
Research in Mathematics Education
Series Editors: Jinfa Cai · James A. Middleton

Charles Hohensee
Joanne Lobato   Editors

Transfer 
of Learning
Progressive Perspectives 
for Mathematics Education and Related 
Fields



Research in Mathematics Education

Series Editors

Jinfa Cai
Newark, DE, USA

James A. Middleton
Tempe, AZ, USA



This series is designed to produce thematic volumes, allowing researchers to access 
numerous studies on a theme in a single, peer-reviewed source. Our intent for this 
series is to publish the latest research in the field in a timely fashion. This design is 
particularly geared toward highlighting the work of promising graduate students 
and junior faculty working in conjunction with senior scholars. The audience for 
this monograph series consists of those in the intersection between researchers and 
mathematics education leaders—people who need the highest quality research, 
methodological rigor, and potentially transformative implications ready at hand to 
help them make decisions regarding the improvement of teaching, learning, policy, 
and practice. With this vision, our mission of this book series is: (1) To support the 
sharing of critical research findings among members of the mathematics education 
community; (2) To support graduate students and junior faculty and induct them 
into the research community by pairing them with senior faculty in the production 
of the highest quality peer-reviewed research papers; and (3) To support the 
usefulness and widespread adoption of research-based innovation.

More information about this series at http://www.springer.com/series/13030

http://www.springer.com/series/13030


Charles Hohensee • Joanne Lobato
Editors

Transfer of Learning
Progressive Perspectives for Mathematics 
Education and Related Fields



Editors
Charles Hohensee
School of Education
University of Delaware
Newark, DE, USA

Joanne Lobato
Department of Mathematics and Statistics
San Diego State University
San Diego, CA USA

ISSN 2570-4729     ISSN 2570-4737 (electronic)
Research in Mathematics Education
ISBN 978-3-030-65631-7    ISBN 978-3-030-65632-4 (eBook)
https://doi.org/10.1007/978-3-030-65632-4

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-65632-4


v

Foreword

Helping learners develop understanding and skill in one context and then even store 
them, let alone apply them in another context, has been an enduring goal for decades. 
Recently, however, the study of transfer has transformed, becoming increasingly 
rigorous and useful for the improvement of mathematics learning experiences. This 
is one of the books in the Research in Mathematics Education series. Charles 
Hohensee and Joanne Lobato, the editors of this volume, provide us with a compre-
hensive look at transfer in mathematics education.

This is the first book in mathematics education research that addresses transfer. 
The chapters cover diverse approaches ranging from embodied cognition to more 
conventional assessment of near and far transfer and to sociocultural approaches 
examining the interaction of tools, goals, and actors in classroom contexts. 
Philosophically, this volume is eclectic. Transfer of learning is seen by the collective 
of authors as too important to pigeonhole into a single, narrow perspective. That is 
one of the delights of this book: If one can somehow utilize knowledge or practices 
learned in one place and time in another place and time, that is transfer. How trans-
fer occurs, what aspects of a learning situation are transferable, and under what 
conditions teachers or curriculum designers may impact transfer are questions that 
each of the authors deals with from within their own theoretical framework. Six dif-
ferent but overlapping traditions interweave throughout the chapters, sometimes 
competing and sometimes complementing each other.

The extended discussions of transfer between mathematics and other science, 
technology, engineering, and mathematics (STEM) subject matter, we feel, will be 
of special interest to researchers and practitioners. The work presented here can 
guide the simultaneous design and planning of learning experiences in K-12 STEM 
courses. Additionally, the “so what” question regarding transfer is effectively 
addressed in this volume through several chapters examining transfer to and from 
out-of-school settings. This is a unique contribution to mathematics education at 
this time, marking this volume as a key resource for researchers and practitioners 
who seek to understand what about school mathematics is not only applicable but is 
actually applied by learners in their own lives beyond the bounds of their mathemat-
ics classroom.
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Our intent for this series is to publish the latest research in the field in a timely 
fashion. This design is particularly geared towards highlighting the work of promis-
ing graduate students and junior faculty working in conjunction with senior schol-
ars. The audience for this monograph series consists of those at the intersection of 
researchers and mathematics education leaders—people who need the highest qual-
ity research, methodological rigor, and potentially transformative implications 
ready at hand to help them make decisions regarding the improvement of teaching, 
learning, policy, and practice. With this vision, our mission for this book series is:

 1. To support the sharing of critical research findings among members of the math-
ematics education community

 2. To support graduate students and junior faculty and induct them into the research 
community by pairing them with senior faculty in the production of the highest 
quality, peer-reviewed research papers

 3. To support the usefulness and widespread adoption of research-based innovation

We are grateful for the support of Melissa James from Springer in developing 
and publishing this book series as well as supporting the publication of this volume.

We thank the editors (Hohensee and Lobato) and all of the authors who have 
contributed to this innovative and comprehensive volume!

University of Delaware, Newark, DE, USA Jinfa Cai
Arizona State University, Tempe, AZ, USA James A. Middleton

Foreword
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Preface

With this book, we have aggregated a number of progressive perspectives on the 
transfer of learning in the context of mathematics education and related fields. The 
book is part of Springer’s growing Research in Mathematics Education monograph 
series, which is composed of thematic volumes of peer-reviewed, high-quality con-
tributions on timely topics.

The publication of this book is particularly timely because, over the past 20 years, 
a new generation of transfer researchers have emerged that have been developing pro-
gressive perspectives and using them to frame empirical studies in STEM education 
research. The development of these progressive perspectives was in reaction to the rash 
of criticism of traditional transfer research. The progressive perspectives represented 
in the chapters of this book implicitly and explicitly address many of those criticisms.

A number of factors motivated us to embark on this edited volume on the transfer 
of learning. First, despite the negative critiques of traditional transfer research, we 
view the underlying phenomenon of transfer to be of critical importance for mathe-
matics teaching and learning. Second, we perceived a need to bring together into a sin-
gle volume recent efforts from researchers whose work could usefully inform future 
directions for transfer research in the domain of mathematics education. Third, we felt 
the time was right to bring together interdisciplinary contributions with links to math-
ematics education as a way to stimulate dialogue about transfer across disciplines.

It is our hope that the chapters in this book will be useful to those researchers 
who principally focus on transfer, as well as to those who do not typically focus on 
transfer but who find ideas contained in these chapters relevant to their work. To that 
end, we have tried to achieve a balance between theoretical chapters and those that 
are empirically based. We have also included authors from many different countries 
in order to provide an intriguing range of perspectives. Thus, we feel the book is 
well positioned to generate new and renewed excitement for transfer research and to 
motivate the field of mathematics education to focus more efforts on understanding 
this enduring and important topic.

Newark, DE, USA Charles Hohensee
San Diego, CA, USA Joanne Lobato
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Chapter 1
Current Conceptualizations of the Transfer 
of Learning and Their Use in STEM 
Education Research

Joanne Lobato and Charles Hohensee

We believe that the metaphor underlying transfer—namely, of transporting knowledge from 
one concrete situation to another—is fundamentally flawed… Our goal is to recommend 
not an “improved version” of transfer, but rather the abandonment altogether of “transfer” 
as a view of how learning takes place. (Carraher & Schliemann, 2002, p. 20)

We believe that the distinction between acquiring knowledge and applying it [transfer] is 
inappropriate for education. (Hiebert et al., 1996, p. 14)

A persistent follower of the PM [participation metaphor] must realize, sooner or later, that 
from a purely analytical point of view, the metaphorical message of the notion of transfer 
does not fit into PM-generated conceptual frameworks. (Sfard, 1998, p. 9)

As these epigraphs illustrate, 20–25 years ago, mathematics education research 
largely turned away from transfer as a viable conceptual construct, and conse-
quently, away from conducting and publishing transfer studies. In contrast, in the 
past 10 years, there has been a marked upsurge in publications on the transfer of 
learning in mathematics education research specifically and STEM education 
research more broadly. Such studies have been grounded in progressive perspec-
tives on transfer rather than in the traditional perspective. This chapter begins with 
a brief account of this evolution, from rejection of the traditional transfer approach 
to the development and use of progressive transfer perspectives. In the main body of 
the chapter, we present the key features of six progressive perspectives on the trans-
fer of learning, using examples of their recent use in STEM education research. 
Finally, we end with a discussion of the motivation for and organization of this book.

J. Lobato () 
Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA
e-mail: jlobato@sdsu.edu 

C. Hohensee 
University of Delaware, Newark, DE, USA
e-mail: hohensee@udel.edu

© Springer Nature Switzerland AG 2021
C. Hohensee, J. Lobato (eds.), Transfer of Learning, Research in Mathematics 
Education, https://doi.org/10.1007/978-3-030-65632-4_1
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1.1  The Emergence of Progressive Transfer Perspectives

1.1.1  Traditional Transfer Perspective and Critiques

By the traditional transfer perspective, we refer broadly to the family of approaches 
that emerged during the cognitive revolution of the last half of the twentieth century 
and came to dominate transfer research (e.g., by Bassok & Holyoak, 1993; Gentner, 
1983, 1989; Ross, 1984; Singley & Anderson, 1989). Although different strands 
exist within this perspective, they share multiple features. First, transfer is defined 
as the application of knowledge or skills learned in one situation to a new or varied 
context (Alexander & Murphy, 1999; Bransford, Brown, & Cocking, 2000). Second, 
the formation of sufficiently abstract representations is a necessary condition for 
transfer, where abstraction is conceived as a process of decontextualization (Fuchs 
et al., 2003; Gentner, 1983; Reeves & Weisberg, 1994). Third, the occurrence of 
transfer is attributed to the psychological invariance of symbolic mental representa-
tions. Specifically, transfer occurs if the representations that people construct of 
initial learning and transfer situations are identical, overlap, or can be related via 
mapping (Anderson, Corbett, Koedinger, & Pelletier, 1995; Gentner, Loewenstein, 
& Thompson, 2003; Gick & Holyoak, 1983, 1987; Novick, 1988; Reed, 1993; 
Sternberg & Frensch, 1993).

Methodologically, traditional transfer studies typically present subjects with a 
sequence of tasks that share some structural features (e.g., a common solution 
approach or shared principle) but have different surface forms (e.g., different word 
problem contexts), according to an expert’s knowledge of the topic. Subjects are 
then taught some solution strategy, principle, or procedure with the initial learning 
task. If the subjects perform better on a transfer task than a control group (who 
receive the transfer task but no learning tasks), then transfer is said to have occurred 
(Singley & Anderson, 1989). Some researchers have made adaptations to this basic 
approach by using multiple measures to capture the transfer of learning (e.g., Chen 
& Klahr, 1999) or verbal protocol methods to examine solution procedures (e.g., 
Bassok & Holyok, 1989; Nokes, 2009), though, according to Novick (1988), most 
traditional transfer studies rely primarily on performance measures. [For a more 
nuanced discussion of differences among cognitivist perspectives and a historical 
account of the linkages between cognitivist perspectives and Thorndike’s (1906) 
associationist transfer theory of common elements see Cox (1997) and Lobato 
(2006, 2012).]

The traditional transfer perspective encountered a rash of criticism beginning in 
the mid-1980s as situated cognition and socio-cultural perspectives on learning 
became popular (Gruber, Law, Mandl, & Renkl, 1996; Laboratory of Comparative 
Human Cognition, 1983; Lave, 1988; Lerman, 1999; Packer, 2001). We briefly 
review three critiques of the theoretical and methodological roots of transfer. First, 
the traditional transfer perspective is rooted in a conception of knowledge as tools 
that can be acquired in one situation and transported unchanged to another situation 
(Greeno, 1997; Packer, 2001). The tools are assumed to be independent of the 

J. Lobato and C. Hohensee
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situations in which they are used. As Lave (1988) put it, “the beneficial cognitive 
consequences of decontextualized learning, freeing oneself from experience” are 
seen as “a condition for generalization about experience” (p. 41). However, from a 
situated perspective, the notion of detaching from concrete experience is problem-
atic because knowledge cannot be isolated from practice and meaningfully studied 
(Hall, 1996; van Oers, 1998). Second, the focus on the invariance of mental repre-
sentations as a transfer mechanism is severely limited by ignoring the contribution 
of the environment, artifacts, and other people to the organization and support of the 
generalization of learning (Beach, 1995, 1999; Guberman & Greenfield, 1991; Pea, 
1987). Finally, traditional transfer studies privilege the perspective of the observer 
and rely on models of expert performance, accepting as evidence of transfer only 
specific correspondences defined a priori as being the “right” mappings (Evans, 
1998; Lobato, 2003). Consequently, transfer experiments can become what Lave 
(1988) called an “unnatural, laboratory game in which the task becomes to get the 
subject to match the experimenter’s expectations,” rather than an investigation of 
the “processes employed as people naturally bring their knowledge to bear on novel 
problems” (p. 20).

1.1.2  Response to Critiques in STEM Education Research

In the wake of these critiques, transfer fell out as an important area of research in 
mathematics education. Carraher and Schliemann (2002) advocated abandoning 
transfer as a research construct because of the deep association of transfer with what 
they considered faulty conceptual roots. Lave, a social anthropologist, whose work 
extended to mathematics education, also recommended moving away from the 
transfer construct. For example, in a study of the mathematics used by adult grocery 
shoppers, Lave (1988) concluded that the shoppers did not transfer relevant school 
mathematics. Although she acknowledged the existence of “continuity of activity 
across situations,” she quickly added that “learning transfer is not the central source 
of continuity” (p. 186). Other researchers adopted the view that learning and trans-
fer are conceptually indistinguishable, thus negating the need to devote special 
attention to transfer (e.g., Campione, Shapiro, & Brown, 1995; Hammer, Elby, 
Scherr, & Redish, 2005).

However, the underlying phenomenon that was narrowly and imperfectly cap-
tured by the construct of transfer remains important in mathematics teaching and 
learning. For example, whenever math teachers are faced with the task of construct-
ing an exam, they have to make decisions about whether to repeat tasks presented in 
the instructional unit or whether it’s “fair” to include novel tasks—a decision that 
seems to draw upon assumptions about transfer, not just learning. Similarly, 
researchers conducting an evaluation of an innovative instructional treatment need 
to decide how closely to pair assessment items with instructional activities. 
Researchers operating from a Realistic Mathematics Education perspective may 
wonder how activities grounded in real-world contexts transfer to abstract domains 

1 Current Conceptualizations of the Transfer of Learning and Their Use in STEM…
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(e.g., Stephan & Akyuz, 2012). Even in critiques of transfer, researchers acknowl-
edge that “any new conceptualization—thus, any learning—is only possible thanks 
to our ability to transfer existing conceptual schemes into new contexts” (Sfard, 
1998, p. 9). To resolve this tension between the avoidance of transfer and the neces-
sity of transfer, Lerman (2000), in his work on the “social turn” in mathematics 
education research, argued that “the notion of transfer of knowledge, present as 
decontextualized mental objects in the minds of individuals, from one situation to 
another, becomes untenable but at the very least requires reformulation” (p. 25). We 
turn next to the development of a number of such reformulations of transfer.

1.1.3  Development and Uptake of Progressive Perspectives

From 1993 to 2006, several progressive perspectives on the transfer of learning 
emerged. In the next section of this chapter, we present the following six theoretical 
perspectives: (a) preparation for future learning (Bransford & Schwartz,1999); (b) 
actor-oriented transfer (Lobato, 1996), (c) transfer in pieces (Wagner, 2006); (d) 
expansive framing (Engle, 2006); (e) consequential transitions (Beach, 1999); and 
(f) an activity-theoretic perspective (Tuomi-Gröhn & Engeström, 2003). Another 
notable contribution is the reformulation of transfer from the lens of situated cogni-
tion, developed by James Greeno, referred to as the affordances-and-constraints 
perspective (Greeno, 1997; Greeno, Smith, & Moore, 1993). Although this approach 
was never fully developed, and Greeno later shifted from using the term “transfer” 
to “productivity” (Hatano & Greeno, 1999, p.  647), his significant contributions 
influenced the development of the actor-oriented transfer perspective and the 
expansive- framing perspective. During this same time period, The National Science 
Foundation funded two transfer conferences: the first supported by the Social, 
Behavioral, and Economic Sciences Directorate (Mestre, 2003), and the second 
supported by the Education and Human Resources Directorate (Lobato, 2004). 
Thus, when the Journal of the Learning Sciences sponsored a transfer strand in 
2006, the time seemed ripe to attract empirical papers grounded in progressive per-
spectives on transfer and theoretical papers that further developed alternative 
approaches to transfer. The first author of this chapter, who served as the strand 
editor, was surprised to find that few empirical studies using the emerging progres-
sive perspectives were submitted, while other submissions were grounded unques-
tioningly in the traditional transfer perspective.

Three factors likely contributed to what seemed like a slow proliferation of ideas 
from progressive perspectives on transfer. First, reformulating transfer is not simply 
a matter of offering a new definition of transfer. A network of related constructs 
need to be re-imagined. Engle (2012), arguing that by 2012 the field was seeing a 
resurgence of transfer research, attributed that resurgence to: (a) the treatment of 
transfer as a complex, multifaceted social and cognitive phenomenon, rather than a 
simple, unitary construct, (b) the articulation of new processes that mediate transfer, 
and (c) a shift in perspective from expert models to an understanding of the “diverse 
and often unanticipated ways in which students make use of prior learning” (p. 348). 

J. Lobato and C. Hohensee
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Second, because the traditional transfer perspective was solidly rooted in informa-
tion processing, and progressive perspectives largely emerged from situated and 
socio-cultural perspectives, there were associated difficulties, resistance, and mis-
understandings that often result from changing well-established constructs. This 
can be seen in a lively exchange published by the Educational Researcher between 
advocates of the traditional transfer perspective (Anderson, Reder, & Simon, 1996, 
1997) and an advocate of a situated perspective on transfer (Greeno, 1997). 
Specifically, Anderson et al. (1997) casually dismissed any discrepancies between 
the two approaches as differences in form and not substance rather than acknowl-
edging that each held a different set of theoretical assumptions and commitments. 
Finally, while the methods used in the traditional transfer perspective were well 
established, methods appropriate for progressive perspectives had to be formulated 
(e.g., Lobato, 2008a; Schwartz & Martin, 2004).

In the past 10 years, the situation has changed. There has been a marked upsurge 
in publications on the transfer of learning in math education research specifically 
and STEM education research more broadly. We conducted an informal search for 
articles published between 2008 and 2019 in mathematics education journals (with 
a less thorough search in science education journals) that were grounded in progres-
sive perspectives on the transfer of learning. Even with this non-comprehensive 
search, we found 65 articles, published by a variety of STEM education researchers. 
We concluded that something had shifted in the field. Perhaps adequate time had 
finally passed for progressive transfer perspectives to be developed sufficiently for 
wider implementation. We turn next to a presentation of the six major progressive 
perspectives that we found in these articles, with illustrations of their use from a 
subset of the 65 articles.

1.2  Six Progressive Perspectives Used in STEM Education

1.2.1  Preparation for Future Learning

The preparation for future learning (PFL) perspective on transfer (developed by 
Bransford & Schwartz, 1999) responds to the critique that the traditional transfer 
approach ignores real-world conditions that people can often exploit, such as seek-
ing additional learning resources and having opportunities to obtain feedback. 
Traditional tests for transfer typically take place in environments where people do 
not have access to information sources other than what they have learned previ-
ously. In contrast, the PFL approach examines how an instructional experience 
(such as investigating a set of contrasting cases) prepares people to benefit from a 
learning opportunity. In articulating the PFL perspective, Bransford and Schwartz 
(1999) point to a study by Singley and Anderson in which there appeared to be no 
transfer from learning one text editor to another, using a traditional test of transfer. 
However, the benefits of the prior experiences with a text editor were evident several 
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days into learning the second program. In sum, the transfer of prior knowledge may 
not be apparent until people have been given the opportunity to learn new 
information.

Key Features Schwartz and colleagues have developed a methodological approach 
utilized in PFL studies, which they call the double transfer paradigm (Schwartz, 
Bransford, & Sears, 2005; Schwartz & Martin, 2004). Students are assigned one of 
two instructional treatments. One of the treatments is conceived as a preparatory 
activity and may focus on inventing a method during problem solving (Schwartz & 
Martin, 2004), using contrasting cases (Roelle & Berthold, 2015), or having a 
hands-on experience (for instance, in a science museum; Watson, 2010). The other 
treatment (which serves as a control) is usually a more traditional teaching experi-
ence (such as lecture followed by practice). Half of the students from both treat-
ments are then given access to an additional learning resource, such as a sample 
worked problem or a lecture, followed by a request to solve a target transfer prob-
lem. The other half of the students in each treatment solve the target transfer prob-
lem directly without access to the learning resource. The researchers then look both 
at what people transfer in from the instructional treatment to learn from the resource 
and what they transfer out to solve a target problem.

For example, Schwartz and Martin (2004) used the double transfer paradigm 
with Grade 9 Algebra 1 students learning about the statistics concept of standardiza-
tion. The students were assigned to two treatments—invention versus tell-and- 
practice. Students in the invention treatment engaged in problem solving to invent 
their own ways to compare two exceptional scores from different distributions and 
decide which was better. The tell-and-practice group was taught a visual method for 
determining standardization and then asked to use that method on a practice task. 
Half of the students from each treatment group were given the common learning 
resource of a worked example for a task from the targeted domain. Then all students 
were given a transfer task. The results showed that the students from the invention 
treatment, who also received the learning resource, were the only group to perform 
well on the transfer task. This is despite the fact that the students struggled with the 
invention activity and did not complete it successfully. Additionally, the students 
from both treatment groups performed about the same on the transfer task, when 
they did not have access to the learning resource. Schwartz and Martin (2004) 
hypothesized that the students in the invention treatment were more likely to notice 
important dimensions of the standardization concept (such as range and number of 
observations) than the students in the tell-and-practice treatment and then use this 
knowledge to learn more deeply from the worked example.

Purpose and Uses Although not all PFL studies utilize the double transfer meth-
odological design, many focus on the nature of the preparatory activity, the transfer-
ring in to the common learning resource, and the links between the two experiences. 
For example, Vahey and colleagues extended the PFL approach to design a series of 
interdisciplinary experiences for middle school students related to the targeted 
mathematical content of proportional reasoning (Swan et  al., 2013; Vahey et  al., 
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2012). Students first engaged with a complex, real-world water allocation problem 
involving countries from the Middle East in their social studies class, before receiv-
ing more formal introduction to proportions in math class, followed by opportuni-
ties to transfer out that knowledge to activities in their science and language arts 
classes. While the preparatory water allocation problem was messy and frustrating 
for students, it appeared to direct their attention to key dimensions of the situation 
(such as the importance of attending to more than one quantity when making deci-
sions in a proportional situation), which then shaped what was learned about pro-
portionality in the math classroom.

In a second example, this one with U.S. prospective math teachers, Jacobson 
(2017) drew upon the PFL perspective to compare different types of early field 
experiences on the common learning resource of teacher education coursework. 
Instruction-focused field experiences included opportunities for prospective teach-
ers to teach, whereas exploration-focused field experiences focused on observing or 
interviewing students but did not include teaching. Participating in early, instruction- 
focused field experiences was positively related to outcome measures for the teacher 
education courses (i.e., mathematical knowledge for teaching and beliefs about 
active-learning and math-as-inquiry), which was not the case for exploration- 
focused field experiences. Jacobson concluded,

Rather than being merely a context for practicing what has already been learned, field expe-
rience—especially early instruction-focused field experience—may prepare prospective 
teachers to learn mathematics and develop beliefs about mathematics (i.e., gain applicative 
knowledge) from learning opportunities such as concurrent and subsequent university 
coursework and from the resources available during student teaching. (p. 181)

1.2.2  Actor-Oriented Transfer Perspective

From the actor-oriented transfer (AOT) perspective, the conceptualization of trans-
fer shifts from what MacKay (1969) calls an observer’s (expert’s) viewpoint to an 
actor’s (learner’s) viewpoint (Lobato, 2003). By adopting an actor’s perspective on 
transfer, one seeks to understand the ways in which people generalize their learning 
experiences beyond the conditions of initial learning, by looking for evidence of the 
influence of prior experiences on actors’ activity in novel situations, rather than 
predetermining what counts as transfer using models of expert performance (Lobato, 
2012). A researcher operating from the AOT perspective does not measure transfer 
against a particular cognitive or behavioral target but rather investigates instances in 
which the students’ prior experiences shape their activity in the transfer situation, 
even if the result is non-normative or incorrect performance. Consequently, several 
studies have demonstrated instances in which students provided little or no evidence 
of transfer from a traditional perspective; however, when the data were re-analyzed 
from an AOT perspective, evidence was found that students had constructed rela-
tionships between previous learning activities and new situations, and that these 
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perceived relationships influenced students’ engagement in the new situations (Cui, 
2006; Karakok, 2009; Lobato, 2008b; Thompson, 2011).

Key Features Because AOT research assumes that people regularly generalize 
their learning experiences, the research question shifts from whether or not transfer 
occurred to an investigation of the interpretative nature of the connections that peo-
ple construct between learning and transfer situations, guided by aspects of the situ-
ations that they find personally salient (Lobato, 2008a). Consequently, the research 
methods are typically qualitative in nature, drawing upon interview or observational 
data and using coding methods that identify the personal, and often surprising, 
interpretations and connections constructed by actors (Lobato & Siebert, 2002). For 
example, Roorda, Vos, and Goedhart (2015) conducted a 2-year longitudinal study 
of high school students’ transfer of learning experiences related to instantaneous 
rates of change from both mathematics and physics classes to novel tasks in a series 
of interviews. Their analysis identified the particular ideas, language, and proce-
dures from the math and physics classes that appeared to influence the students’ 
work on the interview tasks. Similarly, Nagle, Casey, and Moore-Russo (2017) 
revealed the specific ways in which Grade 8 students connected their ideas about 
slope and covariational reasoning to novel statistics tasks in which they were asked 
to place the line of best fit informally.

In moving to explanatory accounts of the occurrence of transfer, the AOT per-
spective treats transfer as a distributed phenomenon across individual cognition, 
social interactions, material resources, and normed practices. For example, in our 
own work, we posited noticing as a multi-faceted transfer process (Lobato, 
Hohensee, & Rhodehamel, 2013; Lobato, Rhodehamel, & Hohensee, 2012). 
Specifically, we offered an explanatory account of the occurrence of transfer in a 
classroom-based study by coordinating the particular mathematical features that 
individuals attended to, with the social organization of that noticing through dis-
course practices and the nature of mathematical activity.

Purpose and Uses The AOT perspective is particularly useful within the context of 
design-based research, where information about the often surprising ways in which 
people generalize their learning experiences and interpret transfer situations, can 
usefully inform and improve the design of the instructional environment (Lobato, 
2003, 2008a). For example, Johnson, McClintock, and Hornbein (2017) designed 
two dynamic computer environments to explore the transfer of covariational reason-
ing from activities set in a Ferris wheel context to a bottle-filling context. Their 
investigation revealed the transfer of covariational reasoning involving quantities 
that the students conceived as measureable. It also illuminated the increased com-
plexity of the bottle-filling context, namely that students could perceive that liquid 
was accumulating in a container without conceiving of an attribute in the situation 
that could be measured. In turn, the information that was gained informed subse-
quent design and instructional responses, as indicated in the follow-up chapter by 
Johnson and colleagues in this volume.
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The AOT perspective was originally developed to model students’ generaliza-
tions of their subject-matter learning experiences in school or design-based research 
instructional sessions. It has been extended in several ways, including the investiga-
tion of task-to-task transfer via written problem-solving activities outside of school 
(Mamolo & Zazkis, 2012) and teaching interviews (Lockwood, 2011). The AOT 
perspective has also been used in research on teachers. For example, Penuel, 
Phillips, and Harris (2014) examined teachers’ curriculum implementation through 
an AOT lens. The analysis focused on the teachers’ differing interpretations of the 
goals and guidance embedded in the materials for a curricular unit and how those 
perceptions were related to patterns of enactment. Similarly, Sinha et  al. (2013) 
examined how a group of elementary teachers tackled new curricular units in their 
school after working with a research team on an initial reform-oriented unit.

1.2.3  Transfer-in-Pieces Perspective

The transfer-in-pieces perspective is a progressive perspective on transfer attributed 
to Joseph Wagner (2006, 2010). According to Wagner (2006), transfer is conceptu-
alized as “the incremental growth, systematization, and organization of knowledge 
resources that only gradually extend the span of situations in which a concept is 
perceived as applicable” (p. 10). This incremental-growth perspective on transfer is 
progressive because it contrasts with the traditional view that transfer is the “all-or- 
nothing transportation of an abstract knowledge structure across situations” (p. 10).

Central to this perspective is the notion of concept projections (diSessa & 
Wagner, 2005), which are particular knowledge resources that allow the knower to 
interpret a situation’s affordances in a meaningful way. For example, a concept pro-
jection that young children may have is to recognize situations that involve equal 
sharing as being about division. A second concept projection is to recognize situa-
tions that involve removing equal-sized groups as being about division as well. 
Forming and connecting concept projections allows an individual to see the “same 
thing” across multiple problems (in this case division), which counts as transfer 
from this perspective and results in the individual developing a more robust gener-
alizable concept. That is, coming to recognize a concept in different contextual situ-
ations is a form of transfer that depends upon the individual connecting multiple 
concept projections (Wagner, 2010).

Key Features To explain key features of the transfer-in-pieces perspective on 
transfer, we first must describe features of the knowledge-in-pieces framework for 
how knowledge develops (diSessa, 1993), because it is on that framework that the 
transfer-in-pieces perspective is based. Then, we explain why those features are 
relevant to conceptualizing transfer.

Knowledge-in-Pieces Framework A core principle underlying the knowledge-in- 
pieces framework, which was initially developed through science education 
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research, is that understandings of concepts are fundamentally based on the ways 
individuals derive information from the world (diSessa, 1993). For example, how 
well a student understands linear functions will be largely determined by the ways 
the student gathers information from the world about dependency relationships, 
rates, speed, steepness, and so on. Moreover, the origins of knowledge are based on 
intuitive, unsystematically-collected information from the world, and individuals’ 
knowledge advances as they develop more systematic ways to derive that 
information.

According to diSessa and Sherin (1998), two important interrelated knowledge 
resources work together to derive and interpret information from the world, namely 
readout strategies and causal nets. Readout strategies refer to the set of strategies 
that individuals employ to determine what to focus on and subsequently notice 
about the world (i.e., what to notice about a particular perceptual or conceptual 
field). Causal nets then refer to the set of inferences individuals can make about the 
information collected by the readout strategies. In other words, readout strategies 
are used to gather information whereas causal nets are used to interpret that infor-
mation. As these knowledge resources become more systematic, the associated 
knowledge develops.

Applying Knowledge-in-Pieces to Transfer-in-Pieces Wagner’s (2006) conceptu-
alization of transfer was based on the ideas described above. Specifically, Wagner 
argued that readout strategies and causal nets are processes that individuals use, not 
only to gather information about the world, but also to make decisions about when 
transfer is appropriate. When a person encounters a new context in the pursuit of 
particular goals, readout strategies will guide what gets attended to and noticed in 
the new situation, causal nets will be used to make inferences about what was 
noticed, and knowledge resources that were useful in prior activities related to those 
goals will become available. As readout strategies and causal nets become more 
systematic and organized, transfer of particular knowledge is more likely to occur 
in a greater span of novel contexts.

Purpose and Uses One purpose of Wagner’s (2006) progressive perspective is to 
address the apparent contradiction that instances of transfer are rare in empirical 
studies conducted from a traditional perspective (Detterman, 1993); yet it is widely 
held that transfer is pervasive in everyday life (Brown, 1989). From Wagner’s 
transfer- in-pieces perspective, the reason transfer has been difficult to find empiri-
cally is because researchers aligned with the traditional perspective mistakenly look 
only for an all-at-once phenomenon. In contrast, research guided by a transfer-in- 
pieces perspective looks “for incremental indications of transfer” (p.  40), and 
“trace[s] the development” (p. 13) of transfer.

A second purpose of Wagner’s perspective on transfer is to offer a new way to 
conceptualize the mechanisms underlying transfer. The traditional perspective 
“locate[s] the mechanism of transfer in the construction or induction of schemata 
represented at appropriate levels of abstraction” (Wagner, 2006, p. 64). However, 
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Wagner (2006) presented a case study in which a student’s ability to articulate an 
abstraction came after, rather than before, he transferred his knowledge to a new 
context. Therefore, constructing an abstraction cannot be solely driving transfer. 
Instead, Wagner explained the mechanisms of transfer in terms of readout strategies 
and causal nets. Specifically, Wagner (2006) used the same case study to track the 
incremental development of knowledge resources that enabled the undergraduate 
student to gradually transfer his developing knowledge of the law of large numbers 
to a wider array of contexts. As described by Wagner:

[The student] took different ideas initially applicable only in isolated contexts …. The iso-
lated contexts to which they applied individually grew incrementally into a larger family of 
situations perceived by [the student] to be alike, in that they all offered affordances for the 
ideas in the common frame. (p. 63)

Had this study been conducted using a traditional perspective, transfer would likely 
not have been observed because it happened gradually, rather than all at once.

1.2.4  Expansive Framing

The expansive-framing perspective on transfer, attributed to Randi Engle responds 
to the critique that the focus on cognitive mechanisms from a traditional transfer 
perspective has failed to acknowledge the contribution of social interactions, lan-
guage, and cultural artifacts, to the occurrence of transfer (Engle, 2006; Engle, Lam, 
Meyer, & Nix, 2012; Engle, Nguyen, & Mendelson, 2011). The construct of fram-
ing, first offered by Bateson (1955/ 1972) and later developed by Goffman (1974), 
refers to what sense participants have of the nature of a given activity. For example, 
a lesson on quadratic functions may be framed as something useful only for the next 
exam, or it may be framed as being useful for understanding real-world phenomena, 
such as the acceleration of a car. Engle referred to the latter as an example of expan-
sive framing and advanced the hypothesis that transfer is more likely to occur to the 
extent that learning and transfer contexts have been framed to create intercontextu-
ality. When a high degree of intercontextuality occurs, the content established dur-
ing learning is considered relevant to the likely transfer situations.

Key Features Engle et al. (2011) offered a framework of five types of expansive 
framing that are productive for transfer. The first three types focus on different 
aspects of the setting—time, place, and participants. The first type refers to the 
framing of a learning activity as being temporally connected with ongoing or future 
activity (versus being an isolated event). Second, lessons can be framed as being 
relevant to activity that occurs in other places, such as in a profession. Third, the 
learning activities can be framed as being relevant to a larger community beyond the 
classroom. The fourth type of expansive framing involves the topic that is being 
learned. The content of individual lessons can be framed as being connected to each 
other and part of a larger whole (e.g., graphs, equations and tables framed as repre-
sentations of functions). Finally, the last type of framing involves how participants 
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are positioned relative to the creation of knowledge in the field. In expansive fram-
ing, students are positioned as being capable of authoring their own ideas and are 
asked to revoice and credit other students with authorship (rather than framing 
explanation and revoicing as elaboration only of the textbook’s ideas). Research 
from the expansive-framing perspective not only identifies teacher actions or fea-
tures of instructional materials but also the aspects of expansiveness that appear to 
be appropriated or perceived by students (Lam, Mendelson, Meyer, & 
Goldwasser, 2014).

To test their hypotheses about the relationship between expansive framing and 
transfer, Engle et al. (2011) designed a tutoring experiment with two framing condi-
tions (expansive versus bounded) using 28 high school biology students. Each stu-
dent participated individually in 3–4 hours of tutoring on the cardiovascular system 
over two sessions, preceded by a pre-test and followed by a survey (to assess how 
students perceived the framing) and a post-test with transfer tasks about the respira-
tory system. The expansive-framing treatment attempted to address all 5 types of 
expansive framing. According to the survey, students generally perceived the 
intended differences in framing by condition, with the framing of time and author-
ship role being the most salient to them. On the measures of transfer, the students in 
the expansive-framing condition were more likely to transfer facts, a conceptual 
principle (the differential pressure principle), and a strategy (drawing diagrams) 
than those in the bounded condition.

Purpose and Uses The expansive-framing perspective first emerged in response to 
the inadequacy of traditional transfer processes to account fully for instances of 
transfer in a particular classroom setting. Specifically, Engle (2006) initially 
attempted to explain the observation that a group of fifth-grade students transferred 
graded and multi-causal arguments from a learning context (i.e., explaining whale 
endangerment) to a novel context (i.e., explaining the endangerment of another spe-
cies) through cognitive modeling. She found that analogical mapping and the con-
struction of abstract mental representations explained some but not all of the transfer 
findings. That is when she turned to framing.

Since that time, the expansive-framing perspective has been extended in at least 
three ways. Becherer (2015) used qualitative, rather than quantitative, methods to 
relate differing framing moves across two classrooms to different types of transfer 
(routine versus adaptive). Hickey, Chartrand, and Andrews (2020) built upon expan-
sive framing to generate an assessment framework that embeds expansively-framed 
engagement within multiple levels of increasingly formal assessments. In contrast, 
Zuiker (2014) combined Beach’s (1999) conception that transfer is about making 
transitions with Engle’s transfer process of expansive framing.
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1.2.5  Consequential-Transitions Perspective

The consequential-transitions perspective is a progressive conceptualization of 
transfer that originated with King Beach (1999). Instead of the traditional conceptu-
alization that transfer is the use of prior knowledge to solve novel problems, Beach 
reconceptualized transfer more broadly as when individuals are faced with making 
transitions to accommodate changing relations between themselves and social 
activities. According to this perspective, transfer is described as the “continuity and 
transformation of knowledge, skill, and identity across various forms of social orga-
nization” and as involving “multiple interrelated processes rather than a single gen-
eral procedure” (p.  112). Beach viewed these transitions as consequential to the 
individual because they may involve struggle and affect one’s social position. An 
example of a consequential transition would be when students are faced with learn-
ing about algebra after years of learning arithmetic. Although Beach described 
transfer of learning in terms of consequential transitions, he also viewed consequen-
tial transitions as encompassing generalization that extends beyond the transfer of 
learning.

Key Features There are four types of consequential transitions, (a) lateral, (b) col-
lateral, (c) encompassing, and (d) mediational. Lateral consequential transitions 
occur when individuals move in a single direction from one social activity to 
another. This type of transition is the least complex of the four types and the most 
closely associated with the traditional conceptualization of transfer. For example, 
Nepali high school students experienced a lateral transition when becoming shop-
keepers (Beach, 1999). During this one-way transition (i.e., they did not subse-
quently return to school), the students were faced with transforming their knowledge 
of school mathematics for use in the practices of shopkeeping.

Collateral consequential transitions occur when individuals move back and 
forth between activities (i.e., these transitions are multi-directional). They are more 
common than lateral transitions but also more complex. For example, the Nepali 
shopkeepers who were living in the same village as the Nepali students described 
above, experienced a collateral transition when they went back to school to take 
adult education evening classes (Beach, 1999). In contrast to the students whose 
transition was in a single direction, these shopkeepers experienced a transition that 
moved back and forth between the mathematics activities associated with running 
their shops during the day and the arithmetic activities they engaged in during the 
evening classes.

Encompassing consequential transitions occur when individuals participate in 
an activity that is itself changing. This type of transition can be generational in 
nature (i.e., it can be particularly challenging for older generations to adapt to 
changes in social activities created by younger generations). For example, conven-
tional machinists, who were accustomed to manual machining, experienced an 
encompassing transition when faced with having to adapt to computerized machin-
ing (Beach, 1999).
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Mediational consequential transitions occur when individuals learn to partici-
pate in activities, typically educational, that simulate the actual activity. These types 
of transitions serve as bridges between “where the participants are currently and 
where they are going” (p. 118). For example, part-time actors experienced a media-
tional transition when attending bartending classes at a vocational school (Beach, 
1999). These individuals were learning to participate in activities that approximated 
bartending in a restaurant. However, the activities did not constitute full-fledged 
bartending because, for example, the individuals were still learning to shift away 
from consulting written directions to make drinks.

Purpose and Uses We outline three purposes of this progressive perspective. First, 
Beach’s consequential-transitions perspective conceives of and examines transfer as 
a set of interrelated psychological and social processes. In contrast, the traditional 
perspective conceives of transfer singularly as a psychological process. Second, the 
consequential-transitions perspective accounts for the context of transfer (i.e., the 
social activities serve as the context), whereas the traditional perspective accounts 
for how knowledge becomes increasingly decontextualized. Third, the consequential- 
transitions perspective captures the effects of transfer on individuals’ identities and 
their social position, as well as the concomitant struggles involved. Conversely, the 
traditional conceptualization considers transfer in a way that ignores issues of iden-
tity and social positioning.

Two progressive transfer studies that have made use of Beach’s consequential- 
transitions perspective are Jackson (2011) and Hohensee and Suppa (2020). Jackson 
used collateral transitions to examine a child’s back and forth transition between 
doing mathematics at school and at home. This lens afforded an examination of 
transfer that foregrounded the setting and that revealed the complexities of transfer-
ring knowledge between settings. A traditional perspective would not have afforded 
these insights. Jackson has a follow-up chapter in this book.

Hohensee and Suppa (2020) used encompassing transitions as the lens. They 
examined prospective teachers’ experiences with learning about early algebra in a 
teacher preparation course after the prospective teachers had already learned about 
regular algebra in high school. This lens was used because the prospective teachers 
felt as if algebra was being changed on them, and they were faced with adapting to 
those changes. Results revealed ways the prospective teachers struggled with mak-
ing this transition.

1.2.6  Activity-Theoretic Perspective

The activity-theoretic perspective attributed to Yrjö Engeström (e.g., Engeström & 
Sannino, 2010; Tuomi-Gröhn & Engeström, 2003) is a progressive take on transfer 
that is rooted in activity theory (Engeström, 2001). Instead of the traditional concep-
tualization that transfer is an individual cognitive process (Detterman, 1993), 
Engeström’s activity-theoretic perspective reconceptualizes transfer as a collective 
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process that happens within social activity systems. Furthermore, according to this 
perspective, transfer is conceptualized as occurring on two dimensions. First, it 
involves expansion of a social activity within a social system, what Tuomi-Gröhn 
and Engeström (2003) referred to as a “transformation in collective activity systems 
and institutions (e.g., schools and workplaces)” (p. 30). Second, there is a prolifera-
tion of the newly expanded activity to other social activity systems, for example, by 
“recruiting a growing number of participants in the transformation effort” (p. 31). 
An essential difference between Engeström’s activity-theoretic perspective and 
Beach’s (1999) consequential transitions perspective is that the former is about 
organizations creating change within social systems, whereas the latter is about 
individuals adapting to changes within social systems.

Key Features An important feature of this activity-theoretic perspective is that 
transfer is a collective process that involves a cycle of seven strategic actions. These 
actions, in the order in which they occur, are: questioning, analyzing, modeling, 
examining the model, implementing, consolidating and proliferating, and evaluat-
ing (Tuomi-Gröhn & Engeström, 2003). The cycle begins when members of an 
organization question (or criticize, reject and/or have conflicting points of view 
about) an existing social practice (Engeström & Sannino, 2010). This action serves 
as the trigger for the transfer process. For example, in a study by Engeström (2009), 
students began to question why their school did not provide them access to comput-
ers during recess.

The second action the organization engages in is an analysis of the question. The 
analysis may include an examination of the origins and history of the social practice 
in question to identify causes, or the “inner systemic relations” of the practice to 
identify explanatory mechanisms (Engeström & Sannino, 2010, p. 7). For example, 
the teachers who were considering making computers available to students during 
recess, intensely debated the idea among themselves and then consulted another 
school that had been providing their students access to computers about how their 
students were interacting with the computers.

The third and fourth actions, modeling and examining the model, involve devel-
oping a representation of past and present issues raised during questioning, as well 
as a future vision for that practice that addresses the issues, and then making the 
model publicly sharable and scrutinizable. In the computers-in-school example, a 
subcommittee of teachers created a model for putting computers in school hallways 
by reconceptualizing the school as a work environment for both students and teach-
ers (Engeström, 2009). The model was then debated among the teachers.

The final three actions, implementing, consolidating/proliferating, and evaluat-
ing, are respectively, when the organization puts the model into practice, when the 
implemented model is used to influence other social practices, and when the orga-
nization monitors and reflects upon the newly implemented ideas. It is during these 
three actions that the two types of transfer described previously occur. Specifically, 
during implementation, there is the “transfer of new models into practice,” and dur-
ing proliferation, there is the “transfer of local innovations and new forms of prac-
tice into other activity systems and organizations” (Tuomi-Gröhn & Engeström, 
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2003, p. 32). In the school example, the computers-in-hallways idea was eventually 
implemented as part of an effort to make the physical environment more pleasant 
(Engeström, 2009).

Purpose and Uses One purpose for this activity-theoretic perspective on transfer 
is to capture types of transfer that occur at the organizational level rather than at the 
individual level (i.e., “collective developmental transfer;” Tuomi-Gröhn & 
Engeström, 2003, p. 34). Second, this progressive perspective captures transfer in 
complex activity systems, such as workplaces and schools. Third, this perspective 
accounts for transfer that is “not triggered by an instructor giving a task to be 
learned … [but] when some practitioners reject the given wisdom and begin to ques-
tion it” (p. 32).

Several studies in mathematics education have made use of Engeström’s activity- 
theoretic perspective on transfer. Tomaz and David (2015) used this perspective to 
examine how students working on a project came to modify particular mathematical 
activities they had been taught regarding proportional reasoning. Tomaz and David 
have a follow-up chapter in this book. Additionally, FitzSimons (2003) used an 
activity-theoretic lens to understand an adult mathematics learner as she transferred 
her school-based mathematics learning across a school-home boundary to help her 
children with their mathematics homework.

1.3  Motivation for and Organization of This Book

We view this point in the history of transfer research as an opportune time for a book 
to be published on progressive perspectives on the transfer of learning. The six pro-
gressive perspectives that we reviewed in the previous section provide a well- 
developed foundation for additional theoretical contributions. The renewed interest 
in transfer research can serve as a catalyst to broaden the use of progressive transfer 
perspectives among mathematics education researchers, as well as among research-
ers in related fields, and particularly among those who might otherwise not have 
considered a focus on transfer.

Consequently we had three main goals when we embarked on this venture of 
bringing contributors together for this book. First, we wanted to provide a venue to 
showcase and aggregate leading-edge research on the transfer of learning from pro-
gressive perspectives. Second, we hoped to establish transfer as a valued subfield of 
research within mathematics and science education research. Third, we anticipated 
that this book could provide researchers with a foundation for forging a path for 
future transfer research. The collection of theoretical and empirical chapters that 
comprise this book represent an exciting array of progressive perspectives on trans-
fer that could set a course for how transfer research moves forward.

The book has been organized into four parts. Part I is comprised of six chapters, 
including this chapter (i.e., Chaps. 1, 2, 3, 4, 5 and 6), that theoretically explore 
progressive perspectives on transfer. Nathan and Alibali theorize about transfer 
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from an embodied and distributed perspective. Johnson, McClintock, and Gardner’s 
account of transfer interweaves theories about AOT, variation (Marton, 2006), and 
quantitative reasoning (Thompson, 2011). Hohensee argues for theory development 
about an extension of AOT called backward transfer. Karakok discusses potential 
parallels and associations between AOT and mathematical creativity. Finally, 
Danish, Saleh, Gomoll, Sigley, and Hmelo-Silver use an activity-theoretic approach 
to theorize about how the object of students’ shared activities helps determine which 
mathematical tools students see as applicable for new activities.

Part II is comprised of five chapters (i.e., Chaps. 7, 8, 9, 10 and 11) that examine 
transfer empirically as it occurs in STEM classrooms. Moore uses AOT to examine 
how the meanings that pre-service secondary teachers constructed for particular 
graphs influenced their thinking about other graphs. Lockwood and Reed also use 
AOT and explore the ways an undergraduate’s thinking on a particular combinato-
rial problem influenced his thinking on other problems. Michelsen draws on the 
expansive-framing perspective to investigate intercontextuality between tenth-grade 
students’ mathematics and biology classes. Tomaz and David employ Engeström’s 
activity-theoretic perspective to consider the boundary-crossing of seventh-graders 
when they were studying a common topic across three content areas. Finally, Grover 
draws upon the PFL approach to transfer, as well as the expansive-framing perspec-
tive, to look at how middle school students learned text-based computer program-
ming after learning block-based programming.

Part III is comprised of four chapters (i.e., Chaps. 12, 13, 14 and 15) that empiri-
cally examine transfer when it occurs, in whole or in part, outside of school settings. 
Jackson tracks two 10-year-old students’ mathematical activities at home and in 
school to illustrate how conceptualizations of transfer can be informed by ethno-
graphic accounts of learning. Pugh, Bergstrom, Olson, and Kriescher present their 
transformative experience perspective on transfer and extend it to include the idea 
of motivation to account for how students applied school-based learning in out-of- 
school contexts. Billett examines how individuals adapted what they learned in 
school and other social settings to occupational contexts. Finally, Triantafillou and 
Potari use Engeström’s activity-theoretic perspective, along with objectification 
theory (Radford, 2008), to look at how engineering students applied school-based 
knowledge to their apprenticeship.

Finally, Part IV is comprised of three chapters (i.e., Chaps. 16, 17 and 18) that 
examine how transfer relates to teaching and researching. Diamond investigates 
what teachers believe about how to support students in transferring their learning. 
Mamolo uses the AOT lens to explore how a prospective teacher’s own K–12 expe-
riences influenced their responses during scripted role playing. Finally, Evans tack-
les the transferability of research findings by examining different aspects of the 
context in which research occurs.
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Chapter 2
An Embodied Theory of Transfer 
of Mathematical Learning

Mitchell J. Nathan and Martha W. Alibali

In the brief photo transcript shown in Table 2.1, below, taken from a high school 
engineering lesson, we encounter a critical educational challenge: In the rich sen-
sory stream of spoken words and metaphors, written symbols, diagrams and 
sketches, gestures, simulations, and actions on objects, all of which occur in multi-
ple venues such as the classroom and machine shop, how do learners perceive and 
construct for themselves a connected meaning of a concept such as theta, the angle 
of ascent of a projectile? The answer, we argue, depends on a theory of transfer that 
is embodied: The concept is depicted and comprehended in terms of actions, ges-
tures, spatial metaphors, and other body-based resources; embedded in various spe-
cific physical and social settings; extended across multiple modalities, material 
resources and participants; and enacted through the actual or simulated interplay of 
perception and action among students and their teachers.

Project-based learning (PBL) environments, such as those common to problem- 
based and other science, technology, engineering, mathematics (STEM) education 
settings, offer a rich stream of activities and experiences that are intended to ground 
students’ understanding of important mathematical ideas and to motivate the rele-
vance of these ideas across a range of content and contexts. In so doing, success in 
PBL settings requires learners to construct a concept—such as theta—and follow 
it across a multitude of modal forms and contexts while recognizing it as invariant. 
Understanding what is required of students to establish, perceive, maintain, and 
express such invariant relations across such environmental and perceptual variabil-
ity motivates an embodied theory of transfer of mathematical knowledge.
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Table 2.1 Photo Transcript 1: Day 1

Teacher (to class): What happens when the, when we project 
something through the air [1], is we end up with something 
like [2] this depending upon the angle here, which is theta. 
And, this is our range. And basically, what we have, is, we’re 
working with vectors here. So, we end up with, some vectors 
that look like this and we call this, vector Vx and V … Vy. And 
we can say that, Vy we’re gonna start with Vy here. This 
distance, this, right here. So, we’re gonna start with, Vy, 
equals Vo, sine, of theta.
Student: Mr. [Name], what’s Vo?

 [1]

 [2]

Note. Bold text and indices align with images

In this chapter, we first argue that the processes involved in establishing and 
maintaining cohesion of invariant relations during PBL are not readily described by 
classic accounts of transfer. We hypothesize instead that the processes involved in 
transfer of mathematical ideas throughout complex learning settings are necessarily 
embodied, and we consider the assumptions that form the basis of an embodied 
account of transfer as mapping of modes of perceiving and acting to achieve cohe-
sion across contexts. We then use this embodied framework to illustrate successful 
and unsuccessful transfer in PBL settings. From this, we propose that transfer pro-
cesses are necessarily embodied and socially mediated, in that they are grounded in 
the actions on and perceptions of the material world in which they are embedded 
and they are extended across multiple actors, typically learners and their teachers. 
These elements come together in an embodied theory of transfer. In the final sec-
tion, we discuss the implications of embodied transfer for educational practice and 
identify important future areas for research.

2.1  Limitations of Classic Approaches of Transfer

Transfer can be defined as the application and extension of learned mathematical 
ideas beyond the context in which they were originally learned. Transfer has a long 
history in educational psychology (Bransford & Schwartz, 1999; Woodworth & 
Thorndike, 1901). Indeed, the enterprise of a liberal arts education is predicated on 
the notion of transfer and on the idea that learning general topics and principles will 
provide guidance for addressing the social and scientific issues facing the next gen-
eration of leaders, scholars, artisans, and others.

At the heart of classical models of transfer lies the notion of common elements, 
wherein the transfer of skilled performance is modeled as reapplication of previ-
ously learned actions that follow from an expert’s assessment of the degree of over-
lap of environmental conditions that may be readily observed (near transfer) or that 
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are only apparent at a deeper, structural level (far transfer; Singley & Anderson, 
1989; Taatgen, 2013). From this theoretical perspective, abstracted, rule-like 
condition- action processes are antecedent to successful transfer. In this sense, per-
ceptual richness is antithetical to transfer because it works against the formation of 
abstractions and their reapplication (e.g., Kaminski, Sloutsky, & Heckler, 2013).

Classical accounts of transfer fall short at explaining PBL and the learning that 
occurs in complex settings in several respects. First, the common elements that are 
the signature of classical accounts of transfer are often identified by experts, rather 
than generated from the learner’s perspective (Lobato, 2003, 2006). Thus, it is not 
clear whether learners are aware of them and actually transferring on the basis of 
those common elements. Second, classical accounts are founded on analyses of 
simple stimuli, for which identifying common elements is relatively straightfor-
ward. This is not the case in many PBL settings, in which a single curriculum unit 
can extend over long periods of time in multiple spaces; can include many partici-
pants; and can engage a variety of objects, technological resources, and notational 
systems (Kozma, 2003). Third, classical accounts foreground learners’ transfer pro-
cesses while marginalizing (or neglecting entirely) the pedagogical processes 
enacted by teachers that establish the contexts in which transfer takes place and that 
support processes of transfer.

A primary issue for students in PBL is having a cohesive experience so that the 
various elements of the learning environment are experienced as connected and 
meaningful (Nathan, Wolfgram, Srisurichan, Walkington, & Alibali, 2017). 
Cohesion is the quality of unity or relatedness of ideas and experiences. It is com-
monly operationalized in terms of the degree to which ideas in a complex text are 
interconnected, even as one moves across clauses and sentences (McNamara, 
Graesser, Cai, & Kulikowich, 2011). As used here, producing cohesion refers to 
forming and maintaining connections among the many disparate elements of the 
learning environment that might otherwise serve as obstacles to transfer. For engage-
ment and learning to take place in PBL settings, cohesion of invariant relations is 
paramount because ideas are presented in a variety of forms and settings. However, 
this process has been neglected in classical accounts of transfer.

2.2  Transfer as Embodied: Underlying Assumptions

Numerous challenges and alternatives to the classical theory of transfer have been 
raised, addressing the reductionist basis of transfer and the insensitivity of the clas-
sical theory to situated context (e.g., Detterman & Sternberg, 1993) and culture 
(e.g.,  Scribner & Cole, 1981). For example, the situative perspective (Greeno, 
Smith, & Moore, 1993) privileges participation across contexts over the reapplica-
tion of knowledge in assessing transfer. The actor-oriented transfer perspective 
(Lobato, 2003, 2008) considers generalized behaviors based on the agent’s perspec-
tive of what is similar across familiar and novel settings. An account based on learn-
ers’ “episodic feelings” integrates cognition, emotion, and bodily experiences in 
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explaining patterns of transfer (Nemirovsky, 2011). These alternative frameworks 
share a view of the learner as an embedded, engaged, embodied actor and allow for 
the world to “seep in” to the cognitive realm that was previously theorized as iso-
lated from the material realm.

With advancements in theories of embodied cognition, there is now a sufficient 
conceptual and empirical foundation for articulating an embodied theory of transfer 
of mathematical ideas. Indeed, we argue that an embodied perspective is necessary 
to account for learners’ transfer in PBL settings and other complex learning envi-
ronments, and it can also help explain instances of unsuccessful transfer. A related 
idea was presented by Goldstone, Landy, and Son (2008), who theorized that learn-
ing grounded in perception and interaction supports generation of transferable 
knowledge. They demonstrate successful transfer on tasks such as solving symbolic 
algebra equations and understanding the cross-domain application of deep princi-
ples of complex systems performance. Based on their analyses of these examples, 
they propose that perceptual knowledge transfers

to new scenarios and transports across domains, most often proceeding not through acquir-
ing and applying symbolic formalisms but rather through modifying automatically per-
ceived similarities between scenarios by training one’s perceptual interpretations. (p. 329)

This account of the role of perception and interaction in transfer is promising for a 
broad account of transfer to complex, collaborative, multimodal learning contexts.

There are several assumptions at the core of our embodied theory of transfer. The 
first assumption is that the cognitive system is a predictive architecture. Rather than 
passively waiting for input to act, humans are continually anticipating the next 
events in the stream of sensory input and are already poised to respond. In this 
sense, transfer is the default mode—no two environmental stimuli are identical, and, 
regardless, body states are never fixed in time. Whether transfer is deemed success-
ful is often a function of experts’ expectations for what should be transferred, rather 
than whether any form of transfer took place for the learner.

Second, there is reciprocity between cognitive states and actions, such that 
actions (arm movements performed by a student, for example) can drive the system 
into related cognitive states through the process of action-cognition transduction 
(Nathan, 2017; Nathan & Walkington, 2017). Transduction provides an account for 
how systems can operate in “forward” and “reverse” directions, a common property 
of many physical and biological systems. For example, with cognition driving 
action in the “forward” direction, a student may spontaneously extend her arms in a 
mathematically relevant manner to assist her in reasoning about a property of tri-
angles. Students can also be prompted to extend their arms in either a mathemati-
cally relevant or irrelevant manner by having them touch locations on an interactive 
whiteboard. Nathan and colleagues (Nathan et al., 2014) investigated the hypothesis 
that mathematically relevant movements would drive the cognition-action system in 
the “reverse” direction and activate the appropriate conceptual reasoning for the 
task, but mathematically irrelevant movements would not assist the student. In sup-
port of this hypothesis, they found the mathematically relevant movements improved 
mathematical proof production, even though participants reported making no 
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connection between the mathematics and the directed movements, and mathemati-
cally irrelevant movements did not.

Transduction recognizes that actions can drive the system to certain cognitive 
states using many of the same pathways that enable cognitive processes to elicit 
actions. Transduction plays an integral role in explaining successful and unsuccess-
ful transfer. It explains, for example, how the execution of previous modes of per-
ceiving and acting, activated by familiar contextual cues or expectations of the 
predictive architecture, can activate inappropriate concepts, leading to unsuccessful 
transfer to new task demands. Our focus on transduction reflects the empirically 
supported view that the coupling between cognition and action involves rich, multi-
directional pathways (e.g., Abrahamson & Trninic, 2015; Nathan et  al., 2014; 
Thomas, 2013)—richer than those that are typically described in classical informa-
tion processing theory, which generally acknowledges only a unidirectional path-
way via which cognition drives actions.

Third, people do not come to know the world as a verbatim sensorial record of an 
objective external world; instead, people are driven to make sense of their experi-
ences, and meaning is constructed through the continuous interplay of social, cogni-
tive, motoric, and perceptual processes of a highly dynamic, self-regulating 
organism, in what is often referred to as the perception-action loop (cf. Neisser’s 
(1976) “perceptual cycle” as being central to everyday cognition). People construct 
mathematical meanings by coordinating situated perceptual and motor behaviors 
with the behaviors of mathematical objects (Abrahamson & Sánchez-García, 2016). 
Thus, the world we can know depends in part on the ways in which we can interact 
with it, physically and perceptually (Varela, Thompson, & Rosch, 1991). Meaning 
making also depends on establishing and maintaining common ground among inter-
locutors (e.g., H. H. Clark & Schaefer, 1989; Nathan, Alibali, & Church, 2017). 
Embodied processes are crucial for efforts to manage common ground in pedagogi-
cal contexts, where teachers regularly strive to foster common ground by using 
indexical speech and linking gestures (e.g., Alibali et  al., 2014; Alibali, Nathan, 
Boncoddo, & Pier, 2019).

Fourth, mathematical ideas are embodied and tangible (Hall & Nemirovsky, 
2012), and they can be expressed in metaphorical speech (Lakoff & Núñez, 2000), 
gestures and simulated actions (Hostetter & Alibali, 2008, 2019), diagrams and 
inscriptions (de Freitas & Sinclair, 2014), and physical objects (Martin & Schwartz, 
2005). Importantly, mathematical ideas in different modalities may be linked via 
speech, gestures, and action (Goodwin, 2013), creating a rich multimodal experi-
ence that is a signature of PBL and that serves to ground the meanings of the 
referents.

Fifth, cognition is extended beyond the individual actor’s brain such that task- 
relevant knowledge is grounded and distributed across actors, objects, and space 
(A. Clark & Chalmers, 1998). One example is cognitive offloading, wherein actors 
“use the world as its own model” (Brooks, 1991, p.  139) rather than depend on 
symbolic representations of the world and symbol-manipulation operations on those 
representations, which are the hallmark of traditional transfer (e.g., Lave, Murtaugh, 
& de la Rocha, 1984).
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Sixth, because transfer is embedded in the situations in which activity unfolds, 
teachers and students are each engaged in transfer, and they serve as actors in 
exchanges that are situated in particular learning contexts. In many cases, teachers 
and curriculum developers have thoughtfully designed specific contextual supports 
for transfer; in other cases, teachers generate such supports “on the spot.”

Finally, conceptual development naturally follows a process of progressive 
formalization (Romberg, 2001), which can be instantiated in the pedagogical 
practice of concreteness fading (Fyfe, McNeil, Son, & Goldstone, 2014). 
Concreteness fading is a developmentally informed approach to instruction that 
recognizes the importance of initial physical interactions (enactive processes) for 
early sense making about new concepts. This physical interaction creates the pre-
conditions that support the emergence of perceptually based representations, and 
the eventual construction of abstract symbols, as physical and perceptual qualities 
are explicitly faded. Many educational approaches neglect this progression and 
instead follow the formalisms first approach to instruction (Nathan, 2012), 
wherein mathematical ideas are initially introduced in their most formal, sym-
bolic, decontextualized form and only later grounded and applied. The conven-
tional rationale is that the perceptual sparseness of abstract symbols benefits 
learners by reducing perceptual distraction (e.g., Kaminski et al., 2013). However, 
novices often flounder with early presentation of decontextualized symbols 
(Nathan, 2012). Experimental comparisons reveal benefits of concreteness-fading 
instruction over formalisms-first instruction for a wide range of mathematical 
concepts spanning elementary arithmetic, middle school and secondary level 
algebra, and postsecondary systems-theory concepts (Fyfe et  al., 2014). 
Concreteness fading is especially well suited for fostering key STEM education 
principles in design- and product-oriented collaboration, as commonly imple-
mented in PBL settings.

2.3  Transfer: Mapping of Invariant Relations 
to Achieve Cohesion

From an embodied perspective, the crux of transfer is establishing cohesion across 
contexts and physical instantiations, such that modes of perceiving and acting 
appropriate for engaging with a mathematical relation in one context (i.e., with a 
particular object or representation) also meaningfully apply in another context. In 
past work (Nathan et al., 2013; Nathan, Wolfgram, et al., 2017), we identified the 
significant challenges that students faced as they developed, to varying degrees, the 
skills for noticing and acting on similarities of different materials, labels, ecological 
contexts, iconic representations, and symbolic notations by virtue of their shared 
invariant mathematical relations. For example, in the excerpt of an engineering les-
son presented at the outset of this chapter, the notion of angle of ascent (theta) is 
depicted in a variety of modal forms, including speech, symbols, gestures, and dia-
grams (and, later, in a working physical device); however, a single invariant 
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mathematical relation underlies all of these forms. To establish cohesion, various 
modal forms must be regarded by students as similar in terms of their perceptions 
and actions.

Critically, these differing modal forms vary in the actions they afford. Following 
J. J. Gibson (1966, 1979/2014), we define an affordance as the complementary rela-
tion between an object (which we take to include symbolic and material objects that 
are physical or imagined) and an actor who engages with that object. In an engineer-
ing lesson, for example, a physical device may afford grasping and holding, whereas 
the symbolic expression that mathematically models the behavior of that device 
does not. Thus, the processes of perceiving and acting that apply to one modal form 
may not apply to another modal form. For cohesion to be produced, the perceptions 
and actions applied to one modal form as it is manifest in one context must evoke in 
the actor a connection to a related modal form, which may be encountered in the 
same or in a different context.

A striking example of cohesion production is provided by Alibali and Nathan 
(2007) in an early algebra lesson for sixth-grade students. The teacher sought to 
connect a drawing of a pan balance scale (the initial modal form) that had an 
arrangement of blocks placed on the two sides to a symbolic equation (the second 
modal form) that represented that configuration of the balance scale with literal 
symbols and arithmetic operators. In the first such arrangement, two spheres on the 
left pan exactly balanced the sphere and two cylindrical blocks on the right pan.

The teacher emphasized that simultaneously removing the same type of block 
from the two sides of the balance scale corresponded to subtracting the same value 
from both sides of the equation, thus establishing the mapping between the bal-
ance scale and the equation and extending the original action that applies to the pan 
balance (object removal) to algebraic manipulation (symbolic subtraction). This 
provides a clear example of how embodied processes support transfer by depicting 
the ways these lifting actions can be applied first in a primary context (pan balance) 
to a second context (symbolic equation). It also shows how a teacher simulates the 
lifting of two literal symbols simultaneously from each side of the equation as a way 
to maintain cohesion when shifting modal forms from objects on a balance scale to 
an equation.

For a learner to exhibit transfer of knowledge across different contexts, a map-
ping between the actions afforded by the modal forms in each context must be made 
to establish cohesion. Mapping may be spontaneous or require instructional sup-
port. Lobato and colleagues (e.g., Lobato, 2003; Lobato, Ellis, & Muñoz, 2003) 
highlight ways the educational environment can be structured to orient learners’ 
attention to such mappings, and they refer to such practices as focusing phenomena.

Evidence that a mapping has been formed may then be revealed in learners’ later 
behaviors. For example, we may observe students tilting a ballistic device (e.g., a 
catapult) to launch a projectile at a particular angle in a way that is fundamentally 
similar to solving the range equation for a particular value of theta. That is, the 
device acts as a “range function” that “computes” the landing distance of an object 
given (virtually) any input angle, which is achieved by tilting the launch pad. We 
consider evidence of such a mapping later in this chapter.
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In brief, we argue that transfer occurs when learners and teachers establish cohe-
sion of their experiences by mapping modes of perceiving and acting that they suc-
cessfully used in one context to a new context. Learners and teachers express that 
cohesion across contexts in a variety of ways, principally through speech, gestures, 
and actions, including simulated actions.

Note that mapping supports identification of invariant relations by juxtaposing 
contexts that afford corresponding modes of perceiving and acting. Importantly, this 
identification and mapping may be implicit or explicit for the learner. This view of 
transfer differs from classical theories that rely on extracting common knowledge 
structures or rules with generalized conditions for application.

Transfer, by this account, centers on two distinct but related processes: construct-
ing a mapping of an invariant relation across contextualized modal forms and 
expressing cohesion established by that mapping, as indicated by various behaviors, 
as described below. We consider each of these processes in turn.

2.3.1  Mapping as a Mechanism for Cohesion

We posit that mapping is a mechanism for establishing cohesion. Mapping can be 
aided by the focusing “moves” made by teachers, parents, curriculum designers, 
and knowledgeable others who already apprehend connections, and it can be sup-
ported by contextual cues, such as spatial alignment, labeling, and deictic gestures. 
Mapping can also be managed by learners who regulate their own environments to 
provide helpful contextual supports, such as placing information side by side.

Mapping involves constructing a relation between two (or more) objects, inscrip-
tions, or ideas. We argue that there are multiple mechanisms by which mapping may 
occur. In some cases, learners may engage in explicit analogical mapping. For 
example, a child might reason about fraction division by explicitly mapping ele-
ments of a given fraction-division problem to elements in a whole-number division 
problem, saying, “6 ÷ ¼. Well, if I was doing 6 divided by 2, I would make groups 
of 2. So, 6 ÷ ¼, I’m going to make groups of ¼.” In other cases, learners may per-
form mapping in a more implicit way, via relational priming, a process by which 
exposure to some task or situation primes a relation that can then be recognized or 
used in a novel task or situation (Day & Goldstone, 2011; Leech, Mareschal, & 
Cooper, 2008; Sidney & Thompson, 2019). For example, after modeling whole- 
number division problems with cubes— by forming groups the size of the divisor—
a learner might enact the same relation to model a fraction-division problem because 
that relation (forming groups) was primed in the initial task (Sidney & Alibali, 
2017). Another means of forming the mapping is through conceptual metaphor 
(Lakoff & Núñez, 2000), where one idea, such as arithmetic, is referred to in terms 
of another idea, such as object collection. As in this example, the second domain 
(the target domain) is more familiar and more concrete than the first, source domain. 
Conceptual metaphors are grounding, inference-preserving cross-domain map-
pings. Using conceptual metaphor, the inferential structure of one conceptual 
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domain (say, whole numbers) is used to reason about another (say, fractions). In still 
other cases, learners may map relations via conceptual blending (Fauconnier & 
Turner, 1998, 2008), a mechanism by which people link two ideas that share struc-
ture, and “project selectively from those inputs into a novel ‘blended’ mental space, 
which then dynamically develops emergent structure” (Fauconnier, 2000, p. 2495). 
All of these forms of mapping—analogical mapping, relational priming, conceptual 
metaphors, and conceptual blends—forge correspondences, and these correspon-
dences may afford engaging in corresponding modes of perceiving and acting.

Because transfer involves mapping modes of perceiving and acting from one 
context or representation to another to produce cohesion, we assert that pedagogical 
moves that support mapping are integral to transfer. Indeed, teachers engage in 
many practices, both planned and spontaneous (Alibali et  al., 2014; Nathan, 
Wolfgram, et al., 2017), that highlight invariant relations across contexts, represen-
tations, and material forms. In subsequent sections, we highlight several distinct 
mapping practices that teachers use, both in ordinary mathematics instruction and in 
PBL settings, including projecting invariant relations across time and space and 
coordinating representations using techniques such as consistent labeling, linking 
gestures, and gestural catchments (Nathan et al., 2013).

2.3.2  Expression of the Mapping

If, indeed, this mapping of modal-specific ways of perceiving and acting is at the 
heart of transfer, it will be expressed—at least in some cases—in learners’ behav-
iors. Learners may, for example, appropriate actions or ways of thinking applied in 
one context for use in another, and they may make mappings (either implicit or 
explicit) between the contexts. Some aspects of learners’ behaviors in the novel 
context—their language, gestures, or actions—may reveal the mapping of modal- 
specific forms of perceiving and acting from a prior context (Donovan et al., 2014).

Learners’ behaviors in different contexts often involve different sorts of actions, 
and their gestures in novel contexts may reveal activation of action patterns that they 
have produced in other contexts (Donovan et al., 2014). Learners may produce ges-
tures in novel contexts that are similar in form to actions they produced in previous 
contexts. This repetition of gesture form—termed a gestural “catchment” by 
McNeill (2000)—is thought to reveal cohesion in speakers’ thinking. Gestural 
catchments may reveal implicit or explicit mappings between contexts, representa-
tions, or material forms (Donovan, Brown, & Alibali, 2021).

Mapping often involves forming a conceptual blend, and such blends can be 
expressed in many ways (Fauconnier & Turner, 2008; Williams, 2008). When con-
ceptual blends are established in classroom settings, the physical context typically 
offers a material anchor for the blend. Thus, the blends observed in PBL settings are 
often grounded blends (Liddell, 1998) that include elements of the immediate, 
physical environment. For example, a student may mount a protractor on a catapult 
arm and rewrite the angular measures as distances to the target, thus using a material 
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anchor to blend angular measure with projectile motion using trigonometry and the 
laws of kinematics. The actions that the student previously applied to the original 
artifact (such as adjusting the angle of the protractor) can support new, inferential 
actions, such as retargeting based on lineal measure, which extend the student's 
repertoire of actions into the space of the new conceptual blend (Williams, 2008).

The earlier example of a teacher simulating the lifting of the same symbols off 
two sides of an equation, much as one lifts the same objects off two sides of a bal-
ance scale, is one such conceptual blend. Here, we can see how the mapping is 
formed. In this conceptual blend, the equation is treated as a pan balance and the 
adding and removing of objects to maintain balance maps to the manipulation of 
terms in the equation to maintain equivalence. Further, the teacher expressed this 
mapping explicitly in speech, noting that she wanted to “take a sphere off of each 
side” but saying that “instead of taking it off the pans, I’m going to take it off this 
equation.” Thus, she identified the invariant relation of maintaining equivalence, 
performed the mapping of the pan balance to the equation with an explicit verbal 
link, and expressed cohesion across the modal forms through the reapplication of 
gestures that depicted the same actions. This mapping is illustrated in Fig. 2.1.

Other features of the teacher’s speech also manifest her effort to align the dia-
gram and the equation. For example, she used the same pronoun to refer to the 
sphere pictured in the diagram and the symbol s in the equation: “Instead of taking 
it off the pans, I’m going to take it off this equation” (emphases added), thus high-
lighting that the two inscriptions refer to the same quantity. She also used the same 
verb—taking off—to refer to removing a sphere from each side of the pan balance 
and subtracting s from each side of the equation. Thus, she highlighted the corre-
spondence of these actions using a common label.

The teacher also expressed the correspondence between the pan balance and the 
equation in her gestures. She used a grasping gesture with both hands to gesturally 
depict taking the blocks off the two sides of the scale—a simulated action (Hostetter 
& Alibali, 2008, 2019) over the drawing of the scale. She then produced this same 
grasping handshape over the corresponding symbols in the equation to refer to sub-
tracting values from the two sides of the equation. With this gestural catchment, the 
teacher sought to communicate the invariant relation of equivalence as “remove the 

Fig. 2.1 The math teacher identified an invariant relation of maintaining equivalence and per-
formed the mapping of the pan balance to the equation with an explicit verbal link and repeated 
gestures that depicted actions
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same quantity from both sides” as it applied both to the physical pan balance 
depicted in the drawing and to the symbolic equation.

Note that this teacher simulated the action of “grasping objects” over both the 
diagrammatic and the symbolic representations, even though neither of these two 
inscriptions (diagram and equation) would afford this physical action. Both are two- 
dimensional representations, so their elements cannot be grasped or picked up. 
Importantly, however, the teacher’s hands were configured as if actually grasping 
objects, and, in this way, her gesture evoked the physical objects that were repre-
sented symbolically in the diagram and the equation. Thus, in this simulated action, 
the teacher expressed a set of analogical relationships among the physical situa-
tion—which would afford such action—and the two inscriptions.

Thus, this conceptual blend was expressed in a range of ways: via an explicit 
verbal link, via common labels for related elements, and via a gestural catchment of 
the same simulated action performed in both spaces. The blend was grounded both 
in the two inscriptions, which were physically present, and in the (absent) physical 
objects that were evoked by the configuration and motion of the teacher’s hands in 
real space (cf. Liddell, 1998). Using speech and gestures in these ways, the teacher 
organized corresponding elements of different representations with reference to one 
another, linking them together multimodally, in an effort to help students apprehend 
their connections.

This example also illustrates the centrality of the teacher in our theory of transfer. 
Teachers use a range of verbal and gestural techniques to support students in identi-
fying the invariant relations and making the relevant mappings across contexts, rep-
resentations, and material forms to establish cohesion (Alibali et al., 2014; Nathan, 
Wolfgram, et  al., 2017). This is why we claim that the pedagogically designed 
actions of teachers—as well as parents, collaborators, and curriculum developers—
are an integral part of transfer when viewed from an embodied perspective. We 
further suggest that expressing cohesion in the various ways described here is pro-
ductive for learners’ thinking, in the sense that it affirms, strengthens, and reifies the 
mappings across modal forms that have been established. It also serves as an effec-
tive means of communicating these mappings to others during collaboration or 
instruction.

2.4  Illustrating Embodied Transfer in a PBL Context

In this section, we provide examples from a PBL engineering classroom that dem-
onstrate the power of an embodied theory of transfer to account for both successful 
and unsuccessful transfer. The examples also illustrate how a teacher’s pedagogical 
moves foster cohesion for students in the PBL classroom and are thus a necessary 
part of an embodied account of transfer. The examples show how successful transfer 
arises by establishing this cohesion, whereas unsuccessful transfer occurs when 
learners’ actions remain overly restricted to earlier modes of perceiving and acting.
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2.4.1  The Three Central Elements when Analyzing Transfer 
from an Embodied Perspective

The accompanying examples illustrate the complex process of transfer that students 
and teachers face in the PBL classroom. Photo Transcript 1 (Table  2.2, which 
includes the excerpt from the chapter introduction) is taken from an engineering 
class in a U.S. Midwestern urban high school in late spring, near the end of the 
school year. This excerpt sets the PBL design challenge to build a ballistic device 
that can make a projectile hit a basket at some location, undisclosed until the last 
moment, with successful engineering based on the underlying math and physics of 
projectile motion. Even the open lecture, which focuses on trigonometry and kine-
matics, is rich with embodied methods of grounding the target invariant relation and 
other associated mathematical ideas and helping to foster cohesion as these ideas 
are manifest in multiple modalities, including symbols, drawings, words, wood, and 
the teacher’s gestures.

We distinguish between the authentic classroom learning experience in which 
the students and teacher are embedded and the analytic process that is undertaken 
by researchers who study these classroom events. In terms of analysis, there are 
three central elements of transfer. First, it is critical for the analyst to identify the 
invariant relation that is central to the curriculum design and threaded throughout 
the modal forms. For this multiday unit, for example, the invariant is theta, high-
lighted by the teacher on Day 1 and labelled as the “angle of projection.” Second, 
the analyst must describe the mapping of the invariant relation across the range of 
modal forms used in the series of lessons. Third, the analyst must be able to describe 
how this mapping is expressed by the teacher and the students in the learning 
environment.

Separately from the analytic concerns of researchers, for learners to experience a 
sense of cohesion across the various modal forms and contexts that are the hallmark 
of the project-based curriculum, they must construct for themselves the mapping of 
modes of perceiving and acting that, optimistically, will apply across contexts. The 
mappings that are part of the expert model of transfer are important for the curricu-
lum design, and may be shared in teacher supplementary materials, but they often 
remain implicit to the students (Prevost et al., 2014). Learners act on the new modal 
forms (e.g., their design sketches, mathematical models, and machined devices) in 
accordance with their constructed mappings. Learners’ actions may operate in 
accordance with the expert model, indicating effective near and far transfer, as will 
be seen in Photo Transcript 2 (Table 2.3). Alternatively, learners’ actions may be 
applied to subsequent modal forms in ways that do not align with the conceptual 
structure of the invariant relation, leading to “false transfer,” as illustrated in Photo 
Transcript 3 (Table 2.4).

In the examples that follow, theta is most commonly invoked by the teacher and 
by several of the students in a gesture of a flat hand posed at a fixed angle or of a flat 
hand pivoted at the wrist to refer to the range of angular values that theta can take. 
The repeated expression of this idea in gesture makes up a gestural catchment, 
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which reinforces cohesion across different manifestations of the invariant relation. 
Further, theta is also evident in the design sketches created by the students and in 
the material devices that students build as they strive to create a ballistic device that 
can be adjusted “on demand” to enable a projectile to precisely hit a desired target.

An invariant relation across modal contexts This first photo transcript demon-
strates (a) identification of the invariant relation and (b) the ways a teacher uses 
pedagogical actions to highlight for students the mapping of the invariant relation 
across multiple modal forms.

Table 2.2 Photo Transcript 1: Day 1

Line Transcript Photo

1 T: I had given you an assignment to start working 
on a ballistic device that will throw a ping pong 
ball.

2 T: And we had some constraints with that, um on 
a handout that I gave you. Particular constraints.

3 T: What I wanna do today, is talk about, the 
angle of the projection [1], that we shoot this, 
fire our ping pong ball and the distance [2] it’ll 
go.

[1]

[2]
4 T: And kinda mathematically determine what’s 

the best angle [3] to get the maximum range, 
given a set velocity, of that we’re firing this thing, 
okay?

[3]
5 T: So we know that we can change the distance.
6 T: What are some of the ways that we can change 

the distance, if we’re shootin’ a ping pong ball 
out of a device? [Name]?

7 S: Angle of like, the ball.
8 T: Okay. Angle of projection. [4]

[4]

(continued)
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Table 2.2 (continued)

Line Transcript Photo

9 T: That’s gonna have an effect on it, right? What 
else?

10 S: Velocity.
11 T: Velocity. Which is, the speed in a certain, in a 

set direction [5] that we wanna go, ‘kay.

[5]
12 T: Those basically are the two elements that are 

gonna affect the range [6].

[6]
[Omitted portion]

13 T: Alright so up here on the board, I want you to 
follow along, this is definitely a little bit 
complicated but I think we can get a handle on it.

14 T: We’re gonna—we’re gonna look at two 
aspects of this.

15 T: One, we’re gonna look at the angle that affects 
our range.

16 T: And once we pick, a-a-and then after we select 
an angle, we’re also gonna calculate the range 
that we can get by, with those different angles.

17 T: So let’s look at how this works.
18 T: First of all, put this over here, so draw it along 

with me.
19 T: What happens when the, when we project 

something through the air [7], is we end up 
with something like [8] this depending upon the 
angle here, which is theta.

[7]

[8]
20 T: And, this is our range.

(continued)
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Table 2.2 (continued)

Line Transcript Photo

21 T: And basically, what we have, is, we’re 
working with vectors here [9].

[9]
22 T: So we end up with, some vectors that look 

like this and we call this, vector Vx and V, 
Vy[10].

[10]
23 T: And we can say, that, Vy we’re gonna start 

with Vy here.
24 T: This distance this, right here.
25 T: So we’re gonna start with, Vy, equals Vo, sine, 

of theta.
26 S: Mr. [Name], what’s Vo?
27 T: Actually Vo is going to be the velocity. ‘Kay. 

Good question.
[Omitted portion]

28 T: ‘Kay, now to relate this to our project, I’m 
actually gonna give you a distance and I’m gonna 
say “okay we’re gonna send, we’re gonna set the 
basket fifteen feet away,”

29 T: but whatever distance that is, I’m gonna 
decide that at the time.

30 T: We’re gonna set the, the basket so many feet 
away and you have to try to hit it.

31 T: So by doing some calculations on, what 
you’re, um, ballistic device fires, you can kinda 
set your angle hopefully to get, to get that 
distance.
[Omitted portion]

32 T: Well what I want you to do is after you, 
assemble your ballistic device, I actually want 
you to be able to gauge these angles on the 
device [11]

[11]
33 T: and maybe we can stick an angle gauge in 

there somehow to check these angles

(continued)
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Table 2.2 (continued)

Line Transcript Photo

34 T: and you determine at thirty degrees [12] 
what’s your distance look like.

[12]
35 T: At forty-five degrees [13] what’s your 

distance look like [14].

[13]

[14]
36 T: At s-, at our range and at sixty, you know and 

so forth, get an idea of what your range is
37 T: so that morning when we go down to the gym 

and we set this up and I throw a number at you
38 T: which will be, it’ll be somewhere between ten 

and twenty.
39 T: So you’re gonna have to try to design, you’re 

gonna have to design your device to be able to fit 
within that parameter, constraints.

We now analyze how the conditions for transfer are established by the teacher in 
this setting through his pedagogical actions. Our analysis of transfer in PBL settings 
rests on three analytic actions: (a) identify the invariant relation; (b) describe one or 
more mappings; and (c) document how participants in the learning environment 
express those mappings. Photo Transcript 1 illustrates the first two of these, with the 
mapping as a conceptual blend. The third component—how both the students and 
the teacher express those mappings using language, gesture, and action—is illus-
trated in Photo Transcripts 2 and 3.

The invariant relation is called out by the teacher as part of his presentation in 
Photo Transcript 1, Line 3, “talk about, the angle of the projection that we shoot 
this, fire our ping pong ball and the distance it’ll go.” Later, the angle of projection 
is referred to as “theta” by the teacher.
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Describing the mapping of theta involves identifying the relations among its 
various manifestations such that these seemingly dissimilar manifestations can be 
perceived as similar (Lobato, 2003). Our analysis reveals seven manifestations in all:

• as the measure of the sweep of an arm and hand to depict sample angular values 
(Line 3; photo [1]);

• as a drawn angle where the arc of the projectile meets the ground or baseline 
elevation (Line 19; photo [8]);

• as a Greek symbol (Line 21), called “theta,” first written as the Greek letter Phi 
(φ) (photo [9]) and then later written as the Greek letter θ (photo [11]);

• in drawings and gestures that specify theta as the direction of Vo, the initial 
velocity vector of the projectile that is related trigonometrically to component 
vectors Vx and Vy (Lines 21–23, photo [10]);

• as an equation parameter for computing velocity and range (Lines 23–25);
• as a physically manipulable quantity on the device students build (“you can 

kinda set your angle hopefully to get, to get that distance”; Line 31),
• as the reading from an angular measurement instrument (e.g., protractor; “I actu-

ally want you to be able to gauge these angles on the device and maybe we can 
stick an angle gauge in there somehow to check these angles”; Lines 32–34, 
photos [11] and [12]).

The intended result is a conceptual blend in which the manifestations of theta 
are linked to one another in a cohesive network. Figure 2.2 presents a snapshot from 
the classroom depicting this network structure for theta that, at that point in the 
lesson, is manifest in trigonometric relations, kinematics equations and diagrams, 
and gestures. Figure  2.3 illustrates the network of modal forms of theta used 
throughout the unit.

Fig. 2.2 Image of the whiteboard showing different manifestations of theta
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Fig. 2.3 The network of modal forms of theta used throughout the unit

Successful transfer exhibited by students via gestural catchment The third ele-
ment of analyzing transfer within an embodied framework is explicating ways those 
in the learning environment express cohesion. One expression of cohesion is illus-
trated in Photo Transcript 2 (Table 2.3), in which the teacher interacts directly with 
students who have been working in project design teams. To foreshadow, Photo 
Transcript 2 shows that at least two of the students express the cohesion of the 
invariant relation across two different instructional contexts: the formal lecture on 
kinematics given by the teacher, which involves a whole-class participation struc-
ture, and interactions that take place in the machine shop setting, which involve a 
small-group participation structure, which is the focus of the transcript. Here we 
observe the ways in which participants use body-based resources in several ways: to 
express the mathematical role of theta that was depicted in the lecture; as it was 
drawn in their design sketch; as a measured and variable quantity; and in terms of 
its functional role for the project, which aims to control the trajectory of the 
projectile.

At the beginning of Photo Transcript 2, we observe two students (talking over 
one another) in a group of four express to the teacher how the design sketch they 
have drawn provides adjustments to the angle of projection (which they call at 
points “the elevation” and “different angles”) and a way to fix the angle of projection.

Student 1 notes (Line 8, photos [1] and [2]), “That’ll allow you to unscrew it, 
move it up and down,” and Student 2 concurs (Line 9). Especially notable is the 
gesture produced by Student 1 as he describes “move it up and down.” This gesture 
imitates the hand movement that the teacher previously used during the lecture to 
designate the many values theta can take on, thus forming a gestural catchment. 

M. J. Nathan and M. W. Alibali



45

Table 2.3 Photo Transcript 2: Day 1

Line Transcript Photo

1 T: Let’s check, you guys. Where are you at?
2 T: [Name] and [Name], what do we have here?
3 S1: We got a, uh, thingy that works.
4 T: Explain what you have goin’ on here.
5 T: ‘Kay, so that is, where’s your sheet with your 

constraints on it?
[Omitted portion]

6 S1: Just a piece of wood to hold onto it.
7 S1: Locking screw right there.
8 S1: That’ll allow you to unscrew it, move it up and 

down (performs gesture three times in quick 
succession) [1] [2].

[1]

[2]
9 S2: (At the same time) Yeah.
10 S1: And then tighten it at whatever elevation you want 

[3].

[3]
11 S2: Different, different angles [4].

[4]
12 S1: A protractor sitting here. With a string with a weight 

on it.
13 S1: So as you tip it, it’ll, that’ll tell you what degree 

you’re tipping it.
14 T: (At the same time) Oh! I like that. That’s nice.
15 S1: So that tells you what degree so we can figure that 

out [5].

[5]
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The student presents an upright (left) hand with flat palm and proceeds to bend at 
the wrist and bring the hand back to upright three times in a couple of seconds, each 
time maintaining a somewhat flat palm. We regard this catchment as evidence that 
this student apprehends how theta is manifest in the design sketch and that it 
aligns with the teacher’s description.

Student 1 continues, “And then tighten it at whatever elevation you want” (Line 10, 
photo [3]). He depicts this action by moving his right hand up to be near the left and 
making a motion typical for tightening a screw. Student 2 further immediately elabo-
rates, “Different angles” (Line 11, photo [4]). In so doing, he, too, makes a gesture for 
the angle theta twice in quick succession. This gesture repeats the gesture produced 
by the teacher during lecture and the gesture produced by Student 1 moments earlier, 
thus continuing to build the gestural catchment and providing further evidence that 
Student 2 also constructed a cohesive account of theta as it relates to their design. The 
students further demonstrate their understanding as reflected in their method of mea-
suring the angle of projection with the clever use of a weighted string moving across a 
protractor that is mounted on the device (Lines 12–15, photo [5]).

In brief, Photo Transcript 2 demonstrates how students express cohesion in this 
PBL activity through a gestural catchment and through connecting language directed 
at their design sketch (which provides a material anchor of one manifestation of 
theta), the mathematics of theta, and the angular measurement device. This 
excerpt also illustrates that the teacher contributes to transfer by using brief but 
important prompts. But it is the activity structure as a whole that really provides the 
mapping of the invariant relation across contexts by forging connections between 
the hands-on design project and the mathematics and physics presentation.

Unsuccessful transfer as inappropriate mapping of the invariant relation In 
contrast to Photo Transcript 2, which illustrates successful transfer, Photo Transcript 
3 (Table 2.4) involves students who latch onto the wrong adjustable feature, so their 
design varies the initial velocity but not the angle of projection. The students’ 
expressions of the mapping reveal this to be their constructed understanding, rather 
than a process of directly perceiving the invariant relation as labelled by the teacher. 
During this excerpt, the teacher recognizes that the students’ actions reveal that their 
thinking and design is based on the incorrect mapping of the angle theta to their 
device, which is contributing to unsuccessful transfer. In response, the teacher 
attempts to repair the mapping by reinstating the gestural catchment and making an 
explicit, direct mapping between the part of the device that could instantiate theta 
and the mathematical inscriptions that model the influence of theta on projectile 
motion that were previously written on the board.

The exchange in Photo Transcript 3 shows how transfer can be thwarted when 
students construct an inappropriate mapping for the target invariant relation. The 
teacher provides a rich prompt (Line 1), asking, “How are you going to change the 
angle of your trajectory?” invoking the gestural catchment that has come to signify 
theta (photo [1]). The students have designed a catapult that includes rubber bands 
that can be set at different points before their release, altering the tension and there-
fore the speed with which the catapult arm will release. The students see the 
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Table 2.4 Photo Transcript 3 (Unsuccessful Transfer): Day 2

Line Transcript Photo

1 T: Alright now let me ask a question regarding how 
are you going to change the angle of your trajectory 
[1]?

 [1]
[Omitted portion]

2 S2: Right there.
3 S1: We’ll have this rubber band here, pull it down here.
4 S1: And so we have several spokes here so the further 

we pull it down and attach it, that, that changes the 
angle for us [2].

 [2]
5 T: Well I’m wondering if the further you, pull your 

rubber band down–
6 S1: Mmhm.
7 T: –is gonna affect your, velocity, more than your 

angle [3].

 [3]
8 S2: [At the same time] Yeah it’s, well no, this is the 

velocity
9 S2: but what we’re sayin’ is that this is how hard it 

pulls, but then right here [4], where it, where it, 
where the fulcrum is like this actually you can tilt it 
[5].

[4]

[5]
10 S2: [At the same time] The rubber bands control the 

tension but the placement is what really controls...
11 S2: Like. See what we’re saying?

(continued)
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Table 2.4 (continued)

Line Transcript Photo

12 T: So it’s, it, okay so, if I could, suggest, I think that 
[6], you might be able to adjust your angle by, by 
having some type, by controlling where this stops.

 [6]
13 S1: Yeah.
14 T: But that’s probably also gonna affect your, maybe 

affect your velocity.
15 T: What I’m saying is, either that or else you have to 

tip the whole thing.
16 S2: No, we don’t.
17 S2: That’s why, ‘cause the two sides stay put but then 

the top part can, tilt, right there.
18 T: Okay.
19 S2: [At the same time] So the fulcrum can change 

positions, basically.
20 T: Alright. So I think maybe what you need to do is is, 

take into consideration what I just said about–
21 S1: Yeah.
22 T: –being able to control the angle [7].

 [7]
23 T: That’s why we did everything we did here [8]–

 [8]
24 S1: Mmhm.
25 T: –with the math. Because we wanna–
26 S1: (At the same time) The math yeah.
27 T: –be able to adjust the angle of the trajectory.
28 T: I would try to keep, the velocity, the same, 

consistent, throughout the whole, every test that you do 
that that’s consistent

(continued)
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Table 2.4 (continued)

Line Transcript Photo

29 T: and so all you’re gonna change once you, one you 
decide what that velocity has to be, all you’re gonna 
change is your angle [9].

 [9]
30 S1: Yeah.
31 T: Okay?
32 S1: Mmhm.
33 T: I don’t really want you to use the tension on the 

rubber bands, as, the only control.
34 T: I want you to have an angle adjustment [10].

 [10]

different positions of the rubber bands as taking different angles (see Fig.  2.4), 
which they predict will alter the angle of projection: “So the further we pull it down 
and attach it, that, that changes the angle for us” (Lines 3–4, photo [2]). In response, 
the teacher rightly observes (Line 5) that the catapult arm will release at the same 
angle regardless of the placement of the rubber band, but the change in tension will 
affect the initial speed of the projectile. The teacher points to the design sketch to 
help clarify his critique (photo [3]).

The students do not pick up on this critique but offer a defense (Lines 8–11), 
“See what we’re saying?” This suggests that the students are not merely misinter-
preting the theory or misreading their own design sketch. The second student 
speaker (Lines 8–9) offers this account, “Well, no, this is the velocity, but what 
we’re sayin’ is that this is how hard it pulls, but then right here, where it, where it, 
where the fulcrum is like this actually you can tilt it” and demonstrates this idea in 
photos [4] and [5].

A reasonable interpretation is that the students operate with a preexisting “onto-
logical coherence” (Slotta & Chi, 2006) for velocity exclusively as a scalar measure 
of speed of the projectile, which interferes with their adoption of a new conceptual-
ization of velocity as a vector quantity (i.e., Vo) that includes both speed and direc-
tion. Prior ontological commitments of this sort are notoriously difficult to alter. 
Here we observe such a case from two students in defense of their design when the 
first student says (Line 17), “That’s why, ‘cause the two sides stay put but then the 
top part can, tilt, right there,” and the second (overlapping) says (Line 19), “So the 
fulcrum can change positions, basically.” In neither case, however, will this design 
provide the control of the angle of projection that the project requires.
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Fig. 2.4 (a) One group’s original design sketch with (b) the vectors and angles added that label 
the correct and incorrect matches to theta

An interesting part of this exchange comes when the teacher identifies the break 
in cohesion. By way of repair, he offers two mapping acts. First, he reinvokes the 
theta gesture but this time does so in the same plane as the paper design sketch 
(photo [7]) while saying (Line 22) “being able to control the angle.” In this way, the 
teacher connects the variation of the angle to the students’ design sketch. Second, 
the teacher makes explicit reference, with speech, gesture, and upturned eye gaze 
(photo [8]), to the mathematical derivation still on the whiteboard at the front of the 
room and starts out saying (Lines 23–29), “that’s why we did everything we did 
here with the math,” and ends with, “all you’re gonna change is your angle.” The 
students acknowledge this midway and repeat (Line 26), “The math, yeah,” but they 
seem disappointed by the teacher’s reaction to their design.

2.5  Reflections on an Embodied Theory of Transfer

In this chapter, we have advanced the argument that transfer is fundamentally an 
embodied process. This is made especially evident when studying PBL settings. 
Learning and teaching in PBL settings are embedded in rich, multimodal contexts 
where content knowledge and information are often extended across a variety of 
semantic resources, including objects, inscriptions, and other actors. We assume 
that learners and teachers have a natural drive for cohesion in the learning experi-
ence—learners, to experience continuity, and teachers, to provide a meaningful and 
engaging learning environment in which their students achieve the desired under-
standings. We observe that both teachers and learners engage embodied processes 
as they map invariant relations across various modal forms. This mapping enables 
agents in educational settings to apply prior modes of perceiving and acting to new 
contexts and to create movements that will activate those invariant relations through 
transduction. Mapping may be explicit, as in analogical mapping; implicit, as in the 
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case of priming relational structures; or some combination, as may be seen with 
conceptual blends. Teachers and students express cohesion by connecting different 
contexts and different modal forms via speech, actions, and gestures, as when a 
teacher simulates picking up symbols simultaneously from both sides of an equa-
tion or when a student invokes a gestural catchment to indicate how a structural 
property of a device enacts the relationship depicted in a mathematical model. We 
now consider some notable aspects of the proposed theory, implications for educa-
tional practice, and open research questions that may advance understanding of 
transfer.

We have argued that there are three core elements to embodied transfer: (a) iden-
tifying the central invariant relation that is manifest in multiple contexts, representa-
tions, or modalities; (b) mapping that relation across those contexts, representations, 
or modalities; and (c) expressing cohesion across the disparate manifestations of 
that invariant relation. We view the order of these three elements as somewhat fluid. 
Mapping across contexts—performed by a teacher, for example—might precede a 
student’s awareness of the central invariant relation. The mapping can provide a 
means for comparison that enables the learner to perceive connections between con-
texts and inscriptions, as when students experience that they are performing similar 
actions in ontologically different contexts. The actions performed in the new con-
text can activate common cognitive states through transduction, which then help the 
student to notice the invariant relation in the new context, thereby enabling mapping 
across the contexts. Expression can also play a role in making implicit mappings 
more explicit for the learner, as when students’ reflections on their motoric behav-
iors bring these relations into conscious awareness. This may be one reason why 
self-explanation is a powerful mechanism for promoting transfer (see, e.g., Rittle- 
Johnson, 2006).

An important assumption of an embodied theory of transfer is that transfer oper-
ates within a predictive architecture and a set of feedforward mechanisms that ready 
the system to act. Consequently, transfer is not an occasional process but a continual 
one. A system always looking to act will also activate cognitive states in accord with 
its actions. This offers a theoretical basis for understanding near and far positive 
transfer as well as negative transfer. In this framework, near transfer is especially 
likely when modes of perceiving and acting from an earlier context are activated and 
readily apply in a new context. The teacher simulating lifting the drawn objects off 
of the drawn pan balance is one such case, given that these affordances for a physi-
cal pan balance would normally apply. We describe as far transfer those cases in 
which the earlier modes of perceiving and acting are not directly applicable and that 
require some modification and some enhanced mapping support to establish corre-
spondences. Negative transfer is expected when the mapping is salient but the asso-
ciated modes of perceiving and acting are no longer relevant. One example is the 
“add all the numbers” error commonly made by elementary and middle school stu-
dents solving mathematical equivalence problems (e.g., offering “15” as a solution 
for a problem such as 3 + 4 + 5 = 3 + __; Knuth, Stephens, McNeil, & Alibali, 2006; 
McNeil, 2014; Perry, Church, & Goldin-Meadow, 1988).
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Our proposal also raises the issue of false transfer, which may occur when actors 
apply modes of perceiving and acting that they expect to be applicable but that 
match only at a surface level and which therefore do not yield successful transfer (in 
terms of experts’ expectations). The persistence of false transfer in the face of feed-
back may be due to students’ prior ontological commitments that offer strong 
matches to the current circumstances (Chi, Roscoe, Slotta, Roy, & Chase, 2012; 
Slotta & Chi, 2006). One example is treating velocity as a scalar measure of speed 
in a design project that requires that velocity be treated as a vector quantity specify-
ing both speed and direction. The activation of inappropriate modes of perceiving 
and acting can help explain why tasks that share surface structure but different 
invariant relations so readily lead to false transfer.

As these classroom examples make clear, transfer is an embedded process, situ-
ated in a particular physical and sociocultural learning context. PBL is also an 
extended process such that multiple actors (often a teacher and students) are engaged 
in transfer, mapping invariant relations across modal forms. The contributions of 
both teachers and learners to transfer suggest that transfer is a fundamentally social 
activity (Lobato, 2006). This view suggests several powerful ways to promote trans-
fer, particularly in complex learning environments. In past work (Nathan, Wolfgram, 
et al., 2017), we documented some of the key processes that teachers draw on to 
foster cohesion across representations, contexts, and settings: Teachers actively 
bridge ecological shifts when learning takes place in different ecological contexts 
(such as the classroom and the machine shop), and teachers check that their students 
are aware of the continuity they strive for; teachers coordinate ideas across different 
spaces using common labels, thoughtful juxtaposition, gestural catchments, and 
deixis in both speech and gesture; and they project invariant relations forward and 
backward in time to promote temporal continuity. Our position is that these peda-
gogical processes are integral to transfer. Excluding the teacher from a theory of 
transfer risks creating a theory that is unable to account for transfer as it occurs in 
authentic settings.

