
Diganta Goswami
Truong Anh Hoang (Eds.)

LN
CS

 1
25

82

17th International Conference, ICDCIT 2021
Bhubaneswar, India, January 7–10, 2021
Proceedings

Distributed Computing
and Internet Technology

Lecture Notes in Computer Science 12582

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Diganta Goswami • Truong Anh Hoang (Eds.)

Distributed Computing
and Internet Technology
17th International Conference, ICDCIT 2021
Bhubaneswar, India, January 7–10, 2021
Proceedings

123

Editors
Diganta Goswami
Indian Institute of Technology Guwahati
Guwahati, India

Truong Anh Hoang
University of Engineering and Technology
Hanoi, Vietnam

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-65620-1 ISBN 978-3-030-65621-8 (eBook)
https://doi.org/10.1007/978-3-030-65621-8

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-65621-8

Preface

This volume contains the papers selected for presentation at the 17th International
Conference on Distributed Computing and Internet Technology (ICDCIT 2021) held
during January 7–10, 2021, in Bhubaneswar, India.

From its humble beginnings, the ICDCIT conference series has grown to a con-
ference of international repute and has become a global platform for Computer Science
researchers to exchange research results and ideas on the foundations and applications
of Distributed Computing and Internet Technology. An additional goal of ICDCIT is to
provide an opportunity for students and young researchers to get exposed to topical
research directions of Distributed Computing and Internet Technology.

This year we received 99 full paper submissions. Each submission considered for
publication was reviewed by about three Program Committee (PC) members with the
help from reviewers outside the PC. Based on the reviews, the PC decided to accept 17
papers – 13 regular papers and 4 short papers – for presentation at the conference, with
an acceptance rate of 17%.

We would like to express our gratitude to all the researchers who submitted their
work to the conference. Our special thanks goes to all colleagues who served on the
PC, as well as the external reviewers, who generously offered their expertise and time,
which helped us select the papers and prepare the conference program.

We were fortunate to have three invited speakers – Ajay D. Kshemkalyani from the
University of Illinois at Chicago, USA, Martin Gogolla from the University of Bremen,
Germany, and Nguyen Le Minh from Japan Advanced Institute of Science and
Technology, Japan. Their talks provided us with the unique opportunity to hear the
leaders of their field. The papers related to the talks were also included in this volume.

A number of colleagues have worked very hard to make this conference a success.
We wish to express our thanks to the Local Organizing Committee, organizers of the
satellite events, and many student volunteers. The School of Computer Engineering,
Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, the host of the con-
ference, provided various support and facilities for organizing the conference and its
associated events. Finally, we enjoyed institutional and financial support from KIIT
Bhubaneswar. Particularly, we express our sincere thanks to Achyuta Samanta, the
Founder of KIIT Bhubaneswar, for his continuous support to ICDCIT since its
inception. We express our appreciation to all the Steering Committee members, and in
particular Prof. Hrushikesha Mohanty and Prof. Raja Natarajan, whose counsel we
frequently relied on. We are also thankful to D.N. Dwivedy for his active participation
in ICDCIT. Our thanks are due to the faculty members of the School of Computer
Engineering, KIIT Bhubaneswar, for their timely support.

The conference program and proceedings were prepared with the help of EasyChair.
We thank Springer for continuing to publish the conference proceedings.

We hope you will find the papers in this collection stimulating and rewarding.

January 2021 Diganta Goswami
Truong Anh Hoang

vi Preface

Organization

General Chair

Laxmi Parida IBM, USA

Program Committee Chairs

Diganta Goswami IIT Guwahati, India
Hoang Anh Truong VNU-UET, Vietnam

Conference Management Chair

Manjusha Pandey KIIT, India

Organizing Chair

Jagannath Singh KIIT, India

Finance Chair

Chittaranjan Pradhan KIIT, India

Publicity Chair

Hrudaya Kumar Tripathy KIIT, India

Registration Chairs

Bindu Agarwalla KIIT, India
Abhaya Kumar Sahoo KIIT, India

Session Management Chairs

Sital Dash KIIT, India
Saurabh Bilgaiyan KIIT, India

Publications Chair

Junali Jasmine Jena KIIT, India

Student Symposium Chairs

Manoj Kumar Mishra KIIT, India
Amiya Ranjan Panda KIIT, India

Industry Symposium Chairs

Phani Premaraju KIIT, India
Siddharth Swarup Rautaray KIIT, India

Project Innovation Contest Chairs

Ajay Kumar Jena KIIT, India
Krishna Chakravarty KIIT, India

Steering Committee

Maurice Herlihy Brown University, USA
Gérard Huet Inria, France
Bud Mishra Courant Institute, NYU, USA
Hrushikesha Mohanty KIIT, India
Raja Natarajan TIFR, India
David Peleg WIS, Israel
R. K. Shyamasundar IIT Bombay, India

Program Committee

Arup Bhattacharjee NIT Silchar, India
Santosh Biswas IIT Bhilai, India
Duc-Hanh Dang VNU-UET, Vietnam
Ashok Kumar Das IIIT Hyderabad, India
Meenakshi D’Souza IIIT Bangalore, India
Anh Nguyen Duc University College of Southeast Norway, Norway
Christian Erfurth University of Applied Sciences Jena, Germany
Antony Franklin IIT Hyderabad, India
Sasthi Charan Ghosh ISI Kolkata, India
Diganta Goswami IIT Guwahati, India
Arobinda Gupta IIT Kharagpur, India
Truong Anh Hoang VNU-UET, Vietnam
Chittaranjan Hota BITS Pilani, India
Dang Van Hung VNU-UET, Vietnam
Hemangee Kapoor IIT Guwahati, India
Dac-Nhuong Le Haiphong University, Vietnam
Ulrike Lechner Bundeswehr University Munich, Germany
Partha Sarathi Mandal IIT Guwahati, India
Ganapathy Mani Purdue University, USA

viii Organization

Hrushikesha Mohanty KIIT, India
Arijit Mukherjee TCS Research and Innovation, India
Krishnendu

Mukhopadhyaya
ISI Kolkata, India

Dmitry Namiot Lomonosov Moscow State University, Russia
Raja Natarajan Tata Institute of Fundamental Research, Mumbai, India
Atul Negi SCIS, University of Hyderabad, India
Himadri Sekhar Paul TCS Research and Innovation, India
Sathya Peri IIT Hyderabad, India
P. S. V. S. Sai Prasad University of Hyderabad, India
Tho Quan Ho Chi Minh City University of Technology, Vietnam
Ramaswamy Ramanujam Institute of Mathematical Sciences Chennai, India
Shrisha Rao IIIT Bangalore, India
K. Sreenivas Rao IIT Kharagpur, India
Debasis Samanta IIT Kharagpur, India
Chayan Sarkar TCS Research and Innovation, India
Nityananda Sarma Tezpur University, India
Somnath Tripathy IIT Patna, India
T. Venkatesh IIT Guwahati, India

Additional Reviewers

Hrishav Bakul Barua
Gaurav Bhardwaj
Hieu Vo Dinh
Barun Gorain
Aayush Grover
Aditya Gulati
Abhay Jain
Karishma Karishma
Rakesh Matam
Kaushik Mondal
Minh Thuan Nguyen
Nam Nguyen
Pradip Pramanick

Nemi Chandra Rathore
Durga Bhavani S.
Muktikanta Sa
Dibakar Saha
Ashok Sairam
Ranbir Sanasam
Sinchan Sengupta
Roohani Sharma
S. P. Suresh
Ha Nguyen Tien
Trung Tran
Gopalakrishnan Venkatesh

Organization ix

Contents

Invited Talks

The Bloom Clock for Causality Testing . 3
Anshuman Misra and Ajay D. Kshemkalyani

Model Development in the Tool USE: Explorative, Consolidating
and Analytic Steps for UML and OCL Models . 24

Martin Gogolla

ReLink: Open Information Extraction by Linking Phrases
and Its Applications. 44

Xuan-Chien Tran and Le-Minh Nguyen

Cloud Computing and Networks

Energy-Efficient Scheduling of Deadline-Sensitive and Budget-Constrained
Workflows in the Cloud. 65

Anurina Tarafdar, Kamalesh Karmakar, Sunirmal Khatua,
and Rajib K. Das

An Efficient Renewable Energy-Based Scheduling Algorithm
for Cloud Computing. 81

Sanjib Kumar Nayak, Sanjaya Kumar Panda, Satyabrata Das,
and Sohan Kumar Pande

A Revenue-Based Service Management Algorithm for Vehicular
Cloud Computing . 98

Sohan Kumar Pande, Sanjaya Kumar Panda, and Satyabrata Das

Interference Reduction in Directional Wireless Networks 114
Manjanna Basappa and Sudeepta Mishra

Distributed Algorithms, Concurrency and Parallelism

Automated Deadlock Detection for Large Java Libraries 129
R. Rajesh Kumar, Vivek Shanbhag, and K. V. Dinesha

DNet: An Efficient Privacy-Preserving Distributed Learning Framework
for Healthcare Systems . 145

Parth Parag Kulkarni, Harsh Kasyap, and Somanath Tripathy

Memory Optimized Dynamic Matrix Chain Multiplication Using Shared
Memory in GPU . 160

Girish Biswas and Nandini Mukherjee

Graph Algorithms and Security

Parameterized Complexity of Defensive and Offensive
Alliances in Graphs . 175

Ajinkya Gaikwad, Soumen Maity, and Shuvam Kant Tripathi

A Reconstructive Model for Identifying the Global Spread in a Pandemic . . . 188
Debasish Pattanayak, Dibakar Saha, Debarati Mitra,
and Partha Sarathi Mandal

Cost Effective Method for Ransomware Detection:
An Ensemble Approach . 203

Parthajit Borah, Dhruba K. Bhattacharyya, and J. K. Kalita

Social Networks and Machine Learning

Exploring Alzheimer’s Disease Network Using Social Network Analysis 223
Swati Katiyar, T. Sobha Rani, and S. Durga Bhavani

Stroke Prediction Using Machine Learning in a Distributed Environment 238
Maihul Rajora, Mansi Rathod, and Nenavath Srinivas Naik

Automated Diagnosis of Breast Cancer with RoI Detection Using YOLO
and Heuristics. 253

Ananya Bal, Meenakshi Das, Shashank Mouli Satapathy,
Madhusmita Jena, and Subha Kanta Das

Short Papers

An Efficient Approach for Event Prediction Using Collaborative Distance
Score of Communities . 271

B. S. A. S. Rajita, Bipin Sai Narwa, and Subhrakanta Panda

A Distributed System for Optimal Scale Feature Extraction and Semantic
Classification of Large-Scale Airborne LiDAR Point Clouds 280

Satendra Singh and Jaya Sreevalsan-Nair

Load Balancing Approach for a MapReduce Job Running
on a Heterogeneous Hadoop Cluster . 289

Kamalakant Laxman Bawankule, Rupesh Kumar Dewang,
and Anil Kumar Singh

xii Contents

Study the Significance of ML-ELM Using Combined PageRank
and Content-Based Feature Selection . 299

Rajendra Kumar Roul and Jajati Keshari Sahoo

Author Index . 309

Contents xiii

Invited Talks

The Bloom Clock for Causality Testing

Anshuman Misra and Ajay D. Kshemkalyani(B)

University of Illinois at Chicago, Chicago, IL 60607, USA
{amisra7,ajay}@uic.edu

Abstract. Testing for causality between events in distributed execu-
tions is a fundamental problem. Vector clocks solve this problem but
do not scale well. The probabilistic Bloom clock can determine causality
between events with lower space, time, and message-space overhead than
vector clock; however, predictions suffer from false positives. We give the
protocol for the Bloom clock based on Counting Bloom filters and study
its properties including the probabilities of a positive outcome and a false
positive. We show the results of extensive experiments to determine how
these above probabilities vary as a function of the Bloom timestamps of
the two events being tested, and to determine the accuracy, precision,
and false positive rate of a slice of the execution containing events in
the temporal proximity of each other. Based on these experiments, we
make recommendations for the setting of the Bloom clock parameters.
We postulate the causality spread hypothesis from the application’s per-
spective to indicate whether Bloom clocks will be suitable for correct
predictions with high confidence. The Bloom clock design can serve as
a viable space-, time-, and message-space-efficient alternative to vector
clocks if false positives can be tolerated by an application.

Keywords: Causality · Vector clock · Bloom clock · Bloom filter ·
Partial order · Distributed system · False positive · Performance

1 Introduction

1.1 Background and Motivation

Determining causality between pairs of events in a distributed execution is useful
to many applications [9,17]. This problem can be solved using vector clocks [5,11].
However, vector clocks do not scalewell. Several works attempted to reduce the size
of vector clocks [6,12,18,20], but they had to make some compromises in accuracy
or alter the system model, and in the worst-case, were as lengthy as vector clocks.
A survey of such works is included in [8].

The Bloom filter, proposed in 1970, is a space-efficient probabilistic data
structure that supports set membership queries [1]. The Bloom filter is widely
used in computer science. Surveys of the variants of Bloom filters and their
applications in networks and distributed systems are given in [2,19]. Bloom filters
provide space savings, but suffer from false positives although there are no false
negatives. The confidence in the prediction by a Bloom filter depends on the
c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 3–23, 2021.
https://doi.org/10.1007/978-3-030-65621-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_1&domain=pdf
http://orcid.org/0000-0003-2451-7306
https://doi.org/10.1007/978-3-030-65621-8_1

4 A. Misra and A. D. Kshemkalyani

size of the filter (m), the number of hash functions used in the filter (k), and
the number of elements added to the set (q). The use of the Bloom filter as a
Bloom clock to determine causality between events was suggested [16], where,
like Bloom filters, the Bloom clock will inherit false positives. The Bloom clock
and its protocol based on Counting Bloom filters, which can be significantly more
space-, time-, and message-space-efficient than vector clocks, was given in [7].
The expressions for the probabilities of a positive outcome and of a false positive
as a function of the corresponding vector clocks, as well as their estimates as a
function of the Bloom clocks were then formulated [7]. Properties of the Bloom
clock were also studied in [7], which then derived expressions to estimate the
accuracy, precision, and the false positive rate for a slice of the execution using
the events’ Bloom timestamps.

1.2 Contributions

In this paper, we first give the Bloom clock protocol and discuss its properties.
We examine the expressions for the probability of a positive and of a false positive
in detecting causality, and discuss their trends as the distance between the pair
of events varies. We then show the results of our experiments to:

1. analyze in terms of Bloom timestamps how the probability of a positive and
the probability of a false positive vary as the distance between a pair of events
varies;

2. analyze the accuracy, precision, and the false positive rate for a slice of the
execution that is representative of events that are close to each other. The
parameters varied are: number of processes n, size of Bloom clock m, number
of hash functions k, probability of a timestamped event being an internal
event pri, and temporal proximity between the two events being tested for
causality.

Based on our experiments, we

1. analyze the nature of false positive predictions,
2. make recommendations for settings of m and k,
3. state conditions and analyze dependencies on the parameters (e.g., n, pri)

under which Bloom clocks make correct predictions with high confidence (high
accuracy, precision, and low false positive rate), and

4. generalize the above results and state a general principle (the causality spread
hypothesis) based on the degree of causality in the application execution,
which indicates whether Bloom clocks can make correct predictions with high
confidence.

Thus our results and recommendations can be used by an application developer
to decide whether and how the application can benefit from the use of Bloom
clocks.

Roadmap: Section 2 gives the system model. Section 3 details the Bloom clock
protocol. Section 4 studies properties of the Bloom clock, discusses ways to

The Bloom Clock for Causality Testing 5

estimate the probabilities of a positive outcome and of a false positive, and
predicts the trends of these probability functions as the temporal proximity
between the events increases. Section 5 gives our experiments for the complete
graph and analyzes the results. Section 6 gives our experiments for the star graph
(client-server configuration) and analyzes the results. Section 7 summarizes the
observations of the experiments and discusses the conditions under which Bloom
clocks are advantageous to use. It also postulates the causality spread hypothesis
and validates it. Section 8 concludes.

2 System Model

A distributed system is modeled as an undirected graph (N ,L), where N is the
set of processes and L is the set of links connecting them. Let n = |N |. Between
any two processes, there may be at most one logical channel over which the
two processes communicate asynchronously. A logical channel from Pi to Pj is
formed by paths over links in L. We do not assume FIFO logical channels.

The execution of process Pi produces a sequence of events Ei = 〈e0i , e1i , e2i , · · ·〉,
where ej

i is the jth event at process Pi. An event at a process can be an internal
event, a message send event, or a message receive event. Let E =

⋃
i∈N {e | e ∈ Ei}

denote the set of events in a distributed execution. The causal precedence rela-
tion between events, defined by Lamport’s “happened before” relation [10], and
denoted as →, induces an irreflexive partial order (E,→).

Mattern [11] and Fidge [5] designed the vector clock which assigns a vector V
to each event such that: e → f ⇐⇒ Ve < Vf . The vector clock is a fundamental
tool to characterize causality in distributed executions [9,17]. Each process needs
to maintain a vector V of size n to represent the local vector clock. Charron-Bost
has shown that to capture the partial order (E,→), the size of the vector clock
is the dimension of the partial order [3], which is bounded by the size of the
system, n. Unfortunately, this does not scale well to large systems.

3 The Bloom Clock Protocol

The Bloom clock is based on the Counting Bloom filter. Each process Pi main-
tains a Bloom clock B(i) which is a vector B(i)[1, . . . , m] of integers, where m
< n. The Bloom clock is operated as shown in Algorithm 1. To try to uniquely
update B(i) on a tick for event ex

i , k random hash functions are used to hash
(i, x), each of which maps to one of the m indices in B(i). Each of the k indices
mapped to is incremented in B(i); this probabilistically tries to make the result-
ing B(i) unique. As m < n, this gives a space, time, and message-space savings
over the vector clock. We would like to point out that the scalar clock [10] can
be thought of as a Bloom clock with m = 1 and k = 1.

The Bloom timestamp of an event e is denoted Be. Let V and B denote the
sets of vector timestamps and Bloom timestamps of events. The standard vector
comparison operators <, ≤, and = [5,11] apply to pairs in V and in B. Thus, for
example, Bz ≥ By is ∀i ∈ [1,m], Bz[i] ≥ By[i]. The Bloom clock mapping from
E to B is many-one. (B,≤) is a partial order that is not isomorphic to (E,→).

6 A. Misra and A. D. Kshemkalyani

Algorithm 1: Operation of Bloom clock B(i) at process Pi.
1 Initialize B(i) = 0.

2 (At an internal event ex
i):

apply k hash functions to (i, x) and increment the corresponding k positions
mapped to in B(i) (local tick).

3 (At a send event ex
i):

apply k hash functions to (i, x) and increment the corresponding k positions
mapped to in B(i) (local tick). Then Pi sends the message piggybacked with
B(i).

4 (At a receive event ex
i for message piggybacked with B′):

Pi executes
∀j ∈ [1,m], B(i)[j] = max(B(i)[j], B′[j]) (merge);
apply k hash functions to (i, x) and increment the corresponding k positions
mapped to in B(i) (local tick).

Then deliver the message.

Proposition 1. Test for y → z using Bloom clocks: if Bz ≥ By then declare
y → z else declare y �→ z.

4 Properties of the Bloom Clock

We have the following cases based on the actual relationship between events y
and z, and the relationship inferred from By and Bz.

1. y → z and Bz ≥ By: From Proposition 1, this results in a true positive.
2. y → z and Bz �≥ By: This false negative is not possible because from the rules

of operation of the Bloom clock, Bz must be ≥ By when y → z.
3. y �→ z and Bz �≥ By: From Proposition 1, this results in a true negative.
4. y �→ z and Bz ≥ By: From Proposition 1, this results in a false positive.

Let prfp, prtp, and prtn denote the probabilities of a false positive, a true
positive, and a true negative, respectively. Also, let prp denote the probability
of a positive. To evaluate these probabilities, we need pr(y → z) and pr(Bz ≥
By). As we do not have access to vector clocks, we cannot evaluate y → z as
Vy ≤ Vz. So we estimate pr(y → z) as the probability that Bz ≥ By, which is
the probability of a positive, prp. So the estimate of prfp is (1 − prp) · prp, from
Case (4) above. However, the second term prp can be precisely evaluated, given
By and Bz, as prδ(p), where

prδ(p) =
{

1 if Bz ≥ By

0 otherwise (1)

The Bloom Clock for Causality Testing 7

So prfp = (1−prp) ·prδ(p). Also, prtp = prp ·prδ(p) from Case (1) above. Further,
as a negative outcome (Bz �≥ By) is always true from Cases (2,3) above and a
negative outcome can be determined precisely, prtn = 1 − prδ(p). Thus,

prfp = (1 − prp) · prδ(p),

prtp = prp · prδ(p),

prtn = 1 − prδ(p)

(2)

If prδ(p) were not precisely evaluated but used as a probability, we would have:

prfp = (1 − prp) · prp,

prtp = pr2p,

prtn = 1 − prp

(3)

We now show how to estimate prp using Bloom timestamps By and Bz.

Definition 1. For a vector X, Xsum ≡ ∑|X|
i=1 X[i].

For a positive outcome to occur, for each increment to By[i], there is an
increment to Bz[i]. The number of increments to By[i], which we denote as c
the count threshold, is By[i]. The probability prp of Bz ≥ By is now formulated.
Let b(l, q, 1/m) denote the probability mass function of a binomial distribution
having success probability 1/m, where l increments have occurred to a position
in Bz after applying uniformly random hash mappings q times.

b(l, q, 1/m) =
(

q
l

)

(
1
m

)l(1 − 1
m

)q−l (4)

Observe that the total number of trials q = Bsum
z . Then,

b(l, Bsum
z , 1/m) =

(
Bsum

z

l

)

(
1
m

)l(1 − 1
m

)Bsum
z −l (5)

The probability that less than the count threshold By[i] increments have
occurred to Bz[i] is given by:

By [i]−1∑

l=0

b(l, Bsum
z , 1/m) (6)

The probability that each i of the m positions of Bz is incremented at least
By[i] times, which gives prp, can be given by:

prp(k,m,By, Bz) =
m∏

i=1

(1 −
By[i]−1∑

l=0

b(l, Bsum
z , 1/m)) (7)

Equation 7 is time-consuming to evaluate for events y and z as the execu-
tion progresses. This is because Bsum

z and By[i] increase. A binomial distribution

8 A. Misra and A. D. Kshemkalyani

b(l, q, 1/m) can be approximated by a Poisson distribution with mean q/m, for
large q and small 1/m. Also, the cumulative mass function of a Poisson distribu-
tion is a regularized incomplete gamma function. This provides an efficient way
of evaluating Eq. 7.

For arbitrary event y at Pi, to predict whether y → z where events z occur at
Pj , there are at first true negatives, then false positives, and then true positives
as z occurs progressively later. As Bsum

z − Bsum
y increases, we can predict the

following trends from the definitions of prp and prfp.

1. prp, the probability of a positive, is low if z is close to y and this probability
increases as z goes further in the future of y. This is because, in Eq. 7, as
Bsum

z increases with respect to Bsum
y or rather its m components, the summa-

tion (cumulative probability distribution function) decreases and hence prp

increases.
This behavior is intuitive because intuition says that as z becomes more dis-
tant from y, the more is the likelihood that some causal relationship will
get established from y to z either directly or transitively, by the underlying
message communication pattern.

2. prfp, the probability of a false positive, which is the product (1 − prp) · prp

using Eq. 3, is lower than the two terms. It will increase, reach a maximum
of 0.25, and then decrease.
If Eq. 2 were used, then prfp = (1−prp) ·prδ(p) would be higher for a positive
outcome. Once Bz ≥ By becomes true, it steps up from 0 and then as z
goes into the future of y, it decreases. Given a positive outcome, if Bz ≥ By

and z is close to y (Bsum
z is just a little greater than Bsum

y), there are two
opposing influences on prfp: (i) it is unlikely that “a causal relationship has
been established either directly or transitively from y to z by the underlying
message communication pattern”, and thus 1 − prp and prfp should tend to
be high; (ii) it is also unlikely that “for each h ∈ [1,m], Bz[h] ≥ By[h] due to
Bloom clock local ticks only (and not due to causality merge for y → z)”, and
thus prfp should tend to be low. As z goes more distant from y, the likelihood
of influence (i) that a causal relation has been established increases, resulting
in a lower 1−prp and hence lower prfp. This overrides any conflicting impact
of the likelihood of influence (ii), that ∀h,Bz[h] ≥ By[h] due to local ticks
only and not due to causality merge for y → z, increasing and thus increasing
prfp.
Based on the above reasoning, it is not apparent whether Eq. 2 or 3 is better
for modeling prfp behavior. However, Eq. 2 uses the full range of [0,1] (as
opposed to [0,0.25]), and uses an approximation only for pr(y → z) and not
for pr(Bz ≥ By).

We remind ourselves that these probabilities depend on By, Bz, k, and m, and
observe that they are oblivious of the communication pattern in the distributed
execution.

We are also interested in calculating the accuracy, precision, and false positive
rate of Bloom clocks. Accuracy (Acc), precision (Prec), recall (Rec), and false
positive rate (fpr) are metrics defined over all data points, i.e, pairs of events, in

The Bloom Clock for Causality Testing 9

the execution. Let TP, FP, TN, and FN be the number of true positives, number
of false positives, number of true negatives, and the number of false negatives,
respectively. Observe that FN is 0 as there are no false negatives. We have:

Accuracy =
TP + TN

TP + TN + FP + FN
, Precision =

TP

TP + FP
,

Recall =
TP

TP + FN
, fpr =

FP

FP + TN

(8)

Recall is always 1 with Bloom clocks. Given events y and z and their Bloom
timestamps By and Bz, there is not enough data to compute these metrics. So
we consider the slice of the execution from y to z and define the metrics over
the set of events in this slice.

We observe that many applications in distributed computing require testing
for causality between pairs of events that are temporally close to each other.
In checkpointing, causality needs to be tracked only between two consistent
checkpoints. In fair mutual exclusion in which requests need to be satisfied in
order of their logical timestamps, contention occurs and request timestamps need
to be compared only for temporally close requests. For detecting data races in
multi-threaded environments, a causality check based on vector clocks can be
used; however, in practice one needs to check for data races only between events
that occur in each other’s temporal locality [14,15]. In general, many applications
are structured as phases and track causality only within a bounded number of
adjacent phases [4,13]. Thus, in our experiments to measure accuracy, precision,
and false positive rate, as well as the probability of positives and the probability
of false positives, we consider an execution slice that is relatively thin.

There is a trade-off using Bloom clocks. m can be chosen less than n, for
space, time, and message-space savings. But for acceptable precision, accuracy,
and fpr, and a suitable prfp distribution, an appropriate combination of values
for the clock parameters m and k can be determined.

5 Experiments for the Complete Graph

In the complete graph, we assume a logical channel between each pair of pro-
cesses. This experiment consists of a decentralized system of processes asyn-
chronously passing messages to each other over shared memory. The processes
are scheduled in a fair manner and are identical to each other. Even though FIFO
channels are not maintained, a majority of messages arrive in order. The param-
eters of this experiment are number of processes (n), size of Bloom clock (m),
internal event probability (pri), and number of hash functions (k). Each event
can be uniquely identified with a Global Sequence Number (GSN). An event is
modelled as an object with the following attributes: (i) vector timestamp, (ii)
Bloom timestamp, (iii) GSN, (iv) executing process ID, (v) sending process ID,
(vi) receiving process ID, (vii) physical timestamp.

The main program establishes shared memory, creates n processes and sup-
plies them with parameters pri, k, and m. It then waits for all processes to

10 A. Misra and A. D. Kshemkalyani

complete execution and analyzes the distributed execution log. Shared memory
consists of an integer tracking GSN, a message queue containing messages (send
events) yet to be received, and an execution log containing all events executed at
any point of the distributed execution. All processes maintain a local queue con-
taining messages asynchronously pulled from the shared message queue. Message
receive events are executed by processing messages one at a time from the local
queue with probability (1 − pri)/2. Send events are executed with probability
(1−pri)/2. For each send event the sending process randomly selects a receiving
process from the other n − 1 processes. Processes execute internal events with
probability pri. All executed events are pushed into the global execution log.
Send events are also pushed into the global message queue.

Each process maintains its own vector clock and Bloom clock which are
ticked in accordance to the vector clock and Bloom clock protocols, whenever
an event is executed. The event object stores the local process’s revised clocks
as its vector and Bloom timestamps. In addition to this, upon executing an
event, each process increments the global GSN variable by 1 and stores it in the
event object. Whenever a process increments the global GSN counter, it has to
acquire a lock. This is done to prevent race conditions on the GSN counter as
it is stored in shared memory. Other operations that are required to be atomic
and around which locks are used include accessing the global message queue
in shared memory containing messages that are waiting to be retrieved. Each
process continues to iterate and execute events until the GSN reaches n2. Once
all processes terminate, the main program analyzes the execution to compute
precision, accuracy, and fpr of the Bloom clock protocol from the execution log.
The execution log contains approximately n2 events at the end of the execution.

The main program computes causal relationships of pairs of events in the exe-
cution slice beginning with the event with GSN = 10n (to eliminate any startup
effects) and until the last event (with GSN = n2) in steps of 100. This means
that the sample that we use to check for causality predictions consists of a series
of events where two closest events have a difference of 100 in GSN. Further, the
number of pairs of events for which we tested for causality was approximately
n4/104. The main program compares causality predictions of the Bloom times-
tamps of events with predictions of vector timestamps and classifies the Bloom
clock predictions as true positives, false positives and true negatives. The preci-
sion, accuracy, and fpr are computed over this execution slice. We intentionally
chose an execution slice with n events per process because in practice, causality
tests are applied to pairs of events in the temporal proximity of each other. Had
we chosen a larger execution slice, we expect the metrics would have improved.

Finally, in this section and the next on experiments with the star configura-
tion, each reading reported is the average of at least 3 runs of each setting of the
parameters indicated. Also, in Sects. 5.2 to 5.4, where indicated, each reported
reading is also averaged over multiple settings of m and/or k for simplicity of
presentation of results; the impact of varying each individual parameter is clear
when the results of all experiments are considered.

The Bloom Clock for Causality Testing 11

5.1 Number of Processes

We ran the decentralized experiment for n = 100 to n = 700 in increments of
100 to ascertain scalability of Bloom clocks. Parameters were fixed to maintain
uniformity of results with pri = 0, k = 2, and m = 0.1 ∗ n. The results are
compiled in Table 1. A visual representation of the trend can be seen in Fig. 1.
We see that as n increases Bloom clock performance improves considerably.
Accuracy increases from 85.2% for n = 100 to 95.7% for n = 700 and the
fpr drops from 20.3% for n = 100 to 7.4% for n = 700. Since Bloom clocks
are not prone to false negatives, a critical method of measuring performance is
to calculate the ratio of positive predictions that are correct to overall positive
predictions. Precision measures exactly that. We observe that precision increases
from 64.4% for n = 100 to 90.7% for n = 700. Overall from Table 1, we conclude
that Bloom clocks are highly scalable.

Table 1. Variation of metrics with n

n Precision Accuracy fpr

100 0.644 0.852 0.203

200 0.781 0.905 0.145

300 0.833 0.926 0.118

400 0.856 0.935 0.107

500 0.883 0.947 0.089

600 0.897 0.953 0.081

700 0.907 0.957 0.074

5.2 Internal Event Probability

We ran the decentralized experiment for fixed n = 200 and averaged metrics over
m = 0.1 ∗ n, 0.2 ∗ n, 0.3 ∗ n and k = 2, 3, 4 for individual values of pri in order
to observe the variation of metrics with pri. The results are shown in Table 2.
We observed that by introducing more relevant (and therefore timestamped)
internal events in the decentralized execution, the performance of Bloom clocks
deteriorates significantly. So with an increase in send events and thus message-
passing, i.e., a relative decrease in the number of relevant timestamped internal
events, more causal relationships get established among events across processes,
which get captured through the merging of Bloom clocks at receive events. This
results in a higher fraction of the number of pairs of events being related by
causality and a smaller fraction of the number of pairs of events being concurrent.
Bloom clocks performed best at pri = 0. We generalize this observation as the
causality spread hypothesis later in Sect. 7.2.

The practical implication of setting pri = 0 is that most of the relevant events
at which clocks tick are send and receive events, and only a few internal events
(of interest to the application) cause the clocks to tick. In contrast, with a high

12 A. Misra and A. D. Kshemkalyani

Fig. 1. A plot of metrics vs. number of processes for decentralized execution

Table 2. Variation of metrics with pri

pri Precision Accuracy fpr

0 0.807 0.918 0.125

0.90 0.609 0.847 0.201

0.95 0.311 0.760 0.269

1 0.101 0.773 0.232

value of pri (such as 0.9 at which 90% of events at which clocks tick are internal
events), accuracy and precision drop significantly, and fpr increases significantly.
Thus, Bloom clocks are practical only when the percentage of relevant events
(where clock ticks) that are internal events is small.

5.3 Number of Hash Functions

We ran the decentralized experiment for fixed n = 200 and fixed pri = 0 and
averaged metrics over m = 0.1 ∗ n, 0.2 ∗ n, 0.3 ∗ n for individual values of k to
check the variation of Bloom clock performance with respect to k. The results
are shown in Table 3. We observe that the effect of changing the number of hash
functions does not have a quantifiable effect on Bloom clock performance.

The Bloom Clock for Causality Testing 13

Table 3. Variation of metrics with k

k Precision Accuracy fpr

2 0.804 0.917 0.126

3 0.809 0.919 0.124

4 0.808 0.919 0.124

5.4 Size of Bloom Clock

We ran the decentralized experiment for fixed n = 200 and fixed pri = 0 and
averaged metrics over k = 2, 3, 4 for individual values of m to check the variation
of Bloom clock performance with respect to m. The results are shown in Table 4.
As expected, Bloom clock performance improves, but by up to 4.3% points, as m
increases from 0.1∗n to 0.3∗n. The improvement seems intuitive because with a
larger number of indices the probability of hash function outputs mapping to the
same indices reduces, due to which there is a lower probability of false positives.

Table 4. Variation of metrics with m

m Precision Accuracy fpr

0.1 ∗ n 0.784 0.906 0.143

0.2 ∗ n 0.811 0.920 0.122

0.3 ∗ n 0.827 0.929 0.109

In addition, we ran the experiment with scalar clock (m = 1 and k = 1)
instead of Bloom clock, in order to investigate improvement in metrics for Bloom
clock over scalar clock. We compared Bloom clock of size m = 0.1 ∗ n and k = 2
to scalar clock at various values of n for pri = 0. The results are presented in
Table 5. We observe significant performance improvements over scalar clock by
utilizing Bloom clock at all values of n – precision was 0.06 to 0.11, accuracy
was 0.07 to 0.09, and fpr was 0.10 to 0.12 better.

Table 5. Bloom clock vs. scalar clock

n Bloom Clock Scalar Clock

Precision Accuracy fpr Precision Accuracy fpr

50 0.492 0.788 0.266 0.434 0.713 0.368

100 0.644 0.852 0.203 0.542 0.769 0.318

200 0.781 0.905 0.145 0.672 0.835 0.248

14 A. Misra and A. D. Kshemkalyani

5.5 Plots for prp and prfp

We ran the decentralized experiment for fixed parameters n = 100, pri = 0, k = 2
and m = 0.1 ∗ n to obtain plots for prp, and prfp computed using Eqs. 2 and 3.
These plots demonstrate the behavior of Bloom clocks throughout an execution
as the temporal proximity between events y and z varies, using just the Bloom
timestamps of the two events being compared for causality. For these plots we
fix event y with GSN = 10 ∗ n, which is 1000, to allow for any startup transient
effects, and compare its Bloom timestamp with all events z with GSN = 10∗n+1
to GSN = 4500 (∼ n2/2). This slice of the execution is adequate to capture all
the trends. The x-axis of Figs. 2, 3 and 4 is the GSN of z and the y-axis is the
probability being plotted.

Figure 2 shows a plot of prp as a function of GSN. We observe that as GSN
increases, the probability of a positive prediction increases and flattens to around
1 between GSN = 3500 and GSN = 4000. This is because as the distance between
two events increases, there is a higher probability of a causal relationship being
established either directly or transitively. The split view of prp vs. GSN allows
us to observe that most false positives occur in the middle of the distribution
while all true negatives occur within the first half of the execution. This is due
to the fact that initially the probability of a true negative is very high because
the probability of a causal relationship being established is lower.

Figure 3 shows plots for prfp = (1−prp) ·prδ(p) (Eq. 2) vs. GSN. We observe
that Bloom clocks correctly predict the probability of false positive being 0 for
all true negatives in the execution. Most of the false positives are distributed
in the middle of the execution slice; the prfp jumps from 0 to large values once
false positives start occurring and then gradually decreases as GSN increases.
The (few) false positives that occur towards the end of the execution slice are
not captured correctly with low values of prfp. The probability of false positive
for a majority of true positives is below 0.25; however, for the initial few true
positives, the prfp is inaccurately evaluated as being high. This probability prfp

(for the true positives) rapidly decreases to 0 as GSN increases.
Figure 4 shows plots for prfp = (1−prp)∗prp (Eq. 3) vs. GSN. As expected,

prfp has values below 0.05 for most true negatives and true positives and reaches
a maximum value of 0.25 in the middle of the execution where most of the false
positives reside. Thus, the prfp is inaccurately evaluated as being low for the
false positives in the middle of the execution slice.

Thus, Figs. 2, 3 and 4 confirm the theoretical predictions made in Sect. 4.
Equation 2 uses a range of [0,1] for prfp, gives a high prfp to the initial few true
positives, and does not seem to capture the two conflicting influences on prfp

described in Sect. 4 when the GSN of z is just a little greater than the GSN of
y. Equation 3 uses a range of only [0,0.25] and inaccurately gives a low prfp for
the false positives in the middle of the execution slice.

The Bloom Clock for Causality Testing 15

Fig. 2. prp vs. GSN, showing combined view and split view

16 A. Misra and A. D. Kshemkalyani

Fig. 3. prfp = (1 − prp) · prδ(p) using Eq. 2 vs. GSN, showing combined view and split
view

The Bloom Clock for Causality Testing 17

Fig. 4. prfp = (1 − prp) · prp using Eq. 3 vs. GSN, showing combined view and split
view

18 A. Misra and A. D. Kshemkalyani

6 Experiments for the Star Graph

We set up an experiment with a client-server architecture to investigate how
faithfully the Bloom clock determines causality. Client processes connect to a
multi-threaded server accepting TCP connections. Each server thread connects
to a single client. The internal event probability, pri was set to 0. All message
sends were synchronous and blocking and receives were blocking. Each client
consisted of a process and had its own vector clock and Bloom clock. The server
had a single vector clock and a single Bloom clock shared across all threads.

The server threads used a single lock to make sure that there were no race
conditions on the vector clock and the Bloom clock while executing events. We
did not use locks at the client end because GSN was not maintained. Further,
not using locking mechanisms allowed interleaving of client processes.

Each client sent n messages to the server and received n corresponding mes-
sages from the server. This resulted in overall O(n2) events in the execution.
Post execution, each 100th event was taken from the execution log containing
all the events from the execution to create a sample of events to be compared
for causality. Each event y was compared to each other event z to determine if
Bloom clock correctly classified whether y → z or y �→ z. The correctness of
the Bloom clock prediction was ascertained by comparing it with the prediction
from vector clock. The results for the client-server experiment for k = 2 are
shown in Table 6.

As can be seen from the results, Bloom clock performs quite well with high
values of precision and low fpr. The first four rows are for m = 0.1 ∗ n and the
last four rows are for m = 0.05 ∗ n. We observed that for a small Bloom clock
of size m = 3 for n = 50, the accuracy is high at 100% (There was one false
positive, but rounding off to three decimal places results in the stated accuracy
value). The difference in precision, accuracy, and fpr for smaller Bloom clocks
as compared to larger Bloom clocks is not significant, therefore it is safe to say
that for this configuration, smaller Bloom clocks perform well. The reason for
strong performance of Bloom clock is that there are a lot of merge events with
a centralized process, and the inherent message pattern at the server resulted in
automatic and widespread distribution/broadcasting of information contained
in individual Bloom clocks among all client processes. The server is always up to
date with a client’s Bloom clock after it executes a receive event corresponding
to a message send event from the client. We generalize the reasoning behind
the good performance of the Bloom clock for the client-server configuration by
postulating the causality spread hypothesis in Sect. 7.2.

