
Automated Deadlock Detection for Large
Java Libraries

R. Rajesh Kumar(B) , Vivek Shanbhag, and K. V. Dinesha

International Institute of Information Technology,
Bangalore 560100, Karnataka, India

rajesh.kumar@iiitb.org

https://www.iiitb.ac.in

Abstract. Locating deadlock opportunities in large Java libraries
is a subject of much research as the Java Execution Environment
(JVM /JRE) does not provide means to predict or prevent deadlocks.
Researchers have used static and dynamic approaches to analyze the
problem.

Static approaches: With very large libraries, this analysis face typi-
cal accuracy/doability problem. If they employ a detailed modelling of
the library, then the size of the analysis grows too large. Instead, if their
model is coarse grained, then the results have too many false cases. Since
they do not generate deadlocking test cases, manually creating deadlock-
ing code based on the predictions is impractical for large libraries.

Dynamic approaches: Such analysis produces concrete results in the
form of actual test cases to demonstrate the reachability of the identified
deadlock. Unfortunately, for large libraries, generating the seed test exe-
cution paths covering all possible classes, to trigger the dynamic analysis
becomes impractical.

In this work we combine a static approach (Stalemate) and a dynamic
approach (Omen) to detect deadlocks in large Java libraries. We first run
‘Stalemate’ to generate a list of potential deadlocking classes. We feed
this as input test case to Omen. In case of deadlock, details are logged
for subsequent reproduction. This process is automated without the need
for manual intervention.

We subjected the entire JRE v1.7.0 79 libraries (rt.jar) to our imple-
mentation of the above approach and successfully detected 113 deadlocks.
We reported a few of them to Oracle as defects. They were accepted as
bugs.

Keywords: Concurrency · Deadlock · Java · Static analysis ·
Dynamic analysis · Scalable

1 Introduction

The synchronised construct is provided in the Java Language to facilitate the
development of code fragments that may run concurrently. When this happens in
an uncoordinated manner it can give rise to Lock Order Violations. If such a lock

c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 129–144, 2021.
https://doi.org/10.1007/978-3-030-65621-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_8&domain=pdf
http://orcid.org/0000-0003-0897-0100
https://doi.org/10.1007/978-3-030-65621-8_8

130 R. Rajesh Kumar et al.

order violation is realised during program execution it causes the executing JVM
to deadlock. This problem has been widely investigated, and various researchers
have tried different approaches to address it.

There have been numerous published research works for detecting deadlocks
including both static and dynamic approaches [1,2,4–6,9,11–16] and some for
preventing them [3,7,8].

Stalemate [1,2] is a static analysis approach that identifies lock order viola-
tions in large Java libraries, which have the possibility of being realised, during
execution, in the form of a deadlock. However, its predictions include many false
positives, since the analysis is at the type level while the contested locks are held
on the actual objects. Consequently, one must develop a deadlocking test case by
manual examination of the call cycles in the predictions. For a library as large as
the entire JRE, it becomes impractical to apply this manual method to narrow
down to realisable deadlocks. Other static approaches such as Jade [12,13] can
scale well, produces notable results, however these methods also produce many
false positives.

There are many dynamic analysis approaches to identify deadlocks such as
Omen [4], Needlepoint [5] and Sherlock [6]. Omen, produces realisable deadlocks
along with reproducible test cases. Such dynamic analysis, initiated using seed
test cases, is limited to the execution traces realisable during the call flows of
the seed test cases. For large libraries, the set of seed test cases would become
substantial, and looking for lock cycles realisable in their execution traces would
be impractical. The implementation Sherlock is suitable for large programs but
not for libraries.

In this paper we address the problem of identifying reproducible deadlocks in
large Java libraries without false positives, and produce deadlocking test cases
for the detected deadlocks. Our approach combines a static approach Stalemate
[1,2], as it can scale to analyze large libraries and a dynamic approach Omen [4]
to detect real deadlocks along with deadlocking test cases.

We start by subjecting the library to Stalemate and from the lock order
violations it reports, interleaving calls that could lead to deadlocks are extracted.
Reading off classes/methods involved in such calls, we use Randoop to generate
test cases that exercise these classes/methods. These tests are then subjected to
dynamic analysis (Omen) narrowing down to reproducible deadlocks. In this way
we eliminate the numerous false cases identified by static analysis. At the same
time the attention of the dynamic analysis is directed to only those components
in the library where there is a possibility of finding a deadlock. We have fully
automated the process so that the complete analysis for the entire library can
be completed with no manual intervention.