Our theory also highlights the importance of understanding the fine structure of 
the ways in which teachers and students express cohesion. In this regard, we draw 
on Goodwin’s (2013) observation that speakers commonly layer semiotic fields one 
upon another during discourse, a process he termed lamination. In our view, teach-
ers and students may laminate different representations together—that is, layer 
them together in space or time using language, gesture, or action—thereby fusing 
them conceptually. For example, consider the teacher (described earlier) who pro-
duced the same gesture of removing objects from two sides over a drawing of a pan 
balance and then over a symbolic equation representing the state of the pan balance. 
With this catchment gesture, the teacher laminates together the pan balance and the 
equation. She organizes elements of these manifestations of the invariant relation 
with respect to one another and uses gestures to express their correspondences.

An embodied account of transfer can also provide insight into why certain 
instructional approaches have proven effective. The proposed theory naturally 
explains the success of instructional approaches that bring actions in target contexts 
into close alignment with actions in the original source context. For example, 
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bridging instruction (Nathan, Stephens, Masarik, Alibali, & Koedinger, 2002) relies 
on mapping students’ invented strategies for algebraic reasoning to those that 
experts have identified as important for achieving curricular goals. Concreteness 
fading (Fyfe et  al., 2014) helps learners to ground formal notations in terms of 
familiar modes of perceiving and acting, applying the resulting actions to a broader 
range of contexts.

An embodied account of transfer also has implications for assessment practices. 
Regarding formative assessment, it is well documented that learners sometimes 
exhibit ways of thinking in actions and gestures even before they have explicit 
awareness of their new understanding or before they have constructed verbal 
accounts of their new ways of thinking (Church & Goldin-Meadow, 1986; Goldin- 
Meadow, Alibali, & Church, 1993). Teachers who notice these nonverbal expres-
sions can more accurately model students’ conceptual development and can be 
responsive with their own pedagogical actions. Even untrained adults generate more 
accurate descriptions of children’s understandings when they attend to children’s 
gestures along with their verbal utterances (Goldin-Meadow, Wein, & Chang, 
1992). Improving teachers’ skills for noticing students’ gestures can greatly enhance 
teaching and learning (Roth, 2001).

Summative assessment is generally more evaluative, taking place at the end of a 
major curricular unit. Summative assessment practices are dominated by students’ 
verbalizable knowledge, often excluding learners’ embodied forms of expression 
and therefore underestimating student knowledge. Further, assessment methods 
using computer keyboards can interfere with body-based forms of expression and 
can even impair students’ thinking (Nathan & Martinez, 2015).

An embodied account of transfer raises several important questions for future 
research. First, what kinds of discourse practices contribute to students’ identifica-
tion and mapping of invariant relations across contexts? For example, to what extent 
are instructional practices such as using common labels or producing gestural catch-
ments valuable for supporting students’ mapping across contexts? Relatedly, which 
discourse practices help learners progress from an implicit, action-based under-
standing of invariant relations to explicit, verbalizable knowledge?

Second, do effective approaches to mapping depend on the target concept or on 
the age, prior knowledge, or cognitive skill of the learner? It is possible that some 
learners may benefit from more explicit mapping, whereas others may do better 
with more implicit approaches. These individual differences, in turn, may be due to 
differences in learners’ prior knowledge or in their patterns of cognitive skills.

Third, what are the consequences of variations in mapping practices or variations 
in expressing cohesion? For example, do some types of mapping lead to more dura-
ble knowledge or to greater gains in students’ conceptual understanding of the tar-
get mathematical concepts? Does expressing cohesion in gestures or speech help 
learners to stabilize that knowledge and make it more explicit? These questions 
raise further issues about underlying mechanisms, which can be construed at a vari-
ety of different grain sizes. One potentially fruitful level of analysis involves consid-
ering the management of attention in social interactions that focus on transfer. How 
do teachers’ mapping practices affect students’ attention to aspects of the context or 
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to features of the particular representations being linked? More generally, how do 
contextual supports and social guidance of transfer influence learners’ attention, 
and how is attention involved in identifying invariant relations and in mapping 
across contexts?

Finally, given that our account has emphasized the social aspects of transfer, how 
do dimensions of social relationships, such as warmth, respect, and power, affect 
patterns of transfer? For example, are students especially likely to attend to novel 
mappings expressed by social partners who display respect for their ideas and con-
cern for their learning (Gutiérrez, Brown, & Alibali, 2018)? How does the history of 
a social relationship affect the negotiation of transfer by individuals in that 
relationship?

Although there are many questions yet to be addressed, we believe that an 
embodied perspective yields a novel and valuable conceptualization of transfer. 
There is increasing awareness among both scholars and practitioners of the embod-
ied nature of cognition (e.g., Barsalou, 2008; Glenberg, 1997; Rosenfeld, 2016; 
Wilson, 2002). In our view, an embodied perspective on transfer is necessary 
because transfer occurs in a rich physical and social world. By focusing on invariant 
relations, how they are mapped across contexts, and how cohesion across contexts 
and across modalities is expressed and negotiated, we open new avenues of inquiry, 
and these avenues promise to shed light on transfer as it occurs in PBL settings and 
other complex learning contexts.
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Chapter 3
Opening Possibilities: An Approach 
for Investigating Students’ Transfer 
of Mathematical Reasoning

Heather Lynn Johnson, Evan McClintock, and Amber Gardner

How might teachers and researchers engender students’ mathematical reasoning 
across a range of situations? Or, put another way, how might students’ transfer of 
mathematical reasoning be promoted? What counts as transfer of mathematical rea-
soning? And what might serve as evidence of such transfer?

Researchers’ views of transfer afford what constitutes evidence of transfer 
(Lobato, 2003, 2008, 2012) as well as the scope of what counts as possible to be 
transferred. We view transfer as something more than the application of a procedure 
from one situation to another (Lobato, 2003), meaning that students can engage in 
transfer even if they do not accurately apply a procedure across different situations. 
To weigh what could serve as evidence of transfer, we navigate tensions between 
our own researcher perspectives and students’ perspectives. Hence, we draw on 
actor-oriented transfer (AOT) theory (Lobato, 2003, 2008, 2012), in which Lobato 
problematizes the perspectives that researchers employ when investigating students’ 
transfer.

To locally integrate theories (Bikner-Ahsbahs & Prediger, 2010), researchers 
extend beyond combining or coordinating theories to explain empirical phenomena 
to build new theories and approaches. We draw on three theories to investigate stu-
dents’ transfer of mathematical reasoning: Lobato’s theory of AOT (Lobato, 2003, 
2008, 2012), Marton’s variation theory (Kullberg, Runesson Kempe, & Marton, 
2017; Marton, 2015), and Thompson’s theory of quantitative reasoning (Thompson, 
1994, 2002, 2011; Thompson & Carlson, 2017). In each of their theories, these 
scholars distinguish between the perspectives of students and those of the research-
ers. Lobato (2003) centered the student perspective when expanding the scope of 
what could count as evidence of transfer. Marton (2015) distinguished between 
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adults’ and children’s perspectives, explaining that adults cannot expect that by 
showing and telling children something they as adults discern that they will neces-
sitate children’s discernment. Thompson (1994) argued that a quantity is something 
more than a label for a unit (e.g., 5 feet), explaining that quantities depend on indi-
viduals’ conceptions of attributes of objects. By integrating these theories, we cen-
ter the student perspective in our investigation of students’ transfer.

The opening possibilities approach stems from Johnson’s program of research, 
consisting of iterative design experiments (Cobb, Confrey, diSessa, Lehrer, & 
Schauble, 2003), in which Johnson led fine-grained investigations of secondary stu-
dents’ reasoning related to rate and function. With this approach, we aim to open 
possibilities for researchers to investigate students’ transfer and for students to 
engage in mathematical reasoning. By focusing on students’ transfer of mathemati-
cal reasoning (e.g., Johnson, McClintock, & Hornbein, 2017), researchers can 
extend the objects of their transfer study. By integrating different theoretical per-
spectives (Lobato, 2003; Marton, 2015; Thompson, 2011), researchers can expand 
how they theorize transfer. By linking theory and method in a way that mutually 
informs, rather than prescribes, the other (Chan & Clarke, 2019), researchers can 
broaden methods for transfer study. To demonstrate the viability of this approach, 
we provide an empirical example of a secondary student’s transfer of a particular 
form of mathematical reasoning, covariational reasoning (Carlson, Jacobs, Coe, 
Larsen, & Hsu, 2002; Thompson & Carlson, 2017). We conclude with implications 
for the design of transfer studies.

3.1  Theoretical Background: Students’ Transfer, 
Discernment, and Reasoning

In integrating theories, we bring together different assumptions. First, researchers’ 
focus on students’ perspectives impacts claims of what can constitute evidence of 
transfer (Lobato, 2003, 2008). Second, students’ discernment plays a role in their 
transfer, and students discern both difference and similarity (Marton, 2006). Third, 
the object of students’ transfer can extend beyond knowledge of mathematical con-
cepts to include forms of mathematical reasoning (Johnson, McClintock, & 
Hornbein, 2017).

3.1.1  Transfer and Discernment

From an AOT perspective, transfer is generalization rather than application (Lobato, 
2003, 2008). In other words, transfer is something other than the accurate applica-
tion of a solution method across situations. Lobato (2008) defined transfer as “the 
generalization of learning, which also can be understood as the influence of a 
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learner’s prior activities on his or her activity in novel situations” (p. 169). Hence, 
students transfer their mathematical reasoning when they generalize some form of 
reasoning from one situation to a novel one. For example, consider two situations: a 
Cannon Man, flying up into the air, then parachuting back down, and a Toy Car, 
moving along a curved path, with a stationary object nearby. In each situation, stu-
dents can sketch a Cartesian graph to represent a relationship between attributes: 
Cannon Man’s height from the ground and his total distance traveled and the Toy 
Car’s distance from the stationary object and its total distance traveled. Even if stu-
dents do not sketch accurate graphs in either situation, they may still transfer rea-
soning from the Cannon Man to the Toy Car. To gather evidence of students’ 
transfer, researchers employing an AOT perspective scour data for relationships of 
sameness that students may construct (Lobato, 2003, 2008). For example, students 
may recognize that the total distance traveled continues to increase in both situa-
tions. Although there has been a focus on sameness, Lobato (2008) acknowledged 
the possibility for researchers’ AOT analysis methods to include attention to 
difference.

For a given graph in a Cartesian coordinate system, some students attend to attri-
butes represented on the axes, whereas other students attend to only a trace in the 
plane. However, it is important for each and every student to attend to graph attri-
butes. Employing Marton’s variation theory (Kullberg et al., 2017; Marton, 2015), 
designers can develop task sequences to provide opportunities for students to dis-
cern particular aspects of graphs. Discernment involves more than noticing. It 
implies separation of an object’s features from the object itself (Marton, 2015). For 
example, to discern attributes represented on graph axes, students would separate 
those attributes from other aspects of a graph.

Through systematic variation, designers can engender opportunities for students’ 
discernment (Kullberg et al., 2017; Marton, 2006, 2015); in the task sequences, dif-
ference (contrast) should precede sameness (generalization). Systemic variation 
necessitates patterns of variation and invariance. For example, suppose researchers 
intend Cartesian graphs to be an object of learning for students. In the first task, 
students can encounter different kinds of graphs (contrast) so that students may 
discern graphs as an object and Cartesian graphs as a dimension of variation of the 
broader object of graphs. The relationship between variables would remain invari-
ant, and the type of graph would vary. In a subsequent task, students can encounter 
different kinds of Cartesian graphs (generalization). Now, the type of graph 
(Cartesian) would remain invariant, and the relationship between variables would 
vary. Notably, the object of learning is the first thing varied (the type of graph), then 
characteristics of the object of learning (relationships between variables), so that 
students may discern which aspects of Cartesian graphs are necessary and which 
aspects are optional.

Researchers can employ variation theory in their study of transfer. Broadly, 
Marton (2006) defined transfer as being “about how what is learned in one situation 
affects or influences what the learner is capable of doing in another situation” 
(p. 499). Summarizing results of different studies, Marton (2006) argued that stu-
dents’ discernment of both difference and sameness contributes to their transfer. To 
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illustrate, consider Marton’s (2006) example of the Cantonese spoken language, 
which includes both sound and tone. Suppose a student hears two Cantonese words 
in succession, both with the same sound but with different tones; this can provide 
the student an opportunity to discern, or separate, the tone from the sound, not only 
in the second word but also in the first. This kind of discernment can also apply to 
the Cannon Man and Toy Car situations. For example, a student may discern, or 
separate, the difference in literal movement of each object from the object’s total 
distance traveled. Hence, it is possible for the discernment of difference (e.g., the 
difference in tone or literal movement) to be what a learner transfers from one situ-
ation to another.

Both Marton and Lobato used the term generalization. We interpret their uses of 
the term to be compatible but not synonymous. Lobato used generalization in a 
broader sense, whereas Marton used generalization to address a specific kind of 
variation. We view Lobato’s explanation of transfer as “generalization of learning” 
to be consistent with Marton’s definition of transfer—that is, the influence of one 
situation on a new situation. Marton employed generalization to refer to a pattern of 
sameness in task sequences, which should follow patterns of difference (contrast). 
For example, suppose a teacher intends to develop a task sequence for students to 
discern, or separate, the attribute of “increasing” on a graph. The teacher would 
begin with contrast, for instance providing students graphs that increase, decrease, 
and remain constant. Then the teacher would follow with generalization, for instance 
providing students with graphs having different kinds of increases (e.g., linear, qua-
dratic, exponential). Integrating theories, we aim to illustrate how difference can 
play a role in the generalization of learning, or transfer, from an AOT perspective.

3.1.2  Discernment and Reasoning

In the theory of quantitative reasoning (Thompson, 1994, 2011; Thompson & 
Carlson, 2017), Thompson focuses on students’ conceptions of attributes, which 
may be involved in problem situations or represented in graphs. Whether an attri-
bute is also a quantity depends on the students’ perspectives rather than the observ-
ers’ perspectives. When a student conceives of some attribute as being possible to 
measure, then that attribute is a quantity for the student. For example, an observer 
may conceive of how it could be possible to measure a toy car’s distance from a 
stationary object, yet students may wonder where to even look for, let alone mea-
sure, such a distance. Thompson’s theory centers students’ conceptions of possibili-
ties for measurement (e.g., using a string to measure the distance between two 
objects) rather than on their end results of measurements (e.g., exactly how far the 
toy car is from the stationary object at a given moment). Therefore, students can 
engage in quantitative reasoning without applying particular procedures or deter-
mining certain results. Integrating theories, we explain a particular kind of discern-
ment, a conception of graph attributes as being possible to measure, that we aim to 
promote in students.
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3.2  The Opening Possibilities Approach

The opening possibilities approach, shown in Fig. 3.1, links theory and method to 
investigate students’ transfer of mathematical reasoning. Theory and method are 
positioned across from each other to represent a complementary, rather than hierar-
chical, relationship between them. The double-headed arrow in the center shows 
that theory and method mutually inform, rather than prescribe, the other. Three 
overarching questions guide the approach: What counts as students’ transfer of 
mathematical reasoning? How can researchers engender students’ transfer of math-
ematical reasoning? What constitutes evidence of students’ transfer of mathemati-
cal reasoning? In response, researchers may draw on a range of theories and methods 
which in turn afford and constrain their design decisions, data collection, and data 
analysis.

3.2.1  What Counts as Transfer of Students’ 
Mathematical Reasoning?

How researchers theorize students’ mathematical reasoning influences what counts 
as evidence of students’ reasoning. By a student’s mathematical reasoning, we mean 
purposeful thinking in action occurring in a setting that constitutes mathematics for 
the student. With Thompson’s theory of quantitative reasoning, we focus on stu-
dents’ conceptions of what may be possible to measure rather than on end results 
obtained from measurement. Bringing together Lobato’s AOT theory and Marton’s 
variation theory, by transfer of students’ mathematical reasoning, we mean how 
students’ mathematical reasoning in prior situations influences their mathematical 
reasoning in new situations. Through our methods, we aim to infer students’ reason-
ing (and transfer of reasoning) based on their observable behaviors. To gather evi-
dence of students’ engagement in the intended mathematical reasoning, we focus on 
students’ conceptions as they are engaging with task sequences rather than on their 
end results.

Fig. 3.1 The opening possibilities approach
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3.2.2  How Can Researchers Engender Students’ Transfer 
of Mathematical Reasoning?

We aim to promote students’ engagement in mathematical reasoning rather than 
answer finding. Hence, we design task sequences in which we work to engineer 
opportunities for students’ reasoning writ large as well as opportunities for students 
to engage in mathematical reasoning. Our stance on students’ reasoning influences 
our assumptions about the viability of their reasoning, which in turn influences our 
methods. First, we assume that students working on a task may have goals for the 
task that are different from our own (Johnson, Coles, & Clarke, 2017). Second, we 
acknowledge that the reasoning we intend may be different from the reasoning that 
students engage in during task sequences. Third, we assume that students’ reason-
ing is viable and productive, regardless of its form. In our methods, we do not seek 
to “fix” students’ reasoning. Rather, we seek to understand and engender students’ 
mathematical reasoning in its many forms.

3.2.3  What Constitutes Evidence of Students’ Transfer 
of Mathematical Reasoning?

We view students as experts in their own mathematical reasoning, and thereby our 
role as researchers is to elicit and explain that reasoning. To gather evidence of stu-
dents’ transfer of mathematical reasoning, we build from four criteria put forth by 
Lobato (2008). First, students demonstrate a change in their reasoning from one 
task to another. Second, prior to the task sequences, students demonstrate limited 
evidence of the intended reasoning. Third, students’ reasoning on earlier tasks influ-
ences their reasoning on later tasks. Fourth, students’ change in reasoning is some-
thing other than a spontaneous occurrence. When analyzing for evidence of influence 
of students’ reasoning, from earlier tasks to later tasks, we consider both contrast 
and generalization (Marton, 2006). That is, we take as evidence of transfer not only 
students’ perspectives of how tasks are similar but also how they perceive those 
tasks to be different.

3.3  Opening Possibilities for Students’ 
Covariational Reasoning

To operationalize the opening possibilities approach, we address a particular form 
of mathematical reasoning, covariational reasoning (Carlson et al., 2002; Thompson 
& Carlson, 2017). Not confined to a single area of mathematics, covariational rea-
soning transcends different mathematical concepts, including the gatekeeping con-
cepts of rate and function.
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3.3.1  What Counts as Transfer of Students’ 
Covariational Reasoning?

When students engage in covariational reasoning, they can form and interpret rela-
tionships between attributes which they conceive to be capable of varying and pos-
sible to measure. In other words, covariational reasoning involves both students’ 
conceptions of attributes and their conceptions of a relationship between those attri-
butes (Carlson et al., 2002; Thompson & Carlson, 2017). To illustrate, in the Toy 
Car situation, a student may conceive of varying lengths of a stretchable cord con-
necting the car to a stationary object and a trace of the distance traveled as the car 
moves along its path. Furthermore, that student may conceive of a relationship 
between the cord length and distance traveled: The cord could start off longer, then 
shorten, while the toy car’s total distance traveled keeps increasing. By transfer of 
students’ covariational reasoning, we mean how students’ covariational reasoning 
in one situation (e.g., the Cannon Man) influences their covariational reasoning in a 
new situation (e.g., the Toy Car).

3.3.2  How Can Researchers Engender Students’ Transfer 
of Students’ Covariational Reasoning?

We view tasks to be more than a problem statement. Tasks encompass the intentions 
of those designing, implementing, and interacting with the tasks as well as physical 
materials (Johnson, Coles, & Clarke, 2017). Our task sequences comprise students’ 
sketching and interpreting Cartesian graphs, which means that we address both stu-
dents’ covariational reasoning and their conceptions of graphs themselves. By 
incorporating patterns of difference and sameness, we intend to provide opportuni-
ties for students to discern necessary aspects of graphs from optional ones. For 
example, even though the Cannon Man flies up and down while the Toy Car moves 
along a path, the total distance traveled for both continues to increase. If students 
were to only experience one kind of motion, they might not have sufficient opportu-
nities to separate the literal motion of the objects from a measurable attribute of the 
objects, such as their total distance traveled.

3.3.3  What Constitutes Evidence of Students’ Transfer 
of Covariational Reasoning?

To gather evidence of students’ covariational reasoning, we infer students’ concep-
tions based on their observable behavior. We examine students’ work when sketch-
ing Cartesian graphs because sketching graphs can provide students opportunities to 
represent relationships between attributes. We focus on students’ process of 
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sketching graphs rather than on assessing the accuracy of their resulting graphs. 
Although students may engage in covariational reasoning when doing things other 
than graph sketching, we have found instances of students’ graph sketching to offer 
compelling evidence of their covariational reasoning. Yet, students’ difficulties or 
facilities with graphs can present challenges when analyzing for reasoning. 
Integrating different theories affords us opportunities to explain students’ discern-
ment of graph attributes in conjunction with their transfer of covariational reasoning.

3.4  The Promise of Opening Possibilities: An Instantiation 
of the Approach

To demonstrate the promise of the opening possibilities approach, we report data 
from a larger study in which Johnson conducted a set of three individual, task-based 
interviews (Goldin, 2000) with each of 13 secondary students to investigate their 
covariational reasoning and conceptions of graphs. We report data from one of those 
students, Aisha, who demonstrated transfer of covariational reasoning. To contextu-
alize the data, we explain the design of our task sequences and our methods for data 
analysis. With this instantiation of the opening possibilities approach, we build on 
Johnson and colleagues’ earlier investigation of a secondary student’s transfer of 
covariational reasoning (Johnson, McClintock, & Hornbein, 2017).

3.4.1  The Task Sequences

We implemented three task sequences, each with a different background: a Ferris 
Wheel, a Cannon Man, and a Toy Car, respectively. Across the task sequences, stu-
dents explored different situations, then sketched one or more Cartesian graphs to 
represent a relationship between attributes in a situation given in an animation. We 
adapted the Ferris Wheel task sequence from Johnson and colleagues’ earlier 
research (Johnson, McClintock, & Hornbein, 2017). We developed the Cannon Man 
and Toy Car task sequences in Desmos, a freely available digital mathematics tool, 
in collaboration with Meyer, the chief academic officer of Desmos.

The Ferris Wheel task sequence incorporated three key elements. First, students 
manipulated an online interactive of a turning Ferris wheel. Second, students 
sketched a single graph representing a relationship between a Ferris wheel cart’s 
height from the ground and its total distance traveled around the wheel for one revo-
lution of a Ferris wheel. Third, students interpreted a replica of another student’s 
graph, explaining how they thought that student may have been thinking when 
sketching the graph.

The Cannon Man and Toy Car task sequences each incorporated six key ele-
ments (Johnson, McClintock, & Gardner, 2020). First, students viewed a video 
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animation, then discussed how it could be possible to measure different attributes in 
the situation (e.g., Cannon Man’s height from the ground and his total distance trav-
eled). Second, students explored variation in each of the individual attributes by 
manipulating dynamic segments on the horizontal and vertical axes. Figure  3.2 
shows a dynamic segment in the Cannon Man task sequence. Third, students 
sketched a graph to represent a relationship between attributes, then viewed a 
computer- generated graph. Fourth, students re-explored variation in each of the 
individual attributes, with the attributes represented on different axes. Fifth, stu-
dents sketched a new graph to represent the same relationship between attributes, 
then viewed a computer-generated graph. Figures 3.3 and 3.4 show the two different 
computer-generated graphs in the Cannon Man and Toy Car task sequences, respec-
tively. Sixth, students responded to questions about relationships represented by 
both graphs.

We integrated Thompson’s theory of quantitative reasoning and Marton’s varia-
tion theory in our design of the Cannon Man and Toy Car task sequences. First, 
students could vary each attribute individually, then both attributes together. With 
the dynamic segments (e.g., Fig. 3.2), we operationalized Thompson’s recommen-
dation that students use their fingers as tools to represent variation in individual 
attributes (Thompson, 2002). Furthermore, the design afforded opportunities for 
students to discern each graph axis as representing variation in a single attribute 
(Marton’s variation theory). After manipulating individual attributes, students 
sketched a graph to represent a relationship between attributes.

Second, students repeated the process for a new Cartesian plane with the same 
attributes represented on different axes. This design choice was not a novelty; 
Moore and colleagues also leveraged this design move (Moore, Silverman, Paoletti, 
& LaForest, 2014; Moore, Stevens, Paoletti, Hobson, & Liang, 2019). Our theoreti-
cal underpinning for this design choice rests in Marton’s variation theory. With the 
new graph, we incorporated contrast. The relationship between variables in the 
Cannon Man task sequence remained invariant; only the graph was different. With 

Fig. 3.2 A dynamic segment in the Cannon Man task sequence
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Fig. 3.3 Two different graphs in the Cannon Man task sequence

Fig. 3.4 Two different graphs in the Toy Car task sequence

this move, we intended to provide opportunities for students to discern a Cartesian 
plane as separable from a specific instance of a Cartesian graph.

We designed the first and second patterns of variation and invariance against a 
single background (the Cannon Man). Next, we engaged in generalization, per 
Marton’s variation theory, repeating those patterns against a new background (the 
Toy Car). In the video animation (the first element of the task sequence), the literal 
motion of the Toy Car was different from the literal motion of the Cannon Man. For 
example, the Toy Car moved along a curved path, but Cannon Man moved up and 
down. We intended this difference to provide students opportunities to discern what 
was necessary (e.g., direction of variation in attributes) from what was optional 
(e.g., literal motion of objects). Across both task sequences, we kept the kind of 
attributes invariant because we anticipated it would be less difficult for students to 
conceive of measuring length attributes (e.g., height, distance) than other kinds of 
attributes, such as area or volume (see also Johnson, McClintock, & Hornbein, 2017).

3.4.2  Data Analysis Methods

To claim that students transferred their covariational reasoning, we first provide 
evidence of students’ engagement in covariational reasoning within and across tasks 
(Thompson’s theory of quantitative reasoning). Second, we identify differences and 
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commonalities that students discerned across tasks (Marton’s variation theory). 
Third, we demonstrate that students meet Lobato’s (2008) four criteria for evidence 
of transfer from an AOT perspective.

Covariational reasoning Our analysis focused on two areas: students’ concep-
tions of attributes as possible to measure and capable of varying and students’ con-
ceptions of relationships between those attributes. The framework put forth by 
Thompson and Carlson (2017) provided fine-grained distinctions regarding differ-
ent levels of students’ covariational reasoning. We gathered evidence of the pres-
ence of covariational reasoning rather than distinguishing between different levels 
of covariational reasoning. As a litmus test for covariational reasoning, we identi-
fied the level that Thompson and Carlson (2017) termed gross coordination, in 
which students conceive of a relationship as a loose joining of two attributes. To 
illustrate, to claim a student engaged in covariational reasoning in the Toy Car situ-
ation, we drew on two pieces of evidence. First, the student conceived of both dis-
tance attributes as capable of varying and possible to measure; for example, the 
student could separate a distance attribute from the situation itself (possible to mea-
sure) and show or explain how that distance could vary beyond just describing lit-
eral motion of an object (capable of varying). Second, the student conceived of a 
loose joining of those distances, for example, by showing or explaining how those 
different distances could vary together (e.g., one distance increased and decreased 
while the other distance continued to increase).

Transfer of covariational reasoning Our analysis focused on students’ discern-
ment of difference and sameness, and students’ evidence of engagement in transfer, 
from an AOT perspective. Drawing on Marton’s theory, we analyzed students’ dis-
cernment when they encountered what we intended to be instances of contrast and 
generalization. For example, we examined how students discerned attributes repre-
sented on each graph axis (a necessary aspect) or the differences in literal motion 
between the Cannon Man and the Toy Car (an optional aspect). We specified the 
four criteria put forth by Lobato (2008) for our task sequence. First, students dem-
onstrated a change in reasoning from the Ferris Wheel task sequence (first inter-
view) to the Toy Car task sequence (third interview). Second, in the Ferris Wheel 
task sequence, students demonstrated limited evidence of covariational reasoning. 
Third, students’ reasoning during the Cannon Man task sequence (second inter-
view) influenced their reasoning during the Toy Car task sequence (third interview). 
Fourth, students’ change in reasoning resulted from their work on interview tasks, 
and it was not just a spontaneous occurrence.
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3.4.3  Empirical Evidence: Aisha’s Engagement 
with the Task Sequences

Aisha attended a high-performing suburban high school in the metropolitan area of 
a large U.S. city, with just over half of the student population identifying as students 
of color. Aisha was near the end of ninth grade (about 15 years old) and enrolled in 
an Algebra I course, which was typical for students in a general college-preparatory 
track at her school. Aisha’s interviews spanned a 2-week time frame, with at least 
1  day between; interviews occurred during the school day when she had a free 
period. She engaged with one task sequence in each interview: Ferris Wheel, 
Cannon Man, and Toy Car, in that order, working on a tablet (an iPad), with paper 
and pencil available.

We begin with transcripts and description from each of the task sequences, across 
the three interviews, followed by our analysis within and across tasks. Figure 3.5 
shows some of the graphs that Aisha drew during the interviews. Aisha’s Ferris 
Wheel graph is shown in Fig.  3.5 (left). The Cannon Man and Toy Car graphs, 
shown in Fig. 3.5 (middle, right), are the second Cartesian graphs that Aisha drew 
in the task sequence (graphs that we intended to provide contrast per Marton’s varia-
tion theory).

Ferris Wheel Aisha sketched a graph relating a Ferris wheel cart’s height from the 
ground and total distance traveled around one revolution of the Ferris wheel. While 
sketching, Aisha explained why she drew the graph in the manner that she did.

Aisha:  I feel like the height would be more like the line [sketches a line; Fig. 3.5, 
left]. Distance would be more like the rise and run of the situation [sketches small 
segments; Fig. 3.5, left]. Cause you’re using the rise and run to find the line, and you 
need to use the distance to find the height.

Cannon Man Aisha sketched a graph relating Cannon Man’s height from the 
ground and total distance traveled, with the height represented on the horizontal axis 

Fig. 3.5 Aisha’s Ferris Wheel, Cannon Man, and Toy Car graphs, respectively
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and the distance on the vertical axis. Next, Johnson asked Aisha to explain how the 
graph showed both Cannon Man’s height and distance.

Johnson:  Can you show me how you see the height increasing and decreas-
ing in this purple graph? [Points to the curved graph Aisha drew; Fig. 3.5, middle]
Aisha:  It’s [the height’s] increasing here, since it’s [the graph’s] backwards in my 
opinion [Sketches green dots, beginning on bottom left near the vertical axis, then 
moving outward; Fig. 3.5, middle]. Decreasing here [Continues to sketch green dots 
until getting close to the vertical axis, adding arrows after sketching dots; Fig. 3.5, 
middle].
Johnson:  How is the distance changing?
Aisha:  [Turns iPad so that the vertical axis is horizontal. Draws arrow parallel to 
vertical axis; Fig. 3.5, middle.] That way. Continues to get bigger.

Toy Car Before sketching the graph shown in Fig. 3.5 (right), Aisha spontaneously 
stated that the Toy Car’s distance traveled was the “same as the Cannon Man.” 
Following up, Johnson asked Aisha to explain how those different distances could 
possibly be the same.

Johnson:  So, you said the total distance traveled is like the Cannon Man. 
Why is that like the Cannon Man again? Cause Cannon Man goes up and down, and 
this one moves around. How are those things the same?
Aisha:  Just because Cannon Man is coming back down, doesn’t mean his distance 
is going down. His distance is still rising.

To explore change in the Toy Car’s total distance traveled and the Toy Car’s dis-
tance from the shrub, Aisha manipulated dynamic segments located on the vertical 
and horizontal axes, respectively. For the total distance, Aisha began at the origin, 
continually moving the segment up along the vertical axis. She explained: “I moved 
it up. It continuously went up, because the distance doesn’t decrease. The total dis-
tance traveled doesn’t decrease.” For the distance from the shrub, Aisha began to the 
right of the origin, initially moving the segment to the left, and then to the right, 
along the vertical axis. She explained:

I moved it [the segment] to the left, because it [the Toy Car] was getting closer to the shrub. 
Then, when it [the Toy Car] started to turn, I started to move it [the segment] back up to the 
right, because it [the Toy Car] was getting closer to the shrub.

Next, Aisha sketched the graph shown in Fig.  3.5 (right). After viewing the 
computer- generated graph, Aisha stated what she thought the curved graph repre-
sented. Aisha stated: “This [moving her finger from left to right along the horizontal 
axis] is tracking the distance from the shrub, and this [moving her finger along the 
curved graph, beginning near the horizontal axis] is also tracking the distance.”
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3.4.4  Analysis: Aisha’s Reasoning Within and Across Tasks

Within tasks: The Ferris Wheel task sequence Before sketching a graph, Johnson 
asked Aisha to explain how she might use a string to measure the Ferris wheel cart’s 
height from the ground and total distance traveled. Appealing to a nonstandard unit, 
such as a string, was a typical move by Johnson to encourage students to do some-
thing other than try to find an answer. For the height, Aisha told Johnson that she 
would tie the string to the Ferris wheel cart, then drop it down to the ground. For the 
distance, Aisha said that she would start at the base of the Ferris wheel and then just 
“go around,” moving her finger counterclockwise around the wheel until she ended 
up back at the base. Aisha’s actions demonstrated that she could conceive of the 
height and distance as attributes possible to measure, or as quantities, per 
Thompson’s theory.

When sketching a graph, Aisha treated height and distance as inputs and outputs, 
explaining how one might use a formula or rule to determine one amount (height) 
given another amount (distance). Aisha included both height and distance in a single 
graph and labeled the axes, but the height and distance were juxtaposed as individ-
ual parts of a line graph. A loose joining of attributes would give evidence of covari-
ational reasoning at the gross coordination level. However, Aisha had yet to 
demonstrate if she could conceive of a relationship between different values of the 
attributes (e.g., when the cart is this far off the ground, the cart would have traveled 
this much distance) or even of those attributes as varying together (e.g., the cart’s 
height increased and decreased while the cart’s distance traveled continued to 
increase). Per Thompson’s theory, Aisha demonstrated limited evidence of the 
object of transfer (covariational reasoning). Hence, per Lobato’s (2008) criteria, if 
Aisha were to demonstrate covariational reasoning during a subsequent task 
sequence, an argument for transfer could be built.

Within tasks: The Cannon Man task sequence The interview began with 
Johnson telling Aisha to view the video animation, then explain what she thought 
she might be able to measure in the situation. With this question, Johnson intended 
to investigate what attributes students might discern on their own. Aisha came up 
with two attributes: the distance from when the parachute deploys and how high 
Cannon Man gets in the air, both of which she interpreted in relationship to the 
ground. To encourage Aisha to talk more about how she might measure the attri-
butes, Johnson asked Aisha how the height was changing. Aisha said that she could 
measure Cannon Man’s height using feet, and there would be more feet when 
Cannon Man was higher in the air. If a student did not spontaneously identify one 
of the intended attributes, Johnson would introduce that attribute; here, it was total 
distance traveled. Aisha said that she thought of it the same way as the height—the 
further Cannon Man is in the air, the more feet he would have. Johnson then sug-
gested that Aisha think of the total distance as a round trip. With such a move, 
Johnson intended to give students opportunities to extend beyond their initial 
impressions of attributes. Aisha responded by explaining that the distance would 
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keep getting bigger and that you could find it by doubling the distance from the 
ground to Cannon Man’s highest point (which she called the “vertex”). Again, in 
this task sequence, Aisha provided evidence that she conceived of the different attri-
butes as possible to measure (quantities, per Thompson’s theory).

Unlike in the Ferris Wheel task sequence, Aisha demonstrated evidence of 
covariational reasoning in the Cannon Man task sequence. This happened when 
Aisha sketched the second graph (Fig. 3.5, middle). When annotating the graph that 
she drew in the Cannon Man task sequence (Fig. 3.5, middle), Aisha explained how 
she showed the height to be both increasing and decreasing as well as the distance 
to be increasing. Taken together with earlier evidence of her conceptions of the 
attributes as being possible to measure, Aisha’s loose joining of the varying attri-
butes demonstrates evidence of her covariational reasoning at the gross coordina-
tion level, per Thompson’s theory. Building our case for Aisha’s transfer, per 
Lobato’s (2008) criteria, Aisha demonstrated a change in reasoning from the Ferris 
Wheel to the Cannon Man.

Aisha’s engagement in covariational reasoning occurred not with her first graph 
but with her second. Per Marton’s variation theory, we designed the second graph as 
contrast so that students could have an opportunity to discern the Cartesian plane 
itself as being separate from the particular graph being sketched. Aisha discerned 
the representation of the total distance traveled on a Cartesian plane in the second 
graph, stating: “I imagine the distance on the ground, which I can’t do.” In sketching 
her second graph (Fig. 3.5, middle), Aisha demonstrated that she discerned neces-
sary aspects of Cartesian graphs (that axes represent measurable attributes) from 
optional aspects (that the location of an attribute on a graph axis matches the literal 
orientation of the attribute in a situation). By designing task sequences to promote 
students’ discernment of difference in the Cartesian plane, we aimed to engineer 
opportunities for students to engage in covariational reasoning, and Aisha’s actions 
pointed to the viability of this design move.

Within tasks: The Toy Car task sequence As did the Cannon Man interview, the 
Toy Car interview began with Aisha identifying “the distance the car drove” as an 
attribute. Aisha was not sure how she might measure it, so Johnson asked her to 
sketch the path that she saw the car taking. As in the Cannon Man interview, Johnson 
asked Aisha how the attribute was changing. Aisha said that it would keep increas-
ing, if one were thinking about the distance the car was going, and not from the start 
to the end because the car’s ending point is close to the starting point. Next, Johnson 
introduced the attribute of the distance from the shrub and asked Aisha how she saw 
that attribute changing, to which Aisha responded that the car went “closer to” and 
then “further from” the shrub, moving her finger along the path of the car. To inves-
tigate how Aisha might separate the attribute of the distance from the shrub from the 
literal motion of the car, Johnson asked Aisha to draw where she saw the distance. 
Aisha sketched dotted lines from the car’s starting point to the shrub and from the 
car’s ending point to the shrub. At this point, Aisha had not seen the dotted line 
image shown in Fig. 3.4; she had only seen the video animation of the moving car, 
which had no annotations for distance. As she did in the Cannon Man task sequence, 
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Aisha provided evidence that she conceived of the different attributes as possible to 
measure (quantities, per Thompson’s theory).

Aisha demonstrated covariational reasoning during the Toy Car task sequence 
but, as had happened in the Cannon Man task sequence, it was not until she sketched 
the second graph. When sketching that graph (Fig. 3.5, right), Aisha accounted for 
both the increase in the total distance and the increase and decrease in the distance 
from the shrub. As with Cannon Man, Aisha identified the segment along the verti-
cal axis as tracking the total distance traveled, which continually increased, and the 
trace in the plane as tracking the attribute that both increased and decreased. She 
found the vertical dynamic segment (Fig. 3.5, right) to be necessary to “show” the 
total distance traveled. Hence, her representation of the joined attributes entailed 
two connected inscriptions, the dynamic segment and the trace. Building our case 
for transfer, per Lobato’s (2008) criteria, Aisha’s reasoning on the Cannon Man task 
influenced her reasoning on the Toy Car task. In both tasks, she conceived of the 
total distance traveled to be continually increasing, and she represented that increase 
by sketching a segment along the vertical axis, beginning at the origin, and extend-
ing upward.

Across tasks: From the Cannon Man to the Toy Car We draw further evidence 
of transfer from Aisha’s spontaneous utterance of a sameness that she identified 
across the Toy Car and Cannon Man task sequences. When working on the Toy Car 
task, without prompting, Aisha spontaneously stated that she thought an attribute—
total distance—was “the same” in both the Toy Car and the Cannon Man tasks. We 
contend that Aisha’s discernment of differences across the task situations contrib-
uted to her spontaneous identification of this sameness. Per Marton’s theory, we 
incorporated contrast across the Toy Car and Cannon Man task situations, with dif-
ference in the literal motion of each object (Cannon Man moved up and down, 
whereas the Toy Car moved in a curved path). We did not assume that our design 
alone would be sufficient to ensure students’ discernment; we provided conditions 
under which discernment might occur. Aisha evidenced such discernment as she 
separated the direction of the literal motion of each object from the variation in an 
attribute (total distance) in each situation. For example, Aisha moved the dynamic 
segment representing the Toy Car’s total distance traveled to show that the distance 
continued to increase, despite the Toy Car moving along a curved path. Consistent 
with our intent, Aisha distinguished necessary attributes (e.g., continual increase in 
total distance traveled) from optional aspects (the literal motion of the objects). 
Drawing on the corpus of evidence, we claim that Aisha transferred her covaria-
tional reasoning from the Cannon Man task sequence to the Toy Car task sequence, 
and her discernment of differences in the literal motion of each object played a role 
in that transfer.
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3.5  Discussion

3.5.1  What Is Possible to Transfer?

With the opening possibilities approach, we aim to expand objects of transfer study. 
In Lobato’s investigation of transfer from an AOT perspective, the focus was on 
students’ transfer of mathematical concepts, such as slope (e.g., Lobato, 2003, 
2008, 2012). We demonstrate how the object of transfer can be a form of mathemati-
cal reasoning, which can transcend different mathematical concepts. In our applica-
tion of this approach to students’ covariational reasoning, we leave open possibilities 
for concepts that researchers may address. For example, researchers may engender 
students’ covariational reasoning to develop students’ understanding of function 
writ large or even inverse function more specifically. In our approach, we center 
students’ mathematical reasoning as something that is more than just a process 
whose value rests in its service to students’ development of understanding of math-
ematical concepts. As a result, we expand what can count as mathematics and, in 
turn, what can be transferred.

3.5.2  Integrating Theories to Open Possibilities: Reasoning, 
Discernment, and Transfer

We open possibilities for investigating students’ covariational reasoning when inter-
preting and sketching Cartesian graphs, which are ubiquitous in students’ math 
courses. To address both students’ covariational reasoning and their conceptions of 
graphs, we have drawn on theories that explain students’ reasoning (Thompson’s 
theory) and discernment (Marton’s theory). Researchers have found that Cartesian 
graphs may mitigate opportunities for covariational reasoning; university students 
and prospective teachers may not demonstrate covariational reasoning when sketch-
ing graphs despite evidence suggesting their engagement in covariational reasoning 
in situations not involving graphs (Carlson et al., 2002; Moore et al., 2019). One 
response to such findings can be to question the potential for researchers and teach-
ers to leverage Cartesian graphs to engender students’ covariational reasoning. We 
take a different stance, provided that students also have opportunities to conceive of 
graphs as representing relationships between quantities. Integrating theories has 
afforded our creation of such opportunities, with Marton’s variation theory being 
instrumental in this work. By incorporating contrast and generalization in our task 
sequences, we have made efforts to problematize aspects of Cartesian graphs as 
dimensions of variation, and empirical evidence points to the viability of such design.

Our empirical work has focused on secondary students’ covariational reasoning, 
but this design can be applicable to university students or even younger students. By 
engineering opportunities for students’ reasoning in a familiar setting (a Cartesian 
graph) without specifying a particular mathematical concept, we create room for 
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students to engage in reasoning that may be different from what they have done in 
previous math courses or in their work with graphs. Furthermore, we connect graphs 
to situations, such as the Toy Car, so that students can have opportunities to con-
ceive of graphs as representing measurable attributes of events that could occur in 
the world. Too often, students experience mathematics as a game with rules deter-
mined by people in authority (Gutiérrez, 2013) rather than as an opportunity to 
engage in reasoning and thinking to quantify their world in ways that make sense to 
them. If students expect that we intend for them to arrive at particular answers or 
demonstrate their knowledge of certain procedures (even if that was not our intent), 
the reasoning students demonstrate can be quite different from the reasoning we 
intend to promote, even if students are capable of demonstrating the intended rea-
soning. We view our focus on covariational reasoning and Cartesian graphs as one 
of many avenues for the opening possibilities approach. In future studies, research-
ers may investigate different forms of reasoning in other situations, such as geomet-
ric reasoning in dynamic geometry platforms.

Integrating theories has afforded our articulation of a role of difference, as well 
as sameness, in investigating students’ transfer of mathematical reasoning from an 
AOT perspective. Again, Marton’s variation theory has been crucial in this work. 
Designing for contrast and generalization has opened possibilities for us to scour 
the data for differences and similarities that students construe between situations as 
well as for students to distinguish between necessary and optional aspects of the 
situations. In Aisha’s case, we opened opportunities for her to discern physical char-
acteristics of the situation as optional and measurable attributes as necessary (e.g., 
the total distance of both Cannon Man and Toy Car continuing to increase despite 
differences in their literal motion), and this discernment played a role in her transfer 
of covariational reasoning. The objects of students’ covariational reasoning are 
more than observable things students might notice (e.g., the literal movement of a 
toy car); they are measurable attributes of situations (e.g., a toy car’s distance from 
a stationary object). However, it can be difficult for students to even conceive of 
situations as having measurable attributes. When integrating theories, we layer dif-
ferent explanations to guide our larger aim. Thompson’s theory explains a form of 
students’ reasoning to promote; Marton’s theory provides guidance for design 
choices to engineer opportunities for students to discern measurable attributes of the 
situations to foster students’ engagement in the intended reasoning. In future stud-
ies, researchers can investigate how designing for contrast and generalization, to 
promote discernment of difference, may afford students’ transfer of other forms of 
reasoning.

3.5.3  Expanding Design Possibilities for Transfer Studies

Through the opening possibilities approach, we work to expand design possibilities 
for investigating students’ transfer to extend beyond pre-post designs. Lobato 
(2008) has distinguished between tasks implemented during a design experiment 
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study and tasks implemented in pre- or post-interviews. To provide evidence of 
transfer from an AOT perspective, researchers demonstrate that students’ concep-
tions changed from tasks in a pre-interview to tasks in a post-interview and that 
students’ work during the design experiment tasks has influenced their changed 
conceptions. Rather than separating design-experiment tasks from post-interview 
tasks, we illustrate how a student can transfer mathematical reasoning from one 
design experiment task to another, similar to how Marton (2006) described the pos-
sibility for students to transfer their discernment of tone from sound when hearing 
Cantonese words in succession.

We concur with Cobb’s (2007) appeal for theory expansion rather than replace-
ment. With the design expansion we propose, we intend to open new possibilities 
for investigations from an AOT perspective, in particular, by foregrounding roles of 
difference and similarity. Across the Cannon Man and Toy Car task sequences, we 
have designed for contrast and generalization and subsequently have analyzed for 
both difference and similarity. Integrating Marton’s variation theory with an AOT 
perspective has afforded us this possibility. In turn, we have then been able to ana-
lyze for students’ transfer of reasoning within the design experiment tasks them-
selves rather than examining students’ reasoning on a separate set of transfer tasks, 
as was done in an earlier study (Johnson, McClintock, & Hornbein, 2017).

3.6  Conclusion

With theory integration comes responsibility, including the consideration of the 
epistemological roots of different theories (Bikner-Ahsbahs & Prediger, 2010). 
Such responsibility is both a limitation and an affordance of the approach, because 
each theory needs to be weighed in light of the other(s). Integrating theories is a 
purposeful choice so that researchers can explain phenomena that extend beyond 
the bounds of a single theory. We have integrated theories specific to reasoning and 
transfer (Thompson’s and Lobato’s theories, respectively) with a theory that 
addresses discernment of different content and extends beyond transfer (Marton’s 
theory). The grain size (Watson, 2016) of the theories differ, with two being more 
domain specific and one being broader. However, we have not imposed a hierarchy 
of theories onto our analysis; instead, we have layered analytic techniques from 
each theory. To guide our choices, we have drawn on scholars’ assumptions of dis-
tinctions between researchers’ and students’ perspectives and have articulated how 
those assumptions have influenced our work.

With opening possibilities, we offer an approach to navigate complexities in 
researchers’ investigations of students’ transfer of mathematical reasoning. 
Although our focus is on transfer, we can conceive of the guiding questions as appli-
cable to the broader work of research. Researchers can examine what counts as their 
object of investigation, how they may engender the study of that object, and what 
may constitute evidence of the objects of study. Assuming that theory and method 
mutually inform each other, our approach affords the integration of different 
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theories to embrace, rather than reduce, complexities. Through this approach, we 
expand design possibilities for investigating students’ transfer, acknowledging a 
symbiotic relationship between the theories that we integrate and the contributions 
that those theories and methods make possible.
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Chapter 4
A Case for Theory Development About 
Backward Transfer

Charles Hohensee

The body of mathematics education research that has examined transfer of learning 
from a constructivist complex-systems view of knowledge development suffers from 
what I perceive as a research imbalance. A complex-systems view, as defined by 
Smith, diSessa, and Roschelle (1993), is the view that knowledge is composed of 
“numerous elements and complex substructure that may gradually change, in bits 
and pieces and in different ways” (p. 148). Incidentally, this view emerged in reac-
tion to the more widely held view that knowledge is composed of “separable inde-
pendent units” (Smith et al., 1993, p. 125). The research imbalance to which I refer 
is that most transfer of learning research that assumes a complex-systems view has 
focused on how prior knowledge within the system is applied to new contexts (e.g., 
Wagner, 2010) or how it influences new learning (e.g., Bransford & Schwartz, 
1999), without equal research attention being given to the transfer of learning in the 
other direction, namely in the direction of how new learning influences prior knowl-
edge. The former is often referred to as forward transfer (Gentner, Loewenstein, & 
Thompson, 2004), and the latter I refer to as backward transfer (Hohensee, 2014). 
The research imbalance in favor of forward transfer is inconsistent with a complex- 
systems view of knowledge development because complex systems have multidi-
rectional interrelationships.

This imbalance within transfer of learning research could be having undesirable 
consequences for the field of mathematics education. For instance, without transfer 
of learning research in both directions (i.e., forward and backward), the field of 
mathematics education will, at best, develop only partial understandings of how 
learning transfers within a complex system of knowledge. Second, because of the 
imbalance, there may exist untapped pathways to improving mathematics learning 
that will not be explored.
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An important step in establishing greater balance would be for researchers to 
engage in theory development about backward transfer in mathematics education. 
Theory development about backward transfer in mathematics education would help 
to legitimize and raise awareness of transfer of learning in the less-studied back-
ward direction. A developed theory about backward transfer could also unify, under 
a common theory, the limited number of studies that, to date, have reported effects 
that resemble backward transfer but that have not yet been labeled as such.1 Unifying 
these studies under a common theory of backward transfer would also help to estab-
lish a critical mass of findings about backward transfer and generate momentum for 
more research in this area. Finally, theory about backward transfer would allow for 
comparisons between transfer of learning in the two directions and could eventually 
lead to a unified theory that explains transfer in both directions.

In this chapter, I make a case, within the field of mathematics education, for the 
need for theory development about backward transfer. I begin by presenting my 
conceptualization of backward transfer. Then, I outline several reasons for theory 
development in educational research more broadly, and why these reasons are appli-
cable to backward transfer in mathematics education. Next, I explain the process I 
went through to search the literature for prior research on backward transfer and 
provide an overview of prior research and the state of theory development about 
backward transfer in mathematics education and related fields. Finally, I present 
several aspects of theory development for backward transfer in mathematics educa-
tion that I view as most pressing.

4.1  Conceptualization of Backward Transfer

Backward transfer, as I conceive it, is an extension of Lobato’s (2008) definition of 
transfer, which is that transfer is “the influence of a learner’s prior activities on his 
or her activity in novel situations” (p.  169) and “the processes by which people 
generalize their learning experiences, regardless of whether the personal relations of 
similarity that people form across situations lead to correct performance” (p. 168). 
Note that within Lobato’s definition, the influence is in the forward direction from a 
learner’s prior activities to a learner’s activities in novel situations. I extended this 
definition in the other direction to include influences that activities in a new or novel 
situation might have on learners’ prior activities regardless of whether the influ-
ences lead to correct performance. The specific definition I use for backward trans-
fer is the following: Backward transfer is the influence that learning experiences 
about a new topic have on learners’ prior ways of reasoning about an initial topic 
(Hohensee, 2014).

1 Note that in addition to the limited number of studies, as described in this chapter, that report 
backward transfer effects, there is a sizeable body of language-learning research on backward 
transfer that will not be considered because those studies focus on production and comprehension 
of language rather than on cognition.
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My conceptualization of backward transfer is grounded in a complex-systems 
view of knowledge development. According to this view, “Learning a domain of 
elementary mathematics or science may entail changes of massive scope. New ele-
ments may gradually come to play central roles as core knowledge, creating very 
large ripple effects through the system” (Smith et al., 1993, p. 148). It is the ripple 
effects through the complex knowledge system during learning something new that 
I think of as potential backward transfer effects.

Note that in my definition of backward transfer, I referred to ways of reasoning 
rather than to underlying mental structures, such as conceptions, knowledge, 
schemes, and so on. At this early stage of theory development, claiming that learn-
ers’ conceptions, knowledge, or schemes are being influenced during backward 
transfer seemed overly strong. My rationale for using ways of reasoning was 
because it seemed more conservative to claim that ways of reasoning are being 
influenced during backward transfer. Gravemeijer (2004) and McClain, Cobb, and 
Gravemeijer (2000) used ways of reasoning to refer to “mathematical activities that 
students engage in while solving, explaining, justifying, identifying, and so on” 
(Hohensee, 2014). It is these activities, rather than the underlying mental structures, 
that I focus my attention on when studying backward transfer.

To illustrate backward transfer, consider Alan, a 10th-grade student who partici-
pated in a 12-lesson instructional unit on quadratic functions in his regular algebra 
class (Hohensee, Willoughby, & Gartland, 2020). Before and after the unit, my 
research team and I gave Alan several problems about linear functions to examine if 
and how his prior ways of reasoning about linear functions had been influenced by 
his new learning experiences with quadratic functions. One of the problems we gave 
Alan before the unit on quadratic functions involved a picture of a plant as it grew 
at a steady rate over 4  days. Alan was asked to find the height on Day 17 (see 
Fig. 4.1).

To solve this problem, Alan created a table for days and heights and continued 
the pattern until he arrived at Day 17 and the correct height.

After the quadratic function unit (i.e., approximately 4 weeks later), we gave 
Alan a similar problem. The problem involved four snapshots of a container as it 
filled with rainwater at a constant rate over 4 hours. Alan was asked to find the 
height of the water after 11 hours (see Fig. 4.2).

To solve this problem, Alan did not create a table, but instead divided each height 
in the picture by the associated number of hours. Because each quotient was approx-
imately 3, Alan decided to multiply Hour 11 by 3 to find the height, but this was an 
incorrect answer. Clearly, Alan’s reasoning had changed. It was our hypothesis that 
Alan’s prior ways of reasoning about the first problem were influenced by his par-
ticipation in the new learning experiences about quadratic functions. In other words, 
we hypothesized that this was an instance of backward transfer.

Throughout the remainder of this chapter, I present a case for why more theory 
development about backward transfer is warranted. As part of making this case, I 
summarize published studies that have reported what I categorize under the umbrella 
of backward transfer effects. Although these studies are limited in number, they 
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Fig. 4.1 Alan’s response to the plant problem before the quadratic function unit

Fig. 4.2 Alan’s response to the rainwater problem after the quadratic function unit
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potentially represent the tip of the iceberg in terms of new insights that research on 
backward transfer could generate about how students learn mathematics.

4.2  Reasons for Theory Development in Educational 
Research Applied to Research on Backward Transfer

As stated above, theory about backward transfer would legitimize and raise aware-
ness of backward transfer, unify the limited studies on cognition that have reported 
effects resembling backward transfer, and allow for comparisons between forward 
and backward transfer. In addition to these reasons for theory development, diSessa 
(1991) provided five further reasons for more theory development in educational 
research, which also apply to research on backward transfer.

First, more theory development is needed in educational research because theo-
ries take time to develop, on the scale of decades or generations (diSessa, 1991). 
This is an important consideration for theory about backward transfer because back-
ward transfer has only recently been introduced to the field of mathematics educa-
tion (i.e., Hohensee, 2014). And, even if theory about backward transfer had been in 
active development right from its introduction to this field, the time for theory 
development would still be far shorter than the decades or generations recom-
mended by diSessa (1991). As a comparison, forward transfer theory development 
has been ongoing at least since the time of Thorndike (circa 1920), and much more 
developed theory about forward transfer exists (e.g., Beach’s theory of consequen-
tial transitions, 1999; Bransford & Schwartz’s theory of preparation for future 
learning, 1999; Engle’s theory of transfer as framing, 2006; Greeno, Moore, & 
Smith’s theory of transfer of situated learning, 1993; Lobato’s theory of actor- 
oriented transfer, 2012; and Wagner’s theory of transfer in pieces, 2010).

Second, more theory development is needed because theory is a richly intercon-
nected collection of ideas (diSessa, 1991). With respect to backward transfer, only a 
few of the connections of ideas have been explored thus far and many other poten-
tial connections have yet to be examined. For example, in mathematics education to 
date, only one underlying mechanism has connected backward to forward transfer, 
namely the process of student noticing (Hohensee, 2016; Lobato, Rhodehamel, & 
Hohensee, 2012). The kinds of connections of ideas about backward transfer that 
require exploration and development will be provided later in this chapter.

Third, theory development is needed because generalities are not stumbled upon 
but emerge through theory development (diSessa, 1991). Results from my literature 
review of mathematics and science education research support this point by reveal-
ing that few mathematics and science education studies have stumbled upon back-
ward transfer effects. Rare exceptions include Arzi, Ben-Zvi, and Ganiel (1985), 
Macgregor and Stacey (1997), Rebello et  al. (2005), and Van Dooren, De Bock, 
Hessels, Janssens, and Verschaffel (2004). This underrepresentation of backward 
transfer effects in the literature is likely, at least partially, due to the lack of exposure 
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of backward transfer in the field. However, this underrepresentation also suggests 
that backward transfer may be difficult to detect. This is akin to the difficult-to- 
detect sub-atomic neutrinos that diSessa (1991) argued required theory before 
detection was possible. Thus, theory development of backward transfer could 
inform the design of more sensitive and precise measures of backward transfer 
effects.

Fourth, theory is needed for there to be data (diSessa, 1991). This reason is 
highly relevant to theory development about backward transfer. Because backward 
transfer theory is still in its infancy, backward transfer researchers are currently 
limited in the kinds and quality of data about backward transfer that can currently 
be collected and analyzed. DiSessa (1991) stated that without theory, the “whole 
rationale for the experiment and set of observations would not exist, nor would the 
fabric of reasoning that makes the observations informative” (p. 225) and that “we 
can sometimes judge the quality of theory by the quality of its data” (p. 226). By 
developing theory, the kinds of backward transfer data researchers would be able to 
collect would expand and the quality of that data would improve.

Fifth, theory development is needed because respectable theory transcends com-
mon sense (diSessa, 1991). Views about backward transfer that are based on com-
mon sense might create a misleading picture of what backward transfer is and cast 
doubt on whether backward transfer research is a worthwhile pursuit. For example, 
diSessa pointed out that common sense could lead someone to doubt the existence 
of Newtonian forces. Similarly, I have encountered a number of common-sense 
views that reflect doubts about the existence of backward transfer. One common- 
sense idea expressed to me was that what I interpret as backward transfer can be 
explained away as nothing more than students being swayed by what they have been 
studying most recently. Another common-sense notion I have encountered is that 
backward transfer only happens because students failed to establish the required 
clear understanding of a concept when they had the opportunity to do so. A third 
common-sense explanation I have encountered is that what I call backward transfer 
is nothing more than students continuing to develop their prior knowledge. Without 
theory development, common-sense explanations of backward transfer may too 
conveniently be used to explain away or cast doubt on what is actually occurring 
and perpetuate the imbalance in mathematics and science education research 
described above.

4.3  Literature Search for Research on Backward Transfer

My literature search for prior research on backward transfer began over 10 years 
ago in 2009. Since then I have, on an ongoing basis, scoured mathematics education 
research in particular, and education research in general, as well as cognitive sci-
ence and psychology research, for articles on backward transfer and related con-
structs. I have searched using numerous keywords, including the following: 
backward transfer, backward learning, backward knowledge, reverse learning, 
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reverse transfer, reverse knowledge, inverted learning, inverted transfer, inverted 
knowledge, retrospective transfer, retrospective learning, two-way learning, and 
two-way transfer. In addition to my own literature search, I have consulted numer-
ous social-science researchers for suggestions about potential sources of research 
on backward transfer.

This decade-long search has revealed four terms that have been used to represent 
what I define as backward transfer. By far the most commonly used term is back-
ward transfer. However, this term is primarily found in linguistics research (e.g., 
Cook, 2003), and no uses of this term were found in mathematics education research 
except those that I published or that have drawn upon my work (e.g., Moore, 2012; 
Young, 2015). I additionally identified the use of three other terms that align with 
what I define as backward transfer, namely transfer backward (Gentner et al., 2004), 
retrospective transfer (Marton, 2006), and met-afters (Lima & Tall, 2008), all of 
which will be explained later in this chapter.

4.4  Overview of Research and the Current State of Theory 
About Backward Transfer

Prior research and the current state of theory about backward transfer comes from a 
limited number of studies on cognition. Of the research that has reported on back-
ward transfer effects explicitly, or that I interpreted as backward transfer effects but 
that were referred to with other labels, three categories of theories exist: (a) theories 
that explain unproductive backward transfer effects in terms of interference and 
overgeneralization, (b) theories that explain productive backward transfer effects in 
terms of specific changes to cognitive structures, and (c) theories that explain both 
productive and unproductive backward transfer effects in terms of attention and 
noticing. I define productive backward transfer effects as when new learning 
enhances, clarifies, or deepens prior ways of reasoning and unproductive effects as 
when new learning muddles, distorts, or disrupts aspects of prior ways of reasoning. 
Next, I present the mathematics and science education studies that have reported 
backward transfer effects and I critique the theories that were used to explain those 
effects.

4.4.1  Theories That Explain Unproductive Backward 
Transfer Effects

During my literature search for studies on backward transfer effects, I identified 
three studies that reported what I would interpret as unproductive backward transfer 
effects: Macgregor and Stacey (1997) examined students’ understandings of alge-
bra symbols, Van Dooren et al. (2004) focused on student learning of proportional 
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and non-proportional relationships, and Lima and Tall (2008) investigated students’ 
problem-solving strategies for linear and quadratic equations.2

Macgregor and Stacey’s (1997) study on students’ understandings of algebra 
symbols. The topic of study in Macgregor and Stacey (1997) was how students 
interpret and use algebra symbols. The research goal was to explain the roots of 
students’ misinterpretations of algebra letters and unclosed algebra expressions. 
Previously, Hart (1981) had shown that students’ progress in algebra (or lack 
thereof) could be only partially explained with IQ and cognitive-development lev-
els. Macgregor and Stacey conducted their study to identify additional factors that 
help explain students’ misinterpretations of algebra symbols.

For their study, Macgregor and Stacey (1997) gave a paper-and-pencil pre- 
assessment about interpretations of algebra letters to 11- and 12-year-olds, who had 
not yet received any algebra instruction (n = 42), and gave several items from the 
same assessment to 11- to 15-year-olds, who had already received some algebra 
instruction (n1 = 1463 for one item and n2 = 1806 for another item).

One of the results from the study was that the students who had some algebra 
instruction sometimes made errors that students who had not had any algebra 
instruction yet did not make. For example, a greater percentage of students who had 
received some algebra instruction, thought that when x is not specified, then it 
means x = 1 (e.g., concluding that 10 + x = 11). In another example, a greater per-
centage of students who received some algebra instruction, compared to those who 
had not yet received any algebra instruction, thought that an equilateral triangle with 
side length x had a perimeter of x3 rather than 3x. I interpreted this finding as a case 
of unproductive backward transfer because students’ prior ways of reasoning about 
algebra notation had changed for the worse and because it appeared the new algebra 
learning had in some way influenced that change in their prior ways of reasoning.

Macgregor and Stacy’s (1997) explanation for why students who had received 
some algebra instruction made errors in greater percentages was because there was 
“interference [emphasis added] from new learning” (p. 17). Specifically, they attrib-
uted the students’ misconceptions to an interference effect from instruction about 
variables with exponents, such as learning that x1 = x and that x0 = 1.

I did not find the explanation of interference compelling because this explanation 
implies that our conceptions compete with each other. Furthermore, this explanation 
is consistent with a replacement view of knowledge refinement, namely that learn-
ing involves replacing the interfering conceptions with the correct conceptions 
(Posner, Strike, Hewson, & Gertzog, 1982). However, this explanation goes against 
the constructivist complex-systems view, espoused by Smith et  al. (1993), that 
learning involves refining and integrating conceptions rather than replacing wrong 
conceptions that interfere with correct ones.

2 Although Rebello et al. (2005) also involved negative backward transfer, I did not describe it in 
this chapter because it focused on backward transfer that occurs within very short time frames (i.e., 
how doing one problem on an assessment influences doing another problem on the same 
assessment).
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Van Dooren et al.’s (2004) study on student learning of proportional and non-
proportional reasoning. The topic of study in Van Dooren et al. (2004) was how 
students reason about proportional and non-proportional relationships. The research 
goal was to develop and test experimental lessons that disrupt students’ inclination 
to reason proportionally in non-proportional contexts, such as in the context of 
using length measures to find areas of two-dimensional shapes and volumes of 
three-dimensional shapes. This study examined eighth graders from two intact sec-
ondary classes in Belgium. The experimental-group class (n1 = 18) participated in 
10 special lessons that addressed students’ overgeneralization of linearity and took 
three word-problem tests with proportional and non-proportional items, a pre-test, a 
post-test, and a delayed retention test. The control-group class (n2 = 17) did not 
participate in the 10 special lessons but participated in regular lessons instead and 
took only the pre-test and the delayed retention test.

One result from the study was that scores on the proportional items for the exper-
imental group went down from pre-test to post-test from 83.3% to 52.5%. To illus-
trate why experimental-group students’ scores went down, consider the following 
statement from an experimental-group student:

I really do understand now why the area of a square increases 9 times if the sides are tripled 
in length, since the enlargement of the area goes in two dimensions. But suddenly I start to 
wonder why this does not hold for the perimeter. The perimeter also increases in two direc-
tions, doesn’t it? (Van Dooren et al., 2004, p. 496)

I interpreted this finding as a case of unproductive backward transfer because the 
experimental-group students’ ways of reasoning became less correct on the propor-
tional items and the new learning about non-proportional contexts appeared to have 
influenced that change in their ways of reasoning.

Van Dooren et al.’s (2004) explanation for this finding was that the experimental 
group “overgeneralized [emphasis added] the newly learnt non-proportional strate-
gies to proportional problems they previously solved very well” (p.  497). This 
explanation aligns in one respect with my view of backward transfer because gen-
eralization and transfer are often referred to interchangeably (e.g., Barnett & Ceci, 
2002; Lobato, 2012). However, overgeneralization does not seem like a compelling 
explanation because it is typically used for transfer in the forward direction (e.g., 
Hiebert & Wearne, 1985; Zaslavsky, 1997). Therefore, using overgeneralization to 
explain the Van Dooren et al. findings means hiding the directionality of the gener-
alization (i.e., that new learning generalized back to problems students had previ-
ously solved). Second, as with the explanation of interference, overgeneralization in 
the context of this study would mean that the new knowledge replaced prior knowl-
edge. Using overgeneralization to explain the findings means ignoring the possibil-
ity that the new knowledge and prior knowledge interacted in some more complex 
way than replacement which, as explained earlier, does not align with a complex- 
systems view of knowledge development.

Lima and Tall’s (2008) study on students’ problem-solving strategies for linear 
and quadratic equations. The Lima and Tall (2008) study examined students’ 
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solving methods for linear equations. The research goal of this study was to under-
stand students’ solving difficulties, particularly for linear equations that have vari-
ables on both sides of the equal sign and those that have variables only on one side 
of the equal sign. One of the constructs used in this study that aligns with backward 
transfer and that was mentioned earlier is called a met-after, which Lima and Tall 
(2008) defined as follows: “We use the term ‘met-after’ to denote an experience met 
at a later time that affects the memories of previous knowledge” (p. 6). In other 
words, this construct describes an influence in the direction from a new experience 
to prior knowledge.

The Lima and Tall study tested Brazilian high school students’ ability to solve 
three linear equations (N = 68). Results showed that only 37%, 37%, and 10% of 
students were successful at correctly solving 5t – 3 = 8, 3x – 1 = 3 + x, and 2m = 4m, 
respectively. Two additional results from the study that pertained to backward trans-
fer were that, after students learned about quadratic functions, (a) one student inap-
propriately applied the quadratic formula to solve 5t – 3 = 8 by assigning a = 5, b = 
−3, and c = 8 and (b) three other students incorrectly treated 3x – 1 = 3 + x as the 
product of two binomials (i.e., they simplified the equation into the expression 9x + 
3x2 – x – 3). Lima and Tall (2008) interpreted these findings as “a negative met-after, 
in which current knowledge is misapplied in solving an earlier problem” (p. 13).

I interpreted these two results as instances of unproductive backward transfer 
because students’ prior ways of reasoning about solving linear equations appeared 
to have been negatively influenced by the instruction they received about quadratic 
equations and expressions. Lima and Tall’s (2008) explanation for this finding was 
that “the earlier learning is likely to be fragile to be affected in this way” (p. 14) and 
that the results reflected “movement of algebraic symbols as a form of functional 
embodiment that may be performed without meaning” (p.  15). This explanation 
seems compelling but does not explain how backward transfer could affect concep-
tual understanding.

Finally, an additional critique of Macgregor and Stacy’s, Van Dooren et al.’s, and 
Lima and Tall’s explanations for their backward transfer results is that those expla-
nations best explain unproductive effects (i.e., when new learning muddles, distorts, 
or disrupts productive aspects of prior ways of reasoning) and do not provide a 
compelling explanation for backward transfer influences that could be productive 
(i.e., when new learning enhances, clarifies, or deepens prior ways of reasoning). It 
would be more unifying if theory about effects like those found in these three stud-
ies could account for both unproductive and productive effects.

4.4.2  Theories That Explain Productive Backward 
Transfer Effects

During my literature review, I identified three studies that reported what I would 
interpret as productive backward transfer effects: Gentner et al. (2004) addressed 
learning new negotiation strategies through analogous encoding, Piaget (1968) 
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looked at children’s ability to recall visual displays, and Arzi et al. (1985) investi-
gated students’ understanding of physical science concepts. Note that, although all 
three studies come from outside mathematics education, they all address some 
aspect of cognition.

Gentner et  al.’s (2004) study on learning through analogous encoding. The 
topic of study reported in Gentner et al. (2004) was how analogical encoding facili-
tates the transfer of learning. Analogical encoding is defined as the process of com-
paring two analogous examples to promote schema abstraction over situation-specific 
encoding. In other words, comparing two analogous examples was hypothesized to 
be a process that helps learners discover a common principle. The research goal of 
this study was to test the hypothesis that because analogical encoding results in the 
discovery of a common principle that is not tethered to any one situation, the com-
mon principle should subsequently be more readily transferable, forwards and 
backwards, to other contexts.

This study was situated in the context of a training seminar for full-time profes-
sional management consultants who were learning about new negotiation strategies. 
The participants were divided into an experimental group (n1 = 64) and a control 
group (n2 = 60). The groups were given two negotiation cases that both illustrated a 
particular negotiation principle called the contingent contract principle. The experi-
mental group, but not the control group, was asked to look for similarities or paral-
lels between the two cases. Both groups were then asked to recall negotiation cases 
from their own experiences that shared similarities with the cases they had been 
given. Finally, participants in both groups partnered up with someone from the same 
group and role-played the negotiation of a new case for which the contingent con-
tract principle applied.

One of the findings from this study was that, compared to the control group, the 
experimental group recalled more negotiation cases from personal experience (or 
from a colleague’s experiences) to which the new negotiation strategy applied. I 
interpreted this finding as a case of productive backward transfer because the inter-
vention, in which the experimental group examined two cases for similarities, 
served as the new learning experience that appeared to influence in a productive way 
how that group interpreted prior negotiation experiences, which were the prior ways 
of reasoning. Incidentally, Gentner et al. referred to this effect as transfer backward.

Gentner et  al. (2004) explained this finding in terms of schema-abstraction. 
Specifically, they argued that by comparing two partially understood analogous 
examples, the negotiators in the experimental group developed more abstract sche-
mata for a particular concept and that the changes in their schemata facilitated the 
reinterpretation of previously encountered, structurally similar experiences. I found 
this explanation compelling. However, from a constructivist perspective, I would 
reframe schema-abstraction as reflective abstraction, which is “a (more or less con-
scious) cognitive reconstruction or reorganization of what has been transferred” and 
which borrows “certain co-ordinations from already constructed structures and to 
reorganize them in function of new givens” (Piaget as cited in von Glasersfeld, 
1995, p.  104). Thus, my characterization of the findings in terms of reflective 
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abstraction is that what the negotiators did was to reorganize their views of negotia-
tions because of new givens encountered during the training seminar.

Piaget’s (1968) study on children’s ability to recall visual displays. The topic of 
Piaget’s (1968) study was about how children retain their memories of visual dis-
plays over different intervals of time. The research goal was to examine the hypoth-
esis that the development of children’s operational schemata causes changes in the 
encoding of their memories.

In one test, Piaget (1968) showed children, ages 3–6, an arrangement of 10 small 
sticks of differing sizes, ranging from 9 to 15 cm, and arranged in a row from small-
est to largest (see Fig. 4.3). The children were asked to look carefully at the arrange-
ment. One week later, they were asked to draw the arrangement without seeing it 
again. The youngest children in the sample, the 3- and 4-year-olds, typically drew 
“a certain number of sticks lined up, but all the same length” (Piaget, 1968, p. 4). 
Six months later, the same children were asked to redraw the arrangement, and 
“74% of the subjects had a better recollection now than they had after one week” 
(Piaget, 1968, p.  4). Specifically, those children’s memories appeared to have 
improved during the intervening 6 months because their drawings now showed 
sticks with organized variations in size, such as half big sticks and half small sticks, 
or three ordered sizes of sticks and so on. I interpreted Piaget’s finding as a case of 
productive backward transfer because the children’s visual and spatial experiences 
during the intervening 6 months between when they drew what they remembered 
the first and second time served as the new learning experiences that appeared to 
enhance their initial memories of the sizes and arrangement of the sticks, which 
served as their prior ways of reasoning.

To explain this finding, Piaget (1968) conceived of children’s initial memories of 
the sticks as being the result of them having assimilated the visual presentation of 
the sticks with their current operational schemes. However, during the intervening 6 
months, the children’s operational schemes developed further. Thus, when they 
recalled the sticks, 6 months after having first seen them, their further developed 
operational schemes began to assimilate the original memories differently (i.e., bet-
ter recollection of the sizes and organization of the sticks). I found this explanation 
compelling and consistent with a complex-systems view of knowledge development.

Arzi et  al.’s (1985) middle school science learning study. The topic of study 
reported in Arzi et al. (1985) was how middle school science learning is affected by 
retroactive facilitation, which was defined by Arzi et  al. as when “subsequent 

Fig. 4.3 Arrangement of 
the sticks shown to 
children
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courses help to consolidate the previously learned subject matter [antecedent learn-
ing]” (p. 371). The research goal was to examine how retroactive facilitation changes 
students’ long-term retention of physical sciences learning in real school settings. 
The study involved science students who, in the seventh grade, all took a chemistry 
course that examined the three states of matter and the differences between mixtures 
and compounds (n1 = 3167). Subsequently, one subgroup (n2 = 59 of 142 classes) 
took a follow-up chemistry course on the periodic table in the eighth grade. 
Importantly, the subject matter from the seventh-grade chemistry course was not 
covered in the eighth-grade chemistry course. The other subgroup (n3 = 50 of 142 
classes) took a follow-up course on biology and physics in the eighth grade instead 
of the chemistry course. The biology and physics course did not cover any chemis-
try concepts. All students took an assessment on the seventh-grade content at the 
beginning of the eighth grade and again at the beginning of the ninth grade.

Results showed that both groups did better at the beginning of the ninth grade on 
the seventh-grade assessment then they had at the beginning of eighth grade (i.e., 
the ratio Grade 9 score/Grade 8 score was greater than 1 for both groups). 
Furthermore, the subgroup that took the follow-up chemistry course in the eighth 
grade did statistically better on the seventh-grade content at the beginning of the 
ninth grade than the group that took the biology and physics course in the eighth 
grade, even though none of the “facts, concepts, and principles learned in [the 
seventh- grade science course were]…retaught in [the eighth-grade course] as part 
of the syllabus” (Arzi et al., 1985, p. 382). I interpreted this finding as a case of 
productive backward transfer because the new learning in the eighth-grade chemis-
try course, and to a lesser extent the new learning in the biology and physics course, 
appeared to enhance students’ prior ways of reasoning about the seventh-grade 
material.

Arzi et  al. (1985) called this finding a case of retrospective facilitation and 
explained the effect using Ausubel’s assimilation hypotheses in which “new mean-
ings were incorporated into the students’ existing structures of knowledge, via pro-
cesses termed by Ausubel as progressive differentiation and integrative reconciliation 
of concepts” (Arzi et al., 1985, p. 385). I found this explanation compelling because 
it aligns with a complex-systems view of knowledge development.

Summary. As shown, the three studies in this section provided explanations of 
backward transfer that involved a change to cognitive structures. In Gentner et al. 
(2004), the cognitive changes were described as schema abstraction; in Piaget 
(1968), they were characterized as developments in children’s operational schemes; 
and in Arzi et al. (1985), they were explained as differentiations and integrations of 
structures of knowledge. All three explanations are compelling for explaining the 
particular productive backward transfer effects with which they are associated. 
However, the Gentner et al. and Piaget explanations seem less generalizable to all 
three backward transfer effects (e.g., the Piaget and Arzi et al. studies did not appear 
to involve schema abstraction). In contrast, the explanation provided by Arzi et al. 
seems more generalizable (e.g., Piaget’s findings of changing memories could be 
the result of differentiation and integrative reconciliation of visual and spatial 
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concepts). Finally, all three explanations do not seem particularly useful for explaining 
unproductive backward transfer effects.

4.4.3  Theories That Explain Backward Transfer in Terms 
of What is Noticed

Finally, I present two articles from the mathematics education literature that pro-
vided explanations for backward transfer effects in terms of changes in what is 
noticed in perceptual or conceptual fields. The first work is a theoretical article by 
Marton (2006) and involves noticing similarities and differences in contrasting 
visual displays. The second work is an empirical article by Hohensee (2014) and 
involves ways of reasoning covariationally about linear and quadratic functions.

Marton’s (2006) article on noticing similarities and differences in contrasting 
visual displays. In this article on noticing similarities and differences, Marton 
(2006) described retrospective transfer as “how the image of an object is affected by 
experiences following the birth of the image” (p. 520). To explain this idea, Marton 
cited an example from English philosopher James Martineau about an individual 
seeing a red ivory ball for the first time. In the example, when the red ball is with-
drawn, the individual will retain a mental image of the ball, which Martineau 
described as “a mental representation of itself, in which all that it simultaneously 
gave us will indistinguishably co-exist” (Marton, 2006, p.  520). According to 
Martineau, if the same individual is then shown a white ivory ball, the white ball’s 
contrasting color will bring to the foreground the color in the mental image of the 
red ball. If, instead of a white ball, the individual is shown an egg after seeing the 
red ball, its contrasting shape will bring to the foreground the shape of the mental 
image of the red ball. In other words, the initial image of the red ivory ball can be 
influenced by the subsequent visual experience of seeing the white ivory ball or the 
egg, making this an example of retrospective transfer.

I interpret retrospective transfer as a kind of backward transfer because it involves 
prior ways of reasoning, a new learning experience, and an influence in the direction 
from the new learning experience back to prior ways of reasoning. Marton’s (2006) 
explanation of retrospective transfer is based on the view that perceptual abilities 
are hardwired to discern differences. According to Marton, when individuals 
encounter perceptual objects, they notice some features of objects and do not notice 
others, or the features form an undifferentiated background. However, when indi-
viduals subsequently perceive new objects that serve as a contrast to the initial per-
ceived objects, what makes the initial and new perceived objects different becomes 
foregrounded in our perception, even if those features were not closely attended to 
when the initial objects were perceived. Because noticing plays an important role in 
assimilation, accommodation, and reflective abstraction (Hohensee, 2016), this 
explanation is compelling and aligns with a constructivist complex-systems view of 
knowledge development.
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Hohensee’s (2014) covariational reasoning study. The topic of study reported in 
Hohensee (2014) was the relationship between quadratic functions instruction and 
how students reason about linear functions. The research goal was to understand 
when and in what ways quadratic functions instruction influences students’ prior 
ways of reasoning about linear functions. For this study, a pre-post design was used 
to examine the reasoning of middle school students who were participating in a 
summer algebra enrichment program (N = 7). The Eight-day enrichment program 
served as the intervention for the study and focused on quadratic functions. A defin-
ing feature of the algebra enrichment program was that covariational reasoning was 
continuously promoted. Before and after the program, students were interviewed 
about their ways of reasoning about linear functions. Results from the study showed 
that most students’ level of covariational reasoning on the linear function tasks 
became more advanced from pre-intervention to post-intervention (e.g., more rea-
soning with changes in quantities from pre to post) but also that some students 
became less advanced in their covariational reasoning. I interpreted these results as 
evidence of productive and unproductive backward transfer.

As indicated earlier, in Hohensee (2016), I offered the process of student notic-
ing as an explanation for the findings. To support this claim, I found evidence that 
what students came to notice during quadratic functions instruction influenced what 
they then noticed perceptually and conceptually when reengaging their ways of 
reasoning about linear functions. In other words, what students noticed during qua-
dratic functions instruction appeared to influence—in some cases productively and 
in other cases unproductively—the ways they subsequently reasoned with two 
quantities in linear function contexts. And, as argued above, noticing plays an 
important role in assimilation, accommodation, and reflective abstraction and thus, 
this explanation aligns with a constructivist complex-systems view of knowledge 
development.

Summary. Although Marton’s (2006) and Hohensee’s (2016) explanations of 
backward transfer both involve the process of noticing, there are at least five differ-
ences between the explanations that suggest that the latter offers a broader explana-
tion than the former. First, Marton’s explanation for retrospective transfer was that 
noticing differences between presentations of perceptual objects is the mechanism, 
whereas Hohensee’s explanation was that noticing more generally, be it of similari-
ties or differences across a new learning experience and a previously encountered 
context, is the mechanism. Second, Marton’s explanation foregrounded noticing 
that was fairly immediate (i.e., on the timescale of how long it takes to form a visual 
perception), whereas Hohensee’s explanation foregrounded noticing that emerged 
more gradually (i.e., on the timescale of multiple instructional activities or lessons). 
Third, Marton’s explanation had a strictly psychological basis, whereas Hohensee’s 
explanation had a psychological and social basis. Fourth, Marton’s explanation 
focused mainly on noticing features within a perceptual field, whereas Hohensee’s 
explanation was about noticing features within perceptual and conceptual fields. 
Finally, Marton’s explanation was agnostic to whether retrospective transfer was 
productive or unproductive, whereas Hohensee’s explanation accounted for 
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instances in which backward transfer effects were productive and instances when 
they were unproductive. Thus, Hohensee’s explanation involves a broader view of 
the influence of noticing.

4.4.4  Summary of Theories That Explain Backward Transfer

Looking across the various theories that explain backward transfer, most of the the-
ories account for either productive or unproductive effects. Interference, overgener-
alization, and fragile and meaningless learning were proposed as explanations for 
unproductive effects. Various changes in cognitive schemata were proposed as 
explanations for productive backward transfer effects. Only the process of noticing 
provided an account for both unproductive and productive backward transfer effects. 
Thus, the theory of noticing could serve as a unifying explanation for backward 
transfer that subsumes the other hypothesized explanations.

4.5  Aspects of Theory About Backward Transfer 
in Mathematics Education for Which There is the Most 
Pressing Need for Development

In this final section, I outline five areas for which I see a need for theory develop-
ment about backward transfer in mathematics education. The five areas pertain to 
(a) how the range of backward transfer effects that have been observed are or are not 
related, (b) the characteristics of ways of reasoning that make them more or less 
amenable or vulnerable to backward transfer effects, (c) the mechanisms underlying 
backward transfer effects, (d) the methods for investigating backward transfer 
effects, and (e) the features of instructional practices and activities that lead to par-
ticular backward transfer effects.

4.5.1  Theory That Addresses How the Range of Backward 
Transfer Effects That Have Been Observed Are or Are 
Not Related

The first area of need is for theory development that addresses if and how the 
range of backward transfer effects that have already been observed are related. 
Thus far, a limited number of backward transfer studies in mathematics and sci-
ence education have shown a range of backward transfer effects: effects on pro-
portional reasoning (e.g., Van Dooren et  al., 2004), effects on covariational 
reasoning (Hohensee, 2014), effects on action versus process views of functions 
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(Hohensee, Willoughby, & Gartland, 2020), and effects on the dissociability of 
science concepts in students’ cognitive structures (Arzi et al., 1985). Each finding 
currently exists in isolation from the other findings, as a singleton, without theory 
that accounts for how they are or are not related. Theory development about these 
potential relationships between different types of backward transfer effects is 
needed and may also help to establish boundaries for the types of backward trans-
fer effects that may be possible.

Several researchers have made initial efforts to develop theory about backward 
transfer effects that could help explain how different types of backward transfer 
may be related. For example, Hohensee (2016) hypothesized that one type of back-
ward transfer effect may be when the same ways of reasoning are important for 
reasoning about two different mathematics topics (e.g., covariational reasoning is 
important for reasoning about both linear and quadratic functions). Perhaps some of 
the seemingly different backward transfer effects for different mathematics topics 
that have been reported are related by this common feature.

A second hypothesis comes from Marton (2006), who proposed that discerning 
differences could be a reason for backward transfer effects (Marton called back-
ward transfer retrospective transfer). Marton defined discerning differences as 
“learning and transferring distinctive features that separate instances from non-
instances (as opposed to learning and transferring features that the instances have 
in common)” (p. 520). In the red ball and white ball example described earlier, an 
individual’s image of the red ball may change after a white ball is visually pre-
sented to them. Perhaps some seemingly different backward transfer effects are 
related because they all involve discerning differences. More theory development 
about how different backward transfer effects are related would guide researchers 
about where else to look for backward transfer and how to produce it in other 
mathematics contexts.

4.5.2  Theory About Characteristics of Ways of Reasoning That 
Make Them More or Less Amenable or Vulnerable 
to Backward Transfer Effects

The second area of need for theory development is about the characteristics of ways 
of reasoning that make them more or less amenable to backward transfer effects. By 
characteristics of ways of reasoning, I refer to general aspects that could apply to 
any ways of reasoning, such as strength (fragile vs. solid ways of reasoning), age 
(new vs. established ways of reasoning), associatedness (isolated vs. well- associated 
ways of reasoning), comprehensiveness (narrow vs. comprehensive ways of reason-
ing), abstractness (concrete vs. abstract ways of reasoning), explicitness (implicit 
vs. explicit ways of reasoning), and so on. Theory development is needed about the 
amenability or vulnerability of ways of reasoning to backward transfer effects for 
these and other characteristics of ways of reasoning.
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Very little theory currently exists in the literature about what characteristics 
make ways of reasoning amenable or vulnerable to backward transfer effects. 
However, Hohensee (2014) hypothesized that ways of reasoning about linear func-
tions that are mostly incorrect or mostly correct may be less amenable to productive 
backward transfer effects than ways of reasoning about linear functions that are 
only sometimes correct. Also, Hohensee, Gartland, Melville, and Willoughby 
(2021) hypothesized that the ways students reason about rates might be less ame-
nable to backward transfer influences than the level of covariational reasoning stu-
dents reason with. Both hypotheses were motivated by findings from those studies. 
More theory development about which characteristics of ways of reasoning are 
amenable or vulnerable to backward transfer effects would help researchers develop 
more targeted interventions.

4.5.3  Theory About Mechanisms Underlying Backward 
Transfer Effects

The third area for theory development is about the mechanisms that underlie back-
ward transfer effects. Most studies that have focused on backward transfer, or that 
have reported what I interpreted as backward transfer effects, have not explicitly 
examined its mechanisms. For example, when Van Dooren et al. (2004) found that 
learning about non-proportional relationships unproductively influenced students’ 
understandings of proportional relationships, the mechanisms that led to this effect 
were not directly investigated. An exception is Hohensee (2016), in which, as 
explained above, student noticing was explicitly examined as a potential underlying 
mechanism of backward transfer.

Theory development about the mechanisms underlying backward transfer is of 
importance to the field because not only would this theory explain how backward 
transfer occurs, but it may make it more possible to reliably produce productive 
backward transfer effects and inhibit unproductive effects. Furthermore, theory 
about the mechanisms of backward transfer would inform other aspects of theory 
development for backward transfer, including the types of backward transfer effects 
that are possible and the kinds of instructional practices and activities that lead to 
backward transfer effects. Furthermore, theory development about mechanisms of 
backward transfer could, in turn, inform theories of learning and of learning trajec-
tories more generally.
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4.5.4  Theory About Methods for Investigating Backward 
Transfer Effects

The fourth area for theory development about backward transfer pertains to the 
methods available for investigating backward transfer effects. The previous three 
points about theory development could indirectly influence researchers to use par-
ticular methods to measure backward transfer. For example, as theory about the 
relationships between backward transfer effects is developed, new methods to 
investigate related types of effects may emerge as well. However, there is also a 
need for more direct development of theory about methods for investigating back-
ward transfer. For example, one area of need for theory development that pertains 
directly to research methods is about conceptual frameworks that connect particular 
instructional moves, activities, and classroom norms to particular backward transfer 
effects. Making those connections can be challenging because the new learning 
experiences and the prior ways of reasoning that are influenced during backward 
transfer typically occur at different times and places.

An existing conceptual framework that has directly informed my methods for 
investigating backward transfer is Lobato et al.’s (2012) focusing framework. This 
theoretical framework organizes what students notice during mathematics instruc-
tion into four categories: (a) centers of focus, (b) focusing interactions, (c) mathe-
matical tasks, and (d) nature of the mathematical activity. This framework was used 
as a methodological tool in Hohensee (2016) for thinking about how to connect 
aspects of instruction to particular backward transfer effects that were measured 
outside of the instructional context. Whereas the centers of focus and focusing inter-
actions were very helpful aspects of the theory for making connections, the mathe-
matical task and nature of the mathematical activity were somewhat more difficult 
to use to make connections. This is one area where additional theory development 
related to methods would be warranted.

4.5.5  Theory About Features of Instructional Practices 
and Activities That Lead to Particular Backward 
Transfer Effects

The fifth area for theory development is about the instructional practices and activi-
ties that lead to particular backward transfer effects. Typically, the findings of back-
ward transfer have focused more on the effects themselves and less on the instruction 
that is associated with the effects (e.g., Moore, 2012). An exception is Hohensee 
(2016), where several instructional practices, such as quantitative dialogue, were 
linked to backward transfer effects. Quantitative dialogue is defined as “verbal com-
munication that directs attention to quantities as measurable attributes of objects or 
situations” (Lobato et al., 2012, p. 463). Hohensee (2016) showed that when the 
teacher emphasized quantitative dialogue during instruction about a new 
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mathematical context, students attended more to quantities in previously-encoun-
tered mathematics contexts.

Theory development about instructional activities and practices that lead to par-
ticular backward transfer effects would help researchers design more effective inter-
ventions. This aspect of theory development may also have greater direct relevance 
for teachers and other practitioners than other aspects of theory on backward 
transfer.

The five areas of pressing need for theory development about backward transfer 
described above are broad in scope. This is not unexpected given that backward 
transfer research is still in its infancy. Furthermore, the broad scope of need for 
theory development also indicates the significant amount of people power required 
to bring theory about backward transfer to a comparable level of development as 
other mathematics education theories. Thus, this chapter could serve as a signal to 
the field of mathematics education to join in this work.

4.6  Conclusion

In this chapter, I presented a case for theory development about backward transfer 
in mathematics education from a constructivist complex-systems view of knowl-
edge development. I began by sharing reasons for why theory development is 
needed in education more broadly and how that applies to backward transfer in the 
context of mathematics education. I then laid out the current state of theory develop-
ment and prior research about backward transfer in mathematics education, as well 
as selectively outside of mathematics education. Finally, I presented five areas that 
represent a pressing need for theory development about backward transfer in math-
ematics education.

As stated at the outset, there is a lack of research on backward transfer in math-
ematics education, which means there is an imbalance in the transfer of learning 
research in favor of forward transfer, and this is inconsistent with a complex-sys-
tems view of knowledge development. I have advocated for correcting the imbal-
ance because the study of backward transfer offers promise for generating new 
insights into how students learn mathematics and potentially represents untapped 
potential for improving mathematics learning. My hope is that this chapter will 
motivate mathematics education researchers to join in the effort to develop theory 
about backward transfer.
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Chapter 5
Exploration of Students’ Mathematical 
Creativity with Actor-Oriented Transfer 
to Develop Actor-Oriented Creativity

Gulden Karakok

There is a rich body of research from various fields including education and psy-
chology on the transfer of learning, with a history of over 100 years (e.g., Bransford 
& Schwartz, 1999; Detterman, 1993; King, 2017; Lave, 1988; Lobato, 2003; 
Thorndike, 1903). Commonly defined as the ability to apply knowledge learned in 
one context to a new context (Mestre, 2003), the transfer of learning plays an impor-
tant role in many areas of our work in education, for example, in curriculum and 
program designs at the undergraduate level. To illustrate, note that students are 
required to take an introductory calculus course as a prerequisite for upper level 
courses in many science, technology, engineering, and mathematics (STEM) pro-
grams, and it is expected that students transfer their calculus knowledge to their 
respective STEM majors (e.g., Bressoud et  al., n.d.; Cui, Rebello, Fletcher, & 
Bennett, 2006). The focus on transfer goes beyond mere application of knowledge 
and encompasses the application of processes such as problem solving, reasoning, 
critical and creative thinking, communication, and so forth. As an example, students 
in mathematics programs are required to take some form of an introductory proof 
course with learning objectives that include mathematical reasoning and proof- 
writing processes that would be used in subsequent, advanced-level mathematics 
courses. In sum, the transfer of learning is directly related to a goal of most educa-
tional programs: providing learning experiences that can be generalized and used by 
the learner outside the initial learning situation, preferably including their future 
careers (Bransford, Brown, & Cocking, 1999). As Mayer and Wittrock (1996) put 
it, “schools are not able to teach students everything they will need to know, but 
rather must equip students with the ability to transfer” (p. 49).

The development and transfer of various mathematical concepts as well as math-
ematical processes such as reasoning, problem solving, and proof construction at 
the undergraduate level are explored in research studies through various theoretical 
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frameworks (e.g., Cui et al., 2006; Lockwood, 2011; Weber, 2005). In this chapter, 
I focus on the process of creative thinking in mathematics at the undergraduate 
level. It has been recently reported in the World Economic Forum that creativity at 
work is one of the top-three demanded skills, and that it “has jumped from 10th 
place to third place in just five years” (Schöning & Witcomb, 2017, para. 12). 
Similarly, Nadjafikhah, Yaftian, and Bakhshalizadeh (2012) claimed that fostering 
mathematical creativity should be one of the goals of any education system. Hence, 
it is timely to explore mathematical creativity and its place in mathematics class-
rooms at the tertiary level.

To date, there are numerous policy and curriculum-standard documents that 
emphasize the importance of mathematical creativity (e.g., Committee on the 
Undergraduate Programs in Mathematics [CUPM], 2015; National Council of 
Supervisors of Mathematics [NCSM], 2012; National Council of Teachers of 
Mathematics [NCTM], 1980; National Science Board [NSB], 2010; Partnership for 
21st Century Skills, 2006). As Askew (2013) pointed out, “calls for creativity within 
mathematics and science teaching and learning are not new, but having them 
enshrined in mandated curricula is relatively recent” (p. 169). For example, mathe-
matical creativity was emphasized by the Mathematical Association of America’s 
(MAA) CUPM in its latest guidelines for majors in mathematical sciences 
(Schumacher & Siegel, 2015). The guidelines state that “a successful major offers a 
program of courses to gradually and intentionally lead students from basic to 
advanced levels of critical and analytical thinking, while encouraging creativity and 
excitement about mathematics” (p.  9). Additionally, Cropley (2015) highlighted 
these points as, “teaching engineers (and other STEM disciplines) to think cre-
atively is absolutely essential to a society’s ability to generate wealth, and as a result 
provide a stable, safe, healthy and productive environment for its citizens” (p. 140). 
However, in these moves to include creativity into educational settings, there exists 
an underlying assumption that this skill would transfer to future situations. For 
example, Luria, Sriraman, and Kaufman (2017) stated, “Not only can teaching for 
creativity improve students’ understanding of course content, but it also prepares 
students for the application of learning objectives across domains” (p. 1033).

The purpose of this chapter is to initiate an exploration of this underlying assump-
tion theoretically by examining the ways in which the transfer and the creativity 
constructs relate to one another, and by offering a possible approach to explore 
mathematical creativity through one of the contemporary transfer approaches, the 
actor-oriented transfer (AOT) framework. More specifically, the following question 
guides my theoretical exploration: In what ways could the construct of transfer aid 
in the exploration of mathematical creativity at the tertiary level?

This chapter starts with a brief summary of research on mathematical creativity, 
noting the existence of various definitions, orientations, and perspectives of creativ-
ity that impacted the research efforts. In this summary, I extract from mathematics 
education studies that examined the final products (e.g., proofs, solutions to prob-
lems) of students and mathematicians, and also mathematicians’ thinking processes, 
to highlight an existing shift between product and process orientations in creativity 
research. The chapter continues with a brief summary of the transfer of learning as 
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a research construct under various learning theories. I conclude this section with 
some research studies implementing the AOT framework as an example of contem-
porary approaches to transfer. In the Transfer of Mathematical Creativity section, I 
address the research question with empirical examples illustrating a way to use AOT 
to explore students’ mathematical creativity. In this section, I also offer a way to 
view these two constructs (transfer and creativity) together through an intersecting 
relationship. This chapter concludes with a proposal of an emerging research con-
struct, actor-oriented creativity (AOc), as a way to gain more insights into students’ 
mathematical creativity in general.

5.1  Mathematical Creativity

Similar to the construct of transfer of learning, there is a rich history of exploring 
creativity and mathematical creativity and their roles in educational settings. In his 
presidential address to the American Psychological Association (APA) in 1950, 
Guilford asked, “why do we not produce a larger number of creative geniuses than 
we do, under supposedly enlightened, modern educational practices?” (p.  444). 
And, he called for explorations of finding creative promise in learners and the ways 
in which their creativity could be developed. However, Mann (2006) indicated that 
there are more than 100 definitions of mathematical creativity and claimed that an 
absence of an agreed-on definition was one reason for the sparse research attempts 
to study mathematical creativity in mathematics education.

Sriraman (2005) suggested that, in the absence of a precise definition of mathe-
matical creativity in mathematics and mathematics education, “we move away from 
the specific domain of mathematics to the general literature on creativity in order to 
construct an appropriate definition” (p. 23). Hence, in this section, and throughout 
this brief summary of existing studies in mathematics education on mathematical 
creativity, I intertwine related constructs from domain-general creativity as they 
influenced research activities in mathematics education.

The exploration of mathematical creativity has been traced back to two psy-
chologists, Claparède and Flournoy, in 1902 (as cited in Borwein, Liljedahl, & Zhai, 
2014, and Sriraman, 2009), who focused on the professional mathematicians’ pro-
cess of creativity, rather than conceptualizing the construct of mathematical creativ-
ity. Hadamard (1945) extended this earlier study to the mathematicians of his time, 
focusing on the psychology of mathematical creativity, and discussed the results of 
his study in light of a psychological four-stage model of the creative process devel-
oped by Wallas (as cited in Sriraman, 2009, and Sadler-Smith, 2015).

These four stages of creativity are preparation, incubation, illumination, and 
verification. The preparation stage is the stage when the problem solver thinks 
about the problem, gathers related information, and offers possible ideas. This con-
scious stage prepares the mind to work on the problem unconsciously in the second 
stage. During this incubation stage, the problem solver does not consciously work 
on the problem; the problem is put aside. In the third, illumination stage, ideas 
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 “suddenly” fit together and the solution appears (also known as an “aha” experi-
ence). The process continues in the fourth verification stage in which ideas are 
checked and the solution is examined for correctness and appropriateness.

These proposed stages extend Dewey’s (1920) logical sequencing and conscious 
model of problem solving by including the unconscious stage of incubation, and the 
between consciousness and unconsciousness stage of illumination. In particular, the 
illumination stage is believed to reflect an instantaneous “train of association” 
(Sadler-Smith, 2015, p.  346), suggesting a connection to associationism theory. 
This theory claims that pairs of thoughts become associated based on a thinker’s 
past experiences (Shanks, 2007). These two stages, incubation, and particularly the 
illumination stage, are reported to be experienced by many mathematicians and 
believed to be the “heart” of mathematical creativity. Wallas’s four-stage model is 
still in use to examine the process of creativity. For example, Sriraman (2004) inter-
viewed five research mathematicians and found that these four stages are still appli-
cable to describe modern-day mathematicians’ process. His study provided more 
detail of the stages by considering the roles of personal and social attributes such as 
imagery, intuition, and interaction with others. Liljedahl (2013), on the other hand, 
focused on the stage of illumination, through anecdotal reflections of preservice 
teachers and research mathematicians, and emphasized the inclusion of affective 
domains in mathematics creativity research. In particular, he claimed that “what sets 
the phenomenon of illumination apart from other mathematical experiences is the 
affective component of the experience” (p. 264) and, for students, the unexpected 
appearance of a solution provided an emotional motivation.