7 Observations and Discussion

7.1 Summary of Results

The results of the experiments are summarized as follows.

1. In predicting the causality between events y and z using their Bloom times-
tamps, we observe the following.

The Bloom Clock for Causality Testing 19

Table 6. Results for client-server experiment with k = 2

n m Precision Accuracy fpr

50 5 0.985 0.992 0.015

100 10 0.990 0.995 0.010

125 13 0.991 0.996 0.009

150 15 0.995 0.997 0.005

50 3 100 100 0

100 5 0.996 0.998 0.004

125 7 0.997 0.998 0.003

150 8 0.997 0.998 0.003

(a) The probability of a positive prp increases relatively quickly from 0 to 1
as z occurs after but in the temporal vicinity of y.

(b) The probability of a false positive prfp is 0 or close to 0 except when z
occurs later than but in the temporal vicinity of event y. As z occurs later
at a process, the probability spikes up from 0 to a high value but soon
comes down to 0 as the occurrence of z get temporally separated from
the occurrence of y. Some true positives have a non-zero value of prfp.

2. As the number of processes n increases, the Bloom clock performance
improves significantly – the accuracy and precision increase, and the fpr
decreases.

3. When the number of internal events at which the clock ticks is low relative
to the number of send events, precision, accuracy, and fpr all improve signif-
icantly. Thus, with relatively more send events, performance of Bloom clock
improves. With more send events, causality between more pairs of events is
established. On the other hand, if the number of internal events being times-
tamped is high with respect to the number of send events, Bloom clocks do
not perform well.

4. The number of hash functions k used in the Bloom clock protocol does not
impact much the precision, accuracy, and the fpr. Hence, it is advantageous
to use a small number (such as 2 or 3) of hash functions.

5. The precision, accuracy, and the fpr improved by a few percentage points
as the size of the Bloom Clock m was increased from 0.1 ∗ n to 0.3 ∗ n.
The impact is noticeable but not much. Hence, this suggests that small-sized
Bloom Clocks can be used to gain significant space, time, and message-space
savings over vector clocks. As a baseline for comparison, we also measured
the precision, accuracy, and fpr for Lamport’s scalar clocks. The scalar clocks
performed noticeably worse.

6. For the client-server configuration, Bloom clocks performed exceedingly well.

Bloom clocks are seen to provide a viable space-, time-, and message-space-
efficient alternative to vector clocks when some false positives can be tolerated.
Bloom clock metrics improve as the number of processes increases. Bloom clock

20 A. Misra and A. D. Kshemkalyani

sizes can be 10% or even lower of the number of processes, and can handle churn
transparently when processes join and leave the system. The probability of a
false positive is high only when the two events occur temporally very close to
each other. However, Bloom clocks do not perform well when the fraction of
timestamped events that are internal events is not very low. In the next section,
we generalize this behavior using the causality spread hypothesis.

7.2 Causality Spread

After conducting experiments to track causality using the Bloom clock for multi-
ple architectures and varying parameters, we develop a hypothesis to help system
engineers and software developers figure out whether the Bloom clock is a good
fit for a given application. This hypothesis is stated only from the application’s
perspective. We hypothesize that with an increase in spread of causality in an
execution, i.e., with a larger proportion of events related by causal relationships,
Bloom clock performance (i.e., confidence in its predictions) increases. We define
and compute the causality spread, α, as the ratio of the number of ordered pairs
of events that are causally related, that is, total positives, to the sum of all
ordered pairs of events compared for each execution. The set of events that we
include in the computation of causality spread are the relevant events for the
application.

Definition 2 (Causality spread α)

Causality spread α =
Total Positives

All pairs of events

=
Total Positives

Total Positives + Total Negatives

=
TP + FN

TP + FN + FP + TN
=

TP
TP + FN + FP + TN

(9)

Hypothesis 1 (Causality spread hypothesis). The confidence in the pre-
dictions of the Bloom clock as measured by precision, accuracy, and fpr increases
as the causality spread α of the application’s set of relevant events increases.

A higher α signifies more (fraction of) event pairs being related by causality,
which are correctly classified as true positives, thereby increasing TP (say, by a),
decreasing FP, decreasing TN, and decreasing FP + TN (by a). Theoretically, we
expect precision and accuracy will improve (as per some non-linear functions),
while the impact on fpr depends on the factors by which its numerator FP and
its denominator FP + TN change.

This hypothesis is corroborated by our previously stated observation that
increased message passing results in superior Bloom clock predictions. In order
to quantify this hypothesis, we took a sample of executions from both the
decentralized experiment and the client-server experiment and computed α. We
observed that precision and accuracy increase and fpr decreases as α increases,

The Bloom Clock for Causality Testing 21

Fig. 5. A plot of metrics vs. causality spread

for 0 < α < 0.5, empirically confirming our hypothesis. A graph showing the
increase in metrics as a function of causality spread is shown in Fig. 5.

An important note about causality spread is that it will range between 0 and
0.5 in our experiment because we check for causality between all pairs of events.
An extreme case where α = 0 would be each process executing only one event.
Another extreme case where α = 0.5 would be a linear chain of events. In the
client-server experiment, α is near 0.5 due to the nature of transmission of causal
relationships because of the server behavior. In the complete graph configuration
with a high pri, the large number of timestamped internal events in the set of
relevant events significantly increases the number of pairs of concurrent events
and hence decreases α considerably, resulting in poor prediction by Bloom clocks.

We performed an experiment for multicast/broadcast messages to check if it
conforms to our causality spread hypothesis. In the broadcast experiment, each
process broadcasts a message to all n − 1 processes and waits to receive n − 1
broadcast messages from the other processes. Here, causality does not spread
much because there is only one message send event followed by many receive
events for each process. Here the receive events act as internal events that are
timestamped (akin to high pri), and in effect there are many pairs of events
that are concurrent and hence not related by causality, thereby resulting in a
low α. In the experiment, α = 0.005, precision = 0.014, accuracy = 0.661, and
fpr = 0.341. The poor performance of Bloom clock in this experiment can be
attributed to a low α as per the hypothesis.

22 A. Misra and A. D. Kshemkalyani

8 Conclusions

Detecting the causality relationship between a pair of events in a distributed
execution is a fundamental problem. To address this problem in a scalable way,
this paper gave the formal Bloom clock protocol, and derived the expression for
the probability of false positives, given two events’ Bloom timestamps. We ran
experiments to calculate the accuracy, precision, and fpr for a slice of the exe-
cution. We also ran experiments to calculate the probability of a false positive
prediction based on the Bloom timestamps of two events. Based on the experi-
ments, we made suggestions for the number of hash functions and size of Bloom
clocks and identified conditions under which it is advantageous to use Bloom
clocks over vector clocks. The findings are summarized as follows.

1. Bloom clocks can perform well for small size m and small number of hash
functions k.

2. Bloom clocks perform well when the number of internal events considered is
low compared to the number of send events (low pri).

3. Bloom clocks perform increasingly better as the system size n increases.
4. We also postulated the causality spread hypothesis from the application’s per-

spective to determine whether Bloom clocks would give good performance
(precision, accuracy, and fpr) for the application, and validated it through
experiments. A high α indicates good performance.

Thus, Bloom clocks are seen to provide a viable space-, time-, and message-
space-efficient alternative to vector clocks for the class of applications which meet
the properties summarized above, when some false positives can be tolerated. It
would be interesting to study the applicability of Bloom clocks to some practical
applications.

References

1. Bloom, B.: Space/time tradeoffs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

2. Broder, A.Z., Mitzenmacher, M.: Survey: network applications of bloom filters:
a survey. Internet Math. 1(4), 485–509 (2003). https://doi.org/10.1080/15427951.
2004.10129096

3. Charron-Bost, B.: Concerning the size of logical clocks in distributed systems. Inf.
Process. Lett. 39(1), 11–16 (1991). https://doi.org/10.1016/0020-0190(91)90055-M

4. Couvreur, J., Francez, N., Gouda, M.G.: Asynchronous unison (extended abstract).
In: Proceedings of the 12th International Conference on Distributed Computing
Systems, Yokohama, Japan, 9–12 June 1992, pp. 486–493 (1992). https://doi.org/
10.1109/ICDCS.1992.235005

5. Fidge, C.J.: Logical time in distributed computing systems. IEEE Comput. 24(8),
28–33 (1991). https://doi.org/10.1109/2.84874

6. Kshemkalyani, A.D., Khokhar, A.A., Shen, M.: Encoded vector clock: using primes
to characterize causality in distributed systems. In: Proceedings of the 19th Inter-
national Conference on Distributed Computing and Networking, ICDCN 2018,
Varanasi, India, 4–7 January 2018, pp. 12:1–12:8 (2018). https://doi.org/10.1145/
3154273.3154305

https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1016/0020-0190(91)90055-M
https://doi.org/10.1109/ICDCS.1992.235005
https://doi.org/10.1109/ICDCS.1992.235005
https://doi.org/10.1109/2.84874
https://doi.org/10.1145/3154273.3154305
https://doi.org/10.1145/3154273.3154305

The Bloom Clock for Causality Testing 23

7. Kshemkalyani, A.D., Misra, A.: The bloom clock to characterize causality in dis-
tributed systems. In: Barolli, L., Li, K.F., Enokido, T., Takizawa, M. (eds.) NBiS
2020. AISC, vol. 1264, pp. 269–279. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-57811-4 25

8. Kshemkalyani, A.D., Shen, M., Voleti, B.: Prime clock: encoded vector clock to
characterize causality in distributed systems. J. Parallel Distrib. Comput. 140,
37–51 (2020). https://doi.org/10.1016/j.jpdc.2020.02.008

9. Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Principles, Algorithms,
and Systems. Cambridge University Press, Cambridge (2011). https://doi.org/10.
1017/CBO9780511805318

10. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

11. Mattern, F.: Virtual time and global states of distributed systems. In: Proceedings
of the Parallel and Distributed Algorithms Conference, pp. 215–226 (1988)

12. Meldal, S., Sankar, S., Vera, J.: Exploiting locality in maintaining potential causal-
ity. In: Proceedings of the Tenth Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC 1991, pp. 231–239. ACM, New York (1991). https://
doi.org/10.1145/112600.112620

13. Misra, J.: Phase synchronization. Inf. Process. Lett. 38(2), 101–105 (1991).
https://doi.org/10.1016/0020-0190(91)90229-B

14. Pozzetti, T.: Resettable Encoded Vector Clock for Causality Analysis with an
Application to Dynamic Race Detection. M.S. Thesis, University of Illinois at
Chicago (2019)

15. Pozzetti, T., Kshemkalyani, A.D.: Resettable encoded vector clock for causality
analysis with an application to dynamic race detection. IEEE Trans. Parallel Dis-
trib. Syst. 32(4), 772–785 (2021). https://doi.org/10.1109/TPDS.2020.3032293

16. Ramabaja, L.: The bloom clock. CoRR (2019). http://arxiv.org/abs/1905.13064
17. Schwarz, R., Mattern, F.: Detecting causal relationships in distributed computa-

tions: in search of the holy grail. Distrib. Comput. 7(3), 149–174 (1994). https://
doi.org/10.1007/BF02277859

18. Singhal, M., Kshemkalyani, A.D.: An efficient implementation of vector clocks. Inf.
Process. Lett. 43(1), 47–52 (1992). https://doi.org/10.1016/0020-0190(92)90028-T

19. Tarkoma, S., Rothenberg, C.E., Lagerspetz, E.: Theory and practice of bloom
filters for distributed systems. IEEE Commun. Surv. Tutor. 14(1), 131–155 (2012).
https://doi.org/10.1109/SURV.2011.031611.00024

20. Torres-Rojas, F.J., Ahamad, M.: Plausible clocks: constant size logical clocks for
distributed systems. Distrib. Comput. 12(4), 179–195 (1999). https://doi.org/10.
1007/s004460050065

https://doi.org/10.1007/978-3-030-57811-4_25
https://doi.org/10.1007/978-3-030-57811-4_25
https://doi.org/10.1016/j.jpdc.2020.02.008
https://doi.org/10.1017/CBO9780511805318
https://doi.org/10.1017/CBO9780511805318
https://doi.org/10.1145/112600.112620
https://doi.org/10.1145/112600.112620
https://doi.org/10.1016/0020-0190(91)90229-B
https://doi.org/10.1109/TPDS.2020.3032293
http://arxiv.org/abs/1905.13064
https://doi.org/10.1007/BF02277859
https://doi.org/10.1007/BF02277859
https://doi.org/10.1016/0020-0190(92)90028-T
https://doi.org/10.1109/SURV.2011.031611.00024
https://doi.org/10.1007/s004460050065
https://doi.org/10.1007/s004460050065

Model Development in the Tool USE:
Explorative, Consolidating and Analytic

Steps for UML and OCL Models

Martin Gogolla(B)

Database Systems Group, University of Bremen, 28334 Bremen, Germany
gogolla@informatik.uni-bremen.de

Abstract. This contribution concentrates on the development process
for descriptive and prescriptive UML and OCL models. We have decided
to concentrate on three not necessarily disjoint techniques that we have
labeled explorative, consolidating and analytic. We assume an imaginary,
prototypical development process in that (1) informal ideas and require-
ments are first realized by exploring initial formal descriptions through
interaction with a modeling tool, (2) stated ideas are consolidated with
more detailed descriptions for structural and behavioral specifications,
and (3) achieved descriptions are analyzed with respect to questions
about stakeholder expectations. The contribution uses a running exam-
ple for demonstration purposes.

Keywords: UML · OCL · Software development

1 Introduction

Building models is part of our everyday life, although we are not always aware
of it. Thus naturally, modeling is part of software development. Even a program
may be regarded as an executable model. “Engineering models aim to reduce risk
by helping us better understand both a complex problem and its potential solu-
tions before undertaking the expense and effort of a full implementation” (Bran
Selic) [34].

In recent years, modeling with the visual Unified Modeling Language (UML)
[33] and its textual extension Object Constraint Language (OCL) [37] has
received much attention. With UML and OCL one can build descriptive and
prescriptive models, and one can describe structural and behavioral aspects in
a visual or textual style.

The aim of the tool UML-based Specification Environment (USE) was and is
to support the design process for a textual UML and OCL model. The tool offers
a graphical and shell-based user interface (GUI, CLI). It may be regarded as an
interpreter for a subset of UML and for full OCL. It supports descriptive and
prescriptive modeling with focus on model execution, validation, and verification.
Starting from a textual model, it allows the developer to visualize aspects with
class, object, sequence, communication and state diagrams.
c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 24–43, 2021.
https://doi.org/10.1007/978-3-030-65621-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_2&domain=pdf
http://orcid.org/0000-0003-4311-1117
https://doi.org/10.1007/978-3-030-65621-8_2

Explorative, Consolidating and Analytic Development Steps in USE 25

USE was developed over a number of years. Milestones in the tool develop-
ment with accompanying publications were: basic UML features as UML class,
object and sequence diagrams and full OCL support [18], the language ASSL (A
Snapshot Sequence Language) [16] for model validation, an evaluation browser
for debugging OCL expressions [6], the language SOIL serving for imperative
model execution of the basis of OCL [7], behavior models in form of UML pro-
tocol state machines [23], behavior visualization with UML communication dia-
grams [19], the USE model validator [26] for automatic object model construc-
tion including use cases as invariant independence and constraint deduction [22]
as well as classifying terms for systematically constructing diverse object mod-
els [24], and advanced support for object diagram features as hide-show-grayOut
for objects and links and automatic layout options [20,21].

The rest of this contribution is structured as follows. Section 2 gives an
overview on the considered model development steps. Section 3 discusses explo-
rative methods within USE, Sect. 4 treats consolidating steps, and Sect. 5 shows
methods for analyzing models. Related work is handled in Sect. 6. The contri-
bution ends with conclusions and future work in Sect. 7.

2 Overview on Discussed Development Steps

This contribution concentrates on the development process for descriptive and
prescriptive UML and OCL models. Modeling occurs typically in the early devel-
opment phases, but when one regards a program as an efficiently executable
model also in later phases modeling occurs. In all phases, validation and verifi-
cation must happen, for example, in form of construction of test scenarios or a
formal proof of a particular property. The different tasks in the different phases
call for different techniques. We have decided to concentrate here on three not
necessarily disjoint techniques that we have labeled explorative, consolidating
and analytic. The terms come from an imaginary, prototypical development pro-
cess in that (1) informal ideas and requirements for a project are first realized
by exploring initial formal descriptions through interaction with a modeling tool
using easy-to-apply methods that give quick results and feedback, (2) stated
ideas are manifested and consolidated with more detailed descriptions for struc-
ture and in particular for behavior specifications, e.g., in form of state machines
and operation implementations, and (3) achieved descriptions are analyzed, e.g.,
with respect to questions about informal stakeholder expectations or formal
properties like consistency or constraint independence. We do not assume that
the mentioned steps are complete or that they have to occur in the stated sequen-
tial order. All steps will typically be applied iteratively in a flexible development
process. The overall aim is that the underlying model develops and changes in
such a way that stakeholder requirements are met.

The aim of this contribution is to demonstrate how such development steps
having an explorative, consolidating or analytic nature can be realized in the
UML and OCL modeling tool USE (UML-based Specification Environment). We
want to show how central tasks in these steps are supported by tool features.

26 M. Gogolla

For demonstration purposes, the contribution will use a running example, namely
the development of a social network model.

3 Explorative Steps

By an explorative step we refer to development actions that start with somewhat
diffuse ideas, possibly arising from a brainstorming step, and that try to formalize
these ideas in terms of models. It might well be the case that inconsistencies in
notions or in formal properties are detected. This step ideally ends up in an
intermediate model that tries to be consistent, but not necessarily is so.

In the social network model, users with a first and last name as well as an
identifying user name should be represented by Profile objects. Users should be
enabled to establish Friendships with other users. The status of a Friendship
may change from pending (after Friendship initiation by an inviter) to accepted
or declined (after response by the invitee). Users may be interested in particular
Topics (like Sports or Soccer) described by a tag. Topics can be arranged in an
ontology-like structure with more general concepts and more special entities. For
example, the Topic Pet (being the concept) could be detailed by the Topics Dog
and Cat (being the entities); the Topic Dog in turn could be detailed by Lassie
and Fang.

In Fig. 1, we get a first impression on how exploring USE models works. On
the left, an underlying textual UML model with classes and associations is dis-
played in a project browser that allows the developer to select model elements
and to zoom on their details in the lower window. Menus and buttons on the top
give the option to execute particular functionalities as displaying a class diagram
or an object diagram with a system state instantiating classes and associations
with objects and links. The evaluation of an OCL query in the system state
is shown as well as the command sequence that lead to the system state. The
system state has been constructed interactively on the GUI by selecting classes
from the browser, drawing them into the object diagram and by this creating
objects for the selected class. The displayed command sequence has been recon-
structed from the GUI actions and can be saved textually for repeated execution
on the USE CLI (Command Line Interface). Attributes of created objects can
be manipulated by selecting the objects and interactively setting the attribute
values. Binary links can be constructed by selecting two objects in the object
diagram and by choosing one option from the offered options in the right-click
context menu. In the example, the selected objects Profile2 and Profile3 can
be inserted as Friendship links either as (inviter:Profile3, invitee:Profile2) or as
(inviter:Profile2, invitee:Profile3). The order for the role names comes from the
textual model file and is also displayed in the project browser.

Explorative, Consolidating and Analytic Development Steps in USE 27

Fig. 1. Explorative, Interactive Modeling with the Tool USE.

28 M. Gogolla

Fig. 2. Automatic Construction of an Object Model with the Model Validator.

In Fig. 2, another option for exploring the class model 1 is shown. In USE,
a so-called model validator (for short MV; roughly speaking, a model checker)
for class models is available that offers to automatically construct an object
model. In UML, an object model is always finite in the sense that there is a
finite number of objects and links. The MV needs a so-called configuration that
specifies in particular a mandatory upper bound for the number of objects per
class. Optionally and in addition, (1) lower class bounds and (2) lower and upper

1 Sort of pedantic, we distinguish between a diagram and a model. A model reflects
general principles. One model may be represented by two different diagrams showing
different concrete model representations, e.g., left-right and upside-down orientation
of model elements. We will use the notions ‘class diagram’ and ‘class model’ as well
as ‘object diagram’ and ‘object model’ (with synonym ‘system state’).

Explorative, Consolidating and Analytic Development Steps in USE 29

bounds for the number of links per association, and (3) possible attribute values
may be specified in a configuration. The displayed configuration requires, for
example, four or five Topic objects, exactly two Friendship linkobjects to be
present, and user names to look like ‘jogger42’ or ‘swimmer63’.

The lower part of Fig. 2 displays the automatically and partially randomly
constructed object diagram. The diagram appearance was basically determined
automatically through a ‘swimlane’ layout method and few manual adjustments
for better readability. The object model gives the opportunity to reflect on
whether this currently allowed model is adequate for the desired purpose of
the class model. For example, there are (1) different Topic objects with the same
tag value, (2) cycles in the ConceptEntity ontology, and (3) a Profile object
that refuses (declines) to have a Friendship connection with itself 2. Such oddi-
ties call for further restriction of the class model with an additional description
mechanism to be realized as textual constraints in form of OCL class invariants.

4 Consolidating Steps

By a consolidating step we refer to development actions that take up an inter-
mediate model in which open questions are present and that try to solve the
open issues. It might well be the case that more details are added, or conflicting
model parts are identified before the conflicts are tried to be solved.

Figure 3 shows a model that is further developed consolidating a slightly
changed and augmented structural UML class model with added OCL invari-
ants and operations and a behavioral model in form of a UML protocol state
machine (PSM) specifying the order in that Friendship operations are allowed
to occur.

The structural class model has changed in comparison to the previous one in
Fig. 1 in that the association class Friendship is now realized as an ordinary class
with two associations to the class Profile. Previously, a Friendship linkobject has
had two inviter and invitee connections to class Profile through its nature as an
association class, now this is represented by a Friendship object with two sepa-
rate inviter and invitee links both having a single-valued multiplicity. The reason
for this change is that we have decided that this second model should be closer
to concepts available in a programming language as association classes are not
present there. Furthermore, this class model is augmented by OCL invariants
that partly remove the discussed oddities from the previous class model: (a) the
invariant userNUnique guarantees that the attribute userN is unique among all
Profile objects; (b) invariant inviterInviteeUnique realizes something similar for
Friendship objects, however not through attributes, but through the role names
inviter and invitee and the requirement that no other Friendship is allowed to
exist with the same inviter and invitee role combination; (c) invariant asymmet-
ricFriendship requires that between two given Profile objects only one Friendship
object exists (not allowed are two symmetric connections (1) inviter ‘ada’ and
invitee ‘bob’ and (2) inviter ‘bob’ and invitee ‘ada’); (d) invariant tagUnique
2 Groucho Marx would be happy to see this is possible.

30 M. Gogolla

Fig. 3. Class model, OCL invariants and PSM for Social Network Example.

requires uniqueness of the attribute tag in the class Topic (analogously to userN
for class Profile); (e) invariant conceptEntityAcyclic demands that the graph
consisting of Topic objects as nodes and directed edges going into the ‘concept’
direction is acyclic. The two uniqueness and the acyclicity requirements would
be violated in the object model from Fig. 2.

The class model in Fig. 3 shows behavioral aspects in form of operation dec-
larations in the classes Friendship and UI (User Interface) and the protocol state
machine (PSM) for class Friendship. The Friendship PSM restricts the operation
call lifecycle of a Friendship object insofar that basically only two lifecycles are
possible: (1) create; invite(); accept(); (2) create; invite(); decline(). The seven
operations in class UI provide means to manipulate object models in a consol-
idated way. With ‘consolidated’, we refer to the fact that the UI operations in
general work on objects from different classes in such a way that each single oper-
ation realizes a coherent and meaningful, complex functionality: (1) addProfile
adds a new Profile with first, last and user name and guarantees that PFLikes
links between the new Profile and Topic objects identified by the parameter likes
are present; (2) invite establishes a new pending Friendship between an inviter
and an invitee; (3,4) accept and decline change an existing pending Friendship
into accepted or declined, respectively; (5) addLikes guarantees that PFLikes
links identified by the parameter likes are present for the Profile object iden-
tified by the parameter uN; (6) addCE guarantees that ConceptEntity links
between the Topic objects identified by the parameter concept and the Topic
objects identified by the parameter entity are present; (7) recommendFS (rec-
ommend Friendship) recommends a new Friendship for the Profile identified by

Explorative, Consolidating and Analytic Development Steps in USE 31

the parameter inviter based on the existing PFLikes links; the recommended
Profile should ‘somehow’ like the same Topics as the potential inviter.

Behavior is further detailed with operation implementations formulated on
the modeling level in the language SOIL (Simple OCL-like Imperative Lan-
guage). Figure 4 prototypically pictures the implementation of the operation
addProfile and an example of its execution. The sequence diagram with the
top-most call addProfile(‘Bob’, ‘’, ‘bob’, Set{‘Cat’, ‘Dog’}) shows how the left
object model is transformed into the right object model. Basically, this call adds
a new Profile object (‘bob’) with appropriate attribute values determined by the
actual parameters, checks that one existing required Topic object (‘Cat’) can
be reused and newly introduces another Topic object (‘Dog’). The textual SOIL
code in the UML comment node details how this is achieved in a generic way
utilizing operation parameters, OCL expressions for checks and variable assign-
ments, basic commands for object creation (new), attribute manipulation (:=),
association manipulation (insert) and control flow commands for conditional (if)
and iterative (for) execution.

There are five basic SOIL commands for object creation (new), object
destruction (destroy), attribute manipulation (:=), link insertion (insert) and
link destruction (delete). For the running example, we only show in detail one
operation implementation as the other operations are implemented analogously.
Operations may be connected optionally to operation contracts in form of declar-
ative OCL pre- and postconditions, a feature that we do not have employed in
the running example.

It might be interesting to see a scenario with operation calls where all oper-
ations are called at least once, as the one displayed below.3

create ui:UI
ui.addProfile(’Ada’,’’,’ada’,Set{’Dog’});
ui.addProfile(’Bob’,’’,’bob’,Set{’Dog’});
ui.addProfile(’Cyd’,’’,’cyd’,Set{’Jogging’});
BIDDER:=ui.recommendFS(’ada’);
ui.invite(’ada’,BIDDER.userN);
ui.accept(BIDDER.userN,’ada’);
ui.addCE(Set{’Pet’},Set{’Dog’,’Cat’});
ui.addLikes(’ada’,Set{’Smoking’});
ui.invite(’ada’,’cyd’);
ui.decline(’cyd’,’ada’);

Because both an accept() and a decline() have to happen, at least three Pro-
file objects including three addProfile() and two invite() calls must be present,
leading to ten calls. The operation recommendFS() has a return value which is
saved in the local, undeclared variable BIDDER. The resulting object model is
displayed as an object diagram in Fig. 5.

3 The scenario may be labeled ‘Joggers do not like smoking dog owners’.

32 M. Gogolla

Fig. 4. SOIL operation with effects in object and sequence diagrams.

Explorative, Consolidating and Analytic Development Steps in USE 33

Fig. 5. Object model after scenario execution with all operations.

5 Analytic Steps

By an analytic step we refer to development actions that rely on an intermediate,
temporarily completed model. This model is then analyzed w.r.t. some expec-
tations of stakeholders to what extent the expectations are met, or the analysis
tries to deduce some property of the model that is not explicitly present in it.

A first example of an analytic development step is presented in Fig. 6. This
step is applicable in Fig. 2 in which an object model was shown that violates the
later introduced invariant requiring acyclicity of the ConceptEntity association.
The constraint corresponds to the OCL expression in Fig. 6 which evaluates
to false. It would be interesting to find the objects that lead to the constraint
violation. By clicking on the ‘Browser’ button in the OCL expression window,
the ‘Evaluation Browser’ window in the bottom would open. This window can be
configured to show the pictured display. The display clearly indicates that there is
exactly one violating object for which the body of the OCL expression evaluates
to false, namely the object topic2. Thus the ‘Evaluation Browser’ option is a
means to analyze failure of an OCL invariant and to detect the objects leading
to constraint violation.

34 M. Gogolla

Fig. 6. Evaluation Browser Used for Analyzing Constraint Violation.

Figure 7 analyses the five present invariants. It checks whether there are
dependencies among them. There is a dependency between invariants A and B
given that: if invariant A is stronger than invariant B; in formal terms, A implies
B, i.e., if all object models satisfying A also satisfy B; or the dependency could
also be the other way round, i.e., B is stronger than A.

A and B dependent: ∀o ∈ ObjectModelSet : (o |= A) ⇒ (o |= B) or
∀o ∈ ObjectModelSet : (o |= B) ⇒ (o |= A)

A and B independent: ∃o ∈ ObjectModelSet : ¬(o |= A) ∧ (o |= B) and
∃o ∈ ObjectModelSet : (o |= A) ∧ ¬(o |= B)

In other words, A and B are independent, if there is an object model that
satisfies B, but that does not satisfy A, i.e., validity of A does not necessarily
imply the validity of B; and, validity of B does not necessarily imply the valid-
ity of A. As our model validator is able to find object models satisfying also a
given set of invariants or its negations, one can systematically negate each single
invariant and look for object models that satisfy all invariants except the cho-
sen, negated one. In addition to checking this kind of invariant independence,
this method exposes to the developer a number of object models that may be
regarded as negative test cases demonstrating illegal situations that are ruled
out by the invariants.

Explorative, Consolidating and Analytic Development Steps in USE 35

Fig. 7. Analysis of Invariant Independence with Model Validator.

36 M. Gogolla

Fig. 8. Automatically Constructed Object Model for Revealing Missing Constraints.

In Fig. 7, one can identify five object models together with the evaluation
status of the invariants. In each object model, one invariant is negated. These
five object models show that the invariants are independent from each other,
and contribute to model validation insofar that negative test cases are shown.
The figure also shows the used configuration for the model validator in which
basically all classes are populated with up to three objects, the population of the
associations is left open, and appropriate attribute values are provided. Designing
the ‘right’ configuration is a highly non-trivial task, as the model validator might
respond with the answer ‘unsatisfiable’. For example, if one would require three
Profile objects to be present, but would only provide two values for the attribute
userN which is required to be unique, the model validator will not be able to
find a valid object model.

In Fig. 8, an object model with three objects per class and three links per
association was constructed by our model validator. The object model con-
tributes to model analysis insofar that links constellations that are admissi-
ble under the current invariants are shown, but these constellations need to
be reflected and to be discussed. As previously possible, self invitations that
are declined are still admissible. In addition, the object model shows transitive
links for the association ConceptEntity. One might take the viewpoint, that such
transitive connections are always implicitly available in an ontology-like struc-
ture and should not be presented explicitly in order to keep the fundamental
information as simple as possible. Thus both phenomena, declined self invita-
tions and transitive ConceptEntity links, give rise to a reflection whether these
should be allowed or whether additional invariants should be introduced in order
to forbid them.

Explorative, Consolidating and Analytic Development Steps in USE 37

Fig. 9. Classifying Terms for Generating Diverse Object Models.

38 M. Gogolla

Figure 9 displays another analytic option in USE. So-called classifying terms,
i.e., closed OCL query terms, are used for generating object models by the model
validator that show properties determined by the OCL terms of type Boolean
or Integer. The used configuration is the same as in shown Fig. 7. The aim is
so see a collection of diverse object models in which each two object models are
essentially different, e.g., two structurally isomorphic object models with only
first names ‘Ada’ and ‘Bob’ changed to ‘Adam’ and ‘Ben’ would typically not
be considered as ‘essentially different’. The diversity and difference is controlled
by the OCL query terms. In each two generated object models at least one OCL
query term has to be evaluated to a different result. For our running example
two considered classifying terms are defined as follows.

[statusSize]
Friendship.allInstances->collect(p|p.status)->asSet()->size()
[noSelfInvitation]
not(Profile.allInstances->

exists(p | p.friendshipR.invitee->includes(p)))

The first Integer term statusSize counts the number of occurring Friendship
status values in the respective object model. The second Boolean term checks
whether no self invitation is present. Figure 9 shows six different generated object
models (in the order the MV generates them) and the result of evaluating the
classifying terms. Each of the object models has a unique value pair for the two
classifying terms. Classifying terms help analyzing the UML and OCL model by
systematically constructing object models with given properties that are deter-
mined by the classifying terms.

6 Related Work

The transformation of UML and OCL into formal specifications for validation
and verification is a widely considered topic. In [35], a translation from UML
to UML-B is presented und used for the validation and verification of mod-
els, focusing on consistency and checking safety properties. The approach in [4]
presents a translation of UML and OCL into first-order predicate logic to reason
about models utilizing theorem provers. Similarly, OCL2MSFOL, a tool recently
introduced in [12], can automatically reason about UML/OCL models through
a mapping from UML/OCL to many-sorted first-order logic. The tool can check
satisfiability of OCL invariants by applying SMT solvers. There are also other
tools that validate model instances against UML and OCL constraints directly,
like DresdenOCL [13]. Another similar tool is UML-RSDS [27], which allows
for the validation of UML class diagrams. Several approaches rely on different
technological cornerstones like logic programming and constraint solving [10],
relational logic and Alloy [2], term rewriting with Maude [32] or graph trans-
formations [14]. In contrast to the tool used in this work, which is based on
the transformation of UML and OCL into relational logic [26], these approaches
either do not support full OCL (e.g., higher-order associations [2] or recursive

Explorative, Consolidating and Analytic Development Steps in USE 39

operation definitions [10] are not supported) or do not facilitate full OCL syntax
checks [32]. Also, the feature to automatically scroll through several valid object
models from one verification task is not possible in all of the above approaches.
(Semi)-automatic proving approaches for UML class properties have been put
forward on the basis of description logics [31], on the basis of relational logic
and pure Alloy [2] using a subset of OCL, and in [36] focusing on model incon-
sistencies by employing Kodkod. A classification of model checkers with respect
to verification tasks can be found in [15].

Verification tools use such transformations to reason about models and verify
test objectives. UMLtoCSP [9] is able to automatically check correctness proper-
ties for UML class diagrams enhanced with OCL constraints based on Constraint
Logic Programming. The approach operates on a bounded search space similar
to the model validator. In [2], UML2Alloy is presented. A transformation of UML
and OCL into Alloy [25] is used to be able to automatically test models for con-
sistency with the help of the Alloy Analizer. Another approach based on Alloy
is presented in [28]. In particular, limitations of the previous transformation
are eliminated by introducing new Alloy constructs to allow for a transforma-
tion of more UML features, e.g., multiple inheritance. In [38], OCL expressions
are transformed into graph constraints and instance validation is performed by
checking models against the graph constraints. Additionally, in [8], a transfor-
mation of OCL pre- and postconditions is presented for graph transformations.

The work in [5] describes an approach for test generation based on a transfor-
mation of UML and OCL into higher-order logic (HOL). With the HOL-TestGen
tool, test cases (model instances) are generated and validated. In [30], a trans-
formation of UML and OCL into first-order logic is described and test methods
for models are shown, e.g., class liveliness (consistency) and integrity of invari-
ants (constraint independence). A different approach is presented in [11]. The
authors suggest to use Alloy for the early modeling phase of development due
to its better suitability for validation and verification. Additionally, FOML, an
F-logic based language, is introduced in [3] as an approach for modeling, ana-
lyzing and reasoning about models.

UML together with OCL have been successfully used for system modeling in
numerous industrial and academic projects. Here, we refer to only three exam-
ple projects trying to indicate the wide spectrum of application options. In our
own early work [39], we have specified safety properties of a train system in the
context of the well-known BART case study (Bay Area Rapid Transit, San Fran-
sisco). In [1], central aspects of an industrial video conferencing system developed
by Cisco have been studied. In [29], UML and OCL are employed for the specifi-
cation of the UML itself by introducing the so-called UML metamodel in which
fundamental well-formedness rules of UML are expressed as OCL constraints.

Finally, the USE model validator is to a certain degree the successor of
ASSL (A Snapshot Specification Language) [16]. ASSL allows the specification
of generation procedures for objects and links of each class and association.
ASSL searches for a valid system state by iterating through all combinations
defined by the procedures. In comparison, the USE model validator translates

40 M. Gogolla

all model constraints into a SAT formula allowing for a more efficient genera-
tion of a system state, due to detecting bad combinations earlier. However, use
cases like invariant independence have been discussed employing ASSL in earlier
work [17]. But ASSL has, in comparison to the model validator, the advantage
that Strings can be handled as composed entities and operations like substring()
can be used, and not only simple checks for equality. The substring() operation is
not supported in the more efficient model validator as Strings are atomic there.

7 Conclusion and Future Work

Our aim in this contribution was to demonstrate that the design tool USE for
UML and OCL models can be employed in the software development process in
a flexible manner for a number of tasks, namely explorative, consolidating, and
analytic tasks. These tasks have to be combined in an adjustable way that meet
stakeholder requirements, in particular for customers and developers.

Although USE has reached some degree of maturity, more work remains to be
done. Systematically keeping track of model development steps, model versioning
and carrying over test scenarios from early to later development phases is needed.
The support for transformation into executable models and programs must be
improved. Enhancing validation and verification options in the model validator
would offer more possibilities. Improving and harmonizing the user interface in
various corners of USE, e.g., between GUI and CLI, is necessary. Last but not
least, assistance for imperfect, partial models as well as for runtime models and
temporal and deontic constraints, as has already been initiated with first steps,
should be worked on.

Acknowledgments. USE is not the result of the work of the author, but of numer-
ous colleagues that have contributed significantly to its success (mentioned in order
of appearance): Mark Richters, Jörn Bohling, Paul Ziemann, Mirco Kuhlmann, Lars
Hamann, Duc-Hanh Dang, Frank Hilken, Khanh-Hoang Doan, Nisha Desai. Further-
more numerous students have added value through their final theses. Thank you very
much. It was a pleasure for the author to work with you.