This paper is organized as follows: Sect. 2 states the problem we are attempt-
ing to address. Section 3 provides the solution overview and details the imple-
mentation, Sect. 4 summarizes the results, and Sect. 5 states the conclusions.

Automated Deadlock Detection for Large Java Libraries 131

2 Problem Statement

Design an automated method to analyze large Java libraries to detect deadlocks
by combining static and dynamic analysis approaches. For each of the lock order
violations identified by the static analysis (Stalemate), create an automated
process to detect any real deadlock associated with that violation using dynamic
analysis (Omen). The process should also generate the deadlocking test cases to
reproduce the deadlocks.

As an illustration, we have used the output of Stalemate [1] on the entire
JRE v1.7.0 79 libraries (rt.jar) to generate a list of lock order violations (this
number is more than 26,000) with many false positive cases. We have used the
automated process described in this paper to generate a list of real deadlocks
(number: 113) and test cases to reproduce the deadlocks.

3 Solution Details

The solution focuses on extracting the relevant details from the static analysis
and targets the dynamic analysis only on those classes that have the potential
to cause a deadlock. Given a lock order violation that is identified by the static
analysis Stalemate, next, we want to develop single-threaded test programs that
may individually realise each its thread stacks. For this purpose we use the
Randoop tool, which synthesizes test cases for a given set of classes. The dynamic
analysis tool Omen is then invoked by passing the generated test case as the
seed test case. On completion of the analysis if deadlocks are found, Omen will
synthesize a multi-threaded test case that will always deadlock.

The task is to use these tools, namely, Stalemate, Randoop and Omen, and
devise an automated method to analyze large Java libraries to detect deadlocks
and produce deadlocking test scenarios. The flow is designed to handle any
exceptions and intermittent failures so that it is suitable to analyze large libraries
and results in a truly automated solution.

3.1 Solution Steps

The process flow is represented in Fig. 1. Key steps of the automated analysis is
described below.

1. Static Analysis: The jar file containing the libraries that are to be analyzed
are subjected to the static analysis. This step produces the static analysis
results (Sn), which contains the list of potential deadlocking scenarios con-
taining the call flow details with the lock order violations involved in the
synchronized functions calls, as represented in Fig. 2.

132 R. Rajesh Kumar et al.

Fig. 1. Automated deadlock detection process flow

The result is interpreted as follows: the “Cycle-2” in its opening line means
that is a lock order violation involving 2 locks. The class names of the locks
are in the string that follows. This line is followed by a number of thread
stacks enclosed within “Thread-i Option” descriptors. i ranging from 1 to n,
the number of locks involved in the violation.
The example in Fig. 2, where n = 2, we refer to the “Thread-1” stacks as
forward stacks, which acquire locks in the forward order, and the “Thread-2”
stacks as reverse stacks, as they acquire them in the reverse order. If in a
multi-threaded program, one thread were to realise one of the forward stacks,
and another thread were to realise one of the reverse stacks, and if they were
to do this concurrently, and if the two locks they are trying to acquire were
to be the same two locks, then they could result in a deadlock.

Automated Deadlock Detection for Large Java Libraries 133

<Cycle-2 java.util.logging.Logger.class java.util.logging.LogManager>

<Thread-1 Option>
java.util.logging.Logger.getAnonymousLogger:()Ljava.util.logging.Logger;
java.util.logging.LogManager.getLogger:(Ljava.lang.String;)Ljava.util.logging.Logger;

</Thread-1 Option>
<Thread-1 Option>
java.util.logging.Logger.getAnonymousLogger:(Ljava.lang.String;)Ljava.util.logging.Logger;
java.util.logging.LogManager.getLogger:(Ljava.lang.String;)Ljava.util.logging.Logger;

</Thread-1 Option>
<Thread-1 Option>
java.util.logging.Logger.getLogger:(Ljava.lang.String;Ljava.lang.String;)Ljava.util.logging.Logger;
java.util.logging.LogManager.getLogger:(Ljava.lang.String;)Ljava.util.logging.Logger;

</Thread-1 Option>
<Thread-1 Option>
java.util.logging.Logger.getLogger:(Ljava.lang.String;Ljava.lang.String;)Ljava.util.logging.Logger;
java.util.logging.LogManager.addLogger:(Ljava.util.logging.Logger;)Z

