
Myocardial Pathology 
Segmentation Combining 
Multi-Sequence Cardiac 
Magnetic Resonance Images

Ch
al

le
ng

es
LN

CS
 1

25
54

Xiahai Zhuang
Lei Li (Eds.)

First Challenge, MyoPS 2020 
Held in Conjunction with MICCAI 2020 
Lima, Peru, October 4, 2020
Proceedings



Lecture Notes in Computer Science 12554

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this subseries at http://www.springer.com/series/7412

http://www.springer.com/series/7412


Xiahai Zhuang • Lei Li (Eds.)

Myocardial Pathology
Segmentation Combining
Multi-Sequence Cardiac
Magnetic Resonance Images
First Challenge, MyoPS 2020
Held in Conjunction with MICCAI 2020
Lima, Peru, October 4, 2020
Proceedings

123



Editors
Xiahai Zhuang
Fudan University
Shanghai, China

Lei Li
Shanghai Jiao Tong University
Shanghai, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-65650-8 ISBN 978-3-030-65651-5 (eBook)
https://doi.org/10.1007/978-3-030-65651-5

LNCS Sublibrary: SL6 – Image Processing, Computer Vision, Pattern Recognition, and Graphics

© Springer Nature Switzerland AG 2020, corrected publication 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4351-4979
https://orcid.org/0000-0003-1281-6472
https://doi.org/10.1007/978-3-030-65651-5


Preface

Assessment of myocardial viability is essential in the diagnosis and treatment man-
agement for patients suffering from myocardial infarction (MI). Different cardiac
magnetic resonance (CMR) sequences can image and provide unique information
of the heart. These sequences include the late gadolinium enhancement (LGE) CMR,
which visualizes MI, the T2-weighted CMR, which images the acute injury and
ischemic regions, and the balanced steady-state free precession (bSSFP) cine sequence
which captures cardiac motions and presents clear boundaries. Combining these
multi-sequence CMR data can provide rich and reliable information with regards to the
pathological as well as the morphological information of the myocardium.

MyoPS 2020 provides the three-sequence CMR, i.e., bSSFP CMR, T2 CMR, and
LGE CMR, from 45 patients. All the clinical data has received institutional ethic
approval and has been anonymized. The data released here has been pre-processed
using the multivariate mixture model method, to align the three-sequence CMR images
into a common space and to resample them into the same spatial resolution. The
training images are provided with gold standard labels, including left ventricular
(LV) blood pool, right ventricular blood pool, LV normal myocardium, LV myocardial
edema, and LV myocardial scars. MyoPS 2020 also intended to present an open and
fair platform for various research groups to test and validate their methods on these
datasets acquired from the clinical environment. The aim is not only to benchmark
various myocardial pathology segmentation algorithms, but also to cover the topic of
general cardiac image segmentation, registration, and modeling, and raise discussions
for further technical development and clinical deployment.

A total of 16 papers were accepted and presented at MyoPS 2020, and are published
by Springer in this LNCS volume. MyoPS 2020 was held in conjunction with the
MICCAI 2020 international conference. MyoPS 2020 was scheduled to be held in
Lima, Peru on October 4, 2020, but finally was held through a virtual conference
management platform due to the COVID-19 pandemic. The readers can find more
information about MyoPS 2020 at the website:
http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20/.

We would like to thank all organizers, reviewers, authors, and sponsors for their
time, efforts, contributions, and support in making MyoPS 2020 a successful event.

October 2020 Xiahai Zhuang
Lei Li

http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20/
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Stacked BCDU-Net with Semantic CMR
Synthesis: Application to Myocardial
Pathology Segmentation Challenge

Carlos Mart́ın-Isla1(B), Maryam Asadi-Aghbolaghi2, Polyxeni Gkontra3,
Victor M. Campello1, Sergio Escalera1,3, and Karim Lekadir1

1 Departament de Matemàtiques & Informàtica, Universitat de Barcelona,
Barcelona, Spain

carlos.martinisla@ub.edu
2 Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

3 Computer Vision Center, Univeritat Autónoma de Barcelona, Barcelona, Spain

Abstract. Accurate segmentation of pathological tissue, such as scar
tissue and edema, from cardiac magnetic resonance images (CMR) is
fundamental to the assessment of the severity of myocardial infarction
and myocardial viability. There are many accurate solutions for auto-
matic segmentation of cardiac structures from CMR. On the contrary,
a solution has not as yet been found for the automatic segmentation of
myocardial pathological regions due to their challenging nature. As part
of the Myocardial Pathology Segmentation combining multi-sequence
CMR (MyoPS) challenge, we propose a fully automatic pipeline for seg-
menting pathological tissue using registered multi-sequence CMR images
sequences (LGE, bSSFP and T2). The proposed approach involves a
two-staged process. First, in order to reduce task complexity, a two-
stacked BCDU-net is proposed to a) detect a small ROI based on accu-
rate myocardium segmentation and b) perform inside-ROI multi-modal
pathological region segmentation. Second, in order to regularize the pro-
posed stacked architecture and deal with the under-represented data
problem, we propose a synthetic data augmentation pipeline that gen-
erates anatomically meaningful samples. The outputs of the proposed
stacked BCDU-NET with semantic CMR synthesis are post-processed
based on anatomical constrains to refine output segmentation masks.
Results from 25 different patients demonstrate that the proposed model
improves 1-stage equivalent architectures and benefits from the addition
of synthetic anatomically meaningful samples. A final ensemble of 15
trained models show a challenge Dice test score of 0.665 ± 0.143 and
0.698 ± 0.128 for scar and scar + edema, respectively.

Keywords: Cardiac magnetic resonance · Myocardial pathology
segmentation · Deep learning · BCDU-Net · LGE · bSSFP · T2
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1 Introduction

Myocardial viability assessment is key in the diagnosis of patients suffering from
myocardial infarction and ischemic heart disease, among others. Cardiovascular
magnetic resonance (CMR) is a well-established imaging technique that provides
anatomical and functional information of the heart. Multiple sequences with dif-
ferent properties can be acquired, registered and combined to obtain a complete
viability assessment. Late gadolinium enhancement magnetic resonance imaging
(LGE-MRI) is widely used to assess presence, location and extent of regional
scar or fibrotic tissue in the myocardium. T2-weighted CMR images are able to
identify edema and acute or recent myocardial ischemic injury, and have been
employed to distinguish acute coronary syndrome (ACS) from non-ACS as well
as acute from chronic myocardial infarction. On the other hand, balanced -
Steady State Free Precession (bSSFP) cine sequence presents clear boundaries
for the cardiac anatomical regions, often unclear in the first two modalities due
the presence of pathological regions.

LGE and T2-weighted are well-established techniques to many CMR exami-
nations, but there are challenges in their quantification and interpretation due to
a variety of factors. First, image analysis depends on image quality which can be
affected by CMR acquisition protocol. Suboptimal parameters such as inversion
time (TI), repetition time (TR), echo time (TE) need to be correctly identified
in order to maximize the difference in intensity curves between pathological and
non pathological regions, but also to minimize inter-subject acquisitions vari-
ability. Additionally, timing after contrast administration in LGE is important
to allow sufficient wash-out of the contrast agent. On top of that, the variabil-
ity in morphology and texture of infarcted, edemic areas and the combination
of both leads to a difficult automation of the process. For this reason, manual
and automated techniques with no user interaction for infarct borders detection
often results in significant within-patient variability [4,6,10,11].

In order to explore the complementary nature of existing modalities for the
purpose of myocardial pathology segmentation, the MyoPS challenge is pro-
posed. It includes a challenging data distribution of 45 multi-modality subjects
with the goal of doing an accurate automatic infarcted and edemic regions seg-
mentation.

In this work, we propose a challenge solution based on a stacked BCDU-NET
late fusion architecture including localisation and segmentation stages. Addition-
ally, we tackle the insufficient training size by means of state-of-the-art genera-
tive adversarial models [5,12]. To do so, we propose an image synthesis strategy
based on Semantic Image Synthesis with Spatially-Adaptive Normalization[7].
The results demonstrate that the proposed model improves 1-stage equivalent
architectures and benefits from the addition of synthetic anatomically meaning-
ful samples.
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2 Materials and Methods

2.1 Dataset

A set of 45 cases of multi-sequence CMR are collected for the challenge. Each case
refers to a patient with three CMR sequences, i.e., LGE, T2 and bSSFP CMR.
All clinical data have got institutional ethic approval and have been anonymized.
The data released have been pre-processed using the MvMM method [13,14] to
align the three-sequence CMR into a common space and to resample them into
the same spatial resolution.

The provided gold standard labels of interest for the challenge are LV myocar-
dial edema (label 1220) and LV myocardial scars (label 2221). Additional anno-
tations of cardiac structures are provided: left ventricular (LV) blood pool (label
500), right ventricular blood pool (label 600) and LV normal myocardium (label
200). Thus, the evaluation of the test data will be focused on the myocardial
pathology segmentation, i.e., scars and edema. The inter-observer variation of
manual scar segmentation, in terms of Dice, was 0.5243 ± 0.1578, which gives
an insight of the difficulty of the task.

2.2 Proposed Method

An overview of the proposed automated segmentation method is presented in
Fig. 1. The approach consists of two stacked segmentation networks. In brief,
after preprocessing, we employ a computationally efficient U-Net [8] on the
bSSFP CMR to localize the rounded shape of myocardium which includes the
LV normal myocardium, LV myocardial edema and scar tissue. Subsequently,
the bSSFP, T2-weighted and LGE CMR are cropped using the bounding box
of the localized myocardium. Histogram normalization is then applied on the
cropped part of imgages. During the second stage, the cropped multi-sequence
CMR is passed to a higher capacity model, the BCDU-Net [1], to segment
the myocardium scar and edema. The output is finally post-processed based
on anatomical constrains to refine output segmentation masks. The individual
stages are explained in detail in the following sections.

Preprocessing. Before the training process, all images were cropped so that
they had a pixel size of 256 × 256. Furthermore, all images were normalised
between 0 and 1 within the Region Of Interest (ROI) for each independent
modality.

Localization Network. The pathological tissue is located within LV blood
pool and LV normal myocardium. Therefore, we first employ a network to localize
the myocardial ROI, i.e. a binary segmentation, using cine-MRI as the input
modality. Cine-MRI was chosen over the other modalities for this task because it
is the most accurate for myocardial boundary detection due to its clear structure
definition and lack of appearance of pathological regions. This task will reduce
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Fig. 1. Overview of the proposed stacked network.

the search space when dealing with scar and edema segmentation by the stacked
network. To do that, the myocardium, edema, and scar labels are considered as
the foreground, and the other labels (left ventricular blood pool, right ventricular
blood pool) as the background. U-Net, [8], is a popular convolutional network
architecture for fast and precise segmentation of images which is built upon the
Fully Convolutional Network (FCN). The main advantages of this network is
that is capable to work well with few training samples, and the network has the
potential to make use of the global location and context information at the same
time.

This symmetric network is separated in three parts of encoding (contracting),
Bottleneck, and decoding (expanding) paths. The encoding path is composed of
4 blocks. In each block we have two 3 × 3 convolutional layers followed by one
2 × 2 Max Pooling function and ReLU. In each block, the number of feature
maps are doubled, and the size of feature get half. The contracting path aims at
progressively capturing context of the input image and increasing the dimension
of feature representation block by block. These coarse contextual information are
then transferred into the decoding path through skip connections. The output of
the last block of the encoder is first passed to the bottleneck which is built by two
3× 3 convolutional layers. At the end of bottleneck we have a high dimensional
image representation with high semantic information.

The decoding path is composed of four blocks. Each block starts with per-
forming a deconvolution (up-sampling) over the output of previous layer. The
corresponding feature maps in the encoding path are then copied to this layer,
and are then concatenated with the output of deconvolutional layer. These fea-
tures are then go through one 3 × 3 convolutional layers. In each block of the
decoder, the size of the feature maps gradually increases and the number of
feature maps gradually decreases. The target of decoder in U-Net is to enable
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precise localisation by using transposed convolutions and recovering the size of
the segmentation. Since that data is imbalanced and most of the pixels have
background label, we use the weighted binary cross entropy loss to train the
network.

In our U-net implementation, for efficiency purposes, the number of classes
is used as the number of feature maps in the deconvolutions of the decoding
path, as shown in [2,3]. It is also worth mentioning that we do not need a very
accurate segmentation result here, since we just crop the smallest bounding box
around the myocardium with a small margin of 10 pixels.

Normalisation. The output of the localisation network provides the approxi-
mate location of the myocardial region. Therefore, by considering the fact that
the myocardial infarcted and edemic regions are within such ROI, we can ignore
unwanted background information by finding the smallest bounding box with
a small margin around the myocardium. Moreover, an histogram equalisation
is applied by modality, avoiding the effect of unuseful background pixels in the
pixel histogram redistribution.

Segmentation. We exploit the BCDU-Net [1] to segment the myocardial scar
and edema from the normalized myocardium of the three input modalities. The
BCDU-Net is an extension of U-Net by including bidirectional convolutional
LSTM (BConvLSTM) [9] in the skip connection and reusing feature maps with
densely convolutions. The output features of the deconvolutional layer contain
more semantic information while the features extracted by the corresponding
encoding layer have higher resolution. To combine these two kinds of features, the
authors replaced the simple concatenation of the skip connection with nonlinear
functions, i.e. BConvLSTM in the BCDU-Net which resulted in more precise
segmentation output.

Moreover, the idea of densely connected convolutions is utilized in the bottle-
neck of the BCDU-Net. By having a sequence of convolutional layers, the network
may learn redundant features, therefore, in the bottleneck of the BCDU-Net, fea-
tures which are learned in each block are passed forward to the next block. The
dense blocks help the method to enhance information flow and learn a diverse set
of features based on the collective knowledge gained by previous layers. Further-
more, the convergence speed of the network is accelerated by employing Batch
Normalization (BN) after the up-convolution filters.

Like U-Net, the encoding path of the BCD-Net includes four steps. Each
step consists of two 3 × 3 convolutional filters followed by a 2 × 2 max pooling
function and ReLU. The depth of feature maps are doubled at each step and
the size of each feature map get half. There are two states of BConvLSTM in
the skip connection of the BCDU-Net. The second state receives the output of
the previous deconvolutional function and the input data of the first one its
corresponding feature maps in the encoding path. The output of the second
BConvLSTM is then passed to the two 3 × 3 convolutional filters. Like original
U-Net, the decoding path doubles the size of each feature map and halves the
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number of feature channels layer by layer to reach the original size of the input
image after the final layer. To train the network, we use Dice score-based loss.

We propose to combine the three input modalities with a late fusion app-
roach. In other words, the network is trained separately for the three modalities
and before the last convolutional layer after the last deconvolutional layer, the
three networks are merged.

Implementation Details. All trainings were performed on a NVIDIA 1080
GPU with a batch size of 8. The Adam optimization function with learning rate
equal to 1e−4 was used to train both networks. Each network is trained with 50
as the number of epochs. The input size was 256× 256 for both localization and
segmentation networks.

2.3 Data Augmentation Strategy

Online Augmentation. A series of common augmentation techniques were
applied to each batched image independently. For the first stacked u-net, these
augmentations included random rotations between −15◦ and 15◦ and random
scaling and offsets of a maximum of 30 pixels. For the second stacked u-net
the offset augmentation is avoided due to the fact that images were already
center-cropped.

Offline Augmentation. The rationale behind the proposed image synthesis is
the insufficient training sample size. Low number of images, variability in modal-
ity acquisitions, in location and extent of pathological regions can cause loss
of generalisation in CNN-based segmentation algorithms. Thus, in an effort to
increase the number of annotated multi-sequence images, semantic image synthe-
sis from annotated mask to multi-sequence CMR is performed in such way that
new multi-modality images can be generated from altered versions of real anno-
tations. To achieve this, the Semantic Image Synthesis with Spatially-Adaptive
Normalization (SPADE) method [7] was implemented using the PyTorch library
provided at this link https://github.com/NVlabs/SPADE. Previous methods
[12] directly feed the semantic layout as input to the deep network, which is
then processed through stacks of convolution, normalization, and nonlinearity
layers. In [7], is shown that this is suboptimal as the normalization layers tend
to wash away semantic information, desired for accurate pathology tissue and
cardiac structure generation. To address the issue, SPADE uses the input seman-
tic annotation for modulating the activations in normalization layers through a
spatially-adaptive, learned transformation. A general overview of the SPADE
multi-modality generative model is represented in Fig. 2.

Two SPADE models were generated. For the training/validation subset, a
model with 71 training images (17 subjects) was used and 31 validation images
(8 subjects) were kept aside. For the final model, all the subjects were used to
train an additional SPADE model.

https://github.com/NVlabs/SPADE
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Fig. 2. Overview of the proposed SPADE generative model.

Both models were trained during 45 epochs with a morphological augmenta-
tion consisting of warping epicardium contours between pairs of subjects. Both
trainings took 24 h on a NVIDIA 1080 GPU with a batch size of 2. The Adam
optimizer was used with learning rate of 2 × 10e−4, with rst and second moment
decay rates of 0 and 0.9, respectively. The Variational Autoencoder (VAE) was
generated with a latent dimension of 200.

Once the models were trained, a set of morphological operations were defined
in order to generate different versions of real annotations. The resulting anatom-
ical consistent annotations were used then to feed the SPADE models and gen-
erate synthetic multi-modality images with controlled characteristics:

Style Transfer. By training the SPADE with a Variational Autoencoder (VAE),
the style of the images can be transferred, generating a variety of images with
different pathology appearances for the same morphology. The encoder and gen-
erator of our SPADE architecture form a VAE, in which the encoder tries to
capture the style of the image, while the generator combines the encoded style
and the segmentation mask information via the SPADEs to reconstruct the orig-
inal image. The encoder also serves as a style guidance network at test time to
capture the style of target images. For training the VAE, KL-Divergence loss
term was used.

Every training image was used to generate a set of latent representations
of size 200. The latter were used alone -with random linear combinations and
scaling factors- or in conjunction with the methods described below in order to
produce the final synthetic multi-modality images. The effect of this technique
is shown in Fig. 3, where an original image in first row is transferred to two
additional pseudo-random styles, rows 2 and 3.

Epicardium Warpings. As shown in Fig. 4, a set of 8 equidistant landmarks were
placed in the epicardial contour of the source and target annotations. Epicar-
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Fig. 3. Style modifications.

dial contours were then warped between pairs of training subjects by means of
piecewise affine transformations.

Fig. 4. Epicardial contour warping between a pair of subjects.

Scar and Edema Rotations. As shown in Fig. 7, scar, edema and myocardium
labels were combined in a binary mask. The epicardium was then converted to a
circular shape, rotated and reconverted to the original shape taking profit of the
same technique used in the Epicardium warpings section. This set of transforma-
tions was then also applied to the original labels, generating a rotated version of
the scar and edema within the myocardium. To ensure that the generated seg-
mentations were not too far from the distribution seen by the SPADE generator
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Fig. 5. Morphological operations involved in the scar rotation process.

while covering the label space, the rotation was fixed to four possible values of
[−30◦, −20◦, 20◦, 30◦] (Fig. 5).

Scar and Edema Dilations and Erosions. A set of random complementary dila-
tions and erosions with a random kernel radius from 1 to 3 pixels were applied
to the training annotations. By fixing one of them for the scar label and apply-
ing the opposite one for the edema label, we avoid an empty gap between both.
Random deletion of edemic labels is also included in this stage. In Fig. 6 shows
the effect of an eroded scar and dilated edema.

Fig. 6. Morphological operations involved in the scar and edema dilation and erosion
process.

Offline Datasets. A group of datasets is generated by means of the augmentation
strategies described above. More precisely, for each of the transformable labels,
i.e. non-empty annotations, the original images are used up to three times to keep
the training size relatively small. This methodology leads to the creation of a set
of four datasets, one per type of augmentation, i.e. style transfer alone, pathology
rotations, epicardial warping and pathology dilation/erosion. It should be noted
that the resulting datasets contain the same amount of real and synthetic data.
Additionally, for all datasets, random style transfers are applied after the anno-
tation manipulation in the synthesis stage. In total, each dataset contains 415
images. A fifth dataset is generated by combining all individual four datasets.
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This dataset consists of 1660 images and is used to train and validate the mod-
els. The same procedure is repeated for the final ensemblea using the SPADE
trained over all the training data. This leads to datasets of 597 and 2388 images,
for the partial augmentations and the addition, respectively.

2.4 Post-processing

The myocardium, scar and edema-scar segmentations produced from the stacked
networks were morphologically processed to satisfy certain anatomical con-
straints. In short axis CMR, the shape of the myocardium closely resembles
that of a ring throughout the apex-base slices. Therefore, slices for which the
automatically segmented myocardium is a partial ring must be detected and cor-
rected. To this end, the skeleton of the myocardium was calculated for each slice.
Subsequently, spur skeleton branches, i.e. branches consisting of pixels with only
one neighboring pixel, were iteratively pruned. For non-complete rings, iterative
pruning results in the removal of the entire skeleton. In such cases, the missing
arc of the partial ring was completed by adding a circular ring whose thickness
is equal to the maximum thickness of the detected myocardium. To construct
the ring, the centroid of the convex hull of the detected myocardial region was
used as its center. The thickness of the myocardium was given by the distance of
the skeleton points to the closest non-myocardial pixel and the maximum among
all points was considered. The corrected myocardium was subsequently used to
refine the scar segmentation, while an additional step was necessary in the case of
the edema-scar region. More precisely, edema can be noticed in the myocardium,
but also in the LV blood pool close to the border with the myocardium. There-
fore, an extended myocardial mask was created, which contained neighboring
LV regions where edema could be localized. In order to achieve this, an artifi-
cial ring was constructed by using the myocardium skeleton and the distance of
every pixel to it. Pixels belonging to the myocardium or the region enclosed by it
were considered to belong to the extended myocardial mask if they were within
a distance smaller than a threshold from the skeleton points. This threshold is
defined as the maximum myocardium thickness plus a small margin of 6 pixels
to account for errors in the myocardium segmentation.

As a first step in the process of refining the scar tissue, 3D components smaller
than 100 voxels were considered to be artifacts and were, therefore, excluded
from the segmentation mask. Despite good localization of the scar region by
the network, we observed a tendency to underestimate the scar region and to
produce multiple disconnected components instead of one continuous region.
To tackle this issue, the components were connected by using their convex hull
in cases where the output of the network consisted of more than one connected
components. The area of the convex hull inside an eroded version of the extended
myocardium was eliminated. For the erosion, a disk element with radius equal to
20% of the maximum myocardium radius was used. Furthermore, morphological
closing of the image with a disk object of radius equal to 90% of the myocardium
maximum thickness was performed to enlarge the component’s border without
losing the form of the original shape boundary in cases where only one component
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was observed. Lastly, areas outside the corrected myocardium and the joined
edema-scar mask regions were excluded from the final scar segmentation.

In the case of the refinement of the joined edema-scar mask, 3D components
of size smaller than 300 voxels were considered as artifacts. In addition, regions
of edema-scar outside the extended myocardial area were excluded from the
final segmentation by performing element-wise multiplication of the artificial
extended myocardium region mask with the edema-scar segmentation.

3 Results

3.1 Protocol and Metrics of the Challenge

In order to train our models and generate the ablation study, the training set
is divided in two partitions. From the original 25 subjects, 8 of them are kept
aside for validation, with the aim of preserving a large pool of subjects in the
validation stage. The decision is motivated by the variability in image quality
and the presence of difficult cases that may lead to a sub-optimal model selection.
Moreover, this allows us to have a sufficient validation size to evaluate the post-
processing algorithm. For the same reason, we avoided to preserve a test partition
that leads to a conflict between validation and testing results and generates
additional uncertainty when selecting the best method. After model generation,
selection, evaluation and post-processing, 3D Dice scores are computed to select
the final models taking into consideration the post-processing gains. For all the
experiments, 2D Dice score is used as objective loss function, except for the
localisation U-net, where the selected loss is binary weighted cross-entropy.

3.2 Ablation Study

We performed a detailed ablation study in order to quantify the effect of every
component of the proposed methodology individually. The results in terms of
2D Dice score (mean ± standard deviation), which is the accuracy evaluation
metric used in the loss function of this work, are summarized in Table 1. In brief,
our first experiment involved segmenting the scar and scar + segmentation using
solely the original data without performing inter-stage normalization or offline
augmentation. This resulted in a Dice score equal to 0.202 ± 0.286 and 0.170 ±
0.253 for scar and scar + edema, respectively. The low accuracy demonstrates
the extremely challenging nature of the task and the need for incorporating a
ROI-based normalization between stages and novel augmentation strategies. To
test our assumption, we added the inter-stage cropping and normalization step
to enhance the contrast between scar and edema and the rest of the tissue within
the myocardial ROI where the pathological tissue is expected to localized. The
mean dice score increased by 24.70% for scar and 33.80% for scar + edema.

We then compared the improvement offered by any of the four types of offline
augmentation, i.e. style transfer alone, pathology rotations, epicardial warping
and pathology dilation/erosion. Style transfer produced an improvement in terms
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Fig. 7. Segmentation examples combining different sets of training data, showing the
improvement of SPADE synthesis.

of Dice by 9% and 14.4% for scar and scar + edema, respectively. The effects
of epicardium warping and scar and edema rotation, were lower than that of
style-transfer, but yet non-negligable. More precisely, the mean dice increased
by 4.1% for scar and 7.8% for scar + edema in the case of epicardium warping.
Similarly, when scar and edema rotation were applied the offered improvement
was 1.7% for scar and 4.6% for scar + edema. Interestingly, scar and edema dila-
tion and erosion did not provide any significant improvement in the scar tissue,
but offered a 10.4% mean improvement in Dice for the scar + edema region.
Subsequently, we combined the four types of data-augmentation. We observed a
Dice score of 0.518± 0.286 and 0.617± 0.253 for scar and scar + edema, respec-
tively. This indicates that for the case of pathological tissue segmentation the
most effective augmentation type is style transfer, while morphological augmen-
tations have a more limited effect. We speculate that this might be related to the
highly irregular shape of the pathological tissue. However, these types of mor-
phological augmentations might be important in other more regular structures.
In this work, to account for possible variability found in the test sample non
present in the training set, for the final model, we decided to use the combina-
tion of all augmentation types, presented as “All spade” in Table 1. Nonetheless,
future work will focus on using the style transfer only for pathological tissue
segmentation.

Lastly, we evaluated the improvement offered by applying post-processing on
the outputs of the localization and segmentation networks. A visual example of
the improvement can be seen in Fig. 8. Post-processing produces a continuous
scar region, while both edema and scar after post-processing are localized within
the myocardial area and in the close vicinity of left ventricle, as physiologically
expected.

3.3 Challenge Results

In order to obtain the final predictions, two ensembles are generated. For the first
ensemble, a set of 5 models is generated with 10 consecutive training samples and
5 consecutive validation samples, with a roll factor of 5. For the second ensemble,
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Table 1. 2D Dice score (mean ± standard deviation) of the proposed method for scar
and scar + edema for different data.

Data Scar Scar + Edema

Original data 0.202 ± 0.286 0.170 ± 0.253

Original data + cropping and normalizing 0.449 ± 0.261 0.508 ± 0.243

Style transfer 0.548 ± 0.250 0.640 ± 0.192

Epicardium warping 0.490 ± 0.260 0.586 ± 0.222

Scar and edema rotation 0.466 ± 0.241 0.554 ± 0.224

Scar and edema dilation and erosion 0.458 ± 0.299 0.600 ± 0.224

All spade 0.518 ± 0.286 0.617 ± 0.253

a set of 15 models is generated with 22 consecutive training samples and 3
consecutive validation subjects, with a roll factor of 2, making the validation set
to share one subject between consecutive models in the case of the 15 models
ensemble.

The confidence maps of each one of the 5 models are averaged together. The
final predictions of the 20 unseen test subjects provided by the challenge organi-
zation are defined as the maximum average probability of each pixel belonging to
each class, maximizing the expected results and reducing the variance. The same
procedure was applied to the 15 models ensemble. After that, post-processing, as
described in Sect. 2.4, is applied to further enhance the model’s output. The effect
of the ensemble size can be observed in Table 2. The bigger ensemble obtained
better results due to the bigger training sizes. The effect of the low validation
size was noticeable as a noisier validation curve, and attenuated by means of
a greater regularisation power, with an overall improved accuracy. The quan-
titative effect of post-processing is also appreciated. The 15 models ensemble
captured a greater number of non-trivial unconnected components. In combi-
nation with the convex hull process described in Sect. 2.4, for the 15 models
ensemble the post-processing generated an improvement in accuracy of 2.9% for
scar and 1.1% for scar + edema, respectively.

Table 2. 3D Dice score for the final testing set of 20 subjects.

Data Scar Scar + Edema

5 models ensemble 0.625 ± 0.255 0.677 ± 0.146

5 models ensemble + post-processing 0.635 ± 0.281 0.692 ± 0.143

15 models ensemble 0.636 ± 0.243 0.687 ± 0.131

15 models ensemble + post-processing 0.665 ± 0.241 0.698 ± 0.128
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4 Discussion

This work proposes a novel approach to address automatic multi-sequence CMR
pathology segmentation. The method is based on a two-staged process and lever-
ages advanced state-of-the-art deep learning techniques. CMR pathology seg-
mentation is a particularly challenging task even for the expert clinician due to
the large variability in imaging quality and morphology of pathological regions.
To tackle this limitation, we focus on reducing the task complexity. To this end,
a localisation U-net is used to localize the myocardial ROI. Subsequently, the
detected ROI is used to partially address the problem of intra- and inter-subject
variability in signal intensity by using the bounding box of the ROI to crop the
CMR images and perform a refined normalisation within the cropped region. The
normalised CMR are then fed to a BCDU-net in order to perform the pathologic
tissue segmentation. BCDU-net effectiveness has been previously demonstrated
and is related to the bidirectional flow of the gradient. In addition, we address the
problem of insufficient training examples by means of multi-modality semantic

Fig. 8. Improvement offered by applying post-processing on the outputs of the local-
ization and segmentation networks. On the top row, a slice from the bSSFP (left),
T2-weighted (middle) and LGE (right) CMR are provided for one subject of the train-
ing dataset used as validation subject during training. On the bottom row, the corre-
sponding manual segmentations for myocardium, scar and edema (left), the combined
output of the two networks before (middle) and after (right) post-processing are pro-
vided. Post-processing permits to connect the two disconnected components produced
by the network and constrain the segmentation within the myocardial area and neigh-
boring LV area.
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image synthesis using morphological and style transformations. This approach
increases the variability of the training samples in terms of the location of the
infarcted and edemic tissues within the myocardium, as well as, in terms of
their appearance. The validation shows the effect of the stacked architecture
with inter-stage normalisation, giving an insight about the importance of stan-
darisation for multi-modality medical imaging acquisitions. Moreover, consistent
results across the different semantic manipulations and their respective synthesis,
indicate the potential of this set of transformations for enriching and improv-
ing generalization of multi-modality cardiac pathology segmentation algorithms.
Future work includes the implementation of an end-to-end model as well as the
exploration of the generated synthetic data in detail with the aim of enhancing
interpretability and quality of the image synthesis methods.
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Abstract. Myocardial pathology segmentation is an essential but chal-
lenging task in the computer-aided diagnosis of myocardial infraction.
Although deep convolutional neural networks (DCNNs) have achieved
remarkable success in medical image segmentation, accurate segmenta-
tion of myocardial pathology remains challenging, due to the low soft-
tissue contrast, irregularity of pathological targets, and limited training
data. In this paper, we propose a simple but efficient DCNN model called
EfficientSeg to segment the regions of edema and scar in multi-sequence
cardiac magnetic resonance (CMR) data. In this model, the encoder
uses EfficientNet as its backbone for feature extraction, and the decoder
employs a weighted bi-directional feature pyramid network (BiFPN) to
predict the segmentation mask. The former has a much improved image
representation ability but with less computation cost than traditional
convolutional networks, while the latter allows easy and fast multi-scale
feature fusion. The loss function of EfficientSeg is defined as the combi-
nation of Dice loss, cross entropy loss, and boundary loss. We evaluated
EfficientSeg on the Myocardial Pathology Segmentation (MyoPS 2020)
Challenge dataset and achieved a Dice score of 64.71% for scar segmen-
tation and a Dice score of 70.87% for joint edema and scar segmentation.
Our results indicate the effectiveness of the proposed EfficientSeg model
for myocardial pathology segmentation.

Keywords: Myocardial pathology segmentation · Deep learning ·
Cardiac magnetic resonance imaging

1 Introduction

Automated myocardial pathology segmentation using cardiac magnetic reso-
nance (CMR) imaging is able to assist doctors in the accurate assessment of

c© Springer Nature Switzerland AG 2020
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myocardial viability and fast evaluation of myocardial infarction development,
playing an essential role in the diagnosis and treatment management for the
patients suffering from myocardial infarction. However, this task remains chal-
lenging due to two reasons: (1) myocardial pathology regions, e.g., scars and
edema, vary significantly in the visual appearance; and (2) the borders between
pathology regions and surrounding normal organs or tissues appear blurry and
ambiguous.

Traditional segmentation methods for CMR data mainly include the prior
knowledge based methods [8,11], graph-cuts [1], and atlas-based registra-
tion [8]. Recently, a number of deep convolutional neural networks (DCNNs)
[2,4,10,12,17,19] have been proposed for CMR data segmentation, which achieve
superior performance over those traditional methods. Dou et al. [4] introduced
the knowledge distillation to DCNNs, aiming to employ the cardiac computed
tomography data to assist CMR data segmentation. Liu et al. [10] proposed
the Pseudo-3D CNN, which aims to reduce the size of the network while pre-
serving the spatial structure information in 3D data. Wang et al. [17] modified
the popular U-Net by incorporating the squeeze-and-excitation residual mod-
ule and selective kernel module into the down-sampling and up-sampling stages,
respectively. Despite their improved performance, most of these DCNNs focus
on the segmentation of the ventricle, ventricle myocardium, atrium blood cav-
ity, ventricle blood cavity or ascending aorta from CMR data. Little effort has
been devoted to the fully automated myocardial pathology segmentation. To
this end, the MICCAI 2020 has launched the Myocardial Pathology Segmenta-
tion Combining Multi-sequence CMR (MyoPS 2020) Challenge to accelerate the
technical development and clinical deployment of automated CMR segmentation
solutions.

In this paper, we propose a simple but efficient DCNN model called Effi-
cientSeg for accurate myocardial pathology segmentation in multi-sequence
CMR scans. In this model, we use EfficientNets, which is a recent convolutional
neural network with a strengthened ability to representation learning [15], as the
encoder backbone for feature extraction, and also incorporate the bi-directional
feature pyramid network (BiFPN) [16] into the decoder for effective multi-scale
feature fusion. To address the issue caused by low soft tissue contrast, we train
our EfficientSeg model via minimizing a weighted sum of the Dice loss, cross
entropy loss, and boundary loss. Among them, the boundary loss helps the model
focus on the myocardial pathology boundaries, and thus also alleviates the class-
imbalanced problem. We have evaluated the proposed EffcientSeg model on the
MyoPS 2020 Challenge dataset and achieved a Dice score of 64.71% for scar
segmentation and a Dice score of 70.87% for joint edema and scar segmentation.

