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Foreword

Helping learners develop understanding and skill in one context and then even store
them, let alone apply them in another context, has been an enduring goal for decades.
Recently, however, the study of transfer has transformed, becoming increasingly
rigorous and useful for the improvement of mathematics learning experiences. This
is one of the books in the Research in Mathematics Education series. Charles
Hohensee and Joanne Lobato, the editors of this volume, provide us with a compre-
hensive look at transfer in mathematics education.

This is the first book in mathematics education research that addresses transfer.
The chapters cover diverse approaches ranging from embodied cognition to more
conventional assessment of near and far transfer and to sociocultural approaches
examining the interaction of tools, goals, and actors in classroom contexts.
Philosophically, this volume is eclectic. Transfer of learning is seen by the collective
of authors as too important to pigeonhole into a single, narrow perspective. That is
one of the delights of this book: If one can somehow utilize knowledge or practices
learned in one place and time in another place and time, that is transfer. How trans-
fer occurs, what aspects of a learning situation are transferable, and under what
conditions teachers or curriculum designers may impact transfer are questions that
each of the authors deals with from within their own theoretical framework. Six dif-
ferent but overlapping traditions interweave throughout the chapters, sometimes
competing and sometimes complementing each other.

The extended discussions of transfer between mathematics and other science,
technology, engineering, and mathematics (STEM) subject matter, we feel, will be
of special interest to researchers and practitioners. The work presented here can
guide the simultaneous design and planning of learning experiences in K-12 STEM
courses. Additionally, the “so what” question regarding transfer is effectively
addressed in this volume through several chapters examining transfer to and from
out-of-school settings. This is a unique contribution to mathematics education at
this time, marking this volume as a key resource for researchers and practitioners
who seek to understand what about school mathematics is not only applicable but is
actually applied by learners in their own lives beyond the bounds of their mathemat-
ics classroom.
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Our intent for this series is to publish the latest research in the field in a timely
fashion. This design is particularly geared towards highlighting the work of promis-
ing graduate students and junior faculty working in conjunction with senior schol-
ars. The audience for this monograph series consists of those at the intersection of
researchers and mathematics education leaders—people who need the highest qual-
ity research, methodological rigor, and potentially transformative implications
ready at hand to help them make decisions regarding the improvement of teaching,
learning, policy, and practice. With this vision, our mission for this book series is:

1. To support the sharing of critical research findings among members of the math-
ematics education community

2. To support graduate students and junior faculty and induct them into the research
community by pairing them with senior faculty in the production of the highest
quality, peer-reviewed research papers

3. To support the usefulness and widespread adoption of research-based innovation

We are grateful for the support of Melissa James from Springer in developing
and publishing this book series as well as supporting the publication of this volume.

We thank the editors (Hohensee and Lobato) and all of the authors who have
contributed to this innovative and comprehensive volume!

University of Delaware, Newark, DE, USA Jinfa Cai
Arizona State University, Tempe, AZ, USA James A. Middleton



Preface

With this book, we have aggregated a number of progressive perspectives on the
transfer of learning in the context of mathematics education and related fields. The
book is part of Springer’s growing Research in Mathematics Education monograph
series, which is composed of thematic volumes of peer-reviewed, high-quality con-
tributions on timely topics.

The publication of this book is particularly timely because, over the past 20 years,
a new generation of transfer researchers have emerged that have been developing pro-
gressive perspectives and using them to frame empirical studies in STEM education
research. The development of these progressive perspectives was in reaction to the rash
of criticism of traditional transfer research. The progressive perspectives represented
in the chapters of this book implicitly and explicitly address many of those criticisms.

A number of factors motivated us to embark on this edited volume on the transfer
of learning. First, despite the negative critiques of traditional transfer research, we
view the underlying phenomenon of transfer to be of critical importance for mathe-
matics teaching and learning. Second, we perceived a need to bring together into a sin-
gle volume recent efforts from researchers whose work could usefully inform future
directions for transfer research in the domain of mathematics education. Third, we felt
the time was right to bring together interdisciplinary contributions with links to math-
ematics education as a way to stimulate dialogue about transfer across disciplines.

It is our hope that the chapters in this book will be useful to those researchers
who principally focus on transfer, as well as to those who do not typically focus on
transfer but who find ideas contained in these chapters relevant to their work. To that
end, we have tried to achieve a balance between theoretical chapters and those that
are empirically based. We have also included authors from many different countries
in order to provide an intriguing range of perspectives. Thus, we feel the book is
well positioned to generate new and renewed excitement for transfer research and to
motivate the field of mathematics education to focus more efforts on understanding
this enduring and important topic.

Newark, DE, USA Charles Hohensee
San Diego, CA, USA Joanne Lobato
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Part I
Progressive Theoretical Perspectives of
Transfer



Chapter 1 )
Current Conceptualizations of the Transfer <

of Learning and Their Use in STEM
Education Research

Joanne Lobato and Charles Hohensee

We believe that the metaphor underlying transfer—namely, of transporting knowledge from
one concrete situation to another—is fundamentally flawed... Our goal is to recommend
not an “improved version” of transfer, but rather the abandonment altogether of “transfer”
as a view of how learning takes place. (Carraher & Schliemann, 2002, p. 20)

We believe that the distinction between acquiring knowledge and applying it [transfer] is
inappropriate for education. (Hiebert et al., 1996, p. 14)

A persistent follower of the PM [participation metaphor] must realize, sooner or later, that
from a purely analytical point of view, the metaphorical message of the notion of transfer
does not fit into PM-generated conceptual frameworks. (Sfard, 1998, p. 9)

As these epigraphs illustrate, 20-25 years ago, mathematics education research
largely turned away from transfer as a viable conceptual construct, and conse-
quently, away from conducting and publishing transfer studies. In contrast, in the
past 10 years, there has been a marked upsurge in publications on the transfer of
learning in mathematics education research specifically and STEM education
research more broadly. Such studies have been grounded in progressive perspec-
tives on transfer rather than in the traditional perspective. This chapter begins with
a brief account of this evolution, from rejection of the traditional transfer approach
to the development and use of progressive transfer perspectives. In the main body of
the chapter, we present the key features of six progressive perspectives on the trans-
fer of learning, using examples of their recent use in STEM education research.
Finally, we end with a discussion of the motivation for and organization of this book.

J. Lobato (<)
Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA
e-mail: jlobato@sdsu.edu

C. Hohensee
University of Delaware, Newark, DE, USA
e-mail: hohensee @udel.edu
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1.1 The Emergence of Progressive Transfer Perspectives

1.1.1 Traditional Transfer Perspective and Critiques

By the traditional transfer perspective, we refer broadly to the family of approaches
that emerged during the cognitive revolution of the last half of the twentieth century
and came to dominate transfer research (e.g., by Bassok & Holyoak, 1993; Gentner,
1983, 1989; Ross, 1984; Singley & Anderson, 1989). Although different strands
exist within this perspective, they share multiple features. First, transfer is defined
as the application of knowledge or skills learned in one situation to a new or varied
context (Alexander & Murphy, 1999; Bransford, Brown, & Cocking, 2000). Second,
the formation of sufficiently abstract representations is a necessary condition for
transfer, where abstraction is conceived as a process of decontextualization (Fuchs
et al., 2003; Gentner, 1983; Reeves & Weisberg, 1994). Third, the occurrence of
transfer is attributed to the psychological invariance of symbolic mental representa-
tions. Specifically, transfer occurs if the representations that people construct of
initial learning and transfer situations are identical, overlap, or can be related via
mapping (Anderson, Corbett, Koedinger, & Pelletier, 1995; Gentner, Loewenstein,
& Thompson, 2003; Gick & Holyoak, 1983, 1987; Novick, 1988; Reed, 1993;
Sternberg & Frensch, 1993).

Methodologically, traditional transfer studies typically present subjects with a
sequence of tasks that share some structural features (e.g., a common solution
approach or shared principle) but have different surface forms (e.g., different word
problem contexts), according to an expert’s knowledge of the topic. Subjects are
then taught some solution strategy, principle, or procedure with the initial learning
task. If the subjects perform better on a transfer task than a control group (who
receive the transfer task but no learning tasks), then transfer is said to have occurred
(Singley & Anderson, 1989). Some researchers have made adaptations to this basic
approach by using multiple measures to capture the transfer of learning (e.g., Chen
& Klahr, 1999) or verbal protocol methods to examine solution procedures (e.g.,
Bassok & Holyok, 1989; Nokes, 2009), though, according to Novick (1988), most
traditional transfer studies rely primarily on performance measures. [For a more
nuanced discussion of differences among cognitivist perspectives and a historical
account of the linkages between cognitivist perspectives and Thorndike’s (1906)
associationist transfer theory of common elements see Cox (1997) and Lobato
(2006, 2012).]

The traditional transfer perspective encountered a rash of criticism beginning in
the mid-1980s as situated cognition and socio-cultural perspectives on learning
became popular (Gruber, Law, Mandl, & Renkl, 1996; Laboratory of Comparative
Human Cognition, 1983; Lave, 1988; Lerman, 1999; Packer, 2001). We briefly
review three critiques of the theoretical and methodological roots of transfer. First,
the traditional transfer perspective is rooted in a conception of knowledge as tools
that can be acquired in one situation and transported unchanged to another situation
(Greeno, 1997; Packer, 2001). The tools are assumed to be independent of the
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situations in which they are used. As Lave (1988) put it, “the beneficial cognitive
consequences of decontextualized learning, freeing oneself from experience” are
seen as “a condition for generalization about experience” (p. 41). However, from a
situated perspective, the notion of detaching from concrete experience is problem-
atic because knowledge cannot be isolated from practice and meaningfully studied
(Hall, 1996; van Oers, 1998). Second, the focus on the invariance of mental repre-
sentations as a transfer mechanism is severely limited by ignoring the contribution
of the environment, artifacts, and other people to the organization and support of the
generalization of learning (Beach, 1995, 1999; Guberman & Greenfield, 1991; Pea,
1987). Finally, traditional transfer studies privilege the perspective of the observer
and rely on models of expert performance, accepting as evidence of transfer only
specific correspondences defined a priori as being the “right” mappings (Evans,
1998; Lobato, 2003). Consequently, transfer experiments can become what Lave
(1988) called an “unnatural, laboratory game in which the task becomes to get the
subject to match the experimenter’s expectations,” rather than an investigation of
the “processes employed as people naturally bring their knowledge to bear on novel
problems” (p. 20).

1.1.2  Response to Critiques in STEM Education Research

In the wake of these critiques, transfer fell out as an important area of research in
mathematics education. Carraher and Schliemann (2002) advocated abandoning
transfer as a research construct because of the deep association of transfer with what
they considered faulty conceptual roots. Lave, a social anthropologist, whose work
extended to mathematics education, also recommended moving away from the
transfer construct. For example, in a study of the mathematics used by adult grocery
shoppers, Lave (1988) concluded that the shoppers did not transfer relevant school
mathematics. Although she acknowledged the existence of “continuity of activity
across situations,” she quickly added that “learning transfer is not the central source
of continuity” (p. 186). Other researchers adopted the view that learning and trans-
fer are conceptually indistinguishable, thus negating the need to devote special
attention to transfer (e.g., Campione, Shapiro, & Brown, 1995; Hammer, Elby,
Scherr, & Redish, 2005).

However, the underlying phenomenon that was narrowly and imperfectly cap-
tured by the construct of transfer remains important in mathematics teaching and
learning. For example, whenever math teachers are faced with the task of construct-
ing an exam, they have to make decisions about whether to repeat tasks presented in
the instructional unit or whether it’s “fair” to include novel tasks—a decision that
seems to draw upon assumptions about transfer, not just learning. Similarly,
researchers conducting an evaluation of an innovative instructional treatment need
to decide how closely to pair assessment items with instructional activities.
Researchers operating from a Realistic Mathematics Education perspective may
wonder how activities grounded in real-world contexts transfer to abstract domains
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(e.g., Stephan & Akyuz, 2012). Even in critiques of transfer, researchers acknowl-
edge that “any new conceptualization—thus, any learning—is only possible thanks
to our ability to transfer existing conceptual schemes into new contexts” (Sfard,
1998, p. 9). To resolve this tension between the avoidance of transfer and the neces-
sity of transfer, Lerman (2000), in his work on the “social turn” in mathematics
education research, argued that “the notion of transfer of knowledge, present as
decontextualized mental objects in the minds of individuals, from one situation to
another, becomes untenable but at the very least requires reformulation” (p. 25). We
turn next to the development of a number of such reformulations of transfer.

1.1.3 Development and Uptake of Progressive Perspectives

From 1993 to 2006, several progressive perspectives on the transfer of learning
emerged. In the next section of this chapter, we present the following six theoretical
perspectives: (a) preparation for future learning (Bransford & Schwartz,1999); (b)
actor-oriented transfer (Lobato, 1996), (c) transfer in pieces (Wagner, 2006); (d)
expansive framing (Engle, 2006); (e) consequential transitions (Beach, 1999); and
(f) an activity-theoretic perspective (Tuomi-Grohn & Engestrom, 2003). Another
notable contribution is the reformulation of transfer from the lens of situated cogni-
tion, developed by James Greeno, referred to as the affordances-and-constraints
perspective (Greeno, 1997; Greeno, Smith, & Moore, 1993). Although this approach
was never fully developed, and Greeno later shifted from using the term “transfer”
to “productivity” (Hatano & Greeno, 1999, p. 647), his significant contributions
influenced the development of the actor-oriented transfer perspective and the
expansive-framing perspective. During this same time period, The National Science
Foundation funded two transfer conferences: the first supported by the Social,
Behavioral, and Economic Sciences Directorate (Mestre, 2003), and the second
supported by the Education and Human Resources Directorate (Lobato, 2004).
Thus, when the Journal of the Learning Sciences sponsored a transfer strand in
2006, the time seemed ripe to attract empirical papers grounded in progressive per-
spectives on transfer and theoretical papers that further developed alternative
approaches to transfer. The first author of this chapter, who served as the strand
editor, was surprised to find that few empirical studies using the emerging progres-
sive perspectives were submitted, while other submissions were grounded unques-
tioningly in the traditional transfer perspective.

Three factors likely contributed to what seemed like a slow proliferation of ideas
from progressive perspectives on transfer. First, reformulating transfer is not simply
a matter of offering a new definition of transfer. A network of related constructs
need to be re-imagined. Engle (2012), arguing that by 2012 the field was seeing a
resurgence of transfer research, attributed that resurgence to: (a) the treatment of
transfer as a complex, multifaceted social and cognitive phenomenon, rather than a
simple, unitary construct, (b) the articulation of new processes that mediate transfer,
and (c) a shift in perspective from expert models to an understanding of the “diverse
and often unanticipated ways in which students make use of prior learning” (p. 348).
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Second, because the traditional transfer perspective was solidly rooted in informa-
tion processing, and progressive perspectives largely emerged from situated and
socio-cultural perspectives, there were associated difficulties, resistance, and mis-
understandings that often result from changing well-established constructs. This
can be seen in a lively exchange published by the Educational Researcher between
advocates of the traditional transfer perspective (Anderson, Reder, & Simon, 1996,
1997) and an advocate of a situated perspective on transfer (Greeno, 1997).
Specifically, Anderson et al. (1997) casually dismissed any discrepancies between
the two approaches as differences in form and not substance rather than acknowl-
edging that each held a different set of theoretical assumptions and commitments.
Finally, while the methods used in the traditional transfer perspective were well
established, methods appropriate for progressive perspectives had to be formulated
(e.g., Lobato, 2008a; Schwartz & Martin, 2004).

In the past 10 years, the situation has changed. There has been a marked upsurge
in publications on the transfer of learning in math education research specifically
and STEM education research more broadly. We conducted an informal search for
articles published between 2008 and 2019 in mathematics education journals (with
a less thorough search in science education journals) that were grounded in progres-
sive perspectives on the transfer of learning. Even with this non-comprehensive
search, we found 65 articles, published by a variety of STEM education researchers.
We concluded that something had shifted in the field. Perhaps adequate time had
finally passed for progressive transfer perspectives to be developed sufficiently for
wider implementation. We turn next to a presentation of the six major progressive
perspectives that we found in these articles, with illustrations of their use from a
subset of the 65 articles.

1.2 Six Progressive Perspectives Used in STEM Education

1.2.1 Preparation for Future Learning

The preparation for future learning (PFL) perspective on transfer (developed by
Bransford & Schwartz, 1999) responds to the critique that the traditional transfer
approach ignores real-world conditions that people can often exploit, such as seek-
ing additional learning resources and having opportunities to obtain feedback.
Traditional tests for transfer typically take place in environments where people do
not have access to information sources other than what they have learned previ-
ously. In contrast, the PFL approach examines how an instructional experience
(such as investigating a set of contrasting cases) prepares people to benefit from a
learning opportunity. In articulating the PFL perspective, Bransford and Schwartz
(1999) point to a study by Singley and Anderson in which there appeared to be no
transfer from learning one text editor to another, using a traditional test of transfer.
However, the benefits of the prior experiences with a text editor were evident several
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days into learning the second program. In sum, the transfer of prior knowledge may
not be apparent until people have been given the opportunity to learn new
information.

Key Features Schwartz and colleagues have developed a methodological approach
utilized in PFL studies, which they call the double transfer paradigm (Schwartz,
Bransford, & Sears, 2005; Schwartz & Martin, 2004). Students are assigned one of
two instructional treatments. One of the treatments is conceived as a preparatory
activity and may focus on inventing a method during problem solving (Schwartz &
Martin, 2004), using contrasting cases (Roelle & Berthold, 2015), or having a
hands-on experience (for instance, in a science museum; Watson, 2010). The other
treatment (which serves as a control) is usually a more traditional teaching experi-
ence (such as lecture followed by practice). Half of the students from both treat-
ments are then given access to an additional learning resource, such as a sample
worked problem or a lecture, followed by a request to solve a target transfer prob-
lem. The other half of the students in each treatment solve the target transfer prob-
lem directly without access to the learning resource. The researchers then look both
at what people transfer in from the instructional treatment to learn from the resource
and what they transfer out to solve a target problem.

For example, Schwartz and Martin (2004) used the double transfer paradigm
with Grade 9 Algebra 1 students learning about the statistics concept of standardiza-
tion. The students were assigned to two treatments—invention versus tell-and-
practice. Students in the invention treatment engaged in problem solving to invent
their own ways to compare two exceptional scores from different distributions and
decide which was better. The tell-and-practice group was taught a visual method for
determining standardization and then asked to use that method on a practice task.
Half of the students from each treatment group were given the common learning
resource of a worked example for a task from the targeted domain. Then all students
were given a transfer task. The results showed that the students from the invention
treatment, who also received the learning resource, were the only group to perform
well on the transfer task. This is despite the fact that the students struggled with the
invention activity and did not complete it successfully. Additionally, the students
from both treatment groups performed about the same on the transfer task, when
they did not have access to the learning resource. Schwartz and Martin (2004)
hypothesized that the students in the invention treatment were more likely to notice
important dimensions of the standardization concept (such as range and number of
observations) than the students in the tell-and-practice treatment and then use this
knowledge to learn more deeply from the worked example.

Purpose and Uses Although not all PFL studies utilize the double transfer meth-
odological design, many focus on the nature of the preparatory activity, the transfer-
ring in to the common learning resource, and the links between the two experiences.
For example, Vahey and colleagues extended the PFL approach to design a series of
interdisciplinary experiences for middle school students related to the targeted
mathematical content of proportional reasoning (Swan et al., 2013; Vahey et al.,
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2012). Students first engaged with a complex, real-world water allocation problem
involving countries from the Middle East in their social studies class, before receiv-
ing more formal introduction to proportions in math class, followed by opportuni-
ties to transfer out that knowledge to activities in their science and language arts
classes. While the preparatory water allocation problem was messy and frustrating
for students, it appeared to direct their attention to key dimensions of the situation
(such as the importance of attending to more than one quantity when making deci-
sions in a proportional situation), which then shaped what was learned about pro-
portionality in the math classroom.

In a second example, this one with U.S. prospective math teachers, Jacobson
(2017) drew upon the PFL perspective to compare different types of early field
experiences on the common learning resource of teacher education coursework.
Instruction-focused field experiences included opportunities for prospective teach-
ers to teach, whereas exploration-focused field experiences focused on observing or
interviewing students but did not include teaching. Participating in early, instruction-
focused field experiences was positively related to outcome measures for the teacher
education courses (i.e., mathematical knowledge for teaching and beliefs about
active-learning and math-as-inquiry), which was not the case for exploration-
focused field experiences. Jacobson concluded,

Rather than being merely a context for practicing what has already been learned, field expe-
rience—especially early instruction-focused field experience—may prepare prospective
teachers to learn mathematics and develop beliefs about mathematics (i.e., gain applicative
knowledge) from learning opportunities such as concurrent and subsequent university
coursework and from the resources available during student teaching. (p. 181)

1.2.2 Actor-Oriented Transfer Perspective

From the actor-oriented transfer (AOT) perspective, the conceptualization of trans-
fer shifts from what MacKay (1969) calls an observer’s (expert’s) viewpoint to an
actor’s (learner’s) viewpoint (Lobato, 2003). By adopting an actor’s perspective on
transfer, one seeks to understand the ways in which people generalize their learning
experiences beyond the conditions of initial learning, by looking for evidence of the
influence of prior experiences on actors’ activity in novel situations, rather than
predetermining what counts as transfer using models of expert performance (Lobato,
2012). A researcher operating from the AOT perspective does not measure transfer
against a particular cognitive or behavioral target but rather investigates instances in
which the students’ prior experiences shape their activity in the transfer situation,
even if the result is non-normative or incorrect performance. Consequently, several
studies have demonstrated instances in which students provided little or no evidence
of transfer from a traditional perspective; however, when the data were re-analyzed
from an AOT perspective, evidence was found that students had constructed rela-
tionships between previous learning activities and new situations, and that these
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perceived relationships influenced students’ engagement in the new situations (Cui,
2006; Karakok, 2009; Lobato, 2008b; Thompson, 2011).

Key Features Because AOT research assumes that people regularly generalize
their learning experiences, the research question shifts from whether or not transfer
occurred to an investigation of the interpretative nature of the connections that peo-
ple construct between learning and transfer situations, guided by aspects of the situ-
ations that they find personally salient (Lobato, 2008a). Consequently, the research
methods are typically qualitative in nature, drawing upon interview or observational
data and using coding methods that identify the personal, and often surprising,
interpretations and connections constructed by actors (Lobato & Siebert, 2002). For
example, Roorda, Vos, and Goedhart (2015) conducted a 2-year longitudinal study
of high school students’ transfer of learning experiences related to instantaneous
rates of change from both mathematics and physics classes to novel tasks in a series
of interviews. Their analysis identified the particular ideas, language, and proce-
dures from the math and physics classes that appeared to influence the students’
work on the interview tasks. Similarly, Nagle, Casey, and Moore-Russo (2017)
revealed the specific ways in which Grade 8 students connected their ideas about
slope and covariational reasoning to novel statistics tasks in which they were asked
to place the line of best fit informally.

In moving to explanatory accounts of the occurrence of transfer, the AOT per-
spective treats transfer as a distributed phenomenon across individual cognition,
social interactions, material resources, and normed practices. For example, in our
own work, we posited noticing as a multi-faceted transfer process (Lobato,
Hohensee, & Rhodehamel, 2013; Lobato, Rhodehamel, & Hohensee, 2012).
Specifically, we offered an explanatory account of the occurrence of transfer in a
classroom-based study by coordinating the particular mathematical features that
individuals attended to, with the social organization of that noticing through dis-
course practices and the nature of mathematical activity.

Purpose and Uses The AOT perspective is particularly useful within the context of
design-based research, where information about the often surprising ways in which
people generalize their learning experiences and interpret transfer situations, can
usefully inform and improve the design of the instructional environment (Lobato,
2003, 2008a). For example, Johnson, McClintock, and Hornbein (2017) designed
two dynamic computer environments to explore the transfer of covariational reason-
ing from activities set in a Ferris wheel context to a bottle-filling context. Their
investigation revealed the transfer of covariational reasoning involving quantities
that the students conceived as measureable. It also illuminated the increased com-
plexity of the bottle-filling context, namely that students could perceive that liquid
was accumulating in a container without conceiving of an attribute in the situation
that could be measured. In turn, the information that was gained informed subse-
quent design and instructional responses, as indicated in the follow-up chapter by
Johnson and colleagues in this volume.
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The AOT perspective was originally developed to model students’ generaliza-
tions of their subject-matter learning experiences in school or design-based research
instructional sessions. It has been extended in several ways, including the investiga-
tion of task-to-task transfer via written problem-solving activities outside of school
(Mamolo & Zazkis, 2012) and teaching interviews (Lockwood, 2011). The AOT
perspective has also been used in research on teachers. For example, Penuel,
Phillips, and Harris (2014) examined teachers’ curriculum implementation through
an AOT lens. The analysis focused on the teachers’ differing interpretations of the
goals and guidance embedded in the materials for a curricular unit and how those
perceptions were related to patterns of enactment. Similarly, Sinha et al. (2013)
examined how a group of elementary teachers tackled new curricular units in their
school after working with a research team on an initial reform-oriented unit.

1.2.3 Transfer-in-Pieces Perspective

The transfer-in-pieces perspective is a progressive perspective on transfer attributed
to Joseph Wagner (2006, 2010). According to Wagner (2006), transfer is conceptu-
alized as “the incremental growth, systematization, and organization of knowledge
resources that only gradually extend the span of situations in which a concept is
perceived as applicable” (p. 10). This incremental-growth perspective on transfer is
progressive because it contrasts with the traditional view that transfer is the “all-or-
nothing transportation of an abstract knowledge structure across situations” (p. 10).

Central to this perspective is the notion of concept projections (diSessa &
Wagner, 2005), which are particular knowledge resources that allow the knower to
interpret a situation’s affordances in a meaningful way. For example, a concept pro-
jection that young children may have is to recognize situations that involve equal
sharing as being about division. A second concept projection is to recognize situa-
tions that involve removing equal-sized groups as being about division as well.
Forming and connecting concept projections allows an individual to see the “same
thing” across multiple problems (in this case division), which counts as transfer
from this perspective and results in the individual developing a more robust gener-
alizable concept. That is, coming to recognize a concept in different contextual situ-
ations is a form of transfer that depends upon the individual connecting multiple
concept projections (Wagner, 2010).

Key Features To explain key features of the transfer-in-pieces perspective on
transfer, we first must describe features of the knowledge-in-pieces framework for
how knowledge develops (diSessa, 1993), because it is on that framework that the
transfer-in-pieces perspective is based. Then, we explain why those features are
relevant to conceptualizing transfer.

Knowledge-in-Pieces Framework A core principle underlying the knowledge-in-
pieces framework, which was initially developed through science education
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research, is that understandings of concepts are fundamentally based on the ways
individuals derive information from the world (diSessa, 1993). For example, how
well a student understands linear functions will be largely determined by the ways
the student gathers information from the world about dependency relationships,
rates, speed, steepness, and so on. Moreover, the origins of knowledge are based on
intuitive, unsystematically-collected information from the world, and individuals’
knowledge advances as they develop more systematic ways to derive that
information.

According to diSessa and Sherin (1998), two important interrelated knowledge
resources work together to derive and interpret information from the world, namely
readout strategies and causal nets. Readout strategies refer to the set of strategies
that individuals employ to determine what to focus on and subsequently notice
about the world (i.e., what to notice about a particular perceptual or conceptual
field). Causal nets then refer to the set of inferences individuals can make about the
information collected by the readout strategies. In other words, readout strategies
are used to gather information whereas causal nets are used to interpret that infor-
mation. As these knowledge resources become more systematic, the associated
knowledge develops.

Applying Knowledge-in-Pieces to Transfer-in-Pieces Wagner’s (2006) conceptu-
alization of transfer was based on the ideas described above. Specifically, Wagner
argued that readout strategies and causal nets are processes that individuals use, not
only to gather information about the world, but also to make decisions about when
transfer is appropriate. When a person encounters a new context in the pursuit of
particular goals, readout strategies will guide what gets attended to and noticed in
the new situation, causal nets will be used to make inferences about what was
noticed, and knowledge resources that were useful in prior activities related to those
goals will become available. As readout strategies and causal nets become more
systematic and organized, transfer of particular knowledge is more likely to occur
in a greater span of novel contexts.

Purpose and Uses One purpose of Wagner’s (2006) progressive perspective is to
address the apparent contradiction that instances of transfer are rare in empirical
studies conducted from a traditional perspective (Detterman, 1993); yet it is widely
held that transfer is pervasive in everyday life (Brown, 1989). From Wagner’s
transfer-in-pieces perspective, the reason transfer has been difficult to find empiri-
cally is because researchers aligned with the traditional perspective mistakenly look
only for an all-at-once phenomenon. In contrast, research guided by a transfer-in-
pieces perspective looks “for incremental indications of transfer” (p. 40), and
“trace[s] the development” (p. 13) of transfer.

A second purpose of Wagner’s perspective on transfer is to offer a new way to
conceptualize the mechanisms underlying transfer. The traditional perspective
“locate[s] the mechanism of transfer in the construction or induction of schemata
represented at appropriate levels of abstraction” (Wagner, 2006, p. 64). However,
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Wagner (2006) presented a case study in which a student’s ability to articulate an
abstraction came after, rather than before, he transferred his knowledge to a new
context. Therefore, constructing an abstraction cannot be solely driving transfer.
Instead, Wagner explained the mechanisms of transfer in terms of readout strategies
and causal nets. Specifically, Wagner (2006) used the same case study to track the
incremental development of knowledge resources that enabled the undergraduate
student to gradually transfer his developing knowledge of the law of large numbers
to a wider array of contexts. As described by Wagner:

[The student] took different ideas initially applicable only in isolated contexts .... The iso-
lated contexts to which they applied individually grew incrementally into a larger family of
situations perceived by [the student] to be alike, in that they all offered affordances for the
ideas in the common frame. (p. 63)

Had this study been conducted using a traditional perspective, transfer would likely
not have been observed because it happened gradually, rather than all at once.

1.2.4 Expansive Framing

The expansive-framing perspective on transfer, attributed to Randi Engle responds
to the critique that the focus on cognitive mechanisms from a traditional transfer
perspective has failed to acknowledge the contribution of social interactions, lan-
guage, and cultural artifacts, to the occurrence of transfer (Engle, 2006; Engle, Lam,
Meyer, & Nix, 2012; Engle, Nguyen, & Mendelson, 2011). The construct of fram-
ing, first offered by Bateson (1955/ 1972) and later developed by Goffman (1974),
refers to what sense participants have of the nature of a given activity. For example,
a lesson on quadratic functions may be framed as something useful only for the next
exam, or it may be framed as being useful for understanding real-world phenomena,
such as the acceleration of a car. Engle referred to the latter as an example of expan-
sive framing and advanced the hypothesis that transfer is more likely to occur to the
extent that learning and transfer contexts have been framed to create intercontextu-
ality. When a high degree of intercontextuality occurs, the content established dur-
ing learning is considered relevant to the likely transfer situations.

Key Features Engle et al. (2011) offered a framework of five types of expansive
framing that are productive for transfer. The first three types focus on different
aspects of the setting—time, place, and participants. The first type refers to the
framing of a learning activity as being temporally connected with ongoing or future
activity (versus being an isolated event). Second, lessons can be framed as being
relevant to activity that occurs in other places, such as in a profession. Third, the
learning activities can be framed as being relevant to a larger community beyond the
classroom. The fourth type of expansive framing involves the topic that is being
learned. The content of individual lessons can be framed as being connected to each
other and part of a larger whole (e.g., graphs, equations and tables framed as repre-
sentations of functions). Finally, the last type of framing involves how participants
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are positioned relative to the creation of knowledge in the field. In expansive fram-
ing, students are positioned as being capable of authoring their own ideas and are
asked to revoice and credit other students with authorship (rather than framing
explanation and revoicing as elaboration only of the textbook’s ideas). Research
from the expansive-framing perspective not only identifies teacher actions or fea-
tures of instructional materials but also the aspects of expansiveness that appear to
be appropriated or perceived by students (Lam, Mendelson, Meyer, &
Goldwasser, 2014).

To test their hypotheses about the relationship between expansive framing and
transfer, Engle et al. (2011) designed a tutoring experiment with two framing condi-
tions (expansive versus bounded) using 28 high school biology students. Each stu-
dent participated individually in 3—4 hours of tutoring on the cardiovascular system
over two sessions, preceded by a pre-test and followed by a survey (to assess how
students perceived the framing) and a post-test with transfer tasks about the respira-
tory system. The expansive-framing treatment attempted to address all 5 types of
expansive framing. According to the survey, students generally perceived the
intended differences in framing by condition, with the framing of time and author-
ship role being the most salient to them. On the measures of transfer, the students in
the expansive-framing condition were more likely to transfer facts, a conceptual
principle (the differential pressure principle), and a strategy (drawing diagrams)
than those in the bounded condition.

Purpose and Uses The expansive-framing perspective first emerged in response to
the inadequacy of traditional transfer processes to account fully for instances of
transfer in a particular classroom setting. Specifically, Engle (2006) initially
attempted to explain the observation that a group of fifth-grade students transferred
graded and multi-causal arguments from a learning context (i.e., explaining whale
endangerment) to a novel context (i.e., explaining the endangerment of another spe-
cies) through cognitive modeling. She found that analogical mapping and the con-
struction of abstract mental representations explained some but not all of the transfer
findings. That is when she turned to framing.

Since that time, the expansive-framing perspective has been extended in at least
three ways. Becherer (2015) used qualitative, rather than quantitative, methods to
relate differing framing moves across two classrooms to different types of transfer
(routine versus adaptive). Hickey, Chartrand, and Andrews (2020) built upon expan-
sive framing to generate an assessment framework that embeds expansively-framed
engagement within multiple levels of increasingly formal assessments. In contrast,
Zuiker (2014) combined Beach’s (1999) conception that transfer is about making
transitions with Engle’s transfer process of expansive framing.
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1.2.5 Consequential-Transitions Perspective

The consequential-transitions perspective is a progressive conceptualization of
transfer that originated with King Beach (1999). Instead of the traditional conceptu-
alization that transfer is the use of prior knowledge to solve novel problems, Beach
reconceptualized transfer more broadly as when individuals are faced with making
transitions to accommodate changing relations between themselves and social
activities. According to this perspective, transfer is described as the “continuity and
transformation of knowledge, skill, and identity across various forms of social orga-
nization” and as involving “multiple interrelated processes rather than a single gen-
eral procedure” (p. 112). Beach viewed these transitions as consequential to the
individual because they may involve struggle and affect one’s social position. An
example of a consequential transition would be when students are faced with learn-
ing about algebra after years of learning arithmetic. Although Beach described
transfer of learning in terms of consequential transitions, he also viewed consequen-
tial transitions as encompassing generalization that extends beyond the transfer of
learning.

Key Features There are four types of consequential transitions, (a) lateral, (b) col-
lateral, (c) encompassing, and (d) mediational. Lateral consequential transitions
occur when individuals move in a single direction from one social activity to
another. This type of transition is the least complex of the four types and the most
closely associated with the traditional conceptualization of transfer. For example,
Nepali high school students experienced a lateral transition when becoming shop-
keepers (Beach, 1999). During this one-way transition (i.e., they did not subse-
quently return to school), the students were faced with transforming their knowledge
of school mathematics for use in the practices of shopkeeping.

Collateral consequential transitions occur when individuals move back and
forth between activities (i.e., these transitions are multi-directional). They are more
common than lateral transitions but also more complex. For example, the Nepali
shopkeepers who were living in the same village as the Nepali students described
above, experienced a collateral transition when they went back to school to take
adult education evening classes (Beach, 1999). In contrast to the students whose
transition was in a single direction, these shopkeepers experienced a transition that
moved back and forth between the mathematics activities associated with running
their shops during the day and the arithmetic activities they engaged in during the
evening classes.

Encompassing consequential transitions occur when individuals participate in
an activity that is itself changing. This type of transition can be generational in
nature (i.e., it can be particularly challenging for older generations to adapt to
changes in social activities created by younger generations). For example, conven-
tional machinists, who were accustomed to manual machining, experienced an
encompassing transition when faced with having to adapt to computerized machin-
ing (Beach, 1999).
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Mediational consequential transitions occur when individuals learn to partici-
pate in activities, typically educational, that simulate the actual activity. These types
of transitions serve as bridges between “where the participants are currently and
where they are going” (p. 118). For example, part-time actors experienced a media-
tional transition when attending bartending classes at a vocational school (Beach,
1999). These individuals were learning to participate in activities that approximated
bartending in a restaurant. However, the activities did not constitute full-fledged
bartending because, for example, the individuals were still learning to shift away
from consulting written directions to make drinks.

Purpose and Uses We outline three purposes of this progressive perspective. First,
Beach’s consequential-transitions perspective conceives of and examines transfer as
a set of interrelated psychological and social processes. In contrast, the traditional
perspective conceives of transfer singularly as a psychological process. Second, the
consequential-transitions perspective accounts for the context of transfer (i.e., the
social activities serve as the context), whereas the traditional perspective accounts
for how knowledge becomes increasingly decontextualized. Third, the consequential-
transitions perspective captures the effects of transfer on individuals’ identities and
their social position, as well as the concomitant struggles involved. Conversely, the
traditional conceptualization considers transfer in a way that ignores issues of iden-
tity and social positioning.

Two progressive transfer studies that have made use of Beach’s consequential-
transitions perspective are Jackson (2011) and Hohensee and Suppa (2020). Jackson
used collateral transitions to examine a child’s back and forth transition between
doing mathematics at school and at home. This lens afforded an examination of
transfer that foregrounded the setting and that revealed the complexities of transfer-
ring knowledge between settings. A traditional perspective would not have afforded
these insights. Jackson has a follow-up chapter in this book.

Hohensee and Suppa (2020) used encompassing transitions as the lens. They
examined prospective teachers’ experiences with learning about early algebra in a
teacher preparation course after the prospective teachers had already learned about
regular algebra in high school. This lens was used because the prospective teachers
felt as if algebra was being changed on them, and they were faced with adapting to
those changes. Results revealed ways the prospective teachers struggled with mak-
ing this transition.

1.2.6 Activity-Theoretic Perspective

The activity-theoretic perspective attributed to Yrjo Engestrom (e.g., Engestrom &
Sannino, 2010; Tuomi-Grohn & Engestrom, 2003) is a progressive take on transfer
that is rooted in activity theory (Engestrom, 2001). Instead of the traditional concep-
tualization that transfer is an individual cognitive process (Detterman, 1993),
Engestrom’s activity-theoretic perspective reconceptualizes transfer as a collective
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process that happens within social activity systems. Furthermore, according to this
perspective, transfer is conceptualized as occurring on two dimensions. First, it
involves expansion of a social activity within a social system, what Tuomi-Grohn
and Engestrom (2003) referred to as a “transformation in collective activity systems
and institutions (e.g., schools and workplaces)” (p. 30). Second, there is a prolifera-
tion of the newly expanded activity to other social activity systems, for example, by
“recruiting a growing number of participants in the transformation effort” (p. 31).
An essential difference between Engestrom’s activity-theoretic perspective and
Beach’s (1999) consequential transitions perspective is that the former is about
organizations creating change within social systems, whereas the latter is about
individuals adapting to changes within social systems.

Key Features An important feature of this activity-theoretic perspective is that
transfer is a collective process that involves a cycle of seven strategic actions. These
actions, in the order in which they occur, are: questioning, analyzing, modeling,
examining the model, implementing, consolidating and proliferating, and evaluat-
ing (Tuomi-Grohn & Engestrom, 2003). The cycle begins when members of an
organization question (or criticize, reject and/or have conflicting points of view
about) an existing social practice (Engestrém & Sannino, 2010). This action serves
as the trigger for the transfer process. For example, in a study by Engestrom (2009),
students began to question why their school did not provide them access to comput-
ers during recess.

The second action the organization engages in is an analysis of the question. The
analysis may include an examination of the origins and history of the social practice
in question to identify causes, or the “inner systemic relations” of the practice to
identify explanatory mechanisms (Engestrom & Sannino, 2010, p. 7). For example,
the teachers who were considering making computers available to students during
recess, intensely debated the idea among themselves and then consulted another
school that had been providing their students access to computers about how their
students were interacting with the computers.

The third and fourth actions, modeling and examining the model, involve devel-
oping a representation of past and present issues raised during questioning, as well
as a future vision for that practice that addresses the issues, and then making the
model publicly sharable and scrutinizable. In the computers-in-school example, a
subcommittee of teachers created a model for putting computers in school hallways
by reconceptualizing the school as a work environment for both students and teach-
ers (Engestrom, 2009). The model was then debated among the teachers.

The final three actions, implementing, consolidating/proliferating, and evaluat-
ing, are respectively, when the organization puts the model into practice, when the
implemented model is used to influence other social practices, and when the orga-
nization monitors and reflects upon the newly implemented ideas. It is during these
three actions that the two types of transfer described previously occur. Specifically,
during implementation, there is the “transfer of new models into practice,” and dur-
ing proliferation, there is the “transfer of local innovations and new forms of prac-
tice into other activity systems and organizations” (Tuomi-Grohn & Engestrom,
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2003, p. 32). In the school example, the computers-in-hallways idea was eventually
implemented as part of an effort to make the physical environment more pleasant
(Engestrom, 2009).

Purpose and Uses One purpose for this activity-theoretic perspective on transfer
is to capture types of transfer that occur at the organizational level rather than at the
individual level (i.e., “collective developmental transfer;” Tuomi-Grohn &
Engestrom, 2003, p. 34). Second, this progressive perspective captures transfer in
complex activity systems, such as workplaces and schools. Third, this perspective
accounts for transfer that is “not triggered by an instructor giving a task to be
learned ... [but] when some practitioners reject the given wisdom and begin to ques-
tion it” (p. 32).

Several studies in mathematics education have made use of Engestrom’s activity-
theoretic perspective on transfer. Tomaz and David (2015) used this perspective to
examine how students working on a project came to modify particular mathematical
activities they had been taught regarding proportional reasoning. Tomaz and David
have a follow-up chapter in this book. Additionally, FitzSimons (2003) used an
activity-theoretic lens to understand an adult mathematics learner as she transferred
her school-based mathematics learning across a school-home boundary to help her
children with their mathematics homework.

1.3 Motivation for and Organization of This Book

We view this point in the history of transfer research as an opportune time for a book
to be published on progressive perspectives on the transfer of learning. The six pro-
gressive perspectives that we reviewed in the previous section provide a well-
developed foundation for additional theoretical contributions. The renewed interest
in transfer research can serve as a catalyst to broaden the use of progressive transfer
perspectives among mathematics education researchers, as well as among research-
ers in related fields, and particularly among those who might otherwise not have
considered a focus on transfer.

Consequently we had three main goals when we embarked on this venture of
bringing contributors together for this book. First, we wanted to provide a venue to
showcase and aggregate leading-edge research on the transfer of learning from pro-
gressive perspectives. Second, we hoped to establish transfer as a valued subfield of
research within mathematics and science education research. Third, we anticipated
that this book could provide researchers with a foundation for forging a path for
future transfer research. The collection of theoretical and empirical chapters that
comprise this book represent an exciting array of progressive perspectives on trans-
fer that could set a course for how transfer research moves forward.

The book has been organized into four parts. Part I is comprised of six chapters,
including this chapter (i.e., Chaps. 1, 2, 3, 4, 5 and 6), that theoretically explore
progressive perspectives on transfer. Nathan and Alibali theorize about transfer
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from an embodied and distributed perspective. Johnson, McClintock, and Gardner’s
account of transfer interweaves theories about AOT, variation (Marton, 2006), and
quantitative reasoning (Thompson, 2011). Hohensee argues for theory development
about an extension of AOT called backward transfer. Karakok discusses potential
parallels and associations between AOT and mathematical creativity. Finally,
Danish, Saleh, Gomoll, Sigley, and Hmelo-Silver use an activity-theoretic approach
to theorize about how the object of students’ shared activities helps determine which
mathematical tools students see as applicable for new activities.

Part II is comprised of five chapters (i.e., Chaps. 7, 8, 9, 10 and 11) that examine
transfer empirically as it occurs in STEM classrooms. Moore uses AOT to examine
how the meanings that pre-service secondary teachers constructed for particular
graphs influenced their thinking about other graphs. Lockwood and Reed also use
AOT and explore the ways an undergraduate’s thinking on a particular combinato-
rial problem influenced his thinking on other problems. Michelsen draws on the
expansive-framing perspective to investigate intercontextuality between tenth-grade
students’ mathematics and biology classes. Tomaz and David employ Engestrom’s
activity-theoretic perspective to consider the boundary-crossing of seventh-graders
when they were studying a common topic across three content areas. Finally, Grover
draws upon the PFL approach to transfer, as well as the expansive-framing perspec-
tive, to look at how middle school students learned text-based computer program-
ming after learning block-based programming.

Part III is comprised of four chapters (i.e., Chaps. 12, 13, 14 and 15) that empiri-
cally examine transfer when it occurs, in whole or in part, outside of school settings.
Jackson tracks two 10-year-old students’ mathematical activities at home and in
school to illustrate how conceptualizations of transfer can be informed by ethno-
graphic accounts of learning. Pugh, Bergstrom, Olson, and Kriescher present their
transformative experience perspective on transfer and extend it to include the idea
of motivation to account for how students applied school-based learning in out-of-
school contexts. Billett examines how individuals adapted what they learned in
school and other social settings to occupational contexts. Finally, Triantafillou and
Potari use Engestrom’s activity-theoretic perspective, along with objectification
theory (Radford, 2008), to look at how engineering students applied school-based
knowledge to their apprenticeship.

Finally, Part IV is comprised of three chapters (i.e., Chaps. 16, 17 and 18) that
examine how transfer relates to teaching and researching. Diamond investigates
what teachers believe about how to support students in transferring their learning.
Mamolo uses the AOT lens to explore how a prospective teacher’s own K—12 expe-
riences influenced their responses during scripted role playing. Finally, Evans tack-
les the transferability of research findings by examining different aspects of the
context in which research occurs.
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Chapter 2 )
An Embodied Theory of Transfer b
of Mathematical Learning

Mitchell J. Nathan and Martha W. Alibali

In the brief photo transcript shown in Table 2.1, below, taken from a high school
engineering lesson, we encounter a critical educational challenge: In the rich sen-
sory stream of spoken words and metaphors, written symbols, diagrams and
sketches, gestures, simulations, and actions on objects, all of which occur in multi-
ple venues such as the classroom and machine shop, how do learners perceive and
construct for themselves a connected meaning of a concept such as theta, the angle
of ascent of a projectile? The answer, we argue, depends on a theory of transfer that
is embodied: The concept is depicted and comprehended in terms of actions, ges-
tures, spatial metaphors, and other body-based resources; embedded in various spe-
cific physical and social settings; extended across multiple modalities, material
resources and participants; and enacted through the actual or simulated interplay of
perception and action among students and their teachers.

Project-based learning (PBL) environments, such as those common to problem-
based and other science, technology, engineering, mathematics (STEM) education
settings, offer a rich stream of activities and experiences that are intended to ground
students’ understanding of important mathematical ideas and to motivate the rele-
vance of these ideas across a range of content and contexts. In so doing, success in
PBL settings requires learners to construct a concept—such as THETA—and follow
it across a multitude of modal forms and contexts while recognizing it as invariant.
Understanding what is required of students to establish, perceive, maintain, and
express such invariant relations across such environmental and perceptual variabil-
ity motivates an embodied theory of transfer of mathematical knowledge.
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Table 2.1 Photo Transcript 1: Day 1

Teacher (to class): What happens when the, when we project
something through the air [1], is we end up with something
like [2] this depending upon the angle here, which is theta.
And, this is our range. And basically, what we have, is, we’re
working with vectors here. So, we end up with, some vectors
that look like this and we call this, vector V, and V ... V,. And -
we can say that, Vy we’re gonna start with V, here. This .
distance, this, right here. So, we’re gonna start with, V,,
equals V,, sine, of theta.

Student: Mr. [Name], what’s V,?

(1]

-

(2]

Note. Bold text and indices align with images

In this chapter, we first argue that the processes involved in establishing and
maintaining cohesion of invariant relations during PBL are not readily described by
classic accounts of transfer. We hypothesize instead that the processes involved in
transfer of mathematical ideas throughout complex learning settings are necessarily
embodied, and we consider the assumptions that form the basis of an embodied
account of transfer as mapping of modes of perceiving and acting to achieve cohe-
sion across contexts. We then use this embodied framework to illustrate successful
and unsuccessful transfer in PBL settings. From this, we propose that transfer pro-
cesses are necessarily embodied and socially mediated, in that they are grounded in
the actions on and perceptions of the material world in which they are embedded
and they are extended across multiple actors, typically learners and their teachers.
These elements come together in an embodied theory of transfer. In the final sec-
tion, we discuss the implications of embodied transfer for educational practice and
identify important future areas for research.

2.1 Limitations of Classic Approaches of Transfer

Transfer can be defined as the application and extension of learned mathematical
ideas beyond the context in which they were originally learned. Transfer has a long
history in educational psychology (Bransford & Schwartz, 1999; Woodworth &
Thorndike, 1901). Indeed, the enterprise of a liberal arts education is predicated on
the notion of transfer and on the idea that learning general topics and principles will
provide guidance for addressing the social and scientific issues facing the next gen-
eration of leaders, scholars, artisans, and others.