As this four-stage model attempts to explore the process of creative thinking, the 
main portion of the mechanism of creativity seems to exist in the mind’s uncon-
scious work. Guilford (1950) noticed this particular issue and, referring to an analy-
sis of processes of creativity with this four-stage model, stated, “such analysis is 
very superficial from the psychological point of view” and “tells us almost nothing 
about the mental operations that actually occur” (p. 451). Noticing that these stages 
were not testable, he suggested some testable factors such as fluency, flexibility, 
production of novel ideas, synthesizing and analyzing ability, and evaluation ability 
(Guilford, 1959). In his Structure of Intellect model, Guilford distinguished between 
three types of thinking, convergent, divergent, and evaluative. Convergent thinking 
refers to providing a single correct answer or a best solution to a problem, whereas 
divergent thinking focuses on the creation of many possible ideas and multiple solu-
tions to an open-ended prompt. Evaluative thinking includes judgement about 
whether an answer is accurate, or a solution approach is consistent, or valid for a 
problem. Even though Guilford (1967) considered all three forms of thinking as part 
of the creative process, divergent thinking has received more attention and is com-
monly used as a way to operationalize creativity in research.

Researchers, mostly using divergent thinking, have focused on the fluency, flex-
ibility, originality, and elaboration components to develop an operational definition 
of creativity for research studies (e.g., Balka, 1974; Leikin, 2009; Torrance, 1966; 
Silver, 1997). Fluency in general refers to the amount of outputs to a stimulus. 
Silver (1997) defined it in the problem-solving setting in mathematics as the 
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 “number of ideas generated in response to a prompt” (p. 76). Flexibility is opera-
tionalized as the number of categories of responses to given stimuli. In the problem-
solving context, this relates to the number of shifts in approaches, providing multiple 
approaches to a problem to produce a variety of solutions. This could mean that a 
student approached a problem and for some reason changed this approach to a new 
one. Originality (or novelty) is described as a unique production or an unusual 
thinking (Torrance, 1966). Elaboration refers to the ability of producing a detailed 
plan and generalizing ideas (Torrance, 1966). Torrance’s (1966) assessment tool 
(Torrance Tests of Creative Thinking [TTCT]), which leverages these components, 
is still used in schools and by researchers. For example, Kim (2012) reported that 
K-12 students’ creativity scores, which were examined with TTCT, had decreased 
from 1990 to 2008, even though their Intelligence Quotients (IQ) and Scholastic 
Assessment Test (SAT) scores had shown increase since 1966.

The use of these four components demonstrates a shift in perspective from a 
process orientation (i.e., exploration of the nature of the mental mechanisms) to a 
product orientation (i.e., quantification and examination of the outputs that a person 
provides for tasks). For example, Balka (1974) used the fluency, flexibility, and 
originality components in his Creative Mathematical Ability Test in which partici-
pants were given mathematical situations to develop problems. Mathematical cre-
ativity of the participants was determined by the responses (outputs) through 
fluency, which was the number of problems posed by a participant; flexibility was 
determined as the number of different categories of problems generated by a partici-
pant; and originality was determined as the rarity of the response provided by a 
participant compared to the other participants’ responses in the study. Similarly, 
Leikin (2009) focused on the fluency, flexibility, and originality to create a creativity 
rubric (using a point system) that evaluated how creative a student was when they 
produced solutions to certain tasks.

Within the product orientations of creativity, there is also an emphasis on the 
quality of the end product: Is it original and useful (Runco & Jaeger, 2012)? This 
framing was adopted by the mathematics education community to develop defini-
tions of mathematical creativity as an ability to produce original, useful, adaptive, 
unusual, applicable, and so forth proofs and solutions. The word ability appears in 
such definitions to include the person in charge of producing these products; how-
ever, the act of judging the created work by an outsider plays an important role in 
such conceptualizations of creativity. Even though a product orientation provides 
means to measure mathematical creativity, “a more precise characterization of cre-
ativity will require a detailed consideration of the processes used in generating the 
items leading to” (Ward & Kolomyts, 2010, p. 95) productions that are considered 
creative.

In fact, with a five-stage model, Sheffield (2009, 2013) focused on processes of 
creative problem solving at the K-12 level. This model, by offering a nonlinear 
approach to process, differs from Wallas’s four-stage model, which assumes a linear 
progression between stages. Proposed as a creative problem-solving heuristic, the 
model includes five stages: investigating, relating, creating, evaluating, and com-
municating. During the investigating stage, a person examines the available 
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 information, ideas, and mathematical concepts that are related to this information. 
Actions such as identifying similarities and differences of ideas, and combining 
information, are proposed to be part of the relating stage. During the creating stage, 
solutions are created or new ideas are identified or new connections are developed. 
Similar to Wallas’s verification stage, Sheffield described the evaluating stage as 
actions that are taken to examine proposed solutions or ideas; however, this stage 
differs from the verification stage because these evaluative actions can be done 
throughout the problem-solving process as opposed to appearing just at the end of 
the process. Ideas, solutions, or approaches are explained (to others) at the commu-
nicating stage. This is a nonlinear model, meaning that a problem solver could start 
at any stage. For example, a person could identify similarities and differences 
between a given task and previous work (relating stage), communicate these obser-
vations and then evaluate them, which could lead to the process of investigating. 
Finally, a person could create solutions after the investigations or enter into the stage 
of relating again.

In summary of definitions and orientations of mathematical creativity, I refer to 
Sriraman’s framing of this construct (Liljedahl & Sriraman, 2006). He, focusing 
on experts’ work, suggested that mathematical creativity can be defined as the 
ability to generate original work, which contributes and extends the existing body 
of knowledge as well as creates new questions or areas for further mathematical 
explorations. To operationalize this definition in mathematics education research 
in K-12 classrooms, Sriraman (2005) defined mathematical creativity as “the pro-
cess that results in unusual (novel) and/or insightful solution(s) to a given prob-
lem or analogous problems, and/or the formulation of new questions and/or 
possibilities that allow an old problem to be regarded from a new angle requiring 
imagination” (p. 24). This formulation captures two important points for explora-
tion of students’ mathematical creativity. First, students’ mathematical creativity 
is viewed from a process orientation as opposed to the product orientation used 
for experts’ mathematical creativity. Second, mathematical creativity in K-12 
classrooms may look different than the one employed by mathematicians and 
hence, student creativity needs to be evaluated accordingly, considering students’ 
prior experiences (e.g., experiences with analogous problems as mentioned by 
Sriraman, 2005). In other words, students do “have moments of creativity that 
may, or may not, result in the creation of a product that may, or may not, be either 
useful or novel” (Liljedahl, 2013, p. 256) to the mathematics community at large. 
This particular idea relates to an important distinction of mathematical creativity 
within research: the difference between absolute (extraordinary) and relative cre-
ativity, where the former refers to (historical) inventions (discoveries at a global 
level) and the latter one is defined as “the discoveries by a specific person within 
a specific reference group, to human imagination that creates something new” 
(Leikin, 2009, p. 131).

This particular formulation of mathematical creativity (i.e., relativistic and 
process- oriented) for students aligns with the mini-c creativity construct within 
domain-general creativity. Beghetto and Kaufman (2007) defined mini-c creativity 
as “the novel and personally meaningful interpretation of experiences, actions and 
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events” (p.  73). They highlighted that the novelty and meaningfulness of 
 interpretations are personal judgements and, as such, they may not be original or 
meaningful to others. Beghetto and Kaufman (2007) argued that mini-c creativity 
is an interpretive and transformative process that is part of an individual’s learning 
process. This argument stems from Vygotsky’s “argument that creativity (imagina-
tion) is one of the basic mechanisms that allows new knowledge to develop” (as 
cited in Leikin, 2014, p. 61). The construct of mini-c creativity could allow us to 
explore students’ creativity during learning (e.g., in a course) as opposed to at the 
end of learning (e.g., after completion of a course).

In this chapter, I suggest incorporating mini-c creativity to explore tertiary-level 
students’ mathematical creativity, which would mean taking a relativistic, process 
orientation in the domain of mathematics. I furthermore propose conducting such 
explorations from a transfer research lens so that we gain understanding of stu-
dents’ transfer of creative-thinking skills. K-12 students’ mathematical creativity 
through a relativistic, process orientation has been explored (e.g., Sheffield’s cre-
ative problem- solving heuristic), but without the use of mini-c creativity. Sheffield 
(2009) discussed the process of mathematical creativity with five nonlinear stages. 
Given how such stages provide insights into students’ mathematical creativity, I 
question how such stages, namely the processes observed in those stages, transfer 
to other situations. In the next section, I briefly summarize research on transfer of 
learning and demonstrate some aspects of the AOT framework within existing 
studies.

5.2  Transfer and the Actor-Oriented Transfer Framework

Transfer of learning has been traditionally defined as the ability to apply knowledge 
learned in one context to a new context (Mestre, 2003). Early psychological views 
of transfer were based on the mental abilities of a person, and these abilities were 
believed to become stronger by training them in different subject areas. Thus, the 
training of the basic mental functions was also thought to improve the person’s abil-
ity to transfer ideas and skills to new situations. After many experiments showing 
the failure of such claims, Thorndike and colleagues challenged this existing belief 
and proposed an alternative idea, the theory of identical elements (Thorndike, 1903; 
Woodworth & Thorndike, 1901). Thorndike’s work showed that even though learn-
ers did well on a test of the specific content they had studied, this content knowledge 
did not increase their performance in a new situation. Thorndike and colleagues 
further concluded that transfer from one task to another happened only when two 
tasks shared identical elements.

Thorndike’s studies influenced instructional practices with the inclusion of more 
skill-repetition activities in the mathematic curriculum. In addition, Thorndike’s 
work influenced the transfer studies conducted later. Many researchers followed a 
similar research paradigm; an initial learning task was followed by the target task 
created by researchers who thought that these two tasks shared similar features and 
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examined participants’ performance from one task to another as an indication of 
transfer (e.g., Bassok, 1990; Gick & Holyoak, 1980). Researchers from this 
 paradigm were interested in research questions of the form “Do students transfer?” 
Most of the studies conducted under this traditional paradigm reported failure of 
spontaneous transfer from one task to the next.

Judd argued that one of the possible reasons for failure of transfer could be the 
relationship between two tasks that was declared to be similar by the researchers (as 
cited in Tuomi-Gröhn & Engeström, 2003). He claimed that the learners might have 
a different opinion about the sameness and differences of two tasks. For example, in 
their seminal study, Gick and Holyoak (1980) first gave participants a story about a 
successful capture of a fortress by dividing the army into small groups (initial learn-
ing task). Then, participants were presented with Duncker’s (1945) radiation prob-
lem (transfer task) in which they were tasked to find the best method to eliminate a 
tumor by radiation. These two tasks, according to the researchers, shared similar 
structural features (e.g., fortress = tumor, capture the fortress = eliminate the tumor, 
whole army into small groups = high intensity into lower intensity of radiation, etc.) 
but they had different surface features (the contexts). The researchers found that, 
generally, participants did not successfully or spontaneously (i.e., without a hint) 
transfer an analogous solution of the initial task to the transfer task where tasks had 
(structural) similarities. Even though their conclusion claiming that transfer of 
learning requires the overcoming of surface features (e.g., contexts) is an important 
one, it would be as valuable to know how these participants approached the transfer 
task (e.g., their reasoning about solutions, perception of connections between two 
tasks or prior experiences, etc.).

Bransford et al. (1999) argued that such negative transfer results of initial-task to 
transfer-task experiment designs were due to the underlying perspectives of trans-
fer. They stated, “evidence of transfer is often difficult to find because we tend to 
think about it from a perspective that blinds us to its presence” (p. 66). They prob-
lematized both the experimental design of initial task to transfer task (also known as 
sequestered problem solving [SPS]) and the definition of transfer that emphasized 
direct applications of prior knowledge to a new problem. They claimed such experi-
mental designs with the direct application view of transfer “make people look much 
‘dumber’ (or ‘less educated’) than is actually the case” (Schwartz, Bransford, & 
Sears, 2005, p. 6). Lave (1988) also problematized the traditional views of transfer 
by pointing out that such definitions of transfer (i.e., any derivative application of 
knowledge from prior learning to a new problem) consist of measures of the proper 
use of previous learning in the new setting with the assumption that the settings 
(initial learning and the transfer) and other social and environmental factors do not 
affect the learner’s performance.

Overall, researchers have criticized the traditional definition of transfer and 
methodologies used during these transfer studies. They suggested that a new fram-
ing of transfer should address that learning could not be separated from the environ-
ment and it should capture the notion of transfer being an active process. The 
research questions should be posed in a way that more than binary results are 
achieved. Also, new methods of inquiry should be in place to gather evidence of 
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transfer (both productive and unproductive), rather than just relying only on SPS 
types of methods, which could provide insights into mechanisms of transfer. Some 
contemporary approaches also argued for a need to shift from the researcher’s point 
of view to the learner’s point of view during transfer investigations, meaning that

The researcher does not measure transfer [of mathematical creativity] against a particular 
cognitive or behavioral target but rather investigates instances in which the students’ prior 
experiences shaped their activity in the transfer situation, even if the result is non-normative 
or incorrect performance. (Lobato, 2012, p. 235)

Some examples of these contemporary approaches implemented in research 
studies are transfer by affordances and constraints (Greeno, Smith, & Moore, 1993), 
preparation for future learning (PFL; Bransford & Schwartz, 1999), and the AOT 
framework (Lobato, 2006). Because the focus of this particular book is on AOT, I 
mainly focus on this framework in this chapter.

5.2.1  Actor-Oriented Transfer Framework

The AOT framework views transfer as “the personal construction of relations of 
similarity between activities, or how ‘actors’ see situations as similar” (Lobato & 
Siebert, 2002, p. 89). The main focus of this framework is the learner (actor) and 
how the learner sees the transfer situation in relation to the initial learning situation. 
Obtaining evidence for AOT differs from traditional transfer approaches. In tradi-
tional approaches, successful or improved performance on transfer task was consid-
ered as evidence. Meanwhile, in AOT, regardless of successful or improved 
performance on transfer tasks, any influence of prior learning experiences is consid-
ered as evidence for transfer. Consider an example provided by Lobato (2006, 
2012). Students were tasked with finding the slope of wheelchair ramp (transfer 
task) after they had been introduced to finding the slope of a line (initial learning 
task). According to the experts (or researchers), these tasks shared the same struc-
tural features and could be solved using the similar approach of rise over run, but 
differed in terms of surface features (contexts).

When Lobato and Siebert (2002) examined one student’s reasoning on the trans-
fer task, they observed that this particular student did not “transfer” (in the tradi-
tional sense) the slope formula (rise over run) from the initial learning situation. 
However, when they examined the student’s reasoning on the wheelchair task, they 
noticed that the student’s reasoning on the task included identifying the related two 
quantities (height and length) contributing to steepness and developing a multiplica-
tive relationship between them, all of which were directly linked to finding the 
slope. Further examination of the student’s prior experiences from the teaching 
interventions revealed that this particular student was most probably using the same 
reasoning that he had developed during in-class activities. They postulated that the 
student demonstrated transfer between these two situations by creating his own 
similarities between these two situations, rather than doing what researchers 
expected him to do (i.e., use the rise over run formula).
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For such inquiries with the AOT perspective, a typical study design needs data 
in qualitative nature from both transfer and initial learning situations. For example, 
following a typical AOT design, Karakok (2009, 2019) explored undergraduate 
physics students’ transfer of learning of eigenvalue and eigenvector concepts from 
various learning experiences to interviews. The researcher conducted three inter-
views and audio- and video-recorded three different quantum mechanics physics 
courses over one semester that all participants took. Three interviews were con-
ducted with seven students, all of whom had some course experience with linear 
algebra topics prior to the study. The first interviews were conducted prior to the 
quantum mechanics courses. The second interviews were conducted mid-semes-
ter, while students were still taking one of the quantum mechanics courses. The 
last interviews were conducted after students completed all three quantum mechan-
ics courses.

During the first interview, participants’ existing conceptualization of eigenvalues 
and eigenvectors were captured, given that they all had prior experiences of learning 
these concepts in various courses. The analysis of the first interview data (from the 
traditional transfer approach) showed lack of transfer of learning of eigenvalues and 
eigenvectors to the interview tasks because students could not successfully com-
plete tasks on these concepts. With the exception of one student, participants could 
not describe these concepts and showed limited conception of them. However, as 
students progressed through three quantum mechanics courses, regardless of their 
differing initial learning experiences, their conceptions showed changes. When the 
second interview data were examined, some students still lacked transfer (from the 
traditional perspective); however, they were able to draw upon their experiences 
from classroom activities to describe these concepts and demonstrate their thinking 
with examples that were similar to the in-class activities (see Karakok, 2019, for the 
case of Gus).

Using students’ conceptual changes as the basis, the researcher examined data 
from all interviews and all quantum mechanics courses with the AOT framework. 
Analysis suggested that participants were constructing similarities between inter-
view tasks and their experiences in small-group activities and whole-class discus-
sion in quantum mechanics courses. In other words, the AOT analysis provided 
possible explanations for participants’ seemingly idiosyncratic reasoning processes 
during interview tasks, namely that they represented the production of similarities 
that students observed to make between interviews and quantum mechanics courses. 
Using the AOT framework to examine the influences of learning experiences from 
the courses, facilitated a shift in the focus of analysis from the product (i.e., stu-
dents’ conceptions) and the quality of this product (e.g., successful, complete) to the 
process of students’ reasoning. Particularly, it was observed that one of the course 
instructor’s explicit instructional moves seemed to play a role in students’ reasoning 
and influence their processes during the interviews (Karakok, 2019).

Lockwood (2011) demonstrated another possible way to use the AOT perspec-
tive. Rather than calling students’ in-class experiences “initial learning,” Lockwood 
explored student-generated connections among a variety of counting problems in 
the context of combinatorics across multiple interviews. The study identified three 
types of student-generated connections: (a) elaborated versus unelaborated, (b) 
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conventional versus unconventional, and (c) referent type. Participants of the study 
were given eight to 18 counting problems to work on in pairs and asked to think 
aloud and discuss their ideas with each other in these interviews. These video- 
recorded problem-solving sessions were then analyzed by the researchers to 
explore student-generated connections and similarities among situations within the 
problem- solving sessions. The study highlighted that “in addition to mathematical 
connections that an expert might expect, students make unexpected connections as 
well” and suggested that “instructors should, therefore, be open to considering 
student- generated connections as they arise and may want to take advantage of 
alternative kinds of similarities when planning lessons” (Lockwood, 2011, p. 321).

As demonstrated in this section, exploration of students’ thinking with the AOT 
framework could “detect instances of the generalization of learning experiences” 
(Lobato, 2012, p. 232) in many forms. Furthermore, the AOT framework could also 
help explore instances “even when there is a lack of transfer according to traditional 
definitions” (p. 232). It is my claim that AOT could also help us to “detect” instances 
of students’ mathematical creativity and “distinguish between a person’s creativity 
and his/her prior knowledge and experience” (Zazkis & Holton, 2009, p. 359). More 
precisely, AOT, with its focus on students’ point of view rather than experts’, and its 
focus on the process of construction of similarities and differences rather than end- 
result production, could help us to answer research questions such as: What is the 
nature of undergraduate students’ mathematical creativity (i.e., what processes are 
used by students)? How do students “transfer” their mathematical creativity between 
situations (i.e., how do students construct similarities between their processes 
among situations)? In the next section, by drawing from existing studies, I provide 
a theoretical discussion on why and how the construct of transfer could be consid-
ered in exploration of students’ mathematical creativity.

5.3  Transfer of Mathematical Creativity

When transfer and creativity lines of research are examined, it is notable that they 
both claim, rightfully, the importance of the abilities to transfer and be creative. In 
creativity research, loosely speaking, it is expected that a person has knowledge 
about a domain (e.g., procedural-factual knowledge, technical skills) and direct 
applications of domain-specific content to expand on or extract from them to 
develop a creative product. It seems that the person is assumed to have a transfer 
ability. Transfer studies, on the other hand, have been interested in whether a per-
son could apply learned knowledge and skills in novel situations under various 
approaches. As I consider these two lines of research, there seems to be an inter-
secting relationship such that there could be instances of transfer that would not be 
part of creativity research (or would not “count” as creative), there could be 
instances of creativity that would not be part of transfer research, and there is the 
overlapping section where transfer could be creative or creativity could be consid-
ered transfer. In this chapter, I situate my arguments within the transfer construct, 
including the intersection.
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As pointed out in the introduction section and the summary of creativity studies, 
there seems to be an underlying assumption that creativity is a transferrable skill 
that helps not only the learning of concepts but also applying learned concepts in 
other situations. Craft (2005), by examining creativity research studies, observed 
that there is not a consensus to assume that creativity is a transferable skill without 
a reference to a specific domain. Starko (2017) provided a similar observation: 
“Most theorist concur that individuals are creative in some subject area and need a 
base knowledge and skills to succeed” (p. 94). In this chapter, for these reasons, I 
consider creative-thinking skills within the domain of mathematics and seek to 
explore students’ mathematical creativity from a transfer perspective. In particular, 
I argue for examining development of students’ mathematical creativity and how it 
transfers across different domain-specific situations. With this proposed exploration 
approach, I attempt to address the points made by Baer and Kaufman (2012). They 
noted that the relationship between creativity and a specific content domain is part 
of a larger question on the relationship between the learning of content and thinking 
skills and that “it [the relationship] is related to questions about the possibilities of 
transfer of learning and of teaching to promote such transfer” (p. 151).

In the brief summary of transfer research, I discussed various approaches to 
exploring transfer that included examinations of direct application of prior learning 
in new settings and explorations of the construction of similarities between different 
situations. Many of these approaches would equally provide meaningful insights 
into different aspects of students’ mathematical creativity and transfer of creative 
thinking in mathematics. In this chapter, I focus on exploration of mathematical 
creativity from the AOT perspective for several reasons. To explore the phenomenon 
of students’ mathematical creativity, there is a need for an approach that is “particu-
larly effective at bringing to the fore the experiences and perceptions of individuals 
from their own perspectives, and, therefore, at challenging structural or normative 
assumptions” (Lester, 1999, p. 1). The AOT framework provides this opportunity in 
explorations of students’ mathematical creativity by taking a student’s point of 
view. In other words, AOT could help understanding students’ “descriptions of what 
[students] experience and how it is that they experience what they experience” 
(Patton, 2002, p. 107) in the context of mathematical creativity. AOT, with its view 
of transfer as “the personal construction of relations of similarity between activities, 
or how ‘actors’ see situations as similar” (Lobato & Siebert, 2002, p. 89), could 
provide a lens to gain in-depth understanding of processes of creativity. For exam-
ple, in the relating stage, Sheffield (2009) stated that students make connections 
between a given task and their prior knowledge and ideas by identifying similarities 
and differences. Students’ particular actions in this stage (and also in others) could 
be explored through the AOT lens and this exploration could help us to detect what 
instances from prior experiences that learners relate to.

The research efforts in mathematical creativity, as well as domain-general cre-
ativity, indicated influences of personal traits, affective domains, and social interac-
tions on development of creativity (e.g., Csikszentmihalyi, 1999; Pitta-Pantazi, 
Kattou, & Christou, 2018; Sriraman, 2009). With its view of transfer as a distributed 
phenomenon, AOT also considers these domains. However, in this chapter, the 
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exploration of students’ mathematical creativity through AOT is limited to the cog-
nitive domain, and consideration of other domains, in particular the affective 
domain, will be part of future studies because such inclusion will provide a better 
picture of students’ mathematical creativity and its transfer.

5.3.1  Actor-Oriented Transfer of Mathematical Creativity

As an illustration of the AOT lens, I consider a previous study that on which I col-
laborated with colleagues to explore benefits of a particular assignment system that 
implemented the Creativity-in-Progress Rubric (CPR) on Proving (Karakok et al., 
2016; Savic, Karakok, Tang, El Turkey, & Naccarato, 2017) in an elective combina-
torics course (Omar, Karakok, Savic, & El Turkey, 2019). In this course, in addition 
to covering course content topics from the area of combinatorics, the instructor (the 
first author of Omar et  al., 2019) aimed to engage all students with challenging 
tasks, and develop and improve students’ technical writing and prose in mathemat-
ics. The CPR on Proving was provided to students to guide their thinking process 
and writing in assignments. This rubric was developed by the other authors of Omar 
et al. (2019) prior to this study with the aim to explore how to foster students’ math-
ematical creativity in tertiary mathematics courses (see Karakok, Savic, Tang, & El 
Turkey, 2015; Savic et al., 2017; Tang, El Turkey, Savic, & Karakok, 2015). The 
instructor in this study asked students to submit a reflection of their work using this 
rubric as well as their written work answering questions for each assignment. In this 
assignment system, there were five biweekly homework assignments and two proj-
ects. Each homework assignment had several questions for students to practice 
direct application of the course content (i.e., they were considered as exercises), and 
one challenging question that was considered nonroutine (i.e., it was considered as 
a problem as discussed in Schoenfeld, 1985). In contrast, for each project, students 
had roughly five weeks and the tasks were open in nature. For example, for the first 
project, students were given a formula and asked to “investigate possible new alge-
braic proofs or augmentations to proofs in existing literature. Moreover, develop 
insight on how to approach this problem from a combinatorial perspective” (Omar 
et al., 2019, p. 87). We examined students’ written work for assignments and reflec-
tions to understand the benefits of the assignment system using the rubric.

In this empirical exploration, I reexamined one of the students’ written work for 
two homework problems, the course notes, and the interview transcript. My goals 
here are (a) to illustrate how AOT could aid in exploration of students’ mathematical 
creativity, and (b) to provide empirical examples of AOTs of students’ mathematical 
creativity. The first example is from the student’s work on the problem of the second 
homework assignment:

Portfolio Problem 2: Let n ≥ 1 be an integer. Determine the number of walks in the plane 
with n steps, starting from (0, 0), with steps of type (0, 1), (0, -1), or (1, 0), given the condi-
tion that any such walk cannot intersect itself. Find any generalizations if the directions you 
can move are altered. (Generating functions might help.) (Omar et al., 2019, p. 84)
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We examined the student-submitted written work (which was presented in Omar 
et al., 2019, p. 95) and the instructor’s notes from classes prior to the assignment. 
We observed that this particular student’s work demonstrated an understanding of 
recursive relationships and techniques that were discussed in class and we claimed 
that this particular understanding helped the student to “discover an explicit expres-
sion” (p. 94). To provide an illustrative example, I focused on this particular data 
piece “by scrutinizing a given activity for any indication of influence from previous 
activities and by examining how people construe situations as similar” (Lobato & 
Siebert, 2002, p. 89). In her written work, the student explained her inquiry of the 
problem. For example, the student stated that the exploration was started with creat-
ing visualization of the walks, and then the student used “both symbolic and graphi-
cal representations of each of the three possible steps.” Prior to presenting the 
“discover[ed] explicit equation” and the related computer-generated codes, the stu-
dent wrote, “Because both [another student’s name] and I study computer science, 
our next inclination was to develop several different models for this language.” 
After evaluating their instincts, the student provided a computer program code and 
a proof of the conjectured recursion.

Before arriving at her invented equation of the recursive formula, the student 
once again mentioned another course experience: “I remembered a technique of 
solving recurrence relations called the ‘polynomial method’ from Discrete [a pre-
requisite math course].” As observed in this student’s written work, the student 
seemed to be constructing similarities between the given homework problem and 
her prior experiences in discrete, computer science, and combinatorics courses. This 
empirical example could be considered as evidence of AOT. Furthermore, the stu-
dent’s provided solution to the problem was considered novel by the course instruc-
tor and the researchers (Omar et al., 2019). This brief example only demonstrates a 
way to use the AOT lens, and thus far, I have not discussed the AOT of mathematical 
creativity. For this particular exploration, I first need to reiterate an operational defi-
nition of students’ mathematical creativity.

As discussed in the Mathematical Creativity section, previous studies on math-
ematical creativity provided different approaches to identifying mathematical cre-
ativity. Taking a product orientation, a person’s work (e.g., proofs, solutions) could 
be examined “by fluency (total number of appropriate responses), flexibility (the 
number of different categories of responses), originality (rarity of responses) and 
elaboration (amount of detail used in the responses)” (Leikin & Pitta-Pantazi, 
2013, p. 160) for the indication of the person’s mathematical creativity. It should 
be noted that the judgement of “appropriate responses,” “different categories,” 
“rarity,” and “amount of detail,” would be made by the researchers of the studies. 
Studies in creativity have demonstrated shifts toward process orientations given 
that “researching the creative product may not provide full understanding of the 
development of creativity, or may not reflect the creativity used to reach that prod-
uct” (Savic et al., 2017, p. 25). A process-orientation creativity focuses on explora-
tion of actions, behaviors, and stages that take place in the generation of work 
(e.g., ideas, proofs, solutions). Mostly, pulling from cognitive approaches, a per-
son’s thinking or progression of thinking (in the case of stages) is investigated for 
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actions such as examining a given problem (as seen in the preparation stage of 
Wallas’s model and the investigating stage of Sheffield’s model), identifying simi-
larities and differences of ideas, combining ideas (as seen in the relating stage of 
Sheffield’s model), developing a solution, verifying a solution, and communicat-
ing ideas.

Sriraman (2005) suggested that, when considering students’ mathematical cre-
ativity, one should consider their processes that result in novel solutions. However, 
Leikin (2009) emphasized that these novel solutions should be considered with 
respect to students’ prior experiences in mathematics. In sum, I propose an opera-
tional definition of students’ mathematical creativity that is inspired by these 
researchers’ work, and I also incorporate the mini-c creativity construct from 
domain-general creativity (Beghetto & Kaufman, 2007): A student’s mathematical 
creativity is a process of engaging with a mathematical situation in which person-
ally meaningful interpretations of experiences, actions, and events are employed; 
novel connections are made; personal risks are taken; and approaches and ideas are 
examined for appropriateness in order to propose or produce a solution or proof, or 
to pose a question.

In my next illustration, I consider this definition for students’ mathematical cre-
ativity for the purpose of examining AOT of this particular student’s mathematical 
creativity. The analysis started with identification of actions that seemed to be 
related to the ones in the aforementioned definition of students’ mathematical cre-
ativity. Once actions were identified, I examined the written work around which 
these actions seemed to take place. This particular analysis was conducted to gain 
better understanding of the usages of these actions as they were performed by the 
student, but also to hypothesize any indication of “influence from previous activities 
[actions] and by examining how people construe situations as similar” (Lobato & 
Siebert, 2002, p.  89). The actions that I identified in the student’s work for the 
homework two problem were: visualizing, using symbolic and graphical represen-
tations and evaluating representations as a way to interpret the problem, making 
connections to other courses (e.g., developing and translating a model), conjectur-
ing with observed results (i.e., taking risks), proving for correctness, and posing 
questions for consideration of another approach. All of these actions suggested an 
indication of this student’s mathematical creativity.

To demonstrate a possible indication of influence from previous activities and 
actions, I focus our attention to the action of making connections to other courses. 
The student’s attempt at relating the given problem to her other courses was previ-
ously discussed and was already hypothesized as evidence of AOT. Here, I provide 
more discussion about this action through the examination of mathematical work 
when the computer science course was mentioned. The student wrote:

Because both [another student’s name] and I study computer science, our next inclination 
was to develop several different models for this language. Institutively, it seemed to lend 
itself to regular expressions, and sure enough I was able to develop a regular grammar for 
allowed walks. I translated this into a deterministic finite automaton … wrote short pro-
grams. … The goal of this was to quickly compute enough values that we could gain insight 
into the nature of walks as a function of steps.
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It seems that the student not only identified a similarity between the given problem 
and the computer science course content, but also, the student seemed to be influ-
enced by the process of developing models in the computer science course (i.e., 
previous actions) to develop and translate a model for the given problem. It seems 
that this instance could be an empirical example suggesting evidence of AOT of the 
student’s mathematical creativity because it seemed that the student was influenced 
by previous processes (developing models) in a different setting and adopted this 
process for the given problem.

To provide a clarification of this claim, I focus on the same making connections 
to other courses action, and this time, I consider the student’s written work when the 
discrete course was mentioned. The student wrote, “Having found a recurrence rela-
tion, my next action was to seek a closed form. I remembered a technique of solving 
recurrence relations called the ‘polynomial method’ from Discrete … and applied 
that here.” The student, in her work, used the method to find a closed form. This 
work included procedural steps such setting up equations, solving a quadratic equa-
tion, applying initial conditions, subtracting terms, and substituting. Even though 
the student successfully computed a polynomial model for this given problem, I did 
not consider computing a closed form in a discrete course (i.e., previous action) as 
the student’s mathematical creativity. In particular, the process of computing by 
itself does not necessarily tell us much about the students’ mathematical creativity 
in the discrete course. Because the student’s written work was limited to procedural 
computations, it seemed that the student was transferring content knowledge from 
the discrete course to the homework problem. And, it did not seem appropriate or 
suitable to hypothesize that this could be a transfer (from the AOT lens) of this stu-
dent’s mathematical creativity from the discrete course to this given problem.

In the first suggested empirical example of AOT of mathematical creativity, I 
only examined the student’s work on one problem to hypothesize “transfer” of an 
action of developing models from another course (e.g., computer science) to the 
given problem. Because this analysis had obvious limitations (e.g., computer course 
information was not available), I examined the written work of this student from 
another homework problem. In other words, I considered the same student’s written 
work on two problems from two different homework assignments from the combi-
natorics course: the second homework problem (discussed earlier) and the fourth 
homework problem. The fourth homework problem (Fig. 5.1) was assigned approx-
imately one month later than the second homework problem. Again, the question 
was open in nature and it was related to a different content topic (graph theory) than 
the problem in the second homework.

The actions that I identified in the student’s work on this fourth homework prob-
lem were: using definitions and theorems from the course (e.g., generating series, 
generating functions, Burnside’s Lemma, Polya’s Theorem) as a way to interpret 
the problem, exploring cases (e.g., examining generating series for special cases of 
graphs), visualizing, evaluating work to shift to different approaches, making con-
nections (to a different problem), posing questions, and examining work to provide 
a hypothesis (as the “answer” of the problem). With the definition of students’ math-
ematical creativity, I claim that all of these actions suggest an indication of this 

G. Karakok



119

Fig. 5.1 The fourth homework problem

student’s mathematical creativity. For the examination of AOT of this student’s 
mathematical creativity, I examined the identified actions in the fourth homework 
problem for any indication of influences from the previous identified actions for the 
second homework problem. The posing question action appeared in both lists. On 
the second problem, it was noted that the student posed a question after providing 
the “discover[ed] explicit equation” (Omar et al., 2019, p. 94). This question seemed 
to be initiated from the act of evaluating the “final” work for more generalizations:

Suddenly, our algorithm for finding possible paths has to have memory. In terms of the 
strings representing valid walks, our language is no longer regular or even context-free. 
Therefore, we don’t have an obvious path for generalizing our approach in these cases. 
After hitting this wall, I started to consider how we might use generating functions to 
approach this problem. Unfortunately, I didn’t have time to explore this option very far.

The type of questioning in the form of “how we might use generating functions to 
approach this problem” did not appear in other parts of the student’s written work 
on this problem. That is to say, the student might have posed questions throughout 
her inquiry but they were not in the written work. In contrast, the written work of the 
fourth homework problem had questions and they were not only at the end of the 
student’s written work. For example, relating to another problem (unknown to the 
researcher), the student wrote in the middle of her work:

Fortunately, I already had some knowledge about the related problem where we may paint 
the vertices freely, and so I started wondering: how does the generating function that I have 
already found change given this restriction? Is there any way I can modify my equation, 
which takes symmetry into account, to remove the invalid colorings?

The questions that the student posed (wrote) throughout her work seemed to guide 
the student’s continued exploration. The student provided a “final” answer for 
complete graphs at the end of her written work, and again the student seemed to 
be wondering about the generalization of her “final” answer and what it could 
mean for different types of graphs: “I went on to explore cycle graphs, which 
were closely related to path graphs, as well as completely disconnected graphs 
and star graphs. Unfortunately, I don’t have time to write up my investigations.” 
It seems that the process of posing questions was a way for this student to start 
another line of investigation or an approach. As it was noted at the end of the 
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second homework problem, the student seemed to continue with this sort of action 
in the fourth homework problem. In the fourth homework problem, however, the 
student seemed to pose more questions. I conjecture that this student was influ-
enced from her previous act of posing questions for starting a new line of investi-
gation or an approach (in the second homework problem) to pose (more) questions 
on the later problem.

This particular observation could be an empirical example suggesting evidence 
of AOT of the student’s mathematical creativity because the process of posing ques-
tions in the fourth homework problem seemed to be influenced by the student’s 
previous experience of posing a question in the second homework problem.

With these two empirical examples, I attempted to illustrate (and answer the 
research question) in a way that the construct of transfer, more specifically AOT, 
could aid in exploration of students’ mathematical creativity at the tertiary level. 
When transfer and creativity constructs are considered to be in an intersecting rela-
tionship, AOT could aid in gaining better understanding of instances in which stu-
dents transfer their mathematical creativity. The empirical examples presented here 
raise new possibilities for the field to consider in research efforts focusing on these 
two constructs (transfer and creativity) together.

5.4  Actor-Oriented Creativity

Previous empirical examples illustrated potentials to examine transfer (using an 
AOT lens) of students’ mathematical creativity from a researcher’s perspective, 
namely that the researcher’s observations and interpretations of the indication of 
influences of prior experiences in a new setting were used to form the hypothesized 
results. Explorations of AOT of students’ mathematical creativity could be 
extended to better understand the phenomenon of creativity and its transferability 
by consulting with participants on researchers’ observations or asking them to 
identify their own mathematical creativity in a setting and whether there were any 
influences of previous settings in their self-identified creative work. Because “nov-
ices are likely to demonstrate greater variety in their interpretations of learning 
environments than experts” (Lobato, 2012, p.  235), it would be beneficial to 
include students’ interpretations of their own mathematical creativity to further 
this line of research. Kozbelt, Beghetto, and Runco (2010) emphasized the impor-
tance of understanding such “subjective” experiences that may not be observable 
by a researcher:

The creative experience represents the more subjective forms of creativity, possibly never 
resulting in a tangible product, never undergoing external evaluation or never traveling 
beyond an individual’s own personal insights and interpretations … Overlooking these sub-
jective creative experiences in favor of objectively evaluated creative products can result in 
a partial conception of creative phenomena. (p. 23)

To demonstrate what it means to consider students’ perspectives, I refer to the 
same student’s data from an interview that was conducted at the end of the course to 
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examine the benefits of the assignment system implemented in the course (Omar 
et al., 2019). At the interview, the student was asked various questions related to the 
assignment system and also asked to describe mathematical creativity.

Interviewer:  What’s your definition of creativity, mathematical creativity?
Student:  I definitely think about, just kind of like asking a lot of questions 

and being, kind of able to have insight to know like which ques-
tions are going to be like relevant and are going to be kind of a, 
like an appropriate level of, like challenge and generality. Um, so 
kind of which will lead in interesting directions. Um, being able 
to, like really … bridge different techniques and different … 
things that we have like learned. So kind of like learning to apply 
and like generalize concepts.

In this quote, the student included actions, such as asking questions, having an 
insight to ask relevant questions “which will lead in interesting directions,” making 
connections between existing knowledge and a given situation, and applying and 
generalizing as part of her view on mathematical creativity. These actions seemed to 
align with the definition of students’ mathematical creativity provided in the previ-
ous section. Furthermore, the researcher’s observation of “posing question” action 
that was hypothesized as transferred (from the AOT lens) was part of this student’s 
view of mathematical creativity. The student was also asked if she had any moments 
of mathematical creativity in the course, to which she responded as follows:

I definitely … did have um kind of like moments where I kind of felt like being able to … 
bridge examples, um, and kind of like notice general things. So, I think on … portfolio 
problems [problems on each homework] I had kind of like little moments of that, and then 
with the second big project in particular, um, I think just like kind of going through and … 
coming up with proofs and writing up proofs. And then also even just the process of … 
revising, um our proofs and definitions, um, I think very kind of creative in that we were 
like actually developing something and not just in the sense of like ‘O I had an epiphany’ 
… but having this process of kind of like going back, more like with say an essay, … 
reworking it, and making it better.

The student’s identification of her own creativity in the homework problems (which 
were referred to as portfolio problems in class) seemed to align with the observa-
tions made by the researcher for both problems discussed in the previous section. 
The student also mentioned that she felt creative in the last project in the course, 
which was not examined by the researcher. Limited in its scope, this instance (i.e., 
the student’s identification of another moment in which she felt creative) could be 
taken as a suggestion of the existence of moments that participants might perceive 
as mathematically creative, but that might not be considered as such by the others 
(e.g., researchers, teachers). Inclusion of students’ perspectives on mathematical 
creativity and their perception of their own mathematical creativity could help us 
detect nonnormative instances of students’ mathematical creativity and provide pro-
cesses that are not reported in earlier studies or included in process-orientation defi-
nitions of mathematical creativity.

I propose the term actor-oriented creativity (AOc) to distinguish students’ per-
spectives on creativity and perceptions of their own mathematical creativity from 
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the ones observed or declared by others. I use actor-oriented and the lower-case c 
(as in mini-c creativity) to emphasize the students’ views and interpretations of 
their own processes. This emerging construct relates to some of the underlying 
mechanisms of AOT. For example, in the AOT framework, “when taking an actor’s 
point of view, the researcher does not measure transfer against a particular cogni-
tive or behavioral target” (Lobato, 2012, p. 235). This resonates with the process 
orientation of AOc and inclusions of students’ perspectives of mathematical cre-
ativity. To understand AOc’s potential, in future studies of creativity, participants 
could be asked to describe what mathematical creativity means to them, to identify 
moments of mathematical creativity that they have experienced, and to reflect on 
how these moments differed from other noncreative moments. Students’ responses 
could be examined for similarities to and differences from the ones observed by the 
researcher.

5.5  Conclusion

In this theoretical exploration chapter, I argue that there is an intersecting relation-
ship between transfer of learning and creativity constructs. In particular, there 
could be instances of transfer that would not be part of creativity research (or 
would not “count” as creative), there could be instances of creativity that would 
not be part of transfer research, and there is the overlapping section where transfer 
could be creative or creativity could be considered as a transferrable ability. My 
exploration in this chapter was centered within the transfer construct, and the AOT 
framework was gauged to examine the potential of transferability of mathematical 
creativity, focusing the investigation on the intersection of transfer and creativity 
constructs.

The research question that guided this theoretical exploration was addressed 
through illustration of empirical examples. The student’s posing-question action as 
part of the student’s mathematical creativity was observed in both problems, and 
this was presented as an illustrative case for evidence of AOT of the student’s math-
ematical creativity from the second homework problem to the fourth homework 
problem. Furthermore, this action was mentioned by the student as part of her view 
of mathematical creativity. The student’s identification of her creative moment in 
another problem was taken as a suggestion of the existence of instances of mathe-
matical creativity that may not be considered by researchers. To consider such 
instances, I propose an emerging construct of actor-oriented creativity (AOc) that 
explores students’ perspectives of their mathematical creativity in research studies 
of mathematical creativity, especially when relativistic, process-orientation views 
are considered. As an emerging construct, AOc could offer a broader range of 
accounts of mathematical creativity. With its current formulation, this emerging 
construct could help in exploration within the other side of the intersecting rela-
tionship of transfer and creativity, where the creativity construct is taken as the 
main line of research.
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Chapter 6
Transfer as Progressive Re-Mediation 
of Object-Oriented Activity in School

Joshua Danish, Asmalina Saleh, Andrea Gomoll, Robert Sigley, 
and Cindy Hmelo-Silver

Transfer is a metaphor intended to describe the application of knowledge that is 
developed in one context within a second (Day & Goldstone, 2012; Lobato, 2006, 
2012). However, researchers have consistently pointed out that transfer is hard to 
find, particularly when the original and transfer contexts look quite different as 
when comparing school to work (Bransford, Brown, & Cocking, 2000; Bransford 
& Schwartz, 1999). The difficulty in identifying episodes of transfer has led 
researchers to question how it is defined and ultimately to question the metaphor 
itself, pointing out that it is both vague and problematic (Beach, 1999; Hager & 
Hodkinson, 2009). As a metaphor, transfer implies that something is moved from 
one situation to the next. However, there has been quite a lot of debate regarding 
what exactly moves across contexts, with arguments that it is an individual’s 
knowledge structures that allow movement between contexts or a perception of 
contexts as similar (Day & Goldstone, 2012; Lobato, 2006, 2012).
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Sociocultural theorists have noted that although individuals move across con-
texts, there are also aspects of social contexts that must remain similar for the kinds 
of activity that we typically label as transfer (Hager & Hodkinson, 2009; Lerman, 
2000). However, a number of sociocultural theorists have suggested that this kind of 
explanation remains unsatisfactory because it doesn’t articulate how the interaction 
between individuals and contexts lead to the kinds of performances that individuals 
are able to successfully engage in within new contexts (Beach, 1999). This led 
Beach (1999) to suggest that the metaphor of transfer is in fact the problem, and we 
should instead think about consequential transitions between spaces as individuals 
learn to adapt their practices in new spaces. In an effort to examine transfer between 
school and work, Tuomi-Gröhn and Engeström (2003) suggested a further move to 
focus instead on boundary crossing between activity systems and proposed that we 
might focus on how new forms of activity develop in this space. Although we agree 
that it is important to explore the interaction between individuals who move between 
contexts and the features of those contexts themselves, we agree with Hager and 
Hodkinson (2009) that shifting metaphors may not go far enough to address the ten-
sions that arise within the transfer metaphor in a manner that allows clear descrip-
tion of the processes that we are in fact interested in. Furthermore, we are interested 
in designing and developing learning environments, particularly within schools, that 
can help teachers to support learners in transferring their knowledge across settings 
in ways that both honor learner agency and help learners to be successful in the 
kinds of tasks valued by schools.

Therefore, we have been working on an approach that focuses on the progressive 
re-mediation of object-oriented activity (Danish, Saleh, Gomoll, Sigley, & Hmelo- 
Silver, 2018). This approach is grounded in activity theory and, in particular, the 
importance of understanding how all of human activity is goal directed, what activ-
ity theorists refer to as the object of shared activity (Engeström, 1987; Wertsch, 
1981). At the same time, activity theorists also note that all activity is mediated or 
transformed by the tools that individuals use in their daily activity. Our approach 
thus focuses on the way that shifts in both mediators and objects of activity change 
and remain similar across contexts. Thus we use the term re-mediation to refer to 
intentional changes in mediation. As we will describe below, we also assume that 
this kind of change is progressive in that learners rarely spontaneously adopt new 
mediators, or new objects of their activity, but are more likely to incrementally 
change their mediators, object, or both over time.

Our goal in developing this approach to transfer has been to better understand 
school-based transfer and to do so in a way that also helps us to better understand 
transfer at large. In aiming to understand how transfer might work in school, we 
necessarily want to understand how teachers can support transfer through their 
actions both when ideas are first introduced and when they are revisited (the trans-
fer context). In the remainder of this chapter, we first lay out our theoretical notion 
of object-oriented transfer and discuss how it builds upon and expands prior defini-
tions of transfer. We then present a brief summary of a series of interactions where 
a student, Brandon, works with a researcher and instructor, Amy, to transfer his 
ideas about how to represent and identify combinatorics across both classroom and 
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clinical interview contexts. Across these interactions, we highlight how Amy 
worked to support Brandon’s orientation to tools as useful for problem solving, 
making connections about tool use across problems, and articulating his evolving 
ideas using formal mathematical terminology. This case surfaces a number of 
instructor actions that support object-oriented transfer. Finally, we propose con-
crete steps that teachers can take to prepare for and support transfer of mathemati-
cal tools and concepts by attending to transfer as an object-oriented phenomenon.

6.1  Theoretical Approach: Object-Oriented Transfer

6.1.1  Activity Theory

Our approach to exploring transfer is grounded in activity theory (Engeström, 
1987). Activity theory builds broadly on Vygotsky (1978) and other sociocultural 
theories of learning (Danish & Gresalfi, 2018). Activity theory explores how human 
actions and learning are fundamentally shaped by the social context in which they 
occur and at the same time help to define those social contexts. Activity theory dif-
fers from other sociocultural approaches in that it takes collective, object-oriented 
activity as the unit of analysis for understanding cognition and learning (Wertsch, 
1981). Collective activity refers to activities where individuals are working together 
towards a common end. This focus on collective activity highlights the fact that our 
experiences are shaped by the ways that we aim to act in coordination with other 
people. Naturally, individuals have multiple disparate goals, and they are often 
changing during activity. However, it is our shared goals, or mismatches between 
them, which define our collective activity and interactions. To help distinguish 
between the goals that individuals pursue in a given moment and those that a group 
of people are working towards, the shared goals of the collective group are referred 
to as the object of activity. From this perspective, to understand cognition and learn-
ing, we need to understand how our shared objects and individual goals shape our 
actions. In the context of transfer, this means further understanding how the pres-
ence of both similar and different goals or objects may lead to engagement in simi-
lar forms of activity.

To further understand activity, activity theorists also note that all human action is 
mediated, or transformed by our sociocultural context (Wertsch, 2017). Mediators 
include the tools that we use, the rules that govern our actions, the community that 
we are interacting with, and the division of labor through which we all orient 
towards our shared object of activity (Engeström, 1987; Wertsch, 1981, 2017). It is 
important to note that from this perspective, tools include both material dimensions 
(e.g., the actual paper on which a student has inscribed a table to represent different 
combinations of pizza toppings) as well as an ideal dimension (e.g., the mathemati-
cal concepts embedded within the student’s table) that are interconnected (Cole, 
1996). The way that a student uses a tool is also shaped by the object of their activ-
ity. Put colloquially, students consider: What is it I am trying to accomplish? This, 
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their object or goal, will shape how they take up the tool in action. These actions are 
then further mediated by the rules, tool, and division of labor. Mediation is also 
always bidirectional, with the tools that a student has available also shaping their 
perspective on the object of activity.

By way of an example, consider the aphorism that if you give a child a hammer, 
everything starts to look like a nail. This suggests that a hammer somehow carries 
with it the idea that all things should be pounded flat like a nail. However, activity 
theory challenges us to consider how the tool and object are distinct components of 
activity. Following this, we might say that if you teach a child that a hammer (a tool) 
is great for flattening things (an object), the child will link these two concepts in 
their understanding. Thus, the child is likely to either flatten things when using a 
hammer (i.e., as a tool) or to consider the relevance of a hammer as they achieve 
certain objects or goals (e.g., such as flattening nails). We argue that this bidirec-
tional relationship between tools and the object of activity is an important aspect of 
transfer to consider when teaching. A teacher might choose whether they want chil-
dren to focus on the tool itself or on the purposes they might pursue with the tool 
(or, alternatively, the affordances of other tools for that object of flattening a nail), 
depending on what they want their students to take away from the lesson. At the 
same time, it is important to explicitly recognize that students’ activities always 
involve both the tools and an object of activity and, thus, both should be chosen 
intentionally by the teacher. Furthermore, activity theory might ask how other medi-
ators of activity shape a learners’ experience with a specific tool. What rules are 
there that encourage or discourage the use of hammers? What rules shape how ham-
mers are used? For example, children are often taught only to hammer when wear-
ing safety glasses, which might lead them to hesitate when glasses are not present. 
What about the community and division of labor? How would children coordinate 
their actions when working with a limited number of hammers or a limited number 
of nails that need hammering? Activity theory suggests that we need to always con-
sider the role of rules, community, and the division of labor in mediating the use of 
tools in supporting human learning and activity.

6.1.2  What Transfers?

This analysis suggests that when looking at transfer, it is valuable to consider both 
the tools that transfer, and the objects that learners are pursuing, as well as the vari-
ous mediators of learners’ activity within both the original and transfer contexts—
issues that activity theory can help make visible. From our perspective, traditional 
transfer accounts focus largely on the “tools” that we see in activity theory. For 
example, approaches to transfer that are grounded in cognitive theory ask whether 
learners have a sufficiently abstracted notion of a given tool to apply it within a new 
context (e.g., Barnett & Ceci, 2002; Goldstone & Sakamoto, 2003). This approach 
then explores how learning environments provide learners with sufficient opportu-
nities to generalize and abstract their understanding of the tool. Further, this 
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approach then looks to see whether students spontaneously recognize that their tool 
has value within the new context. However, these approaches typically view a con-
text in the form of a “problem.” Social dimensions of the context such as the role of 
other members of the community, or the rules that might be present and so on, are 
less visible in this kind of analysis. More importantly, we believe that by conflating 
a tool with a specific purpose, this approach may obscure how students ultimately 
need to understand both tool and purpose and their relationship to each other. That 
is, true understanding of a hammer is tied to how learners recognize that it can be 
used for both putting nails into wood and pulling them out and that both might sup-
port a broad range of activities.

We think it is also important to note that a cognitive approach assumes what we 
refer to as a normative account of transfer. That is, schools and disciplines expect 
and value certain kinds of transfer, and then scholars often look to see if those hap-
pen or not. Thus, whereas creativity researchers are interested in the child who uses 
a hammer to prop open a door or represent a spaceship, a normative account would 
only recognize and value the use of the hammer for putting nails into wood or taking 
them out. We view this as taken for granted, and, thus, one intention of our explora-
tion of transfer as progressively mediated and object oriented is to explicitly note 
this normative influence and the power differential that allows teachers to indicate 
which kinds of transfer are valuable and which are to be ignored or discouraged.

As an alternative to cognitive approaches to transfer, actor-oriented approaches 
to transfer such as the work by Lobato (2012) build on sociocultural theories to 
identify how transfer is tied to learners’ experiences with tools in rich social con-
texts. An important distinction is that this actor-oriented approach focuses on what 
learners see as relevant to transfer in a context rather than focusing on a more nor-
mative account. That is, scholars using this approach would ask: What does a child 
notice about hammers in the first place? Or, why does a child view a hammer as 
being something that is useful for pounding nails? Or, if a child is instead interested 
in using a hammer to remove nails and other fasteners in new contexts, this approach 
doesn’t view that as a failure to transfer the notion that a hammer is for pounding 
nails (the normative account) but rather as successful transfer of the role of the ham-
mer in removing nails (also normative but less common) or for emulating a laser 
gun (not normative but creative and authentic). Then we might ask what it was that 
led students to view the hammer in that way. Although we agree with the actor- 
oriented approach’s critique of a sole focus on normative accounts of transfer, we 
believe that there is also value in reconciling teachers’ needs to promote specific 
normative accounts to accomplish their daily tasks. Thus, our goal in building on 
actor-oriented approaches to transfer within a mediated and object-oriented 
approach to transfer is to focus on the intersection, connection, and tensions that lie 
between students’ experiences and their own objects. We also want to attend to the 
kinds of mediators that teachers want their students to be able to use and the objects 
teachers wish their students to pursue. We believe that focusing on these two dimen-
sions (mediators and objects) can lead us to more deeply recognize the work, and 
related tensions, that teachers need to engage in when promoting their academic 
agenda in interaction with students who might not yet share it.
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In addition, we believe that prior accounts of transfer have largely focused on 
how learning environments prepare students for transferring later and then explore 
if and when students do transfer. That is, we feel that the focus has been on how 
teachers can support transfer out from a classroom context whereas we would also 
like to explore how they might support transfer into new classroom contexts because 
that is often an important building block for school success and later transfer beyond 
school. We are not the first to explore how transfer can be supported within transfer 
contexts (Beach, 1999; Tuomi-Gröhn & Engeström, 2003). However, we believe 
that articulating this movement in terms of the shifting mediators and objects that 
participants engage with can provide new insights into the process. We now discuss 
how an object-oriented approach to transfer might build on prior accounts to explore 
this issue.

6.1.3  Teachers and Intentional Transfer

Actor-oriented approaches to transfer certainly recognize the socially situated 
nature of learning and thus the impact of multiple social factors on those features of 
a tool that students are likely to transfer. As Lobato and colleagues (Lobato, 2012; 
Lobato, Rhodehamel, & Hohensee, 2012) noted, noticing features of a tool and 
recognizing them as valuable is a socially situated action. Teachers and other learn-
ers help define what a student notices as important and relevant and thus what they 
are likely to transfer into new contexts. In activity theoretic terminology, learning a 
new tool is mediated by the rules, other tools, community, and division of labor 
within the activity. Engle, Lam, Meyer, and Nix (2012) further noted how teachers 
might play a role in framing activities in ways that are more “expansive,” helping 
learners to recognize the potential generality of a tool they are learning about. 
However, these accounts largely focus on cases where teachers are helping students 
to transfer out to future activities.

In contrast, we view teachers as continuously aiming to support transfer from 
one context to another within their own classrooms or from their classroom to the 
next. This is more modest but equally important. Our goal in exploring object- 
oriented transfer is to better understand how teachers might intentionally support 
this kind of transfer in mathematical classrooms and beyond. From this perspec-
tive, we first want students to recognize that tools are useful for specific objects and 
that it is desirable for them to continue using those tools as they encounter similar 
objects across contexts. That is, we want to think about how learners might transfer 
both tools and objects, not just one or the other. This suggests that rather than 
exploring whether students see problems or “contexts” as similar or different, we 
need to explore whether they see an object of activity as similar, whether they see 
similarities or differences in the other mediators that support that overlap in con-
texts, and whether they see those differences as consequential for if and how they 
use the tool in the new context. In the example of Brandon presented later in this 
chapter, we are interested in how he transfers the need to identify the possible 
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 combinations of elements within a set as well as the value of a specific graphical 
representation as a tool for supporting efforts to identify those combinations.

An object-oriented approach to transfer also calls our attention to the fact that 
some aspects of activity are approved by members of the community and some are 
not. When participants behave in expected and ratified ways, this is made clear in 
interaction. In contrast, when participants behave in ways that contradict the com-
munal rules, division of labor, or object of activity, this is often made visible to them 
or leads to a breakdown in activity. In the case of classrooms, the teacher plays a 
particularly important and salient role in shaping what learners view as appropriate. 
Similar to Engle et al.’s (2012) notion of expansive framing, we believe that this 
means we need to attend to how teachers might encourage transfer and how learners 
experience teachers’ different ways of framing transfer. This suggests that it is 
important to understand both how future transfer is encouraged, if it is, in an origi-
nal context and how it is then further encouraged in new transfer contexts. 
Importantly, we ask: How does this encouragement mediate learners’ understanding 
of the tools, object, and other mediators that are part of their transfer experience?

6.1.4  How Do We Look for the Process of Transfer?

Given that our focus is on transfer and not all learning, we think it is important to 
focus explicitly on the processes through which students recognize tools not just as 
useful but as potential candidates for transfer and when they recognize objects of 
activity as related. To understand this within classroom activity, we think it is there-
fore equally important to attend to how and when teachers support this process, 
helping students to see tools as relevant for transfer or encouraging or ratifying 
student belief that particular tools can and should transfer. When teachers do not 
support this process successfully, it is likely students will resist the effort to help 
them transfer the target tools. Woven throughout our mediated, object-oriented 
transfer perspective is our activity theoretic assumption that tools never transfer on 
their own but rather that tools are used in pursuit of specifics objects. Thus, learners 
likely view tools and objects as interconnected and learn to pursue objects with 
tools and vice versa. Taking an object-oriented approach, we work to attend to how 
and when this connection happens. We see this as similar to the actor-oriented 
approaches to transfer in that we remain interested in what students’ notice and take 
up, but we also extend those ideas by focusing on how learners’ activities are medi-
ated, including the work of a more knowledgeable other (the teacher) in promoting 
institutionally supported tools and objects for transfer.

Thus, the four key types of moments to look for in a potential transfer situa-
tion are:

 1. How teachers frame tools and objects as interrelated and whether they indicate 
through their actions that either or both might be useful in other future 
contexts.
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 2. How students see tools and objects as relevant and whether they recognize that 
this might be worthy of transfer to future contexts.

 3. How teachers provide opportunities for students to transfer prior tools into new 
contexts and then help students view that transfer task as valuable.

 4. How students attempt to transfer in new contexts and how they come to view this 
as successful and valuable and thus worth repeating.

It is important to note that although these moments may appear in sequence, we 
assume that they are often happening iteratively and in an overlapping manner as 
learners come to appropriate tools in new ways and recognize their potential for 
transfer. We now briefly illustrate how this approach can help us explore transfer in 
a sample data set before returning to a discussion of how teachers might support 
transfer of mathematical tools and concepts from this perspective.

6.2  Working Towards Transfer with Brandon: An Example

The video data described in this paper come from a larger longitudinal study that 
was conducted in a small suburban community in the Northeastern United States. 
The study contained 32 in-class problem-solving sessions (1  hour each) led by 
researchers. Students explored the development of mathematical ideas in combina-
torics and fractions before they were formally introduced to the ideas, algorithms, 
and formal academic language. Students were guided by facilitators as they worked, 
with little direct instruction provided to the whole class.

The video highlighted in our analysis comes from one of the early problem- 
solving sessions and a follow-up interview with one of the participants, Brandon 
(Maher & Martino, 1998). Our interest in Brandon’s work emerged based on the 
experiences of two of the authors who used this as an example in their own teaching 
to demonstrate transfer and the use of isomorphisms. As part of a larger project, we 
used the VMCAnalytic video analysis tool (Maher, Palius, Maher, Hmelo-Silver, & 
Sigley, 2014) as a space to engage in iterative interaction analysis (Jordan & 
Henderson, 1995). As a research team, we held data sessions centered on exploring 
mediated, object-oriented transfer and how it unfolded in Brandon’s recurring work 
with researcher Amy. Participants in these sessions shared initial thoughts about the 
key events in each video related to our interest in understanding how transfer 
emerges within activity and then clipped and annotated these events within the 
VMCAnalytic for the next session. Over the course of several sessions, our research 
team narrowed our focus to one class session and interview with Brandon. In the 
classroom segment, two fourth-grade children, Brandon and Colin, were working to 
solve a combinatorics problem about combinations of pizzas and toppings. The sec-
ond, and the more extensive focus of our analysis, involved a clinical interview with 
a researcher, Amy, and the fourth-grade student, Brandon, solving the same problem 
and then the ensuing interaction when Amy asked Brandon what this task 
reminded him of.

J. Danish et al.



135

Elsewhere, we analyzed a sequence of activities that Brandon engaged in, high-
lighting the various moments where he and the teacher explored the mathematical 
contexts and how those moments helped make our framing visible (Danish, Saleh, 
Gomoll, Sigley, & Hmelo-Silver, 2017; Danish et al., 2018). Here, for clarity pur-
poses, we present a streamlined version of this account organized by our four key 
features to help make visible the role that each might play in what we observed as 
“transfer.” It is important to note that, like many learners, Brandon also had interme-
diate steps in his activity and benefited from iterative, repeated engagement with 
these ideas. For clarity’s sake, however, we present a streamlined account intended 
to highlight how an object-oriented approach to transfer can help us think about 
possibilities for supporting effective transfer. Even in streamlined form, however, 
we believe the progressive nature of this transition is apparent.

6.2.1  Introducing Generalizable Tools in Math Class

Two events appear to be particularly important in setting the stage for Brandon to 
transfer his ideas across math classes. First, the teacher asked the students to think 
about how to combine colored blocks into stacks in different ways. This introduced 
the idea of listing out combinations as a practice that the classroom could later 
build on. Then, in our focal sequence, the students were asked to list out combina-
tions of possible pizza toppings. Although the teachers clearly knew these were 
related activities, they did not initially make that explicit. However, they did sup-
port the students in identifying their own productive methods for recording and 
vetting different combinations of pizza toppings. Here we see that both the process 
of trying to list all of the possible combinations and the specific representational 
tool—a grid-like table where the students listed each combination in order (see 
Fig. 6.1)—are powerful tools that might be repurposed for later math problems. 
However, Amy didn’t simply introduce the table. Rather, Brandon and the other 
students were able to identify their own process and thus to see how their approach 
to structuring the information might be useful in addressing the specific problem. 
Furthermore, Amy helped the students to see the value in their approach by asking 

Fig. 6.1 Brandon’s pizza 
combinations. The letters 
on the top are toppings, 
and 1 indicates the topping 
is present and 0 indicates it 
is absent
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clarifying questions about how they went about listing their sequence and why 
they chose that approach. For example, Amy scaffolded Brandon in indicating how 
grouping the different topping patterns helped him to identify whether he had 
already listed a specific combination and thus could help avoid redundancy. Our 
mediated, object-oriented approach to transfer highlights three key aspects of this 
part of the process: (a) The structure of the table itself is a powerful “tool” for 
identifying combinations, (b) the practice of carefully and sequentially construct-
ing the table is also a conceptual tool for identifying combinations in mathematics, 
and (c) both of these support the object of identifying all possible combinations. 
However, as we will show below, simply pointing this out is not enough for 
Brandon (or most students in our experience) to spontaneously transfer these ideas 
to new contexts. However, this does set the stage for that accomplishment. 
Importantly, Amy was also attending to Brandon’s ideas here so that she could then 
aim to build on them later.

6.2.2  Revisiting Useful Math Tools to Explore Their Utility

Three weeks after the classroom activity where Brandon produced the table of pizza 
toppings, Amy met with him in a one-on-one interview to discuss his representation. 
Although on the one hand, this kind of interview is “artificial” in that most class-
rooms do not have a researcher who engaged in one-on-one meetings with students, 
we also believe it helps to depict what is possible when a thoughtful educator revis-
its a students’ earlier activity in a discussion with them, something we have seen 
many successful teachers do within their classrooms. In this interaction, Amy began 
by asking Brandon to recount what he had done to list his pizza toppings using the 
table. Brandon began to describe that he had listed all of the different combinations 
in order starting with one topping (pepperoni) and then combining that one topping 
with all possible pairs (pepperoni and mushroom, pepperoni and sausage, etc.) and 
then three toppings and so on. Amy also asked Brandon to indicate how he knows 
to move on to a new topping (when all combinations have been exhausted) and how 
he knows to skip some (they were already listed). Brandon didn’t have ready 
answers to these questions and in fact changed his approach part way through the 
interview when he believed that he had identified an error.

In this way, Amy’s prompts were key to Brandon repeating, articulating, and 
continually refining his tool use (mediating it)—if he had stopped at any point he’d 
have had an incomplete and potentially incorrect solution. Brandon and Amy both 
continually noted how this tool is tied to the specific object of identifying the num-
ber of combinations in the set, helping to highlight the value of this tool for that 
specific but also generalizable object. Furthermore, Amy helped him to articulate 
how his tools (the table and practice of filling it in) are productive for solving the 
problem of systematically identifying combinations of elements in a set. She effec-
tively highlighted the importance of these aspects of the approach, helping him to 
notice and articulate them. We believe this also set the stage for Amy to help con-
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nect this solution to another context. However, this also highlights how transfer is 
rarely spontaneous and “correct” in that learners are always refining their under-
standing and their practices in response to feedback. Being aware of this, a teacher 
can help the students to build up their repertoire of transferable tools continuously 
as they engage with them in classroom activities.

6.2.3  Signaling and Ratifying Successful Transfer

At this point, Brandon appeared to see the utility of his approach to identifying 
combinations of pizza toppings but had not yet discussed its utility in other con-
texts. Thus, although he had now used this tool more than once, he had not yet 
demonstrated unaided transfer. We add “unaided” here to highlight that he has in 
fact transferred his knowledge when we consider the full mediated activity system 
including Amy, which we view as quite important for teaching contexts. For teach-
ers, unaided transfer is rarely necessary during a curricular unit or even across 
units. Rather, mediated transfer, where students can perform an action that looks 
like transfer, is often how teachers support progressive changes in how learners use 
tools, and one of our goals in articulating the role of mediated object-oriented trans-
fer is to highlight these intermediary steps as a feature of the changing system. In 
this case, Amy also helped Brandon to recognize that he may have done something 
unique by asking him if he did, in fact, recognize this as similar to other things they 
had done in class: “Does this problem with the pizzas remind you of any other 
problems we’ve done this year?” Brandon didn’t at first think of a similarity, and 
Amy prompted him, “It could be in the way you’ve done them.” This focused his 
attention on the approach to a solution rather than just the materials, and he indi-
cated that it reminded him of the “problem with the blocks” where the students had 
to find all of the combinations of yellow and red Unifix® cubes that might be com-
bined (see Fig. 6.2).

Again, Amy didn’t simply stop at Brandon indicating a simple awareness of 
similarity. Rather, she brought out the Unifix® cubes and asked him first to show 
how he worked with them and then to try and apply his approach of using the table 

Fig. 6.2 Brandon 
reassembles Unifix® cubes 
to show Amy how he 
found different 
combinations
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to the problem of different colored cubes. He demonstrated his solution to Amy, and 
appeared to see the similarity, but was still using different approaches. Thus, by 
some measures, he had not yet fully “transferred” his knowledge. Fortunately, Amy 
asked him if he could use the table to also identify the patterns in Unifix® cubes just 
as he had with the pizza toppings. She also helped scaffold the process by helping 
him translate between the problem spaces, suggesting he focus on a single color first 
(yellow blocks) just as he had grouped his pizza toppings, focusing first on pep-
peroni. Brandon then further unpacked the similarity between the solutions, show-
ing how the grouping helped him identify all of the combinations and reiterating the 
importance of not repeating patterns that appeared previously but in a different 
order. In short, Brandon now exhibited the kind of transfer that we are typically 
interested in promoting!

6.2.4  Who Transferred?

Amy would clearly have liked to see spontaneous transfer but didn’t. She didn’t, 
however, give up or treat this as failed transfer. Rather, we see here a messy, real-
istic process through which she took continuous steps, as did Brandon, to engage 
in meaningful, mediated, and object-oriented activity. Amy helped mediate 
Brandon’s activity, helping define the object for him, and helped him view both the 
object and the tools as transferable, and we see nice progress there. A skeptic there-
fore might point out that Brandon did not in fact transfer knowledge on his own in 
the way that educators have long hoped for, in the way that we hope will happen 
out of school, and in the way that is so rarely seen. We agree! But we also think that 
Brandon has, in collaboration with Amy, achieved exactly the kind of transfer we 
can and should be promoting in school because it helps him to see the power of the 
tools he is learning and to connect ideas across class sessions and topics. It is also 
important to note that, unfortunately, we do not have evidence of whether or not 
Brandon is later able to engage in this kind of transfer on his own as the class 
moved on to other topics. It’s quite possible that without added opportunity for 
practice and reflection (Beach, 1999), Brandon would not be able to engage in this 
activity unaided. Nonetheless, we believe that noticing the continued use of his 
table as a tool for this broader set of problems was an accomplishment and an 
important building block in future reflective activity.

Brandon’s is not an individual accomplishment, and it does not need to be. 
Rather, it is a collaborative achievement that builds on the work of both the teacher 
and the student to see the power of a tool in a new space. On the one hand, Brandon 
has seen the generalizable and potentially abstracted value of a specific tool for a 
specific object (Day & Goldstone, 2012); how tables of combinations can help in 
listing all of the possible combinations without repeating any. At the same time, this 
was not a solely cognitive effort nor was it solely driven by the student’s knowl-
edge. Rather, the student needed help in noticing the key features of the problems 
and solutions (Lobato et al., 2012) and benefited from assistance in framing the 
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solutions more expansively (Engle, 2006). In this process, Amy also helped 
Brandon to see not only what he viewed as relevant but what she viewed as rele-
vant. Although it is important to give students agency, we also want to recognize 
the value of building on ideas that the teacher knows are valued by the discipline 
and by the school context. That is, it is important and valuable for Amy to help 
Brandon achieve a normative vision of transfer that will support him within the 
existing institutional setting.

6.3  What Can Teachers Do With This Knowledge?

Our goal in exploring an object-oriented approach to transfer is twofold. First, we 
want to better understand how and when learners might perform what analysts 
view as transfer. Second, we want to build on this knowledge to help teachers 
reflect on how they might support transfer within their own classrooms, particu-
larly when they are working under the assumption that students will carry certain 
valuable, normative ideas through their classes. Our analysis above suggests that 
there are four key elements that teachers might keep in mind both in their original 
context and their transfer context to help students continuously orient towards 
overlaps in different objects of activity and the tools—both material and in prac-
tice—that might help them pursue those objects throughout their school career. 
These four elements are summarized in Table 6.1. Note that these elements all 
build on our core commitments to the notion that (a) transfer is progressive—it is 
a continuous process of refinement and iteration as learners explore how different 
tools might transfer—and (b) this process can be continuously supported by other 
mediators, including the teacher.

First, we think it is important to help students to recognize tools as being useful 
for specific objects of activity—that is, helping students recognize that they are 
attempting to achieve certain goals and framing those goals in potentially generaliz-
able terms. In our example above, Brandon only saw the transferability of his object 
when he recognized the goal of finding all of the combinations of elements in a set 
rather than viewing it solely as a problem about pizza toppings. Similarly, it is valu-
able if the student views the tool as supporting this object. Thus, listing a sequence 
of combinations in a table is a good way to find all combinations of elements in a 
set rather than just being useful for pizza. And, as we saw, Brandon did not fully 
appreciate this relationship when these ideas were first introduced but only after 
they were reexamined in later episodes.

Second, we believe it is helpful for teachers to explicitly call out the fact that a 
given tool might be useful in new situations. Whereas laboratory experiments ben-
efit from seeing whether students notice this spontaneously, day-to-day classroom 
activity is better supported when students notice that tools can be reused and are 
provided guidance in how to use them in their new context. As noted above, we 
don’t believe that it lessens Brandon’s accomplishment of transfer because Amy 
helped him see the overlap across contexts. Rather, it reveals how hard this kind of 
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Table 6.1 A summary of teaching practices to support object-oriented transfer

Teacher practices for 
supporting transfer

How this applies in the 
original context How this applies in the subsequent contexts

1. Scaffolding 
awareness of how 
the tool helps 
achieve the object.

Help students see the object 
and recognize it is one with 
possible future uses (i.e., 
expansive framing). Also, 
help students see clearly 
how the tool is tied to this 
object and is not just 
arbitrary.

Help students view new objects as identical 
or similar to prior objects. Help students to 
recall the tools that were useful with those 
prior objects.

2. Scaffolding the 
realization that a 
given tool might 
transfer.

Help students to frame their 
solutions in generalizable 
terms and suggest the 
possibilities for such 
solutions in future 
problems.

Help students remember and leverage prior 
tools and representations in new, different 
contexts.

3. Providing 
opportunities and 
encouragement to 
attempt transfer.

Curriculum design can 
include opportunities to 
apply tools in new contexts 
as well as opportunities to 
discuss and reflect on them.

Teachers can validate and encourage 
opportunities to transfer tools into new 
contexts. Teachers can promote the kinds of 
normative language and tools that will be 
expected while also legitimizing 
nonacademic language that still bridges 
tools into new contexts. New activities can 
be designed to help students fine-tune their 
tool use so that it is more generalizable.

4. Ratifying 
students’ 
accomplishments of 
transfer.

Teachers can create an environment where students see that carrying 
tools into new contexts is valued by teachers and valuable for their own 
local objects of activity.

work really is and how a focus on co-construction of transfer orients us to the value 
of teachers in promoting transfer with their students.

Third, we should think of sequences of instruction as powerful opportunities for 
transfer. Although the literature on learning progressions does not always explicitly 
use the term transfer, we see a crucial overlap here in that learning progressions are 
intended to find the most powerful conceptual tools for students within each disci-
pline and to help students develop and refine those over time. From our perspective, 
that is a case of continuously supporting object-oriented transfer by identifying the 
most valuable tools that we would like our students to transfer, introducing them, 
and then providing opportunities to see them as transferable.

Finally, we think it is important to validate learners’ efforts at transfer, helping to 
motivate them to attempt to transfer and to carry over the tools that are valued by the 
discipline. It is important to note that activity theory highlights the need for this to 
be authentic and substantive. That is, we shouldn’t simply reward students for 
attempting transfer that is meaningless to them. Rather, we should help them see the 
value in transfer on their own so that they are more likely to appreciate the trans-
ferred tools and continue to apply them, refining their use over time.
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6.4  Conclusions

As a field, we all recognize both the value and the difficulty in supporting transfer 
of tools and practices from classroom activities to other classroom activities and 
eventually to the real world beyond. As sociocultural approaches to transfer have 
long noted, however, transfer does often happen, it is just not always as spontane-
ous as researchers might hope it to be nor is it always of the same concepts and 
ideas that educators would like learners to transfer (Lobato, 2006). To understand 
why this is, sociocultural theorists have noted both that we need to attend to learn-
ers and their agency (Lobato, 2012) as well as recognizing that transfer occurs at 
the interaction between learners and contexts, suggesting that it best be viewed as 
a transition (Beach, 1999) or boundary-crossing activity (Tuomi-Gröhn & 
Engeström, 2003).

Our goal has been to build on this tradition by finding theoretically consistent 
ways to recognize and anticipate how learners engage in the process of moving 
between these contexts. Our approach builds on this tradition by noting three key 
elements of transfer: It is (a) progressive, (b) mediated, and (c) object oriented. That 
is, if all human activity is object oriented, then any account of transfer needs to 
attend to how learners recognize the object of activity as similar or different across 
contexts. Similarly, if these activities are also mediated, we need to recognize the 
role of shifting mediation in transfer contexts. Furthermore, as discussed above, the 
mediators and object of activity are always interrelated and influence each other. 
Thus, transfer is really an account of how similar mediators are taken up to pursue 
a new object, how new mediators are developed to pursue a similar object, or both. 
Finally, the process of refining our understanding of the potential use of mediators 
to pursue similar and new objects is a progressive one that is constantly in flux. We 
believe that explicitly recognizing these elements will support both teachers and 
researchers in not only promoting transfer but in recognizing when and why it has 
or has not occurred as anticipated. With this in mind, supporting transfer can be 
moved from the theoretical realm to the pragmatic, grounded activities of everyday 
classroom life.
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Chapter 7
Graphical Shape Thinking and Transfer

Kevin C. Moore

It is widely acknowledged that a learner’s currently held cognitive structures afford 
and constrain her future learning experiences. It is also widely acknowledged that a 
learner’s present learning experiences can shape and modify her previously con-
structed cognitive structures. Researchers refer to these phenomena in ways depen-
dent on their theoretical framing. Researchers adopting a transfer perspective often 
appeal to processes of forward transfer and backward transfer to explain these phe-
nomena (Hohensee, 2014; Lobato, 2012). Researchers adopting a Piagetian con-
structivism lens are disposed to explain these phenomena in terms of assimilation 
and accommodation (Piaget, 2001; Steffe & Olive, 2010; von Glasersfeld, 1995). 
Because each of these processes is influential in a learner’s mathematical develop-
ment, researchers have called for more detailed explanations of them in terms of 
specified mathematical content, concepts, and teaching (Diamond, 2018; diSessa & 
Wagner, 2005; Ellis, 2007; Hohensee, 2014; Lobato, Rhodehamel, & Hohensee, 
2012; Nokes, 2009; Thompson, 2013b).

I address the aforementioned call in the present chapter by discussing forward 
and backward transfer in the context of students’ meanings for graphs. I do so with 
three related goals. First, I define and elaborate on constructs, which are forms of 
what is referred to as graphical shape thinking (Moore & Thompson, 2015)—that 
Thompson and I introduced as epistemic subjects to capture students’ meanings for 
graphs.1 Epistemic subjects (Steffe & Norton, 2014; Thompson, 2013a) are concep-
tual models that specify categorical differences among students’ in-the-moment 

1 Thompson and I initially used shape thinking as the stem phrase for the constructs (Moore & 
Thompson, 2015). We have since updated the stem phrase to graphical shape thinking to empha-
size our focus on quantitative relationships and their graphs, as opposed to the study of geomet-
ric shapes.
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meanings. Second, and relatedly, I situate these meanings in terms of specific trans-
fer processes and their implications for student activity in novel situations. Third, I 
use a synthesis of a student’s actions to assert the role sequential processes of for-
ward and backward transfer can play in students’ graphical shape thinking.

I structure the chapter as follows to accomplish these goals. I first provide two 
vignettes in order to introduce the two graphical shape thinking constructs and moti-
vate a focus on particular aspects of transfer. A concise discussion of the theoretical 
underpinnings central to this chapter follows the opening vignettes. I subsequently 
describe the two graphical shape thinking constructs and, using accompanying stu-
dent data, illustrate them in terms of students’ transfer processes. Generalizing from 
these cases, I introduce a way to frame concept construction in terms of theories of 
transfer and graphical shape thinking, and I provide a data example to illustrate the 
productive nature of such a framing. As part of this discussion, I provide sugges-
tions for future research.

7.1  Two Vignettes

The following vignettes are from task-based clinical interviews (Ginsburg, 1997) 
that occurred as part of investigation into preservice secondary teachers’ (PSTs’) 
and undergraduate students’ meanings for graphs in the context of noncanonical 
representations (Moore, Silverman, Paoletti, Liss, & Musgrave, 2019). PST1 is 
responding to the prompt and graph in Fig. 7.1a. PST2 is responding to the prompt 
and graph in Fig. 7.2a. Both vignettes are actual excerpts. As the reader engages 
with the vignettes, consider the particular meanings the PSTs are drawing on in that 
moment of reasoning, as well as the potential influence of previous learning experi-
ences with respect to each PST’s reasoning.

7.1.1  Vignette 1 (PST1): Where the Slopes Were2

Vignette 1 concerns the following prompt: You are working with a student who hap-
pens to be graphing y=3x. He provides the following graph [shown as (a) in 
Fig. 7.1]. How might he be thinking about this?

PST1:  Um, like this [rotating Fig. 7.1a 90 degrees counterclockwise—Fig. 7.1b—
laughing].3 Like I [rotating back to Fig. 7.1a], because if you turn it this 
way  [rotating to Fig. 7.1b again], then this [tracing left to right along hori-

2 “Int.” stands for the interviewer.
3 Throughout this chapter, as needed, I describe clarifications in participant explanations, gestures, 
and actions using “[text]”. Italicized text indicates added information whereas standard text indi-
cates our replacing an ambiguous word or phrase with my interpretation of her intended word or 
phrase. I also use this convention with a line break to indicate a summary of intermediate discussion.
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Fig. 7.1 (a) A hypothetical student’s graph of y = 3x. (b) PST1’s rotated graph

Fig. 7.2 (a) A second hypothetical student’s graph of y = 3x. (b) PST2’s added markings in red

zontal (x) axis] and then this [tracing down vertical (y) axis], it would be 
still not right though.

Int.:  How would you respond to this student if they said, “Well, here’s” [rotat-
ing back to Fig. 7.1a]

PST1:  I mean I would tell them that they just labelled, like, well, I guess I would 
figure out what they were thinking about first because it could have just 
been something of they don’t know which, they don’t know that this is the 
x-axis [pointing to the horizontal axis] they don’t know this is the y-axis 
[pointing to the vertical axis] . . . I don’t really know if that makes sense. I 
mean the only way I can think of it is like this [rotating to Fig. 7.1b] and 
it’s still wrong because this is negative slope [laying a marker along the 
line sloping downward left to right] . . . [rotating back to Fig. 7.1a]. I would 
just explain to them like the difference between the x- and y-axis . . . 
because if they were thinking of it as like sideways [rotating to Fig. 7.1b] 
or whatever [rotating back to Fig.  7.1a] it is, or inversely, or whatever, 
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then, show them like the difference between like positive and negative 
slopes, also.
Because that’s something that when I was in middle school we learned 
kind of like a trick to remember positive [holds left hand pointing up and 
to the right], negative [holds left hand pointing down and to the right], and 
no slope, and zero [holding left hand horizontally], like where, that’s where 
the slopes were. And it’s stuck with me ‘til now, so it’s important to know 
which direction they’re going, when it’s positive and negative and zero and 
no slope, too. But in this case positive or negative.

PST1 assimilated Fig. 7.1a essentially as a piece of wire with indexical associa-
tions of “slope” based on how it is placed in relation to two other pieces of crossing 
wires, as evidenced by her describing “where the slopes were,” “which direction 
they’re going,” and using directional gestures to indicate a line’s direction. PST1 
understood rotating the paper as changing the line’s slope (e.g., “which direction 
they’re going”) and she did not perceive any rotation to result in an image of a line 
associated with y = 3x. Furthermore, PST1 explicitly appealed to the previous learning 
experiences in which she formed these associations, thus anticipating the given task as 
resolved by producing a line in the “direction” learned during those experiences.

7.1.2  Vignette 2 (PST2): A Product of How We’ve Decided 
to Represent Things

Vignette 2 concerns the following prompt: You are working with a student who hap-
pens to be graphing y=3x. He provides the following graph [shown as (a) in 
Fig. 7.2]. How might he be thinking about this?

[PST2 has labeled the axes as shown in Fig. 7.2b; claims that the graph is of y = 3x].

Int.:  So, what about a student who says, that says, “That can’t be, that can’t be 
right [pointing at Fig. 7.2b] because that’s sloping downwards left to right. 
You know, that’s going down to the right, so it can’t be right. It has to be 
negative.”

PST2:  No, um, that sloping downward to the right [moves hand down and to the 
right] is a product of the convention of us labeling our axes with our posi-
tives over here [motioning to her right] and our negatives over here 
[motioning to her left], so you can look at it and we can trust that [making 
hand motion down and to the right] that’s going to be a negative slope as 
long as everything is within our conventions.
Um, but slope is really just rate of change. And so, what this is telling us, 
this three [circles 3 in equation], is that when x, it’s like [writes “rise/
run”]. Is it sad that I still have to use rise over run like this? I feel like this 
is so bad [writes 3/1]. Well, anyways. Okay. So when we’re saying that 
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when our x, or our y changes on this graph, when our y changes by 3 
[pointing to the 3 in 3/1], our x is changing by one [pointing to the 1 in 3/1].
So, if we can go up three [pointing to the dash indicating a value of y = 3 
on the y-axis] in the positives [puts plus signs beside 3 and 1], we’re still 
going positive one. But now our positives are over here [motioning to her 
left], so we have to be cognizant of the way our axes were labeled.
If we were to switch this [using her hands to indicate changing the orien-
tation of the horizontal values], it would flip and have that picture or image 
[making hand motion up and to the right] that you’re looking for. But 
that’s, again, just a product of how we’ve decided to represent things.4

PST2 assimilated Fig. 7.2a to a system of meanings based in images of coordi-
nating quantities’ values as they varied within an unconventional reference system 
as evidenced by her explicit attention to quantities’ magnitudes and values both in 
her discussion and gestures. After this interaction, PST2 also sketched a graph like 
Fig. 7.1a and claimed it to be an alternative representation of y = 3x. Furthermore, 
PST2 explicitly raised issues of convention, suggesting that her previous learning 
experiences directed her attention to arbitrary representational choices when con-
sidering the viability of a novel solution. This enabled her to understand each graph 
(e.g., Fig.  7.1a and the conventional displayed graph for y = 3x) in terms of an 
equivalent relationship between covarying quantities, with perceptual differences 
between them resulting from different coordinate system conventions.

PST1’s actions, which suggest establishing relations based in perceptual cues 
and figurative properties of shape, are consistent with what Thompson and I (Moore, 
2016; Moore & Thompson, 2015) term static graphical shape thinking. PST2’s 
actions, which suggest her establishing relations based in covarying quantities and 
how they are represented within a coordinate system’s conventions, are consistent 
with what Thompson and I term emergent graphical shape thinking. The marked 
differences between the PSTs’ meanings and established relations with their previ-
ous learning experiences raise several broader questions. Two questions are:

 1. In what ways do students’ graphical shape thinking influence their construction 
of relations of similarity between previous and current learning experiences (i.e., 
transfer)?

 2. Relatedly, in what ways do students’ attempted construction of relations of simi-
larity between previous and current learning experiences (i.e., transfer) influence 
their development of graphical shape thinking?

4 PST2 subsequently discussed “rise over run” as a convention itself and how the graphs are such 
that the variation in x relative to variation in y is 1/3 and the variation in y relative to variation 
in x is 3.
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7.2  Theoretical Framing—Transfer, Understanding, 
and Meaning

The two questions raised in the previous section center on transfer, understanding, 
and meaning. Defined generally, transfer is “the influence of a learner’s prior activi-
ties on his or her activity in a novel situation” (Lobato, 2008, p. 169). Educational 
research, particularly in mathematics education, entails numerous perspectives on 
transfer. Early researchers characterized transfer in ways that reflected an implicit or 
explicit assumption of there being objectively correct solutions to mathematical 
problems. Cox (1997) and Lobato (2006) identified that these early approaches to 
transfer had roots in associationism and behaviorism that can be traced to Thorndike’s 
(1903, 1906) notion of identical elements. More recently, researchers have claimed 
to problematize the relationships between an external environment and the mind 
(see Anderson, Reder, & Simon, 2000), but Lobato (2006, 2012) and Wagner (2010) 
argued that these accounts do not problematize these relationships in practice, 
instead operating “as if situational structure could be directly perceived in the 
world” (Wagner, 2010, p. 447).

To be more sensitive to nonnormative reasoning or what an expert might deem 
“incorrect” reasoning, Lobato (2006, 2012; Lobato & Siebert, 2002) introduced the 
actor-oriented transfer (AOT) perspective. The AOT perspective explores transfer 
as perceived by the learner. It emphasizes a learner’s construction of personal rela-
tions of similarity between learning experiences and, accordingly, clarifies that 
claims about the nonnormative (or normative) performances resulting from transfer 
are from the perspective of the observer; all activity is viable and normative from 
the perspective of the learner. The AOT perspective also frames transfer in terms of 
the construction and reconstruction of knowledge. Whereas traditional perspectives 
have approached transfer as a static application of knowledge, the AOT perspective 
approaches transfer in terms of active, subjective constructions of similarity. The 
AOT perspective thus accounts for forms of transfer that promote learning through 
cognitive reorganization and accommodation (Hohensee, 2014; Lobato, 2012; 
Lobato & Siebert, 2002). Reflecting this affordance of the AOT perspective, 
researchers’ adoptions of the AOT perspective have yielded explanations of stu-
dents’ (and teachers’) meanings and learning in numerous content areas (Diamond, 
2018; Ellis, 2007; Hohensee, 2014; Lobato & Siebert, 2002; Lobato & Thanheiser, 
2002). Researchers have also used the AOT perspective to identify how particular 
artifacts, language, and other factors of classroom instruction can explain differ-
ences in students’ transfer of learning (Lobato et al., 2012).

Because the AOT perspective seeks to explain transfer from the perspective of 
the learner, it is productive for a researcher to pair the AOT perspective with a fram-
ing of meaning that emphasizes its subjective nature; an appropriate framing of 
students’ meanings provides the ground by which a researcher can situate accounts 
of transfer. In this chapter, I draw on Thompson and Harel’s descriptions of meaning 
and understanding (see Thompson, Carlson, Byerley, & Hatfield, 2014). The dis-
tinction between understanding and meaning is rooted in Piaget’s characterization 
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of understanding as assimilation to a scheme and of meaning as the space of impli-
cations created by a moment of assimilation (Skemp, 1962, 1971; Thompson, 
2013b; Thompson & Saldanha, 2003). Thompson and Harel defined understanding 
to refer to a cognitive, in-the-moment state of equilibrium that results from assimila-
tion. Understanding could occur from having assimilated an experience to a stable 
scheme, or from a functional accommodation specific to that moment and arrived at 
by an effortful coordination of existing schemes (Steffe, 1991). For instance, a stu-
dent could perceive two marks on a piece of paper as orthogonal and assimilate the 
marks as coordinate axes, thereby establishing a state of equilibrium (i.e., an under-
standing). If the student also perceives an unfamiliar curve within the assimilated 
coordinate system, he might engage in effortful activity to understand the unfamiliar 
curve. The student could attempt to relate the unfamiliar curve with the collection 
of shapes and associated perceptual properties with which he is already familiar 
through prior learning experiences. Or, the student could attempt to imagine the 
curve in terms of an emergent trace of covarying values within the respective coor-
dinate system and relate that to previously experienced covariational relationships. 
Either could result in a state of understanding via assimilating the curve to a 
meaning.

Meaning in Thompson and Harel’s system refers to the space of implications that 
a moment of understanding brings forth (Thompson et al., 2014). When a person 
creates an understanding by assimilating an experience (e.g., a perceived word, 
phrase, diagram, or set of statements) to a scheme, the scheme is that person’s 
meaning in that moment; the person’s meaning in that moment consists of an orga-
nization of actions, operations, images, and schemes that the person anticipates or 
enacts (Piaget & Garcia, 1991; Thompson, 2013b; Thompson et  al., 2014). 
Establishing a state of understanding through assimilation to a meaning can occur 
in many forms. It can be a nearly subconscious, habitual act (e.g., reciting learned 
multiplication facts), or it can be an effortful progression of reciprocal acts of 
accommodation and assimilation (e.g., sustained problem solving).

Returning to the notion of transfer, and as I illustrate in this chapter, transfer can 
occur within either case of establishing a state of understanding through assimila-
tion to a meaning. A researcher can identify different forms of transfer in order to 
characterize the influence and interplay of a student’s meanings constructed during 
previous learning experiences and their current actions and learning experience. 
Forward transfer and backward transfer have emerged as two forms of transfer use-
ful for characterizing such experiences. Hohensee (2014) introduced forward trans-
fer and backward transfer to differentiate between the influence of a learner’s prior 
conceptions and actions on her activity in a novel situation (i.e., forward transfer) 
and “the influence…new knowledge has on one’s ways of reasoning about related 
mathematical concepts that one has encountered previously” (p. 136; i.e., backward 
transfer). Stated in terms of meanings, forward transfer is how previously con-
structed meanings influence the assimilation of a present experience. Backward 
transfer is how a novel experience and associated meaning influences the learner’s 
previously constructed meanings.
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With the constructs of forward and backward transfer formally introduced, I 
return to the opening vignettes. Recall that PST1’s actions suggest her drawing rela-
tions of similarity based on previously learned associations between the perceptual 
direction of a line and “slope.” This is a form of forward transfer. She experienced 
a novel axes orientation in the form of hypothetical student work, and her prior 
conceptions of “slope” entailed an axes orientation that required that she attempt to 
modify the graph so that they were relevant. Recall that PST2’s actions suggest her 
drawing relations of similarity based on coordinating quantities’ covariation with 
attention to coordinate conventions. This is also a form of forward transfer, but there 
are aspects of her actions that suggest backward transfer. Namely, PST2 called 
attention to the previously learned mnemonic phrase and calculation of “rise over 
run” being problematic in the context of the unconventional axes orientation. An 
explanation for her actions is that experiences with graphing in unconventional axes 
orientations influenced her meaning for the mnemonic phrase and calculation—one 
typically taught in Grades 6–12 curricula only in the context of conventional axes 
orientations—so that she came to understand it as subordinate to the concept of 
forming a multiplicative comparison. Her experiences with graphing covariational 
relationships in unconventional axes orientations entailed backward transfer with 
respect to her meaning for “rise over run” so that it could accommodate unconven-
tional axes orientations, and the phrase no longer was absolutely literal relative to 
the implied physical movements.

As suggested by this interpretation of PST2’s actions, transfer can involve 
accommodations to previously constructed meanings (Hohensee, 2014; Lobato, 
2012). Transfer and accommodation can occur in the context of two (or more) con-
cepts or topics. For example, Hohensee (2014) illustrated backward transfer in 
terms of how students’ learning of quadratic relationships can influence their previ-
ously constructed meanings for linear relationships. Or, transfer and accommoda-
tion can occur in the context of the same concept experienced across many learning 
experiences, as illustrated by Lobato and Siebert (2002) and Lobato et al. (2012). 
Because graphical shape thinking primarily refers to meanings for the same concept 
(e.g., graphing), and after elaborating on each of the graphical shape thinking con-
structs, I highlight how forward and backward transfer can potentially relate to the 
development of students’ graphical shape thinking.

7.3  Graphical Shape Thinking

Each form of graphical shape thinking represents an epistemic subject that stabi-
lized across a research program initiated by Thompson (1994a, 1994b) and was then 
extended by Thompson, and other colleagues, and myself. Collectively, we targeted 
secondary students’, undergraduate students’, and teachers’ meanings for precalcu-
lus and calculus ideas, including graphing (Carlson, 1998; Carlson, Jacobs, Coe, 
Larsen, & Hsu, 2002; Moore, 2014, 2016; Moore, Paoletti, & Musgrave, 2013; 
Moore & Silverman, 2015; Moore, Silverman, Paoletti, & LaForest, 2014; Paoletti 
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& Moore, 2017; Saldanha & Thompson, 1998; Thompson, 2013b, 2016; Thompson 
& Carlson, 2017; Thompson, Hatfield, Yoon, Joshua, & Byerley, 2017; Thompson 
& Silverman, 2007). An epistemic subject is a characteristic of thinking that has 
stabilized within a researcher’s thinking across the second-order models she has 
created for particular students’ mathematical meanings (Steffe & Norton, 2014; 
Steffe & Thompson, 2000; Steffe, von Glasersfeld, Richards, & Cobb, 1983; 
Thompson, 2013a). An epistemic subject is a hypothetical way of thinking that 
proves increasingly viable through a researcher’s use in predicting and explaining 
students’ behaviors; it supports a researcher engaging in forward transfer as a 
mechanism to organize their experiences with future students. The generality of 
epistemic subjects empowers researchers and educators to interact with students in 
more productive and targeted ways (Hackenberg, 2014; Thompson, 2000).

Consistent with the AOT perspective, epistemic subjects are nonjudgmental with 
respect to what an observer might perceive to be correct mathematics; students’ 
meanings are always considered viable from their point of view. Furthermore, char-
acterizing a student’s actions as consistent with an epistemic subject is not a state-
ment about the student’s capabilities or other potential meanings they hold and 
transfer. Students can, and do, hold multiple meanings for a concept, each of which 
are products of students having reasoned about that concept in particular ways. Any 
claim above regarding PST1, PST2, or an individual below is not a holistic claim 
about the individual but rather a claim about that individual’s actions in that moment.

7.3.1  Static Graphical Shape Thinking

Static graphical shape thinking characterizes actions that involve conceiving a graph 
as if it is essentially a malleable piece of wire (graph-as-wire). Thompson and I 
(Moore & Thompson, 2015) chose the term static to indicate that a student assimi-
lates a displayed graph so that he predicates his actions on perceptual cues and figu-
rative properties of shape, and imagined transformations are with respect to 
physically manipulating that shape as if it were a wire (e.g., translating, rotating, or 
bending). Because static graphical shape thinking entails actions based in percep-
tual cues and figurative properties of shape, an element of thinking statically is that 
conceived associations are (in that moment of understanding) indexical properties 
or learned facts of the shape qua shape; the associations require further contextual-
ization to entail logico-mathematical operations (cf., emergent graphical shape 
thinking in which quantitative operations constitute the meaning). To illustrate, 
PST1’s treatment of “slope” suggests that her graph’s defining properties were its 
straightness and its direction, and her graph’s direction was associated with learned 
facts of slope. Her subsequent actions were to rotate the graph-as-wire, inferring 
that changing the line’s direction changed its slope.

In addition to associations like slope, the facts of shape constituting static graphi-
cal shape thinking can be equations, names, or analytic rules. For instance, as 
reported by Zaslavsky, Sela, and Leron (2002), a student could associate a graph 
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that he understands as a line with the analytic form f(x) = mx + b regardless of coor-
dinate system or axes’ scales. Another student could assimilate a displayed graph as 
“curving up” and associate this with “exponential” and the analytic form f(x) = a ∙ 
bx. In each case, the students’ graphs entail indexical associations between shapes 
(e.g., “line” or “curve up”), function class terminology (e.g., “linear” or “exponen-
tial”), and analytic rules (e.g., f(x) = mx + b and f(x) = a ∙ bx); in the moment of 
assimilation, names and associated analytic rules are little more than memorized 
facts associated with various graphs-as-wire.

Because of its basis in perceptual cues and figurative properties of shape, static 
graphical shape thinking enables a learner to establish relations between learning 
experiences via foregrounding perceptual and figurative aspects of a graph. To illus-
trate, I first return to Lobato et al.’s (2012) findings. Recall that they identified how 
particular artifacts, language, and other factors of classroom instruction can explain 
differences in students’ reasoning and transfer. Specifically, the authors likened 
some students’ reasoning about a graph to reasoning about a “piece of spaghetti” 
(Lobato et al., 2012, p. 452) with a property of visual steepness. They classified 
such reasoning as focused on physical objects (as opposed to mathematical objects, 
as described in the next section). True to the AOT perspective, Lobato et al. (2012) 
illustrated that such reasoning did support students’ transfer but that such transfer 
processes were for the purpose of describing properties of the “piece of spaghetti” 
(Lobato et al., 2012, p. 452). These students did count squares or boxes on coordi-
nate grids to characterize slope, but they did so ignoring axes labels or scale. Such 
actions are a hallmark of static graphical shape thinking. Even in cases in which 
students do identify and reason about numbers, often to handle a perturbation in a 
novel task, they do so for the purpose of describing perceptual or figurative proper-
ties (i.e., how one moves or visual steepness).

As an additional illustration of static graphical shape thinking and forward trans-
fer separate from slope, consider Excerpt 1 and Excerpt 2, which occurred during 
clinical interviews used to investigate PSTs’ meanings for noncanonical displayed 
graphs (see Moore & Silverman, 2015; Moore et  al., 2014; Paoletti, Stevens, 
Hobson, Moore, & LaForest, 2018). The interview prompt (Fig. 7.3) depicts hypo-
thetical students claiming a Cartesian graph displays the sine function and its inverse 
simultaneously. We designed the hypothetical students’ claim to reflect the under-
standing that the displayed graph is [(x, y) | –π/2 ≤ x ≤ π/2, y = sin(x), x = arcsin(y)].

Excerpt 1: Brienne’s response to the hypothetical students’ statement that Fig. 7.3 
represents the inverse sine function.

