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Abstract. Hard-decision decoders are considered for burst error cor-
rection for low-density parity-check codes. The decoder for block-
permutation construction of low-density parity-check proposed. Exper-
iments on complexity and error probability are conducted with burst
lengths both within and beyond the burst error correction capability.
Also simulation results for Gilbert model are presented.
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1 Introduction

Nowadays, data transmission is widespread. Data is transmitted over the noisy
channels that may introduce errors. To reduce the errors that appear during
the transmission over the channel error correcting codes are used. One of the
most promising type of error correcting codes that are widely used in modern
standards are low-density parity-check (LDPC) codes [5,12] based on the block-
permutation construction [15].

Errors that appear during the transmission are not independent, but most
standards design codes in an assumption of errors being independent. This prob-
lem is solved during the transmission routine using the interleaving technique.
One of the most important properties of LDPC codes is that they are less vulner-
able to error probability decreasing when the errors tend to group in comparison,
for example, to cyclic codes.

Apart from the channel transmission there are a lot of other processes, for
example, processing, storing and protection during which the information may
be distorted, that can be described as an artificial transmission channel that is
also not free of errors grouping.
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The paper is organized as follows. Section 2 describes the simplest channel
models with memory. Section 3 gives important notations about LDPC codes.
Section 4 introduces decoding of error bursts for block-permutation LDPC codes.
Section 5 presents the simulation results and Sect. 6 concludes the paper.

2 Channel Models with Memory

2.1 Data Transmission

When the data is transmitted over the real communication channels the influence
on a signal may be described by a probability model, where the distortions of
separated symbols are not independent. The simplest model that may describe
such a channel is a finite state channel (Fig. 1) [6]. Through this base model sev-
eral derivations may be described, including Markov model [13], Gilbert model
[7] and Gilbert–Elliott model.

Fig. 1. Finite state channel model.

The finite state channel model describes each state as a binary symmetric
channel each one with its own crossover probability that may differ. In state
G (good) this probability is very low and in state B (bad) may be different
depending on the channel model. In general, channel influence on the transmitted
data may be described as an additive model with a received vector pointed as
b = a+ e, where a is a transmitted vector, e is an error vector. Channel models
that are under consideration describe the error vector that contains error bursts
which are the areas in error vector that begin and end with one.

2.2 Information Storing

Although data transmission is a typical scenario of errors appearing, other pro-
cesses are also subject to errors, moreover, such errors are not independent,
and this problem can be solved by an error correcting coding. For example,
distributed information storage systems allow to store data in multiple spatial
distributed devices that may be organized in many different ways and may con-
tain failures and hidden errors [11]. When such failures and errors appear, due
to the system architecture the errors are more likely to form fixed length error
bursts (which lengths depend on the architectural properties) rather than to
spread uniformly.
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2.3 Information Security

Post-quantum public-key cryptosystems become more and more relevant, most
of them are based on error-correcting codes. In [10] cryptosystem based on error
correcting codes that are able to correct error bursts is observed. The paper
describes the encryption process that contains the generation of fixed length
error burst that the legal user must be able to correct afterwards. Since the error
vector is constructed in an artificial manner, the task of information protection
also uses fixed length error bursts.

3 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes were proposed by R. G. Gallager in
1962 [5], but due to the computing limitations in implementing the encoder and
decoder for such codes, LDPC codes were ignored for almost 30 years. LDPC
codes were rediscovered by D. Mackay [12] in the 1990s and subsequent develop-
ment of computing power arose a new wave of interest to LDPC codes [14,16],
which deserve attention due to the near-Shannon-limit error-correcting capabil-
ity and effective procedures of encoding and decoding. These properties of LDPC
codes made them desirable candidates for many communication standards [1–3].
LDPC codes are specified by a parity-check matrix that due to its sparseness
may be graphically represented by means of a bipartite graph (Tanner graph).
The length of the shortest cycle in the Tanner graph is called the girth. Since
cycles, especially short cycles, degrade the performance of LDPC decoders, codes
with large girth should be constructed.

