to
formulae (10) and (11), we have

ρ2(P 2(C)) = ρ2(NE2(C)) = 1.

Example 2. Let

C =
(

2 −1
−1 0

)
.

Then we have bi-matrix game Z2(C) with payoffs
[

(0, 0) (−1, 0)
(2,−1) (1,−1)

]
.

Therefore,
P 2(C) = {x(1), x(3)},

NE2(C) = {x(3), x(4)}.

According to formulae (10) and (11), we have

ρ2(P 2(C)) =
1
2
, ρ2(NE2(C)) = 0.

Example 3. Let

C =
(

2 3
5 1

)
.

Then we have bi-matrix game Z2(C) with payoffs
[

(0, 0) (3, 1)
(2, 5) (5, 6)

]
.

Therefore,
P 2(C) = NE2(C) = {x(4)}.

According to formulae (10) and (11), we have

ρ2(P 2(C)) = 3, ρ2(NE2(C)) = 1.

Example 4. Let

C =
(−2 −1

1 −3

)
.

Then we have bi-matrix game Z2(C) with payoffs
[

(0, 0) (−1,−3)
(−2, 1) (−3,−2)

]
.
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Therefore,
P 2(C) = {x(1), x(3)},

NE2(C) = {x(1)}.

According to formulae (10) and (11), we have

ρ2(P 2(C)) = 1, ρ2(NE2(C)) = 2.

7 Conclusion

As a result of parametric analysis performed, the formula for the quasistability
radius was obtained in a finite cooperative game of several players in a normal
form with parametric optimality ranging from Pareto solutions to Nash equilibria
in the case where criterion and solution spaces are endowed with various Hölder’s
norms.

One of the biggest challenges in this field is to construct efficient algorithms
to calculate the analytical expression. To the best of our knowledge, there are not
so many results known in that area, and moreover some of those results which
have been already known, put more questions than answers. As it was pointed
out in [11], calculating exact values of stability radii is an extremely difficult task
in general, so one could concentrate either on finding easy computable classes of
problems or developing general metaheuristic approaches.
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Abstract. The article describes the optimization problem solving for
multidimensional and bulks Big Data (data with more than 10 charac-
teristics and 108 observations or higher), as well as machine-generated
data of unlimited volume. It is difficult to analyze and visualize data
of such volume and complexity using traditional methods. In contrast
(and in addition) to machine learning methods widely used in Big Data
analysis, it is proposed to use stochastic methods of data sets’ coding
and approximation using Kolmogorov-Shannon metric nets, which are
optimal for the entropy of the code. While adapting these methods, new
methods are proposed for metrics construction for characteristics with
nominal and ordinal scales.

Keywords: Multidimensional statistical analysis · General
population · Sociological sample · Metric net · Data visualization ·
Data analysis · Data optimization · Method of metric data analysis ·
Decisive minorities

1 Introduction

Optimization problems can be set either on some mathematical model that con-
nects a space of variables with systems of equations and computational algo-
rithms or on some multidimensional data set. In such a set, each data unit
(observation) is characterized by several variables. The optimization problem, in
this case, is to find the optimal value of the functional given on the variables from
the set of observations, as well as a particular solution on which the functional
takes the optimal value. Theoretically, such problems can be solved by exhaustive
search (brute-forced) being discrete and finite, but in the case of Big Data, there
are several reasons why it is necessary to obtain and investigate the structure
(topological and metric) of the entire set of optimal and suboptimal solutions

The reported study was co-funded by RFBR, project number: 18-01-00465 a: Develop-
ment of social data multi-dimensional metric analysis methods.

c© Springer Nature Switzerland AG 2020
N. Olenev et al. (Eds.): OPTIMA 2020, CCIS 1340, pp. 170–185, 2020.
https://doi.org/10.1007/978-3-030-65739-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65739-0_13&domain=pdf
http://orcid.org/0000-0002-1809-2017
http://orcid.org/0000-0002-5110-5246
https://doi.org/10.1007/978-3-030-65739-0_13


Optimization in Big Data Analysis Based on Kolmogorov-Shannon Methods 171

(observations). This might be necessary due to the format and quality of the Big
Data used, as well as due to the goals of optimization research. In the first case,
for example, for the optimal particular solution (observation), there may be no
information on certain important attributes that the optimized functional does
not depend on, thus such information must be obtained from other optimal or
suboptimal observations. In the second case, for example, the researcher may be
interested in the most complete analysis of the set of all optimal or suboptimal
observations as a significant minority.

Using an applied financial and economic case, we will describe and demon-
strate our proposed approach to solving optimization problems on multidimen-
sional sets with a high level of complexity, including those that arise in the study
of Big Data. We consider the task of finding a complete optimal or suboptimal
solution on Big Data as on a fractal-like set in a multidimensional space of vari-
ables extended (if needed) by a functional, using the Kolmogorov-Shannon [3,4]
ε-nets for approximation. In this case, the ε value characterizes the accuracy
of optimization problem solving and should be chosen rather small. The com-
plexity or entropy of the approximation problem in small is determined by the
fractal (metric) dimension. The fractal dimension of Big Data in the extended
space approximation with the required precision can be significantly smaller
than the dimension of the space of Big Data variables. Therefore, to solve the
optimization problem on the data fractal-like set, we use our own [5] stochastic
methods for the construction of C. Shannon’s (ε, δ)-nets whose convergence rate
is determined by the fractal dimension of the approximated set.

Our methods were previously used separately (see, for example, [10,11]) and
as united complex (the method of metric data analysis, MMDA) [12] for ana-
lyzing and visualizing model-generated data, i.e. searching for optimal solutions
to a “black box” mapping, for example, a system of equations without its ana-
lytical solution. In contrast, this publication describes the adaptation of these
methods to the problems of Big Data research, in which the model as a system
of equations cannot be constructed, at least at the current stage of research.

Our coding and approximation methods allow us to use a direct (ε, δ)-
coverage as a mathematical-statistical model, to study the properties of the
model, and to formulate assumptions about the nature of dependencies in the
data. Such research is necessary before the construction of the system of equa-
tions describing Big Data (the so-called “machine learning”).

In one of the previous works, we tested MMDA on the example of a pub-
lic Big Data array [15] used in various data analysis competitions. The next
stage of the method’s approbation is presented in this publication. We apply
it to real practical problems (which also made us adapt and clarify some of
the method’s components). We use data from a large Russian payment system
(for more information, see the section “Generation of Big Data array of pay-
ment transactions”). In this publication, we present the results of the MMDA
application to this data flow related to real optimization problems solved by
the company (mainly, the maximization of the average life-long profit from the
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client). Other results that are of interest to data science, but not directly related
to optimization, are highlighted in separate publications.

2 Big Data as a Specific Data Type

There are several approaches to the definition of Big Data. Some sources
define them only by the criterion of the amount of the information (number
of records/observations) [6]. Others – by their structure’s volume and complex-
ity (data that does not fit into the logic of standard databases) [7]. And still,
others refer to the technical/business origin [8] or large data arrays, that ana-
lysts are not able to process in traditional ways. We use a hybrid definition,
meaning that Big Data is a data of technical origin (i.e. the data that occurs
while the information is being recorded by the technical system), which cannot
be processed by traditional methods due to their multidimensionality (a large
number of variables/ characteristics), a large number of observations, and the
erroneous records appearing among the observations.

Big Data is a sequence of records (rows, vectors), each of which contains
a row’s ID and information, represented by the number of characteristics. Big
Data can be presented as a flow (so-called “log”) or a data array. In fact, any
array is a log’s sample, for example, a log for the specific moment of time. In this
paper it is information about the transactions of the payment system’s clients.

Research on Big Data can be described by the following logical scheme:

1. Formation of the Big Data array (sampling it from the Big Data flow)
2. Automated preprocessing of the Big Data array
3. Automated statistical analysis of Big Data array
4. Automated modeling of Big Data flow

1. Since the Big Data array is by definition a selection from the General popula-
tion (the data stream of a socio-technical system), the content of the Big Data
array is initially determined by the selection method. It could be selection by
records’ numbers (including by date). In this case, the system’s operation
period is selected that, for the data logging structure, it is realistic to collect
every record into array in the time available to the researcher. If the period
is well-founded and sufficiently long, then such a study can be considered a
census.
Alternatively (as in this study), a randomized sample (random record num-
bers) may be used. The usage of randomized sampling is associated with some
risks since many data streams have a non-uniform intensity (which leads to
distortions in frequency analysis). However, randomized sampling allows us
to cover longer periods and check the universality of flow features (their pres-
ence in different circumstances, including different times). Sampled Big Data
array requires a statistical assessment of the quality of the sample (for metric
analysis, completeness and reliability of the coverage that the sample forms).
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2. Preprocessing involves converting the Big Data array to a technical format,
interpreting and correcting gaps and errors, since the unformatted and dis-
torted data are unavoidable in any real data flow. Preprocessing is often
performed several times if new problems are identified in subsequent analysis
stages.

3. The higher is the Big Data dimension, the less standard statistical meth-
ods are suitable for research: less informative and, most importantly, more
resource-intensive. In particular, if the computational complexity of queries
for a single characteristic is proportional to N, where N is the number of
records, then the complexity of clustering analysis is proportional to at least
N2. A similar problem occurs in regression analysis concerning the number
of characteristics. As a result, exploratory research on Big Data is tradition-
ally limited to the simplest statistical functions, rather than studying their
internal metric features (impossible combinations of characteristics, outliers,
etc.).

4. The ultimate goal of Big Data research usually is to construct a system of
equations and inequalities that describes (approximates) the entire data array.
It should reflect the essential features of the data for the researcher. The
types of equations are set by the researcher. A complex computer algorithms
identify the model by selecting the coefficients of equations.

Unfortunately, the study of Big Data using algorithmic methods requires a
clear statement of the problem and an intuitive understanding of the features of
the data array, which are achieved by trial and error (often in the form of “cham-
pionships” for specific problem’s solving). Thus machine learning is widely used
for solving well-formalized technical problems with limited multidimensional-
ity (2–3 dimensions). Social data, as a rule, are more multidimensional, and
algorithms calibration on low-cardinality samples is incorrect due to the hetero-
geneous intensity of the initial data flows.

The method we developed allows us to create a data model in the form of a
metric net, rather than a system of equations. This makes it applicable to social
Big Data. This model allows us to form a general understanding of the data
features and correct any errors. This creates the necessary prerequisites for the
construction of the model in the form of the forecasting equation system.

3 Method of Metric Data Analysis

The metric analysis is a methodological approach that includes the research of
the data’s topological and metric properties (the distribution of observations in
the metric space of characteristics). This approach is mostly developed in the
(Engineering) Sciences, where it is used to solve standardized problems in small-
dimensional space (for example, in image recognition). Multidimensional metrics
analysis, on the contrary, remains the area where the application of existing
theoretical concepts is limitly developed, especially in the field of mathematical
methods of Social Sciences.
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In this study, we demonstrate the multidimensional metric analysis’ capa-
bility for the optimization problem-solving in the Social Sciences, based on the
method of Metric data analysis (MMDA) [9], simultaneously adapting it for
Big Data. The method is based on the approach to MCDM developed in [1,2]
and based on approximation and visual analysis of the sets. The approximation
is based on constructing of ε-nets [4] and (ε, δ)-nets [3]. This complex method
allows us to identify sets of optimal and suboptimal solutions for various opti-
mization problems, to localize them metrically, and to research the properties of
a localized subset.

Let us first describe the MMDA approach for the study of implicitly defined
sets of the “black box” type. Let the set X of possible observation belongs to
the decision space Rn. The objective functions given by the non-linear mapping
f : Rn → Rm that relates decisions to m criterion. Therefore, the set f(X) is
usually non-convex. The set X ⊂ Rn is assumed to be compact. Then, the set
f(X) is compact, too. The method described herein is based on the selection of
random observations, i.e. uniformly distributed random points x from the set
X. These outputs filtered by the approximation algorithm provide the basis for
evaluation and display of the set Z = f(X).

Geometrically, this means that a set is approximated by a collection of simple
figures (such as balls or cubes of appropriate dimension), whose diameters are
taken smaller to achieve a higher approximation accuracy. A metric ε − net of a
set is its subset such that any point of a set lies at a distance of at most ε from
the subset. If “balls” are constructed in the considered spatial metric around the
points of a metric ε-net, then they cover the entire approximated set forming ε-
covering. This corresponds to the set approximated by a collection of balls in the
Euclidean metric; or by a collection of cubes in the Chebyshev metric (as in this
research); or any other relevant metrics. For each point of such a collection, we
can quickly find a “true” point of the set (the nearest point of the metric ε-net)
separated from it by a distance of at most ε in the considered metric. Moreover,
for smaller ε, the true points are closer to the points of the approximated set
and there are fewer “redundant” points in the approximating collection of balls,
but a greater number of points have to be constructed in the net. The optimal
complexity of ε-nets constructing is characterized using the metric ε-entropy [4].

The collection of centers of the balls (boxes) is named the approximation
base and is denoted by T of M elements. The set (T )ε, that is, the collection
of ε-neighborhoods of the points in T , forms then the approximation of the
set Z. To find criterion points that can provide a good approximation of Z,
a global sampling of the set X is carried out. To be more precise, uniformly
distributed random points x of the set X are generated. Then, their outputs
f(x) are computed, and a small number of them (see below) are selected as
the centers of boxes that form the approximation. The length of the edges of
the boxes must be specified in such a way that the resulting system of boxes
approximates the set Z with a desired degree of accuracy. Collections of two- or
free-criterion slices of the approximation can be then displayed reasonably fast.
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Let T and ε be given. To evaluate the quality of an approximation of Z by
(T )ε, two indicators are used that describe the deviation of (T )ε from Z and
the deviation of Z from (T )ε. For the first indicator, the value of ε is used. The
base T belongs to Z, and the deviations of the points of (T )ε from Z are not
greater than ε. The completeness of the approximation is characterized by the
fact that only a small part (the part with a small measure) of the approximated
set lies outside the constructed collection of balls with centers at points of the
net. To estimate the completeness η of the ε-covering (the measure of the covered
set) we use a test sample consisting of N points from the pre-image set X and
check the sampling fraction η∗ of its outputs that belong to the tested covering
(T )ε. The collection of balls with accuracy ε and completeness η forms so-called
(ε, δ)-coverings, δ = 1 − η [3].

In our approach the reliability of (ε, δ)-covering (the probability of proximity
of η and η∗) depends on the value of N . More precisely, let us denote probability
defined on the space of samples of the volume N as P . Then for measurable
mapping the reliability P{η > η∗ − δ} of η∗ − δ to be lower estimate of the
completeness η of a given coverage is evaluated by the following result [5]:

Theorem 1. P{η > η∗ − �} ≥ χ(�, N), χ(�, N) = 1 − exp(2N�2)

Due to this theorem it follows that in case η∗ = 1 it holds

P{δ < �} ≥ χ(�, N) (1)

This result characterizes the sample size N needed to construct an approx-
imation with a given completeness η and reliability χ: χ = 0.95, N = 150,
δ = 0.1 χ = 0.95, N = 600 δ = 0.05 χ = 0.999, N = 30000, δ = 0.01 χ = 0.99,
N = 100000, δ = 0.005.

Bounded implicitly defined sets (images of maps) can be approximated by
applying adaptive stochastic techniques based on the Deep Holes method (DHM)
[5]. Specifically, for a set defined implicitly by a nonlinear “black-box” mapping,
these techniques are used to construct a covering that approximates it with
prescribed accuracy ε and completeness η.

Stochastic DHM algorithm. It is assumed that the value of N has already
been specified (or controlled in process of approximation). In the framework of
this algorithm, some stopping rules may be applied. For example, the rule based
on the maximal number of points in the approximating base M = Mmax and the
rule testing the condition η∗ = 1. It was proven that for any compact set X and
any measurable (for example continuous) mapping f , with a properly specified
number N this algorithm can construct an approximation base T that satisfies
(1) in a finite number of iterations for any values of ε, χ and δ).

Proof. Iteration of the Algorithm. The current approximation base T is
assumed to be constructed on the previous iterations of the algorithm.
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1. Generate the test sample: N random uniformly distributed points from the
set X and compute their outputs.

2. Compute the fraction η∗ of the test sample with outputs in (T )ε.
3. Stop if η∗ = 1 (then P{� > δ} ≥ χ(�, N)) or if the number of points M in

T is equal Mmax (then P{1 − η∗ + � > δ} ≥ χ(�, N)). Otherwise, augment
the current approximation base T by the most distant from T output among
the N sample points and go to step 1.

Imagine that we have constructed an approximation (T )ε of the set Z. The
approximation has a simple explicit description as a system of boxes with centers
that belong to the set Z and edges of length 2ε. Since the number of boxes is
relatively small, 2D or 3D slices of the approximation can rapidly be computed
and displayed by computer graphics. For each point (T )ε it is possible to find the
nearest point of the approximation base T and to reconstruct the corresponding
decision. In practice, the approach is at its best with up to five criteria. In the case
of more than three criteria, 2D and 3D visualization are to be used with scroll-
bars that help to fix or to control the values (or ranges) of the other criteria and to
study the influence of them on the three-criterion pictures (Interactive Decision
Maps (IDM) technique [2]). Note that though the approximation process may
take a fairly long time, the visualization procedure can be carried out by the
decision-maker in real-time without waiting after the request.

Now we will present an adaptation of the MOD technique for the task of
studying Big Data extraction from a certain General population: a finite or
infinite set G of elements (real, hypothetical, potential) of the metric space Rd,
containing big data X,X ⊆ G ⊂ Rd.

Two data analysis problem formulations characterizing the relationship
between the available data set X and the general population G: (1) X coin-
cides with G,X ≡ G; (2) X is a proper subset of G,X ⊂ G.

