)

Check for
updates

Memory Optimized Dynamic Matrix Chain
Multiplication Using Shared Memory in GPU

Girish Biswas®™ and Nandini Mukherjee

Department of Computer Science and Engineering, Jadavpur University, Kolkata, IN, India
girishbiswas@gmail.com, nmukherjee@cse.jdvu.ac.in

Abstract. Number of multiplications needed for Matrix Chain Multiplication of
n matrices depends not only on the dimensions but also on the order to multiply
the chain. The problem is to find the optimal order of multiplication. Dynamic pro-
gramming takes O <n3) time, along with O <n2) space in memory for solving this
problem. Now-a-days, Graphics Processing Unit (GPU) is very useful to the devel-
opers for parallel programming using CUDA computing architecture. The main
contribution of this paper is to recommend a new memory optimized technique to
solve the Matrix Chain Multiplication problem in parallel using GPU, mapping
diagonals of calculation tables m[][] and s[][] into a single combined calculation
table of size O(n2) for better memory coalescing in the device. Besides optimiz-
ing the memory requirement, a versatile technique of utilizing Shared Memory in
Blocks of threads is suggested to minimize time for accessing dimensions of matri-
ces in GPU. Our experiment shows best ever Speedup as compared to sequential
CPU implementation, run on large problem size.

Keywords: GPU - CUDA - Matrix chain - Memory mapping - Dynamic
programming - Memory optimized technique

1 Introduction

Graphics Processing Unit (GPU) is a common architecture in today’s machines that can
provide high level of performance in graphical platform using many-core processors.
Modern GPU offers the developers to use all cores of processors simultaneously to par-
allelize the general purpose computing. Many studies [2, 4, 6, 8, 9] have been carried out
till date to implement parallel algorithms in CUDA for general computational problems.
There are some Streaming Multiprocessors (SM) in a GPU device and each SM com-
prises of many cores (Fig. 1) which may be allocated to threads in parallel. The whole
computation in the device is done over a Grid of some Blocks, where each Block is con-
stituted of some number of threads. NVIDIA GPUs provide the parallel programming
architecture, called CUDA (Compute Unified Device architecture) [5].

Using GPU architecture for solving the optimization problems with large number of
combinations is challenging due to limited memory in the device and minimum depen-
dency between different threads. The problem of Matrix Chain Multiplication arises in

© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 160-172, 2021.
https://doi.org/10.1007/978-3-030-65621-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-65621-8_10

Memory Optimized Dynamic Matrix Chain Multiplication 161

many real time applications such as image processing, modern physics and modelling
etc. This optimization problem needs to find the optimal order of multiplication of the
matrices.

Dynamic programming approach may be applied to find the optimal solution using
GPU [2] with diagonal mapped matrices of calculation for assuring coalesced memory
access. This approach uses two 2D calculation tables m[][] and s[][], each of n rows and
n columns. So, 0(2 . n2) size memory space is required to be allocated in GPU device,
which is made of limited space.

The main contribution of our paper is to suggest an efficient way of using only a
single combined calculation table of size O(nz), to be allocated in the device, mapping
diagonals of both of m[][] and s[][] into it (Fig. 3). Our memory optimized approach
maintains memory coalescing and shows better results choosing proper Block-size in
GPU (Sect. 4.B) for the varying number of elements in the diagonals of the tables. Also,
a simple trick is taken in our study to use Shared Memory to store only the required
dimensions of matrices (Fig. 4) in Blocks of threads executing in parallel in GPU to
reduce the access time for accessing dimensions of matrices to enrich the Speedup even
more, compared with sequential implementation run in CPU for large datasets. This
paper presents the most effective technique with respect to both memory requirements
and performance.

The paper is organized as follows, Sect. 2 illustrates the idea of CUDA programming
architecture in GPU device. Section 3 provides the Dynamic Programming Techniques
to solve the Matrix Chain Multiplication Problem in GPU. Section 4 discusses about
our Proposed Approach. Section 5 discusses about the results. Section 6 concludes the

paper.