2 Dataset

The dataset used for this study was provided by the MyoPS 2020 Challenge,
which aims to develop automated and accurate algorithms to segment the
myocardial pathology, including the left ventricular myocardial scars and edema.
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The challenge dataset consists of 45 cases with multi-sequence CMR scans, each
case containing a late gadolinium enhancement (LGE) CMR sequence, a T2-
weighted CMR sequence, and a balanced Steady State Free Precession (bSSFP)
cine sequence. All cases have been aligned into the common space and resam-
pled into the same spatial resolution by using the MvMM method [20,21]. The
dataset was officially split into a training set of 25 cases and a testing set of 20
cases. The voxel-wise annotations of training cases are publicly available, while
the annotations of testing cases are withheld for online evaluation.

3 Method

Fig. 1. Diagram of the proposed EfficientSeg model. “Conv”: convolution layer; ×2:
double the feature resolution using nearest interpolation;

⊕
: element-wise summation.

Our proposed EfficientSeg model has an encoder-and-decoder architecture, in
which the encoder backbone is the state-of-the-art EfficientNets [15] and the
decoder is constructed based on BiFPN [16].

3.1 Encoder

Scaling up convolutional neural networks is an important way to improve the rep-
resentation ability and thus to obtain better accuracy. Tan et al. [15] developed
a strong baseline model, EfficientNet-B0, by using neural architecture search-
ing. The obtained Efficient-B0 is mainly composed of mobile inverted bottleneck
blocks [13,14] with the squeeze-and-excitation attention mechanism [5]. Based
on the baseline model, they proposed a family of EfficientNets using a sim-
ple yet effective compound scaling method, and achieved the state-of-the-art
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performance on several imageg classification benchmarks. For an improved rep-
resentation ability, we employ the ImageNet-pretrained EfficientNets as feature
extractor in the encoder, aiming to extract strong features from CMR sequences.
According to the resources available for model scaling, EfficientNets contain eight
networks with different scales, varying from B0 to B7. To balance the accuracy
and computational complexity, we choose EfficientNet-B1, EfficientNet-B2, and
EfficientNet-B3 for the encoder, respectively.

3.2 Decoder

BiFPN contains an efficient multi-scale feature fusion strategy, which achieves
the state-of-the-art performance on object detection tasks [16]. Considering the
objects (i.e. scars and edema) with different shapes and sizes, we employ BiFPN
as the decoder to fuse the multi-scale features produced by the encoder and
predict the segmentation mask. As shown in Fig. 1, five feature maps from dif-
ferent stages in encoder are fed to the stacked BiFPN layers. Different from the
conventional top-down FPN [9], BiFPN has two cross-scale connections, i.e., a
top-down path and a bottom-up path, which are superior to traditional strategies
for fusing multi-scale features. Finally, the outputs of BiFPN layers at different
scales are up-sampled to the same resolution by using the nearest interpolation
and then added together to form the predicted segmentation mask.

3.3 Optimization

Dice loss and cross entropy loss are two commonly used objective loss functions
in the optimization of segmentation task. Following [18], we jointly use the cross
entropy loss and Dice loss to optimize the segmentation results in a voxel-wise
and region-wise manner, respectively. These two loss functions can be expressed
as

LCE = − 1
N
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i log P c
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where C is the number of categories, N is the number of voxels, P c
i represents

the predicted probability of voxel i belonging to class c, and Y c
i represents the

ground truth label of voxel i.
Besides, we observe the low contrast between the myocardial pathology

regions and surrounding tissues. Considering the poor discrimination around
boundaries, we also employ the boundary loss proposed in [7] to enforce the
model to pay more attention to boundary regions. Let ∂Y represent the bound-
ary of Y , and Ω represent the spatial domain of the given image. A signed
distance between a voxel x ∈ Ω and its nearest voxel z∂Y (x) on contour ∂Y can
be defined as

φY (x) =
{ −||x − z∂Y (x)||, if x ∈ Y

||x − z∂Y (x)||, otherwise
(3)
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Then, the boundary loss can be formulated as

LBound =
∫

Ω

φY (x)P (x)dx (4)

The proposed EfficientSeg model uses the following combined loss

L = α(LCE + LDice) + (1 − α)LBound (5)

where α = 1 − 1−0.01
K · k is a weighting factor, K is the total number of epochs

and k is the index of current epoch. At the beginning of training process, cross
entropy loss and Dice loss play the principal role in the optimization. With the
training going on, the boundary loss exerts more influence on the optimization.

3.4 Emplementation Details

Since the dynamic ranges of different CMR sequences in different cases are vari-
able, it is necessary to normalize the value of each sequence to avoid the initial
bias of the segmentation process [6]. For each CMR sequence, we first normalize
the voxel values to zero mean and unit standard deviation, and then concatenate
three CMR sequences into a multi-sequence volume with three channels.

Due to the large inter-slice spacing, the segmentation is performed on a slice-
by-slice basis. On each slice of a training case, we randomly sample the patches
of size 288 × 288 to train the EfficientSeg model. To accelerate the training
procedure and enlarge the batch size, we utilize the mixed precision training
strategy1. According to the varying scale of backbone series, we set the batch
size to 64, 48, and 32 for EfficientSeg-B1, EfficientSeg-B2, and EfficientSeg-B3,
respectively. We use the Adam algorithm with an initial learning rate of 1×10−4

to optimize the EfficientSeg model. The learning rate was dynamically decayed
by a factor of 5 when the validation loss was not improved any more in the last
30 epochs. We set the maximum epoch to 500. To alleviate the potential over-
fitting, we employ some simple online data augmentation techniques, including
randomly cropping and flipping along spatial dimensions.

During the testing stage, we perform the test time augmentation by mirror
flipping the input along two axes and then averaging the outputs of two flipped
inputs and the original input. To reduce the false positive predictions, we adopt
a simple post-processing strategy to remove small isolated predicted regions. We
calculate the connected regions of each category in each slice. For the predicted
regions of scar, we remove the small regions with less than N1 voxels and replace
them with the surrounding labels. For the predicted regions of edema and scars,
we remove the small regions with less than N2 voxels and replace them with
the surrounding labels. Here, we set N1 to 60 and N2 to 200 according to the
performance observations on the validation set.

Following the rule of the MyoPS 2020 Challenge, we use the Dice score as
the evaluation metric for scars and edema segmentation.
1 https://nvidia.github.io/apex.

https://nvidia.github.io/apex
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Fig. 2. Visualization of segmentation results. Colors represent the different regions:
left ventricular normal myocardium; left ventricular blood pool; right ventricular blood
pool; left ventricular myocardial edema; left ventricular myocardial scars. Note that the
provided gold standard labels include five categories, while the evaluation of the test
data only focuses on the myocardial pathology segmentation, i.e., scars and edema.
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Table 1. Comparison of different segmentation methods on the test set. †: Fine-tuning
the model using the pretrained ImageNet weights [3]; �: Final submission to the MyoPS
2020 Challenge; Ensembles: Ensemble B1, B2 and B3; pp: post-processing.

Method # Parameters (×106) Dice score %

Scar Edema+Scar

U-Net 17.3 59.15 62.56

DeeplabV3plus 54.7 60.60 64.71

DeeplabV3plus † 54.7 63.01 69.05

EfficientSeg-B1 † 6.5 62.94 68.98

EfficientSeg-B2 † 7.9 63.08 68.78

EfficientSeg-B3 † 11.7 62.56 69.47

EfficientSeg-Ensembles † / 64.35 70.10

EfficientSeg-Ensembles + pp † � / 64.71 70.87

4 Results

In Table 1, we compared the segmentation performance of different methods,
including U-Net, DeeplabV3plus, and the proposed EfficientSeg with differ-
ent backbones, on the test set. For a fair comparison, all competing methods
and our method use the same training and testing strategy. It reveals that
(1) fine-tuning from the pretrained weights (DeeplabV3plus and EfficientSeg
w/pretraining) achieves better performance than training from scratch (U-Net
and DeeplabV3plus w/o pretraining); (2) our EfficientSeg is able to obtain com-
parable (even better) performance with less parameters than DeeplabV3plus; (3)
our ensemable strategy has a positive effect on the performance; and (4) our pro-
posed EfficientSeg model achieves the 64.71% Dice score for scar segmentation
and 70.87% Dice score for joint edema and scar segmentation using the ensem-
ble strategy (i.e., averaging outputs of multiple models) and post-processing. In
Fig. 2, we visualized the segmentation results obtained by U-Net, DeeplabV3plus
and our EfficientSeg-B1/B2/B3 on the validation set.

To demonstrate the effectiveness of our combined segmentation loss, we
attempt to train the EfficientSeg-B1 model with different loss functions, includ-
ing the cross entropy loss LCE , Dice loss LDice, the sum of cross-entropy loss and
Dice loss LCE +LDice, and the sum of cross-entropy loss, Dice loss and boundary
loss LCE + LDice + LBound. The results in Table 2 reveals that, although using
the cross-entropy loss alone results in a good performance on the segmentation
of Edema and Scar, adding the Dice loss and boundary loss one by one to the
segmentation loss improves the performance continuously. Meanwhile, the supe-
rior performance of our combined loss over the combination of cross-entropy loss
and Dice loss confirms the effectiveness of using the boundary loss to impose
constraints on boundary regions.
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Table 2. Comparison of different loss functions on the test set.

Method Dice score %

Scar Edema+Scar

EfficientSeg-B1 + LCE 61.59 67.61

EfficientSeg-B1 + LDice 62.13 68.21

EfficientSeg-B1 + LCE + LDice 62.41 68.11

EfficientSeg-B1 + LCE + LDice + LBound (Ours) 62.94 68.98

5 Conclusion

In this paper, we propose a simple but efficient model, i.e., EfficientSeg, to
address the myocardial pathology segmentation challenge. We choose the state-
of-the-art EfficientNet to extract the representative features from multi-sequence
CMR data, and then use BiFPN to fuse multi-scale feature maps for the accurate
myocardial pathology segmentation. Besides, we optimize the EfficientSeg model
via minimizing the combination of voxel-wise cross entropy loss, region-wise Dice
loss, and boundary loss. On the online testing, the proposed EfficientSeg model
achieves a Dice score of 64.71% for scar segmentation, and a Dice score of 70.87%
for joint edema and scar segmentation.
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Abstract. Segmenting cardiac scars and edema from cardiac mag-
netic resonance (CMR) are essential for the early diagnosis and accu-
rate prognostic assessment of ischemic heart disease. The pathologi-
cal myocardium presents distinctive brightness in the late gadolinium
enhancement (LGE) images, the T2-weighted CMR shows the acute
injury and ischemic regions, and the balanced-Steady State Free Pre-
cession (bSSFP) can clearly reveal the boundaries of the myocardium.
Given this fact, we proposed a novel fully-automatic two-stage method to
extract different features of each modality as well as segment myocardium
edema and scars. In the first stage, a U-net was trained on bSSFP images
with full annotation of myocardium, which can locate the coarse position
of the myocardium and obtain the mask of the myocardium as a con-
straint on the next stage. In the second stage, with the T2 images, LGE
images and predicted myocardium masks concatenated as inputs, an M-
shaped network based on attention mechanism was trained to segment
the myocardial edema and scars accurately. In conclusion, the accuracy
of the segmentation was improved by adopting prior constraints and
attention mechanism, which achieved an average Dice score of 0.570 and
0.634 for the myocardial scars and myocardial scars+edema respectively
on the test set of MyoPS 2020.

Keywords: Segmentation · Multi-sequence CMR · Deep learning ·
Attention mechanism

1 Introduction

Cardiac magnetic resonance (CMR) images can provide anatomical and func-
tional information of the heart, which is crucial to clinical diagnosis and the treat-
ment of myocardial infarction. To this end, the segmentation of the myocardial
pathology is a critical step for the analysis of myocardial infarction. Different
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CMR sequences have different focuses: balanced-Steady State Free Precession
(bSSFP) images can present the complete myocardial boundary, T2-weighted
images show myocardial edema clearly, and late gadolinium enhancement (LGE)
images highlight the myocardial scars. By combining multiple sequences, rich and
reliable information about the pathology and morphology of the myocardium
can be obtained. In the absence of a unified automatic segmentation standard
in clinical practice, the segmentation process is usually done manually, which is
time-consuming and depends on inter- and intra-observer variations.

In the existing literatures, traditional machine learning technology showed
good performance in cardiac image segmentation [4,7], but it required manual
feature selection or prior knowledge to achieve satisfactory accuracy. In contrast,
deep learning algorithms can automatically extract features. As the number of
public datasets has increased in recent years, many deep learning-based seg-
mentation algorithms have been developed for CMR. As a type of convolutional
neural network (CNN) without any fully-connected layers, the fully convolu-
tional neural network (FCN) [5] and U-Net with skip-connections are adopted
frequently in many other methods [6,10]. Many of the works have been focused
on the segmentation of the cardiac chambers, with relatively fewer studies on
segmenting abnormal myocardial tissue regions, such as left ventricle (LV) scars
and edema. In [1,11], the authors accurately quantify the amount of scars in
patients suffering from ischemic and hypertrophic cardiomyopathy respectively.
However, these works do not focus on the segmentation of myocardial scars and
edema in multi-sequence CMR.

In this paper, we proposed a novel fully-automatic two-stage method to seg-
ment myocardial scars and edema in multi-sequence CMR. Our method mainly
consists of two neural networks:

– A segmentation network for bFFSP images: A U-net is used to roughly locate
and segment the entire myocardium. The mask of the myocardium obtained
at this stage is applied as part of the input of the second stage to constrain
the location of myocardial scars and edema.

– A segmentation network for multi-sequence images: An M-shaped network
utilizes the constraints of myocardial shape and the attention mechanism is
applied to segment both myocardial scars and edema.

2 Method

2.1 Dataset Description

The dataset is provided by myocardial pathology segmentation combining multi-
sequence CMR (Myops20) [12,13] including 45 cases of three sequence CMR:
bSSFP, T2 and LGE, of which 25 cases are with annotations. For the original
CMR sequence of each patient, the bSSFP images consist of 8–12 slices, with
in-plane resolution of 1.25 × 1.25 mm and slice thickness of 8 to 13 mm. The
T2 images consist of 3–7 slices, with in-plane resolution of 1.35 × 1.35 mm and
slice thickness of 12 to 20 mm. The LGE images have 10–18 slices with in-plane
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resolution of 0.75×0.75 mm and slice thickness of 5 mm. The images are aligned
into a common space and resampled into the same spatial resolution. The pro-
vided gold standard labels are non-overlapping, and they include: left ventricular
blood pool (labelled 500), right ventricular blood pool (labelled 600), LV nor-
mal myocardium (labelled 200), LV myocardial edema (labelled 1220), and LV
myocardial scars (labelled 2221). In addition, this segmentation task can be
more difficult than others with selected dataset, because the dataset is directly
collected from the clinic without any selection.

2.2 Image Segmentation

Fig. 1. Overview of the two-stage segmentation method. In the first stage, the method
uses bSSFP images and U-net to obtain the prior constraint. The ouput is cropped to
the size of 128 × 128 based on it. The input in the second stage is the prior constraint
concatenated with LGE and T2 images. The attention-based M-shaped network is used
to segment the myocardial scars and edema.

In order to facilitate training, we crop images into the size of 256×256 uniformly
as the sizes for each case are different, and to ensure the heart is roughly at the
center of the image. Due to the low proportion of the myocardial edema and
myocardial scars region in images, as the labels provided are non-overlapping,
the labels of LV normal myocardium (200), LV myocardial edema (1220) and
LV myocardial scars (2221) are combined as the approximate labels of the entire
LV myocardial tissue in the first stage, see Fig. 2 (Fig. 1).

Fig. 2. Combination of the labels in stage 1. The labels of LV normal myocardium
(200), LV myocardial edema (1220) and LV myocardial scars (2221) are set to 1 and
other pixels are set to 0.
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Fig. 3. Overview of the M-shaped segmentation network. The number in the boxes
corresponds to the number of channels of the block.

In the first stage, a U-net is trained with the bSSFP images and the approx-
imate myocardial labels to obtain the position of the myocardium roughly. By
combining three classes into one, the errors from the class-imbalance problem
can be alleviated. Furthermore, the predicted label of the myocardium is taken
as the prior constraint, which becomes part of the input in the second stage.

According to the center of the predicted myocardial mask, the images are re-
cropped to the size of 128×128, because the myocardium is a circular tissue. Even
with the same sequence, the data range of the cases for different patients varies
greatly, so histogram equalization and random gamma technique are applied for
the cropped images to balance the data distribution after setting the window
level and the window width uniformly. Furthermore, the common data augmen-
tation strategies including random rotation, random crop and random scaling
are utilized for training data.

In the second stage, the input data is stacked by T2 images, LGE images and
the myocardium labels obtained in the first stage. Inspired by [2], our network
is expanded on the basis of U-net, consisting of a side-input path, adandan U-
shape backbone network, and a side-output layer. The U-shaped convolutional
network is employed as the main body structure consisting of contracting blocks,
expanding blocks and bottleneck blocks, shown in Fig. 3. In each block, the
convolution module consists of a convolutional layer with filter size of 3 × 3 and
L1 regularization, a Rectifier Linear Unit (ReLU) layer and a spatial dropout
layer to prevent the overfitting.

In the contracting path, the contracting block is a structure that combines the
channel attention module from convolutional block attention module (CBAM)
[9] and the residual connection [3]. Figure 4. displays the structure of the con-
tracting block. In the channel attention module, two different spatial context
descriptors are obtained to compress the feature map in spatial dimensions by
using maximum pooling and average pooling. Composed of multi-layer percep-
tron (MLP), the shared network is used to calculate the two different spatial
context descriptors to obtain the channel attention map. The channel attention
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Fig. 4. Structure of the contracting block.

map is multiplied by the input of the channel attention module, added to the
output of the first convolutional layer of the contracting block to form a residual
structure, and followed by a convolutional layer. The convolution layer in the
contracting block is replaced by the separable convolution layer to better extract
the features. In addition, in the final of the contracting block, the convolution
layer with the stride of 2 is utilized to down-sample the feature maps.

Fig. 5. Structure of the expanding block.

Figure 5 illustrates the structure of the expanding block which is similar to
the contracting block, except the spatial attention module from CBAM and the
up-sampling layer for output. Different from channel attention, spatial attention
mainly focuses on location information. In order to calculate spatial attention,
maximum pooling and average pooling are adopted in the dimension of the
channel to obtain two different feature maps, after which they are concatenated
and convolved by a convolutional layer.

The bottle-neck block takes advantages of the full CBAM block and residual
connections, which can learn the hierarchical representation and extract infor-
mative features (see Fig. 6.).

The architecture includes skip connections between all contracting blocks and
expanding blocks at the same spatial resolution. Therefore, the high-level global
information and low-level details can be combined and taken into account. The
side-input path is an image pyramid by maximum pooling layers with the stride
size of 2 to obtain multi-scale receptive fields. Each layer of side-input path is
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Fig. 6. Structure of the bottle-neck block.

concatenated with the contracting block which has the same spatial resolution.
The side-output path consists of feature maps with the same resolution, which
is up-sampled from different blocks in the expanding path. In this way, while
ensuring the width of the network, the gradient disappearance can be alleviated.
On the other hand, the multi-scale output images can be supervised to obtain
a better segmentation result. The network outputs four classes of segmentation
results after the Softmax activation layer: the myocardial scars, the myocardial
edema, the normal myocardium and background.

To train the network, we employ a composite loss function Lseg that consists
of two loss terms: Lseg = LFDL + λLmse. As the extreme class imbalance exists
among different labels, we use the focal dice loss LFDL as the first term in [8]:

LFDL =
∑

t

wt(1 − Dice
1/β
t )

where w indicates the weight for each class t, and the factor 1/β represents the
power of Dicet for each class. Dice coefficient is a measure of the similarity
between the prediction and ground truth, which is defined as follows:

Dicet =
2|Pt ∩ Gt|
Pt + Gt

where P and G represent the predicted labels and ground truth respectively. The
classes that are difficult to segment can get higher weights in the segmentation
process, so the network can focus on the learning of the more difficult classes.
We set w = {1, 1, 1, 0.5} for the four classes respectively and β = 2. The second
term Lmse is adopted to optimize the edge of the H ×W predicted segmentation
results and labels:

Lmse =
1

H × W

H∑

i=1

W∑

j=1

(Pt(i, j) − Gt(i, j))2

We set λ = 100 to balance the contribution of the two losses according our
experience.
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3 Experiments and Results

3.1 Experimental Configuration

Our network was implemented with Python based on TensorFlow. The training
set and the validation set were divided on the public dataset at a ratio of 4:1.
During the training, we used Adam as the optimizer with a learning rate start-
ing from 3e−4 and a momentum of 0.5. The batch size was set to 20. A fixed
threshold 0.5 was employed to get a binary mask from the probability map. The
U-net in the first stage was trained for 600 epochs and the M-shaped network
in the second stage was trained for 800 epochs on an NVIDIA TITAN V GPU.

3.2 Performance Evaluation and Analysis

Network Structure. In order to define the best trained framework for the seg-
mentation of myocardial scars and edema, we compared various structures in the
second stage: (1) a single U-net, (2) a U-shape backbone network (our M-shaped
network without the side input/output path), (3) an M-shaped network (Our
M-shaped network without attention mechanism) and (4) an M-shaped network
+ CBAM (our method). In terms of Table 1, it is obvious that in the validation
set of 5 patients, our method leads to the best segmentation, achieving the dice
score of 0.638 ± 0.097 for myocardial scars and 0.561 ± 0.103 for myocardial
scars+edema.

Table 1. Average and standard deviation for the Dice score of different structures on
validation set of 5 patients.

scars scars+edema

avg. std. avg. std.

U-net 0.560 0.132 0.413 0.156

M-shaped network 0.571 0.142 0.512 0.068

U-shaped network+CBAM 0.607 0.133 0.549 0.079

M-shaped network+CBAM 0.638 0.097 0.561 0.103

Figure 7 presents the results of different structures. By the comparison of
(1) and (2), we know that the residual connection can improve the accuracy of
segmentation to a certain extent. The comparison of (2) and (4) proves that
CBAM block can improve the Dice score for the myocardial scars by ∼12%. The
comparison of (3) and (4) shows that the network performs better in details
with the side-input/output path. Finally, the comparison between (1) and (4)
reveals that, combined with the attention mechanism and the side-input/output
path, the residual structure plays an important role in the improvement of the
segmentation performance.



Two-Stage Method for Segmentation of Multi-sequence CMR 33

Fig. 7. The segmentation results of an example by using different structures. The
leftmost column are the input slices. Each column on the right has four classes seg-
mentation results, corresponding to different structures.

Prior Constraint. In order to prove the validity of the prior constraints, we
designed experiments for the training process and the inference process respec-
tively.

In the training process, we compared different input combinations: (1)
T2+LGE, (2) bSSFP+T2+LGE, and (3) the mask of myocardium+T2+LGE.
The different combinations were trained by the method in the second stage.

Fig. 8. Examples of segmentation results by adopting different input combinations in
the training process. The top row exhibits three different combinations: (1) T2+LGE,
(2) bSSFP+T2+LGE, and (3) the mask of myocardium+T2+LGE. Each column below
is four classes segmentation results corresponding to different combinations.



34 Y. Liu et al.

Table 2. Average and standard deviation for the Dice score of difference input com-
binations on test set of 20 patients.

scars scars+edema

avg. std. avg. std.

T2+LGE 0.516 0.246 0.527 0.199

bSSFP+T2+LGE 0.553 0.277 0.604 0.165

mask+T2+LGE 0.570 0.283 0.634 0.164

Table 2 and Fig. 8 indicate the relationship between input and output. From
the experimental results, it is clear that when the input combination is the mask
of myocardium+T2+LGE, we can obtain the best segmentation results. The
boundary information of the myocardial region provided by the bSSFP images
is significant, but the role is limited without the extraction of information from
bSSFP images.

In the inference process, the trained network in the second stage was used
to evaluate the effectiveness of the constraint by changing the channel of the
constraint on the basis of the unchanged T2 and LGE channels: (1) all black (all
pixels are 0), (2) all white (all pixels are 1), (3) an example of a bad myocardium
mask, (4) another example of a bad myocardium mask, and (5) an example of a
good myocardium mask (Fig. 9).

Fig. 9. Examples of segmentation results using different input combinations in
the inference process. The top row displays five different combinations: (1) all
black+T2+LGE, (2) all white+T2+LGE, (3) a bad mask+T2+LGE, (4) another bad
mask+T2+LGE, and (5) a good mask+T2+LGE. Each column below has four classes
segmentation results corresponding to different combinations.
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The experimental results illustrate that the constraints have a great influence
on the output of the network. The segmentation results in each part of the
myocardium are closely related to the input constraint information. When the
pixels of the constraint channel are all 0, neither myocardial scar nor edema has
an output, indicating that they are restrained. When the pixels of the constraint
channel are all 1, the output of the network is messy, which proves that the
prediction of myocardial scars and edema is constrained by shape at the same
time. The examples of bad masks can also support this point.

4 Conclusion

This paper proposed a two-stage segmentation method for the myocardial scars
and edema on multi-sequence CMR that includes two networks. In the first stage,
a U-net is applied to extract the entire myocardial part to obtain the prior con-
straint. In the second stage, an M-shaped segmentation network based on the
attention mechanism and residual connection is adopted, which can improve seg-
mentation accuracy of myocardial scars and edema. The method utilizes different
characteristics of each sequence of CMR through different stages, and integrates
the prior constraint of myocardium into the training process to achieve the bet-
ter segmentation results. The method achieves a Dice score of 0.570 ± 0.283 for
myocardial scars and 0.634 ± 0.164 for myocardial scars+edema on the test set
of MyoPS20.
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Abstract. Multi-sequence of cardiac magnetic resonance (CMR) images
can provide complementary information for myocardial pathology (scar
and edema). However, it is still challenging to fuse these underlying infor-
mation for pathology segmentation effectively. This work presents an
automatic cascade pathology segmentation framework based on multi-
modality CMR images. It mainly consists of two neural networks: an
anatomical structure segmentation network (ASSN) and a pathologi-
cal region segmentation network (PRSN). Specifically, the ASSN aims
to segment the anatomical structure where the pathology may exist,
and it can provide a spatial prior for the pathological region segmen-
tation. In addition, we integrate a denoising auto-encoder (DAE) into
the ASSN to generate segmentation results with plausible shapes. The
PRSN is designed to segment pathological region based on the result of
ASSN, in which a fusion block based on channel attention is proposed to
better aggregate multi-modality information from multi-modality CMR
images. Experiments from the MyoPS2020 challenge dataset show that
our framework can achieve promising performance for myocardial scar
and edema segmentation.

Keywords: Myocardial pathology · Multi-sequence CMR ·
Segmentation

1 Introduction

Myocardial infarction (MI) is one of the most dangerous cardiovascular diseases
in worldwide. The severity of MI depends on the assessment of the myocar-
dial scar and edema [3]. Accurate delineation of these pathological regions from
cardiac magnetic resonance (CMR) can provide important advancements for
the prediction and management of MI patients [5]. Since manual delineation
is generally time-consuming, tedious and subject to inter-observer variations,
the automatic segmentation approach has gradually attracted more attention of
research.
c© Springer Nature Switzerland AG 2020
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Conventional myocardial pathology segmentation methods are mainly based
on intensity thresholding, such as the signal threshold to reference mean (STRM)
[6], region growing (RG) [1] and full-width at half-maximum (FWHM) [2]. How-
ever, the thresholding methods could be easily affected by the image noise, and
have poor agreement with expert delineations [9,16]. Recently, learning-based
methods have achieved promising performance in different pathology segmen-
tation tasks, such as brain tumor [10] and liver lesion [15]. For pathology seg-
mentation on left atrium (LA) myocardium, Yang et al. presented a super-pixel
scar segmentation method using support vector machine (SVM) [11]. Li et al.
proposed a fully automated scar segmentation method based on the graph-cuts
framework, where the potentials of the graph are estimated via deep neural net-
work (DNN) [8]. Futhermore, Li et al. designed a multi-task learning network
to joint perform LA segmentation and LA scars quantification, in which the LA
boundary is extracted as spatial attention for the scars [7]. For pathology seg-
mentation on left ventricular (LV) myocardium, Zabihollahy et al. proposed a
CNN-based method to segment scar from late gadolinium enhancement (LGE)
MRIs [14]. However, their method relies on the manual delineation of the LV
myocardium region. To achieve a fully automatic scar segmentation method,
they further developed a multi-planar network to segment LV myocardium [13].

At present, most DNN-based myocardial pathology segmentation methods
are focus on mono-modality CMR, such as LGE. But multi-modality CMR can
provide different enhanced-information of the whole heart. For instance, the
balanced-Steady State Free Precession (bSSFP) cine sequence can present a clear
myocardial boundary, while the LGE and T2-weighted CMR can highlight the
scar and edema regions, respectively [19,20]. Being aware that the complemen-
tary information is helpful for myocardial pathology segmentation. We design a
cascade multi-modality pathology segmentation framework. Figure 1 shows the
overview of the framework. The framework decomposes the pathology segmen-
tation task into two sub-stages, i.e. the anatomical structure segmentation stage
and the pathological region segmentation stage. The main contributions of our
work are:

(1) we propose a fully automatic pathology segmentation framework, and vali-
date it using the MyoPS2020 challenge dataset 1.

(2) we present an anatomical structure segmentation network, where a denoising
auto-encoder (DAE) is adopted to reconstruct the segmentation results with
realistic shapes.

(3) we propose a pathological region segmentation network, in which a channel
attention based fusion block is designed to adaptively fuse complementary
information of multi-modality CMR images for pathology segmentation.

1 http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/MyoPS20/.

http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/MyoPS20/
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Fig. 1. The architecture of the multi-modality pathology segmentation framework.
Given multi-modality CMR (bSSFP, T2, DE) images, the ASSN first obtains a candi-
date anatomical structure, where the pathology may exist. Then, the PRSN predicts
the final scar and edema regions within the candidate structure.

2 Method

2.1 Anatomical Structure Segmentation Network (ASSN)

The ASSN is designed to obtain a candidate anatomical structure from CMR
images. In the myocardial pathology segmentation task, we designate the candi-
date structure as the LV epicardial region, where the scar and edema may exist.
Figure 2 shows the architecture of the ASSN. It mainly includes three individual
encoders and one shared decoder. Each encoder can obtain underlying anatom-
ical feature from CMR, while the decoder can fuse the obtained features, and
predicts a pixel-level LV mask.

Given a multi-modality CMR images I = (IbSSFP , ILGE , IT2), the ASSN
aims to learn a mapping fθ from I to a binary mask. Therefore, the network can
be trained under supervised manner, and the loss function is

Lossseg = Dice(fθ(I), Llv) (1)

where the Llv is the golden standard of the LV, Dice(A,B) refers to the Dice
score of A and B. Thus, the candidate anatomical structure C = (CbSSPF ,
CLGE , CT2) can be extracted as

CbSSFP = IbSSFP ⊗ fθ(I), (2)

CLGE = ILEG ⊗ fθ(I), (3)

CT2 = IT2 ⊗ fθ(I), (4)

where ⊗ is element-wise multiplication.
Generally, the ASSN performs pixel-wise classification based on processing

the intensity value of I. However, the pathology usually leads to abnormal inten-
sity distribution in CMR images. For instance, LGE visualizes the scars as
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Fig. 2. The architecture of the ASSN. The auxiliary DAE is adopted to suppress the
influence of the pathology region and generate results with plausible shape.

brighter texture, in contrast to the dark healthy myocardium [21]. Therefore,
the segmentation results could be easily affected. To tackle this, we adopt a
DAE to refine the segmentation results with realistic shapes [12].

A DAE usually follows an encoder-decoder (E-D) architecture. Let the L̈
denotes the noisy version of the Lgd, the DAE aims to map the L̈ to a lower-
dimension representation h, from which the Lgd can be reconstructed. It can be
trained to minimize the reconstruction error of the input

LossDAE = ‖D(E(L̈)) − Lgd‖2, (5)

where E(L̈) is a compact representation of L̈, D(E(L̈)) is a reconstruction of
Lgd. Regarding the original segmentation result fθ(I) as a noisy version of the
golden standard label, we integrate the DAE into the ASSN to reconstruct the
original result into a plausible one. So that, the final loss function of the ASSN
is defined as

LossASSN = Lossseg + βDice(D(E(fθ(I))), Llv), (6)

where β is the balance coefficient between the Dice loss and reconstruction loss.



Multi-modality Pathology Segmentation Framework 41

Fig. 3. The architecture of PRSN. It contains four sub-branches BbSSFP , BLEG, BT2,
BMain. We set up to segment the myocardium in BbSSFP ; the scars and normal
myocardium in BLEG; the edema and normal myocardium in BT2; the scars, edema
and normal myocardium in BMain.

2.2 Pathological Region Segmentation Network (PRSN)

In the pathological region segmentation network (PRSN), complementary infor-
mation from C = (CbSSPF , CLGE , CT2) are expected to be fused and boost
the pathology segmentation performance. Figure 3 shows the architecture of
PRSN. We construct three DNN branches (BbSSPF , BLGE , BT2) to capture
multi-modality information from each candidate region. Specifically, the BLEG

and BT2 mainly aim to acquire pathology (scar and edema) features from CLGE

and CT2. Meanwhile, the BbSSFP is intent to obtain myocardium features from
CbSSPF . Due to most of the scar and edema are scatted in the myocardium,
the myocardium features can provide spatial prior information for the pathology
regions. Therefore, the cost functions of three DNN branches are

LossbSSFP = Dice(LbSSFP , L̂bSSFP ), (7)

LossLGE = Dice(LLGE , L̂LGE), (8)

LossT2 = Dice(LT2, L̂T2), (9)

where LbSSFP (LLGE , LT2) and L̂bSSFP (L̂LGE , L̂T2) are corresponding gold
standard and predicted label of BbSSPF (BLEG, BT2) branch, respectively.
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Fig. 4. The channel-wise fusion block

Having the three sub-branches constructed, the potential features from them
are need be fused and propagated to a main-branch BMain for pathology seg-
menting. At present, the most popular feature fusion strategies include sum-
mation, product and maximization. However, they still suffer from the lack of
robustness in different tasks [17]. As shown in the Fig. 4, we propose a multi-
modality channel-attention fusion block (CAFB) for adaptively weighted feature
fusion of different modalities in BMain.

Suppose we have three feature maps (FbSSFP , FLGE , FT2) from sub-branches
and one previous output FMain of the main-branch, the CAFB first merges
these feature maps to obtain an concatenated feature Zconcat. Since Zconcat

aggregates all feature maps from (BbSSFP , BLEG, BT2), it easily suffers from the
information redundancy. Due to the channel-attention (CA) [4] can emphasize
informative features and suppress less useful ones, the block adopts it to performs
channel-wise feature re-calibration on Zconcate. So That, the output of CAFB
(ZCAFB) is

ZCA = δ(W2σ(W1Avg(Zconcat)), (10)

ZCAFB = σ(W3(ZCA ⊗ Zconcat)), (11)

where σ, δ and Avg refer to Relu, Sigmoid and average pooling function, respec-
tively; and W1, W2 and W3 are parameters of different convolution layers. Here,
ZCA is the channel-wise attention weight, with which the original Zconcat can be
re-calibrated and achieve better representation of multi-modality information.

