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Abstract. The possible sets of joint distribution of the word occurrence
frequencies in the finite state machine input and output sequences are
considered. A geometric description of such sets as convex polyhedra in
a real unit cube of suitable dimension is proposed. A method has been
developed for comparison of unknown and reference automata by the
observed input and output sequence fragments. The method does not
require installation to the fixed initial state.
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1 Introduction

We will consider the problem of testing the hypothesis that an unknown automa-
ton A (which input and output sequences are observed) coincides with the
known automaton A0. It is necessary to check whether such an initial state
of the automaton A0 exists, starting from which it transforms the observed
input sequence into the observed output sequence. We believe that the unknown
automaton A is selected from some finite class containing the automaton A0.
We assume that all automata from this class have the same alphabets and are
pairwise nonequivalent.

This task is relevant in the theory of technical device testing and diagnostics,
as well as in a number of cryptographic applications, in particular, when testing
the hypothesis that the analyzed device implements some encryption algorithm
with unknown key.

The formulated problem can be solved by installation of the automaton A0

in each of the possible initial states, and application of the observable input
sequence to its input. If for any initial state the resulting output sequence does
not coincide with the observed one, then the hypothesis that A and A0 coincide
is rejected. If at least one of the variants shows a coincidence of sequences, it is
concluded that the observed data do not contradict the tested hypothesis. The
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complexity of this method is proportional to the nonequivalent state number of
the automaton and is extremely high for automata modeling of the information
processing equipment nodes.

The proposed approach uses the construction of a special polyhedron cor-
responding to the automaton A0 inside a real unit cube of suitable dimension.
In the observed input and output sequences of automaton A, the relative fre-
quencies of certain word occurrences are calculated. These relative frequencies
determine the coordinates of the points in the cube. The distance between the
polyhedron of the automaton A0 and these points is calculated. In the case when
this distance exceeds a threshold depending on the observed sequence lengths,
the hypothesis that A and A0 coincide is rejected.

2 Related Works

Geometric representations are traditionally used to identify non-obvious statisti-
cal dependencies in the output sequence when analyzing pseudorandom sequence
generators [1,2].

In [3], an approach is described related to the construction of automata geo-
metric images, in which the automaton behavior is displayed in geometric figures,
in particular, in curves on a plane.

When all possible words are fed to the automaton input, some output words
do not appear (these words are “prohibitions” of the automaton [4]), but some
output words appear repeatedly. The word frequencies in the output sequences
in [5] are studied using the so-called histogram automaton function, which
associates the word in the output alphabet with its frequency. The geometric
constructions associated with the convex hull construction of point sets in n-
dimensional space were used in [6] in the study of quantitative languages that
assign a real number to each word.

In [7], a method was proposed for detection of covert channels in information
systems by checking for the presence of forbidden fragments (“prohibitions”) in
transmitted sequences. Since the covert channel organizers do not know about
this, then if such a fragment is found in the observed sequence, the controller
determines that the covert channel is functioning. An analogy can be drawn
between such an approach and the one considered in this paper: hypotheses
about the absence of a covert channel or about the coinciding of an automaton
with a reference one are rejected when a certain inequality holds for the certain
event frequency in the observed sequences. The rejection criterion in both cases
is deterministic, it has a zero error of the second kind.

The proposed approach can also be useful for checking the quality of pseudo-
random sequence generators, which are widely used in modern traffic control
technologies, such as Random-Access Channel [8] and device-to-device (D2D)
communications [9,10].
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3 Definition of a Polyhedron of an Automaton

Let B be a finite set (alphabet). By B∗ we denote the set of all words in the
alphabet B. We denote by Ω the set of all infinite sequences over B:

Ω = {ω = w1w2 . . . |wt ∈ B, t = 0, 1, . . .} . (1)

For each word α ∈ B∗, α = a0a1 . . . am−1, where ai ∈ B, i = 0, 1, . . . ,m − 1,
m = 1, 2, . . . we define a cylinder

[α] = [a0a1 . . . am−1] = {ω = w0w1 . . . |w0 = a0, w1 = a1, wm−1 = am−1} ⊂ Ω.
(2)

The characteristic function of an arbitrary subset F ⊂ Ω will be denoted by
IF :

IF =

{
1, if ω ∈ F

0, if ω /∈ F
. (3)

Instead of I[α] we will simply write Iα.
Define a mapping T (“sequence shift”) T : Ω → Ω by