Brienne:   I’m thinking this just kind of looks like the sine graph, like the plain sine 
graph [laughs]. Which is going to be different. So, no…

Excerpt 2: Sansa’s response to the hypothetical students’ statement that Fig.  7.3 
represents the inverse sine function.

Sansa:  It looks the same . . . the sine graph . . . I mean he graphed the sine graph . 
. . um, at pi over 2 sine is 1.

[The researcher focuses Sansa on the students’ statement about and labeling of 
input and output. She continues by rejecting the student’s statement.]
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[The students] claim: “Well, because we are graphing the inverse of
the sine function, we just think about x as the output and y as the input.”
When giving this explanation, they add the following labels to their graph.

Fig. 7.3 Graph and prompt posed to the students

Fig. 7.4 The sine shape 
qua shape

Sansa:  You can’t just label it like that. Um, why? Why can’t you do that? I don’t 
know. I feel like he’s missing the whole concept of a graph . . . Like a sine 
graph’s like a, it’s a graph like everyone knows about, you know . . . that’s 
just no. I think they’re just missing the concept of graphing [she continues 
to reiterate that the student graphed the sine graph and not the arc-
sine graph].

Both Brienne and Sansa’s actions indicate their previous learning experiences 
having resulted in them associating a shape with a name or function (e.g., “sine” or 
“the sine graph”; Fig.  7.4). For instance, Sansa described her graph as follows: 
“looks the same . . . the sine graph . . . everyone knows about.” I understood her to 
mean she perceived a learned shape that everyone including mathematics students 
should recognize as “the sine graph.” The students’ actions also suggest they had 
come to associate the name or function uniquely with the recognized shape; the 
shape could not be given a second name or function, and a different name or 
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function should yield a different graph. This influenced how they perceived the 
viability of the students’ claim, ultimately rejecting the given graphs as potentially 
representing the inverse sine function. For example, Brienne subsequently added 
that the “graph of an inverse function” should look different than the graph of the 
parent function.

7.3.2  Emergent Graphical Shape Thinking

Emergent graphical shape thinking characterizes a student’s actions that involve 
conceiving a graph (either perceived or anticipated) simultaneously in terms of what 
is made (a trace entailing corresponding values) and how it is made (a sustained 
image of quantities having covaried). Thompson and I (Moore & Thompson, 2015) 
chose the term emergent to indicate that a student assimilates a graph—whether 
given, recalled, or constructed in the moment—as a trace in progress that is born or 
derived from images and coordination of covarying quantities. The student con-
ceives the result of this trace to be the emergent correspondence between covarying 
quantities (Carlson et  al., 2002; Frank, 2017; Saldanha & Thompson, 1998; 
Thompson et al., 2017). I illustrate states consistent with this meaning by showing 

Fig. 7.5 Instantiations of emergent shape thinking
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instantiations of an emergent trace of two quantities’ magnitudes (Fig. 7.5), but note 
that static images alone are insufficient to convey emergent shape thinking. Emergent 
shape thinking is more complex than the displayed instantiations because it entails 
images of covariation: imagining magnitudes in flow, reasoning about what happens 
immediately after an instantiation, and reasoning about what happens between 
instantiations).5

An element of thinking emergently is that conceived features or attributes are 
properties of the covariational and quantitative operations used in assimilation; 
quantities and their covariation are organic to a student’s graph when thinking emer-
gently. Returning to Vignette 2, PST2’s treatment of “slope” or rate of change sug-
gests that her graph’s defining properties were the covariation that produced it under 
the constraints of how the quantities were represented within particular axes organi-
zations. Hence, PST2 understood traces in perceptually different orientations as 
representing equivalent properties of covariation (e.g., no matter the orientation, she 
conceived a displayed graph such that the rate of change between the two emergent 
quantities is three).

In addition to mathematical concepts like slope or rate of change, and because of 
its bases in schemes of covariation, emergent shape thinking associates function 
class terminology and analytic rules with images of covarying quantities (and the 
produced correspondence of values). Consistent with PST2, a student thinking 
emergently could understand a graph as representing a linear relationship of the 
form y = mx + b via constituting a curve in terms of two values, y and x, covarying 
at a constant rate with a measure of m (or 1/m for changes of x measured relative to 
changes of y). As another example, a student thinking emergently understands a 
graph to be “exponential” and of the form y = a ∙ bx via conceiving a trace such that 
the rate of change of y with respect to x is proportional to y (Castillo-Garsow, 2010). 
In the moment of assimilation, images and properties of covariation form the basis 
of students’ associations between their graphs, function class terminology, and ana-
lytic rules.

Because of its basis in quantitative and covariational operations, emergent graph-
ical shape thinking enables a learner to establish relations between learning experi-
ences via foregrounding the covariational properties that produce a graph. These 
properties are consistent with what Lobato et al. (2012) called mathematical objects. 
As an alternative to foregrounding a graph’s “look” as in the case of Sansa and 
Brienne, consider Shae’s focus on covariational properties when responding to the 
same prompt. Shae was a PST involved in the same series of studies as Sansa and 
Brienne (Moore, Silverman, et  al., 2019; Paoletti, Stevens, Hobson, Moore, & 
LaForest, 2015). Shae first explained that if x represents angle measure values (in 
radians) and y represents directed vertical distance measures (in radii), then the sine 
function denotes x as an input value and y as output value, and the arcsine function 

5 I direct the reader to other work (Carlson et al., 2002; Castillo-Garsow, Johnson, & Moore, 2013; 
Confrey & Smith, 1995; Ellis, Özgür, Kulow, Williams, & Amidon, 2015; Johnson, 2012, 2015; 
Saldanha & Thompson, 1998; Thompson, 1994a; Thompson & Carlson, 2017) for more extensive 
treatments of the schemes and operations involved in covariational reasoning.
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reverses these roles. She further explained that either axis could represent input or 
output values and therefore understood the graph as being both the sine and arcsine 
functions. At this point, I was not sure whether Shae conceived her displayed graph 
covariationally and I presented a canonical Cartesian graph of the inverse sine func-
tion (Fig. 7.6). I explained that a second student claimed it to be the graph of the 
inverse sine function, as opposed to the graph in Fig. 7.3. Shae understood both 
graphs to represent “the same thing” (Excerpt 3).

Excerpt 3: Shae compares noncanonical and canonical displayed graphs of sine and 
arcsine.

Shae:  Looking at this [Fig. 7.6], I would assume they’re meaning sine of nega-
tive, sorry, one x equals y [writing sin−1(x) = y], where x is their vertical 
distance and y is their angle measure. So the student, they’re both [pointing 
at both Fig. 7.3 and Fig. 7.6] representing the same thing just considering 
their outputs and inputs differently.

Int.: So could you say a little bit more about
Shae:  Yeah. So they both kept x the horizontal and y the vertical. But, so here 

[referring to Fig. 7.6] their y’s show the angle measure and the x’s show the 
vertical distance. So for the inverse sine their input is vertical distance, 
output is angle measure. And they’re showing the same thing here [refer-
ring to Fig. 7.3], where their input is the vertical distance, which is their y, 
and their output is the angle measure, which is their x.

[Shae uses an input value of 1 to argue that both displayed graphs have the same 
input and output values relative to her respectively defined input and output axes. 
The interviewer then asks how she would convince a skeptical student who claims 
that the graphs look different.]

Fig. 7.6 Canonical 
displayed graph of the 
arcsine function
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Fig. 7.7 Equivalent conceptions of two displayed graphs

Shae:  Oh, you could show the increasing, right. So I mean you could just like 
disregard the y and x for a minute, and just look at, like, angle measures. So 
it’s like here [referring to Fig. 7.6], with equal changes of angle measures 
[denoting equal changes along the vertical axis] my vertical distance is 
increasing at a decreasing rate [tracing curve]. And then show them here 
[referring to Fig. 7.3] it’s doing the exact same thing. With equal changes 
of angle measures [denoting equal changes along the horizontal axis] my 
vertical distance is increasing at a decreasing rate [tracing curve].

Int.: OK.
Shae:  So even though the curves, like, this one looks like it’s concave up [refer-

ring to Fig. 7.6 from 0 < x < 1] and this one concave down [referring to 
Fig. 7.3 from 0 < x < π/2], it’s still showing the same thing. [Shae denotes 
equivalent changes on Fig. 7.3 and Fig. 7.6 as shown in Fig. 7.7]

Shae’s actions indicate her previous learning experiences having resulted in 
associating a function name with a particular covariational relationship. Furthermore, 
such a covariational relationship as not constrained to a unique graph or “look,” nor 
was it constrained to a unique function name. Thus, by envisioning each graph to 
entail some quantity increasing by decreasing amounts as another quantity increases 
in successive equal amounts, she was able to perceive each graph as mathematically 
equivalent despite their perceptual differences (e.g., “concave up” versus “concave 
down”; Fig. 7.7). Mathematical attributes were both properties of Shae’s graphs’ 
emergence and the learned function names [(u, v) | –π/2 ≤ u ≤ π/2, v = sin(u), u = 
arcsin(v)], and these learned and reconstructed properties formed the basis for her 
relating the present task to her previous experiences.

7 Graphical Shape Thinking and Transfer



160

7.4  But What of Development?

Recall that two questions generated by the opening vignettes were:

 1. In what ways do students’ graphical shape thinking influence their construction 
of relations of similarity between previous and current learning experiences (i.e., 
transfer)?

 2. Relatedly, in what ways do students’ attempted construction of relations of simi-
larity between previous and current learning experiences (i.e., transfer) influence 
their development of graphical shape thinking?

Regarding the first question, in the case of static graphical shape thinking, index-
ical associations based on perceptual features form the basis for constructing rela-
tions of similarity, supporting students in assimilating those contexts in which 
figurative aspects of shape prove viable. For instance, when experiencing a novel 
graph in some coordinate system, students recently completing an instructional 
sequence emphasizing static graphical shape thinking might anticipate and impose 
perceptual and figurative features of shape on that novel graph (see Lobato et al., 
2012). In the case of emergent graphical shape thinking, the logico-mathematical 
operations of quantitative and covariational reasoning form the basis for construct-
ing relations of similarity, supporting students in assimilating those contexts in 
which those covariational and quantitative schemes prove viable. Students recently 
completing an instructional sequence emphasizing emergent graphical shape think-
ing might anticipate and impose covariational properties on some novel graph (see 
Moore et al., 2013).

Whereas the first question is focused on how students’ prior learning experiences 
influence their present experience, the second question opens a focus on explaining 
the ways in which students’ transfer actions can, in turn, result in modifications to 
those meanings constructed during previous learning experiences. With respect to 
graphical shape thinking, I contend that sequential processes of forward and back-
ward transfer occasion reciprocal acts of assimilation and accommodation that 

Fig. 7.8 An example of partitioning activity to show horizontal segments decreasing by increasing 
amounts for successive equal variations in arc (Stevens & Moore, 2017, p. 712)
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provide the basis for constructing abstracted meanings rooted in emergent shape 
thinking.

To illustrate, I draw on a synthesis of a student’s actions when prompted to con-
struct a graph representing how two quantities vary together in the context of circu-
lar motion (see Stevens & Moore, 2017, for a more detailed account of the student’s 
actions). What follows occurred after a group session in which the student, Lydia, 
and two other students engaged in partitioning activities (e.g., Fig. 7.8) with a dia-
gram of a circle to identify and reason about variations in horizontal or vertical 
distance from the vertical or horizontal diameter, respectively, for equal variations 
in arc length (i.e. the sine and cosine relationships).

After the group session, we engaged Lydia in an individual session. We asked her 
to return to the circular motion context to gain insights into how her experiences 
during the group session might have influenced her reasoning. She first constructed 
variations in horizontal distance for equal changes in arc length. She appropriately 
concluded that the horizontal distance decreased by an increasing magnitude for an 
equal change in arc length as the point rotated from the start to the 12 o’clock posi-
tion (consistent with Fig.  7.8). Her actions and claims were consistent with the 
group conclusions from the previous session.

We then asked Lydia to create a graph representing this relationship (i.e., the 
normative Cartesian graph for the cosine relationship), again attempting to gain 
insights into how the group sessions influenced her thinking as well as how she 
drew relations of similarity between circle and graphical contexts. Lydia immedi-
ately drew a curve that perpetually resembled the normative Cartesian graph for the 
sine relationship (Fig. 7.9, bottom, with only the axes and curve).

What occurred next was an interaction in which Lydia attempted to engage in 
compatible physical actions with the circle context and her drawn curve while 

Fig. 7.9 Lydia’s drawn 
graph and circle context 
(Stevens & Moore, 
2017, p. 713)
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simultaneously constructing the same covariational properties. Namely, she 
attempted to:

• Partition along an arc (the circle in the circle context and the curve in the 
Cartesian context)

• Draw horizontal segments
• Draw vertical segments
• Identify segments that were increasing by decreasing amounts for equal, succes-

sive variations in arc length, a property consistent with the sine relationship
• Identify segments that were decreasing by increasing amounts for equal, succes-

sive variations in arc length, a property consistent with the cosine relationship
• Draw and identify equal changes along the horizontal Cartesian axis, which was 

an action done repeatedly in the group session and class in which she was 
enrolled

Attempting to construct and identify all of these in both the graphical and circle 
contexts perturbed Lydia. After several different attempts and a sustained period of 
time, she explained, “I like see the relationship, and I can explain it to a point, and 
then I get like—I confuse myself with the amount of information I know about a 
circle that I was just given to me by a teacher, and then what I’ve like discovered 
here [referring to the teaching sessions].”

Recall that the group session included a focus on both the sine and cosine rela-
tionships. An explanation for Lydia’s perturbation is that she expected all of the 
actions and properties of both to be relevant to both the circle and her graph. Thus, 
in her attempt to relate her current activity to that in the group sessions, she con-
flated particular figurative and perceptual features of her and her classmates’ actions 
(i.e., static graphical shape thinking) and those quantitative and covariational con-
clusions those actions and their results indicated (i.e., emergent graphical shape 
thinking). This left her unable to relate the present experience, the group session 
outcomes, and her previous instructional experiences to her satisfaction.6

I interpreted Lydia’s actions to indicate both elements of static graphical shape 
thinking and emergent shape thinking, and her conflating these elements constrained 
her ability to relate the group session to her present experience. I thus decided to 
engage Lydia in another sustained round of interactions so that she could further 
reflect on her activity and those actions she attempted to transfer from the group 
session. I also drew her attention to identifying the quantities of the circle context, 
illustrating several particular values of those quantities in the circle context, identi-
fying how those values related to her graph, and repeating this process (see Fig. 7.10 

6 It is important to note that a traditional transfer perspective would frame Lydia as not transferring 
her knowledge from the group sessions because of her not successfully completing the problem in 
ways aligning with researcher intentions. The AOT perspective, however, allows for a much more 
nuanced and productive account of Lydia’s transfer actions because of its sensitivity to transfer 
from her viewpoint. Lydia was transferring actions from the group session, and far too many to 
establish a personal state of understanding.
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Fig. 7.10 Lydia’s annotated diagram of identifying quantities and values (Stevens & Moore, 
2017, p. 714)

for her work with the diagram). It was during this process that Lydia had a realiza-
tion (Excerpt 4).

Excerpt 4: Lydia has a realization (Stevens & Moore, 2017, p. 714, with “{}” denot-
ing modifications added for clarifying purposes).

Lydia:  Because this is my – This is x – um, x-y plane, then here I’m saying at this 
point [the origin], my width is 0, my arc length is 0, and my height is 0.

Int.: Width is 0, my arc length is 0 and my height is 0.
Lydia:  Wait, but then I said {referring to the situation} at arc length 0, and [laughs] 

height is 0, then my width should be 1.
Int.:  And your width should be 1, right? What about at pi-halves? What should 

we have?
Lydia:  Then I should have a height of 1 [pointing to curve for an abscissa value 

of pi/2].
Int.: Okay.
Lydia:  And then my width should be 0 {focus remaining on her graph}. So this 

graph does not do anything with the x-y plane.

[Lydia summarizes this claim and then the researcher asks Lydia to consider an arc 
length of pi radians.]

Lydia:  Then my arc length on the x-axis [motions across horizontal axis] should 
be pi. My height should be 1 – or 0, and then my x-value should be negative 
1. So this [referring to her drawn graph] just doesn’t have  – then this 
doesn’t relate to the x, the width [referring to width from the situation], just 
this graph. So my whole circle talks about width and height and arc, but 
then this graph itself only talks about arc and height. [speaking emphati-
cally] Done it. [laughs]

{Lydia then reasons emergently about her graph.}

The beginning of this interaction continues to illustrate the influence of the group 
session on Lydia’s activity. Namely, Lydia continued her attempt to incorporate 
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each of the three relevant quantities and their corresponding contextual segment 
orientations into her drawn graph. In this case, however, she exhibits a more explicit 
focus on quantities’ values so that figurative actions were subordinate to quantita-
tive operations. In doing so, Lydia had a realization about the outcome from the 
group session; she came to conceive her drawn graph as an emergent trace of two 
particular quantities—arc length and height—in a way compatible with the circle 
context. Notably, Lydia indicated that this was a pivotal moment for her (e.g., “Done 
it”), and her developing emergent graphical shape thinking as a way to relate a con-
text and graph became a meaning she transferred forward for the remainder of the 
study (Stevens & Moore, 2017).

Reflecting on Lydia’s progression, I underscore that her initial actions in the 
circle context were stable and such that we interpreted her to have reasoned quanti-
tatively and covariationally. It was in the act of transferring those actions to her 
recollection of the drawn graph from the group session (i.e., forward transfer) that 
she was perturbed. It was then through several processes of reconstructing and relat-
ing her actions in the present contexts and from the group sessions that she was able 
to identify and isolate those actions critical to her (and her group’s) activity and 
those that were merely a product of the representational system. More broadly, 
Lydia’s actions highlight the potential affordances of sequential processes of for-
ward and backward transfer in the context of representational activity and graphical 
shape thinking. Namely, when a student experiences the opportunity to construct 
and represent a particular relationship in multiple and varied ways across multiple 
learning experiences, they are afforded the opportunity to identify and differentiate 
between those (physical and mental) actions associated with emergent graphical 
shape thinking so that only vestiges of figurative activity remain. Both Thompson 
(1994b) and Lobato and Bowers (2000) identified that such an opportunity is the 
underlying foundation to a productive view of multiple representations.

Before closing, I note that when speaking of constructing and representing a 
relationship in multiple and varied ways, I am referring to a multitude of contexts 
that permit anticipating and enacting quantitative operations on available figurative 
material. For instance, event phenomenon and coordinate systems (e.g., a Ferris 
wheel ride, a bottle filling with water, and the polar coordinate system) permit quan-
titative operations on figurative material associated with quantities (e.g., a traversed 
arc length, a segment representing the height of water, and a directed angle measure 
and radial distance). If event phenomenon, multiple coordinate-system orientations, 
and multiple coordinate systems are used in tandem, it provides students a plethora 
of opportunities to differentiate quantitative operations from figurative forms of 
action (Moore, Stevens, Paoletti, Hobson, & Liang, 2019). In contrast, tables, for-
mulas and written phrases—each a representation—do not entail figurative material 
that permit quantitative operations. I do not downplay the important use of tables, 
formulas, and phrases, but rather highlight the difference in their use as compared 
to that of event phenomenon and graphs as it relates to affording students the oppor-
tunity to simultaneously engage in and differentiate between quantitative operations 
and figurative forms of action.
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7.5  Moving Forward

Von Glasersfeld (1982) defined a concept as “any structure that has been abstracted 
from the process of experiential construction as recurrently usable” (p. 194). The 
term abstraction has a long history in mathematics education, and the term accord-
ingly is met with far too many different interpretations and perspectives to describe 
and synthesize here (e.g., Dubinsky, 1991; Piaget, 2001; Sfard, 1992; Simon et al., 
2010; von Glasersfeld, 1991; Wagner, 2010). As a concise and simplistic definition 
for operational purposes, abstraction is the process of becoming consciously aware 
of and differentiating between one’s actions (physical and mental) that are critical 
to some conceived concept and those that are not (Moore, Stevens, et  al., 2019; 
Piaget, 2001). As Wagner (2010) explained, abstraction is not a decontextualizing 
process that results in constructing something devoid of context, but rather, an 
abstracted concept becomes more sensitive to both the similarities and differences 
among perceived contextual instantiations of the concept.

Lydia’s actions illustrate such a process of abstraction in her differentiating 
between those actions and operations that are quantitative and covariational in 
nature and those that are a product of representational conventions and figurative 
aspects of a context perceived as entailing that relationship (Moore, Stevens, et al., 
2019). In doing so, Lydia eventually constructed a meaning for graphing—emergent 
graphical shape thinking—that consisted of a covariational structure she could 
describe as if it is independent of the specific figurative material associated with a 
context. She could also transfer this way of thinking to assimilate novel contexts or 
situations permitting the operations constituting her way of thinking. It is in this 
way that her thinking became abstract, that she constructed a concept; she con-
structed a structure so that its mathematical properties and actions were anticipated 
independent of any particular instantiation of them, thus not being tied to any par-
ticular two quantities and associated context.

Lydia represents only one case, and it remains to be seen how students’ learning 
can be supported through sequential processes of forward and backward transfer in 
the context of repeated and varied opportunities to construct and represent covaria-
tional relationships. Much is left to understand about the initial and ongoing devel-
opment of graphical shape thinking, especially in the context of students who are 
experiencing graphing for their first time. The forms of graphical shape thinking do 
not currently represent developmental stages, nor are the graphical shape thinking 
constructs as predictive and explanatory as those in areas like units coordination 
(Steffe & Olive, 2010). To make a claim of developmental stages requires research 
focused on students’ persistence in using them as ways of thinking and evidence 
that their current schemes impede their thinking at a higher level, and thus research 
along those lines is a necessary and important next step of research. Furthermore, a 
current limitation of shape thinking and its forms is that they stem from working 
primarily with secondary students, undergraduate students, and postgraduate stu-
dents (i.e., teachers). Detailed insights regarding the initial development of students’ 
meanings for graphs as related to graphical shape thinking are thus needed, espe-
cially during students’ formative years of constructing displayed graphs. Importantly, 
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there is evidence suggesting that emergent graphical shape thinking is a readily 
accessible meaning for middle-grades and secondary students (Ellis, 2011; Ellis 
et al., 2015; Johnson, 2012, 2015).

One productive future line of inquiry will be investigating students’ meanings for 
graphs in the context of some topic, such as students’ derivative or rate of change 
meanings. Researchers taking a topical focus will contribute nuanced descriptions 
of the schemes and operations that comprise the forms of shape thinking and are 
specific to those topics (e.g., conceiving a displayed graph as relating multiplicative 
and additive structures, Ellis et al., 2015). Additionally, researchers that take a topi-
cal approach can gain insights into the extent that the forms of shape thinking enable 
productive transfer as it relates to learning those topics. A complementary line of 
inquiry to a topical focus will be investigating students’ meanings across multiple 
contexts and topics. Researchers who consider shape thinking and its forms across 
multiple contexts and topics will have opportunities to make generalizations with 
respect to students’ meanings and transfer.

Another productive future line of inquiry will be characterizing relationships 
between students’ graphical shape thinking, backward transfer, and their learning. 
At the prospective and practicing teacher level, there is evidence suggesting their 
meanings not only foreground static graphical shape thinking (Thompson et  al., 
2017), but that their meanings can conflict with reasoning emergently (Moore, 
Stevens, et al., 2019). Moore, Stevens, et al. (2019) specifically illustrated that pro-
spective teachers can produce graphs emergently that differ from those produced 
statically, especially under noncanonical coordinate orientations. In such cases, the 
prospective teachers experienced a perturbation. Although not the focus of the 
authors’ study, their findings suggest the potential for backward transfer. When per-
turbed as a consequence of reasoning emergently, the prospective teachers showed 
evidence of reflecting on and beginning to analyze their previously constructed 
meanings, which had been consistent with reasoning statically. These initial acts of 
perturbation and reflection can be the genesis of backward transfer (Hohensee, 
2014; Lobato & Siebert, 2002), and future researchers should explore the affor-
dances of these situations in promoting productive backward transfer.

In closing, I make an instructional and curricular comment for both educators 
and researchers. Lobato et al. (2012) convincingly illustrated how numerous class-
room factors can influence students’ propensity to construct meanings consistent 
with emergent or static graphical shape thinking. Complicating the matter, research-
ers have provided results working with teachers and students that suggest emergent 
graphical shape thinking is not currently a widely held learning goal in classrooms 
(Carlson et al., 2002; Thompson, 2013b; Thompson et al., 2017). Thus, it will take 
concerted and intentional efforts, both inside and outside the classroom, if emergent 
graphical shape thinking is to become a targeted learning goal of mathematics edu-
cators. Specific to curricular materials, I view typical K-16 textbooks and curricula 
to be nearly devoid of intentional or sustained efforts to engender and support emer-
gent graphical shape thinking. At best, textbooks and curricular narratives sustain a 
focus on displayed graphs as consisting of coordinate pairs and states of values, 
which is not equivalent to a focus on covariation, magnitudes, or a displayed graph’s 
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emergence and is especially problematic when combined with examples like those 
above that treat displayed graphs statically (Carlson et al., 2002; Frank & Thompson, 
2019; Thompson & Carlson, 2017; Thompson et al., 2017). Based on this observa-
tion, I find an important area of work to be the design of curriculum and instruc-
tional experiences that target students’ emergent shape thinking. More specifically, 
I perceive a need for instructional activities and interactions in which it is productive 
for students to differentiate between mathematical properties necessary to all graphs 
of a relationship and those properties that are a consequence of the conventions of a 
coordinate system.
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Chapter 8
Using an Actor-Oriented Perspective 
to Explore an Undergraduate Student’s 
Repeated Reference to a Particular 
Counting Problem

Elise Lockwood and Zackery Reed

In this chapter, we use the lens of actor-oriented transfer (AOT, Lobato, 2003, 2012, 
2014; Lobato, Rhodehamel, & Hohensee, 2012; Lobato & Siebert, 2002) to exam-
ine instances in which one student, Carson, referred back to a problem to develop 
his reasoning about important combinatorial ideas. Carson was a participant in a 
teaching experiment in which a small group of four undergraduate students solved 
counting problems and engaged in generalizing activity. In this teaching- experiment 
study, we had students solve a set of problems, categorize those problems, and even-
tually use those categories to describe problem types and articulate general formu-
las. Carson focused on one particular problem that had been meaningful in his initial 
problem solving (the Horse Race problem, which states: “There are 10 horses in a 
race. In how many different ways can the horses finish in first, second, and third 
place?”), and he referred to that problem frequently throughout the sessions and 
returned to it in several different settings. Given the fact that counting problems can 
be difficult for students to solve correctly (e.g., Annin & Lai, 2010; Batanero, 
Navarro-Pelayo, & Godino, 1997; Lockwood & Gibson, 2016), we think it is worth-
while to examine ways in which this student effectively drew upon this particular 
problem in his combinatorial problem solving.

We not only want to demonstrate that Carson referred to problems, but we also 
want to uncover what cognitively afforded his forming and leveraging of these con-
nections. In doing so, we seek to answer the following research questions: What 
cognitive mechanisms facilitated a student’s repeated connections to a particular 
counting problem? In what ways did these student-generated connections affect the 
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student’s work in subsequent combinatorial situations? By carefully examining 
ways in which Carson thought about and used this particular problem, and by study-
ing how he compared and contrasted it with other problems and situations, we can 
gain insight into how students might establish and use prototypical problems. Such 
insights can inform ways in which students may make connections or differentiate 
between situations and problems they encounter. In addition, we adopt an AOT per-
spective, and we highlight affordances that such a perspective affords us.

8.1  Literature Review

8.1.1  Connections to Problems and Problem Types 
in Combinatorics

Some previous studies have examined students’ connections between particular 
problems and problem types. Maher, Powell, and Uptegrove (2011) offered exam-
ples in which students drew on particular problems repeatedly over time, sometimes 
referring to problems by name. For example, in describing students’ work on a 
problem involving counting pizzas with certain combinations of toppings, Muter 
and Uptegrove (2011) reported that one student said, “Everything we ever do is like 
the tower problem” (p. 107). These authors described instances in which students 
made connections between representations as a way to reason about why problems 
might be similar. For example, Muter and Uptegrove reported that students could 
identify relationships between towers made from blue and red cubes, pizzas with 
certain toppings, and binary sequences. Tarlow (2011) also reported on connections 
students made among problems involving pizzas and towers and settings involving 
binomial coefficients. In these studies, these pizza or towers problems represented 
specific problems, but they came to be emblematic of types of problems that were 
isomorphic to other problem settings. The contexts of pizzas and towers were typi-
cally leveraged to help students make connections between binomial coefficients 
and Pascal’s triangle, ultimately to make sense of binomial identities. Such work 
demonstrates that a particular problem (whether it is a specific problem or a prob-
lem type and whether the problem implicitly or explicitly represents a broader type) 
is something to which students can refer back. Here, the researchers did not attempt 
to account for what cognitive mechanisms were facilitating students to make these 
kinds of connections. We build on this literature base by providing a specific exam-
ple of how a student used a particular problem in several subsequent counting situ-
ations and by offering insights into the cognitive mechanisms that contributed to 
this transfer. Our example also emerges in a different context than Maher et al.’s 
(2011) work, as their connections occurred over the course of a longitudinal study 
where students had repeated, sustained exposure to combinatorial concepts, span-
ning many years. The connections we describe in this chapter occurred with an 
undergraduate student over the course of a concentrated but relatively short period 
of time.
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We also situate this work within Lockwood’s (2011) investigation of student- 
generated connections in combinatorics. Lockwood used AOT (discussed in detail 
in the Theoretical Perspectives section) to examine students’ combinatorial thinking 
and activity. She found instances in which students made unexpected connections 
back to previous counting situations (the connections were unexpected in the sense 
that students connected problems that would not traditionally be considered to be 
isomorphic). Using the lens of AOT, Lockwood categorized student-generated con-
nections as being elaborated versus unelaborated (describing the extent to which a 
student expounded upon the connection they made) or conventional versus uncon-
ventional (describing the extent to which a connection aligned with conventions or 
expectations of the broader mathematical community). She also characterized refer-
ent types (the types of objects to which students refer when making connections) as 
involving particular problems, problem types, or techniques/strategies. A reference 
to a particular problem means that a student is connecting to a single instance of a 
particular problem, whereas a problem type indicates a broader class of problem 
(which may be referred to by a specific name, such as “hot dog problems”). When 
students refer back to techniques/strategies, they may refer to a particular approach 
that they are familiar with that is applicable in the current situation. Lockwood 
(2011) illustrated cases of elaborated, conventional and elaborated, unconventional 
instances of AOT, both of which involved students’ referring to particular problems. 
These cases suggested ways in which the AOT perspective could be used in a com-
binatorial setting.

In this chapter, we build on Lockwood’s (2011) characterization in a couple of 
ways. By incorporating a Piagetian cognitive perspective (discussed in the 
Mechanisms for Student Reasoning section), we gain some insight into cognitive 
mechanisms that may underlie such student-generated connections. We suggest 
that, in the case of our student, we can offer a nuanced analysis into the referent type 
he identified that offers more detail than Lockwood’s categories. Thus, we broadly 
use the categorization of AOT presented in Lockwood (2011), but we also modify 
and adapt some of the categories to align with our cognitive perspective toward the 
data. Indeed, we view this cognitive perspective as a way to account for the mecha-
nisms by which students’ prior learning experiences may influence their reasoning 
on novel problems.

8.1.2  Mathematical Discussion

We briefly provide a mathematical discussion of the Horse Race problem to contex-
tualize further discussions. The Horse Race problem states: “There are 10 horses in 
a race. In how many different ways can the horses finish in first, second, and third 
place?” We emphasize two ways to solve this problem, each of which highlights an 
important combinatorial principle (we note that there are additional ways to solve 
the problem that we do not discuss here). First, one solution is to use the 
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multiplication principle1 and recognize that we have 10 options for which horse 
finishes first, and then, for any of those options, we have 9 options for which horse 
finishes second, and we have 8 options for which horse finishes third. Using the 
multiplication principle yields 10·9·8 = 720 possibilities. This is a correct, common 
answer (and is in fact how the students in our study solved the problem initially). We 
can observe that this answer, which counts the number of 3-permutations from a 

10-element set, is also commonly expressed as 
10

7

!

!
 (more generally, 

n

n r

!

!−( )
). We 

note that, on the one hand, this expression is simply an efficient way to write that 
product because the 7! in the denominator cancels out 7! in the numerator, leaving 
only 10·9·8, which is the product we desire. However, there is also a way to view 

that product 
10

7

!

!
 in terms of equivalence. Specifically, we can argue that for any of 

the 10! arrangements of the 10 horses, for a given way the first three positions finish, 
there will be 7! arrangements of the last 7 positions (for the horses who did not fin-
ish in the top 3). However, each of those 7! arrangements should only contribute to 
one outcome that we care about because we only want to count unique ways the first 
three elements can be arranged. For example, if the horses are labeled A, B, C, D, E, 
F, G, H, I, and J, and we say A, B, and C finished first (in that order), we would get 
7! permutations of the letters D through J. We contend that this is a useful way to 
reason about this expression because it emphasizes that we are dividing by sizes of 
equivalence classes. This is a way of thinking about the problem that we think is 
valuable for students, both because it orients students to think about sets of out-
comes (Lockwood, 2013, 2014) and because such thinking arises in a variety of 
combinatorial settings (see Lockwood & Reed, 2020, for additional insight into an 
equivalence way of thinking in combinatorics). Indeed, if well understood, this way 
of thinking can be a valuable resource in approaching counting problems.2 This 
problem has the potential to reinforce equivalence as a useful way of thinking about 
counting, and it provides a combinatorial (and not simply numerical) justification of 
the formula. In the teaching experiment, then, we asked students to consider this 
alternative perspective on their answer to the problem.

1 Broadly, the multiplication principle (sometimes referred to as the Fundamental Principle of 
Counting; e.g., Richmond & Richmond, 2009) is the idea that if a problem can be broken down 
into successive stages, and if the number of options at each stage is independent of the choice of 
options in any previous stages, then we can multiply the number of options at each stage to find the 
number of outcomes of the problem. We prefer Tucker’s (2002) statement of the multiplication 
principle. See Lockwood, Reed, and Caughman (2017) and Lockwood and Purdy (2019a, 2019b) 
for additional discussions of the multiplication principle.
2 We highlight the importance of this equivalence way of thinking in combinatorics, but reasoning 
about equivalence is a vital aspect of mathematical reasoning that has widespread applications in 
a variety of domains, such as abstract algebra and in reasoning about equivalence classes more 
broadly. Thus, there is perhaps an additional motivation to foster reasoning about equivalence that 
extends beyond just the combinatorial context.
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8.2  Theoretical Perspectives

8.2.1  Actor-Oriented Transfer

In this chapter, we adopt an actor-oriented view of transfer. This perspective, which 
we outline in this section, is manifested mainly through our methodology and our 
attention to student-generated connections (and, in particular, one student’s repeated 
references to the particular Horse Race problem). Lobato (2003) introduced the 
term AOT, which she described as a shift from “an observer’s (expert’s) viewpoint 
to an actor’s (learner’s) viewpoint by seeking to understand the processes by which 
individuals generate their own similarities between problems” (p. 18, emphasis in 
original). Lobato and Siebert (2002) described AOT as “the personal construction of 
relations of similarity between activities, or how ‘actors’ see situations as similar” 
(p. 89). Lobato (2012) distinguished between a more traditional view of transfer and 
an actor-oriented perspective on transfer:

From a mainstream cognitive perspective, transfer is characterized as “how knowledge 
acquired from one task or situation can be applied to a different one” (Nokes, 2009, p. 2). 
From the AOT perspective, transfer is defined as the generalization of learning, which also 
can be understood as the influence of a learner’s prior activities on her activity in novel situ-
ations (Lobato, 2008, p. 233).

Lobato (2012) went on to explore five dimensions across which the mainstream 
cognitive perspective and the actor-oriented perspective of transfer differ: “(a) the 
nature of knowing and representing, (b) point of view, (c) what transfers, (d) meth-
ods, and (e) goals” (p. 234). We do not detail each of these dimensions, but we 
highlight that there are different kinds of evidence one looks for when studying 
these respective views of transfer. In the traditional transfer perspective, evidence of 
transfer is illuminated through “paired tasks that are similar from the researcher’s 
point of view” (Lobato & Siebert, 2002, p. 89). In AOT, however, evidence of trans-
fer is revealed “by scrutinizing a given activity for any indication of influence from 
previous activities and by examining how people construe situations as similar” 
(Lobato & Siebert, 2002, p. 89). Indeed, methods for uncovering instances of AOT 
consist of closely examining students as they work and seeing what connections 
students make to previous situations.

It is important for us to emphasize that, in this chapter, the AOT perspective is 
evident in our focus on connections that students (and not experts) initiated among 
situations. That is, rather than seeing if students could apply prior knowledge, we 
looked to examine ways in which students (and in our case, a particular student) 
made connections among problems. This view is reflected in our methodology, as 
we are qualitatively examining a student’s language and activity to better under-
stand the connections they are making. We want to clarify that sometimes these 
connections are expected (or, as Lockwood, 2011, would say, “conventional”) in the 
sense that they align with connections the mathematical community might approve. 
So, some of the episodes described in this chapter still represent examples of AOT 
even though the student was making conventional connections. Further, our use of 
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AOT allows us to focus on particular aspects of Carson’s work that traditional trans-
fer might not prioritize or acknowledge. Specifically, we can focus less on Carson’s 
performance only (and whether or not he correctly solved a novel problem), but 
rather, we can examine his explanations, ways of reasoning, and personal relations 
of similarities. We view this as an affordance of the AOT perspective that gives us 
richer insights into Carson’s thinking and activity.

Finally, we also point out that the AOT perspective views transfer as involving 
both psychological and social aspects, whereas a traditional transfer perspective 
focuses on a purely cognitive perspective (e.g., Lobato, 2012, 2014). Our study 
involves interaction between a small group of four students, and this design allows 
us to examine social (and not just psychological) factors that might occasion trans-
fer. This is another way in which our use of an AOT perspective affects our design 
and data analysis, and, as we share our results, we will point to times in which social 
engagement seemed to contribute to instances of transfer.

8.2.2  Mechanisms for Student Reasoning

We make use of constructs from Piaget’s genetic epistemology (Piaget, 1971; von 
Glasersfeld, 1995) to support our use of AOT in analyzing Carson’s work. We iden-
tify aspects of Carson’s learning and understanding of the Horse Race problem that 
influenced his effective leveraging of the problem to solve subsequent counting 
problems. This radical constructivist approach considers knowing and learning to 
be inextricably linked to mental activity in the form of applying cognitive structures 
called schemes (Piaget, 1971; Thompson, Carlson, Byerley, & Hatfield, 2014). 
Succinctly put, schemes are “organizations of mental activity that express them-
selves in behavior, from which we, as observers, discern meanings and ways of 
thinking” (Thompson et al., 2014, p. 10). Hypothesizing aspects of a thinker’s men-
tal structures by analyzing their utterances and observed mathematical activity 
allows us to discuss how students develop and make changes to their mathematical 
knowledge over time as they engage in specific tasks. We define knowing as the 
“conferring of meaning” to an object or concept in reference to previously con-
structed schemes (Jonckheere, Mandelbrot, & Piaget, 1958, p. 59), and we use the 
phrase “assimilate to a scheme” (Thompson, 2013, p.  60) to describe this. 
Assimilation is accompanied by the interrelated process of accommodation, which 
is the mechanism through which learning occurs as a thinker alters her scheme due 
to unexpected aspects of an experiential reality inconsistent with structures to which 
she assimilates (von Glasersfeld, 1995, p. 66). In this way, knowing and learning 
rely on the assimilation and accommodation of mental activity being organized into 
flexible and malleable cognitive structures.

Subsumed within the mechanism of accommodation is the construct of abstrac-
tion, which accounts for certain changes to a thinker’s schemes characterized by the 
borrowing and repurposing of operations to higher levels of cognitive activity 
(Piaget, 1977, 2001). This specifically occurs through “projection (as if by a 
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reflector) onto a higher level of what has been drawn from the lower level” and 
“‘reflection’ involving a mental act of reconstruction and of reorganization on this 
higher level of that which has been thus transferred from the lower one,” a process 
we specifically identify as reflective abstraction (Piaget, 1977, p. 303).

Our aim is to leverage these constructs from Piaget’s genetic epistemology to 
complement our use of the AOT perspective with a fine-grained analysis of the cog-
nitive elements informing Carson’s engagements in transfer. We aim to unpack rel-
evant aspects of Carson’s developing schemes for counting specific combinatorial 
scenarios, and we seek to demonstrate coherence between Carson’s assimilatory 
mechanism and instances of transfer as being unified in the carrying out of specific 
mental acts. Specifically, we will demonstrate that many of Carson’s engagements 
in transfer were occasioned by his repeated assimilation to a counting scheme that 
coordinated the structure of outcomes as being inherently similar to his coordina-
tions of the Horse Race outcomes. We will also demonstrate the abstractions through 
which Carson transformed his knowledge structures to facilitate such 
assimilations.

A key aspect of such analysis is attention to Carson’s conveyed mental acts (we 
will use the term operations) and the combinatorial objects on which Carson envi-
sioned carrying out such acts. We feel that this engagement with the cognitive sub-
tleties of Carson’s instances of transfer provide a consistent narrative supporting the 
utility of the AOT perspective in mathematics education research, which we will 
demonstrate and discuss below.

8.3  Methods

8.3.1  Data Collection

The data presented in this chapter are part of a broader study in which we were 
examining the role of generalization in the context of combinatorics. We have 
reported on some details of the study and on Carson’s initial work on the Horse 
Race problem in particular, elsewhere (Lockwood & Reed, 2018), but we elaborate 
additional data and adopt different perspectives than we reported previously. For the 
broader study, we conducted a small-group teaching experiment that consisted of 
nine 90-minute sessions with four undergraduate students, during which the stu-
dents solved a variety of counting problems. We recruited the four students from 
vector calculus courses based on selection interviews and scheduling availability. 
We sought novice counters who were willing to engage with the material and com-
municate their ideas. By novice counters, we mean students who were not familiar 
with basic counting formulas and who would not simply try to recall such formulas 
during the study; through selection interviews we determined that this was the case 
for each of the students. The students sat at a table facing each other and wrote their 
individual work on sheets of paper. We videotaped and audiotaped each session.
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A teaching experiment (Steffe & Thompson, 2000) includes teaching episodes 
that consist of several main elements: “a teaching agent, one or more students, a 
witness of the teaching episodes, and a method of recording what transpires during 
the episode” (p.  273). Steffe and Thompson (2000) say that a main purpose for 
implementing this teaching experiment methodology is to allow for “researchers to 
experience, firsthand, students’ mathematical learning and reasoning” (p. 267). In 
teaching experiments, researchers can examine students’ reasoning over time and 
see how they think about and learn particular content or mathematical ideas. We 
have reported about the data collection elsewhere (Lockwood & Reed, 2018; Reed 
& Lockwood, 2021), and we do not include too many details here because we are 
most interested in one of the student’s work. Broadly, throughout the teaching 
experiment, the students engaged in a number of different kinds of activities. In the 
first three sessions, they solved a variety of counting problems and then categorized 
and characterized those problems to articulate general formulas for some key prob-
lem types, including permutations and combinations (see Reed & Lockwood, 2021, 
for more details of their categorization). In subsequent sessions they solved more 
counting problems and worked on proofs of binomial identities. The Horse Race 
problem, described above, is the main problem we emphasize as we analyze 
Carson’s connections to other problems. We also describe several other problems 
Carson solved, but we will outline details of those problems in the results.

We focus on the work of one particular student over the course of several ses-
sions of a teaching experiment. Carson was a student enrolled in vector calculus. 
His selection interview revealed that he was an insightful and resourceful problem 
solver who could reason through problems he had not seen before. During the teach-
ing experiment, he was a strong student who often provided insights for the group 
and could explain and justify his reasoning. We focus on Carson in this chapter 
because as we reviewed the teaching experiment data as a whole, we realized that 
he returned several times to the Horse Race problem, connecting back to it in mul-
tiple ways. We were interested in examining this phenomenon more closely, and so 
we sought to trace Carson’s references to (and uses of) the Horse Race problem 
throughout the experiment. Again, we note that we examined Carson’s use of the 
Horse Race problem from an AOT perspective, and doing so affected where we 
looked for evidence of transfer. We looked not at his performance on subsequent, 
similar (to us) tasks, but rather, we examined Carson’s own explanations, ways of 
reasoning, and personal relations of similarity, as seen in his language and activity 
throughout the rest of the experiment.

8.3.2  Data Analysis

The interviews were all transcribed, and we made enhanced transcripts in which we 
inserted relevant images and descriptions into the transcript. For the data analysis 
for this paper, we first searched the transcripts for any mention of the Horse Race 
problem. This involved searching for words such as horse, race, racing, ranking, 
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podium, etc. This yielded episodes in Sessions 1, 2, 3, 7, and 9 (out of 9 total ses-
sions). We then reviewed the transcripts of those episodes and identified instances 
in which Carson referred to the Horse Race problem (either by name or by making 
some explicit connection to racing, rankings, or podiums, which we infer as being 
inherently connected to that problem). Then, for each episode, we analyzed in what 
broad context Carson referred to the problem, looking from Carson’s point of view 
at what explanations, justifications, and connections he himself made. In doing this, 
we considered Lockwood’s (2011) framework for characterizing AOT, and we iden-
tified the kinds of connections Carson made in each case: elaborated or unelabo-
rated, conventional or unconventional, and referent type. Then, we described 
specifically how Carson used the problem and the nature of the connection he made 
with the given context. Lobato (2006) says the following about data analysis:

In contrast, evidence for transfer from an actor-oriented perspective is found by scrutinizing 
a given activity for any indication of influence from previous activities and by examining 
how people appear to construe situations as similar using ethnographic methods, rather than 
relying upon statistical measures based on improved performance (p. 436).

Following Lobato (2006), we scrutinized what Carson was doing in these episodes 
and what connections he seemed to make. These methods of analysis were funda-
mentally informed by our use of an AOT perspective, and we used different methods 
for observing instances of transfer than we would have had we adopted a more 
traditional perspective.

8.4  Results

In this section, we explore some of the variety of ways in which Carson lever-
aged the Horse Race problem over the course of the teaching experiment. We 
first present Carson’s thinking and activity on relevant tasks prior to his work on 
the Horse Race problem to establish some of his initial ways of operating. Then, 
we describe Carson’s initial work on the problem, and we feel this is particularly 
noteworthy because it gives potential reasons for why the problem became so 
important for him. Then, we discuss several episodes in which he referred back 
to the Horse Race problem, and we demonstrate several ways in which he used 
the Horse Race problem that suggest transfer (and AOT in particular). Throughout 
this section, we attempt to make connections with Carson’s thinking and frame 
our analysis of his work in terms of constructs described in the section on mecha-
nisms for student reasoning, and we also highlight ways that the AOT perspec-
tive allows for extensions of such analysis. We also note that although we 
ultimately want to focus on Carson’s work, we occasionally include some of the 
other students’ comments because these at times help to contextualize Carson’s 
comments and activity.
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8.4.1  Carson’s Work Prior to the Horse Race Problem

Carson first demonstrated proficiency in working with multiplicative structures dur-
ing the selection interview, where he successfully solved five problems. Carson’s 
first engagement in transfer involved identifying a structural similarity between the 
following two counting problems: “How many ways are there to arrange five num-
bers in a row?” (the answer is 5!) and “How many ways are there to flip a coin, draw 
a card from a standard 52-card deck, and roll a 6-sided die?” (the answer is 2·52·6). 
He justified this claim of similarity by appealing to the construction of independent 
events in both processes that would imply a solution via successive multiplication.3 
Carson described the independent events in arranging numbers, which demonstrates 
aspects of his developing scheme:

Carson:  Right, so like the 1 has 5 possible outcomes. And where the 1 ends up, it 
does kind of decide where the 2 can end up, because it takes away one of 
the 5 possible outcomes for the 2. Which means there’s going to be 4 
possible outcomes, but which one of those 4 it ends up on is kind of 
independent of where the 1 ends up right? So it’s not gonna, where 1 
ends up isn’t going to change the number of outcomes for 2, so they are 
independent events. I guess in reality they are not independent but for 
the math they are.

We interpret that he was coordinating a new scheme involving multiplication and 
independent events in a sequence that he could (and would) apply in subsequent 
counting sessions. Specifically, the scheme that Carson developed through his ini-
tial engagement with these counting problems involved coordinating the construc-
tion of an outcome through a sequence of independent choices, resulting in a 
sequence of products that enumerated the outcome set. We refer to this perceived 
outcome structure generally as a multiplicative structure4 involving the coordina-
tion of combinatorial objects that can be enumerated multiplicatively. We refer to 
the outcome of such a multiplicative structure as a multiplicative outcome.

Carson assimilated to this multiplicative structure while solving the first problem 
given in Session 1 of the teaching experiment, involving arrangements. This first 
problem, the Line problem, asks “How many ways are there to arrange 5 children in 
a line for recess?” He described arranging five kids in a line by having five choices 
for the position of the first kid, then four choices for the next kid, and so on, result-
ing in a multiplicative outcome (Fig. 8.1). Carson’s language suggests implementa-
tion of this same multiplicative structure from his selection interview. Specifically, 
this was the first instance in the teaching experiment of him assimilating to his new 
(and developing) scheme for coordinating multiplicative combinatorial objects.

3 Although it is possible that Carson was recalling some basic combinatorial structures from high 
school algebra, Carson’s problem solving in each task throughout the selection interview appeared 
to be novel. We thus infer that Carson was constructing new schemes through each activity in the 
selection interview.
4 Our use of the word structure rather than scheme is to convey the instability of his understanding 
in his initial work, which, through repeated use, would eventually stabilize to a scheme.
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Fig. 8.1 Carson’s work on arranging five 
people in a line

Another illuminating assimilation occurred when he solved the MATH problem 
(“In how many ways can we rearrange the letters in the word MATH?”), also during 
Session 1 of the teaching experiment.

Carson:  Well, each letter is a kid in line.
Interviewer:  Okay, say more about that.
Carson:  So, it’s the same problem. It’s what we just did.
Aaron:  You mean 4! in this case.
Interviewer:  Okay, and what makes you make that association?
Carson:   Well, if you have 4 kids and their names are Matt, Alice, Theo and 

Hanson, then you number them 1, 2, 3, and 4.

In this instance, not only did Carson assimilate to the same multiplicative struc-
ture, but he justified his perceived similarity by making direct identification of the 
outcomes of the MATH problem to kids in a line from the previous Line problem. 
In particular, Carson spontaneously suggested that he could associate the objects 
being arranged in the MATH problem (M, A, T, and H) with objects arranged in the 
Line problem (the names of specific kids). His mental activity in this instance can 
be modeled as constructing an isomorphism between the outcomes. Carson explic-
itly identified the letters as individual children, naming the children “Matt,” “Alice,” 
etc. This naming served the purpose of making a correspondence as if defining a 
bijective function from the set of 4 kids to the set of first letters in their names. We 
use the term isomorphism to convey that his identification communicated a per-
ceived combinatorial structure on top of his explicit bijection. We argue that this 
itself is an instance of transfer, where the referent (what is being transferred) is the 
set of outcomes, where Carson was formulating a connection from one set of out-
comes (arrangements of M, A, T, and H) to another set of outcomes (arrangements 
of kids). Here, Carson’s transfer served as a means of explicating what he perceived 
to be a similar structure between the two situations, thus implying a course of action 
that would generate a solution to this new problem. Thus, Carson’s engagement in 
transfer in this way was occasioned both by his cognitive associations and, we 
would argue, also by the social component of his interactions with the interviewer 
and other participants.

Carson additionally described a process of arranging the M, then holding it 
constant and arranging the A, and so on, again conveying the sequence of “inde-
pendent events” that he described when arranging 5 numbers (from the selection 
interview).
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Carson:   So, we locked in the first letter, so we have 4 options what the first letter 
can be and then for each option for the first letter we have 3 options for 
what the second letter can be, so that’s 3 sets there. And then, for each 
second letter there’s gonna be 2 more options, that means we have 3 sets 
of 2. And then, for that third letter if you were to group those together 
there’s–oh, I’m sorry once the first 2 letters are constant there’s only 
one more option.

Carson’s comments were made in the context of discussing why 4·3·2·1 made 
sense as a solution and involved him organizing a list of outcomes, thus demonstrat-
ing that he reasoned according to the multiplicative structure in this new MATH 
problem. This supports that his developing scheme involved completing an inde-
pendent sequence of events in a multiplicative manner.

Thus, in summarizing Carson’s work prior to the Horse Race problem, we note 
that he paid attention to the multiplicative enumerations of counting problems, 
which was in line with envisioning a sequential counting process broken down into 
independent events. Beginning with n-permutations, Carson’s assimilatory mecha-
nism involved recognizing individual outcomes as being the results of ordered 
sequences of events. Further, we have an initial instance of Carson leveraging an 
isomorphism construction as a means of explicating a perceived multiplicative 
structure, a component of his engagements in transfer throughout the teaching 
experiment. So, in approaching the Horse Race problem, Carson (a) had experience 
with reasoning about multiplication in counting as involving independent events 
and (b) could construct isomorphic relationships between the set of outcomes in one 
counting context with another. This initial analysis of Carson’s thinking provides 
the context in which future abstractions shaped Carson’s engagements in transfer, 
and it also demonstrates both the cognitive and social aspects of Carson’s activity 
(which is an affordance of the AOT perspective). We now share Carson’s initial 
experience with solving the Horse Race problem, which will set the stage for sub-
sequent discussions of his work.

8.4.2  Carson’s Initial Experience with the Horse 
Race Problem

We discuss the episode of Carson’s initial work on the Horse Race problem in some 
detail because we think it is important to see how this problem developed for him. 
In particular, we view this as an instance of abstraction through which Carson con-
structed a new scheme that incorporated an equivalence way of thinking, which is 
something he would later leverage as he constructed additional isomorphisms when 
engaging in transfer. This account suggests that Carson’s solving of the Horse Race 
problem was formative, and that the resulting abstraction provided him a means of 
productively engaging in transfer in future episodes.

E. Lockwood and Z. Reed



185

We gave this problem to the students as part of an initial set of 14 problems in the 
first two sessions of the teaching experiment. In Session 1, the interviewer posed the 
problem for the students and had them think about it individually.

Interviewer:  Great, love it. Now, I’ll have you work on this one, maybe a little 
think time first. So, I’ve got 10 horses in a race, how many different 
ways can the horses finish first, second and third place?

Interviewer: Okay, so tell me what did you guys get.
Anne-Marie:  So, I did it the same way as before, I know we have 3 places and 

then first place you have 10 horses that can be in first place, and so 
if you look at second place you only 9 now, because 1 horse already 
has first place. So, you have 9 horses left to choose from for that 
second place, and once you choose one for second place now you 
only have 8 left to put in third place. So, you have 10 times 9 times 
8 to get your total amount.

Interviewer: Okay, great. And, you said something.
Aaron:  Yeah, the way that she did it is right. I thought that there would be 

10 different unique, like the same horse could – how do I explain 
this, 10 horses could be in the same place, but it’s 10 times 9 times 
8, because you are already using up one of the combinations on 
previous.

Interviewer: Great, like, yeah – go ahead.
Carson:  If you think about it in the real world, like anything can happen mid 

race, like a meteor could come and hit the horses and then the dif-
ferent one wins than you thought was going to. But, after the first 
one finishes there’s still 9 horses on the race track, so there’s 9 dif-
ferent ways that the next horse could cross the line and then after 
that second-place horse has finished, there’s still 8 horses on the 
race track, so any of those 8 horses could take third. So, 10 times 9 
times 8 (Fig. 8.2).

Initially, then, all three of the students seemed to have used the same approach, and 
they arrived at the correct product of 10·9·8, arguing that the number of options 
decreases to 9 after the first horse finishes, and then to 8 after the second horse fin-
ishes. The students had all arrived at the same answer and seemed confident. We 
note that Carson said that anything could happen in the race to change the order of 
the racing horses (including a meteor strike), but as soon as that first horse crossed 
the finish there were then 9 horses left that could be arranged. This highlights 

Fig. 8.2 Carson’s initial 
written work on the Horse 
Race problem
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Carson’s assimilation to his multiplicative scheme involving the imagining of a 
sequence of independent events that would be enumerated multiplicatively, which 
he had established earlier in the interviews.

We also wanted to see if and how the students could reason about the solution to 

the problem 
10

7

!

!
 not just numerically but combinatorially (as discussed above in the 

Mathematical Discussion section). In light of this, the interviewer asked the stu-

dents how their initial answer of 10·9·8 would relate to a solution of 
10

7

!

!
. One of the 

students, Aaron, noticed that it would be the same number because cancellation of 
terms in 10! and 7! would occur, and Carson agreed. Thus, the students had seen 
that they could numerically simplify the expressions to yield the same value, but 
again, the interviewer wanted to see if they could make sense of this quotient com-
binatorially and in terms of equivalence. The interviewer asked the students to 

explain why 
10

7

!

!
 might make sense “aside from the fact that it’s numerically equiva-

lent to 10 times 9 times 8.” The students worked for several minutes, and in the 
excerpt below, we see that Aaron noted that he could not explain the quotient com-
binatorially. Ultimately, Carson was the only student who seemed able to make 
sense of the situation, and he explained his thinking below.

Interviewer: What are you thinking about so far, it’s a hard question?
Aaron: Yeah, I can’t see it right now.
Carson:  So, the way I’m thinking about it, is that we know kind of the method 

to get the number of ways that 10 horses can finish a race, and that’s 
10!, and that something we did, like kids in line. So, it’s the same 
problem there. So, there’s 10! total outcomes, and then we know for 
any given first 3 there’s going to be 7!, because that’s saying we 
know the first 3 horses have finished, how can the last 7 horses fin-
ish, so that’s going to be 7!. But all we care about is how many given 
first 3 s there are. So, if we divide the total number of outcomes by 
the number of potential of outcomes for the last 7 horses that will 
give us the potential number of outcomes for the first 3. If that 
makes sense?

We suggest that the underlined portion represents an instance of transfer, with 
Carson referring back to a particular problem (the Line problem) and relating it to 
arranging 10 horses in a race. He then built from that to make a case about why divi-
sion by 7! might make sense. Carson’s explanation of the solution was that the 10! 
represented arranging all 10 horses, and that for any given first 3 there were 7! ways 
the remaining 7 horses can finish. Then, division by those 7! ways of arranging the 
last 7 horses gave the number of outcomes for how the first 3 could finish.

We argue that this discussion contributed to Carson’s deeper understanding of 
this phenomenon and that justifying this idea provided a context for Carson’s under-
standing of permutations in which he could ground and develop important ideas. 

In particular, the prompt to explain the 
10

7

!

!
expression combinatorially facilitated a 
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significant moment of accommodation for him. He had to abstract key operational 
aspects of his previous scheme to accommodate this new mathematical phenome-
non. We contend that Carson envisioned carrying out a specified sequence of events 
(counting ways that 7 horses could finish a race) within the context of a larger 
counting process (counting ways that 10 horses could finish a race), and he coordi-
nated the multiplicative structures of the specific desired sequence and the more 
general counting process. Notice that Carson first described arranging 10 horses, 
and then he described arranging the total 7 horses after the first three finished. This 
is similar to his sequencing of individual events, but he was now conceiving of these 
as together comprising a broader two-stage process. We infer that rather than count-
ing the number of potential outcomes of the next event, he imagined a new indepen-
dent counting process to occur after the first three horses finished (the italicized 
portion of the above quotation). As we will further discuss below, Carson’s accom-
modation entailed a reflective abstraction of key operations from his multiplicative 
scheme to construct a new scheme that coordinated new operations accounting for 
equivalent outcomes.

The interviewer recognized that Carson’s answer was correct and saw that 
Carson seemed to understand the problem, but she wanted to emphasize the point 
for Aaron and Anne-Marie, neither of whom seemed totally convinced. They then 
proceeded to have a bit more discussion; in this case, the interviewer sought to help 
the students reason about equivalence. We view the next exchange as an interven-
tion, in which the interviewer tried to help students make sense of equivalence in 
counting (and to develop an equivalence way of thinking). By taking the time to 
explore this idea of equivalence more deeply on this problem, we note that this dis-
cussion provided additional opportunity for Carson to continue to develop his think-
ing and to explain his thinking to his fellow students. He repeatedly used the Horse 
Race problem and the idea of a podium as a means to explain the phenomenon, and 
this episode also emphasizes the way that social interaction can influence transfer, 
something that an AOT perspective affords (and something for which a more tradi-
tional perspective would not explicitly account). We contend that, in this case, the 
social interaction of explaining to other students about equivalence seemed to play 
a part in facilitating Carson’s explicit use of the Horse Race problem as a way to 
articulate important aspects of equivalence upon which he would later draw.

The interviewer then asked why division instead of subtraction made sense to 
Carson, seeing if he could provide an explanation to his fellow students. Here, the 
interviewer wanted to give Carson the opportunity to explain rather than for her 
simply to tell the students why division made sense.

Interviewer:  That’s fair. So, you agree that it’s 7! for any one of these, but why 
are we dividing? Okay, that’s a great question. Why do you think 
you’re dividing instead of subtracting?

Carson:  So, for any arrangement of the first 3, so for any 1, 2, 3, we have 7! 
options for the rest of them. And, what we’re being asked for is to 
find how many arrangements in the first 3 there are. So, that 7! is 
only gonna be worth one of the things we are looking for, which is 
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the podium finishers. So, if we divide the total number of the com-
binations for this last bit we can get, while holding these 3 constant, 
by 7! we’re gonna get 1. Because 7! over 7! is 1. But, the total 
arrangement is 10!, and if we divide that by 7! we’re gonna get just 
the number of arrangements there are for the first 3.

The underlined portion again highlights the equivalence way of thinking Carson 
was bringing to this problem, and it suggests that he realized that for any arrange-
ment of the first three horses, there were 7! equivalent ways to arrange the remain-
ing horses who do not finish. His language again reflected a new (and still stabilizing) 
scheme of coordinating two multiplicative counting processes with the collection of 
outcomes that isolated a desired subsequence of events. His language of “holding 
these 3 constant” reflected operations that he had used in his previous multiplicative 
scheme, which were being coordinated with the ways the first three and the last 
seven horses could finish the race.

While continuing this discussion, Aaron talked about seeing groups of objects 
and dividing by the size of the groups (he was referring to groups generally and not 
necessarily to horses or to a particular context). Carson picked up on this and again 
tried to explain the problem, connecting the idea of groups to the “podium” of the 
three horses that finished the race (see Fig. 8.3). In this instance, Carson was refer-
ring back to their arrangements of kids in a line and pointing to Aaron’s written 
work on the problem.

Carson:  Well, that’s sort of what you’re doing, doing this too. So, like this is a 
group. Or [pauses] this here is a group, or this is the podium [points to 
the first six numbers], those first 6 places are the podium, these [the 
arrangements of 7 and 8] are the number of combinations for the end for 
the tail is what she was calling it. Or this is the podium [points to the first 
5], the first 5 places at the podium and that’s the number of combinations 
for the end [the arrangements of 6, 7, and 8]. So, if I wanna find the total 
number of ways the podium can finish, it would be the entire thing 
divided by the size of the group.

Fig. 8.3 Carson describes 
equivalent arrangements 
of groups
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Both of Carson’s above descriptions of why division made sense further illumi-
nates a component of his new scheme, specifically the use of a representative ele-
ment of the equivalence class of 10 arranged horses with the first three (or five or six 
as he mentioned above) horses fixed. This is consistent with his sequential construc-
tion of a desired outcome, where Carson’s abstracted scheme leveraged a particular 
outcome as a representative of a class of outcomes, and this was in line with an 
equivalence way of thinking. We suggest that this was a reflective abstraction of his 
scheme for creating independent events in which he made a sequence of choices for 
placing objects in a number of positions, or “slots.” The projected operation was the 
sequencing of events resulting in a multiplicative operation, which he then reflected 
to incorporate the equivalence structure into his new scheme by arranging the 
remaining outcomes. We argue that, in this case, the Horse Race problem was very 
salient for Carson, and we will see that his new scheme incorporated the specific 
Horse Race context as language through which he could engage in transfer while 
articulating certain ideas to his peers. Again, this demonstrates the interaction 
between the cognitive and social elements that the AOT perspective affords, in that 
Carson’s abstracted constructs provided him with specific means of communicating 
to his peers the mathematical structures he would later encounter in his combinato-
rial activity throughout the teaching experiment.

Moreover, he (twice) explained this reasoning to his fellow students, and he did 
so by using either the problem context directly (mentioning a horse race) or specific 
features of the problem (such as a podium or a race). We feel that these factors con-
tributed to the problem achieving particular importance for him, and, as we will see, 
Carson continued to use the Horse Race problem itself (or features of the problem) 
as referents in a number of additional contexts. Cognitively, we view the following 
instances of transfer in the remainder of this chapter as primarily deriving from 
Carson assimilating to this newly abstracted scheme that attended to the multiplica-
tive structure of the outcomes he was counting. In this way, our use of Piaget’s 
constructs enable us to present a unified account of the cognitive elements behind 
Carson’s effective engagements in transfer, which typically involved use of some 
isomorphism.

8.4.3  Carson’s Use of the Horse Race Problem as a Referent 
and His Formulation of Isomorphism

We now offer an example of how Carson made connections to the Horse Race prob-
lem on subsequent occasions in the interview. This came about in a couple of differ-
ent ways and contexts. Here, we focus on how he made explicit connections to the 
Horse Race problem when solving new problems, and his work suggests to us that 
his uses of transfer were supported by assimilation to his newly abstracted scheme 
for permutation problems that involved envisioning a specific sequence of indepen-
dent events that resulted in an equivalence structure. We would characterize this as 
a conventional, elaborated connection (in the sense of Lockwood, 2011) because 
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Carson made connections to problems that we might conventionally consider to be 
isomorphic. We also emphasize the role that the set of outcomes played in Carson’s 
development and uses of isomorphism. We highlight two episodes in which Carson 
made connections to new problems.

We first emphasize a situation at the end of Session 1, when the interviewer gave 
them the Book problem: “You have 7 books and you want to arrange 4 books on a 
shelf, where their order on the shelf matters. How many ways are there to do this?” 
The students all answered the problem correctly, and they seemed able to make 
sense of it as being similar to the Horse Race problem. Aaron related it to the previ-
ous Horse Race problem, saying, “It’s the same type of problem,” and Anne-Marie 

said that she was “looking at what we were just talking about.” They both explained 

that the answer would be 
7

3

!

!
, although they did not explicitly make a connection to 

elements of the Horse Race problem and why it was similar to the current problem.5 

When Carson explained his work, we see that in explaining his answer of 
7

3

!

!
 for the 

Book problem, he explicitly made a connection to the previous Horse Race prob-

lem. Even more, though, we emphasize that, in doing so, he actually changed the 
language of the given Book problem to match salient language in the Horse Race 
problem, notably, talking about books racing.

Carson:  Yes, kind of similar to the horse problem, you can say they’re all in a 
race, you want see how many ways the first 4 books could finish in the 
race. So, the equivalent, you could think about you got a bunch of books 
and a bucket, and you’re reaching in and grabbing one randomly to put 
on the first spot on the shelf. So, you have 7 options for that first one and 
then there’s already a book on the shelf, so there’s only 6 left in the 
bucket and you’re going to grab one randomly and put it on the second 
spot, so 6 ways that could come out for the second spot and onwards to 
the fourth spot. So, it’s just 7 options times 6 options, times 5 times 4. I 
think about it in the grouping again and do 7! divided by 3!

It is interesting to note that Carson made a clear connection to the objects in the 
current Book problem (books) to objects in the Horse Race problem (horses), and 
he could think of the books as competing in a race.

In this episode, we again argue that Carson engaged in transfer by creating an 
isomorphism. His description of the books finishing a race is an instance in which 
he used the outcomes as referents by articulating a bijection between outcomes that 
preserves a perceived combinatorial structure. Further, we see evidence of Carson’s 
assimilatory mechanisms at play. First, he gave a clear description of sequencing the 
placing of books that was similar to the way he described the horses being sequenced 

5 We note that Aaron and Anne-Marie were similarly making connections to prior problems, and 
these utterances represent instances of transfer. However, we continue to focus primarily on 
Carson’s work.
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in a race. Carson conveyed both the borrowed multiplicative operations as well as 
his new attention to equivalence in his last two sentences, where his appeal to 
“groupings” was reminiscent of the groups of podiums he had previously con-
structed in the Horse Race problem. Importantly, Carson was not just noting that the 
solution activity was the same, but even more, he seemed to recognize that the com-
binatorial structure was isomorphic.

Carson again engaged in a similar moment of transfer when solving the Cats and 
Collars problem (which states: “You have a red, a blue, a yellow, and a purple collar 
to put on seven cats, where no cat will get more than one collar. In how many ways 
can you give the four collars to seven cats?”). The students worked on this problem 
during Session 2. This problem was slightly more challenging for the students, and 
it took them some time to make progress on the problem and arrive at a solution. 
After several minutes of reasoning about the problem, the students correctly agreed 

that the answer should be 
7

3

!

!
. They argued that, in this case, they had four slots or 

positions that represented the collars, and then they considered choices for which 
cats could go into each collar. There is a noteworthy feature of this problem, which 
is that it is perhaps not clear how to encode the problem and whether it makes sense 
to think about giving the cats to the collars or giving the collars to the cats. In the 
following exchange, we highlight a productive discussion that all of the students 
had about this problem, where they were trying to explain why having the spots 
represent the collars would make sense.

Josh:   Yeah, I recognize that it was 7! over 3! and I actually drew seven spaces 
at first for the seven cats but I found that this was clearer for saying that 
their collars were the spaces.

Aaron:  Yeah, I did that, too.
Josh:   Because it represents this more clearly, I think. […] You can actually see 

where this can come into play here because you have seven spaces and 
three of the spaces can’t be filled. So, you can say that this is 7! over 3! 
just like this.

The interviewer then asked for some clarification (seen in the excerpt below), ask-
ing the students how they were thinking about distributing cats to collars (and not 
vice versa). We note that here, the interviewer was genuinely trying to think about 
their idea and to get a sense of whether their approach made sense.

Interviewer:   Yeah, so are you thinking of those A, B, C, Ds as being fixed, then, 
and you’re arranging the spots around those A, B, C, Ds?

Carson:   Yeah, so that’s how I thought about it is you have four spots and – 
It’s a race, right, and the cats that get first, second, third, and fourth 
get collars. Right? So, seven cats can get the first collar, onward to 
the fourth collar and then, the last three cats, it doesn’t really matter 
what place they come in in that race because they’re not going to get 
collars. Right? But there are 3! ways that those last three cats could 
finish so you need to divide the total number of outcomes for the 
race by those 3! for the last place.
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Interviewer:  Okay. And you feel like that’s reflected in this as much as in that?
Aaron:  Yes.
Carson:   Right. Well, it’s a little like you see the empty spaces that are going 

to get arranged when you represent the cats with the spaces rather 
than the collars.

In the underlined portion, we see that Carson again connected the Cats and Collars 
problem to a racing context. He explicitly says, “it’s a race, right?” and later talks 
about ways cats “could finish.” As with the Book problem, Carson drew an explicit 
isomorphism to identify the outcomes as having the same assimilated combinatorial 
structure as the Horse Race problem (i.e., a multiplicative structure that could result 
in equivalence classes). One aspect of AOT is that it allows researchers to look for 
how a prior learning experience influences reasoning on novel problems. In this 
case, we see evidence of such influence, where Carson’s sophisticated reasoning 
about how a certain counting process generated outcomes in the Horse race problem 
also applied to the Cats and Collars problem. The language of “cats finishing” sug-
gests the influence of the racing context on his current situation.

Again, Carson was not just using the Horse Race problem as a general referent, 
but instead, he was paying explicit attention to the outcomes as a means of describ-
ing the same assimilated structure. This attention to outcomes is not only produc-
tive, but it also demonstrates the increasing stability of Carson’s assimilated scheme. 
Further, it shows the specifics of Carson’s assimilatory mechanism underlying his 
engagement in transfer of yet another situation. Moreover, we contend that Carson’s 
engagements in transfer had a reflexive effect in that his use of isomorphic language 
was socially motivated (to explain to the interviewer or his peers), and this repeated 
articulation of the multiplicative structure he was perceiving further stabilized his 
scheme associated with the Horse Race problem. Indeed, this episode, and the 
lengthy exchange among all four students, highlights that AOT allows for consider-
ing the influence of social interaction on the emergence of transfer. The elaborated 
connections between the Cats and Collars problem and the Horse Race problem 
were articulated during Carson’s discussions with his peers. As an example, we 
would consider Aaron and Anne-Marie’s initial comments on the book problem as 
unelaborated connections from which Carson then built to engage in isomorphic 
reasoning.

8.4.4  Carson Leveraged a Connection to the Horse Race 
Problem When Developing and Justifying a General 
Counting Formula

In Session 3, the students engaged in another kind of activity in the teaching experi-
ment. We had asked them to categorize problems they had solved, and the goal was 
for them then to use these categories to come up with and justify general formulas 
for each problem type. The categorization is described in more detail elsewhere 
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(Reed & Lockwood, 2021), but here we point out that the Horse Race problem again 
came up for Carson in this context. Specifically, Carson still used the Horse Race 
problem to describe his understanding of general permutation processes, thus lever-
aging his scheme to analyze more general phenomena than just solving another new 
permutation problem.

First, we highlight a brief reference he made to the Horse Race problem as the 
students were categorizing 14 problems that they had initially solved. They had 
categorized all of the problems involving either permutations or combinations 
together, and they were in the process of separating those problems into two groups. 
First, he put slips of paper with the Horse Race problem and the Restaurant problem 
(which states, “Corvallis has 25 restaurants, and you want to rank your top 5. How 
many different rankings can you make?”) together, and said “these two are the exact 
same problem.” Then he also added the slip of paper with the Cats and Collars prob-
lem. In the following exchange, Carson associated three colors with three places.

Carson:  So, these two are the exact same problem [the Horse Race problem and 
the Restaurant problem]. This [the Cats and Collars problem] is the 
exact same problem too because you could say red’s first place, blue’s 
second place, yellow’s third place, right?

The interviewer then explicitly asked him what he meant by problems being the 
“exact same problem,” and his response again demonstrates his use of isomorphism 
to elaborate the specific structures to which he was assimilating. Notice that, as 
before, Carson both referenced the context of a race, implying isomorphic racers in 
the race, and referenced the “podium” and dividing by the racers that did not make 
the podium, which more explicitly suggests assimilation of the equivalence struc-
ture within the set of the outcomes.

Interviewer:  Okay, great. When you say something like, “these are the exact 
same problem” can you say what you mean by that and also how 
you know that they’re – like how are they the same to you? What do 
you mean?

Carson:  So, essentially all of them are asking for a ranking of a given set of 
objects and asking how many arrangements there are for a given 
number of places, right? So, the cats are racing to get the collars 
[points to the paper with the Cats and Collars problem] you could 
say or the restaurants are racing to get the top five rankings in the 
town [points to the paper with the Restaurant problem] or the horses 
are racing in a race [points to the paper with the Horse Race prob-
lem]. Then each of the rankings or the collars are a ranking in the 
race. Yeah, then you can just divide by the duplicates for leftover 
ones, the ones that didn’t make the podium finish or whatever 
amount of finishes there are or whatever podium they’re asking for.

The students eventually categorized the problems into four groups, − arrangements 
with repetition, n-permutations (arranging n distinct objects), r-permutations 
(arranging r from n distinct objects), and r-combinations (selecting r from n distinct 
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objects). After the students had categorized problems into groups, they were asked 
to articulate and describe what that problem type was counting. Specifically, the 
interviewer asked, “What is the problem type that each of these four categories 
represents? And I’d like you to actually write down as a group what you want that 
to say.” The students worked to characterize problem types, and they first articulated 
what we would refer to as n-permutations. They described those problems as the 
number of ways to arrange a set of objects, and they also wrote down the general 
formula that there are x! ways to arrange x objects (they had used the variable x). 
They then moved to the next set of problems, which were permutations of some 
subset (of size r) of the n objects (so, r-permutations).

Interviewer: Okay, nice. How about the next?
Carson: So, same as above, except only asking for unique number of places.
Josh: Well, we have more unique objects than unique places.
Carson:  Right. I mean thinking about the method for solving this, it’s the 

factorial from above, right? So, we have 10 horses in a race. How 
many ways can the horses finish, but then how many of those have 
a unique podium, right? So, how many times are the first, second, 
and third place different?

Aaron: So, you’re not really looking at 4 through 10 in that case?
Carson: Right.
Aaron: So, it’d be over 6! in that case.
Carson: Right.
Aaron:  So, just getting rid of all the arbitrary combinations that you’re not 

looking for.
Carson: Right.
Anne-Marie: Yeah.
Carson:  So, you could say we’re arranging the horses in a random way and 

then selecting three of them, right?
Anne-Marie: Mm-hmm.
Carson: So, how many ways could that selection come out?
Josh:  Well, not necessarily an arrangement, you’re just selecting three 

horses from a certain number of things.
Carson: Right.

The students were discussing this problem type, and they decided that they wanted 
to count arrangements of some number of elements (but not necessarily all of them). 
Carson connected this problem type to the Horse Race problem, and he used the 
context of the Horse Race problem as a prototypical problem of this type. The stu-

dents were then able to come up with the general formula (Fig. 8.4) of 
a

a b

!

!−( ) , 

where they noted that “a is the total amount and b is how many you’re choosing.”
The interviewer asked why they had an (a  – b)! in the denominator, and, as 

Carson explained the formula, he again referred to the podium arrangements. The 
language in the following excerpt again demonstrates that the equivalence structure 
was a primary aspect of his scheme. We emphasize in the underlined portions below 
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Fig. 8.4 The students’ general formula for r-permutations (in their case, b-permutations from a 
distinct objects)

that Carson was using the context of the Horse Race problem (and referring to the 
podium, for example) to talk about a general process and not the specific example 
and instance of the Horse Race problem.

Interviewer: Okay, nice and why is it a minus b factorial in the denominator?
[…]
Carson:  Yeah, so I guess the way that I think about this is that a is your total 

number of arrangements for the entire thing and then you want to 
divide by the number of ways that the places you’re not selecting 
can be arranged, right?

Anne-Marie: Mm-hmm.
Carson:  So, if you’re selecting first, second, and third, then you have fourth 

through 10th and those can be arranged in 10 minus 3 factorial 
ways, right?

Interviewer: Mm-hmm.
Carson:  So, we can just divide by that number of arrangements (begins 

motioning slots with hands) for the backend to get just one for the 
frontend because that’s what we’re asking for is how many ways 
can that podium be arranged.

Thus, in this section, we see the Horse Race problem continuing to be an aspect 
of Carson’s work, even when engaging in an activity of developing a general for-
mula for the combinatorial operation of combinations. This demonstrates that 
Carson’s scheme extended beyond just solving additional permutation problems, 
but he drew on the Horse Race problem in a different kind of combinatorial activity.

8.4.5  Carson Draws on the Racing Context to Justify 
the Formula for Combinations

During Session 7, the students were trying to justify a formula for combinations 

(
n

n r r

!

! !−( )
), and for several minutes they were going back and forth to try to explain 

the formula. They talked for a couple of minutes, trying to work through an example 
and make sense of what might be happening. Ultimately, the notion of 
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“redundancies” was important for them, which we take to mean duplicate outcomes. 
Notably, as they were working through this, Carson ultimately used a context of a 
race and a podium to explain his reasoning about the formula.

Aaron: So this is finding the arrangements of these two slots within these six.
Interviewer: Exactly.
Carson: That’s what the whole thing is doing.
Interviewer: No, and then this is getting rid of—
Aaron: Redundancies.
Interviewer: Yes.
Carson:  So if you think about this like a race, so all the numbers are in a race. 

It’s asking how many of them can finish in the first two places. 
That’s this many. That’s 6! over 4!, right? So that’s how many differ-
ent ways you can get the podium, but then we really only care about 
the different ways that the podium can be. Who are the different 
people that can be on the podium? Not the different arrangements of 
people in first and second place. So that’s the 2! redundancies there, 
because there’s two ways that that podium can get arranged.

Interviewer:  Mm-hmm, and so I just wanted to reinforce this piece is really just 
letting you focus on the number of things you care about.

Aaron: So you don’t care about order. You just care about number of things.
Carson:  Yeah, and this is the term that dictates order, because that’s dividing 

out the redundancies of the—
Interviewer:  Yeah, and that term is making it so you don’t care about the rest of 

it. It just lets you focus on two things.
Carson:  6! tells you how many arrangements. Well, 4! tells you how many 

arrangements of the backend, so that leaves you with how many in 
the backend there are.

Here again we point out that this race context that began with the Horse Race 
problem was an important part of him being able to reason about and explain and 
communicate his thinking on problems, even when justifying a general counting 
process that is not strictly a permutation. In this instance, Carson again made use of 
an isomorphism to set up the combinatorial objects as being structurally similar to 
the Horse Race problem, but he then made a change by altering the conditions of the 
race. Specifically, Carson leveraged an isomorphism to discuss a race with two fin-
ishers on the podium. We infer that this represents an instance of transfer in which 
he attended to the set of outcomes, and he then altered what mattered about the 
podium to answer the specific situation they were characterizing. This demonstrates 
that Carson leveraged the Horse Race problem as a means of identifying and com-
municating a perceived combinatorial structure on which he could operate when 
solving specific problems. This is significant because it highlights that as Carson’s 
scheme stabilized, the Horse Race Problem became a context for mathematical 
exploration rather than just a template on which could fit an existing structure. Thus, 
Carson’s engagements in transfer were more nuanced than purely engagement in 
assimilation, though we primarily have access to Carson’s engagements in transfer 
through his assimilations.
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In some sense, Carson’s connection to the formula for combinations was a bit 
more unconventional because the Horse Race problem is a permutation and not a 
combination problem. However, we see that he was drawing on the salient equiva-
lence that had been so meaningful for him in the Horse Race problem, and he used 
that in reasoning about the formula for combinations.

8.4.6  Carson Reflects on the Role of the Horse Race Problem 
Throughout the Teaching Experiment

To conclude our results, we highlight a reflective comment to demonstrate that 
Carson was himself aware of how regularly he referred to the Horse Race problem. 
These conversations took place during Session 9, the final session of the teaching 
experiment. He did not seem to have a particular reason for why he returned to it so 
often, but we offer some suggestions about why he brought up the problem repeat-
edly. We saw this in the final session, when we asked the students to reflect on the 
overall teaching experiment and their work in general. The interviewer had asked 
about the extent to which the students reflected on prior work, asking the following:

Interviewer:  So, maybe one question just broadly is to what extent do you feel 
that you were reflecting back and looking back on prior work as you 
were solving given problems? I mean, you did it a lot, so, it seemed 
like you were either referencing the other day’s work or particular 
problems. And so, can you talk at all about how that was for you?

Carson’s response indicated that he clearly referred back to the Horse Race prob-
lem. At one point, he reflected that he brought “the horse races to every problem,” 
so he was aware that he regularly made connections to that particular problem. 
Further, Carson said the following upon reflection.

Carson:  For whatever reason, the Horse Race problem is the one that’s in my 
head forever. And it must have just been where it clicked in the interview 
because that’s kind of what I refer to. If somebody says how many ways 
can a horse finish in the podium, how many ways can the podium be 
organized, things like that. And that’s kind of where I keep going back 
to. And I don’t know why that is.

Even though Carson said, “And I don’t know why that is,” we infer that he tended to 
explicate perceived combinatorial structure by making an isomorphism between the 
outcomes in a particular combinatorial event sequence that reflected various struc-
tures (e.g., multiplicative and equivalence structures). Although Carson initially 
attended to the multiplicative structure of counting problems, his work on the Horse 
Race problem entailed a significant abstraction of his multiplicative operations that 
he was able to coordinate with an equivalence structure.
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Further, in the situations that followed this abstraction, Carson had opportunities 
to reinforce his reasoning about that problem—both in solving similar problems and 
by being asked to justify his reasoning to his fellow students. It seemed that in addi-
tion to being the setting in which he made sense of the problem, he also used the 
problem as a setting to communicate and explain fundamental ideas about that prob-
lem. This proved to be successful in that when he explained and communicated in 
the context of that problem, people seemed to understand, or at least agree with, 
what he said. These moments of transfer served to demonstrate the subtleties of his 
assimilatory mechanism and abstracted operations, but they also served a key role 
in Carson’s contributions to the group’s mathematical activity. This successful com-
munication perhaps also stabilized his scheme for the equivalence combinatorial 
structure that he had abstracted when working on the Horse Race problem. That is, 
his successful communication of the assimilated structures in subsequent problems 
likely reinforced the horses and podium arrangements as meaningful outcomes for 
him to leverage. We emphasize again that being able to account for the influence of 
Carson’s social interaction on his development of connections is a benefit of adopt-
ing a perspective of AOT rather than traditional transfer. As we have noted, a feature 
of AOT is that it allows for both psychological and social perspectives, and Carson’s 
communication and explanation (which were necessitated by the social environ-
ment in which he was situated) at times provided motivation to make connections to 
the Horse Race problem.

8.5  Discussion and Conclusions

In this chapter, we reported on one student’s repeated reference to a particular prob-
lem in a teaching experiment that focused on combinatorial problem solving. We 
demonstrated several contexts in which Carson referred back to this problem, often 
constructing and leveraging isomorphism to do so. Carson’s engagement in transfer 
across the teaching experiment involved assimilation to a rich combinatorial 
scheme. We attribute much of Carson’s success to his attention to the outcomes 
described in a counting problem and his careful coordination of specific counting 
processes to be carried out to generate a set of outcomes (this is in line with 
Lockwood, 2013, 2014). By unpacking the cognitive mechanisms of Carson’s 
learning (and subsequent application) of the Horse Race problem, we have provided 
a means of characterizing the salient and unifying aspects of Carson’s engagement 
in transfer throughout the teaching experiment. We have also demonstrated a cyclic 
interplay between the social interactions that occasioned Carson’s transfer and his 
subsequent assimilations and minor accommodations that effectively stabilized his 
multiplicative and equivalence scheme. Thus, we see both the social and cognitive 
components of the AOT perspective providing explanatory mechanisms for Carson’s 
transfer activity. We now offer a couple of points of discussion about Carson’s case.

We have used Lockwood’s (2011) ways of characterizing student-generated con-
nections among counting problems, highlighting especially cases in which Carson 
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made elaborated, conventional connections to a particular problem. Carson’s con-
ventional connections between problems often involved creating an isomorphism 
(even implicitly) between components of the problems (this involved language like 
having cats or restaurants racing, as we have discussed). We find this kind of trans-
fer particularly useful for students’ learning within combinatorics, given that the 
nature of combinatorial outcomes can be an important underlying structure in 
counting problems. Indeed, spontaneously mapping sets of outcomes to each other 
as a means of communicating underlying mathematical structure is a powerful tool 
in advanced mathematics, and we see elements of such activity in Carson’s instances 
of transfer. There are, however, many instances of AOT that might involve activities 
other than creating an isomorphism. Indeed, this is a benefit of AOT that we did not 
explicitly mention in this chapter (because our data did not highlight it) but else-
where (e.g., Lockwood, 2011), researchers have shown that students may relate 
situations even when a formal isomorphism may not be established. Further, 
although the connections were conventional in some sense (they would be consid-
ered normatively correct, for example), the frequency with which he repeatedly 
focused on the Horse Race problem was at times surprising. He brought it up on 
many occasions that we might not have expected, which underscores how important 
he found his initial experience with that particular problem. Specifically, his refer-
ence to the Horse Race problem in reasoning about the formula for combinations 
was particularly illuminating and important.

In addition, even though he regularly referred to the Horse Race problem (a par-
ticular problem), we see that this particular problem often implicitly served as a 
broader problem type for Carson; it became emblematic of problems that had cer-
tain structural characteristics, namely, a multiplicative event sequencing and notions 
of representative equivalent outcomes. Thus, we see perhaps some blurring of two 
referent types Lockwood had previous articulated, namely particular problems and 
problem types. Related to this, although we have not framed our work in terms of 
prototypical problems, we note that our findings could shed some light on the nature 
of prototypical problems and how students might think about and use such prob-
lems. As noted previously, Maher et al. (2011) described students making repeated 
references to a “pizza problem” or “towers problem” in similar ways that Carson 
referred to the Horse Race problem. We have built on prior work by Maher et al. by 
attempting to account for cognitive mechanisms that facilitated Carson to make 
such connections. In addition, although Maher et  al.’s work occurred over many 
years, we show how robust connections to certain problems and problem types 
occurred within just a handful of sessions in a concentrated study. Thus, we have 
demonstrated that students can establish reliable and meaningful prototypical prob-
lem types that they can use in a variety of settings even over relatively short periods 
of time.

We also suggest that our study sheds some light on ways in which both the cogni-
tive and social dynamics of the AOT perspective can be engaged and support each 
other. Our radical constructivist lens provided explanatory mechanisms for Carson’s 
engagements in transfer, specifically for the purpose of unifying what might ini-
tially seem like disparate engagements in transfer. For Carson, these were all parts 
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of what became a robust scheme for counting. We demonstrated some sophisticated 
ways that social interaction could contribute to and support transfer, both for indi-
viduals and for a group of multiple students. On several occasions, Carson’s con-
nections to the Horse Race problem emerged in the midst of social interaction, 
whether that was during a group discussion or whether he was communicating or 
explaining an idea to the rest of the group. Again, this is something that an actor- 
oriented (as opposed to a traditional) view of transfer affords. Moreover, we see 
these social interactions as occasioning Carson’s engagement with the structural 
aspects of his abstracted scheme, thus facilitating a stabilization of certain aspects 
of his scheme. Though the social dynamic of Carson’s interactions was not itself the 
focus of our study, we posit that adopting both the social and cognitive analyses in 
accordance with the AOT perspective has provided a richer account of the ways 
Carson’s understanding developed. Other researchers could draw more direct rela-
tionships between social and psychological aspects of transfer, and studying the 
nature of transfer as stemming from social interaction is fascinating and could ben-
efit from additional investigation.

To conclude, we discuss some potential implications and takeaways of our study. 
In particular, we believe that Carson’s case demonstrates some sophisticated and 
compelling ways of reasoning about equivalence in combinatorics, and there is 
much to learn from Carson about how students might productively develop and 
articulate such reasoning. Specifically, Carson seemed to have a deep understanding 
of sets of outcomes (Lockwood, 2014). He could reason about certain outcomes 
being equivalent to each other, and he realized he could use division to account for 
this. This way of thinking was reinforced across multiple similar situations, and 
Carson could notice relevant structural similarity in outcomes (and the way in which 
outcomes were generated) that supported his conceptual development. Although we 
are of course not surprised to see students’ impressive and inspiring work, we sug-
gest that the AOT perspective can put researchers in situations to recognize and 
appreciate the excellent work that their students do. This point has been made else-
where (e.g., Lobato, 2014; Lobato & Siebert, 2002; Lockwood, 2011), but our spe-
cific empirical example again demonstrates the rich insights about students’ thinking 
and activity that can result from adopting an AOT perspective. This suggests that it 
would be worthwhile for teachers and researchers to continue to view students’ 
mathematical activity from the students’ point of view.

As a final takeaway, we also highlight the role that justification played in Carson’s 
work, both as he established a robust initial understanding of equivalence in the 
Horse Race problem, and as he subsequently drew on that problem in additional 
situations. By having to justify and explain his reasoning to the interviewer and to 
his peers throughout the teaching experiment, Carson reinforced fundamental ideas 
that were meaningful for him. Thus, a potential practical takeaway is to give stu-
dents opportunities to formulate justifications and explanations and to articulate 
those regularly. Such justifications could reinforce important mathematical ways of 
thinking that could become important and foundational for students, creating initial 
situations and contexts to which they can subsequently refer.
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Chapter 9
Promoting Transfer Between Mathematics 
and Biology by Expanding the Domain

Claus Michelsen

At the beginning of the twenty-first century, Niss (1999) identified and presented 
five major findings in the scientific discipline of mathematics education. The find-
ings were the results of thorough theoretical or empirical analyses and offered solid 
insights of considerable significance to our understanding of the processes and out-
comes of mathematics teaching and learning. Among the findings was the key role 
of domain specificity:

For a student engaged in learning mathematics, the specific nature, content and range of a 
mathematical concept that he or she is acquiring or building up are, to a large part, deter-
mined by the set of specific domains in which that concept has been concretely exemplified 
and embedded for that particular student. (Niss, 1999, p. 15)

Thus, if a mathematical concept is introduced for the student in a narrow mathemat-
ical domain, the student may construct and see it as a formal object with arbitrary 
rules without any connection to an extra-mathematical context. Without a direct 
reference, the finding of the key role of domain specificity addresses the problem of 
transfer between a mathematical and an extra-mathematical context. This raise con-
cerns in education, where a growing number of disciplines contain elements from 
mathematics. Mathematics plays a crucial role in science, which relies on wide-
spread mathematization. Many science phenomena and their patterns of interaction 
are best described in the language of mathematics, which then becomes a bridge 
between the students’ verbal language and the scientific meaning that they seek to 
express (Osborne, 2002). However, although mathematics and science might be 
considered as intertwined disciplines, this description is not straightforward as far 
as the students are concerned. Confusion may be caused, for example, when math-
ematics and science teachers use different terminology or approaches when explain-
ing ideas. Lappalainen and Rosqvist (2015) used a study of students’ experiences of 
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applying knowledge across disciplines to highlight that the connections between the 
topic at hand and past experiences are an important and all too often neglected part 
of teachers’ day-to-day work. Furthermore, they noticed that the connections made 
to previous knowledge that the students relied on in a given situation might often 
differ from the connections that their teacher would make. Consequently, the teach-
er’s hints at association might hinder the student’s problem-solving process. This 
chapter addresses transfer between mathematics and biology in an interdisciplinary 
learning setting. This issue was investigated in the context of upper secondary 
Danish education and the starting point was that students’ development of mathe-
matical models of biological phenomena can easily be adopted and adapted for use 
in both mathematics and biology classrooms and establish intercontextuality 
between mathematics and biology. Two progressive perspectives on transfer, expan-
sive framing and actor oriented, were applied to examine the transfer that occurs 
between the school disciplines of mathematics and biology.

9.1  Theoretical Framework

Looking at the challenges of educational theory and practice in the twenty-first 
century, Schoenfeld (1999) identified six arenas in which significant progress needs 
to be made. One arena was transfer, which was labelled as ubiquitous. The impor-
tance of transfer was explicated by emphasizing that we could not survive if we 
were not able to adapt what we know to circumstances that differ from the circum-
stances in which we learned it. We “are making connections all the time. The issue 
is to figure out which ones they make, on what basis – and how and why those con-
nections are sometimes productive” (Schoenfeld, 1999, p. 7). Transfer is one of the 
classic problems in education and, according to Lester and Lambdin (2004), trans-
fer should be the goal of education because the educational system prepares stu-
dents for a world outside the classroom and for solving future problems that we 
might not even imagine today. And, one might add that to prepare the students for 
this, they should, in their schooldays, experience transfer, for example between a 
mathematics class and a biology class.

9.1.1  Transfer from the Students’ Perspective

Transfer is a general entity, but there are different definitions and different research 
approaches. In this chapter, I adopt the contemporary perspectives on transfer char-
acterized by looking at transfer from the students’ perspective and consider transfer 
“as an activation of associations between tools in the source (learning) and target 
(transfer) contexts” (Rebello et al., 2005, p. 246), and consider that transfer occurs 
“when learning to participate in an activity in one situation [i.e., learning context] 
… influence[s] (positively or negatively) one’s ability to participate in another 
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 activity in a different situation” (Greeno, Moore, & Smith, 1993, p. 100). The aim 
of my study was to examine the influence of a learner’s prior activities on his or her 
activity in a novel situation within the actor-oriented transfer perspective “to under-
stand the interpretative nature of the connections that people construct between 
learning and transfer situations, as well as the socially situated processes that give 
rise to those connections” (Lobato, 2012, p. 239). This approach to transfer is pro-
ductive because the focus is not on the transfer of learning when it does not happen, 
but on identifying how students make connections between learning that took place 
in previous contexts and learning taking place in new, currently encountered 
contexts.

9.1.2  Expansive Framing and Intercontextuality

Prior knowledge influences the comprehension of any new context, as Dewey 
(1938) pointed out with the principle of continuity of experience that “means that 
every experience both takes up something from those which have gone before and 
modifies in some way the quality of those which come after” (p. 35). Clearly this 
has instructional implications, a fact which is underscored by using the term expan-
sive framing (Engle, Lam, Meyer, & Nix, 2012) for the framing of learning and 
transfer contexts as opportunities for students to actively contribute to larger conver-
sations that extend across times, places, people, and activities. By engaging in this 
kind of temporal framing, teachers make it clear to students that they are not just 
getting current tasks done but are preparing for future learning while regularly 
drawing on past learning. Transfer “is more likely to occur to the extent that learn-
ing, and transfer contexts have been framed to create what is called intercontextual-
ity between them” (Engle, 2006, p.  456). Intercontextuality occurs when two or 
more contexts become linked with one another. When this occurs between learning 
and transfer contexts, the content established during learning is considered relevant 
to the transfer context. Thus, when the teacher is helping students to see and experi-
ence relationships between different contexts, the more likely—all other things 
being equal— students will transfer content between them. Engle, Nguyen, and 
Mendelson (2011) investigated the degree to which high school biology students 
transferring knowledge from a learning session about the cardiovascular system to 
a session about the respiratory system depended on framing conditions and con-
cluded that students in the expansive condition were generally more likely to trans-
fer facts, conceptual principles, and a learning strategy from one system to another. 
Engle et al. (2012) proposed the idea that transfer can be promoted by the instruc-
tional practice of framing learning contexts in an expansive manner and that expan-
sive framing may: (a) foster an expectation that students will continue to use what 
they learn later, which may affect the learning process in ways that can promote 
transfer; (b) create links between learning and transfer contexts so that prior learn-
ing is viewed as relevant during potential transfer contexts; (c) encourage learners 
to draw on their prior knowledge during learning, which may involve them in 
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transferring additional examples and making generalizations; (d) make learners 
 accountable for intelligently reporting on the specific content that they have 
authored; and (e) promote authorship as a general practice in which students learn 
that their role is to generate their own solutions to new problems and adapt their 
existing knowledge in transfer contexts. Thus, the proposal offers five not mutually 
exclusive and eventually even complementary explanations for how transfer can be 
promoted by expansive framing.

Expansive framing and intercontextuality between learning and transfer contexts 
are aligned with the idea of expanding the domain suggested by Michelsen (2006) 
to transcend the problem of domain specificity. Expanding the domain highlights 
that interdisciplinary activities between mathematics and science offer a great vari-
ety of domain relationships and context settings that can be linked and serve as a 
basis for students to see and experience connections between situations almost all 
the time, guided by the aspects they find personally salient. When enough connec-
tions are made, the degree of intercontextuality can become so strong that a larger 
encompassing context is formed that seamlessly incorporates the contexts of math-
ematics and science. This raises the question: What kind of classroom can one 
envisage being filled with opportunities for the students to make connections? This 
chapter investigates this question using an interdisciplinary mathematics–biology 
teaching sequence in Danish upper secondary education by means of the following 
research questions:

 1. Which elements of intercontextuality are experienced by the students in the 
interdisciplinary mathematics–biology teaching sequence?

 2. To what extent did the students participating in the interdisciplinary mathemat-
ics–biology teaching sequence experience (a) expectation for transfer, (b) con-
tinued relevance, (c) positioning as authors of their own ideas, (d) accountability 
to the content, and (e) participation in practices of generating new knowledge 
and engaging in adaptive problem solving?

9.2  Intercontextuality and Interdisciplinary Mathematical 
Modelling

The Danish upper secondary school system is organized in what are known as study 
packages, where an important feature of a package is that the participating disci-
plines form a coherent program, which is ensured by closer interaction between the 
disciplines. This calls for interdisciplinary teaching across the traditional boundar-
ies between the disciplines, both at the level of discipline content and at the level of 
pedagogy. Indeed, the very aim of regular upper secondary education is “to prepare 
the students for further education, hereunder to acquire … knowledge and compe-
tencies through the education’s combination of disciplinary breadth and depth and 
through the interplay of the disciplines” (Ministry of Children and Education, 2017; 
author’s translation). Some of the study packages include mathematics and biology 
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as core disciplines. To fulfil the objective of coherence in the study packages, inter-
disciplinary teaching across mathematics and biology is demanded.