1.1 Previous Works

As per our knowledge, very few studies have been made on Matrix Chain Multiplication
optimization problem until now for parallelizing the problem especially through GPU. In
2011 Kazufumi Nishida, Yasuaki Ito and Koji Nakano [2] proposed an efficient technique
of memory mapping to ensure coalesced memory access for accelerating the dynamic
programming for the Matrix Chain Multiplication in GPU. The diagonals of m[][] and
s[1[] were mapped into rows of 2D arrays in a manner that all elements of a diagonal
are consecutive in nature. They have passed all the diagonals of m and s tables to GPU
one by one for computation of all elements of each diagonal by Blocks of threads in
parallel. But, for a problem size of n matrices, this approach takes memory space of size
(2 . nz), where O(nz) size of memory is wasted. In addition, much time is wasted in
accessing the array of dimensions from Global Memory of GPU by the threads of each
Block which can be further accelerated with the help of Shared Memory.

Mohsin Altaf Wani and S.M.K Quadri [4] presented an accelerated dynamic pro-
gramming on GPU in 2013. They have not used any mapping of m table, but simply
used single Block of threads for the computation of a single diagonal of m where each
thread independently calculates some elements of that diagonal in parallel. This app-
roach suffers from non-coalesced memory access and does not use multiple Blocks of
threads also.

162 G. Biswas and N. Mukherjee

2 GPU and CUDA

NVIDIA introduced CUDA™, a general purpose computing architecture in GPU in
2006. This massive parallel computing architecture can be applied to solve complex
computational problems in highly efficient manner with respect to equivalent sequen-
tial solution implemented on CPU. Developers may use the high-level language, C in
programming with CUDA [3].

2.1 GPU Architecture

GPU consists of several Streaming Multiprocessors (SM) with many cores and mainly
two types of memory: Global Memory, Shared Memory (Fig. 1) [3]. Also, each SM has
number of registers which are fastest and local to SM. Each SM has its own Shared
Memory, which can be as fast as registers when bank conflict does not happen. Global
Memory of higher memory capacity is potentially 150 slower than Shared Memory.

2.2 CUDA

In programming architecture of CUDA [3], parallelism is achieved with bunch of threads
combined into a Block and multiple Blocks combined into a Grid. Each Block is always
assigned to a single SM while the threads in a Block are scheduled to compute as a warp
of 32 threads at a time. All threads of a Block can be synchronized within that Block and
can access the Shared Memory of that assigned SM only. CUDA permits programmers
to write C function, called Kernel for parallel computations in GPU using Blocks of
threads.

2.3 Coalesced Memory Access

If access requests to Global Memory from multiple threads can be assembled into con-
tiguous location accesses or same location access, this request can be performed at once
which is known as coalesced memory access [3]. As aresult of such memory coalescing,
Global Memory works nearly as fast as register memory.

Shared Memary [Shared Memory] Shared Memory

S

4
-I

S o9
- =~ - =~ - -
e - - o e -

e -~ e = e b
wre | oo we | e | care care
—) J)! J J
s sy | s

Global Memory

Fig. 1. GPU computing architecture in CUDA

Memory Optimized Dynamic Matrix Chain Multiplication 163

2.4 Shared Memory and Memory Banks

Shared Memory [3, 10] is a collection of multiple banks of equal size which could be
accessed simultaneously. Any memory accesses of n addresses from n distinct memory
banks can effectively be serviced simultaneously. If multiple threads request to the
same bank and to the same address, it is accessed only once and served to all those
threads concurrently as multicast at once. However, multiple access requests to different
addresses from same bank lead to Bank Conflict, which needs much time as requests
are served serially [11]. For the GPU devices of compute capability > 2.x, there are 32
banks with each bank of 32-bits long whereas the warp size is of 32 threads. If multiple
threads of a warp try to access data from the same memory address with same bank, there
happens no bank conflict also which is termed as multicast. When used with 1Byte/2Byte
long data in Shared Memory, each bank contains more than one data. In this case also
there is no bank conflict if threads access these data from single bank, as this is taken as
multicast [12] in GPU device with compute capability > 2.x. GPU devices of compute
capability = 2.x have the default settings of 48 KB Shared Memory/16 KB L1 cache.

3 Matrix Chain Multiplication Problem

Matrix Chain Multiplication or Matrix chain ordering problem requires to finding the
best order for multiplying the given sequence of matrices so that the least number of
multiplications are involved. This is merely an optimization problem using the asso-
ciative property of matrix multiplication. Actually the solution is to provide the fully
parenthesized chain of matrices through the optimal order of multiplication.