T : ω = w0w1 . . . → ωT = w1w2 . . . . (4)

The equality
Iα

(
ωT t

)
= 1 (5)

means in such a way that

wt = a0, wt+1 = a1, . . . , wt+m−1 = am−1. (6)

The number 1
t

∑t−1
j=0 Iα

(
ωT s+j

)
is called the relative frequency of occurrence

of the word α in the sequence ω on the segment from s to s + t − 1. We will use
the notation

pα(ω) = lim
t→∞

1
t

t−1∑
j=0

Iα

(
ωT j

)
, (7)

if the limit on the right side exists. The value of pα(ω) can be interpreted as an
average frequency of occurrence of the word α in the sequence ω [11].

Such limits exist, for example, for infinite periodic sequences (both purely
periodic and periodic with an initial section), the set of which we denote by TB .
In this case, as can be seen from the formula (7), pα is the ratio of the frequency
of occurrence of the word α in the period (the number of places in the period
from which the word α begins) to the length of the period. For example, in the
case of sequence 010101 . . . we have:

p1 = 1/2, p01 = 1/2, p0101 = 1/2, p011 = 0. (8)

Let A = (X,Y,Q, h, f) be a strongly connected finite Moore machine with
X and Y as input and output alphabets; Q as the set of states; h : Q × X → Q
as transition function; f : Q × X → Y as output function.
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Let us fix two sets of words

{αi ∈ X∗, i = 1, 2, . . . , t} and {βj ∈ Y ∗, j = 1, 2, . . . , k} , t ≥ 0, k ≥ 1. (9)

Let us suppose that an automaton A, starting to work from the state q0,
processes a sequence χ = (x0, x1, . . .) into a sequence γ = (y0, y1, . . .). With
sequence χ we associate the vector

z(A,q0)(χ) = (pα1(χ), . . . , pαt
(χ), pβ1(γ), . . . , pβk

(γ)) , (10)

if all quantities on the right-hand side exist.
The rule (10) defines a map

Z(A,q0) : TX → [0, 1]t+k ⊂ Rt+k. (11)

The subject of our study is the closure (the set of all limit points) of the set
Z(A,q0)(TX). This set will be denoted by RA. The correctness of the accepted
notation follows from the fact that if A is strongly connected, then Z(A,q0)(TX) =
Z(A,q′

0)
(TX) for arbitrary two states q0 and q′

0. It will be proved later (Theorem 1)
that the set RA is a convex polyhedron in the cube [0, 1]t+k. The set RA will be
called the polyhedron of the automaton A, corresponding to the sets of words
{αi ∈ X∗, i = 1, 2, . . . , t} and {βj ∈ Y ∗, j = 1, 2, . . . , k}.

The result of the Theorem 2 shows that if an automaton A processes
a sufficiently long sequence χ with occurrences of words α1, . . . , αt close to
(pα1(χ), . . . , pαt

(χ)) into a sequence γ with occurrences of words β1, . . . , βk,
close to (pβ1(γ), . . . , pβk

(γ)), then point (pα1(χ), . . . , pαt
(χ), pβ1(γ), . . . , pβk

(γ))
is located inside or near the automaton polyhedron.

4 The Automaton Polyhedron Structure

Let l be the maximum of the word lengths of the sets {αi ∈ X∗, i = 1, 2, . . . , t} and
{βj ∈ Y ∗, i = 1, 2, . . . , k}. We define the automaton A(l) =

(
X,Y,Q(l), h(l), f (l)

)
,

by setting
Q(l) =

{((
q(1), x(1)

)
,
(
q(2), x(2)

)
, . . . ,

(
q(l−1), x(l−1)

)
, q(l)

)
, where h

(
q(i),

x(i)
)

= q(i+1), i = 1, 2, . . . , l − 1; q(j) ∈ Q, j = 1, 2, . . . , l, x(j) ∈ X,
j = 1, 2, . . . , l − 1} is a set of states;

h(l) : Q(l) × X → Q(l) is a transition function;
h(l)

(((
q(1), x(1)

)
,
(
q(2), x(2)

)
, . . . ,

(
q(l−1), x(l−1)

)
, q(l)

)
, x

)
=

((
q(2), x(2)

)
, . . . ,

(
q(l−1), x(l−1)

)
,
(
q(l), x

)
, h

(
q(l), x

))
;

f (l) : Q(l) × X → Y is an output function;
f (l)

(((
q(1), x(1)

)
,
(
q(2), x(2)

)
, . . . ,

(
q(l−1), x(l−1)

)
, q(l)

)
, x

)
= f

(
q(l), x

)
.