At the heart of classical models of transfer lies the notion of common elements,
wherein the transfer of skilled performance is modeled as reapplication of previ-
ously learned actions that follow from an expert’s assessment of the degree of over-
lap of environmental conditions that may be readily observed (near transfer) or that
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are only apparent at a deeper, structural level (far transfer; Singley & Anderson,
1989; Taatgen, 2013). From this theoretical perspective, abstracted, rule-like
condition-action processes are antecedent to successful transfer. In this sense, per-
ceptual richness is antithetical to transfer because it works against the formation of
abstractions and their reapplication (e.g., Kaminski, Sloutsky, & Heckler, 2013).

Classical accounts of transfer fall short at explaining PBL and the learning that
occurs in complex settings in several respects. First, the common elements that are
the signature of classical accounts of transfer are often identified by experts, rather
than generated from the learner’s perspective (Lobato, 2003, 2006). Thus, it is not
clear whether learners are aware of them and actually transferring on the basis of
those common elements. Second, classical accounts are founded on analyses of
simple stimuli, for which identifying common elements is relatively straightfor-
ward. This is not the case in many PBL settings, in which a single curriculum unit
can extend over long periods of time in multiple spaces; can include many partici-
pants; and can engage a variety of objects, technological resources, and notational
systems (Kozma, 2003). Third, classical accounts foreground learners’ transfer pro-
cesses while marginalizing (or neglecting entirely) the pedagogical processes
enacted by teachers that establish the contexts in which transfer takes place and that
support processes of transfer.

A primary issue for students in PBL is having a cohesive experience so that the
various elements of the learning environment are experienced as connected and
meaningful (Nathan, Wolfgram, Srisurichan, Walkington, & Alibali, 2017).
Cohesion is the quality of unity or relatedness of ideas and experiences. It is com-
monly operationalized in terms of the degree to which ideas in a complex text are
interconnected, even as one moves across clauses and sentences (McNamara,
Graesser, Cai, & Kulikowich, 2011). As used here, producing cohesion refers to
forming and maintaining connections among the many disparate elements of the
learning environment that might otherwise serve as obstacles to transfer. For engage-
ment and learning to take place in PBL settings, cohesion of invariant relations is
paramount because ideas are presented in a variety of forms and settings. However,
this process has been neglected in classical accounts of transfer.

2.2 Transfer as Embodied: Underlying Assumptions

Numerous challenges and alternatives to the classical theory of transfer have been
raised, addressing the reductionist basis of transfer and the insensitivity of the clas-
sical theory to situated context (e.g., Detterman & Sternberg, 1993) and culture
(e.g., Scribner & Cole, 1981). For example, the situative perspective (Greeno,
Smith, & Moore, 1993) privileges participation across contexts over the reapplica-
tion of knowledge in assessing transfer. The actor-oriented transfer perspective
(Lobato, 2003, 2008) considers generalized behaviors based on the agent’s perspec-
tive of what is similar across familiar and novel settings. An account based on learn-

LT3

ers’ “episodic feelings” integrates cognition, emotion, and bodily experiences in
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explaining patterns of transfer (Nemirovsky, 2011). These alternative frameworks
share a view of the learner as an embedded, engaged, embodied actor and allow for
the world to “seep in” to the cognitive realm that was previously theorized as iso-
lated from the material realm.

With advancements in theories of embodied cognition, there is now a sufficient
conceptual and empirical foundation for articulating an embodied theory of transfer
of mathematical ideas. Indeed, we argue that an embodied perspective is necessary
to account for learners’ transfer in PBL settings and other complex learning envi-
ronments, and it can also help explain instances of unsuccessful transfer. A related
idea was presented by Goldstone, Landy, and Son (2008), who theorized that learn-
ing grounded in perception and interaction supports generation of transferable
knowledge. They demonstrate successful transfer on tasks such as solving symbolic
algebra equations and understanding the cross-domain application of deep princi-
ples of complex systems performance. Based on their analyses of these examples,
they propose that perceptual knowledge transfers

to new scenarios and transports across domains, most often proceeding not through acquir-
ing and applying symbolic formalisms but rather through modifying automatically per-
ceived similarities between scenarios by training one’s perceptual interpretations. (p. 329)

This account of the role of perception and interaction in transfer is promising for a
broad account of transfer to complex, collaborative, multimodal learning contexts.

There are several assumptions at the core of our embodied theory of transfer. The
first assumption is that the cognitive system is a predictive architecture. Rather than
passively waiting for input to act, humans are continually anticipating the next
events in the stream of sensory input and are already poised to respond. In this
sense, transfer is the default mode—no two environmental stimuli are identical, and,
regardless, body states are never fixed in time. Whether transfer is deemed success-
ful is often a function of experts’ expectations for what should be transferred, rather
than whether any form of transfer took place for the learner.

Second, there is reciprocity between cognitive states and actions, such that
actions (arm movements performed by a student, for example) can drive the system
into related cognitive states through the process of action-cognition transduction
(Nathan, 2017; Nathan & Walkington, 2017). Transduction provides an account for
how systems can operate in “forward” and “reverse” directions, a common property
of many physical and biological systems. For example, with cognition driving
action in the “forward” direction, a student may spontaneously extend her arms in a
mathematically relevant manner to assist her in reasoning about a property of tri-
angles. Students can also be prompted to extend their arms in either a mathemati-
cally relevant or irrelevant manner by having them touch locations on an interactive
whiteboard. Nathan and colleagues (Nathan et al., 2014) investigated the hypothesis
that mathematically relevant movements would drive the cognition-action system in
the “reverse” direction and activate the appropriate conceptual reasoning for the
task, but mathematically irrelevant movements would not assist the student. In sup-
port of this hypothesis, they found the mathematically relevant movements improved
mathematical proof production, even though participants reported making no
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connection between the mathematics and the directed movements, and mathemati-
cally irrelevant movements did not.

Transduction recognizes that actions can drive the system to certain cognitive
states using many of the same pathways that enable cognitive processes to elicit
actions. Transduction plays an integral role in explaining successful and unsuccess-
ful transfer. It explains, for example, how the execution of previous modes of per-
ceiving and acting, activated by familiar contextual cues or expectations of the
predictive architecture, can activate inappropriate concepts, leading to unsuccessful
transfer to new task demands. Our focus on transduction reflects the empirically
supported view that the coupling between cognition and action involves rich, multi-
directional pathways (e.g., Abrahamson & Trninic, 2015; Nathan et al., 2014;
Thomas, 2013)—richer than those that are typically described in classical informa-
tion processing theory, which generally acknowledges only a unidirectional path-
way via which cognition drives actions.

Third, people do not come to know the world as a verbatim sensorial record of an
objective external world; instead, people are driven to make sense of their experi-
ences, and meaning is constructed through the continuous interplay of social, cogni-
tive, motoric, and perceptual processes of a highly dynamic, self-regulating
organism, in what is often referred to as the perception-action loop (cf. Neisser’s
(1976) “perceptual cycle” as being central to everyday cognition). People construct
mathematical meanings by coordinating situated perceptual and motor behaviors
with the behaviors of mathematical objects (Abrahamson & Sanchez-Garcia, 2016).
Thus, the world we can know depends in part on the ways in which we can interact
with it, physically and perceptually (Varela, Thompson, & Rosch, 1991). Meaning
making also depends on establishing and maintaining common ground among inter-
locutors (e.g., H. H. Clark & Schaefer, 1989; Nathan, Alibali, & Church, 2017).
Embodied processes are crucial for efforts to manage common ground in pedagogi-
cal contexts, where teachers regularly strive to foster common ground by using
indexical speech and linking gestures (e.g., Alibali et al., 2014; Alibali, Nathan,
Boncoddo, & Pier, 2019).

Fourth, mathematical ideas are embodied and tangible (Hall & Nemirovsky,
2012), and they can be expressed in metaphorical speech (Lakoff & Nufiez, 2000),
gestures and simulated actions (Hostetter & Alibali, 2008, 2019), diagrams and
inscriptions (de Freitas & Sinclair, 2014), and physical objects (Martin & Schwartz,
2005). Importantly, mathematical ideas in different modalities may be linked via
speech, gestures, and action (Goodwin, 2013), creating a rich multimodal experi-
ence that is a signature of PBL and that serves to ground the meanings of the
referents.

Fifth, cognition is extended beyond the individual actor’s brain such that task-
relevant knowledge is grounded and distributed across actors, objects, and space
(A. Clark & Chalmers, 1998). One example is cognitive offloading, wherein actors
“use the world as its own model” (Brooks, 1991, p. 139) rather than depend on
symbolic representations of the world and symbol-manipulation operations on those
representations, which are the hallmark of traditional transfer (e.g., Lave, Murtaugh,
& de la Rocha, 1984).
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Sixth, because transfer is embedded in the situations in which activity unfolds,
teachers and students are each engaged in transfer, and they serve as actors in
exchanges that are situated in particular learning contexts. In many cases, teachers
and curriculum developers have thoughtfully designed specific contextual supports
for transfer; in other cases, teachers generate such supports “on the spot.”

Finally, conceptual development naturally follows a process of progressive
Jormalization (Romberg, 2001), which can be instantiated in the pedagogical
practice of concreteness fading (Fyfe, McNeil, Son, & Goldstone, 2014).
Concreteness fading is a developmentally informed approach to instruction that
recognizes the importance of initial physical interactions (enactive processes) for
early sense making about new concepts. This physical interaction creates the pre-
conditions that support the emergence of perceptually based representations, and
the eventual construction of abstract symbols, as physical and perceptual qualities
are explicitly faded. Many educational approaches neglect this progression and
instead follow the formalisms first approach to instruction (Nathan, 2012),
wherein mathematical ideas are initially introduced in their most formal, sym-
bolic, decontextualized form and only later grounded and applied. The conven-
tional rationale is that the perceptual sparseness of abstract symbols benefits
learners by reducing perceptual distraction (e.g., Kaminski et al., 2013). However,
novices often flounder with early presentation of decontextualized symbols
(Nathan, 2012). Experimental comparisons reveal benefits of concreteness-fading
instruction over formalisms-first instruction for a wide range of mathematical
concepts spanning elementary arithmetic, middle school and secondary level
algebra, and postsecondary systems-theory concepts (Fyfe et al., 2014).
Concreteness fading is especially well suited for fostering key STEM education
principles in design- and product-oriented collaboration, as commonly imple-
mented in PBL settings.

2.3 Transfer: Mapping of Invariant Relations
to Achieve Cohesion

From an embodied perspective, the crux of transfer is establishing cohesion across
contexts and physical instantiations, such that modes of perceiving and acting
appropriate for engaging with a mathematical relation in one context (i.e., with a
particular object or representation) also meaningfully apply in another context. In
past work (Nathan et al., 2013; Nathan, Wolfgram, et al., 2017), we identified the
significant challenges that students faced as they developed, to varying degrees, the
skills for noticing and acting on similarities of different materials, labels, ecological
contexts, iconic representations, and symbolic notations by virtue of their shared
invariant mathematical relations. For example, in the excerpt of an engineering les-
son presented at the outset of this chapter, the notion of angle of ascent (THETA) is
depicted in a variety of modal forms, including speech, symbols, gestures, and dia-
grams (and, later, in a working physical device); however, a single invariant
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mathematical relation underlies all of these forms. To establish cohesion, various
modal forms must be regarded by students as similar in terms of their perceptions
and actions.

Critically, these differing modal forms vary in the actions they afford. Following
J. J. Gibson (1966, 1979/2014), we define an affordance as the complementary rela-
tion between an object (which we take to include symbolic and material objects that
are physical or imagined) and an actor who engages with that object. In an engineer-
ing lesson, for example, a physical device may afford grasping and holding, whereas
the symbolic expression that mathematically models the behavior of that device
does not. Thus, the processes of perceiving and acting that apply to one modal form
may not apply to another modal form. For cohesion to be produced, the perceptions
and actions applied to one modal form as it is manifest in one context must evoke in
the actor a connection to a related modal form, which may be encountered in the
same or in a different context.

A striking example of cohesion production is provided by Alibali and Nathan
(2007) in an early algebra lesson for sixth-grade students. The teacher sought to
connect a drawing of a pan balance scale (the initial modal form) that had an
arrangement of blocks placed on the two sides to a symbolic equation (the second
modal form) that represented that configuration of the balance scale with literal
symbols and arithmetic operators. In the first such arrangement, two spheres on the
left pan exactly balanced the sphere and two cylindrical blocks on the right pan.

The teacher emphasized that simultaneously removing the same type of block
from the two sides of the balance scale corresponded to subtracting the same value
from both sides of the equation, thus establishing the mapping between the bal-
ance scale and the equation and extending the original action that applies to the pan
balance (object removal) to algebraic manipulation (symbolic subtraction). This
provides a clear example of how embodied processes support transfer by depicting
the ways these lifting actions can be applied first in a primary context (pan balance)
to a second context (symbolic equation). It also shows how a teacher simulates the
lifting of two literal symbols simultaneously from each side of the equation as a way
to maintain cohesion when shifting modal forms from objects on a balance scale to
an equation.

For a learner to exhibit transfer of knowledge across different contexts, a map-
ping between the actions afforded by the modal forms in each context must be made
to establish cohesion. Mapping may be spontaneous or require instructional sup-
port. Lobato and colleagues (e.g., Lobato, 2003; Lobato, Ellis, & Muifioz, 2003)
highlight ways the educational environment can be structured to orient learners’
attention to such mappings, and they refer to such practices as focusing phenomena.

Evidence that a mapping has been formed may then be revealed in learners’ later
behaviors. For example, we may observe students tilting a ballistic device (e.g., a
catapult) to launch a projectile at a particular angle in a way that is fundamentally
similar to solving the range equation for a particular value of THETA. That is, the
device acts as a “range function” that “computes” the landing distance of an object
given (virtually) any input angle, which is achieved by tilting the launch pad. We
consider evidence of such a mapping later in this chapter.
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In brief, we argue that transfer occurs when learners and teachers establish cohe-
sion of their experiences by mapping modes of perceiving and acting that they suc-
cessfully used in one context to a new context. Learners and teachers express that
cohesion across contexts in a variety of ways, principally through speech, gestures,
and actions, including simulated actions.

Note that mapping supports identification of invariant relations by juxtaposing
contexts that afford corresponding modes of perceiving and acting. Importantly, this
identification and mapping may be implicit or explicit for the learner. This view of
transfer differs from classical theories that rely on extracting common knowledge
structures or rules with generalized conditions for application.

Transfer, by this account, centers on two distinct but related processes: construct-
ing a mapping of an invariant relation across contextualized modal forms and
expressing cohesion established by that mapping, as indicated by various behaviors,
as described below. We consider each of these processes in turn.

2.3.1 Mapping as a Mechanism for Cohesion

We posit that mapping is a mechanism for establishing cohesion. Mapping can be
aided by the focusing “moves” made by teachers, parents, curriculum designers,
and knowledgeable others who already apprehend connections, and it can be sup-
ported by contextual cues, such as spatial alignment, labeling, and deictic gestures.
Mapping can also be managed by learners who regulate their own environments to
provide helpful contextual supports, such as placing information side by side.
Mapping involves constructing a relation between two (or more) objects, inscrip-
tions, or ideas. We argue that there are multiple mechanisms by which mapping may
occur. In some cases, learners may engage in explicit analogical mapping. For
example, a child might reason about fraction division by explicitly mapping ele-
ments of a given fraction-division problem to elements in a whole-number division
problem, saying, “6 + Y4. Well, if I was doing 6 divided by 2, I would make groups
of 2. So, 6 + V4, I'm going to make groups of %4.” In other cases, learners may per-
form mapping in a more implicit way, via relational priming, a process by which
exposure to some task or situation primes a relation that can then be recognized or
used in a novel task or situation (Day & Goldstone, 2011; Leech, Mareschal, &
Cooper, 2008; Sidney & Thompson, 2019). For example, after modeling whole-
number division problems with cubes— by forming groups the size of the divisor—
a learner might enact the same relation to model a fraction-division problem because
that relation (forming groups) was primed in the initial task (Sidney & Alibali,
2017). Another means of forming the mapping is through conceptual metaphor
(Lakoff & Nufiez, 2000), where one idea, such as arithmetic, is referred to in terms
of another idea, such as object collection. As in this example, the second domain
(the target domain) is more familiar and more concrete than the first, source domain.
Conceptual metaphors are grounding, inference-preserving cross-domain map-
pings. Using conceptual metaphor, the inferential structure of one conceptual
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domain (say, whole numbers) is used to reason about another (say, fractions). In still
other cases, learners may map relations via conceptual blending (Fauconnier &
Turner, 1998, 2008), a mechanism by which people link two ideas that share struc-
ture, and “project selectively from those inputs into a novel ‘blended’ mental space,
which then dynamically develops emergent structure” (Fauconnier, 2000, p. 2495).
All of these forms of mapping—analogical mapping, relational priming, conceptual
metaphors, and conceptual blends—forge correspondences, and these correspon-
dences may afford engaging in corresponding modes of perceiving and acting.

Because transfer involves mapping modes of perceiving and acting from one
context or representation to another to produce cohesion, we assert that pedagogical
moves that support mapping are integral to transfer. Indeed, teachers engage in
many practices, both planned and spontaneous (Alibali et al., 2014; Nathan,
Wolfgram, et al., 2017), that highlight invariant relations across contexts, represen-
tations, and material forms. In subsequent sections, we highlight several distinct
mapping practices that teachers use, both in ordinary mathematics instruction and in
PBL settings, including projecting invariant relations across time and space and
coordinating representations using techniques such as consistent labeling, linking
gestures, and gestural catchments (Nathan et al., 2013).

2.3.2 Expression of the Mapping

If, indeed, this mapping of modal-specific ways of perceiving and acting is at the
heart of transfer, it will be expressed—at least in some cases—in learners’ behav-
iors. Learners may, for example, appropriate actions or ways of thinking applied in
one context for use in another, and they may make mappings (either implicit or
explicit) between the contexts. Some aspects of learners’ behaviors in the novel
context—their language, gestures, or actions—may reveal the mapping of modal-
specific forms of perceiving and acting from a prior context (Donovan et al., 2014).

Learners’ behaviors in different contexts often involve different sorts of actions,
and their gestures in novel contexts may reveal activation of action patterns that they
have produced in other contexts (Donovan et al., 2014). Learners may produce ges-
tures in novel contexts that are similar in form to actions they produced in previous
contexts. This repetition of gesture form—termed a gestural “catchment” by
McNeill (2000)—is thought to reveal cohesion in speakers’ thinking. Gestural
catchments may reveal implicit or explicit mappings between contexts, representa-
tions, or material forms (Donovan, Brown, & Alibali, 2021).

Mapping often involves forming a conceptual blend, and such blends can be
expressed in many ways (Fauconnier & Turner, 2008; Williams, 2008). When con-
ceptual blends are established in classroom settings, the physical context typically
offers a material anchor for the blend. Thus, the blends observed in PBL settings are
often grounded blends (Liddell, 1998) that include elements of the immediate,
physical environment. For example, a student may mount a protractor on a catapult
arm and rewrite the angular measures as distances to the target, thus using a material
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anchor to blend angular measure with projectile motion using trigonometry and the
laws of kinematics. The actions that the student previously applied to the original
artifact (such as adjusting the angle of the protractor) can support new, inferential
actions, such as retargeting based on lineal measure, which extend the student's
repertoire of actions into the space of the new conceptual blend (Williams, 2008).

The earlier example of a teacher simulating the lifting of the same symbols off
two sides of an equation, much as one lifts the same objects off two sides of a bal-
ance scale, is one such conceptual blend. Here, we can see how the mapping is
formed. In this conceptual blend, the equation is treated as a pan balance and the
adding and removing of objects to maintain balance maps to the manipulation of
terms in the equation to maintain equivalence. Further, the teacher expressed this
mapping explicitly in speech, noting that she wanted to “take a sphere off of each
side” but saying that “instead of taking it off the pans, I'm going to take it off this
equation.” Thus, she identified the invariant relation of maintaining equivalence,
performed the mapping of the pan balance to the equation with an explicit verbal
link, and expressed cohesion across the modal forms through the reapplication of
gestures that depicted the same actions. This mapping is illustrated in Fig. 2.1.

Other features of the teacher’s speech also manifest her effort to align the dia-
gram and the equation. For example, she used the same pronoun to refer to the
sphere pictured in the diagram and the symbol s in the equation: “Instead of taking
it off the pans, I'm going to take ir off this equation” (emphases added), thus high-
lighting that the two inscriptions refer to the same quantity. She also used the same
verb—taking off—to refer to removing a sphere from each side of the pan balance
and subtracting s from each side of the equation. Thus, she highlighted the corre-
spondence of these actions using a common label.

The teacher also expressed the correspondence between the pan balance and the
equation in her gestures. She used a grasping gesture with both hands to gesturally
depict taking the blocks off the two sides of the scale—a simulated action (Hostetter
& Alibali, 2008, 2019) over the drawing of the scale. She then produced this same
grasping handshape over the corresponding symbols in the equation to refer to sub-
tracting values from the two sides of the equation. With this gestural catchment, the
teacher sought to communicate the invariant relation of equivalence as “remove the

maintain
equivalence

“do the same thing
to both sides”

Fig. 2.1 The math teacher identified an invariant relation of maintaining equivalence and per-
formed the mapping of the pan balance to the equation with an explicit verbal link and repeated
gestures that depicted actions



2 An Embodied Theory of Transfer 37

same quantity from both sides” as it applied both to the physical pan balance
depicted in the drawing and to the symbolic equation.

Note that this teacher simulated the action of “grasping objects” over both the
diagrammatic and the symbolic representations, even though neither of these two
inscriptions (diagram and equation) would afford this physical action. Both are two-
dimensional representations, so their elements cannot be grasped or picked up.
Importantly, however, the teacher’s hands were configured as if actually grasping
objects, and, in this way, her gesture evoked the physical objects that were repre-
sented symbolically in the diagram and the equation. Thus, in this simulated action,
the teacher expressed a set of analogical relationships among the physical situa-
tion—which would afford such action—and the two inscriptions.

Thus, this conceptual blend was expressed in a range of ways: via an explicit
verbal link, via common labels for related elements, and via a gestural catchment of
the same simulated action performed in both spaces. The blend was grounded both
in the two inscriptions, which were physically present, and in the (absent) physical
objects that were evoked by the configuration and motion of the teacher’s hands in
real space (cf. Liddell, 1998). Using speech and gestures in these ways, the teacher
organized corresponding elements of different representations with reference to one
another, linking them together multimodally, in an effort to help students apprehend
their connections.

This example also illustrates the centrality of the teacher in our theory of transfer.
Teachers use a range of verbal and gestural techniques to support students in identi-
fying the invariant relations and making the relevant mappings across contexts, rep-
resentations, and material forms to establish cohesion (Alibali et al., 2014; Nathan,
Wolfgram, et al., 2017). This is why we claim that the pedagogically designed
actions of teachers—as well as parents, collaborators, and curriculum developers—
are an integral part of transfer when viewed from an embodied perspective. We
further suggest that expressing cohesion in the various ways described here is pro-
ductive for learners’ thinking, in the sense that it affirms, strengthens, and reifies the
mappings across modal forms that have been established. It also serves as an effec-
tive means of communicating these mappings to others during collaboration or
instruction.

2.4 Illustrating Embodied Transfer in a PBL Context

In this section, we provide examples from a PBL engineering classroom that dem-
onstrate the power of an embodied theory of transfer to account for both successful
and unsuccessful transfer. The examples also illustrate how a teacher’s pedagogical
moves foster cohesion for students in the PBL classroom and are thus a necessary
part of an embodied account of transfer. The examples show how successful transfer
arises by establishing this cohesion, whereas unsuccessful transfer occurs when
learners’ actions remain overly restricted to earlier modes of perceiving and acting.
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2.4.1 The Three Central Elements when Analyzing Transfer
Jrom an Embodied Perspective

The accompanying examples illustrate the complex process of transfer that students
and teachers face in the PBL classroom. Photo Transcript 1 (Table 2.2, which
includes the excerpt from the chapter introduction) is taken from an engineering
class in a U.S. Midwestern urban high school in late spring, near the end of the
school year. This excerpt sets the PBL design challenge to build a ballistic device
that can make a projectile hit a basket at some location, undisclosed until the last
moment, with successful engineering based on the underlying math and physics of
projectile motion. Even the open lecture, which focuses on trigonometry and kine-
matics, is rich with embodied methods of grounding the target invariant relation and
other associated mathematical ideas and helping to foster cohesion as these ideas
are manifest in multiple modalities, including symbols, drawings, words, wood, and
the teacher’s gestures.

We distinguish between the authentic classroom learning experience in which
the students and teacher are embedded and the analytic process that is undertaken
by researchers who study these classroom events. In terms of analysis, there are
three central elements of transfer. First, it is critical for the analyst to identify the
invariant relation that is central to the curriculum design and threaded throughout
the modal forms. For this multiday unit, for example, the invariant is THETA, high-
lighted by the teacher on Day 1 and labelled as the “angle of projection.” Second,
the analyst must describe the mapping of the invariant relation across the range of
modal forms used in the series of lessons. Third, the analyst must be able to describe
how this mapping is expressed by the teacher and the students in the learning
environment.

Separately from the analytic concerns of researchers, for learners to experience a
sense of cohesion across the various modal forms and contexts that are the hallmark
of the project-based curriculum, they must construct for themselves the mapping of
modes of perceiving and acting that, optimistically, will apply across contexts. The
mappings that are part of the expert model of transfer are important for the curricu-
lum design, and may be shared in teacher supplementary materials, but they often
remain implicit to the students (Prevost et al., 2014). Learners act on the new modal
forms (e.g., their design sketches, mathematical models, and machined devices) in
accordance with their constructed mappings. Learners’ actions may operate in
accordance with the expert model, indicating effective near and far transfer, as will
be seen in Photo Transcript 2 (Table 2.3). Alternatively, learners’ actions may be
applied to subsequent modal forms in ways that do not align with the conceptual
structure of the invariant relation, leading to “false transfer,” as illustrated in Photo
Transcript 3 (Table 2.4).

In the examples that follow, THETA is most commonly invoked by the teacher and
by several of the students in a gesture of a flat hand posed at a fixed angle or of a flat
hand pivoted at the wrist to refer to the range of angular values that THETA can take.
The repeated expression of this idea in gesture makes up a gestural catchment,
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which reinforces cohesion across different manifestations of the invariant relation.
Further, THETA is also evident in the design sketches created by the students and in
the material devices that students build as they strive to create a ballistic device that
can be adjusted “on demand” to enable a projectile to precisely hit a desired target.

An invariant relation across modal contexts This first photo transcript demon-
strates (a) identification of the invariant relation and (b) the ways a teacher uses
pedagogical actions to highlight for students the mapping of the invariant relation
across multiple modal forms.

Table 2.2 Photo Transcript 1: Day 1

Line

Transcript

Photo

1

T: I had given you an assignment to start working
on a ballistic device that will throw a ping pong
ball.

T: And we had some constraints with that, um on
a handout that I gave you. Particular constraints.

T: What I wanna do today, is talk about, the
angle of the projection [1], that we shoot this,
fire our ping pong ball and the distance [2] it’ll

go.

T: And kinda mathematically determine what’s
the best angle [3] to get the maximum range,
given a set velocity, of that we’re firing this thing,
okay?

T: So we know that we can change the distance.

T: What are some of the ways that we can change
the distance, if we’re shootin’ a ping pong ball
out of a device? [Name]?

S: Angle of like, the ball.

T: Okay. Angle of projection. [4]

(4]

(continued)
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Line | Transcript Photo
9 T: That’s gonna have an effect on it, right? What
else?
10 | S: Velocity.
11 | T: Velocity. Which is, the speed in a certain, in a
set direction [5] that we wanna go, ‘kay.
12 | T: Those basically are the two elements that are
gonna affect the range [6].
[Omitted portion]
13 | T: Alright so up here on the board, I want you to
follow along, this is definitely a little bit
complicated but I think we can get a handle on it.
14 | T: We’re gonna—we’re gonna look at two
aspects of this.
15 | T: One, we’re gonna look at the angle that affects
our range.
16 | T: And once we pick, a-a-and then after we select
an angle, we’re also gonna calculate the range
that we can get by, with those different angles.
17 | T: So let’s look at how this works.
18 | T: First of all, put this over here, so draw it along
with me.
19 | T: What happens when the, when we project
something through the air [7], is we end up
with something like [8] this depending upon the
angle here, which is theta.
|
- [7]
[8]
20 T: And, this is our range.

(continued)
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Line | Transcript Photo

21 T: And basically, what we have, is, we’re
working with vectors here [9].

22 T: So we end up with, some vectors that look
like this and we call this, vector V, and V,
V,[10].

23 T: And we can say, that, V, we’re gonna start
with V| here.

24 T: This distance this, right here.

25 T: So we’re gonna start with, V,, equals V,, sine,
of theta.

26 | S: Mr. [Name], what’s V,?

27 | T: Actually V, is going to be the velocity. ‘Kay.
Good question.

[Omitted portion]
28 | T: ‘Kay, now to relate this to our project, I'm

actually gonna give you a distance and I’'m gonna
say “okay we’re gonna send, we’re gonna set the
basket fifteen feet away,”

29

T: but whatever distance that is, I’'m gonna
decide that at the time.

30

T: We’re gonna set the, the basket so many feet
away and you have to try to hit it.

31

T: So by doing some calculations on, what
you’re, um, ballistic device fires, you can kinda
set your angle hopefully to get, to get that
distance.

[Omitted portion]

32

T: Well what I want you to do is after you,
assemble your ballistic device, I actually want
you to be able to gauge these angles on the
device [11]

33

T: and maybe we can stick an angle gauge in
there somehow to check these angles

(continued)
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Line | Transcript

34 | T: and you determine at thirty degrees [12]
what’s your distance look like.

35 | T: At forty-five degrees [13] what’s your
distance look like [14].

36 | T: Ats-, at our range and at sixty, you know and
so forth, get an idea of what your range is

37 | T: so that morning when we go down to the gym
and we set this up and I throw a number at you

38 T: which will be, it’ll be somewhere between ten
and twenty.

39 | T: So you’re gonna have to try to design, you're

gonna have to design your device to be able to fit
within that parameter, constraints.

We now analyze how the conditions for transfer are established by the teacher in
this setting through his pedagogical actions. Our analysis of transfer in PBL settings
rests on three analytic actions: (a) identify the invariant relation; (b) describe one or
more mappings; and (c) document how participants in the learning environment
express those mappings. Photo Transcript 1 illustrates the first two of these, with the
mapping as a conceptual blend. The third component—how both the students and
the teacher express those mappings using language, gesture, and action—is illus-
trated in Photo Transcripts 2 and 3.

The invariant relation is called out by the teacher as part of his presentation in
Photo Transcript 1, Line 3, “talk about, the angle of the projection that we shoot
this, fire our ping pong ball and the distance it’ll go.” Later, the angle of projection
is referred to as “theta” by the teacher.
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Describing the mapping of THETA involves identifying the relations among its

various manifestations such that these seemingly dissimilar manifestations can be
perceived as similar (Lobato, 2003). Our analysis reveals seven manifestations in all:

as the measure of the sweep of an arm and hand to depict sample angular values
(Line 3; photo [1]);

as a drawn angle where the arc of the projectile meets the ground or baseline
elevation (Line 19; photo [8]);

as a Greek symbol (Line 21), called “theta,” first written as the Greek letter Phi
(¢) (photo [9]) and then later written as the Greek letter 6 (photo [11]);

in drawings and gestures that specify THETA as the direction of V,, the initial
velocity vector of the projectile that is related trigonometrically to component
vectors V, and V, (Lines 21-23, photo [10]);

as an equation parameter for computing velocity and range (Lines 23-25);

as a physically manipulable quantity on the device students build (“you can
kinda set your angle hopefully to get, to get that distance”; Line 31),

as the reading from an angular measurement instrument (e.g., protractor; “I actu-
ally want you to be able to gauge these angles on the device and maybe we can
stick an angle gauge in there somehow to check these angles”; Lines 32-34,
photos [11] and [12]).

The intended result is a conceptual blend in which the manifestations of THETA

are linked to one another in a cohesive network. Figure 2.2 presents a snapshot from
the classroom depicting this network structure for THETA that, at that point in the
lesson, is manifest in trigonometric relations, kinematics equations and diagrams,
and gestures. Figure 2.3 illustrates the network of modal forms of THETA used
throughout the unit.

Fig. 2.2 Image of the whiteboard showing different manifestations of THETA
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device
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Fig. 2.3 The network of modal forms of THETA used throughout the unit

Successful transfer exhibited by students via gestural catchment The third ele-
ment of analyzing transfer within an embodied framework is explicating ways those
in the learning environment express cohesion. One expression of cohesion is illus-
trated in Photo Transcript 2 (Table 2.3), in which the teacher interacts directly with
students who have been working in project design teams. To foreshadow, Photo
Transcript 2 shows that at least two of the students express the cohesion of the
invariant relation across two different instructional contexts: the formal lecture on
kinematics given by the teacher, which involves a whole-class participation struc-
ture, and interactions that take place in the machine shop setting, which involve a
small-group participation structure, which is the focus of the transcript. Here we
observe the ways in which participants use body-based resources in several ways: to
express the mathematical role of THETA that was depicted in the lecture; as it was
drawn in their design sketch; as a measured and variable quantity; and in terms of
its functional role for the project, which aims to control the trajectory of the
projectile.

At the beginning of Photo Transcript 2, we observe two students (talking over
one another) in a group of four express to the teacher how the design sketch they
have drawn provides adjustments to the angle of projection (which they call at
points “the elevation” and “different angles™) and a way to fix the angle of projection.

Student 1 notes (Line 8, photos [1] and [2]), “That’ll allow you to unscrew it,
move it up and down,” and Student 2 concurs (Line 9). Especially notable is the
gesture produced by Student 1 as he describes “move it up and down.” This gesture
imitates the hand movement that the teacher previously used during the lecture to
designate the many values THETA can take on, thus forming a gestural catchment.
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Line | Transcript Photo
1 T: Let’s check, you guys. Where are you at?
2 T: [Name] and [Name], what do we have here?
3 S1: We got a, uh, thingy that works.
4 T: Explain what you have goin’ on here.
5 T: ‘Kay, so that is, where’s your sheet with your

constraints on it?

[Omitted portion]
6 S1: Just a piece of wood to hold onto it.
7 S1: Locking screw right there.
8 S1: That’ll allow you to unscrew it, move it up and

down (performs gesture three times in quick

succession) [1] [2]. i

[1]
[2]

9 S2: (At the same time) Yeah.
10 | S1: And then tighten it at whatever elevation you want

[3].

ITTTHHLLS

11 S2: Different, different angles [4].
12 | SI: A protractor sitting here. With a string with a weight

on it.
13 | S1: So as you tip it, it’ll, that’ll tell you what degree

you’re tipping it.
14 | T: (At the same time) Oh! I like that. That’s nice.
15 | S1: So that tells you what degree so we can figure that

out [5].
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The student presents an upright (left) hand with flat palm and proceeds to bend at
the wrist and bring the hand back to upright three times in a couple of seconds, each
time maintaining a somewhat flat palm. We regard this catchment as evidence that
this student apprehends how THETA is manifest in the design sketch and that it
aligns with the teacher’s description.

Student 1 continues, “And then tighten it at whatever elevation you want” (Line 10,
photo [3]). He depicts this action by moving his right hand up to be near the left and
making a motion typical for tightening a screw. Student 2 further immediately elabo-
rates, “Different angles” (Line 11, photo [4]). In so doing, he, too, makes a gesture for
the angle THETA twice in quick succession. This gesture repeats the gesture produced
by the teacher during lecture and the gesture produced by Student 1 moments earlier,
thus continuing to build the gestural catchment and providing further evidence that
Student 2 also constructed a cohesive account of THETA as it relates to their design. The
students further demonstrate their understanding as reflected in their method of mea-
suring the angle of projection with the clever use of a weighted string moving across a
protractor that is mounted on the device (Lines 12—15, photo [5]).

In brief, Photo Transcript 2 demonstrates how students express cohesion in this
PBL activity through a gestural catchment and through connecting language directed
at their design sketch (which provides a material anchor of one manifestation of
THETA), the mathematics of THETA, and the angular measurement device. This
excerpt also illustrates that the teacher contributes to transfer by using brief but
important prompts. But it is the activity structure as a whole that really provides the
mapping of the invariant relation across contexts by forging connections between
the hands-on design project and the mathematics and physics presentation.

Unsuccessful transfer as inappropriate mapping of the invariant relation In
contrast to Photo Transcript 2, which illustrates successful transfer, Photo Transcript
3 (Table 2.4) involves students who latch onto the wrong adjustable feature, so their
design varies the initial velocity but not the angle of projection. The students’
expressions of the mapping reveal this to be their constructed understanding, rather
than a process of directly perceiving the invariant relation as labelled by the teacher.
During this excerpt, the teacher recognizes that the students’ actions reveal that their
thinking and design is based on the incorrect mapping of the angle THETA to their
device, which is contributing to unsuccessful transfer. In response, the teacher
attempts to repair the mapping by reinstating the gestural catchment and making an
explicit, direct mapping between the part of the device that could instantiate THETA
and the mathematical inscriptions that model the influence of THETA on projectile
motion that were previously written on the board.

The exchange in Photo Transcript 3 shows how transfer can be thwarted when
students construct an inappropriate mapping for the target invariant relation. The
teacher provides a rich prompt (Line 1), asking, “How are you going to change the
angle of your trajectory?” invoking the gestural catchment that has come to signify
THETA (photo [1]). The students have designed a catapult that includes rubber bands
that can be set at different points before their release, altering the tension and there-
fore the speed with which the catapult arm will release. The students see the
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Line

Transcript

1

T: Alright now let me ask a question regarding how
are you going to change the angle of your trajectory
[1]?

[Omitted portion]

S2: Right there.

S1: We’ll have this rubber band here, pull it down here.

aw

S1: And so we have several spokes here so the further
we pull it down and attach it, that, that changes the
angle for us [2].

T: Well I'm wondering if the further you, pull your
rubber band down—

S1: Mmhm.

T: —is gonna affect your, velocity, more than your
angle [3].

“ 3]

S2: [At the same time] Yeah it’s, well no, this is the
velocity

S2: but what we’re sayin’ is that this is how hard it
pulls, but then right here [4], where it, where it,
where the fulcrum is like this actually you can tilt it

[5].

(5]

10

S2: [At the same time] The rubber bands control the
tension but the placement is what really controls...

11

S2: Like. See what we’re saying?

(continued)
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Line | Transcript

12 | T: Soit’s, it, okay so, if I could, suggest, I think that
[6], you might be able to adjust your angle by, by
having some type, by controlling where this stops.

1 [6]

13 | SI: Yeah.

14 | T: But that’s probably also gonna affect your, maybe
affect your velocity.

15 | T: What I'm saying is, either that or else you have to
tip the whole thing.

16 S2: No, we don’t.

17 | S2: That’s why, ‘cause the two sides stay put but then
the top part can, tilt, right there.

18 | T: Okay.

19 | S2: [At the same time] So the fulcrum can change
positions, basically.

20 | T: Alright. So I think maybe what you need to do is is,
take into consideration what I just said about—

21 | SI: Yeah.

22 | T: —being able to control the angle [7].

23 | T: That’s why we did everything we did here [8]-

24 | S1: Mmhm.

25 | T: —with the math. Because we wanna—

26 | SI: (At the same time) The math yeah.

27 | T: -be able to adjust the angle of the trajectory.

28 | T: I would try to keep, the velocity, the same,

consistent, throughout the whole, every test that you do
that that’s consistent

(continued)
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Table 2.4 (continued)

Line | Transcript

29 | T: and so all you’re gonna change once you, one you
decide what that velocity has to be, all you’re gonna
change is your angle [9].

30 | SI: Yeah.
31 | T: Okay?
32 | S1: Mmhm.

33 | T: 1 don’t really want you to use the tension on the
rubber bands, as, the only control.

34 | T: I want you to have an angle adjustment [10].

[10]

different positions of the rubber bands as taking different angles (see Fig. 2.4),
which they predict will alter the angle of projection: “So the further we pull it down
and attach it, that, that changes the angle for us” (Lines 3—4, photo [2]). In response,
the teacher rightly observes (Line 5) that the catapult arm will release at the same
angle regardless of the placement of the rubber band, but the change in tension will
affect the initial speed of the projectile. The teacher points to the design sketch to
help clarify his critique (photo [3]).

The students do not pick up on this critique but offer a defense (Lines 8-11),
“See what we’re saying?” This suggests that the students are not merely misinter-
preting the theory or misreading their own design sketch. The second student
speaker (Lines 8-9) offers this account, “Well, no, this is the velocity, but what
we’re sayin’ is that this is how hard it pulls, but then right here, where it, where it,
where the fulcrum is like this actually you can tilt it” and demonstrates this idea in
photos [4] and [5].

A reasonable interpretation is that the students operate with a preexisting “onto-
logical coherence” (Slotta & Chi, 2006) for velocity exclusively as a scalar measure
of speed of the projectile, which interferes with their adoption of a new conceptual-
ization of velocity as a vector quantity (i.e., V,) that includes both speed and direc-
tion. Prior ontological commitments of this sort are notoriously difficult to alter.
Here we observe such a case from two students in defense of their design when the
first student says (Line 17), “That’s why, ‘cause the two sides stay put but then the
top part can, tilt, right there,” and the second (overlapping) says (Line 19), “So the
fulcrum can change positions, basically.” In neither case, however, will this design
provide the control of the angle of projection that the project requires.



50 M. J. Nathan and M. W. Alibali

Name. Date

wlo;:rl'sﬁc ice: Use gridpaper from front of room if you need

Fig. 2.4 (a) One group’s original design sketch with (b) the vectors and angles added that label
the correct and incorrect matches to THETA

An interesting part of this exchange comes when the teacher identifies the break
in cohesion. By way of repair, he offers two mapping acts. First, he reinvokes the
THETA gesture but this time does so in the same plane as the paper design sketch
(photo [7]) while saying (Line 22) “being able to control the angle.” In this way, the
teacher connects the variation of the angle to the students’ design sketch. Second,
the teacher makes explicit reference, with speech, gesture, and upturned eye gaze
(photo [8]), to the mathematical derivation still on the whiteboard at the front of the
room and starts out saying (Lines 23-29), “that’s why we did everything we did
here with the math,” and ends with, “all you’re gonna change is your angle.” The
students acknowledge this midway and repeat (Line 26), “The math, yeah,” but they
seem disappointed by the teacher’s reaction to their design.

2.5 Reflections on an Embodied Theory of Transfer

In this chapter, we have advanced the argument that transfer is fundamentally an
embodied process. This is made especially evident when studying PBL settings.
Learning and teaching in PBL settings are embedded in rich, multimodal contexts
where content knowledge and information are often extended across a variety of
semantic resources, including objects, inscriptions, and other actors. We assume
that learners and teachers have a natural drive for cohesion in the learning experi-
ence—learners, to experience continuity, and teachers, to provide a meaningful and
engaging learning environment in which their students achieve the desired under-
standings. We observe that both teachers and learners engage embodied processes
as they map invariant relations across various modal forms. This mapping enables
agents in educational settings to apply prior modes of perceiving and acting to new
contexts and to create movements that will activate those invariant relations through
transduction. Mapping may be explicit, as in analogical mapping; implicit, as in the
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case of priming relational structures; or some combination, as may be seen with
conceptual blends. Teachers and students express cohesion by connecting different
contexts and different modal forms via speech, actions, and gestures, as when a
teacher simulates picking up symbols simultaneously from both sides of an equa-
tion or when a student invokes a gestural catchment to indicate how a structural
property of a device enacts the relationship depicted in a mathematical model. We
now consider some notable aspects of the proposed theory, implications for educa-
tional practice, and open research questions that may advance understanding of
transfer.

We have argued that there are three core elements to embodied transfer: (a) iden-
tifying the central invariant relation that is manifest in multiple contexts, representa-
tions, or modalities; (b) mapping that relation across those contexts, representations,
or modalities; and (c) expressing cohesion across the disparate manifestations of
that invariant relation. We view the order of these three elements as somewhat fluid.
Mapping across contexts—performed by a teacher, for example—might precede a
student’s awareness of the central invariant relation. The mapping can provide a
means for comparison that enables the learner to perceive connections between con-
texts and inscriptions, as when students experience that they are performing similar
actions in ontologically different contexts. The actions performed in the new con-
text can activate common cognitive states through transduction, which then help the
student to notice the invariant relation in the new context, thereby enabling mapping
across the contexts. Expression can also play a role in making implicit mappings
more explicit for the learner, as when students’ reflections on their motoric behav-
iors bring these relations into conscious awareness. This may be one reason why
self-explanation is a powerful mechanism for promoting transfer (see, e.g., Rittle-
Johnson, 2006).

An important assumption of an embodied theory of transfer is that transfer oper-
ates within a predictive architecture and a set of feedforward mechanisms that ready
the system to act. Consequently, transfer is not an occasional process but a continual
one. A system always looking to act will also activate cognitive states in accord with
its actions. This offers a theoretical basis for understanding near and far positive
transfer as well as negative transfer. In this framework, near transfer is especially
likely when modes of perceiving and acting from an earlier context are activated and
readily apply in a new context. The teacher simulating lifting the drawn objects off
of the drawn pan balance is one such case, given that these affordances for a physi-
cal pan balance would normally apply. We describe as far transfer those cases in
which the earlier modes of perceiving and acting are not directly applicable and that
require some modification and some enhanced mapping support to establish corre-
spondences. Negative transfer is expected when the mapping is salient but the asso-
ciated modes of perceiving and acting are no longer relevant. One example is the
“add all the numbers” error commonly made by elementary and middle school stu-
dents solving mathematical equivalence problems (e.g., offering “15” as a solution
for a problem such as 3 +4 + 5 =3+ __; Knuth, Stephens, McNeil, & Alibali, 2006;
McNeil, 2014; Perry, Church, & Goldin-Meadow, 1988).
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Our proposal also raises the issue of false transfer, which may occur when actors
apply modes of perceiving and acting that they expect to be applicable but that
match only at a surface level and which therefore do not yield successful transfer (in
terms of experts’ expectations). The persistence of false transfer in the face of feed-
back may be due to students’ prior ontological commitments that offer strong
matches to the current circumstances (Chi, Roscoe, Slotta, Roy, & Chase, 2012;
Slotta & Chi, 2006). One example is treating velocity as a scalar measure of speed
in a design project that requires that velocity be treated as a vector quantity specify-
ing both speed and direction. The activation of inappropriate modes of perceiving
and acting can help explain why tasks that share surface structure but different
invariant relations so readily lead to false transfer.

As these classroom examples make clear, transfer is an embedded process, situ-
ated in a particular physical and sociocultural learning context. PBL is also an
extended process such that multiple actors (often a teacher and students) are engaged
in transfer, mapping invariant relations across modal forms. The contributions of
both teachers and learners to transfer suggest that transfer is a fundamentally social
activity (Lobato, 2006). This view suggests several powerful ways to promote trans-
fer, particularly in complex learning environments. In past work (Nathan, Wolfgram,
et al., 2017), we documented some of the key processes that teachers draw on to
foster cohesion across representations, contexts, and settings: Teachers actively
bridge ecological shifts when learning takes place in different ecological contexts
(such as the classroom and the machine shop), and teachers check that their students
are aware of the continuity they strive for; teachers coordinate ideas across different
spaces using common labels, thoughtful juxtaposition, gestural catchments, and
deixis in both speech and gesture; and they project invariant relations forward and
backward in time to promote temporal continuity. Our position is that these peda-
gogical processes are integral to transfer. Excluding the teacher from a theory of
transfer risks creating a theory that is unable to account for transfer as it occurs in
authentic settings.

Our theory also highlights the importance of understanding the fine structure of
the ways in which teachers and students express cohesion. In this regard, we draw
on Goodwin’s (2013) observation that speakers commonly layer semiotic fields one
upon another during discourse, a process he termed lamination. In our view, teach-
ers and students may laminate different representations together—that is, layer
them together in space or time using language, gesture, or action—thereby fusing
them conceptually. For example, consider the teacher (described earlier) who pro-
duced the same gesture of removing objects from two sides over a drawing of a pan
balance and then over a symbolic equation representing the state of the pan balance.
With this catchment gesture, the teacher laminates together the pan balance and the
equation. She organizes elements of these manifestations of the invariant relation
with respect to one another and uses gestures to express their correspondences.

An embodied account of transfer can also provide insight into why certain
instructional approaches have proven effective. The proposed theory naturally
explains the success of instructional approaches that bring actions in target contexts
into close alignment with actions in the original source context. For example,



2 An Embodied Theory of Transfer 53

bridging instruction (Nathan, Stephens, Masarik, Alibali, & Koedinger, 2002) relies
on mapping students’ invented strategies for algebraic reasoning to those that
experts have identified as important for achieving curricular goals. Concreteness
fading (Fyfe et al., 2014) helps learners to ground formal notations in terms of
familiar modes of perceiving and acting, applying the resulting actions to a broader
range of contexts.

An embodied account of transfer also has implications for assessment practices.
Regarding formative assessment, it is well documented that learners sometimes
exhibit ways of thinking in actions and gestures even before they have explicit
awareness of their new understanding or before they have constructed verbal
accounts of their new ways of thinking (Church & Goldin-Meadow, 1986; Goldin-
Meadow, Alibali, & Church, 1993). Teachers who notice these nonverbal expres-
sions can more accurately model students’ conceptual development and can be
responsive with their own pedagogical actions. Even untrained adults generate more
accurate descriptions of children’s understandings when they attend to children’s
gestures along with their verbal utterances (Goldin-Meadow, Wein, & Chang,
1992). Improving teachers’ skills for noticing students’ gestures can greatly enhance
teaching and learning (Roth, 2001).