Furthermore, we apply the CAFB in different hierarchies of the BMain (see
BMain in Fig. 3). Thus, the BMain can capture multi-scale multi-modality fea-
tures for pathology segmentation. The training loss of the BMain can be defined
as

LossMain = Dice(LMain, L̂Main), (12)
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where LMain and L̂Main are the gold standard and predicted label of BMain,
respectively. Note that the BMain jointly performs scar, edema and normal
myocardium segmentation. Finally, the overall loss function of the PRSN is

LossPRSN = LossMain + λbSSFP LossbSSFP + λLGELossLEG + λT2LossT2,
(13)

where λbSSFP , λLGE and λT2 are hyper-parameters.

3 Experiment

3.1 Dataset

The framework was trained and evaluated in the MyoPS2020 challenge data
set which contains 25 labelled and 20 unlabelled multi-sequence CMR (bSSFP,
LGE, T2) images. All published data has been aligned in a common space and
resampled with the same spatial resolution. In our experiments, we randomly
selected 20 labelled images for network training, while leaving the rest of 5
labelled samples for validation, and the final performance of the framework was
evaluated on the 20 unlabelled images.

3.2 Implementations

We trained our models by extracting 2D slices from multi-sequence CMR images.
Each slice was cropped and resized to 128×128 pixels which are roughly centering
at the heart region. All of the models (DAE, ASSN and PRSN) were implemented
in Python and optimized by using the Adam algorithm.

For the DAE: In each training iteration, we generated L̈ by randomly adding
noise to a gold standard label L. Having a pair of (L, L̈) prepared, the DAE can
be trained via minimizing the reconstruction loss LossDAE (see Eq. 5).

For the ASSN: The pre-trained DAE was adopted to perform shape recon-
struction. In each training iteration, the sample I = (IbSSFP , ILGE , IT2, L) was
feed into the network. By setting the β to 0.2 in LASSN (see Eq. 6), the trainable
loss can be calculated and back-propagated to optimize the parameters of ASSN.

For the PRSN: We first extracted C = (CbSSPF , CLGE , CT2) and their cor-
responding label (LbSSPF , LLGE , LT2) from the training data. Then, the hyper-
parameter λbSSFP , λLGE and λT2 were set to 0.3, 0.5 and 0.5, respectively (see
Eq. 13). Finally, the network can be trained by minimizing the LossPRSN .

3.3 Results

ASSN: To evaluate the performance of the ASSN, the Dice score and Hausdorff
distance between the predicted label and gold standard label were calculated.
Table 1 shows the performance of three different methods:

– Unet-bSSFP: The Unet which is trained by using bSSFP images. We imple-
mented this method because the bSSFP can provide a relatively clear bound-
ary of the LV.
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– ASSN-WO-DAE: Our ASSN network but without DAE.
– ASSN: Our proposed anatomical structure segmentation network.

Compared to Unet-bSSFP, the methods (ASSN-WO-DAE and ASSN) using
multi-modality CMRs can achieve better performance in both terms of Dice score
and Hausdorff distance. Additionally, although the ASSN-WO-DAE obtained
comparable result to ASSN in term of the Dice score, the ASSN still achieved
almost 5 mm improvement in the Hausdorff distance. Moreover, Fig. 5 presents
a series of visual results. One can see the results of Unet-bSSFP and ASSN-WO-
DAE were easily affected by the quality of CMRs, while our ASSN can generate
results with plausible shape. This demonstrates the benefit of integrating DAE
to the segmentation network.

Table 1. Dice score and Hausdorff of the proposed method and other baseline methods
on the validation set.

Method Dice (%) Hausdorff (mm)

Unet-bSSFP 93.77 ± 2.55 10.72 ± 9.02

ASSN-WO-DAE 96.21 ± 3.28 8.25 ± 9.06

ASSN 96.99 ± 1.49 3.04 ± 0.76

Fig. 5. Comparison of the proposed method and other baseline methods. Image of (a)
is a normal case, where all three methods can achieve a reasonable segmentation result.
However, the image of (b) and (c) are challenging cases, where both Unet-bSSFP and
ASSN-WO-DAE failed to generate realistic results but the proposed ASSN method
showed good robustness.
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PRSN: The performance of the PRSN is evaluated by the Dice score of scar
and scar + edema region. Table 2 shows seven different segmentation methods
based on our extracted LV.

– Unet-scar: Unet which is trained on CLGE datas for scar segmentation.
– Unet-edema: Unet which is trained on CT2 datas for edema segmentation.
– PRSN-BT2: The BT2 branch of PRSN.
– PRSN-BLGE : The BLGE branch of PRSN.
– Fusion-Unet: Unet which is implemented by using input-level fusion strategy

[18].
– MFB-PRSN: PRSN which is implemented by using MFB (summation-

product-maximization) fusion strategy in BMain [17].
– PRSN: Our proposed pathological region segmentation network.

Among these methods, the Unet-scar, Unet-edema, PRSN-BT2 and PRSN-BLGE

can be considered as the mono-modality methods, while the MFB-PRSN, Fusion-
Unet and PRSN are multi-modality methods. Overall, the multi-modality meth-
ods achieved better results than the mono-modality methods in scar segmenta-
tion. This reveals the advantage of using multi-modality images for pathology
segmentation. Meanwhile, compared to MFB-PRSN which uses the summation-
product-maximization fusion strategy for feature fusion, our PRSN achieved
almost 4% and 3% improvement in scar and scar + edema region, respectively.
This indicates the advantage of our proposed CAFB. In addition, Fig. 6 demon-
strates visual results of different methods.

Table 2. Dice scores of the proposed method and other baseline methods on the testing
set. N/A indicates the segmentation result was not provided

Method scar (%) edema (%)

Unet-edema N/A 61.42 ± 11.86

Unet-scar 56.38 ± 23.36 N/A

PRSN-BT2 N/A 64.37 ± 11.25

PRSN-BLGE 55.65 ± 24.97 N/A

scar (%) scar + edema (%)

Fusion-Unet 57.50 ± 23.09 66.61 ± 12.79

MFB-PRSN 59.56 ± 25.18 68.59 ± 12.33

PRSN 64.09 ± 25.96 70.24 ± 12.98
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Fig. 6. Visualization of the pathology segmentation results. The DiceS , DiceE and
DiceS+E refer to the Dice score of predicted scar (blue), edema (green) and scar +
edema region, respectively. Image of (a) is an easy case, while the image of (b) is a more
challenging one. (The reader is referred to the colourful web version of this article.)
(Color figure online)

4 Conclusion

In this work, we proposed a cascade multi-modality pathology segmentation
framework. It has been evaluated on scar and edema segmentation of CMR
images. The experimental results show our CAFB is capable in fusing comple-
mentary information from multi-sequence CMRs to boost the pathology seg-
mentation performance. Besides, we present the advantage of using DAE to
reconstruct the segmentation result with plausible shape. Future research aims
to investigate the performance of the framework on other pathological datasets.
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Abstract. In this work, we implement a deep learning-based segmen-
tation algorithm that can automatically segment left ventricular (LV)
blood pool, right ventricular (RV) blood pool, LV normal myocardium,
LV myocardial edema and LV myocardial scar from multi-sequence Car-
diac Magnetic Resonance (CMR) images. Since the edema and scar
region is very small, we adapt a coarse-to-fine segmentation strategy
that contains two segmentation neural networks. Firstly, we use a coarse
segmentation model to predict the cardiac structure area especially
the myocardium part where the scar and edema regions distribute.
Then we use the fine segmentation model to get a detailed predic-
tion for edema and scar regions. Finally, we apply a weighted ensemble
model to integrate the prediction from 2D and 2.5D networks. Our pro-
posed framework achieves an average Dice score of 0.64 for LV myocar-
dial scar and 0.41 for LV myocardial edema on 5-fold cross valida-
tion dataset from myocardial pathology segmentation combining multi-
sequence CMR(MyoPS) challenge, while achieving an average Dice score
of 0.67 and 0.73 in LV myocardial scar and the union of scar and edema
on test set, respectively.

Keywords: Multi-sequence CMR segmentation · Coarse-to-fine ·
Weighted ensemble

1 Introduction

Assessment of myocardial viability is essential in the diagnosis and treatment
management for patients suffering from myocardial disease [13]. Cardiac mag-
netic resonance (CMR) is particularly used to provide imaging anatomical and
functional information of heart, such as the late gadolinium enhancement (LGE)
CMR sequence which visualizes myocardial infarction, the T2-weighted CMR
which images the acute injury and ischemic regions, and the balanced Steady
State Free Precession (bSSFP) cine sequence which captures cardiac motions
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and presents clear boundaries. Hence, cardiac segmentation combining multi-
sequence (CMR) which highlights myocardial scar tissue is of great clinical
importance, enabling quantitative measurements useful for treatment planning
and patient management.

In clinical practice, the myocardium will be classified into normal, scar and
edema regions, which is important for the diagnosis and treatment management
of patients. This is still an arduous task because manual delineation is gener-
ally time-consuming, tedious and subject to inter- and intra-observer variations.
Therefore, it is highly desirable to develop an automatic segmentation method in
clinical practice. However, segmenting normal region, scar and edema regions is
a challenging task due to the fact that 1) the scar and edema regions occupy very
tiny area with various locations distributed on the myocardium. 2) the scar and
edema regions are hard to be distinguished in all three sequences images [12].
As shown in Fig. 1, the border between myocardial scar and normal regions is
blurry on balanced steady-state free precession (bSSFP) and T2 CMR images,
while reluctantly can be delineated on LGE images. Moreover, the region of
myocardial edema is hard to be distinguished in T2 and LGE images, while is
barely seen in bSSFP images.

Ground truth bSSFP LGE T2

LV myocardial scars LV myocardial edema

Fig. 1. Visualization comparison of LV myocardial edema and LV myocardial scar on
three sequences of CMR images. The first column is the bSSFP CMR images overlapped
with annotations that blue area refers to edema and the red area refers to scar. The
green arrows point to the myocardial edema in three sequences of CMR images. (Color
figure online)

In the literature, myocardial scar and edema segmentation tasks are under-
studied until now. Eranga et al. [7] set a continuous max-flow (CMF) optimiza-
tion problem to tackle myocardial infarction segmentation. Compared with tradi-
tional algorithms, deep convolutional neural networks (CNN) can automatically
detects the important features without any human supervision and is also com-
putationally efficient, which mostly are end-to-end methods to directly gain the
final results [5]. Recently, a deep neural network method was proposed to segment
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the three cardiac structures (LV blood pool, RV blood pool, and myocardium)
from LGE images, which achieve superior performance [10]. Zabihollahy et al.
[11] introduced a CNN-based algorithm to obtain scar segmentation from LGE
CMR images. Li et al. used a fully automated method based on the graph-cuts
framework [3] and a DNN with spatial encoding and shape attention [4] to seg-
ment the left atrial and quantify left atrial scar. However, none of the above
methods is designed for LV edema and scar segmentation which is tricky due
to the small size and fuzzy border. Hence, it is essential to design an automatic
algorithm to segment scar and edema regions on myocardium for assessment of
myocardial viability.

In this paper, we propose a deep neural network-based method to perform the
automatic segmentation of myocardial edema and scar by using multi-sequence
CMR images. We present a coarse-to-fine framework, where we first segment the
myocardium and left and right ventricular to get prior location information for
the small scar and edema regions, and then we introduce myocardial prior loca-
tion information to get more detailed segmentation of scar and edema regions.
Our framework mainly consists of two steps:

1) A coarse segmentation network: this network is used for segmenting three
cardiac structures including LV, RV and LV myocardium to get cardiac region
prediction.

2) A fine segmentation network: this network is used for segmenting myocardial
edema and scar regions. The input of this network is a concatenation of three-
sequence CMR images and the predictions of LV, RV and LV myocardium.

There are actually two different architectures at each stage, 2D and 2.5D net-
works, which are of importance to segmentation of different myocardial pathol-
ogy. Ensembling model of 2D and 2.5D networks can take advantage of their own
learned features and boost the performance significantly. Especially we employ
deep supervision for fine segmentation to strengthen connection between loss
functions and feature maps at different scales.

The main contributions of our work are the following: 1) we employ a coarse-
to-fine framework to address small targets with varied shapes and positions. We
first predict the cardiac structure areas and serves as a location prior information
to guide the myocardial scar and edema segmentation. 2) we introduce a novel
ensemble method that train and predict the scar and edema regions in 2 and
2.5 dimensions. Counting for the performance in the two models, we introduce
two weights to better ensemble models’ performance that Dice score for LV
myocardial scar and the whole region of edema and scar on test dataset are 0.67
and 0.73 respectively.

2 Method

Our proposed framework for myocardial edema and scar segmentation can
be summarised as data prepossession, coarse-to-fine segmentation, and model
ensemble. For data prepossession, we crop the original images with cardiac
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bounding box. Because it is hard to segment the myocardial edema and scar
directly, we split this task into two steps: a coarse step of LV myocardium seg-
mentation and a fine step of edema and scar segmentation, as shown in Fig. 2.
For model ensemble, a weighted ensemble method is exploited to get better
prediction for each classes.

Crop and 
Concatenate

Coarse Segmentation

Fine Segmentation

Deep Supervision

Fig. 2. Overview of coarse-to-fine segmentation network. Both loss functions of two
segmentation networks are sum of cross entropy loss and Dice loss.

2.1 Data Preprocessing

In coarse segmentation, due to the imbalance of foreground and background, we
count the coordinate range of the targets in the training data. We expanded 30
voxels along each dimension, and crop the images accordingly (see Fig. 3). In the
fine segmentation, we similarly crop out the targets based on coarse segmentation
results to reduce false positive.

O
rig

in
al

Pr
ep

ro
ce

ss
ed

LV myocardial scarsLV myocardial edema

LV normal myocardium LV ventricular blood pool RV ventricular blood pool

Fig. 3. Examples of bSSFP images overlapped with ground truth of training set. The
first row are original images, and the second row are images after preprocessing which
are cropped out with green bounding boxes. (Color figure online)
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2.2 Coarse Segmentation Network

From Fig. 3, we can see that edema, scar and LV normal myocardium form
complete ring-shaped myocardium that can be used as shape prior information
for edema and scar. In coarse segmentation, we train a vanilla U-Net to segment 4
categories (i.e. background, complete ring-shaped myocardium, left ventricular
(LV) blood pool and right ventricular (RV) blood pool). The input data set
contains three sequences of CMR images: bSSFP, LGE and T2 which we directly
concatenate to form 3-channel input. We use cross entropy loss and Dice loss for
coarse segmentation training.

2.3 Fine Segmentation Network

In the fine segmentation, the input images are cropped according to coarse pre-
dictions, and then we concatenate the coarse segmentation map and the cropped
images to form a 4-channel input to feed into the fine segmentation network. Our
fine segmentation network’s architecture is a variant of U-Net [6], as presented
in Fig. 4, where we add instance normalization (IN) and leaky rectified linear
unit (Leaky ReLU) following every convolution layer.

4 32

Conv2d, stride 1

Conv2d, stride 2
Transposed Conv2d, stride 2
Concatenation

64

32

64

128 128

256 256

480 480

480 480

480480

256 256

480 480

256 256

128 128 128 128

64 64 64 64

3232 32 32 6

6

6

6

Down Sample /2

L1

L2

L3

L4

Conv2d/Conv3d, stride 1

Fig. 4. Fine segmentation network architecture. When pink arrows are implemented
as 2D convolutions, the network is a 2D U-Net, and when they are implemented as 3D
convolutions, the network is a 2.5D U-Net. (Color figure online)

2.5D U-Net can encode the in-plane and through-plane information while 2D
U-Net will ignore through-plane correlation [9], so 2.5D U-Net deal with CMR
images with anisotropic resolution better than 2D U-Net.

For network training, we employ deep supervision by downsampling ground
truth to 4 scales to supervise correlated scale feature maps [2]. The fine seg-
mentation network combines deep supervision which acts as a regularization to
overcome overfitting on this small data set. The overall loss function is formu-
lated as:

L =
1L1 + 0.5L2 + 0.25L3 + 0.125L4

1 + 0.5 + 0.25 + 0.125
,
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where L1, L2, L3 and L4 are loss functions (i.e. sum of cross entropy loss and Dice
loss) for multiple scales. By combining the cropped images that contains texture
information and the coarse segmentation that contains shape prior information,
the coarse-to-fine network can produce more accurate segmentation.

2.4 Weighted Ensemble

To sufficiently exploit 2D and 2.5D networks’ performance advantage, we use a
weighted ensemble strategy as shown in Fig. 5, where the prediction maps have
6 channels, and each channel represents one segmentation target. Let Pc

output,
Pc

2D and Pc
2.5D denote the channel c of output maps, the channel c of prediction

maps of 2D U-Net and 2.5D U-Net respectively. Let w2D
c and w2.5D

c denote
the weights of channel c of 2D U-Net and 2.5D U-Net. Our weighted ensemble
method can be expressed as:

Pc
output = wc

2DPc
2D + wc

2.5DPc
2.5D, c ∈ {1, 2, 3, 4, 5, 6} .

In Fig. 5, the weights for edema(w2D
5 = 0.8, w2.5D

5 = 0.2) and scar
channels(w2D

6 = 0.2, w2.5D
6 = 0.8) are different while the weights for other

channels are the same. So the edema channel of output is dominated by 2D U-
Net that has better performance on edema segmentation than 2.5D U-Net, and
similarly the scar channel of output is dominated by 2.5D U-Net.

2D U-Net

2.5D U-Net

softmax

softmax

weights for targets

weights for targets

output

background
LV normal myocardium
LV blood pool
RV blood pool
LV myocardial edema
LV myocardial scars

prediction maps

prediction maps

Fig. 5. Weighted ensemble strategy that we use different weights for the channels rep-
resenting edema and scar of 2D U-Net and 2.5D U-Net, where different color represents
different segmentation targets.

3 Experiments and Results

3.1 Data and Implementation

There are 45 cases of multi-sequence CMR (25 cases for training and 20 cases
for testing), each of which refers to a patient with three sequence CMR,
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i.e., LGE, T2 and bSSFP CMR. The data have been pre-processed using the
MvMM method [12,13], to align the three-sequence CMR into a common space
and to resample them into the same spatial resolution. In our experiments we
used 5-fold cross validation and calculated the average Dice score, 20 cases for
training and 5 cases for validation in each fold. Dice score for every case is defined
as follow:

Dicec =
2
∑

i Pc,i
one−hotGc,i

one−hot + ε
∑

i(Pc,i
one−hot + Gc,i

one−hot) + ε
, c ∈ {1, 2, 3, 4, 5, 6} ,

where Pc,i
one−hot and Gc,i

one−hot denote the values for voxel i of channel c of
one-hot output and ground truth, and ε is a small number for numerical stability.
We implemented the coarse segmentation network by PyMIC, a PyTorch library
provided for medical image segmentation1 [8], and trained the model on an
NVIDIA GeForce RTX 2080 Ti with 11 GB RAM. The data augmentation before
fine segmentation network was implemented using nnU-Net2 [1].

3.2 Results

Loss Functions. We first compared several loss functions for the 2D fine seg-
mentation network and the results are presented in Table 1.

Table 1. Dice scores of different loss functions on 5-fold validation dataset.

Loss Dice

Edema scar Average

Dice Loss 0.3109 0.6140 0.4625

Cross Entropy Loss 0.3974 0.6053 0.5014

CE Loss + Dice Loss 0.4124 0.6071 0.5098

We can see that Dice loss is not as good as cross entropy loss for this task,
especially for edema due to its small size. Combining the two loss functions can
improve the performance obviously, which increase the edema segmentation Dice
from 0.31 to 0.41 compared with only using Dice loss. The average Dice for the
edema and scar is 0.51.

Coarse-to-Fine Strategy. In order to verify the effectiveness of our coarse-
to-fine method, we compared it with the one-stage segmentation method (i.e.,
directly segmenting the edema and scar). Besides, we conducted ablation

1 https://github.com/HiLab-git/PyMIC.
2 https://github.com/MIC-DKFZ/nnU-Net.

https://github.com/HiLab-git/PyMIC
https://github.com/MIC-DKFZ/nnU-Net
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experiments on deep supervision and 2.5D networks, and the result is shown
in Table 2. Finally, we adopt weighted ensemble to integrate advantages of two
models. Qualitative results of our proposed method are shown in Fig. 6.

Table 2. Experimental results on validation set with different strategies. Coarse-to-
fine means using two-stage network. Coarse Map means concatenating coarse predicted
map and multi-sequence images before feed into fine segmentation network. DS means
deep supervision.

Coarse-to-fine Coarse Map DS Network Dice

Edema scar Average

� 2D 0.3880 0.5926 0.4903

� � 2D 0.3870 0.6237 0.5054

� � 2D 0.3798 0.6016 0.4907

� � � 2D 0.4124 0.6071 0.5098

� � � 2.5D 0.3602 0.6296 0.4949

One-stage Coarse-to-fine
w/o coarse map

Coarse-to-fine Coarse-to-fine w/ weighted
ensemble (ours)

Ground truth

LV myocardial scarsLV myocardial edemaLV normal myocardium LV ventricular blood pool RV ventricular blood pool

Fig. 6. Two segmentation examples as obtained by using different training combina-
tion, showing the improvement by integrating coarse-to-fine strategy (column two),
coarse map concatenation feeding into fine segmentation network (column three) and
weighted ensemble model (column four). The green arrows point where the prediction
is quite different from ground truth. (Color figure online)

From the first and second rows of Table 2, we find that coarse-to-fine frame-
work significantly improves small target segmentation performance, since the
Dice score for scar is improved from 59.3% to 62.4%. Furthermore, from row
2 and row 4 of Table 2, we find that when feeding the coarse predicted map
into fine segmentation network, the Dice score for edema can achieve at 41.2%,
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increasing over 2% and the average Dice can get the highest at 51.0%. Row 3 and
4 shows that introducing deep supervision can also improve model performance.

Then, we tried weighted ensemble as mentioned in Sect. 2.4. We explored 6
groups of weight value in our experiment and chose the best one as our ensemble
strategy. Simple ensemble (equal weights) is better than using a single model,
as shown in the first three rows in Table 3. When using different weights, the
segmentation accuracy is improved by ∼0.4% on our 5-fold validation dataset.
Finally, we implemented ablation studies on test data as shown in Table 4, from
which we can see that our method boosts the performance compared to single
2D U-Net or 2.5D U-Net. Dice score for scar is 67.2% on test dataset, much
higher than 63.8% on validation dataset, which implies the uneven distribution
of validation and test dataset. And it may be the reason why our method has
almost the same Dice score as simple ensemble on test dataset.

Table 3. Average Dice scores on 5-fold validation dataset with different ensemble
strategies. First two rows are results without ensemble.

Edema weights Scar weights Dice

(2D, 2.5D) (2D, 2.5D) Edema scar Average

2D U-Net 0.4124 0.6070 0.5098

2.5D U-Net 0.3602 0.6292 0.4949

(0.5, 0.5) (0.5, 0.5) 0.4049 0.6370 0.5210

(0.6, 0.4) (0.4, 0.6) 0.4099 0.6391 0.5245

(0.7, 0.3) (0.3, 0.7) 0.4120 0.6383 0.5252

(0.8, 0.2) (0.2, 0.8) 0.4130 0.6376 0.5253

(0.9, 0.1) (0.1, 0.9) 0.4122 0.6362 0.5242

(1.0, 0.0) (0.0, 1.0) 0.4121 0.6354 0.5238

Table 4. Average Dice scores on test dataset.

Network Dice

scar scar + Edema Average

2D U-Net 0.6409 0.6954 0.6682

2.5D U-Net 0.6614 0.7294 0.6954

Simple ensemble 0.6716 0.7322 0.7019

Ours 0.6723 0.7314 0.7019
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4 Discussion and Conclusion

In this paper, we proposed a coarse-to-fine framework to segment myocardial
edema and scar that are very small targets. The coarse-to-fine framework con-
tains two stages. The coarse segmentation framework is to predict three car-
diac structures (LV, RV and myocardium) to get an approximate position of
two small regions because myocardial edema and scar are both distributed on
myocardium. The fine segmentation framework of which input is concatenation
of coarse network output prediction serving as prior location information and
three sequences of CMR images to conduct detailed target prediction. Mean-
while, we used deep supervision to strengthen supervision of each scale feature
maps because the feature information related to our two small targets at each
scale are very important for segmentation. We also introduced a novel weighted
ensemble method that gives a specific weight to 2D and 2.5D fine segmentation
network according to the model’s performance in each class. Our coarse-to-fine
framework shows a great performance on test set, and can extend to other tasks
for small target segmentation.
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Abstract. We tested different loss functions and hyper-parameters using a 2D U-
Net architecture (resnet34 backbone) with five-fold cross-validation on the train-
ing data. Pathology specific sequence data (e.g. LGE for scar and T2 for edema)
was used as a sole input for training and in combination with all sequences. We
wanted to address the question whether for limited training data it is beneficial to
incorporate prior knowledge by predicting classes with their appropriate sequence
or if a neural network is able to infer these relationships from a multi-sequence
dataset. In addition, we aimed to create a model zoo, combining predictions from
models with high performance on individual classes. Images were cropped to the
central 256 × 256 region as this contained the region of interest in all cases.
To improve robustness and learn more general features extensive data augmen-
tation was used, including both MR artifacts (motion, noise) and standard image
transformations (zoom, rotation, brightness, contrast). Variations of training data,
loss functions and hyper-parameters led to 21 models trained. The multi-sequence
model was trained using all image sequences input via color channels producing
pixel-level segmentation for all six classes (background, left ventricle, right ven-
tricle, myocardium, edema, and scar). Cross-entropy as a loss function performed
best (metric: dice) for non-pathologic tissue, while pathology weighted focal-loss
(0.35 for both scar and edema) had best mean performance on scar and edema.

These results indicate that the employed neural networks are capable of learn-
ing multi-sequence segmentation end-to-end. Combining different outputs from a
model zoo further improved segmentation performance.

Keywords: Deep learning · U-Net · Ensemble · Segmentation · Cardiac MRI

1 Introduction

1.1 Background

Cardiac magnetic resonance (CMR) imaging applies methods to investigate cardiac
function and pathologies non-invasively. Different measurement sequences are used to
produce images with different contrast, enabling diagnosis of varying pathologic tissue
alterations. It is common practice to segment the left ventricle and the myocardium to
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assess clinically relevant parameters like ejection fraction, stroke volume and myocar-
dial mass as well as wall motion. Scar volume, as a result of acute myocardial infarction,
has significant prognostic value for outcome prediction and treatment, thus, increasing
the importance of accurate pathology segmentation. In clinical practice, such segmenta-
tions are commonly done semi-automatically. Fully automatic segmentation algorithms
have been proposed using different methods, including artificial neural networks [1, 2].
However, these networks are usually trained on a single sequence and a subset of tis-
sue/pathology classes. For the prediction of multiple pathologic tissue alterations in par-
allel, it might be beneficial to train segmentation networks, which combine information
from multiple sequences.

1.2 Related Work

Neural networks, particularly convolutional neural networks and U-Nets [3] have been
used for segmentation of cardiac magnetic resonance images [1, 4]. Beside healthy
tissue also pathological classes like left ventricular scar [5] or left atrial scar have been
addressed [6, 7]. However, the simultaneous use of multiple sequences and multiple
classes presents a new set of challenges.

2 Experiments

In the MyoPS 2020 challenge, three different sequences (bSSFP, LGE, SPAIR) were
measured for each of 45 patients, providing ground truth segmentation for left ventricular
(LV) blood pool, right ventricular (RV) blood pool, LV myocardium (MY), edema, and
scar for 25 patients. All data was provided aligned (MvMMmethod [8, 9]) in a common
space with identical spatial resolution by the organizers. The aim of the challenge was
to create an algorithm for pixel-wise segmentation of the pathology classes edema and
scar. In this study, we employed variations of individual neural networks as well as a
model ensemble, combining models with high performance on individual morphologic
classes.

The experiments and parameter search were done in Google Colab GPU instances.
For the final training and prediction, we used our local HPC i. 8x Intel(R) Xeon(R) CPU
E5-2630 v3 @ 2.40 GHz ii. 512 GB of memory iii. 1x NVIDIA Tesla K80 with 12 GB
of memory.

3 Methods

3.1 Software

We built our model using open source software including python 3.7.7, pytorch 1.5.1
[10], fastai2 0.0.17 [11], torchio 0.15.5 [12], MONAI 0.2.0, nibabel 3.0.1 [13] as well
as their dependencies. Our model and code is openly available on GitHub and zenodo
(code: https://github.com/chfc-cmi/miccai2020-myops and https://doi.org/10.5281/zen
odo.3982324; models: https://doi.org/10.5281/zenodo.3985837).

https://github.com/chfc-cmi/miccai2020-myops
https://doi.org/10.5281/zenodo.3982324
https://doi.org/10.5281/zenodo.3985837
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3.2 Processing Pipeline and Architecture

We converted all images from nifti to png format saving each slice as one image with
sequences combined as color channels. Additionally, each sequence was saved indepen-
dently as a grey-scale image. We tried normalization of the LGE and T2 images using
contrast limited adaptive histogram equalization (CLAHE) [14]. In this step, in addi-
tion to the original images, transformed images with simulated MR artifacts (motion
and noise) were produced using torchio [12]. These images were used to train U-Nets
[3] with a resnet34 [15] backbone (initialized using ImageNet [16] weights) with fur-
ther augmentations (rotation, brightness, contrast) with fastai2 [4, 11]. Performance of
different hyper-parameter settings were evaluated using dice scores from five-fold cross-
validation. The same split was used for all experiments and every data set was part of
the validation set at least once.

3.3 Hyper-parameter Search

Preliminary Experiments. In preliminary experiments the effect of contrast enhance-
ments using CLAHE as well as cropping vs resizing to 256 × 256 pixels were
tested.

Systematic Experiments. For the general multi-channel/multi-class networks, differ-
ent losses were tested. Cross-entropy loss (ce) was compared to differently weighted
focal loss [17]. We experimented with some classes receiving higher weights (values
used are indicated in parentheses), while the other classes received balanced weights:

• all classes with equal weights (balanced)
• myocardium (0.2, 0.3), edema (0.2, 0.3) and scar (0.2, 0.3), label: multi_pathoMyo
• edema (0.2, 0.35, 0.49) and scar (0.2, 0.35, 0.49), label: multi_patho
• edema (0.2, 0.4, 0.6, 0.8, 0.99), label: multi_edema
• scar (0.2, 0.4, 0.6, 0.8, 0.99), label: multi_scar

Additionally, pathology specific networks (t2_edemaOnly, lge_scarOnly) were
trained on their corresponding sequence only (edema with T2 and scar with LGE) using
two different weightings of the focal loss (0.5 and 0.8). In total 21 networks were trained
this way for 30 epochs (10 epochs frozen, 20 epochs unfrozen) and a base learning rate
of 10−3.

Targeted Experiments. The best performing networks from the systematic experi-
ments were selected based on mean dice score over all cross validations. For LV, RV and
myocardium only the network with the highest dice score was selected. For the pathol-
ogy classes first the network with highest mean dice over both classes was selected,
then for each class the two remaining networks with highest individual dice scores in
the respective class were selected. This way a total of six networks were selected. These
networks were trained for 60 epochs (20 frozen, 40 unfrozen) in order to assess benefits
of prolonged training duration.
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Final Training. For the evaluation on the test set, the six networks from the targeted
experimentswere trained from scratch using all 25 data sets for training and no validation
set. Trainingwas done for 60 epochs (20 frozen, 40 unfrozen), since average performance
was increased with prolonged training duration.

3.4 Ensemble Method

Fig. 1. Probability maps for all classes and derived prediction (second column) for the six net-
works and the ensemble, compared to the ground truth (first column) for a single slice of the
training data. The result of the ensemble method (bottom row) is the mean over the probability
maps of the six separate networks above.
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The networks were trained with different foci, which led to different strengths and
weaknesses. Therefore, we combined predictions from the different networks in a bag-
ging approach. This combination included predictions from all six networks from the
final training. Class probabilities were averaged over all networks, taking into account
that the specialized networks only returned predictions for their respective pathology
class. The final prediction for each pixel was the argmax of these averages (Fig. 1).

4 Results

4.1 Cross-Validation Results on Training Set

Fig. 2. Dice score for edema (top panel) and scar (bottom panel) over the five cross-validation
folds of each of the 21 networks from the systematic parameter search. Naming of models: input
channels (multi, lge, t2), focused classes (scar, edema, patho: scar + edema, pathoMyo: scar +
edema +MY, ce for cross-entropy and balanced have identical weight for all classes) and weight
for those classes as suffix.
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Preliminary experiments indicated that not using CLAHE and cropping to 256 ×
256 pixels yields better results than normalization or resizing. Thus, only cropping was
used in the systematic experiments. In the systematic experiments, the network with
cross-entropy loss reached the best results for LV, RV and myocardium segmentation
with mean values of diceLV = 0.855, diceRV = 0.783 and diceMY = 0.696. The best
mean performance on both pathology classes: mean(diceedema, dicescar) = 0.345 was
achieved using the multi-channel network (multi_patho) with weights of 0.35 for both
pathology classes. Of the remaining networks the highest dice on scar was reached by
themulti-channel network (multi_scar, weight: 0.4) and by the specialized LGE network
(lge_scarOnly, weight 0.8) (Fig. 2), while the specialized T2 network (t2_edemaOnly,
weight: 0.8) and the multi-channel network (multi_edema, weight: 0.4) reached the
highest dice scores for edema (Fig. 2). Longer training improved dice scores for almost
all classes and networks (Fig. 3, Table 1).

Fig. 3. Dice scores throughout training of the six networks from the targeted experiments. Data
for all five cross-validation folds is shown with loess-smoothed lines for each class. The first 20
epochs were trained with frozen weights, the remaining 40 with unfrozen weights.

4.2 Performance on Test Set

Evaluation results on the test set were provided by the challenge organizers for two
models, the multi_patho.35 network and the ensemble method. The ensemble reached
better performance with mean ± standard deviation of dicescar = 0.620 ± 0.240 and
diceedema+scar = 0.665± 0.137 compared to dicescar = 0.593± 0.232 and diceedema+scar
= 0.611± 0.111 for the single network. For all but one patient dice scores for scar were
greater than 0 indicating at least some overlap between truth and prediction.
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Table 1. Mean performance of the targeted experiment networks over the five-fold cross-
validation after 60 epochs of training. Highest dice for each class in bold.