In formulation (2) the following assumptions are postulated:

– The general population G is a bounded subset of Rd.

This assumption is always satisfied with real physical and social phenomena.

– X is an independent sample from G of the volume M obtained on some
probability measure μG.

Failure to comply with this assumption or the lack of data makes it impossible
to make conclusions about the general population G from the X set analysis. In
this case, the problem transforms into a formulation (1).

BD implementation of MMDA consist in:

– construction of T − ε− or (ε, δ)-net and approximation S = (T )ε − ε− or
(ε, δ)-covering of X using DHM (for (ε, δ)-net with probability measure μX);

– (in formulation (2)): testing of the completeness δG of S approximation on
General population G or on its control sample;

– to make visual, topological and/or metric analysis of S structure;
– in optimization case – to solve (multy)optimization problem on S.
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Let M(e,A) be the maximal cardinality (the number of elements) of ε-disjoint
set (ε-packing) for A and dmA - fractal dimension of A. According to [5].

Theorem 2. Complexity of the DHM approximation for BD problems is
O(M(ε/2,X))M for (ε, δ)-covering, dmX << d, asymptotically

O(ε−dmX)M);

Theorem 3. Complexity of the DHM approximation is O(M(ε/2,X)N for ε-
covering, dmX << d,N << M , asymptotically O(ε−dmX))N

The full algorithm of the Metric data analysis method includes ([13]):

1. Collection of data about characteristics: for Big Data, this is a sample survey
of general populations of data that are side-products of digital technology
systems.

2. Selection of characteristics that are relevant for the study.
3. Creation of a multidimensional space (metrics).
4. General population’ reconstruction by (ε, δ)-covering approximation; deter-

mining the reliability, accuracy, and completeness of the representation of the
General population by the constructed approximation using its test sample.

5. Structural and visual analysis of (ε, δ)-covering approximation: identification
of types, classes, and separate groups based on metrical proximity.

6. Generalization of characteristics and study of the behavior of selected classes:
while using this method for optimization, the goal is to identify a class of
optimal and/or suboptimal solutions as decisive minorities.

4 Generation of Big Data Array of Payment Transactions

In this research, we analyze the Big Data flow of a payment system, which is
a collection of records about characteristics of payments. The flow capacity V
is about 108 order of magnitude annually, and each payment in the system has
more than 20 key characteristics. This makes this Big Data flow unavailable
for analysis by traditional methods, except the simplest statistical calculations
(minimum, maximum, average, correlation of two characteristics).

There are 15 relevant characteristics in the array among the others:

1. Transaction ID (unique serial number);
2. ID of the payer who made this transaction (let’s denote the number of

payers in the flow as V );
3. unixtime of transaction (seamless continuous time scale);
4. type of payer (individual, organization, etc.);
5. purpose of the transaction (i.e. receiver type);
6. method of the execution of the transaction (i.e. ;
7. interface where the command was given to execute the transaction;
8. value of the transaction;
9. profit from the transaction;

10. bonuses accrued by the transaction;
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11. total number of transactions of the payer who made this transaction;
12. total value of transactions of the payer who made this transaction;
13. total profit from of transactions of the payer who made this transaction

(let’s denote it as Ui, i ∈ 1 . . . V );
14. time from the registration of the payer;
15. time from the first payment by the payer.

There is an optimization task for this set: we are interested in factors that
maximize the total profit from the given client for the entire time of his obser-
vation in the payment system. What is the optimal combination of payment
characteristics by which we can assume that the payer will bring the company
the greatest profit? Note that the transactional costs and the user’s maintaining
cost are negligible compared to the constant costs of the payment infrastructure’s
maintaining. The profitability of the client is determined mainly by whether he
chooses or not to perform transactions for which a significant commission is set.

Since it is not possible to convert all the logs from different servers into a
single array, we have to use sample survey methods. Since we are not interested in
statistical properties of individual characteristics (average/minimum/maximum,
which are elementary calculated in SQL), but in combinations of characteristics,
standard sociological samples are not enough – they are unreliable. Based on the
available computing power, we decided to create a sample based on the payment
id with a 4 ∗ 106 order of magnitude. Ids of the transactions for the sample were
determined by the python module random, using random.seed() [16].

The calculation of the metric dimension of the data [14] allows us to evaluate
the quality of this sample. It was shown that such a sample size is not sufficient
to make reasonable judgments about the combinations of all characteristics at
once, but it is sufficient to operate with 13 characteristics that are essential for
this study: their metric dimension tends to 1.03.

We consider a problem in which the Dig Data array X does not coincide
with the General population (data stream) G, and G is limited metrically. Then
it is necessary to test the reliability of conclusions about the properties of the
General population G from the properties of the data set X. To do this, we build
(ε, δ)- nets of n(ε) elements and calculate their metric (fractal) dimension:

dm ≤ d,where : n(ε) ∼ (1/εdm), ε → 0 (2)

The metric dimension test [14] has shown that this sample size is not suf-
ficient to make informed judgments (ε ∼ 0.2) about the combinations of all
characteristics (as dimensions of a multidimensional space), but it is convenient
to operate with ≈5 characteristics with ε ∼ 0.0001. (Note that each combination
of characteristics had to be tested independently).

5 Preprocessing of Big Data Array of Payment
Transactions

We performed some preprocessing procedures, the details of which are omitted
because they relate to data analysis and are not of interest for optimization
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methodology: 1. All the records that meet one of the following conditions (errors,
failures, and unique operations) were removed to a separate array:

– the quantitative characteristic of the transaction is a spike (metrically isolated
from other observations);

– the qualitative characteristic of a transaction occurs less frequently than 2–3
times in the sample;

– the transaction is single, i.e. the payment system was not able to match it
with the payer.

2. Since the user id is obviously confidential (it allows you to calculate a specific
contractor), so it was used for the logs integration, but it was not included in
the array.

3. All quantitative variables were normalized to the maximum value in the array
to protect confidentiality and trade secrets (thus, they take values from 0 to
1 and, in some cases, negative values).

4. For variables with nominal scales, ranks that do not occur in the array were
checked by logs and excluded. Note also that the presence of variables with
nominal scales imposes additional restrictions on the used (ε, δ)-nets: ε must
be at least 1/(n − 1) to avoid distortion of the metric, where n is the number
of ranks of the nominal scale.

We also skip the details of research on combining overlapping classifications,
since they are not directly related to the optimization problem being solved.

The number of observations in the array after preprocessing was 3210599.
Note that the reduction of the array’s size is not the goal of preprocessing. The
sample size from flow G has already been determined so that our algorithms
can be implemented to it in an acceptable time. Preprocessing allows exclud-
ing anomalous observations from the array that distort the metric. A meaning-
ful study of metric features and identification of compact minorities is possible
during exploratory metric analysis performed using MMDA (approximation by
(ε, δ)-coverage).

6 Exploratory Metric Analysis

Exploratory approximations aim to identify significant patterns in the data in a
limited time. Full visualization of a two-dimensional or three-dimensional pro-
jection of an array of 3–4 million records can take 5–10 min (this time is spent
every time the projection axes and/or metric constraints are changed). As a
result, such an array is suitable for visualizing already known patterns, but
not for detecting them (which requires testing a set of hypotheses). We built
exploratory approximating metric nets for several key sets of characteristics to
solve this problem. If the visualization is completely unusable (for example, if
the sample exceeds 10 million observations), then it is advisable to construct a
high-quality approximating metric net (ε ≈ 0).
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As a result, it was found that the array’s metric is significantly distorted
by several key clients: organizations that perform an order of magnitude more
outgoing transactions than regular users (primarily financial organizations and
service aggregators). Such corporate clients are served at individual rates under
special agreements, so it is not appropriate to take into account their observations
while studying the behavior of ordinary clients. Despite their small number, they
create the majority of the sample due to a large number of transactions. After
their elimination, maximums of normalized characteristics changed: for example,
for the total number of transactions, it became 0.1. The majority of the persisting
payments are characterized by the total value of payments below 0.01 and the
total profit below 0.02.

The exploratory analysis showed a significant metric relationship between the
target (optimized) characteristic (total profit) and such characteristics as profit
(from a given transaction), transaction value, purpose, and accrued bonuses. On
the contrary, the most obvious hypothesis that the total profit from the client
is proportional to the duration of his work in the system was not confirmed in
general (see Fig. 1).

Fig. 1. Payments whose payers are characterized by a high total profit (ordinate),
depending on the time from the payer’s registration (abscissa) and from his first
payment (color) (original sample’s visualization). (Color figure online)

7 Revelation of Optimal and Suboptimal Solutions

Let’s explore three-dimensional projections that visualize metric features of a
set of optimal and suboptimal observations. Optimizational task is to maximize
average (life-long) total profit from payers:

F → max, F =
V∑

i=1

Ui/V (3)

To achieve this task, assuming payers’ independence, the payment system
ought to increase the Pi, which requires an understanding of the properties of
payers with maximum or near-maximum total profit.
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Fig. 2. Payments whose payers are characterized by a high totalprofit (color, from
above, from 0.2 to 0), depending on the value of a single payment (abscissa) and the
profit from a single payment (ordinate) (original sample’s visualization). (Color figure
online)

Fig. 3. A (on the left). Same projection zoomed in (payment value and payment profit
less than 0.008) (high quality approximating metric net). B (on the right). Same pro-
jection excluding payments whose payers brought zero or negative totalprofit

It can be seen that observations characterized by a high total profit are
localized in compact minorities by the parameters of the value and profit from a
particular payment (see Fig. 2, 3). They are found on several lines (corresponding
to the interest rates of the payment commission), which are characterized by the
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high profitability of a particular payment and a proportionally large payment
value. At the same time, payers who made the payment for the largest value do
not make a significant overall profit, especially if the payment itself also does
not make a profit.

We recall that single-transactions (for which the payer is not registered)
are excluded from the array. Therefore, this picture shows that a significant
profit to the payment system is brought by customers considering the type of
payments with a significant commission fee as the main purpose of using the
system. Profitable customers still make payments of other types, but the main
payment type dominates. It is possible to evaluate the assumption that the
payers with the highest total profit tend to make payments for a certain purpose
and by certain methods, in projection on these variables (see Fig. 4).

Fig. 4. Payments whose payers are characterized by a medium total profit (color,
below 0.2), depending on the purpose and method of payment (nominal scales on
abscissa and ordinate accordingly), excluding payments whose payers brought zero or
negative total profit (original sample’s visualization). (Color figure online)

Significant overall profit is generated by customers who make transactions
for purposes: large online stores, services owned by the payment system’s owner,
various online games, and the stock market. The payment methods for high-
profit clients are: from an account with some type of card linked to account.
Some high-profitable clients are business users who use some specific methods for
transitional payments for third payment systems (similar to the large corporate
clients excluded from the analysis, but on a smaller scale). Another minority of
high-profitable clients makes mostly transfers to the other accounts.

Users with the lowest profitability have transactions to the same online stores
as profitable clients, but paying by cash. This may indicate a leak in profitabil-
ity accounting. Also, all users using mobile commerce (payment from the phone
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Fig. 5. A (on the left). The amount of bonuses accrued for the payment (abscissa)
and the totalprofit from the payer who made the payment (ordinate), with value of
a payment (color). B (on the right). The same projection excluding payments whose
payers brought zero or negative totalprofit, and payers who did not receive bonuses,
zoomed in (on a scale up to 0.01). (Color figure online)

balance) turned out to be low-profitable. Among the low-profitable clients, there
is a group of people using mainly nonprofit-by-Law transactions (transport fees,
communal services, taxes, etc.). Low profitability is mostly located by the pay-
ment method, rather than its purpose. The users of third-party cards and mobile
payment systems in various offline stores are usually moderately profitable.

The impact of the bonus program on the total profit from the client appears
to be highly non-trivial. The purpose of the bonus program is to make one-
time customers permanent and encourage them to use payment services more
actively, including services with a high commission. However, at first glance, the
total profit from the client and the value of bonuses accrued for the operation
are anticorrelated (see Fig. 5A). High overall profits are earned from customers
who do not earn bonuses, and high bonuses are awarded to customers who do
not make a profit. This topological structure calls into question the effectiveness
of the bonus program. Note, however, that the area of the potential effectiveness
of the bonus program still exists (lower-left corner of the picture). Let’s zoom
it in (see Fig. 5B). It can be seen that bonuses affect the behavior of “normal”
users with the turnover typical for individuals, although not every one of them
and on a limited scale. Some (but not all) users are still encouraged to make
profit-making transactions by accruing bonuses.

8 Conclusions and Significance

The presented research describes the logic of optimization problem solving by
metric analysis. In this example, we researched the problem of single-criteria
optimization based on the Big Data array in the field of Social Sciences and using
the method of Metric data analysis (MMDA). Given the limited applicability of
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classical optimization methods in the field of Social Sciences, especially for Big
Data, the subject of this study is not only applied but also methodological.

It is shown that metric analysis can effectively identify not only optimal but
also suboptimal solutions, which is of practically important in the Social Sciences
decision-making (allowing to find not only for the “first-best” solution but also
those close to it). The methodological improvements in the MMDA (including
sampling from the log data, building search, and high-precision approximating
metric nets) allow us to research the data by criteria with multiple local optima,
and by factors with non-natural scale (nominal, i.e. positive integer of categories).

The example shows that the target variable (the total profit from the payer
during his life in the payment system) depends primarily on what type (method
and purpose) of payment the payer is interested in, being the main motive for
the payment system’s usage. This allows the commercial service to make more
informed decisions about the system’s monetization and stimulation programs’
focuses. The metric analysis shows that the set of (sub)-optimal solutions, i.e.
payers who brought the greatest profit to the company, has the following char-
acteristics: these are people who make often (but not very often) not too large
payments, for which high commissions are set. It is also shown that payers tend
to choose one scenario for the payment system’s usage, i.e. make payments of
a certain type with a certain commission. This is confirmed by the fact that
lines corresponding to the payment system commission rates occur not only on
the “value – profit” projection (where their presence is trivial), but also on
the total value – total profit projection. Accordingly, the payment system must
make efforts to promote payments with a high commission rate among payers
who are only familiar with commission-free payments (for example, by issuing
options for the full commission discounts for the first payments of the certain
types). Such solutions will help payers to try out new types of payments that
are beneficial to the payment system, meaning their transition to the (previously
specified) (sub)optimal type.

The presented data also illustrates the typical social science case where Big
Data can be correctly interpreted only after the separation of crucial minorities.
For example, a minority of large corporate clients significantly distort payment
statistics due to a large number of transactions performed, while a minority
of payments made by individuals react fundamentally differently to the bonus
program. The system can only be set up to maximize the total profit from the
client after these two groups of payers are separated based on the metric features
of their data (with a side result in clarifying the classification of corporate clients
for the security service).
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Abstract. The routing problem arising in cutting is considered. This
task is to find the path of the cutting tool that satisfies the technological
restrictions and the pierce points placement constraints. Since the time
for piercing significantly affects the duration of the cutting process, it is
necessary to reduce both the number of pierce points and the distance
between successive fragments of the path. This research is devoted to
routing problems in plane graphs, which are homeomorphic images of
cutting plans. The route covering all the borders of the cut parts deter-
mines the path of the cutting tool. The technological constraints are: (1)
the absence of intersection of the route internal faces of any initial part
with the edges of its remaining part (OE-condition); (2) self-intersections
of the cutting path prohibition (NOE-condition); (3) the initial vertices
of the covering chains must allow piercing (PPOE-condition). The report
presents the polynomial algorithm for constructing a cutting route that
satisfies the introduced restrictions and consists of a minimum number
of chains. The first two classes are considered and well studied earlier.
In this paper we considered the class of PPOE-routes in plane graphs,
i.e. routes with restrictions on choice of starting vertices (corresponding
the pierce points on a sheet) of covering chains. We proved the necessary
and sufficient conditions of these routes existence. Also we developed the
polynomial time algorithm PPOE-routing for obtaining of such routes
and proved its correctness.

Keywords: Optimal route · Cutting · Routing problem · Polynomial
algorithm

1 Introduction

Cutting processes are used to shape engineering materials with complex shapes
and strict design and performance functional requirements. The process is used
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for cutting, drilling, marking, welding, sintering and heat treatment processes.
Applications of sheet cutting include aerospace, automobile, shipbuilding, elec-
tronic and nuclear industries. The modern technologies of thermal cutting (gas,
laser, plasma) as well as water jet cutting allow to implement cutting plans with
combined cuts.

If we consider laser cutting, the intense laser light is capable to melt almost all
materials. Laser cutting is a thermal energy based non-contact process, therefore
does not require special fixtures and jigs to hold the workpiece. In addition, it
does not need expensive or replaceable tools to produce mechanical force that
can damage thin, intricate and delicate work pieces. The effectiveness of cutting
depends on the thermal, optical and mechanical properties of materials [7].

Cutting is a well established process in manufacturing with high quality
requirements. The cutting quality is influenced by many factors, for example,
the laser power, focal position and gas pressure may be concerned for laser
cutting. In order to achieve the desired cutting result in terms of quality and
process velocity, it is generally required to identify suitable factor combinations
for the specific laser cutting system in use and the workpiece at hand. Finding
such a combination is often time consuming and cost intensive [1].