</Thread-1 Option>
<Thread-1 Option>
java.util.logging.Logger.getLogger:(Ljava.lang.String;)Ljava.util.logging.Logger;
java.util.logging.LogManager.addLogger:(Ljava.util.logging.Logger;)Z

</Thread-1 Option>
<Thread-1 Option>
java.util.logging.Logger.getLogger:(Ljava.lang.String;)Ljava.util.logging.Logger;
java.util.logging.LogManager.getLogger:(Ljava.lang.String;)Ljava.util.logging.Logger;

</Thread-1 Option>

<Thread-2 Option>
java.util.logging.LogManager.addLogger:(Ljava.util.logging.Logger;)Z
java.util.logging.Logger.getLogger:(Ljava.lang.String;)Ljava.util.logging.Logger;

</Thread-2 Option>

</Cycle-2 java.util.logging.Logger.class java.util.logging.LogManager>

Fig. 2. Lock order violation output from static analysis

2. Prediction Filtering and Data Preparation: The results produced by
Stalemate could be a very large data set. To narrow down the areas of focus,
certain filters such as Cycles, Call Depth and Call Density are applied on the
results (details of the filters are elaborated in Sect. 3.2). Each of the result
nodes (S1 to Sn) are checked for the filter criteria and a subset Nk of the
static analysis results (Nk ⊂ Sn) is produced. There is a possibility that this
step could filter certain real deadlock candidates, however it helps to direct
the analysis to the desired focus area. For each of the shortlisted nodes, the
classes are extracted along with the metadata to trace back to the static
analysis and it is referred as Node Info. An extract of a log created after the
filtering exercise is shown in Fig. 3(a) and Node Info is shown in Fig. 3(b).

3. Seed Test Case Generation: Using the Node Info details collected during
the data preparation step the seed test cases (TCk) are generated for each
of the shortlisted predictions using the utility Randoop [10]. The test cases
target specifically the classes involved in a lock order violation as detected by
the static analysis. Example of a test case generated by Randoop is shown in
Fig. 3(c).

134 R. Rajesh Kumar et al.

Fig. 3. (a) Execution summary (b) node info (c) test case generated by Randoop

4. Dynamic Analysis for Deadlock Detection: Post generation of the seed
test cases, for each of the test cases (TC1 to TCk), the Dynamic Deadlock
Analysis is initiated with Omen. The Dynamic Analysis starts by executing
the seed test case and by tracing the lock dependency relations of the classes
during the execution and recording them along with the invocation contexts.
The presence of cyclic chains in the lock dependency relations are identified
and potential deadlocking scenarios are synthesized. Multi-threaded tests are
then generated by using the invocation details from the seed test case exe-
cution and by creating additional conditions that could result in a deadlock.
At the end of the execution if any deadlocks are detected (DLj) successfully,
they are recorded along with the deadlocking test cases. The class to be ana-
lyzed, seed test case, and the deadlocking test case generated by Omen are
illustrated in Fig. 4 with a simple example. The flow continues by picking the
next shortlisted result to be analyzed.

5. Handling of Deadlocked Analysis: It was observed that the execution of
the analysis was getting deadlocked either during the generation of the seed
test cases or during the dynamic analysis. It was observed that these dead-
locking scenarios were occurring while processing specific set of classes. The
stack traces of the deadlocked JVM revealed that these are indeed deadlock-
ing scenarios as predicted by the static analysis and they were consistently
occurring while processing those specific classes. The test case generation by
Randoop is a multi-threaded process as it executes each test in a separate
thread to speed up the generation. When the lock order violations occur in

Automated Deadlock Detection for Large Java Libraries 135

the call flows of the classes for which the test cases are being generated, the
possibility of deadlock occurs. Similarly, such scenarios occur during dynamic
analysis as well. JVM Monitoring Routine was developed to watch the JVMs
for such scenarios. Once a deadlocked JVM is detected then the stack traces
were extracted and recorded along with the associated metadata so that it is
traceable to the prediction. The hung JVM is then terminated by the routine
so that the flow would continue to the next prediction to be analyzed. An
extract of the JVM stack trace of such as scenario is shown in Fig. 5

Fig. 4. Omen dynamic analysis example: (a) class to be analyzed (b) sequential seed
test case to be subjected to the analysis (c) synthesized multi-threaded deadlocking
test case generated by Omen

136 R. Rajesh Kumar et al.

...