By Gl we denote the transition graph of the automaton A(l), which arc
(q, h(l)(q, x)) is labeled by the pair (x, f(l)(q, x)), q ∈ Q(l). By an (oriented)
cycle in a graph Gl we mean a cyclic sequence of pairwise distinct arcs in which
the end of each arc coincides with the beginning of the next one. The set of all
cycles in Gl is denoted by Cl(A). With each cycle from Cl(A) we associate the
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cyclic sequences consisting of the first and second coordinates of this cycle arcs
labels. These sequences will be called the input and output markups, respectively,
taking the notation c(x) and c(y) for them.

For ξ = (ξ0, ξ1, . . . ξm) ∈ B∗ by 〈ξ〉 we denote the periodic sequence
ξ0, ξ1, . . . ξm, ξ0, ξ1, . . . ξm, . . . with the period ξ.

For c ∈ Cl(A) we introduce the notation:
l(c) – cycle length,
να(c) = 1

l

∑l(c)−1
j=0 Iα

(〈
c(x)

〉
T j

)
– the word α occurrence relative frequency

in the input markup c(x),
νβ(c) = 1

l

∑l(c)−1
j=0 Iβ

(〈
c(y)

〉
T j

)
– the word β occurrence relative frequency

in the input markup c(y),
z(c) = (να1(c), . . . , ναk

(c), νβ1(c), . . . , νβt
(c)) – the relative frequencies vector.

If E is some set of points from Rn, then ConvE denotes the convex hull of E.

Theorem 1. The equality

RA = Conv {z(c), c ∈ Cl(A)} (12)

holds.

Proof. Obviously, z(c) ∈ RA holds for c ∈ Cl(A). Let Cl(A) = {c1, c2, . . . , cθ}.
Let us show that

θ∑
j=1

pjz(cj) ∈ RA, if
θ∑

j=1

pj = 1, p1, p2, . . . , pθ ≥ 0. (13)

Let us choose q0 ∈ Q. Let us fix arbitrarily ε > 0. The proof consists in
construction of a periodic sequence χ, for which∣∣∣∣∣∣z(A,q0)(χ) −

θ∑
j=1

pjz(cj)

∣∣∣∣∣∣ < ε. (14)

Let q̃(0) be an arbitrary state from a set Q(l) of the form ((q′, x′),
. . . , (q′′, x′′), q0). Let q̃(i) ∈ Q(l) be an arbitrary state through which the cycle ci

passes, i = 1, 2, . . . , θ. Let χ(i) = (x(i)
0 , . . . , x

(i)
li−1) be the input sequence under

which the automaton A(l) passes the cycle ci, starting from state q̃(i), li being
the length of the cycle ci, i = 1, 2, . . . , θ. By η(q̃, q̃′) we denote the shortest input
sequence that transfers the automaton A(l) from state q̃ to state q̃′. We denote
ξi = η

(
q̃(i), q̃(i+1)

)
, i = 0, 1, . . . , θ − 1, ξθ = η

(
q̃(θ), q̃(0)

)
.

For a natural M by χM we denote a periodic sequence which period has the
form

ξ0 ∧
(
χ(1)

)[Mp1] ∧ ξ1 ∧
(
χ(2)

)[Mp2] ∧ . . . ∧ ξθ−1 ∧
(
χ(θ)

)[Mpθ ] ∧ ξθ, (15)

where [Mpi] is an integer part Mpi, and the symbol ∧ means the concatenation
of sequences.
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It is easy to see that

Z(A,q0) (χM ) =
θ∑

j=1

pjz(cj) + O

(
1
M

)
. (16)

Therefore, if M is sufficiently large, then the sequence χM satisfies the con-
dition (14).