Provided the Matrix Chain, containing n matrices {A1, Ao,A,}, is to be mul-
tiplied where {dy, d2, d3,d,, d,+1} is the set of all dimensions of these matrices,
described as follows:

Alldlxdz
A idr X d3

Now, the problem is to find the order in which the computation of the product
Ap X Ay X X A, needs the minimum number of multiplications and hence find the
fully parenthesized chain denoting the optimal order of multiplication.

3.1 Solving Technique in Dynamic Programming

Dynamic programming is useful for storing the solutions of small sub-problems and
reusing them step by step to combine into greater problems and finally finding the solution
of the given problem in time efficient approach. Dynamic programming technique [1]
makes it easy to solve the above Matrix Chain Multiplication problem with n matrices
using a m[][] table, where m [i , j] denotes the minimum number of multiplications needed

164 G. Biswas and N. Mukherjee

to compute the sub-problem <Ai x Ai+ 1 x....x Aj> for | <i < j < n. Minimum cost
m[i , j] is calculated using the following recursion:

’ Fr=g M

P mli k] +mlk + 1,j] + diddj1 if i < j
Here “k” is stored in another table s[][] at s[i , j] when the minimum value for m[i , j] is
found. Thus m[1, n] refers to the solution for the full problem and s[][] table is used to
determine the parenthesized solution of the chain.
Dynamic programming technique requires time of O(n?).

3.2 Accelerated Dynamic Programming in GPU

Dynamic Programming approach for solving Matrix Chain Multiplication problem can
be easily parallelized by computing for the elements of each diagonal of m[][] and s[][]
tables in GPU independently in different threads. But, this is inefficient and time-taking
due to lack of coalescing in Global Memory access.

Kazufumi Nishida, Yasuaki Ito and Koji Nakano [2] innovated a technique of memory
mapping of m and s to ensure coalesced memory access for accelerating the dynamic
programming for the Matrix Chain Multiplication in GPU. m and s are mapped into
arrays of n x n memory spaces in Global Memory of GPU along with the array of
dimensions of matrices, d[].

Let us take a problem sample of six matrices (n = 6):

Al :20 x 25,A2 : 25 x 50,A3 : 50 x 35
A4 : 35 x 10, A5 : 10 x 40, A6 : 40 x 30

Dynamic programming starts from the base case m/[i] []] = QOfori = j i.e., the
diagonal-1 (Fig. 2) of m. Then, m[i][j] for each diagonal (upper) is to be computed
using recursion (1) where the s table is needed to store values only in upper diagonals 2
to n. Required diagonals of m and s tables are mapped in row by row manner (Fig. 2).
GPU kernel may be called for computation of diagonals one by one from diagonal-2 to
diagonal-n of m and s, which ensures coalescing.

Here, m and s both table are implemented with an array of n x n elements of memory
size O(nz). But, in computation we do not need the all locations. Say, the number of
memory spaces wasted in m and s are W,,, and Wj respectively.

Then, Wy, = {(n— D)+ (n—2)+....+2+ 1) = Y0 i= 2D

n _n(n+1)

We={n+@—Dt....+2+1 =) i= 2

n(n—1)+n(n+1) _ 2

So, Wi + Wy = 2 2

This technique suffers from memory wastage of size 9(}12) (i.e. half of the spaces
allocated) in GPU which is very limited in storage.

Memory Optimized Dynamic Matrix Chain Multiplication 165

K T Y T L S
% % % % % %, %, 2, N 2, A 2, A 2, %s 2, A 2, N 2, A
3 3 23 Y Y Y Y Y Y R R
= 2 3 4 5 6 == 2 3 4 5 6
1 0 25000 | 60000 | 35000 | 43000 | 53000 1 0 1 0 3 3
2 0 43750 | 30000 | 40000 | 49500 2 1 1 3 3
i3 0 17500 37500 44500 i 3 2 3 3
4 0 14000 22500 4 3 3
5 0 12000 5 4
6 0 6
(a)m table (b) s table
jE=>> 1 2 3 4 5 6 j=> 1 2 3 4 5 6
diagonal-6 53000 (1 1
diagonal-5 43000 | 49500 (2 2 3 <diagonal-6
diagonal-4 35000 | 40000 | 44500 (3 ¢ 3 3 3 <diagonal-5
diagonal-3 60000 | 30000 | 37500 | 22500 |4 4 0 3 3 <diagonal-4
diagonal-2 25000 | 43750 | 17500 14000 12000 |5 5 1 1 3 3 <diagonal-3
diagonal-1 0 0 0 0 0 0 6 6| 0 1 2 3 4 <diagonal-2
(c) mapped m table for Coalesced Access (d) mapped s table for Coalesced Access