Such factor combinations may be formalised as different conditions and
restrictions. To define a path of the cutter satisfying these conditions one needs
solve some optimisation problems. For example, the paper [23] is devoted to the
CPDP (Cutting Path Determination Problem), which consists in determining
the optimal path for cutting according to a given cutting plan with one or more
tools. The authors assume that there are two obvious restrictions: 1) all parts
must be cut out; 2) none of the cut out parts should require further cuts, i.e.
OE (Ordered Enclosing) constraint [14] is fulfilled. To solve the CPDP problem,
more detailed statements are known: GTSP (General Traveling Salesman Prob-
lem [2–6,9,10,22]), CCP (Continuous Cutting Problem Point) [21], ECP (End-
point Cutting Problem), see [11,17], and ICP (Intermittent Cutting Problem,
see [14]). A new approach for minimizing both cutting path and heat accumu-
lation in laser cutting process is presented in paper [9]. The proposed algorithm
was based on a memetic algorithm combining a powerful genetic algorithm with
an adaptive large neighbourhood search. The CPDP may be modeled and solved
in accordance with generalized travelling salesman problem. Note that ECP and
ICP allow the combination of the parts borders, which reduces material waste,
cutting length and idle lengths (see [4]). The problems of reducing material waste
and maximizing the combination of the contours fragments of the cut out parts
are solved at the stage of the cutting plan design.

Despite the noted advantages of the computer technologies ECP and ICP
most publications are currently devoted to the development of GTSP and CCP
technologies, which use obvious cutting path algorithms consisting in contour-
by-contour cutting.

The development of ECP and ICP computer technologies are considered, for
example, in papers by [14,17,20]. The polynomial algorithms for OE routing
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(when the part cut off from a sheet does not require further cuts) are given
there.

For industrial enterprises related by their activity to the tasks of cutting
sheet material, there is a need to use CAD/CAM systems for the technological
preparation of cutting processes. Taking into account the capabilities of modern
equipment for cutting parts from sheet material allows you to make cutting
plans that allow combining the contours of the cut parts, which reduces material
waste, cutting length, and the number of idle passes. Algorithms for cutting plans
design for tasks that allow combination of cuts do not fundamentally differ from
algorithms that do not allow combination. However, the algorithms for finding
the paths of the cutting tool movement are fundamentally different. Therefore,
the development of algorithms for finding the route of the cutting tool for cutting
plans that allow the combination of the contours of the cut parts is an open task.

Our research is devoted to routing problems in plane graphs, which are home-
omorphic images of cutting plans. The route covering all the borders of the cut
parts determines the path of the cutting tool. The technological constraint
is the absence of intersection of the internal faces of any route initial part with
the edges of its remaining part. When constructing manipulator control systems
using an undirected graph as a model of cutting plan we may display various ele-
ments of the manipulator trajectory by it. In this case, problems of constructing
routes that satisfy various constraints arise.

In this paper we consider the task to find the path of the cutting tool that
satisfies the technological restrictions and constraints on the pierce points place-
ment. Since the time for piercing significantly affects the duration of the cutting
process, it is necessary to reduce both the number of pierce points and the
distance between successive fragments of the path. We present the polynomial
algorithm for constructing a cutting route that satisfies the introduced restric-
tions and consists of a minimum number of chains.

The first section of our paper is devoted to the statement of the problem and
its formalization in terms of graphs and routes.

In the second section we discuss different necessary conditions of solution
existence.

In the third section we present the polynomial time algorithm for constructing
a route with fixed pierce points and discuss its correctness.

2 Statement of the Problem

Let us consider the problem that arises in the case of violation of restrictions on
the location of pierce points. We consider the case of determining the cutting
tool trajectory during cutting, when it is necessary to leave space for the imple-
mentation of the piercing. In addition, the piercing time significantly affects the
duration of the cutting process. Therefore, we have the problem of determin-
ing the possibility of cutting for a given cutting plan, as well as the task of
minimizing the number of pierce points.

In our past papers [14,15] we consider the plane S as a cutting sheet, the
model of a cutting plan is a plane graph G = (V, F,E) with outer face f0 defined
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on S. The edges e ∈ E of plane graph are the fragments of contours, which
are the plane non-intersecting Jordan curves. If a curve is not closed then their
bounding points are the vertices v ∈ V of graph G. The closed Jordan curves
correspond to loops in graph G. So, if we consider plane graph as homeomorphic
image of the cutting plan, then the trajectory of a cutter be a route in graph.
Then the number of pierce points may be defined as a number of edge-disjoint
chains covering this graph. According to theorem proved in [12] the number of
pierce points is not less than |Vodd|/2.

Let us consider cutting plans in Fig. 1. We admit that these cutting plans have
combined cuts. This means that piercing is possible only for vertices incident to
outer face (in common, for faces allowing piercing).

)b()a(

Fig. 1. The examples of realizable and non-realizable cutting plans for cutting using
combined cuts technology

Homeomorphic images of these cutting plans are shown in the Fig. 2.

Fig. 2. The examples of graphs satisfying the realizable and non-realizable cutting
plans (see Fig. 1) for cutting using combined cuts technology

So, the cutting plan in Fig. 1(b) is realizable at the point of view of considered
cutting technology, and cutting plan in Fig. 1(a) is not. This cutting plan has
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lack of pierce points to cut the inner rectangles R4 and R5. The homeomorphic
image 2(b) of the cutting plan in Fig. 1(b) allows placement of pierce point at
outer contour, and the homeomorphic image 2(a) of the cutting plan in Fig. 1(a)
does not allow placement of pierce point at inner regions.

This problem may be formalized as following [16].
Let faces Fin(G) ⊂ F (G) allow piercing. Let odd degree vertices Vin(G) ⊂

V (G) are incident to face Fin(G). If obtained route is an OE-route and all
starting points of covering chains belong to Vin(G) then this route may be used as
a base for constructing a route of cutter moving. Such routes are called PPOE-
routes [13,16].

Let us to remind the definition of OE-route.

Definition 1 ([19]). Let chain C = v1e1v2e2 . . . vk, 0 < k ≤ |E(G)| so that
Int (v1e1v2e2 . . . el) ∩ E(G) = ∅, 1 ≤ l ≤ k be called ordered enclosing (or
OE) chain.

If a connected graph G is not Eulerian and contains 2k odd degree vertices
then according to Listing-Luke theorem it is possible to cover graph by k edge-
disjoint chains. We need additional definitions to formalize the technological
claims.

Definition 2 ([18]). Let the ordered sequence of edge-disjoint OE-chains

C0 = v0e01v
0
1e

0
2...e

0
k0
v0k0

, C1 = v1e11v
1
1e

1
2...e

1
k1
v1k1

, . . . ,

Cn−1 = vn−1en−1
1 vn−1

1 en−1
2 ...en−1

kn−1
vn−1
kn−1

covering graph G and such that

(∀m : m < n) ,
(⋃m−1

l=0
Int(Cl)

)
∩

(⋃n−1

l=m
Cl

)
= ∅

be called cover with ordered enclosing (or OE-cover for short).

Routes realizing OE-cover represent the ordered set of OE-chains and contain
additional idle passes (edges) between the end of current chain and beginning of
the next [15].

Definition 3. [16] Let a chain C = v1e1v2e2 . . . vk be called PPOE-chain if it
is the OE-chain starting at vertex v1 ∈ Vin(G).

Definition 4. Let PPOE-cover of graph G be such an OE-cover of graph G
consisting only of PPOE-chains.

Definition 5. Let Eulerian PPOE-cover be the minimal cardinality ordered
sequence of edge-disjoint PPOE-chains in plane graph G.

Graphs in Figs. 2(a) and (b) are the images of cutting plans in Figs. 1(a) and
(b) correspondingly. Vertices Vin are presented by white circles. These vertices
allow placement of pierce points near them. Vertices marked by black circles
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do not allow placement of pierce point near them. Thus, there exists Eulerian
PPOE-cover for graph in Fig. 2(b). For example, it may be the following: C1 =
v1v3v5v6v9v8v5, C2 = v3v7v8, C3 = v7v11v10v9, C4 = v11v12v10, C5 = v12v4v6,
C6 = v4v2v1v2. Graph in Fig. 2(a) has no PPOE-cover.

Let us consider the necessary and sufficient conditions for PPOE-cover exis-
tence and the algorithm for obtaining this cover in polynomial time.

3 Necessary Conditions of PPOE-Route Existence

The problem of determining the feasibility of a cutting plan can be formulated
as determining the existence of an Euler PPOE-cover for a plane graph that is
a homeomorphic image of the corresponding cutting plan. In accordance with
the existing restrictions, we can formulate the following necessary condition for
the existence of a PPOE-covering [13].

Proposition 1. [13] If G is a plane graph with 2k of odd vertices, and G has
Eulerian PPOE-cover then |Vin(G)| ≥ k.

For example, graph in Fig. 3(a) can not be covered by PPOE-chains. This
graph has 8 odd vertices, i.e. it may be covered minimum by four OE-chains,
nevertheless only three of them may start at vertices available as starting points
for PPOE-chains. As for graph in Fig. 3(b), it has four vertices that can be
starting ones for PPOE-chains and the same number of end-points. But this
graph also has no PPOE-cover.

)b()a(

Fig. 3. The examples of graphs with no PPOE-cover

The routes realizing PPOE-cover may be presented as the ordered set of
PPOE-chains connected by supplementary edges between the end of the current
chain and beginning of another one. Such transitions allow to get a bipartite
oriented graph D = (Vin ∪ Vout− > Vin, E) for which Vin be the set of odd
vertices used to be the beginning of a chain (pierce points); Vout be the set of
odd vertices used to be only the ends of obtained chains (end points).
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Proposition 2. [13] The PPOE-cover exists if for a mixed graph G ∪ D there
exists cycle which edges E(D) (if e ∈ E(D) then e /∈ E(G))belong to

{(v, u) : v ∈ Vout ∪ Vin, u ∈ Vin}.

Proof. As soon as PPOE-cover is a partial case of OE-cover then it has the
directed cycle consisting of edges e ∈ E(G) and edges of matching M on the set
of vertices Vodd ∈ G (vertices Vin ∪ Vout). As soon as PPOE-cover consists of
PPOE-chains then the edges of matching M should be passed in the direction
Vout ∪ Vin− > Vin. In this case these edges will correspond to arcs of D.

Thus, for PPOE-cover existence we need existence of such a cycle for a mixed
graph G∪D where all supplementary edges e ∈ E(D) be the arcs from Vout∪Vin

in Vin.

Proposition 3. [13] The PPOE-cover for a connected graph G exists is the
cardinality of minimal {Vin, Vout}-cut is not greater than |Vout|.
Proof. Let PPOE-cover exists for graph G. Let, nevertheless, cardinality of
{Vin, Vout}-cut be less than |Vout|. As soon as no one of PPOE-chains of a
cover cannot start at u ∈ Vout then the cover consists of not more than |Vout|
routes from v ∈ Vin to u ∈ Vout. Then some of these routes may turn up edge-
disjoint. This contradicts with definition of PPOE-cover.

As an example we may consider graph in Fig. 3(b). PPOE-chain may start
only from white vertex. This graph has ten odd vertices, hence, we need minimum
five white vertices. The considered graph has such five vertices, nevertheless, this
graph cannot be covered only by chains starting in these vertices. We may obtain
minimum three chains starting at white vertices and ending at black vertices,
for example, C1 = v5v9v8v10v9, C2 = v3v8v7v6v8, C3 = v4v3v2v6. Thus, minimal
cut between white and black vertices has three edges.

4 Sufficient Condition and Algorithm of Obtaining
the PPOE-Route

In this section we consider the decompositional algorithm for PPOE-routes
defining if such routes exists.

Algorithm PPOE-routing
Require: plane graph G(V,E) defined by functions vk(e), lk(e), rk(e), fk(e),

k = 1, 2 and rank(e) [15]; sets Vout, Vin ⊂ V .
Ensure: PPOE-cover of graph G(V,E):

C̃1, C̃2, . . . C̃|Vout|, C|Vout|+1, . . . , CM .

Step 1. Construct the network N(V,A) (i.e. directed graph) in which the pair
of arcs (u, v) , (v, u) ∈ A(N) of capacity 1 corresponds to edge e = {u, v} ∈ E(G);
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vertices v+ ∈ Vout, i.e. possible end-vertices of chains, are the sources of the unit
flow, vertices v− ∈ Vin, i.e. possible pierce points, are stocks.

Step 2. For network N(V,A) get the circulation x : A → {0, 1}, i.e. the
solution of the following problem

f(x) =
∑

(u,v)∈A(N)

x(u, v) → min
x

,

∑
v: (u,v)∈A(N)

x(u, v) − ∑
v: (v,u)∈A(N)

x(v, u) = 1, u ∈ Vout,∑
v: (u,v)∈A(N)

x(u, v) − ∑
v: (v,u)∈A(N)

x(v, u) ≥ −1, u ∈ Vin,∑
v: (u,v)∈A(N)

x(u, v) − ∑
v: (v,u)∈A(N)

x(v, u) = 0, u ∈ V \(Vout ∪ Vin),

0 ≤ x(u, v) ≤ 1, (u, v) ∈ A(N).

Circulation x : A → {0, 1} can be obtained by solving the maximal flow of
the minimal cost problem for a bipolar network. This network may be obtained
by introducing a common source s adjacent to all sources and common source
adjacent to all possible stocks in network N(V,A). Moreover, the permissible cir-
culation of x : A → {0, 1} corresponds to the maximum flow value not exceeding
|Vout|.

Step 3. If f(x) < |Vout| then according to Proposition 3 PPOE-cover does
not exist, go to Step 10.

Step 4. For each active arc (u, v) : x(u, v) = 1 create a list of arcs including
it and only it.

Step 5. For each vertex v ∈ V (G) “correctly” split vertices with the “correct”
union of active edges lists (i.e. taking into account the cyclic order on the set of
arcs and their orientation) while it is possible. The example of these “correct”
splitting and union are shown in Fig. 4. As the result of this step we get the
sequence of disjoint chains C1, C2, . . . C|Vout| containing all flow holders and
only them.

Step 6. Chande the arcs orientation for the obtained chains
C1, C2, . . . C|Vout|.

Step 7. Continue each chain of the sequence C1, C2, . . . C|Vout| while we get
the maximal possible OE-chain. The result of this step is the initial part of the
OE-cover C̃1, C̃2, . . . C̃|Vout|.

Step 8. Construct the partial graph

G̃ = G \ (
|Vout|⋃
i=1

C̃i), E(G̃) =

⎛
⎝E(G) \

⎛
⎝|Vout|⋃

i=1

C̃i

⎞
⎠

⎞
⎠ ,

in which all the vertices v ∈ Vout avoiding piercing are the even ones. The lists
of edges obtained as a result of the algorithm execution correspond to valid
fragments of the cutting route.

Step 9. Define the shortest matching M on set Vodd(G̃). Run algorithm
M-Cover [15] for G̃. We get chains C|Vout|+1, . . . , C|Vout|+|M |.

Step 10. Stop.
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a vertex and edges incident to it the ”correct” splitting

Fig. 4. The example of the “correct” splitting

Theorem 1. Let G(V,E) be a plane graph without bridges.
Algorithm PPOE-routing correctly solves the problem of obtaining the PPOE-
cover for G(V,E) by time not exceeding O(|V |3).
Proof. Let us remind that the main characteristic feature of algorithm M-Cover
[15] is that unlike algorithm OE-Router, the next vertex u = M(v) ∈ VOdd is
given for each v ∈ VOdd. Algorithm M-Cover can interrupt the current chain
both at the first visit of the vertex v ∈ VOdd, and after this vertex becomes
dead-end vertex (i.e. Q(v) = ∅).

IdleM (v) = (rank(v) ≤ rank(M(v))) ∧ (
fM(v) � fv

)
, v ∈ VOdd,

where fw = arg min
f :v∈f⊂F (G)

rank(f), w ∈ VOdd

are introduced. Partial order relation � is defined due to next

Remark 1. [15] If G be a plane connected graph on S without bridges than for
any set M being a matching on set Vodd (vertices of odd degree) of graph G so
that (M ∩ S)\V = ∅, there exists such an Eulerian cycle C = v1e1v2e2...env1,
n = |E| + |M | for any initial part Cl = v1e1v2e2...vl, l ≤ |E| + |M | of which the
condition Int(Cl) ∩ G = ∅ holds.

The route consisting of chains C̃1, C̃2, . . . C̃|Vout| is the edge-disjoint PPOE-
route (due to the splitting and application of appropriate algorithms). Partial
graph G̃ does not contain any edges belonging to chains C̃i, i = 1, . . . , |Vout|
by definition. All graph G̃ vertices avoiding piercing have even degree due to
constructions. As a result of running Step 9 we get the continuation

C|Vout|+1, . . . , C|Vout|+|M |

of route which is the OE-route in graph G̃ covering all edges of graph G̃, and
vertex v ∈ Vin for each chain Ci, i = |Vout| + 1, . . . |Vout| + |M | is permissible for
piercing. Hence, the route
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C̃1, C̃2, . . . C̃|Vout|, C|Vout|+1, . . . , C|Vout|+|M |

is PPOE-cover of initial graph G.
Let us estimate the computing complexity of this algorithm. Step 1 allows to

get the network by time O(|E|). Circulation at step 2 may be obtained by time
not exceeding O(|V |3) [8]. Step 3 is to verify the condition and is completed in
O(1). At step 4, a plurality of chains along a plurality of active arcs is introduced.
This operation is performed in a time not exceeding O(|E|). In step 5, at each
vertex v, a “merging” of lists is performed in a time not exceeding O(|V | ·deg(v).
Thus, computing complexity of step 5 does not exceed the value O(|V |·|E|). Step
6 runs the time not exceeding O(|E|). The complexity of Step 7 is defined by
complexity of algorithm OE-Cover [15] and amounts to O(|E(G)| · log2 |V (G)|).
Obtaining the partial graph G̃ at Step 8 claims the time not exceeding O(|E|).
The complexity of Step 9 does not exceed O(|V |3) used for the shortest matching
obtaining. Thus, the complexity of algorithm PPOE-routing does not exceed
the value of O(|V |3).