So, we have proved the inclusion

RA ⊇ Conv {z(c), c ∈ Cl(A)} . (17)

Reverse inclusion. If a periodic sequence x(i), i = 1, 2, . . . arrives at the
automaton input, then the sequence of vectors((

q(i), x(i)
)

,
(
q(i+1), x(i+1)

)
, . . . ,

(
q(i+l−1), x(i+l−1)

))
, (18)

where h
(
q(i), x(i)

)
= q(i+1), is also periodic. We denote its period by L. Consider

the vector of relative frequencies

z(L) = (να1(L), . . . , ναk
(L), νβ1(L), . . . , νβt

(L)) . (19)

We show that
z(L) ∈ Conv {z(c), c ∈ Cl(A)} . (20)

Induction by |L|.
10. |L| = 1. This case corresponds to a loop in the graph Gl. Obvi-

ously, the set Cl(A) contains all the loops of the graph. Therefore z(L) ∈
Conv {z(c), c ∈ Cl(A)}.

20. Suppose that for |L′| < |L| vector z(L′), formed by the selected words
relative frequencies in the input and output markups of period L′, belongs to
the set Conv {z(c), c ∈ Cl(A)}. Now let the length of the period be equal to |L|.
Two cases are possible:

a) All sections of length l are different. Then the period L of the sequence in Gl

question is a cycle in and therefore z(L) ∈ Conv {z(c), c ∈ Cl(A)}.
b) Period L contains a pair of matching sections of the length l. Without loss of

generality, we can assume that L has the following form:[
((qi, xi), . . . , (qi+l−1, xi+l−1)) , . . . , (. . . , (q′, x′)) ,
((qi, xi), . . . , (qi+l−1, xi+l−1)) , . . . , (. . . , (q′′, x′′))

]
. (21)

Let us consider two periodic sequences: ζ1 with the period

L1 = [((qi, xi), . . . , (qi+l−1, xi+l−1)) , . . . , (. . . , (q′, x′))] (22)
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of the length |L1| and ζ2 with the period

L2 = [((qi, xi), . . . , (qi+l−1, xi+l−1)) , . . . , (. . . , (q′′, x′′))] (23)

of the length |L2|. The vectors of relative frequencies z(L1) and z(L2) correspond
to these two sequences.

Whereas
|L1| + |L2| = |L|, (24)

and the word lengths of the sets {αi ∈ X∗, i = 1, 2, . . . , t} and {βj ∈ Y ∗, j =
1, 2, . . . , k} are limited by l, it is easy to see that

z(L) = z(ζ1)
|L1|

|L1| + |L2| + z(ζ2)
|L2|

|L1| + |L2| . (25)

By the induction hypothesis

z(ζi) ∈ Conv {z(c), c ∈ Cl(A)} , (26)

so
z(L) ∈ Conv {z(c), c ∈ Cl(A)} . (27)

Thus we have established that

Z(A,q)(TX) ⊆ Conv {z(c), c ∈ Cl(A)} . (28)

Since the set on the right-hand side is closed, we obtain the set inclusion

RA ⊆ Conv {z(c), c ∈ Cl(A)} . (29)

The theorem is proved.

5 The Example of the Automaton Polyhedron

We give an example of construction of a polyhedron of the automaton with two
states. Let A = (X = Y = Q = {0, 1} , h, f) be the finite automaton, where
h(q, x) = q ⊕ x is XOR, f(q, x) = q.

Let us choose k = t = 1, α1 = β1 = 1. The automaton graph is shown in the
Fig. 1, it contains exactly three elementary cycles: a loop at the “0” vertex with
a label (0, 0), a loop at the “1” vertex with a label (0, 1), and a cycle of length
2 between vertices which arc labels are (1, 0) and (1, 1).

The vectors z(c) of these cycles are (0, 0), (0, 1) and
(
1, 1

2

)
. Thus, RA =

Conv
{
(0, 0), (0, 1),

(
1, 1

2

)}
. The automaton polyhedron in this case is a flat poly-

gon; it is shown in the Fig. 2. The abscissa and ordinates correspond to the rel-
ative frequencies of occurrence of the characters “1” in the input and output
sequences.
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Fig. 1. The graph of the automaton A.

Fig. 2. The polygon of the automaton A.

6 The Case of Finite Sequences

The automaton A, starting to work from a certain initial state q0, pro-
cesses the input sequence χ(N) = (x0, x1, . . . , xN−1) into the output sequence
γ(N) = (y0, y1, . . . , yN−1). Let p

(N)
α1 , . . . , p

(N)
αt be the relative frequencies of occur-

rence of words α1, . . . , αt in sequence χ(N), and p
(N)
β1

, . . . , p
(N)
βk

be the relative
frequencies of occurrence of words β1, . . . , βk in sequence γ(N):

p(N)
αs

=
ν
(N)
αs

N
=

1
N

N−1∑
j=0

Iαs

(
χ(N)T j

)
, s = 1, 2, . . . , t;

p
(N)
βr

=
ν
(N)
βr

N
=

1
N

N−1∑
j=0

Iβr

(
χ(N)T j

)
, s = 1, 2, . . . , k.