Fig. 2. Memory Mapping of m & s tables forn =6

Recursion (1) shows that to compute m[i][j], it needs
toaccessd;, dii1,dii2,djy from the array of dimensions (d[]) in Global Memory.
All threads of a Block need to access the dimensions same way in GPU kernel for com-
putation of a diagonal as shown in Fig. 4. Though this technique ensures the coalesced
access of Global Memory from d[] by the threads, this accessing time from Global Mem-
ory can rather be reduced much by our new efficient technique of using Shared Memory,
which serves much faster with respect to Global Memory.

4 Proposed Approach

4.1 Combined m and s Table

The most significant thing in our approach is to optimize the memory spaces allocated in
Global Memory of GPU device. Without taking two arrays, we have used only an array
of n x n elements for containing m and s tables both combined (Fig. 3), using memory
mapping [2, 8] for maintaining the coalesced memory access pattern for better efficiency.
Our approach not only assures coalescing but also reduces the space complexity to half

166 G. Biswas and N. Mukherjee

which offers to solve Matrix Chain Multiplication problem of larger datasets even with
limited memory in GPU device.

diagonal 1 of m=> 1 0 0 0 (] 0 0

diagonal 2 of m=> 2| 25000 | 43750 | 17500 | 14000 | 12000 3 <=diagonal 6 of §

diagonal 3 of m=> 1 3| 60000 | 30000 | 37500 | 22500 3 3 <=diagonal 5 of §
diagonal 4 of m=> 4| 35000 | 40000 | 44500 0 3 3 <=diagonal 4 of S
diagonal 5 of m=> 5[43000 | 49500 1 1 3 3 <=diagonal 3 of §
diagonal 6 of m=> 6 53000 0 1 2 3 4 <=diagonal 2 of §

Fig. 3. Combined table for Mapped m and s forn = 6

In this approach, we have done computations for all diagonal elements of m and s
from diagonal-2 to diagonal-n. Each element in a diagonal is calculated by single thread
in GPU. After computation, updating values of m/[i] []] and 5[] []] for i < j assures the
coalescing for each diagonal, resulting in fast and effective memory access.

4.2 Block-Size Choosing Technique

I ! diagonal (upper) of m and s tables contains ¢ = n — [+ 1 elements [1]. When
computation goes forward from 2"¢ diagonal to n™ diagonal, this number of elements
(e) decreases fromnto 1. Thus, if B threads/Block are assigned for each diagonal, then the
diagonals with e < B do not need the whole Block and some threads remain unutilized
in computation. When, e becomes so less with respect to B, most of the threads in the
Block are launched in vain.

In previous approach [2], a total Block or multiple Blocks of threads were assigned to
the calculation of single element of a diagonal depending on the value of e. We have used
a simple approach to assign varying number of threads per Block for e with less number
of elements. We need to call the kernel with ¢/B number of Blocks while Block-size B
denotes threads/Block. We have chosen a most suitable value of B provided that some
value B is taken as threads/Block satisfying B > ¢ and Bmod32 = 0 when e < B. This
technique saves our time, by not launching unnecessary threads for diagonals with few
number of elements.

4.3 Using Shared Memory for d[]

Similar to m and s tables, d[] array of dimensions of the Matrix Chain is copied to Global
Memory in the device. While computation of m/[i] []] is done for [™ diagonal of m and
s,j =i+ 10— 1 and i ranges from 1 to, where number of elements in the diagonal is
e =n— 1+ 1 in dynamic programming technique [1]. For computation of m[i][;], it is

Memory Optimized Dynamic Matrix Chain Multiplication 167

required to calculate all values of d;dyd; | for i < k < j according to Recursion (1). In
kernel, threads in a Block need to access the elements of d[] array in coalesced manner
as the threads are accessing contiguous memory locations in parallel (Fig. 4).