Network diceLV diceMY diceRV diceedema dicescar mean dice
edema, scar

multi_patho.35 0.829 0.649 0.773 0.246 0.441 0.343

multi_scar.4 0.850 0.690 0.779 0.202 0.479 0.341

multi_ce 0.853 0.695 0.787 0.227 0.438 0.333

multi_edema.4 0.843 0.664 0.781 0.261 0.400 0.330

lge_scarOnly.8 – – – – 0.467 –

t2_edemaOnly.8 – – – 0.276 – –

5 Discussion

It is possible to train neural networks both on separate sequences and on multiple
sequences with good performance. For scar the reported dice score is higher than that
achieved by individual observers reported as 0.524 ± 0.158 [9]. Segmentation quality
can be further improved by training a model zoo with focus on different classes and
combining their predictions using a bagging ensemble method. We showed that it is
even possible to combine predictions from networks that were trained on different input
data (channels) with a different set of output channels using averaging. While these
results are promising, further experiments are needed to optimize the hyper-parameters
for this challenging task. Additionally more and diverse training data is needed to train
an algorithm with good performance and to reliably estimate its performance on unseen
data.
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Abstract. Automatic segmentation of multi-sequence (multi-modal)
cardiac MR (CMR) images plays a significant role in diagnosis and
management for a variety of cardiac diseases. However, the performance
of relevant algorithms is significantly affected by the proper fusion of
the multi-modal information. Furthermore, particular diseases, such as
myocardial infarction, display irregular shapes on images and occupy
small regions at random locations. These facts make pathology segmen-
tation of multi-modal CMR images a challenging task. In this paper,
we present the Max-Fusion U-Net that achieves improved pathology
segmentation performance given aligned multi-modal images of LGE,
T2-weighted, and bSSFP modalities. Specifically, modality-specific fea-
tures are extracted by dedicated encoders. Then they are fused with the
pixel-wise maximum operator. Together with the corresponding encod-
ing features, these representations are propagated to decoding layers
with U-Net skip-connections. Furthermore, a spatial-attention module
is applied in the last decoding layer to encourage the network to focus
on those small semantically meaningful pathological regions that trigger
relatively high responses by the network neurons. We also use a simple
image patch extraction strategy to dynamically resample training exam-
ples with varying spacial and batch sizes. With limited GPU memory,
this strategy reduces the imbalance of classes and forces the model to
focus on regions around the interested pathology. It further improves
segmentation accuracy and reduces the mis-classification of pathology.
We evaluate our methods using the Myocardial pathology segmenta-
tion (MyoPS) combining the multi-sequence CMR dataset which involves
three modalities. Extensive experiments demonstrate the effectiveness of
the proposed model which outperforms the related baselines. The code
is available at https://github.com/falconjhc/MFU-Net.
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1 Introduction

Cardiac diseases are typically assessed using multiple cardiac MR (CMR)
sequences (modalities), providing complementary information. For example,
Late Gadolinium Enhancement (LGE) detects myocardial infarct, T2-weighted
(T2) images provide clear visibility of acute injury and ischemic regions, and
balanced-Steady State Free Precession cine sequence (bSSFP) offers high con-
trast between anatomical regions and captures cardiac motion.

Deep learning models have been extensively used for automatic segmenta-
tion of multi-modal data. A critical step for the analysis of multi-modal CMR
data is to effectively fuse information from multiple modalities. Prior works [5]
concatenate the feature maps extracted from different modalities into differ-
ent channels and fuse them in the following convolutional layers. Other meth-
ods [3,9] merge the features across different layers of the neural network, where
a cross-modal convolution fusion model is introduced in [13]. In [7] they employ
dedicated encoders for different modalities to encode different types of informa-
tion, for example, content and style features from the corresponding input data.
The features are then fused using channel concatenation in the U-Net skipping-
connections. A similar idea was also used in [1] where a maximum fusion operator
instead of simple concatenation in the skip-connections is applied on disentan-
gled anatomy factors extracted from different modalities at the end of encoders.

(a) Example 1 with anatomy overlay (b) Example 2 with anatomy overlay

Fig. 1. Examples of multi-modal CMR images overlaying anatomy and pathology.

One other challenge in segmenting pathology such as myocardial infarct and
edema is that these pathologies are often of diverse shape and occur at random
positions. As such, shape priors such as mask discriminator [1] cannot be used.
Besides, the interested pathology and anatomy only occur within a small region
of the whole image, as examples of multi-sequence CMR images with manually
segmented anatomy and pathology (myocardial infarction and edema) given in
Fig. 1. This makes the data distribution highly imbalanced across classes, result-
ing in overfitting in the training data. Particularly in current popular backbone
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convolutional neural networks (CNN) assuming all pixels in the image contribute
equally to the final prediction, the over-fitting issue is even worse. A possible
solution is to use the spatial attention module [4], leading the network to focus
on specific image regions. In our case, the focus corresponds to pathology pixels.

In addition, given limitations in GPU memory, training can only be per-
formed with a small batch size. This even worsen the overfitting issue since due
to this and small pathological region in each image, in each training iteration,
only a small amount of pathology pixels are seen by the network. Nevertheless,
the batch size can be increased if training with smaller size patches instead of full
images, e.g., by engaging random cropping. Although it is commonly used as a
data augmentation technique [12], all patches are treated equally importantly. It
is appealing if the cropping strategy will oversample patches around pathology
regions that we are interested in.

In this paper, we propose the Max-Fusion U-Net (MFU-Net) for cardiac
pathology segmentation, given fully-annotated multi-modal aligned images. We
use dedicated encoders to extract features for each modality, as in [1,7]. But
rather than channel concatenation [7], we fuse features from different modalities
with the pixel-wise maximum operator applied on each layer [1]. This fusion oper-
ator guides the network to keep informative features extracted by each modality.
At the same time, fusion with maximum operator indirectly encourages feature
maps to encode important features in high intensities including pathological
pixels. A spatial-attention module is also employed in the last decoding layer
to modulate the spatial focus, which in our case means to increase focus of the
pathology pixels. Finally, to address the issue that only a small amount of patho-
logical pixels are exposed to the network during training, we adopt a dynamic
resampling strategy. To obtain each batch, we extract multiple patches around
the interested pathology based on an arbitrary probability, then extract the rest
data by randomly cropping the image to the same size. By feeding more patches
related to pathological regions and less related to background patches, the net-
work will thus naturally become more sensitive to pathological pixels. At the
same time, the training batch size can be dynamically enlarged without occupy-
ing extra computation resources due to the reduced image dimension. Theoreti-
cally, the spatial size of the training data should not harm the training efficiency
as long as the sampled image patches are bigger than the largest receptive field
of the network. Extensive experiments have demonstrated the effectiveness of
the proposed MFU-Net in cardiac pathology segmentation including infarction
and edema when given multi-modal inputs including LGE, T2-weighted, and
bSSFP, outperforming relevant methods. Major contributions of this work are
summarized as follows:

– We proposed the MFU-Net that fuses multi-modal features extracted by ded-
icated encoders with the pixel-wise maximum operator;

– We incorporate a spatial-attention module to guide the network to focus on
the pathology region;
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– We proposed a novel training strategy by feeding randomly resampled sub-
patches from the original training data with more probability around the
pathology region, at the same time increasing the batch size dynamically;

– MFU-Net improves the Dice score of state-of-the-art benchmarks on myocar-
dial pathology segmentation on multi-modal CMR 2020 dataset [15,16].

2 Methodology

This section presents the proposed MFU-Net model, and the details about the
architecture, the modality-specific encoders, the maximum fusion operator, and
the attention-based decoding modules.

Overview: Let XLGE ,XT2,XbSSFP represent images of LGE, T2-weighted,
and bSSFP CMR modalities respectively, and Yana, Ypat be the asso-
ciated anatomy and pathology masks. If i enumerates all samples from
the above sets, we assume a fully labelled multi-modal pathology subset
L = {xi

LGE , xi
T2, x

i
bSSFP , yi

ana, yi
pat}, where three modality slices xi

LGE , xi
T2,

xi
bSSFP ⊂ RH×W are preprocessed [15,16], such that they are aligned in a

common space and are resampled to the same spatial resolution. In addition,
yi

ana ∈ Yana := {0, 1}H×W×N , and yi
pat ∈ Ypat := {0, 1}H×W×K , where N and

K denote the number of anatomy, and pathology masks respectively1, and H
and W are the image height and width.

2.1 Model Architecture

The architecture of MFU-Net is illustrated in Fig. 2. It consists of three modality-
specific encoders, a multi-modal feature fusion with pixel-wise maximum oper-
ator, and a decoder with a spatial attention module that produces the segmen-
tation results.

Individual Encoders: The original U-Net architecture [10] only specifies a sin-
gle encoder to extract features. To accommodate differences in the pixel intensity
distributions between modalities, we expand the U-Net by using one indepen-
dent encoder for each modality. This leads to three modality-specific encoders.
Represented by red, green, and blue colors in Fig. 2, these encoders are denoted
as EncLGE , EncT2, and EncbSSFP respectively for LGE, T2, and bSSFP data.
The encoded features EncLGE(xi

LGE), EncT2(xi
T2), and EncbSSFP (xi

bSSFP ) are
concatenated and used as input to the bottleneck blocks (the transparent brown
blocks in Fig. 2).

Modality Fusion: A simple way for feature fusion is through channel concate-
nation [7]. However, this strategy does not really merge the modality-specific
information into modality-independent features, so that the contribution of dif-
ferent modalities can not be balanced dynamically. Such adaptive balancing
1 We restrict to the case where N = 3 (myocardium, left ventricle, and right ventricle)

and K = 2 (infarction and edema).
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among modalities is particularly important in pathology segmentation, where
specific pathologies can only be spot in particular modalities, i.e. infarct can
only be seen in LGE, while edema can only be seen in T2, as seen in Fig. 1.

Encoder LGE

Encoder T2

Encoder bSSFP

MaxFusion

MaxFusion

MaxFusion

MaxFusion

Bottleneck
Decoder

Attention
Softmax-
Anatomy

Softmax-
Infarct

Softmax-
Edema

Fig. 2. MFU-Net architecture. Red, Green, and Blue blocks represent LGE, bSSFP,
and T2 encoding features. Yellow blocks depict the decoding features. Pink Blocks
are max-fused features, while transparent brown block is the bottleneck feature. Solid
brown ones are the softmaxed probability map, while the amaranth block is the spatial
attention module. (Color figure online)

Instead, we would like to fuse the feature in an auto-selective fashion. To this
end, we employ the pixel-wise maximum operator, which has been previously
used in [1] for dual-modal anatomy segmentation. In the proposed MFU-Net,
the fusion is among features generated by the dedicated encoders, producing the
fused feature as depicted in pink blocks in Fig. 2. Rather than fusing latent fea-
tures of one layer [1], we apply the max-fusion operation to different blocks in the
encoders for multi-scale mixture of the multi-modal information. For instance, for
the k-th encoding layer, the fusion is performed by Enck(xi

LGE , xi
T2, x

i
bSSFP ) =

max(Enck
LGE(xi

LGE), Enck
T2(x

i
T2), Enck

bSSFP (xi
bSSFP )) in a pixel-wise fashion.2

It provides the dynamically selective features across modalities. However, the
conventional concatenation features do not differentiate features from different
modalities. The fused feature Enck, together with the linear concatenation of
Enck

LGE(xi
LGE), Enck

T2(x
i
T2, and Enck

bSSFP (xi
bSSFP ), are then concatenated

2 For simplicity we note it as Enck in following sections.
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to the corresponding decoding layer with a skip connection, as in the original
U-Net [10]. The linear concatenated and nonlinear max-fused representations
provide the complementary information for the modal-specific features.

Two examples of the max-fused features compared to single-modal features
are shown in Fig. 3. As discussed above, specific pathologies can only be observed
in particular modalities clearly. For example, myocardial infarction can only be
observed on features extracted from LGE data as a small dark area (Fig. 3c
and 3d). Similarly, the boundary of edema can only be depicted on T2 feature
maps (Fig. 3e and 3f). In comparison, both pathological regions can be eas-
ily detected with relatively clearer boundaries on the max-fused feature maps
(Fig. 3c, 3d, 3e, 3f). Furthermore, the interested anatomical structures can be
seen as easily as in bSSFP features (Fig. 3a and 3b). On the contrary, the bound-
aries of heart anatomy and edema are blurred in LGE, so is the infarction in
T2 data. Boundaries of both infarction and edema are hard to be detected in
bSSFP data. This can be seen as a qualitative evidence of an effective mixture
of the multi-modality information.

Decoding with Attention: The decoder of MFU-Net receives as input the bot-
tleneck layer that follows the concatenated multi-modal features of the encoding
part. A series of convolutional blocks upsample the spatial resolution as in U-
Net, and are concatenated with the encoding features (including the max-fused
feature and the corresponding encoding features for each modality) computed
at the corresponding layers of the encoder with skip connections.

Since cardiac pathologies often occupy in a small part of the whole image,
producing segmentations by treating each pixel equally is challenging and might
lead the network to concentrate more on the background but ignore tiny patho-
logical regions. In order to overcome this issue, we use a spatial attention mech-
anism [4] to capture long-range pixel dependencies and assign different weights
on different regions. In this sense, segmentation can be improved by selecting
useful information in features extracted around the pathological regions and by
discarding unrelated features. In detail, the spatial attention module, shown in
Fig. 4, is applied at the last layer of the decoding path with the architecture
of the spatial and channel attention modules following [4]. In order to reduce
computational complexity introduced when the feature dimensions are large, we
first downsample the input feature using stride-2 convolutions before calculating
the query, key, and value tensors. The attention module is depicted in Fig. 4.
After calculating the attention map, the dimension will be recovered by decon-
volution in the upsampling block. Figure 5 gives examples of spatial attention
outputs with corresponding predicted masks. Clearly, the corresponding mask
region is highlighted in the spatial attention maps, demonstrating the utility of
this mechanism in segmentation.

3 Implementation

In this section, the implementation details of the proposed MFU-Net will be
specified. Firstly, we will introduce the dynamic resampling training strategy,
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(a) Example 1 with anatomy overlay (b) Example 2 with anatomy overlay

(c) Example 1 with infarct overlay (d) Example 2 with infarct overlay

(e) Example 1 with edema overlay (f) Example 2 with edema overlay

Fig. 3. Two examples of comparison between the feature maps extracted before and
after the max-fusion operation in terms of visibility of: (a) and (b) anatomy; (c) and
(d), myocardial infarction; (e) and (f) edema. For each subfigure, the max-fused feature
maps are shown at the top and modality-specific feature maps are shown at the bottom.
The object boundaries overlapped with the feature maps are on the right.
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Fig. 4. Attention Module at the last decoding layer. ⊕ and ⊗ represent element-wise
summation and multiplication respectively between two matrices.

Fig. 5. Spatial attention outputs correspond to the predicted masks.

then the alternative cross-validation to make full use of the training data and
avoid overfitting issue will be specified.

3.1 Dynamic Resampling Training Strategy

The proposed MFU-Net is deployed on a GTX Titan X GPU with 12GB stan-
dard memory. In the training process, the available memory allows 288 × 288
image size with a batch size equals to 4. In order to increase the model’s focus on
pathological regions, we also train with patches of different sizes that are dynam-
ically resampled. For the batch obtained at the t-th iteration, we first decide the
patch size dt by dt = 96+16i, i ∈ {1, · · · , 12} where i is randomly picked. Then,
with an arbitrary probability ρc, an extracted patch is centred on the pathology
of interest. The dynamic batch size Nt is decided by Nt = �d2t−1Nt−1/d2t �. For
example, in the first iteration, we initialize the image size d0 = 288, thus when
extracting 96×96 image patches, the batch size can be as big as 36. This not only
increases the batch size but also allows to manual balance the data distribution.
In this work, we set ρc = 0.89 as the interested anatomy only takes up 11%
pixels of the whole image. As such, pathological regions are more probably to be
seen in the cropped patches. Figure 6 demonstrates the details of this sampling
process with two different patch sizes.

3.2 Training with Alternative Cross Validation

To make full use of the training data and avoid possible overfitting issues, we
employ an alternative cross-validation strategy as part of training to predict the
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LGE T2 bSSFP Anatomy and Pathology
Overlay (on bSSFP)

Dynamically Cropped Sub-patches
Overlay 

on bSSFP LGE T2 bSSFP

Center on 
non-pathological 
region

Center on 
pathological 
region

Center on 
pathological 
region

Overlay 
on bSSFP LGE T2 bSSFP

Center on 
non-pathological 
region

Center on 
pathological 
region

Fig. 6. Dynamic resampled image patches with varying spatial and batch sizes. The
resampling sizes for images in the first and second row is 96 and 128 respectively.
Smaller resampling size will bring greater batch size.

MyoPS 2020 challenge testing data. Specifically, the whole training set is split
into five parts. Accordingly, the training process will be specified in five phases.
In each phase, four out of the five splits are selected as the training set, while
the remaining one is used as the validation set to prevent overfitting by defining
the early-stopping criteria. If one phase of training is terminated, the network
optimization continues on another split. The number of epochs for each training
phase are 50, 40, 30, 20, and 15, while the initial learning rate are 0.0001, 0.00009,
0.00008, 0.00006, 0.00005 respectively and decayed exponentially. When all the
five training phases are completed, we add a final fine-tuning phase that involves
all the training data but is trained only 10 epochs with the small learning rate
at 0.00004 and decayed exponentially as well. This will avoid the model to forget
early trained examples.

4 Experiments

We evaluate the proposed MFU-Net on pathology segmentation using the Dice
score. Experimental setup, datasets, benchmarks, and training details will be
detailed in the following part.

Data: We evaluate our proposed MFU-Net on the multi-sequence CMR
(MyoPS) dataset [15,16] that contains in total 25 volumes and 102 slices in the
training set. For each slice, three modalities including LGE, T2, and bSSFP are
provided. They are preprocessed with the Multi-variate Mixture Model [15,16],
such images from the three modalities are aligned and resampled to same spatial
resolution. For all the images, three anatomy masks (myocardium, left ventricle,
and right ventricle) and two pathology masks (myocardial infarct and edema)
are given. The testing set contains 20 volumes and 72 slices without ground-
truth masks available. Both training and testing data are cropped to 288 × 288
to keep the region to be segmented in the sight.
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Training Details: The proposed MFU-Net is optimized with fully supervised
losses. The segmentation of both anatomy and pathology is trained with tver-
sky [11] and focal [8] losses in a supervised fashion. The tversky loss is defined as
�T,j = (ŷi

j �yi
j)/[ŷi

j +yi
j +(1−β)·(ŷi

j −ŷi
j �yi

j)+β ·(yi
j −ŷi

j �yi
j)] and the focal loss

is �F,j =
∑

H,W [−yi
j(1−ŷi

j)
γ log(ŷi

j)], where � represents the element-wise multi-
plication and j corresponds to the involved anatomy or pathology labels. We set
penalties for anatomy, infarct, and edema equal to λanatomy = 1, λinfarct = 3,
and λana = 5 respectively, for each of the tversky and focal losses. Moreover,
in order to achieve more stable training and quicker convergence, we initialise
MFU-Net with weights from the MMSDNet [1] encoder (that also follows a U-
Net architecture with dedicated encoders for each modality) when trained only
with the unsupervised reconstruction loss.

Benchmarks: We evaluate the pathology segmentation performance of MFU-
Net using several variants of our model. More specifically, we evaluate the effect
of different design choices including the maximum fusion operator, the spatial
attention module and the dynamic resampling strategy. In total we construct
eight ablated models, all of which concatenate features at each encoding layer.

Table 1. Anatomy and pathology segmentation dice scores (%) of MFU-Net and rel-
evant variants with Residual backbone. Myo., LV, and RV represent the myocardium,
left ventricle, and right ventricle respectively. max, attention, and resample represent
the presence of the max-fusion operator, the spatial attention module, and the dynamic
resampling strategy respectively. Pathology score is calculated by averaging both the
infarct and edema segmentation performance.

max attention resample Myo. LV RV Infarct Edema Avg. Pathology

� � � 84.37.9 87.57.1 78.514.2 53.020.5 28.713.9 44.913.9

– � � 85.28.1 86.810.6 78.714.0 52.120.4 29.412.4 42.914.0

� – � 84.26.9 86.97.5 76.713.7 46.121.1 28.114.3 41.014.1

� � – 84.55.3 87.16.4 74.918.7 49.420.4 29.417.9 42.815.5

– – � 81.17.8 84.28.0 67.217.2 50.217.8 19.313.0 37.516.8

– � – 85.24.1 86.19.4 75.718.6 52.619.4 28.717.1 43.615.4

� – – 82.37.9 82.38.9 68.216.5 48.025.4 22.815.9 36.118.5

– – – 81.66.5 84.18.0 67.515.5 42.821.7 20.616.6 34.817.7

4.1 Results and Discussion

We report segmentation results of MFU-Net and the ablated models in Table 1
with anatomy (myocardium, left and right ventricles) and pathology (myocardial
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infarct and edema) segmentation dice scores.3 The backbone architecture used
the residual connections in encoding and decoding layers [6] noted as Residual.

As can be seen in Table 1, the proposed maximum fusion operator and
dynamic resampling achieve the best infarct segmentation, while edema segmen-
tation performs similarly to the model without the max fusion. On average the
model with all attention, max, and resample options achieves the best pathology
segmentation with Dice equal to 44.9%.4 Moreover, it can be observed that the
spatial attention module improves segmentation for both infarct and edema.

In addition, the anatomy segmentation does not benefit from the proposed
compositions, particularly in ventricles. The reason is two-folded. On one hand,
the MyoPS 2020 challenge concentrates mainly on the pathology segmentation.
As such, during training, we put more penalties on the pathology supervision
(Sect. 4). It results in less focus on anatomy learning. On the other hand, because
both infarct and edema is in the myocardium region, the pathology training
gradient will offer an additional guide to train myocardium segmentation. On
the contrary, ventricle predictions are not enjoying such an advantage.

Table 2. Anatomy and pathology segmentation comparison between Residual, Dila-
tion, and Sideconv backbones when max, attention, and resample are all present.

Myo. LV RV Infarct Edema Avg. pathology

Residual 84.37.9 87.57.1 78.514.2 53.020.5 28.713.9 44.913.9

Dilation 80.54.3 85.36.3 44.333.8 55.118.7 23.113.9 43.714.0

Sideconv 76.310.3 65.018.6 40.539.4 52.121.1 29.711.8 45.016.0

4.2 Prediction for the Challenge Testing Dataset

Table 2 specifies the comparison with other two backbone CNN options, namely,
the dilated convolutions in the bottleneck layer [14], and the side-convolution by
adding 3 × 3, 3 × 1, and 1 × 3 convolutions in each of the convolution opera-
tions [2]. They are denoted as Dilation and SideConv respectively. It can be seen
clearly that the models using dilated convolutions and side-convolutions improve
on the segmentation of infarct and edema respectively, compared to our initial
model using residual connections. We therefore use the Dilation and Sideconv
MFU-Nets for inference of the MyoPS 2020 testing dataset. The segmentation
results are presented in Table 3 and contain the Dice scores of infarct and the
3 Since we do not have the ground truth of the testing data, the performance reported

in Table 1 and Table 2 are obtained by five-fold cross validation across the training
set. Relevant splits are following the description in Sect. 3.2. In addition, we also
report the averaged pathology Dice scores of the both pathologies to assess the
overall pathology segmentation performance.

4 Although the anatomy segmentation performance decreases, we still think SideConv
and Dilation are better choices since we are more caring about the pathology pre-
diction in this research.
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union of both infarct and edema. It can be seen that the dilation backbone with
max, attention, and resample achieves better results with 58.4% dice for infarct,
and 61.4% for both the infarct and the edema together.

Table 3. Pathology segmentation dice scores on the MyoPS 2020 testing data

SideConv Dilation

Infarct Infarct+Edema Infarct Infarct+Edema

57.028.7 60.318.1 58.426.3 61.417.8

The prediction models are trained with the alternative cross validation
described in Sect. 3.2. Figure 7a and Fig. 7b illustrate the training and validation
dice losses respectively during model optimization. Particularly, in Fig. 7a, each
loss jump corresponds to the point where the cross validation split switches and
the training phase changes. Furthermore, all losses gradually decrease in each
training phase, and finally converge at the final few steps.

(a) Training dice losses (b) Validation dice losses

Fig. 7. Training and validation dice losses with the alternative cross-validation for the
testing dataset. Curves in green, orange, and blue represent the anatomy, infarct, and
edema dice losses.

5 Conclusions

In this paper, we proposed the Multi-Fusion U-Net, a novel architecture to seg-
ment infarct and edema from multi-modal images including LGE, T2-weighted,
and bSSFP sequences. Our model uses dedicated encoders for each modality,
and combines multi-modal information with feature fusion performed with the
pixel-wise maximum operator at each encoding layer. These max-fused features
together with the concatenated modality-specific features of each encoding layer,
are propagated to corresponding decoding layers of the same spatial resolution
using skip connections. Additionally, a spatial attention module in the final
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decoding layer, as well as a novel dynamic resampling training strategy, are
engaged to guide the network to focus on small pathology regions. Extensive
experiments on the MyoPS 2020 challenge dataset demonstrated the effective-
ness of the MFU-Net in improving cardiac pathology segmentation performance.
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Abstract. Myocardial characterization is essential for patients with
myocardial infarction and other myocardial diseases, and the assessment
is often performed using cardiac magnetic resonance (CMR) sequences.
In this study, we propose a fully automated approach using deep con-
volutional neural networks (CNN) for cardiac pathology segmentation,
including left ventricular (LV) blood pool, right ventricular blood pool,
LV normal myocardium, LV myocardial edema (ME) and LV myocardial
scars (MS). The input to the network consists of three CMR sequences,
namely, late gadolinium enhancement (LGE), T2 and balanced steady
state free precession (bSSFP). The proposed approach utilized the data
provided by the MyoPS challenge hosted by MICCAI 2020 in conjunc-
tion with STACOM. The training set for the CNN model consists of
images acquired from 25 cases, and the gold standard labels are pro-
vided by trained raters and validated by radiologists. The proposed
approach introduces a data augmentation module, linear encoder and
decoder module and a network module to increase the number of train-
ing samples and improve the prediction accuracy for LV ME and MS.
The proposed approach is evaluated by the challenge organizers with a
test set including 20 cases and achieves a mean dice score of 46.8% for
LV MS and 55.7% for LV ME+MS.

Keywords: Cardiac magnetic resonance imaging · Deep convolutional
neural network · Myocardial edema and scar · Image segmentation

1 Introduction

The imaging-based assessment of the heart using modalities such as magnetic
resonance imaging (MRI) plays a central role in the diagnosis of cardiac disease,
a leading cause of death worldwide. Late gadolinium-enhanced (LGE) imaging is
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one of the commonly used cardiac magnetic resonance (CMR) sequences to diag-
nose myocardial infarction [2], a common cardiac disease that may lead to heart
failure. Acute injury or inflammation related to other conditions can be detected
using T2-weighted CMR. However, detecting ventricular boundaries using the
LGE or T2-weighted images is challenging, while this function can more easily
be performed using a balanced steady state free precession (bSSFP) sequences.
Often many cardiac patients are scanned using multiple CMR sequences, and
utilizing the combination of these sequences will allow for obtaining robust and
accurate diagnostic information [14].

The target of this study is to combine the multi-sequence CMR data to
produce an accurate segmentation of cardiac regions including left ventricular
(LV) blood pool (BP), right ventricular BP, LV normal myocardium (NM), LV
myocardial edema (ME) and LV myocardial scars (MS) and specifically focuses
on classifying myocardial pathology. Generally, the myocardium region could
be divided into normal, infarcted and edematous regions. Generating accurate
contour for these regions is arduous, time-consuming and thus automating the
segmentation process is of great interest [10]. Zabihollahy et al. [11] proposed a
semiautomatic tool for LV scar segmentation using CNNs. Li et al. [6] proposed
a fully automatic tool for left atrial scar segmentation.

In this challenge, there are mainly two difficulties to produce an accurate
prediction of the LV ME and MS. The first difficulty is the limited amount of
training data which only consists of 25 cases. The second is the small size of the
LV ME and MS regions with high intra and inter-subject variations. The inter-
observer variation of manual scar segmentation is reported with a Dice score of
0.5243 ± 0.1578 [14].

In this study, we propose a fully automated approach by utilizing deep con-
volutional neural networks to delineate the LV BP, RV BP, LV NM, LV ME and
LV MS regions from multi-sequence CMR data including bSSFP, LGE and T2.
Our main contributions are the following: 1) we introduce a data augmentation
module and increase the training size by 40 times using random warping and
rotation; 2) we introduce a linear encoder and decoder to improve the network’s
training performance and utilize three different architectures including a shallow
version of the standard U-net [7], Mask-RCNN [3] and U-net++[12,13] for the
LV ME and LV MS block and average the predictions of the three networks fol-
lowed by a binary activation with threshold 0.5. Our method is evaluated by the
challenge organizers on a test set consisting of 20 cases, which contain images
acquired from scanners that are not included in the training set.

2 Methodology

We introduce the pipeline shown in Fig. 1 for the LV, ME and MS segmentation.
The proposed method is fully automatic and utilized no additional data other
than the training set provided by the challenge organizers. The details of each
module are introduced in the following sections.
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Fig. 1. Overall architecture of the proposed method in the training stage

2.1 Augmentation Module

We first extract the input data in a slice-by-slice manner and perform center
cropping to obtain images of size 256 × 256. To improve the number of samples,
we perform two data augmentation schemes including random warping and ran-
dom rotation. The random warping is performed by firstly generating a 8×8×2
uniformly distributed random matrix, where the last dimension indicates 2D
space, with each entry in range [−5, 5]. We then resize the non-rigid warping
matrix to the image size with dimension 256 × 256 × 2 and apply the warping
map using bilinear interpolation. The extracted input CMR slices and the labels
are warped 20 times. After augmenting the data using random warping, we then
utilize random rotation in 90◦, 180◦ and 270◦ with equal probability. The train-
ing set is then augmented with one time more data with random choice among
the three options.

2.2 Preprocessing

All training and validation images are normalized using 5th and 95th percentile
values, I05 and I95, of the intensity distribution of the 2D data to obtain relatively
uniform training sets. The normalized intensity value, In, is computed using

In =
I − I05

I95 − I05
where I denotes the original pixel intensity.

2.3 Linear Encoder

We introduce a linear encoder and a corresponding decoder for the augmented
input stack after preprocessing. Inspired by the clinical observation in [14], we
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encode the augmented input and label stacks and produce five input blocks as
shown in Fig. 1 instead of blindly concatenating the CMR sequences, where each
block represents the data used to train a target class. The five input blocks are
LVBP block, which uses bSSFP as the input image and LV BP as the target;
RVBP block, which uses bSSFP as the input and RV BP as the target; LV
Epicardium block, which uses bSSFP as the input and the linear combination
of LV BP, LV NM, LV ME and LV MS as the target; LVMEMS block, which
uses LGE as the input and the combination of LV ME and LV MS as the target;
and the LVMS block, which uses the T2 as the input and LV MS as the target.
In the testing mode, the linear encoder will only perform on the input stack. The
network module will infer on the encoded input and the decoder will extract the
predictions after post-processing.

2.4 Network Module

In order to improve the performance for the edema and scar prediction, we
utilize three different architectures with different input blocks for each model.
The results are averaged from the three networks for LV ME+MS and LV MS
and followed by a binary activation with threshold 0.5. The details for each
network are shown in the following.

U-Net. The U-net module utilizes a shallow version shown in Fig. 2 of the
standard U-net [7] to prevent overfitting. The U-net is trained on all the five
input blocks produced by the linear encoder. The loss function of the U-net is
selected as the negative of dice coefficient with Adam optimizer (learning rate
= 1e−5) and batch size = 8.

16 16 32 64 128 64 32 16 1

1 1
1/2

1/4
1/8

1/4
1/2

1 1

Fig. 2. Architecture of the U-net model. The blue block indicates the 3×3 convolution
layer and the number indicates channel size. The blue arrow indicates the skip connec-
tion. The green block indicates the 1 × 1 convolution layer with sigmoid activation to
produce the prediction masks. (Color figure online)
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Mask-RCNN: The Mask-RCNN module [3] utilizes ResNet50 [4] as the back-
bone for the segmentation task and is implemented using the Matterport library
[1]. The Mask-RCNN is trained on the LVMEMS and LVMS using Adam opti-
mizer (learning rate = 0.001) and batch size = 2.

U-Net++: The U-net++ module [12,13] utilizes VGG16 [8] as the backbone.
The model is trained on the LVMEMS and LVMS using the negative of dice
coefficient as the loss function with Adam optimizer (learning rate = 1 × 10−5)
and batch size = 8.

2.5 Post-processing

We applied post-processing to retain only the largest connected component for
the predictions of LV BP and LV Epicardium by U-net. The operation is per-
formed in 2D space with a slice-by-slice manner. In addition, we applied an
operation to remove holes that appear inside the foreground masks. As shown in
Fig. 1, the post-processing is performed on the encoded predictions before the
linear decoder.

2.6 Linear Decoder

The corresponding decoder performs the linear subtraction on the predicted
masks of LV Epicardium and LVMEMS and is followed by a binary activation
for all predicted masks in five target classes with threshold 0.5. The decoder also
includes a binary constraint for the LV ME and MS predictions by calculating the
myocardium mask using the predicted LV epicardium and LV BP and performing
a pixelwise multiplication

Pi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ(P̃0) i = 0
σ(P̃1) i = 1
σ(P̃2 − P̃0 − P̃3) i = 2
σ(P̃2 − P̃0) � σ(P̃3 − P̃4) i = 3
σ(P̃2 − P̃0) � σ(P̃4) i = 4

(1)

where i = 0, 1, 2, ..., 4 denotes the index for LVBP block, RVBP block, LV Epi-
cardium block, LVMEMS block, LVMS block respectively. Pi denotes the final
prediction mask and P̃i denotes the raw prediction after post-processing for block
i. σ(·) denotes the binary activation function with threshold 0.5. The notation
� denotes the pixelwise multiplication.

3 Experiments

3.1 Clinical Data

The training set consists of 25 cases of multi-sequence CMR and each refers
to a patient with three sequence CMR including bSSFP, LGE and T2.
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The training data is processed using the MvMM method [14,15]. The train-
ing set labels include LV BP (labelled 500), RV BP (600), LV NM (200), LV ME
(1220) and LV MS (2221). The manual segmentation is performed by trained
examiners and corrected by experienced radiologists. The test set consists of
another 20 cases of multi-squence CMR and the ground truth is not provided.

3.2 Implementation Details

The networks are implemented using Python programming language with Keras
and Tensorflow. All networks are trained with 500 epochs on NVIDIA Tesla–
P100 graphical processing units with 12 GB memory. The trained neural network
model with the highest validation accuracy is saved to the disk. The validation
split is 0.8 for all networks with 3264 images for training and 816 images for
validation after the data augmentation module. The original extracted 2D slices
from the training data provided by challenge organizers contain 102 images.

3.3 Evaluation Metrics

Dice Coefficient. DC measures the overlap between two delineated regions [9]:

DC =
2A

⋂
M |

|A| + |M | (2)

where set A as the automatic prediction region and set M as manual segmenta-
tion ground truth.

Jaccard Index. Jaccard index measures the similarity and diversity between
two delineated regions [5]:

J =
|A⋂

M |
|A| + |M | − |A⋂

M | . (3)

4 Results

The proposed method is evaluated over images acquired from a total of 20 cases
including CMR sequences consists of bSSFP, LGE and T2. The evaluation of
the proposed method on test sets are performed by the challenge organizers with
dice score on LV ME+MS and LV MS. The ground truth of the test sets are not
shared with the participants.

4.1 Quantitative Assessment

The agreement between the segmentation of the proposed approach with the
manual ground truth is quantitatively evaluated using the dice metric and Jac-
card index. To illustrate the effectiveness of the network module and the linear
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Table 1. Overall performance of UNet, proposed method without the linear encoder
and decoder, and the proposed method evaluated over CMR test datasets acquired
from 20 cases on LV ME+MS and LV MS.