References

1. Ali, S., Iqbal, M.Z.Z., Arcuri, A., Briand, L.: A search-based OCL constraint solver
for model-based test data generation. In: Núñez, M., Hierons, R.M., Merayo, M.G.
(eds.) Proceedings of 11th International Conference on Quality Software QSIC, pp.
41–50. IEEE (2011)

2. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to Alloy. Softw. Syst. Model. 9(1), 69–86 (2010). https://doi.
org/10.1007/s10270-008-0110-3

3. Balaban, M., Kifer, M.: Logic-based model-level software development with F-
OML. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol.
6981, pp. 517–532. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24485-8 38

https://doi.org/10.1007/s10270-008-0110-3
https://doi.org/10.1007/s10270-008-0110-3
https://doi.org/10.1007/978-3-642-24485-8_38
https://doi.org/10.1007/978-3-642-24485-8_38

Explorative, Consolidating and Analytic Development Steps in USE 41

4. Beckert, B., Keller, U., Schmitt, P.: Translating the object constraint language into
first-order predicate logic. In: Proceedings of 2nd Verification WS: VERIFY, vol.
2, pp. 2–7 (2002)

5. Brucker, A.D., Krieger, M.P., Longuet, D., Wolff, B.: A specification-based test
case generation method for UML/OCL. In: Dingel, J., Solberg, A. (eds.) MODELS
2010. LNCS, vol. 6627, pp. 334–348. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21210-9 33

6. Brüning, J., Gogolla, M., Hamann, L., Kuhlmann, M.: Evaluating and debugging
OCL expressions in UML models. In: Brucker, A.D., Julliand, J. (eds.) TAP 2012.
LNCS, vol. 7305, pp. 156–162. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30473-6 13

7. Büttner, F., Gogolla, M.: On OCL-based imperative languages. J. Sci. Comput.
Program. 92, 162–178 (2014)

8. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Synthesis of OCL pre-conditions for
graph transformation rules. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS,
vol. 6142, pp. 45–60. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13688-7 4

9. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL class diagrams
using constraint programming. J. Syst. Softw. 93, 1–23 (2014)

10. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of
UML/OCL models using constraint programming. In: Proceedings of ASE 2007,
pp. 547–548 (2007)

11. Cunha, A., Garis, A.G., Riesco, D.: Translating between alloy specifications and
UML class diagrams annotated with OCL. SoSyM 14(1), 5–25 (2015). https://doi.
org/10.1007/s10270-013-0353-5

12. Dania, C., Clavel, M.: OCL2MSFOL: a mapping to many-sorted first-order logic
for efficiently checking the satisfiability of OCL constraints. In: Proceedings of
ACM/IEEE 19th International Conference on Model Driven Engineering Lan-
guages and Systems, MODELS 2016, pp. 65–75. ACM (2016)

13. Demuth, B., Wilke, C.: Model and object verification by using Dresden OCL. In:
Proceedings of Russian-German WS Innovation Information Technologies: Theory
and Practice, pp. 687–690 (2009)

14. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta mod-
els. Softw. Syst. Model. 8, 479–500 (2009). https://doi.org/10.1007/s10270-008-
0095-y

15. Gabmeyer, S., Brosch, P., Seidl, M.: A classification of model checking-based verifi-
cation approaches for software models. In: Proceedings of the 1st VOLT Workshop
(2013)

16. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL models in USE by
automatic snapshot generation. Softw. Syst. Model. 4(4), 386–398 (2005). https://
doi.org/10.1007/s10270-005-0089-y

17. Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, independence and con-
sequences in UML and OCL models. In: Dubois, C. (ed.) TAP 2009. LNCS, vol.
5668, pp. 90–104. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02949-3 8

18. Gogolla, M., Büttner, F., Richters, M.: USE: a UML-based specification environ-
ment for validating UML and OCL. J. Sci. Comput. Program. 69, 27–34 (2007)

https://doi.org/10.1007/978-3-642-21210-9_33
https://doi.org/10.1007/978-3-642-21210-9_33
https://doi.org/10.1007/978-3-642-30473-6_13
https://doi.org/10.1007/978-3-642-30473-6_13
https://doi.org/10.1007/978-3-642-13688-7_4
https://doi.org/10.1007/978-3-642-13688-7_4
https://doi.org/10.1007/s10270-013-0353-5
https://doi.org/10.1007/s10270-013-0353-5
https://doi.org/10.1007/s10270-008-0095-y
https://doi.org/10.1007/s10270-008-0095-y
https://doi.org/10.1007/s10270-005-0089-y
https://doi.org/10.1007/s10270-005-0089-y
https://doi.org/10.1007/978-3-642-02949-3_8
https://doi.org/10.1007/978-3-642-02949-3_8

42 M. Gogolla

19. Gogolla, M., Hamann, L., Hilken, F., Sedlmeier, M.: Modeling behavior with inter-
action diagrams in a UML and OCL tool. In: Roubtsova, E., McNeile, A., Kindler,
E., Gerth, C. (eds.) Behavior Modeling – Foundations and Applications. LNCS,
vol. 6368, pp. 31–58. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21912-7 2

20. Gogolla, M., Hamann, L., Xu, J., Zhang, J.: Exploring (Meta-)model snapshots
by combining visual and textual techniques. In: Gadducci, F., Mariani, L. (eds.)
Proceedings of Workshop Graph Transformation and Visual Modeling Techniques
(GTVMT 2011), ECEASST, Electronic Communications (2011). https://journal.
ub.tu-berlin.de/eceasst/issue/view/95

21. Gogolla, M., Havakili, H., Schipke, C.: Advanced features for model visualization in
the UML and OCL tool USE. In: Michael, J., et al. (eds.) Companion Proceedings
Modellierung 2020, CEUR, vol. 2542, pp. 203–207. CEUR-WS.org (2020)

22. Gogolla, M., Hilken, F., Doan, K.H.: Achieving model quality through model val-
idation, verification and exploration. J. Comput. Lang. Syst. Struct. 54, 474–511
(2018)

23. Hamann, L., Hofrichter, O., Gogolla, M.: Towards integrated structure and behav-
ior modeling with OCL. In: France, R., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
Proceedings of 15th International Conference on Model Driven Engineering Lan-
guages and Systems (MoDELS 2012), LNCS 7590, pp. 235–251. Springer, Berlin
(2012)

24. Hilken, F., Gogolla, M., Burgueno, L., Vallecillo, A.: Testing models and model
transformations using classifying terms. J. Softw. Syst. Model. 17(3), 885–912
(2018). https://doi.org/10.1007/s10270-016-0568-3

25. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

26. Kuhlmann, M., Gogolla, M.: From UML and OCL to relational logic and back. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 415–431. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33666-9 27

27. Lano, K., Kolahdouz-Rahimi, S.: Specification and verification of model trans-
formations using UML-RSDS. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS,
vol. 6396, pp. 199–214. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16265-7 15

28. Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: Class diagrams analysis using alloy
revisited. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol.
6981, pp. 592–607. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24485-8 44

29. OMG - Object Management Group: Unified Modeling Language Specification, Ver-
sion 2.5, June 2015

30. Queralt, A., Teniente, E.: Reasoning on UML class diagrams with OCL constraints.
In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 497–512.
Springer, Heidelberg (2006). https://doi.org/10.1007/11901181 37

31. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: finite reasoning on
UML/OCL conceptual schemas. Data Knowl. Eng. 73, 1–22 (2012)

32. Roldán, M., Durán, F.: Dynamic validation of OCL constraints with mOdCL.
ECEASST 44 (2011)

33. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual, 2nd edn. Addison-Wesley, Boston (2004)

34. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25
(2003)

https://doi.org/10.1007/978-3-319-21912-7_2
https://doi.org/10.1007/978-3-319-21912-7_2
https://journal.ub.tu-berlin.de/eceasst/issue/view/95
https://journal.ub.tu-berlin.de/eceasst/issue/view/95
https://doi.org/10.1007/s10270-016-0568-3
https://doi.org/10.1007/978-3-642-33666-9_27
https://doi.org/10.1007/978-3-642-33666-9_27
https://doi.org/10.1007/978-3-642-16265-7_15
https://doi.org/10.1007/978-3-642-16265-7_15
https://doi.org/10.1007/978-3-642-24485-8_44
https://doi.org/10.1007/978-3-642-24485-8_44
https://doi.org/10.1007/11901181_37

Explorative, Consolidating and Analytic Development Steps in USE 43

35. Snook, C., Savicks, V., Butler, M.: Verification of UML models by translation to
UML-B. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010.
LNCS, vol. 6957, pp. 251–266. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25271-6 13

36. Straeten, R.V.D., Puissant, J.P., Mens, T.: Assessing the kodkod model finder for
resolving model inconsistencies. In: ECMFA, pp. 69–84 (2011)

37. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA, 2nd edn. Addison-Wesley, Boston (2004)

38. Winkelmann, J., Taentzer, G., Ehrig, K., Küster, J.M.: Translation of restricted
OCL constraints into graph constraints for generating meta model instances by
graph grammars. ENTCS 211, 159–170 (2008)

39. Ziemann, P., Gogolla, M.: Validating OCL specifications with the USE tool: an
example based on the BART case study. ENTCS 80, 157–169 (2003)

https://doi.org/10.1007/978-3-642-25271-6_13
https://doi.org/10.1007/978-3-642-25271-6_13

ReLink: Open Information Extraction
by Linking Phrases and Its Applications

Xuan-Chien Tran and Le-Minh Nguyen(B)

Japan Advanced Institute of Science and Technology, Nomi, Japan
chientranx@gmail.com, nguyenml@jaist.ac.jp

Abstract. Recently, many Open IE systems have been developed based
on using deep linguistic features such as dependency-parse features to
overcome the limitations presented in older Open IE systems which use
only shallow information like part-of-speech or chunking. Even though
these newer systems have some clear advantages in their extractions, they
also possess several issues which do not exist in old systems. In this paper,
we analyze the outputs from several popular Open IE systems to find out
their strength and weaknesses. Then we introduce ReLink, a novel Open
IE system for extracting binary relations from open-domain text. Its
working model is based on identifying correct phrases and linking them
in the most proper way to reflect their relationship in a sentence. After
establishing connections, it can easily extract relations by using several
pre-defined patterns. Despite using only shallow linguistic features for
extraction, it does not have the same weakness that existed in older
systems, and it can also avoid many similar issues arising in recent Open
IE systems. Our experiments show that ReLink achieves larger Area
Under Precision-Recall Curve compared with ReVerb and Ollie, two
well-known Open IE systems.

Keywords: Open information extraction · Relink

1 Introduction

Since the COVID-19 pandemic, the number of documents written about it has
become explosive and overwhelming. The problem of extraction information
about this issue becomes very important. Information extraction (IE) is a task
to extract required information from unstructured data such as raw text. The
extracted information can be events, facts, entities, or relationship between enti-
ties in the text. These extracted data enable computers to perform computation
or logical inference on it, a difficult task if we just work with raw text. Tradi-
tional methods for IE are based on pre-defined target relations and they usually
work on a specific domain [10,21]. Because of this, these IE methods do not scale
very well on an open-domain and large corpora such as Web text.

Open IE is proposed to solve this problem. It provides a different way of
extraction in which all potential relations are extracted without requiring any
target relations or human input [1]. Therefore it can work and scale really well
c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 44–62, 2021.
https://doi.org/10.1007/978-3-030-65621-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-65621-8_3

ReLink: Open Information Extraction 45

with open-domain corpora, especially Web text. Open IE provides a simple way
to transform unstructured data into a relational data which is used to support
other tasks like question-answering system [7,15], text summarization [3,11,18],
textual entailment [2,17], or some semantic tasks [16,19].

Many Open IE systems focus on extracting binary relations from the text.
Those binary relations are in the form

(argument 1 ; relation phrase; argument 2)

in which argument 1 and argument 2 are two noun phrases and relation phrase
represents the relationship between those noun phrases in the sentence. For
example, given the sentence “Barrack Obama was born in the United States”,
we want to extract the following relation:

(Barrack Obama; was born in; the United States)

In this relation, “Barrack Obama” and “the United States” are two entities in
this sentence and “was born in” describes their relationship. A relation can also
be called as a triple or tuple, and the relation phrase can be called predicate.

Open IE systems can be categorized into two groups depending on what infor-
mation they use for extraction. The first group includes systems like ReVerb [6]
or TextRunner [1] in which they use only shallow linguistic features (POS tags
or chunks) to extract relations. These features have flat structure and thus pre-
vent the above systems from capturing long-range dependencies between words
or phrases in a sentence. The second group includes systems like DepOE [9],
Ollie [14] or StanfordOpenIE [8]. These systems utilize deep linguistic fea-
tures of a sentence for extractions. Specifically, they use dependency-parse fea-
tures to resolve the issues of long-range dependencies that existed in the first
group’s system. As a result, these systems were reported to extract relations
more accurately.

Interestingly, we found that using deeper linguistic features also has a limi-
tation. Systems which tightly depend on the deep parsing features can produce
incorrect relations due to a small error on the parsing output. Table 1 gives an
example of this situation. ReVerb uses only shallow linguistic information but it
correctly identifies two relations meanwhile Ollie only discovers one and Stan-
fordOpenIE yields no extractions. This raises the question of whether we can
avoid using deep linguistic features but still manage to achieve long-range depen-
dencies. In this paper, we introduce a novel system called ReLink to answer this
question. In particular, our system uses shallow linguistic information but can
deal with the long-range dependencies. This allows us to overcome several issues
that existed in ReVerb and at the same time avoid the issues caused by bad
dependency-parsing output.

The rest of this paper is organized as follows. Section 2 presents some related
work in this research topic. Section 3 introduces the method we use to deal
with two important elements in extracting a relation: Verb Phrases and Noun
Phrases. Section 4 describes in details ReLink, our proposed Open IE system.
We present our experimental results in Sect. 5 and finally, we give a conclusion
and some words about our future work in Sect. 6.

46 X.-C. Tran and L.-M. Nguyen

Table 1. Extractions of ReVerb, Ollie and StanfordOpenIE for the sentence
“Einstein, who was born in Germany, is a scientist.”

Einstein, who was born in Germany, is a scientist.

ReVerb (Einstein; was born in; Germany)

(Einstein; is; a scientist)

Ollie (Einstein; is; a scientist)

StanfordOpenIE No extractions

2 Related Work

The first Open IE system is TextRunner [1]. This system uses a self-trained
classifier to decide when to extract the relationship between two noun phrases.
Its features for the classifier are extracted from the POS tags and chunks.
When comparing with another IE system called KnowItAll [5], TextRun-
ner achieved competitive accuracy with lower error rate.

Later, a new Open IE called WOE [22] is proposed which dramatically
improved precision and recall comparing to TextRunner. Its idea is to use
information from Wikipedia to train the extractor. It also supports using
dependency-parse features to further improve the system performance.

Fader et.al. [6] observed several issues presented in TextRunner and WOE,
and proposed a system calledReVerb to solve these issues. The authors listed out
two main types of incorrect relations extracted by previous systems: incoherent (a
relation has no meaningful interpretation) and uninformative (a relation misses
critical information). Hence, they defined two types of constraints to reduce these
errors: syntactic constraint and lexical constraint. Syntactic constraint is basically
a token-based regular expression used to capture the correct predicate appearing in
the sentence. It requires the relation phrase to be a contiguous sequence or words,
start with a verb and end with a preposition.Lexical constraint is built from a large
dictionary, and it is used to filter out overspecific relations.

The main problem of ReVerb is that it is unable to capture the long-distance
relationship between predicate and arguments. Most of the incorrect extractions
from ReVerb are due to its wrong argument identification. Its argument-finding
heuristics often return the closest noun phrase on the left side of the predicate
as Argument 1 and therefore unable to output a correct triple if arguments and
predicate are far apart. Thus many researchers started using a richer linguistic
information to overcome this limitation. Ollie [14], which is considered as the
next version of ReVerb, resolves ReVerb’s issue by supporting a wider syntac-
tic range via its open pattern templates. These templates are applied directly on
the dependency-parsing output to find valid relations. Ollie also has the ability
to provide context information for a relation and extract relations mediated by
nouns or adjectives.

Another Open IE system which uses dependency parser for extraction is
DepOE [9]. This system is multilingual and achieves better performance than
ReVerb in their evaluation. It relies on DepPattern, a multilingual dependency

ReLink: Open Information Extraction 47

parser1, to parse a sentence and then apply a list of pre-defined rules on the
parse output to extract relations.

Some recent Open IE systems take another further step in using the
dependency-parsing output for their extraction, that is they divide the sentences
into multiple clauses before extraction. A system called ClauseIE [4] follows
this approach. From dependency-parsing output, the system extract relations
by identifying different types of useful clauses. Each clause can result in multi-
ple relations. This system achieved higher precision than previous extractors in
all of their experiment datasets.

Lastly, a new clause-based Open IE system is also implemented as a part of
Stanford CoreNLP [13], which leverages the linguistic structure of the sentence
for extraction[8]. This system works by first extracting self-contained clauses in
a sentence and then running a logic inference on these clauses to find the correct
arguments for each triple. They reported a better performance than Ollie on
the end-to-end TAC-KBP 2013 Slot Filling task [20].

Our work is partly inherited from ReVerb and inspired by newer systems.
We adopt a similar method as ReVerb for identifying phrases in a sentence,
but we use a novel linking mechanism to build the relationship between phrases
to capture long-range dependencies. We also define a list of patterns, but they
are used for extracting relations from the connected phrases, not for identifying
clause type like ClauseIE.

3 Verb Phrases and Noun Phrases

In Open IE, one important step is to recognize correct Verb Phrases (VP) and
Noun Phrases (NP) in the sentence. In this section, we describe how we adopt
the mechanism used in ReVerb and extend it to use in our system.

3.1 Verb Groups

The information of a VP can determine the position of its subject and object
in the sentence. Based on this idea, we treat VP differently depending on their
POS information. In particular, we categorize VP into four groups:

– A-VP : if their POS tags start with MD, VB, VBZ or VBD.
– P-VP : if their POS tags start with VBN.
– G-VP : if their POS tags start with VBG.
– T-VP : if their POS tags start with TO followed by a VB tag.

Table 2 shows some example sentences with their corresponding POS tags in
each verb group. Notice that even though a VP can contain multiple words, we
only look at the POS tag of its first word to categorize.

The reason for categorizing VP into different groups is because they can affect
the way we extract a relation from a sentence. For example, given the sentence:

1 https://gramatica.usc.es/pln/tools/deppattern.html.

https://gramatica.usc.es/pln/tools/deppattern.html

48 X.-C. Tran and L.-M. Nguyen

Table 2. Some examples of Verb Groups

Verb Group Example sentence

A-VP He is walking on the street
PRP VBZ VBG IN DT NN

P-VP Mary likes the photo posted by Peter
NNP VBZ DT NN VBN IN NNP

G-VP People making this statement are rich
NNS VBG DT NN VBP JJ

T-VP I want him to stay here tonight
PRP VBP PRP TO VB RB RB

A smart guy living in this house invented a new machine to do the task
assigned by his boss.

There are four VPs presented in this sentence: “living” is a G-VP, “invented” is
an A-VP, “to do” is a T-VP and “assigned” is a P-VP. With G-VP and P-VP,
it is likely that their subjects stay right before them in a sentence and therefore
we can extract the following relations with high confidence:

0: (A smart guy; be living in; this house)
1: (the task; be assigned by; his boss)

This, however, might not be true for an A-VP because “this house” should not
be the subject of the verb “invented”, its correct argument should be “A smart
guy” as in the following relation:

2: (A smart guy; invented; a new machine)

T-VP, on the other hand, cannot take its preceding NP as its first argument and
should be combined with other phrases to build a coherent relation like this:

3: (A smart guy; invented a new machine to do; the task)

ReVerb is unable to extract any of above relations from the example sen-
tence, its only extraction is an incoherent relation: (this house; invented; a new
machine). Ollie can extract relation 1 and 2, but its third relation is a bit
controversial: (A smart guy living in this house; invented; a new machine to do
the task). In our opinion, arguments should not contain too much information
which can be considered as an extra relation.

Table 3. Regular expression for recognizing VP.

Verb Group Expression

A-VP prefix [MD|VB|VBZ|VBD|VBP] suffix

P-VP prefix VBN suffix

G-VP prefix VBG suffix

T-VP prefix TO prefix VB suffix

prefix (adv|particle)*

suffix (adv|particle|vp-chunk)*

ReLink: Open Information Extraction 49

For recognizing these VPs from their POS tags and Chunks, we adopt the
token-based regular expression used in ReVerb. Here, each verb group has its
own expression as shown in Table 3. As can be seen, these expressions are able
to recognize other components such as adverbs or particles around the main
verb. It is worth noting that we also utilize chunking information (I-VP tags)
to recognize VP because this information is useful in the case some adverbs or
verbs are mistagged by the POS tagger but correctly tagged by the chunker.

If there are multiple adjacent VPs, we merge all of them into a single VP
with verb group is the same as the left-most VP. Besides, our VP expansion also
deals with two special cases:

1. If a VP is followed by a preposition and a G-VP, we should merge them into
the VP. Some example phrases are “aim at hurting”, “look forward to seeing”.
Both of these phrases are considered as a single VP.

2. If a VP is followed by multiple prepositions, we merge all prepositions except
the last one into the VP. This is a small correction for the case when POS
tagger incorrectly identifies a particle as a preposition. Example phrases are:
“come out of”, “look forward to”.

3.2 Noun Phrases

We can easily get all base NPs from the sentence based on chunking information,
but we also want to group related NP together to form a bigger NP if necessary.
For example, phrases like “a president of the United States” should be viewed
as a single NP even though they are recognized as two NPs by the chunker.

For this purpose, we define three cases for grouping multiple NPs into a single
NP:

1. An NP followed by a possessive NP.
2. Two NPs separated by the lexical token “of”.
3. Two NPs separated by the lexical token “and” and: (i) the second NP is not

followed by a VP, or (ii) the first NP is right after an SBAR chunk.

ReVerb also supports expanding NP by following the first two cases, but we
think the third case is also necessary, especially when the chunker is unable to
tag them properly as a single phrase.

3.3 Disputed Noun Phrases

On analyzing the output from ReVerb, we have realized that there are two
common cases where an NP can be incorrectly identified as an argument of a
relation phrase: (i) an NP that stays exactly between two A-VP phrases, or (ii)
an NP that follows a PP and stays before an A-VP. We call those NPs as disputed
NPs. In Table 4, we give two sentences containing disputed NP and corresponding
extractions from ReVerb. In the first sentence, the NP “the man” is between
two A-VPs “said” and “had”. ReVerb does not take this into account and
blindly extract the first relation even though it is incoherent.

50 X.-C. Tran and L.-M. Nguyen

Table 4. Extractions from ReVerb on sentences with disputed NP.

He said the man was a criminal.

(He; said; the man)

(the man; was; a criminal)

The students in the classroom are second language learners.

(the classroom; are; second language learners)

In the second case, the phrase “the classroom” is a disputed NP because
it is between the PP “in” and the A-VP “are”. With this sentence, ReVerb
yields the relation “(the classroom; are; second language learners)”. This relation
is clearly incoherent because the first argument should be “the students”. In
ReLink, we explicitly handle these disputed NPs to let the extractor know which
NP should be selected for a certain predicate and thus we can avoid incoherent
relations.

4 ReLink

This section describes the algorithm of ReLink for extracting binary relations.
First, it starts by chunking and identifying phrases in a sentence using the meth-
ods described in Sect. 3. Then it employs a new method for building the relation-
ship between phrases by iterating through each phrase and create left and right
connections. Finally, relations are extracted using several pre-defined patterns.
Figure 1 shows the steps performed in ReLink to extract relations from an input
sentence.

Fig. 1. Procedure of ReLink to extract relations from a sentence.

4.1 Phrase Identification

In this step, we use Apache OpenNLP2 for POS tagging and chunking the sen-
tence. From the chunked sentence, we construct four groups of phrases: VP, NP,
PP and O. VP and NP are identified using the methods described in Sect. 3, PP
is directly captured from chunking information, and all other tokens are con-
verted to O phrases. The process of phrase identification is illustrated in Fig. 2.
As can be seen from the example, we successfully capture the long noun phrase
2 https://opennlp.apache.org/.

https://opennlp.apache.org/

ReLink: Open Information Extraction 51

Fig. 2. An example of Phrase Identification for the sentence “Routing smoking is linked
to airway inflammation and increased symptoms of chronic bronchitis.”

“airway inflammation and increased symptoms of chronic bronchitis” by group-
ing several NPs together. This is achieved thanks to the patterns we described
in Sect. 3.2.

4.2 Phrase Linking

This is a crucial step to decide which phrases should go together to form a valid
extraction. In ReLink, we go through each phrase from left to right and decide
which phrases should be linked to reflect the relationship of phrases in the most
proper way. Specifically, each phrase is assigned a number of available slots, i.e.
the maximum number of connections a phrase can have with other phrases in
the sentence. Whenever a connection is established between two phrases, their
available slots is decreased 1. A phrase with no available slots can not connect
with any other phrases. The value of available slots varies depending on the
phrase type as follows:

– NP: has 1 available slot by default. In our assumption, an NP is either a
subject or an object of a clause but not both. Exceptional cases are handled
separately.

– VP: has 2 available slots, 1 slot for the connection on the left side and another
slot for the connection on the right side. We give 2 slots to a VP based on an
assumption that a VP always has 1 subject and 1 object.

– PP: has 2 available slots similar to VP. PP here should play a role of con-
necting its preceding phrase and its succeeding phrase.

– O: does not have any available slots. We do not want them to connect with
any other phrases.

Before iterating through each phrase, we perform two pre-linking tasks to
deal with some special cases:

1. We add 1 additional slot to the NPs that are followed by a WH-modifier
because they are likely the argument of many relations.

2. We identify and mark disputed NPs as described in Sect. 3.3. These NPs will
be processed differently in our algorithm.

After this preparation, we start processing each phrase one by one from left
to right. NPs will play a passive role in our algorithm, they stay waiting for

52 X.-C. Tran and L.-M. Nguyen

connections from phrases of other types. Because of this, we only focus on how
to create connections from VP and PP.

Connections from VP. From each VP, we will try to create two connections
with other phrases, one connection on its left side and the other connection on
the right side.

It is simple to create a connection on the right side, we only need to make
sure the succeeding phrase is an NP or PP. This is because, in our observation,
the phrase follows a VP is usually directly related to that VP. Of course this
will be wrong if the succeeding phrase is a disputed NP. This problem will be
handled by the VP staying right after the disputed NP when it tries to create a
left connection.

It is, however, more complicated to create a connection with a phrase on
the left side. The detailed algorithm to look for proper phrase and create a left
connection is shown in Algorithm 1. First of all, we deal with a special case
where the word “and” stays in front of the VP. In that case, the current VP is
likely to be an extension of another existing clause. Thus we look for the first VP
of the same group and try to connect the left phrase of that VP to the current
phrase (using the function getArg1OfVerbGroup).

If the previous phrase is not “and”, we will look for candidate phrase depend-
ing on the group of the current VP. In case of A-VP, there are three cases as
follows:

– If its immediate preceding phrase is an available NP, we directly create a
connection between it and the current VP. This is actually the normal case
in simple sentences like “Donald Trump is the new president of the United
States.”, there is no confusion to establish the connection between “is” and
“Donald Trump”.

– If its previous phrase is not available, we have to search until the beginning
of the sentence to find an available NP (using the function getAvailableNP).

– If no available NP is found and the previous phrase is a disputed NP, we
remove current connections from this disputed NP and connect it with the
current VP.

The function getAvailableNP starts searching on phrases within the speci-
fied range from right to left. An available NP is returned if it has available slots
> 0 and satisfies one of the following conditions:

– It has a right-side connection with another VP.
– It has no right-side connections with another VP but we have not seen any

verbs on the way to reach this NP.

These conditions are mainly used to prevent an irrelevant NP which is far away
from current VP to be selected as a candidate for connection.

Lastly, if current VP is not an A-VP and the previous phrase is an NP,
we simply increase previous NP’s available slots by 1 and create a connection
between this NP and the current VP.

ReLink: Open Information Extraction 53

Algorithm 1: Creating a left connection from a VP. idx is index of the current
phrase.
if prevPhrase.token == ‘and’ then

leftNp = getArg1OfVerbGroup(0, idx-2, phrase.verbGroup)
if leftNp != null then

leftNp.increaseAvailableSlots()
connect(leftNp, phrase)

end

else
if phrase is A-VP then

if prevPhrase.isAvailableNP then
connect(prevPhrase, phrase)

else
leftNp = getAvailableNP(0, idx-2)
if leftNp != null then

connect(leftNp, phrase)
else if prevPhrase.isDisputeNP then

prevPhrase.removeLeftConnection()
connect(prevPhrase, phrase)

end

end

else if prevPhrase.isNP then
prevPhrase.increaseAvailableSlots()
connect(prevPhrase, phrase)

end

end

Connections from PP. For a PP node, we simply create connections with its
left and right phrases if they are NP. We do not check if the previous phrase is
VP because it has already been handled by that VP. Algorithm 2 shows how we
create connections with its left and right phrases from a PP.

Quote and Comma Characters. When linking phrases, we temporarily
ignore O phrases which contain only quote characters. This mean that if imme-
diate preceding phrase of the current phrase is a quote, we simply move one step
further to the left to get the correct preceding phrase. The same thing applies
for getting the succeeding phrase.

Algorithm 2: Creating left and right connection from a PP.

if prevPhrase is NP then
prevPhrase.increaseAvailableSlots() connect(prevPhrase, phrase)

end
if nextPhrase is NP then

connect(phrase, nextPhrase)
end

54 X.-C. Tran and L.-M. Nguyen

4.3 Relation Extraction

After setting up connections between phrases, the final step is to detect valid
verb-based relations and extract their arguments accordingly. Unlike ReVerb
in which the relation phrase is extracted before identifying two arguments, in
ReLink we extract a relation in the following order:

1. Identify phrases belonging to A-VP, P-VP or G-VP group which have both
left and right connection.

2. Extract Argument 1 from its left connection.
3. Extract Predicate and Argument 2 simultaneously from its right connection

using predefined patterns.

Extracting Argument 1. Because of the way we build connections between
phrases, a connection on the left side of a VP (if any) is always an NP and this
should be extracted as the Argument 1 of a relation. But we also consider the
case when this NP has a connection to another NP through PP, if so then we
follow the NP’s right connection to build a full argument.

Extracting Predicate and Argument 2. We do not merely use the identified
VP as Predicate and extract the closest NP to the right of the relation phrase
as Argument 2. Instead, we obtain Predicate and Argument 2 simultaneously
because they are mutually related in a relation. For example, in a sentence like
“He bought a new car as a present”, we observe that there are two relations:

1: (He; bought; a new car)
2: (He; bought a new car as; a present)

The phrase “a new car” can both be Argument 2 and a part of Predicate
name in this case. Which parts to include in the Predicate will affect the decision
to extract the Argument 2. Therefore we need to be able to recognize them in
our connected phrases for extraction. We do this by defining several patterns for
matching against the connected phrase list. Whenever we find a list of connected
phrases that matches the pattern, we extract them out as a relation. The last
NP will be selected as the Argument 2 and all other phrases are grouped to
become the Predicate. We combine these with the Argument 1 already extracted
previously to have a complete relation.

5 Experiments

We compare ReLink with two well-known systems in different categories: one
system uses shallow linguistic feature and one system use deep linguistic feature.

– ReVerb: This Open IE system is considered as state-of-the-art in terms of
using only shallow linguistic features for extracting relations. Because our
system also uses similar information, this is a good baseline for comparison.

ReLink: Open Information Extraction 55

– Ollie: This system extracts relations by using templates learned from seed
training data. These templates work against the output of a dependency
parser. In this research, we run Ollie using the default Malt parser shipped
in its package.

For testing, we collected 200 random sentences from news articles of CNN3.
These sentences are fed to each system to get a list of binary relations. Two
human judges were asked to independently evaluate each relation as correct or
incorrect. We got an agreement of 82.9% on the extractions, agreement score κ =
0.63. We compute precision-recall on the subset of extractions where evaluations
from both judges are the same. Similar to the experiments performed in [6],
we calculate the total of correct relations using relations marked as correct by
both judges. Duplicate relations are treated as a single relation. In ReLink,
we do not design a separate confidence score model but instead, we use the
logistic regression model available in ReVerb for assigning confidence score.
The precision-recall curve is drawn by varying the confidence score from 0 to 1.

5.1 Results

Figure 3 shows the Area Under Precision-Recall Curve (AUC) of each system. As
we can see, ReLink gets the highest AUC (≈ 0.554), both Ollie and ReVerb
get AUC about 30% smaller than ReLink, 0.375 and 0.324 respectively. It is
interesting to see that Ollie does not work very well in our experiment even
though it uses dependency parser to support the extraction process.

Figure 4 shows Precision-Recall curves of three systems. ReLink achieves
a stable precision of nearly 0.8 in almost all levels of recall. It also gets higher
precision than ReVerb when recall increases to higher than around 0.08. Ollie
curve is quite interesting. It gets the highest precision at the beginning of the
curve but starts to decrease as recall increases. When recall reaches around 0.2,
Ollie starts to get lower precision than ReLink; and at the end of the curve,
Ollie precision drops to lower than ReVerb. An explanation for this is that
Ollie depends entirely on the result from the dependency parser to extract the
relations. Because of this, only a minor error in the dependency parsing can also
confuse the extractor and make it produce uninformative or incoherent relations.
ReVerb and ReLink, on the other hand, use only the shallow syntax of the
sentence and therefore are not sensitively prone to errors. In English, shallow
parsing is also considered more robust than deep parsing [12].

In our view, ReVerb gets low precision because its model is quite simple
and cannot handle complex cases in a sentence. This prevents it from detecting
valid relations as well as extracting correct arguments from the text. Ollie
is able to extract more relations from text but many are incorrect because it
relies completely on the result of dependency parsing, and just a small error can
also lead to all incorrect relations. With ReLink, even though it uses similar
information as ReVerb, its model allows it to deal with multiple sentence forms

3 https://edition.cnn.com.

https://edition.cnn.com

56 X.-C. Tran and L.-M. Nguyen

Fig. 3. Area Under Precision-Recall Curve

Fig. 4. Precision-Recall curve.

ReLink: Open Information Extraction 57

and produce better relations. For example, given a sentence like “I took a flight
from New York”, ReVerb can extract only one relation: (I; took a flight from;
New York). However, we believe that the relation (I; took; a flight) also contains
important information and should be extracted as well. This is, in fact, similar to
the approach taken by newer Open IE systems like Ollie or StanfordOpenIE.
In ReLink, we follow the same approach and extract both relations. That is
another reason why the precision of ReLink is higher than ReVerb most of
the time.

Another contribution to high precision in ReLink is the way we handle
T-VP in a sentence. As can be seen from our defined patterns, we consider T-
VP not as an independent relation phrase but as a part of a bigger relation
phrase. Our approach led to results different from ReVerb and Ollie.

5.2 Evaluation on Other Datasets

For a fair comparison, we also conducted an experiment on the datasets used for
evaluating ClauseIE4. These datasets consist of:

– 500 sentences from ReVerb data.
– 200 sentences from Wikipedia.
– 200 sentences from New York Times.

Each dataset contains the original sentences, the extractions from three sys-
tems (ReVerb, Ollie, ClausIE), and the annotated labels. Normally, a com-
mon approach will be to re-annotate all these extractions, then compute the
precision and recall like we did in the previous experiment. However, this pro-
cess is time-consuming considering the number of extractions in these datasets.
We, therefore, took another approach which utilizes the available annotations for
comparison. To be more specific, we fed these sentences to ReLink to get a list
of extractions and set the label of each ReLink extraction to be the same with
the annotated extraction. For those extractions which do not exist in the original
annotation, we ask two human judges from our side to annotate (similar to how
we did on the custom dataset). By doing this, we significantly reduce the number
of extractions needed to be annotated while still having a fair comparison. Two
judges got an agreement of 71% with κ = 0.38. Table 5 shows the statistics of
each system based on the original annotated data, and Table 6 shows the result
of our annotation on out-of-db extractions. Correct extractions are those which
marked as correct by both annotators.

We calculate the Precision, Recall and F1 scores for each system with the
new annotated data. The final set of correct extractions is the union of cor-
rect extractions in the ClausIE data and correct extractions in our out-of-db
annotation. We present the results in Table 7 and visually plot the F1 score in
Fig. 5.

4 https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/
software/clausie/.

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/software/clausie/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/software/clausie/

58 X.-C. Tran and L.-M. Nguyen

Table 5. Statistics of extractions from each system on different dataset. #out-of-db
column indicates the number of extractions which do not exist in the annotated data.

#correct #incorrect #out-of-db

ReVerb data

ReVerb 384 343

Ollie 556 686

ClausIE 1692 1283

ReLink 465 231 310

Wiki data

ReVerb 164 85

Ollie 235 330

ClausIE 597 404

ReLink 181 72 162

NYT data

ReVerb 152 119

Ollie 216 281

ClausIE 685 618

ReLink 152 78 174

Table 6. Statistics of out-of-db extractions after annotating.

#correct #incorrect

ReVerb data 147 163

Wiki data 98 64

NYT data 95 79

As we can see from the results, our system achieves better scores than
ReVerb and Ollie on all three datasets. This is consistent with the results
we got on the custom data, and it shows the stable performance of ReLink.
But ReLink gets lower F1 score than ClausIE even though it achieves higher
Precision. This is mainly due to that fact that the number of extractions from
ClausIE is significantly more than all other methods, making its Recall is quite
high. This shows that the process of splitting the sentence into clauses before
extracting the relations in ClausIE is effective in this case. Perhaps breaking
the sentence into multiple clauses makes the dependency-parsing error less severe
than treating the sentence as a whole. More investigation into this matter can
be done in future work.

ReLink: Open Information Extraction 59

Table 7. Precision, Recall and F1 score calculated on the new annotated data.

Precision Recall F1

ReVerb data

ReVerb 0.53 0.13 0.20

Ollie 0.45 0.18 0.26

ClausIE 0.57 0.56 0.56

ReLink 0.62 0.23 0.33

Wiki data

ReVerb 0.66 0.16 0.26

Ollie 0.42 0.23 0.30

ClausIE 0.60 0.58 0.59

ReLink 0.71 0.32 0.44

NYT data

ReVerb 0.56 0.14 0.22

Ollie 0.43 0.19 0.27

ClausIE 0.53 0.61 0.57

ReLink 0.65 0.26 0.37

Fig. 5. Comparison of F1 score between four OpenIE systems on new annotated data.

5.3 Application of ReLink for COVID-19 Data

As stated at the beginning, when COVID-19 data increase rapidly, current
machine learning models could not deal with the change of data. Therefore,
unsupervised model as open information extraction is expected. Figure 6 shows
the use of our system performing on COVID-19 data. As results, the relations
we obtained are useful for users in terms of understanding about MERS-COV
and H1N1. In our future work, we would like to exploit our tools for large-scale
of COVID-19 data.

60 X.-C. Tran and L.-M. Nguyen

arg1 graler 2

[MERS-
CoV]GGP

]revef[edulcni DISEASE ,
[chills/rigors]DISEASE ,
[headache]DISEASE , non-
productive [cough]DISEASE

[MERS-
CoV]GGP

is responsible for causing lower [respiratory
infections]DISEASE with
[fever]DISEASE and
[cough]DISEASE

Fig. 6. Example of relations presented in COVID-19 papers.

We extend our work to perform an information retrieval system to search
either “entities” or “relation” when we extracted from the large-scale of data.

6 Conclusion and Future Work

This paper introduced ReLink - a novel Open IE system which uses only shal-
low linguistic feature including POS and Chunking for extractions. Our main
contributions in this paper are:

– We analyzed several notable Open IE systems and showed their drawbacks
on extracting relations from free text.

– We proposed a simple method to identify VP and NP more accurately, then
we proposed a mechanism to extract relations by linking phrases in a sentence.
Experimental results showed that our system performed better than ReVerb
and Ollie in terms of AUC. The results were also the same on different
datasets.

– We implemented ReLink and published it on Github for the research com-
munity in this field5.

In our future work, we want to firstly explore the possibility of extending
this model to extract other types of relations (N-ary relations, relational nouns,
etc). In addition, we also consider applying a machine learning technique to deal
with the case where some words are incorrectly tagged by Apache OpenNLP.

Acknowledgments. This work was supported by JST CREST Grant Number
JPMJCR1513 and in part by the Asian Office of Aerospace R&D (AOARD), Air Force
Office of Scientific Research (Grant no. FA2386-19-1-4041).