So, the construction of the PPOE -cover of the G graph allows us to solve
the problems of the cutter movement routing for an realizable cutting plan with
restrictions on possible puncture points.

5 Conclusions

The problem of technological preparation of cutting processes has a pronounced
systemic character, since it concerns both the problem of drawing up cutting
plans and the problem of routing the cutting tool. The cutting plan must meet
the following criteria: minimization of unproductive material consumption, real-
izability of the cutting plan on the cutting device, minimization of the cut length,
minimization of the length of idle transitions. The methods of routing solutions
presented in this paper allow us to determine the feasibility of the cutting plan
on cutting machines, determine the length of the cut, as well as the number
and length of idle transitions. Thus, the results of this research allow us to give
a systematic estimation of realizability of the given cutting plan and solve the
problem of finding the acceptable optimal trajectory of the cutter.

The subject of the further research is the software development for PPOE-
chains constructing algorithm and development of the library of classes for rout-
ing problems using plane graphs solution.
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Abstract. The effectiveness of using the local search algorithm (moun-
tain climbing) and the Lemke–Howson method for searching for Nash
equilibrium in 4-person games in general and multi-matrix settings using
the Matlab, Python, and FORTRAN software environments are studied.
The local search procedure implemented in the Python environment,
involving the use of multiplication of a multi-dimensional matrix by a
vector, turned out to be an effective tool. The modification of the Lemke–
Howson method for multi-matrix formulation showed very good results.
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1 Introduction

As we know, the search for Nash equilibrium in several persons games can be
considered as a non-linear programming problem, which by fixing strategies all
but one player is turned into a linear programming problem. Solving these prob-
lems consequently we get the local search algorithm (LS). This algorithm called
“mountain climbing” was proposed in [5] and has been successfully applied for
searching the Nash equilibrium in bimatrix games [6]. The same approach (LS) is
applicable for three-person games in both general [3,4] and multi-matrix [8] set-
tings. The Lemke–Howson method (LH-algorithm) has performed well in the case
of bimatrix games [7], but it is not applicable for three-person games in a gen-
eral setting. However, it turned out that the modification [4] of the LH-algorithm
works well for three-person games in a multi-matrix setting. In this paper, we
investigate the effectiveness of the considered approaches for Nash equilibrium
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search for 4-person games in general and multi-matrix settings. When switch-
ing from 3-person games to 4-person games, the amount of information and the
search time when using the local search algorithm, it increases by more than an
order of magnitude. Therefore, if it was possible to solve 3-persons games up to
dimension 100 (i.e. up to 100 strategies per player), then in the case of games
4 persons can only get a solution within a reasonable time for several dozen
strategies.

Earlier in the presentation of the LS-algorithm for 3-person games [3] we
represented the iteration of the algorithm as a sequential formation and solution
of three LP problems. In this paper, for 4-person games, we use a compact
description of the LS-algorithm, where 4 LP problems are formed and are solved
in one cycle. This representation of the algorithm made it possible to compactly
write and implement codes in Matlab and Python environments. It became much
easier to debug programs by making changes in one place of the text, not in 4.

The multi-matrix formulation we use is a generalization for 4-person games
hexamatric setting for 3-person games, where the tables of players’ winnings are
defined by 12 matrices. In this case, the n-person games as nonlinear program-
ming problems becomes a quadratic programming ones with linear conditions
and this circumstance adds the ability to solve 4-person games using a modifica-
tion of the Lemke–Howson algorithm, which showed good results when solving
3-person games. Performed numerical experiments show that for 4-person games
using this modification one can also successfully solve games with dimensions
up to several hundred strategies.

There are several other approaches to solve 4-person games [1,2], including
the multi-matrix (triplo) setting, where the payoff tables of players are defined
by 12 three-dimensional tables. These approaches use a global optimization
algorithm.

2 Four-Person Game in General Setting

Consider the game Γ with four players, i.e. n = 4. A finite non-cooperative 4-
person game Γ is defined by four sets X1, X2, X3, X4 of strategies of the first,
second, third and fourth player respectively, where 1 � r � 4

Xr = {xr = (xr
1, . . . , x

r
mr

) ∈ Emr : 〈xr, emr
〉 = 1, xr � omr

}, (1)

together with their payoff functions as follows

fr(x) = fr(x1, x2, x3, x4) =
m1∑

i=1

m2∑

j=1

m3∑

k=1

m4∑

l=1

Ar
ijkl x

1
i x2

j x3
k x4

l , (2)

f(x1, x2, x3, x4) =
m1∑

i=1

m2∑

j=1

m3∑

k=1

m4∑

l=1

Aijkl x
1
i x2

j x3
k x4

l , (3)

where Ar
ijkl are the players’ 4-dimensional payoff tables,

Aijkl =
∑

r∈I

Ar
ijkl, I = {1, 2, 3, 4}.
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Strategies x1, x2, x3, x4 have dimensions m1, m2, m3 and m4, vector x =
(x1, x2, x3, x4) ∈ EM , M = m1 + m2 + m3 + m4.

By entering the designation {X1,X2,X3,X4} = {X,Y,Z,W}, {A1, A2,
A3, A4} = {A,B,C,D}, {i, j, k, l} = {j1, j2, j3, j4}, one can get formulas that
look more like formulas [4] for three-players game (n = 3).

In the future without reducing the generality for ease of presentation we
define m1 = m2 = m3 = m4 = m, M = 4m.

The Nash indicator for game (1)–(3) is

N(x1, x2, x3, x4) = max
x′
1∈X1

f1(x′
1, x2, x3, x4) + max

x′
2∈X2

f2(x1, x
′
2, x3, x4)

+ max
x′
3∈X3

f3(x1, x2, x
′
3, x4) + max

x′
4∈X4

f4(x1, x2, x3, x
′
4) − f(x1, x2, x3, x4). (4)

The local search for the minimum of the Nash indicator (4) turns into a
sequential solution of 4 linear programming problems to determine their solutions
x∗

i , i ∈ I as mixed strategies of players. These problems are solved relative to
the strategy of one of the players with fixed strategies of other players, which
were obtained in previous iterations as optimal strategies of these players.

3 The Local Search Algorithm

As the initial (starting) strategy of an iterative process, it is usually a set of pure
strategies is selected, for example, x0 = (x1, . . . , xn), where xi = (1, 0, . . . , 0) ∈
Emi , i ∈ I − 1. So as a starting point, let define the strategies x2, x3, x4 of players
2, 3 and 4 as their first pure strategies x2 = (1, 0, 0 . . .), x3 = (1, 0, 0 . . .), x4 =
(1, 0, 0 . . .).

We solve four LP problems sequentially, one after the other until we get
the local minimum of the Nash function. If this minimum is zero (or does not
exceed the preset small positive number), then the equilibrium (approximate
equilibrium) is found. Otherwise, select a different starting point and repeat the
procedure again.

By setting the ratio {p1, p2, p3, p4} = {i, j, k, l} and I − r = {s1, s2, s3} (See
below), using a single formula (6), it is possible to write 12 systems of inequalities
for four LP problems and one operator in the program text of implementations
in MATLAB and Python environments. And, accordingly, collect and solve four
LP problems in a cycle.

Earlier in the presentation of the LS-algorithm for 3-person games, we rep-
resented the iteration of the algorithm as a sequential formation and solution of
three LP tasks. In this paper, for 4-person games, we use a compact description
of the LS-algorithm, where 4 LP problems are formed and solved in one cycle.
This representation of the algorithm made it possible to compactly write and
implement codes in Matlab and Python environments.

Let solve four LP problem in compact description:
for r ∈ I = (1, 2, 3, 4) (denoting the set I − r = {s1, s2, s3}).
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and form the functional of the problem r

m∑

pr=1

( m∑

s1=1

m∑

s2=1

m∑

s3=1

Aprps1ps2ps3
x s1

ps1
x s2

ps2
x s3

ps3

)
xr

pr
−

∑

u∈I−r

αr
u → max

xr
pr

,αr
u

, (5)

and the system of m inequalities (one of the three systems of the problem r):
for u ∈ I − r (taking the notation I −u− r = {t1, t2}, so v = u = I − r − t1 − t2,
and a correspondence {i, j, k, l} = {pv, pt1 , pt2 , pr} p = {i, j, k, l})

m∑

pr=1

( m∑

pt1=1

m∑

pt2=1

Au
pv pt1 pt2 pr

x t1
pt1

x t2
pt2

)
xr

pr
� αr

u,

m∑

pr=1

xr
pr

= 1, xr
pr

� om, pv ∈ {1, . . . , m},

(6)

or denoting Hpv,pr
:=

m∑

pt1=1

m∑

pt2=1

Au
pv pt1 pt2 pr

x t1
pt1

x t2
pt2

, we get

m∑

pr=1

Hpv,pr
xr

pr
� αr

u,

m∑

pr=1

xr
pr

= 1, xr
pr

� om, pv ∈ {1, . . . , m}. (7)

The implementation of the LS-algorithm in the Python environment has
two modes. In mode 1, the LP problem A matrix is formed with nested loops
using four indexes {i, j, k, l} = {p1, p2, p3, p4}. In mode 0, only two indexes i
and l. In this case, the inner loop uses the operation of multiplying the four-
dimensional table (this operation is in Python, but not in Matlab) by two vectors
in turn. In the first mode, a cycle of four indexes is a long operation and for
m = 100 takes an unacceptably long time ≈2000 s. In the second case, using
matrix multiplication by a vector reduces the time dramatically by two orders
of magnitude (for m = 100, it is about 12 s instead of 2000 s).

Let’s solve the LP problem constructed in this way and replace the previously
fixed strategy xr for player r with the obtained solution x∗

r .

4 Multi-matrix Setting

The multi-matrix formulation we use is a generalization for 4-person games hexa-
matric setting for 3-person games, where the tables of players’ winnings are
defined by 12 matrices. In a multi-matrix setting, playoff functions of n players
are set by the formula

fr(x) = fr(x1, . . . , xn) =
〈
xr,

n∑

q=1

Aq
rqxq

〉
, 1 � r � n, (8)

where Ar
rq are mr × mq matrices, r, q ∈ {1, . . . , n}, Ar

rr are zero matrices, 1 �
r � n.

For a 4-person game (n = 4), we use formulas similar to the case of hexam-
atric games [8] (n = 3):
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fx(x, y, z, w) = 〈x, a1
ij y + a2

ik z + a3
il w〉,

fy(x, y, z, w) = 〈y, b1ji x + b2jk z + b3jl w〉,
fz(x, y, z, w) = 〈z, c1ki x + c2kj y + c3kl w〉,
fw(x, y, z, w) = 〈w, d1li x + d2lj y + d3lk z〉;

(9)

and the players’ payoff tables are represented using the following formulas:

Aijkl = a1
ij + a2

ik + a3
il, Bijkl = b1ji + b2jk + b3jl,

Cijkl = c1ki + c2kj + c3kl, Dijkl = d1li + d2lj + d3lk.

For a compact representation of the local search algorithm, we gathered these
matrices in a block matrix

H =

⎛

⎜⎜⎝

Om1 a1
ij a2

ik a3
il

b1ji Om2 b2jk b3jl

c1ki c2kj Om3 c3kl

d1li d2lj d3lk Om4 ,

⎞

⎟⎟⎠

where the matrices Hi,j are the components of this block matrix, for example,
H1,2 = a1

ij .
The algorithm for local search of Nash equilibrium for the 4-person game in

the multi-mastrix setting takes the following form.
Let {x, y, z, w} = {x1, x2, x3, x4}. In the loop, we will collect the functionals

and condition matrices of four linear programming problems:
for r ∈ I and {s, t, v} = I − r, the criterion of the problem r is

〈
xr,

∑

v∈I−r

(
Hr,v + HT

v,r

)
xv

〉
−

∑

v∈I−r

αr
v → max

xr,αr
q

; (10)

and the system of inequalities (one of the three systems of the problem r)
〈
HT

u,rxu, xr

〉
+

〈
xu, Hu,s xs + Hu,t xt

〉
� αr

u,

〈xr, em〉 = 1, xr � om, αr
u � 01, u ∈ I − r.

(11)

In this case, the n-person game as nonlinear programming problem become
quadratic programming ones with linear conditions and this circumstance adds
the ability to solving 4-person games using a modification of the Lemke–Howson
algorithm, which showed good results when solving 3-person games. Conducted
numerical experiments show that for 4-person games using this modification
one can also successfully solve games with dimensions up to several hundred
strategies.

5 Modification of the Lemke–Howson Algorithm
for Finding the Nash Equilibrium in the 4-Person
Multi-matrix Game

The Lemke–Howson algorithm looks for a solution of the system of equations
AX + Y = e ( e = (1, . . . , 1)) for which the complementarity conditions
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(X,Y ) = 0 are satisfied. The algorithm is universal and works the same way
for different games, both for a bimatric game, and for auxiliary problems of
three and four persons games. For all these cases it is necessary to collect the
corresponding matrices A from the matrices of the players payoff tables

A2m,2m =
(

0 A1

B1 0

)
, A3m,3m =

⎛

⎝
0 A1A2

B1 0 B2

C1 C2 0

⎞

⎠, A4m,4m =

⎛

⎜⎜⎝

0 A1 A2 A3

B1 0 B2 B3

C1 C2 0 C3

D1D2D3 0

⎞

⎟⎟⎠.

(12)
The LH-algorithm is applicable to the auxiliary problem that we form in the
form of the following system of linear equations:

AX + Y = e, X = (x1, . . . , x4m), Y = (y1, . . . , y4m),

A = A4m,4m is table of winnings, X is vector of player strategies, Y is vector of
additional variables, e = (1, . . . , 1) ∈ E4m.

The matrix A4m,4m is obtained by converting the multi-dimensional table
Hm,m,4,4 of player winnings. The solution to the auxiliary problem is found by
referring to the LH procedure (LH-algorithm). The Lemke–Howson algorithm
consists of the following steps. First, we form the initial basis from additional
variables Y . Next, we enter one of the structural variables x into the basis, for
example, x1. This violates one of the complementarity conditions x1 ∗ y1 > 0.
Variables of this system of equations form pairs xi, yi according to complemen-
tarity conditions, and in the basis from each pair can be only one. If when we
enter the next variable into the basis, some variable comes out of the basis that
is defined uniquely in the case of undegenerate systems of equations, then one
can enter its partner into the basis, without violating additional complementary
condition. By entering the variables in base this way, without increasing the num-
ber of violated conditions, until one of the variables from the pair x1, y1 leaves
the base, thus reaching an equilibrium with the fulfillment of the complemen-
tarity conditions. Since the variables derived from the basis and their partners
are uniquely defined, the sequence (Lemke’s path) of passing the vertices of the
polyhedron of the system of conditions is determined by the variable entered in
the basis first.

The solution of the auxiliary problem is found by referring to the procedure
LH (Lemke–Howson algorithm) using the formula: [x, y, z, w] = LH(m,A). Let
use notations ((x, y, z, w) = X4m = X4,m).

If we choose the following matrices A1, A2, A3, B1, B2, B3, C1, C2, C3, D1,
D2, D3 as the ones that form the payoff tables, then this problem looks as follows

A1y + A2z + A3w + u = αem, B1x + B2z + B3w + v = βen,

C1x + C2y + C3w + f = λek, D1x + D2y + D3z + g = μel,

〈x, em〉 = 1, x � 0m, 〈y, en〉 = 1, y � 0n,

〈z, ek〉 = 1, z � 0k, 〈w, ek〉 = 1, w � 0l,
x, u � 0, y, v � 0, z, f � 0, w, g � 0, α, β, λ, μ � 0,

〈x, u〉 = 0, 〈y, v〉 = 0, 〈z, f〉 = 0, 〈w, g〉 = 0.

(13)
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Due to the linearity of the conditions of the problem Γ for a four-person
game in a multi-matrix setting we would like to apply the Lemke–Howson algo-
rithm to the game Γ , as it is done for bimatrix games, where replacing the
variables x′ = x/α, y′ = y/β translates the original problem to an equivalent
linear complementarity one. For the four persons game, this technique does not
work. However, having solved a series of auxiliary problems, which we obtain
defining α = β = γ = μ = 1, using the LH-algorithm, we can find the Nash
equilibrium point.

For the solution of the game Γ , the complementarity conditions

xi ui = 0, 1 � i � m, yj vj = 0, 1 � j � m,
zk fk = 0, 1 � k � m, wk gl = 0, 1 � l � m

must be fulfilled.
Defining α = β = γ = μ = 1, we obtain an auxiliary problem in the form of

a system of equations

A1y + A2z + A3w + u = e, B1x + B2z + B3w + v = e,
C1x + C2y + C3w + f = e, D1x + D2y + D3z + g = e,
〈x, u〉 = 0, 〈y, v〉 = 0, 〈z, f〉 = 0, 〈w, g〉 = 0,

x, u � 0, y, v � 0, z, f � 0, w, g � 0.

Enter the notation

H4m,4m =

⎛
⎜⎜⎝

0 A1 A2 A3

B1 0 B2 B3

C1 C2 0 C3

D1 D2 D3 0

⎞
⎟⎟⎠ , s = (s1, ..., sp)

T =

⎛
⎜⎜⎝

x
y
z
w

⎞
⎟⎟⎠ , σ = (σ1, ..., σp)

T =

⎛
⎜⎜⎝

u
v
f
g

⎞
⎟⎟⎠ .

In these notations, the linear complementarity problem is finding a non-negative
(s, σ) solution for the system Hs + Eσ = e, under complementarity conditions
(si, σi) = 0, i = 1, . . . , p. Here e = ep, E = diag (e), and E is a unit matrix of
size p.