Methods Dice metric (%) Jaccard index (%)

MS ME+MS MS ME+MS

UNet 36.2± 23.2 43.2± 16.0 24.5± 18.1 28.8± 13.1

Proposed† 38.5± 24.3 54.2± 17.1 26.5± 18.9 38.9± 15.0

Proposed 46.8± 26.8 55.7± 18.3 34.2± 22.2 40.5± 16.3
† indicates without the linear encoder and decoder module.

encoder and decoder, we report the performance of the UNet, proposed method
without the linear encoder and decoder, and the proposed method in Table 1.
The best result for the test set achieves a mean dice score of 46.8% for LV MS
and 55.7% for LV ME+MS. Our proposed network module improves the overall
performance of MS and ME+MS by comparing our proposed method without
the linear encoder and decoder with the UNet. Our proposed linear encoder and
decoder module further improves the performance especially in the MS segmen-
tation. Figure 3 shows the performance of the three methods using box plots.
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Fig. 3. The boxplots showing the performance of the proposed approach over test sets
acquired from 20 cases. The evaluations were performed using Dice metric and Jaccard
index. In the figure, u indicates the results by UNet; pw indicates the proposed method
without linear encoder and decoder; p indicates the proposed method.
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4.2 Visual Assessment

We select cases that achieve the highest and lowest dice score for visual
assessment, respectively. Figure 4 shows example segmentation results where
the proposed method achieved the highest agreement with the ground truth
delineations. Figure 5 shows example segmentation results where the proposed
method achieved the lowest agreement with the ground truth delineations.

(a) LV BG (b) RV BG (c) LV NM (d) LV ME (e) LV MS

Fig. 4. Examples showing ground truth and predicted contours where the proposed
method had achieved the highest dice score for LV ME+MS (75.1%) and LV MS
(82.3%) with the manual delineations in the test set. The first three columns show
the predicted contours against the bSSFP and the fourth and last columns show the
predicted contours against T2 and LGE respectively. The rows correspond to different
slices in the best case.
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(a) LV BG (b) RV BG (c) LV NM (d) LV ME (e) LV MS

Fig. 5. Examples showing ground truth and predicted contours where the proposed
method had achieved the lowest dice score for LV ME+MS (0.2%) and LV MS (30.6%)
with the manual delineations in the test set. The first three columns show the pre-
dicted contours against the bSSFP and the fourth and last columns show the predicted
contours against T2 and LGE respectively. The rows correspond to different slices in
the worst case.

5 Conclusion

We propose a fully automated approach to segment the LV ME and LV MS from
multi-sequence CMR data. We introduce an augmentation module to enhance
the training set and a linear encoder and decoder along with a network module
to improve the segmentation performance. The algorithm is trained using the 25
cases provided by the challenge and the evaluation is performed by the challenge
organizers on another 20 cases which are not included in the training set. The
proposed method yields overall mean dice metric of 46.8%, 55.7% for LV ME
and LV ME+MS delineations.

Acknowledgment. The authors wish to thank the challenge organizers for providing
training and test datasets as well as performing the algorithm evaluation. The authors
of this paper declare that the segmentation method they implemented for participation
in the MyoPS 2020 challenge has not used additional MRI datasets other than those
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Abstract. Precise segmentation of myocardial pathology is significant for the
assessment of myocardial infarction (MI). Generally, manual segmentation of
myocardial pathology is burdensome and time-consuming, and the burden of
disease assessment is greatly increased when considering multi-modal images.
To better detect the correlations across modalities and adequately leverage the
complementary information between them, we present an end-to-end architec-
ture for automatic cardiac multi-task segmentation in magnetic resonance images
(MRI) with a U-shaped network (CMS-UNet), which simultaneous segmenting
left ventricular (LV) blood pool, LV myocardium, right ventricular (RV) blood
pool, myocardial edema, and myocardial scars. In this work, multi-modal data are
employed as the input of the network, which merely utilizes one shared encoder
for extracting the feature information of different modalities respectively. There-
fore, our network can automatically explore the correlations between modalities
and better learn the complicated and interdependent feature representation of each
modality. In decoder, we aggregated the feature information extracted from differ-
entmodalities and exploited a channel reconstruction upsampling (CRU) to restore
the pixel-level prediction while addressing the problem of missing more detailed
information, especially for edge in bilinear upsampling. In addition, we adopted
a multi-scale convolution module (MSCM) at the top of the network to capture
multi-scale features, which is extremely beneficial for achieving accurate seg-
mentation results. We evaluated our approach on the Multi-sequence CMR based
Myocardial Pathology Segmentation Challenge 2020 (MyoPS 2020) dataset, and
obtained the Dice 0.581 for the myocardial scars and the average Dice 0.725 for
the myocardial edema and myocardial scars.

Keywords: Cardiac multi-task segmentation · MRI · Medical image
segmentation

1 Introduction

Precise segmentation of myocardial pathology is significant for the assessment of
myocardial infarction (MI) [1]. Cardiac magnetic resonance images (MRI) are com-
monly used in the diagnosis and treatment of patients who suffer from cardiovascular
diseases, such as MI, in particular the balanced-Steady State Free Precession (bSSFP)
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cine sequence which presents distinct cardiac structure boundary, the late gadolinium
enhancement (LGE) sequence can enhance the representation of infarcted myocardium,
and the T2-weighted sequence which images the acute injury and ischemic regions
[1, 2]. Despite advances in the medical imaging technology, most myocardial pathology
segmentation tasks are still manually performed, which is burdensome, time-consuming
and prone to errors. In addition, the burden of disease assessment is greatly increased
when considering multi-modal image. The accurate delineation of myocardial pathol-
ogy (i.e., scars) is still challenging [3–5]. Therefore, an automatic approach for cardiac
segmentation is significant in clinical application.

Recently, state-of-the-art methods based on deep learning have been presented to
utilize the complementary information of multi-modal data for segmentation. One way
is to adopt early-fusion,which aggregatemulti-modal images directly together in channel
dimensions as the input of network. For example, [6] proposed an asymmetric encoder-
decoder network for different acute stroke tasks such as segmentation and prediction.
[7] utilizes two subnetworks to segment brain gliomas MRI. Another approach is to
fuse the outputs of the separate networks to obtain the final prediction results. To name
a few, a multi-path architecture [8] is proposed to exploit unique information of each
modality. The work [9] adopts a multiple path 3D dense connection fully convolution
neural network to capture complex combinations across modalities.

The different modal images are fused directly and fed into the network for training
may hinder its expression capacity due to the difference in intensity distribution between
modalities, and the design of individual encoders and even decoders for different modal-
ities prone to cause expensive calculation cost. In this work, we propose to merely utilize
one encoder for extracting the feature information of different modalities respectively.
The features of different modal images are extracted with a shared encoder, and all the
extracted feature information contained in different modalities are integrated together
and send to the corresponding layer of decoder for feature aggregation. Since the fea-
ture representations distilled by the shared encoder are fused in the decoder, the final
segmentation result of the supervisory network is equivalent to guiding the encoder to
automatically explore the correlations across modalities. Hence, the network can better
learn the complicated and interdependent feature representation of each modality.

In general, most state-of-the-art segmentation networks simply utilize bilinear
upsampling to recover the size of the feature map after sampling to get the final seg-
mentation results [8, 10–12]. A demerit of bilinear upsampling based on mathematical
theory is its unlearnability, which leads to its limited capacity to accurately recover
the pixel-wise prediction and may lose details, especially for the edge information of
the object. Motivated by the work in image reconstruction [13], we present a channel
reconstruction upsampling approach, termed CRU, which is prone to implement and can
better restore the boundary information of feature maps.

Furthermore, we adopted a multi-scale convolution module called MSCM at the top
of the network to capture different scale context information, which is extremely useful
for obtaining accurate segmentation results.
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2 Method

Figure 1 overviews our segmentation architecture for cardiac multi-task segmentation in
MRI. The proposed left ventricular (LV) blood pool, LV myocardium, right ventricular
(RV) bloodpool,myocardial edema, andmyocardial scars segmentationmethod includes
four parts: shared encoder, CRU, MSCM and loss function.

C C C C C

bSSFP

LGE

T2

MSCM Conv 3×3 + BN + ReLU

Pooling
CRU

C Concatenation
Feature Flow Skip Connection

Auxiliary Branch

Auxiliary Branch

Auxiliary Branch

GT

Encoder Decoder

C
C
C
C Output

Lseg

Laux1

Laux2

Laux3

Conv 1×1

Fig. 1. The schematic diagram of Cardiac Multi-task Segmentation in MRI with a U-shaped
Network (CMS-UNet). Three modalities (bSSFP, LGE and T2) of cardiac MRI are employed as
network inputs respectively,wefirst useMSCMtoobtainmulti-scale contexts and a shared encoder
to extract features from different modalities respectively. Then features from the corresponding
layer of encoder are fused in decoder and CRU is applied to recover the size of feature maps
gradually. Finally, the feature maps are fed into a convolution layer to form the final pixel-wise
prediction, and the auxiliary branch help the network easier to train.

2.1 Shared Encoder

In recent years, deep learning has become the most popular and widely used method
for image segmentation. As one of the state-of-the-art segmentation methods, U-Net
[14] has been shown its robustness and accuracy in various medical image segmentation
tasks includes brain tumors [6, 15], cardiac MRI [16–18], and pancreas [19, 20]. Hence,
we improved our methods based on U-Net. Different from [8], we merely utilized one
encoder to extract the feature information of each modality while three modalities are
respectively employed as the input of the network, as shown in Fig. 1. To better leverage
the complementary information across different modalities, and make the network have
stronger data representation and discriminability, all extracted features are integrated
together and fed into the corresponding layer of the decoder for feature aggregation via
skip connection.

2.2 Channel Reconstruction Upsampling

Let I ∈ R
C×H×W be the input image of the network and Y ∈ R

Ĉ×Ĥ×Ŵ be the ground
truth which is usually one-hot encoded, where C and Ĉ denotes the number of channels
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of the input image and the number of classes of the ground truth, respectively. Suppose
M ∈ R

C̃×H̃×W̃ denotes the output of the last layer of encoder, where H̃ = Ĥ/s, W̃ =
Ŵ/s, and s refers to the holistic downsampling ratio, which is 16 in our network. Instead
of adopting bilinear upsampling,which has limited ability to accurately recover the pixel-
wise prediction, CRU reconstructs the low-resolution feature maps to high-resolution
employing convolution operation thoroughly at the channel level.

The schematic diagram of CRU is shown in Fig. 2. For feature mapM ∈ R
C̃×H̃×W̃ ,

assuming that we expect upscale it by r times and product K feature maps, then, it is
indispensable to product the feature map size of J × H̃ × W̃ (N in Fig. 2), where J =
K×r×r. Considering thememory and computation, instead of producing J featuremaps
directly, we leveraged a 3 × 3 convolution to obtain half of them and a cheap operation
similar to [21] to get the rest. Then we concatenated all the feature maps together in
terms of channel dimensions to form the output feature map N ∈ R

J×H̃×W̃ . Finally,

we shaped N as RK×�
H×�

W to get the final output feature map O, where
�

H = H̃ × r,
�

W = W̃ × r.

C

:M C H W× ×

ω ϕ

:N J H W× ×
:O K H W× ×

Concat

Fig. 2. The proposed channel reconstruction upsampling. ω represents the operation of convolu-
tion and ϕ represents the cheap operation.

CRU is a plug and play module which can be easily embedded into commonly
arbitrary networks for end-to-end training.Note that to obtain better segmentation results,
we suggest utilize CRU alternately in the decoder, as shown in Fig. 1.

2.3 Multi-scale Convolution Module

The lesion area inCardiacMRImayundergogreat variation in size. For instance,myocar-
dial edema and scars size vary from patient to patient. This makes it difficult to extract
information accurately with fixed size kernel. Multi-scale context information has been
shown by many works to be extremely useful for obtaining better segmentation results.
For example, in [22], features extracted by convolution with multiple dilation rates are
concatenated together to integrate different scale feature information. [23] combines fea-
ture maps extracted by different kernel size pooling layers and concatenation operations
to capture richer multi-scale global context information. Generally, these works embed
multi-scale feature extraction modules at the end of the network but we put it at the top
of the network because we argue that the introduction of multi-scale information at the
lower layer of the network is more conducive to the final pixel-level prediction. Figure 3
depicts the overall structure of MSCM.
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Input
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CBR 3×1, 2c
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Conv 1×5, 2c

CBR 5×1, 2c

CBR 1×1, c CBR 1×1, c

Conv 1×1, c

C

Output

Concat

Fig. 3. Detailed architecture of multi-scale convolution module. c and CBR represents the initial
channel of network and Conv + BN + ReLU, respectively.

In MSCM, 1 × 1, 3 × 3 and 5 × 5 kernel size convolution is adopted. Suppose the
initial channels of our network is c, for 3 × 3 and 5 × 5 convolution, we expanded its
output channels as 2c to obtain sufficient features, and then follow them with 1 × 1
convolution of c output channels to reduce the dimension. Finally, all feature maps are
concatenated by the channel dimensions. In addition, to reduce memory consumption
for MSCM, inspired by [24], we split 3× 3 convolution into a combination of 1× 3 and
3 × 1 convolution, and accordingly, 5 × 5 convolution is factorized to 1 × 5 and 5 × 1
convolution.

2.4 Loss Function

In our network, we used a combination of dice loss and standard binary cross-entropy
(BCE) loss on predicted segmentation results p and auxiliary branch prediction results
pi:

Lseg = Lbce
(
p, ŷ

) + Ldice
(
p, ŷ

)
(1)

Lauxi = Lbce
(
pi, ŷ

) + Ldice
(
pi, ŷ

)
(2)
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Where i ∈ {1, 2, 3} and ŷ ∈ R
Ĉ×Ĥ×Ŵ denotes the ground truth.Hence, the total auxiliary

loss can be present as the following form:

Laux =
∑N

i=1
λLauxi (3)

Where λ denotes one regulable parameter which adjust the weight of the loss. Finally,
the total task loss function can be expressed as:

L = Lseg + Laux (4)

3 Experimental Results

3.1 Dataset

We trained and evaluated our method on the Multi-sequence CMR based Myocardial
Pathology Segmentation Challenge 2020 (MyoPS 2020) dataset, which provides 45
cases of multi-sequence CMR and each case covers three modalities of CMR (bSSFP,
LGE and T2), For all cases, 25 has ground truth as a training set and 20 as a test set.
Ground truth was manually annotated by experienced experts as left ventricular (LV)
blood pool (labelled 500), right ventricular blood pool (600), LV normal myocardium
(200), LV myocardial edema (1220), and LV myocardial scars (2221).

For the training set, we first processed each modality respectively to obtain 2D
slice, and then randomly divided 80% for training and 20% for validation. For data
augmentation, we adopted mirror, reverse, rotation and scale for all slices. The degrees
of rotation include [30, 45, 90, 135, 180, 225, 270, 315] and the scaling factors contain
[0.6, 0.7, 0.8, 0.9, 0.95, 1.1, 1.15, 1.2].All training andvalidation imageswerenormalized
and ground truth was encoded with one-hot encoding. Finally, the center of each slice
is cropped to 256 × 256.

3.2 Implementation Details

We implemented our approach on Pytorch. Specifically, we adjusted the structure of
U-Net by adding an additional convolution layer to each block of encoder and appended
a BN layer after each convolution layer, and set the initial channel of the network as
44 instead of 64 to reduce memory consumption and computation. This network was
utilized as a baseline for comparison. We used Adam optimizer with β1 = 0.9 and β2
= 0.999 for parameters updating. The initial learning rate was set to 10−4 and weight
decay of 10−5 was used for fine-tuning. We adopted early stopping to train the network,
which finished training when the average dice of edema and scars increased less than
0.001 within 30 epochs. For the auxiliary loss Laux, λ was empirically set to 0.3.
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3.3 Results

We calculated the Dice coefficient between each pixel-wise prediction and ground truth
to evaluate the accuracy of the segmentation results. Table 1 shows our experiment
results, we first tried to train the baseline with single sequence, and the results showed
that the edema and scars segmentation were best with LGE sequence and worst with
bSSFP sequence, which is consistent with the fact that LGE sequence can enhance the
representation of infarcted myocardium. Afterwards, using two of the three sequences
for training, we observed that the segmentation results were more accurate than merely
using single sequence. Finally, we noticed that employing entire sequences can fur-
ther improve the segmentation results. We compared the proposed CMS-UNet with the
baseline approach in the last row in Table 1, and the better segmentation performance
confirms the effectiveness of our approach.

Table 1. The average Dice scores of baseline approach and CMS-UNet on the validation set.
Baseline is the adjusted U-Net. LVM denotes the LV myocardium,

√
and × represents use or

non-use of corresponding data, respectively.

Methods bSSFP LGE T2 Dice

LV LVM RV Scars Edema + Scars

Baseline
√ × × 0.896 0.715 0.836 0.405 0.382

Baseline × √ × 0.921 0.764 0.825 0.699 0.521

Baseline × × √
0.911 0.755 0.889 0.547 0.463

Baseline
√ √ × 0.930 0.781 0.892 0.641 0.533

Baseline
√ × √

0.932 0.813 0.870 0.514 0.477

Baseline × √ √
0.922 0.814 0.886 0.712 0.570

Baseline
√ √ √

0.940 0.830 0.864 0.706 0.585

Proposed
√ √ √

0.931 0.828 0.879 0.713 0.607

We evaluated our method on the test set, the dice score of the proposed method
achieved 0.581 for scars and 0.725 for the average of edema and scars. In addition, we
visualized the segmentation results of the proposed CMS-UNet on the test set are shown
in Fig. 4.

3.4 Ablation Study

To evaluate the effect of each component in our method on the final segmentation results,
we conducted ablation experiments on the test set. For fairness, the baseline (i.e., U-
Net with initial channels 44 and an additional convolution layer of each block in the
encoder) was implemented by us, and each result was averaged over three experiments.
As listed in Table 2, MSCM can achieve approximately 1% performance improvement
with reference to Dice coefficient, and approximately 1.5% for CRU. In addition, as the
network depth increases and the number of channels multipliers, the use of MSCM at
the end of the encoder earns poor results.



CMS-UNet: Cardiac Multi-task Segmentation in MRI 99

bS
SF

P
L
G
E

T
2

Pr
op
os
ed

Fig. 4. Segmentation results for the proposed approach CMS-UNet on the test set. The white
region represents the myocardial scars, and the light gray region near the white region represents
the myocardial edema.

Table 2. Ablation study employing different modules combinations with all modalities are being
as the input of the network. Baseline is the adjusted U-Net. MSCM means use multi-scale
convolution module at the top of the network, MSCM*means use multi-scale convolution module
at the end of the encoder and CRU means use channel reconstruction upsampling to restore the
pixel-level prediction. The results are evaluated on the test set.

Method Dice

Scars Edema + Scars

Baseline 0.578 ± 0.258 0.701 ± 0.108

Baseline + MSCM 0.594 ± 0.255 0.712 ± 0.102

Baseline + MSCM* 0.578 ± 0.263 0.695 ± 0.119

Baseline + CRU 0.605 ± 0.261 0.717 ± 0.097

Baseline + MSCM + CRU 0.581 ± 0.268 0.725 ± 0.110

4 Conclusion

In this paper, we propose a multi-task segmentation network CMS-UNet for cardiac
MRI segmentation. Our network can automatically detect the correlations between dif-
ferent modalities and learn the complicated and complementary information by utilizing
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a shared encoder and well-designed feature fusingmanner. To obtain accurate segmenta-
tion results, we employedMSCM to capture different scale context information andCRU
to recover the pixel-wise prediction. Sufficient experiments on the Myops 2020 dataset
demonstrate the effectiveness of the CMS-UNet outperforms the baseline method.
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[2016YFC1000307-3], Natural Science Foundation of Chongqing [cstc2019cxcyljrc-td0270,
cstc2019jcyj-cxttX0002, cstc2019jcyj-zdxmX0011].

References

1. Zhuang, X.: Multivariate mixture model for cardiac segmentation from multi-sequence MRI.
In: Ourselin, S., Joskowicz, L., Sabuncu, Mert R., Unal, G., Wells, W. (eds.) MICCAI 2016.
LNCS, vol. 9901, pp. 581–588. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46723-8_67

2. Zhuang,X.:Multivariatemixturemodel formyocardial segmentation combiningmulti-source
images. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2933–2946 (2019)

3. Zabihollahy, F., White, J.A., Ukwatta, E.: Convolutional neural network-based approach for
segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR
images. Med. Phys. 46(4), 1740–1751 (2019)

4. Li, L., Weng, X., Schnabel, J. A., Zhuang, X.: Joint left atrial segmentation and scar quan-
tification based on a DNN with spatial encoding and shape attention. arXiv preprint arXiv:
2006.13011 (2020)

5. Li, L., et al.: Atrial scar quantification via multi-scale CNN in the graph-cuts framework.
Med. Image Anal. 60, 101595 (2020)

6. Clèrigues A., Valverde, S., Bernal, J., Freixenet, J., Oliver, A., Lladó, X.: SUNet: a deep learn-
ing architecture for acute stroke lesion segmentation and outcome prediction in multimodal
mri. arXiv preprint arXiv:1810.13304 (2018)

7. Cui, S., Mao, L., Jiang, J., Liu, C., Xiong, S.: Automatic semantic segmentation of brain
gliomas from MRI images using a deep cascaded neural network. J. Healthc. Eng. 2018(1),
1–14 (2018)

8. Dolz, J., Desrosiers, C., Ben Ayed, I.: IVD-Net: intervertebral disc localization and segmen-
tation in mri with a multi-modal UNet. In: Zheng, G., Belavy, D., Cai, Y., Li, S. (eds.) CSI
2018. LNCS, vol. 11397, pp. 130–143. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-13736-6_11

9. Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., Ayed, I.B.: HyperDense-Net:
a hyper-densely connected CNN for multi-modal image segmentation. IEEE Trans. Med.
Imaging 38(5), 1116–1126 (2018)

10. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections
to exploit multiscale features in image segmentation. IEEE Trans.Med. Imaging 39(6), 1856–
1867 (2019)

11. Takikawa,T.,Acuna,D., Jampani,V., Fidler, S.:Gated-SCNN:gated shapeCNNs for semantic
segmentation. In: Proceedings of the IEEE International Conference on Computer Vision,
pp. 5228–5237 (2019)

12. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3141–3149 (2019)

https://doi.org/10.1007/978-3-319-46723-8_67
http://arxiv.org/abs/2006.13011
http://arxiv.org/abs/1810.13304
https://doi.org/10.1007/978-3-030-13736-6_11


CMS-UNet: Cardiac Multi-task Segmentation in MRI 101

13. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel
convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1874–1883 (2016)

14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image
segmentation. In: Navab, N., Hornegger, J., Wells, William M., Frangi, Alejandro F. (eds.)
MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24574-4_28

15. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour
segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017.
LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75238-9_38

16. Tong, Q., Ning, M., Si, W., Liao, X., Qin, J.: 3D deeply-supervised U-Net based whole heart
segmentation. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 224–232.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_24

17. Zhou, X.Y., Yang, G.Z.: Normalization in training U-Net for 2-D biomedical semantic
segmentation. IEEE Robot. Autom. Lett. 4(2), 1792–1799 (2019)

18. Chen, C., et al.: Unsupervised multi-modal style transfer for cardiac MR segmentation. In:
Pop, M., Sermesant, M., Camara, O., Zhuang, X., Li, S., Young, A., Mansi, T., Suinesiaputra,
A. (eds.) STACOM 2019. LNCS, vol. 12009, pp. 209–219. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-39074-7_22

19. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint
arXiv:1804.03999 (2018)

20. Li, F., Li, W., Shu, Y., Qin, S., Xiao, B., Zhan, Z.: Multiscale receptive field based on residual
network for pancreas segmentation inCT images. Biomed. Signal Process. Control 57, 101828
(2020)

21. Han, K.,Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: GhostNet: more features from cheap oper-
ations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1580–1589 (2020)

22. Chen,L.C., Papandreou,G., Schroff, F.,Adam,H.:Rethinking atrous convolution for semantic
image segmentation. arXiv preprint arXiv:1706.05587 (2017)

23. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

24. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception archi-
tecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2818–2826 (2016)

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-75238-9_38
https://doi.org/10.1007/978-3-319-75541-0_24
https://doi.org/10.1007/978-3-030-39074-7_22
http://arxiv.org/abs/1804.03999
http://arxiv.org/abs/1706.05587


Automatic Myocardial Scar Segmentation
from Multi-sequence Cardiac MRI Using

Fully Convolutional Densenet with
Inception and Squeeze-Excitation Module

Tewodros Weldebirhan Arega1,2,3(B) and Stéphanie Bricq1
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Abstract. Automatic and accurate myocardial scar segmentation from
multiple-sequence cardiac MRI is essential for the diagnosis and prog-
nosis of patients with myocardial infarction. However, this is difficult
due to motion artifact, low contrast between scar and blood pool in late
gadolinium enhancement (LGE) MRI, and poor contrast between edema
and healthy myocardium in T2 cardiac MRI. In this paper, we proposed
a fully-automatic scar segmentation method using a cascaded segmenta-
tion network of three Fully Convolutional Densenet (FC-Densenet) with
Inception and Squeeze-Excitation module. It is called Cascaded FCDISE.
The first FCDISE is used to extract the region of interest and the sec-
ond FCDISE to segment myocardium and the last one to segment scar
from the pre-segmented myocardial region. In the proposed segmentation
network, the inception module is incorporated at the beginning of the
network to extract multi-scale features from the input image, whereas
the squeeze-excitation blocks are placed in the skip connections of the
network to transfer recalibrated feature maps from the encoder to the
decoder. To encourage higher order similarities between predicted image
and ground truth, we adopted a dual loss function composed of logarith-
mic Dice loss and region mutual information (RMI) loss. Our method is
evaluated on the Multi-sequence CMR based Myocardial Pathology Seg-
mentation challenge (MyoPS 2020) dataset. On the test set, our fully-
automatic approach achieved an average Dice score of 0.565 for scar and
0.664 for scar+edema. This is higher than the inter-observer variation
of manual scar segmentation. The proposed method outperformed sim-
ilar methods and showed that adding the two modules to FC-Densenet
improves the segmentation result with little computational overhead.
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1 Introduction

Cardiovascular diseases (CVDs) are the number one cause of death globally [12].
Myocardial infarction (MI), commonly known as a heart attack, is the irreversible
death of heart muscle (myocardium) due to lack of oxygen supply (ischemia) [2].

Cardiac magnetic resonance (CMR) is a set of magnetic resonance imaging
(MRI) often used to provide anatomical and functional information of the heart.
Late gadolinium enhancement (LGE) is one type of CMR which is a gold stan-
dard for visualization and quantification of myocardial infarction. T2-weighted
CMR is mostly used to visualize myocardial edema whereas balanced Steady
State Free Precession (bSSFP) cine sequence has clear myocardial boundaries.
These sequences bring complimentary information to each other.

Myocardial scar is often segmented manually in a clinical routine. How-
ever, manual segmentation is very exhausting and suffers from intra- and inter-
observer variability. This problem can be addressed by developing an automatic
segmentation method. Having said that, automatic segmentation also comes with
its own challenges. Heterogeneous intensity distributions of the images, large
shape and size variation of the heart, motion artifact, low contrast between scar
and blood pool in LGE as well as low contrast between edema and healthy
myocardium in T2 make developing automatic segmentation methods difficult.

Most scar segmentation studies can be categorized into two main groups: non-
deep learning based and deep learning based methods. The non-deep learning
based approaches are mainly focused on thresholding and clustering. The thresh-
old based approaches exploit the enhanced intensity of the infarcted myocardium
compared with the healthy myocardium. A thresholding method called Full
Width at Half Maximum (FHFW) defines a threshold value as the half value of
the infarcted myocardium’s maximum intensity [1]. Another method [9] defines
the threshold as an intensity value n standard deviations higher than the mean
intensity of the healthy myocardium (nSD); where n can be between 2 and 6.
Both methods are simple, however, they require manual interaction of a user
to determine region of interest that defines the threshold values. Other groups
[3,13] used clustering based approach to segment the scar.

Recently, few studies have been proposed to segment scar using semi-
automatic and fully-automatic deep learning methods. Zabihollahy et al. (2018)
used manual segmentation for myocardium and then 2D Fully Convolutional
Network (FCN) to segment scar from the myocardium [18]. Moccia et al.
(2019) proposed semi-automatic and fully-automatic scar segmentation method
[10]. Their semi-automatic approach, which manually segments the myocardial
region, performed better than the one that uses automatic approach due to the
mediocre segmentation performance of the network on myocardium. Another
fully-automatic approach [15] uses a 2D U-net based myocardium segmentation
followed by a top-hat transforms based coarse scar segmentation and finally a
voxel classification of healthy and infarcted myocardium. However, using mor-
phological operation to segment a scar can be unreliable particularly when the
images have heterogeneous intensity distribution and motion artifact.
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In this paper, we proposed a fully-automatic scar segmentation method using
a cascaded Fully Convolutional-Densenet (FC-Densenet) [7] with Inception [16]
and Squeeze-Excitation (SE) modules [5]. The input to our method was a multi-
modal image which consists of LGE, T2 and bSSFP CMR sequences.

Our work has the following main contributions: 1) We proposed three cas-
caded segmentation networks that extract the region of interest then segment
myocardium and finally segment scar from pre-segmented myocardial region.
This resulted in higher Dice score and lower false positives compared to the one
that uses 2 cascaded networks. 2) We showed that incorporating SE blocks and
inception module to FC-Densenet improves the segmentation performance with
little computational overhead. SE blocks are incorporated in the skip connections
of the network to transfer a recalibrated feature maps from encoder to decoder
and inception module is added at the beginning of the network to extract multi-
scale features from the input image. 3) We proposed a novel loss function that
combines the conventional logarithmic Dice loss with region mutual information
(RMI) loss [19]. This objective function can be useful to segment small structures
and pixels with weak visual evidence such as myocardial scar and edema. 4) Our
fully-automatic approach showed a promising result on Multi-sequence CMR
based Myocardial Pathology Segmentation (MyoPS 2020) challenge dataset by
achieving a higher Dice score for scar than the inter-observer variation of manual
scar segmentation.

2 Materials

The dataset used in this paper was Multi-sequence CMR based Myocardial
Pathology Segmentation Challenge (MyoPS 2020)1. It is part of Statistical
Atlases and Computational Modeling of the Heart (STACOM) 2020 workshop
and MICCAI 2020. The dataset consists of three sequence CMR of 45 subjects
diagnosed with myocardial infarction. From the 45 subjects, 25 of them are used
for training and the rest for testing. The sequences are LGE CMR, T2-weighted
CMR and bSSFP cine sequence. LGE CMR is a T1-weighted, inversion-recovery,
gradient-echo sequence. The bSSFP CMR is a balanced steady-state, free preces-
sion cine sequence and T2 CMR is a T2-weighted, black blood Spectral Presat-
uration Attenuated Inversion-Recovery (SPAIR) sequence. The three sequences
were breath-hold and scanned at end-diastolic phase. They were also acquired
in the ventricular short-axis views [20,21]. The typical parameters of the three
sequences are summarized in Table 1.

The three CMR sequences were registered into a common space and similar
spatial resolution with a mean of 0.75 × 0.75 mm using multivariate mixture
model (MvMM) method [21]. All images have annotation for right ventricle, left
ventricle, myocardium, scar and edema. In this paper, we focused on segmenta-
tion of all except right ventricle.

1 http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20/.

http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20/
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As a pre-processing step, the intensity of every patient image is normalized
to have zero-mean and unit-variance. The dataset is already registered, as men-
tioned before. However, there are slight variations of spatial resolution among
the patients (0.72–0.76 mm). To account for this, all patients were re-sliced to
have the same spatial resolution of 1.0 × 1.0 mm. The z spacing of the voxel
spacing is not changed.

Table 1. MRI parameter setting for bSSFP, LGE and T2 CMR sequences

Parameter bSSFP LGE T2

TR/TE 2.7/1.4 ms 3.6/1.8 ms 2000/90 ms

Slice thickness 8–13 mm 5mm 12–20 mm

In-plane resolution 1.25 × 1.25 mm 0.75 × 0.75 mm 1.35 × 1.35 mm

3 Methods

3.1 Proposed Pipeline

The proposed pipeline consists of data pre-processing and deep learning based
region of interest extraction, myocardium and scar segmentation (Fig. 1). In our
approach, a cascaded segmentation network consisting of three FC-Densenet
with Inception and Squeeze-Excitation module (Cascaded FCDISE) were used
to extract the region of interest and then segment myocardium and finally seg-
ment scar from the pre-segmented myocardial region. The segmentation network
architecture used for the three tasks are almost the same. The only differences are
the number of pooling/upsampling layers and their weights as they are trained
independently. The segmentation network is based on 2D convolution operations.

Fig. 1. Proposed pipeline. FCDISE-ROI: segmentation network used for ROI extrac-
tion, FCDISE-MYO: segmentation network used for myocardium segmentation,
FCDISE-Scar: segmentation network used for scar segmentation
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3.2 Network Architecture

The proposed method is based on FC-Densenet [7]. To enhance FC-Densenet’s
performance, we incorporated two important modules: SE blocks and inception
module. We named the proposed segmentation network FCDISE.

FC-Densenet is an extension of Densenet [6] that deals with semantic seg-
mentation task. Densenets are good fit for semantic segmentation because they
have skip connections and multi-scale supervision by design. However, directly
extending Densenet as Fully Convolutional Network (FCN) will lead to feature
map explosion in the decoder part. To mitigate this problem, only the feature
maps created by the preceding dense block are upsampled. Like FCN, skip con-
nections are used to transfer the higher resolution information from encoder to
decoder [7].

Fig. 2. Proposed network architecture (FCDISE)

Similar to FC-Densenet, our network architecture consists of downsampling
path, upsampling path and skip connections. The downsampling path is com-
posed of dense blocks and transition down layers as shown in Fig. 2. The upsam-
pling path also has dense blocks and transition up layers. In the dense block, each
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layer receives feature maps from all preceding layers and forwards its feature map
to all subsequent layers as shown in Fig. 3(a). Each dense block layers are made
up of Batch Normalization, rectified linear unit (ReLU) activation function, 3× 3
convolution and drop out with probability 0.2 (Fig. 3(b)). Transition down is
composed of Batch Normalization, ReLU activation function, 1 × 1 convolution,
drop out with probability 0.2 and 2×2 max-pooling layer with stride 2 to down-
sample the feature maps into latent space. From the latent space, transition up
recovers the input spatial resolution by upsampling the feature maps using 3×3
transposed convolution with stride 2. Skip connections are used to concatenate
the feature maps from downsampling path to the corresponding feature maps in
the upsampling path.

As shown in Fig. 2, SE blocks are incorporated in the skip connections of our
network architecture. SE block is used to model channel relationships and it is
regarded as self-attention on the channels. SE block consists of global average
pooling and fully connected (FC) layers [5]. The SE block in our network receives
the feature maps from encoder and then recalibrates the feature maps before
concatenating them to the corresponding feature maps in the decoder.

The second module integrated to FC-densenet is inception module. Inspired
by [8], the inception module is incorporated at the beginning of the network.
The inception module in our network is a bit modified from the naive inception
module [16] as it contains only three kernels (3 × 3, 5 × 5 and 7 × 7 kernels)
and their output is summed instead of concatenated because summation yielded
better results (Fig. 3(c)). The reason we used inception module as first layer
of the network is to extract multi-scale features simultaneously from the input
image using different sized kernels and to send the aggregated features to the
next stage. These kernels can help to capture relevant features in different sizes

Fig. 3. Diagram of (a) dense block, (b) a layer in dense block and (c) an inception
module used in our model.
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of scar and edema. This can be beneficial because heart size varies from one
patient to another and even in one patient there is variation of size from apex
to base.