Summative assessment is generally more evaluative, taking place at the end of a
major curricular unit. Summative assessment practices are dominated by students’
verbalizable knowledge, often excluding learners’ embodied forms of expression
and therefore underestimating student knowledge. Further, assessment methods
using computer keyboards can interfere with body-based forms of expression and
can even impair students’ thinking (Nathan & Martinez, 2015).

An embodied account of transfer raises several important questions for future
research. First, what kinds of discourse practices contribute to students’ identifica-
tion and mapping of invariant relations across contexts? For example, to what extent
are instructional practices such as using common labels or producing gestural catch-
ments valuable for supporting students’ mapping across contexts? Relatedly, which
discourse practices help learners progress from an implicit, action-based under-
standing of invariant relations to explicit, verbalizable knowledge?

Second, do effective approaches to mapping depend on the target concept or on
the age, prior knowledge, or cognitive skill of the learner? It is possible that some
learners may benefit from more explicit mapping, whereas others may do better
with more implicit approaches. These individual differences, in turn, may be due to
differences in learners’ prior knowledge or in their patterns of cognitive skills.

Third, what are the consequences of variations in mapping practices or variations
in expressing cohesion? For example, do some types of mapping lead to more dura-
ble knowledge or to greater gains in students’ conceptual understanding of the tar-
get mathematical concepts? Does expressing cohesion in gestures or speech help
learners to stabilize that knowledge and make it more explicit? These questions
raise further issues about underlying mechanisms, which can be construed at a vari-
ety of different grain sizes. One potentially fruitful level of analysis involves consid-
ering the management of attention in social interactions that focus on transfer. How
do teachers’ mapping practices affect students’ attention to aspects of the context or
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to features of the particular representations being linked? More generally, how do
contextual supports and social guidance of transfer influence learners’ attention,
and how is attention involved in identifying invariant relations and in mapping
across contexts?

Finally, given that our account has emphasized the social aspects of transfer, how
do dimensions of social relationships, such as warmth, respect, and power, affect
patterns of transfer? For example, are students especially likely to attend to novel
mappings expressed by social partners who display respect for their ideas and con-
cern for their learning (Gutiérrez, Brown, & Alibali, 2018)? How does the history of
a social relationship affect the negotiation of transfer by individuals in that
relationship?

Although there are many questions yet to be addressed, we believe that an
embodied perspective yields a novel and valuable conceptualization of transfer.
There is increasing awareness among both scholars and practitioners of the embod-
ied nature of cognition (e.g., Barsalou, 2008; Glenberg, 1997; Rosenfeld, 2016;
Wilson, 2002). In our view, an embodied perspective on transfer is necessary
because transfer occurs in a rich physical and social world. By focusing on invariant
relations, how they are mapped across contexts, and how cohesion across contexts
and across modalities is expressed and negotiated, we open new avenues of inquiry,
and these avenues promise to shed light on transfer as it occurs in PBL settings and
other complex learning contexts.
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Chapter 3

Opening Possibilities: An Approach
for Investigating Students’ Transfer
of Mathematical Reasoning

Heather Lynn Johnson, Evan McClintock, and Amber Gardner

How might teachers and researchers engender students’ mathematical reasoning
across a range of situations? Or, put another way, how might students’ transfer of
mathematical reasoning be promoted? What counts as transfer of mathematical rea-
soning? And what might serve as evidence of such transfer?

Researchers’ views of transfer afford what constitutes evidence of transfer
(Lobato, 2003, 2008, 2012) as well as the scope of what counts as possible to be
transferred. We view transfer as something more than the application of a procedure
from one situation to another (Lobato, 2003), meaning that students can engage in
transfer even if they do not accurately apply a procedure across different situations.
To weigh what could serve as evidence of transfer, we navigate tensions between
our own researcher perspectives and students’ perspectives. Hence, we draw on
actor-oriented transfer (AOT) theory (Lobato, 2003, 2008, 2012), in which Lobato
problematizes the perspectives that researchers employ when investigating students’
transfer.

To locally integrate theories (Bikner-Ahsbahs & Prediger, 2010), researchers
extend beyond combining or coordinating theories to explain empirical phenomena
to build new theories and approaches. We draw on three theories to investigate stu-
dents’ transfer of mathematical reasoning: Lobato’s theory of AOT (Lobato, 2003,
2008, 2012), Marton’s variation theory (Kullberg, Runesson Kempe, & Marton,
2017; Marton, 2015), and Thompson’s theory of quantitative reasoning (Thompson,
1994, 2002, 2011; Thompson & Carlson, 2017). In each of their theories, these
scholars distinguish between the perspectives of students and those of the research-
ers. Lobato (2003) centered the student perspective when expanding the scope of
what could count as evidence of transfer. Marton (2015) distinguished between
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adults’ and children’s perspectives, explaining that adults cannot expect that by
showing and telling children something they as adults discern that they will neces-
sitate children’s discernment. Thompson (1994) argued that a quantity is something
more than a label for a unit (e.g., 5 feet), explaining that quantities depend on indi-
viduals’ conceptions of attributes of objects. By integrating these theories, we cen-
ter the student perspective in our investigation of students’ transfer.

The opening possibilities approach stems from Johnson’s program of research,
consisting of iterative design experiments (Cobb, Confrey, diSessa, Lehrer, &
Schauble, 2003), in which Johnson led fine-grained investigations of secondary stu-
dents’ reasoning related to rate and function. With this approach, we aim to open
possibilities for researchers to investigate students’ transfer and for students to
engage in mathematical reasoning. By focusing on students’ transfer of mathemati-
cal reasoning (e.g., Johnson, McClintock, & Hornbein, 2017), researchers can
extend the objects of their transfer study. By integrating different theoretical per-
spectives (Lobato, 2003; Marton, 2015; Thompson, 2011), researchers can expand
how they theorize transfer. By linking theory and method in a way that mutually
informs, rather than prescribes, the other (Chan & Clarke, 2019), researchers can
broaden methods for transfer study. To demonstrate the viability of this approach,
we provide an empirical example of a secondary student’s transfer of a particular
form of mathematical reasoning, covariational reasoning (Carlson, Jacobs, Coe,
Larsen, & Hsu, 2002; Thompson & Carlson, 2017). We conclude with implications
for the design of transfer studies.

3.1 Theoretical Background: Students’ Transfer,
Discernment, and Reasoning

In integrating theories, we bring together different assumptions. First, researchers’
focus on students’ perspectives impacts claims of what can constitute evidence of
transfer (Lobato, 2003, 2008). Second, students’ discernment plays a role in their
transfer, and students discern both difference and similarity (Marton, 2006). Third,
the object of students’ transfer can extend beyond knowledge of mathematical con-
cepts to include forms of mathematical reasoning (Johnson, McClintock, &
Hornbein, 2017).

3.1.1 Transfer and Discernment

From an AOT perspective, transfer is generalization rather than application (Lobato,
2003, 2008). In other words, transfer is something other than the accurate applica-
tion of a solution method across situations. Lobato (2008) defined transfer as “the
generalization of learning, which also can be understood as the influence of a
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learner’s prior activities on his or her activity in novel situations” (p. 169). Hence,
students transfer their mathematical reasoning when they generalize some form of
reasoning from one situation to a novel one. For example, consider two situations: a
Cannon Man, flying up into the air, then parachuting back down, and a Toy Car,
moving along a curved path, with a stationary object nearby. In each situation, stu-
dents can sketch a Cartesian graph to represent a relationship between attributes:
Cannon Man’s height from the ground and his total distance traveled and the Toy
Car’s distance from the stationary object and its total distance traveled. Even if stu-
dents do not sketch accurate graphs in either situation, they may still transfer rea-
soning from the Cannon Man to the Toy Car. To gather evidence of students’
transfer, researchers employing an AOT perspective scour data for relationships of
sameness that students may construct (Lobato, 2003, 2008). For example, students
may recognize that the total distance traveled continues to increase in both situa-
tions. Although there has been a focus on sameness, Lobato (2008) acknowledged
the possibility for researchers’ AOT analysis methods to include attention to
difference.

For a given graph in a Cartesian coordinate system, some students attend to attri-
butes represented on the axes, whereas other students attend to only a trace in the
plane. However, it is important for each and every student to attend to graph attri-
butes. Employing Marton’s variation theory (Kullberg et al., 2017; Marton, 2015),
designers can develop task sequences to provide opportunities for students to dis-
cern particular aspects of graphs. Discernment involves more than noticing. It
implies separation of an object’s features from the object itself (Marton, 2015). For
example, to discern attributes represented on graph axes, students would separate
those attributes from other aspects of a graph.

Through systematic variation, designers can engender opportunities for students’
discernment (Kullberg et al., 2017; Marton, 2006, 2015); in the task sequences, dif-
ference (contrast) should precede sameness (generalization). Systemic variation
necessitates patterns of variation and invariance. For example, suppose researchers
intend Cartesian graphs to be an object of learning for students. In the first task,
students can encounter different kinds of graphs (contrast) so that students may
discern graphs as an object and Cartesian graphs as a dimension of variation of the
broader object of graphs. The relationship between variables would remain invari-
ant, and the type of graph would vary. In a subsequent task, students can encounter
different kinds of Cartesian graphs (generalization). Now, the type of graph
(Cartesian) would remain invariant, and the relationship between variables would
vary. Notably, the object of learning is the first thing varied (the type of graph), then
characteristics of the object of learning (relationships between variables), so that
students may discern which aspects of Cartesian graphs are necessary and which
aspects are optional.

Researchers can employ variation theory in their study of transfer. Broadly,
Marton (2006) defined transfer as being “about how what is learned in one situation
affects or influences what the learner is capable of doing in another situation”
(p- 499). Summarizing results of different studies, Marton (2006) argued that stu-
dents’ discernment of both difference and sameness contributes to their transfer. To
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illustrate, consider Marton’s (2006) example of the Cantonese spoken language,
which includes both sound and tone. Suppose a student hears two Cantonese words
in succession, both with the same sound but with different tones; this can provide
the student an opportunity to discern, or separate, the tone from the sound, not only
in the second word but also in the first. This kind of discernment can also apply to
the Cannon Man and Toy Car situations. For example, a student may discern, or
separate, the difference in literal movement of each object from the object’s total
distance traveled. Hence, it is possible for the discernment of difference (e.g., the
difference in tone or literal movement) to be what a learner transfers from one situ-
ation to another.

Both Marton and Lobato used the term generalization. We interpret their uses of
the term to be compatible but not synonymous. Lobato used generalization in a
broader sense, whereas Marton used generalization to address a specific kind of
variation. We view Lobato’s explanation of transfer as “generalization of learning”
to be consistent with Marton’s definition of transfer—that is, the influence of one
situation on a new situation. Marton employed generalization to refer to a pattern of
sameness in task sequences, which should follow patterns of difference (contrast).
For example, suppose a teacher intends to develop a task sequence for students to
discern, or separate, the attribute of “increasing” on a graph. The teacher would
begin with contrast, for instance providing students graphs that increase, decrease,
and remain constant. Then the teacher would follow with generalization, for instance
providing students with graphs having different kinds of increases (e.g., linear, qua-
dratic, exponential). Integrating theories, we aim to illustrate how difference can
play arole in the generalization of learning, or transfer, from an AOT perspective.

3.1.2 Discernment and Reasoning

In the theory of quantitative reasoning (Thompson, 1994, 2011; Thompson &
Carlson, 2017), Thompson focuses on students’ conceptions of attributes, which
may be involved in problem situations or represented in graphs. Whether an attri-
bute is also a quantity depends on the students’ perspectives rather than the observ-
ers’ perspectives. When a student conceives of some attribute as being possible to
measure, then that attribute is a quantity for the student. For example, an observer
may conceive of how it could be possible to measure a toy car’s distance from a
stationary object, yet students may wonder where to even look for, let alone mea-
sure, such a distance. Thompson’s theory centers students’ conceptions of possibili-
ties for measurement (e.g., using a string to measure the distance between two
objects) rather than on their end results of measurements (e.g., exactly how far the
toy car is from the stationary object at a given moment). Therefore, students can
engage in quantitative reasoning without applying particular procedures or deter-
mining certain results. Integrating theories, we explain a particular kind of discern-
ment, a conception of graph attributes as being possible to measure, that we aim to
promote in students.
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3.2 The Opening Possibilities Approach

The opening possibilities approach, shown in Fig. 3.1, links theory and method to
investigate students’ transfer of mathematical reasoning. Theory and method are
positioned across from each other to represent a complementary, rather than hierar-
chical, relationship between them. The double-headed arrow in the center shows
that theory and method mutually inform, rather than prescribe, the other. Three
overarching questions guide the approach: What counts as students’ transfer of
mathematical reasoning? How can researchers engender students’ transfer of math-
ematical reasoning? What constitutes evidence of students’ transfer of mathemati-
cal reasoning? In response, researchers may draw on a range of theories and methods
which in turn afford and constrain their design decisions, data collection, and data
analysis.

3.2.1 What Counts as Transfer of Students’
Mathematical Reasoning?

How researchers theorize students’ mathematical reasoning influences what counts
as evidence of students’ reasoning. By a student’s mathematical reasoning, we mean
purposeful thinking in action occurring in a setting that constitutes mathematics for
the student. With Thompson’s theory of quantitative reasoning, we focus on stu-
dents’ conceptions of what may be possible to measure rather than on end results
obtained from measurement. Bringing together Lobato’s AOT theory and Marton’s
variation theory, by transfer of students’ mathematical reasoning, we mean how
students’ mathematical reasoning in prior situations influences their mathematical
reasoning in new situations. Through our methods, we aim to infer students’ reason-
ing (and transfer of reasoning) based on their observable behaviors. To gather evi-
dence of students’ engagement in the intended mathematical reasoning, we focus on
students’ conceptions as they are engaging with task sequences rather than on their
end results.

What counts as students’ transfer of
mathematical reasoning?

What constitutes evidence of students’
transfer of mathematical reasoning?

Fig. 3.1 The opening possibilities approach
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3.2.2 How Can Researchers Engender Students’ Transfer
of Mathematical Reasoning?

We aim to promote students’ engagement in mathematical reasoning rather than
answer finding. Hence, we design task sequences in which we work to engineer
opportunities for students’ reasoning writ large as well as opportunities for students
to engage in mathematical reasoning. Our stance on students’ reasoning influences
our assumptions about the viability of their reasoning, which in turn influences our
methods. First, we assume that students working on a task may have goals for the
task that are different from our own (Johnson, Coles, & Clarke, 2017). Second, we
acknowledge that the reasoning we intend may be different from the reasoning that
students engage in during task sequences. Third, we assume that students’ reason-
ing is viable and productive, regardless of its form. In our methods, we do not seek
to “fix” students’ reasoning. Rather, we seek to understand and engender students’
mathematical reasoning in its many forms.

3.2.3 What Constitutes Evidence of Students’ Transfer
of Mathematical Reasoning?

We view students as experts in their own mathematical reasoning, and thereby our
role as researchers is to elicit and explain that reasoning. To gather evidence of stu-
dents’ transfer of mathematical reasoning, we build from four criteria put forth by
Lobato (2008). First, students demonstrate a change in their reasoning from one
task to another. Second, prior to the task sequences, students demonstrate limited
evidence of the intended reasoning. Third, students’ reasoning on earlier tasks influ-
ences their reasoning on later tasks. Fourth, students’ change in reasoning is some-
thing other than a spontaneous occurrence. When analyzing for evidence of influence
of students’ reasoning, from earlier tasks to later tasks, we consider both contrast
and generalization (Marton, 2006). That is, we take as evidence of transfer not only
students’ perspectives of how tasks are similar but also how they perceive those
tasks to be different.

3.3 Opening Possibilities for Students’
Covariational Reasoning

To operationalize the opening possibilities approach, we address a particular form
of mathematical reasoning, covariational reasoning (Carlson et al., 2002; Thompson
& Carlson, 2017). Not confined to a single area of mathematics, covariational rea-
soning transcends different mathematical concepts, including the gatekeeping con-
cepts of rate and function.
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3.3.1 What Counts as Transfer of Students’
Covariational Reasoning?

When students engage in covariational reasoning, they can form and interpret rela-
tionships between attributes which they conceive to be capable of varying and pos-
sible to measure. In other words, covariational reasoning involves both students’
conceptions of attributes and their conceptions of a relationship between those attri-
butes (Carlson et al., 2002; Thompson & Carlson, 2017). To illustrate, in the Toy
Car situation, a student may conceive of varying lengths of a stretchable cord con-
necting the car to a stationary object and a trace of the distance traveled as the car
moves along its path. Furthermore, that student may conceive of a relationship
between the cord length and distance traveled: The cord could start off longer, then
shorten, while the toy car’s total distance traveled keeps increasing. By transfer of
students’ covariational reasoning, we mean how students’ covariational reasoning
in one situation (e.g., the Cannon Man) influences their covariational reasoning in a
new situation (e.g., the Toy Car).

3.3.2 How Can Researchers Engender Students’ Transfer
of Students’ Covariational Reasoning?

We view tasks to be more than a problem statement. Tasks encompass the intentions
of those designing, implementing, and interacting with the tasks as well as physical
materials (Johnson, Coles, & Clarke, 2017). Our task sequences comprise students’
sketching and interpreting Cartesian graphs, which means that we address both stu-
dents’ covariational reasoning and their conceptions of graphs themselves. By
incorporating patterns of difference and sameness, we intend to provide opportuni-
ties for students to discern necessary aspects of graphs from optional ones. For
example, even though the Cannon Man flies up and down while the Toy Car moves
along a path, the total distance traveled for both continues to increase. If students
were to only experience one kind of motion, they might not have sufficient opportu-
nities to separate the literal motion of the objects from a measurable attribute of the
objects, such as their total distance traveled.

3.3.3 What Constitutes Evidence of Students’ Transfer
of Covariational Reasoning?

To gather evidence of students’ covariational reasoning, we infer students’ concep-
tions based on their observable behavior. We examine students’ work when sketch-
ing Cartesian graphs because sketching graphs can provide students opportunities to
represent relationships between attributes. We focus on students’ process of
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sketching graphs rather than on assessing the accuracy of their resulting graphs.
Although students may engage in covariational reasoning when doing things other
than graph sketching, we have found instances of students’ graph sketching to offer
compelling evidence of their covariational reasoning. Yet, students’ difficulties or
facilities with graphs can present challenges when analyzing for reasoning.
Integrating different theories affords us opportunities to explain students’ discern-
ment of graph attributes in conjunction with their transfer of covariational reasoning.

3.4 The Promise of Opening Possibilities: An Instantiation
of the Approach

To demonstrate the promise of the opening possibilities approach, we report data
from a larger study in which Johnson conducted a set of three individual, task-based
interviews (Goldin, 2000) with each of 13 secondary students to investigate their
covariational reasoning and conceptions of graphs. We report data from one of those
students, Aisha, who demonstrated transfer of covariational reasoning. To contextu-
alize the data, we explain the design of our task sequences and our methods for data
analysis. With this instantiation of the opening possibilities approach, we build on
Johnson and colleagues’ earlier investigation of a secondary student’s transfer of
covariational reasoning (Johnson, McClintock, & Hornbein, 2017).

3.4.1 The Task Sequences

We implemented three task sequences, each with a different background: a Ferris
Wheel, a Cannon Man, and a Toy Car, respectively. Across the task sequences, stu-
dents explored different situations, then sketched one or more Cartesian graphs to
represent a relationship between attributes in a situation given in an animation. We
adapted the Ferris Wheel task sequence from Johnson and colleagues’ earlier
research (Johnson, McClintock, & Hornbein, 2017). We developed the Cannon Man
and Toy Car task sequences in Desmos, a freely available digital mathematics tool,
in collaboration with Meyer, the chief academic officer of Desmos.

The Ferris Wheel task sequence incorporated three key elements. First, students
manipulated an online interactive of a turning Ferris wheel. Second, students
sketched a single graph representing a relationship between a Ferris wheel cart’s
height from the ground and its total distance traveled around the wheel for one revo-
lution of a Ferris wheel. Third, students interpreted a replica of another student’s
graph, explaining how they thought that student may have been thinking when
sketching the graph.

The Cannon Man and Toy Car task sequences each incorporated six key ele-
ments (Johnson, McClintock, & Gardner, 2020). First, students viewed a video
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animation, then discussed how it could be possible to measure different attributes in
the situation (e.g., Cannon Man’s height from the ground and his total distance trav-
eled). Second, students explored variation in each of the individual attributes by
manipulating dynamic segments on the horizontal and vertical axes. Figure 3.2
shows a dynamic segment in the Cannon Man task sequence. Third, students
sketched a graph to represent a relationship between attributes, then viewed a
computer-generated graph. Fourth, students re-explored variation in each of the
individual attributes, with the attributes represented on different axes. Fifth, stu-
dents sketched a new graph to represent the same relationship between attributes,
then viewed a computer-generated graph. Figures 3.3 and 3.4 show the two different
computer-generated graphs in the Cannon Man and Toy Car task sequences, respec-
tively. Sixth, students responded to questions about relationships represented by
both graphs.

We integrated Thompson’s theory of quantitative reasoning and Marton’s varia-
tion theory in our design of the Cannon Man and Toy Car task sequences. First,
students could vary each attribute individually, then both attributes together. With
the dynamic segments (e.g., Fig. 3.2), we operationalized Thompson’s recommen-
dation that students use their fingers as tools to represent variation in individual
attributes (Thompson, 2002). Furthermore, the design afforded opportunities for
students to discern each graph axis as representing variation in a single attribute
(Marton’s variation theory). After manipulating individual attributes, students
sketched a graph to represent a relationship between attributes.

Second, students repeated the process for a new Cartesian plane with the same
attributes represented on different axes. This design choice was not a novelty;
Moore and colleagues also leveraged this design move (Moore, Silverman, Paoletti,
& LaForest, 2014; Moore, Stevens, Paoletti, Hobson, & Liang, 2019). Our theoreti-
cal underpinning for this design choice rests in Marton’s variation theory. With the
new graph, we incorporated contrast. The relationship between variables in the
Cannon Man task sequence remained invariant; only the graph was different. With

Press play. Move the dynamic segment to show how Cannon Man's HEIGHT is changing.

distance

height

Fig. 3.2 A dynamic segment in the Cannon Man task sequence
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height

distance

distance height

Fig. 3.3 Two different graphs in the Cannon Man task sequence

i
distance from shrub
4
total distance traveled

total distance traveled distance from shrub

Fig. 3.4 Two different graphs in the Toy Car task sequence

this move, we intended to provide opportunities for students to discern a Cartesian
plane as separable from a specific instance of a Cartesian graph.

We designed the first and second patterns of variation and invariance against a
single background (the Cannon Man). Next, we engaged in generalization, per
Marton’s variation theory, repeating those patterns against a new background (the
Toy Car). In the video animation (the first element of the task sequence), the literal
motion of the Toy Car was different from the literal motion of the Cannon Man. For
example, the Toy Car moved along a curved path, but Cannon Man moved up and
down. We intended this difference to provide students opportunities to discern what
was necessary (e.g., direction of variation in attributes) from what was optional
(e.g., literal motion of objects). Across both task sequences, we kept the kind of
attributes invariant because we anticipated it would be less difficult for students to
conceive of measuring length attributes (e.g., height, distance) than other kinds of
attributes, such as area or volume (see also Johnson, McClintock, & Hornbein, 2017).

3.4.2 Data Analysis Methods

To claim that students transferred their covariational reasoning, we first provide
evidence of students’ engagement in covariational reasoning within and across tasks
(Thompson’s theory of quantitative reasoning). Second, we identify differences and
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commonalities that students discerned across tasks (Marton’s variation theory).
Third, we demonstrate that students meet Lobato’s (2008) four criteria for evidence
of transfer from an AOT perspective.

Covariational reasoning Our analysis focused on two areas: students’ concep-
tions of attributes as possible to measure and capable of varying and students’ con-
ceptions of relationships between those attributes. The framework put forth by
Thompson and Carlson (2017) provided fine-grained distinctions regarding differ-
ent levels of students’ covariational reasoning. We gathered evidence of the pres-
ence of covariational reasoning rather than distinguishing between different levels
of covariational reasoning. As a litmus test for covariational reasoning, we identi-
fied the level that Thompson and Carlson (2017) termed gross coordination, in
which students conceive of a relationship as a loose joining of two attributes. To
illustrate, to claim a student engaged in covariational reasoning in the Toy Car situ-
ation, we drew on two pieces of evidence. First, the student conceived of both dis-
tance attributes as capable of varying and possible to measure; for example, the
student could separate a distance attribute from the situation itself (possible to mea-
sure) and show or explain how that distance could vary beyond just describing lit-
eral motion of an object (capable of varying). Second, the student conceived of a
loose joining of those distances, for example, by showing or explaining how those
different distances could vary together (e.g., one distance increased and decreased
while the other distance continued to increase).

Transfer of covariational reasoning Our analysis focused on students’ discern-
ment of difference and sameness, and students’ evidence of engagement in transfer,
from an AOT perspective. Drawing on Marton’s theory, we analyzed students’ dis-
cernment when they encountered what we intended to be instances of contrast and
generalization. For example, we examined how students discerned attributes repre-
sented on each graph axis (a necessary aspect) or the differences in literal motion
between the Cannon Man and the Toy Car (an optional aspect). We specified the
four criteria put forth by Lobato (2008) for our task sequence. First, students dem-
onstrated a change in reasoning from the Ferris Wheel task sequence (first inter-
view) to the Toy Car task sequence (third interview). Second, in the Ferris Wheel
task sequence, students demonstrated limited evidence of covariational reasoning.
Third, students’ reasoning during the Cannon Man task sequence (second inter-
view) influenced their reasoning during the Toy Car task sequence (third interview).
Fourth, students’ change in reasoning resulted from their work on interview tasks,
and it was not just a spontaneous occurrence.
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3.4.3 Empirical Evidence: Aisha’s Engagement
with the Task Sequences

Aisha attended a high-performing suburban high school in the metropolitan area of
alarge U.S. city, with just over half of the student population identifying as students
of color. Aisha was near the end of ninth grade (about 15 years old) and enrolled in
an Algebra I course, which was typical for students in a general college-preparatory
track at her school. Aisha’s interviews spanned a 2-week time frame, with at least
1 day between; interviews occurred during the school day when she had a free
period. She engaged with one task sequence in each interview: Ferris Wheel,
Cannon Man, and Toy Car, in that order, working on a tablet (an iPad), with paper
and pencil available.

We begin with transcripts and description from each of the task sequences, across
the three interviews, followed by our analysis within and across tasks. Figure 3.5
shows some of the graphs that Aisha drew during the interviews. Aisha’s Ferris
Wheel graph is shown in Fig. 3.5 (left). The Cannon Man and Toy Car graphs,
shown in Fig. 3.5 (middle, right), are the second Cartesian graphs that Aisha drew
in the task sequence (graphs that we intended to provide contrast per Marton’s varia-
tion theory).

Ferris Wheel Aisha sketched a graph relating a Ferris wheel cart’s height from the
ground and total distance traveled around one revolution of the Ferris wheel. While
sketching, Aisha explained why she drew the graph in the manner that she did.

Aisha: 1 feel like the height would be more like the line [sketches a line; Fig. 3.5,
left]. Distance would be more like the rise and run of the situation [sketches small
segments; Fig. 3.5, left]. Cause you’re using the rise and run to find the line, and you
need to use the distance to find the height.

Cannon Man Aisha sketched a graph relating Cannon Man’s height from the
ground and total distance traveled, with the height represented on the horizontal axis

-

=
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distance

height
e g i

Fig. 3.5 Aisha’s Ferris Wheel, Cannon Man, and Toy Car graphs, respectively
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and the distance on the vertical axis. Next, Johnson asked Aisha to explain how the
graph showed both Cannon Man’s height and distance.

Johnson: Can you show me how you see the height increasing and decreas-
ing in this purple graph? [Points to the curved graph Aisha drew; Fig. 3.5, middle]
Aisha: It’s [the height’s] increasing here, since it’s [the graph’s] backwards in my
opinion [Sketches green dots, beginning on bottom left near the vertical axis, then
moving outward; Fig. 3.5, middle]. Decreasing here [Continues to sketch green dots
until getting close to the vertical axis, adding arrows after sketching dots; Fig. 3.5,
middle].

Johnson: How is the distance changing?

Aisha: [Turns iPad so that the vertical axis is horizontal. Draws arrow parallel to
vertical axis; Fig. 3.5, middle.] That way. Continues to get bigger.

Toy Car Before sketching the graph shown in Fig. 3.5 (right), Aisha spontaneously
stated that the Toy Car’s distance traveled was the “same as the Cannon Man.”
Following up, Johnson asked Aisha to explain how those different distances could
possibly be the same.

Johnson: So, you said the total distance traveled is like the Cannon Man.
Why is that like the Cannon Man again? Cause Cannon Man goes up and down, and
this one moves around. How are those things the same?

Aisha: Just because Cannon Man is coming back down, doesn’t mean his distance
is going down. His distance is still rising.

To explore change in the Toy Car’s total distance traveled and the Toy Car’s dis-
tance from the shrub, Aisha manipulated dynamic segments located on the vertical
and horizontal axes, respectively. For the total distance, Aisha began at the origin,
continually moving the segment up along the vertical axis. She explained: “I moved
it up. It continuously went up, because the distance doesn’t decrease. The total dis-
tance traveled doesn’t decrease.” For the distance from the shrub, Aisha began to the
right of the origin, initially moving the segment to the left, and then to the right,
along the vertical axis. She explained:

I moved it [the segment] to the left, because it [the Toy Car] was getting closer to the shrub.
Then, when it [the Toy Car] started to turn, I started to move it [the segment] back up to the
right, because it [the Toy Car] was getting closer to the shrub.

Next, Aisha sketched the graph shown in Fig. 3.5 (right). After viewing the
computer-generated graph, Aisha stated what she thought the curved graph repre-
sented. Aisha stated: “This [moving her finger from left to right along the horizontal
axis] is tracking the distance from the shrub, and this [moving her finger along the
curved graph, beginning near the horizontal axis] is also tracking the distance.”
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3.4.4 Analysis: Aisha’s Reasoning Within and Across Tasks

Within tasks: The Ferris Wheel task sequence Before sketching a graph, Johnson
asked Aisha to explain how she might use a string to measure the Ferris wheel cart’s
height from the ground and total distance traveled. Appealing to a nonstandard unit,
such as a string, was a typical move by Johnson to encourage students to do some-
thing other than try to find an answer. For the height, Aisha told Johnson that she
would tie the string to the Ferris wheel cart, then drop it down to the ground. For the
distance, Aisha said that she would start at the base of the Ferris wheel and then just
“go around,” moving her finger counterclockwise around the wheel until she ended
up back at the base. Aisha’s actions demonstrated that she could conceive of the
height and distance as attributes possible to measure, or as quantities, per
Thompson’s theory.

When sketching a graph, Aisha treated height and distance as inputs and outputs,
explaining how one might use a formula or rule to determine one amount (height)
given another amount (distance). Aisha included both height and distance in a single
graph and labeled the axes, but the height and distance were juxtaposed as individ-
ual parts of a line graph. A loose joining of attributes would give evidence of covari-
ational reasoning at the gross coordination level. However, Aisha had yet to
demonstrate if she could conceive of a relationship between different values of the
attributes (e.g., when the cart is this far off the ground, the cart would have traveled
this much distance) or even of those attributes as varying together (e.g., the cart’s
height increased and decreased while the cart’s distance traveled continued to
increase). Per Thompson’s theory, Aisha demonstrated limited evidence of the
object of transfer (covariational reasoning). Hence, per Lobato’s (2008) criteria, if
Aisha were to demonstrate covariational reasoning during a subsequent task
sequence, an argument for transfer could be built.

Within tasks: The Cannon Man task sequence The interview began with
Johnson telling Aisha to view the video animation, then explain what she thought
she might be able to measure in the situation. With this question, Johnson intended
to investigate what attributes students might discern on their own. Aisha came up
with two attributes: the distance from when the parachute deploys and how high
Cannon Man gets in the air, both of which she interpreted in relationship to the
ground. To encourage Aisha to talk more about how she might measure the attri-
butes, Johnson asked Aisha how the height was changing. Aisha said that she could
measure Cannon Man’s height using feet, and there would be more feet when
Cannon Man was higher in the air. If a student did not spontaneously identify one
of the intended attributes, Johnson would introduce that attribute; here, it was total
distance traveled. Aisha said that she thought of it the same way as the height—the
further Cannon Man is in the air, the more feet he would have. Johnson then sug-
gested that Aisha think of the total distance as a round trip. With such a move,
Johnson intended to give students opportunities to extend beyond their initial
impressions of attributes. Aisha responded by explaining that the distance would
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keep getting bigger and that you could find it by doubling the distance from the
ground to Cannon Man’s highest point (which she called the “vertex”). Again, in
this task sequence, Aisha provided evidence that she conceived of the different attri-
butes as possible to measure (quantities, per Thompson’s theory).

Unlike in the Ferris Wheel task sequence, Aisha demonstrated evidence of
covariational reasoning in the Cannon Man task sequence. This happened when
Aisha sketched the second graph (Fig. 3.5, middle). When annotating the graph that
she drew in the Cannon Man task sequence (Fig. 3.5, middle), Aisha explained how
she showed the height to be both increasing and decreasing as well as the distance
to be increasing. Taken together with earlier evidence of her conceptions of the
attributes as being possible to measure, Aisha’s loose joining of the varying attri-
butes demonstrates evidence of her covariational reasoning at the gross coordina-
tion level, per Thompson’s theory. Building our case for Aisha’s transfer, per
Lobato’s (2008) criteria, Aisha demonstrated a change in reasoning from the Ferris
Wheel to the Cannon Man.

Aisha’s engagement in covariational reasoning occurred not with her first graph
but with her second. Per Marton’s variation theory, we designed the second graph as
contrast so that students could have an opportunity to discern the Cartesian plane
itself as being separate from the particular graph being sketched. Aisha discerned
the representation of the total distance traveled on a Cartesian plane in the second
graph, stating: “I imagine the distance on the ground, which I can’t do.” In sketching
her second graph (Fig. 3.5, middle), Aisha demonstrated that she discerned neces-
sary aspects of Cartesian graphs (that axes represent measurable attributes) from
optional aspects (that the location of an attribute on a graph axis matches the literal
orientation of the attribute in a situation). By designing task sequences to promote
students’ discernment of difference in the Cartesian plane, we aimed to engineer
opportunities for students to engage in covariational reasoning, and Aisha’s actions
pointed to the viability of this design move.

Within tasks: The Toy Car task sequence As did the Cannon Man interview, the
Toy Car interview began with Aisha identifying “the distance the car drove” as an
attribute. Aisha was not sure how she might measure it, so Johnson asked her to
sketch the path that she saw the car taking. As in the Cannon Man interview, Johnson
asked Aisha how the attribute was changing. Aisha said that it would keep increas-
ing, if one were thinking about the distance the car was going, and not from the start
to the end because the car’s ending point is close to the starting point. Next, Johnson
introduced the attribute of the distance from the shrub and asked Aisha how she saw
that attribute changing, to which Aisha responded that the car went “closer to” and
then “further from” the shrub, moving her finger along the path of the car. To inves-
tigate how Aisha might separate the attribute of the distance from the shrub from the
literal motion of the car, Johnson asked Aisha to draw where she saw the distance.
Aisha sketched dotted lines from the car’s starting point to the shrub and from the
car’s ending point to the shrub. At this point, Aisha had not seen the dotted line
image shown in Fig. 3.4; she had only seen the video animation of the moving car,
which had no annotations for distance. As she did in the Cannon Man task sequence,
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Aisha provided evidence that she conceived of the different attributes as possible to
measure (quantities, per Thompson’s theory).

Aisha demonstrated covariational reasoning during the Toy Car task sequence
but, as had happened in the Cannon Man task sequence, it was not until she sketched
the second graph. When sketching that graph (Fig. 3.5, right), Aisha accounted for
both the increase in the total distance and the increase and decrease in the distance
from the shrub. As with Cannon Man, Aisha identified the segment along the verti-
cal axis as tracking the total distance traveled, which continually increased, and the
trace in the plane as tracking the attribute that both increased and decreased. She
found the vertical dynamic segment (Fig. 3.5, right) to be necessary to “show’ the
total distance traveled. Hence, her representation of the joined attributes entailed
two connected inscriptions, the dynamic segment and the trace. Building our case
for transfer, per Lobato’s (2008) criteria, Aisha’s reasoning on the Cannon Man task
influenced her reasoning on the Toy Car task. In both tasks, she conceived of the
total distance traveled to be continually increasing, and she represented that increase
by sketching a segment along the vertical axis, beginning at the origin, and extend-
ing upward.

Across tasks: From the Cannon Man to the Toy Car We draw further evidence
of transfer from Aisha’s spontaneous utterance of a sameness that she identified
across the Toy Car and Cannon Man task sequences. When working on the Toy Car
task, without prompting, Aisha spontaneously stated that she thought an attribute—
total distance—was “the same” in both the Toy Car and the Cannon Man tasks. We
contend that Aisha’s discernment of differences across the task situations contrib-
uted to her spontaneous identification of this sameness. Per Marton’s theory, we
incorporated contrast across the Toy Car and Cannon Man task situations, with dif-
ference in the literal motion of each object (Cannon Man moved up and down,
whereas the Toy Car moved in a curved path). We did not assume that our design
alone would be sufficient to ensure students’ discernment; we provided conditions
under which discernment might occur. Aisha evidenced such discernment as she
separated the direction of the literal motion of each object from the variation in an
attribute (total distance) in each situation. For example, Aisha moved the dynamic
segment representing the Toy Car’s total distance traveled to show that the distance
continued to increase, despite the Toy Car moving along a curved path. Consistent
with our intent, Aisha distinguished necessary attributes (e.g., continual increase in
total distance traveled) from optional aspects (the literal motion of the objects).
Drawing on the corpus of evidence, we claim that Aisha transferred her covaria-
tional reasoning from the Cannon Man task sequence to the Toy Car task sequence,
and her discernment of differences in the literal motion of each object played a role
in that transfer.
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3.5 Discussion

3.5.1 What Is Possible to Transfer?

With the opening possibilities approach, we aim to expand objects of transfer study.
In Lobato’s investigation of transfer from an AOT perspective, the focus was on
students’ transfer of mathematical concepts, such as slope (e.g., Lobato, 2003,
2008, 2012). We demonstrate how the object of transfer can be a form of mathemati-
cal reasoning, which can transcend different mathematical concepts. In our applica-
tion of this approach to students’ covariational reasoning, we leave open possibilities
for concepts that researchers may address. For example, researchers may engender
students’ covariational reasoning to develop students’ understanding of function
writ large or even inverse function more specifically. In our approach, we center
students’ mathematical reasoning as something that is more than just a process
whose value rests in its service to students’ development of understanding of math-
ematical concepts. As a result, we expand what can count as mathematics and, in
turn, what can be transferred.

3.5.2 Integrating Theories to Open Possibilities: Reasoning,
Discernment, and Transfer

We open possibilities for investigating students’ covariational reasoning when inter-
preting and sketching Cartesian graphs, which are ubiquitous in students’ math
courses. To address both students’ covariational reasoning and their conceptions of
graphs, we have drawn on theories that explain students’ reasoning (Thompson’s
theory) and discernment (Marton’s theory). Researchers have found that Cartesian
graphs may mitigate opportunities for covariational reasoning; university students
and prospective teachers may not demonstrate covariational reasoning when sketch-
ing graphs despite evidence suggesting their engagement in covariational reasoning
in situations not involving graphs (Carlson et al., 2002; Moore et al., 2019). One
response to such findings can be to question the potential for researchers and teach-
ers to leverage Cartesian graphs to engender students’ covariational reasoning. We
take a different stance, provided that students also have opportunities to conceive of
graphs as representing relationships between quantities. Integrating theories has
afforded our creation of such opportunities, with Marton’s variation theory being
instrumental in this work. By incorporating contrast and generalization in our task
sequences, we have made efforts to problematize aspects of Cartesian graphs as
dimensions of variation, and empirical evidence points to the viability of such design.

Our empirical work has focused on secondary students’ covariational reasoning,
but this design can be applicable to university students or even younger students. By
engineering opportunities for students’ reasoning in a familiar setting (a Cartesian
graph) without specifying a particular mathematical concept, we create room for
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students to engage in reasoning that may be different from what they have done in
previous math courses or in their work with graphs. Furthermore, we connect graphs
to situations, such as the Toy Car, so that students can have opportunities to con-
ceive of graphs as representing measurable attributes of events that could occur in
the world. Too often, students experience mathematics as a game with rules deter-
mined by people in authority (Gutiérrez, 2013) rather than as an opportunity to
engage in reasoning and thinking to quantify their world in ways that make sense to
them. If students expect that we intend for them to arrive at particular answers or
demonstrate their knowledge of certain procedures (even if that was not our intent),
the reasoning students demonstrate can be quite different from the reasoning we
intend to promote, even if students are capable of demonstrating the intended rea-
soning. We view our focus on covariational reasoning and Cartesian graphs as one
of many avenues for the opening possibilities approach. In future studies, research-
ers may investigate different forms of reasoning in other situations, such as geomet-
ric reasoning in dynamic geometry platforms.

Integrating theories has afforded our articulation of a role of difference, as well
as sameness, in investigating students’ transfer of mathematical reasoning from an
AOT perspective. Again, Marton’s variation theory has been crucial in this work.
Designing for contrast and generalization has opened possibilities for us to scour
the data for differences and similarities that students construe between situations as
well as for students to distinguish between necessary and optional aspects of the
situations. In Aisha’s case, we opened opportunities for her to discern physical char-
acteristics of the situation as optional and measurable attributes as necessary (e.g.,
the total distance of both Cannon Man and Toy Car continuing to increase despite
differences in their literal motion), and this discernment played a role in her transfer
of covariational reasoning. The objects of students’ covariational reasoning are
more than observable things students might notice (e.g., the literal movement of a
toy car); they are measurable attributes of situations (e.g., a toy car’s distance from
a stationary object). However, it can be difficult for students to even conceive of
situations as having measurable attributes. When integrating theories, we layer dif-
ferent explanations to guide our larger aim. Thompson’s theory explains a form of
students’ reasoning to promote; Marton’s theory provides guidance for design
choices to engineer opportunities for students to discern measurable attributes of the
situations to foster students’ engagement in the intended reasoning. In future stud-
ies, researchers can investigate how designing for contrast and generalization, to
promote discernment of difference, may afford students’ transfer of other forms of
reasoning.

3.5.3 Expanding Design Possibilities for Transfer Studies

Through the opening possibilities approach, we work to expand design possibilities
for investigating students’ transfer to extend beyond pre-post designs. Lobato
(2008) has distinguished between tasks implemented during a design experiment



3 Opening Possibilities: An Approach for Investigating Students’ Transfer... 77

study and tasks implemented in pre- or post-interviews. To provide evidence of
transfer from an AOT perspective, researchers demonstrate that students’ concep-
tions changed from tasks in a pre-interview to tasks in a post-interview and that
students’ work during the design experiment tasks has influenced their changed
conceptions. Rather than separating design-experiment tasks from post-interview
tasks, we illustrate how a student can transfer mathematical reasoning from one
design experiment task to another, similar to how Marton (2006) described the pos-
sibility for students to transfer their discernment of tone from sound when hearing
Cantonese words in succession.

We concur with Cobb’s (2007) appeal for theory expansion rather than replace-
ment. With the design expansion we propose, we intend to open new possibilities
for investigations from an AOT perspective, in particular, by foregrounding roles of
difference and similarity. Across the Cannon Man and Toy Car task sequences, we
have designed for contrast and generalization and subsequently have analyzed for
both difference and similarity. Integrating Marton’s variation theory with an AOT
perspective has afforded us this possibility. In turn, we have then been able to ana-
lyze for students’ transfer of reasoning within the design experiment tasks them-
selves rather than examining students’ reasoning on a separate set of transfer tasks,
as was done in an earlier study (Johnson, McClintock, & Hornbein, 2017).

3.6 Conclusion

With theory integration comes responsibility, including the consideration of the
epistemological roots of different theories (Bikner-Ahsbahs & Prediger, 2010).
Such responsibility is both a limitation and an affordance of the approach, because
each theory needs to be weighed in light of the other(s). Integrating theories is a
purposeful choice so that researchers can explain phenomena that extend beyond
the bounds of a single theory. We have integrated theories specific to reasoning and
transfer (Thompson’s and Lobato’s theories, respectively) with a theory that
addresses discernment of different content and extends beyond transfer (Marton’s
theory). The grain size (Watson, 2016) of the theories differ, with two being more
domain specific and one being broader. However, we have not imposed a hierarchy
of theories onto our analysis; instead, we have layered analytic techniques from
each theory. To guide our choices, we have drawn on scholars’ assumptions of dis-
tinctions between researchers’ and students’ perspectives and have articulated how
those assumptions have influenced our work.

With opening possibilities, we offer an approach to navigate complexities in
researchers’ investigations of students’ transfer of mathematical reasoning.
Although our focus is on transfer, we can conceive of the guiding questions as appli-
cable to the broader work of research. Researchers can examine what counts as their
object of investigation, how they may engender the study of that object, and what
may constitute evidence of the objects of study. Assuming that theory and method
mutually inform each other, our approach affords the integration of different
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theories to embrace, rather than reduce, complexities. Through this approach, we
expand design possibilities for investigating students’ transfer, acknowledging a
symbiotic relationship between the theories that we integrate and the contributions
that those theories and methods make possible.
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Chapter 4
A Case for Theory Development About
Backward Transfer

Check for
updates

Charles Hohensee

The body of mathematics education research that has examined transfer of learning
from a constructivist complex-systems view of knowledge development suffers from
what I perceive as a research imbalance. A complex-systems view, as defined by
Smith, diSessa, and Roschelle (1993), is the view that knowledge is composed of
“numerous elements and complex substructure that may gradually change, in bits
and pieces and in different ways” (p. 148). Incidentally, this view emerged in reac-
tion to the more widely held view that knowledge is composed of “separable inde-
pendent units” (Smith et al., 1993, p. 125). The research imbalance to which I refer
is that most transfer of learning research that assumes a complex-systems view has
focused on how prior knowledge within the system is applied to new contexts (e.g.,
Wagner, 2010) or how it influences new learning (e.g., Bransford & Schwartz,
1999), without equal research attention being given to the transfer of learning in the
other direction, namely in the direction of how new learning influences prior knowl-
edge. The former is often referred to as forward transfer (Gentner, Loewenstein, &
Thompson, 2004), and the latter I refer to as backward transfer (Hohensee, 2014).
The research imbalance in favor of forward transfer is inconsistent with a complex-
systems view of knowledge development because complex systems have multidi-
rectional interrelationships.

This imbalance within transfer of learning research could be having undesirable
consequences for the field of mathematics education. For instance, without transfer
of learning research in both directions (i.e., forward and backward), the field of
mathematics education will, at best, develop only partial understandings of how
learning transfers within a complex system of knowledge. Second, because of the
imbalance, there may exist untapped pathways to improving mathematics learning
that will not be explored.
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An important step in establishing greater balance would be for researchers to
engage in theory development about backward transfer in mathematics education.
Theory development about backward transfer in mathematics education would help
to legitimize and raise awareness of transfer of learning in the less-studied back-
ward direction. A developed theory about backward transfer could also unify, under
a common theory, the limited number of studies that, to date, have reported effects
that resemble backward transfer but that have not yet been labeled as such.! Unifying
these studies under a common theory of backward transfer would also help to estab-
lish a critical mass of findings about backward transfer and generate momentum for
more research in this area. Finally, theory about backward transfer would allow for
comparisons between transfer of learning in the two directions and could eventually
lead to a unified theory that explains transfer in both directions.

In this chapter, I make a case, within the field of mathematics education, for the
need for theory development about backward transfer. I begin by presenting my
conceptualization of backward transfer. Then, I outline several reasons for theory
development in educational research more broadly, and why these reasons are appli-
cable to backward transfer in mathematics education. Next, I explain the process I
went through to search the literature for prior research on backward transfer and
provide an overview of prior research and the state of theory development about
backward transfer in mathematics education and related fields. Finally, I present
several aspects of theory development for backward transfer in mathematics educa-
tion that I view as most pressing.

4.1 Conceptualization of Backward Transfer

Backward transfer, as I conceive it, is an extension of Lobato’s (2008) definition of
transfer, which is that transfer is “the influence of a learner’s prior activities on his
or her activity in novel situations” (p. 169) and “the processes by which people
generalize their learning experiences, regardless of whether the personal relations of
similarity that people form across situations lead to correct performance” (p. 168).
Note that within Lobato’s definition, the influence is in the forward direction from a
learner’s prior activities fo a learner’s activities in novel situations. I extended this
definition in the other direction to include influences that activities in a new or novel
situation might have on learners’ prior activities regardless of whether the influ-
ences lead to correct performance. The specific definition I use for backward trans-
fer is the following: Backward transfer is the influence that learning experiences
about a new topic have on learners’ prior ways of reasoning about an initial topic
(Hohensee, 2014).

'Note that in addition to the limited number of studies, as described in this chapter, that report
backward transfer effects, there is a sizeable body of language-learning research on backward
transfer that will not be considered because those studies focus on production and comprehension
of language rather than on cognition.
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My conceptualization of backward transfer is grounded in a complex-systems
view of knowledge development. According to this view, “Learning a domain of
elementary mathematics or science may entail changes of massive scope. New ele-
ments may gradually come to play central roles as core knowledge, creating very
large ripple effects through the system” (Smith et al., 1993, p. 148). It is the ripple
effects through the complex knowledge system during learning something new that
I think of as potential backward transfer effects.

