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Abstract. Analyzing the performance parameters of IP-networks when process-
ing multimedia streams is a very important task. There are many approaches to
evaluating the quality of service parameters in the G/G/1 system.

Changing the packet delay in the network is a very significant parameter
that determines the quality of traffic processing. It is particularly important for
multimedia streams. The delay variation is generally defined as a packet jitter.

However, the analysis of the delay variation is often based on assumptions
that do not allow the parameters to be determined with the required accuracy.
This paper presents a new approach to defining packet delay variation in the
G/G/1 system as delay variation. The presented approach is based on approxi-
mation of arbitrary distributions by hyperexponential distributions, i.e. modeling
the G/G/1 system by the H2/H2/1 system. The EM algorithm is used to estimate
the parameters of hyperexponential distributions. The paper presents the results
of simulation. The packet delay variation was evaluated when processing traffic
registered on a real network, CBR traffic, traffic with Pareto distribution of time
intervals between packets and packet lengths, and traffic with exponential distri-
bution of time intervals between incoming packets. Due to the fact that CBR traffic
has explicit correlated properties, it can be noted that the presence of correlation
inherent in CBR traffic leads to a decrease in delay variation.
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1 Introduction

When designing and organizing infocommunication networks, it is necessary to take into
account the heterogeneous nature of modern traffic. Algorithms for processing such traf-
fic should account for the high requirements for various parameters when determining
the required level of quality of processing streams of different types (data, voice, multi-
media streams, etc.). The main parameters considered when determining the quality of
service (QoS), are delay, delay variation (jitter variation) and loss probability. Research
on this topic focuses on the problem of delay retention at the required level [1–3].

It should be noted that certain types of traffic, for example, multimedia streams, are
highly critical not only to delay transmission, but also to the change in packet delay during
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transmission. In [4–8], the problem of estimating change in packet delay is raised. They
show that such an assessment involves a number of difficulties. Traditionally, the main
mechanism to determine these parameterswas the principal tool of queuing theory,which
with high accuracy allows determining the parameters of network functioning only when
processing simple flows. Systems processing such flows are described by the M/M/1
model [9]. At the same time, a feature of modern processed flows is the presence of self-
similarity properties characterized by heavy tail distributions for random time intervals
between packets and packet durations (model G/G/1). The effect of self-similarity is
largely determined by the nature of user behavior, the organization of requests and the
peculiarity of the TCP protocol. Statistical models based on heavy tail distributions such
as Pareto and Weibull show more accurate estimates for the characteristics describing
the rate of arrival of packets and their duration.

In this case, one should take into account the fact that the particular type of distri-
bution underlying the mathematical model significantly depends on the specific traffic
implementation and requires careful analysis. Another problem associated with the use
of distributions with heavy tails is the complexity of their analysis and use. When using
this type of distribution, it is required to obtain Laplace transformations of these dis-
tributions, at the same time, certain problems are caused by the lack of a convenient
expression for the Laplace transforms of the Pareto and Weibull distributions.

Jitter estimation is associated with certain difficulties due to the lack of accurate
estimation techniques, including the lack of adequate analytical models for jitter esti-
mation in non-Poisson flows processing systems. Previously [4, 10], solved the problem
of evaluating jitter in G/G/1 systems and ensuring packet jitter at a given level. Some
assumptions make it possible to determine jitter with sufficient accuracy in systems such
as M/M/1, G/M/1, but in the system where random time intervals between packets and
packet lengths are described by arbitrary distributions, the jitter definition is associated
with great computational difficulties. It was shown in [2, 3] that a sufficiently accurate
approximation of the G/G/1 system allows one to use the approximation by the Hl/Hk/1
system. In this case, the problem is reduced to determining the parameters of hyper-
exponential distributions. To develop this topic, the paper proposes to use the H2/H2/1
approximation to model G/G/1 systems.

The H2/H2/1 model can be used in various approaches to describing systems. For
example, [11] provides a technique for analyzing network performance when processing
self-similar traffic using a hyperexponential distribution, where the first component of
the distribution shows an exponential component and the rest describe the behavior of
the heavy tail. But this approach is also labor-intensive enough to estimate network
parameters and requires analysis of distributions with heavy tails. It is more convenient
to take approaches using approximations by the sum of two exponentials [2, 3].