The segmentation network used to detect ROI is called FCDISE-ROI. It has
5 pooling layers. For myocardium and scar segmentation, we employed FCDISE-
MYO and FCDISE-Scar respectively. Both of them have 3 pooling layers.

3.3 Region of Interest (ROI) Detection

The first stage in the proposed pipeline is ROI extraction. In the full size cardiac
MR images, the heart covers very small part of the image. Due to this, it is
necessary to extract a region of interest around the ventricles before proceeding
to the next stages in the pipeline. Our ROI extraction method is done by first
segmenting the epicardial region from the full-size cardiac MR using FCDISE-
ROI. Then the center of the segmented epicardial region is calculated. Finally,
we applied center cropping from the computed center of epicardial region with a
patch size of 96 × 96. This particular size is chosen after taking into consideration
the largest diameter of epicardium from the training set images.

This method places the ventricles in the center of the cropped region. This
has three advantages for the next stages in the pipeline. It reduces the false
positives and alleviates the class imbalance between the background and the
ventricles/scar classes. Furthermore, it decreases the computation time as the
size of input images are decreasing.

3.4 Myocardium and Left Ventricle Segmentation

The second stage in the proposed pipeline is myocardium and left ventricular
blood pool segmentation. The inputs to FCDISE-MYO are output of ROI detec-
tion stage which are 2D slices of size 96 × 96. When we used input size 96 ×
96 with our segmentation network which has 5 pooling layers, the latent space
feature map size becomes very small which makes reconstruction of the segmen-
tation map difficult. To avoid this problem, we reduced the number of pooling
layers in the network from 5 to 3. That is why FCDISE-MYO has 3 pooling
layers.

3.5 Scar Segmentation

Scar segmentation stage is very similar to myocardium segmentation stage except
for the input image. The input image here contains only the pre-segmented
epicardial region, the region which includes left ventricular blood pool and
myocardium. As myocardium segmentation may not be perfect, we also included
the surrounding area near the epicardium border by applying dilation on the pre-
segmented epicardial region with a rectangular structuring element of size 5 × 5.
The input image size is 96 × 96 but contains only background pixels and the pre-
segmented region. The segmentation network used in this stage is FCDISE-Scar,
which is similar to the previous stage’s segmentation network.



Automatic Myocardial Scar Segmentation from Multi-sequence Cardiac MRI 109

As a post-processing step, we applied 2D connected component analysis and
morphological operations like dilation and erosion to the segmented image to
further improve the segmentation result and reduce outliers.

3.6 Loss Function

As an objective function, we proposed a dual loss function which is a weighted
combination of logarithmic Dice loss [17] and region mutual information (RMI)
loss [19].

Logarithmic Dice loss (log Dice loss) is known for its robust performance
on small structures [17]. Compared to linear Dice loss, it focuses more on less
accurate classes. Log Dice loss is computed as the mean value of the natural
logarithm of the Dice coefficient as stated in Eq. 1. It also introduces an exponent
γ that controls the non-linearity of the loss function. When γ > 1, the log
Dice loss focuses even more on the less accurate classes. If the non-linearity is
0 < γ < 1, the loss works better because it supports improvement at both low
and high accuracy. To improve the segmentation of small structures like scar
and edema, we chose a logarithmic Dice loss.

The second loss function used is region mutual information loss. Unlike pixel-
wise loss, RMI loss takes into account the dependencies among the pixels. Each
pixel in an image is represented by the pixel itself and its neighbouring pixels.
In other words, the pixel will be represented by multi-dimensional point and the
image will be a multi-dimensional distribution of these points. Maximizing the
mutual information between the multi-dimensional distributions of the ground
truth and predicted image will result in high order consistency between these two
images. This loss function captures the structural differences between the shapes
of predictions and ground truth. It is also helpful in identifying pixel whose
visual evidence is weak or when the pixel belongs to objects with small spatial
structures [19]. This makes it ideal for myocardium and scar segmentation.

From Eq. 2, Y is multi-dimensional distribution of the ground truth and P
is multi-dimensional distribution of the predicted image. ΣY |P is the posterior
covariance matrix of Y given P and det() is determinant of the matrix. I(Y ;P ) is
a lower bound of the mutual information. Then the total RMI loss is computed
as a combination of the pixel-wise cross entropy loss (LCE) and lower bound
MI as stated in Eq. 3. In this equation, B and C represent mini-batch size and
number of classes respectively.

To take advantage of both log Dice loss and RMI loss, we used a weighted
combination of these two losses as our objective function as stated in Eq. 4,
where λDice and λRMI are the weighting factors for log Dice loss (LDice) and
RMI loss (LRMI) respectively.

LDice = E[(−ln(Dicei)γ ] (1)

I(Y ;P ) = −1
2
log((2πε)ddet(ΣY |P )) (2)
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LRMI = LCE +
1
B

B∑

b=1

C∑

c=1

(−I(Y ;P )) (3)

LTotal = λDiceLDice + λRMILRMI (4)

3.7 Training

The three segmentation networks in the pipeline are trained independently. The
weights are initialized using He normal initialization method [4]. The optimiza-
tion of the weights are done using Adam optimizer with learning rate of 0.001.
The mini-batch size was 16. The model was trained for 80 epochs. We set a
weighting factor of 0.8 for log Dice loss and 0.2 for RMI loss as they provided
the best results. For log Dice loss, a non-linearity of 0.3 was used. The frame-
works used to implement the model and the code are PyTorch and Python.

In order to avoid over-fitting, we have adopted three techniques: dropout,
early stopping and weight regularization. In our experiments, the patience for
the early stopping was 10 epochs and L2 weight regularization was used with
regularization term (lambda) set to 1 × 10−8. Furthermore, we used a dropout
with probability of 0.2.

4 Results and Discussion

To evaluate the segmentation results, we used Dice coefficient and Hausdorff
distance (HD). Dice coefficient measures the similarity of two images. It is cal-
culated as the size of the overlap between segmented image and ground truth
divided by the total size of the two images. This measures the overall quality
of a segmentation. This metrics is used to evaluate both scar and myocardium
segmentation results. Hausdorff distance is the greatest of all distances from a
point in one set to the closest point in the other set. This metrics focuses on
outliers. Hausdorff distance metric (2D) is used to evaluate myocardium segmen-
tation result. Calculating Hausdorff distance for scar and edema can be difficult
because they are dispersed regions.

To evaluate our models, we employed a five fold cross-validation as well as
train-validation-test evaluation methods. For the latter method, from a total of
25 subjects, 17 were used for training, 3 for validation and 5 for test.

4.1 Myocardium and Left Ventricle

The proposed method yielded a Dice score of 0.872 and Hausdorff distance (2D)
of 3.392 mm on myocardium (MYO) segmentation and a Dice score of 0.921 and
Hausdorff distance (2D) of 2.577 mm on left ventricle (LV) segmentation.

The inter-observer variation of manual segmentation of MYO were Dice
scores of 0.757, 0.824 and 0.812 for LGE, T2 and bSSFP respectively. Comparing
to our model’s performance on each CMR separately, our method yielded Dice
scores of 0.771, 0.798 and 0.854 for MYO using LGE, T2 and bSSFP sequences
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respectively. This result was on average better than the inter-observer varia-
tion. Besides, the Dice score of MYO increased to 0.872 when we combined the
three modalities as an input to our method. From this, we can say that combin-
ing multiple CMR modalities improved the segmentation accuracy of the heart
structures.

To evaluate the effect ROI in our pipeline, we compared the results with and
without ROI. When we directly segment heart from the full-sized cardiac MR,
our method yielded Dice scores of 0.905 and 0.853 for LV and MYO respectively.
However, when we employed ROI, our method achieved an improved Dice score
of 0.921 for LV and 0.872 for MYO. Moreover, the obtained Hausdorff distance
was on average 0.22 mm lower than the one that did not use ROI. This shows
how extracting ROI can improve the result by reducing the false positives and
mitigating the class imbalance problem between the background and ventricle
classes.

Table 2 quantitatively compares the proposed loss with the conventional
loss functions such as cross-entropy loss, Dice loss, logarithmic Dice loss. The
proposed loss outperformed the other loss functions by achieving the highest Dice
score in both LV and MYO. To better investigate the qualitative performance
of the loss functions, we selected a typically challenging image which has scar
tissue, as depicted in Fig. 4. The proposed loss produced robust segmentation
result. The other loss functions particularly failed because they segment the scar
as blood pool instead of MYO (middle slice in Fig. 4). That is when the addition
of RMI loss becomes very handy. Because RMI loss takes into account the pixel
dependencies unlike the pixel-wise losses. This helped the model to achieve high
order consistency between the prediction and ground truth.

Table 2. Quantitative comparison of loss functions using Dice score

Loss function LV (Dice) MYO (Dice)

Cross-entropy 0.905 ± 0.067 0.849 ± 0.086

Dice loss 0.903 ± 0.073 0.858 ± 0.067

Log dice loss 0.909 ± 0.056 0.865 ± 0.054

Proposed loss 0.921± 0.041 0.872± 0.041

4.2 Scar

The performance of the proposed method in scar, edema and scar+edema seg-
mentation is presented in Table 3. Note that Scar+Edema considers scar and
edema as one class. Having one class can be helpful to evaluate the model’s
performance on detecting the infarcted myocardium in general instead of divid-
ing the infarcted region into scar and edema. Our method performed well on
infarcted myocardium (scar+edema) segmentation. However, its performance
decreased a little bit when separately segmenting scar and edema.
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Fig. 4. Qualitative comparison of loss functions on a typically challenging image. Note
that the results are before post-processing. Myocardium (green) and left ventricle (yel-
low). (Color figure online)

Similar to myocardium segmentation, we studied the effect of using single
modal CMR and multi-modal CMR as shown in Fig. 5. Comparing the three
modalities, using only LGE CMR achieved the best Dice score for scar (0.603)
whereas using only T2 CMR yielded the best result for scar+edema (0.644).
The bSSFP sequence’s segmentation performance on both scar and edema was
inferior compared to the other two CMR sequences. This can be due to the
fact that bSSFP CMR has less information about scar and edema. When we
combined the three modalities, the Dice score of scar slightly increased to 0.604
while that of scar+edema significantly increased to 0.687. This showed that the
three CMR sequences have complementary information about scar and edema.

Table 3. Scar, edema and scar+edema segmentation result of the proposed method

Metrics Scar Edema Scar+edema

Dice 0.604 ± 0.167 0.488 ± 0.172 0.687 ± 0.072

Specificity 0.977 ± 0.092 0.967 ± 0.112 0.962 ± 0.081

Sensitivity 0.627 ± 0.128 0.457 ± 0.125 0.739 ± 0.094

Accuracy 0.959 ± 0.093 0.946 ± 0.113 0.941 ± 0.098

Comparing the performance of the loss functions on the segmentation of
scar and edema, the proposed loss outperformed the conventional loss functions.
Cross-entropy loss yielded Dice scores of 0.527 for scar and 0.567 for scar+edema
whereas Dice loss achieved Dice scores of 0.543 for scar and 0.575 for scar+edema.
Log Dice loss, compared to the first two losses, provided better result for both
scar (0.588) and scar+edema (0.606). When we combined RMI loss with log
Dice loss, the segmentation result of scar increased a little bit to 0.604 while the
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Fig. 5. Comparison of different cardiac MR sequences performance on scar and
scar+edema segmentation. Where LGE is late gadolinium enhancement cardiac MR
and T2 is T2-weighted cardiac MR. Cine is bSSFP cine sequence and LGE-T2-Cine is
multi-modal image consisting of LGE, T2 and bSSFP sequences.

improvement for scar+edema was substantial as it enhanced the Dice score from
0.606 to 0.687. It is observable that the addition of RMI loss helped to improve
the results particularly that of edema. The proposed loss function’s robust seg-
mentation performance on scar/edema and myocardium verified the benefit of
combining log dice loss with a loss function that considers the dependencies
among the pixels.

Ablation Study. To evaluate the effect of addition of inception and SE module
to FC-Densenet, we have compared the proposed method with FC-Densenet and
FC-Densenet with only SE module (FCDensenet SE). As presented in Table 4,
the baseline model (FC-Densenet) achieved comparable result in scar but failed
in Edema. Adding SE blocks to the baseline has substantially improved the
segmentation accuracy (Dice score) for scar+edema by nearly 10%. While the
proposed method, which adds both SE block and inception module to the base-
line, improved the Dice value for scar+edema achieving a 14% increase compared
to the baseline. The improvement is also demonstrated in the qualitative result
as can be seen from Fig. 6. It can be observed that the proposed method has
comparatively better performance at detecting different sized scars. This showed
the benefit of the extracted multi-scale features from the input image and con-
firmed the advantage of the incorporated SE block. Our method achieved this
enhancement with minimal computational overhead.

Comparison with Alternative Methods. We compared our proposed
method with three other methods which employed the same pipeline that is
a cascaded three networks. The segmentation networks used in the place of
FCDISE are Unet [14], Attention-Unet [11] and Res-Unet. Unet is one of the
most commonly used segmentation networks in medical images. Attention-Unet
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Table 4. Dice score comparison of various methods for scar and scar+edema segmen-
tation.

Methods Scar (Dice) Scar+Edema (Dice) No of params

Unet 0.577 ± 0.095 0.558 ± 0.131 0.84 million

Attention-Unet 0.566 ± 0.144 0.610 ± 0.118 2.6 million

Res-Unet 0.535 ± 0.176 0.560 ± 0.284 6.7 million

FCDensenet 0.579 ± 0.148 0.540 ± 0.229 0.65 million

FCDensenet SE 0.584 ± 0.181 0.640 ± 0.134 0.68 million

Proposed method 0.604± 0.167 0.687± 0.072 0.69 million

is a standard Unet with attention gate which recalibrate feature maps spatially.
Res-Unet is also a Unet with residual encoder and decoder.

Fig. 6. Qualitative comparison of different models on scar (yellow) and edema (green)
segmentation.

The comparison was both qualitatively and quantitatively, as shown in Fig. 6
and Table 4 respectively. Unet had good result on scar but its performance
decreased on edema. While Res-Unet did not perform well on both scar and
edema. This is because it overfitted on this small dataset (25 cases). Both
Attention-Unet and the proposed method which use attention on feature maps
achieved better result on scar+edema than the ones that do not use. This demon-
strated the benefits of recalibrating feature maps spatially or channel-wise on
helping the model to increase its focus on scar and edema. However, when
Attention-Unet is compared to the proposed method, our method achieved more
accurate segmentation performance in both scar and scar+edema. Besides, the
proposed method was robust at detecting scar at different heart positions and
had less false positive cluster of scar compared to the other methods.

As shown in Table 4, we also compared the number of trainable parameters.
The ones that use dense blocks have the lowest number of parameters because
Densenet encourages feature reuse which substantially reduces the number of
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parameters. Besides, our method is ideal on tasks with smaller training set sizes
like MyoPS 2020 because the dense connections in the network have a regular-
izing effect which reduces overfitting.

5 Conclusion

In this paper, we proposed a deep learning based fully automatic myocardial
scar segmentation method from multi-sequence cardiac MR images. Our method
employs three cascaded segmentation networks to first extract ROI then segment
myocardium and finally use the pre-segmented myocardium to segment scar
and edema. Each segmentation network used FC-Densenet with Inception and
Squeeze-Excitation module (FCDISE). The SE blocks are incorporated in the
skip connections and the inception module is added in the initial layer of the net-
work to concatenate different field of views of image features. We demonstrated
that adding these two modules to FC-Densenet substantially improves the seg-
mentation result with little computational overhead. Compared to other similar
networks, our method is better at locating different size scar and edema, and
performs well on small training set. Furthermore, we showed that region mutual
information loss combined with logarithmic Dice loss achieves high order consis-
tency between the prediction and ground truth. It can also be of great interest
for segmentation of medical organs whose pixels have weak visual evidence.

Despite having a very challenging dataset, our approach yielded very good
result on the test set achieving an average Dice score of 0.565 for scar and 0.664
for scar+edema which is higher than the inter-observer variation of scar segmen-
tation 0.524 (Dice score of scar). Note that our proposed method’s performance
on few cases (3 out of 20 test cases) was poor because these cases were exception-
ally challenging. Future work will aim in using multi-planar network that will
include sagittal, coronal and axial views to further improve the segmentation
result.
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Abstract. Myocardial pathology segmentation in cardiac magnetic res-
onance (CMR) is significant in the diagnosis for patients suffering from
myocardial infarction (MI). Therefore, accurate and automatic segmen-
tation method is highly desired in clinical practice. To better accomplish
this segmentation task, we propose a modified U-net architecture named
Dual Attention U-net. In this network, we use U-net as the baseline and
embed a dual-branch attention module in it. One of the branches pro-
vides channel attention via emphasizing feature association among dif-
ferent channel maps, while the other branch provides spatial attention
which adaptively aggregates the features at relative positions regardless
of their distances in a weighted manner. Experiments show that both of
these modules have effectively improved the segmentation performance.
In addition, we have adopted data processing and augmentation meth-
ods to further improve the segmentation quality. Our model is evaluated
on the public dataset from the MyoPS 2020 challenge, which consists of
three sequences of cardiac MR images (bSSFP, LGE, and T2-weighted)
from 45 patients. Our method achieves the Dice score of 63.5 (scar) and
68.8 (scar and edema) in the final test set.

Keywords: Cardiac magnetic resonance · Dual Attention U-net ·
Medical image segmentation

1 Introduction

A comprehensive and multidimensional cardiac view can be showed by cardiac
magnetic resonance image (MRI). In the clinical treatment of myocardial infarc-
tion, Cardiac MRI is beneficial to the assessment of the cardiac function [4]. Each
of the Cardiac MRI modalities contains different priorities. The late gadolin-
ium enhancement (LGE) sequence is able to visualize the area of infarcted
c© Springer Nature Switzerland AG 2020
X. Zhuang and L. Li (Eds.): MyoPS 2020, LNCS 12554, pp. 118–127, 2020.
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myocardium, the T2-weighted CMR emphasizes the myocardial edema regions,
and the balanced-Steady State Free Precession (bSSFP) CMR provides spe-
cific information of cardiac boundaries. Thus, integrating multi-sequence CMR
contributes to capture abundant and available pathological and morphological
information of the myocardium [16]. Accurate delineation of scar and edema
regions in CMR is significant in the analysis and diagnosis of patients suffering
myocardial infarction.

In the clinical application, segmentation of particular organs or tissues in
medical imaging still heavily depends on manual operation. However, artificial
delineation is generally time-wasting, humdrum and subjective [16]. An auto-
matic and robust segmentation method is in great request. Recently, deep learn-
ing has obtained remarkable success over various computer vision tasks [5,8].
Specifically, U-shape network structure [9] plays a significant role in medical
image segmentation, and numerous variants have been developed. Chen et al.
[2] proposed two-task recursive attention model to segment the left atrium and
the atrial scars simultaneously. Combining histogram matching method, Liu
et al. [7] achieved effective augmentation of the training data and acquired ven-
tricles and myocardium segmentation result. Wang et al. [12] presented SK-Unet
to segment left ventricle, right ventricle and left ventricular myocardium, which
embed attention modules in different stages of the structure based on U-net.
Furthermore, there are also several works aiming in the segmentation of cardiac
anatomical structures in CMR [1,6,10,13,14].

In this paper, we present an novel algorithm based on modified U-net to seg-
ment myocardial edema, scar and other cardiac tissues automatically. The data
is from the challenge of myocardial pathology segmentation combining multi-
sequence CMR (MyoPS 2020), which consists of 45 cases of multi-sequence CMR.
Data pre-processing and augmentation is employed to facilitate the training pro-
cess and avoid overfitting of the model. The boundary of the pathological region
in the heart showed in MRI is blurred and difficult to distinguish, which is quite
a challenge for existing segmentation network. Previous research has established
that contextual information and spatial information benefits pixel-wise classi-
fication and improves the recognition of object boundaries. Inspired by [3,11],
the dual attention module [3] is plugged into the sub-module of modified U-net
architecture. The spatial attention aggregates pixel-wise contextual information
adaptively. In addition, the channel attention module can obtain the connection
between different feature maps of channel dimension. Both modules embedded
in U-net aid to restore the border of target and improve segmentation accuracy.
With this approach, we get the final segmentation results of scar and edema.

2 Method

Our proposed model is based on the classical U-net [9], which is effective in med-
ical image segmentation tasks. We have made considerable improvements based
on U-net to adapt to the segmentation of cardiac MR images. Our fully auto-
matic segmentation algorithm can precisely identify myocardial scars and edema
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regions in an end-to-end manner. In addition, we will also introduce the data
processing and data augmentation strategies that are used in our experiments.

2.1 Data Processing

Data Preprocessing. The MRI dataset used to evaluate our proposed net-
work is provided by the MyoPS 2020 challenge. It contains 45 cases of three-
sequence CMR. Each CMR consists of three different modalities(e.g., LGE, T2
and bSSFP). Images of different modalities in the dataset have been aligned into
a common space and re-sampled into the same spatial resolution by using the
MvMM method [15]. To fully utilize of the information of the three modalities,
we empirically treat the three sequences as three channels and stack them into
one image. Since this competition aims to distinguish myocardial infarction area
from healthy tissue, we remove the images without lesions from the dataset. Ulti-
mately, we obtain 97 three-channel images as the training data. The pixel values
of the MRIs are extremely large, we therefore normalize the input images to the
distribution of zero mean and variance of one within the heart area. Besides,
we also have tried to apply the contrast limited adaptive histogram equalization
(CLAHE) and histogram matching to get relatively consistent intensity among
the three modality images.

Data Augmentation. Due to the limited training images, data augmenta-
tion becomes extremely important to improve the performance of the model.
In the experiments, we found non-rigid transformations (e.g., ElasticTransform,
GridDistortion and OpticalDistortion) are effective techniques to gain a better
performance in medical image segmentation. The visualization of three non-
rigid transformations is shown in Fig. 1. Consequently, our data augmentation
methods include flipping, cropping, rotation, brightness and contrast shift and
non-rigid transformations.

Fig. 1. A visualization of the original image and counterparts generated by three kinds
of non-rigid transformations. We add white grids to the images for a better comparison.
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2.2 Dual Attention U-Net Architecture

The proposed Dual Attention U-net is a segmentation network composed of
encoder and decoder. The shortcut connection combines the same size feature
maps in the encoder and decoder. At the end of the encoder, we embed the dual
attention module [3] to capture the global context information on feature maps
and enhance specific feature maps among different channels.

The network architecture is illustrated in Fig. 2. The inputs of the network
are three sequences of cardiac MR images while the output is the probability
that each pixel is classified as background, edema, scar, etc. The left side of
the network is the encoder part, which is a classical convolutional architecture.
This architecture extracts feature information by repeatedly applying two 3 ×
3 convolutions and each followed by a batch normalization layer, a rectified
linear unit (ReLU) and a 2 × 2 max pooling operation. The pooling layer uses
a stride of 2 for downsampling, and the number of feature channels are doubled
at each feature map downsampling. The left and right sides of the network are
symmetrical. In the decoder we replace the max pooling with deconvolution in
order to upsample the feature maps. The feature maps of the same size in the
encoder and decoder are connected by shortcuts and concatenated in the channel
dimension, leading to the fusion of features from shallow and deep convolution
layers.

Fig. 2. The overall structure of our proposed Dual Attention U-net.

As shown in the network architecture, we insert the channel attention mod-
ule (CAM) to selectively emphasize feature association among different channel
maps and the position attention module (PAM) to capture the long-range
dependency on feature maps. In Fig. 3, these two modules are illustrated in
detail. In the PAM, given an existing feature map I ∈ RC×H×W , we first use
two 1 × 1 convolutions to generate corresponding new feature maps Q and K

respectively, where Q,K ∈ RC
′×H×W . Then we reshape them to RC

′×N , where
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N = H × W means the number of pixels in each channel. After that, the result
of multiplying the transposed Q and K matrices is sent to the softmax layer
to calculate the spatial attention map S ∈ RN×N . At the same time, we feed
the feature map I into another 1 × 1 convolution to generate a new feature map
V ∈ RC×H×W and reshape it to RC×N . Similarly, we perform a matrix multipli-
cation between V and the transpose of S and reshape the result O to RC×H×W .
In the CAM, except for deprecating the 1 × 1 convolution, the other steps are
basically the same.

(a) Position Attention Module

(b) Channel Attention Module

Fig. 3. The details of the position attention module and channel attention module are
illustrated in (a) and (b), respectively.

For feature maps with high-level semantic information, each feature channel
can be considered as a specific response to a category/class. Therefore, we use
the CAM to take advantage of the interdependence between the feature map
channels, which is very helpful for pixel-level classification tasks. On the other
hand, capturing long-range dependence is of great importance. In convolutional
neural networks, the long-range dependence is captured by the large receptive
field formed by stacking convolutional layers. Therefore, by repeatedly stacking
convolutional layers and spreading the data layer by layer is possible to capture
long-range dependencies. However, this method is computationally inefficient
and leads to difficulties in parameter optimization. To this end, we use the PAM
to accomplish this goal.
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2.3 Post Processing

Image post processing is adopted to refine the results of cardiac pathology
segmentation. Firstly, the prior knowledge that the pathological area appears
around myocardium is applied to obtain more reasonable segmentation. There-
fore, we remove the obviously wrong segmentation results which are outside the
target area. From the training data, we observed that the labeled pathology
region of each sample is basically a whole connected area, that inspired us to
remove the unconnected segmentation results of pathology regions which are
usually not reasonable and fill with adjacent category pixels under a predefined
threshold. This threshold is chosen for each experiment independently by opti-
mizing the mean Dice on the MyoPS 2020 training cases. The specific effect of
post-processing is shown in Fig. 4.

Fig. 4. Visualization of post-processing effects.

3 Experiments and Results

3.1 Data and Evaluation Metrics

The dataset provided by MyoPS 2020 contains 45 cases of multi-sequence CMR,
and each case refers to a patient with three sequence CMR, i.e., LGE, T2 and
bSSFP CMR. The first 25 cases are used as training data while the rest are
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reserved as test data. In the training set, we separated the last 5 cases for vali-
dation. The labels for myocardial pathology segmentation include left ventricular
(LV) blood pool (labelled 500), right ventricular blood pool (600), LV normal
myocardium (200), LV myocardial edema (1220) and LV myocardial scars (2221).
However, the evaluation of the test data will be focused on the myocardial pathol-
ogy segmentation, i.e., scars and edema.

The evaluation metrics used in our experiment include the Dice coefficient
(Dice) and Hausdorff distance (HD). Dice score is widely used for evaluat-
ing medical image segmentation quality and it measures the degree of overlap
between the predicted segmentation map and ground truth. HD measures the
maximum degree of mismatch between the ground truth and predicted object
boundaries.

3.2 Implementation Details

In our experiments, we used a batch size of 8 and trained the model on an
Nvidia TITAN RTX GPU for 500 epochs. Considering the segmentation object
only occupies a small area in the center of the whole image, we cropped the
original image into a 256×256 voxel to remove the black areas (i.e., background
regions). We adopt the SGD optimizer with an initial learning rate of 0.001. The
Dice loss is employed to train the network and L2 norm is applied for model
regularization with a weight decay rate of 10−5.

3.3 Experimental Results and Analysis

When evaluating on the validation set, we conducted experiments respectively
on the use of PAM, CAM, and both of them simultaneously. The experimental
results are listed in Table 1. Comparing to the classical U-Net, no matter which
module we use, it can bring performance improvements to the segmentation
results.

In the experiment, non-rigid transformation and data post-processing have
a positive effect. In addition, we utilized a test augmentation technique when
testing the model, that is, flipping the input image axes respectively and using
multiple models to test. Finally, we averaged the results to make it more stable.
The results are presented in Table 2. We selected the scheme with the highest
score on the validation set for the prediction of 20 cases in the test set, and sent
the results to the competition organizer for evaluation. Our final performance
on the test set is shown in Table 3. Similarly, the effectiveness of PAM, CAM,
and both of them was verified respectively in the test set by test tool provided
by the sponsor [15]. After applying the PAM and CAM on the experiment, the
final dice score is further improved.

The computational complexity comparison (Table 4) between U-net and our
Dual Attention U-net shows that the additional channel and position attention
modules only bring a slight increase in the computational cost, which has a very
minor effect on the speed of reasoning.
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Table 1. Performance comparison on the validation set.

(a) Comparison of Dice Score

Method
Dice Score(%) ↑

Myo LV RV Scar Scar+Edema

U-net 73.24 88.22 76.66 60.88 68.16

U-net + CAM 73.82 88.83 77.47 64.45 71.49

U-net + PAM 75.61 89.45 78.02 64.04 71.69

U-net + CAM +PAM 75.18 89.19 77.24 64.82 72.39

(b) Comparison of Hausdorff Distance

Method
Hausdorff Distance(mm) ↓

Myo LV RV Scar Scar+Edema

U-net 23.40 7.53 12.74 24.08 31.09

U-net + CAM 18.13 7.15 7.89 18.03 21.12

U-net + PAM 17.78 7.00 5.12 17.61 24.98

U-net + CAM +PAM 16.81 6.88 5.49 16.35 20.92

Table 2. Performance of multiple strategies on the validation set. We use U-net +
CAM + PAM as the base model to obtain various performances using non-rigid trans-
formation (NR), data post-processing (PP) and test augmentation (TA).

Method Dice score (%) ↑ Hausdorff distance (mm) ↓
Scar Scar+Edema Scar Scar+Edema

Base 55.9 68.71 28.82 35.96

Base + NR 64.33 71.58 24.64 30.94

Base + NR + PP 64.74 72.19 18.60 22.62

Base + NR + PP + TA 64.82 72.39 16.35 20.92

This competition focuses on the segmentation of myocardial pathological
regions. We selected three cases for visualization as shown in Fig. 5. The visual-
ization can further illustrate that the segmentation results has been significantly
improved. For small areas such as scars and edema, PAM can achieve more accu-
rate segmentation by capturing global contextual correlations. Also, as shown
in the visualization, over-segmentation occurred at a distance from the lesion,
while U-net with PAM effectively alleviates this phenomenon. Meanwhile, CAM
can also make the channel respond to specific categories and improve the per-
formance of pathological region segmentation.
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Table 3. Performance of our approach on the final test set.

Method Dice score mean ↑ Dice score std ↓
Scar Scar+Edema Scar Scar+Edema

U-net 0.6134 0.6755 0.2701 0.1475

U-net + CAM 0.6282 0.6825 0.2861 0.1495

U-net + PAM 0.6294 0.6806 0.2803 0.1464

U-net + CAM + PAM 0.6345 0.6880 0.2899 0.1484

Table 4. Computational complexity analysis.

Model FlOPs (G) Parameter (M)

U-net 46.177 31.04

U-net + CAM + PAM 46.513 31.37

Fig. 5. The segmentation results. From left to right are the original U-net, U-net with
CAM, U-net with PAM, U-net with both CAM and PAM, and the ground truth.

4 Conclusion

In this paper, we proposed a Dual Attention U-net for myocardial pathology
segmentation in cardiac magnetic resonance images, which adaptively integrates
local semantic features using the self-attention mechanism. Specifically, we used
two branches of attention modules to capture global dependencies in the spa-
tial and channel dimensions respectively. The experiments show that the Dual
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Attention U-net yields more precise segmentation results for myocardial pathol-
ogy segmentation than the original U-net. Our approach and results analysis can
also provide useful network design insights to aided diagnoses for clinical cardiac
surgeon.
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Abstract. Accurate assessment of myocardial viability in multi-
sequence cardiac magnetic resonance (CMR) images is desired to auto-
mate disease diagnosis. To classify myocardial pathology automatic seg-
mentation methods are necessary. In this paper we propose to use an
automatic segmentation for each slice in the short-axis view with convo-
lutional neural network architecture based on U-Net. We compare per-
formances of two different networks to segment myocardial pathologies.
The best performance is obtained by using the U-net convolutional neu-
ral network architecture built from residual units trained by augmenta-
tion operations, showing that it is a practical approach for segmenta-
tion. The network performances are assessed on MyoPS 2020 challenge
dataset consists of three-sequence CMR images from 45 patients. A five-
fold cross-validation strategy is utilized to assess performance of the pro-
posed method.

Keywords: Cardiac MR · Scar · Edema · LGE · Image
segmentation · Convolutional neural networks

1 Introduction

Cardiovascular diseases (CVD), which cause of death approximately 17.9 million
people each year, are the number one cause of death globally [1]. An expert ana-
lyzes cardiac MR images for diagnosing the disease, though the analysis process
takes time, and the expert has limited time for this task. This is time-consuming,
tiring, and prone to subjective errors. Furthermore, the speed of diagnosis is very
important in critical situations in these diseases. Accurate and early detection
is of great importance for individuals with this disease or individuals in the risk
group. Since cardiovascular diseases are a problem throughout society, develop-
ments in this area directly affect people’s health. For all these reasons, it is very
important to manage this process automatically. The segmentation of cardiac
MRI data plays an important role in this process.

The cardiac shape can change drastically due to variations in anatomy from
patient to patient. Variations related to acquisition such as different angles and
poor quality shots of CMR images can be found in the data. Therefore, it is
essential to develop algorithms that can address these variations in data. In
c© Springer Nature Switzerland AG 2020
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this paper, we describe our method for myocardial pathology segmentation of
multi-sequence CMR images using neural network architectures based on U-Net.
Accurate segmentation of myocardial edema and scars is crucial in making the
diagnosis automatically. We compare the performance of models trained with
two different architectures U-Net and Residual U-Net.

This study is our entry for MyoPS 2020 challenge, which aims the myocardial
pathology segmentation from multi-sequence CMR. Although the challenge only
evaluates the results of the pathology segmentation, i.e., scars, and edema of
left ventricle myocardium, we will also discuss in this paper our results with
ventricular blood pools.

2 Background

Segmentation of myocardial region has been a key challenge and machine learn-
ing techniques have heavily influenced the trends. Earlier approaches are devel-
oped based on semi-automated and atlas-based to perform the segmentation
of cardiac MR images (CMR) [11,12]. Recently, deep learning plays a great
role in the semantic segmentation of CMR images. Convolutional networks have
applied on segmentation task for a long time, but their success was limited
due to both the size of the available training sets and the size of the networks
considered [8]. However, the advancement of deep learning has also led to suc-
cess in segmentation. More recently, many approaches based on deep learning
overcome the performance of classical approaches for cardiac image segmenta-
tion. Tran used a fully convolutional neural network for cardiac segmentation
in short-axis MRI [15]. Recurrent Neural Network (RNN) approach is applied
for cardiac segmentation in MR images successively [12]. The U-net architec-
ture of Ronneberger et al. has been widely used in the area of medical image
segmentation [13]. ResNet architecture of has achieved remarkable success in
computer vision tasks [4]. This motivated research on using ResNet for segmen-
tation architectures to assess cardiac health and identify certain pathologies [7].
Karim et al. [6] developed methodologies that detect and quantify infarct in late
gadolinium enhancement magnetic resonance images (LGE-MRI) for actual clin-
ical practice. Zabihollahy et al. [19] used convolutional neural network (CNN) to
segmentation of the myocardial fibrosis or scar in LGE-MRI. The architectures
has not been the only focus for performance improvement in cardiac MRI seg-
mentation. Several loss functions, such as weighted cross-entropy [5], Dice loss
[10], weighted Dice loss [18], focal loss Sander et al. [14], and deep supervision
loss [3] have been investigated to increase the alignment with ground truth
annotations. In recent years, multiple challenges on the segmentation task have
also been opened for advancing the state of the art for segmentation tasks [2],
but they failed short to focus on regional pathology such as scar and edema.
In this work, we showcase the performance of residual U-net architecture on
myocardial pathology segmentation.
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Fig. 1. An example of multi-sequence CMR image from training dataset. First image
bSSFP, second image LGE, third image T2 CMR, and fourth image is associated
ground truth segmentation. Myocardium region segmented into normal, edema, and
scar regions, where dark gray represents the normal myocardium, gray represents the
edema, and white represents the scar.