The most popular construction of LDPC codes that allows compact represen-
tation and flexible way of code construction is a block-permutation construction
[8]. A special case of block-permutation construction is Gilbert codes and their
modifications which burst error correcting capability was analyzed in [9,11]. A
Gilbert code is defined by a parity-check matrix Hl,

Hl =
[
Im Im Im . . . Im
Im C C2 . . . Cl−1

]
, (1)

where Im is (m×m)-identity matrix, C is (m×m)-matrix of cyclic permutation:

C =

⎡
⎢⎢⎢⎢⎣

0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎦ , (2)

and � ≤ m. Ensembles of block-permutation codes with small amount of blocks
(3 × 6, 4 × 8) were analyzed in [4] for information security tasks. The analysis
showed that for block-permutation constructions with a block size of m max-
imum correctable length of the error burst is b � m − 1 and in the case of
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codes that have no cycles of length 4 the maximum correctable burst length is
distributed in the range of [m/2,m − 1] and is more likely to become closer to
m − 1. Moreover, it was shown that the determination of burst error correction
capability has polynomial complexity and its computation may be done in an
acceptable time for the codes of length up to several thousands of bits.

4 Decoding of Error Bursts for Block-Permutation LDPC
Codes

In general, LDPC codes decoding methods are iterative procedures that operate
on each symbol separately. Algorithms are also described as message passing
between the nodes along the edges of the Tanner graph that proceeds until
the predefined amount of iteration is reached or the codeword is found. For
LDPC codes both hard decision and soft decision decoding algorithms may be
used. The most common among them are bit flipping (BF) algorithm and belief
propagation (BP) algorithm, respectively. These algorithms are able to provide
low error probabilities, but do not guarantee error correction and burst error
correction within the code error correction capability, that is an unacceptable
scenario for many applications (for instance, data storage and data protection).
Since the models that are observed in this article are discrete, only hard decision
decoders will be further in consideration. It was shown in [17] that BF can’t
provide an acceptable error probability level in case of burst error correction,
but shows better results if the windowed BF is applied instead of the original
BF.

The original bit flipping algorithm for the received vector y and parity-check
matrix H proceeds as follows [15]:

1. Compute syndrome s = yHT (over F2), if s = 0, stop, since y is a codeword.
2. Compute vector f = sH (over Z).
3. Identify values of f that are greater than some predefined threshold (that

may be chosen depending on the channel conditions), flip the corresponding
bits in y.

4. If the maximum amount of iteration is not reached, go to step 1.

The windowed version of bit flipping algorithm tries to correct burst locally
if it is covered by the window. The decoder in a consequent manner considers all
possible locations of burst and tries to correct errors in the currently observed
window. Then, at each decoding iteration, step 3 of the original bit flipping algo-
rithm is performed for the positions in the current window of length b. However
the optimal size of the window for different channel models is an open ques-
tion. It should be mentioned that when the block-permutation matrix is used
BF algorithm may be modified taking into account the matrix structure. This
modification includes a preprocessing step where all of nonzero syndrome ele-
ments that may be uniquely matched to the columns of H are eliminated. More
precisely, the preprocessing step performs the following procedure: for currently
observed window the syndrome elements are viewed from the first to the last.
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If the currently observed syndrome element sj is nonzero and the corresponding
row in H on the window positions contains exactly one nonzero element, then
the corresponding syndrome position is eliminated using the column of H that
has the position of that single nonzero element in a row. After that the same
procedure starts again from the first syndrome element. The preprocessing step
ends, when all of syndrome positions are observed.

After such preprocessing step a situation that is shown in Fig. 2 may appear:
for a given nonzero syndrome entry there is more than one nonzero element in
a row, so there is more than one possible option for a specific nonzero syndrome
value. Then it was proposed in [17] to switch after the preprocessing to BF within
the same window. Conducted experiments showed that for block-permutation
matrices all bursts with length within the code error correction capability are
corrected.

Fig. 2. After preprocessing case.