In this paper, we use an approximation of arbitrary distributions of G by hyper-
exponential distributions. The EM-algorithm is used to determine the parameters of
hyperexponential distributions. This algorithm is a fairly convenient tool for implement-
ing an iterative search procedure using numerical methods of extremum of the objective
function in various optimization problems.

There are many works devoted to the description of the EM-algorithm procedures
and possible ways of its application. The EM-algorithm is very effective for finding
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approximations of the observed realizations of both one-dimensional and multidimen-
sional distributions. The EM-algorithm solves the problem of statistical estimation of
mixture parameters. For example, [5–7] defines the procedure for implementing the EM-
algorithm in the framework of cluster analysis, particularly in relation to problems of
mixture separation.

The practice of using the EM-algorithm is usually associated with the separation of a
mixture of normal distributions [17].While in queuing theory, all distributions describing
traffic behavior in a modern IP network refer to random variables that take non-negative
values (for example, an exponential distribution is most often used). Therefore, the
development of an EM algorithm for separating a mixture of exponential distributions
is relevant when using the approximation of the G/G/1 system by the H2/H2/1 system.

2 Analysis of Delay Variation

The arbitrary probability density used in the G/G/1 system is denoted by f (x). Then,
the approximation f (x) obtained using a mixture of exponential distributions will take
the form:

f (x) = HN (x) =
N∑

i=1

pihi(x). (1)

where pi ≥ 0 is probability of the i-th component of the mixture, hi(x),

N∑

i=1

pi = 1.

For the H2/H2/1 model, expression (1) is obtained in the form:

f (x) = pα1e
−α1x + (1 − p)α2e

−α2x. (2)

The change in packet transmission delay can be defined as a random variable defined
as [12].

Ji+1 = |Ti+1 − Ti|,
where Ti is the delay time of the i-th packet in the network node, which is determined
as Ti = Wi + Qi. Here Wi is the waiting time of the i-th packet in the queue, Qi is its
service time, Vi+1 is the time interval between the arrival of the (i+1)-th and i-th packets.

The general methodology for solving the problem of jitter determining according to
this approach is shown in [4–8].

In this paper, the delay variation can be determined according to [13] as a variation
of the packet delay. For variation of packet delay write

σ(X ) = √
D(X ),

where D(X) is dispersion of the delay of packets.
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If we assume that random variables Ti, Qi and Vi are independent of each other
and independent in the structure of each sequence of a random quantity, the index i
of the corresponding probability densities can be discarded and the notation: f T (x) is
probability density of random variable T, f V (y) is probability density of random variable
V and f Q(z) is probability density of random variable Q.

Given the independence of the considered time intervals, the G/G/1 system can be
designated as GI/GI/1.

We use hyperexponential distributions to approximate the densities under consider-
ation. For the probability density of time intervals between packets is f V (y):

fV (τ ) = p1γ1e
−γ1τ + p2γ2e

−γ2τ , (3)

for the service time is f Q(z), that is determined by the parameter μ:

fQ(τ ) = q1μ1e
−μ1τ + q2μ2e

−μ2τ , (4)

for transit time is f T (x), that is defined by δ:

fW (τ ) = �1δ1e
−δ1τ + �2δ2e

−δ2τ . (5)

Given that the packet delay is determined by the random value of T, the dispersion
of the delay can be determined according to the expression:

D(X ) = ∞∫
0
[x − M (X )]2fT (x)dx =

∞∫

0

x2fT (x)dx −
(∞∫

0
x fT (x)dx

)2

, (6)

Since for the delay time T of the packet in the system is T = W + Q, the probability
density f T (y) is determined by the convolution of the distributions of random variables
W and Q (taking into account their independence):

fT (y) = ∞∫
0
fW (u)fQ(y − u)du (7)

Given (4) and (5), we obtain:

fT (x) = Dμ1e
−μ1x + Cμ2e

−μ2x (8)

where

C = (1 − q)
gδ1

δ1 − μ1
+ (1 − �)

δ2

δ2 − μ2
,

D = (1 − �)
qδ2

δ2 − μ2
+ �q

δ1

δ1 − μ1
.

As a result, for the packet delay variation taking into account (6) and (8), we can
obtain:

σ =
√
2D − D2

μ2
1

+ 2C − C2

μ2
2

− 2DC

μ1μ2
. (9)



Evaluation of Packet Transmission Delay Variation 189

Thus, the solution to the problem of estimating changes in packet delay is reduced to
determining the distribution parameters (3), (4) and (5) (q, p, �, μ1, μ2, γ 1, γ 1, δ1, δ2).