Let’s apply to this system the procedure Lemke–Howson. We take σ as the
initial basis. At first, we enter the variable s1 into the basis. Some variable
comes out of the basis that was selected from the condition not to violate the
nonnegativity of the basic variables. Next, we enter a variable in the basis that
is associated with complementarity conditions with the variable that came out
of the basis. Let’s repeat this operation until we exclude from the basis the
variable s1.

As the result, we get a “pseudo-Nash equilibrium”. Since the Lemke–Howson
method can loop, starting from the next starting point, we perform a specified
(limited) number of iterations, for example, p (the dimension of the game). Here,
the “pseudo-Nash equilibrium” is taken in quotation marks, since the conditions
x�em = 1, y�en = 1, z�el = 1, and w�eq = 1 were not taken into account when
solving the auxiliary system.

Starting points are selected one by one from the set {x1, . . . , xm, y1, . . . ,
yn, z1, . . . , zl, w1, . . . , wq}. We use the resulting basis of auxiliary problem as
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the initial basis for the four-persons game with all conditions and variables
(α, β, γ andμ). This initial basis is constructed as follows. First, we enter vari-
ables from the auxiliary task basis into the basis in the positions where they
were in the auxiliary task basis. There are probably still some variables that
can’t be entered in their positions, since the leading positions of the correspond-
ing columns decomposing by the current basis may have very small absolute
values. These variables are entered into the basis in the positions that are not
still occupied, where there are coefficients in the leading positions that are suf-
ficiently large in absolute value. The resulting solution may contain negative
values. In this case, we will repeat the solution of the auxiliary problem from the
next starting point. The resulting point with non-negative values of the basic
variables has the same structure as the solution of the auxiliary problem, that
is, the complementarity conditions are met for it, and it is a Nash equilibrium
point.

As shown by the solution of test games, it was enough to iterate over a
relatively small number of “pseudo-Nash equilibria” to get a result. If one can
build a basis for the full system conditions, achieved using a basis when solving
the auxiliary problem, and thus obtain the solution of the complete system is
valid, then the game is solved. I.e. we get the point where the complementary
conditions are fulfilled, the conditions of Nash equilibrium. Otherwise, we enter
the following variable X in the initial basis of the auxiliary problem and repeat
these actions until we get the result.

6 Testing the Local Search Algorithm
and the Lemke–Howson Method

LS local search and LH Lemke–Howson algorithms for games with n = 4 play-
ers are implemented in Matlab, Python, and Fortran software environments. All
test issues were generated using a random number of sensors that are different
for different environments. Therefore, the tested games are different in different
environments, and it would be necessary to perform calculations for at least 20
games of the same dimension, and then average the results. However, due to the
large time spent, we were forced to limit ourselves to 5 games. First, we found
out the speed of these implementations on an example of the game 100 × 100 ×
100 × 100, performing one iteration (building and solving four linear program-
ming problems consequentially), to select the most effective implementations
and execution modes of the LS-algorithm during testing. In the case of a general
statement, it is necessary to collect 12 matrices (for 4 LP problems) of dimension
m × m, performing nested loops with the indices i, j, k, and l. For m = 100,
we will have to perform about 100, 000, 000(1004) operations. This means that
implementations in MatLab and Python will have a long-running time (mode =
1). In the Python implementation (mode = 0), instead of loops with indexes i,
j, k, and l, loops are performed only with two indexes, and with operations of
multiplying a four-dimensional table by a vector, and the execution time will be
completely different. In the case of a multi-matrix formulation, the matrices of
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LP problems are collected from the matrices, components of payoff tables. And
accordingly, there are no such deeply nested cycles (Table 1).

Table 1. The times in seconds of a single iteration of the game 1004

Game General setting Multi-matrix

1004 Rezim 1 Rezim 0 setting

Cycle 4LP Cycle 4LP

Mathlab 8775 3214 — — 0,5

Python 3881 1160 21 8 0,5

Here, “cycle” means that 4 LP problems are formed and solved consequen-
tially in a loop, and “4 LP” indicates that these operations are performed
separately.

Table 2. Nash equilibrium search times in 5 games 254 by local search algorithm

startp itn time Settings Regime

Mathlab 22456 213429 51942 Multi-matrix

Python 21934 69068 3190

21697 68206 7723 General 4LP, regime = 0

21934 72594 20916 Cycle, regime = 0

Fortran 212 1819 4757

Table 2 shows the results obtained when solving a series of five games 254

using the LS-algorithm (and only one game in the Fortran environment due to
large time’s costs). Here startp – total number of used start points, itn – total
number of steps of the algorithm, time – total time in seconds of the algorithm.

As can be seen from the results obtained, the LS-algorithm works effectively
in the case of multi-matrix formulation, and in the case of General formulation,
only with implementation in the Python environment in regime = 0 and 4LP
mode, one can get results in a reasonable amount of time.

For a compact description of the LS-algorithm, forming matrices of 4 LP
problems it is performed in a cycle, and this technique also allows we to com-
pactly write program text of implementations. But at the same time, we have to
perform additional actions in the innermost matrix formation cycle, compared
to the case when these matrices are formed as separate operations. And so in
cycle mode we have to spend significantly more time (Table 3).

Here “neg” is the number of obtained solutions of the auxiliary problem that
were unfeasible for the initial game. This means that in the study of 5 games
254, 16 auxiliary problems were solved, and among them, in five cases from these
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Table 3. Application of the LH-algorithm to games 254, 1004 and 5004.

Games startp itn neg time

5 × 254 111 2804 8 4,38

5 × 1004 455 45524 14 106

1 × 5004 1666 831566 6 28521

solutions, it was possible to construct a valid solution of the original game, i.e.,
get the Nash equilibrium. If in local search programs, the iteration is to construct
and solution of 4 LP problems, then in the Lemke–Howson method modification
algorithm, the iteration is one step of this method, i.e. one iteration of the simplex
method algorithm over a matrix H of dimension (4m) × (4m). It is important to
note that this matrix recalculation is not performed on all elements (of the order
of m × n operations), but line by line (there is such an operation in Python),
i.e. of the order of m operations. Note that in the local search algorithm, the
possible number of starting points, i.e. the pure strategies of players y, z, and w,
is m3, and for a modification of the Lemke–Howson method, this number is 4m,
i.e. the total dimension of the strategies of four players. An amazing result! The
best result of applying the local search algorithm in the case of games 254 was
obtained using a Python program in 2458 s. At the same time, these problems
were solved by modifying the Lemke–Howson method in 4.38 s!!! Three orders
of magnitude faster.

7 Conclusion

As we know, the search for Nash equilibrium in several persons game can be
considered as a non-linear programming problem, which when fixing strategies
all but one player is turned into a linear programming problem. Solving these
problems consequently we get the LS-algorithm that we used for 4-person games,
more successfully in a multi-matrix formulation, and in the case of a General
formulation using the implementation in Python, with procedures of multiplying
a multi-dimensional table sequentially by two vectors. As a result, this imple-
mentation proved to be an effective tool for finding a Nash equilibrium. Out
of competition was a modification of the LH-algorithm for multi-matrix for-
mulation. A series of 5 games 254 in the multi-matrix formulation was able to
solve by the LS-algorithm in 2458 s, and by modifying the LH-algorithm in 4.38
s! The Lemke–Howson method’s modification for the multi-matrix formulation
is out of the competition. There are several other approaches to solve 4-person
games [1,2], including the multi-matrix (triplo) setting, where the payoff tables of
players are defined by 12 three-dimensional tables. These approaches use a global
optimization algorithm. But compare the effectiveness of local search applied in
this paper with the global search algorithm is not possible, because in the arti-
cles [1,2] there is no data on the solution of a series of games, for example, 254.
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There is only a confirmation that successfully they managed to solve several
small games, including the game 6 × 4 × 3 × 6.
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Abstract. New metrics for different classes of scheduling problems are
introduced. We show how approximate solutions of NP-hard problems
can be obtained using these metrics. To do this, we solve the optimization
problem in which the introduced metric is used as the objective func-
tion, and a system of linear inequalities of (pseudo-)polynomial solvable
instances of the initial problem represents the constraints. As a result, we
find a projection of the considered sub-instance onto the set of solvable
cases of the problem in the introduced metric.

Keywords: Scheduling · Metric approach · Approximation

1 Introduction

A class of multi-machine scheduling problems is NP–hard in the strong sense so
that the existence of a polynomial algorithm is unlikely. This has been proved for
the special case 1|rj |Lmax of this problem with one machine [1]. There exist two
types of methods for solving such problems: exact and approximate ones [2]. The
first group includes integer linear programming [3], dynamic programming [4],
the branch and bound method [5], the local elimination algorithm [6], and so on.
In this case, the optimal objective function value is calculated without any error,
but exact algorithms require large computation times and also a huge memory.
Approximate methods such as genetic algorithms [7], ant colony algorithms [8],
bee colony algorithms [9], tabu search [10], and many others obtain much faster
a heuristic solution but there are usually no estimates of the deviation of the
objective function value from the optimal one [11].

In this paper, we describe a general approximation approach which is denoted
as metric one [12]. It constructs a solution with a specified maximal absolute error
for scheduling problems on parallel machines with the criterion of minimizing
maximum lateness. The absolute error of the approximate solution is bounded
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by a metric function ρ(A,B). The idea of the metric approach is as follows. An
instance A of a problem is characterized by a point of the input data. For this
problem, we consider all known polynomial and pseudo-polynomial algorithms.
Then we introduce some metric. By means of this metric, we find that polyno-
mially or pseudo-polynomially solvable instance with the smallest distance from
the given instance. To do this, we compile a system of linear inequalities derived
from the initial data. In other words, we construct the projection of the initial
point onto a particular instance of a suitable sub-space by the introduced metric.

2 Formulation of the Problem

Scheduling problems were first considered in the middle of the 20th century.
For example, the problem of finding an optimal schedule of production items
through a sequence of two stages or machines can be found in [13]. The common
formulation of the problem is as follows. A set of n jobs j, j ∈ N = {1, . . . , n},
has to be processed on a set of m machines i, i ∈ M = {1, . . . , m}. Preemptions
of a job are not allowed. At any time, any machine can process no more than
one job.

For each job j ∈ N , a release time rj , a due date dj and a processing time
pij for job j ∈ N on machine i ∈ M are given with 0 ≤ pij ≤ +∞. If pij = +∞,
then job j cannot be processed on machine i. Precedence relations between jobs
may be given by an directed acyclic graph G ⊂ N × N .

A schedule is obtained by partitioning the set N of jobs into subsets Ni of
jobs processed on machine i, i = 1, . . . , m. For each set Ni, one has to find the job
sequence πi processed on machine i. Inserted idle times between the processing
of jobs are not allowed. This means that, if a job j is assigned to a free machine
i and the release time rj of job j allows to start this job, then it must be started.

Since we consider only regular optimization criteria, the assignment of the
jobs to the machines (i.e., the specification of the sets N1, . . . , Nm) and the job
sequences π1, . . . , πm describe completely a schedule by the set of job sequences:
π = {π1, . . . , πm}. In a semi-active schedule, each job j ∈ N starts its processing
at the earliest possible time: either at the release date rj , or immediately after
the completion of the previous job on this machine, or immediately after the
end of a job preceding it according to graph G. Instead of the job sequences, one
can equivalently give the starting times sj of all jobs j ∈ Ni, i = 1, . . . ,m. We
denote the set of starting times by S =

⋃
j∈N sj .

Let Pred(j) be the set of all jobs which are a predecessor of job j in the
precedence graph G and (k → j)πi

be the jobs scheduled on machine i before
job j according to the sequence πi. Then the starting time of a job j ∈ Ni, i =
1, . . . ,m, in the schedule π is given by

sj(π) = max
{

rj , max
k∈Pred(j)

(sk(π) + pik), max
(k→j)πi

(sk(πi) + pik)
}

. (1)

Since preemptions of jobs are not allowed, the completion time of job j ∈ Ni in
a schedule π is given by

Cj(π) = sj(π) + pij , j ∈ Ni.
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Definition 1. The schedule is called feasible, if rj ≤ sj(π) and Cj(π) ≤ sk(π),
for all arcs (j, k) ∈ G and is denoted by π̃.

Remark 1. If a schedule π is known, then the starting times S can be determined;
and vice versa, if all starting times S (together with the sets N1, . . . , Nm) are
known, this determines the resulting schedule π.

The optimization criterion is to minimize the maximum lateness:

min
π

max
j∈N

{Cj(π) − dj} .

If dj = 0, for all jobs j ∈ N , the objective turns into the makespan criterion.

Definition 2. A multi-machine scheduling problem is characterized by

1. the job precedence graph G,
2. either the makespan criterion or the criterion of minimizing maximum late-

ness,
3. and the parameters: r = {rj}, d = {dj}, p = {pij}, i ∈ M, j ∈ N .

This problem is usually denoted by R|prec, rj |Lmax in the classical 3-
parameter scheduling problem notation [14].

3 Instances

Let us define the vector of the release times r = (r1, . . . , rn), the (n×m) matrix
p of the processing times pij and the vector of the due dates d = (d1, . . . , dn)
for all machines i ∈ M and all jobs j ∈ N .

Definition 3. If there exist fixed parameters r, p and d that form a problem
described in Definition 2, we denote it as instance A with the parameters: rA =
{rA

j }, dA = {dA
j }, pA = {pA

ij}, j ∈ N, i ∈ M .

In the rest of this paper, the notation rA
j means that this value of rj belongs to

the instance A. Thus, the tuple A = {G, (rA
j , pA

ij , d
A
j )}, j ∈ N, i ∈ M represents

all parameters of the instance A.

Definition 4. Two instances are called isomorphic if they have the same set of
optimal schedules.

For example, instances A = {G, (rA
j , pA

ij , d
A
j )} and B = {G, (rB

j , pA
ij , d

A
j )} are

isomorphic if rB
j = αrA

j , j ∈ N .

Definition 5. Let the set of parameters rj , pij , dj , j ∈ N, i ∈ M of instances
be the coordinates of points. We denote the space of such points by A. Space A
has n · (m + 2)-dimensions.
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Definition 6. Points of the space A are called P-points, if there exists a poly-
nomial or pseudo-polynomial algorithm for solving the instance with the corre-
sponding parameters. Let Ã ⊂ A be the space of all P-points. This space is called
P-cone.

For example, for the problem 1|rj |Lmax the following instance classes are
currently known as polynomially solvable: the Jackson class, the Lazarev class
and the Hoogeveen class [12]. We can define these classes as follows.

Jackson class of instances: X · rT = 0.
Lazarev class of instances: X · (dT − rT − pT ) ≥ 0, X · dT ≤ 0.
Hoogeveen class of instances: X · (dT − pT ) ≤ (E + β) · rT ,

X · (dT − pT ) ≤ EdT , where E is the identity matrix, and β ∈ R is some con-
stant value. Hereinafter, we denote the transposed vector by the superscript T .
By X we denote the matrix n × n:

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 0 . . . 0
0 1 −1 . . . 0
0 0 1 . . . 0

. . .
0 0 . . . 1 −1
0 0 . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

There also exist other polynomially solvable instances that cannot be
included into these classes. There are also polynomially solvable classes of
instances that are hard to be formalized, for example, the Schrage class of
instances.

Next, we will construct a set of instances for multi-machine problems that
can be polynomially or pseudo-polynomially solved.

4 Norm and Metric

Consider a set of instances from the problem class R|prec, rj |Lmax with n jobs,
m machines and the precedence graph G.

Definition 7. Two instances are called equal if they have the same scheduling
parameters r, p, d and the graph G.

Definition 8. Two instances A = {G, (rA
j , pA

ij , d
A
j )| j ∈ N, i ∈ M} and

B = {G, (rB
j , pB

ij , d
B
j )| j ∈ N, i ∈ M} are called equivalent, if

∃ d, r : dA
j = dB

j + d, rA
j = rB

j + r, pA
ij = pB

ij ,

for all j ∈ N, i ∈ M .

This definition generates a partition of the sets of instances of the problem
into equivalence classes. As a representative of each class, we choose the instance
with r1 = 0 and d1 = 0. The resulting class is a (n · (m + 2) − 2)-dimensional
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linear space. Let us denote this space by A−. We say that the instance A belongs
to the class A− if the condition

r1 = d1 = 0 (2)

is satisfied.

Lemma 1. Equivalent instances are isomorphic.

Definition 9. Next, we consider the following functional on the space of equiv-
alence classes of the instances:

ϕ(A) = max
j∈N

{rA
j } − min

j∈N
{rA

j } + max
j∈N

{dA
j } − min

j∈N
{dA

j } +
∑

j∈N

|pA
ij | ≥ 0,

for all A ∈ A−.

Theorem 1. The functional ϕ(A) satisfies the following properties:
⎧
⎪⎨

⎪⎩

ϕ(A) = 0 ⇐⇒ A ≡ 0;

ϕ(αA) = αϕ(A);

ϕ(A + B) ≤ ϕ(A) + ϕ(B).

(3)

We have A = ∅ if rj = pij = dj = 0 for all j ∈ N . The first property
follows from the definition of the functional ϕ(A). The second one can be checked
directly. The third one describes the triangle inequality. Metric functions are
separable.

Theorem 2. [12] Metric functions are separable for polynomially and pseudo-
polynomially solvable instances, i.e., for the instance A and the instance B, there
exist functionals φ(A) and ψ(B) as follows:

f(A,B) ≤ φ(A) + ψ(B).

Corollary 1. If for a subproblem 1|rj |Lmax, we define the norm

||A|| = ϕ(A),

then the metric functions for the subproblem 1|rj |Lmax satisfy:

ρ(A,B) = ϕ(A) + ψ(B),

where ψ(B) = −ϕ(B).

Proof. Consider some points from A. For convenience, we choose an instance for
which r1 = 0 and d1 = 0. Thus, this it represents a (n · (m + 2) − 2)-dimensional
linear normalized space with the norm

||A|| = ϕ(A).