5 https://github.com/linktorepository.

https://github.com/linktorepository

ReLink: Open Information Extraction 61

References

1. Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open infor-
mation extraction from the web. In: IJCAI, vol. 7, pp. 2670–2676 (2007)

2. Berant, J., Dagan, I., Goldberger, J.: Global learning of typed entailment rules.
In: Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, vol. 1, pp. 610–619. Association for
Computational Linguistics (2011)

3. Christensen, J., Mausam, S.S., Soderland, S., Etzioni, O.: Towards coherent multi-
document summarization. In: HLT-NAACL, pp. 1163–1173. Citeseer (2013)

4. Del Corro, L., Gemulla, R.: Clausie: Clause-based open information extraction.
In: Proceedings of the 22nd International Conference on World Wide Web, pp.
355–366. ACM (2013)

5. Etzioni, O., et al.: Unsupervised named-entity extraction from the web: an exper-
imental study. Artif. Intell. 165(1), 91–134 (2005)

6. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information
extraction. In: Proceedings of the Conference of Empirical Methods in Natural
Language Processing (EMNLP 2011), Edinburgh, Scotland, UK, 27–31 July 2011
(2011)

7. Fader, A., Zettlemoyer, L., Etzioni, O.: Open question answering over curated and
extracted knowledge bases. In: Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1156–1165. ACM
(2014)

8. Gabor Angeli, M.J.P., Manning, C.D.: Leveraging linguistic structure for open
domain information extraction. In: Proceedings of the Association of Computa-
tional Linguistics (ACL) (2015)

9. Gamallo, P., Garcia, M., Fernández-Lanza, S.: Dependency-based open information
extraction. In: Proceedings of the Joint Workshop on Unsupervised and Semi-
Supervised Learning in NLP, pp. 10–18. Association for Computational Linguistics
(2012)

10. Kim, J.T., Moldovan, D.I.: Acquisition of semantic patterns for information extrac-
tion from corpora. In: Proceedings of Ninth Conference on Artificial Intelligence
for Applications, pp. 171–176. IEEE (1993)

11. Li, P., Cai, W., Huang, H.: Weakly supervised natural language processing frame-
work for abstractive multi-document summarization: weakly supervised abstractive
multi-document summarization. In: Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management, pp. 1401–1410. ACM
(2015)

12. Li, X., Roth, D.: Exploring evidence for shallow parsing. In: Proceedings of the 2001
Workshop on Computational Natural Language Learning, vol. 7, p. 6. Association
for Computational Linguistics (2001)

13. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky,
D.: The Stanford CoreNLP natural language processing toolkit. In: Association
for Computational Linguistics (ACL) System Demonstrations, pp. 55–60 (2014).
http://www.aclweb.org/anthology/P/P14/P14-5010

14. Mausam, Schmitz, M., Bart, R., Soderland, S., Etzioni, O.: Open language learning
for information extraction. In: Proceedings of Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CONLL) (2012)

http://www.aclweb.org/anthology/P/P14/P14-5010

62 X.-C. Tran and L.-M. Nguyen

15. Reddy, S., Lapata, M., Steedman, M.: Large-scale semantic parsing without
question-answer pairs. Trans. Assoc. Comput. Linguist. 2, 377–392 (2014)

16. Ruppert, E.: Unsupervised conceptualization and semantic text indexing for infor-
mation extraction. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto,
S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 853–862. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-34129-3 54

17. Schoenmackers, S., Etzioni, O., Weld, D.S., Davis, J.: Learning first-order horn
clauses from web text. In: Proceedings of the 2010 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1088–1098. Association for Computational
Linguistics (2010)

18. Soderland, J.C.S., Mausam, G.B.: Hierarchical summarization: scaling up multi-
document summarization. In: Proceedings of the 52nd Annual Meeting of the Asso-
ciation for Computlational Linguistics, pp. 902–912 (2014)

19. Stanovsky, G., Mausam, I.D.: Open IE as an intermediate structure for semantic
tasks (2015)

20. Surdeanu, M.: Overview of the TAC2013 knowledge base population evaluation:
English slot filling and temporal slot filling. In: Sixth Text Analysis Conference
(2013)

21. Vo, D.T., Bagheri, E.: Open information extraction. arXiv preprint
arXiv:1607.02784 (2016)

22. Wu, F., Weld, D.S.: Open information extraction using Wikipedia. In: Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, pp.
118–127. Association for Computational Linguistics (2010)

https://doi.org/10.1007/978-3-319-34129-3_54
http://arxiv.org/abs/1607.02784

Cloud Computing and Networks

Energy-Efficient Scheduling
of Deadline-Sensitive

and Budget-Constrained Workflows
in the Cloud

Anurina Tarafdar(B), Kamalesh Karmakar, Sunirmal Khatua,
and Rajib K. Das

Department of Computer Science and Engineering, University of Calcutta,
Kolkata, India

anurinatarafdar@gmail.com, k.karmakar.ju@gmail.com,
skhatuacomp@caluniv.ac.in, rajib.k.das@ieee.org

Abstract. Due to the rapid advancement of Cloud computing, more and
more users are running their scientific and business workflow applications
in the Cloud. The energy consumption of these workflows is high, which
negatively affects the environment and also increases the operational
costs of the Cloud providers. Moreover, most of the workflows are asso-
ciated with budget constraints and deadlines prescribed by Cloud users.
Thus, one of the main challenges of workflow scheduling is to make it
energy-efficient for Cloud providers. At the same time, it should prevent
budget and deadline violations for Cloud users. To address these issues,
we consider a heterogeneous Cloud environment and propose an energy-
efficient scheduling algorithm for deadline-sensitive workflows with bud-
get constraints. Our algorithm ensures that the workflow is scheduled
within the budget while reducing energy consumption and deadline vio-
lation. It utilizes Dynamic Voltage and Frequency Scaling (DVFS) to
adjust the voltage and frequency of the virtual machines (VMs) exe-
cuting tasks of the workflow. These adjustments help to achieve signifi-
cant energy savings. Extensive simulation using real-world workflows and
comparison with some state-of-art approaches validate the effectiveness
of our proposed algorithm.

Keywords: Workflow scheduling · Cloud computing ·
Energy-efficiency · Budget constraints · Deadline

1 Introduction

A workflow comprises of a set of interdependent tasks executed in the specified
order. Workflows are useful tools to model complex scientific and business appli-
cations that require large-scale computation and storage. Cloud computing is an
in-demand technology in which Cloud Service Providers (CSPs) deliver resources
c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 65–80, 2021.
https://doi.org/10.1007/978-3-030-65621-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-65621-8_4

66 A. Tarafdar et al.

and services to the Cloud users in a pay-per-use manner over the internet. Due
to several advantages of Cloud computing, such as elasticity, cost-effectiveness,
reliability, numerous workflow applications are being submitted by users for exe-
cution in the Cloud. The tasks of these workflows run in the virtual machines
(VMs) deployed in the hosts or servers of a Cloud data center.

The scheduling of workflow applications in the Cloud is quite challenging.
Large-scale virtualized Cloud data centers consume a large amount of energy,
and that harms the environment [1]. Moreover, the high energy costs of the data
center affect the profit margin of the CSPs. Thus, it is necessary to develop an
energy-efficient workflow scheduling approach to reduce the energy consumption
of the Cloud.

The CSPs offer several types of VMs having different resource capacities
and prices, and charge the users in a pay-per-use policy. In a heterogeneous
Cloud environment, creating a cost-effective schedule of the workflows is quite
challenging. Moreover, many workflow applications are associated with budget
constraints and deadlines mentioned by the users. In such a situation, it is critical
to schedule the workflow within the prescribed budget and minimize deadline
violation at the same time.

Although in the recent past, a significant number of research works have
investigated workflow scheduling in Cloud, many of them consider a homoge-
neous environment [6,7,14]. In some research works [2,11], the authors perform
scheduling of budget-constrained workflows in a heterogeneous Cloud environ-
ment. However, they do not consider energy-efficiency as a scheduling objective.
On the other hand, works like [4,13] aim to minimize the energy consumption of
workflows having deadline constraints, but do not take into account the monetary
cost due to the execution of the workflows. Workflow scheduling in the Cloud
must be energy-efficient to promote green computing and reduce the operational
costs of the CSPs. At the same time, the scheduling approach must generate a
schedule that is within the budget and deadline prescribed by the Cloud user.
Consideration of all these aspects simultaneously makes the scheduling prob-
lem very challenging. To address this issue, we consider a heterogeneous Cloud
environment and propose an energy-efficient scheduling approach for deadline-
sensitive workflows with budget constraints.

The rest of the paper is organized as follows: Section 2 consists of a brief dis-
cussion on the related works, followed by the description of the system models in
Sect. 3. Our proposed scheduling algorithm appears in Sect. 4. Section 5 presents
the performance evaluation and Sect. 6 concludes the paper with some future
directions.

2 Related Work

In the recent past, a large number of research works have focused on workflow
scheduling in the Cloud environment. A workflow is scheduled by considering
different objectives like- minimizing the makespan, increasing energy efficiency,
reducing monetary cost, and so on. Some of the works in the literature have

Energy-Efficient Scheduling 67

scheduled workflow considering a single objective, whereas some others have
proposed multi-objective workflow scheduling.

In [9], the authors aim to generate a shorter makespan for the workflow
through effective scheduling, while in [2], the authors have considered budget
satisfaction as their principal objective. On the contrary, Rizvi et al. [11] have
proposed a fair scheduling policy that aims to minimize the makespan of the
schedule and satisfies the budget constraints at the same time. An evolutionary
multi-objective optimization (EMO) technique presented in [15] optimizes cost
as well as makespan. Tang et al. [13] have proposed an energy-aware workflow
scheduling algorithm based on Dynamic Voltage and Frequency Scaling (DVFS)
that tries to schedule the workflow within a given deadline. In [4], the authors
have presented a workflow scheduling algorithm that aims to improve resource
utilization, reduce energy consumption, and satisfy the given deadline. Li et al.
[8] have presented a cost and energy-aware scheduling algorithm for scientific
workflows. However, [4,13] do not consider the monetary cost of workflow exe-
cution. Works like [2,9,11,15], though consider budget and makespan, do not
take into account the energy consumption of the workflows. Unlike the works
mentioned above, we propose a scheduling heuristic that ensures the completion
of the workflow within the given budget while reducing energy consumption and
deadline violation.

3 System Models

In this section, we describe the system models: Cloud data center model, work-
flow model, and energy model. We also define the budget constraint of the
workflow.

3.1 Cloud Data Center Model

We consider a Cloud data center with n heterogeneous VMs, V =
{v1, v2, . . . , vn}. Each VM vk has some characteristics like processing speed pk

represented in million instructions per scond (MIPS), and cost per unit time ck.
We assume the data center offers x types of VM, Vtype = {τ1, τ2, . . . , τx}. Each
VM in V belongs to a particular type in Vtype and VMs of same type have the
same characteristics.

3.2 Workflow Model

A workflow application W is represented by a directed acyclic graph G(T,E)
where T = {t1, t2, . . . , tm} is the set of tasks in the workflow, and E is the
set of directed edges between the tasks. Each task ti has length li represented
in million instructions(MI). The directed edges of G(T,E) indicate the depen-
dencies between the tasks. If there exists an edge from task ti to task tj , then
ti is considered to be an immediate predecessor of tj and tj as an immediate
successor of ti. The sets pre(ti) and suc(ti) denote all immediate predecessors

68 A. Tarafdar et al.

and all immediate successors of task ti respectively. The data transmission time
between two tasks ti and tj where ti is an immediate predecessor of tj is denoted
by TTij . It depends on the size of the data transmitted from ti to tj , and the
internal network bandwidth of the data center. TTij is considered to be zero if
ti and tj are assigned to the same VM. Tentry denotes the set of entry tasks of
the workflow having no predecessor, whereas Texit is the set of exit tasks of the
workflow having no successor.

The execution time of task ti when executed on a VM vk is denoted by
ET (ti, vk), and is defined as:

ET (ti, vk) =
li
pk

(1)

where li is the length of ti in million instructions(MI) and pk is the processing
speed of vk in million instructions per scond (MIPS).

The earliest start time EST (ti), and earliest finish time EFT (ti) of task ti
can be recursively calculated using the following equations where f(ti) and f(tp)
indicate the index of the VMs on which tasks ti and tp are assigned respectively.

EST (ti) =

⎧
⎨

⎩

0, if ti ∈ Tentry

max
tp∈pre(ti)

{EST (tp) + ET (tp, vf(tp)) + TTpi}, otherwise (2)

EFT (ti) = EST (ti) + ET (ti, vf(ti)) (3)

The latest start time LST (ti) and latest finish time LFT (ti) are similarly
calculated according to the following equations where W e

m denotes the estimated
makespan of the workflow and is calculated as: W e

m = max
ti∈Texit

{EFT (ti)}.

LST (ti) =

⎧
⎨

⎩

W e
m − ET (ti, vf(ti)), if ti ∈ Texit

min
tj∈suc(ti)

{LST (tj) − TTij − ET (ti, vf(ti))}, otherwise (4)

LFT (ti) = LST (ti) + ET (ti, vf(ti)) (5)

The W e
m value obtained assuming all tasks are scheduled on VMs of the

fastest type can be considered as the minimum makespan of the workflow
Wmin

m . Thus the deadline WD of the workflow can be defined using the following
equation:

WD = α · Wmin
m , (6)

where α is the deadline factor specified by the Cloud user, and α ≥ 1.

Energy-Efficient Scheduling 69

3.3 Energy Model

For the energy model used in this paper, we assume that the physical machines
(hosts) of the Cloud infrastructure support dynamic voltage and frequency scal-
ing technique (DVFS). Also, each VM is assigned a virtual CPU (vCPU) that
corresponds to a single core of a physical machine. Thus a VM vk ∈ V can
operate at some distinct CPU frequencies in the range [fmin

k , fmax
k] by varying

the voltage levels in the range [V min
k , V max

k]. The dynamic power consumption
of VM vk is expressed as [13]:

Pk = K · (V l
k)2 · f l

k, (7)

where K is a constant parameter related to the dynamic power, V l
k is the supply

voltage of VM vk at level l, and f l
k is the CPU frequency of VM vk corresponding

to voltage V l
k . The energy consumption E due to execution of a task ti on VM

vk is determined as: E = Pk · ET (ti, vk). Thus the total energy consumption of
the workflow W comprising of m tasks is calculated as follows [10]:

EW =
m∑

i=1

Pf(ti) · ET (ti, vf(ti)), (8)

where f(ti) is the index of the VM on which task ti is assigned.
The processing speed pk of VM vk depends on its voltage and frequency,

and lies in the range [pmin
k , pmax

k]. pl
k represents the processing speed of VM

vk operating at (V l
k , f l

k) voltage-frequency combination. Though VMs generally
operate at their maximum voltage level when they are busy [10], using DVFS,
one can dynamically set the voltage and frequency, and thus improve energy-
efficiency.

3.4 Budget Constraint of the Workflow

The monetary cost of execution of task ti on VM vk is determined as:

c(ti, vk) = �ET (ti, vk)� · ck, (9)

where ck is the cost per unit time of VM vk. The unit of time can be hour-based
or second-based depending upon the CSP and the type of VM. The VM will be
charged/billed for an integral unit of time, even if the task completes early. As
all VMs are in the same data center, data transfer costs are ignorable. Thus, the
total cost of scheduling the workflow is:

CW =
m∑

i=1

c(ti, vf(ti)), (10)

where f(ti) is the index of the VM on which task ti is assigned.
As discussed in Sect. 3.1, the data center offers x types of VM, Vtype =

{τ1, τ2, . . . , τx}. We consider that cτq
, pmin

τq
and pmax

τq
represent the cost per unit

70 A. Tarafdar et al.

time, minimum processing speed and maximum processing speed of a VM of type
τq. VMs of different types may have different cost per unit time and processing
speed ranges. However, all VMs of a particular type have identical cost per unit
time and processing speed range. That is, for each VM vk of type τq, the cost
per unit time ck is equal to cτq

and the processing speed range [pmin
k , pmax

k] is
equal to [pmin

τq
, pmax

τq
].

For each VM type τq, we calculate the value cτq

pmax
τq

. The lowest cost of workflow

scheduling Cl is obtained by considering all tasks to be executed on VMs of the
type τq that has the least value of cτq

pmax
τq

. Likewise, the highest cost of workflow

scheduling Ch is obtained by selecting VMs of the type τq that has the highest
value of cτq

pmax
τq

, for every task in the workflow. As in [10], the budget of the

workflow is represented by Eq. (11) stated below:

BuW = Cl + β · (Ch − Cl), (11)

where β is the budget factor such that β ∈ [0, 1). The Cloud user sets the budget
of the workflow by specifying the budget factor.

The budget constraint of the workflow implies that the cost of workflow
scheduling must be within the given budget, i.e., CW ≤ BuW .

4 Workflow Scheduling Strategy

While scheduling the tasks of a workflow, our objective is to reduce energy
consumption and deadline violation of the workflow and also ensure that the
budget constraint is satisfied. Workflow scheduling is NP-hard in nature [10,13].
Thus, we propose a heuristic for effective scheduling of workflow in the Cloud
environment. We assume that at a given time, only one task can be executed on
a VM to prevent contention for resources.

4.1 Deadline, Priority and Budget of a Task

Before describing our proposed scheduling algorithm, we define the deadline,
priority, and budget of a task in the workflow.

Assuming each task is scheduled on VMs of the fastest type, we calculate
the latest start time LST (ti) and latest finish time LFT (ti) of a task ti using
Eq. (4) and Eq. (5) respectively. Thereafter, we determine the deadline D(ti) of
task ti by extending its LFT (ti) proportionately as follows [8]:

D(ti) = α · LFT (ti), (12)

where α is the deadline factor specified by the Cloud user. It is logical that if
each task is completed within its deadline, then the entire workflow will also be
completed within the deadline WD.

Energy-Efficient Scheduling 71

In workflow scheduling, the tasks of a workflow have to be selected one at a
time and allocated to suitable VMs. To perform task selection, we assign priority
to each task [10]. The priority Pr(ti) of task ti is calculated as:

Pr(ti) = ETavg(ti) + max
tj∈suc(ti)

{TTij + Pr(tj)}, (13)

where ETavg(ti) is the average execution time of ti over all types of VMs in the
data center. Priority Pr(ti) denotes the length of the longest path from task ti
to an exit task.

As in [10,11], we divide the budget BuW among all the tasks in the workflow.
To determine the budget of each task, we consider the parameter Surplus Budget
of Workflow (SBW). Initially SBW is set to BuW − Cl where Cl denotes the
lowest cost of workflow scheduling as discussed in Sect. 3.4. Let cmin(ti) denote
the minimum cost of executing ti. Then, for the first task ti which is scheduled,
its budget Bu(ti) is given by:

Bu(ti) = SBW + cmin(ti), (14)

A suitable VM vk has to be selected for task ti such that the cost of execution of
ti on vk expressed as c(ti, vk) lies within Bu(ti). Once the task ti is scheduled,
SBW is updated as:

SBW = SBW − (c(ti, vk) − cmin(ti)) (15)

In this way, after scheduling every task, we update SBW , and determine the
budget of the next task from the new SBW .

4.2 Proposed Approach

Our proposed workflow scheduling approach- Energy-efficient Scheduling of
Deadline sensitive Workflow with Budget constraint (ESDWB), has been pre-
sented in Algorithm 1. In this Algorithm, each task ti of the workflow is selected
priority wise, and assigned to a suitable VM. Since each task ti is scheduled
within its budget Bu(ti), the cost of the workflow remains within its budget
BuW . Here AST (ti, vk) and AFT (ti, vk) denotes the actual start time and actual
finish time of task ti on VM vk respectively. To determine AST (ti, vk), we intro-
duce a term PST (ti) indicating the possible start time of task ti. It is defined
below:

PST (ti) =

⎧
⎨

⎩

0, if ti ∈ Tentry

max
tp∈pre(ti)

{AST (tp, vf(tp)) + ET (tp, vf(tp)) + TTpi}, otherwise

(16)
This implies that it is possible to start execution of task ti only after all its
predecessor tasks have completed execution and have transferred necessary data

72 A. Tarafdar et al.

Algorithm 1: Energy-efficient Scheduling of Deadline-sensitive Workflow
with Budget constraint (ESDWB)
Input: Workflow W , Deadline WD, Budget BuW

Output: Schedule of the workflow SW

1 Determine deadline D(ti) of each task ti in task set T of W using Eq. (12);

2 Calculate priority Pr(ti) of each task using Eq. (13);

3 Sort the tasks in T in descending order of their priorities;

4 SBW ← BuW − Cl; SW ← φ;

5 foreach ti ∈ T do

6 vf(ti)
← null; // vf(ti)

indicates the VM on which ti will be assigned

7 Calculate Bu(ti) using Eq. (14);

8 if (pre(ti) �= φ) then

9 Sort the tasks in pre(ti) in descending order of the data size to be transferred

to ti;

10 foreach tp ∈ pre(ti) do

11 vk ← vf(tp); // vf(tp) indicates the VM on which tp is assigned

12 if ((AFT (ti, vk) ≤ D(ti)) and (c(ti, vk) ≤ Bu(ti))) then

13 vf(ti)
← vk; SW ← SW ∪ 〈ti, vf(ti)

〉;
14 Update SBW using Eq. (15) ;

15 break;

16 end

17 end

18 end

19 if ((pre(ti) = φ) or (vf(ti)
= null)) then

20 Compute ps(ti) using Eq. (21);

21 Q ← {τq | τq ∈ Vtype ∧ (pmax
τq

≥ ps(ti))};
22 Sort the VM types in set Q in ascending order of their pmax

τq
values;

23 foreach τq ∈ Q do

24 Consider an idle or new VM vk of type τq ;

25 if (c(ti, vk) ≤ Bu(ti)) then

26 vf(ti)
← vk; SW ← SW ∪ 〈ti, vf(ti)

〉;
27 Update SBW using Eq. (15) ;

28 break;

29 end

30 end

31 if (vf(ti)
= null) then

32 G ← {τg | τg ∈ Vtype ∧ (li
pmax

τg
· cτg ≤ Bu(ti))};

33 τb ← {τg | τg ∈ G ∧ (pmax
τg

≥ pmax
τy

∀τy ∈ G)};
34 Consider an idle or new VM vk of type τb;

35 vf(ti)
← vk; SW ← SW ∪ 〈ti, vf(ti)

〉;
36 Update SBW using Eq. (15);

37 end

38 end

39 end

40 Calculate actual makespan of workflow W a
m using Eq. (19);

41 SW ← ERT(SW , W a
m); //Algorithm 2

42 Calculate energy EW and cost CW using Eq. (8) and Eq. (10) respectively;

43 Calculate Deadline violation DV using Eq. (20);

44 return SW

Energy-Efficient Scheduling 73

to it. AST (ti, vk) and AFT (ti, vk) is defined in Eq. (17) and Eq. (18) respectively
as follows:

AST (ti, vk) =

{
PST (ti), if T i

k = φ

max{PST (ti), AFT (tb, vk)}, if T i
k �= φ

(17)

where T i
k represents the set of tasks of the workflow scheduled on VM vk before

task ti, and tb is the task scheduled on vk just before ti.

AFT (ti, vk) = AST (ti, vk) + ET (ti, vk) (18)

Thus the actual makespan of the workflow W a
m and the percentage of dead-

line violation of the workflow DV can be calculated using Eq. (19) and Eq. (20)
respectively as:

W a
m = max

ti∈Texit

{AFT (ti, vf(ti))} (19)

DV =

{
(W a

m−WD)
WD

· 100%, if W a
m > WD

0, otherwise
(20)

Algorithm ESDWB: Algorithm 1 first tries to allocate a task ti to a VM
executing one of its predecessor tasks (lines 8 to 18 of Algorithm 1) to avoid the
data transmission time and thus reduce the actual finish time of ti. It would
help to reduce the actual makespan of the workflow W a

m and the percentage of
deadline violation of the workflow DV . If the task ti does not have a predecessor,
or if it is not possible to allocate it to a VM executing one of its predecessor
tasks due to deadline violation or budget constraint, then a VM of a suitable
type is selected for it (lines 19 to 38 of Algorithm1). For this, we compute the
minimum processing speed ps(ti) needed to complete ti before its deadline using
the following equation:

ps(ti) =
li

D(ti) − PST (ti)
(21)

where li is the length of ti in million instructions(MI).
After calculating ps(ti), the set Q is determined (line 21 of Algorithm 1)

which contains the types of VM that can complete ti before its deadline. pmax
τq

represents the maximum processing speed of a VM of type τq. Algorithm 1 tries
to allocate ti to a VM by choosing the VM types in Q in ascending order of
their processing speeds. Lower processing speed corresponds to lower voltage
and frequency and thus lower power consumption. If the VM types in Q do not
permit the execution of the task within its budget, we need to pick a VM type
that will violate the task’s deadline. But while doing so, we choose the fastest
VM available within its budget (lines 31 to 37 of Algorithm1) so that there is
less chance of deadline violation of the workflow. In Algorithm1, G represents
the set of VM types that can schedule ti within its budget Bu(ti), and τb is
a member of G with the highest processing speed. In this way, all tasks are
scheduled and the actual makespan of the workflow W a

m is determined.

74 A. Tarafdar et al.

Algorithm 2: Energy Reduction of Tasks (ERT)
Input: Schedule of the workflow SW , actual makespan of the workflow W a

m

Output: Schedule SW after updation
1 foreach ti ∈ T do
2 vk ← vf(ti); // vf(ti) indicates the VM on which task ti is assigned
3 Calculate ExFT (ti) using Eq. (22);
4 if (ExFT (ti) > AFT (ti, vk)) then
5 Determine PExFT (ti, vk) using Eq. (23);
6 Calculate pmin(ti, vk) using Eq. (24);

7 PS ← {pl
k | pl

k ∈ [pmin
k , pmax

k] ∧ (pl
k ≥ pmin(ti, vk))};

8 pl
k ← min(PS); f l

k ← frequency corresponding to pl
k

9 if pl
k < pmax

k then

10 Update the frequency of VM vk from fmax
k to f l

k for task ti;
11 Update ET (ti, vk) and AFT (ti, vk) in the schedule SW ;

12 end

13 end

14 end
15 return SW

Algorithm 2 uses DVFS to reduce the energy consumption of the tasks by
extending their finish times without affecting the actual makespan and budget
of the workflow. Here ExFT (ti) represents the extended finish time of a task ti
in the workflow. It is defined below:

ExFT (ti) =

⎧
⎨

⎩

W a
m, if ti ∈ Texit

min
tj∈suc(ti)

{AST (tj , vf(tj)) − TTij}, otherwise (22)

The above equation implies that extension in finish time of a task ti must not
affect the makespan of the workflow and the actual start time of the successor
tasks.

A task ti is said to have some slack time if ExFT (ti) is greater than AFT (ti).
The finish time of such a task ti assigned to a VM vk can be extended to its
possible extended finish time PExFT (ti, vk) formulated as:

PExFT (ti, vk) =

⎧
⎨

⎩

min{ExFT (ti), AST (ta, vk), {AST (ti, vk) +
⌈

li
pmax

k

⌉
}}, case 1

min{ExFT (ti), {AST (ti, vk) +
⌈

li
pmax

k

⌉
}}, case 2

(23)
Two cases can occur while determining the possible extended finish time of task
ti on VM vk. They are:

– Case 1: This situation occurs if another task ta is scheduled for execution
on VM vk after ti. It is possible to extend the finish time of ti till ExFT (ti),
or AST (ta, vk), or till the end of the billing period, whichever is earliest. This
is because extension of ti beyond AST (ta, vk) would delay the start of task

Energy-Efficient Scheduling 75

ta and extension of ti beyond {AST (ti, vk) +
⌈

li
pmax

k

⌉
} would lead to increase

in cost of scheduling ti.
– Case 2: This situation occurs if no other tasks are scheduled for execution

on vk after ti.

The minimum processing speed pmin(ti, vk) required to complete task ti on VM
vk within its possible extended finish time PExFT (ti, vk) is calculated as:

pmin(ti, vk) =
li

PExFT (ti, vk) − AST (ti, vk)
(24)

where li is the length of ti in million instructions(MI).
Algorithm 2 finds an allowable set of processing speeds PS of vk greater than

or equal to pmin(ti, vk). The processing speed pl
k = min(PS) will cause lowest

energy consumption as explained below. The energy consumption E of VM vk

due to execution of task ti is :

E =
(
K · (V l

k)2 · f l
k

) ·
(

li
pl

k

)

, (25)

where V l
k , f l

k, pl
k are the voltage, frequency and processing speed of VM vk,

and li is length of task ti. As processing speed is proportional to the frequency,
energy consumption E ∝ (V l

k)2. From Table 1, it is observed that for a given VM
type, lower voltage corresponds to lower frequency and thus lower processing
speed. Hence we determine the minimum processing speed in the set PS and
accordingly update the frequency of the VM (lines 8 to 12 of Algorithm2). This
helps to reduce the energy consumption.

5 Performance Evaluation

To evaluate the performance of our proposed approach ESDWB, we compare
it with two existing workflow scheduling algorithms- FBCWS [11] and DEWTS
[13]. FBCWS tries to minimize the makespan of the workflow while satisfying
the user-defined budget. On the other hand, DEWTS tries to reduce the energy
consumption of the workflow while keeping its makespan within the deadline.

5.1 Performance Metrics

We evaluate and compare our proposed algorithm with respect to the following
performance metrics-

(i) Normalized Energy Consumption: The Normalized Energy Consumption
(NE) of scheduling a workflow W by an algorithm is defined as follows:

NE =
EW

Emin
W

, (26)

76 A. Tarafdar et al.

where EW is the energy consumption of the workflow W obtained using Eq. (8),
and Emin

W is the minimum energy consumption value obtained among all the
algorithms under comparison.

(ii) Normalized Makespan: The Normalized Makespan (NM) of a workflow
W is defined as follows:

NM =
W a

m

WD
, (27)

where W a
m is the actual makespan of the workflow W obtained using Eq. (19),

and WD is the deadline of the workflow. If the value of NM becomes greater
than 1, then it indicates that the deadline has been violated.

(iii) Normalized Cost: The Normalized Cost (NC) of scheduling workflow W
is defined as follows:

NC =
CW

BuW
, (28)

where CW is the monetary cost of scheduling the workflow W calculated using
Eq. (10), and BuW is the budget of the workflow. If the value of NC becomes
greater than 1, then it indicates that the cost of scheduling has exceeded the
budget.

5.2 Experimental Setup

We have used WorkflowSim [5], a well-accepted and widely used workflow sim-
ulator, to simulate a Cloud data center. The VMs in the simulated data center
are of three types- Type 1, Type 2, and Type 3. The VMs of Type 1, 2, and 3 are
modeled to run on AMD Turion MT-34 processor, AMD Opteron 2218 proces-
sor, and Intel Xeon E5450 processor respectively. The voltage-frequency pairs of
these real-world processors are shown in Table 1 [12,13]. The price of each VM

Table 1. Voltage-frequency pairs of different processors.

Level AMD Turion MT-34 AMD Opteron 2218 Intel Xeon E5450

Voltage (V) Frequency (GHz) Voltage (V) Frequency (GHz) Voltage (V) Frequency (GHz)

0 1.20 1.80 1.30 2.60 1.35 3.00

1 1.15 1.60 1.25 2.40 1.17 2.67

2 1.10 1.40 1.20 2.20 1.00 2.33

3 1.05 1.20 1.15 2.00 0.85 2.00

4 1.00 1.00 1.10 1.80

5 0.90 0.80 1.05 1.00

of Type 1, Type 2, and Type 3 are respectively $0.0058 per hour, $0.0116 per
hour, and $0.023 per hour. These values correspond to the price of Amazon EC2
on-demand VM instances having one vCPU and Linux OS. Similar to CSPs like
Google and Amazon, we consider a per-second billing model with a minimum
billing period of 1 min. That is, if a VM runs for 75.2 s, the charge will be for
76 s, but if a VM runs for 35 s, the same will be for 1 min. We assume that the
average bandwidth between the VMs is 1 Gbps.

Energy-Efficient Scheduling 77

We have experimented with four real scientific workflows- CyberShake, Epige-
nomics, SIPHT, and Montage. The structure and characteristics of these work-
flows appear in detail in [3]. We have conducted experiments for different combi-
nations of α and β. It is noteworthy that the deadline factor α, and budget factor
β significantly affects the deadline satisfaction of a workflow. For a particular
value of β, a high α increases the chance of deadline satisfaction. Again, for a
given α, a higher β leads to a greater chance of deadline satisfaction. Thus by
varying the α and β parameters, the users can suitably adjust the deadline and
budget depending upon the relative importance of the makespan and monetary
cost of the workflow. After trying with different values of α and β, we have finally
settled on α = 1.3, β = 0.6, and plotted the normalized energy, makespan, and
cost.

5.3 Experimental Results and Analysis

Figures. 1, 2 and 3 show the simulation results. From the figures, it is clear
that FBCWS keeps the scheduling cost within the budget and tries to reduce
the makespan. However, it leads to high energy consumption. DEWTS reduces
energy consumption and satisfies the deadline of the workflow, but significantly
increases the cost of scheduling which exceeds the budget. Our proposed app-
roach ESDWB effectively schedules the workflow within its budget and tries
to lessen deadline violation and energy consumption at the same time. The
makespan for our approach mostly lies within the deadline, and when it does
not, it exceeds the deadline by a small amount keeping the cost within bud-
get. In workflows like CyberShake and Epigenomics, where there is a significant
amount of data transfer between tasks of the workflow, the makespan generated
by our approach is lesser than that of FBCWS and DEWTS. Our approach

Cy
ber

Sha
ke

Ep
ige

nom
ics

SIP
HT

Mont
age

0.9

1.0

1.1

1.2

1.3

1.4

N
or
m
al
iz
ed

E
ne

rg
y
C
on

su
m
pt
io
n

ESDWB FBCWS DEWTS

Fig. 1. Energy consumption of scheduling different workflows.

78 A. Tarafdar et al.

Cy
ber

Sha
ke

Ep
ige

nom
ics

SIP
HT

Mont
age

0.7

0.8

0.9

1.0

1.1
N
or
m
al
iz
ed

M
ak

es
pa

n

ESDWB FBCWS DEWTS

Fig. 2. Makespan of different workflows.

Cy
ber

Sha
ke

Ep
ige

nom
ics

SIP
HT

Mont
age

0.9

1.0

1.1

1.2

1.3

1.4

N
or
m
al
iz
ed

C
os
t

ESDWB FBCWS DEWTS

Fig. 3. Monetary cost of workflow scheduling.

gives a smaller makespan because it tries to allocate the predecessor and suc-
cessor tasks of the workflow that have high data transfer between them, in the
same VM, and thus reduces the data transmission time.

Our algorithm ESDWB achieves significant energy savings by adjusting the
voltage and frequency of the VMs using the DVFS technique. Although the
energy consumption value generated by ESDWB is sometimes more than that
of DEWTS, it is much lesser than that of FBCWS. Moreover, unlike DEWTS,
the cost of scheduling in our approach ESDWB never exceeds the budget. Our
proposed method outperforms the other algorithms under comparison, by con-
sidering all three scheduling parameters- energy, makespan, and cost.

Energy-Efficient Scheduling 79

6 Conclusion and Future Work

In this paper, we have proposed an energy-efficient scheduling algorithm for
deadline-sensitive and budget-constrained workflows in the Cloud environment.
Our approach ensures that the schedule is within the user-defined budget. It
also reduces energy consumption by assigning tasks to VMs having compar-
atively lower processing speeds, without violating the deadline of the tasks.
It further promotes energy efficiency by reducing the frequency of the VMs
using the DVFS technique. Our proposed approach tries to schedule the work-
flow such that deadline violation is prevented as far as possible. In case the
deadline violation cannot be avoided due to insufficient budget, the algorithm
assigns tasks to VMs of the fastest type available within the budget to minimize
the makespan. Experimental results validate the efficacy of our approach in com-
parison to other state-of-art workflow scheduling techniques. As future work, we
would like to explore the workflow scheduling problem by considering the data
transfer costs between the tasks of the workflow. We also intend to investigate
workflow scheduling in the multi-cloud environment.

Acknowledgment. We acknowledge the contribution of UGC-NET Junior Research
Fellowship (UGC-Ref. No.: 3610/(NET-NOV 2017)) provided by the University Grants
Commission, Government of India to the first author for research work. We would also
like to thank the Visvesvaraya PhD Scheme of Ministry of Electronics & Informa-
tion Technology, Government of India (Ref. No. MLA/MUM/GA/10(37)C) for their
support.

References

1. How to stop data centres from gobbling up the world’s electricity (2018). https://
www.nature.com/articles/d41586-018-06610-y. Accessed 6 Jul 2020

2. Arabnejad, H., Barbosa, J.G.: A budget constrained scheduling algorithm for work-
flow applications. J. Grid Comput. 12(4), 665–679 (2014)

3. Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.H., Vahi, K.: Charac-
terization of scientific workflows. In: 2008 3rd Workshop on Workflows in Support
of Large-Scale Science, pp. 1–10. IEEE (2008)

4. Chen, H., Zhu, X., Qiu, D., Guo, H., Yang, L.T., Lu, P.: EONS: minimizing energy
consumption for executing real-time workflows in virtualized cloud data centers. In:
2016 45th International Conference on Parallel Processing Workshops (ICPPW),
pp. 385–392. IEEE (2016)

5. Chen, W., Deelman, E.: WorkflowSim: a toolkit for simulating scientific workflows
in distributed environments. In: 2012 IEEE 8th International Conference on E-
science, pp. 1–8. IEEE (2012)

6. Karmakar, K., Das, R.K., Khatua, S.: Resource scheduling of workflow tasks in
cloud environment. In: 2019 IEEE International Conference on Advanced Networks
and Telecommunications Systems (ANTS), pp. 1–6. IEEE (2019)

7. Karmakar, K., Das, R.K., Khatua, S.: Resource scheduling for tasks of a workflow
in cloud environment. In: Hung, D.V., D’Souza, M. (eds.) ICDCIT 2020. LNCS,
vol. 11969, pp. 214–226. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-36987-3 13

https://www.nature.com/articles/d41586-018-06610-y
https://www.nature.com/articles/d41586-018-06610-y
https://doi.org/10.1007/978-3-030-36987-3_13
https://doi.org/10.1007/978-3-030-36987-3_13

80 A. Tarafdar et al.

8. Li, Z., Ge, J., Hu, H., Song, W., Hu, H., Luo, B.: Cost and energy aware scheduling
algorithm for scientific workflows with deadline constraint in clouds. IEEE Trans.
Serv. Comput. 11(4), 713–726 (2015)

9. Mathew, T., Sekaran, K.C., Jose, J.: Study and analysis of various task scheduling
algorithms in the cloud computing environment. In: 2014 International Conference
on Advances in Computing, Communications and Informatics (ICACCI), pp. 658–
664. IEEE (2014)

10. Qin, Y., Wang, H., Yi, S., Li, X., Zhai, L.: An energy-aware scheduling algorithm
for budget-constrained scientific workflows based on multi-objective reinforcement
learning. J. Supercomput. 76(1), 455–480 (2019). https://doi.org/10.1007/s11227-
019-03033-y

11. Rizvi, N., Ramesh, D.: Fair budget constrained workflow scheduling approach for
heterogeneous clouds. Clust. Comput. 23(4), 3185–3201 (2020). https://doi.org/
10.1007/s10586-020-03079-1

12. Stavrinides, G.L., Karatza, H.D.: An energy-efficient, QoS-aware and cost-effective
scheduling approach for real-time workflow applications in cloud computing sys-
tems utilizing DVFs and approximate computations. Fut. Gener. Comput. Syst.
96, 216–226 (2019)

13. Tang, Z., Qi, L., Cheng, Z., Li, K., Khan, S.U., Li, K.: An energy-efficient task
scheduling algorithm in DVFs-enabled cloud environment. J. Grid Comput. 14(1),
55–74 (2016)

14. Wu, C.Q., Lin, X., Yu, D., Xu, W., Li, L.: End-to-end delay minimization for
scientific workflows in clouds under budget constraint. IEEE Trans. Cloud Comput.
3(2), 169–181 (2014)

15. Zhu, Z., Zhang, G., Li, M., Liu, X.: Evolutionary multi-objective workflow schedul-
ing in cloud. IEEE Trans. Parallel Distrib. Syst. 27(5), 1344–1357 (2015)

https://doi.org/10.1007/s11227-019-03033-y
https://doi.org/10.1007/s11227-019-03033-y
https://doi.org/10.1007/s10586-020-03079-1
https://doi.org/10.1007/s10586-020-03079-1

An Efficient Renewable Energy-Based
Scheduling Algorithm for Cloud

Computing

Sanjib Kumar Nayak1, Sanjaya Kumar Panda2(B), Satyabrata Das1,
and Sohan Kumar Pande1

1 Veer Surendra Sai University of Technology, Burla 768018, Odisha, India
fortunatesanjib@gmail.com, teacher.satya@gmail.com, ersohanpande@gmail.com

2 National Institute of Technology, Warangal 506004, Telangana, India
sanjayauce@gmail.com

Abstract. The global growth of cloud computing services is witness-
ing a continuous surge, starting from storing data to sharing informa-
tion with others. It makes cloud service providers (CSPs) efficiently uti-
lize the existing resources of datacenters to increase adaptability and
minimize the unexpected expansion of datacenters. These datacenters
consume enormous amounts of energy generated using fossil fuels (i.e.,
non-renewable energy (NRE) sources), and emit a substantial amount
of carbon footprint and heat. It drastically impacts the environment. As
a result, CSPs are pledged to decarbonize the datacenters by adopting
renewable energy (RE) sources, such as solar, wind, hydro and biomass.
However, these CSPs have not completely ditched fossil fuels as RE
sources are subjected to inconsistent atmospheric conditions. Recent
studies have suggested using both NRE and RE sources by the CSPs
to meet user requirements. However, these studies have not considered
flexible duration, nodes and utilization of the user requests (URs) with
respect to datacenters. Therefore, we consider these URs’ properties and
propose a RE-based scheduling algorithm (RESA) to efficiently assign
the URs to the datacenters. The proposed algorithm determines both the
earliest completion time and energy cost, and takes their linear combina-
tion to decide a suitable datacenter for the URs. We conduct extensive
simulations by taking 1000 to 16000 URs and 20 to 60 datacenters. Our
simulation results are compared with other algorithms, namely round-
robin (RR) and random, which show that RESA is able to reduce the
overall completion time (i.e., makespan (M)), energy consumption (EC),
overall cost (OC) and the number of used RE (|URE|) resources.