3 Methods

3.1 Dataset

In this study, the network performance assessed on myocardial pathology
segmentation combining multi-sequence CMR Challenge for MyoPS 2020
dataset [20,21]. Training dataset consists of 25 cases having a different num-
ber of slices of multi-sequence CMR, i.e., late gadolinium enhancement (LGE),
T2-weighted CMR which images the acute injury and ischemic regions, balanced-
Steady State Free Precession (bSSFP) CMR, and all ground truth values for
every single slice. The ground truth labels include left ventricular (LV) blood
pool, right ventricular (RV) blood pool, LV normal myocardium, LV myocar-
dial edema, LV myocardial scars and evaluation of the test data will only focus
on myocardial pathology segmentation, i.e., scars and edema. The test dataset
consists of 20 cases.

Accurate segmentation scar geometry in CMR images is essential for rep-
resenting of patient-specific structural remodeling [16,17]. 2-dimensional LGE
MRI is used to identify myocardial scar. Although a multi-sequence CMR data
set provides us with rich and reliable information about the pathological and
morphological information of the myocardium, the segmentation of scar and
edema regions is hard to obtain and time-consuming in such a dataset. More-
over, the edema and scar may be concentrated in a small region and exhibit low
intensity distinction, which makes them more difficult to extract from the rest
of the anatomy. MyoPS 2020 dataset presents us a great challenge for segment-
ing edema and scar regions since the dataset directly collected from the clinic
without any selection. In Fig. 1, we show an example input multi-sequence CMR
image and its ground truth annotation from the training dataset.

3.2 U-Net Architecture

The U-Net architecture, a convolutional network for biomedical image segmen-
tation is used to segmentation of the cardiac MR images. The network consists
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of a contracting (downsampling) and a expanding (upsampling) paths. In the
contracting path, there are 3×3 convolutions, each followed by a rectified linear
unit (ReLU) activation function and 2 × 2 max-pooling operation with stride 2.
There is also dropout layer after first convolution at each downsampling step to
prevent the architecture from overfitting. In the contracting step the number of
feature channels doubles. In the expansive, there are upsampling of the feature
map followed by a 2 × 2 convolution in all steps. At each step, the number of
feature channels halves. There are also a concatenation with the feature map
from the contracting path, and two 3× 3 convolutions, each followed by a ReLU
activation function. A 1 × 1 convolution also is used to map each feature vector
to the number of classes at the final layer.

Fig. 2. From top to bottom, the example of CMR image segmentation results of the
U-Net method, and our proposed method in the MyoPS 2020 test dataset. The left
result is best in terms of segmentation of edema and scar and the right result is the
worst-case scenario. Normal myocardium shown in dark gray, myocardial scars shown
in white, and myocardial edema shown in gray in the predicted segmentation mask.

3.3 Residual U-Net Architecture

Residual U-Net architecture consists of three parts: encoding, bridge and decod-
ing. We use a 5 × 5 zero padding, a 7 × 7 convolution with a stride of 2, a batch
normalization layer, followed by a ReLU activation function, and a max-pooling
operation before making operations in the encoding path. Each down box of the
encoding portion is implemented with a downsampling block and two residual
units. We use convolutions with a stride of 1 for residual units. In downsampling
block, we use convolutions with a stride of 2. In the decoding path, each up box
is implemented with an upsampling block and two residual units. In upsampling
block, there are an upsampling layer and a convolution layer with a stride of
1. At each decoding unit, there is a concatenation with the feature maps from
the corresponding encoding path. After last decoding unit, there is also one
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more upsampling block, two residual units, an upsampling, and a convolution
operation. At final layer, there is a 1×1 convolutional layer having sigmoid acti-
vation function to generate a desired output for segmentation map. A detailed
illustration of the architecture is provided in Fig. 3.

Fig. 3. Residual U-Net architecture

3.4 Loss Function and Evaluation Metric

The training process requires a loss function to update the model parameters
through backpropagation to minimize the loss function. The architectures are
trained with dice loss which is defined as follows:

L(y, ŷ) = − 1
M

M∑

j=0

N∑

i=0

(yij log(ŷij)) (1)

where ŷ is the predicted expected value, y is the observed value for each class
N. Dice coefficient used for segmentation accuracy assessment by evaluating the
overlap between the ground truth and the predicted area and defined as:

DC =
2A ∩ B|
|A| + |B| (2)

where A refers to manual segmentation and B refers to automated segmentation
area. The 1 − DC is called soft-Dice loss function [9].

3.5 Implementation Details

We trained the Residual U-Net architecture using the Keras library on NVIDIA
Quadro RTX 6000 GPU. The training takes approximately 2h for 750 epochs.



Accurate Myocardial Pathology Segmentation with Residual U-Net 133

We uses the three sequences of CMR, i.e., bSSFP, LGE, and T2 CMR as input
channels. The images form different subjects are in different image resolution.
Therefore, we cropped the images with 256 × 256 pixels using the center point
of the each slice. Then, we normalize the pixel values of each image both in the
training set and test set to its pixel values having zero mean. We use ADAM
optimizer with a learning rate set to 10−3. Selecting the learning rate too small
may result in a long training period, while a great value can lead to learning a
very fast or unstable training process. To avoid this problem, the learning rate
was reduced by multiplying 0.5 if validation dice loss does not improve for 10
epochs by using learning rate schedule. We also separately trained the U-Net
and Residual U-Net networks on the five dataset folds. Each fold trained for 500
epochs. The learning rate set to 10−4 for U-Net and 10−3 for the Residual U-Net
by using the same learning rate scheduler.

Data Augmentation. In case of insufficient data, it is necessary to increase
the number of images by providing diversity in the dataset in order to prevent
over-fitting. Data augmentation techniques include image dropping out of 1 −
5% of the pixels, −90 to 90-degree rotation, horizontally flipping 50% of the
images, and elastic transformations. The data augmentation method applied to
both original images and ground truth masks. To provide expanded dataset, the
training dataset was increased ten times (See Fig. 4).

Fig. 4. First image is for original MR image, second image is for original image with
ground truth mask, third image is for augmented image, fourth image is for augmented
ground truth mask on augmented image and last image is for augmented ground truth
mask on its own in.

4 Experimental Results

4.1 K-Fold Cross-validation Results

We trained the U-Net and residual U-Net (RU-Net) architectures using 5-fold
cross-validation in the training set. At each K-fold of the cross validation we
use 20 images for training and 5 images for testing. We ensure each patient
data to be in the test set using this scheme. Table 1 demonstrates the results
for applying the trained networks to the validation set. Based on these results,
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we can observe that both networks with data augmentation produced the much
better dice scores compared to training without augmentation. The same table
illustrates the comparison between U-Net and Residual U-Net methods. Residual
U-Net has significantly better results in segmenting the all regions in the multi-
sequence CMRs. An example of CMR image segmentation validation result in
5th fold of the Residual U-Net method shown in Fig. 5.

Fig. 5. Example of CMR image segmentation validation result in 5th fold of our pro-
posed method in the MyoPS 2020 test dataset. First and second images are input image
and corresponding ground truth segmentation from training dataset respectively. Third
image is the predicted segmentation result. Normal myocardium shown in dark gray,
myocardial scars shown in white, and myocardial edema shown in gray in the predicted
segmentation mask.

4.2 Test Results

We trained both U-Net models, i.e. U-Net, and Residual U-Net on the entire
training set using the best parameter setup from cross-validation. The U-Net
model achieved the mean dice score of 0.888(±0.208) (myocardial scars), and
0.866(±0.225) (myocardial scars & edema) on the training set. We evaluated
the U-Net model on the test set, and the model achieved the mean dice score
of 0.524(±0.277) (myocardial scars), and 0.573(±0.180) (myocardial scars &
edema) in the multi-sequence CMRs. The Residual U-Net achieved the mean dice
score of 0.926(±0.115) (myocardial scars), and 0.911(±0.131) (myocardial scars
& edema) on the training set. We evaluated the Residual U-Net model on the
test set, and our model achieved the mean dice score of 0.565(±0.260) (myocar-
dial scars), and 0.612(±0.160) (myocardial scars & edema) in the multi-sequence
CMRs. Experiments show that our method achieved better performance than
the basic U-Net method for the segmenting of myocardial pathology. Figure 2
shows the best and the worst visual segmentation results of applying both net-
works in terms of edema and scar regions of the same slice from one specific case
in the test dataset. The predicted mask also includes RV, LV blood pools, and
normal myocardium region.



Accurate Myocardial Pathology Segmentation with Residual U-Net 135

Table 1. Fold validation results for the left ventricular blood pool (LV), right ventricu-
lar blood pool (RV), LV normal myocardium (Myo), LV myocardial edema (edema), LV
myocardial scars (scars), and multi-class in terms of dice score and standard deviation
in the CMR segmentation task. No-aug shows the results without data augmentation.
All results are multiplied by 1000 and the bold font highlights the best mean results.

U-Net
Fold LV RV Myo Edema Scars Multi-class
1 822 ± 258 082 ± 005 629 ± 239 017 ± 000 305 ± 158 471 ± 108
2 840 ± 353 790 ± 409 680 ± 339 427 ± 264 223 ± 149 658 ± 248
3 863 ± 244 827 ± 267 616 ± 193 263 ± 107 411 ± 171 661 ± 160
4 807 ± 334 697 ± 366 637 ± 317 151 ± 073 447 ± 301 621 ± 224
5 382 ± 794 851 ± 258 639 ± 258 296 ± 150 535 ± 252 614 ± 239

Mean 743 ± 397 649 ± 261 640 ± 269 231 ± 119 384 ± 206 605 ± 196
No-aug 534 ± 547 366 ± 435 180 ± 179 109 ± 126 188 ± 249 388 ± 255

RU-Net
Fold LV RV Myo Edema Scars Multi-class
1 867 ± 204 843 ± 285 678 ± 211 119 ± 108 368 ± 174 637 ± 147
2 893 ± 199 880 ± 222 770 ± 208 354 ± 148 310 ± 118 699 ± 163
3 825 ± 209 751 ± 237 623 ± 178 283 ± 100 366 ± 138 630 ± 135
4 870 ± 256 837 ± 249 763 ± 204 261 ± 098 585 ± 206 716 ± 165
5 885 ± 238 863 ± 272 699 ± 242 336 ± 138 608 ± 231 728 ± 202

Mean 868 ± 221 835 ± 253 706 ± 208 271 ± 118 448 ± 173 682 ± 163
No-aug 701 ± 533 637 ± 548 465 ± 461 134 ± 158 181 ± 200 510 ± 323

5 Discussion and Conclusion

In this paper, a residual U-Net based architectures for the segmenting of myocar-
dial pathology have been used and assessed on MyoPS 2020 dataset. We com-
pare the performance of the U-Net and Residual U-Net architectures. The model
based on deep residual network outperformed the performance of U-Net. Some
test cases have been challenging to segment for the proposed technique due to
incosistent intensity patterns in the edges. One avenue of improvement could
be to incorporate temporal information from multiple temporal slices. Further
investigation will be devoted to alleviate the problem of regional imbalance by
advancing the loss functions.
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Abstract. In the field of medical imaging, many different image modal-
ities contain different information, helping practitionners to make diag-
nostic, follow-up, etc. To better analyze images, mixing multi-modalities
information has become a trend. This paper provides one cascaded
UNet framework and uses three different modalities (the late gadolinium
enhancement (LGE) CMR sequence, the balanced- Steady State Free Pre-
cession (bSSFP) cine sequence and the T2-weighted CMR) to complete
the segmentation of the myocardium, scar and edema in the context of
the MICCAI 2020 myocardial pathology segmentation combining multi-
sequence CMR Challenge dataset (MyoPS 2020). We evaluate the pro-
posed method with 5-fold-cross-validation on the MyoPS 2020 dataset.

Keywords: Deep learning · Myocardial pathology · Segmentation ·
UNet

1 Introduction

The assessment of myocardial viability is essential for diagnosis and follow-up of
patients suffering from myocardial infarction (MI) [16,17]. However, many differ-
ent images modalities in the field of medical imaging are available and are com-
plementary. Late gadolinium enhancement (LGE) cardiac magnetic resonance
(CMR) sequence which visualizes MI, T2-weighted CMR (imaging the acute
injury and ischemic regions) and balanced-Steady State Free Precession (bSSFP)
cine sequence (which captures cardiac motions and presents clear boundaries)
are examples of such imaging modalities. Therefore, making a better use of the
information in these different modalities has become a research focus. In recent
years, many semi-automated and automated methods have been proposed for
multi-modal medical image segmentation using deep learning-based methods,
such as convolutional neural networks (CNNs) [8] and fully convolutional net-
works (FCNs) [9] especially the U-Net architecture [11]. For example, Guo [3,4]
proposed a conceptual image fusion architecture for supervised biomedical image
analysis. They designed and implemented an image segmentation system based
on deep CNNs to contour the lesions of soft tissue sarcomas using multimodal
images by fusing the information derived from different modalities.
c© Springer Nature Switzerland AG 2020
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Fig. 1. Myocardial pathology, the picture is from MyoPS2020 challenge (http://www.
sdspeople.fudan.edu.cn/zhuangxiahai/0/MyoPS20/data1.html).

Although we can use multi-modal information to improve the myocardial
pathology segmentation, class imbalance remains a problem to tackle. Network
overfitting is common in the field of medical imagingbecause of the relatively
small size of handled datasets. Data augmentation is classically used in the pre-
processing stage to overcome this limitation, and weighted loss functions are
designed. For example, Zhao et al. [10,15] used data augmentation by rotating
and flipping the heart segmentations to reduce the impact of overfitting. Zhao
et al. [14] proposed an automated data augmentation method for synthesizing
labeled medical images, which provided significant improvements over state-of-
the-art methods for one-shot biomedical image segmentation. Sudre et al. [13]
proposed the generalized dice to solve the problem of highly unbalanced seg-
mentations. Abraham et al. [1] proposed a generalized focal loss function based
on the Tversky index to address the issue of data imbalance in medical image
segmentation. Examples of data augmentation methods to overcome this issue
can be found in [2,5–7,12]. However, datasets obtained through data augmenta-
tion are strongly correlated with the original datasets, Therefore, the proportion
of negative samples remains significantly larger than the proportion of positive
samples after data augmentation. Thus, data augmentation does not reduces the
risk of overfitting. For the proposed improved loss function can effectively reduce
the issues of class imbalance, it does not fundamentally address the problems
caused by the lack of datasets.

Therefore, in this paper, in order to segment myocardial pathology (see
Fig. 1), we begin with a segmentation of the anatomical tissue (left ventricle
(LV), right ventricle (RV), whole heart (WH), myocardium (myo)) around it, and
then let the network learn a relationship between these segmentation results to
obtain the myocardial pathology. Compared with direct segmentation of myocar-
dial pathology, the effect of class imbalance can be reduced by the segmentation
of surrounding anatomical tissues, because it helps the network to focus on the
small lesions regarding to the surrounding tissues.

2 Methodology

2.1 Overview of Network Architecture

We propose a hybrid network (see Fig. 2) using 5 UNet [11] to segment myocar-
dial pathology. Our network is composed of three UNet named UNet1 and two

http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/MyoPS20/data1.html
http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/MyoPS20/data1.html
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Fig. 2. Global overview of the proposed method.

Table 1. The structural configuration of UNet.

Layers Input size Operation Kernel Stride Regul. Output size
UNet1 UNet2 UNet1 UNet2

Input image (240,240,2) (240,240,4) - - - - (240,240,2) (240,240,4)
C1 (240,240,2) (240,240,4) [Conv2d+relu]*2 3 1 L2 (240,240,64) (240,240,8)
C2 (240,240,64) (240,240,8) Maxpooling2d 2 - - (120,120,64) (120,120,8)
C3 (120,120,64) (120,120,8) [Conv2d+relu]*2 3 1 L2 (120,120,128) (120,120,16)
C4 (120,120,128) (120,120,16) Maxpooling2d 2 - - (60,60,128) (60,60,16)
C5 (60,60,128) (60,60,16) [Conv2d+relu]*2 3 1 L2 (60,60,256) (60,60,32)
C6 (60,60,256) (60,60,32) Maxpooling2d 2 - - (30,30,256) (30,30,32)
C7 (30,30,256) (30,30,32) [Conv2d+relu]*2+Dropout 3 1 L2 (30,30,512) (30,30,64)
C8 (30,30,512) (30,30,64) Maxpooling2d 2 - - (15,15,512) (15,15,64)
C9 (15,15,512) (15,15,64) [Conv2d+relu]*2+Dropout 3 1 L2 (15,15,1024) (15,15,128)
O1 (240,240,2) (240,240,2) Sigmoid - - - (240,240,1) (240,240,1)

named UNet2. The main difference between UNet1 and UNet2 is number of
filters as shown in Table 1: the number of filters of UNet1 is [64 128 256 512 256
128 64] and the number of filters of UNet2 is [8 16 32 64 32 16 8]. Their frame-
work is same. It consists of the classical two parts of the UNet network as shown
in Fig. 3: a down-sampling part and an up-sampling part, and shortcut connec-
tions between the two parts to fuse high-level features and low-level features.
UNet1 is used to segment the anatomical tissue around myocardial pathology
and obtain three segmentation results: LV+RV, Myo, and WH. UNet2 is used
to segment myocardial pathology by learning the relationships between the sur-
rounding anatomical tissue and the pathological ones. Since the lesions are very
small and unbalanced, we reduce the number of filters of UNet2 in order to
reduce the impact of overfitting.

3 Experimental Results

Dataset Description. We evaluate our method on the myocardial pathology
segmentation combining multi-sequence CMR1 dataset (MyoPS 2020). Its aim is
1 http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/MyoPS20/index.html.

http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/MyoPS20/index.html
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Fig. 3. Architecture of networks.

to segment myocardial pathology, especially scar (infarcted) and edema regions.
It contains 45 cases of multi-sequence CMR (25 cases for training and 20 cases
for testing). Each case refers to a patient with three sequence CMR, i.e., LGE,
T2 and bSSFP CMR. The slice spacings of multi-sequence CMR volume range
from 11.999 mm/pixel to 23.000 mm/pixel, while in-plane resolution ranged from
0.729 mm/pixel to 0.762 mm/pixel. The average sizes: 482 × 479 × 4 pixels.

Preprocessing and Postprocessing. We cropped each slice to 240 × 240
pixels and we do not use data augmentation. The pre-processing begins with a
Gaussian normalization. For post-processing, we pad with zeros to get back a
initial width and height of a slice.

Implementation and Experimental Setup. We implemented our experi-
ments on Keras/TensorFlow using a NVidia Quadro P6000 GPU. We used five
different loss functions for training the network and used sigmoid to get a prob-
ability distribution of the left and right ventricle, myocardium, whole heart, scar
and edema, and scar, respectively (as shown in Fig. 2). Adam optimizer (batch-
size = 1, β1 = 0.9, β2 = 0.999, ε = 0.001, lr = 0.0001) and did not use learning
rate decay. We trained the network during 300 epochs.

Training Step. First, we kept weight of UNet2 unchanged, which means
UNet2 was not trained at the beginning, then we trained UNet1. After fin-
ished the train of UNet1, we kept weight of UNet1 unchanged, then trained
UNet2.

Evaluation Methods. One metric is used to evaluate our method: dice coeffi-
cient (DC) to evaluate the regions of myocardial pathology.
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3.1 Segmentation Results

As shown in Table 2, we evaluate the proposed method with 5-fold-cross-
validation. We obtain a mean DC of 92.3% on WH, 84.9% on LV+RV, and
84.7% on Myo by UNet1. Without using data augmentation, based on the
original dataset, we obtain a higher segmentation accuracy, which lays the foun-
dation for the subsequent segmentation of myocardial pathology. Finally, we
obtain a mean DC of 20.6% on edema, 51% on scar by UNet2. We used the
trained network to predict the testset (20 cases) and received the evaluation of
our prediction results from the MyoPS2020 organizer: the mean DC of 58.6% on
scar and the mean DC of 63.9% on scar and edema.

Table 2. Evaluation results on 5-fold-cross-validation.

Patient 101–105 106–110 111–115 116–120 121–125 Average Test datasets

Edema 0.284 0.153 0.189 0.122 0.280 0.206 −
Scar 0.473 0.496 0.515 0.464 0.602 0.510 0.586

Myo 0.844 0.852 0.811 0.859 0.869 0.847 −
LV+RV 0.818 0.854 0.812 0.897 0.864 0.849 −
WH 0.925 0.937 0.876 0.918 0.959 0.923 −

As shown in Fig. 4, for the segmentation results of whole heart, left and
right ventricle, and myocardium, as the number of positive samples continues to
decrease, the segmentation accuracy is also decreasing, and false segmentation is
mainly concentrated at the boundary, which is mainly because ambiguities often
appear near the boundaries of the target domains due to tissue similarities. For
the segmentation results of edema and scar, the poorly segmentation result is not
only on the boundary, but also in regions. In the original dataset, edema does not
exist in many slices, which further leads to a reduction in the effective dataset for
edema, therefore, the segmentation network is very difficult to segment edema.
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(b) Edema and scar. Scar is in white. Top = segmentation, bottom = Ground Truth

(d) Myocardium. Top = segmentation, bottom = Ground Truth

(f) Left and right ventricle. Top = segmentation, bottom = Ground Truth

(h) Whole heart. Top = segmentation, bottom = Ground Truth

Fig. 4. Qualitative segmentation results.
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4 Conclusion

In this paper, we propose a way of reverse thinking, not to segment the myocar-
dial pathology directly, but to learn a relationship between the surrounding nor-
mal tissue and it by designing one stacked and parallel UNets with multi-output
framework. We evaluate the proposed method with 5-fold-cross-validation on
the MICCAI 2020 myocardial pathology segmentation combining multi-sequence
CMR Challenge dataset (MyoPS 2020) and achieve a mean DC of 20.6%, 51%
on edema and scar, respectively. The computation time of the entire pipeline
is less than 3 s for an entire 3D volume, making it usable for clinical practice.
However, the segmentation accuracy of myocardial pathology is affected by the
segmentation accuracy of surrounding normal tissues. Therefore, in our future
work, we will continue to study the relationship between the surrounding nor-
mal tissue and myocardial pathology and improve the segmentation accuracy of
surrounding normal tissues.
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Abstract. Deep convolutional neural networks have shown great potential in
medical image segmentation. However, automatic cardiac segmentation is still
challenging due to the heterogeneous intensity distributions and indistinct bound-
aries in cardiac magnetic resonance (CMR) images, especially for myocardial
pathology segmentation. In this paper, we present a dual-path feature aggrega-
tion network combined multi-layer fusion (MF&DFA-Net) to overcome these
misclassification and shape discontinuity problems in myocardial pathology seg-
mentation. The proposed network is aimed to maintain a realistic shape of the
segmentation results and predict the position of myocardial pathology, which net-
work is divided into two parts: the first part is a non-downsampling multiscale
nested network (MN-Net) which restrains the cardiac shape and maintains the
global information, and the second part is multiscale symmetric encoding and
decoding network (MSED-Net) that can retain details. Three sequences of CMR
images were adopted for multi-layer fusion training which included three inputs
and one output. We can segment left ventricular (LV) blood pool, right ventricular
(RV) blood pool, LV normal myocardium, LV myocardial edema, LV myocardial
scars simultaneously with MF&DFA-Net. We randomly took the 90% data for
training and 10% data for verification which data provided by the organizer of
the 2020 Medical Image Computing and Computer Assisted Interventions (MIC-
CAI) myocardial pathology segmentation challenge (MyoPS 2020). Compared
with inter-observer, we increased the Dice value of myocardial scar segmentation
by 8.08%.

Keywords: Myocardial pathology segmentation · Dual-path feature
aggregation · Multi-layer fusion

1 Introduction

Undoubtedly, medical image segmentation occupies an important position in clinical
medicine. Both organ segmentation and lesion segmentation provide doctors with effec-
tive auxiliary diagnosis. With the continuous efforts of scientific researchers, semi-
automatic and fully automatic segmentation methods for 2D and 3D medical images
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continue to emerge. And with the help of deep neural networks, previous works [1, 2]
can quickly and effectively obtain reliable segmentation results.

Cardiac segmentation with high anatomical variability is one of the important tasks
in medical image segmentation. Cardiac magnetic resonance imaging (MRI) technol-
ogy can non-invasively assess heart function. And different sequences of cardiac mag-
netic resonance (CMR) extract different feature information. There are three different
sequences CMR provided by the organizer of the 2020 Medical Image Computing and
Computer Assisted Interventions (MICCAI) myocardial pathology segmentation chal-
lenge [3, 4]. The bSSFP cine CMR is a balanced steady-state, free precession cine
sequence which can learn the cardiac motions and obtain a clear boundary of cardiac.
The late gadolinium enhancement (LGE) CMR is a T1-weighted, inversion-recovery,
gradient-echo sequence which can enhance the infarcted myocardium, appearing with
distinctive brightness compared with the healthy tissues. The T2 CMR is a T2-weighted,
black blood spectral presaturation attenuated inversion-recovery sequence which pro-
vides imaging of the acute injury and ischemic regions. Please refer to Fig. 1, there
shows same slice of three sequences from the same case. It can be clearly seen that the
bSSFP cine CMR sequence has stronger contrast than the other two sequences. There-
fore, how to effectively and plenty utilize CMR of different sequences has become an
urgent problem to be solved.

bSSFP LGE T2

Fig. 1. Display of the same slice from the same case under different CMR sequences.

With the MICCAI segmentation challenge held year after year, more and more
novel multi-sequence CMR segmentation methods have been proposed. For example,
in the 2019 multi-sequence CMR segmentation challenge, Chen et al. [5] proposed an
unsupervised learning method composed of multi-modal image translation network and
cascaded segmentation network to segment cardiac structures from LGE CMR with-
out using labelled LGE data for training. Campello et al. [6] proposed a new frame
composed by shape reconstruction neural network (SRNN) and a spatial constraint net-
work (SCN) to segment LGE CMR. Wang et al. [7] adopted an improved U-Net Model
with selective kernel to segment multi-sequence CMR. It can be seen that as long as
the network structure is properly designed, both supervised learning and unsupervised
learning can obtain reliable segmentation results for the same segmentation task. In
order to better alleviate the domain shift between different sequences, Wang et al. [8]
proposed an unsupervised domain alignment method to solve this problem. In addition,
there are many excellent solutions in the task of heart organ segmentation. For example,



148 F. Li and W. Li

Li et al. [9] proposed multiscale feature aggregation for cardiac right ventricle segmen-
tation. Khened et al. [10] proposed fully convolutional multiscale residual DenseNets
for cardiac segmentation. In the task of cardiac segmentation, a good level has been
achieved. But the intensity inhomogeneity of medical images and the unclear boundary
between the region of interest and the background in segmentation tasks which are still
challenging. Especially in the myocardial lesion area, the uneven shape of the lesion and
the lesion proportion is extremely small, so the segmentation of the myocardial lesion
area is still very challenging.

Therefore, this paper proposes a dual-path feature aggregation network combined
multi-layer fusion (MF&DFA-Net) to segment the two LV myocardial lesion areas of
LV myocardial edema and LV myocardial scars. The network of the first path is a non-
downsampling multiscale nested network (MN-Net). The main purpose is to achieve
feature reuse through dense connections, and to make up for the missing features of
pooling in the second path through non-downsampling. The second path is a multiscale
symmetrical encoding and decoding network (MSED-Net), which realizes feature cross-
domain cascading and feature reuse through large-scale cross-domain connections and
small-scale residual operations. Because the area of the lesion is quite different from the
area of the myocardium and the ventricle, different receptive fields are obtained through
multiscale convolution in the input part of the two networks to effectively extract the
features of different parts.

The organization structure of this paper is as follows: Sect. 2 mainly introduces our
methods and data preprocessing. Section 3 shows our experimental results and some
ablation experiments, and Sect. 4 summarizes this paper.

2 Methodology

2.1 Data Processing

The 45 cases of multi-sequence CMR provided by the competition organizer of
2020 myocardial pathology segmentation combining multi-sequence CMR. Each case
includes bSSFP cine, LGE and T2 CMR sequences. Three sequences are marked by
the same set of labels. There are 25 cases used for training and 20 cases for testing.
In training data, there are 102 slices and each slice corresponds to a valid label. The
provided gold standard labels include: left ventricular (LV) blood pool (labelled 500),
right ventricular (RV) blood pool (600), LV normal myocardium (200), LV myocardial
edema (1220), LV myocardial scars (2221).

Firstly, we counted the ratio of the effective label pixel values to the entire image
pixel values in 102 slices. Please refer to (a) in Fig. 2, in the 83rd slice, the ratio of the
pixel value of the marked area to the pixel value of the entire image is the largest. Then
we counted the length and width of 25 cases in the training set. As shown in Fig. 2(b), the
length and width of the original data are around 500 pixel values. After the length and
width of each case are multiplied by the maximum percentage in Fig. 2(a), the length
and width are both around 200 pixel values. In order to balance the positive and negative
samples of the label but also consider retaining some relevant information, we cropped
the center area of training data to [256, 256] like Fig. 3, then we randomly selected 11
slices from training data for verification, the remaining data for training.
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(a) axis x/y: slice/pixel, max percentage: 91560/230868 ≈ 0.4 (slice 83)

(b) axis x/y: case/length
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Fig. 2. The ratio of the effective label pixel values to the entire image pixel values in 102 slices
are shown in (a). The statistics of length and width of 25 cases are shown in (b).
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Fig. 3. Schematic diagram of the center area cropping operation.
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Last we augmented the training data through contrast adjustment, rotation, flipping
and transpose. The CMRs of the three sequences and the corresponding labels had all
undergone the same data augmentation. We augmented 91 slices by a factor of 42. The
specific augmentation method is shown in Fig. 4. There is an original cropped image in
the upper right corner. We conducted rotation, flipping, and transpose operation from
top to bottom, and performed contrast adjustment from left to right.
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Fig. 4. Data augmentation diagram. Rotation, flipping, and transpose operation from top to
bottom, and performed contrast adjustment from left to right.
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The contrast adjustment is shown as follows,

f (pi) =
(

pi
pmax − pmin

)γ

× (pmax − pmin), γ > 0, i > 0 (1)

where pi represents i-th pixel value, pmax represents max pixel value, pmin repre-
sents min pixel value. When γ > 1, the contrast decreases, γ = 1, the contrast remains
unchanged, and γ < 1, the contrast is increases.

Since the label is composed of multiple classifications, we performed one-hot oper-
ation after resetting the pixel value of the label (200 reset to 1, 500 reset to 2, 600 reset
to 3, 1220 reset to 4, 2221 reset to 5).

2.2 Proposed Method

The myocardial pathological segmentation solution proposed in this paper is shown in
Fig. 5. Three sequences of bSSFP cine, LGE andT2CMR share encoder 1 and encoder 2.
Eb
1 ,E

l
1,E

t
1 represent the encoded output of the bSSFP cine, LGE and T2CMR sequences

in encoder 1, respectively. Eb
2 ,E

l
2,E

t
2 represent the encoded output of the bSSFP cine,

LGE and T2 CMR sequences in encoder 2, respectively. Eb,l,t
1 and Eb,l,t

2 represent the
results of multi-layer fusion, the multi-layer fusion is described in (2) and (3).
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Fig. 5. The diagram of myocardial pathological segmentation solution.

Eb,l,t
1 = concatenate((Eb

1 ,E
l
1,E

t
1), axis = −1) (2)

Eb,l,t
2 = concatenate((Eb

2 ,E
l
2,E

t
2), axis = −1) (3)

Because the network of the first path is a non-downsampling multiscale nested net-
work and the second path is a multiscale symmetrical encoding and decoding network,
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we just decoded the output of encoder 2. Finally, we integrate the information of the two
paths as the final output. In Fig. 5, the Lseg represents loss function for training.

Ldice = 1 − 2|X c ∩ Y c| + ε

|X c| + |Y c| + ε
(4)

Lwce = −
∑

c
wcX c log(Y c),wc = 1 − pc/

∑
c
pc (5)

Lseg = Ldice +Lwce (6)

where X c represents predicted results, Y c represents ground truth,wc represents the
weight of c th category, pc represents the sum of pixel values of c th category and c is
the category. In experiments, we set ε = le−5.

The main details about the encoder and decoder are shown in Fig. 6. The dual-path
feature aggregation network combined multi-layer fusion (MF&DFA-Net) is inspired
by U-Net [11] and DenseNets [12, 13]. The first path is a non-downsampling MN-Net.
The main purpose is to achieve feature reuse through dense connections, and to make up
for the missing features of pooling in the second path through non-downsampling. The
details are shown in encoder 1. Batch normalization and ‘Relu’ activation were applied
After each 3 × 3 convolutional layer.

Input
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Fig. 6. The Schematic diagram of dual-path feature aggregation network combined multi-
layer fusion (MF&DFA-Net). Batch normalization and ‘relu’ activation are applied after each
convolutional layer. A dropout layer (dropout rate = 0.5) is applied to final layer of decoder.

The second path is a MSED-Net, which realizes feature cross-domain cascading
and feature reuse through large-scale cross-domain connections and small scale residual
operations. In the process of continuous pooling, a lot of information will inevitably be
lost. In order to restore the information, the decoding process corresponds to the encoded
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convolutional layer. The first-path non-downsampling network is complementary to the
second-path encoding and decoding network, and finally obtain the segmentation result
through cascade.

Because the area of the lesion is quite different from the area of the myocardium
and the ventricle, different receptive fields are obtained through multiscale convolution
in the input part of the two networks to effectively extract the features of different parts.

The diagram of multiscale convolution module is described as Fig. 7. For the input
image, we extracted more features of different receptive fields in the original image
through three different scale convolutions, and make the number of channels of each
convolutional layer 2 times the number of initial channels (that is, 32 layers), and then,
the dimensionality of the feature number is reduced through 1 × 1 convolution, and
finally feature fusion is performed as output.

Conv 1×1

Conv 3×3

Conv 5×5

Conv 1×1

Conv 1×1

C Conv 1×1Input Output

C ConcatenateData Flow

Fig. 7. The diagram of multiscale convolution module (MCM).

3 Experiments and Results

3.1 Implementation Details

Totally, there are 3822 2D slices for training and 11 2D slices for validation. During the
training process, we calculated the Dice values of the myocardium, left ventricle, right
ventricle, myocardial scars and myocardial edema respectively in the validation set. The
calculation of Dice is obtained by

Dicec = 2|X c ∩ Y c| + ε

|X c| + |Y c| + ε
, ε > 0, c = [0, 5] (7)

where c represents the category and ε = le−5. 2D slices of size 256 × 256 in pixels
are the inputs of MF&DFA-Net. We set the initial learning rate to 0.0001. After 20
iterations of training, when the average Dice values of myocardial scars and myocardial
edema in the validation set does not rise anymore, the learning rate is attenuated once,
and the attenuation coefficient is 0.1. We use Adam as the optimizer. The experiments
were implemented using python and Keras on a NVIDIA Geforce RTX 2080 Ti GPU
for training and testing. Due to memory limitation, we set batch size to 4.