It should be noted that this rule leads to the metric defined in (4):

ρ(A,B) = ||A − B|| = ϕ(A − B) = ϕ(A) − ϕ(B) = ϕ(A) + ψ(B);

ψ(B) = −ϕ(B).
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5 Using Polynomial Subcases

In this paper we intend to introduce the approach for solving the problem
R|prec, rj |Lmax in the case when the machines are not identical and each job
can have different processing times on different machines.

Definition 10. Let there be a point (instance) A /∈ Ã. Using some metric ρ,
we can construct a projection onto the space Ã with respect to A. The resulting
point (instance) B ∈ Ã is called the projection of A by the metric ρ.

Definition 11. The sub-space Ãε
ρ(A) ∈ Ã is called an ε–projection of A by the

metric ρ if for each of its points x ∈ Ã, the following inequality is satisfied:

LA
max(πx) − LA

max(πA) ≤ ε.

The metric approach consists of two steps. In the first step, we change the
parameters {(rA

j , pA
ij , d

A
j )| j ∈ N} of the original instance A = {G, (rA

j , pA
ij , d

A
j )},

where j ∈ N,A /∈ Ã, so that the projection of A by the metric ρ gives an instance
B = {G, (rB

j , pB
ij , d

B
j )| j ∈ N} in the P-cone. In the next step, we find an optimal

schedule πB for the instance B.

Definition 12. For two arbitrary instances A and B, we define a base metric
ρ(A,B) = ρd(A,B) + ρr(A,B) + ρp(A,B), where:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρd(A,B) = max
j∈N

{dA
j − dB

j } − min
j∈N

{dA
j − dB

j };

ρr(A,B) = max
j∈N

{rA
j − rB

j } − min
j∈N

{rA
j − rB

j };

ρp(A,B) =
∑

j∈N

(

max
i∈M

(pA
ij − pB

ij)+ + max
i∈M

(pA
ij − pB

ij)−

)

;

(4)

and

(x)+ =

{
x, x > 0
0, x ≤ 0

,

(x)− =

{
0, x ≥ 0
−x, x < 0

,

i.e., we have |x| = (x)+ + (x)−.

Theorem 3. Let the instance B inherit all parameters from the instance A
except the values {dj , rj , pij | j ∈ N, i ∈ M}, and let π̃B be an approximate solu-
tion of the instance B satisfying the condition:

LB
max(π̃

B) − LB
max(π

B) ≤ δB . (5)

Then
0 ≤ LA

max(π̃
B) − LA

max(π
A) ≤ ρ(A,B) + δB . (6)
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According to Theorem 3, we apply the schedule πB to the initial instance A.
As a result, we obtain the following estimate of the absolute error:

0 ≤ LA
max(π

B) − LA
max(π

A) ≤ ρ(A,B).

We consider the P-cone when the parameters of the jobs satisfy the following
k linearly independent inequalities:

ΩB
1 RB + ΩB

2 PB + ΩB
3 DB ≤ H, (7)

where R = rT , P = pT , D = dT . ΩB
1 and ΩB

3 are n × n matrices, ΩB
2 is a vector

of m elements, H = (h1, . . . , hn)T is an n-dimensional vector. For example, for
Jackson class of instances ΩB

1 = X, ΩB
2 = 0, ΩB

3 = 0, H is a zero vector.
Then in the class of instances (7), we determine an instance B with mini-

mal distance ρ(A,B) to the original instance A by solving the following linear
programming problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(xd − yd + xr − yr) +
∑

i∈M

∑

j∈N

xpij
−→ min

yd ≤ dA
j − dB

j ≤ xd for all j ∈ N,

yr ≤ rA
j − rB

j ≤ xr for all j ∈ N,

−xpij
≤ pA

ij − pB
ij ≤ xpij

for all i ∈ M, j ∈ N,

0 ≤ xpij
for all i ∈ M, j ∈ N,

ΩB
1 RB + ΩB

2 PB + ΩB
3 DB ≤ H.

(8)

The linear programming problem (8) with 2nm + 2n + 4 variables
(rB

j , pB
ij , d

B
j , xd, yd, xr, yr, and xpij

, i = 1, . . . ,m, j = 1, . . . , n) and 4n+3nm+k,
where k is a number of inequalities in ΩB

1 RB + ΩB
2 PB + ΩB

3 DB ≤ H. Values
yr and yd represent a lower bound of differences between a parameter of origi-
nal instance A and a parameter of projected instance B for all values r and d
respectively for all jobs. Similarly, xr and xd represent a lower bound of all dif-
ferences between corresponding parameters. Values xpij

, i ∈ M, j ∈ N are lower
bounds on absolute value of difference between processing time of correspond-
ing job on corresponding machine for instances A and B. These inequalities can
sometimes be solved with a polynomial number of operations, depending on the
specificity of the constraints of the problem (8). For example, for Hoogeveen and
for Lazarev classes the problem can be solved in O(n2 log n) [16] and O(n3 log n)
[15] operations respectively.

In the case when the original problem is not projected onto a P-point, the
selected objectives (we can note that trivial P-points usually do not give qualita-
tively new estimates of the absolute error) or the ‘distance’ ρ(A,C) to any poly-
nomially solvable instance C is not appropriate. However, if for some instance
B = {G, (rB

j , pB
ij , d

B
j )| j ∈ N}, the estimate of the absolute error of the maximum

lateness of the approximate schedule π̃ is ‘acceptable’, then the approximate
schedule π̃ for the original instance A = {G, (rA

j , pA
ij , d

A
j )| j ∈ N} has a guaran-

teed absolute error of δB(π̃) + ρ(A,B) from the optimal values of the objective
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function according to Theorem 3. The value of δB(π̃) + ρ(A,B) is sometimes sig-
nificantly less than ρ(A,C) for any polynomially or pseudo-polynomially solvable
instance C.

It is an upper bound on the absolute error on the objective function value. In
Fig. 1, we show the idea of the metric approach. Let us consider the P-cone which
includes all known P-points bounded by a system of linear inequalities (note that,
since we consider this sub-space with respect to point zero, it is a cone). In this
P-cone, we can find a point B, which corresponds to an instance B with the
obtained schedule πB . Thus, for the instance B, there exists a polynomially or
pseudo-polynomially solution algorithm.

Fig. 1. Geometric illustration of the metric approach

Now we want to find a polynomial or pseudo-polynomial algorithm for an
instance A, which does not belong to the P-cone. Then we construct a metric
ρ, which characterizes the difference of the two elements. Here the elements are
some functions whose parameters allow finding easily schedules for the instances
B and A. Thus, the metric looks like ρ = LA

max(πB) − LA
max(πA). That is, the

projection of the initial point A from the n · (m + 2)-dimension space onto a
point of a polynomially solvable sub-space is determined. For any instance (i.e.,
a point in the n · (m + 2)-dimensional space), we know the projection of the
initial point A onto the polynomially solvable sub-space. Next, in a first step, we
show the efficiency of the metric approach using experiments for the simplified
problem 1|rj |Lmax.

6 Generation of Instances for the Problem 1|rj |Lmax

When conducting experimental research, one of the primary issues is the gener-
ation of test cases. We show that the set of all instances of the n-dimensional
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problem can be transformed into a bounded set An ⊂ A with 3n dimensions,
where each element represents an infinite number of equivalent instances of the
problem. The algorithm presented below generates instances with a uniform
distribution over a set of spaces, where the coordinates of each point are the
parameters rj , pj , dj , where rj is a release time, dj is a due date and pj is a
processing time of job j ∈ N .

Algorithm 1. Algorithm of instance generation on the set An

1: Generate the parameters {r̂j , p̂j , d̂j} according to a normal distribution with the
location parameter ν = 0 and the variance σ = 1

2: for all j ∈ N do
3: if p̂j < 0 then
4: pj := −p̂j

5: else
6: pj := p̂j

7: end if
8: rj := r̂j − min

j∈N
{r̂j}

9: dj := d̂j − max
j∈N

{d̂j}
10: end for
11: Δ :=

√ ∑
j∈N

r2
j +

∑
j∈N

p2
j +

∑
j∈N

d2
j .

12: for all j ∈ N do
13: rj :=

rj

Δ
; pj :=

pj

Δ
; dj :=

dj

Δ

14: end for

Next we generate 10000 instances of the problem with the number of jobs
up to 50. We do not consider instances with larger number of jobs because the
investigated parameters become stable.

7 Efficiency of Using Polynomial Algorithms
for the Problem 1|rj |Lmax

We show how the proposed approach works in special cases of the “easy” sub-
problem 1|rj |Lmax. We generate random instances of the problem 1|rj |Lmax

and build a projection of each instance to the chosen special class. Then,
we solve this projected instance with the corresponding polynomial algorithm.
Thus, we solve instances of the Lazarev class with the polynomial Lazarev algo-
rithm [11,15], instances of the Hoogeveen class with the polynomial algorithm
of Hoogeveen [16], and special instances, which were suggested by Schrage, with
the polynomial algorithm of Schrage [17]. For measuring the efficiency we are
using the following three indicators:

– μ determines the percentage of instances for which the algorithm found an
optimal solution, and it is calculated by the formula:

μ =
K∗ · 100%

K
. (9)
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Here K is the total number of generated test instances, K∗ is the number of
test cases optimally solved by the algorithm.

– The parameters βav and βmax determine the average and maximum relative
error of the value of the objective function, respectively, found by the schedul-
ing algorithm for the test instance. The error is determined relative to the
optimal value of the objective function of the test instance. The parameters
βav and βmax are calculated using the following formulas:

βav =
K̄∑

i=1

Lmax(πi) − Lmax(π∗)
Lmax(π∗)

· 100%;

βmax = max
i=1,...,K

{
Lmax(πi) − Lmax(π∗)

Lmax(π∗)
· 100%

}

.

Here K is the number of generated instances for which the solution obtained
by the algorithm was not optimal (K̄ = K − K∗), πi and π∗

i are the sched-
ule found by the algorithm and the optimal schedule for the i-th generated
instance solved non-optimally.

In our study, we experimentally found the parameters μ, βav and βmax for
three polynomial algorithms. We studied instances with a number of jobs n
ranging from 2 to 50. Test cases were generated according to Algorithm 1 on
a n · (m + 2)-dimensional unit sphere. For each investigated value of n, 10 000
instances were constructed.

Figure 2 shows the values of the percentage μ, calculated according to (9), of
the instances for which each algorithm was able to find an optimal solution, at
the x-axis the numbers of jobs are given. We can see that out of 10 000 gener-
ated instances, the Hoogeveen algorithm has the largest percentage of optimally
solved instances. However, the parameter has a similar dependence for all three
algorithms. For a number of jobs n ≤ 6, the parameter μ decreases with an
increase in the number of jobs, and with larger values of n it begins to grow and
tends to 100%.

Figures 3 and 4 show the values of the average and maximum relative error,
respectively, of the value of the objective function, found by each considered
scheduling algorithm. We can see that the relative error of all considered algo-
rithms tends to be smaller with larger values of n.

For example, for dimensions greater than 30, the metric approach finds an
optimal solution for more than 99.7% of the instances, and the algorithm of
Hoogeveen finds an optimal solution for more than 99.9% of the instances.
Of course, there are classes of instances that cannot be optimally solved by
these polynomial algorithms. However, if we take into account the whole set of
instances of large dimensions, the probability of meeting a “bad” instance is
very small. If we consider the parameters βav and βmax, then we can see that
the average and maximum relative error of the solution obtained by the algo-
rithms decreases with an increase in the number of jobs. Again the algorithm of
Hoogeveen shows the best results. The average relative error for this algorithm
does not exceed 1% for a dimension of n1 = 17 or more, and the maximum did
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Fig. 2. Percentage μ of optimally solved instances

Fig. 3. Average relative error βav of the value of the objective function

Fig. 4. Maximum relative error βmax of the value of the objective function

not exceed 2% in our experiments for the instances of a dimension n2 = 23 or
more.
For the metric approach, we obtained n1 = 19 and n2 = 36, respectively. Based
on the results of an experimental study, it can be conjectured that the percentage
of “difficult” instances relative to the entire set of instances 1|rj |Lmax decreases
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with increasing dimension. This may explain, in particular, the fact that in
practice exact non-polynomial algorithms can quickly find an optimal solution
for instances of large dimension, despite the NP -hardness of the problem [18,19].

8 Conclusion

An approach for approximately solving scheduling problems is analyzed. Each
instance is considered as a point in an n · (m + 2)-dimensional space, which
represents the parameters of the problem. Thus, making a projection of this
point to known polynomially solvable areas in the space of problem parame-
ters, and solving the projected instance, we can find an approximate solution.
With the purpose of finding a projection, three polynomially solvable classes of
instances are described: Jackson class, Lazarev class and Hoogeveen class. Some
computational experiments are conducted for the simplified problem 1|rj |Lmax.
According to our experiments, the metric approach appears to be effective for
most of the tested instances. We suggest a hypothesis that the metric approach
will be also effective for problems with several machines. This will be the subject
of further research and computational experiments.

Acknowledgement. This research was partially funded by RFBR and MOST
(project 20-58-S52006).
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On Numerical Solving an Equilibrium
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Abstract. An equilibrium problem for a 3D elastic body with a crack
is considered. We assume that nonpenetration boundary conditions and
Coulomb friction law are imposed on the crack faces. This leads to the
formulation of a problem as a quasi-variational inequality. For solving
auxiliary problems with given friction occurring on each outer step of
the method of successive approximations we use duality scheme based
on the modified Lagrange functional. Computational results illustrating
the efficiency of the proposed algorithm are presented.

Keywords: Quasi-variational inequality · Crack problem · Saddle
point · Uzawa algorithm · Duality scheme

1 Introduction

In this paper, we consider a boundary value problem describing an equilibrium of
an elastic body with a crack. To prevent a mutual penetration between the crack
faces, inequality type boundary conditions are imposed at the crack faces [1–6].
Taking into account the Coulomb friction law in the mathematical model of
crack problems leads to a quasi-variational inequality [7].

It is well-known that the solution of the quasi-variational inequality can be
defined as a fixed-point of a certain mapping and computed by using the method
of successive approximations [8–11]. At each step of this method we solve an aux-
iliary crack problem with given friction. The variational formulation of the aux-
iliary problem described by a minimization problem of the energy functional on
the set of admissible displacements. The computational efficiency of the method
of successive approximations depends on the realization of crack problems with
given friction. In works [8–10] these auxiliary problems were solved using the
classical Lagrange functionals.
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In this paper, we use a duality scheme based on the modified Lagrange func-
tionals. The use of modified Lagrange functionals ensures the convergence of
the gradient Uzawa algorithm with respect to the dual variable [5,6,11,12]. We
apply the finite element method for the numerical implementation of the pro-
posed algorithm and present some computational experiments illustrating its
effectiveness.

2 Statement of the Problem

Let Ω = (0, 1) × (0, 1) × (0, 1) be a homogeneous isotropic body with the planar
crack γ = (0.25, 1) × (0, 1) × {0.5}, Γ is a Lipschitz boundary of the Ω. Denote
by ΓD = {0} × (0, 1) × (0, 1) the part of Γ where the body is clamped and by
Γ±

N the parts of Γ where body is loaded by a surface force.

Γ+
N = (0.1, 1) × {1} × (0.6, 1), Γ−

N = (0.1, 1) × {0} × (0, 0.4).

In Fig. 1, the parts Γ±
N are marked and the arrows indicate the directions

of the acting forces. Let ν = (0, 0, 1) be a unit normal vector on γ. According
to the vector ν, denote the positive (upper) face of the crack γ by γ+ and the
negative (lower) face by γ−. Suppose that Ωγ = Ω \ γ.

x1
x2

x3

γ Γ+
N

Γ−
N

ΓD

1 1

1

Fig. 1. Domain configuration and loading in the crack problem

Assume that the strains are small. Let us introduce the stress and strain
tensors of linear elasticity using the Einstein summation convention

σij(u) = cijkmεkm(u), εij(u) =
1
2

(ui,j + uj,i) , i, j, k,m = 1, 2, 3,

cijkm = cjimk = ckmij , cijkmξkmξij ≥ c0|ξ|2 ∀ξij = ξji, c0 = const > 0,
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where u = (u1, u2, u3) is a vector of displacements of the elastic body and lower
indices after comma denote the ui,j = ∂ui/∂xj .

Let us specify vector-functions of the body and surface forces f ∈ L2(Ωγ)3

and p ∈ L2(ΓN )3, respectively. In the domain Ωγ , we consider the following
boundary value problem [1,2]: for the given friction coefficient F ≥ 0 find dis-
placements u of the body such that

− div σ(u) = f in Ωγ , (1)
u = 0 on ΓD, (2)

σ(u)n = p on ΓN , (3)
[uν ] ≥ 0, [σν(u)] = 0, σν(u) ≤ 0, σν(u)[uν ] = 0 on γ, (4)

[στ (u)] = 0, |στ (u)| ≤ −Fσν(u), στi(u)[uτi] + Fσν(u)|[uτ ]| = 0 on γ, (5)

where σ(u)n = (σ1(u), σ2(u), σ3(u)) = (σ1j(u)nj , σ2j(u)nj , σ3j(u)nj) and n =
(n1, n2, n3) is the unit outward normal vector to Γ ; uν , uτ , σν(u), στ (u) are the
normal and tangential components of the corresponding vector-functions on γ
defined as follows:

uν = uiνi, uτi = ui − uννi, i = 1, 2, 3,

σν(u) = σij(u)νiνj , στi(u) = σi(u) − σν(u)νi, i, j = 1, 2, 3.