Keywords: Cloud computing · Renewable energy · Non-renewable
energy · Scheduling algorithm · Datacenters · Coronavirus disease

1 Introduction

Over the last few years, many companies, such as Netflix, Instagram, Apple
and many more, have moved to the cloud [1]. These companies are looking for
part or all of their information technology (IT) solutions, starting from storing
c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 81–97, 2021.
https://doi.org/10.1007/978-3-030-65621-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-65621-8_5

82 S. K. Nayak et al.

data to sharing information with others [2–5]. The cloud-based services enable
them to meet the spike in demand and depletion in activity without owning any
infrastructure and upfront commitment. According to the MarketsandMarkets
report [6], the market of global cloud computing is expected to increase at a
compound annual growth rate of 17.5% (i.e., $832.1 billion by 2025 from $371.4
billion in 2020) and its adoption is drastically increasing due to Coronavirus
Disease (COVID)-19 pandemic. The continuous surge of cloud computing creates
enormous challenges for the CSPs. One such challenge is to efficiently utilize the
existing resources of datacenters, so that new users’ applications can be deployed
without increasing the physical infrastructure [7,8]. Moreover, efficient resource
management and monitoring minimize the unexpected expansion of datacenters.

The electricity use of global datacenters is rapidly increasing day by day.
It is generated using fossil fuels (NRE resources), such as coal, petroleum, gas
and oils. Due to the high demand for electricity, the cost of fossil fuels is also
increasing. These fuels adversely affect the environment by emitting a huge
amount of carbon dioxide (i.e., CO2) and heat. For instance, streaming a 30-
min Netflix video generates 0.028 to 0.057 kg CO2, which is the same as 200 m
driving as reported in International Energy Agency [9]. As a result, CSPs are
pledged to decarbonize the datacenters by adopting RE sources, such as solar,
wind, hydro, tidal, geothermal and biomass [10,11]. Many CSPs like Amazon,
Google and Microsoft claim that datacenters’ resources are 100% powered by
RE resources, as reported in an American magazine [12]. However, these CSPs
have not completely ditched NRE sources as RE sources are reliant on the atmo-
spheric conditions. Recent studies have suggested that the CSPs use both NRE
and RE sources for addressing the user requirements [10,11,13–15]. These stud-
ies present the user requirements, such as start time, nodes and duration in the
form of URs, and they are assigned to the datacenters based on the availability
of RE resources, energy cost, specific ordering and randomly. However, these
studies have not considered flexible duration, nodes and utilization of the URs
on the datacenters. This phenomenon inspired us to think of the URs’ proper-
ties and introduce a new scheduling problem in the RE-based cloud computing
environment.

In this paper, we address the following scheduling problem. Given a set of n
URs and a set of m datacenters with their resources, the problem is to assign
the URs to the datacenters, so that M , EC and OC are minimized, and |URE|
resources is maximized. We propose a three-phase algorithm, called RESA to
efficiently assign the URs to the datacenters. The proposed algorithm estimates
the earliest completion time (CT) and energy cost (CO) of the URs in all the
datacenters, and takes their linear combination to select a suitable datacenter for
the URs. The performance of the RESA is carried out through simulation runs
by taking 1000 to 16000 URs and 20 to 60 datacenters. The results of simulation
runs are compared with two algorithms, namely RR [10] and random [16] in
terms of four performance metrics, namely M , EC, OC and |URE| resources
to show the effectiveness of the RESA. Note that existing scheduling algorithms
do not model the URs in flexible duration, nodes and utilization; hence, those

An Efficient Renewable Energy-Based Scheduling Algorithm 83

algorithms are not directly comparable to the proposed algorithm. Therefore,
we compare with RR and random as compared in [10,15–17].

The rest of this paper is organized as follows. In Sect. 2, we survey the task
consolidation and scheduling algorithms with their pros and cons. In Sect. 3, we
discuss the cloud, cost and energy models, and formulate the scheduling problem.
The proposed algorithm is presented in Sect. 4 with an illustration. Simulation
results of the proposed and existing algorithms are given in Sect. 5. The paper
concludes in Sect. 6 with some possible future works.

2 Related Work

RE-based scheduling algorithms are commonly focused on minimizing the OC
[10,11,13,15] and maximizing the green power utilization [10,11,14,15,18].
These scheduling algorithms have modeled the URs in the start time, nodes
and duration without considering utilization. Moreover, these algorithms have
assigned the URs to the resources of datacenters without considering hetero-
geneity.

Beloglazov et al. [19] have proposed an energy-aware resource allocation algo-
rithm by considering CPU utilization. They have shown a significant reduction of
energy in the cloud datacenters using experimentation. However, they have con-
sidered mapping virtual machines (VMs) to hosts without looking into the URs.
Consequently, Esfandiarpoor et al. [20] have improved the algorithm proposed
in [19] by taking the structural advantage of datacenters. Like [19], the mapping
of URs to VMs is not focused on their algorithm. Lee et al. [16] have suggested
considering resource utilization in scheduling algorithm to improve the energy
efficiency and proposed two energy-conscious task consolidation algorithms. But,
the relationship between resource utilization and energy consumption is consid-
ered as a linear one. Later, Hsu et al. [21] have stated that the relationship is
not linear. As a result, they have presented an energy-aware task consolidation
by limiting the CPU usage to a specified threshold (i.e., 70%). The rationality
behind this threshold is that energy consumption is drastically increased beyond
this threshold. Panda and Jana [17] have addressed the demerits associated with
task consolidation and scheduling, and proposed an energy-efficient task schedul-
ing without considering nodes. In the above works, the RE-based sources are not
used to reduce energy consumption.

Rajeev and Ashok [18] have presented a dynamic load shifting program for
cloud computing. This program locally computes the generation and demand
in each time frame and determine the possibility of RE sources for the cus-
tomer. However, they have not considered inconsistent atmospheric conditions
in their program. Grange et al. [13] have proposed an attractiveness-based blind
scheduling algorithm for scheduling the jobs to the machines. However, the cost
associated with powering machines is not well-studied in their algorithm. Xu et
al. [14] have presented a workload shifting algorithm to reduce NRE resources
and carbon dioxide emissions. They have performed workload sharing among the
datacenters to properly utilizing their RE resources. They have suggested that

84 S. K. Nayak et al.

the workload execution can be delayed, if allowed, to maximize RE resources
usage. The above works have not considered resource utilization, which signifi-
cantly reduces energy consumption.

Toosi and Buyya [10] have proposed an algorithm for geographical load
balancing to minimize cost and maximize RE utilization. They have consid-
ered future-aware best fit (FABEF), RR and highest available renewable first
(HAREF) benchmark algorithms in their study. FABEF performs better in over-
all cost, whereas HAREF performs better in green power utilization. However,
they have assumed that URs can be assigned to any datacenter with identical
time and nodes. Nayak et al. [15] have presented a RE-based task consolida-
tion algorithm by considering the resource utilization. They have also assigned
the URs by taking identical time, nodes and utilization on the datacenters.
The proposed algorithm is different in various aspects in comparison with other
algorithms. (1) Unlike [10,13,15–17,21], the RESA considers different flexible
duration, nodes and utilization of URs on the datacenters to make it a realistic
one. (2) The RESA takes a linear combination of the earliest CT and CO to
select a suitable datacenter in contrast to OC or |URE| resources as used in
[10,15]. (3) We evaluate the RESA using M and EC in addition to OC and
|URE| resources as used in [10,15].

3 Models and Problem Statement

3.1 Cloud System Model

Consider a cloud system that consists of a set of geographically distributed
datacenters. Each datacenter houses a set of servers/resources and is connected
to both NRE and RE sources. Here, we assume that the resources are powered
with RE and NRE sources based on their availability. On the other hand, there
is a CSP portal’s user interface to submit the URs and keep track of the URs
and the resources. These URs are placed in a global queue and served in the
order of their arrival without any interruption. It is noteworthy to mention that
multiple URs can be assigned to a single resource without any interference, as
stated in [16,17,21]. The data transfer time between the portal and datacenters’
resources, including resource mapping, is assumed to be negligible.

3.2 Cost and Energy Model

The cost and energy model is based on the utilization of resources and duration
of UR as used in [16,17]. As a resource can be powered with NRE or RE source,
the relationship between resource utilization and power consumption depends
on the energy source type. If the energy source is NRE, then the relationship is
considered as linear one up to a certain utilization (UT) (say, τ%) and non-linear
one beyond that utilization as considered in [21]. Here, we consider that the CO
is associated with utilization and it is calculated for NRE resource as follows.

CO =

{
COSTjkl × 2 if UT ≥ τ%
COSTjkl Otherwise

(1)

An Efficient Renewable Energy-Based Scheduling Algorithm 85

Table 1. pmax and pmin values

Resource Utilization pmax pmin

0 to < τ% 25 20
NRE ≥ τ% to 100% 30 20

RE 0 to 100% 25 20

where COSTjkl is the cost of kth resource of jth datacenter at time instance
l. Similarly, we calculate the EC for NRE resource as follows.

EC = (pmax − pmin) × UT + pmin (2)

where pmax (100% utilization) and pmin (1% utilization) values are set as per
Table 1, where 20, 25 and 30 values represent 200 W, 250 W and 300 W, respec-
tively as suggested in [16]. On the other hand, the relationship between resource
utilization and power consumption is a linear one irrespective of utilization in
RE source. Therefore, the CO is calculated as follows.

CO = COSTjkl (3)

The EC for RE resource is calculated using Eq. (2), where pmax and pmin

values are set as mentioned in Table 1.

3.3 Problem Statement

Consider a global queue Q, which keeps a set of n URs, U = {U1, U2, U3,. . .,
Un}, in which each UR Ui, 1 ≤ i ≤ n, is represented in the form of 3-tuple, i.e.,
<D, N , UT>, where D is the flexible duration, N is the number of nodes and
UT is the utilization. Here, flexible duration means that there is no specific start
and end time. On the other hand, consider a set of m datacenters, DC = {DC1,
DC2, DC3,. . ., DCm}, in which each datacenter DCj , 1 ≤ j ≤ m, consists of a
set of p resources/nodes, Rj = {Rj1, Rj2, Rj3,. . ., Rjp}. Each resource Rjk ∈
DCj , 1 ≤ j ≤ m, 1 ≤ k ≤ p, consists of a set of o resource slots/time window,
Sjk = {Sjk1, Sjk2, Sjk3,. . ., Sjko}. Each resource slot Sjkl ∈ Rjk, 1 ≤ j ≤ m, 1
≤ k ≤ p, 1 ≤ l ≤ o, can be run using NRE (brown) or RE (green) energy source
with a given time l. If a resource slot Sjkl is running using NRE source, then
the cost is variable, identifiable and pre-determined up to o resource slots. On
the contrary, if a resource slot Sjkl is running using RE source, then the cost is
fixed, identifiable and pre-determined up to o resource slots as stated in [10,11].

Given a D matrix, N matrix and UT matrix between the URs and the
datacenters, the problem is to find an efficient mapping function f between U
and DC (i.e., f : U → DC), such that M , EC and OC are minimized and |URE|
resources is maximized.

86 S. K. Nayak et al.

D =

DC1 DC2 · · · DCm⎧⎪⎪⎨
⎪⎪⎩

⎫⎪⎪⎬
⎪⎪⎭

U1 D11 D12 · · · D1m

U2 D21 D22 · · · D2m

...
...

...
...

...
Un Dn1 Dn2 · · · Dnm

(4) N =

DC1 DC2 · · · DCm⎧⎪⎪⎨
⎪⎪⎩

⎫⎪⎪⎬
⎪⎪⎭

U1 N11 N12 · · · N1m

U2 N21 N22 · · · N2m

...
...

...
...

...
Un Nn1 Nn2 · · · Nnm

(5)

UT =

DC1 DC2 · · · DCm⎧⎪⎪⎨
⎪⎪⎩

⎫⎪⎪⎬
⎪⎪⎭

U1 UT11 UT12 · · · UT1m

U2 UT21 UT22 · · · UT2m

...
...

...
...

...
Un UTn1 UTn2 · · · UTnm

(6)

where Dij , Nij and UTij , 1 ≤ i ≤ n, 1 ≤ j ≤ m, represent the flexible
duration, nodes and utilization of UR Ui on datacenter DCj , respectively. The
problem is restricted to the following constraints.

1. UT [Sjkl] + UTij ≤ 100%, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ p, 1 ≤ l ≤ o
2.

∑m
j=1 Iij = 1, ∀Ui ∈ U

where Iij =

{
1 if UR Ui is assigned to datacenter DCj

0 Otherwise
(7)

3.
∑n

i=1 Gij ≥ 1, ∀DCj ∈ DC

where Gij =

{
1 if datacenter DCj is executing UR Ui

0 Otherwise
(8)

4 Proposed Algorithm

The proposed algorithm RESA is an on-line algorithm for cloud computing and
the pseudo code for RESA is shown in Algorithm1. It aims to minimize the M ,
EC and OC, and maximize the |URE| resources. The RESA consists of three
phases, namely estimation, selection, and assignment and execution. In the first
phase, RESA finds the earliest CT and CO of the URs on the datacenters (Line
3 to Line 43 of Algorithm 1). In the second phase, it selects a datacenter by
finding the fitness value of the URs on the datacenters followed by finding the
minimum fitness value (Line 44, and Line 1 to Line 5 of Procedure 1). Finally,
it assigns the URs to their selected datacenter and executes in the resources of
the datacenters (Line 45, and Line 1 to Line 28 of Procedure 2).

An Efficient Renewable Energy-Based Scheduling Algorithm 87

4.1 Phase 1: Estimation

In this phase, RESA finds the earliest CT and CO of a UR on the datacenters.
For this, it finds the available resource slots in the datacenter by taking the flex-
ible duration, nodes and utilization of that UR. If the sum of the utilization of
the resource slot by early arrived URs and utilization of that UR does not exceed
the maximum utilization of the resource slot, i.e., 100% (Line 9 of Algorithm 1),
then the resource slot can be selected for that UR. However, this process con-
tinues until the nodes of that UR is completely satisfied for the given duration
(9 to Line 15). If the number of nodes is not sufficient (Line 17), then it skips
the resource for that particular time. Otherwise, it finds the cost for that UR by
checking whether that resource slot is powered with NRE source or not (Line 19
and Line 20). If it is an NRE source, then it finds the utilization of that resource
slot (Line 21). Note that the utilization is zero iff there are no early arrived
URs. It then checks whether the UR’s utilization is greater than or equal to the
threshold τ% or not (Line 22). If it is so, then the cost is doubled by following
the proposed cost and energy model (Line 23). Otherwise, the normal cost is
taken for using that resource slot (Line 24 and Line 25). On the other hand, if
the early arrived URs occupy the resource slot, then the sum of the utilization
of early arrived URs and the current UR is determined. If it is greater than or
equal to the threshold, then the normal cost is taken for using that resource slot
(Line 28 to Line 30). On the contrary, the normal cost is taken for the resource
slot powered with RE source irrespective of the value of utilization (Line 33 to
Line 35). This process continues until the duration of that UR is satisfied (Line
38 to Line 41). Note that the CT is the end time of the duration of the UR.

4.2 Phase 2: Selection

In this phase, RESA selects a datacenter by finding the UR’s fitness value on
the datacenters. For this, it normalizes the CT and CO of that UR on the
datacenters (Line 1 of Procedure 1) and takes their linear combination (Line
3). Finally, it finds the minimum fitness value and the corresponding datacenter
(Line 4 and Line 5). The rationality behind this is that the CT and CO need
to be minimized. Therefore, its linear combination also needs to be minimized.
Note that EC and |URE| resources are associated with the cost; hence, these
are not explicitly shown here.

4.3 Phase 3: Assignment and Execution

In this phase, RESA assigns a UR to the selected datacenter of phase 2 and
executes it in the resources of that datacenter. For this, it first finds the start
time of the UR from the CT (Line 1 of Procedure 2). Then it assigns the resource
slots between the start time and the CT as per the nodes of that UR. If the
sum of the resource slot utilization and utilization of that UR does not exceed
100%, then that resource slot is assigned to the UR (Line 4). Like phase 1, this
process continues until the nodes of that UR is completely satisfied for the given

88 S. K. Nayak et al.

Algorithm 1. Pseudo code for RESA
Input: 1-D matrices: Q, n, m, p, o, τ and λ ∈ (0, 1)
2-D/3-D matrices: D, N , UT , S and COST
Output: M , EC, OC and |URE| resources

1: Set OC = 0
2: while Q �= NULL do
3: for i = 1, 2, 3,. . ., n do
4: for j = 1, 2, 3,. . ., m do
5: Set COij = 0, tempd = 0
6: for l = 1, 2, 3,. . ., o do
7: Set ncount = 0, tempn = Nij

8: for k = 1, 2, 3,. . ., p do
9: if (UT [Sjkl] + UTij) ≤ 100% then � Constraint 1

10: ncount += 1
11: if ncount == tempn then
12: tempd += 1
13: Break
14: end if
15: end if
16: end for
17: if ncount < tempn then
18: Set tempd = 0
19: else
20: if Sjkl == 1 then � NRE Resource
21: if UT [Sjkl] == 0% then
22: if UTij ≥ τ% then
23: COij += COSTjkl × 2
24: else
25: COij += COSTjkl

26: end if
27: else
28: if (UT [Sjkl] + UTij) ≥ τ% then
29: COij += COSTjkl

30: end if
31: end if
32: else � RE Resource
33: if UT [Sjkl] == 0% then
34: COij += COSTjkl

35: end if
36: end if
37: end if
38: if Dij == tempd then
39: Set CTij = l
40: Break
41: end if
42: end for
43: end for
44: Procedure 1 SELECT -DATACENTER-UR(i, m, λ, CT , CO) � Constraint 2
45: Procedure 2 ASSIGN-UR-DATACENTER(i, j′, p, τ , D, N , UT , S, COST , CT ,

OC) � Constraint 3
46: end for
47: end while
48: Calculate the M , EC, OC and |URE| resources

Procedure 1. SELECT -DATACENTER-UR(i, m, λ, CT , CO)

1: Find norm(COij) and norm(CTij), 1 ≤ j ≤ m � norm is a function to perform
normalization of all the values.

2: for j = 1, 2, 3,. . ., m do
3: Fij = λ × norm(CTij) + (1 − λ) × norm(COij)
4: end for
5: Find min(Fij) and determine the datacenter j′ that holds min(Fij) � min is a function to

find the minimum of all the values.

An Efficient Renewable Energy-Based Scheduling Algorithm 89

duration. Next, it finds the OC for that UR by checking whether that resource
slot is powered with NRE or RE source and the utilization, as discussed in phase
1 (Line 6 to Line 22). This process continues from the start time to the CT of
that UR.

Procedure 2. ASSIGN -UR-DATACENTER(i, j′, p, τ , D, N , UT , S, COST ,
CT , OC)

1: for l = (CTij′ - Dij′ + 1), (CTij′ - Dij′ + 2), (CTij′ - Dij′ + 3),. . ., CTij′ do

2: Set ncount = 0
3: for k = 1, 2, 3,. . ., p do
4: if (UT [Sj′kl] + UTij′) ≤ 100% then

5: ncount += 1
6: if Sj′kl == 1 then � NRE Resource

7: if UT [Sj′kl] == 0% then

8: if UTij′ ≥ τ% then

9: OCij′ += COSTj′kl × 2

10: else
11: OCij′ += COSTj′kl

12: end if
13: else
14: if (UT [Sj′kl] + UTij′) ≥ τ% then

15: OCij′ += COSTj′kl

16: end if
17: end if
18: else � RE Resource
19: if UT [Sj′kl] == 0% then

20: OCij′ += COSTj′kl

21: end if
22: end if
23: end if
24: if ncount == Nij then
25: Break
26: end if
27: end for
28: end for

4.4 An Illustration

Let us illustrate the proposed algorithm using ten URs, U1 to U10 and three
datacenters, DC1 to DC3. The properties of the URs, such as D, N and UT , are
shown in Table 2. Each datacenter contains three resources/nodes in which NRE
(RE) resource slots are represented in gray (white) color, as shown in Table 3.
The COST of using the NRE resource slots is represented in the first row of
the respective datacenters and the COST of using the RE resource slots is fixed
as 1 irrespective of time l. The COST and resource slots are identifiable and
pre-determined up to a time window of 9 and the threshold is fixed at 70%.

Initially, the Q contains ten URs in the order of U1 to U10 and there is no
URs assigned to the datacenters as shown in Table 3. In the first phase, UR U1

is selected from Q, and its D, N and UT on three datacenters are 4, 5, 2; 3,
2, 1 and 59, 19, 50, respectively. If UR U1 is assigned to datacenter DC1, then

90 S. K. Nayak et al.

Table 2. A set of ten URs with their
properties

Duration Nodes Utilization
Datacenter

User
Request

D1 D2 D3 D1 D2 D3 D1 D2 D3

U1 4 5 2 3 2 1 59 19 50
U2 2 2 5 1 2 3 65 69 12
U3 3 5 3 1 3 2 17 68 61
U4 4 2 3 1 3 1 65 39 66
U5 5 5 5 1 1 1 48 58 51
U6 5 2 2 3 2 2 15 18 56
U7 3 1 4 3 2 3 26 35 55
U8 1 2 4 1 2 2 43 65 33
U9 1 4 2 3 3 2 68 58 49
U10 2 3 3 1 3 1 68 68 20

Table 3. A set of three datacenters
with their NRE and RE resources

2 2 3 2 4 3 2 1 3

D
C

1

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9

3 2 2 4 3 1 2 3 2

D
C

2

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9

2 2 3 2 3 2 4 3 2

D
C

3

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9

CT and CO is 4 and 18 (i.e., 1 × 8 + 2 + 2 + 3 + 3), respectively. Similarly,
if it is assigned to datacenter DC2 and DC3, then CT is 5 and 2, and CO is 14
(i.e., 1 × 7 + 3 + 2 + 2) and 2, respectively. In the second phase, the CTs are
normalized as 0.80, 1.00 and 0.40, and the COs are normalized as 1.00, 0.78 and
0.11 on three datacenters, respectively. Then the fitness value (F) is calculated
as 0.90, 0.89 and 0.26 on the datacenters by taking the λ value as 0.50. As the
minimum F is achieved on datacenter DC3, UR U1 is assigned to datacenter
DC3 in the third phase. The OC of datacenter DC3 is updated to 2 and the CT
of UR U1 is set to 2.

Next, UR U2 is selected from Q, and its D, N and UT on three datacenters
are 2, 2, 5; 1, 2, 3 and 65, 69, 12, respectively. If UR U2 is assigned to datacenter
DC1, then CT and CO is 2 and 2, respectively. Similarly, if it is assigned to
datacenter DC2 and DC3, then CT is 2 and 5, and CO is 7 and 29, respectively.
In the second phase, the CTs are normalized as 0.40, 0.40 and 1.00, and the COs
are normalized as 0.07, 0.24 and 1.00 on three datacenters, respectively. Then
the F is calculated as 0.23, 0.32 and 1.00 on the datacenters. As the minimum
F is achieved on datacenter DC1, UR U2 is assigned to datacenter DC1 in the
third phase. The OC of datacenter DC1 is updated to 2 and the CT of UR U2 is
set to 2. In the similar fashion, URs U3 to U10 are assigned to datacenters DC1,
DC3, DC2, DC2, DC2, DC1, DC3 and DC1, respectively, as shown in Table 4.
The summary of step by step process for RESA is shown in Table 5.

We also produce the Gantt chart for RR and random algorithms by following
[10,16] in Table 6 and Table 7, respectively. The comparison of the proposed and
existing algorithms in terms of four performance metrics is shown in Table 8.
The comparison results show the superiority of the proposed algorithm over the
existing algorithms.

Theorem 1. The overall time complexity of RESA (Algorithm1) is O(Knmpo).

Proof. The phase 1 of Algorithm 1 finds the CT and CO, which takes O(nmpo)
time. Then it calls the Procedure 1 to select a suitable datacenter, which takes

An Efficient Renewable Energy-Based Scheduling Algorithm 91

Table 4. Gantt chart for RESA algo-
rithm

2 2 3 2 4 3 2 1 3
68% (10)
43% (8) 68% (10)
65% (2)+
17% (3)

65% (2)+
17% (3) 17% (3)D

C
1

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9

3 2 2 4 3 1 2 3 2
35% (7)
18% (6)+
35% (7) 18% (6)

58% (5)+
18% (6)

58% (5)+
18% (6) 58% (5) 58% (5) 58% (5)D

C
2

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9

2 2 3 2 3 2 4 3 2
49% (9) 49% (9)
66% (4) 66% (4)
50% (1)+
49% (9)

50% (1)+
49% (9) 66% (4)D

C
3

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9

Table 5. Summary of step by step process
for RESA algorithm

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

DC1 4 2 3 4 5 5 5 1 3 2
DC2 5 2 5 2 5 2 1 3 9 8CT
DC3 2 5 3 3 5 4 7 4 2 3
DC1 18 2 1 3 7 27 21 1 6 3
DC2 14 7 23 12 5 5 3 8 19 14CO
DC3 2 29 12 5 11 9 30 10 4 4
DC1 0.90 0.23 0.32 0.63 0.82 1.00 0.71 0.18 0.32 0.23
DC2 0.89 0.32 1.00 0.75 0.73 0.29 0.12 0.78 1.00 1.00F
DC3 0.26 1.00 0.56 0.58 1.00 0.57 1.00 1.00 0.22 0.33

min(F) 0.26 0.23 0.32 0.58 0.73 0.29 0.12 0.18 0.22 0.23
Datacenter DC3 DC1 DC1 DC3 DC2 DC2 DC2 DC1 DC3 DC1

Table 6. Gantt chart for RR algorithm

2 2 3 2 4 3 2 1 3
59% (1)+
26% (7)

59% (1)+
26% (7)

59% (1)+
26% (7) 59% (1)

59% (1)+
26% (7)

59% (1)+
26% (7)

59% (1)+
26% (7) 59% (1) 68% (10) 68% (10)

59% (1)+
26% (7)

59% (1)+
26% (7)

59% (1)+
26% (7) 59% (1) 65% (4) 65% (4) 65% (4) 65% (4)D

C
1

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9

3 2 2 4 3 1 2 3 2
58% (5) 58% (5) 65% (8) 65% (8)
69% (2) 69% (2) 65% (8) 65% (8)
69% (2) 69% (2) 58% (5) 58% (5) 58% (5)

D
C

2

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9

2 2 3 2 3 2 4 3 2

61% (3) 61% (3) 61% (3) 56% (6) 56% (6) 49% (9) 49% (9)
61% (3) 61% (3) 61% (3) 56% (6) 56% (6) 49% (9) 49% (9)

D
C

3

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9

Table 7. Gantt chart for random
algorithm

2 2 3 2 4 3 2 1 3
59% (1) 59% (1) 59% (1) 59% (1)

59% (1) 59% (1) 59% (1) 59% (1)
48% (5)+
43% (8) 48% (5)

59% (1)+
17% (3)

59% (1)+
17% (3)

59% (1)+
17% (3) 59% (1) 65% (2) 65% (2) 48% (5) 48% (5) 48% (5)D

C
1

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9

3 2 2 4 3 1 2 3 2
39% (4)+
58% (9)

39% (4)+
58% (9) 58% (9) 58% (9)

39% (4)+
58% (9)

39% (4)+
58% (9) 58% (9) 58% (9)

39% (4)+
58% (9)

39% (4)+
58% (9) 58% (9) 58% (9)D

C
2

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9

2 2 3 2 3 2 4 3 2
55% (7) 55% (7) 55% (7) 55% (7)

56% (6) 56% (6) 55% (7) 55% (7) 55% (7) 55% (7)
56% (6)+
20% (10)

56% (6)+
20% (10)

55% (7)+
20% (10) 55% (7) 55% (7) 55% (7)D

C
3

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9

O(m) time. Next, it calls the Procedure 2 to assign and execute the UR on
the selected datacenter, which takes O(po) time in the worst case. However,
Algorithm 1 is invoked K times (say). Therefore, the overall time complexity is
[K × O(nmpo)]

Phase 1

+ [K × n × O(m)]
Phase 2

+ [K × O(po)]
Phase 3

= O(Knmpo).

Lemma 1. The mapping function f : U → DC is surjective.

Proof. RESA assigns a UR to a datacenter by checking that the sum of the
resource slot’s utilization and the utilization of the UR does not exceed the
maximum utilization. Here, utilization of the UR is between 1% to 100% and it
varies with respect to the datacenters. As |U | >> |DC| or n >> m, every dat-
acenter is assigned with some URs and these URs may share the same resource
slot of the datacenter subjected to maximum utilization. As a result, there is no
datacenter left out without URs. Therefore, the mapping function f : U → DC
is surjective.

92 S. K. Nayak et al.

Table 8. Comparison of four performance metrics for RESA, RR and random
algorithms

Algorithm
M (in time

units)

EC (in energy

units)

OC (in cost

units)
|URE|

RESA 5 6850 31 13

RR 8 17350 92 24

Random 9 18565 98 24

Lemma 2. The mapping between the URs to the resource slots of the datacenter
is injective iff the utilization of the URs in any datacenter exceeds 50%.

Proof. RESA can assign two URs, Ui′ and Ui′′ , 1 ≤ i′, i′′ ≤ n, i′ �= i′′, to the
same resource slot of the datacenter DCj , 1 ≤ j ≤ m iff UTi′j + UTi′′j ≤ 100%.
It is given that UTi′j > 50% or UTi′′j > 50%. Therefore, these URs cannot be
assigned to the same resource slot of the datacenter. Alternatively, each resource
slot cannot be accommodated with more than one URs. Therefore, the mapping
between the URs to the resource slots of the datacenter is injective.

Lemma 3. If a UR is estimated to complete in two different datacenters simul-
taneously, then the datacenter with the lowest cost is selected for that UR.

Proof. Let us assume that UR Ui is completed in datacenter DCj′ at CTij′ and
datacenter DCj′′ at CTij′′ . It is given that CTij′ = CTij′′ . The fitness value of
UR Ui on datacenter DCj′ is calculated as follows.

Fij′ = λ × norm(CTij′) + (1 − λ) × norm(COij′)
Similarly, the fitness value of UR Ui on datacenter DCj′′ is calculated as

follows.
Fij′′ = λ × norm(CTij′′) + (1 − λ) × norm(COij′′)
If Fij′ > Fij′′ , then UR Ui is assigned to datacenter DCj′′ . Otherwise, it is

assigned to datacenter DCj′ . It can be simplified as follows.
Fij′ > Fij′′

⇒ λ × norm(CTij′) + (1−λ) × norm(COij′) > λ × norm(CTij′′) + (1−λ)
× norm(COij′′)

⇒ λ × norm(COij′) > λ × norm(COij′′) ∵ CTij′ = CTij′′

⇒ norm(COij′) > norm(COij′′) ⇒ COij′ > COij′′

Therefore, UR Ui is assigned to datacenter DCj′′ , which results in the lowest
cost.

Lemma 4. If a UR is estimated to take same cost in two different datacenters,
then the datacenter with the earliest CT is selected for that UR.

Proof. The proof is the same as Lemma 3.

Lemma 5. If a datacenter takes the earliest CT and CO for a UR, then that
datacenter is selected irrespective of the value of λ.

An Efficient Renewable Energy-Based Scheduling Algorithm 93

Proof. Let datacenter DCj′ takes CTij′ and COij′ for UR Ui in comparison to
another datacenter DCj′′ , which takes CTij′′ and COij′′ . It is given that

CTij′ < CTij′′ and COij′ < COij′′

⇒ norm(CTij′) < norm(CTij′′) and norm(COij′) < norm(COij′′)
⇒ λ × norm(CTij′) < λ × norm(CTij′′) and (1 − λ) × norm(COij′) <

(1 − λ) × norm(COij′′)
⇒ λ × norm(CTij′) + (1−λ) × norm(COij′) < λ × norm(CTij′′) + (1−λ)

× norm(COij′′) ⇒ Fij′ < Fij′′

Therefore, UR Ui is assigned to datacenter DCj′ .

5 Performance Metrics, Datasets and Simulation Results

This section presents four performance metrics, the generation of five different
datasets and simulation results.

5.1 Performance Metrics

We use four performance metrics, namely M , EC, OC and |URE| resources
to compare the proposed and existing algorithms. These metrics are defined as
follows. The M of a datacenter DCj (i.e., Mj), 1 ≤ j ≤ m, is the maximum
CT of the URs that are assigned to that datacenter. However, overall M is the
maximum of all the CTs of the datacenters. Mathematically, M = max(Mj),
1 ≤ j ≤ m. The EC is the total amount of energy required to execute all the
URs in the datacenters’ resources and it is calculated as described in Sect. 3.2.
The OC is the total cost gained by the CSPs for executing the URs and it is
calculated as described in Sect. 3.2. Alternatively, it is the sum of the cost of
using NRE and RE resource slots. The |URE| resources is the total number of
RE resource slots of the datacenters used to execute all the URs.

5.2 Datasets

We generated five datasets in which each dataset contains three different
instances. These datasets are generated by the pre-defined function, randi, of
MATLAB R2017a. This function returns a 2-D integer array using the discrete
uniform distribution on the given interval. The rows and columns of the array
represent URs and datacenters, respectively, and the array is represented by
URs × datacenters. To select a wide variety of URs, datacenters and intervals,
we follow the well-known Monte Carlo method [22] as follows.

94 S. K. Nayak et al.

Table 9. Comparison of M , EC, OC and |URE| for RESA, RR and random algorithms

M EC OC |URE|
Dataset Instance

RESA RR Random RESA RR Random RESA RR Random RESA RR Random

i1 181 1254 1533 74428905 444813335 439204225 773562 4228062 4158470 70241 492015 480342

i2 162 1217 1358 73577120 443654830 453793255 755997 4168973 4281804 70394 489694 4955451000 × 20

i3 178 1320 1499 74849105 446569175 460535005 754474 4236899 4360274 71167 497864 500565

i1 174 1643 1674 126319995 891023145 896693565 1333253 8548678 8539553 116501 941808 951647

i2 168 1608 1845 126759150 870422385 888788650 1327548 8302101 8386787 116358 935279 9626452000 × 30

i3 169 1491 1612 124661385 882644790 879682715 1305842 8379219 8395016 115401 927865 936648

i1 216 2578 2317 224425155 1805839200 1781000940 2374636 17076916 16976451 197795 1847563 1826773

i2 216 2295 2563 224685435 1760172230 1767916780 2368048 16775597 16775991 201938 1827420 18228934000 × 40

i3 211 2341 2416 220132700 1774122800 1758765700 2329875 16865780 16720189 197352 1841633 1808720

i1 299 3280 3274 408465360 3591663065 3593372040 4393962 34308194 34182230 355171 3534790 3517949

i2 294 3479 3501 405928155 3588989840 3603123675 4356600 34231837 34198062 352187 3504015 35417268000 × 50

i3 292 3561 3538 405147270 3581061730 3632697640 4382475 34122022 34479219 351375 3526839 3600477

i1 450 5437 5445 767065705 7322619235 7370971110 8378616 70167828 70691777 648829 6902719 7007246

i2 446 5513 5783 765533565 7386703120 7303789235 8284972 70633870 69974505 656224 6991771 691827316000 × 60

i3 450 5293 5293 767302105 7257734730 7410603900 8280241 69280800 70537691 653569 6838319 6995578

Step 1: We choose the number of URs as 1000, 2000, 4000, 8000 and 16000,
and the number of datacenters as 20, 30, 40, 50 and 60, respectively, for five
different datasets. Similarly, we choose the interval of D, N and UT datasets as
[10–100], [10–50] and [10–70], respectively. The maximum number of resources
is set as 50 in which NRE and RE resources are generated randomly. The cost
of using NRE and RE resource slots is set as [2–10] and 1, respectively.

Step 2: We generate three instances of each dataset by taking the same
intervals, as discussed in Step 1.

Step 3: We apply the proposed algorithm on the generated instances of
datasets. We consider τ = 70% for RESA, RR and random as adopted in [21].

Step 4: We find the results in terms of four performance metrics and average
the results of three instances of the datasets.

5.3 Simulation Results

We apply the existing algorithms, RR and random, on the generated instances
of datasets to obtain the results. Then we compare the results of the proposed
and existing algorithms using four performance metrics, namely M , EC, OC
and |URE| resources, as shown in Table 9. The visual comparisons are also car-
ried out separately in Fig. 1 to Fig. 4 for easy visualization of results. The results
demonstrate that the proposed algorithm RESA outperforms the RR and ran-
dom in terms of four performance metrics. The rationality behind this better
performance is that the URs are assigned to datacenters’ resources by calculat-
ing the minimum F , which is the linear combination of CT and CO. As CO is
associated with resource utilization and |URE| resources, the RESA also takes
care of these metrics while assigning the UR to the datacenters.

An Efficient Renewable Energy-Based Scheduling Algorithm 95

100
0 × 20

200
0 × 30

400
0 × 40

800
0 × 50

160
00 × 60

103

104

Datasets

M
RESA RR Random

Fig. 1. Comparison of M .

100
0 × 20

200
0 × 30

400
0 × 40

800
0 × 50

160
00 × 60

108

109

1010

Datasets

E
C

RESA RR Random

Fig. 2. Comparison of EC.

100
0 × 20

200
0 × 30

400
0 × 40

800
0 × 50

160
00 × 60

106

107

108

Datasets

O
C

RESA RR Random

Fig. 3. Comparison of OC.

100
0 × 20

200
0 × 30

400
0 × 40

800
0 × 50

160
00 × 60

105

106

107

Datasets

|U
R
E
| RESA RR Random

Fig. 4. Comparison of |URE|.

6 Conclusion

In this paper, we have presented a scheduling algorithm, RESA, for cloud com-
puting. This algorithm iterates through a three-phase process, and is shown to
require O(Knmpo) time for n URs, m datacenters, p resources, o slots and K iter-
ations. The simulation results of the proposed and existing algorithms have been
carried out using five datasets and compared using four performance metrics,
namely M , EC, OC and |URE| resources. The comparison results demonstrate
the efficacy of the proposed algorithm over the existing algorithms. However, we
have considered an equal number of resources per datacenter in this scheduling
problem. In our future work, we will extend this problem by taking a different
number of resources, as seen in small, medium and large datacenters. Moreover,
we have assumed that there are no outages during the scheduling process. In
practice, the datacenter faces various outages, such as human error, cooling fail-
ure, hardware failure, software failure and many more. It can be addressed to
make the proposed algorithm a more practical one.