9.2.1  Mathematical Modelling in an Interdisciplinary Context

Interdisciplinary learning and teaching involving mathematics education has 
become of considerable interest to some mathematics educators (e.g., Sriraman & 
Freiman, 2011), and interdisciplinary teaching in mathematics and science offers 
students the opportunity to experience a coherent curriculum. An educational inte-
gration of science and mathematics was suggested by Berlin and White (1998) as a 
promising path towards improved student understanding, performance, and atti-
tudes related to mathematics and science. A historical analysis spanning from 1901 
to 2001 and related to integrated science and mathematics analysis documented 
strong philosophical support for the integration of science and mathematics educa-
tion to improve students’ understanding of the two disciplines. It was emphasized 
that although each of the human enterprises of mathematics and science has a char-
acter and history of its own, each of the disciplines depends on and reinforces the 
other (Berlin & Lee, 2005). One can go a step further and point to the widespread 
use of models and modelling in the scientific enterprise and in mathematics and sci-
ence education as well. Modelling is accepted as an important issue in mathematics 
and science education at all levels, and there is extensive literature recognizing the 
importance of models and modelling, both in mathematics education and in science 
education (e.g., Gilbert & Justi, 2016; Kaiser & Sriraman, 2006; Stillman, Blum, & 
Biembengut, 2015). Mathematical models and modelling were also suggested as 
tools to transcend the obstacles preventing the integration of mathematics, physics, 
and engineering into the biology curriculum and vice versa (Chiel, McManus, & 
Shaw, 2010), and Jungck (2011) made the point that instead of focusing on how to 
overcome the challenges of implementing mathematics into biology, the focus 
should be on the development of individual biological models that can be easily 
adopted and adapted for use in both mathematics and biology classrooms. Across 
different versions of the modelling cycle, the mathematization of an extra- 
mathematical domain is the starting point, which entails the connection of an extra- 
mathematical setting to a mathematical one and vice versa when the constructed 
model is validated by confronting the model output with the known reality of the 
extra-mathematical setting (Niss, 2010; Niss & Højgaard, 2011). The reference to 
the modelling of an extra-mathematical situation emphasizes that mathematical 
modelling is not only a matter for mathematics. This interdisciplinary aspect high-
lights that mathematical modelling has the potential to support the students in mak-
ing forward and backward links between mathematics and extra-mathematical 
situations.

I argue that interdisciplinary mathematical modelling activities connect settings, 
promote student authorship, and accommodate the five explanations for how trans-
fer can be promoted by expansive framing. Mathematical modelling activities 
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emphasize social interactions between students and the students’ development of 
conceptual tools that include explicit descriptive or explanatory systems that func-
tion as models to reveal important aspects about how students are interpreting the 
modelling situation (Lesh & Doerr, 2003). In this way, the student’s explanations 
are revoiced and credited with authorship. Galbraith (2015) made the point that it is 
essential that modelling is about real-world problems with the purpose of applying 
the students’ knowledge proficiently to problems located in personal, work, or civic 
contexts or in other discipline areas. This makes students become publicly recog-
nized as the authors of particular transferable content and adopts the practice of 
authoring knowledge.

9.3  The “Laboratory for Mathematics Teaching” Project

In the period between 2014 and 2018, the mathematics and science education 
research group at the University of Southern Denmark participated in the project 
called “Laboratory for Mathematics Teaching.” Interdisciplinary teaching sequences 
in mathematics and biology in upper secondary education were designed and imple-
mented within the project teaching sequences via modelling. The model-eliciting 
framework proposed by Lesh and Doerr (2003) was applied as a didactic tool for 
interdisciplinary teaching in mathematics and biology. The framework confronts the 
students with the need to develop a mathematical model to make sense of a mean-
ingful situation. The starting point is a model-eliciting activity designed to elicit the 
students’ initial ideas about a problem situation. This is followed by more structur-
ally related model-exploration activities and model-application activities. In our 
approach, the problem situation to be modelled by mathematics is an experimental 
situation from biology.

9.3.1  Design-Based Research and Exploration of How 
Students Interpret Transfer Situations

The mathematics and biology teaching sequences were developed according to a 
design-based research approach (Design-Based Research Collective, 2003; Lesh & 
Sriraman, 2005) by translating research in interdisciplinary teaching at the 
University of Southern Denmark into interdisciplinary modelling activities based 
on the model-eliciting activity approach in assembled project teams of scientists, as 
well as in-service and pre-service upper secondary school teachers. The approach 
was focused on developing greater clarity and coherence when working with math-
ematical ideas, language, and procedures in mathematics and biology lessons to 
support students to transfer their mathematical skills and understanding effectively 
to their biology learning.
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For the purposes of this chapter and inspired by the point made by Lobato (2012) 
that design-based research opens a space to explore how students interpret transfer 
situations, the socially situated nature of transfer processes in classrooms, and how 
contextual sensitivity can play a productive role in the transfer of learning, it was 
decided in one of the teaching sequences to focus specifically on transfer in an inter-
disciplinary mathematics–biology context with a focus on modelling activities. The 
teaching sequence was implemented in two upper secondary schools in the Region 
of Southern Denmark and involved 45 Grade 10 students, three teachers with math-
ematics or biology as their discipline, and one researcher (the author of this chap-
ter). All students were enrolled in a study package program with mathematics as one 
of the core disciplines. According to their teachers, the students’ prior experiences 
with interdisciplinary mathematics–biology teaching was limited. The population 
of students was representative of a typical upper secondary school in a small middle- 
class town with a close to equal gender distribution.

9.3.2  The Interdisciplinary Mathematics–Biology Teaching 
Sequence

The two interdisciplinary mathematics–biology teaching sequences were planned 
through three workshops of two hours each with the participating teachers and the 
researcher at each of the two schools. The general theme of the workshops related 
to the ways in which the teachers could support the students’ experience of inter-
contextuality in an interdisciplinary mathematics–biology setting. The researcher 
introduced the teachers to the model-eliciting framework which led to a general 
agreement among the teachers that an experimental situation in biology should act 
as a starting point for the students’ modelling activities. To prepare the students for 
this, the teachers planned to introduce the students to linear and exponential regres-
sion before implementing the interdisciplinary teaching sequence. The teachers 
were very keen on developing relevant, meaningful activities that could engage the 
students emotionally, and they decided to design a two-week interdisciplinary math-
ematics–biology teaching sequence consisting of four modules, each 90 minutes 
long, with the human body as the overall teaching theme. In one of the schools, the 
theme of the sequence was the muscles of the human body and in the other the 
theme was consumption and elimination of alcohol in the human body. Finally, to 
give the students immediate feedback, it was decided that at the end of the sequence 
the students should communicate their activities, experiences, and findings through 
a written report or a poster.

After a short introduction to the theme and exchange of ideas among teachers 
and students about potential investigations within the theme, the students were dis-
tributed in groups of between three and six and given the task of planning and 
implementing experiments, collecting data from the experiments, and analyzing the 
data with mathematical tools. The students were informed by their teachers that the 
teaching sequence would be structured to provide them with opportunities in the 
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groups to investigate self-chosen problems within a theme (muscle strength or con-
sumption of alcohol), to search for possible solutions, to make observations, and to 
collect data and to develop a mathematical solution to explain the problems. The 
teachers encouraged the students to draw on their prior knowledge about regression 
during their work.

At the school that was working with the muscles of the human body, the students 
focused on measuring the volume of the biceps and thigh muscle and relating this to 
weight, jump, and sprint ability and the maximum weight lifted by the arm. The 
students made different hypotheses about relationships between the measures and 
entities and checked the hypotheses using regression. Figure  9.1 below and the 
excerpt that follows come from a student report in which the students investigated 
the relationship between the circumference of the biceps and the maximum weight 
lifted in boys:

Here, we again tried to find a relationship, this time between the circumference of the 
biceps and the maximum weight in a bend. Here, we get a good r2 as evidence for an expo-
nential relationship between the two variables. The explanation rate is also above 0.8, which 
is good.

In the second school, the students worked with consumption and elimination of 
alcohol in the human body. The school’s principal gave eight students permission to 
consume four standard units of alcohol. The eight students acted as test persons to 
be called in for experiments by the other students. Most of the groups decided to use 
a breathalyzer to measure the blood alcohol concentration of the test persons at dif-
ferent times. Some groups decided to compare the reaction time and the distance 
travelled of the test subjects and some of the sober students. The former was inves-
tigated either using an online reaction-time tester or by a simple experiment with a 
dropped ruler to be caught by the person, whereas, in the latter, the test subjects had 
to walk in a straight line and the distance walked was measured. Figure 9.2 below 
and the excerpt that follows come from a student report in which the students 
 investigate the relationship between the blood alcohol concentration and number of 
consumed standard units of alcohol:

Fig. 9.1 From a student report: Investigating the relationship between the circumference of the 
biceps and the maximum weight lifted in boys
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Piger vs drenge

Dreng

Genstande Promille

1 0,24

2 0,48

3 0,69

4 0,89

Pige

Genstande Promille

1 0,3

2 0,6

3 0,63

4 1,6

Introduktion
Vi har lavet dette forsøg, da vi gerne vil se om der er forskel på
hvor meget piger og drenge bliver påvirket af alkohol.

Vores hypotese
Vores hypotese var at piger ville have en højere promille end
drengene selvom de havde fået samme antal genstande, da
drenge generelt har mere blod i kroppen.

Metoden
Vi brugte to forsøgspersoner, en af hvert køn som var af samme
højde og nogenlunde samme vægt. Og i løbet af lidt over 1 time
fik vi dem til at indtage 4 genstande alkohol. Vi målte deres
promille efter hver genstand. Naturligvis ventede vi med at
afmåle deres promille indtil at alkoholen har haft dens effekt på
testpersonens krop.

Konklusion
Vi kan se på vores tal at pigen får en konsekvent højere promille
end drengen efter at have drukket den samme mængde, og blive
målt med samme interval efter indtagelsen. Vi kan derfor
konkludere at pigen bliver mere påvirket af alkohol end
drengen.

Fejlkilder: Det er ikke blevet timet, sådan at der var samme interval mellem alle målinger.
Alkoholmeteret var upålideligt, vi brugte samme alkoholmeter så tallene burde være
sammenlignelige.

Lavet af David, Jakob, Noah, Lukas, Rasmus, Sofie og Tove

Fig. 9.2 From a student report: Investigating the relationship between the blood alcohol concen-
tration and number of consumed standard units of alcohol for a girl (Pige) and a boy (Dreng)

From the graph [Fig. 9.2] we can see that the girl has a consistently higher blood alcohol 
concentration than the boy after drinking the same amount. Therefore, we conclude that the 
girl is more affected by the intake of alcohol than the boy.

9.4  Method

The primary data for this chapter came from records of the classroom work, the 
students’ reports and posters, and two focus group interviews with students. One 
month after the completion of the sequence, the researcher conducted three 
25- minute focus group interviews with three randomly selected groups of three stu-
dents at each of the schools. Two months later, the researcher interviewed each of 
the groups for 25 minutes. The focus group interview approach was chosen to obtain 
general information about the students’ experience with, interest in, and expecta-
tions of a future application of the mathematic–biology teaching sequence. With 
reference to the description by Dufresne, Mestre, Thaden-Koch, Gerace, and 
Leonard (2005) of transfer as a complex dynamic and ongoing process, I also 
wanted to discover what the students had to say about the phenomena addressed in 
the sequence with a specific focus on the knowledge elements that the students 
brought to the fore. To provide an authentic setting for the students, the interviews 
were conducted at the schools during a mathematics lesson. Furthermore, the stu-
dents were interviewed in the groups in which they had worked during the instruc-
tional sequence, which, among other things, made it possible to take their reports or 
posters into account.
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The interviews were conducted as semi-structured interviews with an interview 
guide. The students explained how they themselves experienced intercontextuality. 
The first interview focused on the students’ experiences from the interdisciplinary 
teaching sequence, whereas the second was centered around a question put to the 
students about what kinds of experiments, data sampling, and analyses they could 
imagine were they to investigate vital capacity, which is the maximum amount of air 
a person can expel from the lungs after a maximum inhalation. This entailed an 
incorporation of instructional elements, and the second interview might be catego-
rized as a kind of teaching interview based on the premise that students construct 
their responses to interview questions dynamically and often do things on the spot 
(Rebello et al., 2005).

The interviews were videotaped and then transcribed. Together with field notes 
from the classroom activities and the students’ reports and posters, the transcripts of 
the interviews with students comprise the primary data for this article. The data 
were analyzed by the researcher as a deductive category application (Mayring, 
2000) with a focus on the actor-oriented perspective on transfer and the five poten-
tial explanations for how expansive framing may promote transfer.

9.5  Findings

Based on the analyses of the data, I claim that the students saw greater relevance in 
the content and experienced greater freedom and sense and that this led to a greater 
exchange of ideas between the students. The findings from the study are presented 
in two parts. In the first part, the students’ perception of intercontextuality is inves-
tigated from the actor-oriented perspective. The focus is on how the students inter-
preted the interdisciplinary teaching sequence and its situational structure, how they 
interacted with prior learning experiences and tasks, and the ways in which they 
generalized their learning experiences. In the second part, I use the five potential 
explanations for how expansive framing may promote transfer as an analytical tool 
to shed light on the students’ experiences with the teaching sequence and to con-
sider how the context of the students’ learning activities was framed to promote 
intercontextuality.

9.5.1  The Students’ Perception of Intercontextuality

The students considered the teaching sequence as a new, unfamiliar, interesting, and 
challenging situation, but at the same time they referred to learned knowledge in 
prior mathematics and biology classes and recognized that knowledge that is rele-
vant in one setting is also relevant in other settings:
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We measured our own muscle strength and muscle size and that was different from the 
normal lessons. Normally we only get tasks from the book. We used the thing with plots, 
which we have previously worked with in mathematics and biology as well, for example 
with Excel. We felt quite well prepared for the tasks.

The students were aware of the interdisciplinary aspects of the sequence, and a 
group of students wrote in the introduction to their report:

In this project we used tools from mathematics and biology for tests and measurements of 
different parts of our body and muscles. The measurements have given us insight into 
domains relating to our body and made us aware of views on areas relating to elements of 
our body, where these views have made us aware of how to use both mathematics and biol-
ogy in our data.

During the first interview, the students were shown Fig. 9.3 below and asked to 
reflect about possible links to their experiences from the teaching sequence.

The interview excerpts below show that the students experience was such that the 
teaching sequence connected curriculum units across time and trained them to make 
connections across topics: “Data processing is clearly both mathematics and biol-
ogy, while the experiments aimed at measuring muscle strength are biology and 
regression is mathematics. We are used to having disciplines, and it has been excit-
ing to connect disciplines. It is challenging.”

However, the students’ perception of the connections showed great variation. 
Some students considered data regression mainly as a biological activity whereas 
others saw it as a mathematical activity.

The teachers expansively framed their interactions with students by temporally 
connecting to prior and future interactions in which students could use what they 
were learning. The students were aware of the focus on learning important new 
information to be used in future settings:

It became very real when Nicole had to breathe into the breathalyzer. And we became aware 
of all the uncertainties in the experiments, whereas there are never any uncertainties in the 
textbook. And it’s not just mathematics, but also social sciences and biology, probably 
mostly biology. We expect to use data processing and regression in physics and other disci-
plines. But it is also about training in the native language, as we should communicate our 
results.

This excerpt also shows that the students responded to the framing with a broad 
interpretation of intercontextuality by including several disciplines and by detecting 
a difference between a textbook and a lab setting in terms of the presence or absence 
of uncertainties.

Fig. 9.3 Handout sheet for 
the interview: Possible 
links in the students’ 
experiences from the 
teaching sequence
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During the researcher’s informal observations of the teaching sessions, a high 
volume of activity was observed in terms of exchanges of ideas between the stu-
dents in the groups and between the groups and the teachers. This highlights the 
importance of sociocultural factors, and this perspective was also addressed by the 
students in the interviews:

We started in upper secondary school six months ago, and it’s a lot about social relation-
ships among the students. In our class the social relationships are good, and it made sense 
in the project when we worked together to design the experiments and make 
measurements.

A recurring theme in the interviews was the students’ expectations for transfer of 
mathematics. All the students expected to use mathematics in the future, but, as the 
two excerpts below show, the nature of their expectations varied widely, including 
everyday life, research, and jobs intertwined with references to the teaching 
sequence: “Mathematics can for example be used when you are shopping, if you 
need to take out a loan and something like that, or if you want to be a banking advi-
sor, and regression can be used to predict” and “Mathematics is difficult, but it is 
used for many things, such as measuring muscle strength, building something, 
something with money, and medicine when mixing something.”

Some students also questioned whether all mathematics topics can be used out-
side mathematics: “We haven’t yet used the polynomial of second degree, and we 
do not know if we ever will use it…. Results that can be related to everyday life are 
better than just calculating the discriminant.”

The second group interviews were conducted with the aim of investigating how 
the students interpreted a context centered on investigating vital capacity. Across the 
six groups, I found evidence that most students generalized their learning experi-
ences, by indicating that mathematics can be applied to handle data collected in a 
biological context. When asked about what kinds of experiments, data sampling, 
and analyses they could imagine were they to investigate vital capacity, the students 
immediately referred to health issues:

The height has something to do with the size of your body. If your body is big, then your 
lungs are also big. Could it have something to do with genes; we have twins in the class. It 
could also have something to do with lifestyle. We have both smokers and nonsmokers in 
the class, so one could investigate whether there is an effect on vital capacity.

For most of the students the response to the question about how to investigate 
vital capacity was to calculate the average vital capacity for each of the two sexes to 
find the expected difference: “We chose five girls and five boys of different heights 
and weights, measured their vital capacity and then calculated the average for the 
two sexes. Initially, we are satisfied that there is a difference.”

The relationships constructed by the students were motivated by an expectation 
of a gender difference, and then they searched for a simple mathematical tool, such 
as averaging, to compare girls and boys. Only in rare cases did the students give the 
short and precise response from the teacher’s point of view, namely that you should 
measure the vital capacity and height of the students in the class and then check the 
relationship using a regression analysis. However, when challenged by the inter-
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viewer, the students suggested collecting data and making graphs to investigate the 
difference:

We could make some graphs. It must have something to do with boys and girls. Perhaps we 
could do something about vital capacity as a function of height. Yes, measure how tall you 
are, then measure your vital capacity and look for differences.

To sum up, I observed that the students temporally connected to prior and future 
interactions in which they could use what they were learning. When the students 
drew on and used their prior knowledge from mathematics and biology classes, they 
constructed a new setting with connections to former settings. In this process, the 
students began to see lab and classroom settings as being interconnected and estab-
lished a connection between an experimental setting in biology and a more theoreti-
cal setting in mathematics where the students worked with their laptops.

Although the methods used to investigate vital capacity are in many ways iso-
morphic to investigating alcohol consumption and muscle strength, the students 
made sense of the situation by establishing a context based on several former learn-
ing experiences—for example, calculating the average, making graphs, identifying 
variables—and everyday life experiences—for example, sports, twins, and smokers 
in their class. There were also implicit references to the interdisciplinary teaching 
sequence—for example, gender issues, the experimental method, and mathematics 
as a tool to handle and compare the collected data.

9.5.2  The Students’ Experiences with Expansive Framing

The first explanation for how transfer can be promoted with expansive framing is 
the students’ expectation for transfer. The students had expected to transfer what 
they had learned in the teaching sequence. Most of the groups pointed to the use of 
regression in mathematics and biology and the communication of their results 
through posters and reports: “We learned how to process data and how to find 
answers: We will use it in reports, and we can make graphs in both mathematics and 
biology” and “We are sure that we will use regression in the future. We have already 
used it in biology.”

The second explanation concerns the students’ experience of continued rele-
vance. Some of the groups addressed the interdisciplinary aspect of the teaching 
sequence and their expectations of future interdisciplinary work at school: “The 
mathematics–biology collaboration probably shows us a little bit more about what 
we can face in the future, namely that we must look at more than one discipline at 
the same time.”

The relevance of the teaching sequence for the students’ future studies and jobs 
was also an issue for some of the students: “I want to study to become a physio-
therapist, and I think I am going to use some of the methods of collecting and study-
ing data that I have learned here.”
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Positioning the students as authors of their own ideas is the third explanation. 
The freedom to work with self-chosen problems within a theme focusing on the 
human body was highlighted by the students as a challenge as well an opportunity 
to connect to everyday life experiences:

The project was unstructured, we were not quite sure of what to do, but it was cool. It was 
great to work with the project, and we had the freedom to choose experiments ourselves. 
And alcohol is part of our everyday lives and we know about alcohol. For example, how 
much we consume in an hour and how weight matters.

This freedom positioned the students as the sole authors and made them, rather 
than the textbook or the teacher, accountable for the content. It also involved the 
students in explaining their ideas to and exchanging their understanding with each 
other and, as the excerpt below highlights, extending their perspective to include 
reflections about connections between formulas and measurements:

Usually we use formulas handed out by the teacher, and that’s just the way it is. Building a 
formula by ourselves is much more productive. The group work required us to make some 
compromises. But it was also good to exchange ideas. And then we got to know each other. 
We discussed which experiments we should do. We chose experiments where we could both 
make graphs and tables, and we used formulas. It was interesting to see how formulas differ 
from reality. We had a formula for the blood alcohol concentration, and then we measured 
it with a breathalyzer.

The experience of authorship was highlighted by the students with reference to 
their collaboration and the resulting products in the form of reports or posters:

We had some disagreements about the results from our experiments and which results to 
present on the poster. It was nice that we worked together on something which resulted in a 
product instead of just ending up in the bin.

The fourth explanation is that the product may help the students to identify with 
their knowledge and become accountable for sharing the content. A nod to the regu-
larization of author content in such a way that the students eventually assumed 
authorship as a standard practice is found in the students’ description of their expe-
riences from the teaching sequence:

We had to plan and make the measurements ourselves, and we gained a much better under-
standing. We knew many of the formulas from the mathematics and biology classes, but it 
was different anyway. After all, we had to prepare the tasks ourselves. Normally the tasks 
just appear in the textbook. We made measurements, diagrams, and we even found the best 
correlation.

However, although the students viewed what was learned in the teaching 
sequence as having continued relevance, there is no indication that the students 
expected authorship to become a general practice for generating new knowledge 
and engaging in adaptive problem-solving as stated in the fifth explanation.

Seeking evidence for the students’ experiences of expansive framing, I noticed 
that the students experienced learning in preparation for transfer, connecting cur-
riculum units from different disciplines across time, and taking on the role of some-
one who authors knowledge to generate reasonable responses to a problem.
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9.6  Discussion

In my study, I found indications of students responding to and making sense of 
interdisciplinary settings by establishing a context based on several former learning 
strategies and experiences. They expected to continue to use what they had learned, 
created links between different settings, drew on prior knowledge, generated their 
own problems, authored content in reports, and expected to generate their own solu-
tions to new problems. In addition to connecting settings, the promotion of students’ 
authorship stands out as the main feature of expansive framing. The opportunity to 
explore a self-chosen problem through modelling activities gave the students a 
sense of ownership and positioned them as authors of their own ideas. This helped 
the students to engage in a context about vital capacity in which they could use the 
knowledge that they had come to identify with and construct a new setting in which 
they used their knowledge. The responses from the students participating in the 
study emphasize the point made by Lobato (2012) that transfer involves some expe-
riences of similarities or sameness across situations.

The experiences from the study show that the students need opportunities to 
apply their knowledge across a broad set of contexts. In the actor-oriented transfer 
perspective, transfer is a distributed phenomenon across individual cognition, social 
interactions, material resources, and normed practices (Lobato, 2012). Thus, the 
more relationships students see between the learning and transfer context, the more 
likely it is that transfer will occur.

In this study, I conducted interviews with students in which they were asked to 
explain how they themselves addressed transfer situations, with the rationale of 
examining whether students involved in interdisciplinary model-eliciting activities 
experienced the five explanations for how expansive framing promotes transfer. I do 
not claim that the students experienced the five explanations. There were indications 
of expectation for future transfer; that the connecting of settings made prior content 
continuously relevant; and that the students became positioned as authors who 
shared their knowledge, making them more likely to contribute what they know 
more generally. I did not observe an emerging practice that would allow students to 
author content regularly. This requires continuity and regularity such that the stu-
dents eventually assume authorship as a standard practice, and this was not achieved 
in a study based on a short intervention in a traditional monodisciplinary teaching 
culture. However, the study was conducted within the design-based research 
approach that is inherently a cyclic process of development and research in which 
the theoretical ideas of the designer feed the development of products that are tested 
in real classroom settings, leading to theoretical and empirical products and local 
instructional theories. Therefore, the question is which challenges should be 
addressed in the next iteration? With intercontextuality as the starting point, the 
productive role of contextual sensitivity in transfer (Lobato, 2012) should be con-
sidered. For students enrolled in a mathematics–biology study package, model- 
eliciting activities involving both disciplines offer a wide range of settings where 
the students can engage more frequently with contexts in which they can use the 
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knowledge they have come to identify with, sometimes even helping to construct 
new settings in which they can use their knowledge. The emphasis should be on 
creating links back to prior learning contexts, which may encourage students to 
make use of transfer opportunities by transferring in additional examples and gen-
eralizations related to what they are learning about (Engle et  al., 2012; Lobato, 
2012). In my study, I observed weak indications of students’ generalizing activity 
(e.g., that a situation in biology can be modelled with mathematics to obtain new 
biological information). The ideal is that the students generalize their experiences 
with identifying and structuring an extra-mathematical situation (e.g., in biology), 
mathematizing the situation to be modelled, analyzing and tackling the model, 
interpreting the results, validating the model, communicating about the model, and 
monitoring the modelling activity. To reach the ideal, structuring should be addressed 
as the active “process that occurs through an interaction of contextual affordances, 
personal goals, and prior learning experiences” (Lobato, 2012, p. 243).

9.7  Concluding Remarks

Making connections and transferring ideas to a new context are difficult processes 
that many students cannot accomplish on their own. In mathematics education, 
there is a broad acceptance that modelling provides opportunities for students to 
experience and discuss the role of mathematics and the nature of their models as 
they study systems taken from extra-mathematical reality. However, despite this 
acceptance, the potential for mathematical modelling to act as a “glue” between 
mathematical and extra-mathematical settings is only sparsely addressed in mathe-
matics education. Issues of interdisciplinary teaching have been underestimated in 
mathematical modelling and the same goes for context in transfer research. 
Modelling makes sense of complex situations, and the purpose of the resulting mod-
els is to provide meaningful ways for students to construct, explain, describe, 
explain, manipulate, or predict patterns and regularities associated with complex 
situations. The significance of authenticity empowers students to use their mathe-
matical knowledge proficiently to identify and solve problems located in personal, 
work, or civic contexts or other discipline areas and should be recognized as the 
starting point for positioning the students as active participants in a learning context 
where they serve as authors of their own ideas and respondents to the ideas of oth-
ers. My point is that interdisciplinary model-eliciting activities offer learning envi-
ronments where students are recognized as authors of ideas which are integrated 
into class discussions and other activities. Therefore, I consider these kinds of learn-
ing environments to be examples of expansive framing which encourage the stu-
dents to regularly use what they already know with an expectation of continued use. 
I do not argue that interdisciplinary model-eliciting activities per se lead to transfer. 
My point is that expansive framing should be regularly paired with activities where 
the students critically evaluate the knowledge they have transferred in for its rele-
vance and validity.
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Chapter 10
Transfer of Learning as Boundary 
Crossing Between Cultural-Historical 
Activity Systems

Vanessa Sena Tomaz and Maria Manuela David

The issue of transfer is recurrently present in discussions about learning (Detterman, 
1993; Engeström, 2015; Greeno, Moore, & Smith, 1993; Lave, 1988). There are 
countless transfer conceptions, associated with as many learning conceptions, forms 
of cognition and of knowledge, liable to various criticisms according to the theoreti-
cal orientation adopted. Activity and situated-learning theorists (Beach, 2003; 
Greeno, 1997; Lave, 1988; Tuomi-Gröhn & Engeström, 2003; van Oers, 1998) have 
criticized theories of transfer that treat learning as a process of internalizing porta-
ble knowledge in the head of the individual. According to Kagawa and Moro (2009), 
activity theory formulates learning as changes in the holistic and invisible relation-
ship among the individual, artifacts, and other people and expands the concept of 
transfer into the interrelations among collective activity systems. Tuomi-Gröhm 
(2003, p.  202), in particular, discussed a Finnish internship program for nurses, 
wherein school and workplace collaboratively interacted and changed, and pro-
posed a view of transfer as an increase in collaboration between the two activity 
systems (Engeström, 1987), school and workplace, to develop new theoretical con-
cepts and to apply them to solve everyday practical problems.

Following a similar view, although in a different context for transfer, Tomaz 
(2007) structured some school practices as activity systems (Engeström, 1987) to 
capture the complexity of the relations between three school disciplines. Articulating 
her analysis with the ideas of Greeno et al. (1993), who consider that the transfer 
process is influenced not only by the cognitive abilities of the person, but also by the 
cultural aspects through the interactions between people occurring historically in 
the environment, Tomaz (2007) elaborated a perspective on transfer which she 
considered more adequate to describe the students’ learning in the school disci-
plines. According to this perspective, transfer of learning can be seen “as a social 
and historical practice, in permanent transformation, that may occur by a 
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recontextualization process of the attunements and restrictions of actions within or 
between activity systems, in an environment” (Tomaz, 2007, p. 197).

In this chapter, we expand the investigation of transfer of learning made by 
Tomaz (2007), and deepen it theoretically, considering as a starting point, that trans-
fer of learning is not only a cognitive ability; it is, above all, a practice structured 
across social-historical and cultural activity systems. In this, practices are seen as a 
set of interrelated processes of production of knowledge in particular settings, and 
learning is seen as a recontextualization process of new ideas, experiences, and 
procedures emerging from the practices themselves.

Because the discussion involves school activities that make connections with the 
students’ daily life, the theoretical and methodological deepenings made in this 
chapter are guided by the following central issue: How do artifacts that are common 
to different school disciplines, when used and adapted by the students to deal with 
the contradictions that evolve in the activity system formed by these disciplines, 
facilitate the boundary crossing between activities configured within the school dis-
ciplines and reveal transfer of learning in this context?

To answer this question, we sought support in the theory of expansive learning 
(Engeström, 1987) as an alternative learning theory that enlarges the focus of analy-
sis to multiple interacting systems, capable of capturing the improvement of innova-
tion and change in collective processes. Accordingly, we adopt a perspective of 
learning transfer based in the boundary crossing theoretical concept (Engeström, 
Engeström, & Kärkkäinen, 1995) characterized by these authors as a “horizontal 
expertise where practitioners must move across boundaries to seek and give help, to 
find information and tools wherever they happen to be available” (p. 332).

We consider that this perspective on transfer of learning is different from the 
more traditional ones because it puts the emphasis on the ideas of expansion of the 
activity and of transformation of knowledge. It allows a more comprehensive 
approach to the process of transfer, capturing the complexity of and the interrela-
tions among the processes involved, for example, by focusing on the subjects, indi-
vidually and collectively; on the artifacts; on the power relations; and on the rules 
that compose an activity system, as explained in the next section. In this chapter, we 
focus initially on certain artifacts and their role in facilitating students’ boundary 
crossing between three activities, configured within the disciplines of mathematics, 
Portuguese, and geography, to further exemplify how the activities reveal transfer of 
learning according to the perspective we adopt.

10.1  Expansive Learning as Boundary Crossing

In recent works devoted to analyzing classroom activities, we used activity theory 
perspectives (Engeström, 1987) to highlight the role that visual representations play 
in structuring mathematics activity and to discuss how school mathematical activity 
is modified when students’ everyday situations are brought into the classroom 
(David & Tomaz, 2015; Tomaz & David, 2015). In this chapter, we adopt a similar 
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perspective, so as to develop and refine an alternative perspective of transfer of 
learning across three elementary school disciplines (mathematics, Portuguese and 
geography).

The activity concept, according to Leont’ev (1978), represents a specific form of 
social existence that includes crucial changes of social reality. It emerges from a 
necessity, which drives motives towards a related object. To satisfy motives, actions 
are needed. These, in turn, are accomplished in accordance with the conditions that 
determine the operations related to each action.

According to Engeström’s (2015) perspective, an activity is always understood 
as a collective phenomenon in a community, and individuals can only perform 
actions inside a larger system of at least two interactive collective activities,1 which 
should be taken as the unit of analysis. Every activity system is characterized by its 
object that can be expressed as concern, motivation, effort, and meaning. To repre-
sent a collective activity system, Engeström (1987) offered a model composed of 
triangles and, in the nodes of this model, he placed the following components: sub-
ject, object, mediating artifacts, community, division of labor, and rules. Subject 
consists of an individual or group engaged in a common purpose whose agency is 
the focus of the analysis; object is the “problem space” towards which the activity 
is directed and which is molded and transformed into outcomes; mediating artifacts 
are instruments, tools, and signs; community refers to people who share the same 
object; division of labor is the division of tasks, power, and status between the mem-
bers of the community; and rules “refer to the explicit or implicit regulations, norms, 
conventions and standards that constrain actions and interactions within the activity 
system” (Engeström & Sannino, 2010, p. 6). This activity system is one of the con-
ceptual tools available to explain networks of interacting activity systems, dialogue, 
and multiple perspectives and voices.

Engeström’s (1987) expansive learning theory is based on the cultural-historical 
activity theory, and involves the multidimensional treatment of the learner as an 
individual and as a community. Engeström and Sannino (2010) explained that the 
core idea of expansive learning is qualitatively different from the ideas related to the 
metaphors of acquisition and participation; it relies on the metaphor of expansion, 
in which learners learn something that is not yet there.

The expansive learning theory was based on the ideas of Russian cultural- 
historical school representatives such as Vygotsky (1978), Leont’ev (1978), and 
Davydov (1990) as well as on the work of Bateson (1993) and Bakhtin (1981). 
According to the theory of expansive learning, contradictions are the necessary but 
not sufficient engine of expansive learning in an activity system, and the process of 
expansive learning should be understood as the construction and resolution of suc-
cessively evolving contradictions (Engeström & Sannino, 2010).

According to this theory, learning manifests itself primarily as changes in the 
object of the collective activity, which contrasts with the traditional perspective, 

1 Because, according to Engeström’s perspective, every activity is formed by at least two individu-
als, from now on, for the sake of clarity and brevity of the text, when we write activity we are 
always considering it as an activity system.
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wherein learning manifests itself as changes in the subject. Thus, contradictions are 
a key concept in this theory because they may produce changes in the object, expan-
sive transformations of the activity, and new cultural patterns of the collective activ-
ity. Furthermore, an interesting stream of studies on expansive learning, mentioned 
below, takes into account the horizontal dimension of learning, that is, across activ-
ity systems. Engeström and Sannino (2010) emphasized studies in which the expan-
sive learning is manifested in different ways. Among those, the studies on boundary 
crossing will be of a special interest for the purpose of this chapter. According to 
Engeström, Engeström, and Kärkkäinen (1995, p. 333), boundary crossing entails 
stepping into unfamiliar domains and is a creative endeavor, which requires new 
conceptual resources.

Moreover, we agree with a broader metaphor of the boundary-crossing approach 
because it is oriented towards both the personal and the collective (Engeström & 
Sannino, 2010). Akkerman and Bakker (2011) defined boundaries as “sociocultural 
differences that give rise to discontinuities in action and interaction” (p.  139). 
According to these authors’ perspective, boundary crossing consists of the efforts 
made by individuals or groups at boundaries to establish or restore continuity in 
action or interaction across practices.

Consistent with the boundary-crossing process, artifacts have an important role, 
and they may form interlinked combinations that may be called instrumentalities 
(Engeström, 2007). Artifacts are not merely standard devices that could be transmit-
ted to the subjects in a readymade form. To the contrary, “the design and implemen-
tation of instrumentalities is obviously a stepwise process that includes fitting 
together new and old tools and procedures as well as putting into novel uses or 
‘domesticating’ packaged technologies” (Engeström, 2007, p. 33). These are evolv-
ing toolkits needed, created and used to deal with tensions and to support agentive 
actions (Engeström, 2015). Star, as cited by Engeström (1990), also used the notion 
of boundary objects, that is, “objects that are both plastic enough to adapt to local 
needs and constraints of the several parties employing them, yet robust enough to 
maintain a common identity across sites” (p.  190). According to Paavola and 
Miettinen (2018), boundary objects are usually interpreted as stable and concrete 
thing-like artifacts and allow interoperability and communication in the activity sys-
tems. For example, maps, models, forms, knowledge repositories, and graphic rep-
resentations can perform the role of boundary objects and play an important role in 
the expansion of the object of activity and the crossing of boundaries, but they are 
not the object of the activity (Engeström, as cited by Vetoshkina, 2018, p. 118).

It is important to emphasize that boundary objects should not be confounded 
with the object of the activity; instead, we consider that they compose the instru-
mentality of the activity system as artifacts that may boost transfer of learning 
between activity systems. Therefore, like Tuomi-Gröhn and Engeström, as cited by 
Kagawa and Moro (2009), we understand that “transfer of learning takes place 
through interaction between collective activity systems” (p. 185).
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Artemeva (2007), reviewing a collection of studies on transfer, suggested that 
researchers who adopt the framework of activity theory and expansive learning do 
not necessarily interpret transfer as the effect of a prior task on the subsequent task 
of the same level of complexity, but rather see it as a continual learning from one 
changing situation to another, a more complex one, and from one activity system to 
another. Tuomi-Gröhn, Engeström, and Young (2003) argued that “what is trans-
ferred is not packages of knowledge and skills that remain intact; instead, the very 
process of such transfer involves active interpreting, modifying and reconstructing 
the skills and knowledge to be transferred” (p. 4).

The prevalent studies from this perspective of transfer concern mainly vocational 
education and work. Engeström and Sannino (2010) brought forward some studies 
in which learning is manifested as boundary crossing. One of these is in the field of 
vocational teacher education, developed by Hasu and Engeström (2000), who 
observed that bridging the gap between the developers and the users may require 
new types of software tools.

Another study, by Tuomi-Gröhn et al. (2003), discussed a Finnish internship 
program for nurses, wherein school and workplace collaboratively interact and 
change. Bakker and Akkerman (2014) used the boundary-crossing approach with 
vocational students during work experience when they crossed the boundaries 
between school and work. They discussed how vocational students were supported 
to integrate the statistical knowledge, learned mainly at school, with work-related 
knowledge they developed mainly during internships. Similarly, Morselli (2017, 
p.  288) also discussed the role of enterprise education in vocational education, 
based on the studies on expansive learning that take into account the horizontal 
dimension of learning, that is, across organizations. The author argued that it is at 
the boundary where the need for dialogue and negotiation of meaning may gener-
ate new ideas, given that the movement from school to work is bidirectional, 
meaning that students bring their expertise when moving from school to work and 
vice versa.

The studies mentioned here on boundary crossing revealed several learning pro-
cesses triggered at some practices’ and/or activities’ boundaries. In a similar way, in 
our study, we take boundary crossing as one form of manifestation of expansive 
learning to analyze productive ways to interact between activity systems within the 
school domain. Furthermore, because there is a very close relationship between 
transfer and learning in the activity-theory approach, we tend to agree with Sӓljö, as 
cited by Artemeva (2007), when he said that “there may be no need for a separate 
concept of transfer because it cannot be distinguished from the concept of learning” 
(p. 363). In what follows, we present some examples of boundary crossing, from our 
data, to show how they can reveal expansive learning and transfer of learning.
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10.2  Data and Method of Analysis

10.2.1  Origin of the Study

We take a set of data collected on a sequence of classes analyzed in a larger study 
(Tomaz, 2007). This study involved three teachers from a public school in Brazil 
who taught mathematics, Portuguese, and geography. The data for the larger study 
were collected by one of the authors (Vanessa Tomaz) through participant observa-
tions in four classrooms (two seventh-grade and two eighth-grade classrooms, each 
with 35 students) for a period of 6 months. Data were also collected through inter-
views with students and teachers. We produced field notes and transcriptions of 
audio and video recordings for all empirical data in Portuguese. For the purpose of 
this chapter, a selected set of data was translated to English.

The three participants in this study were a mathematics teacher, Telma, a 
Portuguese teacher, Rosângela, and a geography teacher, Noêmia, who decided to 
collectively develop an interdisciplinary approach to the Water theme, involving the 
students of two seventh-grade classes (Class 1 and Class 2). The two groups of stu-
dents were very similar in many respects. Both had mixed socioeconomic back-
grounds, and the students’ ages varied from 13 to 15  years. There was also no 
significant disparity in the students’ performance on the mathematics tests or in the 
level of participation of the students observed in both classes. The teachers had vast 
experience (over 23 years for each teacher) teaching at the middle school level. In 
the interviews, the students stated that they were good teachers, and during our 
observations of their classes, we noticed that they usually succeeded in establishing 
open and amicable relationships with the students. For the most part, students par-
ticipated actively in their lessons.

10.2.2  Method of Analysis

Aligned with the methods used in other works (David & Tomaz, 2015; Tomaz, 
2007; Tomaz & David, 2008, 2015), the methodological approach used in this study 
was also grounded in ethnography as a logic of inquiry in education (Green, Dixon, 
& Zaharlick, 2003). According to this logic, the focus is on the process, and there 
are no strict protocols previously defined for the observations and interviews. 
Ethnography assumes that it is not possible to avoid a certain degree of subjectivity 
in the data collection and in the analysis, which is essentially interpretive. However, 
it is possible for the researcher to reach the required scientific rigor by carefully 
describing all the research procedures and by contrasting his or her interpretations 
with the other subjects’ perspectives, for example, through interviews and discus-
sion of the video records.
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10.3  Water Theme as an Activity System

The study of the Water theme was proposed by the teachers of mathematics, 
Portuguese, and geography with the objective of promoting learning to make the 
students expand the meanings of the content studied in the school disciplines, espe-
cially with respect to the use of school knowledge in and out of school situations. 
Each teacher tackled the theme by proposing increasingly complex tasks, which 
required further knowledge beyond that required for their discipline. The proposals 
of the mathematics and Portuguese teachers were more focused on awareness 
actions and on the application of the disciplinary content. In turn, the geography 
teacher requested that students create elaborate proposals to solve the problem of 
water shortage in the world. The mathematics teacher initially proposed a study of 
the students’ water bill, with the mathematical goals of applying the cross-multiply 
and solve for x strategy (Post, Behr, & Lesh, 1988), as well as percentages, content 
already being covered in her classes. As the work progressed, she proposed other 
problems of application of these content areas not directly related to the water bill 
but, instead, with other texts that also addressed the Water theme.

The Portuguese teacher discussed the theme and produced, with the students, 
different types and genres of texts about the Water theme. The geography teacher 
only started the discussion of the Water theme after it had been completed in the 
other disciplines. She introduced the role of the supranational organizations (i.e., 
the United Nations) in the current world conflicts and proposed a seminar involving 
the students as representatives of the different countries to debate the shortage of 
water in the world and to create proposals to solve this problem. From the moment 
that the theme was introduced in the three disciplines, each teacher followed their 
own planning, developing and proposing of activities on water within their planned 
content at different times and without formally meeting to discuss the classroom 
work. The communication between the teachers about the progress of work was 
made by the students themselves who would comment on or use in one class what 
they had done in another.

Thus, when the students were asked to perform tasks more closely related to 
disciplinary content addressing the Water theme, produce texts, make calculations, 
or even submit environmentally and economically viable proposals to avoid short-
age of water in the world, the study of the Water theme became a great challenge 
for them.

Behind this challenge, there was a persuasive and persistent contradiction, 
namely that students had to be aware of excess water consumption and to create 
alternatives to avoid shortages, using the society in which they lived as a reference, 
and at the same time having to align awareness actions and creation of proposals to 
the assessment tasks according to the school content taught in each discipline. This 
illustrates how this primary contradiction, sometimes referred to as use value versus 
exchange value, manifests itself in education, and in this specific case. This contra-
diction is also manifested in the teachers’ activity as they oscillated between two 
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opposing forces: discussing the theme by focusing on the awareness actions or on 
the creation of consumption alternatives versus connecting the discussion of the 
theme with the disciplinary content to show its application in the students’ lives. 
Furthermore, Engeström (2015) argued that contradictions in an activity system 
may exist on different levels (within the components of an activity system, between 
the components of an activity system, and between activity systems), and later, we 
show some examples of these from our data.

According to our interpretation, in the study of the Water theme, there was a 
network of activities in which subjects interacted and brought together dialogues 
and multiple perspectives and voices, which allowed it to expand into an activity 
system. This activity system constitutes the unit of analysis to be considered in this 
chapter. We consider that, in this unit of analysis, from now on referred to as the 
Water activity system, there was integration of ideas, tools, languages, rules, and 
concepts from the different disciplines involved.

According to Leont’ev (1978), the main characteristic that distinguishes one 
activity from another is its object because the object gives the activity a specific 
direction. In our case, the actions of the subjects (i.e., the students and teachers), 
when they participate in the tasks organized by the disciplines of the specific areas, 
are oriented towards the shared object, namely water and its shortage. Although 
students and teachers may be mobilized by different motives towards the shared 
object, as we will show, in the development of the activity, they redirect their 
motives, resulting in them being blurred at times.

The primary contradiction referred to earlier, inherent in the activities’ objects in 
the educational field, radiates to all the components of the Water activity system, 
bestowing dynamism to this system and making it impossible to delimit it to a spe-
cific disciplinary field. This contradiction projects itself onto the activities devel-
oped within each discipline, as well as onto the boundaries of the activities that 
compose the Water activity system and even outside of it.

In the Water activity system—our unit of analysis—it is possible to identify a 
series of actions related to the same theme within the disciplines of mathematics, 
Portuguese, and geography. Zooming into this system, the set of actions related to 
each discipline can each be characterized as an activity subsystem (Engeström, 
1987), forming a constellation of interconnected activities, A1, A2, and A3, config-
ured respectively in the mathematics, Portuguese, and geography disciplines.

Figure 10.1 represents a general scheme for the Water activity system, formed by 
a constellation of these three interconnected activities that share the same object 
(i.e., water and its shortage).

Given the complexity of the Water activity system, for the purpose of the present 
analysis, in Fig.  10.2 we specify all of its components, following the triangular 
model (Engeström, 1987). We also outline the interconnected three subsystems 
without losing their connection with the Water activity system: A1 focuses on math-
ematics problems involving water (object: to solve mathematics problems on water); 
A2 focuses on texts on water that raise youth awareness (object: to create a text on 
water to raise youth awareness); and A3 focuses on projects to solve the issue of 
water worldwide (object: to create “scientific” proposals to solve the water 
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Fig. 10.1 The activity A1 connects with the other two activities A2 and A3

shortage). In Fig.  10.2, the contradictions are highlighted by the two-headed 
lightning- shaped arrows.

All components of each system are summarized in Table 10.1. In the next sec-
tions, the discussion of some of these components will be presented to elicit the role 
of the artifacts in crossing boundaries between the three systems, and the expan-
sions of the Water activity system as a whole, as a result of changes perceived in the 
objects.

10.3.1  Mathematics Problems on Water Activity System (A1)

When Telma taught the topic of proportionality, she introduced the cross-multiply 
and solve for x strategy, which she called rule of three, to solve typical school prob-
lems involving proportions. Afterwards, to discuss the Water theme, she proposed a 
problem related to the students’ water consumption bill. The students were sup-
posed to find in their bills the necessary data to answer the following questions: 
How many days of consumption? What is the average daily consumption of the 
family? What is the average consumption per person? What is the average consump-
tion per person per day? What will you do to save water in your home?

Besides the work with the water bill, the teacher proposed problems created from 
texts about water whose resolution demanded the use of the rule of three, percent-
ages, and other numeric notions. One of the problems was created from the follow-
ing small text retrieved from a booklet from Campanha da Fraternidade2 
(Conferência Nacional dos Bispos do Brasil [CNBB], 2003):

2 Campanha da Fraternidade, or the Brotherhood Campaign, is an initiative of the Brazilian 
Catholic Church, which proposes an annual theme to be debated.
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Fig. 10.2 The constellation of three interconnected activities composing the Water activity system
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Table 10.1 Constellation of activity subsystems and their components

Mathematics Problems on 
Water Activity System 
(A1)

Texts on Water to Raise 
Youth Awareness 
Activity System (A2)

Projects to Solve the Issue 
of Water Worldwide Activity 
System (A3)

Object O1 – Solving mathematics 
problems on water

O2 – Creation of a text 
on water to raise youth 
awareness

O3 – “Scientific” proposals 
to solve the water shortage

Subjects S1 – Students and 
mathematics teacher

S2 – Students and 
Portuguese teacher

S2 – Students and geography 
teacher

Mediating 
Artifacts
(Tools)

T1 – Water bill, magazine 
table, booklet, rule of 
three, questions done by 
math teacher; school 
problems, etc.

T2 – Magazine table, 
booklet, numerical data, 
drawings and graffiti, 
etc.

T3 – Layouts, maps, lab 
material, magazines table, 
booklet, other books and 
magazines, texts, ICTa, 
drawings, etc.

Community C1 – Other students; 
teachers of other subjects; 
mathematicians; textbook 
authors; curriculum 
developers, researcher, 
and COPASAb; parents; 
media; religious and civic 
organizations

C1 – Young people, 
teachers, school staff, 
parents, and other 
community members; 
teachers of other 
content areas; religious 
and civic organizations; 
researcher

C2 – Other students, 
teachers of other content 
areas, other school 
professionals, researchers, 
United Nations, 
international communities

Division of 
Labor

D1 – Starts with 
mathematics teacher and 
students sharing the 
authority and moves 
towards greater autonomy 
for the students

D1 – Starts with 
Portuguese teacher and 
students sharing the 
authority and moves 
towards greater 
autonomy for the 
students

D2 – Starts with geography 
teacher and students sharing 
the authority and moves 
towards autonomy for the 
students: They gain 
empowerment to act and 
evaluate their colleagues. 
The geography teacher only 
follows what they had 
previously agreed on

Rules R1 – Use the water bill to 
extract the data; apply a 
mathematical calculation 
(cross-multiply and solve 
for x, simple division); 
compare your averages 
with the one shown by 
COPASA; determine the 
number of water 
consumers at home; use 
the averages previously 
found, the consumers’ 
daily habits, and the 
debate in other disciplines 
and social spaces

R1 – Assemble 
arguments from other 
classes of different 
disciplines; write 
following the standard 
language; organize and 
systematize information 
from different sources; 
use of the numerical 
data; use of visual 
representations; follow 
the school routines and 
constraints

R2 – Search for information 
about the physical, 
economic, political, and 
social aspects of each 
continent and include these 
aspects in an oral 
presentation; present at least 
five projects to solve the 
problem of lack of water in 
your continent; assume that, 
starting in 2025, the water 
could be rationed and that, 
after 2050, there could be a 
lack of water in the world; 
the proposals should have 
the format of “scientific” 
projects; they should be 
handed to the jury 3 days 
before oral presentation, etc.

Note. Adapted from Tomaz and David (2015)
aICT – Information and Communications Technology
bCOPASA – Companhia de Saneamento de Minas Gerais (Sanitation Company of Minas Gerais)
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Table 10.2 Water consumption data from Pinho and Barros (2004)a

Activity Time (min.) Water (tap running; L) Water (tap off; L)

Brushing teeth  5  12  1
Shaving 10  24  4
Washing up 15 117 20
Watering the plants 10 186 96
Washing the car 30 560 40

aNote. Translated by the authors from the original in Portuguese

From a consumption perspective, 20% of the Brazilian population (35 million) do not have 
access to drinking water . . . 80% of the excess sewage is dumped into rivers. Around 105 
million Brazilians live under a state of insecurity regarding the water they use. (p. 8)

The problem based on the text proposed by the mathematics teacher was the follow-
ing: “According to the text what is the rate of Brazilian population represented by 
people with water insecurity?” (proposed in Class 1 and Class 2 on March 30, 2004).

The second problem situation was suggested by a table published in the maga-
zine IstoÉ (Pinho & Barros, 2004), which indicated the consumption of water used 
to brush teeth, do the laundry, and so on (see Table 10.2). The teacher created prob-
lems involving percentages and rule of three.

The teacher showed her students this table, which was taken from the magazine, 
and asked them the following: “How much water would a person use if he kept the 
tap running while brushing his teeth? And how much water would he use if he 
turned the tap off?” (mathematics class on March 30, 2004, in Classes 1 and 2).

In the context of these problems, the development of the activity uses the codes, 
the textual genres, and the symbols typical of the mathematics discipline. Even 
though it is not a mathematical language in the format used by professional mathe-
maticians, a school language of the content area is being constructed and defines the 
participation code of the students in their practices.

The school tasks involved in the mathematic problems on water are structured as 
an activity system because they have a motive to solve mathematics problems on 
water (the object), expressed through the actions that operate within the conditions 
established by the environment. In this case, according to our classroom observation 
and perceptions from the interview with the teacher, the activity motivation for the 
teacher was to solve problems on water so as to continue her awareness work on the 
water issue. Simultaneously, this activity allows the teacher to continue to propose 
possible applications of the rule of three and percentages in problems that are closer 
to the students’ reality. This motive was expressed in her actions during reading, 
calculating, and registering the school-math methods to solve the problems. The 
actions operated in the use of artifacts that enabled the accomplishment of the activ-
ity. These artifacts, which can be represented by the table in the magazine, the book-
let, the cross-multiply and solve for x procedure, the school problems, the water bill, 
and so on are different textual genres and work as resources to solve the problems. 
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The students also applied the cross-multiply and solve for x strategy, but their 
motives were mainly focused on the awareness and dissemination of water- 
saving tips.

In this context, it is possible to notice a manifestation of the primary contradic-
tion in education, between object and rules, wherein the students have to deal with 
a situation that involves water consumption as a school problem and fulfill their 
student role, versus in a real situation, raising questions that could result in different 
ways to reduce the water consumption that go beyond the school situation (for 
example, leave the tap just a bit open, use just a glass of water instead of opening 
the tap). In this way, we understand that the mathematical problems on water con-
figure themselves as an activity system (A1), summarized in Table 10.1.

As explained next, the problems on water, solved by the students in the domain 
of Activity A1, were later used as artifacts in the Portuguese class to create the texts 
that raise awareness among the students (A2), as well as in the geography school-
work to create proposals to solve the water issue in the world (A3).

10.3.2  Texts on Water to Raise Youth Awareness Activity 
System (A2)

During the discussion about the Water theme, several textual genres (informative, 
narrative, and argumentative) on the theme were produced in the classes of mathe-
matics, Portuguese, and geography, keeping, in each case, the specificities of each 
content area. Particularly in A2, the creation of these texts boosted the discussion of 
the Water theme, aiming to raise youth awareness of the importance of saving water. 
Each produced text is marked by a language situationally constructed, within and 
among the content areas, as shown in the examples below (see Fig. 10.3a, b).

The texts to raise awareness among the youth were proposed by the Portuguese 
teacher, whereas the students solved problems on water consumption in the mathe-
matics classes. Her guidance was that the students should use the discussions on the 
other content areas to write their arguments, using scientific data. The following are 
guidelines written by the Portuguese teacher on the blackboard (April 1, 2004):

• Text on water
• Use the scientific data you have researched on water
• Produce a text to raise the awareness of young people on their importance to lead 

a change on water use
• Text structure:

 – Produce a text to young people

• Objective:

 – Raise their awareness on the influence they can have to change the posture 
and the habits of their families on the rational consumption of water.
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Fig. 10.3 (a) Poster for the play by Class 2; (b) poster for the play by Class 2 (Tomaz, 2007)

 – Argue on the risk of lacking water in the world.
 – Comment the works done in the school.
 – Present some measures to save water through rational use.

The teacher intentionally proposed a text to allow students to make connections 
to other texts and content areas, as can also be confirmed in the following excerpt 
from the interview:

V:  What objective did you have . . . what did you want when you were proposing the 
water activities with the students?
Rosângela:  What I really wanted was that, through reading, they had a path-
way to research and noticed that this text dialogues with the others. (collective inter-
view with the teachers on June 29, 2004)

The students of Class 1 wrote informative and argumentative texts aiming to 
raise readers’ awareness of the water issue, which were read and discussed in class; 
the students of Class 2 wrote individual texts and collectively assembled a theatrical 
play that they presented in the closing of the work on water. In both types of texts, 
they used the information presented in the mathematical problems. The texts clearly 
presented more than a systematization of the discussion, information, and knowl-
edge acquired by the students through the study of the Water theme. The objective 
of the two types of texts, dissertation and play, was directed toward youth awareness.

The products of the objective are exemplified below with excerpts from the texts 
of two students, Joaquim and Cássia, both from Class 1. In the first excerpt, 
Joaquim’s text stated the following:

In my school (and I believe in yours as well) they are working with this in Mathematics, 
Portuguese, Religious Studies, and other content areas. My Mathematics teacher, Telma, 
showed us a very interesting table with the help of Vanessa (UFMG). I will show you. (The 
text also included an image of the table students were shown in Table 10.2)

In a second excerpt from Joaquim, the text stated:

There was a time we brought some texts on water. I brought a text called “Manifest of 
water” that informs about the water, the water of the planet, and the work of project 
“Manuelzão”. In it we have some information: “The Earth surface is covered by ¾ of water, 
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97% are oceans, 2.7% are polar glaciers, that, when melt become salted water. Thus, 0.3% 
are river waters.

Cássia also referred to the data presented on the mathematics problems, as shown in 
the following excerpt:

On a consumption level, 20% of Brazilian population (35 million) have no access to drink-
able water. I think that 100% of the Brazilian population should have access to drinkable 
water, not only 80%. In many content areas at school I did some works on how to save water 
and one of them showed a table like this.

This student proceeds with her text, reproducing the same table of water consump-
tion from an article titled “Água Enxuta” in the Brazilian newsmagazine IstoÉ 
(Pinho & Barros, 2004).

In Class 2, even though the theatrical play is a different kind of text from the one 
used by the students of Class 1, the numerical data used for the play were the same 
as used in Class 1. These numerical data, taken from the booklet from Campanha 
da Fraternidade and the IstoÉ magazine table, strengthened students’ arguments 
with evidence of percentages of river water, ocean water, and potable water on 
Earth, and this evidence was added to the posters created to represent the play 
scenarios.

We consider that the production of texts to raise youth awareness by the students 
and Portuguese teacher (subjects) organizes itself as an activity system, Texts on 
Water to Raise Youth Awareness (A2), whose components are depicted in Table 10.1.

In A2, the subjects (students and Portuguese teacher) guide their actions in the 
creation of a text on water to raise youth awareness (object). These actions are medi-
ated by different artifacts (numerical data, magazine table, drawings, booklet) and 
according to rules (i.e., assemble arguments from other classes of different disci-
plines, write following the standard language, organize and systematize information 
from different sources, use of the numerical data, use of visual representations, and 
follow the school routines and constraints) so that the results of the activity system 
are texts, both argumentative text and text in the form of a play.

As seen in the examples presented from Class 1, the guidelines written by the 
Portuguese teacher on the blackboard played a fundamental role in the systematiza-
tion and organization of the information of the students’ texts to target a specific 
segment of the public, whereas the play produced by Class 2 reflects the engage-
ment of the class in a collective action to raise youth awareness and their option of 
using the visual appeal as a tool to convince other youth.

As the teacher asserted, the discussion on water in the Portuguese classes had the 
following motives:
Rosângela: I focused on the importance [of the theme] which is evident to all 
of us . . . even considering the lack of it [water] . . . also to encourage the student to 
search information . . . when he wants to know . . . to learn something more . . . that 
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he could such different sources, supports . . . in different materials. . . . (Individual 
interview with the Portuguese teacher on June 20, 2004)

In Class 1, the students interacted to discuss their own texts and assembled their 
ideas in individual text productions for use later in their Portuguese class. In Class 
2, to produce the play, the students needed to interact in a way that allowed the 
group to reach the common goal, the theatrical play. In this effort, we can see that 
the written text was insufficient for the purposes of the task at hand, leading to other 
types of texts, such as the posters created by the students.

Although in both cases the students tried to produce their texts following the 
teacher’s rules, at times they made choices, individual or collective text, argumenta-
tive text or a theatrical play, and the added new rules, such as the use of visual rep-
resentations. We perceived that these changes introduced by the students promoted 
a less hierarchical and more horizontal division of labor in the classroom because, 
in both classes, they did not restrict themselves to just following the guidelines of 
the teacher. Especially in Class 2, the option for the play, by combining different 
languages, required a more complex work organization and power negotiations 
among colleagues and with the teacher.

We perceive that the creation of an argumentative text and the play were moti-
vated by a contradiction manifested in the current educational activity between 
object and rules: producing texts to raise youth awareness using a language that best 
mobilizes the young person—for instance, a play or a leaflet with numerical data—
versus producing texts to show the mastery of linguistic tools attuned to the content 
covered in the discipline.

Another contradiction arises in A2 between artifacts and division of labor. When 
the students of Class 2 opted to produce a collective play, there was the need for 
other textual supports to favor the visualization of arguments capable of convincing 
young people of the problem. The students used the magazine table and numerical 
data from the Mathematics Problems on Water activity (A1), which worked as 
boundary objects for activity A2. These artifacts allowed for the visualization of the 
arguments needed, as well as for the general rules for text production established by 
the teacher and the appeal for awareness. That is, to face this contradiction, students 
crossed content-area boundaries, gained power of action, and expanded their par-
ticipation in the Water activity system by changing the use of the magazine table and 
numerical data. These were not used as a source of data to calculate but as a refer-
ence to build the text arguments.

It should be noted that some artifacts used by the students in this activity system, 
A2, which were also artifacts in A1, were used differently in the two activity systems. 
For example, in A2 (Portuguese), the table represented on the posters was paired 
with other images, highlighted for making comparisons with the information in the 
photos (Fig. 10.3a, b),but also complemented by them. In A1 (mathematics), how-
ever, the table worked as a data base for the students to solve the proposed problem. 
In the A2 texts, the same table was used to give numeric arguments used to convince 
youth through different textual supports.
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10.3.3  Projects to Solve the Issue of Water Worldwide Activity 
System (A3)

The idea for the geography work also originated in the initial teachers’ meeting, 
when it was suggested that a simulation of the United Nations Security Council 
could be conducted to discuss the water problem in the world.

To develop this work, some of the students in each class were divided into groups 
representing different continents. There was a special group, called by the students 
the “jury group”, that played the role of the countries’ members of the United 
Nations Security Council. The development of the work was registered in a note-
book under the responsibility of the general secretary of the jury group. This group 
was also in charge of establishing and legitimizing the rules to be followed by the 
other classmates and of evaluating their work. The jury group was solely composed 
of students from Class 2 because, according to the teacher, they were the ones who 
first showed interest in participating in this group.

The guidance given by the teacher was that each group should show research on 
the physical, economic, political, and social aspects of a specific continent and, 
considering that the people who would watch the final work presentation may not 
know much about the continent the group was supposed to represent, the students 
should give them a general view of this continent, including its water status. Paired 
with this description, the students should publicly present at least five solution proj-
ects for the water shortage problem on the continent. All proposals were to assume 
that, starting in 2025, the water could be rationed and that, after 2050, there could 
be a lack of water in the world, according to the information from the booklet from 
Campanha da Fraternidade (CNBB, 2003):

‘In 2050 when we will have 3 billion people more, we will need 80% more water for human 
use; and we do not know from where this will come.’ This scenario is dramatic, as it clearly 
endangers the survival of human race and of a great part of beings . . . . (p. 5)

The teacher’s guidelines worked more as a set of references for students than as 
actual rules dictating the work execution.

From the beginning, the students were engaged with the work and, at a certain 
point, the jury group decided to establish some guidelines to elaborate the projects 
that would be presented by their classmates, as well as the oral presentation the 
groups would have to do. They also determined that the projects should have the 
format of scientific projects with concrete solutions to the water shortage problem, 
rather than just raising awareness of a future problem. They determined, for instance, 
that each group should present five proposals to solve the water issue on the conti-
nent, to be handed to the jury three days before the oral presentation. In this presen-
tation, all group members should explain their projects without using their notes, 
and they should be capable of discussing their projects with the jury members. 
Thus, during the work, the jury group members played, in the classroom, the roles 
of advisors and evaluators of their classmates’ work. They checked with the groups 
the progress of their work; they studied and analyzed, in advance, their classmates’ 
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projects and offered criticisms and suggestions on the ideas presented, leading to 
modifications of the presented projects. All these initiatives were countersigned by 
the geography teacher, who followed the students’ movements without directly 
interfering. According to Engeström and Cole (1997), we can say that the jury group 
promoted a situated interventionism making use of selective discoordinations, 
which become “a tool for revealing and traversing zones of proximal development 
at both individual and collective levels” (p. 308).

Faced with the demand and the belief that “scientific” projects would be able to 
solve, definitely, the lack of water in the world, the students, using different resources 
(layouts, maps, lab material, magazines table, booklet, other books and magazines, 
texts, ICTs, etc. ), presented the following projects: construction of dams, excava-
tion to find water tables, searches for new technologies, implementation of environ-
mental policies including taxes, desalinization of sea water, faggara (underwater 
aqua-ducts), rainwater harvesting, siphoning, and water reuse. All the groups’ pro-
posals, except for one from a group in Class 1, were considered by the jury group as 
pertinent to the continent represented by the group and adequately justified accord-
ing to physical, economical, and social characteristics.

Thus, in the geography classes, the students were guided by the jury group to 
create science-based projects able to solve the serious problem of lack of water, and 
the discussions of awareness, held by the students in the other content areas, were 
relegated to a secondary level of importance. This change of focus was stimulated 
by the teacher, despite not being a requirement in her demand for scientific projects, 
as will be seen later. Therefore, together, the students’ and the geography teacher’s 
actions were driven towards the object, “scientific” proposals to solve the water 
shortage. As in the mathematics and Portuguese classes, the set of actions observed 
in the geography classes can, during their turn, also be seen as an activity system, 
and that we labelled Projects to Solve the Issue of Water Worldwide (A3; Fig. 10.2), 
involving the students and the geography teacher (i.e., the subjects) in the creation 
of solution proposals to solve the water problem in the world, mediated by artifacts 
(layouts, maps, lab material, magazines table, booklet, other books and magazines, 
texts, ICTs, drawings, etc.). To follow the rules established for this activity system 
(Table 10.1), the subjects’ actions should, during their turn, consider a broader com-
munity, involving other students, teachers of other content areas, other school pro-
fessionals, researchers, the United Nations, international communities, and so on.

The role of the jury group deserves special attention because, as the activity 
unfolds, its members alternate their roles and the division of labor in the activity 
system. Sometimes they assumed the responsibility of leading the work of their col-
leagues, acting as if they were teachers. However, while the other students were 
preparing to represent “their” countries and continents, the jury members also 
deeply researched them, acting more like the other students. Moreover, as they 
interacted with several groups, they learned about several research projects and 
about their colleagues’ proposals, gathering arguments to conclude on the viability 
of different “scientific” projects and gaining empowerment to act, again, more like 
teachers in the evaluation of their colleagues’ projects. The following are excerpts 
from a group interview with the jury:
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José:   As they were saying things, I tried to see in my house if there was any 
proof for it . . . then I tried to find other projects about it . . . you know?

V:  Ah . . . so they also looked for those things there . . .
José:   They searched their way . . . I don’t know how . . . they did it but not 

very scientifically . . . they did things for themselves . . . they estab-
lished their projects . . .

V: But things like . . . desalination . . .
Soraia:  Desalination they took from one of my projects . . .
V: What type of things did they do by themselves?
José:  To melt ice caps . . .
Alan:   Then we would ask “how will you melt the ice caps?” then they would 

say “ah, I don’t know,” we will take it and send . . .
José:   Melting a bit and putting the water in a ship . . . remove it with a water 

truck . . .
Alan:  Things they would make up . . . .
Geraldo:  It seems they didn’t make any research!
Alan:   Then Gerson reproved two . . . artificial rain and this one about melting 

. . . (Group interview with the jury, June 6, 2004)

The coordination work implemented by the jury group succeeded in making sure 
that almost all students shared the same purpose of gathering projects and argu-
ments to show the viability of their proposals to solve the water issue worldwide, 
but with different strategies. In the specific case of the jury group, the cohesion of 
the members around the “scientific” character requirement for the projects was 
clear. The effort to make their classmates’ research turn out as scientific possibilities 
was reinforced when they eliminated beforehand the proposals that they thought did 
not attend to this requirement. With this effort, they shared behaviors, languages, 
habits, values, and tools used by the members of the community, embodying an 
activity system with a group of students in a strong position of authority.

In A3, the poster layouts used to present the solutions for the water problem, 
served as the artifacts that could better represent the students’ projects in a scientific 
format, as demanded for by the jury (see Fig. 10.4).

When the jury group assumed leadership and guided the discussion towards the 
solutions, and no longer towards the awareness of the problem of water, the students 
had to change the direction of their actions to fit the new rules of the activity. 
However, a group from Class 1 kept the focus on awareness, and this was not well 
evaluated by the jury (see Fig. 10.5).

Later on, during an interview with the jury group, they explained why the work 
of this group of Class 1 (i.e., Fig. 10.5) was not well evaluated by them:

Alan:  Do not take a long shower . . . .
Soraia:  Everyone already knows that . . . .
Alan:  It is worthless . . .
Soraia:   It is worthless . . . I know that since I was born . . . but it is worthless 

nobody does that . . .
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Fig. 10.4 Layout of the project of water treatment in Africa from Sebastião, presented in Class 2 
of the geography class (Tomaz, 2007)

Fig. 10.5 Poster presented in Class 1 of the geography class (Tomaz, 2007)
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José:   That is what they did . . . save water . . . preserve water . . . treat water . 
. . are things . . . everything that people knows . . . then after I . . . they 
didn’t propose anything . . . we let them present . . . in the end I asked 
them “ in places with no water in Europe, what will you do?” . . .

Alan:   Because everyone already knew . . . and the things nobody knows were 
worthless until now . . . so much that their work was about Europe but 
they were saying things about Brazil . . . (Group interview with the jury 
group, July 6, 2004)

In this excerpt, the jury argued that they had changed the focus of actions, which 
were now guided towards the creation of scientific projects with a broader geo-
graphical reach (the world), but the group of Class 1 was only saying things that 
“everyone already knows” and “saying things about Brazil.”

The requirement that the students should present scientific projects to solve the 
lack of water in the world, challenged students to convince the jury group that their 
projects were really viable and efficient, but did not eliminate the need to raise 
awareness of the water issue. This idea was reinforced by the teacher during an 
interview after the end of this work:
Noêmia:  They are proposals that everyone knows . . . for example . . . I’ll 
tell someone that he should wash his car with a bucket instead of a hose . . . everyone 
knows . . . but washes it with a hose . . . I mean, it is not because the person doesn’t 
know that . . . that they can save water this way . . . but he has no interest . . . he 
doesn’t have this awareness . . . so to work on [people’s] awareness is much worse 
than to use something that doesn’t depend on the will of people. (Individual inter-
view with the geography teacher on June 15, 2004)

Behind this challenge, there was a persuasive and persistent contradiction mani-
festing itself between artifacts and rules, which can be restated as follows: Maintain 
the discourse of awareness to reduce water consumption, even though the people 
know what they should do, versus completely abandon the awareness actions and 
instead try to create “scientific” projects able to produce more water, which could 
lead the classmates to relax in their actions to reduce consumption.

This contradiction becomes more evident in activity A3 when the students are 
requested to represent their solutions in the form of scientific projects, which is a 
new rule in this activity. Given this rule, the students’ actions oriented towards the 
activity object—“scientific” proposals to solve the water shortage—and demanded 
mediating artifacts that effectively communicate how science driven by technology 
could support projects on reuse of water or exploration of new sources, where there 
is no space for doubts and daydreams but, instead, a call for what is concrete, quan-
tified, and classified, and for hypotheses verified through the scientific method 
(Rosa, 2012). From this perspective, the eagerness for scientific solutions aligns 
with people’s welfare needs (i.e., the needs to consume and make use of water with-
out restrictions) because globalization reconfigured the use of the space to transcend 
the geographical and to incorporate cultural, ethical, and behavioral aspects of the 
people. Thus, for the scientific projects to be really effective, they must break with 
the local reality and aim for a global reach, by being presented as a remedial alterna-
tive for people’s lack of awareness of the water problem and by providing an imme-
diate result for the global society.
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The rejection of a group proposal by the jury can be seen as a way to reinforce 
the new object of the activity and sheds light on the discoordination of actions in 
this group during this activity. However, the jury group worked as a crucial 
boundary- crossing change agent, carrying, translating, and helping to implement 
new ideas between the educational institution and the out-of-school society 
(Engeström & Sannino, 2010, p. 13).

The geography teacher’s belief that new demands were established by the jury 
group reinforces our perception of the manifestation of the contradiction between 
artifacts and rules in A3:
Noêmia:  I think they looked for more elaborate proposals . . . I think this is 
because they would have to discuss with the jury . . . so if they stuck to something 
too simple . . . “what will they evaluate? You know?” . . . if the judges will evaluate 
the work . . . by the discussion they would have to present something more . . . so 
that is when they researched . . . and sent those complicated proposals . . . they did 
it . . . (Individual interview with the geography teacher, June 15, 2004)

In activity A3, once again, the artifacts mobilized in activity A1 (the magazine 
table and the booklet from Campanha da Fraternidade) are mobilized to compose 
the scientific projects, the outcome of A3, which were mainly focused on people’s 
awareness.

10.4  Transfer as an Outcome 
of Boundary-Crossing Processes

The analysis of activity systems A1, A2, and A3 revealed some mediating artifacts 
common to all three subsystems: magazine table, booklet, numerical data, draw-
ings, and texts. However, these artifacts were used in different ways in each 
subsystem.

When we zoom out and consider the Water activity system itself, we can imagine 
how these common artifacts act as boundary objects in this system, supporting the 
subjects’ actions—mainly those of the students—which are targeted towards the 
discussion of the Water theme. Although each subsystem has its own object, when 
we focus on the Water activity system, we realize that its object is shared by the 
three subsystems that compose the Water activity system. Boundary crossing 
between A1, A2, and A3 takes place because relations are established between them, 
ensuring the continuity of the actions directed towards the object, water and its 
shortage, and avoiding the system’s disintegration.

These relations are facilitated by the multiple voices that hybridize the system, 
which is characteristic of a horizontal movement of learning and development 
within and between activity systems, taking the dialogue as a search for shared 
meanings (Engeström, 2003). The reorchestration of these multiple voices is facili-
tated when they are seen in their historical context because, as Engeström (2015) 
argued, “An activity system is by definition a multi-voiced formation” (p. xxiv). 
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Thus, in the unfolding of the Water activity system, we perceived at various times 
changes in the students’ flow of actions, without losing sight of the dialogue between 
them. This horizontal aspect of learning in the activity system aligns with the idea 
of boundary crossing as a powerful lens for analyses of sideways interactions 
between different actors and activity systems (Tuomi-Gröhn & Engeström, as cited 
by Engeström, 2015, p. xxiv). Next, we discuss one of such flows of actions within 
the Water activity system, highlighting the role of some boundary objects.

Initially, in A1, the focus of the subjects’ actions was on the awareness of the 
excessive consumption of water in the family when they made calculations of some 
water consumption averages using the rule of three and the numerical data from 
their own water bill, the table from the magazine, and data from the booklet from 
Campanha da Fraternidade. In A1, numerical data, the water bill, the magazine 
table, the rule of three, and the booklet were some (but not all) artifacts used by the 
students to support their actions. In A2, the actions were also directed towards 
awareness, but now to that of the youth, and the students created different textual 
genres (informative, argumentative, and a theater play). For this, they used several 
artifacts, among which were numerical data, the magazine table, the booklet, draw-
ings, magazine snippets, and posters. They used numerical data from various 
sources in their drawings to inform water consumption measures, included in their 
folders and posters the percentages of water presented in the booklet, and used the 
magazine table in the theater scenario. All those artifacts were used in A2 to support 
the arguments for increasing youth awareness. Finally, as the focus and the geo-
graphical coverage of A3 changed, the students proposed scientific projects to solve 
the serious problem of water in the world. They also used drawings, in which they 
included numerical data about water consumption, the magazine table to show how 
much water is spent on everyday activities and how the water treatment process 
works, and layouts to visually represent the flow of their projects.

Actually, within activity A1, whose object was “solving mathematics problems 
on water,” two artifacts (the Campanha da Fraternidade booklet and the magazine 
table) took a central role because all the problems referred to them and the numeri-
cal data required to make the calculations were to be extracted from them.

As shown before, in the texts and drawings produced by the students in A2, the 
artifacts of activity A1 (booklet and table) favored boundary crossing between activ-
ities A1 and A2 because they were used in both of them. However, in A2, the texts 
were produced to discuss, search for alternatives for, and raise awareness of the 
water issue among youth. Now, we have an activity in the discipline of Portuguese 
that interacts with the activity of mathematical problem-solving on water, in the 
discipline of mathematics, through several common artifacts. However, in A2, the 
role of the booklet and of the table was less relevant. For example, the table appeared 
just as an illustration on a poster and an excerpt of the booklet was cited in some 
student work.

In contrast, in the activity proposed to solve the water shortage in the world (A3), 
not all groups produced “scientific” projects, which was one of the rules of the 
activity. One group produced folders appealing to reduce water consumption, which 
was denied by the jury group, showing a lack of coordination of actions in this 

10 Transfer of Learning as Boundary Crossing Between Cultural-Historical Activity…



244

group towards the object of the activity A3. To create the posters for the geography 
class, the students of this particular group also wrote texts using information from 
the booklet, the magazine table, and the numerical data from the mathematical 
problems on water (A1), which were also used in the awareness texts during the 
Portuguese classes (A2). But, according to the jury, the approach used by this group 
was just going back to the awareness proposals and not going further to the solu-
tions projects. They discarded it, together with the artifacts they had used, for not 
being attuned to the object of A3.

Despite this, it is possible to say that all students remained engaged in the same 
activity, the Water activity system, and that the artifacts, the Campanha da 
Fraternidade booklet and the magazine table, crossed the boundaries between activ-
ities A1, A2, and A3. The relevance of these artifacts, according to the objects of the 
three activities, diminished to the point that, in A3, they were considered inappropri-
ate, although still present in the classroom discussions. Therefore, we argue that 
these two artifacts acted as boundary objects in the Water activity system. Of course, 
they were not the only ones to act as such in the Water activity system; there were 
others, such as the numerical data and drawings, that could also be subjected to the 
same analysis.

There were also new artifacts, introduced in A3, such as the projects’ layouts, 
maps, lab material, and other books and magazines, which can be seen as innova-
tions in the Water activity system associated with an expansion of the object of this 
activity, by incorporating new solutions for the water problem beyond people’s 
awareness.

Therefore, we consider that the set of common artifacts—magazine table, book-
let, numerical data, drawings, texts—was sufficiently robust and plastic to opera-
tionalize, together with other artifacts, the actions of the subjects in the activity 
systems A1, A2, and A3. These characteristics guarantee the communication between 
the three activities, keeping the assemblage of the Water activity system, even when 
there were innovations in its development, exemplified by the activity system A3. 
So, we can say that these artifacts acted as boundary objects (Star, as cited by 
Engeström, 1990, p. 190), composing a necessary toolbox, created and used to deal 
with the contradiction manifested in the Water activity system and to support greater 
power of action of the subjects (i.e., acting as an instrumentality [Engeström, 2007] 
of this activity).

As mentioned before, to analyze the Water activity system, composed of three 
subsystems (Fig.  10.2) and its ruptures and internal contradictions, we used the 
expansive learning theory (Engeström, 1987), which moves the scope of learning 
from the individual to the relations between multiple activity systems. According to 
this theory, transfer of learning takes place through interaction between collective 
activity systems in which boundary crossing works as a tool for promoting transfer 
of learning. In the case analyzed in this chapter, the three subsystems were config-
ured within three different school disciplines. Therefore, to reach their common 
object, related to the awareness of and solutions for the water shortage worldwide, 
the students needed devices and artifacts to connect the content areas, even if they 
were from different domains. And, as we could see, some artifacts (especially the 
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magazine table and booklet) performed as boundary objects (Engeström, 1990) and 
facilitated boundary crossing between activities A1, A2, and A3. The presence of 
boundary objects contributed to the non-disintegration of the Water activity system.

The analysis of the activity system composed of A1, A2, and A3 allowed us to 
understand the interactions between the three activities connected to the Water 
theme without losing the focus on any one of them. This system composed of school 
activities, in turn, interacts with real-world issues, connecting the school with soci-
ety through its community.

The perception of the connections and boundary crossing between the three 
activity systems (A1, A2, and A3) led us to understand how the primary contradiction 
in education was manifesting in the object of the Water activity system. The bound-
ary crossing among the activities within the Water activity system, boosted by the 
manifestations of the contradictions among its components, influences a series of 
actions mediated by artifacts that act as boundary objects among activities. 
Figure 10.6 shows how A1, A2, and A3 are connected with each other through the 
artifacts.

The proposal to discuss a theme (water) as a way to approach school content and 
raise students’ awareness of a social problem (water shortage worldwide) faced suc-
cessive contradictions inherent to the educational activity because, during its course, 
the awareness actions were put to examination. This triggered successive boundary 
crossings between A1, A2, and A3, leading to an expansion of the Water activity sys-
tem object. Supported by Engeström and Sannino (2010), we can say that these 
boundary crossings boosted a new level of understanding about the water problem 
and its shortage, therefore leading to expansive learning in the Water activity system.

Fig. 10.6 Boundary crossing between activity systems
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In this chapter, our perspective on transfer of learning was grounded in the 
expansive learning theory (Engeström, 1987) and the analysis performed on the 
Water activity system showed that successive boundary crossings between activities 
boosted expansive learning in this system. On the other hand, Tuomi-Gröhn and 
Engeström (2003) associated the idea of transfer with “an outcome of boundary 
crossing in an expansive learning process” (p. 185). Therefore, we agree with Sӓljö, 
as cited by Artemeva (2007), that there is such a close relationship between expan-
sive learning and transfer of learning that they cannot be differentiated from each 
other. Consequently, it is possible to say that we have also identified transfer of 
learning in our data because transfer is not being considered as a simple transporta-
tion of knowledge from one activity to another, but as the formation of a new pattern 
of activity oriented to the object, namely water and its shortage.

10.5  Final Remarks

In this chapter, we analyzed an activity system called Water, composed of three 
other systems, developed in different content areas (mathematics, Portuguese, and 
geography) and related to the same object: water and its shortage. We showed how 
some artifacts used and adapted by the students to deal with the contradictions that 
evolve in the activity system acted as boundary objects and facilitated the boundary 
crossing between activities configured within the school disciplines.

The historical development of the activities that compose the Water activity sys-
tem was not linear nor orderly; it was established by internal contradictions within 
each activity and between activities. In the configuration of this activity system, 
some artifacts worked as boundary objects favoring boundary crossing between 
activities, in turn leading to expansive transformations of the system, that is, to 
expansive learning on the Water theme. The students showed a broader and deeper 
understanding of the water issue, as highlighted by the student Tereza in the follow-
ing statement: “This study we did was really worthwhile . . . many things I didn’t 
know and now I do . . . learning . . . so it worked out to raise my awareness . . . 
because I had no idea it was so serious . . . .”

We conclude then that the perspective of expansive learning, adopted in this 
chapter, provides valuable theoretical and methodological tools to analyze transfer 
of learning within a school context. Because we make a strict association between 
transfer of learning and expansive learning, our conception of transfer carries char-
acteristic aspects from expansive learning, which put the primacy on the following: 
communities as learners, not on individual learners; transformation and creation of 
culture, not on transmission of knowledge; and process of horizontal movements 
and exchange between different cultures’ contexts, not on a process of a vertical 
improvement along some uniform scale of competences (Engeström, 2015). This 
implies that transfer of learning is a developmental process that includes construc-
tion or transformation of knowledge, identities, and skills rather than the application 
or use of skills that have been acquired elsewhere.
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In conclusion, although the analysis was performed within a system of school 
activities, this perspective on transfer of learning helped us to show how it is pos-
sible to generate a kind of learning that penetrates and grasps pressing issues that 
humankind is facing today and will face tomorrow, such as a new understanding 
about water and its shortage worldwide.
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Chapter 11
Teaching and Assessing for Transfer 
from Block-to-Text Programming 
in Middle School Computer Science

Shuchi Grover

11.1 Introduction

There is a growing movement worldwide to teach computer science (CS) and pro-
gramming (or coding) to all students as part of their K–12 education. There is broad 
consensus that teaching CS and coding should be aimed at preparing students for a 
future that will require these skills in all Science, Technology, Engineering, and 
Mathematics (STEM) careers as well as non-STEM careers (White House, 2016). 
Programming is central to most introductory CS curricula. It is seen as a key literacy 
for the twenty-first century and an essential means to develop computational think-
ing (CT) skills (Grover & Pea, 2013, 2018), a means for self-expression (Resnick, 
2012), and a tool for social participation (Kafai, 2016) as well as computational 
action for the socially inclined “do-er” (Tissenbaum, Sheldon, & Abelson, 2019). 
Often, introductory programming experiences are situated in easy-to-use and engag-
ing block-based programming environments including Scratch, Alice, Snap!, and 
MIT App Inventor, among others. These environments are designed to lower the 
barrier to learning programming through affordances that eliminate troublesome 
issues of syntax. However, programming in postsecondary learning settings and 
professional contexts involves text-based programming languages such as Python, 
Java, Javascript, C, C++, and Scheme, among others (Chan, 2019; Guo, 2014). 
Clearly, early experiences in block-based environments should ease the path for 
future learning in text-based environments in college and beyond. It has been 
observed that the transfer from blocks to text does not happen easily or automati-
cally (Weintrop & Wilensky, 2017). Few studies in the realm of computing educa-
tion have focused on the transfer of learning from visual block-based environments 
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to text-based ones, and none have been conducted in middle school settings. The 
research and ideas presented in this chapter point to strategies that can be effectively 
adopted for mediating transfer and deeper conceptual learning in middle school as 
well as other levels of K–12 education. The broader strategies presented can also be 
applicable for closely aligned fields like mathematics and science.

This chapter describes research that examines design of introductory block- 
based programming experiences in Scratch aimed at preparing middle school stu-
dents for future text-based programming. The designs were informed by new and 
old approaches to fostering and assessing transfer. The curriculum worked to help 
students build an appreciation of the varied careers in computing as well as a con-
ceptual understanding of core algorithmic concepts to aid successful transfer to 
future programming contexts. The “expansively framed” (Engle, Lam, Meyer, & 
Nix, 2012) curriculum was designed to foster conceptual understanding and transfer 
to text-based programming and also included the use of multiple examples, analo-
gous and multiple representations of computational solutions, and cognitive appren-
ticeship through modeling and worked examples. A unique “dynamic assessment” 
was designed to assess for transfer to text-based programming. This chapter details 
curricular design features and presents empirical research conducted in middle 
school classrooms. Findings from the two iterations of this design research should 
inform future inquiry in this space.

11.2  Research Framework

11.2.1  Approaches to Tackling the Thorny Issue of Transfer

Transfer of learning, or the application of something that has been learned in one 
context to a future context, is a key goal of formal learning and education. Without 
it, what students learn as part of formal school experiences would have little effect 
on the rest of their lives (Engle et al., 2012). The preponderance of studies in educa-
tion literature, however, suggests that appropriate transfer takes effort on the part of 
the curriculum (Pea, 1987). The seminal literature on how people learn (Brown & 
Cocking, 2000) points to several critical features of teaching and learning that affect 
people’s ability to transfer and suggests ways to facilitate transfer. Although there is 
no single prescribed strategy for fostering learning for transfer, suggested instruc-
tional strategies aim to help students assemble new mental platforms for subsequent 
learning. A focus on building conceptual understanding is a way to achieve this. 
Additionally, Pea (1987) argued, “Successful studies for teaching thinking skills for 
transfer have been explicit in describing for learners the need for and purpose of 
these new learning activities (e.g. Bereiter & Scardamalia, 1986; Palincsar & 
Brown, 1984; Pressley et al., 1984; Schoenfeld, 1985)” (p. 50). This suggests that 
students should appreciate the what and why of the knowledge they are acquiring as 
important. In a similar vein, Dweck and Elliot (1983) asserted that orienting learn-
ers to the value of what they are learning leads to additional effort to learn. To create 
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an educational culture that encourages transfer-enhancing learning and thinking 
processes through bridging instruction, pedagogical moves must convey knowledge 
and skills in functional contexts, synergistic curriculum design (Bransford, 
Sherwood, & Hasselbring, 1985), and the provision of multiple examples of knowl-
edge transfer (Pea, 1987). The bottom line is that any curriculum that aims for 
deeper learning and transfer needs to intentionally incorporate strategies to facil-
itate transfer. Or, quite simply, transfer needs to be designed and assessed for.

11.2.2  Preparation for Future Learning

With a view to preparing learners for “lifelong learning,” Bransford and Schwartz 
(1999) called for broadening old conceptions of transfer by including an emphasis on 
learners’ preparation for future learning (PFL), where the focus shifts to assessments 
of a learner’s abilities to learn from new resources. They critiqued traditional tests of 
transfer for predominantly testing direct application of one’s previous learning to a 
new setting or problem with no opportunities for learners to demonstrate their abilities 
to learn to solve new problems. The PFL perspective suggests that assessments of 
people’s abilities can be improved by involving assessments that provide opportunities 
for new learning. Such “dynamic assessments” (Campione & Brown, 1990; Feuerstein, 
Rand, & Hoffman, 1981; Schwartz, Bransford, & Sears, 2005; Schwartz & Martin, 
2004) measure how well students apply learned skills to new learning. They also 
argued that using approaches for fostering flexible learning for transfer aided PFL.

In a salient demonstration of the promise of the PFL approach, Schwartz and 
Martin (2004) worked with 15 classes of ninth-grade students studying descriptive 
statistics and compared the value of asking students to invent statistical methods (a 
strategy to promote more flexible learning for transfer) with that of students simply 
practicing methods they were shown. Students in the two conditions performed no 
differently on regular assessments testing students’ learning on statistical problems. 
But on problems in specially designed dynamic assessments that required applica-
tion of new learning that was embedded in a worked example (which constituted a 
new learning resource in the transfer test), students who were in the invention condi-
tion did much better than the control group.

Other approaches for teaching STEM subjects with a view to promoting success-
ful transfer include Dede (2009), who describes the design of an immersive mul-
tiuser virtual environment that provides authentic scenarios for scientific inquiry 
and for collaboratively identifying problems through observation and inference, 
forming and testing hypotheses, and deducing evidence-based conclusions about 
underlying causes. He suggested that the “potential advantage of immersive inter-
faces for situated learning is that their simulation of real-world problems and con-
texts means that students must attain only near-transfer to achieve preparation for 
future learning” (Dede, 2009, p.67). Our approach to promoting PFL draws on the 
late Randi Engle’s work on expansive framing as well as older ideas of helping 
learners see deeper structures in learning content.
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11.2.3  Expansive Framing (For Socially Framed 
Context- Based Transfer)

Engle et  al. (2012) suggested that learning and transfer contexts can be socially 
framed in different ways and that such framing influences the learner’s ability to 
transfer what they learn (Engle, 2006; Engle et  al., 2012; Engle, Nguyen, & 
Mendelson, 2011; Engle, Roberts, Nguyen, & Yee, 2008). Framing is a person’s 
sense of what kind of activity they are engaged in. It is their rarely spoken but ever- 
present answer to the question “What is going on here?” (Goffman, 1974). A per-
son’s framing involves a set of expectations and contextual assumptions of how to 
proceed in a given context (Tannen, 1993). Engle et al. (2012) draw on prior litera-
ture (Goffman, 1974; Goodwin & Duranti, 1992; Tannen, 1993) to articulate fram-
ing as “the meta-communicative act of characterizing what is happening in a given 
context and how different people are participating in it” (p. 217).

Engle et al. (2012) proposed the idea of expansive framing by building on the 
socializing approach to teaching for transfer from Pea (1987) and other extant litera-
ture that recognized that transfer can be promoted by creating an expectation for 
future use .When there is such an expectation, students see that what they are learn-
ing will maintain relevance over time (e.g., Bereiter, 1995; Brown, 1989). Expansive 
framing is a strategy for mediating transfer that explicitly fosters an expectation that 
students will continue to use later what they are learning. Engle et al. hypothesized 
that framing curricular content as having the potential for transforming students’ 
everyday experiences initiates a series of processes of cognitive encoding of the 
learning that eventually lead to greater transfer. Simply put, students who expect 
they will need to continue using what they have learned may prepare for such future 
use through better mental representations that they can draw upon in later transfer 
contexts.

Engle et al. (2012) contrasted expansive framing with bounded framing, where 
the learning is treated as a one-time event in the classroom relevant only for that 
lesson or unit, as learning that students are unlikely to ever use again. Expansive 
framing, on the other hand, is treated as a discussion of an issue that students will 
be actively engaging with throughout their lives. They shared data from multiple 
studies including an example of a high school biology teacher who constantly 
framed the learning in an expansive way by encouraging students to see linkages 
between the biology learning to contexts outside of school and also other subjects 
(such as chemistry). Students in that classroom were shown to score well on 
researcher-designed transfer tests as well as on end-of-year standardized tests. 
Engle et al. (2012) believed that the teacher’s expansive framing resulted in many of 
his students developing “an expectation for future transfer that was equivalent with, 
or perhaps even stronger than, the degree to which they noticed the teacher empha-
sizing future usefulness” (p. 222).

Furthermore, new learning contexts must make connections to the earlier con-
texts from which learners are expected to transfer in knowledge to the new context. 
Pea (1987) suggested that by creating links back to prior learning contexts, students 
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are encouraged to make use of transfer opportunities by using their relevant learned 
knowledge. Gagne (1985) offered a similar suggestion—that learning transfer is a 
circumstance influenced by the number of common cues between learning and 
transfer situations. By making such explicit connections, learners are encouraged to 
draw on their prior knowledge during learning in the new context, which leads to 
them transferring in prior examples and abstract (general) principles. Schwartz, 
Chase, and Bransford (2012) described this as helping learners recognize “the old 
in the new.”

11.2.4  Multiple Examples and Analogous Representations 
for Content-Based Transfer

Early transfer research focused mostly on the content that learners should ideally 
transfer (Engle et al., 2012). For example, Gick and Holyoak (1983) believed that 
“the induction of a general schema from concrete analogs will facilitate analogical 
transfer” (p. 1) and that learners are more likely to apply what they have learned 
from one analogous problem to another if they form a generalization or “schema” 
such that it can be applied to a new problem.

Research on these content-based generalizations suggests that multiple exam-
ples of acquisition and application of new knowledge are important for transfer. 
When a topic is taught in multiple contexts and includes multiple (well-chosen) 
examples that demonstrate the range of application of the concept being taught, then 
learners are more likely to abstract the general principles and relevant features of 
concepts and develop a flexible representation of knowledge (Brown & Cocking, 
2000; Gick & Holyoak, 1983; Hakel & Halpern, 2005; Pea, 1987).

Another strategy for helping learners see deeper structure of conceptual ideas is 
through comparing cases and analogous representations (Bransford & Schwartz, 
1999; Gentner, Loewenstein, & Thompson, 2003) through which learners develop a 
more general problem-solving schema that primarily captures common structure 
rather than the surface elements. Consequently, I believe that analogous representa-
tions that are presented as part of an expansive framing should be more easily 
retrievable when the learner encounters a new case (or a computer program in our 
context) with the same structure. Schwartz, Chase, Oppezzo, and Chin (2011) 
reported on the success of this strategy in the context of physics learning. Such a 
pedagogical design also exploits the method of perceptual learning and pattern rec-
ognition in problem solving where attention is drawn to relevant features that are 
critical to solving different problems and problem types (Bransford, Franks, Vye, & 
Sherwood, 1989; Polya, 1957).

Wagner (2010) argued that the notion of extracting deeper structure in a learning 
situation is rooted in the old information-processing view of learning and transfer 
(Anderson & Lebiere, 1998) that is at odds with the Piagetian constructivist view of 
learning (Piaget, 1937/1954). However, the situational perspective in mathematical 
problem solving in which Wagner grounded his argument is quite distinct from the 
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context of this work—the context of programming is common to both the learning 
and transfer contexts, with representational encoding being the only difference.

11.3  Teaching Programming: Why Blocks First and Transfer 
from Blocks to Text

Learning to program is hard. A large body of literature points to the difficulties that 
novice learners face on their path to acquiring an understanding of coding (e.g., du 
Boulay, 1986; Soloway & Spohrer, 1988). These past two decades have seen a 
plethora of visual programming environments emerge that ease learning of pro-
gramming for young children through features and affordances that not only remove 
the issue of syntax errors but also lower the threshold to creating working programs 
through the use of visual, drag-drop graphical tools. As a result, these “block-based 
programming environments”—such as Scratch (Resnick et al., 2009), Alice (Cooper, 
Dann, & Pausch, 2000), App Inventor (Wolber, Abelson, Spertus, & Looney, 2011), 
and Snap! (formerly Build Your Own Blocks; Harvey & Mönig, 2010), to name just 
a few—have become popular vehicles for introducing novice learners in K–12 
classrooms to CT and programming. Several recent studies have also shown that 
students learn programming better and are more engaged when they start with 
block-based rather than text-based programming (e.g., Price & Barnes, 2015; 
Wagner, Gray, Corley, & Wolber, 2013; Weintrop, Killen, Munzar, & Franke, 2019). 
This gain on engagement meshes well with a growing recognition of the critical 
need to encourage groups such as females and people of color (who have tradition-
ally been marginalized in CS and the technology industry) to learn coding and com-
puting, and has strengthened the case for the “blocks-first” approach to teaching 
programming in K–12.

However, the use of block-based programming is largely restricted to primary and 
secondary age learners, with virtually no use of block-based programming environ-
ments in postsecondary education or in industry. Preparing students for transfer from 
blocks to text is thus a key concern that many researchers and educators would like 
to see addressed (e.g., Armoni, Meerbaum-Salant, & Ben-Ari, 2015; Bagge, 2019; 
Weintrop & Wilensky, 2017). Only a few studies in the realm of computing education 
have focused on the transfer of learning from visual block-based environments to 
text-based ones. Dann, Cosgrove, Slater, Culyba, and Cooper (2012) demonstrated 
how to mediate transfer of learning from a specially designed version of the Alice 
block-based environment to the text-based Java environment. They argued that by 
using the exact same example in both Alice and Java, their students succeeded in 
achieving better learning results. Wagner et al. (2013) adopted a similar approach—
they introduced learners to programming mobile apps in App Inventor (AI) and then 
used the AI Java Bridge to have students code the same examples in Java:

When transitioning to the Java Bridge, the students were challenged, but because we 
repeated the same applications (HelloPurr and PaintPot), they were able to create a mental 
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map between the Java syntax and what they previously created with the blocks language. 
The majority of the students appeared to understand how to use Java in creating an app. 
(p. 624)

Touretzky, Marghitu, Ludi, Bernstein, and Ni (2013) also leveraged the idea of anal-
ogous representations described above—children between the ages of 11 and 17 in 
a 1-week summer camp transitioned from Kodu to Alice to Robotics NXT-G pro-
gramming environments in a structured way. By scaffolding instruction to help chil-
dren see analogies between formalisms and computing constructs in each, they 
aimed to foster deeper conceptual understanding. For example, their strategies 
attempted to help children appreciate that “WHEN/DO in Kodu, If/Then in Alice, 
and SWITCH blocks in NXT-G all function as conditional expressions, even though 
they look different” (p.  610). My work drew on these prior studies to design a 
Scratch-based introductory programming curriculum for middle school students 
that also builds the foundation for future learning of text-based programming and 
assesses for PFL of blocks to text programming.

11.4  Designing for Mediating and Assessing Transfer 
in Introductory Programming

This section describes the design and development of an expansively framed curric-
ulum—Foundations for Advancing Computational Thinking (FACT)—that aimed 
for transfer from block- to text-based programming. Because introductory experi-
ences in FACT were set in the context of a block-based programming language 
(Scratch), the research effort was guided by the question, “How can early experi-
ences in block-based programming be designed so that learners can transfer their 
learning successfully to future text-based programming?”

Prior publications detail the designed features of the curriculum for deeper learn-
ing of introductory programming with a focus on algorithmic and computational 
thinking (Grover, Pea, & Cooper, 2015) as well as formative and summative assess-
ments of learning of foundational concepts (Grover, 2017). Here, I focus on the 
designs for transfer and PFL.

The 7-week FACT curriculum (Table 11.1) included topics that focused largely 
on algorithmic problem solving in the context of programming in addition to broader 
notions of computing as a discipline.

A unique feature of FACT (compared to other middle school CS curricula) was 
its attention to targeting deeper conceptual understanding of computational problem 
solving and solutions through pedagogies such as scaffolding (Pea, 2004) as well as 
modeling cognitive apprenticeship (Collins, Brown, & Newman, 1988). It involved 
working through examples (Renkl & Atkinson, 2003) and thinking aloud, à la live 
coding (Rubin, 2013), to model solutions of computational problems in a manner 
that revealed the underlying structure of the problem and the process of composing 
the solution in pseudocode or in Scratch. Code reading and tracing were also mod-
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Table 11.1 FACT curriculum unit-level breakdown

Unit Targeted topics in the Unit

Unit 1 Computing is everywhere!/what is CS?

Unit 2 What are algorithms and programs? Computational solution as a precise sequence of 
instructions

Unit 3 Iterative/repetitive flow of control in a program: loops and iteration

Unit 4 Representation of information (data and variables)

Unit 5 Boolean logic and advanced loops

Unit 6 Selective flow of control in a program: conditional thinking
Final project (student’s own choice; could be done individually or in pairs)

eled throughout, and were part of formative assessment. Often students were 
expected to think about and discuss programming scenarios or problems before the 
solution was modeled. Academic language and computing vocabulary were used 
during this scaffolding process. These strategies in and of themselves set the learner 
up for deeper conceptual learning and better transfer; however, the curriculum and 
assessments also consciously attended to mediating transfer and preparing learners 
for success in future text-based programming contexts through the use of expansive 
framing and analogous representations. In addition, students’ ability to transfer was 
also assessed through a special PFL assessment designed for this purpose. Design 
features for each of these are described in the following sections.

11.4.1  Expansive Framing

FACT’s introductory expansively framed experiences with CS for middle school 
were seen as bridges to high school curricula such as Exploring CS (Goode, 
Chapman, & Margolis, 2012) and AP CS Principles (College Board, 2017) as well 
as future work-related computing experiences in text-based programming 
environments.

Expansive framing of computing—the role computing plays and will continue to 
play (no matter what career students choose)—served the twin purposes of improv-
ing students’ perceptions of computing as well as generating interest and excite-
ment and, thus, motivating the learning, priming, and preparing of students for 
future use (transfer) of what they were learning in future contexts and settings.