Note that in my definition of backward transfer, I referred to ways of reasoning
rather than to underlying mental structures, such as conceptions, knowledge,
schemes, and so on. At this early stage of theory development, claiming that learn-
ers’ conceptions, knowledge, or schemes are being influenced during backward
transfer seemed overly strong. My rationale for using ways of reasoning was
because it seemed more conservative to claim that ways of reasoning are being
influenced during backward transfer. Gravemeijer (2004) and McClain, Cobb, and
Gravemeijer (2000) used ways of reasoning to refer to “mathematical activities that
students engage in while solving, explaining, justifying, identifying, and so on”
(Hohensee, 2014). It is these activities, rather than the underlying mental structures,
that I focus my attention on when studying backward transfer.

To illustrate backward transfer, consider Alan, a 10th-grade student who partici-
pated in a 12-lesson instructional unit on quadratic functions in his regular algebra
class (Hohensee, Willoughby, & Gartland, 2020). Before and after the unit, my
research team and I gave Alan several problems about linear functions to examine if
and how his prior ways of reasoning about linear functions had been influenced by
his new learning experiences with quadratic functions. One of the problems we gave
Alan before the unit on quadratic functions involved a picture of a plant as it grew
at a steady rate over 4 days. Alan was asked to find the height on Day 17 (see
Fig. 4.1).

To solve this problem, Alan created a table for days and heights and continued
the pattern until he arrived at Day 17 and the correct height.

After the quadratic function unit (i.e., approximately 4 weeks later), we gave
Alan a similar problem. The problem involved four snapshots of a container as it
filled with rainwater at a constant rate over 4 hours. Alan was asked to find the
height of the water after 11 hours (see Fig. 4.2).

To solve this problem, Alan did not create a table, but instead divided each height
in the picture by the associated number of hours. Because each quotient was approx-
imately 3, Alan decided to multiply Hour 11 by 3 to find the height, but this was an
incorrect answer. Clearly, Alan’s reasoning had changed. It was our hypothesis that
Alan’s prior ways of reasoning about the first problem were influenced by his par-
ticipation in the new learning experiences about quadratic functions. In other words,
we hypothesized that this was an instance of backward transfer.

Throughout the remainder of this chapter, I present a case for why more theory
development about backward transfer is warranted. As part of making this case, I
summarize published studies that have reported what I categorize under the umbrella
of backward transfer effects. Although these studies are limited in number, they
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Fig. 4.2 Alan’s response to the rainwater problem after the quadratic function unit
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potentially represent the tip of the iceberg in terms of new insights that research on
backward transfer could generate about how students learn mathematics.

4.2 Reasons for Theory Development in Educational
Research Applied to Research on Backward Transfer

As stated above, theory about backward transfer would legitimize and raise aware-
ness of backward transfer, unify the limited studies on cognition that have reported
effects resembling backward transfer, and allow for comparisons between forward
and backward transfer. In addition to these reasons for theory development, diSessa
(1991) provided five further reasons for more theory development in educational
research, which also apply to research on backward transfer.

First, more theory development is needed in educational research because theo-
ries take time to develop, on the scale of decades or generations (diSessa, 1991).
This is an important consideration for theory about backward transfer because back-
ward transfer has only recently been introduced to the field of mathematics educa-
tion (i.e., Hohensee, 2014). And, even if theory about backward transfer had been in
active development right from its introduction to this field, the time for theory
development would still be far shorter than the decades or generations recom-
mended by diSessa (1991). As a comparison, forward transfer theory development
has been ongoing at least since the time of Thorndike (circa 1920), and much more
developed theory about forward transfer exists (e.g., Beach’s theory of consequen-
tial transitions, 1999; Bransford & Schwartz’s theory of preparation for future
learning, 1999; Engle’s theory of transfer as framing, 2006; Greeno, Moore, &
Smith’s theory of transfer of situated learning, 1993; Lobato’s theory of actor-
oriented transfer, 2012; and Wagner’s theory of transfer in pieces, 2010).

Second, more theory development is needed because theory is a richly intercon-
nected collection of ideas (diSessa, 1991). With respect to backward transfer, only a
few of the connections of ideas have been explored thus far and many other poten-
tial connections have yet to be examined. For example, in mathematics education to
date, only one underlying mechanism has connected backward to forward transfer,
namely the process of student noticing (Hohensee, 2016; Lobato, Rhodehamel, &
Hohensee, 2012). The kinds of connections of ideas about backward transfer that
require exploration and development will be provided later in this chapter.

Third, theory development is needed because generalities are not stumbled upon
but emerge through theory development (diSessa, 1991). Results from my literature
review of mathematics and science education research support this point by reveal-
ing that few mathematics and science education studies have stumbled upon back-
ward transfer effects. Rare exceptions include Arzi, Ben-Zvi, and Ganiel (1985),
Macgregor and Stacey (1997), Rebello et al. (2005), and Van Dooren, De Bock,
Hessels, Janssens, and Verschaffel (2004). This underrepresentation of backward
transfer effects in the literature is likely, at least partially, due to the lack of exposure
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of backward transfer in the field. However, this underrepresentation also suggests
that backward transfer may be difficult to detect. This is akin to the difficult-to-
detect sub-atomic neutrinos that diSessa (1991) argued required theory before
detection was possible. Thus, theory development of backward transfer could
inform the design of more sensitive and precise measures of backward transfer
effects.

Fourth, theory is needed for there to be data (diSessa, 1991). This reason is
highly relevant to theory development about backward transfer. Because backward
transfer theory is still in its infancy, backward transfer researchers are currently
limited in the kinds and quality of data about backward transfer that can currently
be collected and analyzed. DiSessa (1991) stated that without theory, the “whole
rationale for the experiment and set of observations would not exist, nor would the
fabric of reasoning that makes the observations informative” (p. 225) and that “we
can sometimes judge the quality of theory by the quality of its data” (p. 226). By
developing theory, the kinds of backward transfer data researchers would be able to
collect would expand and the quality of that data would improve.

Fifth, theory development is needed because respectable theory transcends com-
mon sense (diSessa, 1991). Views about backward transfer that are based on com-
mon sense might create a misleading picture of what backward transfer is and cast
doubt on whether backward transfer research is a worthwhile pursuit. For example,
diSessa pointed out that common sense could lead someone to doubt the existence
of Newtonian forces. Similarly, I have encountered a number of common-sense
views that reflect doubts about the existence of backward transfer. One common-
sense idea expressed to me was that what I interpret as backward transfer can be
explained away as nothing more than students being swayed by what they have been
studying most recently. Another common-sense notion I have encountered is that
backward transfer only happens because students failed to establish the required
clear understanding of a concept when they had the opportunity to do so. A third
common-sense explanation I have encountered is that what I call backward transfer
is nothing more than students continuing to develop their prior knowledge. Without
theory development, common-sense explanations of backward transfer may too
conveniently be used to explain away or cast doubt on what is actually occurring
and perpetuate the imbalance in mathematics and science education research
described above.

4.3 Literature Search for Research on Backward Transfer

My literature search for prior research on backward transfer began over 10 years
ago in 2009. Since then I have, on an ongoing basis, scoured mathematics education
research in particular, and education research in general, as well as cognitive sci-
ence and psychology research, for articles on backward transfer and related con-
structs. I have searched using numerous keywords, including the following:
backward transfer, backward learning, backward knowledge, reverse learning,
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reverse transfer, reverse knowledge, inverted learning, inverted transfer, inverted
knowledge, retrospective transfer, retrospective learning, two-way learning, and
two-way transfer. In addition to my own literature search, I have consulted numer-
ous social-science researchers for suggestions about potential sources of research
on backward transfer.

This decade-long search has revealed four terms that have been used to represent
what I define as backward transfer. By far the most commonly used term is back-
ward transfer. However, this term is primarily found in linguistics research (e.g.,
Cook, 2003), and no uses of this term were found in mathematics education research
except those that I published or that have drawn upon my work (e.g., Moore, 2012;
Young, 2015). I additionally identified the use of three other terms that align with
what I define as backward transfer, namely transfer backward (Gentner et al., 2004),
retrospective transfer (Marton, 2006), and met-afters (Lima & Tall, 2008), all of
which will be explained later in this chapter.

4.4 Overview of Research and the Current State of Theory
About Backward Transfer

Prior research and the current state of theory about backward transfer comes from a
limited number of studies on cognition. Of the research that has reported on back-
ward transfer effects explicitly, or that I interpreted as backward transfer effects but
that were referred to with other labels, three categories of theories exist: (a) theories
that explain unproductive backward transfer effects in terms of interference and
overgeneralization, (b) theories that explain productive backward transfer effects in
terms of specific changes to cognitive structures, and (c) theories that explain both
productive and unproductive backward transfer effects in terms of attention and
noticing. I define productive backward transfer effects as when new learning
enhances, clarifies, or deepens prior ways of reasoning and unproductive effects as
when new learning muddles, distorts, or disrupts aspects of prior ways of reasoning.
Next, I present the mathematics and science education studies that have reported
backward transfer effects and I critique the theories that were used to explain those
effects.

4.4.1 Theories That Explain Unproductive Backward
Transfer Effects

During my literature search for studies on backward transfer effects, I identified
three studies that reported what I would interpret as unproductive backward transfer
effects: Macgregor and Stacey (1997) examined students’ understandings of alge-
bra symbols, Van Dooren et al. (2004) focused on student learning of proportional
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and non-proportional relationships, and Lima and Tall (2008) investigated students’
problem-solving strategies for linear and quadratic equations.?

Macgregor and Stacey’s (1997) study on students’ understandings of algebra
symbols. The topic of study in Macgregor and Stacey (1997) was how students
interpret and use algebra symbols. The research goal was to explain the roots of
students’ misinterpretations of algebra letters and unclosed algebra expressions.
Previously, Hart (1981) had shown that students’ progress in algebra (or lack
thereof) could be only partially explained with IQ and cognitive-development lev-
els. Macgregor and Stacey conducted their study to identify additional factors that
help explain students’ misinterpretations of algebra symbols.

For their study, Macgregor and Stacey (1997) gave a paper-and-pencil pre-
assessment about interpretations of algebra letters to 11- and 12-year-olds, who had
not yet received any algebra instruction (n = 42), and gave several items from the
same assessment to 11- to 15-year-olds, who had already received some algebra
instruction (n; = 1463 for one item and n, = 1806 for another item).

One of the results from the study was that the students who had some algebra
instruction sometimes made errors that students who had not had any algebra
instruction yet did not make. For example, a greater percentage of students who had
received some algebra instruction, thought that when x is not specified, then it
means x = | (e.g., concluding that 10 + x = 11). In another example, a greater per-
centage of students who received some algebra instruction, compared to those who
had not yet received any algebra instruction, thought that an equilateral triangle with
side length x had a perimeter of x* rather than 3x. I interpreted this finding as a case
of unproductive backward transfer because students’ prior ways of reasoning about
algebra notation had changed for the worse and because it appeared the new algebra
learning had in some way influenced that change in their prior ways of reasoning.

Macgregor and Stacy’s (1997) explanation for why students who had received
some algebra instruction made errors in greater percentages was because there was
“interference [emphasis added] from new learning” (p. 17). Specifically, they attrib-
uted the students’ misconceptions to an interference effect from instruction about
variables with exponents, such as learning that x! = x and that x° = 1.

I did not find the explanation of interference compelling because this explanation
implies that our conceptions compete with each other. Furthermore, this explanation
is consistent with a replacement view of knowledge refinement, namely that learn-
ing involves replacing the interfering conceptions with the correct conceptions
(Posner, Strike, Hewson, & Gertzog, 1982). However, this explanation goes against
the constructivist complex-systems view, espoused by Smith et al. (1993), that
learning involves refining and integrating conceptions rather than replacing wrong
conceptions that interfere with correct ones.

2 Although Rebello et al. (2005) also involved negative backward transfer, I did not describe it in
this chapter because it focused on backward transfer that occurs within very short time frames (i.e.,
how doing one problem on an assessment influences doing another problem on the same
assessment).
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Van Dooren et al.’s (2004) study on student learning of proportional and non-
proportional reasoning. The topic of study in Van Dooren et al. (2004) was how
students reason about proportional and non-proportional relationships. The research
goal was to develop and test experimental lessons that disrupt students’ inclination
to reason proportionally in non-proportional contexts, such as in the context of
using length measures to find areas of two-dimensional shapes and volumes of
three-dimensional shapes. This study examined eighth graders from two intact sec-
ondary classes in Belgium. The experimental-group class (n; = 18) participated in
10 special lessons that addressed students’ overgeneralization of linearity and took
three word-problem tests with proportional and non-proportional items, a pre-test, a
post-test, and a delayed retention test. The control-group class (n, = 17) did not
participate in the 10 special lessons but participated in regular lessons instead and
took only the pre-test and the delayed retention test.

One result from the study was that scores on the proportional items for the exper-
imental group went down from pre-test to post-test from 83.3% to 52.5%. To illus-
trate why experimental-group students’ scores went down, consider the following
statement from an experimental-group student:

Ireally do understand now why the area of a square increases 9 times if the sides are tripled
in length, since the enlargement of the area goes in two dimensions. But suddenly I start to
wonder why this does not hold for the perimeter. The perimeter also increases in two direc-
tions, doesn’t it? (Van Dooren et al., 2004, p. 496)

I interpreted this finding as a case of unproductive backward transfer because the
experimental-group students’ ways of reasoning became less correct on the propor-
tional items and the new learning about non-proportional contexts appeared to have
influenced that change in their ways of reasoning.

Van Dooren et al.’s (2004) explanation for this finding was that the experimental
group “overgeneralized [emphasis added] the newly learnt non-proportional strate-
gies to proportional problems they previously solved very well” (p. 497). This
explanation aligns in one respect with my view of backward transfer because gen-
eralization and transfer are often referred to interchangeably (e.g., Barnett & Ceci,
2002; Lobato, 2012). However, overgeneralization does not seem like a compelling
explanation because it is typically used for transfer in the forward direction (e.g.,
Hiebert & Wearne, 1985; Zaslavsky, 1997). Therefore, using overgeneralization to
explain the Van Dooren et al. findings means hiding the directionality of the gener-
alization (i.e., that new learning generalized back to problems students had previ-
ously solved). Second, as with the explanation of interference, overgeneralization in
the context of this study would mean that the new knowledge replaced prior knowl-
edge. Using overgeneralization to explain the findings means ignoring the possibil-
ity that the new knowledge and prior knowledge interacted in some more complex
way than replacement which, as explained earlier, does not align with a complex-
systems view of knowledge development.

Lima and Tall’s (2008) study on students’ problem-solving strategies for linear
and quadratic equations. The Lima and Tall (2008) study examined students’
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solving methods for linear equations. The research goal of this study was to under-
stand students’ solving difficulties, particularly for linear equations that have vari-
ables on both sides of the equal sign and those that have variables only on one side
of the equal sign. One of the constructs used in this study that aligns with backward
transfer and that was mentioned earlier is called a met-after, which Lima and Tall
(2008) defined as follows: “We use the term ‘met-after’ to denote an experience met
at a later time that affects the memories of previous knowledge” (p. 6). In other
words, this construct describes an influence in the direction from a new experience
to prior knowledge.

The Lima and Tall study tested Brazilian high school students’ ability to solve
three linear equations (N = 68). Results showed that only 37%, 37%, and 10% of
students were successful at correctly solving 5t —3 =8,3x— 1 =3 +x, and 2m =4m,
respectively. Two additional results from the study that pertained to backward trans-
fer were that, after students learned about quadratic functions, (a) one student inap-
propriately applied the quadratic formula to solve 5t — 3 = 8 by assigninga=15,b =
—3, and ¢ = 8 and (b) three other students incorrectly treated 3x — 1 = 3 + x as the
product of two binomials (i.e., they simplified the equation into the expression 9x +
3x? - x—3). Lima and Tall (2008) interpreted these findings as “a negative met-after,
in which current knowledge is misapplied in solving an earlier problem” (p. 13).

I interpreted these two results as instances of unproductive backward transfer
because students’ prior ways of reasoning about solving linear equations appeared
to have been negatively influenced by the instruction they received about quadratic
equations and expressions. Lima and Tall’s (2008) explanation for this finding was
that “the earlier learning is likely to be fragile to be affected in this way” (p. 14) and
that the results reflected “movement of algebraic symbols as a form of functional
embodiment that may be performed without meaning” (p. 15). This explanation
seems compelling but does not explain how backward transfer could affect concep-
tual understanding.

Finally, an additional critique of Macgregor and Stacy’s, Van Dooren et al.’s, and
Lima and Tall’s explanations for their backward transfer results is that those expla-
nations best explain unproductive effects (i.e., when new learning muddles, distorts,
or disrupts productive aspects of prior ways of reasoning) and do not provide a
compelling explanation for backward transfer influences that could be productive
(i.e., when new learning enhances, clarifies, or deepens prior ways of reasoning). It
would be more unifying if theory about effects like those found in these three stud-
ies could account for both unproductive and productive effects.

4.4.2 Theories That Explain Productive Backward
Transfer Effects

During my literature review, I identified three studies that reported what I would
interpret as productive backward transfer effects: Gentner et al. (2004) addressed
learning new negotiation strategies through analogous encoding, Piaget (1968)
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looked at children’s ability to recall visual displays, and Arzi et al. (1985) investi-
gated students’ understanding of physical science concepts. Note that, although all
three studies come from outside mathematics education, they all address some
aspect of cognition.

Gentner et al’s (2004) study on learning through analogous encoding. The
topic of study reported in Gentner et al. (2004) was how analogical encoding facili-
tates the transfer of learning. Analogical encoding is defined as the process of com-
paring two analogous examples to promote schema abstraction over situation-specific
encoding. In other words, comparing two analogous examples was hypothesized to
be a process that helps learners discover a common principle. The research goal of
this study was to test the hypothesis that because analogical encoding results in the
discovery of a common principle that is not tethered to any one situation, the com-
mon principle should subsequently be more readily transferable, forwards and
backwards, to other contexts.

This study was situated in the context of a training seminar for full-time profes-
sional management consultants who were learning about new negotiation strategies.
The participants were divided into an experimental group (n, = 64) and a control
group (n, = 60). The groups were given two negotiation cases that both illustrated a
particular negotiation principle called the contingent contract principle. The experi-
mental group, but not the control group, was asked to look for similarities or paral-
lels between the two cases. Both groups were then asked to recall negotiation cases
from their own experiences that shared similarities with the cases they had been
given. Finally, participants in both groups partnered up with someone from the same
group and role-played the negotiation of a new case for which the contingent con-
tract principle applied.

One of the findings from this study was that, compared to the control group, the
experimental group recalled more negotiation cases from personal experience (or
from a colleague’s experiences) to which the new negotiation strategy applied. I
interpreted this finding as a case of productive backward transfer because the inter-
vention, in which the experimental group examined two cases for similarities,
served as the new learning experience that appeared to influence in a productive way
how that group interpreted prior negotiation experiences, which were the prior ways
of reasoning. Incidentally, Gentner et al. referred to this effect as transfer backward.

Gentner et al. (2004) explained this finding in terms of schema-abstraction.
Specifically, they argued that by comparing two partially understood analogous
examples, the negotiators in the experimental group developed more abstract sche-
mata for a particular concept and that the changes in their schemata facilitated the
reinterpretation of previously encountered, structurally similar experiences. I found
this explanation compelling. However, from a constructivist perspective, I would
reframe schema-abstraction as reflective abstraction, which is “a (more or less con-
scious) cognitive reconstruction or reorganization of what has been transferred” and
which borrows “certain co-ordinations from already constructed structures and to
reorganize them in function of new givens” (Piaget as cited in von Glasersfeld,
1995, p. 104). Thus, my characterization of the findings in terms of reflective
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abstraction is that what the negotiators did was to reorganize their views of negotia-
tions because of new givens encountered during the training seminar.

Piaget’s (1968) study on children’s ability to recall visual displays. The topic of
Piaget’s (1968) study was about how children retain their memories of visual dis-
plays over different intervals of time. The research goal was to examine the hypoth-
esis that the development of children’s operational schemata causes changes in the
encoding of their memories.

In one test, Piaget (1968) showed children, ages 3—0, an arrangement of 10 small
sticks of differing sizes, ranging from 9 to 15 cm, and arranged in a row from small-
est to largest (see Fig. 4.3). The children were asked to look carefully at the arrange-
ment. One week later, they were asked to draw the arrangement without seeing it
again. The youngest children in the sample, the 3- and 4-year-olds, typically drew
“a certain number of sticks lined up, but all the same length” (Piaget, 1968, p. 4).
Six months later, the same children were asked to redraw the arrangement, and
“T4% of the subjects had a better recollection now than they had after one week”
(Piaget, 1968, p. 4). Specifically, those children’s memories appeared to have
improved during the intervening 6 months because their drawings now showed
sticks with organized variations in size, such as half big sticks and half small sticks,
or three ordered sizes of sticks and so on. I interpreted Piaget’s finding as a case of
productive backward transfer because the children’s visual and spatial experiences
during the intervening 6 months between when they drew what they remembered
the first and second time served as the new learning experiences that appeared to
enhance their initial memories of the sizes and arrangement of the sticks, which
served as their prior ways of reasoning.

To explain this finding, Piaget (1968) conceived of children’s initial memories of
the sticks as being the result of them having assimilated the visual presentation of
the sticks with their current operational schemes. However, during the intervening 6
months, the children’s operational schemes developed further. Thus, when they
recalled the sticks, 6 months after having first seen them, their further developed
operational schemes began to assimilate the original memories differently (i.e., bet-
ter recollection of the sizes and organization of the sticks). I found this explanation
compelling and consistent with a complex-systems view of knowledge development.

Arzi et al’s (1985) middle school science learning study. The topic of study
reported in Arzi et al. (1985) was how middle school science learning is affected by
retroactive facilitation, which was defined by Arzi et al. as when “subsequent

Fig. 4.3 Arrangement of
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courses help to consolidate the previously learned subject matter [antecedent learn-
ing]” (p. 371). The research goal was to examine how retroactive facilitation changes
students’ long-term retention of physical sciences learning in real school settings.
The study involved science students who, in the seventh grade, all took a chemistry
course that examined the three states of matter and the differences between mixtures
and compounds (n; = 3167). Subsequently, one subgroup (1, = 59 of 142 classes)
took a follow-up chemistry course on the periodic table in the eighth grade.
Importantly, the subject matter from the seventh-grade chemistry course was not
covered in the eighth-grade chemistry course. The other subgroup (n; = 50 of 142
classes) took a follow-up course on biology and physics in the eighth grade instead
of the chemistry course. The biology and physics course did not cover any chemis-
try concepts. All students took an assessment on the seventh-grade content at the
beginning of the eighth grade and again at the beginning of the ninth grade.

Results showed that both groups did better at the beginning of the ninth grade on
the seventh-grade assessment then they had at the beginning of eighth grade (i.e.,
the ratio Grade 9 score/Grade 8 score was greater than 1 for both groups).
Furthermore, the subgroup that took the follow-up chemistry course in the eighth
grade did statistically better on the seventh-grade content at the beginning of the
ninth grade than the group that took the biology and physics course in the eighth
grade, even though none of the “facts, concepts, and principles learned in [the
seventh-grade science course were]...retaught in [the eighth-grade course] as part
of the syllabus” (Arzi et al., 1985, p. 382). I interpreted this finding as a case of
productive backward transfer because the new learning in the eighth-grade chemis-
try course, and to a lesser extent the new learning in the biology and physics course,
appeared to enhance students’ prior ways of reasoning about the seventh-grade
material.

Arzi et al. (1985) called this finding a case of retrospective facilitation and
explained the effect using Ausubel’s assimilation hypotheses in which “new mean-
ings were incorporated into the students’ existing structures of knowledge, via pro-
cesses termed by Ausubel as progressive differentiation and integrative reconciliation
of concepts” (Arzi et al., 1985, p. 385). I found this explanation compelling because
it aligns with a complex-systems view of knowledge development.

Summary. As shown, the three studies in this section provided explanations of
backward transfer that involved a change to cognitive structures. In Gentner et al.
(2004), the cognitive changes were described as schema abstraction; in Piaget
(1968), they were characterized as developments in children’s operational schemes;
and in Arzi et al. (1985), they were explained as differentiations and integrations of
structures of knowledge. All three explanations are compelling for explaining the
particular productive backward transfer effects with which they are associated.
However, the Gentner et al. and Piaget explanations seem less generalizable to all
three backward transfer effects (e.g., the Piaget and Arzi et al. studies did not appear
to involve schema abstraction). In contrast, the explanation provided by Arzi et al.
seems more generalizable (e.g., Piaget’s findings of changing memories could be
the result of differentiation and integrative reconciliation of visual and spatial
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concepts). Finally, all three explanations do not seem particularly useful for explaining
unproductive backward transfer effects.

4.4.3 Theories That Explain Backward Transfer in Terms
of What is Noticed

Finally, I present two articles from the mathematics education literature that pro-
vided explanations for backward transfer effects in terms of changes in what is
noticed in perceptual or conceptual fields. The first work is a theoretical article by
Marton (2006) and involves noticing similarities and differences in contrasting
visual displays. The second work is an empirical article by Hohensee (2014) and
involves ways of reasoning covariationally about linear and quadratic functions.

Marton’s (2006) article on noticing similarities and differences in contrasting
visual displays. In this article on noticing similarities and differences, Marton
(2006) described retrospective transfer as “how the image of an object is affected by
experiences following the birth of the image” (p. 520). To explain this idea, Marton
cited an example from English philosopher James Martineau about an individual
seeing a red ivory ball for the first time. In the example, when the red ball is with-
drawn, the individual will retain a mental image of the ball, which Martineau
described as “a mental representation of itself, in which all that it simultaneously
gave us will indistinguishably co-exist” (Marton, 2006, p. 520). According to
Martineau, if the same individual is then shown a white ivory ball, the white ball’s
contrasting color will bring to the foreground the color in the mental image of the
red ball. If, instead of a white ball, the individual is shown an egg after seeing the
red ball, its contrasting shape will bring to the foreground the shape of the mental
image of the red ball. In other words, the initial image of the red ivory ball can be
influenced by the subsequent visual experience of seeing the white ivory ball or the
egg, making this an example of retrospective transfer.

Linterpret retrospective transfer as a kind of backward transfer because it involves
prior ways of reasoning, a new learning experience, and an influence in the direction
from the new learning experience back to prior ways of reasoning. Marton’s (2006)
explanation of retrospective transfer is based on the view that perceptual abilities
are hardwired to discern differences. According to Marton, when individuals
encounter perceptual objects, they notice some features of objects and do not notice
others, or the features form an undifferentiated background. However, when indi-
viduals subsequently perceive new objects that serve as a contrast to the initial per-
ceived objects, what makes the initial and new perceived objects different becomes
foregrounded in our perception, even if those features were not closely attended to
when the initial objects were perceived. Because noticing plays an important role in
assimilation, accommodation, and reflective abstraction (Hohensee, 2016), this
explanation is compelling and aligns with a constructivist complex-systems view of
knowledge development.



4 A Case for Theory Development About Backward Transfer 95

Hohensee’s (2014) covariational reasoning study. The topic of study reported in
Hohensee (2014) was the relationship between quadratic functions instruction and
how students reason about linear functions. The research goal was to understand
when and in what ways quadratic functions instruction influences students’ prior
ways of reasoning about linear functions. For this study, a pre-post design was used
to examine the reasoning of middle school students who were participating in a
summer algebra enrichment program (N = 7). The Eight-day enrichment program
served as the intervention for the study and focused on quadratic functions. A defin-
ing feature of the algebra enrichment program was that covariational reasoning was
continuously promoted. Before and after the program, students were interviewed
about their ways of reasoning about linear functions. Results from the study showed
that most students’ level of covariational reasoning on the linear function tasks
became more advanced from pre-intervention to post-intervention (e.g., more rea-
soning with changes in quantities from pre to post) but also that some students
became less advanced in their covariational reasoning. I interpreted these results as
evidence of productive and unproductive backward transfer.

As indicated earlier, in Hohensee (2016), I offered the process of student notic-
ing as an explanation for the findings. To support this claim, I found evidence that
what students came to notice during quadratic functions instruction influenced what
they then noticed perceptually and conceptually when reengaging their ways of
reasoning about linear functions. In other words, what students noticed during qua-
dratic functions instruction appeared to influence—in some cases productively and
in other cases unproductively—the ways they subsequently reasoned with two
quantities in linear function contexts. And, as argued above, noticing plays an
important role in assimilation, accommodation, and reflective abstraction and thus,
this explanation aligns with a constructivist complex-systems view of knowledge
development.

Summary. Although Marton’s (2006) and Hohensee’s (2016) explanations of
backward transfer both involve the process of noticing, there are at least five differ-
ences between the explanations that suggest that the latter offers a broader explana-
tion than the former. First, Marton’s explanation for retrospective transfer was that
noticing differences between presentations of perceptual objects is the mechanism,
whereas Hohensee’s explanation was that noticing more generally, be it of similari-
ties or differences across a new learning experience and a previously encountered
context, is the mechanism. Second, Marton’s explanation foregrounded noticing
that was fairly immediate (i.e., on the timescale of how long it takes to form a visual
perception), whereas Hohensee’s explanation foregrounded noticing that emerged
more gradually (i.e., on the timescale of multiple instructional activities or lessons).
Third, Marton’s explanation had a strictly psychological basis, whereas Hohensee’s
explanation had a psychological and social basis. Fourth, Marton’s explanation
focused mainly on noticing features within a perceptual field, whereas Hohensee’s
explanation was about noticing features within perceptual and conceptual fields.
Finally, Marton’s explanation was agnostic to whether retrospective transfer was
productive or unproductive, whereas Hohensee’s explanation accounted for
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instances in which backward transfer effects were productive and instances when
they were unproductive. Thus, Hohensee’s explanation involves a broader view of
the influence of noticing.

4.4.4 Summary of Theories That Explain Backward Transfer

Looking across the various theories that explain backward transfer, most of the the-
ories account for either productive or unproductive effects. Interference, overgener-
alization, and fragile and meaningless learning were proposed as explanations for
unproductive effects. Various changes in cognitive schemata were proposed as
explanations for productive backward transfer effects. Only the process of noticing
provided an account for both unproductive and productive backward transfer effects.
Thus, the theory of noticing could serve as a unifying explanation for backward
transfer that subsumes the other hypothesized explanations.

4.5 Aspects of Theory About Backward Transfer
in Mathematics Education for Which There is the Most
Pressing Need for Development

In this final section, I outline five areas for which I see a need for theory develop-
ment about backward transfer in mathematics education. The five areas pertain to
(a) how the range of backward transfer effects that have been observed are or are not
related, (b) the characteristics of ways of reasoning that make them more or less
amenable or vulnerable to backward transfer effects, (c) the mechanisms underlying
backward transfer effects, (d) the methods for investigating backward transfer
effects, and (e) the features of instructional practices and activities that lead to par-
ticular backward transfer effects.

4.5.1 Theory That Addresses How the Range of Backward
Transfer Effects That Have Been Observed Are or Are
Not Related

The first area of need is for theory development that addresses if and how the
range of backward transfer effects that have already been observed are related.
Thus far, a limited number of backward transfer studies in mathematics and sci-
ence education have shown a range of backward transfer effects: effects on pro-
portional reasoning (e.g., Van Dooren et al., 2004), effects on covariational
reasoning (Hohensee, 2014), effects on action versus process views of functions
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(Hohensee, Willoughby, & Gartland, 2020), and effects on the dissociability of
science concepts in students’ cognitive structures (Arzi et al., 1985). Each finding
currently exists in isolation from the other findings, as a singleton, without theory
that accounts for how they are or are not related. Theory development about these
potential relationships between different types of backward transfer effects is
needed and may also help to establish boundaries for the types of backward trans-
fer effects that may be possible.

Several researchers have made initial efforts to develop theory about backward
transfer effects that could help explain how different types of backward transfer
may be related. For example, Hohensee (2016) hypothesized that one type of back-
ward transfer effect may be when the same ways of reasoning are important for
reasoning about two different mathematics topics (e.g., covariational reasoning is
important for reasoning about both linear and quadratic functions). Perhaps some of
the seemingly different backward transfer effects for different mathematics topics
that have been reported are related by this common feature.

A second hypothesis comes from Marton (2006), who proposed that discerning
differences could be a reason for backward transfer effects (Marton called back-
ward transfer retrospective transfer). Marton defined discerning differences as
“learning and transferring distinctive features that separate instances from non-
instances (as opposed to learning and transferring features that the instances have
in common)” (p. 520). In the red ball and white ball example described earlier, an
individual’s image of the red ball may change after a white ball is visually pre-
sented to them. Perhaps some seemingly different backward transfer effects are
related because they all involve discerning differences. More theory development
about how different backward transfer effects are related would guide researchers
about where else to look for backward transfer and how to produce it in other
mathematics contexts.

4.5.2 Theory About Characteristics of Ways of Reasoning That
Make Them More or Less Amenable or Vulnerable
to Backward Transfer Effects

The second area of need for theory development is about the characteristics of ways
of reasoning that make them more or less amenable to backward transfer effects. By
characteristics of ways of reasoning, I refer to general aspects that could apply to
any ways of reasoning, such as strength (fragile vs. solid ways of reasoning), age
(new vs. established ways of reasoning), associatedness (isolated vs. well-associated
ways of reasoning), comprehensiveness (narrow vs. comprehensive ways of reason-
ing), abstractness (concrete vs. abstract ways of reasoning), explicitness (implicit
vs. explicit ways of reasoning), and so on. Theory development is needed about the
amenability or vulnerability of ways of reasoning to backward transfer effects for
these and other characteristics of ways of reasoning.
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Very little theory currently exists in the literature about what characteristics
make ways of reasoning amenable or vulnerable to backward transfer effects.
However, Hohensee (2014) hypothesized that ways of reasoning about linear func-
tions that are mostly incorrect or mostly correct may be less amenable to productive
backward transfer effects than ways of reasoning about linear functions that are
only sometimes correct. Also, Hohensee, Gartland, Melville, and Willoughby
(2021) hypothesized that the ways students reason about rates might be less ame-
nable to backward transfer influences than the level of covariational reasoning stu-
dents reason with. Both hypotheses were motivated by findings from those studies.
More theory development about which characteristics of ways of reasoning are
amenable or vulnerable to backward transfer effects would help researchers develop
more targeted interventions.

4.5.3 Theory About Mechanisms Underlying Backward
Transfer Effects

The third area for theory development is about the mechanisms that underlie back-
ward transfer effects. Most studies that have focused on backward transfer, or that
have reported what I interpreted as backward transfer effects, have not explicitly
examined its mechanisms. For example, when Van Dooren et al. (2004) found that
learning about non-proportional relationships unproductively influenced students’
understandings of proportional relationships, the mechanisms that led to this effect
were not directly investigated. An exception is Hohensee (2016), in which, as
explained above, student noticing was explicitly examined as a potential underlying
mechanism of backward transfer.

Theory development about the mechanisms underlying backward transfer is of
importance to the field because not only would this theory explain how backward
transfer occurs, but it may make it more possible to reliably produce productive
backward transfer effects and inhibit unproductive effects. Furthermore, theory
about the mechanisms of backward transfer would inform other aspects of theory
development for backward transfer, including the types of backward transfer effects
that are possible and the kinds of instructional practices and activities that lead to
backward transfer effects. Furthermore, theory development about mechanisms of
backward transfer could, in turn, inform theories of learning and of learning trajec-
tories more generally.
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4.5.4 Theory About Methods for Investigating Backward
Transfer Effects

The fourth area for theory development about backward transfer pertains to the
methods available for investigating backward transfer effects. The previous three
points about theory development could indirectly influence researchers to use par-
ticular methods to measure backward transfer. For example, as theory about the
relationships between backward transfer effects is developed, new methods to
investigate related types of effects may emerge as well. However, there is also a
need for more direct development of theory about methods for investigating back-
ward transfer. For example, one area of need for theory development that pertains
directly to research methods is about conceptual frameworks that connect particular
instructional moves, activities, and classroom norms to particular backward transfer
effects. Making those connections can be challenging because the new learning
experiences and the prior ways of reasoning that are influenced during backward
transfer typically occur at different times and places.

An existing conceptual framework that has directly informed my methods for
investigating backward transfer is Lobato et al.’s (2012) focusing framework. This
theoretical framework organizes what students notice during mathematics instruc-
tion into four categories: (a) centers of focus, (b) focusing interactions, (c) mathe-
matical tasks, and (d) nature of the mathematical activity. This framework was used
as a methodological tool in Hohensee (2016) for thinking about how to connect
aspects of instruction to particular backward transfer effects that were measured
outside of the instructional context. Whereas the centers of focus and focusing inter-
actions were very helpful aspects of the theory for making connections, the mathe-
matical task and nature of the mathematical activity were somewhat more difficult
to use to make connections. This is one area where additional theory development
related to methods would be warranted.

4.5.5 Theory About Features of Instructional Practices
and Activities That Lead to Particular Backward
Transfer Effects

The fifth area for theory development is about the instructional practices and activi-
ties that lead to particular backward transfer effects. Typically, the findings of back-
ward transfer have focused more on the effects themselves and less on the instruction
that is associated with the effects (e.g., Moore, 2012). An exception is Hohensee
(2016), where several instructional practices, such as quantitative dialogue, were
linked to backward transfer effects. Quantitative dialogue is defined as “verbal com-
munication that directs attention to quantities as measurable attributes of objects or
situations” (Lobato et al., 2012, p. 463). Hohensee (2016) showed that when the
teacher emphasized quantitative dialogue during instruction about a new



100 C. Hohensee

mathematical context, students attended more to quantities in previously-encoun-
tered mathematics contexts.

Theory development about instructional activities and practices that lead to par-
ticular backward transfer effects would help researchers design more effective inter-
ventions. This aspect of theory development may also have greater direct relevance
for teachers and other practitioners than other aspects of theory on backward
transfer.

The five areas of pressing need for theory development about backward transfer
described above are broad in scope. This is not unexpected given that backward
transfer research is still in its infancy. Furthermore, the broad scope of need for
theory development also indicates the significant amount of people power required
to bring theory about backward transfer to a comparable level of development as
other mathematics education theories. Thus, this chapter could serve as a signal to
the field of mathematics education to join in this work.

4.6 Conclusion

In this chapter, I presented a case for theory development about backward transfer
in mathematics education from a constructivist complex-systems view of knowl-
edge development. I began by sharing reasons for why theory development is
needed in education more broadly and how that applies to backward transfer in the
context of mathematics education. I then laid out the current state of theory develop-
ment and prior research about backward transfer in mathematics education, as well
as selectively outside of mathematics education. Finally, I presented five areas that
represent a pressing need for theory development about backward transfer in math-
ematics education.

As stated at the outset, there is a lack of research on backward transfer in math-
ematics education, which means there is an imbalance in the transfer of learning
research in favor of forward transfer, and this is inconsistent with a complex-sys-
tems view of knowledge development. I have advocated for correcting the imbal-
ance because the study of backward transfer offers promise for generating new
insights into how students learn mathematics and potentially represents untapped
potential for improving mathematics learning. My hope is that this chapter will
motivate mathematics education researchers to join in the effort to develop theory
about backward transfer.
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Chapter 5

Exploration of Students’ Mathematical
Creativity with Actor-Oriented Transfer
to Develop Actor-Oriented Creativity

Gulden Karakok

There is a rich body of research from various fields including education and psy-
chology on the transfer of learning, with a history of over 100 years (e.g., Bransford
& Schwartz, 1999; Detterman, 1993; King, 2017; Lave, 1988; Lobato, 2003;
Thorndike, 1903). Commonly defined as the ability to apply knowledge learned in
one context to a new context (Mestre, 2003), the transfer of learning plays an impor-
tant role in many areas of our work in education, for example, in curriculum and
program designs at the undergraduate level. To illustrate, note that students are
required to take an introductory calculus course as a prerequisite for upper level
courses in many science, technology, engineering, and mathematics (STEM) pro-
grams, and it is expected that students transfer their calculus knowledge to their
respective STEM majors (e.g., Bressoud et al., n.d.; Cui, Rebello, Fletcher, &
Bennett, 2006). The focus on transfer goes beyond mere application of knowledge
and encompasses the application of processes such as problem solving, reasoning,
critical and creative thinking, communication, and so forth. As an example, students
in mathematics programs are required to take some form of an introductory proof
course with learning objectives that include mathematical reasoning and proof-
writing processes that would be used in subsequent, advanced-level mathematics
courses. In sum, the transfer of learning is directly related to a goal of most educa-
tional programs: providing learning experiences that can be generalized and used by
the learner outside the initial learning situation, preferably including their future
careers (Bransford, Brown, & Cocking, 1999). As Mayer and Wittrock (1996) put
it, “schools are not able to teach students everything they will need to know, but
rather must equip students with the ability to transfer” (p. 49).

The development and transfer of various mathematical concepts as well as math-
ematical processes such as reasoning, problem solving, and proof construction at
the undergraduate level are explored in research studies through various theoretical
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frameworks (e.g., Cui et al., 2006; Lockwood, 2011; Weber, 2005). In this chapter,
I focus on the process of creative thinking in mathematics at the undergraduate
level. It has been recently reported in the World Economic Forum that creativity at
work is one of the top-three demanded skills, and that it “has jumped from 10th
place to third place in just five years” (Schoning & Witcomb, 2017, para. 12).
Similarly, Nadjafikhah, Yaftian, and Bakhshalizadeh (2012) claimed that fostering
mathematical creativity should be one of the goals of any education system. Hence,
it is timely to explore mathematical creativity and its place in mathematics class-
rooms at the tertiary level.

To date, there are numerous policy and curriculum-standard documents that
emphasize the importance of mathematical creativity (e.g., Committee on the
Undergraduate Programs in Mathematics [CUPM], 2015; National Council of
Supervisors of Mathematics [NCSM], 2012; National Council of Teachers of
Mathematics [NCTM], 1980; National Science Board [NSB], 2010; Partnership for
21st Century Skills, 2006). As Askew (2013) pointed out, “calls for creativity within
mathematics and science teaching and learning are not new, but having them
enshrined in mandated curricula is relatively recent” (p. 169). For example, mathe-
matical creativity was emphasized by the Mathematical Association of America’s
(MAA) CUPM in its latest guidelines for majors in mathematical sciences
(Schumacher & Siegel, 2015). The guidelines state that “a successful major offers a
program of courses to gradually and intentionally lead students from basic to
advanced levels of critical and analytical thinking, while encouraging creativity and
excitement about mathematics” (p. 9). Additionally, Cropley (2015) highlighted
these points as, “teaching engineers (and other STEM disciplines) to think cre-
atively is absolutely essential to a society’s ability to generate wealth, and as a result
provide a stable, safe, healthy and productive environment for its citizens” (p. 140).
However, in these moves to include creativity into educational settings, there exists
an underlying assumption that this skill would transfer to future situations. For
example, Luria, Sriraman, and Kaufman (2017) stated, “Not only can teaching for
creativity improve students’ understanding of course content, but it also prepares
students for the application of learning objectives across domains” (p. 1033).

The purpose of this chapter is to initiate an exploration of this underlying assump-
tion theoretically by examining the ways in which the transfer and the creativity
constructs relate to one another, and by offering a possible approach to explore
mathematical creativity through one of the contemporary transfer approaches, the
actor-oriented transfer (AOT) framework. More specifically, the following question
guides my theoretical exploration: In what ways could the construct of transfer aid
in the exploration of mathematical creativity at the tertiary level?

This chapter starts with a brief summary of research on mathematical creativity,
noting the existence of various definitions, orientations, and perspectives of creativ-
ity that impacted the research efforts. In this summary, I extract from mathematics
education studies that examined the final products (e.g., proofs, solutions to prob-
lems) of students and mathematicians, and also mathematicians’ thinking processes,
to highlight an existing shift between product and process orientations in creativity
research. The chapter continues with a brief summary of the transfer of learning as



5 Exploration of Students’ Mathematical Creativity with Actor-Oriented Transfer... 105

a research construct under various learning theories. I conclude this section with
some research studies implementing the AOT framework as an example of contem-
porary approaches to transfer. In the Transfer of Mathematical Creativity section, I
address the research question with empirical examples illustrating a way to use AOT
to explore students’ mathematical creativity. In this section, I also offer a way to
view these two constructs (transfer and creativity) together through an intersecting
relationship. This chapter concludes with a proposal of an emerging research con-
struct, actor-oriented creativity (AOc), as a way to gain more insights into students’
mathematical creativity in general.

5.1 Mathematical Creativity

Similar to the construct of transfer of learning, there is a rich history of exploring
creativity and mathematical creativity and their roles in educational settings. In his
presidential address to the American Psychological Association (APA) in 1950,
Guilford asked, “why do we not produce a larger number of creative geniuses than
we do, under supposedly enlightened, modern educational practices?” (p. 444).
And, he called for explorations of finding creative promise in learners and the ways
in which their creativity could be developed. However, Mann (2006) indicated that
there are more than 100 definitions of mathematical creativity and claimed that an
absence of an agreed-on definition was one reason for the sparse research attempts
to study mathematical creativity in mathematics education.

Sriraman (2005) suggested that, in the absence of a precise definition of mathe-
matical creativity in mathematics and mathematics education, “we move away from
the specific domain of mathematics to the general literature on creativity in order to
construct an appropriate definition” (p. 23). Hence, in this section, and throughout
this brief summary of existing studies in mathematics education on mathematical
creativity, I intertwine related constructs from domain-general creativity as they
influenced research activities in mathematics education.

The exploration of mathematical creativity has been traced back to two psy-
chologists, Claparede and Flournoy, in 1902 (as cited in Borwein, Liljedahl, & Zhai,
2014, and Sriraman, 2009), who focused on the professional mathematicians’ pro-
cess of creativity, rather than conceptualizing the construct of mathematical creativ-
ity. Hadamard (1945) extended this earlier study to the mathematicians of his time,
focusing on the psychology of mathematical creativity, and discussed the results of
his study in light of a psychological four-stage model of the creative process devel-
oped by Wallas (as cited in Sriraman, 2009, and Sadler-Smith, 2015).

These four stages of creativity are preparation, incubation, illumination, and
verification. The preparation stage is the stage when the problem solver thinks
about the problem, gathers related information, and offers possible ideas. This con-
scious stage prepares the mind to work on the problem unconsciously in the second
stage. During this incubation stage, the problem solver does not consciously work
on the problem; the problem is put aside. In the third, illumination stage, ideas
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“suddenly” fit together and the solution appears (also known as an “aha” experi-
ence). The process continues in the fourth verification stage in which ideas are
checked and the solution is examined for correctness and appropriateness.

These proposed stages extend Dewey’s (1920) logical sequencing and conscious
model of problem solving by including the unconscious stage of incubation, and the
between consciousness and unconsciousness stage of illumination. In particular, the
illumination stage is believed to reflect an instantaneous “train of association”
(Sadler-Smith, 2015, p. 346), suggesting a connection to associationism theory.
This theory claims that pairs of thoughts become associated based on a thinker’s
past experiences (Shanks, 2007). These two stages, incubation, and particularly the
illumination stage, are reported to be experienced by many mathematicians and
believed to be the “heart” of mathematical creativity. Wallas’s four-stage model is
still in use to examine the process of creativity. For example, Sriraman (2004 ) inter-
viewed five research mathematicians and found that these four stages are still appli-
cable to describe modern-day mathematicians’ process. His study provided more
detail of the stages by considering the roles of personal and social attributes such as
imagery, intuition, and interaction with others. Liljedahl (2013), on the other hand,
focused on the stage of illumination, through anecdotal reflections of preservice
teachers and research mathematicians, and emphasized the inclusion of affective
domains in mathematics creativity research. In particular, he claimed that “what sets
the phenomenon of illumination apart from other mathematical experiences is the
affective component of the experience” (p. 264) and, for students, the unexpected
appearance of a solution provided an emotional motivation.

As this four-stage model attempts to explore the process of creative thinking, the
main portion of the mechanism of creativity seems to exist in the mind’s uncon-
scious work. Guilford (1950) noticed this particular issue and, referring to an analy-
sis of processes of creativity with this four-stage model, stated, “such analysis is
very superficial from the psychological point of view” and “tells us almost nothing
about the mental operations that actually occur” (p. 451). Noticing that these stages
were not testable, he suggested some testable factors such as fluency, flexibility,
production of novel ideas, synthesizing and analyzing ability, and evaluation ability
(Guilford, 1959). In his Structure of Intellect model, Guilford distinguished between
three types of thinking, convergent, divergent, and evaluative. Convergent thinking
refers to providing a single correct answer or a best solution to a problem, whereas
divergent thinking focuses on the creation of many possible ideas and multiple solu-
tions to an open-ended prompt. Evaluative thinking includes judgement about
whether an answer is accurate, or a solution approach is consistent, or valid for a
problem. Even though Guilford (1967) considered all three forms of thinking as part
of the creative process, divergent thinking has received more attention and is com-
monly used as a way to operationalize creativity in research.

Researchers, mostly using divergent thinking, have focused on the fluency, flex-
ibility, originality, and elaboration components to develop an operational definition
of creativity for research studies (e.g., Balka, 1974; Leikin, 2009; Torrance, 1966;
Silver, 1997). Fluency in general refers to the amount of outputs to a stimulus.
Silver (1997) defined it in the problem-solving setting in mathematics as the



5 Exploration of Students’ Mathematical Creativity with Actor-Oriented Transfer... 107

“number of ideas generated in response to a prompt” (p. 76). Flexibility is opera-
tionalized as the number of categories of responses to given stimuli. In the problem-
solving context, this relates to the number of shifts in approaches, providing multiple
approaches to a problem to produce a variety of solutions. This could mean that a
student approached a problem and for some reason changed this approach to a new
one. Originality (or novelty) is described as a unique production or an unusual
thinking (Torrance, 1966). Elaboration refers to the ability of producing a detailed
plan and generalizing ideas (Torrance, 1966). Torrance’s (1966) assessment tool
(Torrance Tests of Creative Thinking [TTCT]), which leverages these components,
is still used in schools and by researchers. For example, Kim (2012) reported that
K-12 students’ creativity scores, which were examined with TTCT, had decreased
from 1990 to 2008, even though their Intelligence Quotients (IQ) and Scholastic
Assessment Test (SAT) scores had shown increase since 1966.