References

1. Khayer, A., Talukder, M.S., Bao, Y., Hossain, M.N.: Cloud computing adoption
and its impact on SMEs’ performance for cloud supported operations: a dual-stage
analytical approach. Technol. Soc. 60, 101225 (2020)

2. Gill, S.S., et al.: Holistic resource management for sustainable and reliable cloud
computing: an innovative solution to global challenge. J. Syst. Softw. 155, 104–129
(2019)

96 S. K. Nayak et al.

3. Gholipour, N., Arianyan, E., Buyya, R.: A novel energy-aware resource manage-
ment technique using joint VM and container consolidation approach for green
computing in cloud data centers. Simul. Model. Pract. Theor. 104, 102127 (2020)

4. Panda, S.K., Jana, P.K.: Normalization-based task scheduling algorithms for het-
erogeneous multi-cloud environment. Inf. Syst. Front. 20(2), 373–399 (2018)

5. Panda, S.K., Jana, P.K.: An efficient request-based virtual machine placement algo-
rithm for cloud computing. In: Krishnan, P., Radha Krishna, P., Parida, L. (eds.)
ICDCIT 2017. LNCS, vol. 10109, pp. 129–143. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-50472-8 11

6. MarketsandMarkets: Cloud computing market. https://www.marketsandmarkets.
com/Market-Reports/cloud-computing-market-234.html. Accessed 6 Aug 2020

7. Qiu, C., Shen, H.: Dynamic demand prediction and allocation in cloud service
brokerage. IEEE Trans. Cloud Comput. (2019)

8. Panda, S.K., Jana, P.K.: Efficient task scheduling algorithms for heterogeneous
multi-cloud environment. J. Supercomput. 71(4), 1505–1533 (2015). https://doi.
org/10.1007/s11227-014-1376-6

9. Kamiya, G.: The carbon footprint of streaming video. https://www.iea.
org/commentaries/the-carbon-footprint-of-streaming-video-fact-checking-the-
headlines. Accessed 6 Aug 2020

10. Toosi, A.N., Buyya, R.: A fuzzy logic-based controller for cost and energy efficient
load balancing in geo-distributed data centers. In: Proceedings of the 8th Inter-
national Conference on Utility and Cloud Computing, pp. 186–194. IEEE Press
(2015)

11. Nayak, S.K., Panda, S.K., Das, S.: Renewable energy-based resource management
in cloud computing: a review. In: Tripathy, A.K., Sarkar, M., Sahoo, J.P., Li,
K.-C., Chinara, S. (eds.) Advances in Distributed Computing and Machine Learn-
ing. LNNS, vol. 127, pp. 45–56. Springer, Singapore (2021). https://doi.org/10.
1007/978-981-15-4218-3 5

12. Oberhaus, D.: Amazon, Google, Microsoft: Here’s who has the greenest
cloud. https://www.wired.com/story/amazon-google-microsoft-green-clouds-and-
hyperscale-data-centers/. Accessed 11 Apr 2020

13. Grange, L., Da Costa, G., Stolf, P.: Green it scheduling for data center powered
with renewable energy. Fut. Gener. Comput. Syst. 86, 99–120 (2018)

14. Minxian, X., Buyya, R.: Managing renewable energy and carbon footprint in multi-
cloud computing environments. J. Parallel Distrib. Comput. 135, 191–202 (2020)

15. Nayak, S.K., Panda, S.K., Das, S, Pande, S.K.: A renewable energy-based task
consolidation algorithm for cloud computing. In: Electric Power and Renewable
Energy Conference, pp. 1–10. Springer (2020)

16. Lee, Y.C., Zomaya, A.Y.: Energy efficient utilization of resources in cloud comput-
ing systems. J. Supercomput. 60(2), 268–280 (2012)

17. Panda, S.K., Jana, P.K.: An energy-efficient task scheduling algorithm for hetero-
geneous cloud computing systems. Clust. Comput. 22(2), 509–527 (2018). https://
doi.org/10.1007/s10586-018-2858-8

18. Rajeev, T., Ashok, S.: Dynamic load-shifting program based on a cloud computing
framework to support the integration of renewable energy sources. Appl. Energy
146, 141–149 (2015)

19. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing. Future Gener.
Comput. Syst. 28(5), 755–768 (2012)

https://doi.org/10.1007/978-3-319-50472-8_11
https://doi.org/10.1007/978-3-319-50472-8_11
https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html
https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html
https://doi.org/10.1007/s11227-014-1376-6
https://doi.org/10.1007/s11227-014-1376-6
https://www.iea.org/commentaries/the-carbon-footprint-of-streaming-video-fact-checking-the-headlines
https://www.iea.org/commentaries/the-carbon-footprint-of-streaming-video-fact-checking-the-headlines
https://www.iea.org/commentaries/the-carbon-footprint-of-streaming-video-fact-checking-the-headlines
https://doi.org/10.1007/978-981-15-4218-3_5
https://doi.org/10.1007/978-981-15-4218-3_5
https://www.wired.com/story/amazon-google-microsoft-green-clouds-and-hyperscale-data-centers/
https://www.wired.com/story/amazon-google-microsoft-green-clouds-and-hyperscale-data-centers/
https://doi.org/10.1007/s10586-018-2858-8
https://doi.org/10.1007/s10586-018-2858-8

An Efficient Renewable Energy-Based Scheduling Algorithm 97

20. Esfandiarpoor, S., Pahlavan, A., Goudarzi, M.: Structure-aware online virtual
machine consolidation for datacenter energy improvement in cloud computing.
Comput. Electr. Eng. 42, 74–89 (2015)

21. Hsu, C.-H., Slagter, K.D., Chen, S.-C., Chung, Y.-C.: Optimizing energy consump-
tion with task consolidation in clouds. Inf. Sci. 258, 452–462 (2014)

22. Cunha, Jr., A., Nasser, R., Sampaio, R., Lopes, H., Breitman, K.: Uncertainty
quantification through the Monte Carlo method in a cloud computing setting.
Comput. Phys. Commun. 185(5), 1355–1363 (2014)

A Revenue-Based Service Management
Algorithm for Vehicular Cloud

Computing

Sohan Kumar Pande1, Sanjaya Kumar Panda2(B), and Satyabrata Das1

1 Veer Surendra Sai University of Technology, Burla 768018, Odisha, India
ersohanpande@gmail.com, teacher.satya@gmail.com

2 National Institute of Technology, Warangal 506004, Telangana, India
sanjayauce@gmail.com

Abstract. Vehicular cloud computing (VCC) is an emerging research
area among business and academic communities due to its dynamic com-
puting capacity, on-road assistance, infotainment services, emergency
and traffic services. It can mitigate the hindrance faced in the exist-
ing infrastructure, relying on the cellular networks, using roadside units
(RSUs). Moreover, the existing cellular networks cannot provide bet-
ter quality services due to the influx of vehicles. In the VCC, RSUs can
prefetch the content and data required by the vehicles, and provide them
in terms of services when vehicles are residing within the communication
range of RSUs. However, RSUs suffer from their limited communication
range and data rate. Therefore, it is quite challenging for the RSUs to
select suitable vehicles to provide services, such that its revenue can be
maximized. In this paper, we propose a revenue-based service manage-
ment (RBSM) algorithm to tackle the above-discussed challenges. RBSM
is a two-phase algorithm that finds data rate zones of the vehicles and
selects a suitable vehicle at each time slot to maximize the total revenue
of the RSUs, the total download by the vehicles and the total number of
completed requests. We assess the performance of RBSM and compare it
with an existing algorithm, namely RSU resource scheduling (RRS), by
considering various traffic scenarios. The comparison results show that
RBSM performs 87%, 90% and 170% better than RRS in terms of total
revenue, download and number of completed requests.

Keywords: Vehicular cloud computing · Revenue-based service
management · Roadside unit · Resource scheduling · Cellular networks

1 Introduction

Innovation and research in technologies for smart cities urged the information
technology (IT) industries, professionals and researchers to explore the features
of VCC [1–5]. VCC is the integration of cloud computing, wireless networks,
and smart vehicles to provide better on-demand solutions and expand the capa-
bilities of existing infrastructure [6–8]. It offers numerous services in the form
c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 98–113, 2021.
https://doi.org/10.1007/978-3-030-65621-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-65621-8_6

A Revenue-Based Service Management Algo. for Vehicular Cloud Computing 99

of Network as a Service (NaaS), STorage as a Service (STaaS), Computing as
a Service (CaaS), COoperation as a Service (COaaS), INformation as a Ser-
vice (INaaS), ENtertainment as a Service (ENaaS), Traffic Safety as a Service
(TSaaS) and many more [3–5]. Nowadays, maximum smart vehicles are facili-
tated with the modern onboard unit (OBU), which comprises various resources,
such as communication systems, storage devices, computing processors, cognitive
radios, programmable sensors, global positioning systems and other advanced
things [2,3,5]. These highly sophisticated resources remain idle for a consider-
able amount of time when the vehicles are at the parking lot, roadways or traffic.
These underutilized resources can be used by the RSUs to deliver various ser-
vices offered by the cloud service provider (CSP). It can be performed by creating
an infrastructure in which services are provisioned by creating virtual machines
(VMs) [4,9]. This infrastructure enables three types of communications, namely
vehicle to vehicle (V2V), vehicle to infrastructure (V2I) and infrastructure to
vehicle (I2V) [4,5].

Generally, vehicles on the move request various services, such as information,
video, entertainment and many more, from the CSP through cellular networks
[1,10]. Recent studies reveal that video content contributes to 70% of data traffic
[11]. With the increasing demand for video content by smart vehicles, the exist-
ing cellular networks cannot provide better quality services [1,10,11]. Therefore,
RSUs can augment the cellular networks by prefetching the content and data
required by the vehicles [1] and deliver them when vehicles are residing within
the communication range of RSUs. Here, RSUs can make a significant amount of
revenue by providing better quality services [1,10]. However, the main challeng-
ing issues are the coverage and data rate of RSUs, which are maximum up 1 km
and 28 MBPS, respectively [12]. On the other hand, RSUs cannot provide con-
tent and data to all the vehicles. Therefore, it is quite challenging for the RSUs
to select suitable vehicles to provide content and data, such that its revenue can
be maximized.

To tackle the above-discussed challenges, we propose a novel algorithm, called
RBSM, to maximize the total revenue of the RSUs. RBSM comprises of two
phases. In the first phase, it finds the data rate zones of the vehicles. The second
phase selects a suitable vehicle at each time slot to download the content from
the RSU. For this, it considers the arrival time, velocity, revenue and requested
content size of the vehicles. We compare RBSM with an existing algorithm,
called RRS [1], using three performance metrics, namely total revenue (TR),
total download (TD) by the vehicles and total number of completed requests
(TCR). The comparison is performed by simulating both the algorithms in a
virtual environment. The results show that RBSM outperforms RRS in all the
performance metrics. The significant contributions of our work are as follows.

– Development of a novel algorithm, RBSM, to maximize the revenue of the
RSUs.

– RBSM considers arrival time, velocity, revenue and requested content size of
the vehicles for selecting a suitable vehicle, which results in the maximum
revenue.

100 S. K. Pande et al.

– Extensive simulation is carried out to compare RBSM and RRS by considering
various traffic scenarios with twenty-five instances of five datasets.

The organization of this paper is as follows. Section 2 discusses scope of VCC
and its related problems, followed by the VCC model and problem statement in
Sect. 3. Section 4 presents the proposed algorithm and Sect. 5 discusses perfor-
mance metrics used to evaluate the algorithms. Simulation results and concluding
remarks are presented in Sect. 6 and Sect. 7, respectively.

2 Related Work

VCC has gained a remarkable attraction among IT industries, professionals,
researchers in today’s technology-driven world due to its broad area of ser-
vices [2,3,5]. It unfolds a set of problems and challenges along with the services
[1,4]. In VCC, V2V, V2I and I2V, communications enable the smart vehicles
to sublet their underutilized resources to the CSP through the RSUs [4]. RSUs
make revenue by delivering various services, such as displaying advertisements,
providing navigation facilities, producing video and game content, and many
more [1,13–15]. Here, smart vehicles lease their resources through the RSUs for
providing services to needy vehicles and gain enormous revenue. Therefore, many
researchers have proposed different models and algorithms to maximize the total
revenue by providing better quality services.

Einziger et al. [13] have explored that RSUs can act as brokers to manage and
send the advertisements to the vehicles intelligently. Moreover, RSUs can earn rev-
enue from advertisers. Fux et al. [16] have suggested that the owners of the physical
resources can sell their content to the vehicles. They have proposed a game model
to improve the quality and stabilize the price war among the RSUs owners. In [14],
the cooperation and competition between parked vehicles and RSUs are studied,
and a game-theoretic approach is proposed to increase individual profit. Wang et
al. [17] have proposed a distributed game theoretical framework to improve the
performance and efficiency of the network infrastructure.

Some researchers have focused on data and video delivery by the RSUs to
earn incentives. Researchers in [1,11] have discussed that the percentage of video
content requested by vehicles is approximately 70% and around 90% of the 5G
data traffic by 2028. Han et al. [11] have discussed and identified the different
types of obstacles and challenges present in the network that degrades the per-
formance of content delivery. Some other models and strategies are proposed by
Sun et al. [15] and Xu et al. [18] to improve the process of data delivery. Zhou
et al. [19] have proposed an innovative data delivery scheme that detects opti-
mal relay nodes to improve performance and security with the help of k-nearest
neighbors-based machine learning system.

Researchers have discussed that existing infrastructure cannot cope with the
rapid demand for data and video services in real-time [1,10]. A minor delay of
2 s can cause high degradation in QoS and it can ultimately lead to customer
dissatisfaction [11]. Zhao et al. [20] have discussed content prefetching to solve

A Revenue-Based Service Management Algo. for Vehicular Cloud Computing 101

the delay problems associated with the vehicular ad-hoc networks. They have
proposed a module that predicts the vehicle mobility to select RSU and suit-
able time for prefetching the respective content. Yao et al. [21] have proposed a
solution, which downloads popular content into vehicles that are going to visit
different hot spot regions shortly. They have discussed that vehicles staying at
the hot spot region can provide more services to others for a longer time. Al-Hilo
et al. [1] have proposed a revenue-driven video delivery model to select a vehicle
for delivering content, which gives the highest profit in each time slot.

Most of the above-discussed works do not consider the vehicles’ arrival time
and velocity to design an incentive model for the RSUs. Our proposed algorithm
RBSM is somehow different from others, as it takes advantage of the hetero-
geneity of the content in terms of arrival time, velocity, revenue and requested
content size of the vehicles. RBSM selects suitable vehicles for providing content,
such that the revenue of RSUs is maximized.

3 Vehicular Cloud Model and Problem Statement

3.1 Vehicular Cloud Model

We consider a heterogeneous vehicular cloud environment over a geographical
area or grid. This area consists of cellular network, multi-way lanes, RSU, traffic
junctions, parking lot and vehicles, as shown in Fig. 1. Vehicles spend a significant
amount of time in the parking lot of airports, shopping malls and hospitals.
These vehicles are equipped with different types of modern resources, which are
generally underutilized and idle for a considerable amount of time. VMs can
be formed using these underutilized resources of vehicles to expand the CSP
capabilities and provide various services. Here, these vehicles are connected to
the RSUs and the RSUs are connected to the CSP with high-speed Internet
facilities.

Besides the vehicles present at the grid, many vehicles also cross the grid at
different times. Vehicles on the move or the grid request various services, such as
traffic information, video content, live streaming, gaming services, infotainment
services and many more. Previously, these services were delivered to the vehi-
cles from the CSP using the cellular networks. With an increase in the number
of vehicles and the size of requests, the cellular network cannot provide real-
time services. Here, RSUs play a significant role by co-operating with cellular
networks.

Whenever a vehicle enters a grid, it broadcasts a beacon beam containing
detailed information, such as arrival time, residing time, velocity, revenue and
path, which are received and processed by the RSU. In this scenario, if the
RSU gets the information from the CSP regarding the requested content by
the respective vehicle, then it can download or pre-fetch the content before the
arrival of the vehicle to the grid. After downloading the requested content, RSU
may save it locally or by incorporating the vehicles present in the parking lot.
Consequently, when the vehicle reaches the communication range of the RSU, it
can download the content directly from the RSU. RSU can earn revenue from the

102 S. K. Pande et al.

Fig. 1. A vehicular cloud model.

vehicle user through the cellular network for providing services to that vehicle.
It encourages the RSU owner for active involvement in delivering services.

Consider another scenario in which some vehicles may get part of the content
from the RSU and rest part from the cellular networks, as the RSU communi-
cation range is limited. Alternatively, the vehicle on the move can be out of the
communication range of the RSU. The requested content of the vehicles is of
different size and revenue, so it is essential for the RSU to select an appropriate
vehicle to provide service in order to generate maximum revenue. Here, RSU
uses information, such as arrival time, velocity and revenue of the vehicles to
deliver the services.

3.2 Problem Statement

Consider a geographical area,which is coveredwith a set of r RSUs,RSU = {RSU1,
RSU2, RSU3,. . ., RSUr}, and a set of multi-way lanes. The coverage of RSUo, 1 ≤
o ≤ r, is Xo. The downlink data rate from RSU to vehicle depends on the distance
between them. Therefore, the coverage of each RSU is divided into a set of n data
rate zones, R = {R0, R1, R2, . . ., Rn}. Each data rate zone Rs, 1 ≤ s ≤ n, has a
downlink data rate of ds, which is calculated as follows [22].

ds = β log2(1 + SNRs), 1 ≤ s ≤ n (1)

where β is the bandwidth of RSU and SNRs is the signal to noise ratio in
data rate zone Rs. Consider a set of m vehicles, V = {V1, V2, V3,. . ., Vm}, that
crosses the RSUo, 1 ≤ o ≤ r. Each vehicle, Vk, 1 ≤ k ≤ m, is represented with

A Revenue-Based Service Management Algo. for Vehicular Cloud Computing 103

5-tuple, i.e., <V IDk, V ATk, V Sk, V RDSk, V RDPk>. Here, V ID, V AT and
V S denote vehicle id, arrival time and velocity, respectively. The revenue per
MB and requested content size are denoted by V RDP and V RDS.

The problem is to select suitable vehicles for receiving various services, such
that the RSUs can generate maximum revenue. This problem is divided into two
sub-problems. The first sub-problem finds the position of the vehicles, Vk, 1 ≤
k ≤ m, in the data rate zones Rs, 1 ≤ s ≤ n. The second sub-problem selects
suitable vehicles to get desired services from the RSUs. These sub-problems are
subjected to the following constraints.

1. A vehicle Vk, 1 ≤ k ≤ m, can only download the content at time t from the
data rate zone Rs, 1 ≤ s ≤ n, of RSUo, 1 ≤ o ≤ r, (i.e., F [k, t, s]), as follows.

F [k, t, s] =

{
1, if R[s, START] ≤ Xo × t

V Sk
≤ R[s,END]

0, otherwise
(2)

where R[s, START] and R[s,END] define the boundary of Rs, 1 ≤ s ≤ n,
Xo defines the coverage of RSUo, 1 ≤ o ≤ r, and Tk = Xo

V Sk
.

2. The total download by the vehicle Vk, 1 ≤ k ≤ m, from RSUo is DD[k, o] =∑Tk

t=1 F [k, t, s] × ds. Here, Tk is the time required by vehicle Vk to cover Xo.
3. The total download by the vehicle Vk, 1 ≤ k ≤ m, is always less than or equal

to the requested content size. Mathematically, DD[k, o] ≤ V RDSk.
4. At time t, only one vehicle Vk, 1 ≤ k ≤ m can download its content from the

RSUo, 1 ≤ o ≤ r. Mathematically,
∑m

k=1 F [k, t, s] = 1, 1 ≤ t ≤ max(Tk), 1
≤ s ≤ n.

4 Proposed Algorithm

The proposed algorithm RBSM is an online algorithm in a vehicular cloud envi-
ronment that selects different vehicles to receive content from the RSUs, such
that the revenue is maximized. RBSM is divided into two phases, as follows. (1)
Finding the data rate zone of a vehicle at a particular time (2) Selection of the
vehicle to receive the content. The pseudocode for the proposed algorithm RBSM
is shown in Algorithm 1, Procedures 1 and 2, respectively. Table 1 represents the
mathematical notations and their definitions used in the pseudocode.

Firstly, RBSM maintains all the upcoming vehicles in a global queue, Q, to pro-
vide content (Line 1, Algorithm 1). Then travel time and exit time are calculated
for each vehicle (Lines 2–5). Let us explore the same with an example for clear
understanding. We consider that three vehicles, V1, V2, V3, have requested con-
tent to the RSU and their details are shown in Table 2. We also consider an RSU
with seven data rate zones, namely R1, R2, R3, R4, R5, R6, R7 and their down-
link data rate 2 MBPS, 3 MBPS, 4 MBPS, 5 MBPS, 4 MBPS, 3 MBPS, 2 MBPS,
respectively. The covering range of the RSU is considered as 100 m.

104 S. K. Pande et al.

For vehicle V1, travel time (TTIME[1]) is calculated as 3 s (i.e., 100
33 = 3.03 ≈ 3)

and exit time (V ET [1]) is calculated as 3 s (i.e.,V AT [1]+TTIME[1]−1=1+3−1
= 3). In the similar manner, TTIME[2] and TTIME[3] are calculated as 4 s and
7 s, respectively, and V ET [2] and V ET [3] are calculated as 5 s and 9 s, respectively.

Table 1. Mathematical notations and their definitions

Notation Definition

Q Global queue

X Covering range of RSU

m Numbers of vehicles

n Number of data rate zones

V Set of vehicles

R[s] Data rate zone s (in MBPS)

V ID[k] ID of vehicle k

V AT [k] Arrival time of vehicle k (in seconds)

V S[k] Velocity/Speed of vehicle k (in meters/seconds)

V RDP [k] Requested content revenue per MB of vehicle k

V RDS[k] Requested content size of vehicle k

TTIME[k] Travel time of vehicle k (in seconds)

V ET [k] Exit time of vehicle k (in seconds)

V PRZ[k, t] Data rate zone of vehicle k at time t

ASSIGN [t] Selected vehicle to provide content at time t

TR Total revenue of the RSUs

TD Total download by the vehicles

TCR Total numbers of completed requests

Next, RBSM calls Procedure 1 to find the data rate zones of each vehicle
(Line 6, Algorithm 1). Procedure 1 finds the duration of a vehicle in each data
rate zone (Line 4, Procedure 1). Then the vehicles are assigned to the data rate
zones according to time slots (Lines 5–7). This process is repeated for all the
vehicles in Q (Lines 1–10). Let us explain this procedure with the earlier dis-
cussed example. For vehicle V1, TTIME[1] is 3 s. Therefore, temp2 is calculated
as 0 (i.e., round(37 × 1) = 0) for s = 1. As a result, there is no assignment in the
data rate zone R[1]. For s = 2, temp2 is calculated as 1 (i.e., round(37 × 2) = 1).
Therefore, V PRZ[1, 1] is updated to R[2] = 3 MBPS at t = 1 s. In the similar
manner, V PRZ[1, 2] and V PRZ[1, 3] are calculated as 5 MBPS and 3 MBPS,
respectively. The same procedure is repeated for vehicles, V2 and V3, and the
assignment of data rate zones of three vehicles are shown in Table 3.

Next, RBSM calls Procedure 2 to select suitable vehicles that can download
their requested content (Line 7, Algorithm 1). In Procedure 2, all the vehicles, in

A Revenue-Based Service Management Algo. for Vehicular Cloud Computing 105

Algorithm 1. Pseudocode for RBSM
Input: Q, X, R, n, m, V ID, V AT, V S, V RDP, V RDS
Output: TR, TD, TCR

1: while Q �= 0 do
2: for k = 1, 2, 3, . . . , m do
3: TTIME[k] = round(X

V S[k]
) � round is a function to return a rounded

number.
4: V ET [k] = V AT [k] + TTIME[k] - 1
5: end for
6: Call FIND-V EHICLE-DATA RATE ZONE(R, n, m, V AT, TTIME, V ET)

7: Call SELECT -V EHICLE(n, m, V AT, V RDP, V RDS, V ET, V PRZ)
8: end while

Procedure 1. FIND-V EHICLE-DATA RATE ZONE(R, n,m, V AT, TTIME, V ET)

1: for k = 1, 2, 3, . . . , m do
2: temp1 = 1
3: for s = 1, 2, 3, . . . , n do
4: temp2 = round(TTIME[k]

n
× s)

5: for t = temp1, temp1 + 1, temp1 + 2, . . . , temp2 do
6: V PRZ[k, V AT [k] + t − 1] = R[s]
7: end for
8: temp1 = temp2 + 1
9: end for

10: end for

Table 2. Specification of three vehicles

Vehicle AT
V S

(in m/s)

V RDP

(in Rs.)

V RDS

(in MB)

V1 01 33 10 08

V2 02 25 30 10

V3 03 15 05 22

the Q, are sorted in the descending order of V RDP (Line 2 of Procedure 2). Then
the vehicle with the highest value of V RDP is selected for further processing (Line
4). Now, the procedure assigns the time slots to the vehicle based on the exit time
(Lines 5–25).However, before assigning the time slots, it checks whether the RSU is
available to provide content or not (Line 7). This process continues until the vehicle
downloads the entire content or there are no more available time slots (Lines 7–19).
Finally, TR and TD are calculated (Lines 11–12 and Lines 14–16) followed by task
completion status and TCR are updated (Line 21 and Line 22).

106 S. K. Pande et al.

Procedure 2. SELECT -V EHICLE(n,m, V AT, V RDP, V RDS, V ET, V PRZ)

1: ASSIGN [] = 0, TASK COMP [] = 0, TR = 0, TD = 0, TCR = 0
2: V EH SORT = sortdes(V RDP) � sortdes is a function to sort the elements in

descending order.
3: for k = 1, 2, 3, . . . , m do
4: veh = V EH SORT [k]
5: rdw = V RDS[veh], temp3 = V ET [veh]
6: while rdw �= 0 and temp3 ≥ V AT [veh] do
7: if ASSIGN [temp3] == 0 then
8: temp4 = V PRZ[veh, temp3]
9: if rdw < temp4 then

10: TR += (rdw × V RDP [veh])
11: TD += rdw
12: rdw = 0
13: else
14: TR += (temp4 × V RDP [veh])
15: TD += temp4
16: rdw −= temp4
17: end if
18: ASSIGN [temp4] = veh
19: end if
20: if rdw == 0 then
21: TASK COMP [k] = 1
22: TCR += 1
23: end if
24: temp3 −= 1
25: end while
26: end for

Let us discuss Procedure 2 with the earlier discussed example. Here, vehi-
cles, V1, V2 and V3, are sorted in the descending order of V RDP , which results
vehicles, V2, V1, V3, respectively. As vehicle V2 contains highest V RDP (i.e.,
V RDP [2] = 30), it is selected for further processing. The V ET of vehicle V2 is
5 s. As a result, the assignment of time slots starts from 5 s. At t = 5 s, the data
rate zone of vehicle V2 is 2 MBPS. Therefore, vehicle V2 is able to download 2 MB
of data from RSU. However, the required download (rdw) of vehicle V2 is 10 MB.
As a result, rdw is updated to 8 MB. Then TR and TD are updated to Rs. 60
and 2 MB, respectively. At t = 4 s, the data rate zone of vehicle V2 is 4 MBPS.
In this time slot, vehicle V2 is able to download 4 MB of data. Therefore, rdw,
TR and TD are updated to 4 MB, Rs. 180 and 6 MB, respectively. Similarly, at
t = 3 s, vehicle V2 is able to download 4 MB of data. Here, rdw of vehicle V2

is updated to 0. It indicates that vehicle V2 has downloaded its desired content
from the RSU. In the similar fashion, other vehicles, V1 and V3 are processed.
Table 4 shows the assignment of vehicles to RSU at different time slots.

We compare the proposed algorithm, RBSM, with an existing algorithm,
RRS [1]. RRS tries to maximize the revenue at each time slot. Therefore, it
selects a vehicle from the group of vehicles present in the communication range

A Revenue-Based Service Management Algo. for Vehicular Cloud Computing 107

Table 3. Movement of vehicles in seven data rate zones

Time 2 MBPS 3 MBPS 4 MBPS 5 MBPS 4 MBPS 3 MBPS 2 MBPS

t = 1 V1

t = 2 V2 V1

t = 3 V3 V2 V1

t = 4 V3 V2

t = 5 V3 V2

t = 6 V3

t = 7 V3

t = 8 V3

t = 9 V3

Table 4. Assignment of vehicles to
RSU using RBSM

Time t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9

Selected

Vehicle
V1 V1 V2 V2 V2 V3 V3 V3 V3

Table 5. Assignment of vehicles to RSU
using RRS

Time t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9
Selected
Vehicle V1 V2 V2 V2 V3 V3 V3 V3 V3

of RSU and provides content that gives maximum revenue at each time slot.
The assignment of vehicles to RSU by RRS is shown in Table 5. We compare
RBSM and RRS in terms of three performance metrics, namely TR, TD and
TCR, respectively, as shown in Table 6. The comparison results clearly show
that RBSM performs better than RRS in terms of all the performance metrics.

Table 6. Comparison of RBSM and RRS algorithms

TR (in Rs.) TD (in MB) TCR (in Nos.)

RBSM 450 32 2

RRS 420 31 1

Lemma 1. If two vehicles are entering a grid at different times with the same
speed and their travel times in the grid overlapping, then each vehicle can get a
chance to download its content irrespective of V RDP and V RDS.

Proof. Let us assume that two vehicles, Vk′ and Vk′′ , are moving at the same
speed and their arrival times, V ATk′ and V ATk′′ , respectively, in the grid. We
know that V ATk′ �= V ATk′′ . There are two cases. Case 1: If V ATk′′ > V ATk′ ,
then V RDP [k′′] is compared with V RDP [k′]. If V RDP [k′′] > V RDP [k′]
(or V RDP [k′′] < V RDP [k′]), then vehicle Vk′′ (or Vk′) is selected first and
the assignment of time slots start from V ET [k′′] (or V ET [k′]). If V RDS[k′′]

108 S. K. Pande et al.

(or V RDS[k′]) is huge in size by considering the worst case, then vehicle Vk′′ (or
Vk′) is assigned with all the time slots during its existence in the grid. In this
scenario, vehicle Vk′ (or Vk′′) can only download its content from V ATk′ (V ETk′)
to V ATk′′ (V ETk′′). Case 2: If V ATk′′ < V ATk′ , then V RDP [k′′] is compared
with V RDP [k′]. If V RDP [k′′] > V RDP [k′] (or V RDP [k′′] < V RDP [k′]), then
vehicle Vk′′ (or Vk′) is selected first and the assignment of time slots start from
V ET [k′′] (or V ET [k′]). If V RDS[k′′] (or V RDS[k′]) is huge in size by consid-
ering the worst case, then vehicle Vk′′ (or Vk′) is assigned with all the time slots
during its existence in the grid. In this scenario, vehicle Vk′ (or Vk′′) can only
download its content from V ETk′′ (V ATk′′) to V ETk′ (V ATk′). Therefore, each
vehicle can get a chance to download its content irrespective of V RDP and
V RDS.

Lemma 2. If two vehicles are entering a grid at the same time and speed, then
the vehicle requested content with the least cost can get a chance to download its
content at a higher data rate.

Proof. Let us assume that vehicle Vk′ is requested content with a higher revenue
than vehicle Vk′′ , i.e., V RDP [k′] > V RDP [k′′]. Then vehicle Vk′ is selected first
and assigned time slots between V ET [k′] to (V ET [k′] − γ) (say). The downlink
data rate is increasing from V ET [k′] to V ET [k′] − γ. If V RDS[k′] is smaller
in size, then vehicle Vk′ downloads its content prior to V ET [k′] − γ (say, ζ).
Therefore, vehicle Vk′′ can download its content from ζ. As the data rate at ζ is
higher than the data rate at V ET [k′′], the vehicle Vk′′ downloads its content at
a higher data rate.

Lemma 3. If two vehicles are entering a grid at the same time with different
speeds, then the vehicle requested content with the least cost can get a chance to
download its content.

Proof. Let us assume that vehicle Vk′ is requested content with a higher revenue
than vehicle Vk′′ , i.e., V RDP [k′] > V RDP [k′′] and V S[k′] > V S[k′′]. Then
vehicle Vk′ is selected first and assigned time slots from V ET [k′]. As V S[k′] >
V S[k′′], V ET [k′′] > V ET [k′]. As a result, vehicle Vk′ is out of the grid (the range
of RSU) after time slot V ET [k′]. Therefore, vehicle Vk′′ downloads its content
from V ET [k′] to V ET [k′′].

5 Performance Metrics

In this section, we discuss three performance metrics to compare the proposed
algorithm with the existing algorithm.

A Revenue-Based Service Management Algo. for Vehicular Cloud Computing 109

5.1 Total Revenue

The total revenue (TR) is defined as the total amount of revenue paid by the
vehicles to the RSUs for downloading their respective contents. Mathematically,
it can be written as follows.

TR =
max(V ET)∑

t=1

V PRZ[ASSIGN [t], t] × V RDP [ASSIGN [t]] (3)

5.2 Total Download

The total download (TD) is defined as the total amount of content downloaded
by all the vehicles from the RSUs. Mathematically, it can be defined as follows.

TD =
max(V ET)∑

t=1

V PRZ[ASSIGN [t], t] (4)

5.3 Total Number of Completed Requests

The total number of completed requests (TCR) is defined as the number of
requested content by the vehicles, which are downloaded completely from the
RSUs. Mathematically, it is stated as follows.

TCR =
m∑

k=1

COM [k] (5)

where COM [k] =

{
1 if V RDS[k] ==

∑V ET [k]
t=V AT [k] V PRZ[k, t] and ASSIGN [t] == k

0 Otherwise

6 Simulation Results

We simulated the proposed algorithm, RBSM, and the existing algorithm, RRS,
in a virtual environment created on a system with Intel(R) Core(TM) i5-4210U
CPU @ 1.70 GHz 1.70 GHz, 8.00 GB of primary memory and Windows 10 64-bit
operating system and installed with MATLAB R2017a. It is important to note
that the simulation, evaluation and performance comparison of RBSM and RRS
are independent of the virtual environment. The performance of RBSM and RRS
are compared using the performance metrics discussed in Sect. 5.

To perform the extensive simulation of RBSM and RRS, we used five differ-
ent datasets. The traffic density is different in each dataset and represented as
XX vehicles
1000 textm . Here, XX represents 10, 20, 30, 40 and 50. Each dataset contains five
distinct instances, namely i1 to i5. We considered that vehicles’ arrival followed
the Poisson distribution. We used the truncated normal distribution to calculate
the vehicles’ velocity. For the datasets’ generation, we followed the Monte Carlo

110 S. K. Pande et al.

simulation process, as used in [23–25]. Here, we assume that only one vehicle
can download its content from the RSU at a particular time. Table 7 shows the
values of the parameters used for the simulation of RBSM and RRS.

The proposed algorithm, RBSM and the existing algorithm RRS are simulated,
and their results are shown in Table 8. For better comparison, we generated the bar
chart diagrams by taking the average of five results of each dataset, as shown in
Figs. 2, 3, and 4, respectively. From the comparison, it is clear that RBSM performs
better than RRS. It is wise to mention that RBSM performs 87%, 90% and 170%
better than RRS in terms of TR, TD, and TCR, respectively. The reason behind
the better performance of RBSM is that we consider the vehicle’s arrival time and
velocity in the selection process to deliver content from RSUs.

Table 7. Parameters and their values

Parameters Values

X 1000m

Number of data rate zones 7

Traffic density (10, 20, 30, 40 or 50) vehicles/1000 m

V AT 10–50 s

V S 10–40m/s

V RDP Rs. 10–100

V RDS 20–100MB

Table 8. Simulation results of RBSM and RRS algorithms

Density (vehicles/meters) Instance RBSM RRS

TR TD TCR TR TD TCR

10 i1 14620 276 04 07179 102 00

i2 17965 419 06 16154 331 06

i3 18533 387 05 13567 273 03

i4 17986 365 04 14516 294 04

i5 19006 367 05 07752 131 02

20 i1 19101 394 11 09451 165 01

i2 17266 335 11 06586 105 01

i3 17730 351 09 07689 130 01

i4 16535 282 07 09418 183 05

i5 15717 332 10 09128 178 02

30 i1 17948 310 18 07580 132 05

i2 17607 331 22 07394 110 05

i3 16954 320 18 06152 091 01

i4 16702 354 24 12188 261 12

i5 16064 337 18 08587 150 06

(continued)

A Revenue-Based Service Management Algo. for Vehicular Cloud Computing 111

Table 8. (continued)

Density (vehicles/meters) Instance RBSM RRS

TR TD TCR TR TD TCR

40 i1 15482 173 21 05097 068 05

i2 16547 199 19 10645 147 06

i3 13445 167 20 06297 081 04

i4 14948 181 20 08930 118 10

i5 14388 169 23 06510 085 04

50 i1 11597 148 27 05293 071 07

i2 12643 161 29 05131 080 12

i3 11294 140 29 10251 138 26

i4 11885 156 27 05157 086 10

i5 12592 158 28 05041 070 09

10 20 30 40 50
0.5

1

1.5

2

·104

Traffic density

T
R

RBSM RRS

Fig. 2. Pictorial comparison of TR for
RBSM and RRS algorithms.

10 20 30 40 50

100

200

300

400

Traffic density

T
D

RBSM RRS

Fig. 3. Pictorial comparison of TD for
RBSM and RRS algorithms.

10 20 30 40 50
0

10

20

30

Traffic density

T
C
R

RBSM RRS

Fig. 4. Pictorial comparison of TCR for RBSM and RRS algorithms.

112 S. K. Pande et al.

7 Conclusion

In this paper, we have proposed the RBSM algorithm for the vehicular cloud
environment, which maximizes the total revenue of the RSUs by providing con-
tent to the vehicles. RBSM consists of two phases, namely finding data rate zones
of the vehicles and selecting a suitable vehicle at each time slot. The comparison
of RBSM and RRS algorithms has been performed by conducting simulation on
different datasets with different traffic density. It has been observed that RBSM
performs better than RRS and generates 87% more revenue than RRS. More-
over, in RBSM, vehicles download 90% more content and 170% more completed
requests than RRS. However, we have considered that only one vehicle can down-
load content at a particular time. In our future work, we will try to improve the
algorithm, such that more numbers of vehicles can get content simultaneously.

References

1. Al-Hilo, A., Ebrahimi, D., Sharafeddine, S., Assi, C.: Revenue-driven video delivery
in vehicular networks with optimal resource scheduling. Veh. Commun. 23, 100215
(2020)

2. Ashok, A., Steenkiste, P., Bai, F.: Vehicular cloud computing through dynamic
computation offloading. Comput. Commun. 120, 125–137 (2018)

3. Boukerche, A., Robson, E.: Vehicular cloud computing: architectures, applications,
and mobility. Comput. Netw. 135, 171–189 (2018)

4. Refaat, T.K., Kantarci, B., Mouftah, H.T.: Virtual machine migration and man-
agement for vehicular clouds. Veh. Commun. 4, 47–56 (2016)

5. Whaiduzzaman, Md, Sookhak, M., Gani, A., Buyya, R.: A survey on vehicular
cloud computing. J. Netw. Comput. Appl. 40, 325–344 (2014)

6. Ridhawi, I.A., Aloqaily, M., Kantarci, B., Jararweh, Y., Mouftah, H.T.: A con-
tinuous diversified vehicular cloud service availability framework for smart cities.
Comput. Netw. 145, 207–218 (2018)

7. Hagenauer, F., Higuchi, T., Altintas, O., Dressler, F.: Efficient data handling in
vehicular micro clouds. Ad Hoc Netw. 91, 101871 (2019)

8. Midya, S., Roy, A., Majumder, K., Phadikar, S.: Multi-objective optimization tech-
nique for resource allocation and task scheduling in vehicular cloud architecture:
a hybrid adaptive nature inspired approach. J. Netw. Comput. Appl 103, 58–84
(2018)

9. Al-Rashed, E., Al-Rousan, M., Al-Ibrahim, N.: Performance evaluation of wide-
spread assignment schemes in a vehicular cloud. Veh. Commun. 9, 144–153 (2017)

10. Guo, H., Rui, L., Gao, Z.: A zone-based content pre-caching strategy in vehicular
edge networks. Future Gener. Comput. Syst. 106, 22–33 (2020)

11. Han, T., Ansari, N., Mingquan, W., Heather, Y.: On accelerating content delivery
in mobile networks. IEEE Commun. Surv. Tutor. 15(3), 1314–1333 (2012)

12. Teixeira, F.A., Silva, V.F., Leoni, J.L., Macedo, D.F., Nogueira, J.M.S.: Vehicu-
lar networks using the IEEE 802.11 p standard: an experimental analysis. Veh.
Commun. 1(2), 91–96 (2014)

13. Einziger, G., Chiasserini, C.F., Malandrino, F.: Scheduling advertisement delivery
in vehicular networks. IEEE Trans. Mob. Comput. 17(12), 2882–2897 (2018)

A Revenue-Based Service Management Algo. for Vehicular Cloud Computing 113

14. Zhou, S., Qichao, X., Hui, Y., Wen, M., Guo, S.: A game theoretic approach to
parked vehicle assisted content delivery in vehicular Ad Hoc networks. IEEE Trans.
Veh. Technol. 66(7), 6461–6474 (2016)

15. Sun, Y., Le, X., Tang, Y., Zhuang, W.: Traffic offloading for online video service
in vehicular networks: a cooperative approach. IEEE Trans. Veh. Technol. 67(8),
7630–7642 (2018)

16. Fux, V., Maillé, P., Cesana, M.: Price competition between road side units oper-
ators in vehicular networks. In: 2014 IFIP Networking Conference, pp. 1–9. IEEE
(2014)

17. Wang, B., Han, Z., Liu, K.R.: Distributed relay selection and power control for mul-
tiuser cooperative communication networks using Stackelberg game. IEEE Trans.
Mob. Comput. 8(7), 975–990 (2008)

18. Xu, C., Quan, W., Vasilakos, A.V., Zhang, H., Muntean, G.M.: Information-centric
cost-efficient optimization for multimedia content delivery in mobile vehicular net-
works. Comput. Commun. 99, 93–106 (2017)

19. Zhou, Y., Li, H., Shi, C., Ning, L., Cheng, N.: A fuzzy-rule based data delivery
scheme in VANETs with intelligent speed prediction and relay selection. Wirel.
Commun. Mob. Comput. 2018 (2018)

20. Zhao, Z., Guardalben, L., Karimzadeh, M., Silva, J., Braun, T., Sargento, S.: Mobil-
ity prediction-assisted over-the-top edge prefetching for hierarchical VANETs.
IEEE J. Sel. Areas Commun. 36(8), 1786–1801 (2018)

21. Yao, L., Chen, A., Deng, J., Wang, J., Guowei, W.: A cooperative caching scheme
based on mobility prediction in vehicular content centric networks. IEEE Trans.
Veh. Technol. 67(6), 5435–5444 (2017)

22. Shannon: Shannon channel capacity. Accessed 2 Aug 2020
23. Pande, S.K., Panda, S.K., Das, S.: Dynamic service migration and resource man-

agement for vehicular clouds. J. Ambient Intell. Humanized Comput., 1–21 (2020).
https://doi.org/10.1007/s12652-020-02166-w

24. Pande, S.K., et al.: A smart cloud service management algorithm for vehicular
clouds. IEEE Trans. Intell. Transp. Syst., 1–12 (2020)

25. Panda, S.K., Jana, P.K.: An efficient request-based virtual machine placement algo-
rithm for cloud computing. In: Krishnan, P., Radha Krishna, P., Parida, L. (eds.)
ICDCIT 2017. LNCS, vol. 10109, pp. 129–143. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-50472-8 11

https://doi.org/10.1007/s12652-020-02166-w
https://doi.org/10.1007/978-3-319-50472-8_11
https://doi.org/10.1007/978-3-319-50472-8_11

Interference Reduction in Directional
Wireless Networks

Manjanna Basappa1(B) and Sudeepta Mishra2

1 Department of Computer Science and Information Systems, Birla Institute of
Technology and Science Pilani, Hyderabad Campus, Shameerpet 500078, India

manjanna@hyderabad.bits-pilani.ac.in
2 Department of Computer Science and Engineering, Indian Institute of Technology

Ropar, Nangal Road, Rupnagar 140001, India
sudeepta@iitrpr.ac.in

Abstract. In a wireless network using directional transmitters, a typical
problem is to schedule a set of directional links to cover all the receivers
in a region, such that an adequate data rate and coverage are main-
tained while minimizing interference. We can model the coverage area of
a directional transmitter as an unit triangle and the receiver as a point
in the plane. Motivated by this, we first consider a minimum ply covering
(MPC) problem. We propose a 2-approximation algorithm for the MPC
problem in O((opt+n)m14opt+1(log opt)) time, where m is the number of
transmitters and n is the number of receivers given in the plane, and opt
is the maximum number of triangles, in the optimal solution, covering
a point in the plane. We also show that the MPC problem is NP-hard,
and is not (2 − ε)-approximable for any ε > 0 unless P= NP. We also
study channel allocation in directional wireless networks by posing it
as a colorable covering problem, namely, 3-colorable unit triangle cover
(3CUTC). We propose a simple 4-approximation algorithm in O(m30n2)
time, for this problem.