(30)
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Let us find out how far the point

z(N) =
(
p(N)

α1
, . . . , p(N)

αt
, p

(N)
β1

, . . . , p
(N)
βk

)
(31)

can be located from polyhedron RA. By the distance between two points u, v ∈
Rt+k we mean the maximum modulus of the difference of coordinates:

ρ(u, v) = |u − v| = max
∣∣∣u(i) − v(i)

∣∣∣ . (32)

The distance between the two sets F and G, F , G ⊂ Rt+k is defined as the
exact lower bound of the distances between these sets points: ρ(F,G) = inf |u−v|,
where the infimum is taken for all pairs u ∈ F , v ∈ G.

Processing by the automaton A of the sequence χ(N) corresponds to move-
ment in the graph Gl along arcs which first coordinates of the labels are ele-
ments of this sequence. Let q̃(0) be an arbitrary state from a set Q(l) of the form
((q′, x′), . . . , (q′′, x′′), q0). The vertex q̃(0) is one of the possible beginnings of the
path in question. Let q̃ be the graph vertex to which this path will come after pro-
cessing the sequence χ(N), starting from q̃(0). We supplement the sequence χ(N)

with the characters xN , . . . , xN+m−1 selected in such a way as to go from state
q̃ to the initial state q̃(0). We need m ≤ D1 characters, where D1 is the diam-
eter of the graph Gl. Denote the corresponding section of the output sequence
yN , . . . , yN+m−1.

Let χ = (x0, x1, . . . , xN−1, xN , . . . , xN+m−1) . Let us estimate the distance
between points z(χ) and z(N).

Let ν
(N)
αs , ν

(N)
βr

, ν
(N+m)
αs , ν

(N+m)
βr

denote the frequencies of occurrence of the
words αs and βr, s = 1, 2, . . . , t, r = 1, 2, . . . , k, in the sequences χ(N) and χ and
in the corresponding output sequences (in the periodic case – on the period).

Then, as it is easy to see,

0 ≤ ν(N+m)
αs

− ν(N)
αs

, ν
(N+m)
βr

− ν
(N)
βr

≤ m + l − 1. (33)

Therefore,∣∣∣z(χ) − z(N)
∣∣∣

≤ max
s,r

{∣∣∣∣∣ (N + M)ν(N)
αs − Nν

(N+m)
αs

N(N + M)

∣∣∣∣∣ ,

∣∣∣∣∣ (N + M)ν(N)
βr

− Nν
(N+m)
βr

N(N + M)

∣∣∣∣∣
}

≤ max
s,r

{∣∣∣∣∣mν
(N)
αs − N(ν(N+m)

αs − ν
(N)
αs )

N(N + M)

∣∣∣∣∣ ,

∣∣∣∣∣mν
(N)
βr

− N(ν(N+m)
βr

− ν
(N)
βr

)
N(N + M)

∣∣∣∣∣
}

≤ m + l − 1
N + m

. (34)

Using the monotonicity of the function x+A
x+B for B > A > 0, x > 0, we obtain

∣∣∣z(χ) − z(N)
∣∣∣ ≤ Dl + l − 1

N + Dl
. (35)
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Let D denote the diameter of the transition graph of the automaton A. Using
the inequality Dl ≤ D + l − 1, we obtain the following statement.

Theorem 2. Suppose that an automaton A processes a sequence χ(N) = (x0,
x1, . . . , xN−1) into a sequence γ(N) = (y0, y1, . . . , yN−1), N = 1, 2, . . .. Let
z(N) =

(
p
(N)
α1 , . . . , p

(N)
αt , p

(N)
β1

, . . . , p
(N)
βk

)
be the vector of relative frequencies of

occurrence of words α1, . . . , αt (for χ(N) ) and β1, . . . , βk (for γ(N)). Let D be
the diameter of the transition graph of the automaton A.

Then the inequality

ρ(z(N), RA) ≤ D + 2(l − 1)
N + D + l − 1

, (36)

holds, where l = max {|αi|, |βj |}.