"Finalizer" daemon prio=5 tid=0x00007f8944813800 nid=0x3303 in
Object.wait() [0x0000700001e0e000]

java.lang.Thread.State: WAITING (on object monitor)
at java.lang.Object.wait(Native Method)
- waiting on <0x0000000780004858> (a

java.lang.ref.ReferenceQueue$Lock)
at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:135)
- locked <0x0000000780004858> (a

java.lang.ref.ReferenceQueue$Lock)
at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:151)
at

java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:209)

...

"main" prio=5 tid=0x00007f8944802800 nid=0x1b03 runnable
[0x00007000016f8000]

java.lang.Thread.State: RUNNABLE
at

java.util.logging.Logger.getEffectiveResourceBundleName(Logger.java:1703
)

at java.util.logging.Logger.doLog(Logger.java:636)
at java.util.logging.Logger.log(Logger.java:664)
at java.util.logging.Logger.info(Logger.java:1182)
at RandoopTest0.test7(RandoopTest0.java:109)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

...

Fig. 5. Extract of JVM stack trace

6. Data Collection and Report Creation: Comprehensive reports of the
analysis are generated based on the data collected when the execution con-
cludes, resulting in a comprehensive Deadlock Detection Report.

3.2 Implementation

The implementation details of the solution is elaborated in this section. The
complete source code for of this implementation is published in GitHub along
with the test results of the executions.

Execution Flow. The end-to-end execution flow design is represented in the
Fig. 6. The flow of the automated deadlock analyzer is as follows (refer Fig. 6,
steps 1 to 7):

1. The run cycles are specified by providing the constraints that needs to be
applied on the static analysis prediction output. The constraints specifies the
output files that needs to be selected for analysis and the filter criteria that
needs to be applied for each of the output files.

2. For each run, the Prediction filter constraints file is generated, which is the
primary input for the Static Analysis Prediction Scanner.

Automated Deadlock Detection for Large Java Libraries 137

Fig. 6. Automated deadlock analyzer implementation design

3. The Static Analysis Prediction Scanner takes the generated Prediction filter
constraints and scans each of the static analysis output files and selects the
specific prediction nodes (the xml node that contain the lock order violations)
along with the relevant metadata.

4. Dynamic Deadlock Analyzer is then invoked for each of the shortlisted node
after generating the seed test cases for the classes involved in the poten-
tial deadlocks identified by the static analysis. The detected deadlocks are
recorded in such a way that the corresponding static analysis prediction and
the interleaving call details can be traced back.

5. During the execution of the dynamic analysis the JVM Monitor is invoked
to monitor the execution for any hung scenarios. When such a scenario is
detected, the monitor will extract the details for analysis and terminate the
hung program so that the execution can continue. All the logs related to the
deadlocking scenario are organized so that they can be seen in the context of
the specific deadlock prediction.

6. After the completion of the analysis, the Results Report Generator is run to
consolidate the complete execution results. The summary of each execution

138 R. Rajesh Kumar et al.

is created in a master report file with the details of the constraints specified
along with the results. With this information any detected deadlock can be
consistently recreated.

7. The steps 2 through 6 are repeated for each of the run cycles specified in Step
1, thereby enabling the execution of a complete batch of automated analysis

The details of some of the key components of the implementation are
described below:

Static Analysis Prediction Scanner. The static analysis prediction scanner
is designed to shortlist the specific nodes from the output of the static analysis
based on the constraints such as Cycles: Specifies the number of locks involved
in a lock order violation, Call Depth: The number of function calls involved
in a deadlock cycle that was predicted, Call Density : The number of classes
involved in the prediction node resulting in a deadlocking cycle, and Package
Exclusions: The list of packages that are to be excluded in the scan. All the
necessary metadata required to target only the classes that could lead to a
potential deadlock are collected at this stage. The Dynamic Deadlock Analysis
is triggered after the completion of this scan.

Dynamic Deadlock Analysis. The first step of the process is to generate
the sequential test cases that will act as the seed test cases for the dynamic
analysis. Our aim is to target only the classes that are involved in a lock order
violation, as predicted by the static analysis. The test cases corresponding to
each of the selected prediction node from the static analysis are generated by
the Randoop tool. Omen, is then invoked with the seed test case as input to
initiate the dynamic analysis. The test cases are executed by Omen and the
execution traces are scanned for cycles to detect the deadlocking scenarios. The
detected deadlocks are then consolidated into a comprehensive report.