Keywords: Unit triangles · Approximation algorithm · Minimum ply
cover · Interference

1 Introduction

Directional communication technologies are considered to enhance or mitigate
problems experienced in omni-directional technologies. Directional communica-
tion links such as mmWave, free-space optics, and visible light communication
are being exploited in various wireless networks such as vehicular ad-hoc net-
works and cellular networks. The capacity, coverage, and interference character-
istics of these networks are very different than that of existing omni-directional
wireless networks. This is because the slightest change in the beam orienta-
tion of the transmitter and/or the receiver results in a drastic change in the
coverage and interference characteristics of these networks. Typically, a direc-
tional transmitter has high gain toward one direction, which helps reduce energy
c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 114–126, 2021.
https://doi.org/10.1007/978-3-030-65621-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-65621-8_7

Interference Reduction in Directional Wireless Networks 115

consumption when the receiver actively receives or transmits packets. In addi-
tion, this will also reduce undesired interference when compared to using an
omni-directional transmitter because the transmitted signal is directed toward
its intended recipient. Furthermore, unlike omni-directional transmitters, the
directional transmitter has a narrow coverage area directed toward its recipient.
Due to this, a frequency channel the receiver uses will be available in the areas of
the network not covered by the directional transmitter. In this paper, we model
the narrow coverage areas of directional transmitters as unit triangles (all sides
are of unit length) and receivers as points in the 2-dimensional plane. We then
consider a combinatorial optimization problem, namely, minimum ply coverage
(MPC) problem, as follows. Given a set P of n points and a set T of m y-parallel
unit triangles in the plane, our objective is to choose a set T ∗ ⊆ T such that
P ⊂ ∪t∈T ∗t and every point in the plane (not only points of P) is covered by a
minimum number of triangles in T ∗, where by y-parallel unit triangles we mean
one of the three sides of every triangle t ∈ T is parallel to y-axis.

Motivated by further reduction of interference and usage of minimum number
of channels in directional wireless networks, we define a variant of the MPC
problem, namely, 3-colorable unit triangle cover (3CUTC) problem as follows.
Given a set P of n points and a set T of m unit triangles, we wish to select
a set T ∗ ⊆ T of triangles, whose union covers all points in P such that T ∗ =
T1 ∪ T2 ∪ T3 and triangles within each Ta are pairwise disjoint for a ∈ {1, 2, 3},
i.e., the triangles in T ∗ are 3-colorable while achieving coverage of all points in
P . Achieving 3-colorable covering of receivers by transmitters is motivated by
the fact that usage of three channels is a common practise in frequency channel
assignment in wireless networks [2].

2 Related Work

In cellular communication systems, interference has been recognized as a major
bottleneck in achieving good quality of service. Motivated by this important
challenge of minimizing interference in cellular networks, Kuhn et al. [8] formu-
lated a combinatorial optimization problem, namely, the minimum membership
set cover (MMSC) problem. In the MMSC problem, we are given a set X of
n elements, and a family F of subsets of X, the objective is to compute a set
F ′ ⊆ F such that X ⊆ ∪f∈F ′f and the maximum membership of an element
x ∈ X with respect to F ′, i.e., the number of sets in F ′ that contains x, is
minimized. Kuhn et al. [8] proved that the MMSC problem is NP-complete, and
can not be approximated better than lnn factor unless NP⊂ TIME(nO(log log n)).
They also proposed an O(ln n)-approximation algorithm for the MMSC prob-
lem. A geometric version of the MMSC problem is called the geometric minimum
membership set cover (GMMSC) problem. In the GMMSC problem, we have a
set of points P and geometric objects Q in the plane, we wish to choose a set
Q∗ ⊆ Q such that (i) every point in P is covered by at least one object in Q∗,
and (ii) a maximum number of objects of Q∗ covering a point in P is minimized.
Erlebach and van Leeuwen [7] proved that the GMMSC problem is NP-hard and

116 M. Basappa and S. Mishra

can not be approximated with a factor smaller than 2 unless P= NP, when the
geometric objects are unit disks and unit squares. For the unit squares, they pre-
sented a 5-approximation algorithm in polynomial time if the cost of an optimal
solution is constant. At times when minimizing interference in cellular networks,
it is required to compute a cover of P with the goal of not only minimizing
the membership of every point of P , but also of every point in the plane con-
taining P . Biedl et al. [1] coined this as the minimum ply covering of points,
and studied two variants of the problem, namely, the minimum ply covering of
points by unit disks (MPCUD) and by unit squares (MPCUS). They proved that
both the MPCUD and MPCUS problems are NP-hard and can not be approxi-
mated better than the factor 2, and presented 2-approximation algorithms for
both of them if the cost of an optimal solution is constant. They also solved
the problem in dimension one optimally in polynomial time, in which case unit
disks or unit squares are just intervals on the real line. Directional transmit-
ter such as mmWave transmitter mounted on a Unmanned aerial vehicle(UAV)
is used for achieving coverage in UAV-enabled cellular network [9]. In [9], the
authors have studied optimal resource allocation problem by formulating the
problem as a mixed-integer non-convex programming problem. There are other
works in the literature which consider the problem of increasing the lifetime of
omni-directional networks by reducing interference (for example, [3–5]).

3 Minimum Ply Covering Problem

In this section we present an approximation algorithm for the minimum ply
covering of points by y-parallel unit triangles (MPC) problem.

3.1 Preliminaries

Let a and b be two points on a straight line � (see Fig. 1). We use [a, b] to
denote the closed interval on �, when � is considered to be a real line. If � is an
integer line, i.e., when we are interested in only the integer points on �, then [a, b]
includes only the points that represent integers within the interval on �. In the
geometric context, we use [a, b] to denote either a vertical slab or a horizontal
slab when a and b represent a pair of parallel lines. We refer to the y-axis aligned
side of a triangle t as the y-side of t, i.e., a side of t that is parallel to y-axis.
Assume that the x-coordinates of y-side and the vertex opposite to y-side of all
triangles t ∈ T and all points p ∈ P are distinct. Similarly, assume that the
y-coordinates of the vertex opposite to y-side of all triangles t ∈ T and all points

�

b a

Fig. 1. Illustrating closed interval on integer/real line

Interference Reduction in Directional Wireless Networks 117

p3

p1

p2

(a)

�ju

�jl

L
Hj

(b)

Fig. 2. (a) The plies of p1, p2 and p3 are 1, 2 and 3 respectively, (b) Illustrating the
proof of Lemma 1

p ∈ P are distinct. Let mid(y-side(t)) be the midpoint of y-side of a triangle t.
Let x(p) (resp. y(p)) be the x-coordinate (resp. y-coordinate) of any point p in
the plane. Given any two arbitrary points p1 and p2 in the plane, let dist(p1, p2)
denote the Euclidean distance between p1 and p2. Given an arbitrary straight
line �, the minimum distance between an arbitrary point p and �, denoted by
dist(p, �), is the distance from p to its closest point on �.

3.2 Problem Description

Given a set T of m triangles in the plane, the ply of any point p in the plane
with respect to the set T is defined to be the maximum number k of triangles in
T such that the point p lies in the common intersection region between these k
triangles, where k is an integer 0 ≤ k ≤ m (see Fig. 2(a)). Thus, we say that any
set T ′ ⊆ T has ply equal to the maximum number of triangles in T ′ that have
nonempty common intersection region.

Formally, the MPC problem is defined as follows:

MPC: Given a set P of n points and a set T of m y-parallel unit triangles in
the plane, our objective is to compute a set T ∗ ⊆ T such that T ∗ covers all
points of P and has minimum ply.

3.3 Algorithm

In order to solve MPC, we have taken ideas from [1] to develop an approximation
algorithm which finds a cover T ′ ⊆ T of points in P such that T ′ has minimum
ply. We describe the algorithm as follows. Firstly, we partition the plane into
horizontal strips of two units height. Assume that no point of P lies on the
boundary of any strip. Let us label these horizontal strips as H1, H2, . . ., Hr,

118 M. Basappa and S. Mishra

from bottom to top, where Hr is the topmost strip containing at least one point
from P . Let Pj be the set containing all points of P lying within the strip Hj , and
Tj be the set of triangles from T intersecting with Hj , for every j = 1, 2, . . . , r.
Let α be an upper bound on the minimum ply of a cover of the given instance
of the MPC problem. As a standard practice in most of the geometric covering
problems, in order to solve the MPC problem we first solve the MPC problem
restricted to strip Hj separately for j = 1, 2, . . . , r. Now observe that if for some
Hj , there is no subset T ′

j ⊂ Tj that covers all points Pj and has minimum
ply at most α, then the original point set P can not have any covering with
minimum ply at most α. Hence, we have a cover T ′

j ⊂ Tj with ply at most α,
that covers all points Pj lying within the strip Hj , for every j = 1, 2, . . . , r. Then

T ′ =
r⋃

j=1

T ′
j will cover all points P and have ply at most 2α since a triangle in T

can participate in covering of points in two consecutive strips. We approximate
the minimum value of α by using doubling technique and bisection method on
the integer line Z

+.
Now we describe an algorithm for computing a cover T ′

j with ply at most α
for the points lying in the strip Hj . Given an integer α, points Pj , triangles Tj ,
and that there is a cover of points Pj with ply at most α, we do the following
to compute T ′

j . Let �1, �2, . . ., �k−1 be the vertical lines, passing through y-sides
and vertices opposite to y-sides of triangles in Tj , in the increasing order of
their x-coordinates. We can view these vertical lines as forming vertical strips
[�i, �i+1] for i = 0, 1, . . . , k − 1, where �0 and �k are two dummy vertical lines to
be explained later. Since |Tj | ≤ m, k ≤ 2m.

Lemma 1. If we have a solution T ′
j covering all points Pj and having ply at

most α, then there are at most 7α unit triangles of T ′
j intersecting with any

vertical strip [�i, �i+1] for i = 0, 1, . . . , k − 1.

Proof. For the sake of contradiction assume that there are more than 7α y-
parallel unit triangles intersecting with some vertical slab [�i, �i+1]. Consider an
arbitrarily placed vertical line L, but passing through this vertical slab [�i, �i+1].
Let the seven points p1, p2, . . ., p7 be marked on L ∩ Hj such that p4 is at a
point equidistant from both upper and lower boundary lines �j

u and �j
l defining

the strip Hj i.e., dist(p4, �j
u) = dist(p4, �

j
l), the points p1, p2, and p3 are placed

closed to the upper boundary line �j
u of Hj separated by very small distance from

one another, and similarly, the points p5, p6, and p7 are placed closed to the lower
boundary line �j

l of Hj separated by very small distance from one another (see
Fig. 2(b)). Let us suppose that there are seven disjoint y-parallel unit triangles
covering p1, p2, . . . , p7 respectively. Observe that no more y-parallel unit triangle
disjoint from the above seven triangles can be placed covering a new point p8 on
L ∩ Hj (in fact, lying anywhere on [�i, �i+1] ∩ Hj). Now we can replace the above
seven triangles with seven groups of almost coinciding α triangles respectively by
still maintaining the above pairwise disjointness property between these groups,
and covering their respective seven points. Hence, if there are more than 7α
y-parallel unit triangles intersecting with the vertical slab [�i, �i+1], then one of

Interference Reduction in Directional Wireless Networks 119

the seven points p1, p2, . . ., p7, is covered by more than α triangles. Therefore,
the ply of T ′

j is more than α, a contradiction.

Based on Lemma 1 we define a pair ([�i, �i+1], R) for i ∈ {1, 2, . . . , k − 1} as
follows: for every vertical strip [�i, �i+1] a subset R ⊆ Tj is any set consisting
of at most 7α unit triangles intersecting with [�i, �i+1] such that

⋃

t∈R

t covers

all points in [�i, �i+1] ∩ Pj and the ply of R is at most α. Now given any pair
([�i, �i+1], R), a pair ([�i+1, �i+2], R′) is said to be a successor of the ([�i, �i+1], R)
if and only if |R′| ≤ 7α,

⋃

t∈R′
t covers all points in [�i+1, �i+2] ∩ Pj , the ply of

R′ is at most α, and |R�R′| ≤ 1, where � denotes symmetric difference of two
sets.

Observe that R and R′ differ by at most one triangle, y-side or vertex opposite
to y-side of which lies on the line �i+1. Let us introduce two dummy triangles
Tdummyl

and Tdummyr
to cover two dummy points in Hj , placed lying to the left

and right of all triangles of Tj respectively. Let �0 and �k be the vertical lines
through the y-side or vertex opposite to y-side of Tdummyl

and the y-side or vertex
opposite to y-side of Tdummyr

respectively. Based on the above definitions we
construct a directed acyclic graph G = (V,E) as follows: for i = 1, 2, . . . , k − 1,
consider all possible pairs ([�i, �i+1], R) and define a vertex v(R) corresponding
to each such pair. Let the set Vi contain vertices corresponding to all possible

pairs ([�i, �i+1], R) for the vertical strip [�i, �i+1]. Let V =
k⋃

i=1

Vi. We add an

edge e = (v, v′) to the set E, where e is a directed edge from a vertex v(R) ∈ Vi

to a vertex v′(R′) ∈ Vi+1 if and only if the pair ([�i+1, �i+2], R′) is a successor
of the pair ([�i, �i+1], R). Finally, we add the edges from the dummy vertex
v({Tdummyl

}) to all vertices in V1 and edges from all vertices in Vk−1 to the
dummy vertex v({Tdummyr

}), to the set E. We argue below that any path from
v({Tdummyr

}) to v({Tdummyr
}) in G corresponds to a cover of Pj with ply at

most α.

Lemma 2. Given an instance (Tj, Pj) of the MPC problem on the strip Hj,
then there is a cover T ′

j ⊆ Tj of all points in Pj, with ply at most α, if and only if
there is a path ρ, corresponding to T ′

j, from vertex v({Tdummyl
}) to v({Tdummyr

})
in G.

Proof. First consider a solution T ∗
j ⊆ Tj with ply at most α, by Lemma 1 there

can be at most 7α triangles in T ∗
j covering points in each vertical slab [�i, �i+1],

i = 1, 2, . . . , k−1. Because the boundaries of vertical slabs [�i, �i+1] are formed by
y-sides or vertex opposite to y-sides of triangles, we can associate a vertex with
each such group of at most 7α triangles, and an edge between two such groups of
at most 7α triangles provided they differ in at most one triangle. These vertices
form a path ρ corresponding to T ∗

j , of length at most 2m + 1. Next, if we have
a path ρ from v({Tdummyl

}) to v({Tdummyr
}) in G, then because of the way

in which the graph G is constructed, the union of all collections of at most 7α
triangles, corresponding to all vertices in ρ, will cover all points in Pj and have
ply at most α. Thus the lemma follows. 	

120 M. Basappa and S. Mishra

Lemma 3. The algorithm for the MPC problem on the strip Hj runs in O((α+
|Pj |)|Tj |7α+1) time.

Proof. Recall that there is a set of at most 7α triangles corresponding to each ver-
tex inG, and there are atmost three directed edges from each vertex to its successor
vertices in G. The time required to verify that triangles corresponding to each ver-
tex cover all the points in the corresponding vertical slab and identifying its succes-
sors is O((α+ |Pj |)|Tj |). Hence, the construction of G takes O((α+ |Pj |)|Tj |7α+1)
time. We can run a DFS algorithm starting from v({Tdummyl

}) to find a path ρ in
O(|Tj |7α) time. Therefore, the overall running time of the algorithm is dominated
by the time needed for the construction of G.

In order to compute a cover of all the points P , we repeat the algorithm of

Lemma 3 for all strips Hj , j = 1, 2, . . . , r. Then set T ′ =
r⋃

j=1

T ′
j . Since a triangle

can participate in the covering of points in two consecutive strips and the ply of
each T ′

j is at most α, the ply of T ′ is at most 2α.
To find the minimum value of α, we solve the MPC problem repeatedly for

α = 2i, i = 0, 1, 2, . . . , until the above algorithm succeeds in finding T ′
j for every

strip Hj , j = 1, 2, . . . , r, where T ′
j is a cover of points Pj and has ply at most

α. Let that value of α be 2τ . Then we know that the algorithm has failed to
compute T ′

j for some strip Hj when α = 2τ−1. Hence the minimum ply opt lies
in the interval [2τ−1, 2τ] for the given point set P and unit triangle set T . We
can now do a standard binary search in the interval [2τ−1, 2τ], which would need
only τ bisection steps, where τ ≤ log opt + 1 Finally, the ply of the cover T ′

returned by the last invocation of the algorithm for the MPC problem is at most
opt. Hence, we have the following theorem.

Theorem 1. We have a 2-approximation algorithm for the MPC problem in
O((opt+n)m14opt+1(log opt)), where opt is the maximum number of triangles of
T , in the optimal solution, covering a point in the plane.

Proof. Given an upper bound α on the minimum ply, the algorithm of Lemma3
computes a cover T ′

j of points Pj , with ply at most α, in the strip Hj . Since a
triangle can participate in the covering of points in only two consecutive strips
Hj and Hj+1 (j = 1, 2, . . . , r − 1) and the ply of each T ′

j is at most α, the

ply of T ′ =
r⋃

i=1

T ′
j is at most 2α. In solving the MPC problem on each strip

Hj for j = 1, 2, . . . , r, the algorithm of Lemma 3 is invoked at most log 2opt
times and at most log opt + 1 times due to doubling technique and standard
binary search respectively. During this bisection process, the algorithm may get
called for a value of α that is almost twice as large as opt. Therefore, the overall

running time for computing the cover T ′ is
2 log opt+2∑

i=0

(
r∑

j=1

(α + |Pj |)|Tj |7·α+1) ≤
2 log opt+2∑

i=0

(
r∑

j=1

(2opt+ |Pj |)|Tj |7·2opt+1) = O((opt+n)m14opt+1(log opt)). Since the

Interference Reduction in Directional Wireless Networks 121

bisection process and the repeated calling of the algorithm ensure that the value
of α is ultimately at most opt for each Hj , the overall cover T ′ will have ply at
most 2opt. Thus, the theorem follows. 	

Remark 1. In the approximation algorithm for the MPC problem, we have used
only the properties that for each element t ∈ T , the length of y-side of t is unit
and t is a triangle. Hence, the algorithms can be extended to work even when T
consists of y-parallel isosceles triangles with unit length y-side.

3.4 NP-Hardness of MPC Problem

In this subsection we show that the MPC problem is NP-hard. Biedl et al., [1]
proved that the minimum ply covering of points by unit disks (MPCUD) and the
minimum ply covering of points by unit squares (MPCUS) are both NP-hard by
reducing from the NP-complete planar graph 3-coloring problem. As with Biedl
et al., [1] we prove that the minimum ply covering of points by unit triangles
(MPC) is also NP-hard, in particular, by modifying gadgets in the reduction of
Biedl et al. [1] and introducing gadgets as required. As it is argued in [1] that
because of ply being an integer, the MPCUS and MPCUD problems can not be
approximated with a factor smaller than 2, MPC is also not (2−ε)-approximable,
for any ε > 0.

In the decision version of planar graph 3-coloring problem, we are given a
planar graph G(V,E), and our aim is to answer the question: is G 3-colorable?
i.e., whether all vertices in V can be colored with three distinct colors such that
adjacent vertices receive different colors, or not. Given a planar graph G(V,E),
we describe the construction of an instance (PG, TG) of the MPC problem as
follows. The vertex gadget in Fig. 3(a) will be constructed corresponding to each
vertex v ∈ V (G). Depending on which of the three colors is used to color the
vertex v, one of the three triangles t0, t1, and t2 is selected to cover the point
pv. The selected color can be carried over by the transport gadget as shown in
Fig. 3(b). When a vertex v has degree d(v) more than 2, using as many copies
of the duplicate gadget, as shown in Fig. 3(c), as the degree d(v), we can carry
over the selected color/triangle of the point pv along all those edges incident on
v. In the construction, whenever we want to change the orientation of triangles
in the transport gadget, we can then insert the orientation change gadget there,
as shown in Fig. 3(d). In between every pair of adjacent vertices u and v in G,
we introduce the color-conflict avoidance gadget (Fig. 4) to avoid that these two
vertices receive the same color, i.e., to avoid that the corresponding points pu

and pv are covered by the same labeled triangles among the triples t0, t1, and
t2. Let PG and TG consist of all those points and triangles respectively, thus
constructed.

Theorem 2. A planar graph G(V,E) is 3-colorable if and only if the instance
(PG, TG) of the MPC problem has a solution with ply 1.

Proof. Now, if all the vertices in V (G) can be colored with three distinct colors,
then the corresponding triangles of TG to the chosen colors cover all the points

122 M. Basappa and S. Mishra

pv

t0 t1 t2

(a) (b)

(c) (d)

Fig. 3. Hardness ofMPC problem: (a) vertex gadget, (b) transport gadget, (c) duplicate
gadget, and (d) orientation change gadget

x

z

y selected triangle/color
of pu

selected triangle/color
of pv

Fig. 4. Color conflict avoidance gadget

Interference Reduction in Directional Wireless Networks 123

in PG, and no two triangles overlap anywhere. Hence, there exists a set T ∗
G ⊆ TG

covering all the points in PG and having ply 1. On the other hand, if we have
a solution T ′

G ⊆ TG, with ply 1, which covers all the points in PG, then by
the construction of G, the colors corresponding to the triangles in T ′

G result in
3-coloring of G. Thus, the theorem follows. 	

4 Channel Allocation in Directional Wireless Networks

In this section, we study the channel allocation in wireless networks with direc-
tional transmitters. In particular, we investigate the 3-colorable unit triangle
cover (3CUTC) problem: given a set T of m y-parallel unit triangles (modelling
transmission/interference regions of wireless directional transmitters) and a set
P of n points (modelling receivers) in the plane, the objective is to compute a
set T ∗ ⊆ T such that T ∗ ensures coverage of all points in P (i.e., P ⊂ ∪t∈T ∗t)
and at most three colors (i.e., channels) are sufficient to color all triangles in T ∗

(i.e, the set T ∗ can be split into T ∗
1 , T ∗

2 and T ∗
3 such that the triangles in T ∗

a

are pairwise disjoint for each a ∈ {1, 2, 3}). In other words, we need to compute
3-colorable cover of all points in P with unit triangles in T . The usage of three
colors here is justified due to the constraints on channel selection in Wi-Fi net-
works [2,6]. The algorithm we describe next for this problem is based on the
following observation.

Observation 1. If we have a 3-colorable cover TR of all points PR lying within
a rectangle R of dimension 1 ×

√
3
2 , then |TR| ≤ 30.

Proof. ince the horizontal length of R is
√
3
2 , observe that at most ten sets

of almost overlapping three triangles can cover the interior of R while all the
triangles in these sets are 3-colorable (see Fig. 5). Therefore, in any 3-colorable
cover of PR, there are at most 30 unit triangles from T participating. Thus the
claim follows. 	

The algorithm for the above channel allocation problem proceeds as follows.
First, place a rectangular grid of size 1×

√
3
2 over the plane containing all points

in P . For each rectangle R formed by this grid, for which P ∩ R �= ∅, by
exhaustively checking all subsets T ′ ⊆ T of size at most 30, find that set TR of
size at most 30 that covers all points in PR and is 3-colorable, where PR = P ∩ R.
Let C1, C2, C3 and C4 be the four sets of three distinct colors. Triangles in
any TR thus computed can overlap with at most 8 adjacent rectangles. Now,
consider the rectangular grid shown in Fig. 6. Let us assign the color set C1 to
the triangles in TR. Then the adjacent rectangles of R will get assigned the color
sets C2, C3, and C4 as shown in Fig. 6. Let Rl, Rr, Rt, and Rb be the left, right,
top, and bottom rectangles that share their edges with R, and whose assigned
colors are C4, C4, C2 and C3 respectively. Now the right side adjacent rectangle
of Rl will get the color set C1. Similarly, the left side adjacent rectangle of Rr,
top adjacent rectangle of Rt, and bottom adjacent rectangle of Rb will also get
the color set C1. The same pattern then as shown in Fig. 6 will repeat. For a

124 M. Basappa and S. Mishra

R

Fig. 5. (a) Illustrating observation 1

triangle t participating in the covering of points lying in more than one adjacent
rectangles, we retain the color from the color set of the rectangle R for which
the point mid(y-side(t)) lies in the interior of R.

Theorem 3. We have a 4-approximation algorithm for the 3CUTC problem,
that runs in O(m30n2) time.

Proof. The approximation factor of the algorithm follows from the facts that we
use four pairwise disjoint color sets, each containing three distinct colors, and
there is vertical distance of at least one unit and horizontal distance of at least√

3
2 units between any two rectangles with the same assigned color set. Because

|P | = n, there are at most n nonempty rectangles R, i.e., for which R ∩ P �= ∅.
For each rectangle R, we invest O(m30n) time to compute the cover TR which is
3-colorable (due to Observation 1). Therefore, the overall time of the algorithm
is O(m30n2). Thus, the theorem follows. 	

Remark 2. Since the triangles within each Ta for a ∈ {1, 2, 3} are pairwise dis-
joint, the ply of Ta is 1. Hence, by pigeon hole principle the cover T ∗ (=

⋃

a
Ta)

has ply at most 3.

Interference Reduction in Directional Wireless Networks 125

C3 C2 C3

C4 C1 C4

C2 C3 C2

R RrRl

Rt

Rb

Fig. 6. Coloring triangles chosen to cover points in adjacent rectangles

5 Conclusion

In this paper we study some optimization issues pertained to directional wireless
networks. We formulated these optimization issues related to coverage and inter-
ference as a geometric covering problem involving unit triangles with fixed orienta-
tions, and points, namely, theminimum ply covering (MPC) problem. The approx-
imation algorithm that we have presented for the MPC problem in this paper has
a running time that is polynomial in the input size, but unfortunately exponential
in the size of optimal solution. However, in practice for a vehicular adhoc network
utilizing directional transmitters, the number of candidate transmitters covering
a single receiver is small. Furthermore, developing constant factor approximation
algorithms for the above problems, that run in time polynomial in both input size
and output size, is an important open problem.

References

1. Biedl, T., Biniaz, A., Lubiw, A.: Minimum ply covering of points with disks and
squares. In: Proceedings of the 29th Canadian Conference on Computational Geom-
etry, pp. 226–235 (2019)

2. Brass, A., Hurtado, F., Lafreniere, B.J., Lubiw, A.: A lower bound on the area of a
3-coloured disk packing. Int. J. Comput. Geom. Appl. 20(3), 341–360 (2010)

3. Carrabs, F., Cerulli, R., D’Ambrosio, C., Raiconi, A.: Exact and heuristic
approaches for the maximum lifetime problem in sensor networks with coverage
and connectivity constraints. RAIRO-Oper. Res. 51(3), 607–625 (2017)

126 M. Basappa and S. Mishra

4. Carrabs, F., Cerrone, C., D’Ambrosio, C., Raiconi, A.: Column generation embed-
ding carousel greedy for the maximum network lifetime problem with interference
constraints. In: Sforza, A., Sterle, C. (eds.) ODS 2017. SPMS, vol. 217, pp. 151–159.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67308-0 16

5. Carrabs, F., Cerulli, R., D’Ambrosio, C., Raiconi, A.: Prolonging lifetime in wireless
sensor networks with interference constraints. In: Au, M.H.A., Castiglione, A., Choo,
K.-K.R., Palmieri, F., Li, K.-C. (eds.) GPC 2017. LNCS, vol. 10232, pp. 285–297.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57186-7 22

6. Cisco Systems, Inc.: Channel Deployment Issues for 2.4-Ghz 802.11 WLANs.
http://www.cisco.com/univercd/cc/td/doc/product/wireless/airo1200/accsspts/
techref/channel.pdf. Accessed 15 Apr 2007

7. Erlebach, T., Van Leeuwen, E.J.: Approximating geometric coverage problems. In:
Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 20 January 2008, pp. 1267–1276. Society for Industrial and Applied Math-
ematics (2008)

8. Kuhn, F., von Rickenbach, P., Wattenhofer, R., Welzl, E., Zollinger, A.: Interference
in cellular networks: the minimum membership set cover problem. In: Wang, L. (ed.)
COCOON 2005. LNCS, vol. 3595, pp. 188–198. Springer, Heidelberg (2005). https://
doi.org/10.1007/11533719 21

9. Kumar, S., Suman, S., De, S.: Dynamic resource allocation in UAV-enabled
mmWave communication networks. IEEE Internet Things J. (2020)

https://doi.org/10.1007/978-3-319-67308-0_16
https://doi.org/10.1007/978-3-319-57186-7_22
http://www.cisco.com/univercd/cc/td/doc/product/wireless/airo1200/accsspts/techref/channel.pdf
http://www.cisco.com/univercd/cc/td/doc/product/wireless/airo1200/accsspts/techref/channel.pdf
https://doi.org/10.1007/11533719_21
https://doi.org/10.1007/11533719_21

Distributed Algorithms, Concurrency
and Parallelism

Automated Deadlock Detection for Large
Java Libraries

R. Rajesh Kumar(B) , Vivek Shanbhag, and K. V. Dinesha

International Institute of Information Technology,
Bangalore 560100, Karnataka, India

rajesh.kumar@iiitb.org

https://www.iiitb.ac.in

Abstract. Locating deadlock opportunities in large Java libraries
is a subject of much research as the Java Execution Environment
(JVM /JRE) does not provide means to predict or prevent deadlocks.
Researchers have used static and dynamic approaches to analyze the
problem.

Static approaches: With very large libraries, this analysis face typi-
cal accuracy/doability problem. If they employ a detailed modelling of
the library, then the size of the analysis grows too large. Instead, if their
model is coarse grained, then the results have too many false cases. Since
they do not generate deadlocking test cases, manually creating deadlock-
ing code based on the predictions is impractical for large libraries.

Dynamic approaches: Such analysis produces concrete results in the
form of actual test cases to demonstrate the reachability of the identified
deadlock. Unfortunately, for large libraries, generating the seed test exe-
cution paths covering all possible classes, to trigger the dynamic analysis
becomes impractical.

In this work we combine a static approach (Stalemate) and a dynamic
approach (Omen) to detect deadlocks in large Java libraries. We first run
‘Stalemate’ to generate a list of potential deadlocking classes. We feed
this as input test case to Omen. In case of deadlock, details are logged
for subsequent reproduction. This process is automated without the need
for manual intervention.

We subjected the entire JRE v1.7.0 79 libraries (rt.jar) to our imple-
mentation of the above approach and successfully detected 113 deadlocks.
We reported a few of them to Oracle as defects. They were accepted as
bugs.

Keywords: Concurrency · Deadlock · Java · Static analysis ·
Dynamic analysis · Scalable

1 Introduction

The synchronised construct is provided in the Java Language to facilitate the
development of code fragments that may run concurrently. When this happens in
an uncoordinated manner it can give rise to Lock Order Violations. If such a lock

c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 129–144, 2021.
https://doi.org/10.1007/978-3-030-65621-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_8&domain=pdf
http://orcid.org/0000-0003-0897-0100
https://doi.org/10.1007/978-3-030-65621-8_8

130 R. Rajesh Kumar et al.

order violation is realised during program execution it causes the executing JVM
to deadlock. This problem has been widely investigated, and various researchers
have tried different approaches to address it.

There have been numerous published research works for detecting deadlocks
including both static and dynamic approaches [1,2,4–6,9,11–16] and some for
preventing them [3,7,8].

Stalemate [1,2] is a static analysis approach that identifies lock order viola-
tions in large Java libraries, which have the possibility of being realised, during
execution, in the form of a deadlock. However, its predictions include many false
positives, since the analysis is at the type level while the contested locks are held
on the actual objects. Consequently, one must develop a deadlocking test case by
manual examination of the call cycles in the predictions. For a library as large as
the entire JRE, it becomes impractical to apply this manual method to narrow
down to realisable deadlocks. Other static approaches such as Jade [12,13] can
scale well, produces notable results, however these methods also produce many
false positives.

There are many dynamic analysis approaches to identify deadlocks such as
Omen [4], Needlepoint [5] and Sherlock [6]. Omen, produces realisable deadlocks
along with reproducible test cases. Such dynamic analysis, initiated using seed
test cases, is limited to the execution traces realisable during the call flows of
the seed test cases. For large libraries, the set of seed test cases would become
substantial, and looking for lock cycles realisable in their execution traces would
be impractical. The implementation Sherlock is suitable for large programs but
not for libraries.

In this paper we address the problem of identifying reproducible deadlocks in
large Java libraries without false positives, and produce deadlocking test cases
for the detected deadlocks. Our approach combines a static approach Stalemate
[1,2], as it can scale to analyze large libraries and a dynamic approach Omen [4]
to detect real deadlocks along with deadlocking test cases.

We start by subjecting the library to Stalemate and from the lock order
violations it reports, interleaving calls that could lead to deadlocks are extracted.
Reading off classes/methods involved in such calls, we use Randoop to generate
test cases that exercise these classes/methods. These tests are then subjected to
dynamic analysis (Omen) narrowing down to reproducible deadlocks. In this way
we eliminate the numerous false cases identified by static analysis. At the same
time the attention of the dynamic analysis is directed to only those components
in the library where there is a possibility of finding a deadlock. We have fully
automated the process so that the complete analysis for the entire library can
be completed with no manual intervention.

This paper is organized as follows: Sect. 2 states the problem we are attempt-
ing to address. Section 3 provides the solution overview and details the imple-
mentation, Sect. 4 summarizes the results, and Sect. 5 states the conclusions.

Automated Deadlock Detection for Large Java Libraries 131

2 Problem Statement

Design an automated method to analyze large Java libraries to detect deadlocks
by combining static and dynamic analysis approaches. For each of the lock order
violations identified by the static analysis (Stalemate), create an automated
process to detect any real deadlock associated with that violation using dynamic
analysis (Omen). The process should also generate the deadlocking test cases to
reproduce the deadlocks.

As an illustration, we have used the output of Stalemate [1] on the entire
JRE v1.7.0 79 libraries (rt.jar) to generate a list of lock order violations (this
number is more than 26,000) with many false positive cases. We have used the
automated process described in this paper to generate a list of real deadlocks
(number: 113) and test cases to reproduce the deadlocks.

3 Solution Details

The solution focuses on extracting the relevant details from the static analysis
and targets the dynamic analysis only on those classes that have the potential
to cause a deadlock. Given a lock order violation that is identified by the static
analysis Stalemate, next, we want to develop single-threaded test programs that
may individually realise each its thread stacks. For this purpose we use the
Randoop tool, which synthesizes test cases for a given set of classes. The dynamic
analysis tool Omen is then invoked by passing the generated test case as the
seed test case. On completion of the analysis if deadlocks are found, Omen will
synthesize a multi-threaded test case that will always deadlock.

The task is to use these tools, namely, Stalemate, Randoop and Omen, and
devise an automated method to analyze large Java libraries to detect deadlocks
and produce deadlocking test scenarios. The flow is designed to handle any
exceptions and intermittent failures so that it is suitable to analyze large libraries
and results in a truly automated solution.

3.1 Solution Steps

The process flow is represented in Fig. 1. Key steps of the automated analysis is
described below.

1. Static Analysis: The jar file containing the libraries that are to be analyzed
are subjected to the static analysis. This step produces the static analysis
results (Sn), which contains the list of potential deadlocking scenarios con-
taining the call flow details with the lock order violations involved in the
synchronized functions calls, as represented in Fig. 2.

132 R. Rajesh Kumar et al.

Fig. 1. Automated deadlock detection process flow

The result is interpreted as follows: the “Cycle-2” in its opening line means
that is a lock order violation involving 2 locks. The class names of the locks
are in the string that follows. This line is followed by a number of thread
stacks enclosed within “Thread-i Option” descriptors. i ranging from 1 to n,
the number of locks involved in the violation.
The example in Fig. 2, where n = 2, we refer to the “Thread-1” stacks as
forward stacks, which acquire locks in the forward order, and the “Thread-2”
stacks as reverse stacks, as they acquire them in the reverse order. If in a
multi-threaded program, one thread were to realise one of the forward stacks,
and another thread were to realise one of the reverse stacks, and if they were
to do this concurrently, and if the two locks they are trying to acquire were
to be the same two locks, then they could result in a deadlock.