The preprocessing procedure may be followed not by BF, but by the selec-
tion from the possible variants of elements in a row. The selection procedure
is described as follows: first nonzero element in the row matching to the first
nonzero position in syndrome is chosen and the corresponding column is added
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to the syndrome, then the first nonzero element of the row that is matched to the
next nonzero syndrome position is taken and the first one is taken from that row
and its column is added to the syndrome. The same is done for the rest of the
nonzero positions of the syndrome. The algorithm ends when all-zero syndrome
vector is reached. During the process some choices may be made wrong, so the
selection process has to follow some steps back and modify the choice of some of
the previously observed rows. That describes the tree like procedure that leads
to time increasing, to overcome which the algorithm should be optimized. The
optimization may be done as follows: selection of an element in a row should be
determined by the most coincidence of one of the columns that correspond to
nonzero positions in a row and syndrome. Considering such an optimization the
selection process observes all the positions of the syndrome in a more efficient
way. Suppose syndrome entry sj is nonzero and the row contains more than one
nonzero element. The choice of an element in a row is dictated by the most inter-
sections of the corresponding column with a syndrome, in other words, that row
element is chosen which corresponding column sum modulo two with a syndrome
makes the recomputed syndrome closer to all zero vector. If several elements in
a row lead to the same syndrome weight, then for each of them the recursive
procedure begins that repeats previously described selection step switching to
the next nonzero position in syndrome.

5 Simulation Results

The point of experiments is to determine if the observed algorithms are able to
correct bursts with a length over burst error correction capability. Experiments
are performed for the random block-permutation matrix with no cycles of length
4 that consists of 4×8 blocks with the block length of m = 59, which burst error
capability b = m − 1 has been determined following the algorithm presented
in [9]. During the experiments to perform the comparison the burst length is
set to the values b = m − 1, b = m + 2 and b = 2m + 2. The experimental
results contain time per iteration and frame error rate (FER) comparison of
three algorithms. The compared algorithms are: BPBF (block-permutation bit-
flip) is an algorithm with preprocessing and bit flipping, BPT (block-permutation
tree) contains preprocessing and one selection, WBF (windowed bit-flip) with 1,
5 and 10 iterations. The burst of length b for an error vector is constructed in
an artificial way: at first, the random start position is generated, then ones are
put on the first and the last indices and the probability of one inside is p1. The
horizontal axis represents the probability of one inside burst.

It may be seen that for all burst lengths b iteration time of BPT is greater
than the BPBF. BPT and BPBF are correcting every possible variant of bursts
whilst b = m−1 and b = m+2, that is depicted in Fig. 3 and Fig. 5, but erroneous
frames appear with b = 2m + 2 (Fig. 7) and FER curves of both algorithms are
nearly equal. WBF frame error probability is the worst for all considered b, but
it requires the smallest time to complete the iteration.

Also the experiments for the Gilbert channel model were conducted. In such
experiments generating of the burst is following the next procedure: a probability
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Fig. 3. FER for b � m− 1.
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Fig. 4. Time for b � m− 1.
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Fig. 5. FER for b = m+ 2.
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Fig. 6. Time for b = m+ 2.
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Fig. 7. FER for b = 2m+ 2.
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Fig. 8. Time for b = 2m+ 2.
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Fig. 9. Algorithm comparison for Gilbert model.

pBG is determined so the mean of the length of the burst was less or equal to b
(b values were chosen from the interval [m/2; 2m + 2]). Then random start burst
position is generated, and each one inside the burst appears with probability that
is set to 0.5. The modeling results are shown in Fig. 9. It may be concluded that
the BPBF and BPT algorithms tend to behave similarly under the Gilbert model
conditions and have a smaller error probability than WBF (Figs. 4, 6 and 8).

6 Conclusion

Hard-decision decoders were considered for burst error correction for block-
permutation matrices. The modification of decoder based on optimized selection
procedure is proposed. The hypothesis about the guaranteed burst error cor-
rection using the decoder with block-permutation matrices analysis is not dis-
proved. Experiments on comparing the frame error probability were conducted
with burst error correction length beyond the error correction capability. The
experiments showed that for b = m − 1 and b = m + 2 the proposed algo-
rithm (BPT) corrects all possible bursts with no much loss in time, whereas for
b = 2m+2 BPT serves no worse than the BPBF with a small iteration time gap.
Also the modeling for Gilbert model were conducted that showed the tendency
of BPBF and BPT to behave similarly.
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