JVM Monitoring Routine. JVM Monitoring Routine was developed to han-
dle the deadlocked analysis that happens either during Randoop execution or
during Omen execution. JVM Monitor, once initiated is designed to run as long
as there is an active JVM. As a first step, it fetches all the process identi-
fiers (PIDs) of the java programs that are being executed in the JVM with a
time delay. Then it checks if there are any identical processes between those
time delays. If there are any identical processes, their respective stack traces are
fetched. The stack traces are then compared to check the JNI global references
held by the JVM. Analysis of the JNI global references is a predictable indicator
to assess if the JVM is active or hung. If the JNI global references are identical
across multiple snapshots with significant time delays, it predictably indicated a
hung JVM. Once the hung state of the JVM is detected then logs are generated,
and the details are collected in the reports. The processes that are hung are then
terminated for the flow of the Dynamic Analyzer to progress ahead.

Automated Deadlock Detection for Large Java Libraries 139

Report Generation. Following are the key reports generated during the exe-
cution:

1. Test Runs Report: Contains the execution status for each of the batches,
along with the filter criteria applied for the analysis. This report provides
an overview of the batch executions and enables to plan further batches for
analysis.

2. Execution Summary Report: This report provides the summary of the
execution results and helps to navigate to the specific deadlocking scenario.
The metadata captured by this report enables to locate the specific Deadlock
Report file along with the other details that indicates the number of tests
executed and number of dead locking scenarios detected.

3. Deadlock Report: The Deadlock Report contains the log related to each of
the nodes that were processed and which of the processed node resulted in a
deadlock. If the dead locks are detected as a result of the hung JVM detected
during test case generation or dynamic analysis, they are marked.

4 Results

The entire Java Runtime Libraries JRE v1.7.0 79 libraries (rt.jar) were subjected
to Stalemate [1], the static analysis tool. The output files from the static analysis
method were used as a starting point for the analysis. Table 1 lists the key details
of the execution. We have been able to uncover deadlock in Java libraries that
have not been demonstrated by other methods. We identified such cases and
reported some of them to Oracle as bugs. Table 2 lists the bugs reported to
Oracle.

Table 1. Summary of execution

Platform MacOS High Sierra 17.3.0 Darwin
Kernel Version 17.3.0,
xnu-4570.31.3 1/RELEASE X86 64
x86 6

Java environment java version “1.7.0 79”, Java(TM)
SE Runtime Environment (build
1.7.0 79-b15), Java HotSpot(TM)
64-bit server VM (build 24.79-b02,
mixed mode)

Execution summary Total tests executed 1,563

Total prediction nodes analyzed 26,728

Duplicates eliminated 3,001

Nodes filtered from static analysis 1,563

Total deadlocking scenarios detected 113

140 R. Rajesh Kumar et al.

Table 2. Bugs reported to Oracle

Deadlocking Java Library classes Oracle JDK Bug ID

java.util.logging.Logger 8194918

java.util.logging.LogManager

ava.awt.EventQueue 8194407

sun.awt.AppContext

javax.swing.plaf.basic.BasicDirectoryModel

sun.awt.X11.XToolkit

java.util.Vector

java.awt.EventQueue 8194635

sun.awt.PostEventQueue

java.awt.SentEvent

sun.awt.SunToolkit

ava.awt.Component 8194862

javax.swing.JFileChooser

javax.swing.SwingUtilities

java.awt.dnd.DropTarget

javax.swing.JComponent

java.io.ObjectInputStream 8194920

java.awt.KeyboardFocusManager

java.awt.Component

java.awt.Window

java.awt.Frame

java.util.TimeZone 8194919

java.util.Properties

javax.naming.spi.DirectoryManager

java.lang.SecurityManager

java.util.Hashtable

java.awt.EventQueue 8194962

java.awt.EventDispatchThread

sun.awt.PostEventQueue

ava.awt.EventQueue 8194983

sun.awt.AppContext

javax.swing.plaf.basic.BasicDirectoryModel

sun.awt.X11.XToolkit

Automated Deadlock Detection for Large Java Libraries 141

Table 3. Examples: deadlocking call cycles

Calls between:

java.util.logging.Logger

java.util.logging.LogManager

Forward calls

Logger.getAnonymousLogger() calls

LogManager.getLogger(String)