The use of these four components demonstrates a shift in perspective from a
process orientation (i.e., exploration of the nature of the mental mechanisms) to a
product orientation (i.e., quantification and examination of the outputs that a person
provides for tasks). For example, Balka (1974) used the fluency, flexibility, and
originality components in his Creative Mathematical Ability Test in which partici-
pants were given mathematical situations to develop problems. Mathematical cre-
ativity of the participants was determined by the responses (outputs) through
fluency, which was the number of problems posed by a participant; flexibility was
determined as the number of different categories of problems generated by a partici-
pant; and originality was determined as the rarity of the response provided by a
participant compared to the other participants’ responses in the study. Similarly,
Leikin (2009) focused on the fluency, flexibility, and originality to create a creativity
rubric (using a point system) that evaluated how creative a student was when they
produced solutions to certain tasks.

Within the product orientations of creativity, there is also an emphasis on the
quality of the end product: Is it original and useful (Runco & Jaeger, 2012)? This
framing was adopted by the mathematics education community to develop defini-
tions of mathematical creativity as an ability to produce original, useful, adaptive,
unusual, applicable, and so forth proofs and solutions. The word ability appears in
such definitions to include the person in charge of producing these products; how-
ever, the act of judging the created work by an outsider plays an important role in
such conceptualizations of creativity. Even though a product orientation provides
means to measure mathematical creativity, “a more precise characterization of cre-
ativity will require a detailed consideration of the processes used in generating the
items leading to” (Ward & Kolomyts, 2010, p. 95) productions that are considered
creative.

In fact, with a five-stage model, Sheffield (2009, 2013) focused on processes of
creative problem solving at the K-12 level. This model, by offering a nonlinear
approach to process, differs from Wallas’s four-stage model, which assumes a linear
progression between stages. Proposed as a creative problem-solving heuristic, the
model includes five stages: investigating, relating, creating, evaluating, and com-
municating. During the investigating stage, a person examines the available
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information, ideas, and mathematical concepts that are related to this information.
Actions such as identifying similarities and differences of ideas, and combining
information, are proposed to be part of the relating stage. During the creating stage,
solutions are created or new ideas are identified or new connections are developed.
Similar to Wallas’s verification stage, Sheffield described the evaluating stage as
actions that are taken to examine proposed solutions or ideas; however, this stage
differs from the verification stage because these evaluative actions can be done
throughout the problem-solving process as opposed to appearing just at the end of
the process. Ideas, solutions, or approaches are explained (to others) at the commu-
nicating stage. This is a nonlinear model, meaning that a problem solver could start
at any stage. For example, a person could identify similarities and differences
between a given task and previous work (relating stage), communicate these obser-
vations and then evaluate them, which could lead to the process of investigating.
Finally, a person could create solutions after the investigations or enter into the stage
of relating again.

In summary of definitions and orientations of mathematical creativity, I refer to
Sriraman’s framing of this construct (Liljedahl & Sriraman, 2006). He, focusing
on experts’ work, suggested that mathematical creativity can be defined as the
ability to generate original work, which contributes and extends the existing body
of knowledge as well as creates new questions or areas for further mathematical
explorations. To operationalize this definition in mathematics education research
in K-12 classrooms, Sriraman (2005) defined mathematical creativity as “the pro-
cess that results in unusual (novel) and/or insightful solution(s) to a given prob-
lem or analogous problems, and/or the formulation of new questions and/or
possibilities that allow an old problem to be regarded from a new angle requiring
imagination” (p. 24). This formulation captures two important points for explora-
tion of students’ mathematical creativity. First, students’ mathematical creativity
is viewed from a process orientation as opposed to the product orientation used
for experts’ mathematical creativity. Second, mathematical creativity in K-12
classrooms may look different than the one employed by mathematicians and
hence, student creativity needs to be evaluated accordingly, considering students’
prior experiences (e.g., experiences with analogous problems as mentioned by
Sriraman, 2005). In other words, students do “have moments of creativity that
may, or may not, result in the creation of a product that may, or may not, be either
useful or novel” (Liljedahl, 2013, p. 256) to the mathematics community at large.
This particular idea relates to an important distinction of mathematical creativity
within research: the difference between absolute (extraordinary) and relative cre-
ativity, where the former refers to (historical) inventions (discoveries at a global
level) and the latter one is defined as “the discoveries by a specific person within
a specific reference group, to human imagination that creates something new”
(Leikin, 2009, p. 131).

This particular formulation of mathematical creativity (i.e., relativistic and
process-oriented) for students aligns with the mini-c creativity construct within
domain-general creativity. Beghetto and Kaufman (2007) defined mini-c creativity
as “the novel and personally meaningful interpretation of experiences, actions and
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events” (p. 73). They highlighted that the novelty and meaningfulness of
interpretations are personal judgements and, as such, they may not be original or
meaningful to others. Beghetto and Kaufman (2007) argued that mini-c creativity
is an interpretive and transformative process that is part of an individual’s learning
process. This argument stems from Vygotsky’s “argument that creativity (imagina-
tion) is one of the basic mechanisms that allows new knowledge to develop” (as
cited in Leikin, 2014, p. 61). The construct of mini-c creativity could allow us to
explore students’ creativity during learning (e.g., in a course) as opposed to at the
end of learning (e.g., after completion of a course).

In this chapter, I suggest incorporating mini-c creativity to explore tertiary-level
students’ mathematical creativity, which would mean taking a relativistic, process
orientation in the domain of mathematics. I furthermore propose conducting such
explorations from a transfer research lens so that we gain understanding of stu-
dents’ transfer of creative-thinking skills. K-12 students’ mathematical creativity
through a relativistic, process orientation has been explored (e.g., Sheffield’s cre-
ative problem-solving heuristic), but without the use of mini-c creativity. Sheffield
(2009) discussed the process of mathematical creativity with five nonlinear stages.
Given how such stages provide insights into students’ mathematical creativity, I
question how such stages, namely the processes observed in those stages, transfer
to other situations. In the next section, I briefly summarize research on transfer of
learning and demonstrate some aspects of the AOT framework within existing
studies.

5.2 Transfer and the Actor-Oriented Transfer Framework

Transfer of learning has been traditionally defined as the ability to apply knowledge
learned in one context to a new context (Mestre, 2003). Early psychological views
of transfer were based on the mental abilities of a person, and these abilities were
believed to become stronger by training them in different subject areas. Thus, the
training of the basic mental functions was also thought to improve the person’s abil-
ity to transfer ideas and skills to new situations. After many experiments showing
the failure of such claims, Thorndike and colleagues challenged this existing belief
and proposed an alternative idea, the theory of identical elements (Thorndike, 1903;
Woodworth & Thorndike, 1901). Thorndike’s work showed that even though learn-
ers did well on a test of the specific content they had studied, this content knowledge
did not increase their performance in a new situation. Thorndike and colleagues
further concluded that transfer from one task to another happened only when two
tasks shared identical elements.

Thorndike’s studies influenced instructional practices with the inclusion of more
skill-repetition activities in the mathematic curriculum. In addition, Thorndike’s
work influenced the transfer studies conducted later. Many researchers followed a
similar research paradigm; an initial learning task was followed by the target task
created by researchers who thought that these two tasks shared similar features and
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examined participants’ performance from one task to another as an indication of
transfer (e.g., Bassok, 1990; Gick & Holyoak, 1980). Researchers from this
paradigm were interested in research questions of the form “Do students transfer?”
Most of the studies conducted under this traditional paradigm reported failure of
spontaneous transfer from one task to the next.

Judd argued that one of the possible reasons for failure of transfer could be the
relationship between two tasks that was declared to be similar by the researchers (as
cited in Tuomi-Grohn & Engestrom, 2003). He claimed that the learners might have
a different opinion about the sameness and differences of two tasks. For example, in
their seminal study, Gick and Holyoak (1980) first gave participants a story about a
successful capture of a fortress by dividing the army into small groups (initial learn-
ing task). Then, participants were presented with Duncker’s (1945) radiation prob-
lem (transfer task) in which they were tasked to find the best method to eliminate a
tumor by radiation. These two tasks, according to the researchers, shared similar
structural features (e.g., fortress = tumor, capture the fortress = eliminate the tumor,
whole army into small groups = high intensity into lower intensity of radiation, etc.)
but they had different surface features (the contexts). The researchers found that,
generally, participants did not successfully or spontaneously (i.e., without a hint)
transfer an analogous solution of the initial task to the transfer task where tasks had
(structural) similarities. Even though their conclusion claiming that transfer of
learning requires the overcoming of surface features (e.g., contexts) is an important
one, it would be as valuable to know how these participants approached the transfer
task (e.g., their reasoning about solutions, perception of connections between two
tasks or prior experiences, etc.).

Bransford et al. (1999) argued that such negative transfer results of initial-task to
transfer-task experiment designs were due to the underlying perspectives of trans-
fer. They stated, “evidence of transfer is often difficult to find because we tend to
think about it from a perspective that blinds us to its presence” (p. 66). They prob-
lematized both the experimental design of initial task to transfer task (also known as
sequestered problem solving [SPS]) and the definition of transfer that emphasized
direct applications of prior knowledge to a new problem. They claimed such experi-
mental designs with the direct application view of transfer “make people look much
‘dumber’ (or ‘less educated’) than is actually the case” (Schwartz, Bransford, &
Sears, 2005, p. 6). Lave (1988) also problematized the traditional views of transfer
by pointing out that such definitions of transfer (i.e., any derivative application of
knowledge from prior learning to a new problem) consist of measures of the proper
use of previous learning in the new setting with the assumption that the settings
(initial learning and the transfer) and other social and environmental factors do not
affect the learner’s performance.

Overall, researchers have criticized the traditional definition of transfer and
methodologies used during these transfer studies. They suggested that a new fram-
ing of transfer should address that learning could not be separated from the environ-
ment and it should capture the notion of transfer being an active process. The
research questions should be posed in a way that more than binary results are
achieved. Also, new methods of inquiry should be in place to gather evidence of
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transfer (both productive and unproductive), rather than just relying only on SPS
types of methods, which could provide insights into mechanisms of transfer. Some
contemporary approaches also argued for a need to shift from the researcher’s point
of view to the learner’s point of view during transfer investigations, meaning that

The researcher does not measure transfer [of mathematical creativity] against a particular
cognitive or behavioral target but rather investigates instances in which the students’ prior
experiences shaped their activity in the transfer situation, even if the result is non-normative
or incorrect performance. (Lobato, 2012, p. 235)

Some examples of these contemporary approaches implemented in research
studies are transfer by affordances and constraints (Greeno, Smith, & Moore, 1993),
preparation for future learning (PFL; Bransford & Schwartz, 1999), and the AOT
framework (Lobato, 2006). Because the focus of this particular book is on AOT, I
mainly focus on this framework in this chapter.

5.2.1 Actor-Oriented Transfer Framework

The AOT framework views transfer as “the personal construction of relations of
similarity between activities, or how ‘actors’ see situations as similar” (Lobato &
Siebert, 2002, p. 89). The main focus of this framework is the learner (actor) and
how the learner sees the transfer situation in relation to the initial learning situation.
Obtaining evidence for AOT differs from traditional transfer approaches. In tradi-
tional approaches, successful or improved performance on transfer task was consid-
ered as evidence. Meanwhile, in AOT, regardless of successful or improved
performance on transfer tasks, any influence of prior learning experiences is consid-
ered as evidence for transfer. Consider an example provided by Lobato (2006,
2012). Students were tasked with finding the slope of wheelchair ramp (transfer
task) after they had been introduced to finding the slope of a line (initial learning
task). According to the experts (or researchers), these tasks shared the same struc-
tural features and could be solved using the similar approach of rise over run, but
differed in terms of surface features (contexts).

When Lobato and Siebert (2002) examined one student’s reasoning on the trans-
fer task, they observed that this particular student did not “transfer” (in the tradi-
tional sense) the slope formula (rise over run) from the initial learning situation.
However, when they examined the student’s reasoning on the wheelchair task, they
noticed that the student’s reasoning on the task included identifying the related two
quantities (height and length) contributing to steepness and developing a multiplica-
tive relationship between them, all of which were directly linked to finding the
slope. Further examination of the student’s prior experiences from the teaching
interventions revealed that this particular student was most probably using the same
reasoning that he had developed during in-class activities. They postulated that the
student demonstrated transfer between these two situations by creating his own
similarities between these two situations, rather than doing what researchers
expected him to do (i.e., use the rise over run formula).
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For such inquiries with the AOT perspective, a typical study design needs data
in qualitative nature from both transfer and initial learning situations. For example,
following a typical AOT design, Karakok (2009, 2019) explored undergraduate
physics students’ transfer of learning of eigenvalue and eigenvector concepts from
various learning experiences to interviews. The researcher conducted three inter-
views and audio- and video-recorded three different quantum mechanics physics
courses over one semester that all participants took. Three interviews were con-
ducted with seven students, all of whom had some course experience with linear
algebra topics prior to the study. The first interviews were conducted prior to the
quantum mechanics courses. The second interviews were conducted mid-semes-
ter, while students were still taking one of the quantum mechanics courses. The
last interviews were conducted after students completed all three quantum mechan-
ics courses.

During the first interview, participants’ existing conceptualization of eigenvalues
and eigenvectors were captured, given that they all had prior experiences of learning
these concepts in various courses. The analysis of the first interview data (from the
traditional transfer approach) showed lack of transfer of learning of eigenvalues and
eigenvectors to the interview tasks because students could not successfully com-
plete tasks on these concepts. With the exception of one student, participants could
not describe these concepts and showed limited conception of them. However, as
students progressed through three quantum mechanics courses, regardless of their
differing initial learning experiences, their conceptions showed changes. When the
second interview data were examined, some students still lacked transfer (from the
traditional perspective); however, they were able to draw upon their experiences
from classroom activities to describe these concepts and demonstrate their thinking
with examples that were similar to the in-class activities (see Karakok, 2019, for the
case of Gus).

Using students’ conceptual changes as the basis, the researcher examined data
from all interviews and all quantum mechanics courses with the AOT framework.
Analysis suggested that participants were constructing similarities between inter-
view tasks and their experiences in small-group activities and whole-class discus-
sion in quantum mechanics courses. In other words, the AOT analysis provided
possible explanations for participants’ seemingly idiosyncratic reasoning processes
during interview tasks, namely that they represented the production of similarities
that students observed to make between interviews and quantum mechanics courses.
Using the AOT framework to examine the influences of learning experiences from
the courses, facilitated a shift in the focus of analysis from the product (i.e., stu-
dents’ conceptions) and the quality of this product (e.g., successful, complete) to the
process of students’ reasoning. Particularly, it was observed that one of the course
instructor’s explicit instructional moves seemed to play a role in students’ reasoning
and influence their processes during the interviews (Karakok, 2019).

Lockwood (2011) demonstrated another possible way to use the AOT perspec-
tive. Rather than calling students’ in-class experiences “initial learning,” Lockwood
explored student-generated connections among a variety of counting problems in
the context of combinatorics across multiple interviews. The study identified three
types of student-generated connections: (a) elaborated versus unelaborated, (b)
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conventional versus unconventional, and (c) referent type. Participants of the study
were given eight to 18 counting problems to work on in pairs and asked to think
aloud and discuss their ideas with each other in these interviews. These video-
recorded problem-solving sessions were then analyzed by the researchers to
explore student-generated connections and similarities among situations within the
problem-solving sessions. The study highlighted that “in addition to mathematical
connections that an expert might expect, students make unexpected connections as
well” and suggested that “instructors should, therefore, be open to considering
student-generated connections as they arise and may want to take advantage of
alternative kinds of similarities when planning lessons” (Lockwood, 2011, p. 321).

As demonstrated in this section, exploration of students’ thinking with the AOT
framework could “detect instances of the generalization of learning experiences”
(Lobato, 2012, p. 232) in many forms. Furthermore, the AOT framework could also
help explore instances “even when there is a lack of transfer according to traditional
definitions” (p. 232). It is my claim that AOT could also help us to “detect” instances
of students’ mathematical creativity and “distinguish between a person’s creativity
and his/her prior knowledge and experience” (Zazkis & Holton, 2009, p. 359). More
precisely, AOT, with its focus on students’ point of view rather than experts’, and its
focus on the process of construction of similarities and differences rather than end-
result production, could help us to answer research questions such as: What is the
nature of undergraduate students’ mathematical creativity (i.e., what processes are
used by students)? How do students “transfer” their mathematical creativity between
situations (i.e., how do students construct similarities between their processes
among situations)? In the next section, by drawing from existing studies, I provide
a theoretical discussion on why and how the construct of transfer could be consid-
ered in exploration of students’ mathematical creativity.

5.3 Transfer of Mathematical Creativity

When transfer and creativity lines of research are examined, it is notable that they
both claim, rightfully, the importance of the abilities to transfer and be creative. In
creativity research, loosely speaking, it is expected that a person has knowledge
about a domain (e.g., procedural-factual knowledge, technical skills) and direct
applications of domain-specific content to expand on or extract from them to
develop a creative product. It seems that the person is assumed to have a transfer
ability. Transfer studies, on the other hand, have been interested in whether a per-
son could apply learned knowledge and skills in novel situations under various
approaches. As I consider these two lines of research, there seems to be an inter-
secting relationship such that there could be instances of transfer that would not be
part of creativity research (or would not “count” as creative), there could be
instances of creativity that would not be part of transfer research, and there is the
overlapping section where transfer could be creative or creativity could be consid-
ered transfer. In this chapter, I situate my arguments within the transfer construct,
including the intersection.
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As pointed out in the introduction section and the summary of creativity studies,
there seems to be an underlying assumption that creativity is a transferrable skill
that helps not only the learning of concepts but also applying learned concepts in
other situations. Craft (2005), by examining creativity research studies, observed
that there is not a consensus to assume that creativity is a transferable skill without
a reference to a specific domain. Starko (2017) provided a similar observation:
“Most theorist concur that individuals are creative in some subject area and need a
base knowledge and skills to succeed” (p. 94). In this chapter, for these reasons, I
consider creative-thinking skills within the domain of mathematics and seek to
explore students’ mathematical creativity from a transfer perspective. In particular,
I argue for examining development of students’ mathematical creativity and how it
transfers across different domain-specific situations. With this proposed exploration
approach, I attempt to address the points made by Baer and Kaufman (2012). They
noted that the relationship between creativity and a specific content domain is part
of a larger question on the relationship between the learning of content and thinking
skills and that “it [the relationship] is related to questions about the possibilities of
transfer of learning and of teaching to promote such transfer” (p. 151).

In the brief summary of transfer research, I discussed various approaches to
exploring transfer that included examinations of direct application of prior learning
in new settings and explorations of the construction of similarities between different
situations. Many of these approaches would equally provide meaningful insights
into different aspects of students’ mathematical creativity and transfer of creative
thinking in mathematics. In this chapter, I focus on exploration of mathematical
creativity from the AOT perspective for several reasons. To explore the phenomenon
of students’ mathematical creativity, there is a need for an approach that is “particu-
larly effective at bringing to the fore the experiences and perceptions of individuals
from their own perspectives, and, therefore, at challenging structural or normative
assumptions” (Lester, 1999, p. 1). The AOT framework provides this opportunity in
explorations of students’ mathematical creativity by taking a student’s point of
view. In other words, AOT could help understanding students’ “descriptions of what
[students] experience and how it is that they experience what they experience”
(Patton, 2002, p. 107) in the context of mathematical creativity. AOT, with its view
of transfer as “the personal construction of relations of similarity between activities,
or how ‘actors’ see situations as similar” (Lobato & Siebert, 2002, p. 89), could
provide a lens to gain in-depth understanding of processes of creativity. For exam-
ple, in the relating stage, Sheffield (2009) stated that students make connections
between a given task and their prior knowledge and ideas by identifying similarities
and differences. Students’ particular actions in this stage (and also in others) could
be explored through the AOT lens and this exploration could help us to detect what
instances from prior experiences that learners relate to.

The research efforts in mathematical creativity, as well as domain-general cre-
ativity, indicated influences of personal traits, affective domains, and social interac-
tions on development of creativity (e.g., Csikszentmihalyi, 1999; Pitta-Pantazi,
Kattou, & Christou, 2018; Sriraman, 2009). With its view of transfer as a distributed
phenomenon, AOT also considers these domains. However, in this chapter, the
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exploration of students’ mathematical creativity through AOT is limited to the cog-
nitive domain, and consideration of other domains, in particular the affective
domain, will be part of future studies because such inclusion will provide a better
picture of students’ mathematical creativity and its transfer.

5.3.1 Actor-Oriented Transfer of Mathematical Creativity

As an illustration of the AOT lens, I consider a previous study that on which I col-
laborated with colleagues to explore benefits of a particular assignment system that
implemented the Creativity-in-Progress Rubric (CPR) on Proving (Karakok et al.,
2016; Savic, Karakok, Tang, El Turkey, & Naccarato, 2017) in an elective combina-
torics course (Omar, Karakok, Savic, & El Turkey, 2019). In this course, in addition
to covering course content topics from the area of combinatorics, the instructor (the
first author of Omar et al., 2019) aimed to engage all students with challenging
tasks, and develop and improve students’ technical writing and prose in mathemat-
ics. The CPR on Proving was provided to students to guide their thinking process
and writing in assignments. This rubric was developed by the other authors of Omar
et al. (2019) prior to this study with the aim to explore how to foster students’ math-
ematical creativity in tertiary mathematics courses (see Karakok, Savic, Tang, & El
Turkey, 2015; Savic et al., 2017; Tang, El Turkey, Savic, & Karakok, 2015). The
instructor in this study asked students to submit a reflection of their work using this
rubric as well as their written work answering questions for each assignment. In this
assignment system, there were five biweekly homework assignments and two proj-
ects. Each homework assignment had several questions for students to practice
direct application of the course content (i.e., they were considered as exercises), and
one challenging question that was considered nonroutine (i.e., it was considered as
a problem as discussed in Schoenfeld, 1985). In contrast, for each project, students
had roughly five weeks and the tasks were open in nature. For example, for the first
project, students were given a formula and asked to “investigate possible new alge-
braic proofs or augmentations to proofs in existing literature. Moreover, develop
insight on how to approach this problem from a combinatorial perspective” (Omar
etal., 2019, p. 87). We examined students’ written work for assignments and reflec-
tions to understand the benefits of the assignment system using the rubric.

In this empirical exploration, I reexamined one of the students’ written work for
two homework problems, the course notes, and the interview transcript. My goals
here are (a) to illustrate how AOT could aid in exploration of students’ mathematical
creativity, and (b) to provide empirical examples of AOTs of students’ mathematical
creativity. The first example is from the student’s work on the problem of the second
homework assignment:

Portfolio Problem 2: Let n > 1 be an integer. Determine the number of walks in the plane
with 7 steps, starting from (0, 0), with steps of type (0, 1), (0, -1), or (1, 0), given the condi-
tion that any such walk cannot intersect itself. Find any generalizations if the directions you
can move are altered. (Generating functions might help.) (Omar et al., 2019, p. 84)
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We examined the student-submitted written work (which was presented in Omar
et al., 2019, p. 95) and the instructor’s notes from classes prior to the assignment.
We observed that this particular student’s work demonstrated an understanding of
recursive relationships and techniques that were discussed in class and we claimed
that this particular understanding helped the student to “discover an explicit expres-
sion” (p. 94). To provide an illustrative example, I focused on this particular data
piece “by scrutinizing a given activity for any indication of influence from previous
activities and by examining how people construe situations as similar” (Lobato &
Siebert, 2002, p. 89). In her written work, the student explained her inquiry of the
problem. For example, the student stated that the exploration was started with creat-
ing visualization of the walks, and then the student used “both symbolic and graphi-
cal representations of each of the three possible steps.” Prior to presenting the
“discover[ed] explicit equation” and the related computer-generated codes, the stu-
dent wrote, “Because both [another student’s name] and I study computer science,
our next inclination was to develop several different models for this language.”
After evaluating their instincts, the student provided a computer program code and
a proof of the conjectured recursion.

Before arriving at her invented equation of the recursive formula, the student
once again mentioned another course experience: “I remembered a technique of
solving recurrence relations called the ‘polynomial method’ from Discrete [a pre-
requisite math course].” As observed in this student’s written work, the student
seemed to be constructing similarities between the given homework problem and
her prior experiences in discrete, computer science, and combinatorics courses. This
empirical example could be considered as evidence of AOT. Furthermore, the stu-
dent’s provided solution to the problem was considered novel by the course instruc-
tor and the researchers (Omar et al., 2019). This brief example only demonstrates a
way to use the AOT lens, and thus far, I have not discussed the AOT of mathematical
creativity. For this particular exploration, I first need to reiterate an operational defi-
nition of students’ mathematical creativity.

As discussed in the Mathematical Creativity section, previous studies on math-
ematical creativity provided different approaches to identifying mathematical cre-
ativity. Taking a product orientation, a person’s work (e.g., proofs, solutions) could
be examined “by fluency (total number of appropriate responses), flexibility (the
number of different categories of responses), originality (rarity of responses) and
elaboration (amount of detail used in the responses)” (Leikin & Pitta-Pantazi,
2013, p. 160) for the indication of the person’s mathematical creativity. It should
be noted that the judgement of “appropriate responses,” “different categories,”
“rarity,” and “amount of detail,” would be made by the researchers of the studies.
Studies in creativity have demonstrated shifts toward process orientations given
that “researching the creative product may not provide full understanding of the
development of creativity, or may not reflect the creativity used to reach that prod-
uct” (Savic et al., 2017, p. 25). A process-orientation creativity focuses on explora-
tion of actions, behaviors, and stages that take place in the generation of work
(e.g., ideas, proofs, solutions). Mostly, pulling from cognitive approaches, a per-
son’s thinking or progression of thinking (in the case of stages) is investigated for



5 Exploration of Students’ Mathematical Creativity with Actor-Oriented Transfer... 117

actions such as examining a given problem (as seen in the preparation stage of
Wallas’s model and the investigating stage of Sheffield’s model), identifying simi-
larities and differences of ideas, combining ideas (as seen in the relating stage of
Sheffield’s model), developing a solution, verifying a solution, and communicat-
ing ideas.

Sriraman (2005) suggested that, when considering students’ mathematical cre-
ativity, one should consider their processes that result in novel solutions. However,
Leikin (2009) emphasized that these novel solutions should be considered with
respect to students’ prior experiences in mathematics. In sum, I propose an opera-
tional definition of students’ mathematical creativity that is inspired by these
researchers’ work, and I also incorporate the mini-c creativity construct from
domain-general creativity (Beghetto & Kaufman, 2007): A student’s mathematical
creativity is a process of engaging with a mathematical situation in which person-
ally meaningful interpretations of experiences, actions, and events are employed;
novel connections are made; personal risks are taken; and approaches and ideas are
examined for appropriateness in order to propose or produce a solution or proof, or
to pose a question.

In my next illustration, I consider this definition for students’ mathematical cre-
ativity for the purpose of examining AOT of this particular student’s mathematical
creativity. The analysis started with identification of actions that seemed to be
related to the ones in the aforementioned definition of students’ mathematical cre-
ativity. Once actions were identified, I examined the written work around which
these actions seemed to take place. This particular analysis was conducted to gain
better understanding of the usages of these actions as they were performed by the
student, but also to hypothesize any indication of “influence from previous activities
[actions] and by examining how people construe situations as similar” (Lobato &
Siebert, 2002, p. 89). The actions that I identified in the student’s work for the
homework two problem were: visualizing, using symbolic and graphical represen-
tations and evaluating representations as a way to interpret the problem, making
connections to other courses (e.g., developing and translating a model), conjectur-
ing with observed results (i.e., taking risks), proving for correctness, and posing
questions for consideration of another approach. All of these actions suggested an
indication of this student’s mathematical creativity.

To demonstrate a possible indication of influence from previous activities and
actions, I focus our attention to the action of making connections to other courses.
The student’s attempt at relating the given problem to her other courses was previ-
ously discussed and was already hypothesized as evidence of AOT. Here, I provide
more discussion about this action through the examination of mathematical work
when the computer science course was mentioned. The student wrote:

Because both [another student’s name] and I study computer science, our next inclination
was to develop several different models for this language. Institutively, it seemed to lend
itself to regular expressions, and sure enough I was able to develop a regular grammar for
allowed walks. I translated this into a deterministic finite automaton ... wrote short pro-
grams. ... The goal of this was to quickly compute enough values that we could gain insight
into the nature of walks as a function of steps.
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It seems that the student not only identified a similarity between the given problem
and the computer science course content, but also, the student seemed to be influ-
enced by the process of developing models in the computer science course (i.e.,
previous actions) to develop and translate a model for the given problem. It seems
that this instance could be an empirical example suggesting evidence of AOT of the
student’s mathematical creativity because it seemed that the student was influenced
by previous processes (developing models) in a different setting and adopted this
process for the given problem.

To provide a clarification of this claim, I focus on the same making connections
to other courses action, and this time, I consider the student’s written work when the
discrete course was mentioned. The student wrote, “Having found a recurrence rela-
tion, my next action was to seek a closed form. I remembered a technique of solving
recurrence relations called the ‘polynomial method’ from Discrete ... and applied
that here.” The student, in her work, used the method to find a closed form. This
work included procedural steps such setting up equations, solving a quadratic equa-
tion, applying initial conditions, subtracting terms, and substituting. Even though
the student successfully computed a polynomial model for this given problem, I did
not consider computing a closed form in a discrete course (i.e., previous action) as
the student’s mathematical creativity. In particular, the process of computing by
itself does not necessarily tell us much about the students” mathematical creativity
in the discrete course. Because the student’s written work was limited to procedural
computations, it seemed that the student was transferring content knowledge from
the discrete course to the homework problem. And, it did not seem appropriate or
suitable to hypothesize that this could be a transfer (from the AOT lens) of this stu-
dent’s mathematical creativity from the discrete course to this given problem.

In the first suggested empirical example of AOT of mathematical creativity, I
only examined the student’s work on one problem to hypothesize “transfer” of an
action of developing models from another course (e.g., computer science) to the
given problem. Because this analysis had obvious limitations (e.g., computer course
information was not available), I examined the written work of this student from
another homework problem. In other words, I considered the same student’s written
work on two problems from two different homework assignments from the combi-
natorics course: the second homework problem (discussed earlier) and the fourth
homework problem. The fourth homework problem (Fig. 5.1) was assigned approx-
imately one month later than the second homework problem. Again, the question
was open in nature and it was related to a different content topic (graph theory) than
the problem in the second homework.

The actions that I identified in the student’s work on this fourth homework prob-
lem were: using definitions and theorems from the course (e.g., generating series,
generating functions, Burnside’s Lemma, Polya’s Theorem) as a way to interpret
the problem, exploring cases (e.g., examining generating series for special cases of
graphs), visualizing, evaluating work to shift to different approaches, making con-
nections (to a different problem), posing questions, and examining work to provide
a hypothesis (as the “answer” of the problem). With the definition of students’ math-
ematical creativity, I claim that all of these actions suggest an indication of this
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4 Portfolio Problem: Let G be a graph on vertex set V = {v1,v3,...,v,}. A k-coloring of G is a
function ¢ : V — {1,2,...,k} so that any two adjacent vertices in G are assigned different colors.
For a given k-coloring c, we define its indicator ind(c) by

ind(c) = x]'25? - - - ¥
where g; is the number of vertices in V assigned to color i by the coloring c.

Two colorings are said to be equivalent if one can be obtained from another by applying an auto-
morphism of G. Let F(xy,x,...,x;) be the generating series that sums of all the indicators of all
inequivalent k-colorings of G. What information about G does F contain? (Start by playing with
explicit examples like complete graphs, path graphs, and cycle graphs.)

Fig. 5.1 The fourth homework problem

student’s mathematical creativity. For the examination of AOT of this student’s
mathematical creativity, I examined the identified actions in the fourth homework
problem for any indication of influences from the previous identified actions for the
second homework problem. The posing question action appeared in both lists. On
the second problem, it was noted that the student posed a question after providing
the “discover[ed] explicit equation” (Omar et al., 2019, p. 94). This question seemed
to be initiated from the act of evaluating the “final” work for more generalizations:

Suddenly, our algorithm for finding possible paths has to have memory. In terms of the
strings representing valid walks, our language is no longer regular or even context-free.
Therefore, we don’t have an obvious path for generalizing our approach in these cases.
After hitting this wall, I started to consider how we might use generating functions to
approach this problem. Unfortunately, I didn’t have time to explore this option very far.

The type of questioning in the form of “how we might use generating functions to
approach this problem” did not appear in other parts of the student’s written work
on this problem. That is to say, the student might have posed questions throughout
her inquiry but they were not in the written work. In contrast, the written work of the
fourth homework problem had questions and they were not only at the end of the
student’s written work. For example, relating to another problem (unknown to the
researcher), the student wrote in the middle of her work:

Fortunately, I already had some knowledge about the related problem where we may paint
the vertices freely, and so I started wondering: how does the generating function that I have
already found change given this restriction? Is there any way I can modify my equation,
which takes symmetry into account, to remove the invalid colorings?

The questions that the student posed (wrote) throughout her work seemed to guide
the student’s continued exploration. The student provided a “final” answer for
complete graphs at the end of her written work, and again the student seemed to
be wondering about the generalization of her “final” answer and what it could
mean for different types of graphs: “I went on to explore cycle graphs, which
were closely related to path graphs, as well as completely disconnected graphs
and star graphs. Unfortunately, I don’t have time to write up my investigations.”
It seems that the process of posing questions was a way for this student to start
another line of investigation or an approach. As it was noted at the end of the
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second homework problem, the student seemed to continue with this sort of action
in the fourth homework problem. In the fourth homework problem, however, the
student seemed to pose more questions. I conjecture that this student was influ-
enced from her previous act of posing questions for starting a new line of investi-
gation or an approach (in the second homework problem) to pose (more) questions
on the later problem.

This particular observation could be an empirical example suggesting evidence
of AOT of the student’s mathematical creativity because the process of posing ques-
tions in the fourth homework problem seemed to be influenced by the student’s
previous experience of posing a question in the second homework problem.

With these two empirical examples, I attempted to illustrate (and answer the
research question) in a way that the construct of transfer, more specifically AOT,
could aid in exploration of students’ mathematical creativity at the tertiary level.
When transfer and creativity constructs are considered to be in an intersecting rela-
tionship, AOT could aid in gaining better understanding of instances in which stu-
dents transfer their mathematical creativity. The empirical examples presented here
raise new possibilities for the field to consider in research efforts focusing on these
two constructs (transfer and creativity) together.

5.4 Actor-Oriented Creativity

Previous empirical examples illustrated potentials to examine transfer (using an
AOT lens) of students’ mathematical creativity from a researcher’s perspective,
namely that the researcher’s observations and interpretations of the indication of
influences of prior experiences in a new setting were used to form the hypothesized
results. Explorations of AOT of students’ mathematical creativity could be
extended to better understand the phenomenon of creativity and its transferability
by consulting with participants on researchers’ observations or asking them to
identify their own mathematical creativity in a setting and whether there were any
influences of previous settings in their self-identified creative work. Because “nov-
ices are likely to demonstrate greater variety in their interpretations of learning
environments than experts” (Lobato, 2012, p. 235), it would be beneficial to
include students’ interpretations of their own mathematical creativity to further
this line of research. Kozbelt, Beghetto, and Runco (2010) emphasized the impor-
tance of understanding such “subjective” experiences that may not be observable
by a researcher:

The creative experience represents the more subjective forms of creativity, possibly never
resulting in a tangible product, never undergoing external evaluation or never traveling
beyond an individual’s own personal insights and interpretations ... Overlooking these sub-
jective creative experiences in favor of objectively evaluated creative products can result in
a partial conception of creative phenomena. (p. 23)

To demonstrate what it means to consider students’ perspectives, I refer to the
same student’s data from an interview that was conducted at the end of the course to
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examine the benefits of the assignment system implemented in the course (Omar
etal., 2019). At the interview, the student was asked various questions related to the
assignment system and also asked to describe mathematical creativity.

Interviewer: What’s your definition of creativity, mathematical creativity?

Student: I definitely think about, just kind of like asking a lot of questions
and being, kind of able to have insight to know like which ques-
tions are going to be like relevant and are going to be kind of a,
like an appropriate level of, like challenge and generality. Um, so
kind of which will lead in interesting directions. Um, being able
to, like really ... bridge different techniques and different ...
things that we have like learned. So kind of like learning to apply
and like generalize concepts.

In this quote, the student included actions, such as asking questions, having an
insight to ask relevant questions “which will lead in interesting directions,” making
connections between existing knowledge and a given situation, and applying and
generalizing as part of her view on mathematical creativity. These actions seemed to
align with the definition of students’ mathematical creativity provided in the previ-
ous section. Furthermore, the researcher’s observation of “posing question™ action
that was hypothesized as transferred (from the AOT lens) was part of this student’s
view of mathematical creativity. The student was also asked if she had any moments
of mathematical creativity in the course, to which she responded as follows:

I definitely ... did have um kind of like moments where I kind of felt like being able to ...
bridge examples, um, and kind of like notice general things. So, I think on ... portfolio
problems [problems on each homework] I had kind of like little moments of that, and then
with the second big project in particular, um, I think just like kind of going through and ...
coming up with proofs and writing up proofs. And then also even just the process of ...
revising, um our proofs and definitions, um, I think very kind of creative in that we were
like actually developing something and not just in the sense of like ‘O I had an epiphany’
... but having this process of kind of like going back, more like with say an essay, ...
reworking it, and making it better.

The student’s identification of her own creativity in the homework problems (which
were referred to as portfolio problems in class) seemed to align with the observa-
tions made by the researcher for both problems discussed in the previous section.
The student also mentioned that she felt creative in the last project in the course,
which was not examined by the researcher. Limited in its scope, this instance (i.e.,
the student’s identification of another moment in which she felt creative) could be
taken as a suggestion of the existence of moments that participants might perceive
as mathematically creative, but that might not be considered as such by the others
(e.g., researchers, teachers). Inclusion of students’ perspectives on mathematical
creativity and their perception of their own mathematical creativity could help us
detect nonnormative instances of students’ mathematical creativity and provide pro-
cesses that are not reported in earlier studies or included in process-orientation defi-
nitions of mathematical creativity.

I propose the term actor-oriented creativity (AOc) to distinguish students’ per-
spectives on creativity and perceptions of their own mathematical creativity from
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the ones observed or declared by others. I use actor-oriented and the lower-case ¢
(as in mini-c creativity) to emphasize the students’ views and interpretations of
their own processes. This emerging construct relates to some of the underlying
mechanisms of AOT. For example, in the AOT framework, “when taking an actor’s
point of view, the researcher does not measure transfer against a particular cogni-
tive or behavioral target” (Lobato, 2012, p. 235). This resonates with the process
orientation of AOc and inclusions of students’ perspectives of mathematical cre-
ativity. To understand AOc’s potential, in future studies of creativity, participants
could be asked to describe what mathematical creativity means to them, to identify
moments of mathematical creativity that they have experienced, and to reflect on
how these moments differed from other noncreative moments. Students’ responses
could be examined for similarities to and differences from the ones observed by the
researcher.

5.5 Conclusion

In this theoretical exploration chapter, I argue that there is an intersecting relation-
ship between transfer of learning and creativity constructs. In particular, there
could be instances of transfer that would not be part of creativity research (or
would not “count” as creative), there could be instances of creativity that would
not be part of transfer research, and there is the overlapping section where transfer
could be creative or creativity could be considered as a transferrable ability. My
exploration in this chapter was centered within the transfer construct, and the AOT
framework was gauged to examine the potential of transferability of mathematical
creativity, focusing the investigation on the intersection of transfer and creativity
constructs.

The research question that guided this theoretical exploration was addressed
through illustration of empirical examples. The student’s posing-question action as
part of the student’s mathematical creativity was observed in both problems, and
this was presented as an illustrative case for evidence of AOT of the student’s math-
ematical creativity from the second homework problem to the fourth homework
problem. Furthermore, this action was mentioned by the student as part of her view
of mathematical creativity. The student’s identification of her creative moment in
another problem was taken as a suggestion of the existence of instances of mathe-
matical creativity that may not be considered by researchers. To consider such
instances, I propose an emerging construct of actor-oriented creativity (AOc) that
explores students’ perspectives of their mathematical creativity in research studies
of mathematical creativity, especially when relativistic, process-orientation views
are considered. As an emerging construct, AOc could offer a broader range of
accounts of mathematical creativity. With its current formulation, this emerging
construct could help in exploration within the other side of the intersecting rela-
tionship of transfer and creativity, where the creativity construct is taken as the
main line of research.



5 Exploration of Students’ Mathematical Creativity with Actor-Oriented Transfer... 123

References

Askew, M. (2013). Issues in teaching for and assessment of creativity in mathematics and science.
In D. Corrigan, R. F. Gunstone, & A. Jones (Eds.), Valuing assessment in science education:
Pedagogy, curriculum, policy (pp. 169—182). Dordrecht, The Netherlands: Springer.

Baer, J., & Kaufman, J. C. (2012). Being creative inside and outside the classroom: How to boost
your students’ creativity—and your own (Vol. 2). Rotterdam, The Netherlands: Springer.

Balka, D. S. (1974). Creative ability in mathematics. Arithmetic Teacher, 21(7), 633-636. https://
doi.org/10.5951/AT.21.7.0633.

Bassok, M. (1990). Transfer of domain-specific problem-solving procedures. Journal of
Experimental Psychology: Learning, 16(3), 522-533. https://doi.org/10.1037/0278-7393.
16.3.522.

Beghetto, R. A., & Kaufman, J. C. (2007). Toward a broader conception of creativity: A case for
“mini-c” creativity. Psychology of Aesthetics, Creativity, and the Arts, 1(2), 73-79. https://doi.
org/10.1037/1931-3896.1.2.73.

Borwein, P., Liljedahl, P., & Zhai, H. (Eds.). (2014). Mathematicians on creativity. Washington,
DC: Mathematical Association of America.

Bransford, J. D., Brown, A. L., & Cocking, R. R. (1999). Learning and transfer. In J. D. Bransford,
A. L. Brown, & R. R. Cocking (Eds.), How people learn: Brain, mind experience, and school
(pp. 51-78). Washington, DC: National Academy Press.

Bransford, J. D., & Schwartz, D. L. (1999). Rethinking transfer: A simple proposal with multiple
implications. In A. Iran-Nejad & P. D. Pearson (Eds.), Review of research in education (Vol. 24,
pp- 61-100). Washington, DC: American Educational Research Association.

Bressoud, D., Johnston, E., Murphy, C., Rhea, K., Williams, J., & Zorn, P. (n.d.). The calculus
sequence (CUPM guide Calculus CASG report). Retrieved from https://www.maa.org/sites/
default/files/CalculusCASGReportFinal.pdf.

Committee on the Undergraduate Programs in Mathematics. (2015). Curriculum guide to majors
in the mathematical sciences. Washington DC: Mathematical Association of America.

Craft, A. (2005). Creativity in schools: Tensions and dilemmas. New York, NY: Routledge.

Cropley, D. H. (2015). Teaching engineers to think creatively. In R. Wegerif, L. Li, & J. Kaufman
(Eds.), The International handbook of research on teaching thinking (pp. 402—410). London,
UK/New York, NY: Routledge.

Csikszentmihalyi, M. (1999). Implications of a systems perspective for the study of creativity.
In R. J. Sternberg (Ed.), Handbook of creativity (pp. 313-338). Cambridge, UK: Cambridge
University Press.

Cui, L., Rebello, N. S., Fletcher, P. R., & Bennett, A. G. (2006, April). Transfer of learning from
college calculus to physics courses. In Proceedings of the annual meeting of the National
Association for Research in Science Teaching, San Francisco, CA. Retrieved from https://
www.researchgate.net/profile/N_Sanjay_Rebello/publication/242297311_TRANSFER_OF_
LEARNING_FROM_COLLEGE_CALCULUS_TO_PHYSICS_COURSES/links/0c960532
638f5bfd86000000.pdf.

Detterman, D. K. (1993). The case for the prosecution: Transfer as an epiphenomenon. In D. K.
Detterman & R. J. Sternberg (Eds.), Transfer on trial: Intelligence, cognition, and instruction
(pp- 1-24). Norwood, NJ: Ablex.

Dewey, J. (1920). How we think. Boston, MA: Heath.

Duncker, K. (1945). On problem-solving (L. S. Lees, Trans.). Psychological Monographs, 58(5),
i—113. https://doi.org/10.1037/h0093599.

Gick, M. L., & Holyoak, K. J. (1980). Anagogical problem solving. Cognitive Psychology, 12(3),
306-355. https://doi.org/10.1016/0010-0285(80)90013-4.

Greeno, J. G., Smith, D. R., & Moore, J. L. (1993). Transfer of situated learning. In D. K.
Detterman & R. J. Sternberg (Eds.), Transfer on trial: Intelligence, cognition, and instruction
(pp. 99-167). Norwood, NJ: Ablex.


https://doi.org/10.5951/AT.21.7.0633
https://doi.org/10.5951/AT.21.7.0633
https://doi.org/10.1037/0278-7393.16.3.522
https://doi.org/10.1037/0278-7393.16.3.522
https://doi.org/10.1037/1931-3896.1.2.73
https://doi.org/10.1037/1931-3896.1.2.73
https://www.maa.org/sites/default/files/CalculusCASGReportFinal.pdf
https://www.maa.org/sites/default/files/CalculusCASGReportFinal.pdf
https://www.researchgate.net/profile/N_Sanjay_Rebello/publication/242297311_TRANSFER_OF_LEARNING_FROM_COLLEGE_CALCULUS_TO_PHYSICS_COURSES/links/0c960532638f5bfd86000000.pdf
https://www.researchgate.net/profile/N_Sanjay_Rebello/publication/242297311_TRANSFER_OF_LEARNING_FROM_COLLEGE_CALCULUS_TO_PHYSICS_COURSES/links/0c960532638f5bfd86000000.pdf
https://www.researchgate.net/profile/N_Sanjay_Rebello/publication/242297311_TRANSFER_OF_LEARNING_FROM_COLLEGE_CALCULUS_TO_PHYSICS_COURSES/links/0c960532638f5bfd86000000.pdf
https://www.researchgate.net/profile/N_Sanjay_Rebello/publication/242297311_TRANSFER_OF_LEARNING_FROM_COLLEGE_CALCULUS_TO_PHYSICS_COURSES/links/0c960532638f5bfd86000000.pdf
https://doi.org/10.1037/h0093599
https://doi.org/10.1016/0010-0285(80)90013-4

124 G. Karakok

Guilford, J. (1950). Creativity. American Psychologist, 5(9), 444-454. https://doi.org/10.1037/
h0063487.

Guilford, J. (1959). Trends in creativity. In H. H. Anderson (Ed.), Creativity and its cultivation
(pp. 142-161). New York, NY: Wiley.

Guilford, J. (1967). The nature of human intelligence. New York, NY: McGraw-Hill.

Hadamard, J. (1945). The mathematician’s mind. Princeton, NJ: Princeton University Press.

Karakok, G. (2009). Students’transfer of learning of eigenvalues and eigenvectors: Implementation
of Actor-Oriented Transfer framework (Unpublished doctoral dissertation). Oregon State
University, Corvallis, OR.

Karakok, G. (2019). Making connections among representations of eigenvectors: What sort of
a beast is it? ZDM Mathematics Education, 51(7), 1141-1152. https://doi.org/10.1007/
s11858-019-01061-9.

Karakok, G., Savic, M., Tang, G., & El Turkey, H. (2015). Mathematicians’ views on under-
graduate student creativity. In K. Krainer & N. Vondrova (Eds.), CERME 9—Ninth congress
of the European Society for Research in Mathematics Education (pp. 1003—1009). Prague,
Czech Republic. Retrieved from http://www.mathematik.uni-dortmund.de/ieem/erme_temp/
CERMED9.pdf

Karakok, G., Savic, M., Tang, G., El Turkey, H., Plaxco, D., & Naccarato, E. (2016). A rubric
for creativity in writing proofs. The Mathematical Association of America Focus Magazine,
36(1), 42-43. Retrieved from http://digitaleditions.walsworthprintgroup.com/publication/?m
=7656&1=293604&p=32.

Kim, K.-H. (2012). The creativity crisis: The decrease in creative thinking scores on the Torrance
Tests of Creative Thinking. Creativity Research Journal, 23(4), 285-295. https://doi.org/10.10
80/10400419.2011.627805.

King, J. J. (2017). Students’ social adaptation to mathematics tasks (Unpublished doctoral dis-
sertation). University of Northern Colorado, Greeley, CO.

Kozbelt, A., Beghetto, R. A., & Runco, M. A. (2010). Theories of creativity. In J. C. Kaufman &
R. J. Sternberg (Eds.), The Cambridge handbook of creativity (pp. 20-47). Cambridge, UK/
New York, NY: Cambridge University Press.

Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cambridge,
UK: Cambridge University Press.

Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin,
A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students
(pp. 129-145). Haifa, Israel: Sense.

Leikin, R. (2014). Challenging mathematics with multiple solution tasks and mathematical inves-
tigations in geometry. In'Y. Li, E. A. Silver, & S. Li (Eds.), Transforming mathematics instruc-
tion (pp. 59-80). Dordrecht, The Netherlands: Springer.