The design of the first unit, titled Computing is Everywhere!, played a key part in 
expansively framing the curriculum for transfer. Specifically, it was designed to 
generate motivation and excitement about CS among students—its prospects for 
their futures and also for remainder of the FACT course that the students were 
 learning. Commencing the course with a motivating experience that underscores 
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future relevance aimed to socially frame the learning context to influence students’ 
mental encoding and propensity to transfer what they learn (Engle et al., 2012). This 
unit also served to remedy misconceptions of computing as a discipline among 
young students (as suggested in a large body of past literature, e.g., Carter, 2006; 
Mitchell, Purchase, & Hamer, 2009; Yardi & Bruckman, 2007) and educate them 
about the true nature of computer science.

Computing is Everywhere! showcased example uses of computing for varied 
purposes and in diverse fields. FACT worked to build awareness of the many uses of 
computing through “showing” rather than “telling” using a corpus of engaging and 
interesting videos—an idea that was inspired by the power of stories and narratives 
(Bower & Clark, 1969; Graesser, Olde, & Klettke, 2002; Haberlandt & Graesser, 
1985). These video narratives fostered an expectation that students will likely find 
their learning of programming and CT relevant for personal passion projects (such 
as crafts) and for their future (no matter what field they choose). Additionally, the 
example videos aimed for students to develop an appreciation of CS as a protean 
discipline. For this purpose, publicly available videos were curated from YouTube. 
For example MIT Computer Program Reveals Invisible Motion in Video, Untangling 
the Hairy Physics of Rapunzel, and IBM’s Watson Supercomputer Destroys Humans 
in Jeopardy, among others, exemplified innovations in computing in engaging ways 
and also demonstrated the use of computing in contexts that were believed to be 
novel for the average middle school student. These and other videos selected for this 
purpose were added to a publicly available playlist (http://bit.ly/CS- rocks) titled 
Computing is Everywhere as shown in Fig. 11.1.

Fig. 11.1 Publicly available playlist of videos called Computing is Everywhere!
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In addition to this playlist of publicly available videos, the author recorded and 
produced a corpus of videos titled Vignettes of People and Computing that com-
prises short 1- to 3-minute videos of everyday people representing diverse genders 
and racial/ethnic groups drawn from diverse fields describing how they use comput-
ing in their work—from art to music to education research. This set of videos was 
created in an effort to mimic the idea of bringing in speakers into the classroom who 
can lend a personal connection to the ideas being discussed and also serve as role 
models for students (Dasgupta & Stout, 2014). This video repository is also publicly 
available (http://goo.gl/oatj4H). For the curricular intervention, all these brief vid-
eos were shared with learners via the online learning platform used by the school, 
and were accompanied by prompts for anchored discussions (Guzdial & Turns, 
2000) right below the video to solicit students’ reactions.

Over the course of the subsequent units of FACT, the transferability of the deeper 
ideas of CT and algorithmic thinking was repeatedly highlighted to reinforce the 
initial message of Computing is Everywhere! For example, in the early introduction 
of the unit on what programming is, images of code in various block- and text-based 
languages were used to underscore the ideas that algorithmic solutions can be pro-
grammed in various languages and that the same algorithm can be coded or repre-
sented in various languages.

11.4.2  Analogous Representations

Successful PFL in an introductory programming curriculum demands that students 
develop not only coding skills but also computational and algorithmic thinking 
skills. Successful transfer thus requires an understanding of the underlying struc-
tures of programs beyond the syntax and surface features of the environment in 
which children are initially learning programming. Such understanding encom-
passes more expansive frames in which similarities in deep structures across pro-
gramming environments are anticipated, recognized, and productively used. Unlike 
earlier research that had attempted this by employing different programming lan-
guages to help students abstract deeper features of constructs, FACT was distinct in 
that these ideas were applied while using a single programming environment 
(Scratch) by employing the strategies described below.

The FACT approach to mediating transfer relied on the use of expansive framing 
and analogous representations of algorithmic solutions to help learners see compu-
tational constructs in forms more expansive than the shackles of a specific syntacti-
cal structure. It is contended that guiding students to draw analogies between 
different formalisms can foster deep and abstract understanding of fundamental 
concepts and structures of algorithms. To this end, in the process of modeling the 
construction of algorithmic solutions in FACT, English text and pseudocode were 
frequently used to describe algorithms so that students would see programming 
concepts at play in an algorithmic solution that is represented in ways distinct from 
Scratch. This was based on a belief that such use of pseudocode would set learners 
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up for better abstraction than merely learning to program in Scratch (or any specific 
programming language being used). Formative assessments also included exercises 
and quizzes involving short programming snippets in pseudocode and plain English, 
in addition to Scratch.

Throughout the course, pseudocode was used not only to describe and deliber-
ately lay out the steps involved in organizing the algorithmic solution to accom-
plish a goal, which has its own benefits (Mayer, 1989), but also to introduce 
students to analogical terms and representations of algorithmic solutions distinct 
from the Scratch environment. The use of pseudocode thus bolstered familiarity 
with textual representations of programs and also with analogous terms and 
description of iterative (looping) and conditional structures that are different from 
Scratch. For instance, Scratch has only “REPEAT” and “REPEAT UNTIL” blocks 
for iteration. However, using terms like “WHILE” or “FOR” in pseudocode aims 
to help students recognize that different computational vocabulary can be used to 
describe the same idea of repetition of steps (even though there are subtle differ-
ences in the ways in which these constructs operate in different programming 
languages).

The image on the left in Fig. 11.2 shows an example of an algorithmic solution 
presented to learners in pseudocode. The solution for calculating the average of a set 
of numbers shown in Fig. 11.2 represents the final step of a problem decomposition 
exercise that involved breaking down the problem and composing the various sub-
parts that this problem was first broken into. Additionally, introductory program-
ming concepts were expansively framed at frequent points in the course by 
highlighting their relevance in text-based programming languages such as Java and 
Python that students are likely to use in the future. The point would be driven home 
through assertions such as, “Even though a loop in other languages like Java or 
Python will be expressed with terms like While or For, they help to accomplish the 
same things in an algorithmic process like the Repeat Until loop does in your 

Fig. 11.2 (Left) Presentation slide of algorithm to calculate the class average represented in 
pseudocode. (Right) Analogous representations of the same algorithm in Scratch and Java
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Scratch program to help you compute the average test score for a class.” The image 
on the right in Fig. 11.2 provides an example of how a FACT activity required learn-
ers to observe the analogous representation of the same algorithm in Scratch and 
Java (a text-based language students use in advanced high school courses). This was 
shown to students after they had coded the pseudocode version of the “Find the 
Average” algorithm (the image on the left in Fig. 11.2) in Scratch.

11.4.3  PFL Assessment

The concern for transfer of CT and programming experiences was examined using 
PFL assessments as summative measures that assessed students’ ability to transfer 
their learning from the Scratch context and readiness to work with text-based pro-
gramming environments.

Based on the design of “dynamic” PFL assessments in prior research (such as 
Schwartz & Martin, 2004), these assessments aimed to assess how well students 
learned from a new resource and applied new learning to read and comprehend code 
presented in a text-based language. The problems were preceded by “new learning” in 
the form of syntax details for fictitious (Pascal-like or Java-like) text-based languages 
for constructs such as output to the screen, loops, conditionals, and variable declaration 
and assignment that students had encountered in the context of Scratch in FACT. To 
help learners make connections back to the past learning context (Pea, 1987) and see 
“the old in the new” (Schwartz et al., 2012), references were made to the equivalent 
constructs in Scratch, for example: “PRINT displays things specified in parenthesis to 
the computer screen one line at a time (like SAY in Scratch)” (see Fig. 11.3).

Two different types of syntax were explained, followed by questions that involved 
programs coded in the new syntax. For example, the explanation shown in Fig. 11.3 
was the new (Pascal-like) syntax description that preceded the first couple of ques-
tions. Then, a new (Java-like) syntax was explained, and the remainder questions 
were based on snippets of code written in that language (Fig. 11.4).

11.5  Methods

In this section, I describe the classroom research conducted to examine the success 
of the FACT learning experience among middle school students. Grover et al. (2015) 
provides details of the classroom research and the results of students learning 
of algorithmic and computational thinking. Here I focus on the research and analy-
sis of only those data from empirical research that were captured to examine trans-
fer and PFL. The section first describes results from preliminary explorations (that 
aided the design phase) and then findings related to PFL from two iterations (called 
Study 1 and Study 2) of design-based research (Wang & Hannafin, 2005) in middle 
school classrooms using FACT.
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'<–' (left arrow) is used to assign values to variables. For example: n <– 5 assigns the value 5 to 
the variable n  
If there are blocks of compound statements (or steps), then the BEGIN..END construct is used to 
delimit (or hold together) those statement blocks (like the yellow blocks for REPEAT and IF 
blocks in Scratch).  
FOR and WHILE are loop constructs like REPEAT & REPEAT UNTIL in Scratch WHILE 
(some condition is true)  
BEGIN  
... (Execute some commands) .....  
END  
PRINT displays things specified in parenthesis to the computer screen one line at a time (like 
SAY in Scratch). Commas are used inside the PRINT command like JOIN in Scratch to combine 
a text message with a variable  
==================================================================  
Question #1: When the code below is executed, what is displayed on the computer screen?  
PRINT("before loop starts");  
num <– 0; 
WHILE (num < 6) DO  
BEGIN  
 num <– num + 1;  

PRINT("Loop counter number ", num);  
END  
PRINT("after loop ends");  

Fig. 11.3 Sample PFL question following new syntax specification

11.5.1  Preliminary Empirical Explorations and Findings

To better guide the research effort, the design of curriculum elements and PFL 
assessments was preceded by preliminary explorations. These were aimed at exam-
ining the conjecture that programming courses offered at the middle school level in 
a block-based programming environment like Scratch often focus on giving learners 
introductory experiences with the programming environment; preparing for transfer 
to text programming are likely not part of the typical learning experience.

The PFL assessment was administered to students in a seventh-grade classroom 
of 24 students studying introductory programming in a local school district. On two 
of the five questions, the class scored an average of 25% (only about one third of the 
class even attempted an answer). On the remaining three questions, only three or 
fewer students gave a correct answer (or something close to a correct answer). Most 
students simply responded, “I don’t know” or left the question blank.

This suggested a lack of ability to transfer learning of algorithmic flow of control 
to the point of not even attempting questions that (most likely) appeared totally 
unfamiliar to them. To test these questions with a different cohort of students, the 
same classroom was revisited in a different semester around 8 weeks into the term, 
and the same test was administered. The results were very similar to the earlier pilot.

Clearly, these explorations bore out initial hypotheses that students in a typical 
introductory programming classroom (at the time of these studies) did not under-
stand the deeper structures of algorithmic control flows in text-based code snippets 
even after weeks of working on similar problems in block-based Scratch-like 
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[Section of new syntax presented preceding Questions 3-7]
(1) int is a way of defining an integer (numeric) variable

(2) = is used to assign values to variables. 
For example: n = 5 assigns the value 5

(3) == checks for equality (same as checking if something is equal to something else) and 
returns true or false. 
For example (i == 100) returns true if the value of i is 100
…
(8) for and while are loop constructs (like REPEAT & REPEAT UNTIL in Scratch)
for (initialize a variable; boolean condition (loop while it's true); update the variable) 
{

.. (Execute some commands) ... 
}
…
(11) ++ changes (increments) the value of a variable by 1 (like the "Change .. by nikcolb"..
Scratch") 
So for a variable n, n++ it is equivalent to saying n = n+1
For example: If n = 5 then executing n++ changes the value of n to 6
==================================================================
Q6. Which of the options must be true after the while loop terminates-

while (Counter < FinalNum) && (CurrentNum != NextNum) 
{

Counter++; 
}

❍ Counter >= FinalNum
❍ Counter < FinalNum
❍ (Counter < FinalNum) && (CurrentNum != NextNum)
❍ (Counter >= FinalNum) || (CurrentNum != NextNum)
(Counter >= FinalNum) || (CurrentNum == NextNum)

Fig. 11.4 Sample PFL question following new Java-like specification

 programming. These findings strengthened the case for actively using strategies to 
mediate for transfer and to prepare students for future learning through a curriculum 
such as FACT.

11.5.2  Study 1 and Study 2

Two studies were conducted in a middle school classroom in the western United 
States with two different cohorts of students. According to school data provided 
online by the California Department of Education at the time of the study (2013), 
about 8.6% of the student population was socioeconomically disadvantaged, 12.6% 
were English Language Learners, and 13.6% were students with disabilities. The 
racial/ethnic composition of the school was 43.2% Asian, 37.8% White, 10% 
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Hispanic or Latino, 2% African American, and 7% are students of other 
ethnicities.

The studies were conducted over two 10-week periods in the spring and fall 
quarters of the same year. These 10 weeks included the time before and after the 
7-week-long FACT intervention that included visits to the classroom for Institutional 
Review Board (IRB) permissions and pre–post tests as well as post-course activities 
such as final project completion, presentations, and student interviews. FACT was 
taught as part of the semester-long Computers elective that met four times a week 
for 55 minutes each. The elective was offered to Grades 7 and 8, and approximately 
one fifth of the class comprised students who had been placed in the class by the 
school counselors. In both studies, these students happened to be English Language 
Learners (ELLs) or students with other learning difficulties who could not be 
accommodated in other elective classrooms. Unfortunately, because this was an 
elective class, these students did not get the same para-specialist supports they 
received in core-subject classes.

The only differences related to PFL between Study 1 and Study 2 (in the iterative 
design research) were in the PFL assessment—the wording of two questions was 
refined to improve clarity. Because all five questions in the original PFL assessment 
involved loops (and variables), two additional PFL assessment questions were 
added for Study 2—one involved variables and Boolean expressions and the second 
involved conditional statements.

11.5.3  Data Measures and Analyses

Besides the PFL measures, the following student data were collected: (a) pretest and 
posttest of programming knowledge; (b) technology fluency and prior experience 
with programming (survey); (c) interest in and attitudes towards CS (survey); (d) 
reactions to Computing is Everywhere! videos; (e) academic preparation (as mea-
sured here by math and English levels in state tests); (f) learning issues (English 
language issues especially); (g) demographics (age and gender); and (h) student 
experience surveys and interviews (post-FACT).

Mixed methods analyses In both studies, student reactions to the videos in 
Computing is Everywhere! were coded based on the same set of codes:

 1. Positive valence (e.g., awesome, amazing, cool, exciting),
 2. Real-world connections of CS,
 3. Curiosity to learn more about something addressed in the video,
 4. Seeing CS in a way they had not thought of before,
 5. Commenting on the use of CS for creative expression, and
 6. Personal connection with the ideas or story in the video on a personal level—to 

their own lives or in the lives of the people in the video.
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The open responses to the PFL questions were graded by the main researcher 
according to the detailed rubric. Each question was graded out of 3 points. In Study 
1, a second doctoral researcher re-checked the grading and used this set as training 
for grading the PFL test for Study 2. The mean and standard deviation for the PFL 
test were 63.27 and 28.86, respectively. In Study 2, the two graders graded the PFL 
test. The inter-rater reliability (Cohen’s Kappa) for the grading was 82.1%.

To understand the factors that predicted students’ PFL scores, data from the two 
cohorts were combined (for greater statistical power). This was justifiable because 
there was no significant difference between the two cohorts on any of the measures 
captured—pretest, posttest, PFL test, or prior experience survey measures. 
Regression analyses were done to find which variables among the data gathered 
were significant in predicting student performance on the PFL assessment. (Three 
students were dropped from the analyses due to incomplete data.) Univariate regres-
sions were used as the first step in determining which variables should be dropped 
in the stepwise multivariate regressions. If a variable could not significantly predict 
the dependent variable in a regression all by itself, it was not included in the multi-
variate regression analysis. Age was one such variable.

11.6  Results

In both studies, on the post-test, students scored the highest on questions related to 
serial execution followed by conditionals and then loops. The average scores 
between the two studies were not different statistically. In Study 2, these scores 
were 91%, 85%, and 77% respectively for an overall mean of 81.6%.

11.6.1  Reactions to Computing is Everywhere!

Qualitative coding and analysis of student responses to the videos gave a glimpse 
into how the different videos influenced students’ thinking (Fig.  11.5). Student 
responses included comments like “I think that was a really cool opportunity that 
she got to work with Disney and I would take it if I got the chance to work with 
Disney” and

I liked the mural they made on the wall. In the future everybody will have their rooms 
painted however they want and you can turn off the lights by slapping the wall. It would be 
useful to not have to get up to turn on the fan or lights. You just slap the wall.

Suggestions of a new appreciation of the importance of, and wanting to learn more 
about, CS and coding were made in some comments, for example: “Some of the 
most interesting computer science videos I’ve seen I think. And I now really want to 
learn more about coding and what I can do with it” and
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Fig. 11.5 Frequency of responses to individual videos by coded categories

I liked the second video with the music because that’s something that I can relate to. I love 
music so I like things that have to do with music. When I thought of computer science 
before the video I think of computers and only about computers. But now I see that com-
puter science goes so much further than that. Now I can’t think of anything that doesn’t use 
computer science. It’s really cool.

11.6.2  Performance on the PFL Assessment

The performance of students on the PFL test in Study 2 was quite similar to that in 
Study 1, and there was no statistical difference in the scores across the two cohorts 
(t  =  −0.22, p  =  .82). The mean and standard deviation were M  =  65.07 and 
SD = 26.47, respectively. The class average scores (out of 3) on each of the seven 
questions in Study 2 are shown in Table 11.2.

Students seemed to struggle the most on the question involving the FOR loop. 
Prior research suggests that FOR loops are the most problematic looping construct 
for older novice programmers too because of the complex “behind-the-scenes” 
action involved with incrementing the loop variable (Robins, Rountree, & Rountree, 
2003). It is therefore not surprising that less than 50% of the students tackled that 
question correctly. Questions 4 and 5 were based on the same snippet of code that 
was very similar to Question 3 but had the added complexity of checking for divis-
ibility by 2 and then incrementing one or the other counter variable. As in Question 
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Table 11.2 Question-wise breakdown of PFL test scores (Study 2)

Question Average score by question (out of 3)

Question 1 WHILE loop, with variable increments 1.65 (55%)
Question 2 FOR loop, with variable increments 1.32 (44%)
Question 3 IF statement within WHILE, counter variables 1.96 (65%)
Question 4 IF statement within WHILE, counter variables for 

mod operation
1.68 (56%)

Question 5 Number of iterations of WHILE loop 2.32 (77%)
Question 6 Boolean condition for WHILE loop 1.79 (60%)
Question 7 Multiple conditionals in sequence 2.54 (85%)

3, the answers were coded with one of four scores: 3, 2, 1 or 0. The wording of 
Question 5 (“How many numbers will be processed by the program below?”) also 
seemed to have caused some confusion because some students counted the number 
of variables that the code was using rather than the count of numbers processed by 
the loop. Of the students who understood the question as intended, the majority 
answered correctly, and a few answered 99 instead of 100, which is a common “off- 
by- 1” loop error (Soloway, Bonar, & Ehrlich, 1983).

11.6.3  Factors Predicting PFL Test Scores

The mean PFL test score for the combined sample was M  =  64.3 (SD  =  27.4). 
According to the regression analyses (Table 11.3), both the pretest and posttest sig-
nificantly predicted PFL test performance, with the posttest, not surprisingly, being 
the most predictive (β = 0.58, p < .01). Prior experience factors did not significantly 
predict performance on the PFL test and neither did math academic preparation. 
However, being an ELL student was negatively correlated with the PFL score. This 
was perhaps due to the fact that the test was very text heavy as seen in Figs. 11.3 
and 11.4.

The high degree of correlation between the posttest and PFL test prompted fur-
ther regression analyses of the PFL test and the posttest as broken down by CS 
constructs to investigate which construct (Serial Execution, Conditionals, or Loops) 
was the best predictor of performance on the PFL test. Not surprisingly, the regres-
sion analyses suggested that the PFL test was most closely correlated to the Loops 
concept (the only significant predictor among the three question categories). This 
was as expected because many of the PFL test questions were based on code snip-
pets that involved loops (with variables). Students who were able to master loops 
also did well on the PFL test. However, Loops was the topic that students in Study 
1 and 2 seemed to have the most difficulty with—the lowest scores on the posttest 
were on the questions involving loops (with variables).

It would therefore appear that the PFL test was much more difficult when com-
pared to the posttest. This explains the relatively lower score of 65% on the PFL test 

S. Grover



269

Table 11.3 Regressions 
predicting PFL and posttest 
score for the combined 
student sample

PFL test score
Variable Beta SE

Posttest score 0.58*** 0.16
Pretest score 0.40** 0.19
Math standardized test −0.13 3.69
English language learner −0.27** 7.79
Prior experience 1: coder −0.10 2.40
Prior experience 2: creator −0.08 1.64
Prior experience 3: consumer −0.02 1.73
Constant – 14.31
N 49.00
Adjusted R-squared 0.68

*p < .05. **p < .01. ***p < .001

compared to an average of approximately 80% on the posttest. It would not be 
unreasonable to assume that PFL test scores would likely have been much higher 
had it been more comparable to the posttest in terms of topics associated with the 
different questions.

11.7  Discussion

Based on the results described above, it appears that the Computing is Everywhere! 
unit succeeded in providing an expansive framing of computing and programming 
that helped learners appreciate the relevance of what they were learning. It helped 
foster an expectation that learners would continue to find future use for what they 
were learning in the introductory CS and programming curriculum due to the rele-
vance of computing in every field. This expectation was reinforced through high-
lighting the deeper structures of programming and algorithmic thinking—that 
students learned through modeling, cognitive apprenticeship, and analogous repre-
sentation—in future coding experiences in text-based environments.

The performance on the PFL test suggested that a majority of learners were suc-
cessfully able to transfer most of the basic ideas of algorithmic control flow to 
comprehend code completely foreign to them. It is worth noting that:

 1. In most cases, students were able to correctly get a sense for the program flow 
and recognized the concept of looping or conditional execution in the code even 
though their responses were not always completely accurate.

 2. Consistently right or consistently (completely) wrong responses mapped closely 
to performance on the Scratch test. This is to be expected because skills mastery 
in the original context is essential for transfer (Kurland, Pea, Clement, & Mawby, 
1986).
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 3. Unfortunately, most of the questions on the PFL test involved loops with vari-
ables—a topic that is traditionally known to be difficult. Repeated execution has 
been known for a long time to be a thorn in the side of novice programmers 
(Parsons & Haden, 2007; Pea, 1986).

 4. The nature of many of the errors committed on the PFL test were similar to those 
committed on the Scratch test, suggesting weak initial learning of some 
concepts.

 5. Problems such as the “off-by-1” looping error or issues with the FOR construct 
are common even among older novice programmers at the undergraduate level 
as well (du Boulay, 1986; Soloway & Ehrlich, 1984).

 6. The qualitative analysis of the PFL responses suggests that several students pro-
vided descriptions of the code rather than answering the pinpointed question, 
such as the final value of a variable. Those explanations were suggestive of 
understanding of the algorithmic flow of control.

Perhaps the most telling takeaway on the strategies for mediating transfer and PFL 
such as expansive framing and analogous representations used in FACT was what 
one seventh-grade student had to say about FACT and the PFL questions in his post- 
FACT interview:

It was definitely interesting, especially the ones that related to other programming lan-
guages; I could definitely see that it’s really important to not only get people in this course 
exposed to Scratch but also have the knowledge and basis and realize that this is not just 
programming in Scratch but these skills can all be applied to any programming language, 
so I especially like those questions, and they were also the ones that were probably most 
informative because they showed what some of the different syntaxes were in different 
programming languages.

That said, these results suggest that such a PFL test would benefit from some revi-
sion. It has been established that the PFL test was difficult compared to the posttest 
because most questions involved loops with variables. Not only was it testing learn-
ers on new learning and programming in a context completely alien to most stu-
dents, it also focused mainly on loops and variables, which were the hardest concepts 
for learners to grasp as evidenced by the breakdown of posttest performance by 
constructs (Grover et al., 2015). Additionally, performance on the PFL test clearly 
depended on learners’ ability to read and work with long sections of textual “new 
learning” on which the PFL questions were based.

11.7.1  Limitations

The study would have benefited from a better experimental design with a control 
condition where student learning in a different but comparable setting could be 
tested using the same set of assessments. This was achieved in some sense through 
the preliminary explorations where students learning Scratch in another school in 
the same district were administered a preliminary version of the PFL test as a vali-
dation of the hypothesis that middle school computing experiences don’t usually 
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teach to promote block-to-text transfer, a finding that has since been reproduced in 
other research (e.g., Weintrop & WIilensky, 2017). However, this was not a control 
group in a true sense.

11.8  Conclusion and Implications

The goal of all formal learning is to equip learners with the skills and abilities for 
the near and not-so-near future. However, few curricula in K–12 computing educa-
tion pay due heed to explicitly teaching for transfer. In an effort to answer the ques-
tion, “How can early experiences in block-based programming be designed so that 
learners can transfer their learning successfully to future text-based program-
ming?” this article describes approaches to consciously teaching and assessing for 
transfer in introductory CS curricula in ways that leverage the promising and power-
ful ideas of “expansive framing” and “preparation for future learning” in introduc-
tory CS teaching and learning at the middle school level. This design research 
describes the promise of creating environments that strive for deeper learning to 
prepare learners for future computing experiences. This research also provides mid-
dle school teachers with curricular and pedagogical ideas to promote a deeper 
engagement with CT concepts even as they use block-based environments like 
Scratch that are friendly to younger programmers. Implications from this research 
point to the need for introductory CS curricula to (a) teach programming to strive 
for acknowledging deeper structures of programs rather than only the (shallow) 
syntax of a programming environment and (b) give learners a sense for the com-
monality of programming structures in various programming environments (through 
the use of pseudocode or examples from multiple programming environments to 
express the same solution).

The dynamic PFL assessment that assesses transfer of learning from a block- 
based programming context to a text-based one is also new to education research. 
The related text-based assessments, which can be used as PFL assessments after 
teaching middle school students introductory CS using environments like Scratch 
and Alice, are a unique contribution of this research. To conclusively establish the 
merits of this curricular approach, comparative investigations would be needed with 
students who are learning block-based programming in other types of curricula. 
Other approaches for mediating transfer should also be investigated. For example, 
working with different programming languages in the course of the same interven-
tion could be another strategy worthy of investigation . Which languages should be 
used? In what sequence? What would be appropriate transition points? What would 
bridging strategies look like? These are just some of the promising questions that 
merit future investigation. Additionally, new dual-modality languages and environ-
ments, such as Pencil Code and Code.org's AppLab, have emerged. These tools 
have both block-based and text-based interfaces allowing learners to move back and 
forth between the two, and are thus promising for promoting transfer with 
appropriately- designed curricular experiences. 
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Perhaps the most salient implications of this research concern the foundational 
premise of this effort—that students as young as 12 and 13 years of age can and 
should be taught computational and algorithmic thinking in a way that will success-
fully transfer from the novice-friendly block-based programming to the more 
mature text-based programming. Furthermore, making learners aware of CS and its 
diverse applications serves the dual purpose of connecting to identity and engage-
ment while also underscoring the relevance of what learners are learning to the 
expectation of usefulness for the future. This is ever more important given that mid-
dle school years are crucial for identity building as well as cognitive development 
for analytical work required by STEM disciplines. The key lies in teaching with a 
view to deeper conceptual understanding so that learners master the core disciplin-
ary ideas in ways that attend to transfer of that learning to productive future efforts. 
Expansively framing the curriculum to consciously create bridges to future learning 
contexts and assessing for transfer through specially designed PFL assessments are 
unique contributions that this research makes to the fields of STEM and computing 
education research.
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Chapter 12
Tenets of Ethnographic Accounts  
of Cross- Setting Learning in Relation 
to Interpretive Accounts of Transfer

Kara Jackson

The observation that humans regularly make their way across settings in which 
values may be differentially privileged, and in which social relations and the norms 
of communication and practices may vary, has been a persistent object of inquiry for 
philosophers, anthropologists, psychologists, cognitive scientists, and educational 
researchers alike (Beach, 1999). Specific to education, as has long been observed 
(e.g., Dewey, 1916), understanding how it is that people forge connections and 
experience contradictions across settings is especially important, given that much of 
public discourse regarding the purposes of education centers on preparing students 
to use what they learn in classrooms in settings outside the classroom.

My personal interest in exploring cross-setting learning is rooted in practice. As 
a mathematics teacher, I wrestled with issues of whether what I was teaching in a 
classroom would be of use in youth’s present and future lives outside of educational 
institutions. I also wrestled with reconciling genuine commitments to building on 
youth’s existing experiences in classroom instruction while also being cognizant of 
what both I and youth were being held accountable for by the educational system. 
And, I observed differences in the ease with which it appeared that some youth, as 
compared to others, made their way in and across home and school settings. These 
dilemmas sparked my interest in understanding how scholars theorized how people 
experience continuity, and discontinuity, specific to (mathematics) learning and 
education. I was especially interested in the implications of this scholarship for the 
design of learning settings, particularly for youth from communities that histori-
cally have not been supported well in math classrooms and schools. Questions like 
these led me as a graduate student to conduct an ethnographic study of two 10-year- 
old youth and their families’ pursuit of mathematical understanding and identities 
across home, school, and community settings, with a focus on how, when, and why 
people engaged in mathematical activity, and to what effect.
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I share this to contextualize my interest and intent in writing this chapter. In the 
study mentioned above, I took, broadly speaking, a sociocultural perspective on 
learning and built on a then nascent set of ethnographic studies taking a cross- 
setting perspective on learning to theorize youth’s participation and identity work 
across settings. I did not initially conceive of the study in relation to the literature on 
transfer. However, as I worked to theorize the work the youth and others were doing 
to establish or maintain productive relations across settings in relation to mathemat-
ics, it became apparent that the literature on transfer, especially what I will refer to 
as interpretive accounts of transfer, was relevant in many regards. By interpretive 
accounts of transfer, I mean accounts that place emphasis on the meaning that learn-
ers generate in context (e.g., Engle, Lam, Meyer, & Nix, 2012; Greeno, 2006; 
Hohensee, 2014; Lobato, 2006, 2012; Pea, 1987). In such accounts, “knowing and 
representing arise as a product of interpretive engagement with the experiential 
world, through an interaction of prior learning experiences, task and artifactual 
affordances, discursive interplay with others, and personal goals” (Lobato, 2012, 
p. 234).

The purposes and methodologies guiding ethnographic, cross-setting accounts of 
learning are not the same as those guiding interpretive accounts of transfer. In cross- 
setting accounts of learning, researchers deliberately and expansively trace, as best 
they can, the varied pathways that people take in relation to focal content, which is 
often broadly construed as including concepts, tools, and practices. In accounts of 
transfer, the scope of what is of interest (both the content and the focal settings) is 
narrower and more precisely defined from the outset. However, both bodies of 
scholarship aim to understand how it is that people generate meaning that is conse-
quential for future action in events that are, or are intended to be, linked.

In what follows, I first describe the purposes of ethnographic accounts of cross- 
setting learning in general terms. I then elaborate on four tenets of such accounts 
of learning that I view as useful to consider in relation to interpretive accounts of 
transfer. The tenets are as follows: (a) people’s participation varies in relation to 
context; (b) people and settings change over time, and in relation to one another; 
(c) learning is not complete in any one event; and (d) power relations matter in 
understanding what pursuits are possible, when, by whom, and with whom. 
Throughout, I ground my discussion in the study I conducted of youth pursuing 
mathematics across settings. My hope is to initiate productive conversation regard-
ing overlap and tensions between ethnographic accounts of cross-setting learning 
and interpretive accounts of transfer, while fully recognizing that the two bodies 
of scholarship are not aimed at understanding synonymous processes. In the body 
of the chapter, I give primacy to considering what tenets of ethnographic accounts 
of learning across settings might suggest for interpretive accounts of transfer. In 
the conclusion, I consider some tensions in doing so, as well as the potential ben-
efit of working across these two approaches to make sense of cross-setting 
learning.
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12.1  Ethnographic Accounts of Learning Across Settings

In the last couple of decades, it has become increasingly common to carry out eth-
nographic studies of people learning content and forging interests and identities 
across settings (see, for example, Barron, 2010; Barron & Bell, 2015; Penuel, 
DiGiacomo, Van Horne, & Kirshner, 2016; Tuomi-Gröhn & Engeström, 2003; 
Vossoughi & Gutiérrez, 2014). Ethnographic studies, in general, aim to understand 
a particular phenomenon (e.g., participating in classroom mathematics) from the 
members’ points of view; to do so, researchers attend especially to the ways in 
which members interpret, or give meaning, to their participation in particular events 
and practices in context (Hammersley & Atkinson, 2007). Ethnographic accounts of 
learning across settings typically reflect and build on assumptions and findings 
associated with sociocultural accounts of learning.

Sociocultural accounts posit that learning is evidenced by a change in participa-
tion in the practices associated with a community. Moreover, a change in participa-
tion reflects both a change in what one knows (e.g., understandings of content) and 
does (e.g., how one participates, how one uses a tool) as well as in who one is, which 
entails both how a person views and positions herself and how she is viewed and 
positioned by others within the community (Lave & Wenger, 1991; Packer & 
Goicoecha, 2000). From this perspective, “Knowledge—perhaps better called 
knowing—is not an invariant property of an individual, something that he or she has 
in any situation. Instead, knowing is a property that is relative to situations, an abil-
ity to interact with things and other people in various ways” (Greeno, Moore, & 
Smith, 1993, p. 99).

Learning is conceptualized as occurring along a trajectory of participation, 
whereby a person participates in events that are linked (via people’s participation, 
but also possibly through tools and other resources available); and it is across linked 
events that shifts in a person’s participation as well as social positioning occurs 
(Lave & Wenger, 1991; Wortham, 2006). Emphasis is placed on characterizing the 
quality of shifts in participation (i.e., learning) that occur, and in explaining why and 
when such shifts occur or not in relation to key features of the focal context, specific 
to the various events. Scholars typically attend to features like the nature of social 
relations, discourses, ideologies, and the tools available and routines for using the 
tools to explain why particular people become more central in a given community—
and why others either remain in or take up more peripheral positions (e.g., Brown, 
Collins, & Duguid, 1989).

Until more recently, empirical accounts of mathematics learning reflecting a 
sociocultural perspective tended to focus on individuals’ shifting participation in a 
particular setting, like a classroom (e.g., Boaler, 2000; Gresalfi, 2009) or in an out- 
of- school setting (e.g., Nasir, 2000; Stevens, Mertl, Levias, & McCarthy, 2006). 
However, increasingly (not specific to mathematics learning), there has been atten-
tion to people’s participation in linked events across settings, with a particular focus 
on how their participation in one setting has bearing on their participation in an 
alternative one. In particular, studies have focused on understanding the relation-
ships between participating in out-of-school and in-school activity, often with the 
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intent of designing for increased continuity between the two, especially for groups 
of students from communities that have been historically marginalized through 
schooling (for reviews of this literature, see Barron & Bell, 2015; Bronkhurst & 
Akkerman, 2016). Some scholars have argued for the importance of attending to 
cross-setting participation, in part, in terms of its ecological validity (Barron, 2006; 
Stevens, Wineburg, Herrenkohl, & Bell, 2005; Vossoughi & Gutiérrez, 2014). 
Tracing participation across settings represents a “truer” understanding of how it is 
that people actually experience the world and deepen their knowledge, senses of 
themselves and others, and so forth. Accounts that are more ecologically valid sup-
port better design of learning environments.

One strand of ethnographic accounts of cross-setting learning has focused on 
how youth develop and grow their interests and engagement across settings, which, 
in turn, “advance[s] their learning in particular domains” (Barron, 2010, p. 114). For 
example, Barron traced the development and nurturing of youth’s interests in tech-
nology (e.g., web development, computing) across “networks of support” (p. 114); 
youth pursue their interests, often with encouragement from family members, and 
in pursuing their interests, they interact with others with similar interests who span 
a number of settings. Barron showed that youth’s interest and their sustained 
engagement in activities through which they continue to deepen their knowledge 
and skills specific to computing is clearly not confined to a particular setting.

Another strand has focused on the development of “hybrid” practices and set-
tings that emerge when youth are explicitly encouraged to share and leverage 
resources that are typically associated with participation in one setting in a new 
setting. For example, Gutiérrez, Higgs, Lizárraga, and Rivero (2019) describe how 
an after-school Science, Technology, Engineering, Arts and Mathematics program 
was deliberately designed for youth to relate in different ways to one another and to 
adults than is typical in school settings. Youth were positioned as the “principal 
designers” in digital activities in the after-school program (e.g., designing a video 
game, creating a video about an interest), and they were encouraged to use their 
interests to inspire the focus of their design. Ethnographic study of the youth’s 
resulting activity indicated that they “leveraged [digital] tools and practices from 
their after-school program and everyday gaming to new media practices in their 
households” (pp. 69–70). As they did so, family relations and typical home prac-
tices shifted. Moreover, the youth’s engagement and learning specific to their design 
work was sustained across home and after-school settings.

12.2  Four Tenets of Ethnographic Accounts of Cross-Setting 
Learning: Considerations for Interpretive Accounts 
of Transfer

Although the focus and specific frameworks guiding ethnographic accounts of 
cross-setting learning vary somewhat, depending on theoretical commitments and 
the focal content being explored, they share a set of tenets. In what follows, I elabo-
rate on each tenet, make observations regarding how interpretive accounts of 
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transfer may or may not reflect the tenets, and raise questions regarding the potential 
value in considering the tenets in transfer research. To ground the discussion of each 
tenet, I provide examples from a 14-month ethnographic study I conducted of two 
10-year old African American youth (Nikki Martin and Timothy Smith1) and their 
families engaging in mathematical activity across home, school, and community 
contexts. I provide a bit of background here, before moving to the tenets, to contex-
tualize the examples on which I draw. (For more details, including about methodol-
ogy, see Jackson, 2009, 2011.)

Nikki, Timothy, and their families lived in a low-income neighborhood in a large 
city in the northeastern United States. I had worked with them as a mathematics 
specialist for a number of years prior to the start of the study. I initially began the 
study in the spring of their fourth-grade year at their neighborhood school. However, 
Nikki and Timothy moved from their neighborhood school to a charter school, 
Johnson Middle School, across the city at the start of fifth grade. I used ethno-
graphic methods (e.g., participant observation, interviews, document collection) to 
trace and analyze how the youth and their families experienced and made sense of 
their participation in and across home and classroom settings, specific to mathemat-
ics. Over the 14-month period, observations included approximately 60 hours in 
each of Nikki’s and Timothy’s home; about 18  hours in their fourth-grade math 
classrooms in the spring; and about 130 hours, usually two consecutive days a week, 
over the course of an academic year in their fifth-grade mathematics class. In addi-
tion, I conducted eight interviews with Nikki and five interviews with Timothy, 
three interviews with each of Nikki’s and Timothy’s mothers, three interviews with 
their fifth-grade mathematics teacher (Ms. Ridley), and two interviews with a 
special- education teacher who worked with Timothy.

12.2.1  Tenet One: People’s Participation Varies in Relation 
to Context

The unit of analysis for most ethnographic, cross-setting accounts of learning con-
cerns the person in context (Lave, 2012). The assumption that people’s participation 
in any given activity varies, or is in relation to, aspects of the context is perhaps 
trivial. However, as Engle et al. (2012) noted, issues of context are “underempha-
sized in most transfer research. When context is addressed, it is primarily treated as 
a ‘physical reality’” (p. 216); attention is given to who was present, the tools avail-
able, and where the test of transfer occurred. However, interpretive accounts of 
transfer center person in relation to context; they attend to the interactions through 
which participants generate meaning specific to the focal content (Pea, 1987). For 
example, the actor-oriented theory emphasizes how “social interactions, material 
resources, and normed practices” shape the learner’s (i.e., actor’s) understanding of 

1 All names are pseudonyms.
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a given situation, from the perspective of the learner, not an outside observer 
(Lobato, 2012, p. 241). As another example, Engle et  al. (2012) emphasized the 
importance of how focal activity is framed, and in relation to how learners are posi-
tioned. They convincingly show the importance of expansive framing, or of encour-
aging youth to draw upon their past activity to engage in the current activity, and in 
suggesting the value of the current activity for future activity, and thus, of position-
ing youth as having authority with respect to their learning (Greeno, 2006).

Social interactions, social positioning, the use of material resources, and norms 
of established practices are central in making sense of person in context in ethno-
graphic, cross-setting accounts of learning. In addition, cross-setting accounts sug-
gest the value in broadening even more so what counts as relevant context in making 
sense of a person’s participation in a given activity. Of course, what is relevant 
context in any given event is an open, empirical question. However, ethnographic 
studies indicate the value in attending to broader discourses that circulate, often 
across settings, regarding the particular youth, the content they are learning, and so 
forth (Gresalfi, Taylor, Hand, & Greeno, 2009). For example, although mathematics 
may be constructed as a sense-making activity in a given classroom, youth have 
often been subject to narrower constructions of mathematics in prior classrooms. 
How context shapes a youth’s interpretation of a given task is not restricted to, or 
bounded by, the dominant discourses of a given setting.

Moreover, ethnographic, cross-setting accounts illustrate that “persons are not 
‘the same’ in different situations: Their identities are partial and plural” (Lave, 
2012, p. 162). Further, histories matter for how it is that youth interact with particu-
lar people in a particular setting, and these histories are not solely individual. 
Histories are informed by long-standing relations between, for example, the com-
munity in which a student is located and educational institutions. And, as discussed 
earlier, ethnographic accounts also suggest that people’s participation is shaped by 
their own interests, that is, what they find compelling to engage in. These interests 
may emerge, deepen, or fade in a given event relative to the context.

The value in expanding what counts as context was especially clear in making 
sense of Nikki and Timothy’s participation in their fifth-grade mathematics class-
room. The charter school was part of a network that explicitly aimed to support 
economically disadvantaged youth of color to attend college. The school leaders 
and the overwhelming majority of the teachers, including Ms. Ridley, were white. 
As I have documented elsewhere (Jackson, 2009, 2018), deficit discourses circu-
lated throughout the school regarding the incoming fifth graders’ supposed inabili-
ties to “do school” and lack of moral character, and these discourses shaped policies 
and practices, especially regarding discipline and the completion of homework. 
Moreover, these discourses impacted how mathematics was constructed as a subject 
matter and how it was taught. The charter-school network’s fifth-grade mathematics 
curriculum as intended and enacted was primarily aimed at supporting students to 
memorize procedures for solving routine sets of problems. Speed and accuracy 
were valued over making sense of central ideas and problem-solving processes. Of 
course, it is not unusual in the United States for mathematics classroom instruction 
to prioritize learning procedures without understanding. However, as I showed 
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elsewhere (Jackson, 2009), the decision to prioritize memorizing procedures went 
hand in hand with the construction of the youth as unprepared to engage in making 
sense of ideas. More generally, understanding these broader discourses was essen-
tial to making sense of how it was that students like Nikki and Timothy were posi-
tioned in the classroom, and their subsequent learning of mathematics.

Of course, individuals differ in how they interact and are positioned in any given 
setting. As it turned out, in Ms. Ridley’s classroom, Nikki was regularly recognized 
as a top student by her teacher and other students. She was quick to participate in 
math class, and she was generally accurate and satisfied with providing answers to 
routine problems. Timothy was routinely positioned as an unsuccessful student and 
found it challenging to participate in the mainstream math classroom. There was 
evidence that he had some cognitive delays, and especially in a classroom where 
speed was valued, he stood out in relation to many of his peers; he struggled to 
respond quickly to questions, and it took him longer than the teacher expected for 
him to complete written work.

As McDermott (1993) observed, assets and deficits only become visible and 
“real” in relation to what is prioritized or valued in a given setting. To this point, for 
about 30 minutes at the start of several lessons in a given week from October to 
January, Timothy participated in a pull-out mathematics class with a few of his 
peers, led by Ms. Sanchez, a teacher trained in special education. In Ms. Sanchez’s 
class, speed was no longer valued, and Timothy eagerly participated and completed 
his work and was positioned competently with respect to mathematics 
(Jackson, 2009).

The contrast between Nikki and Timothy within the mainstream class, as well as 
the contrast between Timothy in Ms. Ridley’s and Ms. Sanchez’s class, illustrates 
that people’s participation must be understood with respect to what is valued and 
made visible (or not) in a given setting. Moreover, to make sense of the guiding 
norms of participation and social interactions, it is likely important to consider 
broader discourses that shape activity and people’s positioning (in this case, dis-
courses about youth and mathematics), as well as the histories that individuals bring 
from alternative settings.

Adopting a broader view of what might count as relevant context in studies of 
transfer is likely of value in investigating and explaining desired as well as unde-
sired outcomes, including variation in outcomes in a given setting. As Pea (1987) 
observed, characterizing, or judging, transfer necessarily involves cultural values 
and assumptions on the part of both the learner and the observer. For example, 
deciding whether to use a particular set of skills to accomplish a task is, in part, 
dependent on whether one views those skills as relevant or of value in the context in 
which the task is situated. And, judgments about what is valuable cannot be taken 
for granted, nor are they necessarily consistent across learners in a given situation.

There are certainly limits in what it is feasible to attend to, contextually, in a 
given transfer situation. However, the findings of sociocultural accounts of learning 
mathematics, more broadly, suggest the importance of at least attending to focal 
learners’ patterns of participation in relation to what it means to know and do math-
ematics and who is positioned as capable in mathematics (Gresalfi et  al., 2009). 
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Attention to these issues reflects Greeno’s (2006) observation that transfer rests, in 
part, on individuals’ agency to decide to act in a particular way across events. As 
Greeno suggests, students who are positioned as having mathematical authority and 
are provided opportunities to develop deep understandings of mathematics and 
ways of reasoning in one setting are more likely to participate with agency (e.g., 
apply prior understandings to solve a new problem) in a new setting. However, if 
students are positioned primarily as receivers of knowledge in a prior setting and 
mathematics is constructed as a set of procedures to mimic, students are less likely 
to risk drawing on their prior understandings when presented with an unfamiliar 
problem. Attending, then, to how students are positioned with respect to what it 
means to learn and do mathematics across settings may, at a minimum, allow for a 
researcher to explain variation in terms of students’ ways of reasoning within a 
given setting and between settings, or at least raise questions about variation that are 
worthy of future attention.

12.2.2  Tenet Two: People and Settings Change Over Time 
and in Relation to One Another

A second, related tenet of sociocultural accounts of learning is that both people and 
settings change, and in relation to one another. Within any given setting, people are 
transformed as they participate in practices over time. And, the practices them-
selves, as well as the settings in which they are located, are transformed as people 
participate in them. Moreover, people’s changed participation in a given activity is, 
oftentimes, informed by their activity in an alternative setting. In addition, part of 
what changes as learners move across settings is the meaning of what it is they were 
seeking to make sense of at an earlier point in time. Dreier (2008) writes:

As learners move into different contexts from the context in which they first addressed a 
learning issue, the meaning of this issue for them may change, and other contexts may 
reveal other aspects of the learning issue and other opportunities for learning about it. (p. 3)

Tracing Timothy and his family’s work in response to a strict homework policy, 
as enforced by the school, illustrates this tenet well. Johnson Middle School teach-
ers generally assigned homework in each subject area, and it was required that par-
ents sign off on their students’ completed homework each evening. Students were 
punished if they did not bring completed, signed homework to school the following 
day. Prior to attending Johnson Middle School, Timothy’s parents had checked 
when he arrived home what his homework was for the evening, and they checked 
again that he completed his homework each evening. However, at Johnson, the 
amount of homework was substantially more as compared to his fourth-grade class 
at his neighborhood school, and, especially given the consequences of incomplete 
homework and the speed at which Timothy worked, his parents closely monitored 
his homework time. As soon as he came home, he shared what he needed to do for 
homework with a parent and then sat at the dining room table until it was complete. 
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One of his parents, typically his mom given that his dad often worked in the eve-
nings, checked his work over the course of the evening.

If Timothy had difficulty solving a mathematics problem, his parents worked 
with him; they, too, were often unsure of how to solve a given problem but regularly 
turned to Timothy’s notes from class and resources on the Internet, as well as asked 
Timothy’s older sibling for assistance. If they continued to struggle in solving the 
problem, either Timothy, or sometimes one of his parents, would call Ms. Ridley. 
Johnson Middle School had a policy whereby teachers were required to answer their 
cell phones until early evening in relation to homework questions.

As substantiated in Jackson (2011), over the course of the year, Ms. Ridley 
shifted her interpretation of Timothy’s participation patterns in the classroom, and 
in large part in response to her evolving interactions with Mr. and Mrs. Smith and 
Timothy, primarily regarding homework. At the start of the year, in an interview, 
Ms. Ridley initially described Timothy’s apparent struggles in class as due to a cog-
nitive disability. However, over time, as Ms. Ridley engaged in homework phone 
calls and meetings with the Smiths, she suggested that his supposed lack of “speed” 
and “effort” was because his parents had “coddled” him, as evidenced by their 
involvement in his homework, and thus, he lacked intrinsic motivation to participate 
in math class. In addition, Ms. Ridley’s evolving interpretation of his family’s par-
ticipation in Timothy’s schooling affected how she socially positioned Timothy in 
the classroom. At the beginning of the year, she encouraged his participation; how-
ever, nearer to the end, she occasionally chastised him for what she perceived was a 
lack of effort on his part.

Stepping back, as evidenced in this example, it was the change in Timothy’s rela-
tive positioning in the classroom with respect to changes in how his family was 
perceived by his teacher that were central to making sense of what he was learning 
when and why. Attention to the changing relations between person and context 
highlights that the shifting context impacted Timothy’s learning, and vice versa. 
Further, the related changes in classroom setting and person were not restricted to 
events that happened in the classroom.

Vossoughi and Gutiérrez (2014) suggested that the assumption that persons and 
setting change in relation to one another “challenges traditional notions of ‘trans-
fer,’” which privilege attention to the reproduction of particular practices across 
events (p. 610). This tenet of cross-setting accounts of learning raises the question 
of the value in investigating how a “transfer context” might, more broadly, shift as 
a result of the various meanings people come to make in a given setting. Are rela-
tions between people changed in the focal setting as learners deepen their under-
standing of particular ideas? If so, in what ways?

Engle et al.’s (2012) work on expansive framing is an example of interpretive 
transfer research that, at least implicitly, is suggesting the value of attending to 
changing relations between settings and people. They write, “In an expansive fram-
ing of roles, learners are positioned as active participants in a learning context where 
they serve as authors of their own ideas and respondents to the ideas of others” 
(p. 218). Presumably, as learners are increasingly positioned as such, this leads to 
changes in the social relations in the transfer context, and potentially the norms of 
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participation, more generally, in the focal setting. It could be useful to know how 
expansive framing might, in turn, support deeper learning of focal content as well as 
changes in how the learners identify with respect to the content and one another.

12.2.3  Tenet Three: Learning Is Not Complete in Any 
One Event

A third tenet of ethnographic accounts of cross-setting learning is that learning is 
not complete in any event. As Dreier (2008) writes, cross-setting accounts indicate 
that “persons’ pursuits of learning in relation to a particular learning issue are rarely 
finished in one learning situation and context” (p. 87). Instead, much learning, or 
people’s changing participation in practices, is “open-ended” (p.  89). Moreover, 
“this open-endedness makes it complicated for persons to define the status of their 
prior learning and their reliance on it” (p. 89). The transfer literature often, either 
explicitly or implicitly, suggests that learning (whether it be understanding a proce-
dure or a concept or, for example, developing a process for handling symbolic rep-
resentations) is complete in the first event. In fact, the common nomenclature of the 
“learning context” and the “transfer context” reflect (whether intentionally or not) 
this assumption. It suggests that learning has a beginning and an end.

Yet, cross-setting accounts of learning repeatedly show how what it is that people 
pursue ebbs and flows (and sometimes goes dormant) in relation to their personal 
interests, as well as how particular activities are organized; and, as such, what they 
know and who they are becoming develops over time, and often across diverse set-
tings. I illustrate this again in relation to homework, but this time from an event that 
happened in Timothy’s fourth-grade classroom.

As described in detail in Jackson (2011), in the spring of fourth grade, Ms. 
Jones’s class was focused on adding and subtracting fractions with unlike denomi-
nators. The homework provided a new context with which to reason about fractions: 
shaded sectors on an analog clock. For example, in one problem, a clock face had a 
sector from 12:00 to 4:00 shaded in dark blue (20 minutes out of 60 minutes, or 
4 hours out of 12 hours), and another sector from 4:00 to 6:00 shaded in light blue 
(10  minutes out of 60  minutes, or 2  hours out of 12  hours), and students were 
expected to use what they knew about time to add them together (e.g., 1/3 + 1/6 = 1/2). 
Timothy puzzled over the problem, as did his mother and sister. His mom then sug-
gested that Timothy ignore the context of time and instead estimate the fractional 
amount shaded for a combined sector of the circle (e.g., dark blue plus light blue). 
Timothy did so and made reasonable estimates. His estimates for 15 minutes (1/4), 
30 minutes (1/2), 45 minutes (3/4), and 20 minutes (1/3) were exact. His estimates 
for 5  minutes, 10  minutes, and 40  minutes were not wholly accurate, but were 
reasonable.

It turned out that most students expressed that they were confused by the clock 
context and therefore had not completed the homework. In response, Ms. Jones 
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went through each of the problems in a procedural manner, and, rather than attend 
to Ms. Jones’s explanation, Timothy began to read a book. When I asked Ms. Jones 
about Timothy’s participation and understanding of fraction addition and subtrac-
tion a couple of days later, she told me that his answers were “close enough” and 
that he likely didn’t listen to her explanation because he was “like a special educa-
tion student” and that the activity was too difficult.

In this case, some learning about fraction addition and subtraction was initiated 
in Ms. Jones’s classroom. While working on homework, Timothy puzzled through 
identifying areas of sectors, clearly drawing on some past learning about how to 
reason about a part in relation to a whole. Although he had not yet demonstrated 
evidence of full understanding of adding or subtracting fractional areas, he accu-
rately combined two sectors to make a larger part. Moreover, the learning he 
appeared to be doing at home had the potential to be deepened and extended the 
following day; however, it was not, because it was assumed that Timothy was not 
capable of deepening his learning regarding this topic, at least at that moment.

This is a brief illustration of a quick sequence of potential learning events char-
acterized by initial promise, which was, at least in the immediate moment, not capi-
talized upon. In this sequence, it becomes evident that, for Timothy, learning—that 
is, deepening his understanding, in this case, of a mathematical concept—could not 
be mapped to one particular event. Further, his opportunities to deepen his under-
standing (in both his home, where his mother supported him to continue working on 
the problem, and in the classroom) were bound up with conceptions of Timothy as 
a person. And, of course, he would revisit the concept of fractions, and of addition 
and subtraction of fractions, in his fifth-grade classroom. What comes to endure 
over these events—specific understandings of concepts, like a fraction, as well as 
conceptions of mathematics more generally, as well as how Timothy is positioned 
and positions himself in relation to mathematics—is of particular interest from a 
cross-setting perspective. And, from this perspective, it assumed that both under-
standings of content and of personhood—that is, how one is positioned and posi-
tions themselves—remain open to revision, at least to some degree.

The assumption that learning is never complete in an event, and is indeed open 
to revision and refinement, is at odds with an assumption that undergirds most 
accounts of transfer. Hohensee’s (2014) recent scholarship on backward transfer, or 
“the influence that constructing and subsequently generalizing new knowledge has 
on one’s ways of reasoning about related mathematical concepts that one has 
encountered previously” (p.  136), is a notable exception. In an earlier study of 
middle- grades students’ understanding of quadratic functions, Hohensee noticed 
unproductive shifts in some students’ understanding of linear functions. This 
prompted him to revise and teach a unit on quadratic functions in which he investi-
gated how to simultaneously support students’ deepening understandings of qua-
dratic functions and support productive shifts in students’ prior ways of reasoning 
about linear functions. On the basis of his work, he convincingly argued for the 
importance of considering both forward and backward transfer, both in accounting 
for and in designing for learning.
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From a cross-setting perspective on learning, Hohensee’s (2014) study illustrates 
well the tenet that learning is not complete in any one event. Students’ prior ways of 
reasoning about linear functions were revised in the context of making sense of 
quadratic functions, in both productive and unproductive ways. As such, his work 
suggests the value in investigating the potential for new events (what is often called 
the “transfer context”) to provide opportunities to deepen, question, or revise prior 
ways of reasoning, rather than as opportunities to confirm what are assumed to be 
prior ways of reasoning (based on what was demonstrated in a “learning context”). 
Further, as Hohensee’s (2014) study illustrates, there is value in transfer research in 
attending to understandings about mathematical ideas that are different from the 
focal target of instruction.

12.2.4  Tenet Four: Power Relations Matter in Understanding 
What Pursuits Are Possible Where, When, by Whom, 
and with Whom

A fourth tenet of ethnographic accounts of cross-setting learning is that it is crucial 
to attend to power relations in making sense of people’s participation within a set-
ting, as well as how a person’s participation in one setting bears on their participa-
tion in an alternative setting (Esmonde, 2017; Vossoughi & Gutiérrez, 2014). 
Moving across settings in pursuit of particular interests, ideas, and understandings 
can be empowering. As Penuel et al. (2016) wrote, “By moving across settings of 
social practice, people are able to pursue diverse concerns and become aware of new 
possibilities for action and arrangements for participation in practice (Dreier, 2008)” 
(p. 32). However, not all opportunities are equally available to all people at all times. 
Patterns of opportunity within a setting are often shaped by broader forces that oper-
ate to maintain particular power relations at the expense of groups or individuals 
(Martin, Anderson, & Shah, 2017). These patterns often become especially evident 
in studies of youth from communities that have been historically marginalized in 
and through educational systems (Bronkhurst & Akkerman, 2016).

The importance of attending to power relations was very apparent in making 
sense of Nikki’s and Timothy’s trajectories of participation with respect to school 
mathematics. As I indicated above, they were positioned in drastically different 
ways within the same fifth-grade math classroom. However, both were subject to an 
impoverished construction of mathematics, which I have suggested was coupled 
with deficit-oriented discourses of children of color from low-income backgrounds 
(Jackson, 2009).

And, even though Nikki in many ways was quickly positioned as a successful 
student in the classroom, she struggled at times within the classroom to maintain 
full participation given gendered relations. As I describe in detail elsewhere 
(Jackson, 2009), discourses regarding boys and girls in relation to mathematics 
shaped classroom interactions. There was a daily practice in the classroom called 
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“Math Royalty” in which students competed with one another to accurately com-
plete five problems as quickly as possible. The winner was publicly recognized as 
the Math Queen or King, and Ms. Ridley tracked the number of Queens versus 
Kings, with the intention of encouraging female students to be seen as equally as 
capable of doing well in math as their male peers. Nikki was consistently identified 
as a Queen, and male students increasingly refused to acknowledge her. At one 
point in February, she deliberately lost Math Royalty so as to avoid the gaze of her 
male peers. In many ways, she still maintained her positioning as a successful stu-
dent; however, what she learned and who she was positioned as were clearly shaped 
by political relations in the classroom.

As another example of the importance of attending to power, as illustrated above, 
the political relations between the home and Johnson Middle school clearly shaped 
Timothy’s opportunities to learn mathematics, and his evolving positioning. Ms. 
Ridley’s changing interpretation of Timothy’s participation in the math classroom 
was in relation to her interactions with his family, that were likely shaped by broader 
discourses regarding the role of parents—especially parents of color with minimal 
formal education—in children’s schooling.

Through each of these examples, it becomes clear that what happens in any one 
event is dependent on discourses, ideologies, and so forth that have developed 
across time, as well as on individuals’ histories of participation, and that these rela-
tions are political (Vossoughi & Gutiérrez, 2014). This tenet reflects a growing 
understanding of the significance of the sociopolitical in the field of mathematics 
education more broadly (Gutiérrez, 2013) and poses important questions for inter-
pretive studies of transfer. Relevant questions include: What role do political rela-
tions play in the extent to which transfer is observed? How might political relations 
explain variation in transfer, even within the same event, in the same setting? How 
might political relations that circulate outside of the focal event (e.g., within the 
school, between the school and community) shape the forms of participation and 
positioning that are observed?

Attending to the political relations seems especially important when working to 
iterate and improve upon prior instructional sequences that do not result in desired 
outcomes. Based on close study of Nikki’s and Timothy’s experiences, I conjecture 
that targeting content issues in an instructional sequence absent raising questions 
about the discourses that circulated in Johnson Middle School regarding what youth 
of color were capable of, mathematically, would have done little to alter enduring 
patterns—both relational and academic learning—in the classroom. What might it 
mean to design for transfer in which an explicit goal would be to interrupt enduring, 
problematic patterns about what it means to know mathematics and in relation to 
who is positioned as capable of engaging in academically rigorous mathematics? As 
an example, consider Engle et al.’s (2012) work on expansive framing. What would 
it look like to infuse attention to the sociopolitical into the expansive framing that 
teachers do to support students to view themselves as having the authority and moti-
vation to apply previous ways of reasoning in a new context? As another example, 
consider Nathan and Alibali’s (2021) argument in this volume for the importance of 
attending to the social relations between teachers and learners across events in an 
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embodied theory of transfer. They explicitly call for attention to how “dimensions 
of social relationships, such as warmth, respect, and power” may shape whether and 
how learners notice and respond to opportunities to bring to bear initial learnings in 
novel contexts (Nathan & Alibali, 2021, p. 54). What might it mean to consider 
those dimensions of relationships in both organizing for transfer (e.g., supporting 
teachers to design for cohesion) and in making sense of learners’ resulting 
experiences?

12.3  Conclusion

In this chapter, I identified four tenets of ethnographic accounts of cross-setting 
learning: (a) people’s participation varies in relation to the context; (b) people and 
settings change over time and in relation to one another; (c) learning is not complete 
in any one event; and (d) power relations matter in understanding what pursuits are 
possible, when, by whom, and with whom. Each of these, as I indicated above, may 
provide those engaged in interpretive accounts of transfer with questions or ideas 
worth considering, in service of both designing to support learning and in broaden-
ing how we explain when more desirable forms of learning happen and when 
they do not.

Of course, there are tensions in broadening what one attends to in the study of 
transfer. One potential tension regards the precision with which one can identify 
differences in students’ ways of reasoning with respect to targeted understandings. 
Clearly, attention to detailed differences in students’ ways of reasoning is a strength 
and foundation of interpretive accounts of transfer. Analysts may worry that increas-
ing attention to other aspects of context (e.g., ideologies regarding youth and math-
ematics) will result in decreasing attention to students’ ways of reasoning.

A second, related tension regards acting on what is learned from studies of trans-
fer that broaden their scope. Another strength of interpretive accounts of transfer is 
that they often inform tight instructional sequences that can then be trialed and 
investigated in new contexts. As one expands the scope of investigation, it is pre-
sumably more challenging to design a subsequent instructional sequence that takes 
into consideration, for example, broader discourses about mathematics and who is 
capable of engaging in mathematics alongside the development of core mathemati-
cal ideas. And, targeting discourses may be a longer-term activity, as compared to 
targeting students’ understanding of some content. Making principled decisions 
about what to target when, and how, in an instructional sequence is already difficult, 
intricate work; one can imagine the additional learning demands for instructional 
designers when choosing to broaden the scope of what to target in a sequence.

A third tension regards establishing standards of evidence to both guide and 
evaluate analyses that bring together a fine-grained analysis of students’ reasoning 
with a focus on, for example, political relations. Doing so would entail forging new 
methodologies. It would also require figuring out how to communicate the work to 
different audiences, which would presumably require some perseverance.
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More generally, both investigating extant learning and designing for subsequent 
learning would require prolonged collaborations between researchers with varied 
expertise. Such collaborations could enrich the ethnographic study of cross-setting 
learning just as it might enrich studies of transfer. Ethnographic accounts of cross- 
setting learning tend to foreground learning as “becoming”—that is, becoming a 
person who is socially recognizable as capable and competent in a specific set of 
practices, who identifies with and is judged by that evolving community to be a 
valued member. Interpretive accounts of transfer tend to foreground how a person 
develops (and can be supported to develop) sophisticated understandings of and 
ways of reasoning about core mathematical ideas. Working across these perspec-
tives could go some way to understanding how to design and implement instruction 
that supports people to pursue their interests and develop desired identities and deep 
understandings of meaningful ideas across the varied settings of their lives.
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Chapter 13
Transformative Experience: 
A Motivational Perspective on Transfer

Kevin J. Pugh, Cassendra M. Bergstrom, Colton Olson, and Dylan Kriescher

Transfer research has primarily focused on the capacity to transfer and, increas-
ingly, the social and cultural affordances of and constraints to transfer (e.g., Greeno, 
1997; Haskell, 2001; Nokes-Malach & Richey, 2015). Less research has addressed 
the motivation to transfer: that is, the choice to apply learning in a transfer context 
when such application is not required. A helpful model for considering the role of 
motivation in transfer is the detect–elect–connect model proposed by Perkins and 
Salomon (2012). According to this model, transfer involves detecting a potential 
application of prior knowledge, electing to pursue this application, and working out 
the appropriate connections. Motivation is inherent to this model and Perkins and 
Salomon (2012) argued that motivational aspects have received less attention in the 
transfer research. For example, considerable research explains the kind of cognitive 
structures needed to detect correspondences and work out the connections (e.g., Chi 
& VanLehn, 2012; Spiro, Collins, Thota, & Feltovich, 2003). Less research 
addresses the motives that may drive a transfer episode.

The issue of motivation becomes particularly important when we are concerned 
with transfer of learning from a school setting to everyday life. Such transfer is 
often implicit in our conceptions of the purpose of education. For example, Dewey 
(1938) advocated for an education in which students take the ideas they learn in 
school and use them to enrich their everyday lives outside of school. When we are 
concerned with transfer of learning to everyday experience, the detect phase requires 
more than a cognitive capacity to recognize a correspondence between prior knowl-
edge and a task that is set in front of the student by a teacher or researcher. It does 
require this, but, in many cases, it also requires a motivational desire to seek out a 
correspondence between school knowledge and life outside of school. Further, the 
elect phase is no longer driven by a need to meet the demands of the teacher or 
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researcher. It now needs to be driven by a more autonomous form of motivation: a 
personal choice to pursue a connection.

Consider a high school student who has recently finished studying ecology in 
science class. The ecology unit examined the relationships between organisms and 
their environments as well as organisms and their physical surroundings. Suppose a 
story comes up on the students’ Facebook newsfeed about the possibility of releas-
ing wolves into certain regions of Colorado. Lacking a motivation to transfer, the 
student may scroll past without thinking twice. But possessing a motivation to trans-
fer, the student will be primed to detect a connection to the ecology unit. Such 
motivation to transfer would further drive the student to elect to read the story, work 
out connections to the ecology unit, and fully engage in transfer of learning. When 
we neglect a motivational perspective on transfer, we run the risk of developing the 
capacity to transfer without the drive to transfer. Knowledge learned in such a way 
that it could be applied may still be inert because the student does not choose to 
apply it.

We believe our work on transformative experience (TE) theory uniquely posi-
tions us to contribute to a motivational perspective on transfer. TE theory seeks to 
define, understand, and foster experiences in which students use in-school learning 
to see and experience the world differently in their everyday lives outside of school 
and find value in doing so (Pugh, 2011). In this chapter, we clarify how this concep-
tion of experience relates to the detect–elect–connect framework and intersects with 
other transfer perspectives touching on motivation. Further, we draw on TE theory 
to identify principles related to fostering a motivation to transfer. We then consider 
the meaning and application of these principles in the domain of math education. 
Most of the work on TE theory has been in the domain of science education, so our 
extensions to math education are speculative and in anticipation of future research.

Before discussing TE theory and its relation to motivated transfer, we briefly 
define the conceptions of transfer and motivation we are drawing on. Conceptions 
of transfer are diverse, ranging from more traditional conceptions defining transfer 
as the successful application of knowledge or skill in novel or more complex situa-
tions, to alternative conceptions defining transfer as, for instance, preparation for 
future learning (Bransford & Schwartz, 1999) or the influence of participation in 
one activity setting on participation in another activity setting (Greeno, 1997). We 
adopt a traditional conception of transfer and, as illustrated in the ecology example 
above, we have a particular interest in the transfer of in-school learning to everyday 
experience. According to the taxonomy proposed by Barnett and Ceci (2002), such 
transfer represents far transfer in terms of the physical and functional context and, 
consequently, is difficult to achieve.

Motivation is also conceptualized in many diverse ways. We are particularly 
interested in autonomous forms of motivation: that is, purposeful and self-initiated 
forms of action (Ryan & Deci, 2017; Wentzel & Brophy, 2014). Although in-school 
to everyday-experience transfer situations may involve some form of extrinsic moti-
vation (e.g., an individual is motivated to apply basic math skills during a monetary 
exchange to avoid being cheated), we are especially concerned with situations lack-
ing a strong extrinsic component. The ecology example above represents such a 
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situation in that the student is not being rewarded, punished, or pressured to read the 
story and make connections to ecology. The motivation to transfer referenced in this 
example is autonomous motivation. Finally, our interest in motivation to transfer is 
more focused than the broader issue of the relation between motivation and transfer. 
There are many ways by which motivation patterns during learning can influence 
later transfer success (for a review, see Pugh & Bergin, 2006). For example, stu-
dents’ goal orientation while learning can influence their ability to transfer their 
learning to a new learning situation (Belenky & Nokes-Malach, 2012). However, 
we are interested in motivation driving the transfer process itself.

13.1  TE Theory and Motivated Transfer

TE theory begins with the construct of a transformative experience, which Pugh 
(2011) defined as “a learning episode in which a student acts on the subject matter 
by using it in everyday experience to more fully perceive some aspect of the world 
and finds meaning in doing so” (p.  111). As an example of a TE, Pugh (2004) 
described a middle school student (Ed) who applied Newton’s Laws many times in 
his everyday experience. For instance, Ed saw his niece slide across the kitchen 
floor and crash into a door. He applied his physics lens and concluded that his niece 
was a great example of an object in motion continuing in motion until being acted 
upon by another object. Through such application, Ed came to perceive the world 
differently. He commented, “I can look at, like, when two cars crash into each other, 
I can look at that in a different way, and when I watch a movie I can look at that in 
a different way. Now I’m going to see things that I’m used to seeing in a different 
way” (Pugh, 2004, p. 189). This expansion of perception was meaningful to Ed and 
it led him to value Newton’s Laws because they “made me think about stuff that I’m 
not used to thinking about in that way” (Pugh, 2004, p. 187). This conception of TE 
is derived from Dewey’s work on aesthetic experience and ideas. Below we give a 
brief summary of Dewey’s work and its connection to TE (for a more detailed expla-
nation, see Pugh, 2011). Then, we provide a more elaborated definition of TE and, 
finally, clarify the connection between TE and the detect-elect-connect model of 
transfer.

13.1.1  Dewey and TE

Much of Dewey’s (1934/1980) work on aesthetics revolves around the construct of 
“an” experience. Central to “an” experience is a transformation of our relationship 
with the world. Dewey believed authentic engagement in the arts epitomized such 
transformation as explained by Jackson (1998):
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Our interactions with art objects epitomize what it means to undergo an experience. . . . The 
arts . . . expand our horizons. They contribute meaning and value to future experience. They 
modify our ways of perceiving the world, thus leaving us and the world itself irrevocably 
changed. (p. 33)

“An” experience is transformative in that it involves an expansion of one’s percep-
tion of the world. Moreover, value and meaning are transformed as one comes to 
perceive successive layers. What once was taken for granted is now appreciated. 
Ultimately, one’s relationship with the world is transformed and the individual 
comes to be in the world differently.

Content ideas can have a similar transformative effect. Dewey (1933/1986) dis-
tinguished between concepts, which are established meanings, and ideas, which are 
possibilities. Building from Dewey, Prawat (e.g., 1996, 1998) argued that big ideas 
awaken anticipation and such anticipation leads individuals to act on the world in 
new ways (i.e., to try out the ideas). The worth of an idea is then determined by the 
difference it makes in everyday experience. Prawat (1998) explained,

Children, like adults, can get excited about big ideas. The anticipations or expectations that 
accompany the development of new ideas generate sufficient interest to carry individuals 
into the more effortful process of reflectively testing whether the idea has cash value. 
(p. 219)

Cash value refers to the significance the idea has in everyday experience (i.e., the 
degree to which it opens up new experiences). Thus, engaged learning is centered 
around a process of anticipation leading to action and a meaningful transformation 
of everyday experience.

Pugh and colleagues (Pugh, 2004, 2011; Wong et  al., 2001) have taken this 
meaning of engaged learning as a basis for defining TE. TE represents engagement 
with an idea resulting in the type of transformation of perception and value charac-
teristic of “an” experience.

13.1.2  Further Defining TE

Pugh (2002, 2011) further defined TE in terms of three characteristics: motivated 
use, expansion of perception, and experiential value. These characteristics represent 
an attempt to translate Dewey’s constructs of “an” experience and ideas (e.g., antici-
pated action, transformation of perception) into a researchable construct. These 
three characteristics all need to be present at some level for a TE to transpire.

Motivated use refers to applying school content in everyday life outside of the 
classroom when such application is not required. In the example presented earlier, 
Ed applied Newton’s Laws a number of times in his everyday life simply because it 
occurred to him to do so. Motivated use is intertwined with the aspect of non- 
constrained transfer (Pugh & Bergin, 2005). In addition, the construct is in line with 
conceptions of interest as a willingness to reengage (Hidi & Renninger, 2006; 
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Renninger & Su, 2012), particularly when such reengagement occurs in out-of- 
school settings (e.g., school-prompted interest; Bergin, 1992).

Expansion of perception refers to seeing the world through the lens of the con-
tent. Through this process, the student begins to re-see successively deeper layers of 
meaning (Girod, Rau, & Schepige, 2003). For example, Ed came to see events of 
motion (a car crash, a niece and door crash) in novel ways, ways he had not thought 
of before. The notion of expansion of perception overlaps with other cognitive per-
ceptual models (e.g., schema development, conceptual change, role of perception in 
transfer), but the unique difference is the role it plays for expanding and enriching 
future experiences.

Experiential value refers to valuing content for the way it expands perception 
and experience. When students use content to perceive deeper layers of meaning, 
they often develop greater interest in and appreciation for the world and the content 
itself. This notion is similar to Eisner’s (1991) contention that value and meaning 
grow as one becomes a connoisseur and is able to perceive successive layers of an 
object. For example, Ed developed greater interest in events of motion and increased 
appreciation for Newton’s Laws as he used them to perceive the world.

13.1.3  TE in Relation to the Detect-Elect-Connect Framework

The notion of transfer is implicit in the definition of TE, particularly as it relates to 
the detect and elect phases of transfer. In this section, we discuss the relation 
between TE and the detect-elect-connect framework. Further, we clarify the role of 
motivation in each phase.

TE and the detect phase To undergo a TE, students must first detect a connection 
between content learned in school and events, objects, or issues encountered in 
everyday life outside of school (i.e., motivated use). Such detection may be of either 
the high-road or low-road form of transfer (Salomon & Perkins, 1989). High-road 
transfer involves deliberate thought, reflection, and mindful application of knowl-
edge in new settings. Low-road transfer is more automatic. Many cases of TE 
involve deliberate, mindful application of learning (i.e., high-road transfer). For 
example, an elementary student learning about erosion commented, “At recess I 
look around on the blacktop for weeds and bugs and stuff that might be causing ero-
sion” (Girod, Twyman, & Wojcikiewicz, 2010, p. 818). This student was actively 
and consciously detecting opportunities to transfer her erosion knowledge. Other 
accounts of TE suggest detection can also be of the low-road form in the sense that 
seeing the world a particular way is an almost automatic, uncontrollable reaction. 
For example, in a study by Pugh, Bergstrom, Heddy, and Krob (2017), one middle 
school student talked about seeing the everyday weather she experienced in terms of 
science ideas as an almost unbidden process: “I can’t really get it out of my head. 
Like, I can’t help it, when I see something that involves weather, or the heat trans-
fer…It’s stuck in my head and I can’t get it out” (p. 387).
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In the context of TE, both high-road and low-road detection of a transfer oppor-
tunity are motivationally driven. The role of motivation is more obvious in the high- 
road example, but it is also pertinent to the low-road example and, in both cases, 
associated with anticipation. The construct of anticipation is central to TE theory. 
Anticipation is seen as the force that instigates action and moves an experience 
forward (Dewey, 1938, 1934/1980). Commenting on Dewey’s theory of aesthetic 
and educative experience, Wong (2007) explained,

Anticipation is what transforms an ordinary occurrence into an event saturated with signifi-
cance and moving forward with dramatic energy. Whether the learner is engaged in reading 
a story, watching a film, or conducting scientific inquiry, anticipation is what moves us to 
the edge of our seat so that we may see better and be better prepared for what we might see. 
(p. 208)

Thus, we propose that the student’s act of looking for erosion at recess was insti-
gated by anticipation developed in class. Such anticipation may have been along the 
lines of “Could I find erosion? Is it really happening here? What might I see?” This 
type of high-road, deliberate seeking out of opportunities to transfer may relate to 
Haskell’s (2001) idea of the spirit of transfer, or a tendency to seek out opportunities 
for deep learning and transfer. Haskell’s view of the spirit of transfer was more dis-
positional or trait based; however, it may be that some individuals utilize anticipa-
tion related to transfer differently than others.

We believe anticipation played a similar activating role for the student who said 
she couldn’t help but think about weather in terms of science ideas that were “stuck” 
in her head. However, this example requires further explanation. Many forms of 
low-road transfer are not driven by motivation. For example, virtually all of us apply 
formal units of time (e.g., minutes, hours, days) whenever we solve problems 
involving time. We don’t need to do so intentionally because these formal units have 
come to mediate our thinking of time (Vygotsky, 1978). Further, it is hard to see a 
role for anticipation in this example. Does anyone excitedly look forward to think-
ing about time in terms of formal units? Many other examples are similar such as 
the transfer of reading skills to read new texts or the application of basic math in 
routine situations. The example of the girl automatically thinking about science 
ideas when viewing weather events differs in two important ways. First, most of the 
other students in her class did not automatically perceive weather events in terms of 
science ideas even though they learned the same ideas. Thus, there was something 
unique about this student’s relationship with the content. Second, this student 
expressed a deep fascination and interest in the weather ideas she was learning 
(Pugh et al., 2017). We believe it likely this fascination created an anticipation that 
triggered her science thinking whenever she saw weather events. Thus, although the 
detection was described as more automatic by the student, it was still anticipated 
and potentially triggered by that anticipation.

TE and the elect phase To undergo TEs, students must also elect to pursue the 
connection detected. Expansion of perception requires a sustained effort to see the 
world differently. If the students in the examples above ceased their engagement 
upon detecting a transfer opportunity, then their experience would be forestalled at 
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mere recognition. Perception requires “an act of reconstructive doing” (Dewey, 
1934/1980, p. 53): that is, an active re-seeing of a familiar object, event, or issue. 
This perspective parallels Engle’s (2006) emphasis on the role of agency in transfer: 
“Transfer involves not just knowing but doing, and that doing inherently involves an 
exercise of human agency. Thus, if transfer is going to happen, I argue, it is neces-
sary that learners choose to use what they have learned” (p. 455). This act of agency 
denotes a clear role of motivation and seems to apply to both the detect and elect 
phases. In the elect phase, it is choosing to follow through on an application oppor-
tunity once it has been detected. Research from the workplace literature shows that 
motivation to transfer (i.e., desire to use knowledge and skills acquired through 
training) influences actual application of training (Holton, 1996; Noe & Schmitt, 
1986). For example, Axtell, Maitlis, and Yearta (1997) found motivation to transfer 
to be a significant predictor of transfer of interpersonal skills a full year after train-
ing, even when controlling for other important predictors such as self-efficacy, per-
ceived autonomy, management support, and transfer success at 1 month.

Within the context of TE, motivation to transfer and agency take the form of a 
desire and choice to apply learning in everyday experience. After a detection is 
made, it is choosing to deliberately use content as a lens to see and understand the 
world in new ways. What is it that propels an individual to carry through such an 
expansion of perception? Again, we propose that anticipation plays a central role. 
Not only is anticipation an instigator of actions, but it is the force that carries an 
experience through to completion (Dewey, 1934/1980; Wong, 2007).

Thus, the constructs of detect and elect are inherent to the meaning of TE and 
anticipation is proposed as a driver in the transfer process. However, further research 
is needed on the role of anticipation within TE. Overall, this motivational approach 
to understanding the detect and elect phases of transfer would be a nice compliment 
to emerging research on how social factors influence these phases by establishing 
norms about appropriate contexts for application (e.g. Engle, 2006; Lobato, 2012; 
Pea, 1987).

TE and the connect phase Motivation to transfer plays a less salient role in the 
connect phase of transfer. Consequently, the construct of TE yields less insight into 
this phase of transfer. Nevertheless, there are motivation issues worth discussing, 
particularly with respect to how motivation during the initial learning phase can 
influence students’ abilities to cognitively work out the connections in the con-
nect phase.

During the learning phase, motivation can manifest as a focus on learning with 
the intent to transfer what is learned. Sternberg and Frensch (1993) referred to this 
learning orientation as a mental set for transfer. Such intent can influence the way 
that individuals study and process information, which in turn influences their trans-
fer success. For example, a student may learn statistics with the intent to apply it to 
his involvement in a fantasy football league. This intent likely influences his learn-
ing of statistics and success at being able to apply it in contexts outside the class-
room. Intentionality in this phase denotes a motivational approach to learning in that 
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it is purposeful and goal driven. Students who undergo TEs may be more likely to 
adopt a mental set for transfer. That is, the orientation toward making learning trans-
formative may be initiated in the original learning phase. Students may anticipate 
applying learning in everyday experience and engage learning strategies that help 
them learn content at the level of application.

Undergoing TEs may also support future connect phase efforts through the 
development of flexible knowledge structures. That is, students who undergo TEs, 
by definition, practice the application of learning in everyday contexts and such 
application in multiple contexts is key to developing the type of flexible knowledge 
structures needed for transfer (e.g., Haskell, 2001; Spiro et al., 2003). Indeed, exist-
ing research confirms that students who undergo TEs perform better on traditional 
transfer tasks, which target students’ ability to work out connections (Pugh, 
Linnenbrink-Garcia, Koskey, Stewart, & Manzey, 2010a, 2010b). However, more 
research is needed to understand the relationship between TEs with particular con-
tent and skill in working out connections when transferring such content.

13.2  Teaching for TE

In past research, we found that science learning is not transformative for most stu-
dents (e.g., Pugh et al., 2010a). Consequently, we and our colleagues have focused 
on identifying and developing instructional strategies effective at fostering TEs, 
resulting in the Teaching for Transformative Experiences in Science (TTES) instruc-
tional model (Girod et  al., 2003, 2010; Heddy & Sinatra, 2013; Pugh, 2002; 
2020; Pugh et al., 2010b; Pugh & Girod, 2007). Pugh et al. (2017) observed that 
sixth-grade earth science students receiving TTES instruction reported a higher 
degree of TE on a survey measure and in interviews than students receiving a com-
bination of direct instruction, discussion-based, and activity-based science instruc-
tion. The TTES model yields insight into how motivation to transfer may be fostered 
via TEs. In this section, we describe three key strategies of the TTES model and 
consider how they may be adapted to math education. These three strategies include 
(a) framing content as ideas, (b) modeling TE, and (c) scaffolding re-seeing.

13.2.1  Framing the Content as Ideas

Framing has been identified as a method for establishing particular student orienta-
tions toward learning (Engle, Nguyen, & Mendelson, 2011; van de Sande & Greeno, 
2010; Watanabe, 1993). Such framing is typically accomplished through meta- 
communicative signals about context, learning purpose, participation norms, and so 
on (Engle et al., 2011). In the TTES model, framing is used to establish a perspec-
tive of learning as engagement with ideas, in the Deweyan (1933/1986) sense of the 
term: that is, framing the content as possibilities that need to be acted upon and tried 
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out in everyday experience. Central to such framing is an emphasis on creating idea- 
based anticipation, which is anticipation in connection to a content idea. As 
explained previously, anticipation is what differentiates an idea from a concept and 
is the driving force in a TE. Hence, fostering idea-based anticipation is a focus of 
the TTES model. There are various ways in which such anticipation may be fos-
tered. One approach is to artistically craft topic introductions (Pugh, 2002; 2020; 
Pugh et al., 2017). Just as a novelist may craft text to create anticipation, so the 
teacher may craft activities or dialogue to create anticipation about the potential of 
the ideas to add value to one’s experiencing of the world. Walter Lewin, a legendary 
physics teacher at the Massachusetts Institute of Technology, fostered anticipation 
in connection with physics ideas by saying things like,

All of you have looked at rainbows, but very few of you have ever seen one. Seeing is dif-
ferent than looking. Today we are going to see a rainbow. Your life will never be the same. 
Because of your knowledge, you will be able to see way more than just the beauty of the 
bows that everyone else can see. (Rimer, 2007, p. 2)

Such framing creates anticipation about learning the content and then acting on it 
(e.g., “What am I going to learn and how is this learning going to change my life? 
Will I really see rainbows differently? How will I see way more beauty than every-
one else?”).

A related approach to framing concepts as ideas is to emphasize the experiential 
value of the content: that is, discuss and highlight the value the content has in every-
day experience. Many times, students don’t develop anticipation about acting on 
content because they don’t appreciate the value of doing so. Thus, teachers can sup-
port TEs by helping students perceive the value that comes from applying particular 
content in everyday experience. For example, a middle school teacher shared an 
experience of being in a tornado and talked to students about how fascinating it is to 
be able to understand weather from a science perspective. He gave examples of see-
ing weather events from a science perspective and added, “That’s what’s going to be 
so cool, is that we’re going to be able to do that” (Pugh et al., 2017, p. 642).

Metaphors can also be used to frame content as ideas and foster idea-based antic-
ipation. Metaphors denote possible relationships between something unknown (i.e., 
the content to be learned) and something known (i.e., something from prior experi-
ence). Compelling metaphors do this in a way that generates anticipation about the 
unknown thing (Pugh & Girod, 2007). For example, as reported by Girod and Wong 
(2002), a teacher used the metaphor “Every rock is a story waiting to be read” as a 
way of presenting geology content to fourth graders as an idea that generated antici-
pation and action. The simple metaphor transforms geology from a set of estab-
lished concepts that need to be learned to an idea, a possibility: “Really? Rocks have 
stories? I can learn to read the story of a rock? What if…?”

This approach to framing content aligns with Engle’s (2006) work on expansive 
framing. According to Engle (2006), learning environments differ greatly in the 
degree to which they encourage students to learn with the goal of using what they 
are learning. The degree to which future application is conveyed in the classroom 
then plays a significant role in how likely students are to learn in preparation for 
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transfer. Engle and colleagues (Engle, 2006; Engle, Lam, Meyer, & Nix, 2012) 
found that framing learning broadly in terms of contexts of application, instead of 
narrowly (e.g., “This is important to know for the test”), supported transfer through 
the establishment of intercontextuality, or the linking of one context to one another. 
Intercontextuality facilitates transfer because new information is viewed as relevant 
to both the learning and the transfer contexts. Further, expansive framing establishes 
norms for where and when application of particular content is appropriate. Such 
norms encourage students to detect application opportunities and elect to pursue 
such application. Framing content as ideas (in the Deweyan sense of the term) is one 
particular approach to expansive framing that emphasizes not only establishing 
intercontextuality but motivating actions through the generation of anticipation.

Application to math education It may be fair to say that many students are 
inclined to learn math concepts instead of engage with math ideas. That is, they gain 
mathematical understanding but not the anticipation that leads them to actively try 
out such understanding in everyday experience. For instance, a student may learn 
how to construct an algebraic equation but not see this as an exciting way of making 
sense of and acting upon the world. Hence, the student is not motivated to seek out 
transfer opportunities in everyday life. Deliberately focusing on creating anticipa-
tion through artistically crafted introductions, experiential value statements, and 
metaphors may help math students engage with the content as ideas. What might 
this look like?

“You already have two strikes against you: Your name and your complexion. 
Because of these two strikes, there are some people in this world who will assume 
that you know less than you do. Math is the great equalizer.” This quote is spoken 
by a math teacher in the movie Stand and Deliver to his Latinx students. Such a 
statement creates anticipation and emphasizes the potential of math to empower 
students and enrich their experience. It represents an artistic crafting of content. 
Using statements like this, teachers can frame the purpose of math as personal 
empowerment.

However, framing is needed at a more content-specific and immediate level too. 
That is, math content needs to be framed as ideas that have the potential to enrich 
students’ current everyday experience. This may seem problematic given that math 
content is generally perceived as established meanings (i.e., concepts) as opposed to 
possibilities (i.e., ideas). However, the teacher can present math principles as pos-
sible ways of seeing and making sense of the world—possibilities that need to be 
tried and judged by the students themselves. For example, an elementary teacher 
may tell students that the world is made of shapes and learning to recognize shapes 
and understand their properties will give them a glimpse into the secret structure of 
the world. A secondary teacher introducing how to graph relationships may tell 
students,

The ability to graph relationships is a window into a whole new world. Everything in our 
world exists in relation to something else. These relationships are what define our world. 
We all understand these relationships to some degree. But math, math allows us to visualize 
and understand these relationships concretely. If you are willing to “do the math,” you will 
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see and understand things that no one else sees and understands. You can actually do this 
and I will give you the tools.

These are just a few examples. The key is that teachers frame math content in ways 
which create anticipation about acting on the content in everyday experience. We 
fear that math learning is often non-transformative because, for the most part, none 
of us bother to “do the math.” Perhaps if we saw value in doing so, if we saw how 
math can make the world a far more interesting and profound place, if we antici-
pated this enrichment, we would be more willing to do so.

13.2.2  Modeling TE

Modeling is an important strategy for developing cognitive skills and establishing 
particular values and norms within a community of practice (e.g., Akerson, Cullen, 
& Hanson, 2009; Brophy, 2008; Palincsar & Brown, 1984). Within the TTES model, 
modeling is used to help students acquire such skills as re-seeing everyday objects 
through the lens of science content. It is also used to convey the value of the content 
and establish norms for engaging with the content in everyday experience. 
Enthusiastic modeling can also foster idea-based anticipation.

Modeling is done by sharing personal experiences, expressing a passion for the 
content, and generally showing students what it means to live the content (Pugh, 
2020; Pugh & Girod, 2007). For example, a high school biology teacher modeled 
his proclivity to see the world through the lens of science by displaying a bag of 
potatoes. The teacher explained that he saw this bag at the grocery store and noticed 
the potatoes were named after a man who did work on natural selection. He com-
mented, “Science is everywhere and now the grocery store is haunting me” (Pugh 
et al., 2010b, p. 289). This teacher shared other examples of thinking about natural 
selection in everyday life, such as reading a newspaper article about bacteria devel-
oping resistance to drugs through natural selection and analyzing the survival char-
acteristics of animals in a series of Mountain Dew “Be Nocturnal” commercials. He 
shared these examples energetically and added, “I’m pumped up about it; so was 
Darwin” (Pugh et al., 2010b, p. 290).

Application to math education Just like science teachers, math teachers can 
model their own TEs with the content. That is, they can share their examples of 
using math to re-see and find new meaning in aspects of their everyday experience. 
Inspiration can be drawn from popular books. For example, in the Freakonomics 
series (e.g., Levitt & Dubner, 2009), Steven Levitt showed what it is like to see 
everything from cheating by schoolteachers to the relative dangers of drunk driving 
versus drunk walking through the lens of math and economics. Likewise, Jordan 
Ellenberg (2015) illustrated how he sees everything from obesity in America to hid-
den messages in sacred texts through a mathematical lens. Both of these individuals 
model what it means to truly live and breathe math.
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We do not expect teachers to be Levitt or Ellenberg, but they can make a con-
scious effort to see the world through a math lens and share these experiences with 
their students. For example, a statistics teacher known to one of the authors used 
data from a climbing gym app to draw interesting conclusions about variability in 
route grades1 at her local gym and probabilities for levels of discrepancy between 
original route-setter grades and consensus-climber grades. She shared this with her 
class as an example of how statistics brings a deeper understanding to everything 
and can sooth your ego when you are struggling on a moderately graded route. 
Likewise, a high school math teacher known to one of the authors shared with his 
students how he sees real estate through the lens of math. He took an in-depth look 
at the real estate market in different states across the United States, used math to 
determine which ones could yield the best returns with the least amount of capital, 
and made investments that provided a relatively quick return on investment. This 
teacher modeled the power of math to make something more interesting and bring 
about positive outcomes.

Modeling allows students to see firsthand what it means to perceive the world 
through the lens of math. In doing so, it can help set a norm that math is worth doing 
just for the fun of it. When students see the value that others get out of applying a 
mathematical lens to the world, they may be more likely to do so themselves.

13.2.3  Scaffolding Re-seeing

Even when students develop anticipation and want to seek out opportunities to 
apply content in everyday experience, they still need support in doing so. One prob-
lem is that students simply aren’t aware of the many opportunities they have to 
apply content in everyday life. Thus, teachers can support students’ TEs by helping 
them identify re-seeing opportunities (i.e., opportunities to see objects, events, or 
issues through the lens of curricular content) (Pugh, 2020). For example, a middle 
school teacher fostered TE by, in part, helping his students identify opportunities to 
re-see the world through the lens of air pressure (Pugh et al., 2017). He first demon-
strated how everyday food packages (bag of chip, yogurt cup) are puffed up at high 
altitude due to air pressure (the school is around 5000 feet in elevation). Then he led 
the students in a discussion of other objects and events that could be re-seen. 
Together they identified a range of re-seeing opportunities including wind blowing 
through the doors of the school, ears popping when driving down from the moun-
tains, and burping. The teacher encouraged the students to look for examples of air 
pressure in their everyday lives and later gave them opportunities to share their re- 
seeing experiences.

In addition to identifying re-seeing opportunities, teachers can scaffold re-seeing 
by helping students do the cognitive work of perceiving the world through the lens 

1 Climbing routes are given a grade indicative of how hard the route is (e.g., 5.11a).
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of content at a deep level (Pugh, 2020). For example, when the teacher in the prior 
example allowed his students to share examples of re-seeing the world in terms of 
air pressure, the students often made surface-level connections (Pugh et al., 2017). 
To support deep re-seeing, the teacher and researchers developed case studies out of 
the experiences shared. The students then studied their own experiences under the 
support of the teacher and in collaboration with a set of resources. They referenced 
this approach as experientially anchored instruction because the instruction was 
anchored in the students’ own everyday experience. Students who engaged in expe-
rientially anchored instruction displayed deeper learning and a higher degree of TE 
than students who engaged in similar inquiry experience with weather case studies 
from a workbook.

Application to math education Despite the fact that math is everywhere, students 
need help identifying opportunities for re-seeing the world through the lens of par-
ticular math ideas. Teachers can help their students identify meaningful aspects of 
their (the students’) world that can be re-seen. For example, many students are into 
social media. Although many people see social media platforms such as Facebook, 
Instagram, and Twitter as distractions for students, it is possible for teachers to use 
these platforms to explain mathematical concepts in terms to which students can 
relate. In 2018, Instagram changed the way posts are viewed so that the chances of 
receiving a high number of likes or even views decreased. The new algorithm uses 
“engagement” to decide which posts will be seen the most. This means posts with 
the most views, saves, comments, shares, and likes will be seen by more people than 
posts that receive less engagement. Although this may seem irrelevant to most, this 
algorithm change presents a unique opportunity to show students how mathematics 
can be used to enhance their social media presence. Providing students with exam-
ples relevant to their lives is a great way to help them re-see the concepts they are 
being taught. If students are shown that what they learn about in math class exists in 
something as prevalent as social media, it is likely they will re-see these concepts 
daily as they use their own social media accounts as well as become more motivated 
to seek out other areas where similar concepts may apply.

In a study reported by Kaplan, Sinai, and Flum (2014), an eighth-grade math 
teacher helped students identify aspects of their everyday lives that could be re-seen 
through the lens of “functions.” An example included extracurricular activity time 
as a function of required homework time. Students were encouraged to identify 
functions in their lives, graph them, and post them in the classroom for other stu-
dents to see. Students then reflected on their experiences with functions in writing 
journals as part of an identity exploration activity. For some students, these activi-
ties were transformative. For example, one student explained that these activities 
not only helped her transfer math to her everyday experience, they also helped her 
understand the math:

I didn’t really understand this topic well and what are those X and Y axes, and I even got 
annoyed. But then, I sat by myself and started thinking about functions that connect to me, 
and then “the coin dropped”; I suddenly understood what these functions are…in one 
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 second I succeeded to understand this material in math, and it was amazing. (Kaplan et al., 
2014, p. 274)

Asking students to document objects in their everyday environment that relate to 
math might also encourage re-seeing opportunities. In a study by Meier, Hannula, 
and Toivanen (2018), in-service teachers were asked to use photography to capture 
objects that could be used to teach math. Examples of objects and the mathematical 
concepts they connected to included car tires (representing geometry, perspective, 
symmetry), windows (representing patterns, symmetry, geometric shapes, calcula-
tion of area and volume), and a football or soccer pitch (representing geometry, 
calculating volume, calculation of percentages, statistics). Using the lens of photog-
raphy allowed the participants to re-see everyday objects through their understand-
ing of math.

Teachers can also employ experientially anchored instruction to scaffold re- 
seeing. A good example can be found in culturally relevant pedagogy approaches to 
math instruction. For example, Tate (1995) reported on a middle school mathemat-
ics teacher who shifted the curriculum to focus on solving community issues con-
nected to students’ everyday experience. The students decided that drugs, alcohol, 
and violent crime were all major issues in the community, and many students had 
experienced these problems firsthand. The students determined that one of the main 
catalysts for these problems was the number of liquor stores near the school. They 
used math to figure out how they could close or move liquor stores close to the 
school. For example, they developed a revised city tax system using mathematical 
principles discussed in class to counter the current system which gave tax incentives 
to liquor stores within a certain distance of the school. They also used geometric 
concepts to measure the distances of the liquor stores from the school and identified 
stores in violation of city code. The students presented their findings to the city 
council and helped pass new laws. Although not confirmed in this study, we believe 
such experiences of anchoring math learning in students’ current experience will 
encourage students to continue to transfer math to their everyday experience as 
found in our studies in the domain of science education (e.g., Pugh et al., 2017).

13.3  Conclusion

Transfer of learning research has primarily addressed the question, “What are the 
factors influencing whether students can apply their learning to novel problems and 
in novel contexts, including real-world contexts?” Less research has addressed the 
question, “What are the factors influencing whether students choose to apply their 
learning to novel problems and in novel contexts?” The former question is sufficient 
for many transfer situations involving math. However, if we are interested in math 
education enriching students’ experience of the world beyond necessary practical 
applications, then the second question becomes important; that is, motivation to 
transfer arises as a critical consideration. We believe TE theory brings insight to the 
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issue of motivation to transfer and pedagogical methods effective at fostering moti-
vation to transfer. In this chapter, we discussed the connection between TE theory 
and motivation to transfer. We contextualized this discussion in terms of the detect- 
elect- connect transfer framework proposed by Perkins and Salomon (2012). 
Because TE theory has been developed primarily in the domain of science educa-
tion, the implications for math education proposed in this chapter are speculative. 
Future research is needed exploring the meaning of TE in math and assessing the 
effectiveness of the teaching for TE strategies in the domain of math education.
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Chapter 14
Transfer, Learning, and Innovation: 
Perspectives Informed by Occupational 
Practices

Stephen Billett

The process of thinking and acting, often referred to as transfer in the educational 
literature, has long been positioned as a key issue for educational programs and 
methods and modes of instruction (Prawat, 1989; Raizen, 1991); that is, it needs to 
be addressed educationally. Yet, researchers have long emphasized that, ultimately, 
it is a problem best understood through considerations of individuals’ knowledge, 
its utilization, and further development (Pea, 1987; Prawat, 1989; Royer, 1979). The 
aim in this paper is to position what is referred to as transfer as being shaped by and 
central to both individuals’ learning and development (i.e., change in what individu-
als know, can do, and value) and societal progress (i.e., changes to societal prac-
tices, norms, and forms) as others have done (Lobato, 2012; Volet, 2013). What is 
commonly labelled transfer is not qualitatively distinct from what is referred to as 
learning, adaptation, problem-solving, and being innovative (Billett, 2013). 
However, none of these processes of thinking and acting can be understood without 
accounting for the actual or imagined circumstances in which the person act and the 
relations between them (i.e., sociopersonal). So, more than transfer being under-
stood through the activities and interactions—including those intending to promote 
it—afforded by physical and social settings (e.g., schools), it is fundamentally a 
process premised on and mediated by individuals’ thinking and acting, which is, by 
degree, person dependent. These premises and their consequences are discussed 
here in relation to adapting what has been learned from one physical, social, or 
imagined circumstance (e.g., educational setting) to others (e.g., workplaces) and in 
ways not fully accommodated in the educational, cognitive, or sociocultural litera-
tures. These premises draw on two related lines of development: personal and social. 
Here, these lines are illustrated by accounts of individuals engaging in and adapting 
their occupational knowledge when engaging in their paid work. During that 
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engagement and when facing problems or novel requirements or requests, workers 
engage in the process labelled as transfer. That is, they adapt what they know, can 
do, and value to the workplace tasks they confront. However, this process of adapta-
tion is personally mediated in ways not fully accommodated by explanations privi-
leging either mechanistic cognitive processes or universalist social suggestions. 
Instead, individuals’ thinking and acting (i.e., experiencing) is shaped by socioper-
sonal factors that include brute facts (e.g., maturation) and social suggestions, albeit 
mediated by what individuals know, can do, and value. Occupations are social prac-
tices manifested situationally and culturally, and they continually evolve to meet 
changing social and cultural needs. Adults’ occupations are often central to who 
they are and how they exercise their sense of self. Hence, they provide a context for 
understanding how these processes of thinking and acting play out in terms of per-
sonal (i.e., learning) and societal continuity (i.e., occupational change), with the 
mediation of individuals being a central quality.