Logger.getLogger(String,String) calls

LogManager.getLogger(String)

Logger.getLogger(String) calls

LogManager.addLogger(Logger)

Reverse calls

LogManager.addLogger(Logger) calls

Logger.getLogger(String)

Calls between:

sun.awt.PostEventQueue

java.awt.EventQueue

Forward calls

PostEventQueue.flush() calls

EventQueue.postEventPrivate(AWTEvent)

Reverse calls

EventQueue.removeSourceEvents(Component) calls

java.awt.SentEvent.dispose(AppContext,SentEvent) calls

PostEventQueue.postEvent(SentEvent)

EventQueue.push(EventQueue) calls

EventQueue.getNextEvent() calls

SunToolkit.flushPendingEvents() calls

PostEventQueue.flush()

Calls between:

sun.rmi.server.Activation

sun.rmi.server.Activation$GroupEntry

Forward calls

Activation.addLogRecord(Activation$LogRecord) calls

Activation$ActivationSystemImpl.shutdown() calls

Activation.checkShutdown() calls

Activation$GroupEntry.restartServices() calls

Activation$GroupEntry.getInstantiator(ActivationGroupID)

Activation.addLogRecord(Activation$LogRecord) calls

SystemImpl.shutdown() calls

Activation$GroupEntry.unregisterGroup()

Reverse calls

Activation$GroupEntry.setActivationGroupDesc(ActivationGroupID) calls

Activation.addLogRecord(Activation$LogRecord)

142 R. Rajesh Kumar et al.

The results identified by our approach are reproducible. The static analysis [1]
alone detected many thousands of potential deadlocks where one has to analyze
the predictions manually to construct the deadlocking test cases, whereas we
produce the deadlocking scenarios as output. The dynamic analysis [4] results
are limited by the test cases that are subjected to it, hence it is not a viable tool in
itself to analyze large libraries. Combining both together we have demonstrated
an automated solution that is scalable for large libraries.

The Table 3 shows few examples of interleaving call details of the deadlocks
detected by our method. For brevity the package names and return values of the
methods are omitted while representing the call flows.

5 Conclusions

From the above results we assess that the method described was able to deal
with the scale what it was intended for. It was successfully able to scan through
tens of thousands of potential deadlocking scenarios and created over hundred
reproducible deadlocking test cases without any false positives.

The approach was able to overcome the inherent limitation of the static
approach of producing numerous ‘potential’ dead locking cases containing lot
of false positives. Dynamic analysis on the other hand is effective in deadlock
detection for programs for applications but not for libraries. It is limited by the
coverage provided by the seed test case that is subjected to the analysis.

The presented approach provides an effective way to leverage both static and
dynamic analysis methods to produce a viable automated way to detect deadlock
in large java libraries.

Acknowledgements. We sincerely thank Dr. Murali Krishna Ramanathan for the
discussion in formulating the problem. We also thank Malavika Samak and Dr. Murali
Krishna Ramanathan for permitting us to use the program developed by them for
dynamic deadlock detection.

References

1. Shanbhag, V.K.: Locating lock order violations in Java libraries - a scalable static
analysis. Ph.D. dissertation. IIIT - Bangalore, Bangalore, Karnataka, India (2015).
Reference [2] is the preliminary work of this thesis. Contact: IIIT-B Library (iiit-
blibrary@iiitb.org) or Author (vivek.shanbag@gmail.com)

2. Shanbhag, V.K.: Deadlock-detection in Java-library using static-analysis. In: 2008
15th Asia-Pacific Software Engineering Conference, Beijing, 2008, pp. 361–368
(2008). https://doi.org/10.1109/APSEC.2008.68

3. Pandey, S., Bhat, S., Shanbhag, V.: Avoiding deadlocks using stalemate and Dim-
munix. In: Companion Proceedings of the 36th International Conference on Soft-
ware Engineering (ICSE Companion 2014), pp. 602–603. Association for Comput-
ing Machinery, New York (2014). https://doi.org/10.1145/2591062.2591136

https://doi.org/10.1109/APSEC.2008.68
https://doi.org/10.1145/2591062.2591136

Automated Deadlock Detection for Large Java Libraries 143

4. Samak, M., Ramanathan, M.K.: Multithreaded test synthesis for deadlock detec-
tion. In: Proceedings of the 2014 ACM International Conference on Object Ori-
ented Programming Systems Languages and Applications (OOPSLA 2014), pp.
473–489. Association for Computing Machinery, New York (2014). https://doi.
org/10.1145/2660193.2660238