There are various approaches to determining the parameters of exponential distri-
butions, for example, the method of determining parameters by two points (average,
dispersion) of the initial distribution for independent random variables [8, 14]. Using
this approach, it is possible to obtain analytical expressions of the initial moments of
hyperexponential distributions up to the second order. The method is based on the use
of the Laplace transform property.

If the researcher has a traffic implementation obtained in the experiment, then to
determine the parameters of hyperexponential distributions, one can use an approach
based on the use of the EM-algorithm (expectation-maximization) [14–19]. This method
has proven itself and successfully provides reliable estimates of maximum likelihood
for many applications, including estimating the density of a mixture.

The algorithm consists of two steps: E-step (expectation) and M-step (maximiza-
tion). The initial data is the observed sequence x1, x2, . . . , xN with a one-dimensional
probability density f (x, θ1, . . . θm) havingm parameters. In this case, the implementation
of the EM-algorithm will be associated with parameter estimation θ1, . . . θm.

If each element of the sample x1, x2, . . . , xN can belong to the distribution of a
mixture of K random variables with probability densities:

f 1
(
x, θ11 , . . . θ1m

)
, . . . f j

(
x, θ j1, . . . θ

j
m

)
, . . . f k

(
x, θk1 , . . . θkm

)
,

the process will be associated with the assessment of the main distribution parameters
of each of the indicated probability densities (θ11 , . . . θ1m, θ

j
1, . . . θ

j
m, θk1 , . . . θkm), as well

as the relative shares of observations of each random variable - (π1, . . . πk ).
If the sequence in question x1, x2, . . . , xN is a realization of a random variable

with a probability density of distribution f (x, θ1, . . . θm) having m parameters, then
the likelihood function of the sample will take the form:

L(θ1, . . . θm) =
N∏

i=1

f (x, θ1, . . . θm).

The likelihood function L represents the total density of individual observations for
any given set of distribution parameters. The maximum likelihood score is the value of
the distribution parameters that maximize L:

(
θ̂1, . . . θ̂m

)
= argmax(L).

For Gaussian distributions, this approach gives quick and good results. Using in this

case a mixture of exponential distributions (f j
(
xi, θ

j
1, . . . θ

j
m

)
) complicates the problem

and does not allow to use this approach in the form presented [15].
Obviously, if we cannot determine exactly which sample the observations belong

to, we cannot determine which random variable generates each observation. This means
that we do not know the relative distribution of observations belonging to each variable.
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Therefore, the likelihood function of the sample will be:

L
(
π1, . . . πk , θ

1
1 , . . . θ1m, . . . θk1 , . . . θkm

)
=

N∏

i=1

k∑

j=1

πjf
j
(
xi, θ

j
1, . . . θ

j
m

)
,

taking into account that
K∑
j=1

πj = 1.

In this case, the estimate of the maximum likelihood of the distribution parameters
of the mixture will be:

(
π̂1, . . . π̂k , θ̂

1
1 , . . . θ̂1m, . . . θ̂

j
1, . . . θ̂

j
m, . . . θ̂k1 , . . . θ̂km

)
=

= argmax
{
L

(
π1, . . . πk , θ

1
1 , . . . θ1m, . . . θk1 , . . . θkm

)}

Taking into account the introduced notation, the likelihood functions will take the
form:

g(x, p, λ1, λ2) = pλ1e
−λ1x + (1 − p)λ2e

−λ2x = p1λ1e
−λ1x + p2λ2e

−λ2x

In this case, the distribution parameters:πj =
(
pj1, p

j
2

)
, θ j =

(
λ
j
1, λ

j
2

)
.

At each step of the algorithm (ν), the mixture component will be used f (ν)
j (xi) =

λje−λjxi .