thread 1d-0: computing m[i][j]:
| | d; | diss | | diy | |

thread 1d-1: computing m[i + 1][j + 1]:
‘ ‘ diys ‘ diys ‘ diy1an ‘ ‘

thread Id—(B - 1): compz;ting m[i+ B _ 1][j + B — 1]
— P P R P

Fig. 4. Memory access patterns by the threads of a Block of Block-size B for It upper diagonal
of m table. Here,j =i+ — 1 andi = B X by +1

GPU scheduler schedules Blocks one by one while all threads in that Block compute
in parallel in warps of 32 threads at a time. If Block-size is B, then threads have thread-Id
from O to B — 1 for any Block with Block-1d b, where 0 < b, < e/B and e/B is total
number of Blocks for [diagonal (Sect. 4.B). When, thread Id 0 of Block Id b, is used to
calculate the value of m/[i] []] (i ™ element of the [" diagonal), it needs to access values
ofdj,diyy...djy1ie.,d;i,diyy...diyof d[] as shownin Fig. 4 where i = B x by + 1
andj = i+ — 1. Though this large number of Global Memory accesses can be arranged
with coalesced access pattern, this time for memory accesses from Global Memory can
be again reduced, as there is a scope to use Shared Memory to serve this purpose much
rapidly.

We have used Shared Memory to reduce the access time and the number of Global
Memory accesses. Though all threads run independently, they need to access only the
elements of d[] in a range and those values are to be used by multiple threads in that
Block. This range is d;, d;i+1 . . .diy11p—1 (Fig. 4). Therefore, the total Block of threads
uses only these I + B elements of d[] from Global Memory. Only these / + B number
elements of d[] are copied to Shared Memory for each Block. Each thread of a Block
can access Shared Memory of that Block in very fast and effective manner with no bank
conflict. If we use 1Byte/2Byte long data for each element of d[], the warp of 32 threads
access distinct elements of d[] and results in no bank conflict as discussed in Sect. 2.4
with the help of multicasting. Due to space limitation of Shared Memory, dimensions
can be stored as 1Byte long data. We have used this approach along with the memory
optimization technique (Sect. 4.1) and hence got very effective results.

5 Performance Evaluation

Tests have been carried out on the Matrix Chains containing different number of matrices
whose dimensions are randomly generated in the range [1, 100]. Our experiment is made

168 G. Biswas and N. Mukherjee

over a long range of Matrix Chain length () i.e. 1000 to 14000 number of matrices in
the chain.

We have used NVIDIA GeForce GT 525 M graphics card of 1 GB for parallel
computation using GPU and Intel Core i5 @2.5 GHz with 4 GB RAM for sequential
processing in CPU. Our GPU device is of Fermi architecture [7] which has 16 SMs of
32 cores each, i.e. total 512 cores and allows maximum 1024 threads/Block.

While e = n — [+ 1 specifies the number of elements in [th diagonal of m table, we
obtained the best speed up when we have passed varying number of threads (multiple
of 32) for e < 768 and 768 threads/Block for ¢ >= 768 for [" diagonal for better
occupancy in the GPU kernel.

In Table 1, we can compare the execution time (in sec.) of our Memory Optimized
Approach in GPU with the Sequential Approach in CPU and other two approaches:
Memory Unmapped Approach (diagonals of m[] and s[] tables are not mapped) and
previous Memory Mapped Approach (diagonals of m[] and s[] tables are mapped to
different arrays). Our Memory Optimized Approach using GPU shows increasingly
better performance as the problem size increases in comparison to CPU according to
Fig. 5, showing in logarithmic scale.

Table 1. Execution time (in sec.) of the Sequential Approach in CPU and different Approaches
in GPU: Memory Unmapped Approach and Previous Technique of Memory Mapped Approach
and our Memory Optimized Approach.

Matrix Chain Sequential Unmapped Previous Memory Our Memory
length (n) Approach in Approach in Mapped Approach in | Optimized
CPU (tseq) GPU GPU Approach in
pm) pm) GPU (tpn)
1000 1.2695 2.45833 0.312 0.3058
2000 13.1489 19.81633 1.33893 1.3018
3000 49.5611 66.682 3.96608 3.63
4000 152.9227 155.0192 7.79234 7.0868
5000 253.3594 297.1772 16.69396 13.9917
6000 449.1240 513.3569 26.90393 22.509
7000 793.9893 834.8231 44.34579 36.4512
8000 1441.5231 1243.0041 55.12547 47.5437
9000 1688.754 1761.305 91.98259 75.0826
10000 2295.8261 2411.3491 118.25785 96.9248
11000 3302.2165 137.9615
12000 4844.4406 149.7597
13000 5947.9613 221.5745
14000 9044.3004 254.0719

Memory Optimized Dynamic Matrix Chain Multiplication 169

10000 sec e Sequential Approach in CPU

e Our Memory Optimized Approach in

1000 sec GPU using Shared memory

100 sec
10 sec

1sec

10, 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000

sec

Fig. 5. Comparison of Execution time (in sec.) of Our Memory Optimized Approach in GPU vs.
Sequential CPU implementation for n = 1000 fo 14000.