Leikin, R., & Pitta-Pantazi, D. (2013). Creativity and mathematics education: The state of
the art. ZDM Mathematics Education, 45(2), 159—166. https://doi.org/10.1007/s11858-012-
0459-1.

Lester, S. (1999). An introduction to phenomenological research. Taunton, UK: Stan Lester
Developments.

Liljedahl, P. (2013). Illumination: An affective experience? ZDM Mathematics Education, 45(2),
253-265. https://doi.org/10.1007/s11858-012-0473-3.

Liljedahl, P, & Sriraman, B. (2006). Musings on mathematical creativity. For the Learning of
Mathematics, 26(1), 17-19. Retrieved from https://www.jstor.org/stable/40248517.

Lobato, J. (2003). How design experiments can inform rethinking of transfer and vice versa.
Educational Researcher, 32(1), 17-20. https://doi.org/10.3102/0013189X032001017.

Lobato, J. (2006). Alternative perspectives on the transfer of learning: History, issues, and chal-
lenges for future research. The Journal of the Learning Sciences, 15(4), 431-449. https://doi.
org/10.1207/s15327809j1s1504 _1.

Lobato, J. (2012). The actor-oriented transfer perspective and its contributions to educational
research and practice. Educational Psychologist, 47(3), 232-247. https://doi.org/10.1080/00
461520.2012.693353.


https://doi.org/10.1037/h0063487
https://doi.org/10.1037/h0063487
https://doi.org/10.1007/s11858-019-01061-9
https://doi.org/10.1007/s11858-019-01061-9
http://www.mathematik.uni-dortmund.de/ieem/erme_temp/CERME9.pdf
http://www.mathematik.uni-dortmund.de/ieem/erme_temp/CERME9.pdf
http://digitaleditions.walsworthprintgroup.com/publication/?m=7656&i=293604&p=32
http://digitaleditions.walsworthprintgroup.com/publication/?m=7656&i=293604&p=32
https://doi.org/10.1080/10400419.2011.627805
https://doi.org/10.1080/10400419.2011.627805
https://doi.org/10.1007/s11858-012-0459-1
https://doi.org/10.1007/s11858-012-0459-1
https://doi.org/10.1007/s11858-012-0473-3
https://www.jstor.org/stable/40248517
https://doi.org/10.3102/0013189X032001017
https://doi.org/10.1207/s15327809jls1504_1
https://doi.org/10.1207/s15327809jls1504_1
https://doi.org/10.1080/00461520.2012.693353
https://doi.org/10.1080/00461520.2012.693353

5 Exploration of Students’ Mathematical Creativity with Actor-Oriented Transfer... 125

Lobato, J., & Siebert, D. (2002). Quantitative reasoning in a reconceived view of transfer. Journal
of Mathematical Behavior, 21(1), 87-116. https://doi.org/10.1016/S0732-3123(02)00105-0.

Lockwood, E. (2011). Student connections among counting problems: An exploration using
actor-oriented transfer. Educational Studies in Mathematics, 78(3), 307-322. https://doi.
org/10.1007/s10649-011-9320-7.

Luria, S. R., Sriraman, B., & Kaufman, J. C. (2017). Enhancing equity in the classroom by teach-
ing for mathematical creativity. ZDM Mathematics Education, 49(7), 1033—1039. https://doi.
org/10.1007/s11858-017-0892-2.

Mann, E. L. (2006). Creativity: The essence of mathematics. Journal for the Education of the
Gifted, 30(2), 236-260. https://doi.org/10.4219/jeg-2006-264.

Mayer, R. E., & Wittrock, M. C. (1996). Problem-solving transfer. In D. Berliner & R. Calfee
(Eds.), Handbook of educational psychology (pp. 45-61). New York, NY: Macmillan.

Mestre, J. (2003). Transfer of learning: Issues and research agenda. Retrieved from http://www.
nsf.gov/pubs/2003/nsf03212/.

Nadjafikhah, M., Yaftian, N., & Bakhshalizadeh, S. (2012). Mathematical creativity: Some defini-
tions and characteristics. Procedia - Social and Behavioral Sciences, 31, 285-291. https://doi.
org/10.1016/j.sbspro.2011.12.056.

National Council of Supervisors of Mathematics. (2012). Improving student achievement in math-
ematics by expanding opportunities for our most promising students of mathematics. Denver,
CO: Author.

National Council of Teachers of Mathematics. (1980). Agenda for action. Reston, VA: Author.

National Science Board. (2010). Preparing the next generation of STEM innovators: Identifying
and developing our nation’s human capital (NSB-10-33). Arlington, VA: National Science
Foundation.

Omar, M., Karakok, G., Savic, M., & El Turkey, H. (2019). “I felt like a mathematician™:
Homework problems to promote creative effort and metacognition. Problems, Resources, and
Issues in Mathematics Undergraduate Studies (PRIMUS), 29(1), 82—102. https://doi.org/10.1
080/10511970.2018.1475435.

Partnership for 21st Century Skills. (2006). A state leader’s action guide to 21st century skills: A
new vision for education. Tucson, AZ: Author.

Patton, M. Q. (2002). Qualitative research and evaluation methods. Thousand Oaks, CA: Sage.

Pitta-Pantazi, D., Kattou, M., & Christou, C. (2018). Mathematical creativity: Product, per-
son, process and press. In F. Singer (Ed.), Mathematical creativity and mathematical gift-
edness. ICME-13 Monographs (pp. 27-53). Cham, Switzerland: Springer. https://doi.
org/10.1007/978-3-319-73156-8_2.

Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research
Journal, 24(1), 92-96. https://doi.org/10.1080/10400419.2012.650092.

Sadler-Smith, E. (2015). Wallas’ four-stage model of the creative process: More than meets the
eye? Creativity Research Journal, 27(4), 342-352. https://doi.org/10.1080/10400419.2015.10
87277.

Savic, M., Karakok, G., Tang, G., El Turkey, H., & Naccarato, E. (2017). Formative assessment of
creativity in undergraduate mathematics: Using a creativity-in-progress rubric (CPR) on prov-
ing. In R. Leikin & B. Sriraman (Eds.), Creativity and giftedness: Interdisciplinary perspec-
tives from mathematics and beyond (pp. 23-46). New York, NY: Springer.

Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic.

Schoning, M., & Witcomb, C. (2017, September 15). This is the one skill your child needs for
the jobs of the future. World Economic Forum. Retrieved from https://www.weforum.org/
agenda/2017/09/skills-children-need-work-future-play-lego/.

Schumacher, C. S., & Siegel, M. J. (2015). 2015 CUPM curriculum guide to majors in the math-
ematical sciences. Washington, DC: Mathematical Association of America.

Schwartz, D. L., Bransford, J. D., & Sears, D. (2005). Efficiency and innovation in transfer. In J. P.
Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 1-51).
Greenwich, CT: Information Age.


https://doi.org/10.1016/S0732-3123(02)00105-0
https://doi.org/10.1007/s10649-011-9320-7
https://doi.org/10.1007/s10649-011-9320-7
https://doi.org/10.1007/s11858-017-0892-2
https://doi.org/10.1007/s11858-017-0892-2
https://doi.org/10.4219/jeg-2006-264
http://www.nsf.gov/pubs/2003/nsf03212/
http://www.nsf.gov/pubs/2003/nsf03212/
https://doi.org/10.1016/j.sbspro.2011.12.056
https://doi.org/10.1016/j.sbspro.2011.12.056
https://doi.org/10.1080/10511970.2018.1475435
https://doi.org/10.1080/10511970.2018.1475435
https://doi.org/10.1007/978-3-319-73156-8_2
https://doi.org/10.1007/978-3-319-73156-8_2
https://doi.org/10.1080/10400419.2012.650092
https://doi.org/10.1080/10400419.2015.1087277
https://doi.org/10.1080/10400419.2015.1087277
https://www.weforum.org/agenda/2017/09/skills-children-need-work-future-play-lego/
https://www.weforum.org/agenda/2017/09/skills-children-need-work-future-play-lego/

126 G. Karakok

Shanks, D. R. (2007). Associationism and cognition: Human contingency learning at 25. The
Quarterly Journal of Experimental Psychology, 60(3), 291-309. https://doi.org/10.1080/17470
210601000581.

Sheffield, L. (2009). Developing mathematical creativity—questions may be the answer. In
R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of
gifted students (pp. 87-100). Rotterdam, The Netherlands: Sense.

Sheffield, L. J. (2013). Creativity and school mathematics: Some modest observations. ZDM
Mathematics Education, 45(2), 325-332. https://doi.org/10.1007/s11858-013-0484-8.

Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solv-
ing and problem posing. ZDM Mathematical Education, 29(3), 75-80. https://doi.org/10.1007/
s11858-997-0003-x.

Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematics Educator,
14(1), 19-34.

Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics? Journal of Secondary
Gifted Education, 17(1), 20-36. https://doi.org/10.4219/jsge-2005-389.

Sriraman, B. (2009). The characteristics of mathematical creativity. ZDM Mathematics Education,
41(1-2), 13-27. https://doi.org/10.1007/s11858-008-0114-z.

Starko, A. J. (2017). Creativity in the classroom: Schools of curious delight (6th ed.). New York,
NY: Routledge.

Tang, G., El Turkey, H., Savic, M., & Karakok, G. (2015). Exploration of undergraduate stu-
dents’ and mathematicians’ perspectives on creativity. In T. Fukawa-Connelly, N. Infante,
K. Keene, & M. Zandieh (Eds.), Proceedings of the 18th annual conference on Research in
Undergraduate Mathematics Education (pp. 993—-1000). Pittsburgh, PA. Retrieved from http://
sigmaa.maa.org/rume/RUME18v2.pdf.

Thorndike, E. L. (1903). Educational psychology. New York, NY: Lemke & Buechner.

Torrance, E. P. (1966). The Torrance tests of creative thinking: Technical-norms manual. Princeton,
NIJ: Personnel Press.

Tuomi-Grohn, T., & Engestrom, Y. (2003). Conceptualizing transfer: From standard notions
to developmental perspectives. In T. Tuomi-Grohn & Y. Engestrom (Eds.), Between school
and work: New perspectives on transfer and boundary-crossing (pp. 19-38). New York, NY:
Pergamon.

Ward, T. B., & Kolomyts, Y. (2010). Cognition and creativity. In J. C. Kaufman & R. J. Sternberg
(Eds.), The Cambridge handbook of creativity (pp. 93—112). Cambridge, UK/New York, NY:
Cambridge University Press.

Weber, K. (2005). Problem-solving, proving, and learning: The relationship between
problem-solving processes and learning opportunities in the activity of proof construc-
tion. The Journal of Mathematical Behavior, 24(3-4), 351-360. https://doi.org/10.1016/j.
jmathb.2005.09.005.

Woodworth, R. S., & Thorndike, E. L. (1901). The influence of improvement in one mental func-
tion upon the efficiency of other functions. (I). Psychological Review, 8(3), 247-261. https://
doi.org/10.1037/h0074898.

Zazkis, R., & Holton, D. (2009). Snapshots of creativity in undergraduate mathematics education.
In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of
gifted students (pp. 345-365). Haifa, Israel: Sense.


https://doi.org/10.1080/17470210601000581
https://doi.org/10.1080/17470210601000581
https://doi.org/10.1007/s11858-013-0484-8
https://doi.org/10.1007/s11858-997-0003-x
https://doi.org/10.1007/s11858-997-0003-x
https://doi.org/10.4219/jsge-2005-389
https://doi.org/10.1007/s11858-008-0114-z
http://sigmaa.maa.org/rume/RUME18v2.pdf
http://sigmaa.maa.org/rume/RUME18v2.pdf
https://doi.org/10.1016/j.jmathb.2005.09.005
https://doi.org/10.1016/j.jmathb.2005.09.005
https://doi.org/10.1037/h0074898
https://doi.org/10.1037/h0074898

®

Check for
updates

Chapter 6
Transfer as Progressive Re-Mediation
of Object-Oriented Activity in School

Joshua Danish, Asmalina Saleh, Andrea Gomoll, Robert Sigley,
and Cindy Hmelo-Silver

Transfer is a metaphor intended to describe the application of knowledge that is
developed in one context within a second (Day & Goldstone, 2012; Lobato, 2006,
2012). However, researchers have consistently pointed out that transfer is hard to
find, particularly when the original and transfer contexts look quite different as
when comparing school to work (Bransford, Brown, & Cocking, 2000; Bransford
& Schwartz, 1999). The difficulty in identifying episodes of transfer has led
researchers to question how it is defined and ultimately to question the metaphor
itself, pointing out that it is both vague and problematic (Beach, 1999; Hager &
Hodkinson, 2009). As a metaphor, transfer implies that something is moved from
one situation to the next. However, there has been quite a lot of debate regarding
what exactly moves across contexts, with arguments that it is an individual’s
knowledge structures that allow movement between contexts or a perception of
contexts as similar (Day & Goldstone, 2012; Lobato, 2006, 2012).
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Sociocultural theorists have noted that although individuals move across con-
texts, there are also aspects of social contexts that must remain similar for the kinds
of activity that we typically label as transfer (Hager & Hodkinson, 2009; Lerman,
2000). However, a number of sociocultural theorists have suggested that this kind of
explanation remains unsatisfactory because it doesn’t articulate how the interaction
between individuals and contexts lead to the kinds of performances that individuals
are able to successfully engage in within new contexts (Beach, 1999). This led
Beach (1999) to suggest that the metaphor of transfer is in fact the problem, and we
should instead think about consequential transitions between spaces as individuals
learn to adapt their practices in new spaces. In an effort to examine transfer between
school and work, Tuomi-Gréhn and Engestrom (2003) suggested a further move to
focus instead on boundary crossing between activity systems and proposed that we
might focus on how new forms of activity develop in this space. Although we agree
that it is important to explore the interaction between individuals who move between
contexts and the features of those contexts themselves, we agree with Hager and
Hodkinson (2009) that shifting metaphors may not go far enough to address the ten-
sions that arise within the transfer metaphor in a manner that allows clear descrip-
tion of the processes that we are in fact interested in. Furthermore, we are interested
in designing and developing learning environments, particularly within schools, that
can help teachers to support learners in transferring their knowledge across settings
in ways that both honor learner agency and help learners to be successful in the
kinds of tasks valued by schools.

Therefore, we have been working on an approach that focuses on the progressive
re-mediation of object-oriented activity (Danish, Saleh, Gomoll, Sigley, & Hmelo-
Silver, 2018). This approach is grounded in activity theory and, in particular, the
importance of understanding how all of human activity is goal directed, what activ-
ity theorists refer to as the object of shared activity (Engestrom, 1987; Wertsch,
1981). At the same time, activity theorists also note that all activity is mediated or
transformed by the tools that individuals use in their daily activity. Our approach
thus focuses on the way that shifts in both mediators and objects of activity change
and remain similar across contexts. Thus we use the term re-mediation to refer to
intentional changes in mediation. As we will describe below, we also assume that
this kind of change is progressive in that learners rarely spontaneously adopt new
mediators, or new objects of their activity, but are more likely to incrementally
change their mediators, object, or both over time.

Our goal in developing this approach to transfer has been to better understand
school-based transfer and to do so in a way that also helps us to better understand
transfer at large. In aiming to understand how transfer might work in school, we
necessarily want to understand how teachers can support transfer through their
actions both when ideas are first introduced and when they are revisited (the trans-
fer context). In the remainder of this chapter, we first lay out our theoretical notion
of object-oriented transfer and discuss how it builds upon and expands prior defini-
tions of transfer. We then present a brief summary of a series of interactions where
a student, Brandon, works with a researcher and instructor, Amy, to transfer his
ideas about how to represent and identify combinatorics across both classroom and
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clinical interview contexts. Across these interactions, we highlight how Amy
worked to support Brandon’s orientation to tools as useful for problem solving,
making connections about tool use across problems, and articulating his evolving
ideas using formal mathematical terminology. This case surfaces a number of
instructor actions that support object-oriented transfer. Finally, we propose con-
crete steps that teachers can take to prepare for and support transfer of mathemati-
cal tools and concepts by attending to transfer as an object-oriented phenomenon.

6.1 Theoretical Approach: Object-Oriented Transfer

6.1.1 Activity Theory

Our approach to exploring transfer is grounded in activity theory (Engestrom,
1987). Activity theory builds broadly on Vygotsky (1978) and other sociocultural
theories of learning (Danish & Gresalfi, 2018). Activity theory explores how human
actions and learning are fundamentally shaped by the social context in which they
occur and at the same time help to define those social contexts. Activity theory dif-
fers from other sociocultural approaches in that it takes collective, object-oriented
activity as the unit of analysis for understanding cognition and learning (Wertsch,
1981). Collective activity refers to activities where individuals are working together
towards a common end. This focus on collective activity highlights the fact that our
experiences are shaped by the ways that we aim to act in coordination with other
people. Naturally, individuals have multiple disparate goals, and they are often
changing during activity. However, it is our shared goals, or mismatches between
them, which define our collective activity and interactions. To help distinguish
between the goals that individuals pursue in a given moment and those that a group
of people are working towards, the shared goals of the collective group are referred
to as the object of activity. From this perspective, to understand cognition and learn-
ing, we need to understand how our shared objects and individual goals shape our
actions. In the context of transfer, this means further understanding how the pres-
ence of both similar and different goals or objects may lead to engagement in simi-
lar forms of activity.

To further understand activity, activity theorists also note that all human action is
mediated, or transformed by our sociocultural context (Wertsch, 2017). Mediators
include the tools that we use, the rules that govern our actions, the community that
we are interacting with, and the division of labor through which we all orient
towards our shared object of activity (Engestrom, 1987; Wertsch, 1981, 2017). It is
important to note that from this perspective, tools include both material dimensions
(e.g., the actual paper on which a student has inscribed a table to represent different
combinations of pizza toppings) as well as an ideal dimension (e.g., the mathemati-
cal concepts embedded within the student’s table) that are interconnected (Cole,
1996). The way that a student uses a tool is also shaped by the object of their activ-
ity. Put colloquially, students consider: What is it I am trying to accomplish? This,
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their object or goal, will shape how they take up the tool in action. These actions are
then further mediated by the rules, tool, and division of labor. Mediation is also
always bidirectional, with the tools that a student has available also shaping their
perspective on the object of activity.

By way of an example, consider the aphorism that if you give a child a hammer,
everything starts to look like a nail. This suggests that a hammer somehow carries
with it the idea that all things should be pounded flat like a nail. However, activity
theory challenges us to consider how the tool and object are distinct components of
activity. Following this, we might say that if you teach a child that a hammer (a tool)
is great for flattening things (an object), the child will link these two concepts in
their understanding. Thus, the child is likely to either flatten things when using a
hammer (i.e., as a tool) or to consider the relevance of a hammer as they achieve
certain objects or goals (e.g., such as flattening nails). We argue that this bidirec-
tional relationship between tools and the object of activity is an important aspect of
transfer to consider when teaching. A teacher might choose whether they want chil-
dren to focus on the tool itself or on the purposes they might pursue with the tool
(or, alternatively, the affordances of other tools for that object of flattening a nail),
depending on what they want their students to take away from the lesson. At the
same time, it is important to explicitly recognize that students’ activities always
involve both the tools and an object of activity and, thus, both should be chosen
intentionally by the teacher. Furthermore, activity theory might ask how other medi-
ators of activity shape a learners’ experience with a specific tool. What rules are
there that encourage or discourage the use of hammers? What rules shape how ham-
mers are used? For example, children are often taught only to hammer when wear-
ing safety glasses, which might lead them to hesitate when glasses are not present.
What about the community and division of labor? How would children coordinate
their actions when working with a limited number of hammers or a limited number
of nails that need hammering? Activity theory suggests that we need to always con-
sider the role of rules, community, and the division of labor in mediating the use of
tools in supporting human learning and activity.

6.1.2 What Transfers?

This analysis suggests that when looking at transfer, it is valuable to consider both
the tools that transfer, and the objects that learners are pursuing, as well as the vari-
ous mediators of learners’ activity within both the original and transfer contexts—
issues that activity theory can help make visible. From our perspective, traditional
transfer accounts focus largely on the “tools” that we see in activity theory. For
example, approaches to transfer that are grounded in cognitive theory ask whether
learners have a sufficiently abstracted notion of a given tool to apply it within a new
context (e.g., Barnett & Ceci, 2002; Goldstone & Sakamoto, 2003). This approach
then explores how learning environments provide learners with sufficient opportu-
nities to generalize and abstract their understanding of the tool. Further, this
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approach then looks to see whether students spontaneously recognize that their tool
has value within the new context. However, these approaches typically view a con-
text in the form of a “problem.” Social dimensions of the context such as the role of
other members of the community, or the rules that might be present and so on, are
less visible in this kind of analysis. More importantly, we believe that by conflating
a tool with a specific purpose, this approach may obscure how students ultimately
need to understand both tool and purpose and their relationship to each other. That
is, true understanding of a hammer is tied to how learners recognize that it can be
used for both putting nails into wood and pulling them out and that both might sup-
port a broad range of activities.

We think it is also important to note that a cognitive approach assumes what we
refer to as a normative account of transfer. That is, schools and disciplines expect
and value certain kinds of transfer, and then scholars often look to see if those hap-
pen or not. Thus, whereas creativity researchers are interested in the child who uses
a hammer to prop open a door or represent a spaceship, a normative account would
only recognize and value the use of the hammer for putting nails into wood or taking
them out. We view this as taken for granted, and, thus, one intention of our explora-
tion of transfer as progressively mediated and object oriented is to explicitly note
this normative influence and the power differential that allows teachers to indicate
which kinds of transfer are valuable and which are to be ignored or discouraged.

As an alternative to cognitive approaches to transfer, actor-oriented approaches
to transfer such as the work by Lobato (2012) build on sociocultural theories to
identify how transfer is tied to learners’ experiences with tools in rich social con-
texts. An important distinction is that this actor-oriented approach focuses on what
learners see as relevant to transfer in a context rather than focusing on a more nor-
mative account. That is, scholars using this approach would ask: What does a child
notice about hammers in the first place? Or, why does a child view a hammer as
being something that is useful for pounding nails? Or, if a child is instead interested
in using a hammer to remove nails and other fasteners in new contexts, this approach
doesn’t view that as a failure to transfer the notion that a hammer is for pounding
nails (the normative account) but rather as successful transfer of the role of the ham-
mer in removing nails (also normative but less common) or for emulating a laser
gun (not normative but creative and authentic). Then we might ask what it was that
led students to view the hammer in that way. Although we agree with the actor-
oriented approach’s critique of a sole focus on normative accounts of transfer, we
believe that there is also value in reconciling teachers’ needs to promote specific
normative accounts to accomplish their daily tasks. Thus, our goal in building on
actor-oriented approaches to transfer within a mediated and object-oriented
approach to transfer is to focus on the intersection, connection, and tensions that lie
between students’ experiences and their own objects. We also want to attend to the
kinds of mediators that teachers want their students to be able to use and the objects
teachers wish their students to pursue. We believe that focusing on these two dimen-
sions (mediators and objects) can lead us to more deeply recognize the work, and
related tensions, that teachers need to engage in when promoting their academic
agenda in interaction with students who might not yet share it.
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In addition, we believe that prior accounts of transfer have largely focused on
how learning environments prepare students for transferring later and then explore
if and when students do transfer. That is, we feel that the focus has been on how
teachers can support transfer out from a classroom context whereas we would also
like to explore how they might support transfer into new classroom contexts because
that is often an important building block for school success and later transfer beyond
school. We are not the first to explore how transfer can be supported within transfer
contexts (Beach, 1999; Tuomi-Grohn & Engestrom, 2003). However, we believe
that articulating this movement in terms of the shifting mediators and objects that
participants engage with can provide new insights into the process. We now discuss
how an object-oriented approach to transfer might build on prior accounts to explore
this issue.

6.1.3 Teachers and Intentional Transfer

Actor-oriented approaches to transfer certainly recognize the socially situated
nature of learning and thus the impact of multiple social factors on those features of
a tool that students are likely to transfer. As Lobato and colleagues (Lobato, 2012;
Lobato, Rhodehamel, & Hohensee, 2012) noted, noticing features of a tool and
recognizing them as valuable is a socially situated action. Teachers and other learn-
ers help define what a student notices as important and relevant and thus what they
are likely to transfer into new contexts. In activity theoretic terminology, learning a
new tool is mediated by the rules, other tools, community, and division of labor
within the activity. Engle, Lam, Meyer, and Nix (2012) further noted how teachers
might play a role in framing activities in ways that are more “expansive,” helping
learners to recognize the potential generality of a tool they are learning about.
However, these accounts largely focus on cases where teachers are helping students
to transfer out to future activities.

In contrast, we view teachers as continuously aiming to support transfer from
one context to another within their own classrooms or from their classroom to the
next. This is more modest but equally important. Our goal in exploring object-
oriented transfer is to better understand how teachers might intentionally support
this kind of transfer in mathematical classrooms and beyond. From this perspec-
tive, we first want students to recognize that tools are useful for specific objects and
that it is desirable for them to continue using those tools as they encounter similar
objects across contexts. That is, we want to think about how learners might transfer
both tools and objects, not just one or the other. This suggests that rather than
exploring whether students see problems or “contexts” as similar or different, we
need to explore whether they see an object of activity as similar, whether they see
similarities or differences in the other mediators that support that overlap in con-
texts, and whether they see those differences as consequential for if and how they
use the tool in the new context. In the example of Brandon presented later in this
chapter, we are interested in how he transfers the need to identify the possible
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combinations of elements within a set as well as the value of a specific graphical
representation as a tool for supporting efforts to identify those combinations.

An object-oriented approach to transfer also calls our attention to the fact that
some aspects of activity are approved by members of the community and some are
not. When participants behave in expected and ratified ways, this is made clear in
interaction. In contrast, when participants behave in ways that contradict the com-
munal rules, division of labor, or object of activity, this is often made visible to them
or leads to a breakdown in activity. In the case of classrooms, the teacher plays a
particularly important and salient role in shaping what learners view as appropriate.
Similar to Engle et al.’s (2012) notion of expansive framing, we believe that this
means we need to attend to how teachers might encourage transfer and how learners
experience teachers’ different ways of framing transfer. This suggests that it is
important to understand both how future transfer is encouraged, if it is, in an origi-
nal context and how it is then further encouraged in new transfer contexts.
Importantly, we ask: How does this encouragement mediate learners’ understanding
of the tools, object, and other mediators that are part of their transfer experience?

6.1.4 How Do We Look for the Process of Transfer?

Given that our focus is on transfer and not all learning, we think it is important to
focus explicitly on the processes through which students recognize tools not just as
useful but as potential candidates for transfer and when they recognize objects of
activity as related. To understand this within classroom activity, we think it is there-
fore equally important to attend to how and when teachers support this process,
helping students to see tools as relevant for transfer or encouraging or ratifying
student belief that particular tools can and should transfer. When teachers do not
support this process successfully, it is likely students will resist the effort to help
them transfer the target tools. Woven throughout our mediated, object-oriented
transfer perspective is our activity theoretic assumption that tools never transfer on
their own but rather that tools are used in pursuit of specifics objects. Thus, learners
likely view tools and objects as interconnected and learn to pursue objects with
tools and vice versa. Taking an object-oriented approach, we work to attend to how
and when this connection happens. We see this as similar to the actor-oriented
approaches to transfer in that we remain interested in what students’ notice and take
up, but we also extend those ideas by focusing on how learners’ activities are medi-
ated, including the work of a more knowledgeable other (the teacher) in promoting
institutionally supported tools and objects for transfer.

Thus, the four key types of moments to look for in a potential transfer situa-
tion are:

1. How teachers frame tools and objects as interrelated and whether they indicate
through their actions that either or both might be useful in other future
contexts.
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2. How students see tools and objects as relevant and whether they recognize that
this might be worthy of transfer to future contexts.

3. How teachers provide opportunities for students to transfer prior tools into new
contexts and then help students view that transfer task as valuable.

4. How students attempt to transfer in new contexts and how they come to view this
as successful and valuable and thus worth repeating.

It is important to note that although these moments may appear in sequence, we
assume that they are often happening iteratively and in an overlapping manner as
learners come to appropriate tools in new ways and recognize their potential for
transfer. We now briefly illustrate how this approach can help us explore transfer in
a sample data set before returning to a discussion of how teachers might support
transfer of mathematical tools and concepts from this perspective.

6.2 Working Towards Transfer with Brandon: An Example

The video data described in this paper come from a larger longitudinal study that
was conducted in a small suburban community in the Northeastern United States.
The study contained 32 in-class problem-solving sessions (1 hour each) led by
researchers. Students explored the development of mathematical ideas in combina-
torics and fractions before they were formally introduced to the ideas, algorithms,
and formal academic language. Students were guided by facilitators as they worked,
with little direct instruction provided to the whole class.

The video highlighted in our analysis comes from one of the early problem-
solving sessions and a follow-up interview with one of the participants, Brandon
(Maher & Martino, 1998). Our interest in Brandon’s work emerged based on the
experiences of two of the authors who used this as an example in their own teaching
to demonstrate transfer and the use of isomorphisms. As part of a larger project, we
used the VMCAnalytic video analysis tool (Maher, Palius, Maher, Hmelo-Silver, &
Sigley, 2014) as a space to engage in iterative interaction analysis (Jordan &
Henderson, 1995). As a research team, we held data sessions centered on exploring
mediated, object-oriented transfer and how it unfolded in Brandon’s recurring work
with researcher Amy. Participants in these sessions shared initial thoughts about the
key events in each video related to our interest in understanding how transfer
emerges within activity and then clipped and annotated these events within the
VMCAnalytic for the next session. Over the course of several sessions, our research
team narrowed our focus to one class session and interview with Brandon. In the
classroom segment, two fourth-grade children, Brandon and Colin, were working to
solve a combinatorics problem about combinations of pizzas and toppings. The sec-
ond, and the more extensive focus of our analysis, involved a clinical interview with
aresearcher, Amy, and the fourth-grade student, Brandon, solving the same problem
and then the ensuing interaction when Amy asked Brandon what this task
reminded him of.
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Elsewhere, we analyzed a sequence of activities that Brandon engaged in, high-
lighting the various moments where he and the teacher explored the mathematical
contexts and how those moments helped make our framing visible (Danish, Saleh,
Gomoll, Sigley, & Hmelo-Silver, 2017; Danish et al., 2018). Here, for clarity pur-
poses, we present a streamlined version of this account organized by our four key
features to help make visible the role that each might play in what we observed as
“transfer.” It is important to note that, like many learners, Brandon also had interme-
diate steps in his activity and benefited from iterative, repeated engagement with
these ideas. For clarity’s sake, however, we present a streamlined account intended
to highlight how an object-oriented approach to transfer can help us think about
possibilities for supporting effective transfer. Even in streamlined form, however,
we believe the progressive nature of this transition is apparent.

6.2.1 Introducing Generalizable Tools in Math Class

Two events appear to be particularly important in setting the stage for Brandon to
transfer his ideas across math classes. First, the teacher asked the students to think
about how to combine colored blocks into stacks in different ways. This introduced
the idea of listing out combinations as a practice that the classroom could later
build on. Then, in our focal sequence, the students were asked to list out combina-
tions of possible pizza toppings. Although the teachers clearly knew these were
related activities, they did not initially make that explicit. However, they did sup-
port the students in identifying their own productive methods for recording and
vetting different combinations of pizza toppings. Here we see that both the process
of trying to list all of the possible combinations and the specific representational
tool—a grid-like table where the students listed each combination in order (see
Fig. 6.1)—are powerful tools that might be repurposed for later math problems.
However, Amy didn’t simply introduce the table. Rather, Brandon and the other
students were able to identify their own process and thus to see how their approach
to structuring the information might be useful in addressing the specific problem.
Furthermore, Amy helped the students to see the value in their approach by asking

Fig. 6.1 Brandon’s pizza
combinations. The letters
on the top are toppings,
and 1 indicates the topping
is present and O indicates it
is absent
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clarifying questions about how they went about listing their sequence and why
they chose that approach. For example, Amy scaffolded Brandon in indicating how
grouping the different topping patterns helped him to identify whether he had
already listed a specific combination and thus could help avoid redundancy. Our
mediated, object-oriented approach to transfer highlights three key aspects of this
part of the process: (a) The structure of the table itself is a powerful “tool” for
identifying combinations, (b) the practice of carefully and sequentially construct-
ing the table is also a conceptual tool for identifying combinations in mathematics,
and (c) both of these support the object of identifying all possible combinations.
However, as we will show below, simply pointing this out is not enough for
Brandon (or most students in our experience) to spontaneously transfer these ideas
to new contexts. However, this does set the stage for that accomplishment.
Importantly, Amy was also attending to Brandon’s ideas here so that she could then
aim to build on them later.

6.2.2 Revisiting Useful Math Tools to Explore Their Utility

Three weeks after the classroom activity where Brandon produced the table of pizza
toppings, Amy met with him in a one-on-one interview to discuss his representation.
Although on the one hand, this kind of interview is “artificial” in that most class-
rooms do not have a researcher who engaged in one-on-one meetings with students,
we also believe it helps to depict what is possible when a thoughtful educator revis-
its a students’ earlier activity in a discussion with them, something we have seen
many successful teachers do within their classrooms. In this interaction, Amy began
by asking Brandon to recount what he had done to list his pizza toppings using the
table. Brandon began to describe that he had listed all of the different combinations
in order starting with one topping (pepperoni) and then combining that one topping
with all possible pairs (pepperoni and mushroom, pepperoni and sausage, etc.) and
then three toppings and so on. Amy also asked Brandon to indicate how he knows
to move on to a new topping (when all combinations have been exhausted) and how
he knows to skip some (they were already listed). Brandon didn’t have ready
answers to these questions and in fact changed his approach part way through the
interview when he believed that he had identified an error.

In this way, Amy’s prompts were key to Brandon repeating, articulating, and
continually refining his tool use (mediating it)—if he had stopped at any point he’d
have had an incomplete and potentially incorrect solution. Brandon and Amy both
continually noted how this tool is tied to the specific object of identifying the num-
ber of combinations in the set, helping to highlight the value of this tool for that
specific but also generalizable object. Furthermore, Amy helped him to articulate
how his tools (the table and practice of filling it in) are productive for solving the
problem of systematically identifying combinations of elements in a set. She effec-
tively highlighted the importance of these aspects of the approach, helping him to
notice and articulate them. We believe this also set the stage for Amy to help con-
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nect this solution to another context. However, this also highlights how transfer is
rarely spontaneous and “correct” in that learners are always refining their under-
standing and their practices in response to feedback. Being aware of this, a teacher
can help the students to build up their repertoire of transferable tools continuously
as they engage with them in classroom activities.

6.2.3 Signaling and Ratifying Successful Transfer

At this point, Brandon appeared to see the utility of his approach to identifying
combinations of pizza toppings but had not yet discussed its utility in other con-
texts. Thus, although he had now used this tool more than once, he had not yet
demonstrated unaided transfer. We add “unaided” here to highlight that he has in
fact transferred his knowledge when we consider the full mediated activity system
including Amy, which we view as quite important for teaching contexts. For teach-
ers, unaided transfer is rarely necessary during a curricular unit or even across
units. Rather, mediated transfer, where students can perform an action that looks
like transfer, is often how teachers support progressive changes in how learners use
tools, and one of our goals in articulating the role of mediated object-oriented trans-
fer is to highlight these intermediary steps as a feature of the changing system. In
this case, Amy also helped Brandon to recognize that he may have done something
unique by asking him if he did, in fact, recognize this as similar to other things they
had done in class: “Does this problem with the pizzas remind you of any other
problems we’ve done this year?” Brandon didn’t at first think of a similarity, and
Amy prompted him, “It could be in the way you’ve done them.” This focused his
attention on the approach to a solution rather than just the materials, and he indi-
cated that it reminded him of the “problem with the blocks” where the students had
to find all of the combinations of yellow and red Unifix® cubes that might be com-
bined (see Fig. 6.2).

Again, Amy didn’t simply stop at Brandon indicating a simple awareness of
similarity. Rather, she brought out the Unifix® cubes and asked him first to show
how he worked with them and then to try and apply his approach of using the table

Fig. 6.2 Brandon
reassembles Unifix® cubes
to show Amy how he
found different
combinations
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to the problem of different colored cubes. He demonstrated his solution to Amy, and
appeared to see the similarity, but was still using different approaches. Thus, by
some measures, he had not yet fully “transferred” his knowledge. Fortunately, Amy
asked him if he could use the table to also identify the patterns in Unifix® cubes just
as he had with the pizza toppings. She also helped scaffold the process by helping
him translate between the problem spaces, suggesting he focus on a single color first
(yellow blocks) just as he had grouped his pizza toppings, focusing first on pep-
peroni. Brandon then further unpacked the similarity between the solutions, show-
ing how the grouping helped him identify all of the combinations and reiterating the
importance of not repeating patterns that appeared previously but in a different
order. In short, Brandon now exhibited the kind of transfer that we are typically
interested in promoting!

6.2.4 Who Transferred?

Amy would clearly have liked to see spontaneous transfer but didn’t. She didn’t,
however, give up or treat this as failed transfer. Rather, we see here a messy, real-
istic process through which she took continuous steps, as did Brandon, to engage
in meaningful, mediated, and object-oriented activity. Amy helped mediate
Brandon’s activity, helping define the object for him, and helped him view both the
object and the tools as transferable, and we see nice progress there. A skeptic there-
fore might point out that Brandon did not in fact transfer knowledge on his own in
the way that educators have long hoped for, in the way that we hope will happen
out of school, and in the way that is so rarely seen. We agree! But we also think that
Brandon has, in collaboration with Amy, achieved exactly the kind of transfer we
can and should be promoting in school because it helps him to see the power of the
tools he is learning and to connect ideas across class sessions and topics. It is also
important to note that, unfortunately, we do not have evidence of whether or not
Brandon is later able to engage in this kind of transfer on his own as the class
moved on to other topics. It’s quite possible that without added opportunity for
practice and reflection (Beach, 1999), Brandon would not be able to engage in this
activity unaided. Nonetheless, we believe that noticing the continued use of his
table as a tool for this broader set of problems was an accomplishment and an
important building block in future reflective activity.

Brandon’s is not an individual accomplishment, and it does not need to be.
Rather, it is a collaborative achievement that builds on the work of both the teacher
and the student to see the power of a tool in a new space. On the one hand, Brandon
has seen the generalizable and potentially abstracted value of a specific tool for a
specific object (Day & Goldstone, 2012); how tables of combinations can help in
listing all of the possible combinations without repeating any. At the same time, this
was not a solely cognitive effort nor was it solely driven by the student’s knowl-
edge. Rather, the student needed help in noticing the key features of the problems
and solutions (Lobato et al., 2012) and benefited from assistance in framing the
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solutions more expansively (Engle, 2006). In this process, Amy also helped
Brandon to see not only what he viewed as relevant but what she viewed as rele-
vant. Although it is important to give students agency, we also want to recognize
the value of building on ideas that the teacher knows are valued by the discipline
and by the school context. That is, it is important and valuable for Amy to help
Brandon achieve a normative vision of transfer that will support him within the
existing institutional setting.

6.3 What Can Teachers Do With This Knowledge?

Our goal in exploring an object-oriented approach to transfer is twofold. First, we
want to better understand how and when learners might perform what analysts
view as transfer. Second, we want to build on this knowledge to help teachers
reflect on how they might support transfer within their own classrooms, particu-
larly when they are working under the assumption that students will carry certain
valuable, normative ideas through their classes. Our analysis above suggests that
there are four key elements that teachers might keep in mind both in their original
context and their transfer context to help students continuously orient towards
overlaps in different objects of activity and the tools—both material and in prac-
tice—that might help them pursue those objects throughout their school career.
These four elements are summarized in Table 6.1. Note that these elements all
build on our core commitments to the notion that (a) transfer is progressive—it is
a continuous process of refinement and iteration as learners explore how different
tools might transfer—and (b) this process can be continuously supported by other
mediators, including the teacher.

First, we think it is important to help students to recognize tools as being useful
for specific objects of activity—that is, helping students recognize that they are
attempting to achieve certain goals and framing those goals in potentially generaliz-
able terms. In our example above, Brandon only saw the transferability of his object
when he recognized the goal of finding all of the combinations of elements in a set
rather than viewing it solely as a problem about pizza toppings. Similarly, it is valu-
able if the student views the tool as supporting this object. Thus, listing a sequence
of combinations in a table is a good way to find all combinations of elements in a
set rather than just being useful for pizza. And, as we saw, Brandon did not fully
appreciate this relationship when these ideas were first introduced but only after
they were reexamined in later episodes.

Second, we believe it is helpful for teachers to explicitly call out the fact that a
given tool might be useful in new situations. Whereas laboratory experiments ben-
efit from seeing whether students notice this spontaneously, day-to-day classroom
activity is better supported when students notice that tools can be reused and are
provided guidance in how to use them in their new context. As noted above, we
don’t believe that it lessens Brandon’s accomplishment of transfer because Amy
helped him see the overlap across contexts. Rather, it reveals how hard this kind of
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Table 6.1 A summary of teaching practices to support object-oriented transfer

Teacher practices for
supporting transfer

How this applies in the
original context

How this applies in the subsequent contexts

1. Scaffolding
awareness of how
the tool helps
achieve the object.

Help students see the object
and recognize it is one with
possible future uses (i.e.,
expansive framing). Also,
help students see clearly
how the tool is tied to this
object and is not just
arbitrary.

Help students view new objects as identical
or similar to prior objects. Help students to
recall the tools that were useful with those
prior objects.

2. Scaffolding the
realization that a
given tool might
transfer.

Help students to frame their
solutions in generalizable
terms and suggest the
possibilities for such
solutions in future
problems.

Help students remember and leverage prior
tools and representations in new, different
contexts.

3. Providing
opportunities and
encouragement to
attempt transfer.

Curriculum design can
include opportunities to
apply tools in new contexts
as well as opportunities to
discuss and reflect on them.

Teachers can validate and encourage
opportunities to transfer tools into new
contexts. Teachers can promote the kinds of
normative language and tools that will be
expected while also legitimizing

nonacademic language that still bridges
tools into new contexts. New activities can
be designed to help students fine-tune their
tool use so that it is more generalizable.

4. Ratifying Teachers can create an environment where students see that carrying
students’ tools into new contexts is valued by teachers and valuable for their own
accomplishments of | local objects of activity.

transfer.

work really is and how a focus on co-construction of transfer orients us to the value
of teachers in promoting transfer with their students.

Third, we should think of sequences of instruction as powerful opportunities for
transfer. Although the literature on learning progressions does not always explicitly
use the term transfer, we see a crucial overlap here in that learning progressions are
intended to find the most powerful conceptual tools for students within each disci-
pline and to help students develop and refine those over time. From our perspective,
that is a case of continuously supporting object-oriented transfer by identifying the
most valuable tools that we would like our students to transfer, introducing them,
and then providing opportunities to see them as transferable.

Finally, we think it is important to validate learners’ efforts at transfer, helping to
motivate them to attempt to transfer and to carry over the tools that are valued by the
discipline. It is important to note that activity theory highlights the need for this to
be authentic and substantive. That is, we shouldn’t simply reward students for
attempting transfer that is meaningless to them. Rather, we should help them see the
value in transfer on their own so that they are more likely to appreciate the trans-
ferred tools and continue to apply them, refining their use over time.



6 Transfer as Progressive Re-Mediation of Object-Oriented Activity in School 141
6.4 Conclusions

As a field, we all recognize both the value and the difficulty in supporting transfer
of tools and practices from classroom activities to other classroom activities and
eventually to the real world beyond. As sociocultural approaches to transfer have
long noted, however, transfer does often happen, it is just not always as spontane-
ous as researchers might hope it to be nor is it always of the same concepts and
ideas that educators would like learners to transfer (Lobato, 2006). To understand
why this is, sociocultural theorists have noted both that we need to attend to learn-
ers and their agency (Lobato, 2012) as well as recognizing that transfer occurs at
the interaction between learners and contexts, suggesting that it best be viewed as
a transition (Beach, 1999) or boundary-crossing activity (Tuomi-Gréhn &
Engestrom, 2003).

Our goal has been to build on this tradition by finding theoretically consistent
ways to recognize and anticipate how learners engage in the process of moving
between these contexts. Our approach builds on this tradition by noting three key
elements of transfer: It is (a) progressive, (b) mediated, and (c) object oriented. That
is, if all human activity is object oriented, then any account of transfer needs to
attend to how learners recognize the object of activity as similar or different across
contexts. Similarly, if these activities are also mediated, we need to recognize the
role of shifting mediation in transfer contexts. Furthermore, as discussed above, the
mediators and object of activity are always interrelated and influence each other.
Thus, transfer is really an account of how similar mediators are taken up to pursue
a new object, how new mediators are developed to pursue a similar object, or both.
Finally, the process of refining our understanding of the potential use of mediators
to pursue similar and new objects is a progressive one that is constantly in flux. We
believe that explicitly recognizing these elements will support both teachers and
researchers in not only promoting transfer but in recognizing when and why it has
or has not occurred as anticipated. With this in mind, supporting transfer can be
moved from the theoretical realm to the pragmatic, grounded activities of everyday
classroom life.
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Chapter 7
Graphical Shape Thinking and Transfer

Check for
updates

Kevin C. Moore

It is widely acknowledged that a learner’s currently held cognitive structures afford
and constrain her future learning experiences. It is also widely acknowledged that a
learner’s present learning experiences can shape and modify her previously con-
structed cognitive structures. Researchers refer to these phenomena in ways depen-
dent on their theoretical framing. Researchers adopting a transfer perspective often
appeal to processes of forward transfer and backward transfer to explain these phe-
nomena (Hohensee, 2014; Lobato, 2012). Researchers adopting a Piagetian con-
structivism lens are disposed to explain these phenomena in terms of assimilation
and accommodation (Piaget, 2001; Steffe & Olive, 2010; von Glasersfeld, 1995).
Because each of these processes is influential in a learner’s mathematical develop-
ment, researchers have called for more detailed explanations of them in terms of
specified mathematical content, concepts, and teaching (Diamond, 2018; diSessa &
Wagner, 2005; Ellis, 2007; Hohensee, 2014; Lobato, Rhodehamel, & Hohensee,
2012; Nokes, 2009; Thompson, 2013b).

I address the aforementioned call in the present chapter by discussing forward
and backward transfer in the context of students’ meanings for graphs. I do so with
three related goals. First, I define and elaborate on constructs, which are forms of
what is referred to as graphical shape thinking (Moore & Thompson, 2015)—that
Thompson and I introduced as epistemic subjects to capture students’ meanings for
graphs.! Epistemic subjects (Steffe & Norton, 2014; Thompson, 2013a) are concep-
tual models that specify categorical differences among students’ in-the-moment

'Thompson and 1 initially used shape thinking as the stem phrase for the constructs (Moore &
Thompson, 2015). We have since updated the stem phrase to graphical shape thinking to empha-
size our focus on quantitative relationships and their graphs, as opposed to the study of geomet-
ric shapes.
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meanings. Second, and relatedly, I situate these meanings in terms of specific trans-
fer processes and their implications for student activity in novel situations. Third, I
use a synthesis of a student’s actions to assert the role sequential processes of for-
ward and backward transfer can play in students’ graphical shape thinking.

I structure the chapter as follows to accomplish these goals. I first provide two
vignettes in order to introduce the two graphical shape thinking constructs and moti-
vate a focus on particular aspects of transfer. A concise discussion of the theoretical
underpinnings central to this chapter follows the opening vignettes. I subsequently
describe the two graphical shape thinking constructs and, using accompanying stu-
dent data, illustrate them in terms of students’ transfer processes. Generalizing from
these cases, I introduce a way to frame concept construction in terms of theories of
transfer and graphical shape thinking, and I provide a data example to illustrate the
productive nature of such a framing. As part of this discussion, I provide sugges-
tions for future research.

7.1 Two Vignettes

The following vignettes are from task-based clinical interviews (Ginsburg, 1997)
that occurred as part of investigation into preservice secondary teachers’ (PSTs”)
and undergraduate students’ meanings for graphs in the context of noncanonical
representations (Moore, Silverman, Paoletti, Liss, & Musgrave, 2019). PST1 is
responding to the prompt and graph in Fig. 7.1a. PST?2 is responding to the prompt
and graph in Fig. 7.2a. Both vignettes are actual excerpts. As the reader engages
with the vignettes, consider the particular meanings the PSTs are drawing on in that
moment of reasoning, as well as the potential influence of previous learning experi-
ences with respect to each PST’s reasoning.

7.1.1 Vignette 1 (PST1): Where the Slopes Were’

Vignette 1 concerns the following prompt: You are working with a student who hap-
pens to be graphing y=3x. He provides the following graph [shown as (a) in
Fig. 7.1]. How might he be thinking about this?

PSTI: Um, like this [rotating Fig. 7.1a 90 degrees counterclockwise—Fig. 7.1b—
laughing).® Like 1 [rotating back to Fig. 7.1a], because if you turn it this
way [rotating to Fig. 7.1b again], then this [tracing left to right along hori-

2¢“Int.” stands for the interviewer.

3Throughout this chapter, as needed, I describe clarifications in participant explanations, gestures,
and actions using “[fext]”. Italicized text indicates added information whereas standard text indi-
cates our replacing an ambiguous word or phrase with my interpretation of her intended word or
phrase. I also use this convention with a line break to indicate a summary of intermediate discussion.
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(®)

Fig. 7.1 (a) A hypothetical student’s graph of y = 3x. (b) PST1’s rotated graph

Fig. 7.2 (a) A second hypothetical student’s graph of y = 3x. (b) PST2’s added markings in red

Int..