Then the density of the mixture is g(ν)(xi) =
k∑

j=1
pjλje−λjxi

Accordingly, for a two-component mixture

p1 = p, p2 = 1 − p

M-step of the algorithm—the values of the distribution parameters at the current step
are specified

p(ν+1) = f (ν)
j (xi)p

(ν)
j∑N

i=1 g
(ν)(xi)

/N (10)

λ
(ν+1)
j =

∑N
i+1

f (ν)
j (xi)xi
g(ν)(xi)

∑N
i+1

f (ν)
j (xi)

g(ν)(xi)

(11)

Schematically, the principle of the EM-algorithm is presented in Fig. 1.
It is advisable to take stabilization of the values of the estimated parameters as

the calculation stop criterion. Using this approach to the implementation of the EM-
algorithm, the parameters of the components of the hyperexponential distributions (3)
and (4) can be obtained. By defining the parameters μ1 and μ2 and taking into account
the contribution of each of them to the average value μ, it is possible to determine δ1
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Fig. 1. EM algorithm for separating a mixture of exponential distributions

and δ2 with shares corresponding to the contribution μ1 and μ2 to (4). At the same time,
the need to determine the parameter value δ is obvious.

As shown in [9], the value can be determined from the equation:

δ = μ(1 − ξ), (12)

where ξ is root of the equation ξ = ΛQ(μ − μξ), ΛQ is Laplace transform of density
fQ(·), μ is average packet processing rate in the G/G/1 system. Given the above and
taking into account (4), we obtain

ξ = ∞∫
0
e−sτ fQ(τ )dτ

ξ = ∞∫
0
e−(μ−μξ)τ

(
pμ1e−μ1τ + (1 − p)μ2e−μ2τ

)
dτ

= pμ1
1

s−μ1
+ (1 − p)μ2

1
s−μ2

.

(13)
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Therefore, ξ can be defined as the root of Eq. (13).
To determine the parameter μ, consider that this is the inverse of the average

packet processing time in the system—τ̄ = 1
μ̄
. The average packet processing time

is determined according to the expression

τ̄ = ∞∫
0

τ fQ(τ )dτ

Given (4) we get

τ̄ = ∞∫
0

(
qτμ1e

−μ1τ + (1 − q)τμ2e
−μ2τ

)
dτ = q

μ1
+ 1 − q

μ2

As a result, we have

τ̄ = qμ2 + (1 − q)μ1

μ1μ2

μ̄ = μ1μ2

qμ2 + (1 − q)μ1

δ = μ1μ2

qμ2 + (1 − q)μ1
(1 − ξ)

3 Analysis of Statistical Characteristics of Multimedia Traffic

For analysis, we used multimedia traffic, the statistical characteristics of which are
given in [7]. Given the limitations on the independence of random variables within the
sequence, it is obvious that verification of compliance with this condition is necessary.

Analysis of the distribution of random time intervals between packets showed that
the Weibull distribution with parameters α = 0,32, β = 167 is most accurate. For packet
lengths the result was obtained in the form of Pareto distribution with the parameters: α
= 0,3, β = 60 (Fig. 2).

Fig. 2. Graph of correlation coefficients R(k) of packet lengths

For the studied samples of the considered multimedia stream, the following
dependence of the correlation coefficients was determined
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The similar result was obtained for the time intervals between packets. An analysis
of the dependency graphs of the correlation coefficients R(k) for the considered samples
shows that there are practically no correlations. This allowsyou tomake an assumptionon
the independence of these random variables when analyzing the functioning parameters.

4 Results of Analytical and Simulation Modeling

4.1 Results of Analytical Modeling

When using the EM algorithm to analyze the parameters of hyperexponential distribu-
tions (3) and (4), according to the logic described above in Sect. 2, the following notation
should be introduced:

– for (3), in the probability density of time intervals between packets, component

weights—
(
pj1, p

j
2

)
=

(
Pj
1,P

j
2

)
, distribution parameters—

(
λ
j
1, λ

j
2

)
=

(
γ
j
1, γ

j
2

)
;

– for (4), in the probability density of packet processing durations, component weights(
pj1, p

j
2

)
=

(
qj1, q

j
2

)
, distribution parameters—

(
λ
j
1, λ

j
2

)
=

(
μ
j
1, μ

j
2

)
.

To initialize the operation of the EM-algorithm, it is necessary to establish the ini-
tial parameters of the component weights

(
P0
1,P

0
2

)
,
(
q01, q

0
2

)
and the parameters of the

components of the mixture γ 0
1 ,μ

0. To establish these values, you can use standard meth-
ods [15–19], according to which it is assumed at the initial stage that in the case of a
two-component mixture, the weight of each component P0

j = 1
/
2 and q0j = 1

/
2. The

average values of the sample are taken as the component parameters. To evaluate the
distribution parameters (3) and (4), it should be taken into account that the distribu-
tion density of the sequences of time intervals between packets is characterized by the
parameter γ̄ = 1

t̄ , where t̄ is the average value of the time intervals between packets,
and the distribution density of the transmission duration of the packet is characterized
by the parameter μ̄ = 1

τ̄
, where τ̄ is the packet processing duration.