Speedup factors of the approaches in GPU over the CPU implementation (shown in
Table 2) are computed as follows:

Table 2. Speedup achieved by different Approaches in GPU: Memory Unmapped Approach and
Previous Technique of Memory Mapped Approach and our Memory Optimized Approach.

Matrix Chain length | Unmapped Approach | Previous Memory Our Memory
(n) in GPU Mapped Approach in | Optimized Approach
(tseq/tpm) GPU in GPU (¢seq/tpn)
(tseq/ bt)
1000 0.52 4.07 4.15
2000 0.66 9.82 10.10
3000 0.74 12.50 13.65
4000 0.99 19.62 21.58
5000 0.85 15.18 18.11
6000 0.87 16.69 19.95
7000 0.95 17.90 21.78
8000 1.16 26.15 30.32
9000 0.96 18.36 22.49
10000 0.95 19.41 23.69
11000 23.94
12000 32.35
13000 26.84
14000 35.60

170 G. Biswas and N. Mukherjee

Execution time in CPU Approach
Speedup =

Execution time in GPU Approach

Our approach acquired as much Speedup as 35.6 (Table 2) for the problem size (n)
of 14000 matrices in the chain. Due to lack of available space in our GPU device (1 GB),
other Approaches (Table 1) can be run over the datasets of Matrix Chain of length ()
only upto 10000 in our GPU device because of higher memory requirements, whereas
our Memory Optimized Approach runs successfully upto Matrix Chain of length ()
upto 14000. Speedup factor our approach is compared with other GPU approaches in
Fig. 6. It’s quite clear that our technique not only requires much less memory in GPU
device but also performs all time better.

40.00 e Our Memory Optimized Approach
e \lemory Mapped Approach
30.00 Unmapped Approach
20.00
10.00
0.00

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000

Fig. 6. Comparison of Speedup of Our Approach with other Approaches in GPU for n =
1000 to 14000.

We have used the Shared Memory to reduce Global Memory Access (Sect. 4.3), but
the previous best Memory Mapped Approach used only Global Memory to access the
array of Dimensions d[]. We have listed the total number of Memory Accesses from
the array of Dimensions d[] stored in Global Memory of GPU for Our Approach and
the Memory Mapped Approach in Table 3. Our Approach needs much less number of
Memory Accesses from d[] as compared to the previous best Approach (Fig. 7). Our
Approach is not only better in this access count, but also copies the required portion
Global Memory of d[] to Shared Memory in coalesced manner. For there is only 48 KB
Shared Memory in our device, here, we took 1Byte space for each element of d[] as
it is in the range of [1, 100]. Thus, our Approach reduces the access time to a certain
remarkable factor with the help of Shared Memory with no bank conflict.

Memory Optimized Dynamic Matrix Chain Multiplication 171

Table 3. Number of Global Memory Accesses (in million) from the Dimension array d[] in Our
Approach and Previous Memory Mapped Approach in GPU

Matrix Chain length (n) Previous Memory Mapped Our Memory Optimized
Approach in GPU (Cy) Approach (C3)
1000 16767 103
2000 133733 487
3000 450900 1281
4000 1068266 2614
5000 2085833 4620
6000 3603599 7427
7000 5721566 11164
8000 8539732 15964
9000 12158099 21956
10000 16676666 29268
20000000
18000000
16000000 e Previous Approaches
14000000 Our Memory Optimized Approach
12000000
10000000
8000000
6000000
4000000
2000000

0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 7. Comparison of Number of Global Memory Accesses (in million) from the Dimension
array d[] between Our Approach and Previous Memory Mapped Approach in GPU for n =
1000 to 10000.