Through this discussion, the aim here is to position and explain transfer as being 
premised on interdependencies between personal and situational factors. These 
interdependencies comprise those among persons’ personal epistemologies (i.e., 
what they know, can do, and value; Billett, 2009) and the social and physical envi-
ronments in which they act. Hence, both the mediation of the social suggestions and 
individuals’ epistemologies are central to this explanatory account. Importantly, 
rather than being an educational problem, what is referred to as transfer needs to be 
responded to as an issue for individuals’ learning and development.

The aim here is also  to elaborate these processes so that they can be under-
stood—not as an educational phenomenon or problem but in a way far more broadly 
cast. Earlier, Royer (1979) advised against taking such a perspective (e.g., transfer 
as a form of general behavior), stating that the body of theory was too nascent. Now, 
40 years on, it is perhaps timely to take up this challenge.

14.1  Transfer as a Problem for Education

Transfer of what is learned in and through educational institutions and educators is 
a central concern for them given that it is crucial to their purposes and continuity. 
The key role of these hybrid institutions and those who teach in them is to assist 
students to learn knowledge that can be utilized elsewhere beyond the circumstances 
of their learning (e.g., “schools”). Hence, concerns about a lack of transfer from 
educational programs is a crucial problem for these institutions and educators 
because it questions their worth, purpose, and continuity. From the educational per-
spective—its institutions, provisions, and teachers—developing transferable out-
comes is fundamental to their central purpose and rationale. Securing learning 
outcomes whose applicability is not restricted to the circumstances of their acquisi-
tion (i.e., school-like activities) but extends to social settings and circumstances 
beyond where they were learned is important. Such adaptable outcomes are taken to 
be educative rather than reproductive. The enduring criticism is, however, that the 
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learning acquired through “schooling” often fails to be adaptable to other circum-
stances (Raizen, 1991). Those concerns are levelled at school-learned knowledge, 
such as mathematics, that would seem to be inherently transferable or adaptable to 
a range of circumstances as well as at domain-specific procedures, such as those 
generated in vocational and professional education. This criticism raises unhelpful 
questions about the worth and privileged status of education and teaching.

The salience of this criticism is that it confounds expectations associated with the 
massive societal investment in education, education institutions, and those who 
teach in them. Clearly, there are very many adaptable learning outcomes arising for 
students from experiences in educational institutions and through teaching. This is 
evident in measures of literacy and numeracy that distinguish countries with effec-
tive schooling and tertiary education systems. Such outcomes are often overlooked 
in criticisms of the efficacy of educational provisions, particularly when such 
achievement is measured in terms of international comparisons (e.g., Programme 
for International Student Assessment [PISA] or Programme of International 
Assessment of Adult Competence [PIAAC]). However, expectations that what is 
being taught and learnt in educational institutions can be comprehensively and con-
fidently adaptable to other circumstances and nonschool-like tasks are unreasonable 
and unrealistic. Not the least here is that these institutions and their activities are 
often quite hybrid and abstracted from the activities and social settings where what 
has been learned will need to be applied (Brown, Collins, & Duguid, 1989). 
Understanding how situational factors (i.e., social and physical) influence what is 
being learned is shaped by the kinds of activities and interactions we engage in 
because they are held to structure cognition (Rogoff & Lave, 1984) and this compli-
cates the process of transferring or adapting that knowledge elsewhere. Hence, 
activities and interactions provided by and privileging the goals of educational insti-
tutions may generate legacies (i.e., students’ learning) that are not directly applica-
ble to situations that have other kinds of goals and processes. Consequently, 
expectations about wholesale adaptability of what has been learned to other social 
and physical circumstances need to be restrained (Pea, 1987).

Concerns about the limits of adapting what has been learned in and through edu-
cational programs are not restricted to what occurs in school classrooms and school-
ing for young people or in disciplines such as mathematics (Schwartz, Bransford, & 
Sears, 2005). There is also a concern to understand about how transferable or adapt-
able learning might arise for young people’s engagement in activities outside of 
schooling and also for adults’ learning and development across the lifespan, includ-
ing for their work life (Gruber & Harteis, 2018). An analysis through PIAAC of 
adults’ learning across working life in all kinds of occupations indicates the need to 
adapt to changing circumstances and to apply what workers know, can do, and value 
to changing workplace and occupational requirements. However, much if not most 
of this kind of learning occurs outside of educational provisions and even outside 
the close guidance of more expert or experienced workers (Organisation for 
Economic Co-operation and Development [OECD], 2013). So, there are good rea-
sons and important educational imperatives to elaborate how the process referred to 
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as transfer arises and can be promoted for educative purposes more broadly beyond 
schooling.

Indeed, viewing transfer as an artefact within educational processes and out-
comes restricts understandings about what it comprises and how the “problem of 
transfer” might be addressed. If conceptions of, and responses to, transfer are lim-
ited to the educational provision and what occurs in educational institutions, then 
the important considerations of individuals’ contributions and their learning and 
development may be overlooked. As is now understood, whether referring to core or 
generic competences (Green, 1998), problem-solving strategies (Voss, Tyler, & 
Yengo, 1983) or the adaptation of what individuals know, can do, and value from 
one setting to another (Ericsson & Lehmann, 1996), there is a need to account for 
both situational and personal factors. For instance, the efficacy of procedures that 
appear to be widely applicable, such as mathematical calculations, has long been 
understood as being shaped by situational factors (Bishop, 1991; Carraher, Carraher, 
& Schliemann, 1985; Lave, 1988), as are occupational-specific capacities (Billett, 
2001b). So, more than a concern about what happens in educational institutions, 
more broadly, considerations of the circumstance in which what has been learned is 
to be applied needs to be accommodated. Thus, situational factors play a role here. 
However, beyond these factors are those brought by individuals. For instance, it was 
found that, when asked to respond to the same set of nonroutine problems, hair-
dressers in five different hairdressing salons responded in ways that reflected the 
practices of those settings, but their responses (i.e., solutions) also emphasized 
person- dependent preferences in their construction of goals and preferred hairdress-
ing procedures (Billett, 2003).

It follows that the process that is the focus of this book—transfer—is held as a 
significant problem for the educational project (i.e. the provision of organised expe-
riences to achieve particular societal purposes as usually exercised through educa-
tion practices and institutions). However, to understand this problem and how it 
might be addressed requires an explanation of what it constitutes. Following others 
(Lobato, 2012; Volet, 2013), it is proposed that transfer cannot be understood with-
out accounting for (a) the individuals’ personal epistemologies, (b) situational 
requirements and factors, and (c) the relations and interdependence among them 
(Billett, 2013). These premises and their consequences are illuminated and dis-
cussed here in relation to the social and cultural practices of paid work—occupa-
tions—and their enactment in work settings. This case is advanced, overall, by 
elaborating consonances across processes referred to as learning, problem solving, 
adaptability, and innovation. This is achieved by conflating a set of concepts that 
speak to the issues associated with what is referred to as transfer. In elaborating 
what constitutes these processes, consideration is given to situational factors and 
personal mediation. Finally, some bases for elaborating factors that shape and influ-
ence what is referred to as transfer are discussed.
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14.2  Conflating Transfer with Cognate Concepts 
and Processes

As foreshadowed, what is referred to as transfer is not a specific and hybrid process. 
Instead, concepts labelled problem solving, adaptability, innovation, and learning 
are all cognate processes that have both social and individual dimensions and lines 
of development: a sociopersonal process (Billett, 2013). However, to understand 
changes in both cognition and culture necessarily involves duality between the 
activities and interactions that constitute a social practice and its suggestions, on the 
one hand, and how individuals come to engage with those suggestions, on the 
other—that is, accounting for individuals’ cognitive experience (Valsiner, 2000; i.e., 
their capacities and ways of knowing the world) and what is afforded them by social 
institutions and practices. Hence, it is not only schooling activities per se that are 
key factors in the prospects for the transfer of knowledge to circumstances outside 
of them: Situations and individuals mediate those prospects. That mediation is pre-
mised, on the one hand, on how the circumstances of learning are generative of the 
capacities to adapt to other circumstances and, on the other hand, personal factors 
associated with the construction and organization of individuals’ knowledge (i.e., 
their personal epistemologies), which include their intentionalities, interests, and 
the direction and focus of the deployment of their knowledge.

The process referred to as transfer, albeit advanced and championed under a 
range of labels, is a central and common basis for both individuals’ learning and 
development and societal progress. It is, therefore, more than an artefact of educa-
tion as it is often portrayed. For instance, although he opens the prospect for it to be 
cast far more broadly, Royer (1979), in his seminal paper, noted that transfer is com-
monly seen as the extent to which learning of an instructional event contributes to 
or detracts from subsequent problem solving or the learning of subsequent instruc-
tional events. Likely, such a definition focused on instructional events is quite com-
monly accepted. Yet, in doing so, this definition positions transfer as being a product 
of, and to be judged in terms of, educational experiences (i.e., instructional events). 
However, it is more than that, being fundamental to individual learning and societal 
development.

The point here is that considerations of transfer or adaptability about their effi-
cacy need to be aligned with the kinds of problems, goals, and imperatives that arise 
in specific physical and social settings and through the interdependency with the 
person who is acting in them. Take the following three vignettes that are drawn from 
studies of learning in and through work.

The client returned to the hairdressing salon in tears. She had left several hours earlier after 
a transformational haircut that turned her long dark hair into a short, sharp and a peroxided 
blonde style. Her boyfriend had not appreciated the change. He said, she looked like a 
“bikie’s moll.” Peter, her hairdresser, had to respond to his visibly distressed client while 
also completing the work on his current client. Having spoken to the distressed client, and 
getting her a warm drink, he discreetly told his apprentice to reschedule his next appoint-
ment. Over the next few hours, he softened the hairstyle and re-introduced some color into 
the haircut, being careful to avoid complications arising from coloring hair that had been 
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recently treated with chemicals. He also gave the client a lot of attention and affirmation 
and by the end of the afternoon, she was smiling, and they both agreed that her boyfriend 
was a “dick head.”

Chan is an engineer who works in a precision engineering company that produces items 
used for surgical work and implants. He was working on an instrument that provided visual 
examinations of manufactured components to ensure they met specifications of size and 
finish. The existing optical instrument, produced by a German company, was very expen-
sive and not wholly suited to this task. He was comparing this instrument with one pro-
duced in China that was far less expensive but also was not wholly suited to the task. 
Through the process of disassembling both instruments and through engagement with a 
co-worker with experience in the production of optical instruments, he constructed a hybrid 
device that was suited to the tasks required by his company. Later, the company came to 
realize that the instrument he had produced might well become something they could manu-
facture and sell to other engineering firms.

The aged care facility was experiencing a high level of elderly residents with bedsores. This 
led to other complications, including infections in the most fragile of residents. Rosa was 
one of the few nurse-qualified members of staff, the majority of whom were minimally 
trained aged care workers. She developed a program of rotating patients and ensuring their 
posture was changed, and used other events in the day (e.g., meal and shower times), and a 
stock phrase that could be remembered by all of the staff to remind them to move residents 
to different physical positions at those times and also encouraged all the residents to exer-
cise greater mobility, with the assistance of other aged care workers and on-site physio-
therapists. Innovation to practice was supported by providing a phrase and the timing to 
ensure that residents were not immobile for extended periods.

These vignettes refer to processes, as noted, variously labelled as learning, prob-
lem solving, adaptability, innovation or, in the educational literature, transfer. The 
hairdresser is faced with a novel situation (i.e., problem) that he needs to address for 
the sake of a specific client but also for his business’s reputation. Hence, he brings 
to bear considerations of customer satisfaction and procedural skills of hairdressing 
to the problem, working in constraints of a cut with short hair (i.e., transfer). The 
engineer is responding to a specific problem (i.e., quality and price of instrumenta-
tion), opening up the possibility of new products for the company (i.e., innovation) 
by drawing upon what he knows and can do and then extending it to a new sphere 
of application (i.e., transfer). Similarly, the nurse must adapt healthcare practices to 
an aged-care facility and with staff who are not fully healthcare trained. She gener-
ates a solution to the problem by adapting procedures used in one setting to this 
particular healthcare situation (i.e., transfer). Along the way, it is evident that each 
of these three workers has learned through the process of adapting what they know 
to address the problem and to generate novel solutions.

Here, we could add other terms from other kinds of literature, such as securing 
equilibrium or reconciliation between a goal state and what is being enacted and 
monitored, to emphasize that the process referred to as transfer is not hybrid. What 
is common to the process described in those vignettes and the various labels given 
to it is are persons engaging what they know, can do, and value in construing a goal 
to be achieved and then constructing a solution to achieve it (Voss, 1987). These 
processes necessarily exercise considerations of the domain-specific forms of 
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knowledge associated with the task (e.g., hairdressing, electronic engineering, nurs-
ing) that constitute the “problem” (e.g., occupational requirements) and the kinds of 
solutions likely to be acceptable, appropriate, or viable in that situation (e.g., a hair-
dressing salon in which each hairdresser has their own clients, a small precision 
engineering workplace, an aged-care facility with few qualified nursing staff) and 
acceptable within the context of their enactment (e.g., a satisfied customer, enhanced 
profitability, improved patient care and safety; Billett, 2001b; Brown et al., 1989).

What is perhaps unusual in presenting these vignettes is that a process often 
associated with schools and schooling (i.e., transfer) is described in terms of what 
occurs within workplaces when addressing an individual’s need to adapt that indi-
vidual’s knowledge to a novel circumstance (i.e., innovation). However, each 
vignette describes processes that are person particular (Voss et al., 1983), shaped by 
what each of these workers knows, can do, and values (i.e., cognitive experience and 
experiencing). Each also emphasizes the importance of individual mediation rather 
than educational interventions to secure transfer. That is, rather than the instruc-
tional events that are used to promote transfer in educational settings, here they 
were largely mediated by these individuals’ personal epistemologies. Lobato (2012) 
also made this point about individuals being the actors who mediate the transfer 
process. Moreover, she also referred to accounts within cognitive science that sup-
port, albeit implicitly, the sense making and actions of individuals that are central to 
the transfer process and its efficacy. As noted, these cognitive experiences—person-
ally shaped means of constructing experience from earlier (i.e., premediate – prior 
to the immediate) experiences (Valsiner, 2000)—arise through individuals’ personal 
histories. These are formed progressively and iteratively across their life histories or 
ontogenies (Billett, 1998; Scribner, 1985) through particular kinds and combina-
tions of experiences (i.e., personal processes of experiencing) and how the individu-
als have engaged in these tasks, such as the hairdressers mentioned earlier (Billett, 
2003). This includes the processes through which they identify and enact problem- 
solving strategies to new circumstances and tasks, discount the worth of alterna-
tives, and decide on goals and preferred courses of action to achieve outcomes. So, 
these individuals’ responses to the nonroutine problem solving were shaped by the 
legacies of earlier experiences and learning that shape how they engage with tasks 
they encounter in the immediacy of their engagement in tasks.

So, individuals’ application of what they know, can do, and value (i.e., their con-
ceptual, procedural, and dispositional knowledge) and changes arising from that 
enactment come to the fore here. Those legacies also define what comprises “near 
transfer,” or generating new understandings, abilities, or values, versus what com-
prises “far transfer,” including the development of innovation and the kind of transi-
tions they must negotiate. Because these processes bring together the two lines of 
development—social and personal—it is necessary to understand the situational 
contributions to cognition and how individuals come to mediate what they experi-
ence and their responses to the social suggestions to which they are subject. 
Consequently, the explanatory power of universal maxims, such as Gagné’s (1965) 
“lateral” and “vertical” transfer, Royer’s (1979) near and far transfer and, more 
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recently, Beach’s (1999) consequential transitions, needs to be appraised in how 
they are able to accommodate both lines of development.

14.2.1  Situatedness of Cognition and Transfer

Given our understandings about how cognition is both shaped by and indexed to 
specific circumstances and events (Barsalou, 2003, 2009; Greeno, 1989) and also 
the bases by which problems emerge, need to be resolved, and are judged as effec-
tive or otherwise (Billett, 2001b), it is necessary to consider the situational conse-
quences for the process of transfer. As proposed earlier, educational institutions are 
hybrid physical and social institutions designed for the purpose of achieving par-
ticular kinds of learning outcomes: the intended curricula, or the achievement of the 
school’s goals, to use an early definition (Tyler, 1949). Their physical and social 
environments afford specific kinds of activities and interactions that are the product 
of those institutions and are directed towards achieving intentional educational out-
comes. The outcomes of the curriculum being enacted (i.e., the intended curricu-
lum) and then construed by students (i.e., the experienced curriculum) are a product 
of what is afforded and mediated by those experiences and how students come to 
engage with and mediate them. In their own terms, these outcomes are highly suc-
cessful because much of the judgement about what has been learned is often made 
through appraisals of activities germane to those institutions (e.g., assessment 
tasks). Perhaps most students are judged to have succeeded, by degree, through 
educational programs as they meet these institutional requirements. They pass.

However, those circumstances and the kind of activities and interactions that are 
engaged within hybrid educational settings are often quite abstracted from those 
that the students or graduates may encounter elsewhere, such as in workplaces. 
What passes as calculations, computations, and means of communicating, let alone 
specific occupational procedural skills that have been developed, may be unhelpful 
in those situations (Bishop, 1991). Indeed, drawing on a review of anthropological 
literature, Lave (1977) proposed that there is little evidence to suggest that school- 
learned knowledge is any more inherently transferable than that arising from activi-
ties in other kinds of settings. In some ways, this is not surprising, if activity 
structures cognition. Therefore, cognition in the form of what we know, can do, and 
value is not something uniformly applied across circumstance and setting (Lave, 
1991): As a universal maxim, it is subject to personal mediation. Indeed, Lave 
(1988) stated that:

Learning transfer is meant to explain how it is possible for there to be some general econ-
omy of knowledge, so that humans are not chained to the particularities of literal existence. 
The vision of social existence implied by the notion of transfer . . . treats life’s situations as 
so many unconnected lily pads. This view reduces the organisation of everyday practice to 
the question of how it is possible (for the frog) to hop from one lily pad to the next and still 
bring knowledge to bear on the fly, so to speak. (p. 79)
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The critique of universalist maxims about transfer is not restricted to the failure 
to accommodate the exigencies of literal existence (e.g., what mathematics consti-
tutes in social settings as different as schools and workplaces). It is also applicable 
to sociocultural accounts of transfer that claim to address failings of other universal-
ist approaches. For instance, Beach’s (1999) categories of consequential transitions 
were offered as universal sociocultural phenomena. However, these maxims do not 
accommodate the personal experiencing and mediation of such transitions. They 
fail to account for the situation that what for one individual might be a lateral transi-
tion and for another might be a collateral transition. The scope for the personal 
mediation is evident in the examples Beach provided. When illustrating lateral tran-
sition from an excerpt from the travels of Marco Polo, Beach referred to what this 
experienced traveler encounters when reaching the city of Tamara. He used a range 
of understandings to describe and account for what Marco Polo experiences in 
viewing this city. However, other travelers arriving in this city and who might be 
less or differently experienced (e.g., from the countryside) may lack Marco Polo’s 
premediately derived concepts or sufficiently developed language to respond as he 
does. In this excerpt, reference is made to the land outside of the city as being 
“empty to the horizon” (Beach, 1999, p. 115). However, perhaps the person who 
lives on the land outside of the city perceives this land as being far from empty. For 
them, it may be full of life and meaning that is unavailable to Marco Polo. Elaborating 
such a distinction, Higgins (2005) referred to the personal nature of mediation in 
Dewey’s example of a small room with little more than a telescope in it. He stated 
that “to a brute realist the room seems relatively barren constricted; but to the 
astronomer who lives there, it opens up onto the entire universe” (Higgins, 2005, 
p. 453).

Also, in the example of collateral transition, Beach (1999) referred to Nepalese 
shopkeepers learning to become literate and numerate. The claim is that this col-
lateral transition is such that those engaging with that learning will be shaped by 
their common interests and concerns associated with shopkeeping. However, uni-
versalism is unlikely among these learners if the findings of small-business owners 
engaging in learning about the administration of a goods and service tax are any 
indication (Billett, 2001a). Rather than having common goals, focuses, and inten-
tionalities, diversity amongst these were identified in that study. Likely, at least one 
of these shopkeepers has a different set of intentions for becoming literate and 
numerate than the others. That goal and basis for transitions might be about moving 
away from the family business or the retail sector or about attending university or 
emigrating from Nepal. So, in these instances, the individual’s transfer would not be 
from classroom to shopkeeping but to a different form of practice: for example, to 
do something other than be a shopkeeper. Beach suggested that “social institutions 
called schools are about elevation of young people” (Beach, 1999, p. 117) when this 
may not be the case. For some students, including myself many years ago, school is 
not a source of elevation but rather something to engage with as peripherally as pos-
sible and to be away from as soon as possible to avoid bullying, boredom, or 
enforced and unwelcomed order. So, how students view schooling and engage with 
its efforts to develop transferable knowledge is not shaped by beliefs about 
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elevation. In referring to encompassing transition, again, the individual mediation 
of those transitions is ignored. Yet whereas experienced machinists likely encoun-
tered an encompassing transition in shifting from manually to computer-controlled 
lathes (Beach, 1999), younger or trainee machinists who do not possess or rely on 
those manual skills may have welcomed this new technology because it fits with 
their understandings in ways that for more senior machinists it simply would not. 
So, for these less experienced machinists, programming a Computer Numerically 
Controlled lathe might be a lateral transition associated with their knowledge about 
computers, not an encompassing one. The point here, again, is that the categories of 
transitions Beach proposed can never be universal as proposed because, ultimately, 
they are construed and constructed by individuals. It is they who engage in, and 
whose engagements determine, whether they are best categorized as lateral, collat-
eral, or encompassing rather than being prespecified. So, this categorization would 
be person dependent and relative, not universal.

Consequently, explanations of transfer need to account for (a) what actually con-
stitutes the task being undertaken, (b) how to achieve the required goal, and (c) the 
acceptability of that solution to the particular situation, with all of these being con-
strued and mediated by the actor. So, what passes as transfer is ultimately labelled 
through individuals’ construing and constructing knowledge and its subsequent uti-
lization. The degree by which that utilization is broadly applicable seems to be at 
the heart of the transfer problem for educational institutions and teachers. However, 
beyond what educational programs intend and implement are a range of factors that 
are largely outside of the scope of schools and schooling. There are the situational 
factors and how they might differ across physical and social circumstances. Not the 
least here is the difference between the kinds of activities and interactions that are 
afforded by educational institutions and those accessed in other kinds of social and 
physical settings. However, sitting above these situational considerations is the pro-
cess of meaning making—that is, how individuals come to construe and construct 
and engage in problem solving, adaptation, or transference. Hence, there is a need 
to acknowledge and account for the contributions of both individuals’ mediation of 
what they experience and the circumstances in which learning arises.

14.2.2  Individuals’ Mediation

As indicated, regardless of whether referring to problem solving, adaptability, inno-
vation, or transfer, individuals’ mediation of these processes is not negotiable. That 
is, how they construe what they experience and respond to it are essential elements 
of these processes. Consequently, a consideration of what, for individuals, are either 
routine or nonroutine problem solving and near or far transfer and the kind of transi-
tions they are engaging in are all mediated personally. The emphasis on the personal 
is, however, far from novel although often underplayed (Lobato, 2012; Volet, 2013). 
What others have indicated and what now needs to be considered more comprehen-
sively is how individuals mediate these processes, and this needs to be positioned 

S. Billett



325

more centrally than is often stated within the educational literature, where often 
individuals are viewed as being members of cohorts (classes of students) rather than 
individuals who mediate experiences in different ways. This was foreshadowed ear-
lier by Pea (1987), who proposed an interpretive perspective of transfer based on a 
socioculturally defined model of appropriate transfer rather than one that is objec-
tively defined:

Elements perceived by the thinker as common between the current and prior situation are 
not given in the nature of things but read in terms of the thinker’s culturally-influenced 
categorisation of problem types. (p. 639)

Consistent with this conception, Lobato (2012) offered the perspective of actor- 
oriented transfer, in which it is necessary to consider the individual as the key medi-
ator in this process. She advanced this perspective to reprivilege the active 
engagement by individuals (i.e., actors) in this process. So, recognizing and empha-
sizing how individuals mediate the processes referred to above (i.e., learning, adapt-
ability, transfer, and innovation) has long existed and is now becoming more widely 
acknowledged. All too often in the accounts of transfer within the educational litera-
ture, individuals are subsumed into cohorts of students who have specific qualities 
and attributes (e.g., Schwartz et al., 2005) rather than viewed with a focus on the 
person-particular basis for, and mediation of, transfer. Indeed, much of the cognitive 
literature, particularly that on expertise, emphasizes the important role of individual 
schemas that arise through repertoires of experiences that are a key factor in experts’ 
ability to respond to nonroutine problems (i.e., far transfer), including in domains of 
mathematical knowledge (Sweller, 1989). Part of this capacity to respond arises 
from the automatization and practice that occurs through repeated engagement in 
domain-specific activities: that is, particular experiences leading to specific kinds of 
outcomes.

However, this development arises in different ways and from different kinds of 
experiences for individuals: They are person specific by degree. Not the least here 
is that individuals develop their own domains of knowledge through the particular 
repertoire of personal experiences they encounter across their life courses (Billett, 
Harteis, & Gruber, 2018). That construction of individuals’ domains of knowledge 
is a product of individuals’ ontogeny that is likely to be person dependent, if not 
unique. It arises from their personally unique set of experiences and constructions. 
That process of construction that leads to individuals developing domains of knowl-
edge, albeit related to performing mathematical calculations or hairdressers cutting 
clients’ hair, is, in some ways, person dependent. That is, based on what they know, 
can do, and value (i.e., their personal epistemologies), how these epistemologies 
shape the construal and construction of knowledge and themselves is further 
extended or enriched. However, this process progresses in ways which inherently 
are individually specific given the particular and myriad kinds of experiences they 
encounter across their lives (Gergen, 1994). In this way, the ongoing intrapsycho-
logical construction of individuals’ knowledge domain is not the replication of a 
textbook or some canonical set of concepts, procedures, and values captured in a 
syllabus or other document. Instead, it is what individuals generate through 
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reconciling what they experience and how this relates to what they know, can do, 
and value. Gergen (1994) captured this process as follows:

As people move through life . . . we are continuously confronted with some degree of nov-
elty – new contexts and new challenges. Yet our actions in each passing moment will neces-
sarily represent some simulacrum of the past; we borrow, we formulate, and patch together 
various pieces of preceding relationships in order to achieve local coordination of the 
moment. Meaning at the moment is always a rough reconstitution of the past, a ripping of 
words from familiar contexts and their precarious insertion into the emerging realisation of 
the present. (pp. 269-270)

Yet again, there is nothing particularly new here. Much earlier, Hoffding (1892) 
claimed that failure of transfer occurs most frequently because the learner fails to 
recognize that the new situation is similar to one encountered previously, thereby 
emphasizing person dependence and also how they have constructed their knowl-
edge. These propositions were followed by those of Baldwin (1894), who empha-
sized the reconstruction of experiences by which each individual makes sense of 
experiences and did so selectively, and of Janet (1930), who viewed intrapsycho-
logical processes as shaping beliefs and reacting to and regulating actions in 
response to what is experienced. Hence, regardless of whether referring to instruc-
tional events or experiences in workplaces and the need to respond to problems or 
generate innovations, these processes rely upon contributions of the social world but 
also individuals’ mediation of them.

Ultimately, therefore, it is individuals who engage in these processes and select 
possible options for action, implement and then evaluate their efficacy, and make 
changes and adapt to new circumstances, as Voss et al. (1983) have more contempo-
raneously proposed. This emphasis on the person seems to be important because so 
much of the existing literature on transfer emphasizes either universal and obstructed 
cognitive processes or situational factors that, when addressed separately, fail to 
account adequately for the person mediating what they experience. Central here is 
how individuals direct their capacities, interest, and intentionalities in responding to 
those experiences. Engaging in demanding cognitive processes, such as nonroutine 
problem solving, adaptation, far transfer, and innovation, cannot occur unless indi-
viduals invest effort, intention, and energy in those activities. If, for instance, an 
individual does not see the worth of attempting to adapt, transfer, learn, or innovate, 
it is likely that the personal and situational outcomes will be very different than for 
the individual who sees such activities as being important and worthy of investing 
effort and their capacities. Regardless of whether referring to students in high 
school, technical colleges, or universities or workers engaged in their occupational 
tasks, parents responding to the challenges of parenthood, or activities within com-
munities, it is individuals who take what they have learned (i.e., know, can do, and 
value) and attempt to use that to respond to emerging problems, challenges, and 
circumstances. The person engaging in the thinking and acting is, therefore, central 
to all these processes, not the least because these processes are person dependent.

As discussed, although transfer (or adaptation or problem solving) is seen as 
being a problem for educational institutions, it is also something that is required and 
routinely exercised in adults’ working life, as indicated in the PIAAC data (OECD, 
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2013), and it is also central to remaking cultural practices, albeit mathematics or 
nursing. Considering these processes outside of educational settings provides a 
means by which the processes can be understood and by which the importance of 
situational and personal factors in this process can be recognized.

14.3  Transfer Situated in Occupational Practice

The discussions above hold that transfer and processes supporting it are not some-
thing restricted to educational programs and teaching. Certainly, it is evident and 
well illustrated in accounts of individuals engaging in their paid work as they con-
front novel tasks and generate innovations as part of their everyday work activities. 
When addressing problems or novel requirements or requests, workers engage in 
these processes as they adapt what they know (i.e., conceptual knowledge), can do 
(i.e., procedural knowledge), and value (i.e., dispositional knowledge) in enacting 
workplace tasks. It would seem that this capacity is required by all classes and kinds 
of paid work and globally. Data from PIAAC (OECD, 2013), conducted across over 
30 countries with large samples of working-age adults, demonstrate that the major-
ity of workers report engaging weekly in both routine and nonroutine problem solv-
ing in their work, with the latter being associated with the generation of innovations. 
That is, they are routinely engaging in what would be categorized as both near and 
far transfer as set out above. Moreover, these workers report that they more fre-
quently learn through their own engagement with work tasks than through being 
supported by more experienced or expert coworkers (OECD, 2013): Their participa-
tion in processes that within the educational literature are referred to as transfer are 
more likely to be generated through individuals’ mediation of these activities than 
through being guided by others (more experienced workers). This suggests that 
transfer—far from being a hybrid process and reliant upon educational provisions 
and the direct guidance of a more informed partner (e.g., teacher, expert) and pro-
cesses of adapting what individuals know, can do, and value to other circum-
stances—is part of everyday thinking and acting in activities such as work (Billett, 
2013). It is also through these activities that the co-occurrence of learning and inno-
vation arises (Billett, Yang, et al., 2018). Occupations are social practices that arise 
historically and culturally but whose specific performance requirements are mani-
fested situationally and also need to be adapted (i.e., remade and transformed) to 
meet changing social and cultural needs. Work and workplaces provide a physical 
and social context through which to understand what is referred to in the educa-
tional literature as transfer, shifting it from being viewed as a problem to be 
addressed solely within education to a process that is central to personal and societal 
continuity.

Instead, the personally premediated process of shaping how these individuals 
construe the task and select goals and procedures to do so is enacted by individuals 
(Lobato, 2012). This orientation is often overlooked in the educational literature 
that seemingly prefers to view learners (i.e., students) as discrete cohorts. This 
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person-dependent process includes whether, for each individual, what they encoun-
ter is a routine or nonroutine problem-solving activity (Groen & Patel, 1988); what 
constitutes the “problem space” (Glaser & Bassok, 1989) and how that is generated 
and addressed; whether accommodation or assimilation is required (Piaget, 1971); 
whether it comprises far or near transfer (Royer, Mestre, & Dufresne, 2005); and 
whether it constitutes the remaking or transformation of situated practice. Whatever 
kinds of labels are used, they all refer to an interdependence between two lines of 
development—social and personal—as the person acts to bring to bear what they 
know, can do, and value in responding to a specific task.

All of this goes to the heart not only of individual development, cognition, and 
learning but also of societal continuity through innovation: that is, the remaking of 
societal practices such as occupations and sometimes their transformation. Human 
society exists and is perpetuated by the generation of responses to the problems that 
need to be addressed contemporaneously (Donald, 1991), and these are typically 
experienced and responded to by individuals engaged in their everyday work or 
community lives (Epstein, 2005). In responding to tasks that are generated by par-
ticular circumstances or settings, it is likely that individuals also shape what consti-
tutes solutions to them. Individuals engaging in their work provide instantiations 
and illustrations of these processes. When responding to work tasks and problems, 
processes of transfer, learning, and innovation arise with consequences for the occu-
pational practice and the circumstances of its enactment (i.e., workplaces; OECD, 
2013). So, although tsunamis of change brought about by new technologies can be 
profound, it is at the local level that these changes cause the remaking and transfor-
mation of societal practices, such as those at work (Billett, Yang, et  al., 2018). 
However, these processes are person dependent; they cannot be viewed as being in 
any way uniform or standard. Importantly, sociopersonal processes emphasize the 
duality between the person and the social world.

14.4  Transfer, Learning, and Innovation

The key points arising from the discussion here are fourfold. These are, firstly, to 
view transfer as something explained by encompassing considerations of human 
cognition and addressed in ways not constrained by educational discourse and prac-
tices. Secondly, it is to be considered outside of particular kinds of physical and 
social settings (schools and schooling). Thirdly, rather than the practices of address-
ing individuals as cohorts of learners, there is a need to engage them more individu-
ally. Fourthly, there is a need for a sociopersonal account of learning to arise.

Firstly, what is referred to as transfer is not a special or hybrid process. Indeed, 
there is no unique process called transfer given that it seemingly comprises a label 
to describe the processes and outcomes of construal and construction of school- 
learned knowledge (Billett, 2013). Instead, it is just one among a number of labels 
for what humans commonly engage in and have needed to do to advance themselves 
across their lives (i.e., ontogenetic development) and how they have responded to 
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both familiar and unfamiliar challenges across human history (Donald, 1991). Even 
within the field of educational inquiry, concepts such as accommodation, appropria-
tion, adaptation, problem solving, learning, and innovation are at least analogous to 
what is referred to as transfer. So, transfer needs to be explained by encompassing 
considerations of human cognition and addressed in ways not constrained by edu-
cational discourse and practices.

Secondly, the process referred to as transfer is typically portrayed in the educa-
tional literature as a problem (Royer, 1979; Schwartz et al., 2005), as one privileged 
by particular social circumstances and settings (i.e., schools and schooling), and as 
something to be promoted through specific educational strategies (e.g., instruction, 
teaching). All of these considerations position what is referred to as transfer as 
being an institutional fact (Searle, 1995): something arising through and shaped by 
social institutions. However, this process is instead a personal fact because it is 
shaped by how individuals experience, mediate, and respond to what is experienced 
(Lobato, 2012; Volet, 2013). Importantly, however it is labelled, this process is far 
from being an institutional fact alone and one that is restricted from what occurs in 
schools and in the learning and use of mathematics, for instance. Instead, it is in 
large part a personal fact: shaped by personal histories, agency, capacities, and 
dispositions.

Thirdly, and following from above, although much of the educational literature 
focuses on the qualities of the schooling experience provided and variability in 
cohorts of students (e.g., those with different levels of school achievement, gender, 
year level; Beach, 1999; Hatano & Greeno, 1999; Schwartz et al., 2005), this fails 
to acknowledge that it is something undertaken and mediated by individuals and in 
personally particular ways. That is, instead of referring to learners in terms of cohort 
qualities (i.e., academic high achievers, low achievers, second language learners, 
those with disabilities), there is a need to understand how these learners come to 
engage what they know and adapt it to new circumstances. As noted, Lobato (2012) 
has captured the many implicit references to this within cognitive accounts of trans-
fer, but, when translated to discussions about educational institutions, the emphasis 
on individuals’ thinking and acting becomes lost. Therefore, to understand fully the 
process of transfer, how it is enacted, and how it might be enhanced requires a con-
sideration of individuals’ construal and construction from what they experience and 
then how this contributes to their immediate and ongoing development.

Fourthly, to understand the factors shaping this process requires accounting for, 
as well as going beyond, earlier conceptions of those factors (e.g., identical ele-
ments [Thorndike & Woodworth, 1901], purely cognitive accounts of adaptabil-
ity—transferring from one situation to another [Stevenson, 1991], and also accounts 
that emphasize socially generated factors [e.g., Pea, 1987]) to include personally 
dependent or shaped factors. Beyond adding considerations of ontogeny to account 
for personal experiences and processes of experiencing, and positioning these 
within the sociogenesis of learning, it is also necessary to consider brute factors 
(Searle, 1995; i.e., those of nature). This includes fatigue and maturation that impact 
human thinking and acting, including how and what individuals direct their inten-
tionalities towards (Malle, Moses, & Baldwin, 2001). Certainly, the process often 
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described as transfer and, in particular, far transfer requires effortful and focused 
thinking and acting on the part of the individual (Royer et al., 2005): consequently, 
more than what is afforded by intentional educational experiences or workplace 
activities or the brute facts of how individuals can engage with them. Human cogni-
tive functions are not the mere exercise of algorithms or heuristics nor determined 
by social suggestions. Instead, they are shaped by their dispositions and energies 
and how particular experiences fit within those that they are currently negotiating 
and even the interest to do so. Hence, the demands, timing, and effort required for 
this kind of thinking and acting may not always coincide with individuals’ efforts 
and interest to conduct such an exploration.

The case being made here has been founded on premises that arise from under-
standing how people learn through everyday practices rather than from those whose 
purpose is to intentionally promote learning. The first is the importance of consider-
ing not only the social suggestion and individuals’ engagement with that suggestion 
but also the relational interaction between the two. The second is to understand that 
people’s processes of engaging in what is referred to as transfer, adaptability, prob-
lem solving, and learning is, in many ways, person dependent. However, in raising 
this issue, there is often a distinction made between the individual and the social. 
Indeed, in some forums, referring to the individual is seen as being anathema. Yet, 
ontogenetically, there is nothing more than social than the personal.

14.5  Transfer as a Problem of Learning

This chapter has aimed to contribute to the growing body of literature that seeks to 
broaden and extend explanation of what constitutes transfer and how it might best 
be promoted (Lobato, Rhodehamel, & Hohensee, 2012; Schwartz et al., 2005; Volet, 
2013). Along with these perspectives, this chapter proposes that, rather than being 
an educational problem, what is referred to as transfer needs to be primarily under-
stood through a consideration of individuals’ learning and development, albeit one 
that is socially shaped but personally mediated. It is held that cognitive and socio-
cultural explanations, in different ways, tend to universalize this process to an 
unhelpful extent, which excludes or minimizes, rather than accentuates, the role of 
personal mediation. Cognitive theories helpfully describe knowledge structures and 
forms that underpin transference of knowledge (e.g., Schwartz et al., 2005) with 
abstracted domains of activities (e.g., occupations). However, they fail to acknowl-
edge fully the often socially situated geneses of problems and what constitutes their 
resolution (Billett, 2001b). Also, individuals’ knowledge structures are developed 
by individuals in personally particular ways arising through their moment-by- 
moment experiences (i.e., microgeneses) across their life course (i.e., ontogeneses). 
No two people will ever have the same sets of experiences or mediate them in the 
same way. So, for instance, just as what constitutes routine or nonroutine problem 
solving is person dependent, the same applies to what is referred to as near or far 
transfer (Royer, 1979). That is, what is a novel problem-solving task for one person 
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may be routine for another and, equally, far transfer for one individual might be near 
transfer for another and vice versa. Similarly, although sociocultural accounts help-
fully refer to the contributions and suggestions of kinds of social settings and prac-
tices, these suggestions cannot be taken as universals because how those suggestions 
are perceived is personally mediated. For instance, Beach (1999) referred to a set of 
transitions as unambiguous: categorizing transitions into a number of universal 
kinds. However, how individuals construe and construct these events may see the 
“same” experience be a lateral transition for one person but a collateral transition 
for another and so on. So, labelling events as transitions cannot occur without 
accounting for what these transitions mean to, and are construed, constructed and 
enacted by individuals themselves.

Therefore, what is held to be transfer requires accounting for and emphasizing 
what is suggested and mediated by factors beyond the person (i.e., interpsychologi-
cally or intermentally) that comprise not only social contributions but also those of 
the brute world (i.e., nature) on the one hand. Then, on the other, it needs to account 
for how individuals mediate what is experienced (i.e., intrapsychologically or intra-
mentally) based on their personal epistemologies (Billett, 2009). These epistemolo-
gies arise from earlier or premediate (Valsiner, 1998) experiences and, subsequently, 
contribute to what is construed and constructed through the immediacy of experi-
ences in the social and physical world. However, such considerations are not just 
about the transfer of learning. Instead, as foreshadowed, the process labelled as 
transfer in the educational literature is at least analogous to what is referred to in 
other literature as learning, adaptability, problem solving, and being innovative. All 
these processes commonly comprise generating change to what individuals know, 
can do, or value through the process of experiencing. Hence, whatever label is 
applied, personal mediation is a central explanatory concept, as is personal episte-
mologies. So, in seeking to address the problem of transfer in and from educational 
provisions, the starting point is to view it from the perspective of the personal.
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Chapter 15
Studying Apprentice Students’ 
Transferring Process: The Case 
of a Functional Relation

Chrissavgi Triantafillou and Despina Potari

The issue of transfer has received extensive discussion during the last 20 years in 
mathematics education. This discussion has been concerned mainly with what hap-
pens when people perform differently with the same (through the eyes of a mathe-
matician) tasks in different contexts (Lerman, 1999). Interest in transfer in the 
context of mathematics education started primarily when researchers provided 
empirical evidence showing that children in Brazil could solve mathematics prob-
lems in their everyday activity in selling and buying things but they could not solve 
similar problems in the school context (Nunes, Schliemann, & Carraher, 1993). The 
Realistic Mathematics Education approach has used the construct of horizontal 
mathematization to describe, to some extent, the transfer process from the realistic 
context to the mathematical one (van den Heuvel-Panhuizen, 2003). In the context 
of mathematical literacy, mainly, the question is whether what the students do at 
school can be used to interpret phenomena in their society in a critical way 
(Skovsmose, 2014). Numerous studies have explored students’ attempts to transfer 
their academic or school knowledge to the workplace domain (e.g., Williams, Wake, 
& Boreham, 2001). The purpose of these studies was to challenge students’ math-
ematical knowledge when they face authentic workplace situations.

The transfer issue brought up different ways of theorizing cognitive aspects of 
the relation between a person and the societal activities she is involved with. 
Particularly, different conceptualizations of transfer have been proposed to explain 
the difficulties that students face to connect their school with their out-of-school 
knowledge. The cognitive approaches view transfer of learning as the application 
and use of past learning to new situations, focusing mostly on the individual who is 
involved in these situations (Haskell, 2001). In this approach, the notion of transfer 
was realized as a unidirectional process (usually from school to work) and was ori-
ented toward how individuals are performing on specific tasks without taking into 
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account the situational and contextual aspects of their practice. The situational 
approaches to transfer (e.g., Lave, 1988) view learning between different domains 
of knowledge as a dynamic process distributed across the knower, the environment 
in which knowing occurs, and the activity through which the learner is participating 
when learning or knowing occurs (Barab & Plucker, 2002). Hence, current views of 
transfer place emphasis on the interactional relations between the individuals and 
the collective (social, cultural) aspects of the different activities they participate 
in life.

In this direction, new theoretical constructs such as the developmental transfer 
and the boundary-crossing approach (Engeström, 2001; Tuomi-Gröhn & Engeström, 
2003; Wenger, McDermott, & Snyder, 2002) have been developed. Engeström, as 
reported in Konkola, Tuomi-Gröhn, Lambert, and Ludvigsen (2007, p. 222), pro-
posed the model of developmental transfer as a form of collaboration between two 
different activity systems. The developmental transfer shifts the emphasis from the 
individual transfer of knowledge to the collaborative efforts of different activity 
systems (e.g., school and workplace) to create new knowledge and practices. This 
theoretical construct is based on activity theory and expansive learning and the 
transferring process in this approach is multidirectional and multifaceted, involving 
transitions from school to workplace and vice versa. Furthermore, it is because of 
its dynamic nature that this transfer is named as developmental transfer. In the 
boundary-crossing approach, researchers assume that different activities are sepa-
rated by boundaries, and that individuals participating in two or more activities then 
have to “cross” these boundaries (Tuomi-Gröhn & Engeström, 2003). From this 
perspective, “Transfer is not based on the transition of knowledge only, but on col-
laboratively creating new theoretical concepts and solutions to problems that lack 
ready-made answers” (Tuomi-Gröhn, 2007, p. 42). This approach allows research-
ers to observe the possibility of transferability of learning from one activity system 
to another through the process of boundary crossing, where boundaries are viewed 
as sociocultural differences that give rise to discontinuities between different activ-
ity systems.

Another issue that is still open for discussion among researchers is the descrip-
tion of the learning that takes place during the transferring process. Many studies 
connect the transfer of mathematical knowledge between different activities with 
the idea of generalization providing evidence on how individual understandings are 
generalized beyond the specificity of their originating contexts (Beach, 2003; 
Lobato, Ellis, & Muñoz, 2003).

In the present study, we adopt the developmental transfer approach to analyze 
three cases of apprentice students’ transferring process while they try to relate 
authentic workplace phenomena and representations with their academic mathe-
matical and scientific knowledge. The workplace was a telecommunication organi-
zation, and the three students, as apprentices in this organization, legitimately 
participated in two different activity systems: their academic institution and this 
specific workplace. Our focus is on students’ transferring process and on how 
aspects of the environment that was developed in their internship facilitated or con-
strained this process. These aspects could include workplace practices in which the 
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students participated, authentic workplace tasks and representations selected by the 
researchers and tackled by the students, workplace norms and conventions, and 
existing academic and workplace goals and motives related to mathematics, as well 
as the support provided by mentors from both activity systems. Our study in 
Triantafillou and Potari (2014) referred to the same setting, focusing on how the 
same students made sense of authentic representations related to the place value 
concept. Here, our focus is on a workplace phenomenon described by a functional 
relation between three variables (i.e., length, diameter, and resistance) and illus-
trated through four different workplace representations (WRs). In this chapter, we 
elaborate on the nature of the shared object between work and academic mathemati-
cal activities that the students formed and we also scrutinize how this shared object 
developed in relation to aspects of their internship. We use constructs from Radford’s 
objectification theory (2003, 2008) to understand the nature of the shared object 
while students were engaging with the different WRs. We further elaborate on our 
conceptualization of transfer in the following section.

15.1  Theoretical Framework

We view transfer through the theoretical lens of the cultural–historical activity the-
ory (CHAT; Leont’ev, 1978; Vygotsky, 1978) and we use Engeström’s idea of 
developmental transfer as our methodological and analytical tool. Developmental 
transfer implies that the basic unit of analysis of learning is a collective, object- 
oriented activity system like a school or a workplace (Engeström, 1987). Engeström 
(2001) identified three characteristics of developmental transfer: (a) Learning is a 
process in which different activity systems interact in implementing a shared devel-
opmental project; (b) during the learning process, the object of work is understood 
and reconstructed in a new way; and (c) the new concepts are implemented as tools 
or models of new activities. Developmental transfer has been indicated by changes 
in the object of the work of the entire activity system, and in the conscious creation 
of knowledge and practices. For example, Tuomi-Gröhn (2003) discussed a Finnish 
internship program for nurses, in which school and work collaboratively interacted 
and changed.

Many researchers argue that internship periods foster collaboration between 
schools and workplaces (e.g., Akkerman & Bakker, 2012; Tuomi-Gröhn, 2007). 
Tuomi-Gröhn (2007) illustrated how this works in a developmental project aiming 
to build collaboration between a daycare and a school organization. Under the per-
spective of developmental transfer, Konkola et al. (2007) illustrated how the differ-
ent activity systems interact and a potentially shared object emerges (see Fig. 15.1). 
This shared object arises from the work activity and its developmental needs 
(Tuomi-Gröhn, 2007).

In our case, the subjects were students from an academic engineering institution 
who were doing their 6-month internship in different sectors of a telecommunica-
tion organization. We consider the academic and the workplace as the different 
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Fig. 15.1 School and workplace as interacting activity systems. (Konkola et al., 2007, p. 216)

activity systems. These systems are, by their nature, diverse in their cultural, histori-
cally developed ways of learning and knowing. For example, academic institutions 
are explicit and mostly rely on abstract and explicit ways of learning and knowing 
practices, whereas workplace practices mostly rely on applied and practical ways of 
learning and knowing (e.g., Pozzi, Noss, & Hoyles, 1998; Williams & Wake, 2007). 
Akkerman and Bakker (2012) referred to the above different types of epistemolo-
gies as differences in school and work “epistemic cultures” (p. 156). These differ-
ences in the objects of the activity systems bring tensions and contradictions that the 
students must overcome to develop the potential shared object.

In this study, we focus on a specific task (named here as the TASK) that was 
identified in the ethnographic phase of our study (Triantafillou & Potari, 2010). This 
TASK concerned the selection of different types of diameters of copper wires in 
subscribers’ network for certain distances. The arguments behind this selection 
were (a) mathematical (i.e., the functional relation between three quantities of the 
copper wire, the length, the cross section, and the resistance of the wires); (b) practi-
cal (i.e., the lowering of the cost); and (c) scientific (i.e., taking into consideration 
the upper limit of the resistance [1000 Ω] to have an appropriate signal quality). The 
mathematical aspect of this TASK was based on a formula well known to all partici-
pants from their school and academic studies. Moreover, the above functional rela-
tion was represented in the specific workplace through a number of different WRs. 
These representations included a table, professionals’ explanations (i.e. metaphors 
and practical examples), an elaborated formula, and a graph. Some of the above 
WRs are cultural products produced by experts in this organization (i.e., the table, 
the elaborated formula, and the graph) or developed by the practitioners in this 
organization while trying to communicate to an outsider (the researcher or the stu-
dents) the mathematical and the scientific aspects of the TASK. Moreover, these 
WRs were related to practitioners’ everyday workplace activity (Triantafillou & 
Potari, 2010).
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Because one of the central ideas of developmental transfer is to give students the 
appropriate tools to deal effectively with new situations (Tuomi-Gröhn, 2007), we 
decided to use the WRs to analyze students’ responses while trying to link their 
work with their academic mathematical and scientific experiences. We consider 
these representations—they had been provided by the researcher, the first author, 
who was also a lecturer in their academic institution—as the tools that mediated 
students’ transferring activity. Some of these WRs are closer to those the students 
had encountered at school and university (i.e., the algebraic formula and the graph) 
whereas others have more of a black box nature that constrains these connections 
(i.e., the table and professionals’ explanations). Apprentice students, in their 
attempts to interpret the different WRs and make sense of the TASK, created their 
own images of the shared object between their academic and workplace experi-
ences. According to Leont’ev (1978), the mental image of the object of an activity 
is considered to be the product of the subject’s “detection” of the object’s properties 
(p. 4). Our focus in this study was on the nature of the shared object and on the way 
it was formed and developed during students’ engagement with the four WRs.

To understand students’ images of the shared object while engaging with the dif-
ferent WRs, we use Radford’s objectification theory (2003, 2008). Radford (2003) 
defined objectification as a creative process of noticing something and is “linked to 
the individuals’ mediated and reflexive efforts aimed at the attainment of the goal of 
their activity” (p. 41). The reflexive nature refers to the relationship between indi-
vidual consciousness and a culturally constructed reality, whereas the mediated 
nature refers to the means that orient thinking and allow individuals to become 
aware of and understand the cultural reality. Mediated means in our study are the 
four WRs as well as students’ semiotic means used while trying to objectify the 
phenomenon under consideration. These semiotic means were scientific notions rel-
evant or irrelevant to the TASK, sensual perceptions, and linguistic tools, as well as 
forms of reasoning and action, either from their academic or their workplace activi-
ties. Furthermore, with respect to the transfer issue, because we view knowledge 
transformation as connected with the idea of generalization, we perceive different 
layers of generalization in students’ transferring process. Specifically, to analyze the 
levels of students’ transferring process, we adapted the three layers of generaliza-
tion that are described by Radford (2003): factual, contextual, and symbolic. These 
layers are used as our analytic tool to describe the nature of the shared object during 
students’ transferring process. Radford (2003) defined the factual type of general-
ization as abstractions of actions undertaken on objects bound to the concrete level. 
The semiotic means are related to the words that show noticing of the features of the 
pattern, and to gestures that indicate rhythm and movement or drawing. In our study, 
we considered that students were at the factual level of generalization when they 
used incomplete and sensual ways of reasoning very close to the actual scene where 
our intervention unfolded but which were mostly irrelevant to the specific TASK. For 
example, they argued that the covering of wires with shields leads to the increase of 
the diameter of the wire. Radford (2003) realized contextual generalizations as 
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students’ abstraction from specific figures presented to them. The semiotic means at 
this level are the generic and locative terms that are used as new mathematical 
objects emerge. These mathematical objects are contextually situated objects hav-
ing spatial temporal characteristics. In this study, we considered that students were 
at the contextual level of generalization when they used arguments that were mostly 
bound to the particular WRs. For example, they described the algebraic relations 
between the three variables in the formula (L = R · 45 · d2) without understanding 
how these relations affect the technician’s choice. The shared object at this level is 
considered to be contextual because their understanding is context bound and partly 
shared between the two activity systems. According to Radford (2003), what char-
acterizes the symbolic generalizations is the use of algebraic symbols to symbolize 
the variables and their relation. In our study, we conceptualized the symbolic level 
of generalization when students developed a new understanding of the mathemati-
cal object. This means that they made links between the different WRs and devel-
oped control of how to use them (e.g., which aspects of one representation were 
useful and which to abandon), used elements from both their academic and work-
place experiences, and used the mathematical object as a tool to explain the 
TASK. We consider the above new understanding of the mathematical object as a 
potentially shared understanding between the two activity systems.

Going beyond the nature of the shared object and looking at the way that the 
shared object is created in relation to the two activity systems, the developmental 
transfer approach offers us a way to address the way that tools as mediators, the two 
communities, the rules, and students’ division of labor during their internship influ-
enced the creation of the shared object. We also consider motivational and emo-
tional aspects that frame the above activity. We see emotions and motivation linked 
to the subject’s actions and goals as driving forces of the formation of the mathemat-
ical object in the way that Roth (2007) extended Engeström’s third-generation of 
activity.1 Transfer in this way is seen through the creation of this shared object that 
has meaning in both activity systems and is developed through the students’ actions 
and goals being in dialectical relation to their emotions, motives, and identities. The 
actions and goals are also developed through the mediation of tools, rules of the 
communities, and division of labor of each activity system and the emerging ten-
sions and contradictions between the objects and the elements of the two activity 
systems. Because we traced students’ efforts to master and cultivate the shared 
object between the two activity systems, we addressed the following research 
questions:

 1. What are students’ images of the shared object?
 2. How do these images develop?

1 Vygotsky and Leont’ev were responsible for the first and second generation of activity theory, 
respectively.
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15.2  Methodology

15.2.1  The Context of the Study

The study presented in this chapter is part of a research project that aimed to explore 
the issue of transfer of mathematical knowledge between the academic and the 
workplace domains. The entire project was divided into two phases: the ethno-
graphic and the interventional. In the ethnographic phase, through the analysis of a 
variety of activities performed by different groups of practitioners in a telecommu-
nication organization, a number of mathematical concepts such as the place value 
and the linear function notions emerged (Triantafillou & Potari, 2010). The inter-
ventional phase was based on the idea that apprenticeship programs are a very com-
mon environment for observing students’ reciprocal influences of school or college 
and workplace practices (e.g., Akkerman & Bakker, 2012). Particularly in this 
phase, we studied how five engineering students from an engineering educational 
academic institute, who were doing their compulsory 6-month practicum in the 
organization, tried to link their workplace activities with their academic knowledge. 
In the interventional phase of the project, through semi-structured interviews with 
the participants, the researchers studied how the students tried to link their academic 
and workplace knowledge of the above mathematical notions (i.e., the place value 
concept and the notion of linear function). In the academic institute, there are no 
systematic structures to relate the workplace to the academic courses, especially in 
the area of mathematics. Mathematical courses are organized according to the pre-
sentation of the mathematical content without modelling activities or any connec-
tion to practical situations.

An extended presentation on how the five apprentice students developed their 
school-based knowledge on place value to incorporate aspects of this notion in the 
new context can be seen in our previous work (Triantafillou & Potari, 2014). In this 
chapter, we report on the transferring process of three illustrative cases focusing on 
the notion of the functional relation that is hidden behind the specific TASK.

15.2.2  The TASK

The TASK was about the selection of the proper diameter of copper wire in the local 
network for certain distances. The practitioners knew that when the length of the 
wire increases, this results in an increase in its electrical resistance, and the only 
way to control this effect is to use wires with larger diameters (larger cross-sectional 
areas) for long distances. The mathematical dimension of this task was the variation 
of the electrical resistance (R) of a copper wire in terms of its length (L) and its 
cross-sectional area (s). In particular, because the electrical resistance (R) of the 
copper wire varies proportionally in relation to the length (L) of the wire and in 
inverse proportion to the cross-sectional area (s) of the wire, it forces the 
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practitioners to change the diameter of the wire to control its resistance. At the same 
time, practitioners knew the upper limit of the resistance of a copper wire required 
for a good signal quality for the subscriber (about 1000 Ω).

Hence, the TASK was about the proper selection of the copper wire type. The 
argument for this selection was related to the mathematical object described above 
while taking into consideration the signal quality and trying to lower the cost. The 
above algebraic relation is mentioned in many physics school and academic text-
books. All the apprentices knew this relation as the electrical resistance formula, 
R = ρ · L/s, where R represents the resistance in Ω, ρ represents the resistivity of the 
material that the wire is made of, L represents its length in meters, and s represents 
the cross-sectional area of the wire in m2.

The above mathematical object was expressed in the particular workplace 
through a range of representations. The WRs were presented to the participants in a 
sequential order (table, professionals’ explanations, elaborated formula, and graph) 
and were the basis of four tasks that were designed by the researchers to analyze 
participants’ transferring process. We present below the four different WRs and the 
questions addressed to the participants in each case.

15.2.3  The Four Authentic WRs

The table In the beginning of the research activity, students were given the table 
representation (Fig. 15.2). It came from a technical book used in this organization 
that gives information about the diameter of the copper wires, expressed in millime-
ters, that are used in a local subscriber line and the corresponding distance in kilo-
meters between the subscriber and the organization building or, in other words, the 
length of the wire. The symbol Φ represents the image of a circle with a diameter. 
The table represents the workplace phenomenon in a nontransparent way to a per-
son who is not from the workplace given that the resistance, which in school science 
is the central variable, is hidden. Moreover, the table provides information about the 
need to change the diameter when working with wires of certain lengths but does 

Distance
L(Km)

Wire diameters
(mm)

Up to 3 Φ 0.4

From 3 to 6 Φ 0.6

From 6 to 9 Φ 0.8

From 9 to 10 Φ 0.9

Fig. 15.2 The table 
representation
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not explain the necessity for doing so. The choice of presenting only the distance 
and the diameter in the table indicates a tendency that exists in the workplace to give 
immediate answers for a specific problem, that is, for how to choose the appropriate 
wire for a certain distance. Comparing also the characteristics of this workplace 
representation to characteristics of conventional tables used in mathematics for rep-
resenting a function, we see different units of length measurement and a combina-
tion of verbal (words up to, from), arithmetic, and figural symbols. Moreover, the 
function of the diameter in terms of the distance is a step function, a function that is 
not often met in school mathematics. In this case, there is a transformation of a well- 
known academic formula to a functional inscription embedded in the workplace 
expertise.

For all the above reasons, we chose to address the following questions to the partici-
pants: “How do you interpret this representation? How do you explain the relation 
between the quantities mentioned (i.e., distance and diameter?) Do you link it with 
your academic or workplace experiences?”

Professionals’ explanations Many practitioners used the following metaphor 
when they were asked by the researcher to explain the table information (Fig. 15.2): 
“The flow of charge through wires is like the water in a canal; when you want to 
send water through a great distance, you must use a canal with a larger diameter to 
avoid the losses.” Here the water canal is the copper wire, the length and the diam-
eter of the canal is the length, and the diameter of the wire and the losses is the 
resistance. Although this metaphor describes the phenomenon, this can still be non-
transparent for someone who does not understand this relation. The students were 
asked to make connections between the metaphor and the function represented in 
the table, for example: “Do you connect in some way the metaphor with the table 
representation? What can be the ‘losses’ mentioned in the metaphor in the case of a 
copper wire?” In one of the three illustrative cases, the technician provided practical 
examples to explain to the student the mathematical object hidden in the table 
representation.

The elaborated formula Practitioners in this organization were using an elabo-
rated formula (L = R · 45 · d2), where L stands for the length of the wire, R for its 
resistance, and d for its diameter, to make measurements in the underground net-
works. Even though this formula is material specific, it is very close to the conven-
tional school-type formula because it represents the three main quantities, namely 
the resistance, R, the length, L, and the diameter, d, of the wire. However, it is solved 
in terms of the length of the wire for convenience because practitioners replace the 
known quantities, R and d, to find the distance (L) between the point of measure-
ment and the unknown, faulty point in the wire. At the same time, the number 45 
represents the constant terms, namely the combination of the resistivity of the wire 
and characteristics of the area of the circle. The students were asked to describe the 
elaborated formula, relate this formula to their previous knowledge, and also com-
pare it with the conventional one. Typical questions addressed to the participants 
were: “Can you describe this formula? Have you ever seen this formula before?”
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The graph The graph came from a technical book from the specific organization 
(see Fig. 15.3). It is a typical graphical representation of two quantities (resistance 
versus length) and represents this relation for three wire diameters (i.e., 0.4 mm, 
0.6 mm, and 0.8 mm). At the same time, it explains the need to change the diameter 
at certain distances to keep the resistance from exceeding the value of 1000 Ω (this 
is the maximum value of resistance on the y-axis). Hence, this representation is the 
only one that explains in detail the TASK.

The students were asked to interpret the information provided in the graph and 
compare the three different drawings and relate them to the initial table and the 
TASK in general. The typical questions addressed to the students were as follows: 
“Can you interpret the information presented in the graph? Can you relate the graph 
with the table information?”

We consider this application of the above linear function, through the use of the 
different representations, to be a “novel situation” for apprentice students because it 
was something they had never encountered or been trained to navigate. The novelty 
of this situation is the authenticity of the setting (the workplace phenomenon and 
the four WRs that describe aspects of this phenomenon) and its different orientation 
compared to students’ academic and school experiences.
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15.2.4  The Participants

The apprentices The apprentices were five male undergraduate students of an 
engineering educational institute in their last year of their studies. Three were from 
the Department of Electronics (St3, St4 and St5), one from the Department of 
Electrology (St2), and one from the Department of Informatics (St1). All of them 
had successfully completed the courses required for their degree and they were 
doing their 6-month internship in various departments of the organization. During 
their internship, they mostly assisted a technician on some fieldwork assignments.

St1 (23 years old) was studying informatics. Even though mathematics was one 
of his favorite subjects, he did not usually attend the academic lectures because he 
could not see any links between mathematics and the field of informatics. The object 
of his work activity was to report faults appearing in the central network (between 
Athens and the local area). He was not allowed to work outside the main building. 
Hence, due to apprentice restrictions, he did not have the chance to see technicians 
performing the specific workplace task we focus on in this study. St2 (22 years old) 
was studying electrical engineering. He had a positive attitude towards mathematics 
and, as he mentioned, he had not come across many difficulties in mathematics 
throughout his school and academic studies. In all our discussions, he was in favor 
of empirical ways of learning. “I believe that seeing and working on something 
helps me to know it better,” he told us, and this was the reason he enjoyed learning 
during his internship more than during his academic studies. During much of his 
internship, St2 was accompanying the technicians in their fieldwork. St3 (22 years 
old) and St4 (23 years old) were both studying electronic engineering. Although 
they both expressed positive attitudes towards mathematics in their early school 
years, they admitted they had subsequently lost interest. St3’s internship was in the 
Athens central building of the organization. He was enthusiastic about his intern-
ship activities and was looking for chances to take on responsibilities. St4’s intern-
ship was in a small Greek town and he was accompanying professionals in their 
fieldwork. St5 (21 years old) was studying electronics as well. He expressed nega-
tive feelings towards mathematics, and, as he claimed, he faced a lot of difficulties 
during his school and academic studies. In addition, he found it difficult to relate 
mathematical processes to engineering concepts in his academic studies. St5’s 
internship took place in the central station of this telecommunication organization, 
located in a small Greek town.

The practitioners The mentors at the workplace were practitioners with whom the 
students collaborated. They contributed to this process by offering artifacts and 
explanations that could act as boundary objects in this process.

The researchers The first author was teaching mathematics in the students’ insti-
tution. Both authors designed this intervention to investigate the issue of transfer of 
mathematical knowledge between mathematics in the academic and workplace 
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domains. Moreover, the first author acted as a boundary person from the university 
to the workplace, by bringing authentic tasks from the workplace where she had 
seen connections to mathematics and also by encouraging students to reflect on 
mathematics they had met at school or at college. The researcher, the mentors, and 
the students created a partnership to bring changes to the way that internships had 
been implemented for several years, and to facilitate the creation and the develop-
ment of a shared object between academic and workplace mathematics.

15.2.5  The Process of Data Generation

The whole process lasted 8 months given that not all students started their internship 
at the same time. The data came from semi-structured individual interviews and 
ethnographic observations in the first half of students’ internships and structured 
interviews during the second half of their internships (Table 15.1).

Concerning the ethnographic observation phase, the first author followed the stu-
dents in a fieldwork activity and discussed with them the object and the goal of the 
specific activity. Field notes were kept during this part of the study. Each individual 
interview lasted approximately 1 h and was audio recorded. Only in the case of St3 
was there no ethnographic observation. This was due to the strict rules at the par-
ticular place at which he was completing his internship. Initially, the questions 
focused on students’ school and academic experiences and their dispositions and 
attitudes towards the subject of mathematics. Subsequently, the questions focused 
on their work experiences and on connections they made between these and their 
schooling. Finally, our aim was to design three interventions that we had identified 
in the first part of our research project (Triantafillou & Potari, 2010). In this chapter, 
we present our results concerning one of these interventions related to the linear 
function concept. This intervention took place during the second half of students’ 
internship program.

Table 15.1 Research tools—duration of the whole project

No. of interviews Ethnographic observation (duration)

St1 6 3 (3 h)
St2 5 5 (1.5 h)
St3 5 –
St4 4 1 (2 h)
St5 5 2 (2.5 h)
Total 25 11 (9 h)
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15.2.6  Data Analysis

Initially, the analysis of the data was based on grounded theory techniques such as 
open coding and the constant comparative method (Charmaz, 2006). Then, the 
emerging categories were conceptualized and characterized in relation to our theo-
retical framework.

Concerning the first research question about the shared object that the students 
formed, we coded participants’ statements in terms of three dimensions that reflect 
the semiotic means of Radford’s objectification theory (2008): (a) students’ mean-
ings of the mathematical object (the functional relation), (b) the origin of students’ 
meanings in relation to the two activity systems (academic or workplace), and (c) 
the students’ reasoning while making sense of the TASK. The analysis was con-
ducted for each student and for every representation with respect to the above 
dimensions. Then, synthesis of the above dimensions was made to identify the 
image of the shared object each student developed while facing the different WRs. 
This image was characterized using the three layers of generalization (i.e., factual, 
contextual, and symbolic). Thus, three cases were identified in relation to the shared 
object that the students formed while facing all the WRs. In Case 1 (St1) and Case 
2 (St2 and St4), the students developed the potentially-shared object and reached the 
symbolic level of generalization, whereas in Case 3 (St3 and St5), the students 
remained at the contextual level, not managing to develop this object.

To address the second research question about how the shared object was devel-
oped, we analyzed the data in relation to the elements of the extended mediational 
triangles of the two activity systems for each student (tools, community, rules, divi-
sion of labor, and the object or motive). The tools included the WRs, the knowledge 
resources and terms students themselves brought from their academic and their 
internship experiences, or the information provided by the researcher and the pro-
fessionals. The workplace community included experts and practitioners whereas 
the academic community included the researcher and teachers. The rules of the two 
communities and students’ division of labor were identified mainly from the ethno-
graphic phase of this study. The object or motive included students’ emotional reac-
tions while trying to overcome tensions in their attempts to link the objects of the 
two activity systems. In this chapter, we present our analyses of St1, St2, and St3 as 
illustrative cases of different forms of the shared object and of the manner in which 
this process was developed.

15.3  Results

We present the three illustrative cases of different forms of the shared object and of 
the ways the different forms that developed emerged from the analysis. Case 1 
refers to St1, who formed a shared object at the symbolic level through his persis-
tence to overcome the tensions he met; Case 2 refers to St2, who also managed to 
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form a shared object at the symbolic level, where the technician’s support contrib-
uted to helping St2 overcome the tensions he met; and Case 3 refers to St3, who 
remained at the contextual level.

In the first part, we present students’ images of the shared object individually 
while they were facing each one of the four WRs. We use data extracts and students’ 
statements to illustrate semiotic elements of students’ images. In the second part, 
we try to identify how the shared object developed for each case with respect to the 
elements of the academic and workplace activity systems.

15.3.1  Students’ Images of the Shared Object

Case 1 (St1) In the table task, the researcher presented the table representation to 
St1 and asked him if previously he had had the chance to hear about the TASK as it 
was presented in the table. He responded positively by relating the TASK with a 
discussion he had heard among technicians in his internship (Line 1.1). This discus-
sion was about the limitations that specific diameters of copper wires have for high- 
speed data transmission. His further reasoning was naïve, given that St1 related the 
telecommunication data amount with the volume characteristics of copper wires 
(Line 1.3).

1.1. St1: Yes, I did. There was a discussion about the doubling of speeds 
from twenty-four [1024 kb/s] to two forty-eight [2048 kb/s] and because organiza-
tion’s entire network is working mostly with zero point six [St1 refers to 0.6 mm 
diameter copper wires], it [the network] could not afford such high speeds.
1.2. R: Does it sound reasonable to you?
1.3. St1: Maybe it is because there is a bigger data amount. I am not so 
satisfied with my response though […] it has to do with the resistances and with 
some magnetic fields that are created inside the cable, this is what I remember … 
but I’m not so sure, maybe I make a mistake. We could ask a technician [to verify 
his response].

The semiotic means that St1 used while facing the table representation came 
from the workplace context (i.e., recalling technicians’ discussions [Line 1.1] or 
sensual perceptions [“there is a bigger data amount”]), and from his academic expe-
riences (“it has to do with the resistances and with some magnetic fields”). St1 made 
incomplete arguments by using raw information from both activity systems, and 
even though he started to objectify the role of the hidden variable (i.e., the resis-
tance), he was not able to describe a complete argument about the TASK.

On the one hand, when facing professionals’ explanations in the form of the 
metaphor, St1 seemed to interrogate this workplace practice (“It is a little weird 
logic”). This was perhaps because his academic experiences conflicted with this 
way of reasoning. On the other hand, the metaphor seemed to strengthen his initial 
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idea that there is a relation among the three quantities R, l, and S, as indicated by his 
positive statement, “Yes, it has to do with a relation” (Line 1.4).
1.4. St1: Here I see the losses as an error in signal transmission and what is 
the reason for the errors of the signal transmission? [He asks himself and he 
responds:] maybe because of the length of the wire… maybe it has to do with the 
magnetic fields but also with the resistance, as it comes to my mind, but I do not 
know if it is true. It reminds me of school physics. […] Yes, it has to do with a rela-
tion …it is difficult to remember; it has been years now.

The metaphor helped St1 to verify that the hidden variable in the table was the 
resistance but he expressed many hesitations about his capability to objectify the 
mathematical object presented in a metaphorical way. He was relating the task with 
the subject of school physics but his argument about the workplace task was still 
incomplete.

Hence, St1’s images of the shared object, at this point, were factual and fragmen-
tal because they were mostly based on scattered information from the workplace 
and his academic and school experiences. Even though he objectified the central 
role of the resistance, he could not make a complete argument about the TASK.

The elaborated formula (L = R ∙ 45 ∙ d2) verified St1’s initial idea about the role 
of the resistance and provided him the tools to change his mode of describing the 
relation from general ways (“when one increases and the other increases as well”) 
to describing the mathematical structure of this relation (Line 1.6).

1.5. R: What do you see in this relationship, can you describe it to me?
1.6. St1: I see that as the length increases the resistance increases as well. 
The parameters are proportional [explains] if d is known and R gets the value 1 let’s 
say, L will be forty-five times d squared; if it gets the value two will be two for forty- 
five d squared.

Then, the graphical representation was given to him and he was asked to interpret 
the information presented in it. St1 referred to the slope notion and he argued as 
follows: “The bigger the diameter the lower is the slope.” At the same time, it was 
hard to select where to focus on the graphical data (“For the same distance . . . for 
different distance”). Subsequently, he took the same value of resistance (“550 Ω”) 
and found the length of the copper wire for different values of diameter (“when is 
0.4 mm the distance is 2 km when is 0.8 mm it is 5 km”).

In the formula task, St1 recognized and described the mathematical structure 
presented in this representation (Line 1.6) by relating the resistance with the other 
two quantities. The origin of these explanations were his mathematical and aca-
demic experiences. In the beginning of the graph task, St1 used mathematical 
notions (slope); he identified covariance between different variables (slope and 
diameter); and he was feeling confused about where to focus. We consider his level 
of generalization to be contextual because the new object was partly shared between 
the two activity systems and, at this point, his argument about the TASK was still 
incomplete.

After the graph task, St1 proposed to solve the formula for different values of L 
with the following statements: “if I take L1 and L2,” and “L1 = R × 45 × 0.16 and 
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L2 = R × 45 × 0.64 and in this way we can see which line corresponds to each diam-
eter.” Then, the researcher explained that the maximum resistance of a wire is 
1000 Ω and St1 responded as follows by providing a complete argument about the 
workplace task:
1.7. St1: I take the limits [he refers to the upper limits of the resistance 
when the copper wire is of a certain diameter], on the 6 km [we use wires with 
diameters] 0.6 [refers to the table representation], on the 0.8 [wires with diameters 
0.8 mm] it is better; of course if they tell me that they can use all three types of 
diameters then yes! In the informatics we do the same on similar matters we take the 
smaller one which satisfies the restrictions and budget we have.

In the last part of the intervention, we see that St1 took initiative to relate the 
function to the graph and used this relation to explain the table. Also, he realized the 
practical consequences of the use of different types of diameters (Line 1.7). The 
shared object at this point had a symbolic character because St1 seemed to develop 
control of how to use his math-related and work-related knowledge, by realizing 
which aspects of the representations he should focus on, identifying the practical 
consequences of the technicians’ selections, and relating aspects of this task with 
his own academic and professional experiences.

Case 2 (St2) When the researcher asked St2 to explain the table representation 
initially, he tried to explain the TASK by himself (“I know from my studies in elec-
trical engineering [it is due to] the power transmission or it is due to heat losses”). 
At this point, he realized the insufficiency of his reasoning, so he referred to a tech-
nician who was present in this discussion. The discussion started as follows:

2.1. St2: [he refers to his workplace supervisor] Mr. [...] we have a table 
with distances and cross sections in the urban network and as the distance increases 
the cross section of the cable increases as well.

In the beginning, St2 related the table information with his academic studies “in 
electrical engineering” and used notions such as “power transmission” and “heat 
losses.” He did not identify the hidden variable as St1 did, and his argument was 
false and irrelevant to the situation. He described the relation presented in the table 
to the technician in a general way (“as [one] increases [the other] increases as well”) 
but instead of referring to diameters of the copper wires, he referred to “cross 
sections.”

In Lines 2.2 and 2.3, we present the discussion between the technician (T) 
and St2.

2.2. T.: [he corrects St2] It is not that the cross section increases… we 
must increase the cross section in order to have less voltage drop. We have losses … 
if we use 0.4 from here to [he refers to a suburb 8 km from the local organization 
station] it is not possible the signal to arrive… we must use 0.8.
2.3. St2: Why do we have a voltage drop?

The technician extended St2’s general presentation of the proportional relation 
between cross sections and distances (Line 2.1) by emphasizing the increase in the 
cross section as a necessity in the workplace context (“we must increase…”; Line 
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2.2). In the same line, he reasoned about this necessity (“it is not possible the signal 
to arrive [at certain distances].” Afterwards, the technician referred to the notion of 
“voltage drop” and he explained to St2 that voltage drop “is due to the resistance … 
all the copper wires do not have the same resistance.” Furthermore, he presented the 
inverse proportional relation between resistance and diameter as follows: “When 
the copper wire has diameter 0.4 the resistance is high but when we take wires with 
larger diameter the resistance becomes smaller … so when the distance increases … 
what do we do? We increase the diameter.” In addition, the technician provided 
examples of how they managed to balance the increase of the distance when a sub-
scriber moved from near the station to another place further away from the main 
station as follows:
2.4. T: I do not know if you heard yesterday that I said something when 
the [names the particular subscriber] moved from here to [names the new place] I 
said we would need two couples of wires, remember what I said? [then he explains 
why the use of a pair of wires was necessary] when we use one pair of wires [the 
signal] will go to no more than 5 km with 0.6 [0.6 mm diameter] if I use a pair of 
wires instead of a single one the signal will go up to 10 km or maybe 8 or 9 km.

The above excerpt indicates that St2 was present in an instance of the particular 
workplace task this study focuses on [Line 2.4]. During this instance, St2 did not 
have the chance to make connections with his academic knowledge. The techni-
cian’s reasoning through the use of practical examples was helpful to St2 because it 
revealed the role of the hidden variable in the table representation (i.e., the resis-
tance). However, when the researcher asked him to explain the specific workplace 
task, St2 argued as follows: “When we increase the distance, we use more amount 
of copper and this results in an increase of the cable’s resistance.” We consider this 
argument to be incomplete because his reference to the functional relation is only 
partially complete.

When the researcher presented the algebraic relation in a symbolic form (L = R ∙ 
45 ∙ d2), St2 was ready to make an argument about how the relations between the 
three variables affect each other: “The longer the length will be, the larger the cross 
section is [he corrects] the cross section must be so as to lower the resistance.” 
Subsequently, St2 identified the graphical relation between R and L to be a line and 
he argued as follows: “If we increase the length it is impossible the resistance not to 
increase as well.” In the graph task, St2 was asked to reason about the changes that 
he observed in the different lines, and he responded, “There is a different rate of 
change between the resistance and the length of the wire,” and continued by reason-
ing about the difference in the three types of wires: “The more the cross section 
increases the less the resistance increases, while the length also increases, more 
smoothly …the increase between resistance and length is smoother in large cross 
sections than in lower ones.”

St2’s images of the shared object at this point were based on relating the three 
main quantities R, L, and S (“the longer the length [L] will be the larger the cross 
section [S] must be so as to lower the resistance [R]”) in a flexible way. He used a 
comparative phrase (“so as to”) to indicate how the increase in the cross section of 
the wire balances the increase in the resistance due to the increase in the length. In 
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the graph task, to describe the different slopes of the three lines, St2 used a mix of 
academic terminology (“different rate of change”) and embodied expressions 
(“smoother increase”), and his argument was almost complete. However, we did not 
consider his argument about the workplace task to be fully complete because he did 
not yet know the workplace restrictions about the maximum resistance of 
1000 Ω. This information was essential for understanding the reasons for changing 
wire diameter beyond certain distances.

St2 referred to graphical details such as the values that the resistance takes for 
different types of diameters and across a range of distances, and he argued that “if 
we go to 5 kms and we use 0.4 then we will go beyond the 1000 Ω so we use wires 
with diameter 0.6.” Even though some of his expressions referred to perceptual 
aspects of the graph (“smooth changes”), we can see that his explanations went 
beyond the particular data. St2 connected the graph with the table as follows:

Until 3 kms [he refers to values on the table], if we use copper wires with diameter 0.4 ... 
we are up to here [pointing to the maximum value of the resistance]. If we go to 5 kms and 
we use 0.4 then we will go beyond the 1000 Ω so we use wires with diameter 0.6.

Then, the researcher asked him why not always use wires with diameter 0.8 mm, 
and he responded: “This could be better, but it would cost a lot …they save money 
in this way, otherwise a big amount of money could go there.”

The shared object at this point had symbolic characteristics because St2 used the 
graphical details to explain the table representation (i.e., the limitations of using 
specific diameters of copper wires for certain distances). Moreover, he argued that 
the use of different types of diameters instead of the larger one, which is “better,” 
was to lower the cost expenses (“they save money in this way”).

Case 3 (St3) St3 reasoned about the distance–diameter relation presented in the 
table by using his immediate work-related experience: “When we are nearby, we 
leave the wires without any protector. As the distances increase, we see that they put 
more protectors, plastics, etc. so they become thicker.” To further reason about why 
this really happens, he used the notion of signal quality. This notion was central in 
his studies in electronics and his workplace experiences in the Central 
Telecommunication Centre in Athens.

3.1. St3: It sounds reasonable to me. When you have a copper wire to cover 
a short distance the small diameter is enough because you do not have many 
demands from the cable … that is when it has to travel a distance of one hundred say 
kilometers it needs ... let’s say 100% quality after five hundred kilometers drops a 
little it becomes 95%.

St3’s images of the shared object were completely fragmental and bound to con-
crete objects from his work-related and academic experiences (“signal quality”). He 
did not identify the role of the hidden variable and his argument related to the TASK 
was incorrect at this point.

In the professional explanation task, St3 encountered the metaphor. St3 related 
the metaphor to the TASK as follows: “I can see that the water canal as something 
analog to the wire” and he identified the losses that the metaphor referred to as 
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“noise distortions.” Thus, the metaphor did not add to St3’s understanding. 
Furthermore, he moved from false arguments (“relating length of the wire and sig-
nal quality”) to naive ones (“protectors in wires result in increasing the diameter”).

St3’s image of the shared object at this point was based on fragmental percep-
tions from his work-related experiences (“we see that they put more protectors, 
plastics”) and his academic experiences (“noise distortions” and “signal quality”). 
The latter notions were central to his academic engineering studies but irrelevant to 
the specific functional relation.

In the formula (L = R ∙ 45 ∙ d2) task, St3 identified algebraic relations between 
quantities presented in this sign (i.e., the R–L proportional relation and the R–d 
inverse proportional relation). He identified the first directly from the formula and 
the latter by solving the equation for R: “R is equal to L over 45 times d squared.” 
Moreover, he eventually related the elaborated formula and the well-known aca-
demic one by referring to the role that the parameter ρ plays: “Yes, it is the resistiv-
ity …it is an intrinsic property of the wire. It depends on the material the wire 
is made.”

In the graph task, St3 recalled the “slope notion” and he used it to relate the slope 
with the inverse proportional relation of R–d: “Since the qualities are inversely pro-
portional the bigger cross-sectional area the lower the slope is.” Then, the researcher 
asked him to relate the graph with the table representation, but St3 responded, “Both 
are correlated with resistance of the copper wire.”

The formula representation helped St3 to shift from his fragmental and factual 
understanding of the TASK to a contextual understanding when he identified alge-
braic relations between the different quantities presented in the formula (R–L pro-
portional relation and the R–d inverse proportional relation) but not in a connected 
way (i.e., how the one relation affects the other). In this explanation, we can identify 
typical ways of treating algebraic relations in academic mathematical tasks where 
there is no need to take into consideration how the one affects the other. Finally, 
even though St3 recalled mathematical notions from his academic studies (e.g., the 
slope, the diagonal line), he could not manage to use them meaningfully to provide 
a complete argument about the workplace task.

We concluded that St3 remained at a contextual understanding because, on the 
one hand, his mathematical knowledge seemed to be fragmented and situated and, 
on the other, his working experience was mostly irrelevant to the particular 
TASK. Furthermore, he did not manage to use the graph data as tools for reasoning 
about the workplace task presented in the table.

In Table 15.2, we summarize students’ images of the shared object while facing 
the four WRs across the three cases. This shared object was characterized as factual, 
contextual, and symbolic.

The shared object all students developed while facing the table and profession-
als’ explanations was factual. Their semiotic means were coming from both their 
academic fields (e.g., heat losses for St2 or signal quality for St3) and their intern-
ship experiences. These means consisted mostly of irrelevant scientific notions and 
sensual perceptions (e.g., using protectors to increase the diameter of the wire). The 
meaning of the mathematical object was partial (only St1 identified the role of the 
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hidden variable) and their arguments about the TASK were mostly false or 
incomplete.

The shared object all students developed while facing the elaborated formula and 
the graph was contextual. Even though they used their academic experiences to 
describe the mathematical object, these explanations were not sufficient to explain 
the TASK. This was mostly because they did not know the scientific aspect of the 
maximum resistance that preserves the signal quality. When the researcher informed 
them about this scientific aspect, St1 (Case 1) and St2 (Case 2) linked aspects of the 
different WRs and used the mathematical object as a tool to provide a complete 
argument about the TASK. Furthermore, St1 related the practical argument behind 
the TASK (the lowering of cost) with his own professional experiences. Cases 1 and 
2 are considered to be the developmental transfer cases because they had developed 
the potentially shared object between the two activity systems whereas Case 3 was 
considered to be the non-developmental transfer case.

Table 15.2 The shared object across cases for all WRs

Shared object 
(WRs) Case 1 Case 2 Case 3

Factual (table & 
professionals’ 
explanations)

Recalling technicians’ 
discussions about aspects 
of the TASK

Using technician’s 
explanations and 
technical terminology.

–

Identifying and verifying 
the hidden variable (R).

The hidden variable (R) 
is presented by the 
technician.

–

Recalling scientific notions from their academic fields mostly irrelevant to 
the mathematical object; developing sensual perceptions from their 
internship.
Making general description of the mathematical object in relation to two 
quantities (L, s).
Making false or incomplete arguments about the TASK.

Contextual 
(formula & graph)

Academic-based 
description of the 
mathematical object.

Using the balance 
metaphor to describe 
algebraic relations in the 
mathematical object.

Academic-based 
description of the 
mathematical 
object.

– – Relating the 
mathematical object 
with his academic 
studies.

Identifying and describing algebraic relations between three quantities.
Recalling scientific notions relevant to the mathematical object (e.g., the 
slope).
Making incomplete arguments about the TASK.

Symbolic Linking all WRs; arguing about the scientific and 
practical dimensions of the TASK.

–

Using the mathematical object as a tool in reasoning 
about the TASK.

–
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15.3.2  The Process of the Development of the Shared Object

Students’ objects or motives concerning the TASK Aiming to build relations 
between the objects of the two activity systems (academic and workplace) caused 
difficulties and tensions for all students. However, St1 and St2 managed to over-
come them and develop a shared object whereas St3 did not succeed. St1 showed 
interest in understanding the TASK and this was present in all his activity. In St1’s 
case, we identified a number of emotional reactions during his activity. These were, 
for example, his initial reluctance to proceed with the task or his self-evaluation of 
his ideas and suggestions. In the latter case, he was articulating the possibility of 
other, more appropriate interpretations that might exist besides his own (“maybe I 
make a mistake… we could ask a technician”). Even though the TASK was not so 
close to his informatics studies, he persisted and managed to overcome his hesita-
tions and his difficulties (e.g., where to focus on the graphical display). Furthermore, 
we can see changes in his statements of his involvement (i.e., from negative “I do 
not know” and “I do not remember” to positive ways of acting: “I’ll solve the for-
mula,” “I’ll take the limits”). St2 was motivated to be engaged with the TASK, 
which was relevant to his professional field. When he realized his initial difficulties 
in understanding the TASK, he searched for help from a technician. This brought 
him some tensions due to the different ways of explaining mathematical relations in 
his academic studies and the ones presented by the technician. He managed to over-
come these tensions eventually while facing the formula and the graph, which were 
closer to his academic experiences. St3 did not make substantial effort to understand 
and argue about the TASK, maybe because it was beyond his professional field 
(electronics).

Mediated tools and boundary objects The table representation was nontranspar-
ent for all cases. Students’ first interpretations of the table were fragmental (some-
thing they heard, they saw, something it reminded them of). The professionals’ 
explanations (metaphor or practical examples) seemed not to help the students to 
make significant shifts in the shared object they had developed in the table task 
because these explanations were bounded in the unfamiliar-for-them workplace 
context. When all students faced the formula and the graph, which were closer to 
their academic experiences, they changed their mode of mathematical denotation 
(referring to and describing algebraic relations). For example, the formula provided 
St2 mathematical tools that were absent in the technician’s reasoning (i.e., algebraic 
relations presented in a symbolic form). Moreover, this particular mathematical 
object is present only in physics texts in students’ academic studies, with an empha-
sis on its scientific characteristics, whereas it is unusual for it to become a tool in 
students’ academic mathematical practices.

The communities, rules, and students’ division of labor The researcher (as a 
member of the academic mathematics community) facilitated the interactions 
between the different activity systems by probing all students for reasoning and 
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clarifications, provided information about the limits of the resistance, and stimu-
lated students’ reflections. The technician (as a member of the workplace commu-
nity) supported Case 2 to develop understanding by providing examples of the 
usage of the functional relation in his everyday work. This support was absent in 
Cases 1 and 3. The technician’s support was crucial because he revealed the role of 
the hidden variable, he provided instances of this TASK in action, and he provided 
professional explanations. Concerning the rules in the two communities, in the aca-
demic context, science and mathematics are taught separately whereas in the work-
place context, the TASK incorporates aspects from both fields. Finally, the fact that 
St3 did not have access relevant to the TASK fieldwork activities maybe acted as a 
limiting factor in his transferring process.

15.4  Concluding Remarks

In this chapter, we presented three illustrative cases of students’ transferring process 
while they were trying to objectify the role that a functional relation from their aca-
demic studies played in their reasoning about an authentic TASK. This TASK con-
cerned the selection of the proper copper wire in a local subscriber network. The 
above functional relation was represented by four different WRs (a table, profes-
sionals’ explanations, an elaborated formula, and a graph). By conceptualizing 
transfer as a sociocultural, meaning-making process of objectification, we used the 
theory of developmental transfer by Engeström (2001) and Radford’s (2008) objec-
tification theory as our analytic and theoretical tools. Transfer in this way is concep-
tualized as the development of a shared object between the academic and the 
workplace activity systems. The above theoretical constructs helped us to zoom in 
on the nature of the shared object across the WRs and on how this shared object was 
developed. The three illustrative cases were: Case 1, which refers to St1, who man-
aged to revisit the functional relation through many tensions and with much persis-
tence; Case 2, which refers to St2, who also managed to revisit the functional 
relation but with the technician’s support; and Case 3, which refers to St3, who 
made several connections with his academic studies but who could not manage to 
overcome the contextual restrictions that the WRs as well his division of labor in his 
internship were imposing on him.

We identified shifts in participants’ meanings of the functional relation in their 
attempts to interpret the four WRs. Students’ first interpretations of the table were 
factual and fragmental (something they heard or saw in their fieldwork or something 
they remembered from their academic studies). The table had a form of a cultural 
inscription that was satisfying particular workplace collective and communal pur-
poses and was thus nontransparent for the newcomers in this community (Williams 
& Wake, 2007). The professionals’ explanations did not help participants to make 
shifts in the shared object they had developed in the table task. The formula, on the 
one hand, helped all participants to change their mode of mathematical denotation 
(referring to and describing algebraic relations) whereas, on the other hand, they 
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relied mostly on their academic-oriented ways of treating algebraic relations. Thus, 
students’ understanding of the formula task was mostly contextual, originating from 
their academic and school experiences. The same happened when students faced the 
graph. Afterwards, Case 1 (St1) and Case 2 (St2) managed to link the different WRs 
and to reason by taking into consideration the requirements of this specific context 
and thus develop a symbolic understanding of the underlying relation. However, St3 
(Case 3) was not ready to overcome contextual restrictions that this inscription was 
imposing on him. Hence, the type of WRs seemed to influence students’ transfer-
ring process in certain ways.

St1 (Case 1) was the only participant in this study who managed, without any 
help from the workplace community, to develop his understanding of the functional 
relation as required in this context. A factor that contributed in this direction was his 
persistence to overcome many challenges (hesitations, drawbacks, tensions) he met 
throughout this activity. This result is in line with other relevant findings about the 
role of affective factors in transfer (Evans, 1999). Another factor that promoted 
participants’ attempts to relate their academic to the work-related knowledge was 
the role of the members of the academic community (the researcher, for all cases) 
and the workplace community (the technician for Case 2) who acted as mentors by 
providing the necessary scaffolding that participants needed to complete the tasks. 
In contrast, the embeddedness of certain representations in workplace expertise (the 
table, the graph) and certain ways of reasoning (through metaphors and practical 
examples) acted as constraints in participants’ transferring process. Constraints 
were also present in certain academic behaviors and practices, such as knowledge 
compartmentalization (Mandl, Gruber, & Renkl, 1993), as well as procedural ways 
of treating algebraic relations (Smith, 2011). In addition, participants had to over-
come the differences in the learning processes between their academic and intern-
ship experiences and to identify their role as apprentices in the workplace setting. 
Akkerman and Bakker (2012) argued that apprentices are at the periphery of both 
activity systems (being a student but away from their academic duties and being a 
professional and novice at the same time in their fieldwork).

The results of this study suggest that personal and communal dimensions are in 
a dialectic relationship when apprentice students try to link academic and work-
place experiences. For example, the affective dimension was related to tensions that 
an apprentice might meet due to his division of labor in the work community 
whereas the transfer development presupposes students’ familiarity with the work-
place tools and rules or the type of reasoning used in this setting. In addition, men-
tors from both activity systems might affect students’ transferring activity and 
authentic representations could act as boundary objects between the above systems.

Many researchers have identified internship programs as valuable learning and 
working experiences for apprentice students to relate their school and work-based 
learning processes (e.g., Akkerman & Bakker, 2011). In the Greek educational sys-
tem, these programs do not give any attention to making apprentices’ experience 
more meaningful to them. This study suggests that the use of authentic tasks as well 
as having mentors from the university and the workplace may help to facilitate 
apprentices’ learning. This could be a help for both workplace and academic 
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institutions. Of course, the rules of teaching and learning mathematics at the univer-
sity need to change to include more opportunities for students to reason with and 
develop their conceptual understanding rather than just solving a packet of exercises 
for their final exams.

References

Akkerman, S.  F., & Bakker, A. (2011). Boundary crossing and boundary objects. Review of 
Educational Research, 81(2), 132–169. https://doi.org/10.3102/0034654311404435.

Akkerman, S. F., & Bakker, A. (2012). Crossing boundaries between school and work during appren-
ticeships. Vocations and Learning, 5(2), 153–173. https://doi.org/10.1007/s12186- 011- 9073- 6.

Barab, S. A., & Plucker, J. A. (2002). Smart people or smart contexts? Cognition, ability, and 
talent development in an age of situated approaches to knowing and learning. Educational 
Psychologist, 37(3), 165–182. https://doi.org/10.1207/S15326985EP3703_3.

Beach, K. D. (2003). Consequential transitions: A developmental view of knowledge propagation 
through social organizations. In T. Tuomi-Gröhn & Y. Engeström (Eds.), Between school and 
work: New perspectives on transfer and boundary-crossing (pp. 39–62). Oxford, UK: Elsevier 
Science.

Charmaz, K. (2006). Constructing grounded theory: A practical guide through qualitative analy-
sis. London, UK: Sage.

Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental 
research. Helsinki, Finland: Orienta-Konsultit.

Engeström, Y. (2001). Kehittävä siirtovaikutus: mitä ja miksi? [Developmental transfer: What and 
why?]. In T.  Tuomi-Gröhn & Y.  Engeström (Eds.), Koulun ja työn rajavyöhykkeellä: uusia 
työssä oppimisen mahdollisuuksia [At the boundary-zone between school and work: New pos-
sibilities of work-based learning] (pp. 19–27). Helsinki, Finland: University Press.

Evans, J. (1999). Building bridges: Reflections on the problem of transfer of learning in math-
ematics. Educational Studies in Mathematics, 39(1–3), 23–44. https://doi.org/10.102
3/A:1003755611058.

Haskell, E. H. (2001). Transfer of learning: Cognition, instruction, and reasoning. New York, NY: 
Academic Press.

Konkola, R., Tuomi-Gröhn, T., Lambert, P., & Ludvigsen, S. (2007). Promoting learning and trans-
fer between school and workplace. Journal of Education and Work, 20(3), 211–228. https://doi.
org/10.1080/13639080701464483.

Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cambridge, 
UK: Cambridge University Press.

Leont’ev, A.  N. (1978). Activity, consciousness and personality. Englewood Cliffs, NJ: 
Prentice Hall.

Lerman, S. (1999). Culturally situated knowledge and the problem of transfer in the learning of 
mathematics. In L.  Burton (Ed.), From hierarchies to networks in Mathematics Education 
(pp. 93–107). London, UK: Falmer.

Lobato, J., Ellis, A. B., & Muñoz, R. (2003). How “focusing phenomena” in the instructional envi-
ronment afford students’ generalizations. Mathematical Thinking and Learning, 5(1), 1–36. 
https://doi.org/10.1207/S15327833MTL0501_01.

Mandl, H., Gruber, H., & Renkl, A. (1993). Misconceptions and knowledge compartmentaliza-
tion. In G. Strube & K. F. Wender (Eds.), Advances in psychology (Vol. 101, pp. 161–176). 
Amsterdam, the Netherlands: North-Holland. https://doi.org/10.1016/S0166- 4115(08)62657- 6.

Nunes, T., Schliemann, A. D., & Carraher, D. W. (1993). Street mathematics and school mathemat-
ics. Cambridge, UK: Cambridge University Press.

C. Triantafillou and D. Potari

https://doi.org/10.3102/0034654311404435
https://doi.org/10.1007/s12186-011-9073-6
https://doi.org/10.1207/S15326985EP3703_3
https://doi.org/10.1023/A:1003755611058
https://doi.org/10.1023/A:1003755611058
https://doi.org/10.1080/13639080701464483
https://doi.org/10.1080/13639080701464483
https://doi.org/10.1207/S15327833MTL0501_01
https://doi.org/10.1016/S0166-4115(08)62657-6


359

Pozzi, S., Noss, R., & Hoyles, C. (1998). Tools in practice, mathematics in use. Educational 
Studies in Mathematics, 36(2), 105–122. https://doi.org/10.1023/A:1003216218471.

Radford, L. (2003). Gestures, speech and the sprouting of signs. A semiotic-cultural approach to 
students’ types of generalization. Mathematical Thinking and Learning, 5(1), 37–70. https://
doi.org/10.1207/S15327833MTL0501_02.

Radford, L. (2008). The ethics of being and knowing: Towards a cultural theory of learning. In 
L. Radford, G. Schubring, & F. Seeger (Eds.), Semiotics in mathematics education: Epistemology, 
history, classroom, and culture (pp. 215–234). Rotterdam, the Netherlands: Sense.

Roth, W.  M. (2007). Emotion at work: A contribution to third-generation cultural his-
torical activity theory. Mind, Culture, and Activity, 14(1–2), 40–63. https://doi.
org/10.1080/10749030701307705.

Skovsmose, O. (2014). Critical mathematics education. In S. Lerman (Ed.), Encyclopedia of math-
ematics education (pp. 116–120). Dordrecht, the Netherlands: Springer.

Smith, M. (2011). A procedural focus and a relationship focus to algebra: How U.S. teachers and 
Japanese teachers treat systems of equations. In J. Cai & E. Knuth (Eds.), Early algebraization 
(pp. 511–528). Berlin & Heidelberg, Germany: Springer.

Triantafillou, C., & Potari, D. (2010). Mathematical practices in a technological workplace: The 
role of tools. Educational Studies in Mathematics, 74(3), 275–294. https://doi.org/10.1007/
s10649- 010- 9237- 6.

Triantafillou, C., & Potari, D. (2014). Revisiting the place value concept in the workplace con-
text: The issue of transfer development. Educational Studies in Mathematics, 86(3), 337–358. 
https://doi.org/10.1007/s10649- 014- 9543- .

Tuomi-Gröhn, T. (2003). Developmental transfer as a goal of internship in practical nursing. In 
T. Tuomi-Gröhn & Y. Engeström (Eds.), Between school and work: New perspectives on trans-
fer and boundary-crossing (pp. 199–232). Amsterdam, the Netherlands: Pergamon Press.

Tuomi-Gröhn, T. (2007). Developmental transfer as a goal of collaboration between school and 
work: A case study in the training of daycare interns. International Journal of Human Activity 
Theory, 1, 41–62. Retrieved from https://core.ac.uk/reader/228665672.

Tuomi-Gröhn, T., & Engeström, Y. (2003). Conceptualizing transfer: From standard notions to 
developmental perspectives. Between school and work. In T. Tuomi-Gröhn & Y. Engeström 
(Eds.), Between school and work: New perspectives on transfer and boundary-crossing 
(pp. 19–38). Amsterdam, the Netherlands: Pergamon Press.

van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics 
education: An example from a longitudinal trajectory on percentage. Educational Studies in 
Mathematics, 54(1), 9–35. https://doi.org/10.1023/B:EDUC.0000005212.03219.dc.

Vygotsky, L.  S. (1978). Mind in society: The development of higher psychological processes. 
Cambridge, MA: Harvard University Press.

Wenger, E., McDermott, R. A., & Snyder, W. (2002). Cultivating communities of practice: A guide 
to managing knowledge. Boston, MA: Harvard Business Press.

Williams, J., & Wake, G. (2007). Black boxes in workplace mathematics. Educational Studies in 
Mathematics, 64(3), 317–343. https://doi.org/10.1007/s10649- 006- 9039- z.