The bSSFP, LGE and T2 CMR as inputs of MF&DFA-Net are all normalized as
follows,

mean =

n∑
i=1

Xi

n
(8)
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stdev =

√√√√√
n∑

i=1
(Xi − mean)2

n − 1
(9)

Lambda = Xi − mean

stdev + ε
(10)

where ε represents a minimum value that prevents the denominator from being 0 and Xi

represents every pixel value of a tensor. We set ε = le−6.

3.2 Ablation Experiments and Results

Table 1 shows average Dice score of baseline method, MF&DFA-Net and some ablation
methods of MF&DFA-Net Version2 on the validation set. There are two MF&DFA-
Net versions. The results on the validation set of MF&DFA-Net Version1 did not adopt
multi-layer fusion.

Table 1. Average Dice scores of baseline method, MF&DFA-Net and some ablation methods of
MF&DFA-Net Version2 on the validation set.

Method Validation set average Dice

Average Myocardium LV RV Edema Scars

U-Net (baseline) 0.6834 0.7706 0.8910 0.8851 0.3207 0.5497

MF&DFA-Net Version1 0.7573 0.8340 0.9366 0.9117 0.3930 0.7112

MF&DFA-Net
Version2

0.8172 0.8480 0.9169 0.9311 0.6306 0.7596

Version2 w/o MCM 0.6917 0.7739 0.8921 0.8920 0.3228 0.5778

Version2 w/o Encoder1 0.6862 0.7768 0.8915 0.8941 0.3068 0.5622

Version2 w/o MCM &
Encoder1

0.6848 0.7821 0.8900 0.8915 0.2999 0.5605

Table 1 also shows the results ofMF&DFA-Net Version2withoutMCMandEncoder
simultaneously and separately on the validation set. In the ablation experiments, the
experimental results without Encoder1 and MCM are equivalent to U-Net. The results
on the validation set of MF&DFA-Net Version1 achieved best LV segmentation results.
The results on the validation set of MF&DFA-Net Version2 achieved best segmentation
results except LV, especially for myocardial edema and myocardial scars.
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There are 20 cases in test set,we take one slice as an example to show the visualization
results on bSSFP cine, LGE andT2CMR sequences as shown in Fig. 8. There is no labels
in test set,we canonly roughly analyze the quality of the results through thecontinuity and
completeness of the test results. But the visualization results of MF&DFA-Net Version1
and MF&DFA-Net Version2 are consistent in test results.

UNet

bS
SF

P 
C

M
R

T2
CM

R
LG

E 
C

M
R

Version1 Version2
Version2

w/o MCM

Version2

w/o Encoder1

Version2 w/o 
Encoder1 and 

MCM

Fig. 8. The visualization test results under different methods on test set.

3.3 Test Results

Table 2 shows the submitted results of MF&DFA-Net Version1 and MF&DFA-Net
Version2 on the test set. TheMF&DFA-NetVersion1 did not adoptmulti-layer fusion and
fine tunewell. In other words, Version1 adoptedmultiscale dual-path feature aggregation
network to train the data of the three sequences separately, and then takes the best test
result of the three sequences.

After conducting multi-layer fusion, the Dice score has been greatly improved. The
bSSFP cine CMR is a balanced steady-state, free precession cine sequence which can
learn the cardiac motions and obtain a clear boundary of cardiac. The late gadolinium
enhancement (LGE)CMR is a T1-weighted, inversion-recovery, gradient-echo sequence
which can enhance the infarcted myocardium, appearing with distinctive brightness
compared with the healthy tissues. The T2 CMR is a T2-weighted, black blood spectral
presaturation attenuated inversion-recovery sequence which provides imaging of the
acute injury and ischemic regions. So the multi-level fusion effectively extracted and
integrated the features of the three different CMR sequences.
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Table 2. Dice scores of MF&DFA-Net Version1 and MF&DFA-Net Version2 on the test set.

Results submitted Test set average Dice

Version1 Dice Version2 Dice

Case Scar Edema +
Scar

Scar Edema +
Scar

‘myops_test_201’ 0.7621 0.7621 0.7200 0.7384

‘myops_test_202’ 0.2306 0.3548 0.2271 0.4214

‘myops_test_203’ 0.5878 0.5551 0.5819 0.5225

‘myops_test_204’ 0.5019 0.5576 0.7725 0.7561

‘myops_test_205’ 0.5254 0.5859 0.6472 0.6394

‘myops_test_206’ 0.7292 0.6169 0.7748 0.7608

‘myops_test_207’ 0.0000 0.5194 0.0000 0.5470

‘myops_test_208’ 0.6160 0.6196 0.6555 0.7073

‘myops_test_209’ 0.6666 0.7164 0.7412 0.7069

‘myops_test_210’ 0.4092 0.5005 0.0626 0.5701

‘myops_test_211’ 0.5863 0.5773 0.7677 0.7062

‘myops_test_212’ 0.7478 0.7075 0.7625 0.7761

‘myops_test_213’ 0.2059 0.2865 0.1958 0.2798

‘myops_test_214’ 0.7405 0.6928 0.7754 0.6997

‘myops_test_215’ 0.7671 0.7697 0.8543 0.7543

‘myops_test_216’ 0.6699 0.6875 0.6398 0.6299

‘myops_test_217’ 0.7818 0.8118 0.8272 0.7955

‘myops_test_218’ 0.1692 0.2500 0.5577 0.5410

‘myops_test_219’ 0.4167 0.4876 0.7504 0.7756

‘myops_test_220’ 0.6397 0.6206 0.7876 0.7849

mean 0.5377 0.5840 0.6051 0.6557

std 0.2296 0.1542 0.2630 0.1376

There is one case obtained 0 for the Dice score which is special and difficult. Dice
score for myocardial scar reaches 0.6051 ± 0.2630. The inter-observer variation of
manual myocardial scar segmentation, in terms of Dice overlap, was 0.5243 ± 0.1578.
Partial results of MF&DFA-Net Version2 shown in Fig. 9.
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Myops_test_201_C0_2 Myops_test_204_C0_5 Myops_test_209_C0_3 Myops_test_214_C0_2

Myops_test_216_C0_1 Myops_test_217_C0_2 Myops_test_218_C0_2 Myops_test_219_C0_2

Segmentation results of partial slices in bSSFP CMR

Fig. 9. Partial visualization test results of MF&DFA-Net Version2 on test set.

4 Conclusion

In this paper, we propose a dual-path feature aggregation network combined multi-layer
fusion (MF&DFA-Net) to overcome these misclassification and shape discontinuity
problems in multi-sequence myocardial pathology segmentation. We trained our model
on 3822 slices and verified on 11 slices. We further verified the reliability of proposed
method through ablation experiments, especially the effect of multi-layer fusion on
multi-sequence myocardial pathological segmentation. We tested on 20 cases, the Dice
value of myocardial scars in our submitted test results exceeds inter-observer by 8.08%.
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Abstract. Myocardial pathology segmentation in cardiac magnetic res-
onance (CMR) is an important step for patients suffering from myocar-
dial infarction. In this paper, we present a cascaded framework with
complementary information for infarcted and edema regions segmenta-
tion in CMR sequences. Specifically, instead of using all the three CMR
sequences as joint inputs, we first use a 2D U-Net with balanced-Steady
State Free Precession (bSSFP) cine sequence to segment the whole heart
(left ventricle and myocardium) because bSSFP can capture cardiac
motions and present clear boundaries. Then, we crop the whole heart as a
region of interest (ROI). Finally, we segment the scar and edema regions
in the late gadolinium enhancement (LGE) and T2 CMR sequence ROI.
We evaluate the proposed method on MICCAI 2020 MyoPS testing set
and achieve Dice scores 0.6283 ± 0.2772 for scar and 0.5419 ± 0.2406
for the combination of edema and scar, which is better than the inter-
observer variation of manual scar segmentation (0.5243 ± 0.1578).

Keywords: Segmentation · Myocardial pathology · Cascaded
framework

1 Introduction

Quantitative assessment of myocardial viability is essential in the diagnosis and
treatment management for patients suffering from myocardial infarction (MI).
Cardiac magnetic resonance (CMR) is particularly used to provide imaging
anatomical and functional information of heart, such as the late gadolinium
enhancement (LGE) CMR sequence which visualizes MI, the T2-weighted CMR
which images the acute injury and ischemic regions, and the balancedSteady
State Free Precession (bSSFP) cine sequence which captures cardiac motions
and presents clear boundaries. Combining these multi-sequence CMR data can
provide rich and reliable information as well as morphological information of the
myocardium [9].

One of the important tasks is to segment the myocardium into differ-
ent regions, including normal myocardium, infarction and edema, from multi-
sequence CMR dataset. Manual annotation is generally time-consuming, tedious
c© Springer Nature Switzerland AG 2020
X. Zhuang and L. Li (Eds.): MyoPS 2020, LNCS 12554, pp. 159–166, 2020.
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and subjects to inter- and intra-observer variations. Thus, fully automatic seg-
mentation method is highly desired in clinical practice. Figure 1 presents some
images from different CMR sequences and the corresponding edema and scars
annotations. It can be observed that the intensity appearances vary significantly
among different sequences, and the both edema and scars have ambiguous bound-
aries and low contrast. Thus, it is very challenging to automatically segment
them.

Image

Ground
Truth

(a) C0 sequence (b) DE sequence (c) T2 sequence 

Fig. 1. Visual examples of different CMR sequence images. C0, DE, and T2 stand for
the balanced-Steady State Free Precession (bSSFP) cine sequence, the late gadolinium
enhancement (LGE) CMR sequence, and the T2-weighted CMR, respectively. In the
second row, the gray and light green color denote myocardial edema and myocardial
scar respectively. (Color figure online)

To the best of our knowledge, most of CMR segmentation related studies
focus on left ventricle, right ventricle, and myocardium segmentation [1,2,10],
little work has been done in the fully automatic cardiac pathology segmenta-
tion [4,5,8]. Zhuang [8] proposed a multivariate mixture model and maximum
of log-likelihood framework for simultaneous registration and segmentation of
multi-source CMR images, achieving a Dice score of 0.4779 ± 0.1855 for scars
segmentation. Recently, Li et al. [5] proposed a new framework of scar quantifi-
cation based on surface projection and graph-cuts framework, achieving a mean
accuracy of 0.856 ± 0.033 and mean Dice score of 0.702 ± 0.071 for LA scar
quantification.

2 Method

This paper focuses on myocardial scar and edema segmentation from the follow-
ing three CMR sequences
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– C0 sequence; It is a balanced steady-state, free precession (bSSFP) cine
sequence, which captures cardiac motions and presents clear boundaries;

– DE sequence; It is late gadolinium enhancement (LGE) CMR sequence, which
visualizes myocardial infarction (MI);

– T2 sequence; It is T2-weighted CMR, which visualizes acute injury and
ischemic regions.

One of the main challenges is how to combine these multi-sequence CMR data
and exploit rich and reliable information regarding to the pathological as well
as morphological information of the myocardium.

DE Sequence

T2 Sequence

C0 Sequence

2D U-Net

Segmentation of 
whole LV

2D U-Net

Edema+Scars

Scars

Fig. 2. Pipeline of the proposed method. Due to C0 sequence can present clear bound-
aries of left ventricular (LV), we first use a 2D U-Net to segment whole LV from the
C0 sequence, including LV blood pool and myocardium. Then, we crop the LV region
of interest (ROI) from DE sequence and T2 sequence. The pathology is relatively more
clear in DE and T2. Thus, a new 2D U-Net is used to segment the scars and the
combination of scars and edema from the DE sequence and T2 sequence.

Motivated by the characteristics of different CMR sequences, we propose a
cascaded framework for myocardial edema and scar segmentation, which can
exploit the complementary information of the three CMR sequences. Figure 2
presents the whole pipeline of the proposed method. Specifically, the proposed
method contains three steps1:

– Step 1 (whole LV segmentation). Train a 2D U-Net [6] to segment the whole
LV (including left ventricular blood pool and myocardium) from C0 sequence,
because the heart boundary is clear in this sequence;

– Step 2 (creating ROI). Crop LV region of interest (ROI) from DE and T2
sequence based on the segmentation results in step 1. In this way, the unre-
lated background can be excluded;

– Step 3 (scar and edema segmentation). Train a new 2D U-Net to segment the
scar and edema from DE and T2 sequences because the pathology is more
clear in the two sequences. Specifically, DE and T2 sequences are combined
as two channels and then input to the network.

1 In step 1 and step 3, the networks are trained end-to-end, while the whole framework
is not end-to-end.
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3 Experiments and Results

3.1 Dataset and Training Protocols

Dataset. Three-sequence CMR from 45 patients [7,8] are involved in this study.
Specifically,

– C0 sequence generally consists of 8 to 12 contiguous slices, covering the full
ventricles from the apex to the basal plane of the mitral valve, with some
cases having several slices beyond the ventricles. The typical parameters are
as follows, TR/TE: 2.7/1.4 ms; slice thickness: 8–13 mm; inplane resolution:
reconstructed into 1.25 × 1.25 mm.

– DE sequence consists of 10 to 18 slices, covering the main body of the ventri-
cles. The typical parameters are as follows, TR/TE: 3.6/1.8 ms; slice thick-
ness: 5 mm; in-plane resolution: reconstructed into 0.75 × 0.75 mm.

– T2 sequence generally consists of a small number of slices. For example, among
the 35 cases, 13 have only three slices, and the others have five (13 subjects),
six (8 subjects) or seven (one subject) slices. The typical parameters are as
follows, TR/TE: 2000/90 ms; slice thickness: 12–20 mm; in-plane resolution:
reconstructed into 1.35 × 1.35 mm.

The number of training cases is 25, and the remained 20 cases are used for testing.
During preprocessing, we apply z-score to separately normalize each sequence.

We employ nnU-Net [3] as the main network. Due to the fact that the CMR
data has large slice thickness, 2D U-Net is more suitable in this task. During
training, the patch size is 112× 112 and batch size is 6. We apply five-fold cross
validation in all experiments. Each fold is trained on a TITAN V100 GPU.

(a) Image (c) Segmentation(b) Ground Truth

Fig. 3. Visual examples of the whole LV segmentation results.
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Table 1. Five-fold cross validation results of the whole LV segmentation.

Fold 0 1 2 3 4 Average

Dice 0.9651 0.9613 0.9558 0.9659 0.9665 0.9629

3.2 Five-Fold Cross Validation Results of the Whole LV
Segmentation

Table 1 shows five-fold cross validation results for the whole LV segmentation,
and Fig. 3 presents some examples of the segmentation results. It can be found
that the segmentation results are quite accurate, where the average Dice score in
each fold is more than 0.95. The high LV segmentation accuracy can insure that
all the myocardial lesions (scar and edema) are included in the segmentation
ROI. Thus, when we crop the LV ROI from DE and T2 CMR sequences based
on the segmentation results.

3.3 Five-Fold Cross Validation Results of the Pathology
Segmentation

Table 2 shows the five-fold cross validation results of scar and edema segmen-
tation. We conduct two groups of experiments: only using DE CMR sequence
and using both DE and T2 sequence. Results show that using two sequences
can obtain better performance, especially for Edema + Scar, with up to 10%
improvements in terms of Dice.

Table 2. Five-fold cross validation results of scar and edema segmentation based on
only DE sequence and both DE and T2 sequence, respectively.

Sequence Fold Scar Dice Edema + Scar Dice

DE 0 0.5608 0.5372

1 0.6336 0.6049

2 0.5176 0.4659

3 0.621 0.6332

4 0.4675 0.4995

Average 0.5601 0.54814

DE+T2 0 0.5626 0.6512

1 0.6864 0.6925

2 0.5199 0.5847

3 0.6241 0.6931

4 0.4912 0.6522

Average 0.57684 0.65474
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(a) Image (b) Scar GT (c) Scar Seg. (d) Edema + Scar GT (e) Edema + Scar Seg.

Fig. 4. Visual examples of the scar and edema segmentation results from validation
set.

Figure 4 presents some examples of the scar and edema segmentation results.
The boundaries of edema and scar are very unclear as show in Fig. 4-(a), which
are extremely challenging. There are obvious errors in the segmentation results,
which is in accordance with the relatively low Dice scores in Table 2.

3.4 Pathology Segmentation Results on Testing Set

Table 3 shows the quantitative segmentation results for each case in testing set.
Some cases (e.g., myops 2204, myops 2215) obtain good segmentation perfor-
mance for scar segmentation, with 0.8+ in Dice. However, some cases (e.g..,
myops 2207, myops 2218) are failed with almost zero Dice. Figure 5 presents
the box plots to visualize the quantitative results. It should be noted that the
Dice of Edema + Scar is significantly worse than the Dice of Scar, indicating
that the segmentation results of edema is much more worse than scar. Figure 6
presents some visualized segmentation results of edema and scar.

Fig. 5. Box plots of testing set segmentation results.
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Table 3. Quantitative scar and edema segmentation results on testing set.

Cases DE DE+T2

Scar Dice Edema + Scar Dice Scar Dice Edema + Scar Dice

myops 2201 0.6468 0.5455 0.5580 0.4367

myops 2202 0.1721 0.4020 0.0949 0.2583

myops 2203 0.5212 0.4981 0.5086 0.3762

myops 2204 0.8446 0.6497 0.7453 0.5704

myops 2205 0.6829 0.6616 0.7479 0.6660

myops 2206 0.7602 0.7650 0.8490 0.7861

myops 2207 0.0000 0.1789 0.0000 0.0000

myops 2208 0.7796 0.6970 0.7148 0.6631

myops 2209 0.6947 0.5995 0.8222 0.6716

myops 2210 0.2754 0.0667 0.2574 0.1453

myops 2211 0.8289 0.7182 0.8583 0.7013

myops 2212 0.8307 0.6499 0.8962 0.6610

myops 2213 0.4314 0.3867 0.2912 0.2681

myops 2214 0.4294 0.3171 0.7333 0.5605

myops 2215 0.9076 0.8730 0.8938 0.8652

myops 2216 0.5432 0.4689 0.6848 0.6075

myops 2217 0.8107 0.7558 0.8327 0.7463

myops 2218 0.1593 0.1478 0.3782 0.3135

myops 2219 0.8289 0.8178 0.7876 0.7820

myops 2220 0.7517 0.7389 0.8516 0.7587

Average 0.5950 0.5469 0.6253 0.5419

Standard deviation 0.2680 0.2328 0.2772 0.2406

Edema Scar

Fig. 6. Visual examples of the scar and edema segmentation results on testing set.

4 Conclusion

Myocardial pathology segmentation is a challenging task due to its unclear
boundaries and low contrast in CMR sequences. In this paper, we designed a
cascaded framework that enables to utilize the complementary informations in
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different CMR sequences. Experiments on MICCAI 2020 MyoPS testing dataset
show that the proposed method can achieve better performance than the inter-
observer variation.
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Abstract. In this paper, we study the problem of imaging orientation in
cardiac MRI, and propose a framework to categorize the orientation for
recognition and standardization via deep neural networks. The method
uses a new multi-tasking strategy, where both the tasks of cardiac seg-
mentation and orientation recognition are simultaneously achieved. For
multiple sequences and modalities of MRI, we propose a transfer learn-
ing strategy, which adapts our proposed model from a single modality
to multiple modalities. We embed the orientation recognition network
in a Cardiac MRI Orientation Adjust Tool, i.e., CMRadjustNet. We
implemented two versions of CMRadjustNet, including a user-interface
(UI) software, and a command-line tool. The former version supports
MRI image visualization, orientation prediction, adjustment, and stor-
age operations; and the latter version enables the batch operations. The
source code, neural network models and tools have been released and
open via https://zmiclab.github.io/projects.html.

Keywords: Orientation recognition · Multi-task learning · Cardiac
MRI

1 Introduction

Cardiac Magnetic Resonance (CMR) images could be stored in different image
orientations when they are recorded in DICOM format and stored into the PACS
systems. Recognizing and understanding this difference is crucial in deep neural
network (DNN)-based image processing and computing, since current DNN sys-
tems generally only take the input and output of images as matrices or tensors,
without considering the imaging orientation and real world coordinate. This work
is aimed to provide a study of the CMR image orientation, for reference to the
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human anatomy and standardized coordinate system of real world, and to develop
an efficient method for recognition and standardization of the orientation.

Deep neural networks have been demonstrated to achieve state-of-art perfor-
mance in many medical imaging tasks, such as image segmentation and lesion
detection. For CMR images, standardization of all the images is a prerequisite
for further computing tasks based on DNN-based methodologies, such as image
segmentation [2,5,13] and myocardial pathology analysis [12].

Nevertheless, recognizing the orientation of different modality CMR images
and adjusting them into standard format could be as challenging as the fur-
ther computing tasks. Different from other work that focuses on segmentation
or classification individually [10] or combine image segmentation with quantifi-
cation [6] this work proposes a DNN-based framework to solve the cardiac image
segmentation and orientation recognition tasks simultaneously.

The original multi-tasking learning aims at exploiting commonalities and dif-
ferences across tasks. To extend this concept to deep learning, the multi-tasking
framework trains the neural network to learn from different tasks and solve dif-
ferent medical image processing tasks at the same time. In recent years, multi-
tasking methods in medical image processing have grown in popularity. Xue et
al. propose a multitask learning network (FullLVNet) [9], which modeled intra-
and inter-task relatedness to enforce improvement of generalization. Vigneault
et al. presented the Ω-Net (Omega-Net): a convolutional neural network (CNN)
architecture for simultaneous localization, transformation into a canonical ori-
entation, and semantic segmentation [7]. The auxiliary task could improve the
generalization performance by concurrently learning with the main task, which
is the main merit if multi-task learning [4]. The previous work focuses on sev-
eral segmentation tasks or deal with segmentation and classification tasks at the
same time. To tackle the difference of CMR image orientation when they were
presented for DNN-based image processing, we propose a recognition task, and
combine it with the traditional task of CMR image segmentation.

Deep learning-based methods have been widely used in orientation recogni-
tion and prediction tasks. Wolterink et al. proposed an algorithm that extracts
coronary artery centerlines in cardiac CT angiography (CCTA) images using
a convolutional neural network (CNN) [8]. Duan et al. combine a multi-task
deep learning approach with atlas propagation to develop a shape-refined bi-
ventricular segmentation pipeline for short-axis CMR volumetric images [3].
Based on CMR orientation recognition, we further develop a framework for stan-
dardization and adjustment of the orientation.

Given that many clinical applications rely on both an accurate segmentation
and orientation recognition to extract specific anatomy or compute some func-
tional indices, we therefore further propose a new multi-task learning framework
that aims to solve the CMR orientation recognition and cardiac segmentation
tasks at the same time. To enable the proposed model to be conveniently applied
in medical image processing and clinical practice, we develop a CMR Orienta-
tion Adjust Tool, resulting in a DNN model referred to as CMRadjustNet. For
simplicity, the CMR Orientation Adjust Tool is referred to as the CMRadjust-
Net Tool or CMRadjustNet in the remaining of the article. CMRadjustNet is
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Fig. 1. The pipeline of the proposed CMR orientation recognition and standardiza-
tion method. The image is first truncated at several gray value thresholds. Then the
processed image is used to generate the image-orientation pair (see Sect. 2.1). Then,
the multi-tasking network generates the orientation predicted and segmentation mask.
When embed the orientation recognition network to the orientation adjust tool, the
multi-tasking network is replaced with a simplified CNN.

embedded with the proposed simplified orientation recognition network and sup-
port orientation recognition and standardization automatically. The tool has two
versions, a graphical interface, and a command-line tool. The graphics interface
version supports the display of MRI slices and orientation recognition, standard-
ization, save functions. We developed a user-friendly graphical interface to help
users perform CMR image orientation standardization easily. The command-
line tool supports batch orientation correction of all MRI files in a folder, which
facilitates the processing of large amounts of MRI data.

This work is aimed at designing a DNN-based approach to achieve orientation
recognition and standardization for multiple CMR modalities. Figure 1 presents
the pipeline of our proposed method. The main contributions of this work are
summarized as follows:

(1) We propose a scheme to standardize the CMR image orientation and cate-
gorize all the orientations for classification.

(2) We present a DNN-based orientation recognition method for CMR image
and transfer it to other modalities.

(3) We propose a multi-tasking network, where orientation recognition and
image segmentation tasks are implemented simultaneously.

(4) We develop a CMR image orientation adjust tool (CMRadjustNet) embed-
ded with a simplified orientation recognition network, which facilitates the
CMR image orientation recognition and standardization in clinical and med-
ical image processing practice.
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2 Method

In this section, we introduce our proposed method for orientation recognition
and standardization. Our proposed framework is built on the categorization of
CMR image orientations. We propose a multi-tasking network and embed the
simplified orientation recognition network into the CMR orientation adjust tool,
i.e., CMRadjustNet.

CMR Image Orientation Categorization. Due to different data sources and
scanning habits, the orientation of different cardiac magnetic resonance images
may be different, and the orientation vector corresponding to the image itself
may not correspond correctly. This may cause problems in tasks such as image
segmentation or registration. Taking a 2D image as an example, we set the ori-
entation of an image as the initial image and set the four corners of the image

to
1 2
3 4 , Then the orientation of the 2D MR image may have the following

8 variations, which is listed in Table 1. For each image label pair Xt, Yt. One
target orientation Ot is randomly picked from the 9 orientation classes, corre-
spondingly, we flip Xt, Yt towards the picked orientation. Then we obtain the
image-label pair Xt, Yt and image-orientation pair Xt, Ot . We denote the
process of generating image-orientation pair as function g.

Multi-tasking Network. Suppose given image-label pair (Xt, Yt), Xt is
then normalized. We denote the processed Xt as X ′. After generating image-
orientation pair, g(X ′) is taken as the input of multi-tasking network. Denote
the encoder of proposed multi-tasking network as encoder, the decoder of pro-
posed multi-tasking network as decoder, the model pipeline is formulated as
below:

Xfeature = encoder(g(X ′))

Ŷ = decoder(Xfeature)

Ô = Forientation([g(X ′), Ŷ ]).

Here, Ŷ and g(X ′) are concatenated and pass through orientation recogni-
tion sub-network Forientation to predict orientation classification. We start with
the orientation recognition branch in the multi-tasking network, where we are
interested in take segmentation masks predicted by segmentation network as
attention map. In the proposed multi-tasking framework, the orientation recog-
nition sub-network consists of 3 convolution layer and a fully connected layers.
The orientation predicted is denoted as Ô. We use the standard categorical loss
to calculate the loss between predicted orientation Ô and orientation label O,

Lorientation =
C∑

i=1

Oilog(Ôi).
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Table 1.Orientation categorization of 2D CMR Images. Here, sx, sy and sz respectively
denote the size of image in X-axis, Y-axis and Z-axis.

No. Operation Image Correspondence of coordinates

000 initial state
1 2

3 4
Target[x,y,z]=Source[x,y,z]

001 horizontal flip
2 1

4 3
Target[x,y,z]=Source[sx-x,y,z]

010 vertical flip
3 4

1 2
Target[x,y,z]=Source[x,sy-y,z]

011 Rotate 180◦ clockwise
4 3

2 1
Target[x,y,z]=Source[sx-x,sy-y,z]

100
Flip along the upper left−lower

right corner

1 3

2 4
Target[x,y,z]=Source[y,x,z]

101 Rotate 90◦ clockwise
3 1

4 2
Target[x,y,z]=Source[sx-y,x,z]

110 Rotate 270◦ clockwise
2 4

1 3
Target[x,y,z]=Source[y,sy-x,z]

111
Flip along the bottom left−top

right corner

4 2

3 1
Target[x,y,z]=Source[sx-y,sy-x,z]

where, i denotes the orientation category. In our orientation classification setting,
we set C = 8.

Figure 2 shows the overall structure of the multi-tasking network. The back-
bone of the network is based on the Unet segmentation model. Since the network
is originally designed to generate segmentation results, we keep the segmentation
branch unchanged and add a new orientation recognition branch which take the
segmentation mask as attention map. A weighted binary cross-entropy function
is applied to calculate the multi-label segmentation loss between Ŷi and Yi. s
is set as 4 when dealing with the CMR image segmentation task, which gen-
erates background, right ventricle, left ventricle, myocardium. The multi-label
segmentation loss is formulated as below:

Lsegmentation(Ŷ , Y ) = −
s∑

i

[YilogŶi + (1 − Yi)log(1 − Ŷi)]wi.

By weighting Orientation recognition loss and segmentation loss, an integral
loss function of the proposed loss function can be obtained,

Lintegral = Lsegmentation + Lorientation.
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The proposed multitask network starts by learning the optimal segmentation
network. Thus, encoder and decoder are optimized according to Lsegmentation.
Once this is complete, both encoder and decoder are fixed and the parameters of
Forientation are re-initialized. Now, Forientation is trained according to Lorientation.
Finally, we fine-tune the segmentation module and orientation recognition mod-
ule simultaneously to obtain an optimized model on both segmentation task and
orientation recognition task.

CMR Image Orientation Adjust Tool. To visualize CMR images and per-
form image orientation recognition, standardization, save operations, we develop
a DNN-based CMR image orientation adjust tool, which is embedded with an
orientation recognition network. To shorten the response time of the CMR Ori-
entation Adjust Tool, we replace the multi-tasking network with a simplified
3-layer CNN network. We also adopt a different preprocessing method. Suppose
given image-label pair (Xt, Yt), for each pair of Xt. We denote the maximum
gray value as G. Three truncation operations are performed on Xt at thresholds
60%G, 80%G,G to produce X1t,X2t,X3t respectively. The truncation operation
maps the pixel whose gray value higher than the threshold to the threshold gray
value. Setting different thresholds enforces the characteristics of the image under
different gray value window widths to avoid the influence of extreme gray val-
ues. The grayscale histogram equalization is also performed on X1t,X2t,X3t to
obtain X ′

1t,X
′
2t,X

′
3t. We found that the equalization preprocessing of the gray

histogram can make the model converge more stably during training. We denote
the concatenated 3-channel image [X ′

1t,X
′
2t,X

′
3t] as X ′. The orientation recog-

nition CNN only retains the orientation recognition branch while keeping the
image-orientation generation steps unchanged. Figure 2 presents the pipeline of
the proposed CMR image orientation adjust tool.

Fig. 2. The pipeline of the proposed CMR image orientation adjust tool.



Recognition and Standardization of Cardiac MRI Orientation 173

When adapting the proposed orientation recognition network from a single
modality to other modalities, we adopt a transfer learning method to obtain the
transferred model. For example, we pre-train model on the balanced-Steady State
Free Precession (bSSFP) cine dataset and then transfer model to late gadolinium
enhancement (LGE) CMR or the T2-weighted CMR dataset. We first fix the
network parameters except for the encoder and retrain the connected layer on
the new modality dataset. We go to the next fine-tune step until the model
converges. In the fine-tune training, we retrain the encoder and fully connected
layer simultaneously on the new modality dataset to obtain an adapted model.

The graphical interface version is suitable for visualization and orientation
standardization of a single CMR image. The complementary version of the graph-
ical interface version is the command-line tool version, which supports batch
orientation standardization operations of CMR images and provides a simple
parameter setting method. By specifying a folder, one line of command is enough
to identify the orientation of all MRI files in the folder and correct the files with
the wrong orientation.

3 Experiment

Experiment Setup. We evaluate our proposed multi-tasking framework and
orientation recognition network on the MyoPS dataset [11,12] and ACDC
dataset [1]. The MyoPS dataset was similar to the previous challenge data,
i.e., multi-sequence CMR segmentation (MS-CMRseg) challenge, of which both
provide the three-sequence CMR (LGE, T2, and bSSFP) and three anatomy
masks, including myocardium (Myo), left ventricle (LV), and right ventricle
(RV). MyoPS further provides two pathology masks (myocardial infarct and
edema) from the 45 patients. The ACDC dataset comprises of single modality
short-axis cardiac cine-MRIs of 100 subjects from 5 groups - 20 normal controls
and 20 each with 4 different cardiac abnormalities. Annotations are provided
for LV, Myo and RV for both end-systole (ES) and end-diastole (ED) phases of
each subject. We evaluate multi-task network on ACDC dataset. For the simpli-
fied orientation recognition network, we train model for single modality on the
MyoPS dataset, then transfer the model to other modalities. For each sequence,
we resample each slice of each 3d image and the corresponding labels to an in-
plane resolution of 1.367 × 1.367 mm. Image slices are cropped or padded to
212 × 212 for multi-task network and resized to 100 × 100. For the simplified
orientation recognition network. We divide all slices into three sub-sets, i.e., the
training set, validation set, and test set, at the ratio of 80%, 10%, and 10%.

For Multi-tasking Network. The performance of the orientation recognition
module was evaluated by using the accuracy between the predicted orientation
and the target orientation. Dice Score was used to measure the accuracy of seg-
mentation. Dice score is an ensemble similarity measurement function, which is
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usually used to calculate the similarity of two samples. For the predicted seg-
mentation result Ŷ and ground truth Y , the dice score is formulated as follows,

s =
2|Ŷ ∩ Y |
|Ŷ | + |Y | .

Table 2. Segmentation Dice Score and orientation recognition accuracy for multi-
tasking network. Note: reported dice score are the average (standard deviation in
parenthesis).

Tasks Segmentation (Dice) Orientation recognition

LV MYO RV Accuracy

Results 0.920(0.11) 0.853(0.05) 0.757(0.14) 0.987

Table 2 presents quantitative results of our proposed multi-task network.
It can be observed that the proposed method achieves a good segmentation
result, with the average dice score of 0.843. The accuracy of orientation recogni-
tion reaches 0.986. The quantitative results prove that the proposed multi-task
model can effectively deal with the segmentation and orientation recognition
tasks simultaneously.

For Simplified Orientation Recognition Network. In each training itera-
tion, a batch of the three-channel images X ′ is fed into the simplified orientation
recognition network (see Fig. 2). Then, the network outputs the predicted orien-
tation network, which is denoted as a 1 × 3 vector. The predicted orientation is
then fed into the standardization module of the CMR image orientation adjust
tool. The inverse operation of the predicted orientation error is performed, which
warps the MR image to the correct orientation. Then, we perform the same
inverse operation on the Orientation vector in the MR file header to obtain the
MR file with correct orientation.

Table 3. Orientation recognition accuracy of 2D MS-CMR.

Modality Accuracy Description

bSSFP 0.990 Pre-train

LGE 0.852 Transfer learning

T2 0.980 Transfer learning

Table 3 shows the average accuracy on the data set. The description indicates
whether the model was trained on this modality or was transferred from other
modalities. The high accuracy results provide us with the necessary conditions
for the development of the CMR image orientation adjust tool.
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4 Conclusion

We have proposed a multi-tasking framework for multi-sequence MRI images
that deal with segmentation and orientation recognition tasks simultaneously.
Also, we have developed the CMR Orientation Adjust tool (CMRadjustNet),
which is embedded with a simplified orientation recognition network. The experi-
ment demonstrates that the embedded orientation recognition network is capable
of recognizing the orientation classification from multi-sequence CMR images.
Our future research aims to expand the categorization of the CMR image orien-
tation, and study orientation standardization on 3D MRI images.
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