5. Nagarakatte, S., Burckhardt, S., Martin, M.M.K., Musuvathi, M.: Multicore accel-
eration of priority-based schedulers for concurrency bug detection. In: Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2012), pp. 543–554. Association for Computing Machinery,
New York (2012). https://doi.org/10.1145/2254064.2254128

6. Eslamimehr, M., Palsberg, J.: Sherlock: scalable deadlock detection for concurrent
programs. In: Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2014), pp. 353–365. Association
for Computing Machinery, New York (2014). https://doi.org/10.1145/2635868.
2635918

7. Jula, H., Tralamazza, D., Zamfir, C., Candea, G.: Deadlock immunity: enabling
systems to defend against deadlocks. In: Proceedings of the 8th USENIX confer-
ence on Operating systems design and implementation (OSDI 2008), pp. 295–308.
USENIX Association, USA (2008)

8. Jula, H., Tözün, P., Candea, G.: Communix: a framework for collaborative dead-
lock immunity. In: 2011 IEEE/IFIP 41st International Conference on Dependable
Systems and Networks (DSN), Hong Kong, pp. 181–188 (2011). https://doi.org/
10.1109/DSN.2011.5958217

9. Pradel, M., Gross, T.R.: Fully automatic and precise detection of thread safety vio-
lations. In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2012), pp. 521–530. . Association
for Computing Machinery, New York (2012). https://doi.org/10.1145/2254064.
2254126

10. Pacheco, C., Ernst, M.D.: Randoop: feedback-directed random testing for Java.
In: Companion to the 22nd ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems and Applications Companion (OOPSLA 2007), pp. 815–816.
Association for Computing Machinery, New York (2007). https://doi.org/10.1145/
1297846.1297902

11. Choudhary, A., Lu, S., Pradel, M.: Efficient detection of thread safety violations via
coverage-guided generation of concurrent tests. In: 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering (ICSE), Buenos Aires, pp. 266–277
(2017). https://doi.org/10.1109/ICSE.2017.32

12. Naik, M., Park, C.-S., Sen, K., Gay, D.: Effective static deadlock detection. In:
Proceedings of the 31st International Conference on Software Engineering (ICSE
2009), pp. 386–396. IEEE Computer Society, USA (2009). https://doi.org/10.1109/
ICSE.2009.5070538

13. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. In:
Proceedings of the 27th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2006), pp. 308–319. Association for Computing
Machinery, New York (2006). https://doi.org/10.1145/1133981.1134018

14. Joshi, P., Park, C.-S., Sen, K., Naik, M.: A randomized dynamic program analysis
technique for detecting real deadlocks. In: Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2009),
pp. 110–120. Association for Computing Machinery, New York (2009). https://doi.
org/10.1145/1542476.1542489

https://doi.org/10.1145/2660193.2660238
https://doi.org/10.1145/2660193.2660238
https://doi.org/10.1145/2254064.2254128
https://doi.org/10.1145/2635868.2635918
https://doi.org/10.1145/2635868.2635918
https://doi.org/10.1109/DSN.2011.5958217
https://doi.org/10.1109/DSN.2011.5958217
https://doi.org/10.1145/2254064.2254126
https://doi.org/10.1145/2254064.2254126
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1109/ICSE.2017.32
https://doi.org/10.1109/ICSE.2009.5070538
https://doi.org/10.1109/ICSE.2009.5070538
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1145/1542476.1542489
https://doi.org/10.1145/1542476.1542489

144 R. Rajesh Kumar et al.

15. Williams, A., Thies, W., Ernst, M.D.: Static deadlock detection for Java libraries.
In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 602–629. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11531142 26

16. Cai, Y.: A dynamic deadlock prediction, confirmation and fixing frame- work for
multithreaded programs. In: Doctoral Symposium of the 26th European Conference
on Object-Oriented Programming (ECOOP 2012, DS) (2012)

https://doi.org/10.1007/11531142_26

	Automated Deadlock Detection for Large Java Libraries
	1 Introduction
	2 Problem Statement
	3 Solution Details
	3.1 Solution Steps
	3.2 Implementation

	4 Results
	5 Conclusions
	References