6 Conclusion

In this paper, we have presented a new Dynamic Programming technique for parallel
processing in CUDA enabled GPU to solve the problem of Matrix Chain Multiplication.
All of the previous Approaches, known to us, needed two n x n size arrays (O(2.n%)) to
keep m and s tables which are required in Dynamic Programming to solve this problem.
Here, we have suggested a technique to use only one n x n size array (O(n?)) to which
m and s both tables are to be mapped for minimizing the memory requirements in GPU.
This allows us to solve problems of Matrix Chain with larger number of matrices in
small sized memory in GPU device. Only with the GPU device of 1 GB memory, we

172 G. Biswas and N. Mukherjee

have successfully run our Memory Optimized Technique upto matrix chain of length
14000, where the other approaches stuck at only 10000.

Another technique, we used, is to copy only the required elements of array of dimen-
sions to Shared Memory. It reduces the memory access time and accelerates the exe-
cution of our Memory Optimized Approach. Our approach shows so vigorous results
with nearly monotonously increasing speedup with respect to CPU on increasing the
problem size and further proficient compared to other approaches. We have achieved
the speedup factor of 35.6 over CPU-based approach for a randomly generated chain
of 14000 matrices, which is unparalleled to other techniques. As a future scope, our
approach could be run on the GPU device with much storage space and predictably,
larger speedup could be achieved for larger Matrix Chain compared to other techniques.
Hence, our paper proposes a new Memory Optimized and more efficient technique to
solve Matrix Chain Multiplication problem using dynamic programming assisted with
shared memory.

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn.
MIT Press and PHI, New Delhi (2012)

2. Nishida, K., Ito, Y., Nakano, K.: Accelerating the dynamic programming for the matrix chain
product on the GPU. In: Second International Conference on Networking and Computing,
pp. 320-326 (2011)

3. NVIDIA, CUDA C Programming Guide Version 4.2 (2012). https://developer.download.nvi
dia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming Guide.pdf. Accessed
22 Jun 2020

4. Wani, M.A., Quadri, S.M.K.: Accelerated dynamic programming on gpu: a study of speed
up and programming approach. In: Int. J. Comput. Appl., 0975-8887 (2013)

5. NVIDIA, CUDA ZONE. https://developer.nvidia.com/cuda-zone. Accessed 12 Jul 2020

6. Fauzia, N., Pouchet, L.N., Sadayappan, P.: Characterizing and enhancing global memory
data coalescing on GPUs. In: IEEE/ACM International Symposium on Code Generation and
Optimization (2015)

7. Whitepaper NVIDIA’s Next Generation CUDA™ Compute Architecture: Fermi™.,
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Arch
itecture_Whitepaper.pdf. Accessed 15 Jul 2020

8. Ito, Y., Nakano, K.: A GPU implementation of dynamic programming for the optimal polygon
triangulation. IEICE Trans. Inf. Syst., D(12), 2596-2603 (2013)

9. Pimple, M.R., Sathe, S.R.: Analysis of resource utilization on GPU. Int. J. Adv. Comput. Sci.
Appl., 10(2) (2019)

10. Bergeron, J.P.: Programming of shared memory GPUs shared memory systems, University
of Ottawa (2011)

11. NVIDIA, DEVELOPER ZONE. https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
index.html#shared-memory. Accessed 26 Jul 2020

12. NVIDIA, Shared memory bank conflicts with byte arrays. https://forums.developer.nvidia.
com/t/shared-memory-bank-conflicts-with-byte-arrays/20553/4. Accessed 26 Jul 2020

https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
https://developer.nvidia.com/cuda-zone
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#shared-memory
https://forums.developer.nvidia.com/t/shared-memory-bank-conflicts-with-byte-arrays/20553/4

	Memory Optimized Dynamic Matrix Chain Multiplication Using Shared Memory in GPU
	1 Introduction
	1.1 Previous Works

	2 GPU and CUDA
	2.1 GPU Architecture
	2.2 CUDA
	2.3 Coalesced Memory Access
	2.4 Shared Memory and Memory Banks

	3 Matrix Chain Multiplication Problem
	3.1 Solving Technique in Dynamic Programming
	3.2 Accelerated Dynamic Programming in GPU

	4 Proposed Approach
	4.1 Combined m and s Table
	4.2 Block-Size Choosing Technique
	4.3 Using Shared Memory for d[]

	5 Performance Evaluation
	6 Conclusion
	References