The boundary value problem (1)–(5) belongs to the class of problems with an
unknown contact area. Condition (4) describe a mutual nonpenetration of the
crack faces, where [uν ] = u+

ν − u−
ν is a jump of the function uν on γ. The values

u±
ν ∈ H1/2(γ) are the traces of uν at the crack faces [2]. At last, conditions (5)

define Coulomb friction law.
Let us define the functional space:

H1
Γ (Ωγ) =

{
v = (v1, v2, v3) ∈ H1(Ωγ)3 | v = 0 on ΓD

}

and introduce the set of admissible displacements

K =
{
v ∈ H1

Γ (Ωγ) | [vν ] ≥ 0 on γ
}

.

The equilibrium problem (1)–(5) may be formulated (under the assumption of
sufficient regularity of the solution) as a quasi-variational inequality [7,8,13,14]:

find u ∈ K :
∫

Ωγ

σ(u) : ε(v − u) dx +
∫

γ

F |σν(u)|(|[vτ ]| − |[uτ ]|)ds ≥

≥
∫

Ωγ

f · (v − u)dx +
∫

ΓN

p · (v − u)ds ∀ v ∈ K.

(6)

Solution of the quasi-variational inequality is described as a fixed-point of
mapping Tγ : [H1(Ωγ)]3 → H−1/2(γ) defined as follows:

(Tγ(u), [v]) = a(u, v) − b(v)
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for all v ∈ [H1(Ωγ)]3 such that v = 0 on ΓD and [vτ ] = 0 on γ [7,8]. Here, a(u, v)
is a bilinear form defined on [H1(Ωγ)]3 × [H1(Ωγ)]3:

a(u, v) =
∫

Ωγ

σ(u) : ε(v) dx

and b(v) is a linear form representing the work of applied forces:

b(v) =
∫

Ωγ

f · vdx +
∫

ΓN

p · vds.

We use the method of successive approximations for solving a quasi-
variational inequality (6) [8,9,11]. In our case it reads as follows:

1. Iteration k = 0. Choose an initial friction force g0 ∈ H1/2(γ).
2. Iteration k ≥ 1. Define function uk as a solution of the following variational

inequality

a(uk, v − uk) +
∫

γ

gk−1(|[vτ ]| − |[uk
τ ]|)ds ≥ b(v − uk) ∀ v ∈ K. (7)

3. Calculate the approximation gk = F |σν(uk)| and repeat Steps 2, 3 until
stopping criterion.

Convergence of this method is guaranteed if friction coefficient F is small
enough, but unfortunately it is rather difficult to determine the bounds for F
because they are mesh dependent [8].

The auxiliary variational inequality (7) is called the contact problem with
given friction. It can be formulated as the following minimization problem: find
u ∈ K such that

J(u) = inf
v∈K

J(v), (8)

where
J(v) =

1
2
a(v, v) − b(v) + j(v)

is the potential energy functional and j(v) is a nondifferentiable functional rep-
resenting the work of friction forces:

j(v) =
∫

γ

gk|[vτ ]|ds.

It is well-known that problem (8) has a unique solution [1,2]. One of the
main differences between 2D and 3D contact problems consists in the definition
of the term |[vτ ]| appearing in j(v). In a two-dimensional case, vector-function
v has only one tangential component on γ, so |[vτ ]| is the absolute value of a
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vector function, which has only one non-zero component. In three-dimensional
case, vector [vτ ] has the following form:

[vτ ] = ([vτ1], [vτ2], 0) = ([v1], [v2], 0).

Therefore, the term |[vτ ]| is defined by |[vτ ]| =
√

[v1]2 + [v2]2.
In order to smooth functional j(v), we use popular and computationally

efficient approximation to |[vτ ]| ≈ √
[v1]2 + [v2]2 + μ (see [17]).

3 Modified Duality Scheme for Solving Problems
with Given Friction

To solve problem (8), we define the modified Lagrange functional on the space
H1

Γ (Ωγ) × L2(γ) (see [5,6]):

M(v, l) = J(v) +
1
2r

∫

γ

([
(l − r[vν ])+

]2 − l2
)

ds,

where r > 0 is an arbitrary positive constant.

Definition 1. A pair (v∗, l∗) ∈ H1
Γ (Ωγ) × L2(γ) is called a saddle point of the

modified Lagrange functional M(v, l) if the following two-sided inequality takes
place:

M(v∗, l) ≤ M(v∗, l∗) ≤ M(v, l∗) ∀(v, l) ∈ H1
Γ (Ωγ) × L2(γ).

If (v∗, l∗) is the saddle point of M(v, l), then v∗ is a solution of the problem
(8) and l∗ is a solution of the corresponding dual problem:

{
M(l) → sup,

l ∈ L2(γ),
(9)

where
M(l) = inf

v∈H1
Γ (Ωγ)

M(v, l).

In general it is possible to show that a pair (u,−σν(u)) ∈ H1
Γ (Ωγ) ×

(H−1/2
Γ (γ))+ is a saddle point of the classical Lagrange functional [8].
Suppose that the solution u to problem (1)–(5) has an additional smoothness.

Namely, we assume that

([στ1(u)], [στ2(u)], [σν(u)]) ∈ [L2(γ)]3.

Then it can be shown that a saddle point of modified Lagrange functional coin-
cides with a saddle point of classical Lagrange functional [15]. Moreover, the
saddle point has the form (u,−σν(u)), and the function −σν(u) is a solution of
the dual problem (9) [8–10]. The following statement holds [6].
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Theorem 1. The dual functional M(l) is Gateaux differentiable in L2(γ) and

its derivative ∇M(l) satisfies a Lipschitz condition with a constant
1
r
, that is,

the following inequality holds:

‖∇M(l
′
) − ∇M(l

′′
)‖L2(γ) ≤ 1

r
‖l

′ − l
′′‖L2(γ) ∀ l

′
, l

′′ ∈ L2(γ).

and subdifferential of M(l) consists of the single element ∂M(l) = m(l)

m(l) = max
(

−[uν ],− l

r

)
∀l ∈ L2(γ).

In order to solve (8), we apply the following Uzawa type algorithm [6]:

1. Iteration m = 0. Choose an arbitrary function l0 ∈ L2(γ).
2. Iteration m ≥ 1. Define function um as a solution of the following problem

um = arg min
v∈H1

Γ (Ωγ)

M(v, lm−1). (10)

3. Set

lm = lm−1 + r max
(

−[um
ν ],− lm−1

r

)
= (lm−1 − r[um

ν ])+. (11)

4. Stop or go to step 2.

We obtain the gradient method at the step (11), which has a faster rate of
convergence than the gradient projection method applied in the classical duality
scheme [5].

4 Computational Results

We assume that the body Ω is made of an elastic isotropic, homogeneous material
characterized by Young’s modulus E = 73000 MPa and Poisson’s ratio μ = 0.34
(aluminum). We consider that a volume load is f = (0, 0, 0) and the boundary
loading is taken as

−σ22(u) = ±27 MPa, − σ12(u) = −σ23(u) = 0 on Γ±
N .

For the numerical solution of the problem, we use the finite element method.
We discretize the domain Ωγ with a crack by a uniform triangulation and apply
standard linear finite elements. The number N of nodes of the triangulation and
the number of the contact nodes on γ are presented in Table 1 in dependence of
the mesh size h.

As stopping criterion for the method of successive approximations, we choose
the following condition:

∥
∥gk − gk−1

∥
∥

L2(γ)

‖gk‖L2(γ)

< 10−10.
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Table 1. Number of points N for mesh size h.

Mesh size h 0.05 0.025 0.01 0.005

No. of points N 9576 70151 1037876 8150751

No. of contact points Nγ 315 1230 7575 30150

Uzawa algorithm terminates if

max

(∥
∥um − um−1

∥
∥

H1
Γ (Ωγ)

‖um‖H1
Γ (Ωγ)

,

∥
∥lm − lm−1

∥
∥

L2(γ)

‖lm‖L2(γ)

)

< 10−10.

The spaces H1
Γ (Ωγ) and L2(γ) are approximated by finite-element spaces Vh

and Lh, consisting respectively of linear tetrahedron and triangle elements. To
solve the finite-dimensional optimization problem obtained after discretization
of (8), we use the generalized Newton method [5,16].

Let us give some notations: A ∈ R
3N×3N is the positive definite stiffness

matrix, b ∈ R
3N is the vector of the nodal forces, x = (x1, . . . , x3N )T ∈ R

3N

is the vector of unknowns, assembling in an appropriate way components of the
displacement vector (u1(qi), u2(qi), u3(qi))T at the triangulation points qi ∈ R

3

with i = 1, N , vectors l ∈ R
Nγ and g ∈ R

Nγ collect, respectively, the values
of the dual variable (at iteration m) and friction force (at iteration k) at the
contact nodes.

Let us introduce the gradient G(x ) of the finite-dimensional functional
obtained after discretization of the problem (8)

G(x ) = Ax − b + α(x ). (12)

For convenience, we denote by {i+j }, {i−j }j=1,Nγ
the numbers of the nodes

lying, respectively, on the upper and lower faces of the crack. We assume that
jumps [u1], [u2], [u3] across the crack are approximated by differences:

[xj ]1 = (x3i+j −2 − x3i−
j −2), [xj ]2 = (x3i+j −1 − x3i−

j −1), [xj ]3 = (x3i+j
− x3i−

j
).

Then vector α(x ) ∈ R
3N specified as follows:

αi(x ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

±wjg j [xj ]1/
√

[xj ]21 + [xj ]22 + μ for i = 3i±j − 2,

±wjg j [xj ]2/
√

[xj ]21 + [xj ]22 + μ for i = 3i±j − 1,

∓wj(l j − r[xj ]3)+ for i = 3i±j ,

0 overwise.

Here w ∈ R
Nγ is the vector of coefficients obtained after discretization of

the boundary integral over γ, μ = 10−14 is a small constant. This constant was
chosen so that

√
μ is smaller than max([xj ]1, [xj ]2) by two orders of magnitude.

The generalized Newton method is applied in the following way:
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1. Initialize: x 0 ∈ R
3N , i := 0.

2. For i ≥ 1, calculate

x i = x i−1 − (∂G(x i−1))−1G(x i−1). (13)

3. Check stopping criteria

‖Ax i − b + α(x i)‖2 < 10−12.

Here ∂G(x ) is a symmetric sparse matrix defined by:

∂G(x ) = A + D(x) ,

where D(x) ∈ R
3N×3N is the generalized Jacobian matrix of α(x ) based on

a subgradient of its components. The derivative of a ramp function reads as
follows:

∂

∂x3i+j

(l j − r[xj ]3)+ =

{
−r, l j − r[xj ]3 > 0,

0, l j − r[xj ]3 ≤ 0.

Note that, r > 0 is an arbitrary positive constant and, in what follows, we
put r = 108. The dependence of the number of the Uzawa algorithm steps on the
parameter r was investigated in [5]. The number of Uzawa iterations decreases
with an increase of the parameter r.

All numerical experiments were conducted on IBM Power Systems S822LC
8335-GTB server, which is based on two 10-core IBM POWER8 processors with
a maximum operating frequency 4.023 GHz and two NVIDIA Tesla P100 GPU
accelerators. It should be noted that the generalized Newton method can be
efficiently parallelized on GPU using cuSPARSE, cuBLAS libraries. For that, we
can substitute (13) by the linear system and solve it using incomplete-Cholesky
preconditioned conjugate gradient iterative method [18].

At first, let us give results of the numerical solution with F = 0 (without
friction) for various h. The numerical solutions are compared with respect to the
potential energy J(u) and the contact zone in the Fig. 2. We can see in Fig. 2b
that the contact zones are close to each other and stabilize with decreasing mesh
size. In Fig. 2a we observe linear convergence of the values of potential energy
functional J(u).

The number of iterations required for convergence of the Uzawa algorithm
and the average number of generalized Newton iterations are presented in
Table 2. We can see that the number of iterations slightly increases with decreas-
ing h.

Table 2. Number of iterations for mesh size h.

Mesh size h 0.05 0.025 0.01 0.005

No. of iterations (10) 6 7 8 10

No. of iterations (13) 2 3 4 4
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Fig. 2. Solution characteristics by decreasing h.

These facts illustrate the stable behavior of the proposed algorithm with
respect to the mesh refinement. Figure 3 shows the values of the jump [u3] and
the dual variable l at the crack. We can observe that [u3] ≥ 0, which means
that the crack faces do not penetrate into each other. The value of the dual
variable is greater than zero at the nodes where the crack faces are closed (in
contact). This indicates the presence of the normal stress in these nodes. The
presented numerical results for the problem without friction coincide with the
results obtained using the primal-dual method in article [3]. A comparison of
the classical and modified duality schemes is given in [5].

Let us now consider an example, where the coefficient F is nonzero, namely
F = {0.3, 0.6, 0.9, 1.2}. The number of iterations required to successfully termi-
nate the method of successive approximations is equal to 3. The average number
of iterations of the Uzawa method is equal to 8. The value of the potential energy
functional is presented in Table 3.

Table 3. Numerical results for friction coefficient F .

coefficient F 0.3 0.6 0.9 1.2

Energy J(u),×10−3 −5.34596 −5.29708 −5.24891 −5.20144

Figure 4 shows the computational results for F = 1.2. The graphs show the
value of the jumps [u1], [u2] (see Fig. 4(a,b)) and friction force F |σν(u)| (see
Fig. 4c) at the crack.
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Fig. 3. Jump [u3] and dual variable l∗ = −σν(u) at the crack.

Fig. 4. Jumps [u1], [u2] and friction force at the crack.
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We may conclude that the use of the gradient Uzawa method, based on mod-
ified Lagrange functional, and the method of successive approximations makes
it possible to numerically solve a 3D crack problem with Coulomb friction quite
effectively.

5 Conclusion

In the paper, the numerical algorithm of solving the equilibrium problem for
a 3D elastic body with a crack under Coulomb friction was considered. The
algorithm is based on the modified duality scheme allowing us to efficiently
solve the auxiliary problems with given friction. Modified Lagrange functionals
make it possible to use the gradient method for solving the dual problem, which
is more efficient in comparison with the gradient projection method used in the
classical duality scheme. The numerical experiments illustrating the efficiency of
the proposed algorithm were presented.

One of the difficulties of solving the 3D problem is that the tangential contact
stress has two components in each contact node. In order to smooth nondifferen-
tiable functional, we used a simple approximation of the absolute value function.
It would be very useful to apply the duality approach to transform the nons-
mooth auxiliary minimization problem into a smooth one. This question is a
topic for future research.

Acknowledgement(s). This research was supported through computational
resources provided by the Shared Facility Center “Data Center of FEB RAS”
(Khabarovsk) [19].
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Abstract. The point stabilization problem for a robot-wheel is consid-
ered. The problem consists in synthesizing control torque in the form
of feedback that brings the wheel from an arbitrary initial position on
a straight line to a given one, with the control torque and the maxi-
mum velocity of wheel motion being constrained. To meet the phase and
control constraints, an advanced feedback law in the form of nested sat-
uration functions is suggested. Two of the four coefficients employed in
the saturation functions are uniquely determined by the limit value of
the control torque and the maximum allowed wheel velocity, while the
selection of the other two coefficients can be used to optimize the per-
formance of the controller. In this study, the optimality is meant in the
sense that the phase portrait of the closed-loop system is similar to that
of a stable node, with the asymptotic rate of decrease of the distance to
the target point being as high as possible. The discussion is illustrated
by numerical examples.

Keywords: Robot-wheel · Optimal feedback coefficients · Point
stabilization problem · Phase and control constraints

1 Introduction

The problem of a wheel rolling on a plane or an uneven terrain is of importance
in many practical applications. A rising tide of interest to this classical problem
is due to appearance of robotic systems of a new type—ballshaped or spherical
robots and robot–wheels—and search for new actuators for such systems [1–5].
The problem of motion control for mobile robots of this type that move owing
to displacements of masses (pendulums) inside the shell (wheel) is discussed in
many publications (see, for example, [1,3,5,6]). In this paper, we consider the
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simplest model of a wheel robot assuming that it is driven by a control torque
applied to the wheel axis. We do not go into detail of implementation of the
actuator assuming only that the control torque is constrained, with the limit
value being determined by physical parameters of the robot [1,6]. On the one
hand, such a model, in spite of its simplicity, is of interest by itself in the study
of advanced control strategies, including optimal ones. On the other hand, this
model can be used as a reference one in studying more complicated models, with
the solutions obtained for the reference model being taken to be the set of target
trajectories for the original system [7].

We set the problem of synthesizing a control law in the form of feedback that
brings the wheel from an arbitrary initial position on a straight line to a given
one, with the velocity of motion being limited. Moreover, the control torque is
also assumed to be constrained. To meet the phase and control constraints, an
advanced feedback law in the form of nested saturation functions depending on
four coefficients is suggested. Feedback laws of this type were studied in [8,9].
The basic advantage of such laws is that they ensure global stability of the closed-
loop system and guarantee the fulfilment of the phase and control constraints
under appropriate choice of feedback coefficients.

Two of the four feedback coefficients are uniquely determined by the limit
value of the control torque and the maximum allowed wheel velocity, while the
selection of the other two coefficients can be used to optimize the performance
of the controller. In this study, we use the same optimality criterion as in [10],
where the selection of feedback coefficients of a saturated linearizing feedback for
a wheeled robot with constrained control resource was discussed. The optimality
is meant in the sense that the phase portrait of the nonlinear closed-loop system
is similar to that of a linear system with a stable node, with the asymptotic rate
of approaching the target point being as high as possible.

2 Problem Statement

We consider a wheel rolling on a plane along a straight line (Fig. 1). The dynam-
ics of the wheel are given by

Mẍ = R, Mr2θ̈ = rR − fθ̇ − U,

where M and r are mass and radius of the wheel, x is the coordinate of the wheel
center, θ is the rotation angle, R is the reaction force, f is the viscous friction
coefficient, and U is the control torque.