7 The Use of Automaton Polyhedra in the Identification
Problem

By the task of identification we understand the task of testing of the hypothesis
that an unknown automaton (which input and output sequences are observed)
coincides with a reference automaton.

Theorem 2 allows us to construct the following procedure for verifying that
an unknown automaton A is identical to a given automaton A0.

1. Sets α1, . . . , αt of words (for the input sequence) and β1, . . . , βk (for the out-
put sequence) are selected and the polyhedron RA0 of the automaton A0 is
constructed.

2. The word occurrence relative frequencies in the observed sequences are cal-
culated. The distance ρ between the automaton polyhedron and the relative
frequency vector is calculated. If the frequencies vector belongs to the poly-
hedron, then ρ = 0.

3. If ρ > D+2(l−1)
N+D+l−1 , then the observed output sequence could not be obtained

from the input one using an automaton A0. If ρ ≤ D+2(l−1)
N+D+l−1 , then the

observed frequencies of the selected words do not contradict the hypothesis
that the unknown automaton is identical to the reference automaton. In the
latter case it is reasonable either to move to another segment of the available
sequences, or to change the word sets which frequencies are analyzed.

The described procedure is valid for arbitrary word sets {α1, . . . , αt} and
{β1, . . . , βk}. In particular, the set {α1, . . . , αt} may be empty. In this case, the
analysis is based on word frequencies only in the output automaton sequence.

We emphasize that the described procedure, firstly, does not depend on the
analyzed automaton initial state, and secondly, despite the fact that the certain
event frequencies in the observed sequences are analyzed, it does not use any
assumptions about the input sequence probabilistic nature.
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Let us analyze the proposed procedure computational complexity if the num-
ber |Q| of states of the automaton A0 is large. It is determined by the contribu-
tion of two terms. Firstly, the preliminary polyhedron construction complexity,
and secondly, the complexity of checking inequality (36).

The construction of a polyhedron by the Theorem 1 requires finding of all
the cycles of the graph Gl and constructing of the convex hull of the set {z(c)}.
Both of these problems are well studied; see, for example, [12–14].

The complexity of finding of all the cycles in our case can be limited by
the number O

(
2(|Q|×|X|)l

)
of all subgraphs of Gl. The convex hull constructing

complexity, in the case of a flat polygon or a three-dimensional polyhedron, can
be estimated [14] as O (|{z(c)}|Log |{z(c)}|). Note that analytical methods for
construction of polyhedra are possible for some automaton classes.

If the polyhedron RA0 is already constructed, then the inequality (36) check-
ing complexity, as is easy to see, is not more than 2t+k times the complex-
ity of checking whether a given point belongs to a convex polyhedron RA0 .
The computational complexity of the last problem in the two-dimensional case
(t = k = 1) can be estimated [14] by the value O (Logv), where v is the polygon
vertex number. Note that even faster algorithms [15] are proposed. To estimate
v, we use the fact that all the polygon RA0 vertices have the form

(
p1
q1

, p2
q2

)
,

0 ≤ pi ≤ qi ≤ ∣∣Q(l)
∣∣, i = 1, 2. Counting the possible different vertex abscissa

number, due to the polygon convexity, we get v ≤ |Q|2l. Therefore, the inequal-
ity (36) check complexity in the case of a preliminarily constructed polygon is
estimated as O (Log|Q|).

Generally speaking, we can select several shorter continuous fragments of the
observed sequences, and perform the procedure for each of them separately. If
inequality (36) is violated for at least one fragment, the hypothesis about the
coincidence of automata is rejected.

8 Conclusion

A method for verifying that an automaton which input and output sequences are
observed coincides with the reference one is proposed. The method uses word
occurrence frequencies in the input and output sequences. Specially selected
input sequences are not required. Information on the analyzed machine initial
state is not required.

If the polyhedron of an unknown automaton coincides with the reference
automaton polyhedron for given sets of words in the input and output sequences,
then the proposed procedure cannot distinguish between these automata. There-
fore, the problem arises of classifying automata by their polyhedra.

It is intuitively clear that two automata, the polyhedra of which have an
insignificant common part, are easily distinguishable. The important thing here
is how likely it is that the point corresponding to a sequence fragment falls into
the both polyhedral common part. It depends on the probability distribution on
the input sequence set.
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