Taking into account the characteristics of the traffic investigated in Sect. 3, the
following parameters can be used to initialize the algorithm:

P0
j = 1

/
2—for both components, similarly q0j = 1

/
2;

γ 0 = 0,000539, s−1—for time intervals between packets;
μ0 = 0,2166, s−1—for packet transmission durations.

The parameters of hyperexponential distributions by the EM-algorithm were
obtained according to expressions (9), (10) and (11). The results are presented in the
Table 1.

Using the δ parameter values to calculate δ1 and δ2, we have δ = 0,002 ms−1.
The obtained values of the parameters for f V (y), show that the hyperexponential

distribution degenerates into exponential with the parameter: γ = 558.
Based on the obtained parameter values and formula (9), the delay variation is

determined—σ = 0,005 ms.
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Table 1. Parameters of the hyperexponential distributions

Probability density of random
variable

Parameters component of the
mixture, ms−1

Weight component of the
mixture

f V (τ ) γ 1 = 558,09, γ 2 = 558,06 P1 = 0,96157, P2 =
0,0,3843

f Q(τ ) μ1 = 1229,06, μ2 = 101,7 q1 = 0,9989, q2 = 0,0011

f W (τ ) δ1 = 0,0199, δ2 = 2,2 × 10−6 �1 = 0,9989, �2 = 0,9989

It seems interesting to analyze the effect of network load depending on the load
factor ρ = γ

μ
, the result of which is shown in Fig. 3. The load change in the model

was realized by varying the time intervals between packets (which corresponds to the
parameter γ , the parameter δ is recalculated accordingly) with a constant packet length
(which corresponds to the parameter μ), while taking into account that the initial traffic
implementation was obtained when the channel load was 0,4 (Fig. 4).

Fig. 3. The dependence of delay variation on the network load in analytical modeling

Fig. 4. Scheme of modeling
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4.2 Results of Simulation Modeling

When choosing a modeling environment, there is a problemwith the possible processing
of different types of traffic; it is desirable to start streams that are registered on the real
network. The ns2 software environment meets these requirements.

In the simulation environment, the following streams were processed:

• traffic that are registered on the real network, for which the results of analytical
modeling were obtained;

• CBR-traffic;
• exponential stream;
• traffic with Pareto distribution of time intervals between packets and packet lengths.

The channel load in the model is set to 0.4.
For processing in a simulation environment, the flows were selected that are most

characteristic for infocommunication networks [1, 7–9]. It is known that the exponential
traffic processing system corresponds to the M/M/1 model. This stream is characterized
by the absence of correlation within the sequence of the stream implementation.

On the contrary, CBR stream is characterized by strong correlations.
Based on the analysis of simulation results, the dependences of the delay variation

on the network load were obtained (Fig. 5).

Fig. 5. The dependence of delay variation on the network load during simulation

From the results, it can be seen that for real traffic the delay variation is larger than
for CBR and exponential flows. CBR traffic has delay variation values less than expo-
nential. As you know, exponential flows are characterized by the absence of correlation.
Considering the presence of correlations within the sequences of CBR traffic, as well
as the absence of correlation for multimedia traffic established in the analysis, it can be
stated that with an increase in the degree of correlation, the delay variation decreases.
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5 Conclusion

1. Analytical evaluation of delay variation in the G/G/1 system simulated as H2/H2/1
is obtained. The obtained approach allows estimating the variation in packet delay
during transmission, regardless of what actual distribution describes the waiting time
of the packet in the queue.

2. The approach to determining the parameters of the hyperexponential distribution
based on the EM-algorithm is proposed. Estimates are obtained of the variation in
packet delay during network loading ρ = 0,4 as a result of analytical modeling—σ =
0,005 ms and simulation—σ = 0,007 ms. According to the results, the dependences
of the delay variation on the network load were obtained, which showed that with
an increase in the load, the delay variation increases.

3. Based on the analysis of the simulation results, it was found that with an increase in
the degree of correlation, the variation of the delay decreases.
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