Williams, J. S., Wake, G. D., & Boreham, N. C. (2001). School or college mathematics and work-
place practice: An activity theory perspective. Research in Mathematics Education, 3(1), 
69–83. https://doi.org/10.1080/14794800008520085.

15 Studying Apprentice Students’ Transferring Process: The Case of a Functional…

https://doi.org/10.1023/A:1003216218471
https://doi.org/10.1207/S15327833MTL0501_02
https://doi.org/10.1207/S15327833MTL0501_02
https://doi.org/10.1080/10749030701307705
https://doi.org/10.1080/10749030701307705
https://doi.org/10.1007/s10649-010-9237-6
https://doi.org/10.1007/s10649-010-9237-6
https://doi.org/10.1007/s10649-014-9543-
https://core.ac.uk/reader/228665672
https://doi.org/10.1023/B:EDUC.0000005212.03219.dc
https://doi.org/10.1007/s10649-006-9039-z
https://doi.org/10.1080/14794800008520085


Part IV
Transfer Research that Informs Teaching 

and Research



363

Chapter 16
Teachers’ Beliefs About How to Support 
Students’ Transfer of Learning

Jaime Marie Diamond

Transfer, or the idea that one’s learning influences their engagement in novel situa-
tions, provides the foundation on which many teachers interact with students. As a 
mathematics teacher educator, I often find myself thinking about how to structure 
class activities so that the preservice teachers in my classroom are prepared for their 
future interactions with children: What finite set of activities can I present them with 
so that they are prepared to interact with all (or even most) children? When I teach 
mathematical content, the question is similar: What finite set of activities can I pres-
ent students with (and how can I structure the interactions around those activities) 
so that students are enabled to productively engage in future problem-solving situa-
tions? In other words, what can I do now to positively influence students’ future 
interactions? As it turns out, educators in educational systems around the world aim 
to foster the development of students who can use their classroom learning in ways 
that allow for their successful engagement in new situations (e.g., Australia’s 
Ministerial Council on Education, 2008; England’s Department of Education, n.d.; 
Hong Kong’s Curriculum Development Council, 2017; Singapore’s Ministry of 
Education, 2017; The United States’ National Governors Association Center for 
Best Practices & Council of Chief State School Officers, 2010).

Not only do educators seek to support the development of students who can pro-
ductively transfer their learning, but items appearing on both national and interna-
tional assessments are explicitly designed to test students’ transfer, which is often 
conceived in terms of the successful application of concepts and procedures. For 
example, the National Assessment of Educational Progress reports the results of a 
student’s mathematical achievement at one of three levels: Basic, Proficient, or 
Advanced. The three levels are distinguished by the degree to which students show 
“evidence of understanding the mathematical concepts and procedures” comprising 
particular content areas as well as the degree to which students can “apply 
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[emphasis added] mathematical concepts and procedures” in both routine and non- 
routine situations (National Assessment Governing Board, 2017, pp. 71–72). In this 
way, the ability to productively and successfully make use of one’s learning while 
engaging in increasingly novel situations is taken as an indicator of one’s mathemat-
ical sophistication.

Similarly, the 2015 Trends in International Mathematics and Science Study 
(TIMSS) distinguished between and assessed both what students know (i.e., “the 
facts, concepts, and procedures students need to know,” Mullis & Martin, 2013, 
p. 24) and were able to apply (i.e., “the ability of students to apply knowledge and 
conceptual understanding to solve problems,” p. 24) across a range of mathematical 
content areas. Students in many countries including the United States performed 
significantly better on tests of the former than of the latter. Interestingly, there were 
several countries (e.g., Sweden and New Zealand) where the opposite was true—
students performed significantly better on tests of applying than on tests of knowing.

These results raise many questions, including: What are teachers doing to sup-
port their students’ transfer of learning? Alternately, what do teachers believe they 
should be doing to support students’ transfer? Moreover, what is the relationship 
between teachers’ beliefs about and approaches to transfer and those of the people 
who wrote the aforementioned assessments?

16.1  Teachers’ Beliefs About Transfer

16.1.1  Prior Work

Interestingly, research examining teachers’ beliefs about and instructional supports 
for transfer is only just beginning to emerge. A curious reader may wonder whether 
teachers even think about their students’ transfer of learning (i.e., how the learning 
that emerges and develops in the classroom influences students’ engagement in 
future novel situations). In 2013, I reported the results of a pilot study that I con-
ducted to determine just that (Diamond, 2013). In the pilot study, I interviewed 
seven teachers and posed a range of questions including more general questions like 
“What are your goals as a math teacher?” Analysis of the interview data showed that 
teachers do indeed think about transfer, for example, (a) when explaining their 
desire to support the development of students who “know how to transfer their 
knowledge and problem solve in the real world;” and (b) when discussing their 
frustration that so many students fail to make use of their learning in novel situa-
tions (e.g., on a quiz or a test) despite their best efforts to prepare them for those 
situations. Hohensee (2016) reported similar findings. In particular, he found that all 
of his teacher participants were explicitly aware of when their students failed or 
succeeded in making use of their prior knowledge in a novel context.

More recently, I reported the results of a study that provided the field with rich 
images of how teachers think about students’ transfer of learning (Diamond, 2019). 

J. M. Diamond



365

In particular, I described and illustrated six distinct beliefs about transfer (i.e., what 
it is and how it occurs) that the mathematics teachers in my study provided evidence 
of holding. Of the six beliefs, two were focused on students’ content knowledge, 
two were focused on students’ disposition (i.e., their problem-solving approaches), 
and two were focused on students’ affect. Whereas transfer researchers have tended 
to maintain a sole focus on the role that content knowledge plays in students’ trans-
fer of learning, I found that teachers do not. Instead, all but one of the teachers 
provided evidence of holding multiple beliefs about transfer wherein they focused 
on at least two of the following: content knowledge, disposition, and affect. 

16.1.2  This Chapter

The purpose of the present chapter is to shed light on how the teachers referenced in 
the previous paragraph believed students’ transfer of learning should be supported. 
The guiding research question was: What are teachers’ beliefs about how to support 
students’ transfer of learning? Eight practicing teachers engaged in two clinical 
interviews involving instructional tasks related to slope. Analyses of these data 
revealed 12 beliefs about how to instructionally support transfer, providing insight 
into teachers’ images of what it means to “teach for transfer.”

To examine these teacher beliefs, I drew from Philipp (2007) who defines 
beliefs as:

Psychologically held understandings, premises, or propositions about the world that are 
thought to be true…. Beliefs might be thought of as lenses that affect one’s view of some 
aspect of the world or as dispositions toward action. Beliefs, unlike knowledge, may be held 
with varying degrees of conviction and are not consensual. (p. 259)

In other words, when developing instruments to generate data regarding how the 
teachers believed students’ transfer of learning should be supported, I followed 
Philipp and others in assuming there exists a complex relationship among teachers’ 
beliefs, perceptions, and actions.

As the definition suggests, beliefs shape one’s perception of and interactions 
with the world (Pajares, 1992). They serve as filters bringing forth certain aspects of 
a situation while allowing others to fade into the background; in this way, beliefs 
affect what one notices and therefore shape one’s interpretation of a situation (Grant, 
Hiebert, & Wearne, 1998; Mason, 2002). For instance, a teacher may believe that to 
support students in productively transferring their learning, one should support the 
development of conceptually meaningful understandings of various topics; this 
teacher may therefore attend to the nature of a student’s explanation over the cor-
rectness of his or her final answer. Moreover, beliefs position one to act in a certain 
way (Cooney, Shealy, & Arvold, 1998; Di Martino & Zan, 2011; Forgasz & Leder, 
2008; Rokeach, 1968). That is, given a particular situation, beliefs may draw one 
toward one action over another. For example, the teacher above may be moved to 
integrate particular tasks and activities into his or her lessons over others or to probe 
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students for further justification after answers have been given. Such assumptions 
informed the design and sequencing of the instruments I used during data collection 
and helped to illuminate the ways in which the teachers in this study believed stu-
dents’ transfer of learning should be supported.

16.2  Methods

16.2.1  Participants

Eight practicing teachers1 from the southwestern United States participated in this 
study. I recruited both middle school and secondary teachers who provided evi-
dence, during pre-recruitment observations, of considering their students’ transfer 
of learning. Such evidence included verbal statements and enacted practices focused 
on how students’ current learning might inform their engagement in novel situations 
(e.g., asking students, “Where might you use this in your life?”). I also recruited 
teachers on the basis of the mathematics courses they taught (e.g., Pre-Algebra, 
Algebra 1, or Algebra 2) and whether they had recent opportunities to teach about 
slope and linear functions; participants were recruited based on whether they viewed 
slope as part of their curriculum. I chose a specific mathematical topic to provide 
participants with a context in which to ground their conversations about transfer. 
Slope was chosen due to its prominence and importance in mathematics curricula. 
Incidentally, the amount of formal teaching experience varied across the eight par-
ticipants from 0 to 33 years as did their educational backgrounds. See Diamond 
(2019) for more information about the participants as well as the participant- 
selection process.

16.2.2  Data Collection

Overview of the research design Each participant engaged in two 2-hour semi- 
structured clinical interviews (Clement, 2000; Ginsburg, 1997). Prior to the first 
interview, I asked each teacher to reflect on a time they taught about slope and linear 
functions, review their teaching materials, and select an item (e.g., a lesson plan, 
test, class activity) they believed showed an instance wherein they attempted to sup-
port students in “generaliz[ing] their learning to new tasks and/or activities” 
(Diamond, 2013, p. 320). Participants then discussed these items during the first 
interview.

At the end of the first interview and after acknowledging that they may have 
many different goals when creating lessons, I asked each participant if they believed 

1 Pseudonyms were used for all participants in the study.
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they could create or adapt an existing lesson plan on slope for the explicit purpose 
of supporting students in successfully generalizing their learning beyond the specif-
ics of the lesson. All participants responded in the affirmative. They then discussed 
these lesson plans during the second interview.2

I video- and audio-recorded all interviews with a video camera and a table micro-
phone. I aimed the video camera to capture the teachers’ verbal reports, gestures, 
and written inscriptions. All written work and materials were collected.

Instruments I implemented four sets of interview questions over the course of the 
two interviews. The participants’ responses were consistent across the sets of ques-
tions. I, therefore, focus here on the analysis of data emerging during the question 
sets involving each teacher’s Teaching Item and Lesson Plan because these were the 
sets that most explicitly drew from the participants’ actual teaching practices. In 
contrast, another set of interview questions included hypothetical teachers’ class-
room activities. It should be noted that the term “transfer” was not used during the 
interviews. Rather, when appropriate, a general description was used to orient par-
ticipants to the phenomenon of interest. An example from the Interview 1 protocol 
follows:

Tell me a little bit about the artifact/item you chose and how you think it shows that you 
were thinking about helping students to make future use of their learning. (Alternate/addi-
tional wording: …helping students to generalize their learning to new situations).

The Teaching Item Activity During Interview 1, I asked the participants to engage 
in discussion surrounding their teaching items. To gain access to a spectrum of 
beliefs (i.e., from more explicitly to more tacitly held beliefs) about supporting 
students’ transfer of learning, I began by providing teachers with opportunities to 
espouse their beliefs. For example, I asked the teachers: “What in particular were 
you doing to help your students so that they would be enabled to successfully 
engage with new tasks, activities, or situations?” In addition, I designed items to 
generate data from which I could infer beliefs. These inferred-beliefs items included 
showing the teachers mathematical tasks and asking them whether they believed 
students would be able to productively engage with those tasks as a consequence of 
having engaged in activity involving the teachers’ teaching items. The mathematical 
tasks that I showed to teachers varied in terms of the (a) real-world contexts in 
which they were set; (b) mathematical terms used (e.g., whereas “slope” appeared 
in one task, “rate” or “ratio” appeared in others); (c) representations shown (e.g., 
whereas more standard representations like a table or a graph appeared in some 
tasks, non-standard representations like a drawing of a hill appeared in others); and 
(d) quantities (i.e., measurable attributes of an object or event; Smith & Thompson, 
2008) and quantitative relationships described (e.g., whereas most tasks involved 
linearly related quantities like a burning candle’s height over time, one task involved 

2 Time between interviews: 8  weeks (mean); 4.5  weeks (median); 4  weeks (mode); 21  weeks 
(range).
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a quadratic motion situation). I then probed the teachers’ responses, for example, 
asking how they would go about preparing students for their future engagement 
with tasks the teachers identified as being potentially too difficult.

The Lesson Plan Activity During Interview 2, I asked the participants to engage in 
discussion surrounding their lesson plans. As part of the Lesson Plan Activity, I 
asked the teachers to include a new task or activity that they believed students would 
be able to productively engage with as a consequence of having engaged in their 
lessons. Because I told the teachers that they may be asked to subsequently imple-
ment their lesson plans in their classrooms, this activity was designed to generate 
data regarding the instructional supports the teachers might actually enact during 
their lessons and the teachers’ beliefs about how those supports would serve their 
students’ transfer of learning. As part of the larger study, some of the teachers were 
indeed observed as they implemented their lessons; the results of the analyses of 
those data are not presented here.

16.2.3  Data Analysis

Data analysis involved a multistep qualitative process wherein I examined teachers’ 
responses to interview items to identify and characterize their beliefs about how to 
support students’ transfer of learning. In the first step, I transcribed all interviews 
and identified those episodes in which the teachers appeared to address students’ 
transfer of learning. I then reduced the data set to these episodes to prevent data 
overload and subsequently summarized these episodes to establish an account of 
what the teachers did and said prior to any interpretive coding (Miles & 
Huberman, 1994).

In the next step, I coded the data using what Miles and Huberman (1994) consid-
ered “partway between a priori and inductive coding” (p. 61). To capture themes 
about teachers’ beliefs regarding how to support students’ transfer of learning, I 
used a priori codes contained within the transfer literature. For example, some of the 
teacher participants expressed the belief that multiple examples should be used 
when aiming to support transfer—a belief found in the literature (e.g., Gentner, 
Loewenstein, & Thompson, 2003; Markman & Gentner, 2000; Singley & Anderson, 
1989). I induced other categories of teachers’ beliefs using open coding from 
grounded theory (Strauss, 1987). Throughout the analysis, I sought disconfirming 
evidence using the constant comparative method of grounded theory (Strauss & 
Corbin, 1990).

A curious reader may wonder about the relationship between the 12 categories of 
instructional supports presented below and whether, perhaps, any categories might 
be combined. For example, the following three instructional supports may sound 
similar: choose tasks and pose problems that support students’ quantitative reason-
ing, encourage students to infuse a real-world context into a given (decontextual-
ized) problem, and make use of real-world situations (see Appendix for an organized 
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table of the 12 categories of teachers’ beliefs regarding instructional supports for 
students’ transfer of learning). However, the teachers’ beliefs about how each move 
would mediate transfer—via the development of a mathematically valid interpreta-
tion of slope, a visualization and sense-making approach to problem solving, or a 
belief that mathematics is relevant and useful outside of the classroom—is what 
informed the collapsing or separating of categories. See Diamond (2019) for further 
elaboration of methods used during data analysis.

16.3  Results and Discussions

In this section, I illustrate the participants’ 12 beliefs about how to support students’ 
transfer of learning. These instructional supports correspond with the particular 
ways in which the teachers believed transfer occurs (see Appendix). This section is 
therefore organized by the teachers’ beliefs about transfer (i.e., what it is and how it 
occurs).3 Relations among the teachers’ and researchers’ instructional supports for 
transfer are also discussed.

16.3.1  Mathematical Content

Seven teachers provided evidence suggesting they believed that students’ transfer of 
learning involves the role of mathematical content. In particular, these teachers 
believed students would be able to productively transfer their learning to novel situ-
ations if students develop and make use of particular types of mathematical knowl-
edge. In what follows, I describe each of these beliefs about transfer and then present 
the teachers’ corresponding beliefs about how to instructionally support transfer.

Procedures Three teachers believed students transfer their learning to a novel situ-
ation when the novel situation prompts the use of a learned procedure, or predeter-
mined set of steps. For example, the “rise over run” procedure for finding slope in a 
linear context involves isolating two coordinate pairs, finding the “rise” between the 
pairs (i.e., the difference in y values), finding the “run” between the pairs (i.e., the 
difference in x values), and placing the “rise” over the “run.” These teachers did not 
provide evidence of considering the conceptual underpinnings of such procedures.

Corresponding instructional supports There were two instructional moves these 
teachers believed would support students’ transfer of a learned procedure: (a) tell 
students the desired procedure, and (b) use multiple examples. I illustrate each ped-
agogical support for transfer in turn.

3 For further elaboration and exemplification of the teachers’ beliefs about transfer, see 
Diamond (2019).
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Tell students the desired procedure. All three teachers provided evidence sug-
gesting they believed students would be supported in productively transferring their 
learning if they were shown or told the procedure that should be used to solve par-
ticular types of problems. For example, Blake explained that the goal of his teaching 
item (a collection of six activities) was to introduce students to the “rise over run” 
procedure for finding the slope of a graphically represented line (see Fig. 16.1 for 
an example of two of Blake’s activities):

I start with two points on a graph and I’ll define, I will give them an equation, you know, the 
y2 minus y1, but, I really want them to be able to find the slope of a line by identifying two 
points and counting rise and run.

In other words, when asked about how his teaching item illustrated the way in which 
he worked to support students’ transfer of learning, Blake highlighted his demon-
stration of the procedure he ultimately wanted his students to use to find slope.

When shown mathematical tasks and asked whether he believed his students 
would be able to productively engage with them after having engaged with his 
teaching item, Blake made predictions based on whether he believed his students 
would be prompted to make use of the learned procedure. More specifically, Blake 
explained that his students would be better supported in productively transferring 
their learning to The Burning Candle Task than to The Water Pump Task because 
The Burning Candle Task contained a graphical representation; thus, his students 
would be prompted to employ the learned procedure (i.e., they would be prompted 
to choose two points on the line, count the corresponding rise and run, and place the 
rise over the run).

In contrast, Blake believed his students would experience difficulty during their 
engagement in The Water Pump Task, which contained a tabular representation 
including data for the amount of water in a pool at four different times, because the 
task did not contain a graphical representation or a table to be filled in. As he 
explained:

Kids would look at [The Water Pump Task] and think, “Well, I have never done this before” 
and stop there…. They would go, “This doesn’t look the same. I don’t understand what you 
want me to do.” Because it doesn’t give them a table to fill in. The table is filled in and then 
the table looks different that the table[s] before [See Fig. 16.1] and [The Water Pump Task] 
doesn’t give them a graph.

In other words, he believed his students would be unsure of how to proceed when 
confronted with a situation that “looks different.” Similarly, when explaining the 
way in which their teaching items supported students’ transfer, both Anne and 
Donna emphasized the act of telling their students precisely what to do when engag-
ing in particular types of problems involving slope. As Anne said, students “are not 
going to make the connection unless it’s explicit.”

Use multiple examples. Two teachers (Donna and Blake) provided evidence that 
they believed students would be supported in productively transferring their learn-
ing if multiple examples were used during initial learning. Donna believed that the 
use of multiple examples would support her students in knowing when to use a 
learned procedure and Blake believed that the use of multiple examples would 
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Fig. 16.1 Two of Blake’s six activities
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support students in seeing the procedure. For instance, Donna’s teaching item con-
sisted of a lesson on arithmetic sequences and their connection to slope. The lesson 
began with multiple examples of arithmetic sequences and the query to her students, 
“What do they all have in common?” Specifically, Donna said:

I just give them “55, 49, 43,” [and tell them to] continue the pattern. And most kids will go, 
“Oh, it’s going down by 6.” So then we do a couple of those. It can be decimals. It can be 
fractions. It can be—and I want it to be added or subtracted. It doesn’t matter. And we do a 
couple of those and I say, “OK, what do they all have in common? They all have in common 
that this difference, whether it be subtracting 6 from each term or adding 5 to each term, 
that [the difference] is constant.”

In this example, when explaining how her teaching item illustrated her attempts to 
teach for transfer, Donna foregrounded her request that students look across multi-
ple examples that varied in terms of number type (e.g., whole numbers, decimals, or 
fractions) but that all shared a common feature (i.e., a constant difference in con-
secutive terms). Donna explained that after students identify the constant difference 
as the feature shared by all of the sequences, students either spontaneously or via a 
sequence of guided prompts link arithmetic sequences to slope, at which point 

Donna demonstrates the procedure for finding slope, slope
y y

x x
=

−
−

2 1

2 1

. In this way, 

Donna described how she uses multiple examples to illustrate to students when it is 
appropriate to make use of “slope” while engaging with sequences, namely when 
there is a constant difference between successive terms of a sequence.4

Blake seemed to make use of multiple examples for a different purpose. Rather 
than helping students to determine whether a particular situation necessitated their 
use of a demonstrated procedure, Blake believed multiple examples helped students 
see the procedure itself. The six activities comprising Blake’s teaching item varied 
in terms of context but did not vary in terms of formatting or wording (see Fig. 16.1). 
As Blake explained, “this [pointed across his activities] is trying to create, I am try-
ing to show them a pattern … then they would start seeing that pattern.” Here, Blake 
seemed to express his belief that by making use of multiple examples he was help-
ing his students learn to recognize a particular “pattern” for finding slope, namely 
the “rise over run” procedure he had shown them.

Meanings Four teachers believed transfer is related to the meanings students 
develop during mathematical activity. With respect to the topic of slope, these teach-
ers believed that students would productively transfer their learning if students 
developed mathematically valid interpretations such as slope (in a linear context) is 
a ratio describing of the multiplicative relationship between two quantities. When 
making predictions about students’ transfer, these teachers thought about the mean-
ings students might have developed rather than whether a task might cue students’ 
use of a predetermined procedure.

4 The independent variable, with respect to Donna’s arithmetic sequences, is taken to be the ordinal 
placement of a term in the sequence; thus, the “run” or the “x2 − x1” is 1, which means that the 
slope in this case, calculationally, is the same as the constant difference between consecutive terms 
of an arithmetic sequence.
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Corresponding instructional supports There were three instructional moves these 
teachers believed would support students’ transfer of mathematically valid interpre-
tations of slope: (a) choose tasks and pose questions that support students’ quantita-
tive reasoning, (b) use a curriculum that progresses from contextualized to 
decontextualized situations, and (c) provide students with opportunities to explain 
their reasoning. Each instructional move is discussed in turn.

Choose tasks and pose questions that support students’ quantitative reasoning. 
All four teachers provided evidence suggesting they believed students would be 
supported in productively transferring their learning if the tasks and questions they 
posed provided students with opportunities to reason quantitatively (i.e., with mea-
surable attributes). When discussing how their teaching items illustrated their 
attempts to support students’ transfer of their slope learning, these teachers described 
the ways in which students would be supported in conceiving of slope in terms of 
two relevant quantities (e.g., the amount of a particular supply and the amount of 
people in a family) as well as the multiplicative relationship between those quanti-
ties (e.g., we need 12 times as much supply as there are number of people in our 
family).

For example, Patrick explained that to support students’ transfer, he tends to 
avoid using more “traditional,” decontextualized problems and instead selects tasks 
set in real-world contexts and poses accompanying questions to get students think-
ing about the measurable attributes of objects in those situations. In his words:

Instead of collecting data in a traditional sense where it’s x and y tables and it’s we’re graph-
ing x and y, we are graphing distance versus time or we are graphing how much coffee they 
have as days pass and it’s going down; they are using up supplies. Or how much water do 
they have in storage and why does the graph go up and then go down?

Patrick believed that by posing questions about the quantities in real-world situa-
tions (e.g., “How much water do they have in storage?”), students would begin to 
focus on measurable attributes such as the amount of water. Once his students are 
able to identify relevant quantities in various contexts, Patrick explained that he sup-
ports them in conceiving of the relationships that exist between those quantities by 
asking questions like “How much coffee are they using every day?” and “How many 
miles have they traveled each day?” As a result, he believed students would begin to 
conceive of slope in terms of “how much change is happening.”

Patrick described how he planned to be even more explicit about supporting stu-
dents in conceiving of the numerical value of slope in terms of the quantities in a 
specific situation. For instance, when students produced 12 as the slope of the func-
tion, he planned to ask, “What does the 12 mean?” explaining that he wanted to give 
his students “time to think about ‘well, 12 what? It’s 12 what? And why is it 12 of 
something?’” Moreover, Patrick reported that he would ask his students where they 
see the slope of 12 in their graphs, as a way to help students conceive of and coor-
dinate both quantities in the ratio (12 pounds of beans for each 1 person). In this 
way, these teachers consistently discussed posing tasks and asking questions that 
supported students in developing a quantitative meaning for slope as a way to sup-
port students in transferring their slope learning.
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Use a curriculum that progresses from contextualized to decontextualized situa-
tions. Two teachers (Patrick and Kay) provided evidence that they believed students 
would be supported in productively transferring their learning if they made use of 
curricula that progressed from contextualized problem situations to decontextual-
ized tasks and symbolic formulas. Returning to Patrick, he believed that such a 
progression would be particularly helpful in supporting students to make use of the 
meanings they developed while engaging in contextualized problem situations later, 
when they are confronted with decontextualized tasks. That is, students would be 
supported in productively transferring their understanding of slope because they 
could leverage their meaningful interpretations to make sense of decontextualized 
problem situations (as “transfer” tasks). Patrick explained how such a progression 
could be powerful for students:

The first problems they do are all conceptual. So, [for example] they do one and it says “You 
need four inches of shoe lace for every child” and they’re graphing number of children and 
amount of shoe lace … So those are the variables and then we go into some traditional 
examples where it’s purely x and y and it’s an algebraic rule; it’s just the typical Cartesian 
coordinate grid. But they still have to identify where you start at and what is the change? So 
they realize “Oh, it’s the same; it’s either in a word problem, a context, or it’s not.” So, that’s 
what I hope they would be able to do later, is still be able to, we call that [slope], but “Oh, 
no, it’s the same thing.”

In other words, by beginning a unit with a problem which supports students in 
thinking about slope in terms of quantities like “the amount of shoelace” and “the 
amount of children” and, in particular, as the unit ratio 4 inches of shoelace for 
every 1 child, students are first supported in developing a mathematically valid 
interpretation of slope as a ratio of two quantities. Students can then make use of 
such ways of reasoning when presented with “traditional examples where it’s purely 
x and y,” eventually realizing that both kinds of situations involve slope, or a ratio of 
two quantities. In this way, these teachers believed a progression from contextual-
ized to decontextualized problem situations supported students in recognizing both 
types of problem situations as involving the interpretation of slope developed during 
initial learning activities.

Provide students with opportunities to explain their reasoning. Two teachers 
(Richard and Emma) believed that allowing students to explain (verbally or in writ-
ing) their interpretation of a particular problem or mathematical topic would sup-
port transfer. As Richard stated, “If they never can explain it [i.e., slope] in something 
that they do know, I think they are going to have a really hard time later on trying to 
take it to something that is new to them.”

Similarly, Emma expressed her belief that “having students explain their 
answers” (“right or wrong”) supports them in being able to make future use of their 
learning. She believed such explanations would help make students’ ways of rea-
soning more explicit: “I think it’s nice to really talk through what went through their 
mind [be]cause it may make [their thinking] more obvious for them.” Once ways of 
reasoning are made more obvious to students, Emma believed those ways of reason-
ing would be available for future use. For instance, Emma believed that if students 
are supported in reasoning about and verbally explaining the meaning of a particular 
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slope value, then they should be able to make use of those same ways of reasoning 
to explain the meaning of additional slope values.

Discussion of instructional supports for beliefs involving mathematical con-
tent Researchers operating from information-processing views of transfer have 
also suggested versions of the first two instructional supports discussed above (i.e., 
tell students the desired procedure and use multiple examples; e.g., Anderson, Kline, 
& Beasley, 1979; Brown, Kane, & Echols, 1986; Carbonell, 1983; Gentner et al., 
2003; Gick & Holyoak, 1980, 1983; Singley & Anderson, 1989). However, there are 
significant differences in the ways in which researchers and teachers conceive of 
these pedagogical supports. For example, researchers tend to create systematic vari-
ation in the superficial surface details of the multiple examples they use during 
instruction and maintain the underlying structure, or solution strategy, to encourage 
students’ encoding of the common strategy (e.g., Catrambone & Holyoak, 1989; 
Reeves & Weisberg, 1990, 1994). In contrast, Blake believed that sameness in the 
surface details across multiple examples (in terms of formatting and wording) was 
essential for transfer and instead sometimes varied the structure (in this case the 
solution method—see the two examples shown in Fig. 16.1, where solving Part E of 
each problem requires a different procedure).

As discussed in Diamond (2019), the teacher belief about students’ meaning 
mediating their transfer of learning has points of contact with Lobato’s (2006, 2012) 
actor-oriented transfer perspective. However, the teachers in this study significantly 
contributed to the pedagogical actions previously reported in the literature as being 
related to instances of productive transfer from an actor-oriented perspective 
(Lobato, Rhodehamel, & Hohensee, 2012). Specifically, these teachers articulated 
the importance of quantitative reasoning to students’ transfer of learning and dis-
cussed this idea using a variety of curricular materials that practicing teachers cur-
rently use (e.g., The Overland Trail unit of the reform-oriented and National Science 
Foundation-funded Interactive Mathematics Program curriculum). Similarly, the 
teachers elaborated potentially important roles for the sequencing of activities and 
students’ explanations in students’ transfer of learning.

16.3.2  Disposition

Three teachers provided evidence that they believed the transfer of learning involves 
students’ dispositions. In other words, these teachers believed that students would 
be able to productively transfer their learning to novel situations if they develop and 
make use of particular dispositions. Here, disposition is used to refer to a student’s 
approach to problem solving. Whereas the previous section involved teaching 
actions to support students’ transfer of mathematical knowledge, this section 
involves teaching actions to support students’ transfer of a learned problem-solving 
approach. Here, it is the learned disposition itself (rather than the learned procedure 
or meaning) that is believed to transfer across situations.
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A visualization and sense-making disposition Two teachers believed students’ 
transfer of learning is mediated by a visualization and sense-making approach to 
problem solving wherein students imagine themselves in a problem situation in an 
effort to reason about what is going on in that situation.

Corresponding instructional supports There were two instructional moves that 
these teachers believed would support students’ transfer of a visualization and 
sense-making approach to problem solving : (a) encourage students to infuse a real- 
world context into a given problem, and (b) avoid problem statements that tell stu-
dents how to proceed.

Encourage students to infuse a real-world context into a given problem. Emma 
believed that to support students’ transfer of a visualization and sense-making dis-
position, she should encourage students to apply real-world situations to problems 
that are not already set within such contexts. Emma believed that leveraging real- 
world situations would enable students to visualize themselves in problems and thus 
support students in making use of their learned sense-making dispositions. To illus-
trate, note that Emma’s teaching item (shown in Fig. 16.2) is devoid of a real-world 
context. She discussed her hope that students would apply such a context to the task 
to solve it (note the cue at the bottom of the task: “You may use a real world exam-
ple to create your argument.”). She went on to explain that if students did not infuse 
the situation with a real-world scenario, she would remind them to do so and then 
help them to apply a distance versus time scenario to both graphical representations 
to make sense of them. Emma believed that the tendency to apply a real-world con-
text to decontextualized situations would “be something students could use [in the 
future], like if they are grappling with something, put it in a real-world context to 
explain it more.” In this way, Emma believed students who learn to approach decon-
textualized problems by asking themselves “What if I just attach some sort of real- 
world situation to this? How would that help me? Would that reveal more about this 
slope?” will be supported in making use of their visualization and sense-making 
dispositions and, as a consequence, be supported in solving novel problems.

Avoid problem statements that tell students how to proceed. Kay believed that to 
support students’ transfer of learning, she should provide students with open-ended 
problems that avoid step-by-step instructions regarding how to solve them (e.g., 
“Graph the points and then calculate the slope of the resulting line”). She believed 
that open-ended problems would facilitate students’ use of their sense-making dis-
positions because such problems provide students space in which to reason about 
how to proceed. As Kay explained, problems that explicitly tell students what to do 
to may actually “create a roadblock” because they call for specific steps students 
may not know how to carry out. Moreover, Kay believed such problems might actu-
ally prevent students from thinking and reasoning. As she noted, “If you look at a lot 
of textbooks … a lot of the problems are broken down into steps. ‘Step 1: Find 
slope. Step 2: Graph it. Step 3-,’ you know, OK great, where is the thinking?” In 
other words, Kay believed problems that include “steps” deny opportunities to make 
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Task:   Explain why the line in graph #1 has an undefined slope and why the 
line in graph #2 has zero slope.

Graph
#1

Graph
#2

Your explanation can range from the formulas or definition of slope, or you 
may use a real world example to create your argument.  If you think of some 
other argument to form, great! I want your argument to be creative and 
convincing!

Fig. 16.2 Emma’s teaching item
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use of a sense-making approach to problem solving because they directly tell stu-
dents what to do rather than allowing them to think about what they could do.

A group-brainstorming disposition Donna believed that students are more likely 
to productively transfer their learning when they develop a group-brainstorming 
approach to problem solving that involves working in a collaborative setting wherein 
multiple people contribute ideas about how to solve novel problems.

Corresponding instructional support There was one instructional move Donna 
believed would support students’ transfer of a group-brainstorming disposition: 
model the disposition.

Model the disposition. Donna believed that to support students’ transfer of learn-
ing, she should model or enact the disposition she wants her students to develop and 
use. To help students develop a more productive or effective group-brainstorming 
disposition, Donna described how she enacts its various components, for example, 
demonstrating to students how to share ideas in a group setting. For instance, when 
confronted with a novel problem-solving situation, Donna explained that she tells 
students what the problem reminds her of, what she notices about the problem, and 
how she comes up with ideas regarding how to solve the problem:

We do a lot of teacher modeling – “This is how I’m thinking; look I saw this; oh, this 
reminds me of this,” you know, so I do a lot of modeling of how I just kind of reach out and 
grab these things…. So, really once you get that going, then they can start problem solving.

In this way, Donna believed that if students are exposed to productive aspects of a 
disposition, they will be supported in reenacting those aspects, thus taking them on 
as part of their own dispositions. Note that Donna believed students would “start 
problem solving” once they develop the disposition.

Discussion of instructional supports for beliefs involving students’ disposi-
tions Like the teachers in this study, Bereiter (1995) focused on the development 
of dispositions that are necessary or useful. According to Bereiter, previous 
approaches to students’ transfer of learning have emphasized the transfer of facts, 
strategies, or principles and have ignored or backgrounded the transfer of disposi-
tions. Bereiter argued that when teaching for transfer, disposition is of primary con-
cern since the success or failure of a lesson depends on whether or not students are 
supported in making future use of a learned disposition. Bereiter (1995) used dispo-
sition to refer to “some way of approaching things” and the transfer of disposition 
to refer to the idea that students carry over a particular way of approaching things 
into novel situations (p. 23).

In this way, Bereiter suggested teachers reflect on and identify the kinds of dis-
positions that should be fostered. This is what some of the teachers in this study 
appeared to do. Specifically, they identified two dispositions they believed would be 
particularly helpful to students’ engagement with novel problems: a visualization 
and sense-making disposition and a group-brainstorming disposition. In addition, 
Bereiter suggested teachers create situations in which those desirable forms of 
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thinking and approaching problems take place. Again, this is precisely what some of 
the teachers in this study did, yielding the three teaching actions discussed above, 
two of which were believed to support students’ development and enactment of the 
former disposition and one of which was believed to support the latter.

16.3.3  Affect

Seven teachers provided evidence suggesting they believed students’ affect plays an 
important role in their transfer of learning. More specifically, six teachers believed 
students’  condidence in their own abilities to engage in mathematical activity  
mediates their transfer of learning and three teachers believed students’ beliefs that 
mathematics is relevant and useful outside of the mathematics classroom  mediates 
their transfer of learning. This follows McLeod (1992) who conceived of such ele-
ments as components of the affective domain.

Confidence   Six teachers believed that students would productively transfer their 
learning to novel situations when those students develop confidence in their abilities 
to engage in mathematical activity. Here, confidence refers to the way in which a 
student views his or her “competence in mathematics” (McLeod, 1992, p. 583) or 
the “belief that one can learn to do that which is expected of one” (Broekmann, 
1998, p. 18). In other words, these teachers believed that students who view them-
selves as competent and capable doers of mathematics will productively transfer 
their learning, whereas students who view themselves as incompetent and incapable 
doers of mathematics will be unsuccessful when confronted with a novel problem- 
solving situation.

Corresponding instructional supports There were several ways in which these 
teachers believed they could support students’ transfer of learning via the develop-
ment of students’ confidence. I present the two most prevalent instructional moves 
here: (a) monitor the language used in the classroom, and (b) support students’ 
independence.

Monitor the language used in the classroom. When explaining how they instruc-
tionally support students’ transfer of learning, Donna and Blake focused on the 
nature of the language used in the classroom. In particular, these teachers described 
attending to the ways in which people in the classroom verbalize their mathematical 
experiences. As Donna explained, she and the students in her classroom are “very 
very careful of words.” Donna provided the following example:

In my classes, we don’t say, “It’s easy.” I don’t let them say that. We say, “I understand that” 
or “I don’t understand that.” And if someone says, “Oh, that’s so easy,” I’m like, “Excuse 
me?” and then they’re all like, “You can’t say that.”

In this excerpt, Donna distinguished between a problem being an “easy” problem 
and the relative ease or difficulty an individual experiences while engaging with 
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that problem. In the former, the relative ease or difficulty of a problem is an inherent 
characteristic of the problem itself and in the latter, the relative ease or difficulty of 
a problem is inherent to the student. It seemed Donna aimed to support students in 
reflecting on and articulating the latter rather than the former. For if one student in 
the classroom categorizes a problem as “easy,” then other students in the classroom 
may feel stupid for not understanding the “easy” problem. However, if a student 
says, “I understand this,” then the other students may be less affected by the state-
ment because it does not imply that another student should also be able to under-
stand it. In another example, Donna explained that she does not perpetuate the view 
that courses like calculus are “hard” but rather tells her students, “Everybody can 
take calculus.” In this way, Donna described wanting to support her students in 
viewing themselves as competent and thinking “Oh, I can do that” regardless of the 
topic or content area and using language as a vehicle to support the development of 
such views. Similarly, Blake made use of personal anecdotes to let students know 
that the relative ease or difficulty they experience does not dictate who they are but 
is simply a part of what it means to participate in mathematical activity.

Support students’ independence. When explaining how they instructionally sup-
port students’ transfer of learning, Sam and Emma focused on supporting the devel-
opment of students who could answer their own questions and solve their own 
problems. To illustrate, consider the two-part activity Sam brought to the first inter-
view. Sam explained that the first part, which consisted of six questions, was to be 
completed as a class, whereas the second part, which consisted of Questions 7–12, 
was to be completed by students in small groups. In each of the first six questions, 
students were provided with (a) two coordinate points (x1, y1) and (x2, y2), wherein 
x1, x2, y1, and y2 are known values; (b) space in which to plug those values into the 
slope formula; and (c) a Cartesian plane on which to graph the associated line. 
However, in Questions 7–12, students were provided with a different set of informa-
tion. For instance, in Question 7, (a) y1 is an unknown, (b) the slope is given, and (c) 
a line has already been graphed.

When asked how he thought the first part of the activity supported students in 
productively engaging with the second part of the activity, Sam did not focus on 
relationships between mathematical details of the two parts of the activity, but rather 
on providing students with opportunities to figure out the second part on their own:

Kids would be like “What do we do about Number 7?” and I’m like “I don’t know; figure it 
out, you know this number [pointed to the missing y-value in Question 7] could be any-
thing,” and I just walk off, you know, and then I come back 5 minutes later and they’re like 
“Yeah, we figured it out,” like I didn’t have to teach anything, you know, and just try to like 
change the problem in such a way where they have to like take some process that they 
thought they understood pretty well here [pointed to the first part of the activity] into some 
new situation.

In this excerpt, Sam expressed his belief that allowing students the time and oppor-
tunity to think through and answer their own questions (e.g., by walking away after 
hearing a student’s question rather than directly answering the question) supported 
them in making use of their learning. Sam went on to explain that he hoped such a 
move would support students in feeling “confident” about their ability to engage in 
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mathematical activity and, in particular, their ability to productively engage with 
novel mathematical tasks. Similarly, Emma believed that allowing students to 
develop their own problem-solving strategies builds confidence “because now they 
see sort of the steps it takes to get to the solution and they did it themselves;” thus, 
when presented with a novel problem, students will have had experience solving 
such problems, believe that they can solve such problems, and therefore be enabled 
to solve them.

Belief that mathematics is relevant and useful  Three teachers believed that stu-
dents would productively transfer their learning to novel situations when those stu-
dents develop the belief that mathematics is relevant and useful outside of the 
classroom.

Corresponding instructional supports There were two ways in which these teach-
ers believed they could support students’ transfer of learning via students’ beliefs 
about mathematics: (a) make use of real-world situations, and (b) ask students to 
identify real-world situations in which particular mathematical topics or ideas are 
at play.

Make use of real-world situations. All three teachers spoke about making use of 
real-world situations as a way to support students in viewing mathematics as useful 
and relevant outside of the classroom. For instance, Patrick believed that students’ 
transfer of learning is supported when students are asked to engage with situations 
that spark their curiosity and that students find “interesting” and “relevant.” In par-
ticular, when explaining how he developed his lesson plan so that it supported stu-
dents in making future use of their learning, Patrick said that he was not inclined to 
choose traditional “practice” problems or to use worksheets, but rather to choose 
problems that would support students in thinking about why they would want to 
learn about slope and how it could be useful in their lives outside of the classroom:

I wanted it to be interesting. I wanted it to be something they would be curious to figure out. 
And kind of relevant … My inclination wasn’t to say “Well, let’s do a worksheet” or “let’s 
do more practice.” It was “Alright, so when would you ever come across slope; when would 
you ever want to even have a thought about something that’s steep or there’s changing 
amounts?” So, that’s when I thought about cars, working so much, making money, so much 
per week.

This excerpt highlights Patrick’s belief that particular kinds of problems support 
students in viewing mathematics as relevant, namely problems that students find 
interesting and that involve specific mathematical ideas. Similarly, when discussing 
how they supported students’ transfer of learning, Richard and Blake stressed the 
importance of making students aware of how mathematics can be seen and used in 
their lives (e.g., when reasoning about football scores or the costs involved with 
various purchases).

Ask students to identify real-world situations in which particular mathematical 
topics or ideas are at play. Patrick and Richard believed that to support students in 
seeing mathematics as relevant and useful and, as a consequence, support students 
in transferring their learning, they should ask students to come up with real-world 
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examples that involve the mathematical topics discussed in class. When explaining 
how the goal of supporting students’ transfer of learning shaped his lesson plan on 
slope, Patrick said it led him to ask questions like: “Are there any other instances 
where you hear something that is stated like this rate of pounds of beans per person; 
what else have you ever heard or seen that is so much of an amount per something?” 
Patrick reasoned that when students share that they have heard “miles per hour” or 
seen a commercial advertising a car’s mileage per gallon, they often realize, “Wow, 
there is [sic] a lot of rates that I hear or I know about, but I never think about them 
as it’s this much per something.” Similarly, Richard said that he believed asking 
students to identify jobs wherein employees make regular use of mathematics and 
to write reports responding to the question “How do you use mathematics in your 
life?” helped students view mathematics as relevant and useful in the real world and, 
as a result, supported transfer. In this way, Patrick and Blake believed that support-
ing students in conceiving of the connections between classroom mathematics and 
real-world situations would help them to see mathematics as relevant and useful and 
consequently support students in making productive use of their classroom learning 
in the real world.

Discussion of instructional supports for beliefs involving students’ affect The 
idea that one’s confidence mediates their transfer of learning is largely absent from 
the transfer literature. That said, the teaching actions discussed by the teachers in 
this study resonate with ideas that have been articulated by transfer researchers. For 
example, Engle (2006) placed emphasis on the situations in which students’ learn-
ing is embedded and more specifically on the ways in which teachers frame those 
situations. Engle focused on the degree to which various teaching actions bind stu-
dents’ activities to the classroom and suggested that teachers support students’ 
transfer of learning by framing learning situations expansively (i.e., as relevant in 
and related to situations occurring across spans of time, groups of people, physical 
locations and topic areas; Engle, 2006; Engle, Nguyen, & Mendelson, 2010). That 
way, students may be more likely to choose to make use of their classroom learning 
while, for instance, shopping at the grocery store. The teachers in this study also 
believed that framing matters; however, their focus was on the framing of the stu-
dent and, in particular, the student’s confidence. They therefore suggested teachers 
pay attention to the language used to communicate the degree of difficulty students 
experience while engaging in mathematical activity, suggesting that teachers avoid 
and even prohibit language attributing that difficulty to specific mathematical tasks 
and topics.

The notion that one’s beliefs about mathematics mediates transfer has points of 
contact with both Engle’s (2006) and Pugh’s (2011) approaches to transfer. As noted 
above, Engle argued that framing learning situations as relevant in and related to 
other situations supports transfer. Pugh also focused on the transfer of classroom 
learning to out-of-school situations, examining whether and how students’ class-
room learning reappears in their everyday experiences. Moreover, Pugh offered 
teaching actions that are very similar to those suggested by the teachers in this study 
but did so for a different purpose. While the teachers in this study suggested 
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teaching actions for the purpose of fostering the belief that mathematics is relevant 
and useful outside of the classroom, Pugh and colleagues suggested teaching actions 
they believe motivate students to make use of subject matter while outside of the 
classroom (specifically when said use is not required) to see new aspects of the 
world and to find value in doing so; like the teachers in this study, they suggested (a) 
emphasizing the real-world importance of classroom topics and (b) supporting stu-
dents in reseeing their worlds (Pugh, Linnenbrink-Garcia, Koskey, Stewart, & 
Manzey, 2010).

16.4  Conclusion

My goal in writing this chapter is to illuminate the ways in which teachers believe 
students’ transfer of learning should be supported. The teachers in this study often 
exhibited evidence of holding more than one belief about what constitutes transfer 
and how it should be supported instructionally, suggesting that, in practice, stu-
dents’ transfer may be best supported by multiple approaches. For example, Patrick 
believed that transfer involves the development of mathematically valid interpreta-
tions of slope and therefore believed he should (a) choose tasks and pose questions 
that support students’ quantitative reasoning and (b) use a curriculum that pro-
gresses from contextualized to decontextualized situations. He also believed that 
students’ transfer necessitates their belief that mathematics is relevant and useful; 
he thus believed he should (c) make use of real-world situations and (d) ask students 
to identify real-world situations in which particular mathematical topics or ideas are 
at play. It would be interesting to examine whether and how (he believes) these four 
instructional supports interact to support transfer and what they ultimately support 
the transfer of. How might various teachers enact these supports and how would the 
students in those teachers’ classrooms engage in novel problem situations? Might 
future examinations be able to identify more and less productive supports for 
transfer?

Just like the conceptualization of what it means to be mathematically proficient 
benefited from conversations with teachers and, in fact, resulted in the addition of a 
fifth strand of mathematical proficiency (Jeremy Kilpatrick, personal communica-
tion, September 5, 2017), so too might conceptualizations of transfer benefit. 
Whereas transfer research in mathematics education has tended to focus on the 
nature of students’ mathematical knowledge, the mathematics teachers in this study 
focused on students’ affect and problem-solving  approaches in addition to their 
mathematical knowledge. Their beliefs about how to instructionally support stu-
dents’ transfer of learning therefore targeted all three of these aspects of the student. 
My hope is that the results presented here inspire others to move their transfer inves-
tigations into actual classrooms and to examine the phenomenon through the eyes 
of teachers so that we are all better positioned to support students’ productive and 
successful engagement with novel situations.

16 Teachers’ Beliefs About How to Support Students’ Transfer of Learning



384

 Appendix

 The 12 Categories of Teachers’ Beliefs Regarding Instructional 
Supports for Students’ Transfer of Learning organized by their 
corresponding beliefs about how transfer occurs

Students productively transfer their 
learning to a novel situation when
they develop confidence in their 
abilities to engage in mathematical 
activity. (6)

Instructional Supports:
Monitor the language used in the 
classroom
Support students’ independence

Students productively transfer their 
learning to a novel situation when
they develop the belief that 
mathematics is relevant and useful 
outside of the mathematics 
classroom. (3)

Instructional Supports:
Make use of real-world situations
Ask students to identify real-world 
situations in which particular 
mathematical topics or ideas are at 
play

Students productively transfer their 
learning to a novel situation when
they develop and make use of a 
visualization and sense-making 
disposition. (2)

Instructional Supports:
Encourage students to infuse a 
real-world context into a given 
problem
Avoid problem statements that tell 
students how to proceed

Students productively transfer their 
learning to a novel situation when the 
novel situation prompts the use of a 
learned procedure. (3)

Instructional Supports:
Tell students the desired procedure
Use multiple examples

Students productively transfer their 
learning to a novel situation when
they develop mathematically valid 
meanings for topics like slope. (4)

Instructional Supports:
Choose tasks and pose questions 
that support students’ quantitative 
reasoning
Use a curriculum that progresses 
from contextualized to 
decontextualized situations
Provide students with 
opportunities to explain their
reasoning

Mathematical Content Disposition Affect

(7 teachers) (3 teachers) (7 teachers)

Students productively transfer their 
learning to a novel situation when
they develop and make use of a 
group-brainstorming disposition.  (1)

Instructional Support:
Model the disposition
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Chapter 17
Transfer of Mathematical Knowledge 
for Teaching as Elicited Through Scripted 
Role-Play

Ami Mamolo

Teacher educators are no strangers to the dictum “this is the way I was taught.” We 
hear it as rationale for solving strategies, as motivation for lesson planning, as push-
back against alternative pedagogies, and as stinging critique from those who grew 
to understand that school math was “not for them.” Explicitly and implicitly, pro-
spective teachers grapple with inconsistencies between their generalizations of 
school learning from their own experiences as students and the ideas and experi-
ences to which they are exposed during their teacher education program. Petrarca 
(2016) has conceptualized the experiences of teacher education as the (Un)Making 
of the teacher in acknowledgment of the well-documented concerns with the resil-
ience of misconceptions of teaching that prospective teachers often hold (Darling- 
Hammond & Baratz-Snowden, 2007). In (un)making a teacher, experiences of 
disturbance can help bring to the surface some of these conceptions and offer an 
opportunity to confront and learn from them. In considering prospective teachers’ 
responses to such disturbances through a lens of actor-oriented transfer (AOT), 
researchers can gain insight into the habits and expectations that have been general-
ized from K-12 school experiences and that can tacitly impact a prospective teach-
er’s approach with students, sometimes in direct conflict with their professional 
development education and expressed intentions. To that end, this chapter explores 
an extension of AOT to the case of mathematical knowledge for teaching, with a 
particular focus on how experiences of contingency can help shed light on precon-
ceived notions of mathematics and mathematics learning that may conflict with 
prospective teachers’ intended pedagogical approaches.
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17.1  Mathematical Knowledge for Teaching

The construct of mathematical knowledge for teaching (MKT) has been widely 
discussed in education research, with attention focused on what knowledge is 
required in teaching, for teaching, and of teachers (e.g., Adler & Ball, 2009; Davis 
& Simmt, 2006; Hill, Ball, & Schilling, 2008). Its roots go back to Shulman’s 
(1986) distinction between subject matter knowledge (SMK) and pedagogical con-
tent knowledge (PCK), which were further refined by Ball, Thames, and Phelps 
(2008). This refinement, and the subsequent research it stimulated, have highlighted 
the common, specialized, structural, and connected ways of understanding mathe-
matics, as well as the practices, values, and sensibilities necessary to the discipline 
and its teaching (e.g., Ball et  al., 2008; Ball & Bass, 2009; Zazkis & Mamolo, 
2011). Although the focus was on distinguishing facets of teacher knowledge, Ball 
et al. (2008) acknowledged their interconnected relationships. They suggested that 
“teachers who do not themselves know a subject well are not likely to have the 
[pedagogical content] knowledge they need to help students learn this content” 
(Ball et al., 2008, p. 404). In other words, how mathematics is understood and expe-
rienced by teachers can influence their understanding of, and expectations for, stu-
dents and student learning (Mamolo & Pali, 2014).

MKT has been linked to teachers’ abilities to choose appropriate examples and 
problems (e.g., Rowland, Thwaites, & Huckstep, 2003); to plan lessons (e.g., 
Wasserman & Stockton, 2013); to recognize mathematical significance in different 
contexts and student work (e.g., Zazkis & Mamolo, 2011, 2018); and to articulate in 
the moment what needs to be done, why, and how (Mason, 1998). Mason (1998) 
framed this knowledge in terms of awarenesses of, or ways of “being” with (Mason 
& Davis, 2013), mathematics that enables the understanding and articulation of 
relevant pedagogical practices and decisions. Such awarenesses can develop through 
shifts of attention that help a learner progress from a student (who can articulate 
what to do), to a master (who can articulate what to do and why), and then to a 
teacher (who can articulate what to do, why to do it, and how). Each level of aware-
ness encompasses and extends previous levels, highlighting how the mathematical 
knowledge required in and for teaching differs qualitatively from mathematical 
knowledge required of students. A point of particular interest in a teacher’s aware-
ness of mathematics is in the articulation of mathematical practices and sensibilities 
that convey “how” a learner might approach the subject, in other words, in their 
ways of being mathematical that can engender mathematical ways of being in others.

Rowland and Zazkis (2013) suggested that “one’s stance regarding the mathe-
matical knowledge needed (or essential) for teaching depends on one’s perception 
of teaching itself,” and that teaching “involves attending to students’ questions, 
anticipating some difficulties and dealing with unexpected ones, taking advantage 
of opportunities, making connections, and extending students’ horizons beyond the 
immediate tasks” (p. 138). Teachers are required to respond in the moment to situa-
tions for which they may not have prior experience or awareness; they must “figure 
out what is right practice in the situation” and “be prepared for the unpredictable” 
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(Lampert & Ball, 1999, p. 39). This aligns with Rowland and Zazkis’s notion of 
teaching as response to contingencies, where such contingencies can offer moments 
of disturbance (Mason, 2002) that invite individuals to revisit, rethink, and refine 
previous understanding, and thus broaden their disciplinary awareness. In this per-
spective, teaching moments are also learning moments, and research supports the 
idea that mathematics teachers learn through their teaching experiences (e.g., Leikin 
& Rota, 2006). Simulating such experiences in teacher preparation programs 
through the use of performed or scripted role-playing can also offer valuable learn-
ing opportunities to advance disciplinary knowledge and help prospective teachers 
prepare for future interactions (e.g., Lajoie & Maheux, 2013; Lawson, McDonough, 
& Bodle, 2010; Mamolo, 2017; Zazkis & Zazkis, 2014).

17.2  Scripts and AOT

As an instructional tool, scripted role-playing (or scripting) can be useful in co- 
developing mathematical understanding and pedagogical awareness (Mamolo, 
2017), and in shedding light on personal understandings, biases, and perceptions of 
student difficulties (e.g., Koichu & Zazkis, 2013; Zazkis & Zazkis, 2014). Role- 
playing offers a venue through which teachers can enhance their abilities to articu-
late mathematical ideas and related pedagogical practices; such abilities in 
articulation are considered crucial for the practice of teaching (Mason, 1998). As a 
methodological tool, scripting has shed light on prevalent conceptions, common 
errors, and mathematical reactions to unexpected questions. Extending this work, I 
use scripts as a lens through which to gain insight into the disciplinary knowledge, 
practices, and sensibilities evoked by the setting of the scripting task, and to tease 
out inconsistencies in participants’ approaches to, and intentions for, teaching. 
Specifically, my interest is in the knowledge and practices drawn upon when pro-
spective teachers are presented with an unanticipated mathematical idea or question 
to which they must respond, as influenced by prior learning in, and before, their 
teacher education program. As such, the AOT perspective, wherein transfer is 
defined as “the generalization of learning” and “the influence of a learner’s prior 
activities on her activity in novel situations” (Lobato, 2012, p. 233), is well suited 
for this study.

The typical approach to AOT includes using the same set of transfer tasks both 
before and after the design experiment (e.g., Lobato, 2008). However, “the primary 
distinguishing feature of the actor-oriented approach is the effort to relinquish nor-
mative notions of what counts as transfer and immerse oneself in the learner’s world 
instead” (Lobato, 2008, p. 174). With this in mind, when engaging in script-writing, 
the original “task” can be considered as the experience of learning mathematics as 
a K-12 student, the design experiment as the experiences of learning to teach math-
ematics in a teacher education program, and the transfer task as the script (see 
Fig. 17.1 for the general scripting prompt). In this conceptualization, I look at the 
influence of participants’ prior experiences interacting with teachers as learners on 

17 Transfer of Mathematical Knowledge for Teaching as Elicited Through Scripted…



392

Fig. 17.1 The scripting prompts

their novel activity of interacting with learners as teachers. One of the benefits of 
scripting is that it can be done individually, and as such, each prospective teacher 
must imagine playing both the teacher and student characters. Participants must 
therefore draw on prior experiences of school learning in general, and of learning 
(school) mathematics in particular. Evoked through the scripting process are aspects 
of mathematics teaching that include the mathematics content or practices that par-
ticipants see as relevant or connected to the topic in question, the pedagogical 
approaches and attitudes towards mathematics that are seen as relevant to the setting 
and that are projected onto the teacher-characters, and the attitudes and abilities 
expected of the pupil-characters in the context of learning mathematics. The goal is 
not to pinpoint specifics of where from a generalization might have developed, but 
rather to bring to the surface generalizations of learning that are inconsistent with 
participants’ expressed intentions for learning, as informed by the experiences and 
expectations of a teacher education program. Thus, the possibilities for transfer 
relate to various facets of mathematical being, extending the scope of applicability 
of the AOT lens.

Lobato (2012) observed that “transfer is supported through the incremental 
growth and organization of smaller elements of knowledge, which are highly sensi-
tive to context and are only gradually refined to extend to a widening circle of situ-
ations” (p.  243, emphasis in original). The pedagogical and content knowledge 
elicited in the context of lesson planning during, say, a methods course might be 
“too contextualized” to readily transfer to moments of teaching in the classroom. In 
setting the scene for their scripts, and in voicing student and teacher characters, 
participants reveal evidence of generalizations of their learning experiences as stu-
dents and student-teachers. For instance, in a well-planned lesson plan, a high- 
achieving prospective teacher advocated strongly in favor of student-centered 
approaches and designed a lesson plan that expertly aligned with his intentions 
(Mamolo, 2017). When that same student-teacher responded to a scripting task that 
centered on an unexpected question, his script seemed to contradict his intentions. 
It relied heavily on a teacher’s explanation, with few opportunities to listen to, or 
for, student ideas. A breakdown of his script highlighted this. The teacher-character 
uttered over 450 words compared to the student-characters’ combined utterance of 
77 words. Of the teacher-characters’ 27 lines of dialogue, only five included ques-
tions and each of those questions invited the student-characters to repeat an utter-
ance already made by the teacher-character in the script. And, one of the two total 
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times a student-character raised a question, it went unanswered by the teacher- 
character. Incidentally, the script ends with the student-characters praising the 
teacher-character as “the best Math Teacher ever” (Mamolo, 2017, p. 240). Although 
there may be many ways to account for this incongruency, viewing it through the 
lens of AOT provides an interesting interpretation that can help teacher educators 
unearth and address aspects of becoming a teacher that might need to be “unmade.”

17.3  Methods

17.3.1  Setting and Participant

This case study reports on the data collected from a prospective middle school 
teacher, Kumi, who was enrolled in a mandatory mathematics content course that 
took place in the second semester of a four-semester teacher education program. 
The course emphasized diverse ways of reasoning with and about mathematics, and 
included a variety of task-based activities aimed at inviting prospective teachers to 
reflect on, critique, and reconstruct their perspectives on mathematics and mathe-
matics learning. An important focus of the course was on effective mathematical 
communication, including verbal, pictorial, and technology-enhanced modes of 
communicating with students. As part of the course, students completed weekly 
reflections on their experiences, growth, concerns, and struggles with mathematics, 
both in general and with particular reference to problems and themes from Mason, 
Burton, and Stacey’s (1982) Thinking Mathematically. Recurring themes addressed 
in the written reflections included the “healthy state” of “being STUCK!” (p. 56), 
posing questions to advance mathematical thinking and problem solving, the “hid-
den assumptions” (p. 101) people might have about mathematics and mathematical 
thinking, and the importance of “mulling” over problems (p.  97). These themes 
were emphasized during class discussions and explorations in addition to home-
work activities and course assignments. Typically, in-class problems were solved 
using a combination of visual and geometric imagining and conjecturing, physical 
3-D constructions and modeling, interactive and dynamic software explorations 
(such as with Geometer’s Sketchpad © and Gapminder ©), and computational and 
algebraic resolutions.

Kumi was chosen for this study because she was a keen student who was open to 
critically reflecting on her prior experiences, current thinking, and future ambitions 
for her students. She was forthcoming, bright, and thoughtful in her contributions in 
class, but struggled with secondary level mathematics and had failed her Grade 11 
mathematics class when she was a secondary student. Kumi was a generally moti-
vated student, who was about 10 years older than the average student in her cohort. 
Her aim was to become an English and history teacher; she held a graduate degree 
in the humanities and taught college-level courses. In Kumi’s jurisdiction, middle 
school teachers are certified to teach all subject matter, including mathematics, 
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regardless of their teachable focus. Thus, although Kumi hoped to teach English and 
history, she nevertheless was required to take a mathematics course, as were all 
prospective teachers in her program. In the first written reflection for the course, 
students were asked to introduce themselves and share a bit about their past experi-
ences. Kumi described herself as “pretty educated,” commenting, “it’s not often that 
I’m set back on my heels when it comes to school.” She considered herself 
“extremely comfortable with math through Grade 8” and “pretty good with num-
bers” but claimed that “the joy of doing anything beyond what I would call simple 
math is gone.” The highest level of math that she had taken was Grade 11, which she 
failed, and she felt that she “should’ve failed Grade 10 as well,” if not for “a friendly 
teacher.”

17.3.2  Data Collection and Analysis

Data for this research included participants’ responses to a scripting prompt depicted 
in Fig. 17.1, as well as field notes from in-class discussions and written reflections. 
The focus of this chapter is on Kumi’s response to, and reflections on, a scripting 
prompt concerning an unfamiliar equation for solving the area of an equilateral tri-
angle (see Fig. 17.2). Students were given several weeks to work on their scripts; 
there were a few script options to choose from and, for the purposes of this chapter, 
I focus on the option depicted in Fig. 17.2. Students were encouraged to use multi-
ple representations in their responses, including digital ones, and could use any 
resource they found applicable for completing the script. The aim was to give pro-
spective teachers a task which could shed light on what they transferred from their 
teacher education programs to novel teaching situations. The scripting task was a 
new kind of activity for the prospective teachers, and as such, served as a transfer 
task for which the AOT perspective is well suited. Of interest in analyzing Kumi’s 
script response were prior influences (i.e., from K-12 schooling, teacher education) 

Fig. 17.2 Scripting task: Area of equilateral triangle
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that might have shaped how she approached and interacted with her hypothetical 
students. Rather than assessing the quality of Kumi’s response to the scripting activ-
ity, all of the data (script, written reflections, field notes) were analyzed with an eye 
toward where the influences might have come from.

17.4  Results and Analysis

17.4.1  Kumi’s Intentions for Her Future Students

Kumi’s reflections on her approaches to teaching and her experiences learning 
mathematics revealed some of her intentions for her future students and the learning 
environment she hoped to cultivate. For example, she was asked to opine on the 
quote: “Being STUCK! is a healthy state, because you can learn from it” (Mason 
et al., 1982, p. 56). She wrote:

I suppose the simple answer is that getting stuck forces you to really work through a prob-
lem. Getting it on the first try doesn’t actually result in any learning; it simply shows you 
what you know. In order for real learning to occur, you need to get yourself to a place that 
is somewhat ‘uncomfortable’. This is important because it develops a sense of grit, one that 
teaches them [students] two things: not to give up and to search for other ways to solve a 
problem… and letting students know that you too can get stuck on things makes you much 
more relatable.

Kumi’s characterization of “real learning” as requiring some discomfort needing 
to be worked through for the benefit of developing grit and solving strategies aligns 
with ideas introduced during her teacher education program, such as the role of 
disequilibration in learning. Her comments suggest her intentions to provide “real 
learning” opportunities for students in a relatable way were influenced by her 
teacher education program, and her response further suggests that she was not 
averse to students seeing her as someone who can also be stuck on problems. Kumi 
also offered her ideas about the value of mulling over and posing questions:

Mulling a problem over can go a long way to getting UNSTUCK. Mulling is something I 
did frequently in university, particularly when writing my thesis. I think that this strategy is 
greatly undervalued and underutilized in all aspects of life, not just math. Sitting back to 
reflect on something can be incredibly useful and can produce some inspiring results.

In this excerpt, Kumi’s intentions for her future students’ learning seem to include 
generalizations from her own deep learning as an undergraduate student. From her 
written responses and from field notes collected from her contributions to class 
discussions, it was clear that Kumi valued deep thinking, meaningful learning, and 
the role good problems and questions had to play in fostering these things. For 
example, she wrote:

Personally, I think that questions have incredible value, and in the context of a classroom 
they likely trump the value of answers. By questioning things we don’t know – or even by 
being posed questions for which we do not have answers  – we are forced to think and 
 rationalize problems, which is far more conducive to learning than simply receiving 
answers. A classroom that values questions over answers is one that truly values learning.

17 Transfer of Mathematical Knowledge for Teaching as Elicited Through Scripted…



396

17.4.2  Inconsistencies Between Intentions and Interactions

The scripting task Kumi chose includes an exchange between two students, where 

Student 1 (S1) applies the equation A s=
3

4
2 to determine the area of an equilateral 

triangle with side length of 6 units. It was an approach with which Kumi was not 
familiar, and as such, it served as an experience of contingency to which she had to 
respond. This special case can be derived from the general formula by some straight-
forward algebra, as illustrated in Fig. 17.3.

In her script, Kumi sidestepped the unfamiliar approach right away, writing:

T:  Alright, settle down. We’ll work this out together. S1, do you understand the 
formula that you used?

S1: No, not really,
T:  OK, that’s a good place to start. Knowing formulas is a great way to help us 

solve equations, but if we don’t understand their meaning it can be difficult to 
understand how and why they are meant to work in the first place. Does that 
make sense?

S1: Ya, I guess so.
T:  Now, I’m not saying this is wrong, but I think there’s a bit of confusion here, 

you said you found a solution using the [prescribed] formula; what was it?

In this beginning segment from her script, Kumi expertly pivots away from the 
unfamiliar toward more comfortable footing. She offers helpful advice about using 
formulae before turning her attention exclusively toward the numeric response 
given by S2 and engaging students in a step-by-step determination of the triangle’s 

area using A bh=
1

2
. Notably, there is nothing in the script prompt that suggests 

either of the students has difficulty computing the area of a triangle with the pre-
scribed formula. However, Kumi’s approach was typical of how prospective teach-
ers addressed a script prompt that took them outside of their comfort zones: ignore 
or avoid the original question, impose an expected misunderstanding on students, 
and address that misunderstanding (usually in a step-by-step explanation where the 

Fig. 17.3 Area of equilateral triangle
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teacher does much of the heavy lifting). Notably, this approach stood in contrast to 
her intentions to foster “real learning” and her recognition of the value of mulling 
over a problem we do not understand. Rather, she seemed to generalize strategies 
experienced prior to her teacher education program during which friendly step-by-
step explanations were seen as helpful, and even necessary, for passing her courses.

There are further inconsistencies between Kumi’s script dialogue and her procla-
mations about teaching and learning. For example, although she believed that ques-
tioning has “incredible value … which is far more conducive to learning than simply 
receiving answers,” none of the students in her script posed a single question. 
Indeed, all of the questions posed came from the teacher-character, and each ques-
tion was rather bite-sized, eliciting immediate and typically correct responses, as 
exemplified in the following exchange:

T: Now, what is the Pythagorean Theorem?
S2: It’s a2 + b2 = c2

T: Good, now what about with the measurements we know?
S2: That would be 32 + b2 = 62

T: And simplified?
S2: It would be 9 + b2 = 36
T: Excellent! Now how would we work the equation so we can solve for b2?
S4: We would have to isolate b2

T: Spot on!

Across Kumi’s script, student suggestions that aligned with her intended 
approach were praised as “excellent,” “perfect,” or “spot on.” This is in contrast to 
her responses to S1, the student who was deemed in need of a better understanding. 
Indeed, aside from telling S1 they are “not wrong” but possibly “confused,” very 
little subsequent attention is paid to S1 or his ideas. For example, a student other 
than S1 answered every question Kumi posed seeking explanations or validations. 
The only subsequent time S1 contributed to the dialogue at all was to offer “measure 
it” as an approach to determining the height of the triangle. This was acknowledged 
by the teacher but was quickly dismissed: “We certainly could… But what if we 
didn’t have a ruler? Is there a way to figure it out mathematically?” Kumi’s response 
to S1’s suggestion highlights the influence her K-12 student experience had on her 
developing mathematical knowledge for teaching, generalizing from those experi-
ences as to what counts as “mathematical.” Even in this context of shape, measure-
ment, and area, “mathematically” is understood to mean “algebraically.” This is in 
direct conflict with key objectives of the course, which emphasized the value of 
physical construction, spatial visual reasoning, and modeling as ways of supporting, 
explicating, and extending algebraic expressions.

Further, if “simply receiving answers” is less conducive to learning than “ques-
tioning the things we don’t know,” then there is another inconsistency in how S1 
was addressed. Kumi’s expectation was that S1 lacked understanding of how to 
compute the area of a triangle, and yet S1 was constantly put in a position of “receiv-
ing answers” and was never invited to question anything or mull anything over. 
Indeed, despite Kumi’s proclamation that “for real learning to occur, you need to get 

17 Transfer of Mathematical Knowledge for Teaching as Elicited Through Scripted…



398

yourself to a place that is somewhat ‘uncomfortable,’” she orchestrated the exchange 
in such a way that there were no opportunities for “real learning to occur.” At the 
end of her script, Kumi readdresses S1. Her words are telling. She has her students 
determine and round off the decimal representation of S1’s radical answer and then 
ends her script with the following:

Now, we can see that S1’s approach worked here, and they ended up with the same answer 
when everything was simplified all the way. It is, however, a more complicated formula, and 
we aren’t certain that it will work for every triangle that we encounter. So, what I’d like you 
all to do is look at the triangles that I’ve posted on the board and try using the formula 

A bh=
1

2
 to find their areas. Then we’ll reconvene and see what we came up with.

It is difficult to reconcile this statement with any of Kumi’s proclamations about 
teaching and learning that would have been influenced by her teacher education 
program. The baseless characterization of S1’s approach as “more complicated” is 
surprising, especially considering the care Kumi took earlier in the script to avoid 
opining on it or on the knowledge of S1’s “previous teacher” (e.g., “I’m not saying 
this is wrong, but …”). There are many ways Kumi could have ended her script that 
acknowledged S1’s approach, still avoided actually dealing with it, and nevertheless 
offered advice that was consistent with her professed values for teaching and learn-
ing. That aside, what is really notable is the assumption that an unknown formula 
must necessarily be “more complicated” (in this case, it is not). This can be inter-
preted as a generalization made from Kumi’s experiences as a pupil for whom “the 
joy of doing anything beyond simple math is gone.” Kumi struggled with secondary 
school mathematics and attributed any successes to the kindness of her teachers. 
This influenced her approaches to dealing with a struggling student and overshad-
owed her conscious efforts to value student contributions and promote questioning 
and moments of struggle for meaningful learning.

17.4.3  Seeking Familiarity in the Unfamiliar

Kumi chose to engage with a script on equilateral triangles because she had “taught 
triangles a bit during [her] first practicum and frankly, most of the others [script 
options] confused [her] entirely.” Kumi described her experiences with the scripting 
tasks as “a bit odd,” stating: “I typically hate ‘not knowing’, and I’ve found myself 
in that position an awful lot in completing this script.” She wrote:

This was difficult in the respect that I had no clue what was happening with S1’s solution, 
and try as I might, I couldn’t figure it out… not having any idea how he got there limited 
my options when it came to how I approached the problem of ‘teaching’ this…I felt it nec-
essary to tip-toe around it.

She noted that “some might say ‘fake it ‘til you make it’, but I would suggest 
that’s asinine… students deserve far better.” The novelty of the scripting task and its 
content seemed to have placed Kumi in a position that aligned more closely with her 
typical experiences in secondary school mathematics than her typical experiences 
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as prospective teacher. Kumi’s struggles with secondary mathematics had left her 
“not knowing” on many occasions, and formula manipulations and balancing equa-
tions “really ended things for [her] in math.” Given that transfer of knowledge is 
considered “highly sensitive to context” (Lobato, 2012, p. 243), it is perhaps not 
surprising that her experiences as a pupil had an influence on her approaches as a 
teacher in a context for which she felt unsure of the mathematics.

The fact that Kumi openly admitted not understanding S1’s approach to deter-
mining the area of an equilateral triangle helped rationalize her avoidance of this 
approach. “Right or wrong,” she wrote, “if I was confronted with this in a class of 
my own, I would default to what I know… keeping things moving and addressing 
something I’m unsure of later.” Yet this is in conflict with her desire to connect with 
her students; whereas “letting students know that you too can get stuck … makes 
you much more relatable,” the teacher-character was consistently and solely posi-
tioned as an authority and assessor, a generalization influenced by her typical expe-
riences as a student in K-12 mathematics. Nearly every utterance made by the 
teacher-character included some value statement (“Excellent!” “Fantastic!” 
“Perfect!”), and the conversation was kept firmly within the boundaries of Kumi’s 
comfort. Her desire for “keeping things moving” and her approach of asking bite- 
sized, easily answered questions, are typical of instructional approaches that have 
been adopted to facilitate learning for struggling students, to which Kumi would 
have been well exposed in her K-12 education and which served to influence her 
script response. Such approaches have been shown to compound student difficulties 
(Watson, 2006), an idea Kumi was exposed to in her teacher education program. 
They also conflict with Kumi’s recognition of the importance of taking the time to 
mull things over, a strategy that she considered “greatly undervalued and underuti-
lized in all aspects of life, not just math.”

One of the expectations about becoming a teacher that Kumi may have general-
ized is the sense that teacher education programs ought to focus on introducing 
pedagogical approaches for known curricular content. This is evidenced in the fact 
that the only document that Kumi drew upon in her original script was the curricu-
lum document for her jurisdiction and via her admission that her “experience with 
this assignment – and this course as a whole – has admittedly, been a bit odd.” The 
course (and assignment) required students to engage with familiar content in new- 
for- them ways, so as to broaden their horizons and expectations for student learn-
ing, abilities, and achievement. The approach in this course aligns with Rowland 
and Zazkis’s (2013) perspective that, in teaching, “mathematical knowledge beyond 
the immediate curricular prescription is beneficial and demonstrably essential” 
(p. 138).

The curriculum document for Kumi’s jurisdiction makes no explicit mention of 

the formula A s=
3

4
2 and it was interesting that, despite admitting that she had “no 

idea what it meant,” she did not seek any external sources to help make headway. 
She stated:

I tried to work it out several times and kept getting ‘stuck’, which was quite frustrating. I 
ended up taking an alternative route – working strictly with the Pythagorean Theorem – 
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largely because I feel that’s where I would have gone if I was confronted with this in a class 
of my own: I would default to what I know and then figure out the problem when I wasn’t 
on the spot.

Kumi was not technically “on the spot” for this script—she had several weeks to 
work on it and could have called on any resource for assistance. A Google search of 
“area of equilateral triangle” yields the special case formula immediately, and the 
first image in the image search includes a derivation of the special case from the 
general case. A search of “different ways to find the area of a triangle” yields similar 
results. Kumi repeatedly commented that addressing S1’s approach in a “follow up 
lesson” would give her the “time to become confident with the theory behind it,” and 
it is interesting to note that she held this expectation despite “being completely con-
fused” during script writing for which she had several weeks to work.

17.5  Discussion

Typically, the lens of AOT has been applied to study students’ mathematical knowl-
edge and its development. This chapter illustrates how AOT can also be helpful in 
interpreting the development and application of prospective teachers’ MKT, high-
lighting a new context in which to consider the transfer of learning. The specific 
focus on competing influences that shaped a prospective teacher’s responses to an 
experience of contingency makes a new contribution to work on AOT, which typi-
cally has not been examined from the perspective of competing influences. This 
work is significant for the field of teacher education because it furthers understand-
ing of salient influences that can overshadow approaches introduced in professional 
development programs, and it provides a new methodological approach for shed-
ding light on these experiences and their influences.

Knowledge of mathematics-for-teaching includes an interplay of content and 
pedagogical awarenesses, skills, and routines accrued from a variety of influences, 
including teacher education programs and K-12 schooling. The issue of the role of 
school knowledge about mathematics subject matter, teaching, and learning for pre-
service teacher development has been central in mathematics education research. 
Teachers’ first instructional experiences with mathematics teaching occur during 
their years as pupils of mathematics and influence the generalizations of teaching 
and learning that are elicited in their novel experiences as teachers. Early general-
izations of mathematics teaching and learning can remain tacit even when these 
generalizations conflict with expressed intentions and beliefs. Experiences in 
teacher education programs offer contexts that explicitly draw to the surface peda-
gogical approaches that prospective teachers are expected to grapple with and even-
tually adopt. Prospective teachers who are quite skilled at applying these approaches 
in prescribed scenarios, such as in lesson planning, can nevertheless experiences 
moments of disturbance when an unexpected situation “sets them back on their 
heels.” In these experiences of contingency, tacit generalizations of 
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mathematics- for-teaching (or mathematics-in-teaching) can surface and influence 
pedagogical approaches.

A scripted role-play breaks away from typical contexts for learning MKT, and 
can highlight how prospective teachers envision their future exchanges with pupils, 
providing a window into what may be viewed as relations of similarity across situ-
ations. That is, when a prospective teacher imagines standing in front of a room of 
students and engaging with them in conversation, what is evoked are generalizations 
of learning from both experiences as a prospective teacher and experiences as a 
K-12 student. In Kumi’s case, when she was in control of the conversation—for 
instance, via considered responses to class discussions or reflection prompts—she 
could act purposefully, generalizing her ideas about positive support for students 
and the role of questioning and mulling in promoting learning. When Kumi was 
outside of her comfort zone, experiencing the uncertainty involved in negotiating a 
moment of contingency, she seemed to default to ideas and expectations that con-
flicted with her expressed intentions and with the educational experiences to which 
she was exposed in her teacher education program. Instead, she seemed to general-
ize situations and attitudes she had experienced as a pupil, drawing from memory 
how “friendly teachers” supported her through secondary school.

Lobato (2008) highlighted the research question “How does the environment 
structure the production of similarity?” (p. 173). In a real classroom environment, 
the experience of contingency is unavoidable; for a responsive educator, it might 
even be common. Grappling with moments of real contingency in teacher education 
programs—in situations without, say, the safety net of a prescribed lesson plan or an 
associate teacher steering the way forward—may be valuable learning opportunities 
to draw to the forefront generalizations of learning that stemmed from (at times) 
detrimental experiences as students. Drawing such generalizations to the forefront 
can in turn help teacher educators rethink how the learning environment in teacher 
education programs can be structured so as to lend itself to being more readily trans-
ferable to real classroom situations. Engaging prospective teachers in enacted or 
scripted role-play offers a venue through which to elicit contingency, both in terms 
of new-for-them mathematical ideas, as well as with respect to new-for-them peda-
gogical approaches for promoting mathematics learning in K-12 schooling. This is 
important because, “if preconceptions about teaching are not addressed, prospective 
teachers can unconsciously cling to ineffective practices and fail to learn more- 
beneficial approaches” (Darling-Hammond & Baratz-Snowden, 2007, p. 117).

This chapter makes a new contribution to advancing the field of research in math-
ematics teacher education by introducing AOT to the study of competing influences 
that can inform the development and enactment of teachers’ mathematical knowl-
edge for teaching. It extends research into the uses of scripted role-playing for 
investigating and fostering MKT and offers a new way to examine AOT. Looking 
forward, there is great potential for this approach to help inform teacher educators’ 
considerations when structuring learning experiences for their students. Prospective 
teachers are exposed to new (for them) ways of being with mathematics via their 
experiences in professional development programs that adopt technologically 
enhanced pedagogies, culturally responsive or diverse pedagogies, context-based or 
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inquiry-based pedagogies, and so forth. For researchers interested in how these 
competing influences might inform prospective teachers’ decisions in future class-
room interactions, AOT may provide a useful lens through which to interpret 
whether the abstractions and generalizations being made during professional devel-
opment programs are recognized as applicable to K-12 classroom situations and, if 
so, when and when not. Further, this research sets the stage for extensions of AOT 
to the context of in-service teacher education. In this conceptualization, the original 
“task” relates to the experiences had when learning mathematics via interacting 
with teachers as learners, the design experiment as the experiences of learning 
mathematics in a teacher education program, and the transfer task as the novel expe-
riences of learning mathematics via interacting with learners as teachers.
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Chapter 18
Reflections on the Idea of “Context” 
in the Transfer of Research Knowledge

Jeff Evans

Recent discussions of “transfer” in education have distinguished (explicitly or 
implicitly) among different types of transfer. Learning transfer is of course a major 
concern of educators and the focus of most of the contributions to this book. 
Sometimes, the original context and the “destination” context are mentioned—for 
example, for learning transfer “from school to work.”

Other types of transfer are generally considered to be more specialized. 
Knowledge transfer normally refers to the “application” of research knowledge and 
has come to the fore in discussions of the missions of higher education institutions, 
certainly in the United Kingdom. Technology transfer (Bozeman, 2000; Gilbert, 
2006) and policy transfer (e.g., Ozga, 2012) refer to the reapplication of techniques 
or policies produced or formulated elsewhere. In this chapter, I focus on a central 
aspect of transfer—namely, the transfer of knowledge and research findings from 
the original context of research to their application in a different context.

In my experience as a reviewer of articles, in mathematics education and in edu-
cational studies in general, researchers often pay insufficient attention to the ways 
they review and consider the application of the work of others and to the ways they 
locate the findings of their own work. There is an understandable tendency for many 
researchers to view their own research context as in some sense “natural” and, thus, 
to report their work as if the scope of applicability of their findings does not need to 
be assessed. This tendency is heightened in mathematics education research, since 
some researchers and teachers seem to view knowledge in that field as neutral, 
“context-free,” and timeless. Thus, a typical methods section in a research report 
might describe the setting of the study as follows: “[n] children were recruited from 
two neighborhood schools, in [town t], both non-fee-paying. The sample included 
[m] boys and [n - m] girls, with mean age [k years, l months].” (This is based on the 
context described in a recent article in a high-quality journal; it is not acknowledged 
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here because the intention is to highlight a widely shared problem or dilemma and 
not to criticize particular authors.) The challenge of providing an appropriate 
description of the setting is certainly greater for comparative studies, especially 
those with an international dimension.

I will discuss what I argue are key aspects of the context of research and present 
some ideas on the way the context of research might be more informatively acknowl-
edged and described in research reports. I also aim to draw out some implications 
for ways of strengthening the applicability or “transferability” of research findings 
from one context to another. Note that this appears to fly in the face of advice to 
educators for most of the last century, which has been that they should seek the most 
general formulation of their findings to assure transferability. In the literature relat-
ing to learning transfer, this has been strongly argued against by researchers like 
Lave (1988), Walkerdine (1988), and contributors to Tuomi-Gröhn and Engeström 
(2003). At the same time, this view certainly leads to much frustration for teachers 
when students appear to “fail to transfer” their learning.

18.1  Describing the Context of Educational Research

My theoretical position is broadly sociocultural, with an emphasis on discursive 
approaches and a concern with policy issues and the broader social setting (e.g., 
Evans, 2000; Evans, Tsatsaroni, & Czarnecka, 2014). Recent studies have begun to 
offer a social, economic, and political examination of the context of the production 
of mathematics education research, especially as it has developed over the last 
25 years or so. This has meant a broadening of the study of the determinants (and 
correlates) of performance, affect, and other aspects of learning, away from a focus 
on the individual and their immediate constellation of face-to-face relationships 
(including, for students, the classroom interactions)—which I call here the “micro” 
aspects of the learning context—to a concern with more “macro” aspects.

Some of the discussion focuses on the “international” context of mathematics 
education research (e.g., Atweh et al., 2008). For example, Cao, Forgasz, and Bishop 
(2008), in reviewing the vast range of international studies in mathematics educa-
tion, pointed to the (neglected) influence of cultural factors on research activities:

Within the literature reviewed, little has been found of studies with a focus on designing and 
administering a survey, and how cultural factors can influence researchers’ activities and 
research results, even though international studies evidently take place in different cultural 
settings. (p. 304)

Brown and Clarke (2013) pointed to national-level concerns when they argued that 
“schooling is increasingly shaped and judged by its perceived capacity to deliver 
success in terms of international success linked to economic agenda” and “research 
increasingly finds its terms of reference set according to measuring delivery in these 
terms” (p. 459); this results in “national means [averages] of performance [being] 
given priority over the inequalities they conceal” (p. 460). Tsatsaroni and Evans 
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(2014) reinforced this and examined further the dominance of international perfor-
mance surveys like the Programme for International Student Assessment (PISA) 
and the Programme for the International Assessment of Adult Competencies 
(PIAAC; Organisation for Economic Co-operation and Development [OECD], 2016).

This context of production of any research is also located in time as well as 
space; thus, we need to take account of historical changes in these broad contexts, 
too—in terms of agenda setting, purposes, value orientations, practices, and so on. 
For example, Clements, Keitel, Bishop, Kilpatrick, and Leung (2013) argued that 
there has been “a historical progression towards the achievement of mathematics for 
all: from schooling for all, to arithmetic for all, to basic mathematics for all; to sec-
ondary mathematics for all; to mathematical modeling for all; and to quantitative 
literacy for all” (p. 7).

It is worthwhile to separate the macro aspects of the context from the “meso” 
aspects. The macro level includes societal, cultural, national, international and 
“political economy” aspects, close to what Jean Lave (1988) earlier called the “con-
stitutive order” (pp. 177–180). The meso level can be considered to include charac-
teristics of schools, education authorities, and communities.

Concerning the meso level, educational research communities have already 
developed good ideas about what might be important aspects of the setting concern-
ing teaching, learning, and other outcomes in schools and other institutions. Thus, 
they can offer some broad suggestions as to the range of meso characteristics that 
can affect educational outcomes—and that therefore should be considered in 
reviewing or reporting research findings. This is important because it can help other 
researchers to understand a reported set of findings and perhaps to apply them to 
their own concerns, locales, and time periods.

18.2  The Description of Contexts of Research in Practice

Nevertheless, when we look at many of the research reports submitted to, and indeed 
published in, good-quality journals in mathematics education (and elsewhere), we 
still often see a number of ways that the context of research is insufficiently reported. 
First, findings from previous research are often reported as if they were timeless. For 
example, research on secondary schools in the late 1980s or early 1990s is reported 
and reviewed as if it still holds without question. This tacit claim is made despite the 
fact that schooling in most countries has clearly changed greatly in a number of 
ways, including through an increasing hold of neoliberal government policies and 
the development and intensification of international testing (Lingard, Martino, & 
Rezai-Rashti, 2013; Rizvi & Lingard, 2010).

Second, findings from previous research are often reported as if they were inde-
pendent of the macro context in which they were produced. Some authors may 
believe that much of the research reported in the “top international journals” is in 
fact produced in a narrow range of countries which do not vary much in terms of the 
national context they provide for education and for educational research. But this 
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assumed homogeneity can be shown to be illusory; Ernest (2008) and Atweh and 
Keitel (2008) discussed the dominance of “Anglo-European” views of mathematics 
and mathematics education.

We also need to consider what might be the meso differences in contexts—in 
institutions, teams of teachers, and pupil catchments—in different times and places. 
One way is to draw on research areas where these aspects of the context have been 
extensively researched—for example, in studies on school effectiveness. Again, 
many of these studies have been done in relatively few countries which appear to 
resemble each other a great deal. Nonetheless, even within one of these countries, 
we would need to consider in advance precisely which set of characteristics of 
schools, teacher teams, and student catchments might be relevant aspects of the 
research context, given the focus of the study. Thus, for example, in a study of the 
effectiveness of methods of teaching geometry in secondary school, in country x, it 
might be relevant to take account of differences in students’ backgrounds in terms 
of whether they had attended urban or rural schools. In contrast, in a study of the 
development and evaluation of a new method of teaching statistical modeling at a 
university, it might not be considered (theoretically) necessary to take account of 
those particular differences in students’ backgrounds.

This discussion also shows how, despite the analytical value of separating macro, 
meso, and micro aspects of the context, the three levels interpenetrate in actual 
contexts.

18.3  Towards a Method for Describing Relevant Aspects 
of the Context of Research Studies

The question is how to describe the relevant aspects of the context of a study when 
we review it for possible relevance to our enquiries—or when we are reporting on 
our own study. I begin by scrutinizing two studies of educational differences done 
at different times and in different countries. I first chose a country that was “anthro-
pologically unfamiliar” to me and a study that aimed to take account of relevant 
differences among schools to describe and account for differences in performance: 
namely, the Indian National Achievement Survey (NAS; National Council for 
Educational Research and Training, 2012). This is a national survey of the perfor-
mance of pupils in Class V (mostly aged 10 and 11 years old) in India which aims 
to control for a wide range of background characteristics in understanding and esti-
mating differences in performance found, for example, between states, using mul-
tiple regression. The list of school, teacher, and student characteristics used provides 
a convenient “long list” of characteristics that might be considered for (theoretical) 
relevance, and taken account of, in other studies (National Council for Educational 
Research and Training, 2012, pp. xxvi–xxix).

Hutchison (2013) discussed whether a particular Indian government program, 
the Sarva Shiksa Abhiyan, was making progress towards equality of opportunity, or 
equity of treatment in primary education, in line with the Millennium Development 

J. Evans



409

Goals. He drew on the results of National Council for Educational Research and 
Training (2012) and produced a short list (summarized here) of the key aspects of 
the school factors—for the purposes of his study—as:

• Physical resources (including level of resourcing and student-teacher ratio)
• Qualities of teaching staff (including qualifications, experience, and whether the 

teacher gives regular homework)
• School atmosphere and ethos (including unpleasant experiences of students, 

problem behavior, and difficulty in recruiting teachers)
• Home-school interaction (including student absenteeism, homework given and 

checked every day)

Comparison of this short list with the longer list in National Council for 
Educational Research and Training (2012) shows that Hutchison chose to focus on 
a subset of meso characteristics of the educational context—that is, those character-
istics of schools, education authorities, and communities that he considers most 
relevant to the specific problem that he was addressing.

The other example I take is from research done in the United Kingdom in the 
1970s (Rutter, Maughan, Mortimore, & Ouston, 1979). This research studied 12 
schools of the then Inner London Education Authority (ILEA) as “social institu-
tions” and concluded that various aspects of the “processes” of the school had 
effects on children’s performance, attendance, and behavior over and above other 
factors measured. They labeled a key part of these processes “school ethos,” a set of 
values which they claimed were generally accepted by teachers and students. This 
research created a stir within educational and wider circles and led to a number of 
critical summaries and commentaries (e.g., Radical Statistics Education Group, 
1982; Tizard et al., 1980).

Young (1980) summarized the factors studied by Rutter et al. (1979) as school 
processes, pupil intake factors, ecological influences, and physical and administra-
tive features. He also pointed to the kinds of “factors” that the Rutter et al. model 
appeared not to regard as important: “questions of power, conflict, boundary main-
tenance, identity protection, classification (of pupils, teachers, and knowledge), as 
well as the ways in which the social relations of the wider society might mediate 
processes within the school” (Young, 1980, p. 31). We can see many of these addi-
tional factors as meso in our terms, though classification and the social relations of 
the wider society clearly relate to the macro level too.

Focusing on the meso aspects of the two original pieces of research, and compar-
ing Hutchison’s and Young’s summaries of key characteristics, we can discern some 
overlap despite the different timing and national origin of the two studies. Thus, 
Rutter et al.’s and Young’s physical and administrative features relate closely to the 
National Council for Educational Research and Training’s and Hutchison’s physical 
resources. But Rutter et al.’s ecological influences (e.g., geographical area, balance, 
and intake) overlap only slightly with home-school interaction (e.g., absenteeism, 
giving and checking of homework), so these two categories can be seen more use-
fully as supplementing each other. Some of Rutter et al.’s (1979) school processes 
(pp. 217–225) relate to what Hutchison calls school atmosphere and ethos, and the 
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remainder relate to qualities of teaching staff. And any summary of relevant aspects 
of the research context must include pupil intake factors in aggregate for an analysis 
focused on the meso level. (In contrast, studies focused on the micro level would 
relate individual intake factors to individual performance.)

Thus, as a starting point, I propose a list of aspects of the meso context of educa-
tional research for researchers wanting to think about characterizing the context of 
an educational study; the discussion above suggests that it include at least the fol-
lowing features:

• Aggregate pupil intake factors
• Qualities of teaching staff
• Physical and administrative features of the institution
• Ecological influences
• Home-school interaction
• School atmosphere and ethos

The important facets within each of these overall categories will vary from set-
ting to setting. A fuller idea of what they might include in particular settings is given 
in the descriptions of school and other meso characteristics in the two studies. And 
what are considered as important features will vary depending on the context to 
which one aims to transfer the knowledge.

18.4  Maintaining Breadth and Depth in the Idea 
of “Context”

In discussing the context above, I also emphasized its macro aspects—the historical 
context and the international and national political and policy dimensions. We can 
see that the work of National Council for Educational Research and Training (2012) 
is inspired by today’s international student achievement surveys, the Trends in 
International Mathematics and Science Study (TIMSS; from the International 
Association for the Evaluation of Educational Achievement [IEA]) and PISA (from 
the OECD). These surveys are conducted within the dominant overall perspective of 
policies of quality assurance, effective educational systems, and performativity. 
Despite the National Council’s emphasis on context, they appear to assume that 
knowledge is a neutral, technical matter, and the related checklists are tools for 
improvement. But in the contemporary global context, such instruments can be seen 
as “knowledge-based regulatory tools” aiming to promote the transnational gover-
nance of education, even if they are used somewhat differently in different contexts 
(Carvalho, 2012); see also Ozga (2012) on governing through data.

The Rutter et al. (1979) study differed in terms of the issues prevailing in educa-
tional research at its time: It was not so much aimed at “effectiveness” and perfor-
mativity. Rather, there were attempts to appreciate the importance of school 
processes in the reproduction or reduction of educational inequalities: For one thing, 
the Rutter et al. research was commissioned by the ILEA, a broadly progressive 
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body (until it was abolished by the Thatcher government in the United Kingdom in 
the mid-1980s). And this research was committed to looking into the “black box” of 
schooling processes at a time when there was a competing theoretical interest of 
investigating the extent to which schools are mechanisms of social reproduction 
(e.g., Bowles & Gintis, 1976; Willis, 1979). Thus, the Rutter et  al. research was 
done at a time when there was perhaps a more “balanced” relation between the 
policy and the research fields. There was more autonomy in the research field and 
less intrusion of the policy field through tightly specified conditions on funding, 
research assessment exercises, and other forms of regulation of what now counts as 
“relevant” educational research.

18.5  Discussion

The question of what makes up the “context” of research—and how to communi-
cate it to readers of research journals—is indeed challenging because of the diffi-
culty in deciding where to draw its limits. Here I have taken an “empirical” approach 
in revisiting two significant and critically reviewed studies with the aim of specify-
ing, in general, particular aspects of the context that should be focused on when 
considering educational research findings. Thus, the list of potentially relevant 
aspects of the meso context presented above must be considered as suggestive only. 
For example, the list would have to be changed somewhat for research situated in 
institutions of higher education (cf. Evans, 2000, pp. 1–4, 16–17). Nevertheless, in 
this chapter, I am proposing that authors of educational research reports consider 
various aspects of the research context from the list above and that they make 
explicit what they consider to be relevant aspects of the context in the description 
and presentation of findings from their own work.

An alternative approach is to develop a set of key aspects of the context on the 
basis of theoretical principles. One possible framework is suggested by the mention 
of “classification” in Young’s (1980) critique of Rutter et al.’s (1979) work cited 
above. From an early focus on classification (the separation and stratification of 
groups of pupils, teachers, areas of study, and forms of knowledge) and on framing 
(the means of regulation of the pedagogic relationship), Basil Bernstein developed 
a fuller theory of the pedagogic relationship, with contributions from colleagues and 
students (e.g., Bernstein, 2000). It is likely that a fruitful way ahead will involve a 
combination of “empirical” and “theoretical” approaches.

One of the central concepts in the Bernstein approach is recontextualisation, the 
transfer, translation, transformation, or “travel” of knowledge or policies originat-
ing in one context to another. Here, our examples also raise the question of the 
transfer of knowledge, policies, practices, and tools from the West to other educa-
tional systems, such as those of India—in the context of what has become a global 
reform movement towards a certain type of educational improvement. Surveys such 
as the Indian NAS constitute knowledge-based regulatory tools (Carvalho, 2012), 
which mold policy and practice in particular directions (e.g., Rizvi & Lingard, 
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2010). This discussion shows that we also need to think about the changing forms 
and role of knowledge and policy when thinking about the issue of knowledge trans-
fer (Ozga, 2012).

Despite the fact that the two studies considered here could be seen as “quantita-
tive,” I would argue that the process of situating research findings recommended 
here is an essential component of all effective research strategies. Certainly, many 
“qualitative” researchers have made similar contributions concerning the need to 
describe “fully” the context, especially in the case of single-institution “case stud-
ies” (e.g., Yin, 2003). Further, researchers familiar with qualitative methods may 
recognize in my concerns some overlap with what ethnographic researchers some-
times call a “reflexive account,” based on the view that researchers are part of the 
world that they study (e.g., Hammersley & Atkinson, 1983, pp. 14–23). Indeed, the 
usual reflexive account may well feed into the approach that I am advocating—
through its concern with what I call aspects of the micro and the meso contexts, 
which are basically the relationships that the particular researcher (or research team) 
has with the other social actors and institutional gatekeepers in the research setting. 
Ethnographers have provided an indispensable contribution through their descrip-
tion of the micro and some aspects of the meso contexts. Nevertheless, in addition, 
the aim here is to urge greater attention than is currently given to wider aspects of 
the meso level and to the macro context, too.

So far, we have discussed the levels of the context as if they are reasonably 
“objective.” Lave (1988) considered the differences between arena and setting—
respectively objective and subjectively experienced contexts—in her study of the 
mathematics deployed by adult shoppers (pp. 145–169). More recently, the impor-
tance of the subjectively (or partially) experienced context has been argued to be 
relevant to the perception of the “numerate environment” (Evans, Yasukawa, 
Mallows, & Kubascikova, 2022) by a typical adult engaged in a range of numeracy 
and mathematical practices. Recognizing the role of subjective perceptions of par-
ticular (groups of) actors is important because their perceptions of the context of a 
particular project will condition their attitudes towards its findings and recommen-
dations: Are they sound, important, worthy of support? Thus, they will be crucial, 
when we come to consider the response to research of particular factions or philoso-
phies of teachers in the “enactment” of policy, at the school level (Ball, Maguire, 
Braun, & Hoskins, 2011) or, in the possibilities of “scaling-up” changes recom-
mended by research, at the school-system level (e.g., Cobb, Jackson, Henrick, & 
Smith, 2018).

18.6  Conclusion

From among the important issues relating to transfer, I have focused in this chapter 
on the problem of how to communicate the important aspects of the context of 
research to readers of research reports. I have argued that, given that educational 
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research in its execution and reporting has to take account of the context in one way 
or another, it is advisable to try to make explicit the principles of description so that 
the issues of power and control in the research process can be more effectively 
dealt with.

Further, a description that is as clear and full as possible—and that takes account 
of varying subjective perceptions—will enhance the possibilities of making judg-
ments about the likely take-up of particular recommendations for change by par-
ticular groups of practitioners and institutions.

Why are these ideas important and urgent at this time? First, with the advent of a 
more globalized set of systems of education around the world (Rizvi & Lingard, 
2010), there is a “generalizing” trend that threatens to override local norms, values, 
and meanings (Evans, Wedege, & Yasukawa, 2013); this trend is strengthened by 
the strong emphasis given nowadays to the results of international studies like PISA, 
TIMSS, and PIAAC (e.g., Evans, 2019; OECD, 2016; Tsatsaroni & Evans, 2014). 
There is an additional risk that, despite substantial differences between educational 
settings, studies done in certain national contexts, usually the “Anglo-European” 
ones (Atweh & Keitel, 2008), will be considered “the norm” and therefore as not 
needing careful description.

Second, with trends towards greater accountability and performativity, plus a 
greater need for researchers to attract a measure of attention to their work amidst the 
cacophony of competing claims, there is pressure on researchers and journals to 
present the “message” of the research in a way that is as concise and straightforward 
as possible. This leaves little room for specifics of the context, subtlety of interpreta-
tion, or pointing to “limitations” of the findings.

Seen from another perspective, the views expressed here emphasize the multi-
level nature of the context of research or of any other human endeavor. Above, I 
showed how this can be seen to have flowed from the concerns of qualitative 
researchers with micro and meso levels especially. Another approach to more quan-
titative educational research has come to the fore in the last 30 or 40 years; this 
research aims to use mathematical modelling not only at the individual-case level 
(pupil or system user) but also to model one or more “higher” levels at the class-
room, school, and perhaps system level. The principles of this approach have been 
set down (http://www.bristol.ac.uk/cmm/learning/multilevel- models/) and are being 
used increasingly in effective educational research reporting. This is another exam-
ple of the view that the levels of the context of research need to be taken account of 
in the production as well as the reporting of research knowledge.
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