PSTI:

zontal (x) axis] and then this [tracing down vertical (y) axis], it would be
still not right though.

How would you respond to this student if they said, “Well, here’s” [rotat-
ing back to Fig. 7.1a]

I mean I would tell them that they just labelled, like, well, I guess I would
figure out what they were thinking about first because it could have just
been something of they don’t know which, they don’t know that this is the
x-axis [pointing to the horizontal axis] they don’t know this is the y-axis
[pointing to the vertical axis] . . . 1 don’t really know if that makes sense. |
mean the only way I can think of it is like this [rotating to Fig. 7.1b] and
it’s still wrong because this is negative slope [laying a marker along the
line sloping downward left to right] . . . [rotating back to Fig. 7.1a]. I would
just explain to them like the difference between the x- and y-axis . . .
because if they were thinking of it as like sideways [rotating to Fig. 7.1b]
or whatever [rotating back to Fig. 7.1a] it is, or inversely, or whatever,
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then, show them like the difference between like positive and negative
slopes, also.

Because that’s something that when I was in middle school we learned
kind of like a trick to remember positive [holds left hand pointing up and
to the right], negative [holds left hand pointing down and to the right], and
no slope, and zero [holding left hand horizontally], like where, that’s where
the slopes were. And it’s stuck with me ‘til now, so it’s important to know
which direction they’re going, when it’s positive and negative and zero and
no slope, too. But in this case positive or negative.

PST1 assimilated Fig. 7.1a essentially as a piece of wire with indexical associa-
tions of “slope” based on how it is placed in relation to two other pieces of crossing
wires, as evidenced by her describing “where the slopes were,” “which direction
they’re going,” and using directional gestures to indicate a line’s direction. PST1
understood rotating the paper as changing the line’s slope (e.g., “which direction
they’re going”) and she did not perceive any rotation to result in an image of a line
associated with y = 3x. Furthermore, PST1 explicitly appealed to the previous learning
experiences in which she formed these associations, thus anticipating the given task as
resolved by producing a line in the “direction” learned during those experiences.

7.1.2 Vignette 2 (PST2): A Product of How We’ve Decided
to Represent Things

Vignette 2 concerns the following prompt: You are working with a student who hap-
pens to be graphing y=3x. He provides the following graph [shown as (a) in
Fig. 7.2]. How might he be thinking about this?

[PST2 has labeled the axes as shown in Fig. 7.2b; claims that the graph is of y = 3x].

Int.: So, what about a student who says, that says, “That can’t be, that can’t be
right [pointing at Fig. 7.2b] because that’s sloping downwards left to right.
You know, that’s going down to the right, so it can’t be right. It has to be
negative.”

PST2: No, um, that sloping downward to the right [moves hand down and to the
right] is a product of the convention of us labeling our axes with our posi-
tives over here [motioning to her right] and our negatives over here
[motioning to her left], so you can look at it and we can trust that [making
hand motion down and to the right] that’s going to be a negative slope as
long as everything is within our conventions.

Um, but slope is really just rate of change. And so, what this is telling us,
this three [circles 3 in equation], is that when x, it’s like [writes “rise/
run’]. Is it sad that I still have to use rise over run like this? I feel like this
is so bad [writes 3/1]. Well, anyways. Okay. So when we’re saying that
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when our x, or our y changes on this graph, when our y changes by 3
[pointing to the 3 in 3/1], our x is changing by one [pointing to the 1 in 3/1].
So, if we can go up three [pointing to the dash indicating a value of y = 3
on the y-axis] in the positives [puts plus signs beside 3 and 1], we’re still
going positive one. But now our positives are over here [motioning to her
left], so we have to be cognizant of the way our axes were labeled.

If we were to switch this [using her hands to indicate changing the orien-
tation of the horizontal values], it would flip and have that picture or image
[making hand motion up and to the right] that you’re looking for. But
that’s, again, just a product of how we’ve decided to represent things.*

PST?2 assimilated Fig. 7.2a to a system of meanings based in images of coordi-
nating quantities’ values as they varied within an unconventional reference system
as evidenced by her explicit attention to quantities’ magnitudes and values both in
her discussion and gestures. After this interaction, PST2 also sketched a graph like
Fig. 7.1a and claimed it to be an alternative representation of y = 3x. Furthermore,
PST?2 explicitly raised issues of convention, suggesting that her previous learning
experiences directed her attention to arbitrary representational choices when con-
sidering the viability of a novel solution. This enabled her to understand each graph
(e.g., Fig. 7.1a and the conventional displayed graph for y = 3x) in terms of an
equivalent relationship between covarying quantities, with perceptual differences
between them resulting from different coordinate system conventions.

PST1’s actions, which suggest establishing relations based in perceptual cues
and figurative properties of shape, are consistent with what Thompson and I (Moore,
2016; Moore & Thompson, 2015) term static graphical shape thinking. PST2’s
actions, which suggest her establishing relations based in covarying quantities and
how they are represented within a coordinate system’s conventions, are consistent
with what Thompson and I term emergent graphical shape thinking. The marked
differences between the PSTs” meanings and established relations with their previ-
ous learning experiences raise several broader questions. Two questions are:

1. In what ways do students’ graphical shape thinking influence their construction
of relations of similarity between previous and current learning experiences (i.e.,
transfer)?

2. Relatedly, in what ways do students’ attempted construction of relations of simi-
larity between previous and current learning experiences (i.e., transfer) influence
their development of graphical shape thinking?

*PST2 subsequently discussed “rise over run” as a convention itself and how the graphs are such
that the variation in x relative to variation in y is 1/3 and the variation in y relative to variation
in xis 3.
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7.2 Theoretical Framing—Transfer, Understanding,
and Meaning

The two questions raised in the previous section center on transfer, understanding,
and meaning. Defined generally, transfer is “the influence of a learner’s prior activi-
ties on his or her activity in a novel situation” (Lobato, 2008, p. 169). Educational
research, particularly in mathematics education, entails numerous perspectives on
transfer. Early researchers characterized transfer in ways that reflected an implicit or
explicit assumption of there being objectively correct solutions to mathematical
problems. Cox (1997) and Lobato (2006) identified that these early approaches to
transfer had roots in associationism and behaviorism that can be traced to Thorndike’s
(1903, 1906) notion of identical elements. More recently, researchers have claimed
to problematize the relationships between an external environment and the mind
(see Anderson, Reder, & Simon, 2000), but Lobato (2006, 2012) and Wagner (2010)
argued that these accounts do not problematize these relationships in practice,
instead operating “as if situational structure could be directly perceived in the
world” (Wagner, 2010, p. 447).

To be more sensitive to nonnormative reasoning or what an expert might deem
“incorrect” reasoning, Lobato (2006, 2012; Lobato & Siebert, 2002) introduced the
actor-oriented transfer (AOT) perspective. The AOT perspective explores transfer
as perceived by the learner. It emphasizes a learner’s construction of personal rela-
tions of similarity between learning experiences and, accordingly, clarifies that
claims about the nonnormative (or normative) performances resulting from transfer
are from the perspective of the observer; all activity is viable and normative from
the perspective of the learner. The AOT perspective also frames transfer in terms of
the construction and reconstruction of knowledge. Whereas traditional perspectives
have approached transfer as a static application of knowledge, the AOT perspective
approaches transfer in terms of active, subjective constructions of similarity. The
AQT perspective thus accounts for forms of transfer that promote learning through
cognitive reorganization and accommodation (Hohensee, 2014; Lobato, 2012;
Lobato & Siebert, 2002). Reflecting this affordance of the AOT perspective,
researchers’ adoptions of the AOT perspective have yielded explanations of stu-
dents’ (and teachers’) meanings and learning in numerous content areas (Diamond,
2018; Ellis, 2007; Hohensee, 2014; Lobato & Siebert, 2002; Lobato & Thanheiser,
2002). Researchers have also used the AOT perspective to identify how particular
artifacts, language, and other factors of classroom instruction can explain differ-
ences in students’ transfer of learning (Lobato et al., 2012).

Because the AOT perspective seeks to explain transfer from the perspective of
the learner, it is productive for a researcher to pair the AOT perspective with a fram-
ing of meaning that emphasizes its subjective nature; an appropriate framing of
students’ meanings provides the ground by which a researcher can situate accounts
of transfer. In this chapter, I draw on Thompson and Harel’s descriptions of meaning
and understanding (see Thompson, Carlson, Byerley, & Hatfield, 2014). The dis-
tinction between understanding and meaning is rooted in Piaget’s characterization
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of understanding as assimilation to a scheme and of meaning as the space of impli-
cations created by a moment of assimilation (Skemp, 1962, 1971; Thompson,
2013b; Thompson & Saldanha, 2003). Thompson and Harel defined understanding
to refer to a cognitive, in-the-moment state of equilibrium that results from assimila-
tion. Understanding could occur from having assimilated an experience to a stable
scheme, or from a functional accommodation specific to that moment and arrived at
by an effortful coordination of existing schemes (Steffe, 1991). For instance, a stu-
dent could perceive two marks on a piece of paper as orthogonal and assimilate the
marks as coordinate axes, thereby establishing a state of equilibrium (i.e., an under-
standing). If the student also perceives an unfamiliar curve within the assimilated
coordinate system, he might engage in effortful activity to understand the unfamiliar
curve. The student could attempt to relate the unfamiliar curve with the collection
of shapes and associated perceptual properties with which he is already familiar
through prior learning experiences. Or, the student could attempt to imagine the
curve in terms of an emergent trace of covarying values within the respective coor-
dinate system and relate that to previously experienced covariational relationships.
Either could result in a state of understanding via assimilating the curve to a
meaning.

Meaning in Thompson and Harel’s system refers to the space of implications that
a moment of understanding brings forth (Thompson et al., 2014). When a person
creates an understanding by assimilating an experience (e.g., a perceived word,
phrase, diagram, or set of statements) to a scheme, the scheme is that person’s
meaning in that moment; the person’s meaning in that moment consists of an orga-
nization of actions, operations, images, and schemes that the person anticipates or
enacts (Piaget & Garcia, 1991; Thompson, 2013b; Thompson et al., 2014).
Establishing a state of understanding through assimilation to a meaning can occur
in many forms. It can be a nearly subconscious, habitual act (e.g., reciting learned
multiplication facts), or it can be an effortful progression of reciprocal acts of
accommodation and assimilation (e.g., sustained problem solving).

Returning to the notion of transfer, and as I illustrate in this chapter, transfer can
occur within either case of establishing a state of understanding through assimila-
tion to a meaning. A researcher can identify different forms of transfer in order to
characterize the influence and interplay of a student’s meanings constructed during
previous learning experiences and their current actions and learning experience.
Forward transfer and backward transfer have emerged as two forms of transfer use-
ful for characterizing such experiences. Hohensee (2014) introduced forward trans-
fer and backward transfer to differentiate between the influence of a learner’s prior
conceptions and actions on her activity in a novel situation (i.e., forward transfer)
and “the influence...new knowledge has on one’s ways of reasoning about related
mathematical concepts that one has encountered previously” (p. 136; i.e., backward
transfer). Stated in terms of meanings, forward transfer is how previously con-
structed meanings influence the assimilation of a present experience. Backward
transfer is how a novel experience and associated meaning influences the learner’s
previously constructed meanings.
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With the constructs of forward and backward transfer formally introduced, I
return to the opening vignettes. Recall that PST1’s actions suggest her drawing rela-
tions of similarity based on previously learned associations between the perceptual
direction of a line and “slope.” This is a form of forward transfer. She experienced
a novel axes orientation in the form of hypothetical student work, and her prior
conceptions of “slope” entailed an axes orientation that required that she attempt to
modify the graph so that they were relevant. Recall that PST2’s actions suggest her
drawing relations of similarity based on coordinating quantities’ covariation with
attention to coordinate conventions. This is also a form of forward transfer, but there
are aspects of her actions that suggest backward transfer. Namely, PST2 called
attention to the previously learned mnemonic phrase and calculation of “rise over
run” being problematic in the context of the unconventional axes orientation. An
explanation for her actions is that experiences with graphing in unconventional axes
orientations influenced her meaning for the mnemonic phrase and calculation—one
typically taught in Grades 6—12 curricula only in the context of conventional axes
orientations—so that she came to understand it as subordinate to the concept of
forming a multiplicative comparison. Her experiences with graphing covariational
relationships in unconventional axes orientations entailed backward transfer with
respect to her meaning for “rise over run” so that it could accommodate unconven-
tional axes orientations, and the phrase no longer was absolutely literal relative to
the implied physical movements.

As suggested by this interpretation of PST2’s actions, transfer can involve
accommodations to previously constructed meanings (Hohensee, 2014; Lobato,
2012). Transfer and accommodation can occur in the context of two (or more) con-
cepts or topics. For example, Hohensee (2014) illustrated backward transfer in
terms of how students’ learning of quadratic relationships can influence their previ-
ously constructed meanings for linear relationships. Or, transfer and accommoda-
tion can occur in the context of the same concept experienced across many learning
experiences, as illustrated by Lobato and Siebert (2002) and Lobato et al. (2012).
Because graphical shape thinking primarily refers to meanings for the same concept
(e.g., graphing), and after elaborating on each of the graphical shape thinking con-
structs, I highlight how forward and backward transfer can potentially relate to the
development of students’ graphical shape thinking.

7.3 Graphical Shape Thinking

Each form of graphical shape thinking represents an epistemic subject that stabi-
lized across a research program initiated by Thompson (1994a, 1994b) and was then
extended by Thompson, and other colleagues, and myself. Collectively, we targeted
secondary students’, undergraduate students’, and teachers’ meanings for precalcu-
lus and calculus ideas, including graphing (Carlson, 1998; Carlson, Jacobs, Coe,
Larsen, & Hsu, 2002; Moore, 2014, 2016; Moore, Paoletti, & Musgrave, 2013;
Moore & Silverman, 2015; Moore, Silverman, Paoletti, & LaForest, 2014; Paoletti
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& Moore, 2017; Saldanha & Thompson, 1998; Thompson, 2013b, 2016; Thompson
& Carlson, 2017; Thompson, Hatfield, Yoon, Joshua, & Byerley, 2017; Thompson
& Silverman, 2007). An epistemic subject is a characteristic of thinking that has
stabilized within a researcher’s thinking across the second-order models she has
created for particular students’ mathematical meanings (Steffe & Norton, 2014;
Steffe & Thompson, 2000; Steffe, von Glasersfeld, Richards, & Cobb, 1983;
Thompson, 2013a). An epistemic subject is a hypothetical way of thinking that
proves increasingly viable through a researcher’s use in predicting and explaining
students’ behaviors; it supports a researcher engaging in forward transfer as a
mechanism to organize their experiences with future students. The generality of
epistemic subjects empowers researchers and educators to interact with students in
more productive and targeted ways (Hackenberg, 2014; Thompson, 2000).
Consistent with the AOT perspective, epistemic subjects are nonjudgmental with
respect to what an observer might perceive to be correct mathematics; students’
meanings are always considered viable from their point of view. Furthermore, char-
acterizing a student’s actions as consistent with an epistemic subject is not a state-
ment about the student’s capabilities or other potential meanings they hold and
transfer. Students can, and do, hold multiple meanings for a concept, each of which
are products of students having reasoned about that concept in particular ways. Any
claim above regarding PST1, PST2, or an individual below is not a holistic claim
about the individual but rather a claim about that individual’s actions in that moment.

7.3.1 Static Graphical Shape Thinking

Static graphical shape thinking characterizes actions that involve conceiving a graph
as if it is essentially a malleable piece of wire (graph-as-wire). Thompson and I
(Moore & Thompson, 2015) chose the term static to indicate that a student assimi-
lates a displayed graph so that he predicates his actions on perceptual cues and figu-
rative properties of shape, and imagined transformations are with respect to
physically manipulating that shape as if it were a wire (e.g., translating, rotating, or
bending). Because static graphical shape thinking entails actions based in percep-
tual cues and figurative properties of shape, an element of thinking statically is that
conceived associations are (in that moment of understanding) indexical properties
or learned facts of the shape qua shape; the associations require further contextual-
ization to entail logico-mathematical operations (cf., emergent graphical shape
thinking in which quantitative operations constitute the meaning). To illustrate,
PST1’s treatment of “slope” suggests that her graph’s defining properties were its
straightness and its direction, and her graph’s direction was associated with learned
facts of slope. Her subsequent actions were to rotate the graph-as-wire, inferring
that changing the line’s direction changed its slope.

In addition to associations like slope, the facts of shape constituting static graphi-
cal shape thinking can be equations, names, or analytic rules. For instance, as
reported by Zaslavsky, Sela, and Leron (2002), a student could associate a graph
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that he understands as a line with the analytic form f(x) = mx + b regardless of coor-
dinate system or axes’ scales. Another student could assimilate a displayed graph as
“curving up” and associate this with “exponential” and the analytic form f{x) = a o
b*. In each case, the students’ graphs entail indexical associations between shapes
(e.g., “line” or “curve up”), function class terminology (e.g., “linear” or “exponen-
tial”), and analytic rules (e.g., fix) = mx + b and f(x) = a ¢ b%); in the moment of
assimilation, names and associated analytic rules are little more than memorized
facts associated with various graphs-as-wire.

Because of its basis in perceptual cues and figurative properties of shape, static
graphical shape thinking enables a learner to establish relations between learning
experiences via foregrounding perceptual and figurative aspects of a graph. To illus-
trate, I first return to Lobato et al.’s (2012) findings. Recall that they identified how
particular artifacts, language, and other factors of classroom instruction can explain
differences in students’ reasoning and transfer. Specifically, the authors likened
some students’ reasoning about a graph to reasoning about a “piece of spaghetti”
(Lobato et al., 2012, p. 452) with a property of visual steepness. They classified
such reasoning as focused on physical objects (as opposed to mathematical objects,
as described in the next section). True to the AOT perspective, Lobato et al. (2012)
illustrated that such reasoning did support students’ transfer but that such transfer
processes were for the purpose of describing properties of the “piece of spaghetti”
(Lobato et al., 2012, p. 452). These students did count squares or boxes on coordi-
nate grids to characterize slope, but they did so ignoring axes labels or scale. Such
actions are a hallmark of static graphical shape thinking. Even in cases in which
students do identify and reason about numbers, often to handle a perturbation in a
novel task, they do so for the purpose of describing perceptual or figurative proper-
ties (i.e., how one moves or visual steepness).

As an additional illustration of static graphical shape thinking and forward trans-
fer separate from slope, consider Excerpt 1 and Excerpt 2, which occurred during
clinical interviews used to investigate PSTs’ meanings for noncanonical displayed
graphs (see Moore & Silverman, 2015; Moore et al., 2014; Paoletti, Stevens,
Hobson, Moore, & LaForest, 2018). The interview prompt (Fig. 7.3) depicts hypo-
thetical students claiming a Cartesian graph displays the sine function and its inverse
simultaneously. We designed the hypothetical students’ claim to reflect the under-
standing that the displayed graph is [(x, y) | -n/2 < x < /2, y = sin(x), x = arcsin(y)].

Excerpt 1: Brienne’s response to the hypothetical students’ statement that Fig. 7.3
represents the inverse sine function.

Brienne:  I'm thinking this just kind of looks like the sine graph, like the plain sine
graph [laughs]. Which is going to be different. So, no...

Excerpt 2: Sansa’s response to the hypothetical students’ statement that Fig. 7.3
represents the inverse sine function.

Sansa: It looks the same . . . the sine graph . . . I mean he graphed the sine graph .
.. um, at pi over 2 sine is 1.

[The researcher focuses Sansa on the students’ statement about and labeling of
input and output. She continues by rejecting the student’s statement. ]
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y, input
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[The students] claim: “Well, because we are graphing the inverse of
the sine function, we just think about x as the output and y as the input.”
When giving this explanation, they add the following labels to their graph.

Fig. 7.3 Graph and prompt posed to the students

Fig. 7.4 The sine shape
qua shape

)

"the sine graph"
)
y = sin(x)

Sansa: You can’t just label it like that. Um, why? Why can’t you do that? I don’t
know. I feel like he’s missing the whole concept of a graph . . . Like a sine
graph’s like a, it’s a graph like everyone knows about, you know . . . that’s
just no. I think they’re just missing the concept of graphing [she continues
to reiterate that the student graphed the sine graph and not the arc-
sine graph.

Both Brienne and Sansa’s actions indicate their previous learning experiences
having resulted in them associating a shape with a name or function (e.g., “sine” or
“the sine graph”; Fig. 7.4). For instance, Sansa described her graph as follows:
“looks the same . . . the sine graph . . . everyone knows about.” I understood her to
mean she perceived a learned shape that everyone including mathematics students
should recognize as “the sine graph.” The students’ actions also suggest they had
come to associate the name or function uniquely with the recognized shape; the
shape could not be given a second name or function, and a different name or
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function should yield a different graph. This influenced how they perceived the
viability of the students’ claim, ultimately rejecting the given graphs as potentially
representing the inverse sine function. For example, Brienne subsequently added
that the “graph of an inverse function” should look different than the graph of the
parent function.

7.3.2 Emergent Graphical Shape Thinking

Emergent graphical shape thinking characterizes a student’s actions that involve
conceiving a graph (either perceived or anticipated) simultaneously in terms of what
is made (a trace entailing corresponding values) and how it is made (a sustained
image of quantities having covaried). Thompson and I (Moore & Thompson, 2015)
chose the term emergent to indicate that a student assimilates a graph—whether
given, recalled, or constructed in the moment—as a trace in progress that is born or
derived from images and coordination of covarying quantities. The student con-
ceives the result of this trace to be the emergent correspondence between covarying
quantities (Carlson et al., 2002; Frank, 2017; Saldanha & Thompson, 1998;
Thompson et al., 2017). I illustrate states consistent with this meaning by showing
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Fig. 7.5 Instantiations of emergent shape thinking
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instantiations of an emergent trace of two quantities’ magnitudes (Fig. 7.5), but note
that static images alone are insufficient to convey emergent shape thinking. Emergent
shape thinking is more complex than the displayed instantiations because it entails
images of covariation: imagining magnitudes in flow, reasoning about what happens
immediately after an instantiation, and reasoning about what happens between
instantiations).’

An element of thinking emergently is that conceived features or attributes are
properties of the covariational and quantitative operations used in assimilation;
quantities and their covariation are organic to a student’s graph when thinking emer-
gently. Returning to Vignette 2, PST2’s treatment of “slope” or rate of change sug-
gests that her graph’s defining properties were the covariation that produced it under
the constraints of how the quantities were represented within particular axes organi-
zations. Hence, PST2 understood traces in perceptually different orientations as
representing equivalent properties of covariation (e.g., no matter the orientation, she
conceived a displayed graph such that the rate of change between the two emergent
quantities is three).

In addition to mathematical concepts like slope or rate of change, and because of
its bases in schemes of covariation, emergent shape thinking associates function
class terminology and analytic rules with images of covarying quantities (and the
produced correspondence of values). Consistent with PST2, a student thinking
emergently could understand a graph as representing a linear relationship of the
form y = mx + b via constituting a curve in terms of two values, y and x, covarying
at a constant rate with a measure of m (or 1/m for changes of x measured relative to
changes of y). As another example, a student thinking emergently understands a
graph to be “exponential” and of the form y = a « b* via conceiving a trace such that
the rate of change of y with respect to x is proportional to y (Castillo-Garsow, 2010).
In the moment of assimilation, images and properties of covariation form the basis
of students’ associations between their graphs, function class terminology, and ana-
lytic rules.

Because of its basis in quantitative and covariational operations, emergent graph-
ical shape thinking enables a learner to establish relations between learning experi-
ences via foregrounding the covariational properties that produce a graph. These
properties are consistent with what Lobato et al. (2012) called mathematical objects.
As an alternative to foregrounding a graph’s “look™ as in the case of Sansa and
Brienne, consider Shae’s focus on covariational properties when responding to the
same prompt. Shae was a PST involved in the same series of studies as Sansa and
Brienne (Moore, Silverman, et al., 2019; Paoletti, Stevens, Hobson, Moore, &
LaForest, 2015). Shae first explained that if x represents angle measure values (in
radians) and y represents directed vertical distance measures (in radii), then the sine
function denotes x as an input value and y as output value, and the arcsine function

ST direct the reader to other work (Carlson et al., 2002; Castillo-Garsow, Johnson, & Moore, 2013;
Confrey & Smith, 1995; Ellis, Ozgﬁr, Kulow, Williams, & Amidon, 2015; Johnson, 2012, 2015;
Saldanha & Thompson, 1998; Thompson, 1994a; Thompson & Carlson, 2017) for more extensive
treatments of the schemes and operations involved in covariational reasoning.
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reverses these roles. She further explained that either axis could represent input or
output values and therefore understood the graph as being both the sine and arcsine
functions. At this point, I was not sure whether Shae conceived her displayed graph
covariationally and I presented a canonical Cartesian graph of the inverse sine func-
tion (Fig. 7.6). I explained that a second student claimed it to be the graph of the
inverse sine function, as opposed to the graph in Fig. 7.3. Shae understood both
graphs to represent “‘the same thing” (Excerpt 3).

Excerpt 3: Shae compares noncanonical and canonical displayed graphs of sine and
arcsine.

Shae:  Looking at this [Fig. 7.6], I would assume they’re meaning sine of nega-
tive, sorry, one x equals y [writing sin~!'(x) = y], where x is their vertical
distance and y is their angle measure. So the student, they’re both [pointing
at both Fig. 7.3 and Fig. 7.6] representing the same thing just considering
their outputs and inputs differently.

Int.: So could you say a little bit more about

Shae:  Yeah. So they both kept x the horizontal and y the vertical. But, so here
[referring to Fig. 7.6] their y’s show the angle measure and the x’s show the
vertical distance. So for the inverse sine their input is vertical distance,
output is angle measure. And they’re showing the same thing here [refer-
ring to Fig. 7.3], where their input is the vertical distance, which is their y,
and their output is the angle measure, which is their x.

[Shae uses an input value of 1 to argue that both displayed graphs have the same
input and output values relative to her respectively defined input and output axes.
The interviewer then asks how she would convince a skeptical student who claims
that the graphs look different.]

Fig. 7.6 Canonical n| y
displayed graph of the 271
arcsine function
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Fig. 7.7 Equivalent conceptions of two displayed graphs

Shae:

Int.:
Shae:

Oh, you could show the increasing, right. So I mean you could just like
disregard the y and x for a minute, and just look at, like, angle measures. So
it’s like here [referring to Fig. 7.6], with equal changes of angle measures
[denoting equal changes along the vertical axis] my vertical distance is
increasing at a decreasing rate [tracing curve]. And then show them here
[referring to Fig. 7.3] it’s doing the exact same thing. With equal changes
of angle measures [denoting equal changes along the horizontal axis] my
vertical distance is increasing at a decreasing rate [tracing curve].

OK.

So even though the curves, like, this one looks like it’s concave up [refer-
ring to Fig. 7.6 from 0 < x < 1] and this one concave down [referring to
Fig. 7.3 from 0 < x < /2], it’s still showing the same thing. [Shae denotes
equivalent changes on Fig. 7.3 and Fig. 7.6 as shown in Fig. 7.7]

Shae’s actions indicate her previous learning experiences having resulted in
associating a function name with a particular covariational relationship. Furthermore,
such a covariational relationship as not constrained to a unique graph or “look,” nor
was it constrained to a unique function name. Thus, by envisioning each graph to
entail some quantity increasing by decreasing amounts as another quantity increases
in successive equal amounts, she was able to perceive each graph as mathematically
equivalent despite their perceptual differences (e.g., “concave up” versus “concave
down”; Fig. 7.7). Mathematical attributes were both properties of Shae’s graphs’
emergence and the learned function names [(u, v) | —n/2 < u < n/2, v = sin(u), u =
arcsin(v)], and these learned and reconstructed properties formed the basis for her
relating the present task to her previous experiences.
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7.4 But What of Development?

Recall that two questions generated by the opening vignettes were:

1. In what ways do students’ graphical shape thinking influence their construction
of relations of similarity between previous and current learning experiences (i.e.,
transfer)?

2. Relatedly, in what ways do students’ attempted construction of relations of simi-
larity between previous and current learning experiences (i.e., transfer) influence
their development of graphical shape thinking?

Regarding the first question, in the case of static graphical shape thinking, index-
ical associations based on perceptual features form the basis for constructing rela-
tions of similarity, supporting students in assimilating those contexts in which
figurative aspects of shape prove viable. For instance, when experiencing a novel
graph in some coordinate system, students recently completing an instructional
sequence emphasizing static graphical shape thinking might anticipate and impose
perceptual and figurative features of shape on that novel graph (see Lobato et al.,
2012). In the case of emergent graphical shape thinking, the logico-mathematical
operations of quantitative and covariational reasoning form the basis for construct-
ing relations of similarity, supporting students in assimilating those contexts in
which those covariational and quantitative schemes prove viable. Students recently
completing an instructional sequence emphasizing emergent graphical shape think-
ing might anticipate and impose covariational properties on some novel graph (see
Moore et al., 2013).

Whereas the first question is focused on how students’ prior learning experiences
influence their present experience, the second question opens a focus on explaining
the ways in which students’ transfer actions can, in turn, result in modifications to
those meanings constructed during previous learning experiences. With respect to
graphical shape thinking, I contend that sequential processes of forward and back-
ward transfer occasion reciprocal acts of assimilation and accommodation that

nAl

Fig.7.8 Anexample of partitioning activity to show horizontal segments decreasing by increasing
amounts for successive equal variations in arc (Stevens & Moore, 2017, p. 712)
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provide the basis for constructing abstracted meanings rooted in emergent shape
thinking.

To illustrate, I draw on a synthesis of a student’s actions when prompted to con-
struct a graph representing how two quantities vary together in the context of circu-
lar motion (see Stevens & Moore, 2017, for a more detailed account of the student’s
actions). What follows occurred after a group session in which the student, Lydia,
and two other students engaged in partitioning activities (e.g., Fig. 7.8) with a dia-
gram of a circle to identify and reason about variations in horizontal or vertical
distance from the vertical or horizontal diameter, respectively, for equal variations
in arc length (i.e. the sine and cosine relationships).

After the group session, we engaged Lydia in an individual session. We asked her
to return to the circular motion context to gain insights into how her experiences
during the group session might have influenced her reasoning. She first constructed
variations in horizontal distance for equal changes in arc length. She appropriately
concluded that the horizontal distance decreased by an increasing magnitude for an
equal change in arc length as the point rotated from the start to the 12 o’clock posi-
tion (consistent with Fig. 7.8). Her actions and claims were consistent with the
group conclusions from the previous session.

We then asked Lydia to create a graph representing this relationship (i.e., the
normative Cartesian graph for the cosine relationship), again attempting to gain
insights into how the group sessions influenced her thinking as well as how she
drew relations of similarity between circle and graphical contexts. Lydia immedi-
ately drew a curve that perpetually resembled the normative Cartesian graph for the
sine relationship (Fig. 7.9, bottom, with only the axes and curve).

What occurred next was an interaction in which Lydia attempted to engage in
compatible physical actions with the circle context and her drawn curve while

Fig.7.9 Lydia’s drawn
graph and circle context
(Stevens & Moore,
2017, p. 713)

\
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simultaneously constructing the same covariational properties. Namely, she
attempted to:

e Partition along an arc (the circle in the circle context and the curve in the
Cartesian context)

e Draw horizontal segments

e Draw vertical segments

* Identify segments that were increasing by decreasing amounts for equal, succes-
sive variations in arc length, a property consistent with the sine relationship

* Identify segments that were decreasing by increasing amounts for equal, succes-
sive variations in arc length, a property consistent with the cosine relationship

* Draw and identify equal changes along the horizontal Cartesian axis, which was
an action done repeatedly in the group session and class in which she was
enrolled

Attempting to construct and identify all of these in both the graphical and circle
contexts perturbed Lydia. After several different attempts and a sustained period of
time, she explained, “I like see the relationship, and I can explain it to a point, and
then I get like—I confuse myself with the amount of information I know about a
circle that I was just given to me by a teacher, and then what I’ve like discovered
here [referring to the teaching sessions].’

Recall that the group session included a focus on both the sine and cosine rela-
tionships. An explanation for Lydia’s perturbation is that she expected all of the
actions and properties of both to be relevant to both the circle and her graph. Thus,
in her attempt to relate her current activity to that in the group sessions, she con-
flated particular figurative and perceptual features of her and her classmates’ actions
(i.e., static graphical shape thinking) and those quantitative and covariational con-
clusions those actions and their results indicated (i.e., emergent graphical shape
thinking). This left her unable to relate the present experience, the group session
outcomes, and her previous instructional experiences to her satisfaction.®

I interpreted Lydia’s actions to indicate both elements of static graphical shape
thinking and emergent shape thinking, and her conflating these elements constrained
her ability to relate the group session to her present experience. I thus decided to
engage Lydia in another sustained round of interactions so that she could further
reflect on her activity and those actions she attempted to transfer from the group
session. I also drew her attention to identifying the quantities of the circle context,
illustrating several particular values of those quantities in the circle context, identi-
fying how those values related to her graph, and repeating this process (see Fig. 7.10

°It is important to note that a traditional transfer perspective would frame Lydia as not transferring
her knowledge from the group sessions because of her not successfully completing the problem in
ways aligning with researcher intentions. The AOT perspective, however, allows for a much more
nuanced and productive account of Lydia’s transfer actions because of its sensitivity to transfer
from her viewpoint. Lydia was transferring actions from the group session, and far too many to
establish a personal state of understanding.



7 Graphical Shape Thinking and Transfer 163

,-;so..-)
I Ny X o =>h=)
(o.tg:. ) v w0

(o) | ey NS arcs T, W20, el

Fig. 7.10 Lydia’s annotated diagram of identifying quantities and values (Stevens & Moore,
2017, p. 714)

for her work with the diagram). It was during this process that Lydia had a realiza-
tion (Excerpt 4).

Excerpt 4: Lydia has a realization (Stevens & Moore, 2017, p. 714, with “{ }” denot-
ing modifications added for clarifying purposes).

Lydia: Because this is my — This is x — um, x-y plane, then here I'm saying at this
point [the origin], my width is 0, my arc length is 0, and my height is 0.

Int.: Width is 0, my arc length is 0 and my height is 0.

Lydia: Wait, but then I said {referring to the situation} at arc length 0, and [laughs]
height is 0, then my width should be 1.

Int.: And your width should be 1, right? What about at pi-halves? What should

we have?

Lydia: Then I should have a height of 1 [pointing to curve for an abscissa value
of pi/2].

Int.: Okay.

Lydia: And then my width should be 0 {focus remaining on her graph}. So this
graph does not do anything with the x-y plane.

[Lydia summarizes this claim and then the researcher asks Lydia to consider an arc
length of pi radians.)

Lydia: Then my arc length on the x-axis [motions across horizontal axis] should
be pi. My height should be 1 — or 0, and then my x-value should be negative
1. So this [referring to her drawn graph] just doesn’t have — then this
doesn’t relate to the x, the width [referring to width from the situation], just
this graph. So my whole circle talks about width and height and arc, but
then this graph itself only talks about arc and height. [speaking emphati-
cally] Done it. [laughs]

{Lydia then reasons emergently about her graph.}

The beginning of this interaction continues to illustrate the influence of the group
session on Lydia’s activity. Namely, Lydia continued her attempt to incorporate
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each of the three relevant quantities and their corresponding contextual segment
orientations into her drawn graph. In this case, however, she exhibits a more explicit
focus on quantities’ values so that figurative actions were subordinate to quantita-
tive operations. In doing so, Lydia had a realization about the outcome from the
group session; she came to conceive her drawn graph as an emergent trace of two
particular quantities—arc length and height—in a way compatible with the circle
context. Notably, Lydia indicated that this was a pivotal moment for her (e.g., “Done
it”), and her developing emergent graphical shape thinking as a way to relate a con-
text and graph became a meaning she transferred forward for the remainder of the
study (Stevens & Moore, 2017).

Reflecting on Lydia’s progression, I underscore that her initial actions in the
circle context were stable and such that we interpreted her to have reasoned quanti-
tatively and covariationally. It was in the act of transferring those actions to her
recollection of the drawn graph from the group session (i.e., forward transfer) that
she was perturbed. It was then through several processes of reconstructing and relat-
ing her actions in the present contexts and from the group sessions that she was able
to identify and isolate those actions critical to her (and her group’s) activity and
those that were merely a product of the representational system. More broadly,
Lydia’s actions highlight the potential affordances of sequential processes of for-
ward and backward transfer in the context of representational activity and graphical
shape thinking. Namely, when a student experiences the opportunity to construct
and represent a particular relationship in multiple and varied ways across multiple
learning experiences, they are afforded the opportunity to identify and differentiate
between those (physical and mental) actions associated with emergent graphical
shape thinking so that only vestiges of figurative activity remain. Both Thompson
(1994b) and Lobato and Bowers (2000) identified that such an opportunity is the
underlying foundation to a productive view of multiple representations.

Before closing, I note that when speaking of constructing and representing a
relationship in multiple and varied ways, I am referring to a multitude of contexts
that permit anticipating and enacting quantitative operations on available figurative
material. For instance, event phenomenon and coordinate systems (e.g., a Ferris
wheel ride, a bottle filling with water, and the polar coordinate system) permit quan-
titative operations on figurative material associated with quantities (e.g., a traversed
arc length, a segment representing the height of water, and a directed angle measure
and radial distance). If event phenomenon, multiple coordinate-system orientations,
and multiple coordinate systems are used in tandem, it provides students a plethora
of opportunities to differentiate quantitative operations from figurative forms of
action (Moore, Stevens, Paoletti, Hobson, & Liang, 2019). In contrast, tables, for-
mulas and written phrases—each a representation—do not entail figurative material
that permit quantitative operations. I do not downplay the important use of tables,
formulas, and phrases, but rather highlight the difference in their use as compared
to that of event phenomenon and graphs as it relates to affording students the oppor-
tunity to simultaneously engage in and differentiate between quantitative operations
and figurative forms of action.
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7.5 Moving Forward

Von Glasersfeld (1982) defined a concept as “any structure that has been abstracted
from the process of experiential construction as recurrently usable” (p. 194). The
term abstraction has a long history in mathematics education, and the term accord-
ingly is met with far too many different interpretations and perspectives to describe
and synthesize here (e.g., Dubinsky, 1991; Piaget, 2001; Sfard, 1992; Simon et al.,
2010; von Glasersfeld, 1991; Wagner, 2010). As a concise and simplistic definition
for operational purposes, abstraction is the process of becoming consciously aware
of and differentiating between one’s actions (physical and mental) that are critical
to some conceived concept and those that are not (Moore, Stevens, et al., 2019;
Piaget, 2001). As Wagner (2010) explained, abstraction is not a decontextualizing
process that results in constructing something devoid of context, but rather, an
abstracted concept becomes more sensitive to both the similarities and differences
among perceived contextual instantiations of the concept.

Lydia’s actions illustrate such a process of abstraction in her differentiating
between those actions and operations that are quantitative and covariational in
nature and those that are a product of representational conventions and figurative
aspects of a context perceived as entailing that relationship (Moore, Stevens, et al.,
2019). In doing so, Lydia eventually constructed a meaning for graphing—emergent
graphical shape thinking—that consisted of a covariational structure she could
describe as if it is independent of the specific figurative material associated with a
context. She could also transfer this way of thinking to assimilate novel contexts or
situations permitting the operations constituting her way of thinking. It is in this
way that her thinking became abstract, that she constructed a concept; she con-
structed a structure so that its mathematical properties and actions were anticipated
independent of any particular instantiation of them, thus not being tied to any par-
ticular two quantities and associated context.

Lydia represents only one case, and it remains to be seen how students’ learning
can be supported through sequential processes of forward and backward transfer in
the context of repeated and varied opportunities to construct and represent covaria-
tional relationships. Much is left to understand about the initial and ongoing devel-
opment of graphical shape thinking, especially in the context of students who are
experiencing graphing for their first time. The forms of graphical shape thinking do
not currently represent developmental stages, nor are the graphical shape thinking
constructs as predictive and explanatory as those in areas like units coordination
(Steffe & Olive, 2010). To make a claim of developmental stages requires research
focused on students’ persistence in using them as ways of thinking and evidence
that their current schemes impede their thinking at a higher level, and thus research
along those lines is a necessary and important next step of research. Furthermore, a
current limitation of shape thinking and its forms is that they stem from working
primarily with secondary students, undergraduate students, and postgraduate stu-
dents (i.e., teachers). Detailed insights regarding the initial development of students’
meanings for graphs as related to graphical shape thinking are thus needed, espe-
cially during students’ formative years of constructing displayed graphs. Importantly,
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there is evidence suggesting that emergent graphical shape thinking is a readily
accessible meaning for middle-grades and secondary students (Ellis, 2011; Ellis
et al., 2015; Johnson, 2012, 2015).

One productive future line of inquiry will be investigating students’ meanings for
graphs in the context of some topic, such as students’ derivative or rate of change
meanings. Researchers taking a topical focus will contribute nuanced descriptions
of the schemes and operations that comprise the forms of shape thinking and are
specific to those topics (e.g., conceiving a displayed graph as relating multiplicative
and additive structures, Ellis et al., 2015). Additionally, researchers that take a topi-
cal approach can gain insights into the extent that the forms of shape thinking enable
productive transfer as it relates to learning those topics. A complementary line of
inquiry to a topical focus will be investigating students’ meanings across multiple
contexts and topics. Researchers who consider shape thinking and its forms across
multiple contexts and topics will have opportunities to make generalizations with
respect to students’ meanings and transfer.

Another productive future line of inquiry will be characterizing relationships
between students’ graphical shape thinking, backward transfer, and their learning.
At the prospective and practicing teacher level, there is evidence suggesting their
meanings not only foreground static graphical shape thinking (Thompson et al.,
2017), but that their meanings can conflict with reasoning emergently (Moore,
Stevens, et al., 2019). Moore, Stevens, et al. (2019) specifically illustrated that pro-
spective teachers can produce graphs emergently that differ from those produced
statically, especially under noncanonical coordinate orientations. In such cases, the
prospective teachers experienced a perturbation. Although not the focus of the
authors’ study, their findings suggest the potential for backward transfer. When per-
turbed as a consequence of reasoning emergently, the prospective teachers showed
evidence of reflecting on and beginning to analyze their previously constructed
meanings, which had been consistent with reasoning statically. These initial acts of
perturbation and reflection can be the genesis of backward transfer (Hohensee,
2014; Lobato & Siebert, 2002), and future researchers should explore the affor-
dances of these situations in promoting productive backward transfer.

In closing, I make an instructional and curricular comment for both educators
and researchers. Lobato et al. (2012) convincingly illustrated how numerous class-
room factors can influence students’ propensity to construct meanings consistent
with emergent or static graphical shape thinking. Complicating the matter, research-
ers have provided results working with teachers and students that suggest emergent
graphical shape thinking is not currently a widely held learning goal in classrooms
(Carlson et al., 2002; Thompson, 2013b; Thompson et al., 2017). Thus, it will take
concerted and intentional efforts, both inside and outside the classroom, if emergent
graphical shape thinking is to become a targeted learning goal of mathematics edu-
cators. Specific to curricular materials, I view typical K-16 textbooks and curricula
to be nearly devoid of intentional or sustained efforts to engender and support emer-
gent graphical shape thinking. At best, textbooks and curricular narratives sustain a
focus on displayed graphs as consisting of coordinate pairs and states of values,
which is not equivalent to a focus on covariation, magnitudes, or a displayed graph’s
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emergence and is especially problematic when combined with examples like those
above that treat displayed graphs statically (Carlson et al., 2002; Frank & Thompson,
2019; Thompson & Carlson, 2017; Thompson et al., 2017). Based on this observa-
tion, I find an important area of work to be the design of curriculum and instruc-
tional experiences that target students’ emergent shape thinking. More specifically,
I perceive a need for instructional activities and interactions in which it is productive
for students to differentiate between mathematical properties necessary to all graphs
of a relationship and those properties that are a consequence of the conventions of a
coordinate system.
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Chapter 8

Using an Actor-Oriented Perspective

to Explore an Undergraduate Student’s
Repeated Reference to a Particular
Counting Problem

Elise Lockwood and Zackery Reed

In this chapter, we use the lens of actor-oriented transfer (AOT, Lobato, 2003, 2012,
2014; Lobato, Rhodehamel, & Hohensee, 2012; Lobato & Siebert, 2002) to exam-
ine instances in which one student, Carson, referred back to a problem to develop
his reasoning about important combinatorial ideas. Carson was a participant in a
teaching experiment in which a small group of four undergraduate students solved
counting problems and engaged in generalizing activity. In this teaching-experiment
study, we had students solve a set of problems, categorize those problems, and even-
tually use those categories to describe problem types and articulate general formu-
las. Carson focused on one particular problem that had been meaningful in his initial
problem solving (the Horse Race problem, which states: “There are 10 horses in a
race. In how many different ways can the horses finish in first, second, and third
place?”), and he referred to that problem frequently throughout the sessions and
returned to it in several different settings. Given the fact that counting problems can
be difficult for students to solve correctly (e.g., Annin & Lai, 2010; Batanero,
Navarro-Pelayo, & Godino, 1997; Lockwood & Gibson, 2016), we think it is worth-
while to examine ways in which this student effectively drew upon this particular
problem in his combinatorial problem solving.

We not only want to demonstrate that Carson referred to problems, but we also
want to uncover what cognitively afforded his forming and leveraging of these con-
nections. In doing so, we seek to answer the following research questions: What
cognitive mechanisms facilitated a student’s repeated connections to a particular
counting problem? In what ways did these student-generated connections affect the

E. Lockwood (<)
Oregon State University, Corvallis, OR, USA

University of Oslo, Oslo, Norway
e-mail: elise.lockwood @oregonstate.edu

Z. Reed
Oklahoma State University, Stillwater, OK, USA
e-mail: zackkr@okstate.edu

© Springer Nature Switzerland AG 2021 173
C. Hohensee, J. Lobato (eds.), Transfer of Learning, Research in Mathematics
Education, https://doi.org/10.1007/978-3-030-65632-4_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65632-4_8&domain=pdf
mailto:elise.lockwood@oregonstate.edu
mailto:zackkr@okstate.edu
https://doi.org/10.1007/978-3-030-65632-4_8#DOI

174 E. Lockwood and Z. Reed

student’s work in subsequent combinatorial situations? By carefully examining
ways in which Carson thought about and used this particular problem, and by study-
ing how he compared and contrasted it with other problems and situations, we can
gain insight into how students might establish and use prototypical problems. Such
insights can inform ways in which students may make connections or differentiate
between situations and problems they encounter. In addition, we adopt an AOT per-
spective, and we highlight affordances that such a perspective affords us.

8.1 Literature Review

8.1.1 Connections to Problems and Problem Types
in Combinatorics

Some previous studies have examined students’ connections between particular
problems and problem types. Maher, Powell, and Uptegrove (2011) offered exam-
ples in which students drew on particular problems repeatedly over time, sometimes
referring to problems by name. For example, in describing students’ work on a
problem involving counting pizzas with certain combinations of toppings, Muter
and Uptegrove (2011) reported that one student said, “Everything we ever do is like
the tower problem” (p. 107). These authors described instances in which students
made connections between representations as a way to reason about why problems
might be similar. For example, Muter and Uptegrove reported that students could
identify relationships between towers made from blue and red cubes, pizzas with
certain toppings, and binary sequences. Tarlow (2011) also reported on connections
students made among problems involving pizzas and towers and settings involving
binomial coefficients. In these studies, these pizza or towers problems represented
specific problems, but they came to be emblematic of types of problems that were
isomorphic to other problem settings. The contexts of pizzas and towers were typi-
cally leveraged to help students make connections between binomial coefficients
and Pascal’s triangle, ultimately to make sense of binomial identities. Such work
demonstrates that a particular problem (whether it is a specific problem or a prob-
lem type and whether the problem implicitly or explicitly represents a broader type)
is something to which students can refer back. Here, the researchers did not attempt
to account for what cognitive mechanisms were facilitating students to make these
kinds of connections. We build on this literature base by providing a specific exam-
ple of how a student used a particular problem in several subsequent counting situ-
ations and by offering insights into the cognitive mechanisms that contributed to
this transfer. Our example also emerges in a different context than Maher et al.’s
(2011) work, as their connections occurred over the course of a longitudinal study
where students had repeated, sustained exposure to combinatorial concepts, span-
ning many years. The connections we describe in this chapter occurred with an
undergraduate student over the course of a concentrated but relatively short period
of time.
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We also situate this work within Lockwood’s (2011) investigation of student-
generated connections in combinatorics. Lockwood used AOT (discussed in detail
in the Theoretical Perspectives section) to examine students’ combinatorial thinking
and activity. She found instances in which students made unexpected connections
back to previous counting situations (the connections were unexpected in the sense
that students connected problems that would not traditionally be considered to be
isomorphic). Using the lens of AOT, Lockwood categorized student-generated con-
nections as being elaborated versus unelaborated (describing the extent to which a
student expounded upon the connection they made) or conventional versus uncon-
ventional (describing the extent to which a connection aligned with conventions or
expectations of the broader mathematical community). She also characterized refer-
ent types (the types of objects to which students refer when making connections) as
involving particular problems, problem types, or techniques/strategies. A reference
to a particular problem means that a student is connecting to a single instance of a
particular problem, whereas a problem type indicates a broader class of problem
(which may be referred to by a specific name, such as “hot dog problems”). When
students refer back to techniques/strategies, they may refer to a particular approach
that they are familiar with that is applicable in the current situation. Lockwood
(2011) illustrated cases of elaborated, conventional and elaborated, unconventional
instances of AOT, both of which involved students’ referring to particular problems.
These cases suggested ways in which the AOT perspective could be used in a com-
binatorial setting.