We assume that the wheel rolls without slipping; i.e., the condition

ẋ + rθ̇ = 0 (1)

holds. In the point stabilization problem, it is required to synthesize a control
law U in the form of feedback that brings the wheel to a given target point on
the line. Without loss of generality, we set the target point to be at the origin.
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Fig. 1. Schematic of the robot-wheel.

The control torque U is assumed to be limited, and we also assume that the
velocity of the wheel center cannot exceed a prescribed value:

|U | ≤ Umax, |ẋ| ≤ Vmax. (2)

First, we reduce the order of the system and exclude the reaction force. By
using the nonslipping condition (1), we get

μẍ = −fẋ

r2
+

U

r
, (3)

where μ = 2M . Then, we arrive at the following statement: Find feedback U =
U(x, ẋ) that stabilizes solution of Eq. (3) at zero subject to the phase and control
constraints (2).

3 Synthesis of Feedback

Consider the feedback in the form of nested saturators

U(x, ẋ) = −rk4Sat(k3(ẋ + k2Sat(k1x))) +
fẋ

r
, (4)

where Sat(x) is the saturation function defined by the conditions Sat(x) = x for
|x| ≤ 1 and Sat(x) = sign(x) for |x| > 1 and ki > 0, i = 1, 2, 3, 4, are positive
coefficients. Substituting (4) into (3), we get the following equation governing
the closed-loop system:

μẍ = −k4Sat(k3(ẋ + k2Sat(k1x))). (5)

It is not difficult to prove that, for any initial condition, solution of Eq. (5)
asymptotically tends to zero.
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Lemma 1. Let
Umax − fVmax/r > 0, (6)

and let

k2 = Vmax, k4 =
Umax − fVmax/r

r
. (7)

Then, if |ẋ(0)| ≤ Vmax, constraints (2) hold for any positive k1 and k3.

Proof. First, let us prove that, if k2 = Vmax, then the phase constraint holds. In
the phase plane, consider the line

σ(x, ẋ) = 0, σ(x, ẋ) = ẋ + VmaxSat(k1x). (8)

Clearly, the line consists of three straight segments ẋ = Vmax when x ≤ −1/k1,
ẋ = −k1x when −1/k1 < x < 1/k1, and ẋ = −Vmax if x ≥ 1/k1, which all lie in
the strip |ẋ| ≤ Vmax. Consider a trajectory of (5) beginning in the strip. Let, for
definiteness, the initial point lie under line (8) (the case where the initial point
lies from the other side of the line is analyzed similarly). Since the right-hand
side of (5) is positive in this region, ẍ > 0 and ẋ grows until it reaches line
(8), where the acceleration vanishes. Obviously, the trajectory cannot intersect
the line in the region where x < −1/k1 (the acceleration from the other side is
negative!) and asymptotically approaches it such that ẋ < Vmax. The trajectory
can intersect the line in the region −1/k1 < x < 0, where ẋ < Vmax. Since, on
the line (8), ẍ = 0, the velocity reaches maximum at the intersection point and
cannot leave the strip. Finally, if x(0) > 0, then ẋ(0) < 0, and there exist two
possibilities: either the trajectory goes to the origin with x(t) staying positive
or it intersects the ẋ-axis, which brings us at the variant considered previously.
Hence, we proved that, if k2 = Vmax and |ẋ(0)| ≤ Vmax, then, for all t > 0,
|ẋ(t)| ≤ Vmax for any positive k1, k3, and k4.

Now, let k4 be defined as in (7). From (4), (6), and (7) it follows that

|U | ≤ rk4 +
f |ẋ|
r

≤ rk4 +
fVmax

r
= Umax − fVmax

r
+

fVmax

r
= Umax;

i.e., under the assumptions of the lemma, the control constraint also holds.

As can be seen, the selection of the coefficients k2 and k4 ensures the fulfill-
ment of the phase and control constraints (2), which hold for any positive values
of the two other coefficients. Hence, the coefficients k1 and k3 can be used to
optimize the performance of the controller, which is discussed in the remainder
of the paper.

The analysis is greatly simplified if we write all equations in terms of dimen-
sionless variables and parameters.

4 Dimensionless Model

Let us introduce the dimensionless time and coordinate:

t̃ = tVmax/r, x̃ = x/r. (9)
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The derivatives of x in terms of the new variables are written as

ẋ = Vmax
dx̃

dt̃
, ẍ =

V 2
max

r

d2x̃

dt̃2
.

Substituting these into (3)–(5), introducing dimensionless parameters,

Ũ = U/Umax, μ̃ =
μV 2

max

Umax
, f̃ =

fVmax

rUmax
,

k̃1 = rk1, k̃2 = k2/Vmax, k̃3 = k3Vmax, k̃4 =
r

V 2
max

k4,

and using the dot notation for the derivatives with respect to the new time, we
get Eq. (3) in the dimensionless form:

μ̃¨̃x = −f̃ ˙̃x + Ũ . (10)

Constraints (2) take the form

|Ũ | ≤ 1, | ˙̃x| ≤ 1. (11)

As can be seen, the dimensionless model depends on only two parameters, μ̃ and
f̃ , compared to the five—μ, f , r, Umax, and Vmax—parameters in the dimen-
sional one. Assumption (6) in Lemma 1 turns to the inequality

0 ≤ f̃ < 1. (12)

From Lemma 1, it follows that

k̃2 = 1, k̃4 = 1 − f̃ , (13)

the stabilizing control ensuring the fulfillment of constraints (11) is written as

Ũ(x̃, ˙̃x) = −(1 − f̃)Sat(k̃3( ˙̃x + Sat(k̃1x̃))) + f̃ ˙̃x, (14)

and Eq. (5) governing the closed-loop system takes the form

μ̃¨̃x = −(1 − f̃)Sat(k̃3( ˙̃x + Sat(k̃1x̃))). (15)

The coefficients k̃1 and k̃3 may take arbitrary positive values and will be further
used to optimize the performance of the controller.

To simplify subsequent calculations and formulas, we will use the same nota-
tion (without tilde) as in the dimensional case to denote dimensionless quantities
and parameters.

5 Optimization Problem Statement

It is easy to see that the closed-loop system (15) is piecewise linear. In the
intersection of the sets |x| ≤ 1/k1 and |ẋ + k1x| ≤ 1/k3, which includes the
origin, it takes the form

μẍ + k3k4ẋ + k1k3k4x = 0, k4 = 1 − f. (16)



Optimal Selection of Coefficients 241

Fig. 2. Partition of the phase plane for system (15).

Let us introduce the notation x1 = x and x2 = ẋ. In Fig. 2, the boundaries of
these two sets are depicted by two vertical dashed lines x1 = ±1/k1 and by two
inclined dashed lines from the both sides of the line

x2 + Sat(k1x1) = 0 (17)

(depicted by the bold solid line), where the right-hand side of (15) vanishes.
Depending on the values of k1 and k3, the origin is either a stable node or

focus. In the latter case, the wheel will approach the equilibrium performing
oscillations around the target point with a decreasing amplitude, which seems
to be undesirable. In the case of a node, the wheel approaches the target point
either monotonically or has only one overshooting, when it misses the origin once
and then monotonically approaches it from the other side. From (16), it is easily
derived that, in order that the origin be a node, the coefficients must satisfy the
inequality

k3k4 ≥ 4k1μ. (18)

In what follows, we assume that inequality (18) holds.
As proved in Lemma 1, any trajectory of the equation beginning in the strip

|x2| ≤ 1 never leaves it, i.e., the strip is an invariant set of the system, and
intersects line (17) only when |x1| ≤ 1/k1 being governed by the linear Eq. (16).
Further, the system can stay in the considered set until it reaches the equilibrium
or leave it depending on the values of the coefficients k1 and k3. Switching from
one linear mode to another and vice versa can happen several times, which
may result in large overshooting, like in the case presented in Fig. 3. The figure
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shows a phase trajectory (curve 2) of the wheel with μ = 1 and f = 0. Because of
inappropriate selection of the feedback coefficients (here, k1 = 9 and k3 = 100),
the wheel missed the target point several times. The phase portrait of the system
in this case reminds that of a focus, which does not sound good. The blue line
(marked by 1) shows the line x2 + Sat(k1x1) = 0,

Fig. 3. An example of inappropriate selection of feedback coefficients in (15). (Color
figure online)

To get an idea of how the feedback coefficients affect system behavior, we
first consider the phase portrait of the linear system (16), which governs the
closed-loop system behavior in the neighborhood of the origin.

Let ν1 and ν2 be roots of the characteristic equation of (16). Introducing the
notation λ1 = −ν1 and λ2 = −ν2, we rewrite Eq. (16) in the form

ẍ + (λ1 + λ2)ẋ + λ1λ2x = 0. (19)

By virtue of (18), λ1 and λ2 are positive real numbers. A typical phase portrait
of a system with a stable node is shown in Fig. 4. Here, λ1 = 2.6, and λ2 = 6.3.
The system has two eigenvectors collinear to the straight lines x2 = −λ1x1 and
x2 = −λ2x1. Any system trajectory, except those beginning at the points on the
straight line corresponding to the larger eigenvalue (λ2), touches at the origin
the asymptote

x2 + λ1x1 = 0 (20)

where

λ1 =
k3
2μ

(
1 −

√
1 − 4μk1

k3

)
. (21)
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Fig. 4. Phase portrait of a linear system with stable node at the origin.

The asymptote divides the phase plane into two half-planes A− (below the
asymptote) and A+ (above the asymptote), where the left-hand side of (20)
is less or greater than zero, respectively. Clearly, A− and A+ are invariant sets
of system (19), i.e., any trajectory completely lies in one of these half-planes
and may intersect the line x1 = 0 not more than once. The deviation decreases
exponentially with the exponent λ1.

Intuitively, speaking of desirable behavior, we want to have fast asymptotic
convergence to the origin in the time domain and the phase portrait of the
nonlinear system to look like that of a linear system with a node, when any
trajectory approaches the origin monotonically, or has at most one overshooting.
The latter property can formally be defined as follows.

Definition 1. We will say that the phase portrait of the nonlinear system (15)
is of the node-like type if there exists a straight line, further referred to as an
asymptote, that divides the strip |x2| ≤ 1 into two invariant sets such that any
phase trajectory of the system beginning in the strip completely lies in one of the
invariant sets.

Clearly, the asymptote of the nonlinear system (15) in this definition, if exists,
must coincide with asymptote (20) of the linear system (16).

Now, the problem we are going to solve can be stated as follows.

Problem. Determine feedback coefficients k1 and k3 for which the asymptotic
rate of approaching the target point is maximal under the condition that the phase
portrait of system (15) is of the node-like type.
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It can be seen, the Problem stated above includes, in fact, two subproblems.

Subproblem 1. Determine the set K of coefficients k1 and k3 for which the line
x2 = −λ1(k1, k3)x1, where λ1(k1, k3) is given by (21), divides the set |x2| ≤ 1
into two invariant subsets.

Subproblem 2. Find max λ1(k1, k3) on the set K.

6 Solution of the Optimization Problem

Let us determine conditions the fulfillment of which guarantees that the tra-
jectories of the nonlinear system (15) beginning in the strip |x2| ≤ 1 do not
intersect the asymptote of the linear system (16). A trajectory of system (15)
can intersect the asymptote only in a saturation region. Thus, in order that the
asymptote of the linear system (16) be the asymptote of (15), it will suffice that
the segment of the asymptote lying in the strip |x2| ≤ 1 belong to the band
confined by the parallel lines x2 + k1x1 = −1/k3 and x2 + k1x1 = 1/k3 (dashed
lines in Fig. 2). From Fig. 2, it can be seen that the entire segment lies in this
region if and only if the point of the intersection of the asymptote and the line
x2 = 1 belongs to it, i.e., the coordinates of the intersection point (−1/λ1, 1)
satisfy the inequality |x2 + k1x1| ≤ 1/k3. Substituting them into the inequality,
we get

1 − k1
λ1

≤ 1
k3

. (22)

Comparing two representations of the same linear equation, (16) and (19), we
find expressions for k1 and k3 in terms of λ1 and λ2:

k1 =
λ1λ2

λ1 + λ2
, k3 =

μ(λ1 + λ2)
k4

. (23)

Substituting them into (22) for k1 and k3, we obtain

λ1

λ1 + λ2
≤ k4

μ(λ1 + λ2)
,

from which it follows that, for any λ2, the required segment of the asymptote
completely lies in the linearity region when λ1 ≤ k4/μ. Hence, we have proved
the following

Lemma 2. Let λ1 and λ2 be positive numbers such that 0 < λ1 ≤ k4/μ and
λ1 ≤ λ2. Let k1 and k3 be given by (23). Then, the phase portrait of the nonlinear
system (15) is of the node-like type, with the asymptote being given by x2 =
−λ1x1.

From Lemma 2, it follows that the set K can be defined as the two-parameter
family (23), where 0 < λ1 ≤ k4/μ and λ2 ≥ λ1.
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Fig. 5. The set of coefficients k1 and k3 ensuring the greatest rate of the asymptotic
convergence while preserving the node-like phase portrait of the nonlinear system (15)
with μ = 1 and f = 0.

The highest convergence rate is obviously achieved when λ1 = k4/μ and
does not depend on λ2. Taking into account that k4 = 1 − f , substituting λ1 =
(1 − f)/μ into (23) and taking k3 as a parameter, we arrive at the solution to
the above-stated Problem given by the following

Theorem 1. The partition of the strip |x2| ≤ 1 into two invariant subsets with
the greatest exponential rate λ1 = (1 − f)/μ of the deviation x decrease occurs
for the family of the coefficients

k3 ≥ 2, k1 =
1 − f

μ

(
1 − 1

k3

)
. (24)

Theorem 1 implies that there exist an infinite number of pairs of the param-
eters k1 and k3 given by (24) for which we have the same partition of the strip
|x2| ≤ 1 and the same asymptotic rate of the deviation decrease. For any pair
from this family, system (16) has the same lower eigenvalue λ1 = k4/μ, and the
same asymptote x2 = −λ1x1 that divides the strip |x2| ≤ 1 into two invariant
sets. Any pair (k3, k1) from this family lies on the curve defined by (24). Figure
5 shows the plot of this curve for the system with μ = 1 and f = 0.

Let us see how the value of k3 affects the behavior of the closed-loop system.
The second eigenvalue λ2 = λ1(k3 − 1) is equal to λ1 when k3 = 2 and goes to
infinity when k3 → ∞. Since k1 → λ1 and 1/k3 → 0 as k3 → ∞, the slope of the
inclined segment of line (17) grows and the width of the linearity region reduces.
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Fig. 6. Plots of deviation x1 (curve 1), velocity x2 (curve 2), and control torque U
(curve 3) for the optimal λ1 = 1 and γ = 1 (k1 = 0.5 and k3 = 2).

Fig. 7. Phase trajectory (curve 1) and line (17) (curve 2) for the optimal λ1 = 1 and
γ = 1 (k1 = 0.5 and k3 = 2).

In the limit, the inclined segment merges with the asymptote, and the linearity
region reduces to the line (17) with k1 = λ1.

The last four figures show results of numerical experiments with the wheel
with μ = 1 and f = 0 and optimal λ1 = 1. Figures 6 and 8 present plots of
deviation x1 (curve 1), velocity x2 (curve 2), and control torque U (curve 3) in
the time domain for the pairs (k3 = 2, k1 = 0.5) and (k3 = 100, k1 = 0.99),
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Fig. 8. Plots of deviation x1 (curve 1), velocity x2 (curve 2), and control torque U
(curve 3) for the optimal λ1 = 1 and γ = 100 (k1 ≈ 0.99 and k3 = 101).

Fig. 9. Phase trajectory (curve 1) and line (17) (curve 2) for the optimal λ1 = 1 and
γ = 100 (k1 ≈ 0.99 and k3 = 101).

respectively. The corresponding phase trajectories are shown in Figs. 7 and 9,
respectively. As can be seen, the increase in k3 results in a more aggressive
control. The wheel moves with the maximum acceleration (U = ±1) until it
reaches the maximum velocity, after which it slides along line (17), which is
clearly seen in Fig. 9, where, after the system reached maximum velocity, two
curves coincide. Theoretically, greater values of k3 are more preferable since they
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result in faster convergence to the target point (even though the asymptotic rate
of convergence is the same for any k3 ≥ 2). However, in practice, large values
of this parameter are not applicable because of the chattering arising when the
system moves along the asymptote. Indeed, since the width of the linearity region
around the asymptote tends to zero as γ grows, the control will alternately take
limit values ±1 when moving along it. It seems likely that the optimal solution
should be a hybrid control similar to that suggested in [10]. The study of the
effect of k3 on the system behavior is underway.

7 Conclusions

In the paper, the point stabilization problem for a robot–wheel moving along
a straight line on the plane subject to phase and control constraints has been
discussed. An advanced control law in the form of nested saturators has been
suggested. The system closed by this feedback is shown to be asymptotically
stable in the whole and satisfies both the control and phase constraints for any
positive values of the two feedback coefficients. It has been suggested to select
these coefficients as solutions of an optimization problem. For the performance
index, we considered the asymptotic rate of convergence to the target point
under the condition that the phase portrait of the nonlinear closed-loop system
is similar to that of a linear system having a stable node at the origin. The
solution of the optimization problem was shown to be a one-parameter family
of the feedback coefficients.

In the future, we plan to study how the particular choice of the feedback
coefficients from this family affects the performance of the controller. We also
plan to synthesize a hybrid control law where the selection of the feedback coef-
ficients from the family depends on whether the system is in the neighborhood
of the target point or far from it.
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