In this chapter, we build on Lockwood’s (2011) characterization in a couple of
ways. By incorporating a Piagetian cognitive perspective (discussed in the
Mechanisms for Student Reasoning section), we gain some insight into cognitive
mechanisms that may underlie such student-generated connections. We suggest
that, in the case of our student, we can offer a nuanced analysis into the referent type
he identified that offers more detail than Lockwood’s categories. Thus, we broadly
use the categorization of AOT presented in Lockwood (2011), but we also modify
and adapt some of the categories to align with our cognitive perspective toward the
data. Indeed, we view this cognitive perspective as a way to account for the mecha-
nisms by which students’ prior learning experiences may influence their reasoning
on novel problems.

8.1.2 Mathematical Discussion

We briefly provide a mathematical discussion of the Horse Race problem to contex-
tualize further discussions. The Horse Race problem states: “There are 10 horses in
a race. In how many different ways can the horses finish in first, second, and third
place?” We emphasize two ways to solve this problem, each of which highlights an
important combinatorial principle (we note that there are additional ways to solve
the problem that we do not discuss here). First, one solution is to use the
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multiplication principle' and recognize that we have 10 options for which horse
finishes first, and then, for any of those options, we have 9 options for which horse
finishes second, and we have 8 options for which horse finishes third. Using the
multiplication principle yields 10-9-8 = 720 possibilities. This is a correct, common
answer (and is in fact how the students in our study solved the problem initially). We
can observe that this answer, which counts the number of 3-permutations from a
10-element set, is also commonly expressed as % (more generally, —nn!r '). We
note that, on the one hand, this expression is simply an efficient way to write that
product because the 7! in the denominator cancels out 7! in the numerator, leaving
only 10-9-8, wh'ich is the product we desire. However, there is also a way to view

0!, . .
that product Tl in terms of equivalence. Specifically, we can argue that for any of

the 10! arrangements of the 10 horses, for a given way the first three positions finish,
there will be 7! arrangements of the last 7 positions (for the horses who did not fin-
ish in the top 3). However, each of those 7! arrangements should only contribute to
one outcome that we care about because we only want to count unique ways the first
three elements can be arranged. For example, if the horses are labeled A, B, C, D, E,
F G, H, I, and J, and we say A, B, and C finished first (in that order), we would get
7! permutations of the letters D through J. We contend that this is a useful way to
reason about this expression because it emphasizes that we are dividing by sizes of
equivalence classes. This is a way of thinking about the problem that we think is
valuable for students, both because it orients students to think about sets of out-
comes (Lockwood, 2013, 2014) and because such thinking arises in a variety of
combinatorial settings (see Lockwood & Reed, 2020, for additional insight into an
equivalence way of thinking in combinatorics). Indeed, if well understood, this way
of thinking can be a valuable resource in approaching counting problems.? This
problem has the potential to reinforce equivalence as a useful way of thinking about
counting, and it provides a combinatorial (and not simply numerical) justification of
the formula. In the teaching experiment, then, we asked students to consider this
alternative perspective on their answer to the problem.

'Broadly, the multiplication principle (sometimes referred to as the Fundamental Principle of
Counting; e.g., Richmond & Richmond, 2009) is the idea that if a problem can be broken down
into successive stages, and if the number of options at each stage is independent of the choice of
options in any previous stages, then we can multiply the number of options at each stage to find the
number of outcomes of the problem. We prefer Tucker’s (2002) statement of the multiplication
principle. See Lockwood, Reed, and Caughman (2017) and Lockwood and Purdy (2019a, 2019b)
for additional discussions of the multiplication principle.

>We highlight the importance of this equivalence way of thinking in combinatorics, but reasoning
about equivalence is a vital aspect of mathematical reasoning that has widespread applications in
a variety of domains, such as abstract algebra and in reasoning about equivalence classes more
broadly. Thus, there is perhaps an additional motivation to foster reasoning about equivalence that
extends beyond just the combinatorial context.
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8.2 Theoretical Perspectives

8.2.1 Actor-Oriented Transfer

In this chapter, we adopt an actor-oriented view of transfer. This perspective, which
we outline in this section, is manifested mainly through our methodology and our
attention to student-generated connections (and, in particular, one student’s repeated
references to the particular Horse Race problem). Lobato (2003) introduced the
term AOT, which she described as a shift from “an observer’s (expert’s) viewpoint
to an actor’s (learner’s) viewpoint by seeking to understand the processes by which
individuals generate their own similarities between problems” (p. 18, emphasis in
original). Lobato and Siebert (2002) described AOT as “the personal construction of
relations of similarity between activities, or how ‘actors’ see situations as similar”
(p- 89). Lobato (2012) distinguished between a more traditional view of transfer and
an actor-oriented perspective on transfer:

From a mainstream cognitive perspective, transfer is characterized as “how knowledge
acquired from one task or situation can be applied to a different one” (Nokes, 2009, p. 2).
From the AOT perspective, transfer is defined as the generalization of learning, which also
can be understood as the influence of a learner’s prior activities on her activity in novel situ-
ations (Lobato, 2008, p. 233).

Lobato (2012) went on to explore five dimensions across which the mainstream
cognitive perspective and the actor-oriented perspective of transfer differ: “(a) the
nature of knowing and representing, (b) point of view, (c) what transfers, (d) meth-
ods, and (e) goals” (p. 234). We do not detail each of these dimensions, but we
highlight that there are different kinds of evidence one looks for when studying
these respective views of transfer. In the traditional transfer perspective, evidence of
transfer is illuminated through “paired tasks that are similar from the researcher’s
point of view” (Lobato & Siebert, 2002, p. 89). In AOT, however, evidence of trans-
fer is revealed “by scrutinizing a given activity for any indication of influence from
previous activities and by examining how people construe situations as similar”
(Lobato & Siebert, 2002, p. 89). Indeed, methods for uncovering instances of AOT
consist of closely examining students as they work and seeing what connections
students make to previous situations.

It is important for us to emphasize that, in this chapter, the AOT perspective is
evident in our focus on connections that students (and not experts) initiated among
situations. That is, rather than seeing if students could apply prior knowledge, we
looked to examine ways in which students (and in our case, a particular student)
made connections among problems. This view is reflected in our methodology, as
we are qualitatively examining a student’s language and activity to better under-
stand the connections they are making. We want to clarify that sometimes these
connections are expected (or, as Lockwood, 2011, would say, “conventional”’) in the
sense that they align with connections the mathematical community might approve.
So, some of the episodes described in this chapter still represent examples of AOT
even though the student was making conventional connections. Further, our use of
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AOT allows us to focus on particular aspects of Carson’s work that traditional trans-
fer might not prioritize or acknowledge. Specifically, we can focus less on Carson’s
performance only (and whether or not he correctly solved a novel problem), but
rather, we can examine his explanations, ways of reasoning, and personal relations
of similarities. We view this as an affordance of the AOT perspective that gives us
richer insights into Carson’s thinking and activity.

Finally, we also point out that the AOT perspective views transfer as involving
both psychological and social aspects, whereas a traditional transfer perspective
focuses on a purely cognitive perspective (e.g., Lobato, 2012, 2014). Our study
involves interaction between a small group of four students, and this design allows
us to examine social (and not just psychological) factors that might occasion trans-
fer. This is another way in which our use of an AOT perspective affects our design
and data analysis, and, as we share our results, we will point to times in which social
engagement seemed to contribute to instances of transfer.

8.2.2 Mechanisms for Student Reasoning

We make use of constructs from Piaget’s genetic epistemology (Piaget, 1971; von
Glasersfeld, 1995) to support our use of AOT in analyzing Carson’s work. We iden-
tify aspects of Carson’s learning and understanding of the Horse Race problem that
influenced his effective leveraging of the problem to solve subsequent counting
problems. This radical constructivist approach considers knowing and learning to
be inextricably linked to mental activity in the form of applying cognitive structures
called schemes (Piaget, 1971; Thompson, Carlson, Byerley, & Hatfield, 2014).
Succinctly put, schemes are “organizations of mental activity that express them-
selves in behavior, from which we, as observers, discern meanings and ways of
thinking” (Thompson et al., 2014, p. 10). Hypothesizing aspects of a thinker’s men-
tal structures by analyzing their utterances and observed mathematical activity
allows us to discuss how students develop and make changes to their mathematical
knowledge over time as they engage in specific tasks. We define knowing as the
“conferring of meaning” to an object or concept in reference to previously con-
structed schemes (Jonckheere, Mandelbrot, & Piaget, 1958, p. 59), and we use the
phrase “assimilate to a scheme” (Thompson, 2013, p. 60) to describe this.
Assimilation is accompanied by the interrelated process of accommodation, which
is the mechanism through which learning occurs as a thinker alters her scheme due
to unexpected aspects of an experiential reality inconsistent with structures to which
she assimilates (von Glasersfeld, 1995, p. 66). In this way, knowing and learning
rely on the assimilation and accommodation of mental activity being organized into
flexible and malleable cognitive structures.

Subsumed within the mechanism of accommodation is the construct of abstrac-
tion, which accounts for certain changes to a thinker’s schemes characterized by the
borrowing and repurposing of operations to higher levels of cognitive activity
(Piaget, 1977, 2001). This specifically occurs through “projection (as if by a
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reflector) onto a higher level of what has been drawn from the lower level” and
“‘reflection’ involving a mental act of reconstruction and of reorganization on this
higher level of that which has been thus transferred from the lower one,” a process
we specifically identify as reflective abstraction (Piaget, 1977, p. 303).

Our aim is to leverage these constructs from Piaget’s genetic epistemology to
complement our use of the AOT perspective with a fine-grained analysis of the cog-
nitive elements informing Carson’s engagements in transfer. We aim to unpack rel-
evant aspects of Carson’s developing schemes for counting specific combinatorial
scenarios, and we seek to demonstrate coherence between Carson’s assimilatory
mechanism and instances of transfer as being unified in the carrying out of specific
mental acts. Specifically, we will demonstrate that many of Carson’s engagements
in transfer were occasioned by his repeated assimilation to a counting scheme that
coordinated the structure of outcomes as being inherently similar to his coordina-
tions of the Horse Race outcomes. We will also demonstrate the abstractions through
which Carson transformed his knowledge structures to facilitate such
assimilations.

A key aspect of such analysis is attention to Carson’s conveyed mental acts (we
will use the term operations) and the combinatorial objects on which Carson envi-
sioned carrying out such acts. We feel that this engagement with the cognitive sub-
tleties of Carson’s instances of transfer provide a consistent narrative supporting the
utility of the AOT perspective in mathematics education research, which we will
demonstrate and discuss below.

8.3 Methods

8.3.1 Data Collection

The data presented in this chapter are part of a broader study in which we were
examining the role of generalization in the context of combinatorics. We have
reported on some details of the study and on Carson’s initial work on the Horse
Race problem in particular, elsewhere (Lockwood & Reed, 2018), but we elaborate
additional data and adopt different perspectives than we reported previously. For the
broader study, we conducted a small-group teaching experiment that consisted of
nine 90-minute sessions with four undergraduate students, during which the stu-
dents solved a variety of counting problems. We recruited the four students from
vector calculus courses based on selection interviews and scheduling availability.
We sought novice counters who were willing to engage with the material and com-
municate their ideas. By novice counters, we mean students who were not familiar
with basic counting formulas and who would not simply try to recall such formulas
during the study; through selection interviews we determined that this was the case
for each of the students. The students sat at a table facing each other and wrote their
individual work on sheets of paper. We videotaped and audiotaped each session.
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A teaching experiment (Steffe & Thompson, 2000) includes teaching episodes
that consist of several main elements: “a teaching agent, one or more students, a
witness of the teaching episodes, and a method of recording what transpires during
the episode” (p. 273). Steffe and Thompson (2000) say that a main purpose for
implementing this teaching experiment methodology is to allow for “researchers to
experience, firsthand, students’ mathematical learning and reasoning” (p. 267). In
teaching experiments, researchers can examine students’ reasoning over time and
see how they think about and learn particular content or mathematical ideas. We
have reported about the data collection elsewhere (Lockwood & Reed, 2018; Reed
& Lockwood, 2021), and we do not include too many details here because we are
most interested in one of the student’s work. Broadly, throughout the teaching
experiment, the students engaged in a number of different kinds of activities. In the
first three sessions, they solved a variety of counting problems and then categorized
and characterized those problems to articulate general formulas for some key prob-
lem types, including permutations and combinations (see Reed & Lockwood, 2021,
for more details of their categorization). In subsequent sessions they solved more
counting problems and worked on proofs of binomial identities. The Horse Race
problem, described above, is the main problem we emphasize as we analyze
Carson’s connections to other problems. We also describe several other problems
Carson solved, but we will outline details of those problems in the results.

We focus on the work of one particular student over the course of several ses-
sions of a teaching experiment. Carson was a student enrolled in vector calculus.
His selection interview revealed that he was an insightful and resourceful problem
solver who could reason through problems he had not seen before. During the teach-
ing experiment, he was a strong student who often provided insights for the group
and could explain and justify his reasoning. We focus on Carson in this chapter
because as we reviewed the teaching experiment data as a whole, we realized that
he returned several times to the Horse Race problem, connecting back to it in mul-
tiple ways. We were interested in examining this phenomenon more closely, and so
we sought to trace Carson’s references to (and uses of) the Horse Race problem
throughout the experiment. Again, we note that we examined Carson’s use of the
Horse Race problem from an AOT perspective, and doing so affected where we
looked for evidence of transfer. We looked not at his performance on subsequent,
similar (to us) tasks, but rather, we examined Carson’s own explanations, ways of
reasoning, and personal relations of similarity, as seen in his language and activity
throughout the rest of the experiment.

8.3.2 Data Analysis

The interviews were all transcribed, and we made enhanced transcripts in which we
inserted relevant images and descriptions into the transcript. For the data analysis
for this paper, we first searched the transcripts for any mention of the Horse Race
problem. This involved searching for words such as horse, race, racing, ranking,
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podium, etc. This yielded episodes in Sessions 1, 2, 3, 7, and 9 (out of 9 total ses-
sions). We then reviewed the transcripts of those episodes and identified instances
in which Carson referred to the Horse Race problem (either by name or by making
some explicit connection to racing, rankings, or podiums, which we infer as being
inherently connected to that problem). Then, for each episode, we analyzed in what
broad context Carson referred to the problem, looking from Carson’s point of view
at what explanations, justifications, and connections he himself made. In doing this,
we considered Lockwood’s (2011) framework for characterizing AOT, and we iden-
tified the kinds of connections Carson made in each case: elaborated or unelabo-
rated, conventional or unconventional, and referent type. Then, we described
specifically how Carson used the problem and the nature of the connection he made
with the given context. Lobato (2006) says the following about data analysis:

In contrast, evidence for transfer from an actor-oriented perspective is found by scrutinizing
a given activity for any indication of influence from previous activities and by examining
how people appear to construe situations as similar using ethnographic methods, rather than
relying upon statistical measures based on improved performance (p. 436).

Following Lobato (2006), we scrutinized what Carson was doing in these episodes
and what connections he seemed to make. These methods of analysis were funda-
mentally informed by our use of an AOT perspective, and we used different methods
for observing instances of transfer than we would have had we adopted a more
traditional perspective.

8.4 Results

In this section, we explore some of the variety of ways in which Carson lever-
aged the Horse Race problem over the course of the teaching experiment. We
first present Carson’s thinking and activity on relevant tasks prior to his work on
the Horse Race problem to establish some of his initial ways of operating. Then,
we describe Carson’s initial work on the problem, and we feel this is particularly
noteworthy because it gives potential reasons for why the problem became so
important for him. Then, we discuss several episodes in which he referred back
to the Horse Race problem, and we demonstrate several ways in which he used
the Horse Race problem that suggest transfer (and AOT in particular). Throughout
this section, we attempt to make connections with Carson’s thinking and frame
our analysis of his work in terms of constructs described in the section on mecha-
nisms for student reasoning, and we also highlight ways that the AOT perspec-
tive allows for extensions of such analysis. We also note that although we
ultimately want to focus on Carson’s work, we occasionally include some of the
other students’ comments because these at times help to contextualize Carson’s
comments and activity.
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8.4.1 Carson’s Work Prior to the Horse Race Problem

Carson first demonstrated proficiency in working with multiplicative structures dur-
ing the selection interview, where he successfully solved five problems. Carson’s
first engagement in transfer involved identifying a structural similarity between the
following two counting problems: “How many ways are there to arrange five num-
bers in a row?” (the answer is 5!) and “How many ways are there to flip a coin, draw
a card from a standard 52-card deck, and roll a 6-sided die?” (the answer is 2-52-6).
He justified this claim of similarity by appealing to the construction of independent
events in both processes that would imply a solution via successive multiplication.
Carson described the independent events in arranging numbers, which demonstrates
aspects of his developing scheme:

Carson:  Right, so like the 1 has 5 possible outcomes. And where the 1 ends up, it
does kind of decide where the 2 can end up, because it takes away one of
the 5 possible outcomes for the 2. Which means there’s going to be 4
possible outcomes, but which one of those 4 it ends up on is kind of
independent of where the 1 ends up right? So it’s not gonna, where 1
ends up isn’t going to change the number of outcomes for 2, so they are
independent events. I guess in reality they are not independent but for
the math they are.

We interpret that he was coordinating a new scheme involving multiplication and
independent events in a sequence that he could (and would) apply in subsequent
counting sessions. Specifically, the scheme that Carson developed through his ini-
tial engagement with these counting problems involved coordinating the construc-
tion of an outcome through a sequence of independent choices, resulting in a
sequence of products that enumerated the outcome set. We refer to this perceived
outcome structure generally as a multiplicative structure* involving the coordina-
tion of combinatorial objects that can be enumerated multiplicatively. We refer to
the outcome of such a multiplicative structure as a multiplicative outcome.

Carson assimilated to this multiplicative structure while solving the first problem
given in Session 1 of the teaching experiment, involving arrangements. This first
problem, the Line problem, asks “How many ways are there to arrange 5 children in
a line for recess?”” He described arranging five kids in a line by having five choices
for the position of the first kid, then four choices for the next kid, and so on, result-
ing in a multiplicative outcome (Fig. 8.1). Carson’s language suggests implementa-
tion of this same multiplicative structure from his selection interview. Specifically,
this was the first instance in the teaching experiment of him assimilating to his new
(and developing) scheme for coordinating multiplicative combinatorial objects.

3 Although it is possible that Carson was recalling some basic combinatorial structures from high
school algebra, Carson’s problem solving in each task throughout the selection interview appeared
to be novel. We thus infer that Carson was constructing new schemes through each activity in the
selection interview.

#QOur use of the word structure rather than scheme is to convey the instability of his understanding
in his initial work, which, through repeated use, would eventually stabilize to a scheme.
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Fig. 8.1 Carson’s work on arranging five
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Another illuminating assimilation occurred when he solved the MATH problem
(“In how many ways can we rearrange the letters in the word MATH?”), also during
Session 1 of the teaching experiment.

Carson: Well, each letter is a kid in line.

Interviewer: ~ Okay, say more about that.

Carson: So, it’s the same problem. It’s what we just did.

Aaron: You mean 4! in this case.

Interviewer: ~ Okay, and what makes you make that association?

Carson: Well, if you have 4 kids and their names are Matt, Alice, Theo and

Hanson, then you number them 1, 2, 3, and 4.

In this instance, not only did Carson assimilate to the same multiplicative struc-
ture, but he justified his perceived similarity by making direct identification of the
outcomes of the MATH problem to kids in a line from the previous Line problem.
In particular, Carson spontaneously suggested that he could associate the objects
being arranged in the MATH problem (M, A, T, and H) with objects arranged in the
Line problem (the names of specific kids). His mental activity in this instance can
be modeled as constructing an isomorphism between the outcomes. Carson explic-
itly identified the letters as individual children, naming the children “Matt,” “Alice,”
etc. This naming served the purpose of making a correspondence as if defining a
bijective function from the set of 4 kids to the set of first letters in their names. We
use the term isomorphism to convey that his identification communicated a per-
ceived combinatorial structure on top of his explicit bijection. We argue that this
itself is an instance of transfer, where the referent (what is being transferred) is the
set of outcomes, where Carson was formulating a connection from one set of out-
comes (arrangements of M, A, T, and H) to another set of outcomes (arrangements
of kids). Here, Carson’s transfer served as a means of explicating what he perceived
to be a similar structure between the two situations, thus implying a course of action
that would generate a solution to this new problem. Thus, Carson’s engagement in
transfer in this way was occasioned both by his cognitive associations and, we
would argue, also by the social component of his interactions with the interviewer
and other participants.

Carson additionally described a process of arranging the M, then holding it
constant and arranging the A, and so on, again conveying the sequence of “inde-
pendent events” that he described when arranging 5 numbers (from the selection
interview).
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Carson:  So, we locked in the first letter, so we have 4 options what the first letter
can be and then for each option for the first letter we have 3 options for
what the second letter can be, so that’s 3 sets there. And then, for each
second letter there’s gonna be 2 more options, that means we have 3 sets
of 2. And then, for that third letter if you were to group those together
there’s—oh, I'm sorry once the first 2 letters are constant there’s only
one more option.

Carson’s comments were made in the context of discussing why 4-3-2-1 made
sense as a solution and involved him organizing a list of outcomes, thus demonstrat-
ing that he reasoned according to the multiplicative structure in this new MATH
problem. This supports that his developing scheme involved completing an inde-
pendent sequence of events in a multiplicative manner.

Thus, in summarizing Carson’s work prior to the Horse Race problem, we note
that he paid attention to the multiplicative enumerations of counting problems,
which was in line with envisioning a sequential counting process broken down into
independent events. Beginning with n-permutations, Carson’s assimilatory mecha-
nism involved recognizing individual outcomes as being the results of ordered
sequences of events. Further, we have an initial instance of Carson leveraging an
isomorphism construction as a means of explicating a perceived multiplicative
structure, a component of his engagements in transfer throughout the teaching
experiment. So, in approaching the Horse Race problem, Carson (a) had experience
with reasoning about multiplication in counting as involving independent events
and (b) could construct isomorphic relationships between the set of outcomes in one
counting context with another. This initial analysis of Carson’s thinking provides
the context in which future abstractions shaped Carson’s engagements in transfer,
and it also demonstrates both the cognitive and social aspects of Carson’s activity
(which is an affordance of the AOT perspective). We now share Carson’s initial
experience with solving the Horse Race problem, which will set the stage for sub-
sequent discussions of his work.

8.4.2 Carson’s Initial Experience with the Horse
Race Problem

We discuss the episode of Carson’s initial work on the Horse Race problem in some
detail because we think it is important to see how this problem developed for him.
In particular, we view this as an instance of abstraction through which Carson con-
structed a new scheme that incorporated an equivalence way of thinking, which is
something he would later leverage as he constructed additional isomorphisms when
engaging in transfer. This account suggests that Carson’s solving of the Horse Race
problem was formative, and that the resulting abstraction provided him a means of
productively engaging in transfer in future episodes.
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We gave this problem to the students as part of an initial set of 14 problems in the
first two sessions of the teaching experiment. In Session 1, the interviewer posed the
problem for the students and had them think about it individually.

Interviewer:

Interviewer:

Anne-Marie:

Interviewer:
Aaron:

Interviewer:
Carson:

Great, love it. Now, I’ll have you work on this one, maybe a little
think time first. So, I’ve got 10 horses in a race, how many different
ways can the horses finish first, second and third place?

Okay, so tell me what did you guys get.

So, I did it the same way as before, I know we have 3 places and
then first place you have 10 horses that can be in first place, and so
if you look at second place you only 9 now, because 1 horse already
has first place. So, you have 9 horses left to choose from for that
second place, and once you choose one for second place now you
only have 8 left to put in third place. So, you have 10 times 9 times
8 to get your total amount.

Okay, great. And, you said something.

Yeah, the way that she did it is right. I thought that there would be
10 different unique, like the same horse could — how do I explain
this, 10 horses could be in the same place, but it’s 10 times 9 times
8, because you are already using up one of the combinations on
previous.

Great, like, yeah — go ahead.

If you think about it in the real world, like anything can happen mid
race, like a meteor could come and hit the horses and then the dif-
ferent one wins than you thought was going to. But, after the first
one finishes there’s still 9 horses on the race track, so there’s 9 dif-
ferent ways that the next horse could cross the line and then after
that second-place horse has finished, there’s still 8 horses on the
race track, so any of those 8 horses could take third. So, 10 times 9
times 8 (Fig. 8.2).

Initially, then, all three of the students seemed to have used the same approach, and
they arrived at the correct product of 10-9-8, arguing that the number of options
decreases to 9 after the first horse finishes, and then to 8 after the second horse fin-
ishes. The students had all arrived at the same answer and seemed confident. We
note that Carson said that anything could happen in the race to change the order of
the racing horses (including a meteor strike), but as soon as that first horse crossed
the finish there were then 9 horses left that could be arranged. This highlights

Fig. 8.2 Carson’s initial
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Carson’s assimilation to his multiplicative scheme involving the imagining of a
sequence of independent events that would be enumerated multiplicatively, which
he had established earlier in the interviews.

We also wanted to see if and how the students could reason about the solution to

10! . . . . . .
the problem T not just numerically but combinatorially (as discussed above in the
Mathematical Discussion section). In light of this, the interviewer asked the stu-
. 10!
dents how their initial answer of 10-9-8 would relate to a solution of % One of the

students, Aaron, noticed that it would be the same number because cancellation of
terms in 10! and 7! would occur, and Carson agreed. Thus, the students had seen
that they could numerically simplify the expressions to yield the same value, but
again, the interviewer wanted to see if they could make sense of this quotient com-
binatorially and in terms of equivalence. The interviewer asked the students to

!
explain why 1ot might make sense “aside from the fact that it’s numerically equiva-
7!

lent to 10 times 9 times 8.” The students worked for several minutes, and in the
excerpt below, we see that Aaron noted that he could not explain the quotient com-
binatorially. Ultimately, Carson was the only student who seemed able to make
sense of the situation, and he explained his thinking below.

Interviewer: ~ What are you thinking about so far, it’s a hard question?

Aaron: Yeah, I can’t see it right now.

Carson: So, the way I’m thinking about it, is that we know kind of the method
to get the number of ways that 10 horses can finish a race, and that’s
10!, and that something we did, like kids in line. So, it’s the same
problem there. So, there’s 10! total outcomes, and then we know for
any given first 3 there’s going to be 7!, because that’s saying we
know the first 3 horses have finished, how can the last 7 horses fin-
ish, so that’s going to be 7!. But all we care about is how many given
first 3 s there are. So, if we divide the total number of outcomes by
the number of potential of outcomes for the last 7 horses that will
give us the potential number of outcomes for the first 3. If that
makes sense?

We suggest that the underlined portion represents an instance of transfer, with
Carson referring back to a particular problem (the Line problem) and relating it to
arranging 10 horses in a race. He then built from that to make a case about why divi-
sion by 7! might make sense. Carson’s explanation of the solution was that the 10!
represented arranging all 10 horses, and that for any given first 3 there were 7! ways
the remaining 7 horses can finish. Then, division by those 7! ways of arranging the
last 7 horses gave the number of outcomes for how the first 3 could finish.

We argue that this discussion contributed to Carson’s deeper understanding of
this phenomenon and that justifying this idea provided a context for Carson’s under-

standing of permutations in which he could ground and develop important ideas.
. 10! . . . .
In particular, the prompt to explain the %expressmn combinatorially facilitated a
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significant moment of accommodation for him. He had to abstract key operational
aspects of his previous scheme to accommodate this new mathematical phenome-
non. We contend that Carson envisioned carrying out a specified sequence of events
(counting ways that 7 horses could finish a race) within the context of a larger
counting process (counting ways that 10 horses could finish a race), and he coordi-
nated the multiplicative structures of the specific desired sequence and the more
general counting process. Notice that Carson first described arranging 10 horses,
and then he described arranging the total 7 horses after the first three finished. This
is similar to his sequencing of individual events, but he was now conceiving of these
as together comprising a broader two-stage process. We infer that rather than count-
ing the number of potential outcomes of the next event, he imagined a new indepen-
dent counting process to occur after the first three horses finished (the italicized
portion of the above quotation). As we will further discuss below, Carson’s accom-
modation entailed a reflective abstraction of key operations from his multiplicative
scheme to construct a new scheme that coordinated new operations accounting for
equivalent outcomes.

The interviewer recognized that Carson’s answer was correct and saw that
Carson seemed to understand the problem, but she wanted to emphasize the point
for Aaron and Anne-Marie, neither of whom seemed totally convinced. They then
proceeded to have a bit more discussion; in this case, the interviewer sought to help
the students reason about equivalence. We view the next exchange as an interven-
tion, in which the interviewer tried to help students make sense of equivalence in
counting (and to develop an equivalence way of thinking). By taking the time to
explore this idea of equivalence more deeply on this problem, we note that this dis-
cussion provided additional opportunity for Carson to continue to develop his think-
ing and to explain his thinking to his fellow students. He repeatedly used the Horse
Race problem and the idea of a podium as a means to explain the phenomenon, and
this episode also emphasizes the way that social interaction can influence transfer,
something that an AOT perspective affords (and something for which a more tradi-
tional perspective would not explicitly account). We contend that, in this case, the
social interaction of explaining to other students about equivalence seemed to play
a part in facilitating Carson’s explicit use of the Horse Race problem as a way to
articulate important aspects of equivalence upon which he would later draw.

The interviewer then asked why division instead of subtraction made sense to
Carson, seeing if he could provide an explanation to his fellow students. Here, the
interviewer wanted to give Carson the opportunity to explain rather than for her
simply to tell the students why division made sense.

Interviewer: ~ That’s fair. So, you agree that it’s 7! for any one of these, but why
are we dividing? Okay, that’s a great question. Why do you think
you’re dividing instead of subtracting?

Carson: So, for any arrangement of the first 3, so for any 1, 2, 3, we have 7!
options for the rest of them. And, what we’re being asked for is to
find how many arrangements in the first 3 there are. So. that 7! is
only gonna be worth one of the things we are looking for, which is
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the podium finishers. So, if we divide the total number of the com-
binations for this last bit we can get, while holding these 3 constant,
by 7! we’re gonna get 1. Because 7! over 7! is 1. But, the total
arrangement is 10!, and if we divide that by 7! we’re gonna get just
the number of arrangements there are for the first 3.

The underlined portion again highlights the equivalence way of thinking Carson
was bringing to this problem, and it suggests that he realized that for any arrange-
ment of the first three horses, there were 7! equivalent ways to arrange the remain-
ing horses who do not finish. His language again reflected a new (and still stabilizing)
scheme of coordinating two multiplicative counting processes with the collection of
outcomes that isolated a desired subsequence of events. His language of “holding
these 3 constant” reflected operations that he had used in his previous multiplicative
scheme, which were being coordinated with the ways the first three and the last
seven horses could finish the race.

While continuing this discussion, Aaron talked about seeing groups of objects
and dividing by the size of the groups (he was referring to groups generally and not
necessarily to horses or to a particular context). Carson picked up on this and again
tried to explain the problem, connecting the idea of groups to the “podium” of the
three horses that finished the race (see Fig. 8.3). In this instance, Carson was refer-
ring back to their arrangements of kids in a line and pointing to Aaron’s written
work on the problem.

Carson:  Well, that’s sort of what you’re doing, doing this too. So, like this is a
group. Or [pauses] this here is a group, or this is the podium [points to
the first six numbers], those first 6 places are the podium, these [the
arrangements of 7 and 8] are the number of combinations for the end for
the tail is what she was calling it. Or this is the podium [points to the first
5], the first 5 places at the podium and that’s the number of combinations
for the end [the arrangements of 6, 7, and 8]. So, if I wanna find the total
number of ways the podium can finish, it would be the entire thing
divided by the size of the group.

Fig. 8.3 Carson describes
equivalent arrangements
of groups
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Both of Carson’s above descriptions of why division made sense further illumi-
nates a component of his new scheme, specifically the use of a representative ele-
ment of the equivalence class of 10 arranged horses with the first three (or five or six
as he mentioned above) horses fixed. This is consistent with his sequential construc-
tion of a desired outcome, where Carson’s abstracted scheme leveraged a particular
outcome as a representative of a class of outcomes, and this was in line with an
equivalence way of thinking. We suggest that this was a reflective abstraction of his
scheme for creating independent events in which he made a sequence of choices for
placing objects in a number of positions, or “slots.” The projected operation was the
sequencing of events resulting in a multiplicative operation, which he then reflected
to incorporate the equivalence structure into his new scheme by arranging the
remaining outcomes. We argue that, in this case, the Horse Race problem was very
salient for Carson, and we will see that his new scheme incorporated the specific
Horse Race context as language through which he could engage in transfer while
articulating certain ideas to his peers. Again, this demonstrates the interaction
between the cognitive and social elements that the AOT perspective affords, in that
Carson’s abstracted constructs provided him with specific means of communicating
to his peers the mathematical structures he would later encounter in his combinato-
rial activity throughout the teaching experiment.

Moreover, he (twice) explained this reasoning to his fellow students, and he did
so by using either the problem context directly (mentioning a horse race) or specific
features of the problem (such as a podium or a race). We feel that these factors con-
tributed to the problem achieving particular importance for him, and, as we will see,
Carson continued to use the Horse Race problem itself (or features of the problem)
as referents in a number of additional contexts. Cognitively, we view the following
instances of transfer in the remainder of this chapter as primarily deriving from
Carson assimilating to this newly abstracted scheme that attended to the multiplica-
tive structure of the outcomes he was counting. In this way, our use of Piaget’s
constructs enable us to present a unified account of the cognitive elements behind
Carson’s effective engagements in transfer, which typically involved use of some
isomorphism.

8.4.3 Carson’s Use of the Horse Race Problem as a Referent
and His Formulation of Isomorphism

We now offer an example of how Carson made connections to the Horse Race prob-
lem on subsequent occasions in the interview. This came about in a couple of differ-
ent ways and contexts. Here, we focus on how he made explicit connections to the
Horse Race problem when solving new problems, and his work suggests to us that
his uses of transfer were supported by assimilation to his newly abstracted scheme
for permutation problems that involved envisioning a specific sequence of indepen-
dent events that resulted in an equivalence structure. We would characterize this as
a conventional, elaborated connection (in the sense of Lockwood, 2011) because
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Carson made connections to problems that we might conventionally consider to be
isomorphic. We also emphasize the role that the set of outcomes played in Carson’s
development and uses of isomorphism. We highlight two episodes in which Carson
made connections to new problems.

We first emphasize a situation at the end of Session 1, when the interviewer gave
them the Book problem: “You have 7 books and you want to arrange 4 books on a
shelf, where their order on the shelf matters. How many ways are there to do this?”
The students all answered the problem correctly, and they seemed able to make
sense of it as being similar to the Horse Race problem. Aaron related it to the previ-
ous Horse Race problem, saying, “It’s the same type of problem,” and Anne-Marie

said that she was “looking at what we were just talking about.” They both explained
that the answer would be g, although they did not explicitly make a connection to
elements of the Horse Race .problem and why it was similar to the current problem.’
When Carson explained his work, we see that in explaining his answer of ; for the
Book problem, he explicitly made a connection to the previous Horse Race prob-

lem. Even more, though, we emphasize that, in doing so, he actually changed the
language of the given Book problem to match salient language in the Horse Race
problem, notably, talking about books racing.

Carson:  Yes, kind of similar to the horse problem, you can say they’re all in a
race, you want see how many ways the first 4 books could finish in the
race. So, the equivalent, you could think about you got a bunch of books
and a bucket, and you’re reaching in and grabbing one randomly to put
on the first spot on the shelf. So, you have 7 options for that first one and
then there’s already a book on the shelf, so there’s only 6 left in the
bucket and you’re going to grab one randomly and put it on the second
spot, so 6 ways that could come out for the second spot and onwards to
the fourth spot. So, it’s just 7 options times 6 options, times 5 times 4. I
think about it in the grouping again and do 7! divided by 3!

It is interesting to note that Carson made a clear connection to the objects in the
current Book problem (books) to objects in the Horse Race problem (horses), and
he could think of the books as competing in a race.

In this episode, we again argue that Carson engaged in transfer by creating an
isomorphism. His description of the books finishing a race is an instance in which
he used the outcomes as referents by articulating a bijection between outcomes that
preserves a perceived combinatorial structure. Further, we see evidence of Carson’s
assimilatory mechanisms at play. First, he gave a clear description of sequencing the
placing of books that was similar to the way he described the horses being sequenced

SWe note that Aaron and Anne-Marie were similarly making connections to prior problems, and
these utterances represent instances of transfer. However, we continue to focus primarily on
Carson’s work.
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in a race. Carson conveyed both the borrowed multiplicative operations as well as
his new attention to equivalence in his last two sentences, where his appeal to
“groupings” was reminiscent of the groups of podiums he had previously con-
structed in the Horse Race problem. Importantly, Carson was not just noting that the
solution activity was the same, but even more, he seemed to recognize that the com-
binatorial structure was isomorphic.

Carson again engaged in a similar moment of transfer when solving the Cats and
Collars problem (which states: ““You have a red, a blue, a yellow, and a purple collar
to put on seven cats, where no cat will get more than one collar. In how many ways
can you give the four collars to seven cats?”). The students worked on this problem
during Session 2. This problem was slightly more challenging for the students, and
it took them some time to make progress on the problem and arrive at a solution.
After several minutes of reasoning about the problem, the students correctly agreed

7! s
that the answer should be T They argued that, in this case, they had four slots or

positions that represented the collars, and then they considered choices for which
cats could go into each collar. There is a noteworthy feature of this problem, which
is that it is perhaps not clear how to encode the problem and whether it makes sense
to think about giving the cats to the collars or giving the collars to the cats. In the
following exchange, we highlight a productive discussion that all of the students
had about this problem, where they were trying to explain why having the spots
represent the collars would make sense.

Josh: Yeah, I recognize that it was 7! over 3! and I actually drew seven spaces
at first for the seven cats but I found that this was clearer for saying that
their collars were the spaces.

Aaron:  Yeah, I did that, too.

Josh: Because it represents this more clearly, I think. [...] You can actually see
where this can come into play here because you have seven spaces and
three of the spaces can’t be filled. So, you can say that this is 7! over 3!
just like this.

The interviewer then asked for some clarification (seen in the excerpt below), ask-
ing the students how they were thinking about distributing cats to collars (and not
vice versa). We note that here, the interviewer was genuinely trying to think about
their idea and to get a sense of whether their approach made sense.

Interviewer: ~ Yeah, so are you thinking of those A, B, C, Ds as being fixed, then,
and you’re arranging the spots around those A, B, C, Ds?

Carson: Yeah, so that’s how I thought about it is you have four spots and —
It’s a race, right, and the cats that get first, second, third, and fourth
get collars. Right? So, seven cats can get the first collar, onward to
the fourth collar and then, the last three cats, it doesn’t really matter
what place they come in in that race because they’re not going to get
collars. Right? But there are 3! ways that those last three cats could
finish so you need to divide the total number of outcomes for the
race by those 3! for the last place.
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Interviewer: ~ Okay. And you feel like that’s reflected in this as much as in that?

Aaron: Yes.

Carson: Right. Well, it’s a little like you see the empty spaces that are going
to get arranged when you represent the cats with the spaces rather
than the collars.

In the underlined portion, we see that Carson again connected the Cats and Collars
problem to a racing context. He explicitly says, “it’s a race, right?”” and later talks
about ways cats “could finish.” As with the Book problem, Carson drew an explicit
isomorphism to identify the outcomes as having the same assimilated combinatorial
structure as the Horse Race problem (i.e., a multiplicative structure that could result
in equivalence classes). One aspect of AOT is that it allows researchers to look for
how a prior learning experience influences reasoning on novel problems. In this
case, we see evidence of such influence, where Carson’s sophisticated reasoning
about how a certain counting process generated outcomes in the Horse race problem
also applied to the Cats and Collars problem. The language of “cats finishing” sug-
gests the influence of the racing context on his current situation.

Again, Carson was not just using the Horse Race problem as a general referent,
but instead, he was paying explicit attention to the outcomes as a means of describ-
ing the same assimilated structure. This attention to outcomes is not only produc-
tive, but it also demonstrates the increasing stability of Carson’s assimilated scheme.
Further, it shows the specifics of Carson’s assimilatory mechanism underlying his
engagement in transfer of yet another situation. Moreover, we contend that Carson’s
engagements in transfer had a reflexive effect in that his use of isomorphic language
was socially motivated (to explain to the interviewer or his peers), and this repeated
articulation of the multiplicative structure he was perceiving further stabilized his
scheme associated with the Horse Race problem. Indeed, this episode, and the
lengthy exchange among all four students, highlights that AOT allows for consider-
ing the influence of social interaction on the emergence of transfer. The elaborated
connections between the Cats and Collars problem and the Horse Race problem
were articulated during Carson’s discussions with his peers. As an example, we
would consider Aaron and Anne-Marie’s initial comments on the book problem as
unelaborated connections from which Carson then built to engage in isomorphic
reasoning.

8.4.4 Carson Leveraged a Connection to the Horse Race
Problem When Developing and Justifying a General
Counting Formula

In Session 3, the students engaged in another kind of activity in the teaching experi-
ment. We had asked them to categorize problems they had solved, and the goal was
for them then to use these categories to come up with and justify general formulas
for each problem type. The categorization is described in more detail elsewhere
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(Reed & Lockwood, 2021), but here we point out that the Horse Race problem again
came up for Carson in this context. Specifically, Carson still used the Horse Race
problem to describe his understanding of general permutation processes, thus lever-
aging his scheme to analyze more general phenomena than just solving another new
permutation problem.

First, we highlight a brief reference he made to the Horse Race problem as the
students were categorizing 14 problems that they had initially solved. They had
categorized all of the problems involving either permutations or combinations
together, and they were in the process of separating those problems into two groups.
First, he put slips of paper with the Horse Race problem and the Restaurant problem
(which states, “Corvallis has 25 restaurants, and you want to rank your top 5. How
many different rankings can you make?”’) together, and said “these two are the exact
same problem.” Then he also added the slip of paper with the Cats and Collars prob-
lem. In the following exchange, Carson associated three colors with three places.

Carson:  So, these two are the exact same problem [the Horse Race problem and
the Restaurant problem]. This [the Cats and Collars problem] is the
exact same problem too because you could say red’s first place, blue’s
second place, yellow’s third place, right?

The interviewer then explicitly asked him what he meant by problems being the
“exact same problem,” and his response again demonstrates his use of isomorphism
to elaborate the specific structures to which he was assimilating. Notice that, as
before, Carson both referenced the context of a race, implying isomorphic racers in
the race, and referenced the “podium” and dividing by the racers that did not make
the podium, which more explicitly suggests assimilation of the equivalence struc-
ture within the set of the outcomes.

Interviewer: ~ Okay, great. When you say something like, “these are the exact
same problem” can you say what you mean by that and also how
you know that they’re — like how are they the same to you? What do
you mean?

Carson: So, essentially all of them are asking for a ranking of a given set of
objects and asking how many arrangements there are for a given
number of places, right? So, the cats are racing to get the collars
[points to the paper with the Cats and Collars problem] you could
say or the restaurants are racing to get the top five rankings in the
town [points to the paper with the Restaurant problem] or the horses
are racing in a race [points to the paper with the Horse Race prob-
lem]. Then each of the rankings or the collars are a ranking in the
race. Yeah, then you can just divide by the duplicates for leftover
ones, the ones that didn’t make the podium finish or whatever
amount of finishes there are or whatever podium they’re asking for.

The students eventually categorized the problems into four groups, — arrangements
with repetition, n-permutations (arranging n distinct objects), r-permutations
(arranging r from n distinct objects), and r-combinations (selecting r from n distinct
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objects). After the students had categorized problems into groups, they were asked
to articulate and describe what that problem type was counting. Specifically, the
interviewer asked, “What is the problem type that each of these four categories
represents? And I’d like you to actually write down as a group what you want that
to say.” The students worked to characterize problem types, and they first articulated
what we would refer to as n-permutations. They described those problems as the
number of ways to arrange a set of objects, and they also wrote down the general
formula that there are x! ways to arrange x objects (they had used the variable x).
They then moved to the next set of problems, which were permutations of some

subset (of size r) of the n objects (so, r-permutations).

Interviewer: ~ Okay, nice. How about the next?

Carson: So, same as above, except only asking for unique number of places.

Josh: Well, we have more unique objects than unique places.

Carson: Right. I mean thinking about the method for solving this, it’s the
factorial from above, right? So, we have 10 horses in a race. How
many ways can the horses finish. but then how many of those have
a unique podium, right? So, how many times are the first, second,
and third place different?

Aaron: So, you’re not really looking at 4 through 10 in that case?

Carson: Right.

Aaron: So, it’d be over 6! in that case.

Carson: Right.

Aaron: So, just getting rid of all the arbitrary combinations that you’re not
looking for.

Carson: Right.

Anne-Marie:  Yeah.

Carson:

Anne-Marie:

So, you could say we’re arranging the horses in a random way and
then selecting three of them, right?
Mm-hmm.

Carson: So, how many ways could that selection come out?

Josh: Well, not necessarily an arrangement, you’re just selecting three
horses from a certain number of things.

Carson: Right.

The students were discussing this problem type, and they decided that they wanted
to count arrangements of some number of elements (but not necessarily all of them).
Carson connected this problem type to the Horse Race problem, and he used the

context of the Horse Race problem as a prototypical problem of this type. The stu-
al

dents were then able to come up with the general formula (Fig. 8.4) of m,

where they noted that “a is the total amount and b is how many you’re choosing.”
The interviewer asked why they had an (@ — b)! in the denominator, and, as
Carson explained the formula, he again referred to the podium arrangements. The
language in the following excerpt again demonstrates that the equivalence structure
was a primary aspect of his scheme. We emphasize in the underlined portions below
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a!

(a-b)!

Fig. 8.4 The students’ general formula for r-permutations (in their case, b-permutations from a
distinct objects)

that Carson was using the context of the Horse Race problem (and referring to the
podium, for example) to talk about a general process and not the specific example
and instance of the Horse Race problem.

Interviewer:  Okay, nice and why is it @ minus b factorial in the denominator?

[...]

Carson: Yeah, so I guess the way that I think about this is that @ is your total
number of arrangements for the entire thing and then you want to

divide by the number of ways that the places you’re not selecting
can be arranged, right?

Anne-Marie:  Mm-hmm.

Carson: So, if you're selecting first, second. and third, then you have fourth
through 10th and those can be arranged in 10 minus 3 factorial

ways, right?
Interviewer: ~ Mm-hmm.

Carson: So, we can just divide by that number of arrangements (begins
motioning slots with hands) for the backend to get just one for the

frontend because that’s what we’re asking for is how many ways
can that podium be arranged.

Thus, in this section, we see the Horse Race problem continuing to be an aspect
of Carson’s work, even when engaging in an activity of developing a general for-
mula for the combinatorial operation of combinations. This demonstrates that
Carson’s scheme extended beyond just solving additional permutation problems,
but he drew on the Horse Race problem in a different kind of combinatorial activity.

8.4.5 Carson Draws on the Racing Context to Justify
the Formula for Combinations

During Session 7, the students were trying to justify a formula for combinations

!

(#), and for several minutes they were going back and forth to try to explain
n—r)lr!

the formula. They talked for a couple of minutes, trying to work through an example

and make sense of what might be happening. Ultimately, the notion of
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“redundancies” was important for them, which we take to mean duplicate outcomes.
Notably, as they were working through this, Carson ultimately used a context of a
race and a podium to explain his reasoning about the formula.

Aaron: So this is finding the arrangements of these two slots within these six.
Interviewer:  Exactly.

Carson: That’s what the whole thing is doing.

Interviewer: ~ No, and then this is getting rid of—

Aaron: Redundancies.

Interviewer:  Yes.

Carson: So if you think about this like a race, so all the numbers are in a race.

It’s asking how many of them can finish in the first two places.
That’s this many. That’s 6! over 4!, right? So that’s how many differ-
ent ways you can get the podium, but then we really only care about
the different ways that the podium can be. Who are the different
people that can be on the podium? Not the different arrangements of
people in first and second place. So that’s the 2! redundancies there,
because there’s two ways that that podium can get arranged.

Interviewer: ~ Mm-hmm, and so I just wanted to reinforce this piece is really just
letting you focus on the number of things you care about.

Aaron: So you don’t care about order. You just care about number of things.

Carson: Yeah, and this is the term that dictates order, because that’s dividing
out the redundancies of the—

Interviewer: ~ Yeah, and that term is making it so you don’t care about the rest of
it. It just lets you focus on two things.

Carson: 6! tells you how many arrangements. Well, 4! tells you how many
arrangements of the backend, so that leaves you with how many in
the backend there are.

Here again we point out that this race context that began with the Horse Race
problem was an important part of him being able to reason about and explain and
communicate his thinking on problems, even when justifying a general counting
process that is not strictly a permutation. In this instance, Carson again made use of
an isomorphism to set up the combinatorial objects as being structurally similar to
the Horse Race problem, but he then made a change by altering the conditions of the
race. Specifically, Carson leveraged an isomorphism to discuss a race with two fin-
ishers on the podium. We infer that this represents an instance of transfer in which
he attended to the set of outcomes, and he then altered what mattered about the
podium to answer the specific situation they were characterizing. This demonstrates
that Carson leveraged the Horse Race problem as a means of identifying and com-
municating a perceived combinatorial structure on which he could operate when
solving specific problems. This is significant because it highlights that as Carson’s
scheme stabilized, the Horse Race Problem became a context for mathematical
exploration rather than just a template on which could fit an existing structure. Thus,
Carson’s engagements in trans