Automated Deadlock Detection for Large Java Libraries 133

<Cycle-2 java.util.logging.Logger.class java.util.logging.LogManager>

<Thread-1 Option>
java.util.logging.Logger.getAnonymousLogger:()Ljava.util.logging.Logger;
java.util.logging.LogManager.getLogger:(Ljava.lang.String;)Ljava.util.logging.Logger;

</Thread-1 Option>
<Thread-1 Option>
java.util.logging.Logger.getAnonymousLogger:(Ljava.lang.String;)Ljava.util.logging.Logger;
java.util.logging.LogManager.getLogger:(Ljava.lang.String;)Ljava.util.logging.Logger;

</Thread-1 Option>
<Thread-1 Option>
java.util.logging.Logger.getLogger:(Ljava.lang.String;Ljava.lang.String;)Ljava.util.logging.Logger;
java.util.logging.LogManager.getLogger:(Ljava.lang.String;)Ljava.util.logging.Logger;

</Thread-1 Option>
<Thread-1 Option>
java.util.logging.Logger.getLogger:(Ljava.lang.String;Ljava.lang.String;)Ljava.util.logging.Logger;
java.util.logging.LogManager.addLogger:(Ljava.util.logging.Logger;)Z

</Thread-1 Option>
<Thread-1 Option>
java.util.logging.Logger.getLogger:(Ljava.lang.String;)Ljava.util.logging.Logger;
java.util.logging.LogManager.addLogger:(Ljava.util.logging.Logger;)Z

</Thread-1 Option>
<Thread-1 Option>
java.util.logging.Logger.getLogger:(Ljava.lang.String;)Ljava.util.logging.Logger;
java.util.logging.LogManager.getLogger:(Ljava.lang.String;)Ljava.util.logging.Logger;

</Thread-1 Option>

<Thread-2 Option>
java.util.logging.LogManager.addLogger:(Ljava.util.logging.Logger;)Z
java.util.logging.Logger.getLogger:(Ljava.lang.String;)Ljava.util.logging.Logger;

</Thread-2 Option>

</Cycle-2 java.util.logging.Logger.class java.util.logging.LogManager>

Fig. 2. Lock order violation output from static analysis

2. Prediction Filtering and Data Preparation: The results produced by
Stalemate could be a very large data set. To narrow down the areas of focus,
certain filters such as Cycles, Call Depth and Call Density are applied on the
results (details of the filters are elaborated in Sect. 3.2). Each of the result
nodes (S1 to Sn) are checked for the filter criteria and a subset Nk of the
static analysis results (Nk ⊂ Sn) is produced. There is a possibility that this
step could filter certain real deadlock candidates, however it helps to direct
the analysis to the desired focus area. For each of the shortlisted nodes, the
classes are extracted along with the metadata to trace back to the static
analysis and it is referred as Node Info. An extract of a log created after the
filtering exercise is shown in Fig. 3(a) and Node Info is shown in Fig. 3(b).

3. Seed Test Case Generation: Using the Node Info details collected during
the data preparation step the seed test cases (TCk) are generated for each
of the shortlisted predictions using the utility Randoop [10]. The test cases
target specifically the classes involved in a lock order violation as detected by
the static analysis. Example of a test case generated by Randoop is shown in
Fig. 3(c).

134 R. Rajesh Kumar et al.

Fig. 3. (a) Execution summary (b) node info (c) test case generated by Randoop

4. Dynamic Analysis for Deadlock Detection: Post generation of the seed
test cases, for each of the test cases (TC1 to TCk), the Dynamic Deadlock
Analysis is initiated with Omen. The Dynamic Analysis starts by executing
the seed test case and by tracing the lock dependency relations of the classes
during the execution and recording them along with the invocation contexts.
The presence of cyclic chains in the lock dependency relations are identified
and potential deadlocking scenarios are synthesized. Multi-threaded tests are
then generated by using the invocation details from the seed test case exe-
cution and by creating additional conditions that could result in a deadlock.
At the end of the execution if any deadlocks are detected (DLj) successfully,
they are recorded along with the deadlocking test cases. The class to be ana-
lyzed, seed test case, and the deadlocking test case generated by Omen are
illustrated in Fig. 4 with a simple example. The flow continues by picking the
next shortlisted result to be analyzed.

5. Handling of Deadlocked Analysis: It was observed that the execution of
the analysis was getting deadlocked either during the generation of the seed
test cases or during the dynamic analysis. It was observed that these dead-
locking scenarios were occurring while processing specific set of classes. The
stack traces of the deadlocked JVM revealed that these are indeed deadlock-
ing scenarios as predicted by the static analysis and they were consistently
occurring while processing those specific classes. The test case generation by
Randoop is a multi-threaded process as it executes each test in a separate
thread to speed up the generation. When the lock order violations occur in

Automated Deadlock Detection for Large Java Libraries 135

the call flows of the classes for which the test cases are being generated, the
possibility of deadlock occurs. Similarly, such scenarios occur during dynamic
analysis as well. JVM Monitoring Routine was developed to watch the JVMs
for such scenarios. Once a deadlocked JVM is detected then the stack traces
were extracted and recorded along with the associated metadata so that it is
traceable to the prediction. The hung JVM is then terminated by the routine
so that the flow would continue to the next prediction to be analyzed. An
extract of the JVM stack trace of such as scenario is shown in Fig. 5

Fig. 4. Omen dynamic analysis example: (a) class to be analyzed (b) sequential seed
test case to be subjected to the analysis (c) synthesized multi-threaded deadlocking
test case generated by Omen

136 R. Rajesh Kumar et al.

...

"Finalizer" daemon prio=5 tid=0x00007f8944813800 nid=0x3303 in
Object.wait() [0x0000700001e0e000]

java.lang.Thread.State: WAITING (on object monitor)
at java.lang.Object.wait(Native Method)
- waiting on <0x0000000780004858> (a

java.lang.ref.ReferenceQueue$Lock)
at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:135)
- locked <0x0000000780004858> (a

java.lang.ref.ReferenceQueue$Lock)
at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:151)
at

java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:209)

...

"main" prio=5 tid=0x00007f8944802800 nid=0x1b03 runnable
[0x00007000016f8000]

java.lang.Thread.State: RUNNABLE
at

java.util.logging.Logger.getEffectiveResourceBundleName(Logger.java:1703
)

at java.util.logging.Logger.doLog(Logger.java:636)
at java.util.logging.Logger.log(Logger.java:664)
at java.util.logging.Logger.info(Logger.java:1182)
at RandoopTest0.test7(RandoopTest0.java:109)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

...

Fig. 5. Extract of JVM stack trace

6. Data Collection and Report Creation: Comprehensive reports of the
analysis are generated based on the data collected when the execution con-
cludes, resulting in a comprehensive Deadlock Detection Report.

3.2 Implementation

The implementation details of the solution is elaborated in this section. The
complete source code for of this implementation is published in GitHub along
with the test results of the executions.

Execution Flow. The end-to-end execution flow design is represented in the
Fig. 6. The flow of the automated deadlock analyzer is as follows (refer Fig. 6,
steps 1 to 7):

1. The run cycles are specified by providing the constraints that needs to be
applied on the static analysis prediction output. The constraints specifies the
output files that needs to be selected for analysis and the filter criteria that
needs to be applied for each of the output files.

2. For each run, the Prediction filter constraints file is generated, which is the
primary input for the Static Analysis Prediction Scanner.

Automated Deadlock Detection for Large Java Libraries 137

Fig. 6. Automated deadlock analyzer implementation design

3. The Static Analysis Prediction Scanner takes the generated Prediction filter
constraints and scans each of the static analysis output files and selects the
specific prediction nodes (the xml node that contain the lock order violations)
along with the relevant metadata.

4. Dynamic Deadlock Analyzer is then invoked for each of the shortlisted node
after generating the seed test cases for the classes involved in the poten-
tial deadlocks identified by the static analysis. The detected deadlocks are
recorded in such a way that the corresponding static analysis prediction and
the interleaving call details can be traced back.

5. During the execution of the dynamic analysis the JVM Monitor is invoked
to monitor the execution for any hung scenarios. When such a scenario is
detected, the monitor will extract the details for analysis and terminate the
hung program so that the execution can continue. All the logs related to the
deadlocking scenario are organized so that they can be seen in the context of
the specific deadlock prediction.

6. After the completion of the analysis, the Results Report Generator is run to
consolidate the complete execution results. The summary of each execution

138 R. Rajesh Kumar et al.

is created in a master report file with the details of the constraints specified
along with the results. With this information any detected deadlock can be
consistently recreated.

7. The steps 2 through 6 are repeated for each of the run cycles specified in Step
1, thereby enabling the execution of a complete batch of automated analysis

The details of some of the key components of the implementation are
described below:

Static Analysis Prediction Scanner. The static analysis prediction scanner
is designed to shortlist the specific nodes from the output of the static analysis
based on the constraints such as Cycles: Specifies the number of locks involved
in a lock order violation, Call Depth: The number of function calls involved
in a deadlock cycle that was predicted, Call Density : The number of classes
involved in the prediction node resulting in a deadlocking cycle, and Package
Exclusions: The list of packages that are to be excluded in the scan. All the
necessary metadata required to target only the classes that could lead to a
potential deadlock are collected at this stage. The Dynamic Deadlock Analysis
is triggered after the completion of this scan.

Dynamic Deadlock Analysis. The first step of the process is to generate
the sequential test cases that will act as the seed test cases for the dynamic
analysis. Our aim is to target only the classes that are involved in a lock order
violation, as predicted by the static analysis. The test cases corresponding to
each of the selected prediction node from the static analysis are generated by
the Randoop tool. Omen, is then invoked with the seed test case as input to
initiate the dynamic analysis. The test cases are executed by Omen and the
execution traces are scanned for cycles to detect the deadlocking scenarios. The
detected deadlocks are then consolidated into a comprehensive report.

JVM Monitoring Routine. JVM Monitoring Routine was developed to han-
dle the deadlocked analysis that happens either during Randoop execution or
during Omen execution. JVM Monitor, once initiated is designed to run as long
as there is an active JVM. As a first step, it fetches all the process identi-
fiers (PIDs) of the java programs that are being executed in the JVM with a
time delay. Then it checks if there are any identical processes between those
time delays. If there are any identical processes, their respective stack traces are
fetched. The stack traces are then compared to check the JNI global references
held by the JVM. Analysis of the JNI global references is a predictable indicator
to assess if the JVM is active or hung. If the JNI global references are identical
across multiple snapshots with significant time delays, it predictably indicated a
hung JVM. Once the hung state of the JVM is detected then logs are generated,
and the details are collected in the reports. The processes that are hung are then
terminated for the flow of the Dynamic Analyzer to progress ahead.

Automated Deadlock Detection for Large Java Libraries 139

Report Generation. Following are the key reports generated during the exe-
cution:

1. Test Runs Report: Contains the execution status for each of the batches,
along with the filter criteria applied for the analysis. This report provides
an overview of the batch executions and enables to plan further batches for
analysis.

2. Execution Summary Report: This report provides the summary of the
execution results and helps to navigate to the specific deadlocking scenario.
The metadata captured by this report enables to locate the specific Deadlock
Report file along with the other details that indicates the number of tests
executed and number of dead locking scenarios detected.

3. Deadlock Report: The Deadlock Report contains the log related to each of
the nodes that were processed and which of the processed node resulted in a
deadlock. If the dead locks are detected as a result of the hung JVM detected
during test case generation or dynamic analysis, they are marked.

4 Results

The entire Java Runtime Libraries JRE v1.7.0 79 libraries (rt.jar) were subjected
to Stalemate [1], the static analysis tool. The output files from the static analysis
method were used as a starting point for the analysis. Table 1 lists the key details
of the execution. We have been able to uncover deadlock in Java libraries that
have not been demonstrated by other methods. We identified such cases and
reported some of them to Oracle as bugs. Table 2 lists the bugs reported to
Oracle.

Table 1. Summary of execution

Platform MacOS High Sierra 17.3.0 Darwin
Kernel Version 17.3.0,
xnu-4570.31.3 1/RELEASE X86 64
x86 6

Java environment java version “1.7.0 79”, Java(TM)
SE Runtime Environment (build
1.7.0 79-b15), Java HotSpot(TM)
64-bit server VM (build 24.79-b02,
mixed mode)

Execution summary Total tests executed 1,563

Total prediction nodes analyzed 26,728

Duplicates eliminated 3,001

Nodes filtered from static analysis 1,563

Total deadlocking scenarios detected 113

140 R. Rajesh Kumar et al.

Table 2. Bugs reported to Oracle

Deadlocking Java Library classes Oracle JDK Bug ID

java.util.logging.Logger 8194918

java.util.logging.LogManager

ava.awt.EventQueue 8194407

sun.awt.AppContext

javax.swing.plaf.basic.BasicDirectoryModel

sun.awt.X11.XToolkit

java.util.Vector

java.awt.EventQueue 8194635

sun.awt.PostEventQueue

java.awt.SentEvent

sun.awt.SunToolkit

ava.awt.Component 8194862

javax.swing.JFileChooser

javax.swing.SwingUtilities

java.awt.dnd.DropTarget

javax.swing.JComponent

java.io.ObjectInputStream 8194920

java.awt.KeyboardFocusManager

java.awt.Component

java.awt.Window

java.awt.Frame

java.util.TimeZone 8194919

java.util.Properties

javax.naming.spi.DirectoryManager

java.lang.SecurityManager

java.util.Hashtable

java.awt.EventQueue 8194962

java.awt.EventDispatchThread

sun.awt.PostEventQueue

ava.awt.EventQueue 8194983

sun.awt.AppContext

javax.swing.plaf.basic.BasicDirectoryModel

sun.awt.X11.XToolkit

Automated Deadlock Detection for Large Java Libraries 141

Table 3. Examples: deadlocking call cycles

Calls between:

java.util.logging.Logger

java.util.logging.LogManager

Forward calls

Logger.getAnonymousLogger() calls

LogManager.getLogger(String)

Logger.getLogger(String,String) calls

LogManager.getLogger(String)

Logger.getLogger(String) calls

LogManager.addLogger(Logger)

Reverse calls

LogManager.addLogger(Logger) calls

Logger.getLogger(String)

Calls between:

sun.awt.PostEventQueue

java.awt.EventQueue

Forward calls

PostEventQueue.flush() calls

EventQueue.postEventPrivate(AWTEvent)

Reverse calls

EventQueue.removeSourceEvents(Component) calls

java.awt.SentEvent.dispose(AppContext,SentEvent) calls

PostEventQueue.postEvent(SentEvent)

EventQueue.push(EventQueue) calls

EventQueue.getNextEvent() calls

SunToolkit.flushPendingEvents() calls

PostEventQueue.flush()

Calls between:

sun.rmi.server.Activation

sun.rmi.server.Activation$GroupEntry

Forward calls

Activation.addLogRecord(Activation$LogRecord) calls

Activation$ActivationSystemImpl.shutdown() calls

Activation.checkShutdown() calls

Activation$GroupEntry.restartServices() calls

Activation$GroupEntry.getInstantiator(ActivationGroupID)

Activation.addLogRecord(Activation$LogRecord) calls

SystemImpl.shutdown() calls

Activation$GroupEntry.unregisterGroup()

Reverse calls

Activation$GroupEntry.setActivationGroupDesc(ActivationGroupID) calls

Activation.addLogRecord(Activation$LogRecord)

142 R. Rajesh Kumar et al.

The results identified by our approach are reproducible. The static analysis [1]
alone detected many thousands of potential deadlocks where one has to analyze
the predictions manually to construct the deadlocking test cases, whereas we
produce the deadlocking scenarios as output. The dynamic analysis [4] results
are limited by the test cases that are subjected to it, hence it is not a viable tool in
itself to analyze large libraries. Combining both together we have demonstrated
an automated solution that is scalable for large libraries.

The Table 3 shows few examples of interleaving call details of the deadlocks
detected by our method. For brevity the package names and return values of the
methods are omitted while representing the call flows.

5 Conclusions

From the above results we assess that the method described was able to deal
with the scale what it was intended for. It was successfully able to scan through
tens of thousands of potential deadlocking scenarios and created over hundred
reproducible deadlocking test cases without any false positives.

The approach was able to overcome the inherent limitation of the static
approach of producing numerous ‘potential’ dead locking cases containing lot
of false positives. Dynamic analysis on the other hand is effective in deadlock
detection for programs for applications but not for libraries. It is limited by the
coverage provided by the seed test case that is subjected to the analysis.

The presented approach provides an effective way to leverage both static and
dynamic analysis methods to produce a viable automated way to detect deadlock
in large java libraries.

Acknowledgements. We sincerely thank Dr. Murali Krishna Ramanathan for the
discussion in formulating the problem. We also thank Malavika Samak and Dr. Murali
Krishna Ramanathan for permitting us to use the program developed by them for
dynamic deadlock detection.

References

1. Shanbhag, V.K.: Locating lock order violations in Java libraries - a scalable static
analysis. Ph.D. dissertation. IIIT - Bangalore, Bangalore, Karnataka, India (2015).
Reference [2] is the preliminary work of this thesis. Contact: IIIT-B Library (iiit-
blibrary@iiitb.org) or Author (vivek.shanbag@gmail.com)

2. Shanbhag, V.K.: Deadlock-detection in Java-library using static-analysis. In: 2008
15th Asia-Pacific Software Engineering Conference, Beijing, 2008, pp. 361–368
(2008). https://doi.org/10.1109/APSEC.2008.68

3. Pandey, S., Bhat, S., Shanbhag, V.: Avoiding deadlocks using stalemate and Dim-
munix. In: Companion Proceedings of the 36th International Conference on Soft-
ware Engineering (ICSE Companion 2014), pp. 602–603. Association for Comput-
ing Machinery, New York (2014). https://doi.org/10.1145/2591062.2591136

https://doi.org/10.1109/APSEC.2008.68
https://doi.org/10.1145/2591062.2591136

Automated Deadlock Detection for Large Java Libraries 143

4. Samak, M., Ramanathan, M.K.: Multithreaded test synthesis for deadlock detec-
tion. In: Proceedings of the 2014 ACM International Conference on Object Ori-
ented Programming Systems Languages and Applications (OOPSLA 2014), pp.
473–489. Association for Computing Machinery, New York (2014). https://doi.
org/10.1145/2660193.2660238

5. Nagarakatte, S., Burckhardt, S., Martin, M.M.K., Musuvathi, M.: Multicore accel-
eration of priority-based schedulers for concurrency bug detection. In: Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2012), pp. 543–554. Association for Computing Machinery,
New York (2012). https://doi.org/10.1145/2254064.2254128

6. Eslamimehr, M., Palsberg, J.: Sherlock: scalable deadlock detection for concurrent
programs. In: Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2014), pp. 353–365. Association
for Computing Machinery, New York (2014). https://doi.org/10.1145/2635868.
2635918

7. Jula, H., Tralamazza, D., Zamfir, C., Candea, G.: Deadlock immunity: enabling
systems to defend against deadlocks. In: Proceedings of the 8th USENIX confer-
ence on Operating systems design and implementation (OSDI 2008), pp. 295–308.
USENIX Association, USA (2008)

8. Jula, H., Tözün, P., Candea, G.: Communix: a framework for collaborative dead-
lock immunity. In: 2011 IEEE/IFIP 41st International Conference on Dependable
Systems and Networks (DSN), Hong Kong, pp. 181–188 (2011). https://doi.org/
10.1109/DSN.2011.5958217

9. Pradel, M., Gross, T.R.: Fully automatic and precise detection of thread safety vio-
lations. In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2012), pp. 521–530. . Association
for Computing Machinery, New York (2012). https://doi.org/10.1145/2254064.
2254126

10. Pacheco, C., Ernst, M.D.: Randoop: feedback-directed random testing for Java.
In: Companion to the 22nd ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems and Applications Companion (OOPSLA 2007), pp. 815–816.
Association for Computing Machinery, New York (2007). https://doi.org/10.1145/
1297846.1297902

11. Choudhary, A., Lu, S., Pradel, M.: Efficient detection of thread safety violations via
coverage-guided generation of concurrent tests. In: 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering (ICSE), Buenos Aires, pp. 266–277
(2017). https://doi.org/10.1109/ICSE.2017.32

12. Naik, M., Park, C.-S., Sen, K., Gay, D.: Effective static deadlock detection. In:
Proceedings of the 31st International Conference on Software Engineering (ICSE
2009), pp. 386–396. IEEE Computer Society, USA (2009). https://doi.org/10.1109/
ICSE.2009.5070538

13. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. In:
Proceedings of the 27th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2006), pp. 308–319. Association for Computing
Machinery, New York (2006). https://doi.org/10.1145/1133981.1134018

14. Joshi, P., Park, C.-S., Sen, K., Naik, M.: A randomized dynamic program analysis
technique for detecting real deadlocks. In: Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2009),
pp. 110–120. Association for Computing Machinery, New York (2009). https://doi.
org/10.1145/1542476.1542489

https://doi.org/10.1145/2660193.2660238
https://doi.org/10.1145/2660193.2660238
https://doi.org/10.1145/2254064.2254128
https://doi.org/10.1145/2635868.2635918
https://doi.org/10.1145/2635868.2635918
https://doi.org/10.1109/DSN.2011.5958217
https://doi.org/10.1109/DSN.2011.5958217
https://doi.org/10.1145/2254064.2254126
https://doi.org/10.1145/2254064.2254126
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1109/ICSE.2017.32
https://doi.org/10.1109/ICSE.2009.5070538
https://doi.org/10.1109/ICSE.2009.5070538
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1145/1542476.1542489
https://doi.org/10.1145/1542476.1542489

144 R. Rajesh Kumar et al.

15. Williams, A., Thies, W., Ernst, M.D.: Static deadlock detection for Java libraries.
In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 602–629. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11531142 26

16. Cai, Y.: A dynamic deadlock prediction, confirmation and fixing frame- work for
multithreaded programs. In: Doctoral Symposium of the 26th European Conference
on Object-Oriented Programming (ECOOP 2012, DS) (2012)

https://doi.org/10.1007/11531142_26

DNet: An Efficient Privacy-Preserving
Distributed Learning Framework for

Healthcare Systems

Parth Parag Kulkarni(B), Harsh Kasyap, and Somanath Tripathy

Department of Computer Science and Engineering, Indian Institute of Technology
Patna, Patna, India

{kulkarni.cs16,harsh 1921cs01,som}@iitp.ac.in

Abstract. Medical data held in silos by institutions, makes it challeng-
ing to predict new trends and gain insights, as, sharing individual data
leaks user privacy and is restricted by law. Meanwhile, the Federated
Learning framework [11] would solve this problem by facilitating on-
device training while preserving privacy. However, the presence of a cen-
tral server has its inherent problems, including a single point of failure
and trust. Moreover, data may be prone to inference attacks. This paper
presents a Distributed Net algorithm called DNet to address these issues
posing its own set of challenges in terms of high communication latency,
performance, and efficiency. Four different networks have been discussed
and compared for computation, latency, and precision. Empirical analy-
sis has been performed over Chest X-ray Images and COVID-19 dataset.
The theoretical analysis proves our claim that the algorithm has a lower
communication latency and provides an upper bound.

Keywords: Distributed learning · Federated Learning · Healthcare ·
Binary Tree Representation · Privacy

1 Introduction

The science of medicine has reached its advanced stage of research. New method-
ologies are taking shape, and efficient drugs are being developed. This research
has been given wings, by the analysis of medical data using machine learning
techniques. New deep learning methodologies have become the tool for gaining
new insights without putting much of the domain knowledge. These techniques
rely on training on a huge scale of data. However, the question is from where
does this data come from and who holds access to it? How much sensitive infor-
mation does the data leak? All these questions make the study challenging and
demand new innovative ways of study.

In the age of sensors and devices spanning around us, data is continuously
generated and has value to contribute to research. Three sources mainly possess
healthcare data - the patients, hospitals and medical stores. A patient him-
self/herself owns his/her medical records. He/she keeps records prescribed from
c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 145–159, 2021.
https://doi.org/10.1007/978-3-030-65621-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-65621-8_9

146 P. P. Kulkarni et al.

doctors, medical stores, and self-owned smart devices like fit-bits. Hospitals hold
records of multiple patients and are significant repositories of data. Medical
stores also own health/drug related data and statistics, which can infer many
trends. However, sharing this data often reveals more than required. For exam-
ple, if an institution is running cancer research; the data being studied should
only tell how the tumor looks like rather revealing that a person has cancer.
The institutions will come across patients with different symptoms and reme-
dies working for them. As collaboration becomes indispensable, it becomes vital
to exchange this information for developing the best cure. However, these sources
owning data pose a high risk of losing sensitive data. There can be misuse of
confidential personal information to gain benefits. Patients who own the data do
not know what it has been used for.

In 2016, Google came with the Federated Learning framework that promised
data security. Federated Learning keeps the data in-place and performs local
model training. The training is iterated for thousands and millions of times for
improving the model. These local models are sent to a central server and aggre-
gated to obtain the global model. The global model is sent back to the devices for
training in the next iteration. Though, Federated Learning improvises security
and asserts privacy by keeping the data with the real owner. However, it becomes
vulnerable to inference attacks by reverse engineering on the transmitted gradi-
ents. The presence of a trusted server is also questionable. It can be biased for
some participants and may post malicious updates to others. It faces scalability
issues for executing multiple tasks. It needs to instantiate individually for the
operation of separate tasks. It also poses the risk of a single point of failure. As
the central server reports to be down or broken, the complete system comes to
a halt.

As discussed above, Federated Learning poses threats from a malicious cen-
tral server and requires high communication overhead. It also violates being gen-
uinely decentralized. However, health care institutions are demanding a privacy-
preserving collaborative learning system to facilitate research advances. They
would trust more on a peer-to-peer network that need not rely on any third
party and also bear fault-tolerance, liveliness, and availability.

Keeping the above-discussed issues and requirements into consideration, we
propose a communication-efficient decentralized variant of Federated Learning.
The significant contributions are as follows.

– This paper presents a Distributed algorithm for in-place model training with-
out the presence of central curator (DNet).

– Four variants of the algorithm are proposed, and analysis of their efficiency
recommends Binary Tree Representation technique due to its optimal perfor-
mance.

– This paper does an empirical and theoretical analysis of the algorithm and
its variants, which shows our claim of communication efficiency.

– The proposed methods have been tested on real-world Pneumonia as well as
recently released COVID-19 datasets.

DNet 147

The remainder of this paper is organized as follows. Section 2 discusses the
background and related works. Section 3 summarizes some traditional frame-
works. Section 4 discusses the DNet algorithm along with the proposed frame-
work. Section 5 explains the training and experiment methodology. Section 6 lists
the results and shows some empirical comparisons. Section 7 concludes and briefs
the scope for future work.

2 Background and Related Work

This section briefs the concept of Federated Learning and its application in
healthcare. It discusses the existing works in the same direction.

2.1 Federated Learning

Federated Learning is a collaborative learning paradigm by training across decen-
tralized applications holding similar chunks of data. It involves multiple partic-
ipants with a central server. The central server is responsible for delineating
the computation rounds, selecting the devices for participation, and aggregating
their respective model updates to build a global model. It is privacy-preserving
in nature as it holds the data to the device itself. Previous approaches used to
collect all these data to the central server and train, which induces a high data
leak risk and violates various security principles and pacts. Federated Learning
brings the model to the data while keeping the data to the device itself. It is an
iterative process that involves significant communication overhead and a threat
of a malicious server.

FedSGD (a variant of stochastic gradient descent (SGD)) is a widely used
optimization and aggregation algorithm for federated averaging. SGD samples a
subset of summand functions and updates the weight.

w := w − η∇Qi(w) (1)

SGD is effective and scalable for large training sets coupled with complex
gradient calculation formulae. In FedSGD, each participant trains the model in-
place with some random samples chosen in every iteration and sends the delta
change in the gradient to the central aggregator.

wt+1 = wt + η

∑
k∈St

nkΔwk
t∑

k∈St
nk

(2)

The central aggregator sums up the weighted contributions of the delta
updates received from all the participants and updates the global weight. Let the
system has a total K number of users. In every iteration, a fraction of clients par-
ticipates, some may drop out. The set comprising of participating clients be St

and nk be the number of samples held by client k with the server having a learn-
ing rate of η. Let wt be the global weight of the previous iteration, server updates
it, and evaluates wt+1 using distributed approximate Newton method [14].

148 P. P. Kulkarni et al.

Federated Learning can help the institutions and individuals owning data
to come forward and share the inference over their information to build better
predictive models and making research advances. It will also make way for the
players involved in healthcare to collaborate. Sensors and devices in hospitals,
laboratories, health metrics on smartwatches, and medical reports of individ-
uals can help doctors, scientists, and institutions to learn and prepare better
diagnosis.

2.2 Related Work

There have been independent studies citing the benefits of Federated Learning in
healthcare and aggregator free learning. Researchers have discussed how multi-
institutional secure learning infrastructure can be set up with the help of collab-
orative learning. For addressing issues of malicious server, various approaches
involving cryptographic, distributed and decentralized-distributed techniques
have been proposed [8,10,12].

Chen et al. [4] proposed a framework called Fedhealth, claiming to be the first
federated transfer learning framework for wearable healthcare. They use existing
deep learning techniques and additive homomorphic encryption for classification,
distribution, and aggregation. In the proposed framework, the cloud works as a
trusted central server, and the participants are present at remote locations. They
claim to achieve an improvement of five to six percent accuracy. This work mainly
focuses on the data islanding problem and aims to make personalized models for
individuals. It lacks formal security analysis and privacy guarantees. Stephen
et al. [16] demonstrated classification of positive and negative pneumonia data
from a collection of chest X-ray images, relying heavily on the transfer learning
approach using a Convolutional Neural Network (CNN) based model for the
classification of the image data.

Brisimi et al. [3] proposed a decentralized computationally scalable method-
ology for large-scale machine learning problems in the healthcare domain. It aims
to solve a binary supervised classification problem to predict hospitalizations for
cardiac events using a distributed algorithm. They proposed an iterative cluster
Primal-Dual Splitting (cPDS) algorithm to solve the problem in a decentralized
fashion. They achieved higher convergence at the cost of expensive communica-
tion among the agents.

Liu et al. [9] proposed a new method called Federated-Autonomous Deep
Learning (FADL) that relies upon training in a distributed manner across largely
imbalanced scattered data. This work tried to handle the imbalance by training
the first half of the neural globally using data collected from all sources. The
second half is trained locally like traditional Federated Learning. They claimed
to achieve similar performance to the conventional centralized and Federated
Learning methods.

Lu et al. [10] took the communication problem of the distributed training
into account and proposed an efficient framework with low latency over a fully

DNet 149

decentralized network over the graph. They did the empirical analysis over a
fully decentralized non-convex stochastic algorithm, which involves only local
updates and communication among the participating nodes. They emphasized
the local updates and considered to repeat it for the improved local model in
each update. However, they did not talk about the network structure and how
to improve the latency over it.

Xu et al. [18] discussed the challenges of incorporating Federated Learning
in healthcare. They summarized solutions to system and statistical challenges
as well as the privacy issues in Federated Learning. They also analyzed differ-
ent frameworks123 for experiments and simulation over the heterogeneous data
available.

Shokri et al. [15] and Deist et al. [5] discussed about pre-federated dis-
tributed learning techniques. They proposed key technical innovations like selec-
tive sharing of model parameters during training and usage of Support Vec-
tor Machine (SVM), solved with Alternating Direction Method of Multipliers
(ADMM). Ramaswamy et al. [13] shed light on working over large scale appli-
cations. Konevcny et al. [6], Wang et al. [17], Bonawitz et al. [2] and Agarwal et
al. [1], made efforts for devising methods of distributed learning, for secure and
communication efficient learning. They sketched different algorithms like PRLC,
autotuned SecAgg, and cpSGD. Kuo et al. [7] proposed distributed learning using
Blockchain technology, which assumes hierarchical network-of-networks.

3 Traditional Frameworks

Most discussed approaches of decentralized Federated Learning use Fully Con-
nected networks. The other less discussed strategies are Pseudorandom, Random,
and Cyclic. All of these approaches have their trade-offs like high latency, fault
tolerance, and efficiency. We review all these variants in this section, and propose
a Binary Tree Representation for the distributed network gaining high efficiency,
in the next section, along with the DNet algorithm.

The three traditionally discussed frameworks for distributed networks could
be described as follows. In the Pseudorandom framework, one node of the net-
work is chosen randomly as root (n1 in Fig. 1a). It establishes connections with
all the other nodes. Other nodes make a connection in the network with a prob-
ability of 40%. Figure 1a illustrates the Pseudorandom architecture. Figure 1b
illustrates the Cyclic framework, where all nodes are connected to the next
node in a cyclic fashion, i.e., one node is connected to two other adjacent nodes,
making a cycle. In the Fully Connected framework, each node establishes a
connection to the remaining nodes in the network. Figure 1c illustrates Fully
Connected architecture.

1 AI, W.: Federated ai technology enabler (2019), https://www.fedai.org/cn/.
2 Google.: Tensorflow federated (2019), https://www.tensorflow.org/federate.
3 OpenMined: Pysyft-tensorflow (2019), https://github.com/OpenMined/PySyft-

TensorFlow.

https://www.fedai.org/cn/
https://www.tensorflow.org/federate
https://github.com/OpenMined/PySyft-TensorFlow
https://github.com/OpenMined/PySyft-TensorFlow

150 P. P. Kulkarni et al.

Pseudorandom Cyclic

Fully connected

Fig. 1. Traditional distributed net structures (for 5 nodes)

4 Distributed Net

This section discusses the proposed algorithm, which is an aggregator-free Feder-
ated Learning approach. It presents an entirely distributed, decentralized system
and addresses the existing communication and latency issues.

The basic system setup for Distributed Net architecture with N nodes in
the network is as follows. The problem is formulated based on any participant’s
local data and model. The participant seeks collaboration for an improved global
model (It is assumed that the participants are identified with the intersect-
ing data and can contribute to the network). The datasets held by the partic-
ipants are locally preprocessed, and the respective labels are one-hot encoded.
For the purpose of running the experiments, out of Ttraining +Ttest samples of a
dataset, each node is given Ttraining/N training samples and Ttest/N test samples.

DNet 151

Each node trained on (V/V + 1) * (Ttraining/N) samples and validated on (1/V
+ 1) * (Ttraining/N) samples, where V:1 is train-validation split. Different dis-
tributed nets are trained till convergence, and test results are predicted according
to the distributed net training algorithm (DNet).

4.1 Training Algorithm (DNet)

Algorithm 1 explains the DNet training algorithm. This algorithm can be used
to train any framework (including the ones discussed in previous sections), only
by changing the aggregation and propagation algorithms in steps 10 and 11
depending on the DNet variant.

Algorithm 1: Distributed Net Training Algorithm (DNet)
1 Train with local data, get wj

ini, ∀jεn(nodes)
2 while epochs(i) not complete do
3 for every node(j) in the net do
4 for every connection(c) from the node do
5 Send wj

i from nj to nc

6 wc
i = federated average(wj

i, wc
i)

7 Train nc to get wc
i+1

8 end

9 end
/* Aggregation and propagation (Algorithm 2 for Binary Tree

Representation). Varies as per the type of framework */

10 wroot
i+1 = distributed average(wj

i+1∀jεn)

11 wj
i+1 = wroot

i+1∀jεn

12 end

First, all the nodes are trained locally once, to get the initial weights. After
that, in every epoch, each node sends its weights to the nodes it is connected to.
The receiver nodes take the federated average the incoming and local weights,
and then train the model with those weights. Then all weights are aggregated,
averaged and propagated, according to different strategies depending on the type
of network (For an instance of our network, refer Algorithm 2). Thus, all the
nodes have the trained weights at the end of each epoch.

4.2 Binary Tree Representation

This is the proposed architecture for the aggregator free and communication-
efficient Federated Learning. Each node is connected to two other nodes like
the Cyclic framework but rather form a binary tree instead of a cycle. It has
minimum number of connections and ensures that each node is visited only once.
Figure 2a and b illustrate the Binary Tree Representation and its tree view.

152 P. P. Kulkarni et al.

Binary Tree Representation
Binary Tree Representation
(Binary Tree View)

Fig. 2. Binary Tree Representation structures

Algorithm 2 lists down the steps involved in the aggregation and propagation
of the final model weights in every epoch. The aggregation part, recursively
sends the weights of each node to its parent, and sums them up. Eventually,
the sum of all the weights reaches the root. At the root, it is divided by the
number of nodes to get the average. The propagation part, simply recursively
propagates the final weights from every parent node to its children, starting from
the root and eventually reaching all the nodes. We can note that, aggregation
and propagation happens only on the last step of every epoch, following the same
path of Binary Tree, in reverse direction (from leaf to root) for aggregation, and
in forward direction (from root to leaf), for propagation. Hence, the extent of
privacy preservation is unchanged.

Algorithm 2: Aggregation and Propagation in Binary Tree Representation
(Distributed Net)
1 Function aggregation(nroot, connection matrix, n):
2 sum = wroot

3 for all connections from nroot to nj do
4 Send aggregation(nj, connection matrix, n) from nj to nroot

5 sum = sum + aggregation(nj, connection matrix, n)

6 end
7 return sum

8 wroot = sum/no. of nodes
9 Function Propagation(nroot, connection matrix, n):

10 for all connections from nroot to nj do
11 Send wroot from nroot to nj

12 wj = wroot

13 Propagation(nj, connection matrix, n)

14 end

DNet 153

4.3 Theoretical Analysis

This provides proof for the claim of gaining communication efficiency in the
decentralized Federated Learning using Binary Tree Representation. The sys-
tem has N nodes connected in a Binary Tree Representation network (Fig. 2a).
In every epoch of training, all nodes perform total 3(N – 1) data transfers (First,
weights are passed via the (N – 1) connections, which accounts for (N – 1) trans-
fers. Aggregation of weights of all nodes to the root and propagation of average
weights to all nodes, require (N – 1) transfers each. Adding all three, we get a
total of 3(N – 1) transfers per epoch). Let data transferred per epoch, per node,
be d units. Hence, total data transferred per epoch by all the nodes would be Nd.
Now, total data transferred per transfer, would be Total data transferred

Total number of transfers which
is Nd

3(N−1) .
The communication latency (L) can be seen as L = Ls + Lr + Ltrans where,

Ls is latency at sender, Lr is latency at receiver and Ltrans is the transmission
latency. We are interested in calculating the upper bound for the communication
bandwidth. We will calculate the value of γ and bound it to prove our claim.

γ =
L

Lavg

=
Ls + Lr + Ltrans

Ls,avg + Lr,avg + Ltrans,avg

Let port bandwidths for sender and receiver be Bs and Br, respectively. Thus,
the time required to transfer data would be μs = Bs

d and μr = Br

d respectively.
As per Queuing theory, latency at any node x can be represented as below, where
λ is the arrival rate of updates at the device assuming Poisson process.

Lx =
1
μx

+
λ

2μx(μx − dλ)

=
d

Bx
+

dλ

2Bx(Bx − dλ)

After substituting the values of latency at nodes (Lx) assuming it as sender
and receiver respectively, γ can be expressed as:

γ =
d

Bs
+ dλ

2Bs(Bs−dλ) + d
Br

+ dλ
2Br(Br−dλ) + d

Btrans

Nd
3(N−1)

Bs
+

Nd
3(N−1)λ

2Bs(Bs− Nd
3(N−1)λ)

+
Nd

3(N−1)

Br
+

Nd
3(N−1)λ

2Br(Br− Nd
3(N−1)λ)

+
Nd

3(N−1)

Btrans

≤
d

Bs
+ d

Br
+ d

Btrans
+ dλ

2Bs(Bs−dλ) + dλ
2Br(Br−dλ)

N
3(N−1) [

d
Bs

+ d
Br

+ d
Btrans

] + N
3(N−1) [

dλ
2Bs(Bs−dλ) + dλ

2Br(Br−dλ)]

γ ≤ 3(N − 1)
N

The above-stated proof states the upper bound as 3(N − 1)
N for the Binary

Tree Representation of DNet. For the other discussed networks, i.e., the Pseu-
dorandom, Cyclic and Fully Connected, with a total number of transfers being

154 P. P. Kulkarni et al.

∼(0.4N + 2)(N – 1), 3N and (N + 2)(N – 1) respectively, the bounds turn out
to be (0.4N +2)(N − 1)

N , 3 and (N +2)(N − 1)
N . It justifies our claim of proposing an

efficient communication framework for decentralized Federated Learning.

5 Experiments

We demonstrate experiments using Convolutional Neural Networks (CNNs) over
two medical datasets with the proposed architecture. This section will discuss
the dataset and the deep learning architecture used for training.

5.1 Datasets

Two datasets are primarily used for evaluating the proposed DNet algorithm
with Binary Tree Representation and compared with other existing frameworks.

Chest X-ray Images (Pneumonia) Dataset4

– Number of samples: 5,840
– Sample desc: X-ray images (varying dimensions) of anterior-posterior chests,

carefully chosen from retrospective pediatric patients between 1–5 years old.
– Number of classes: 2 (pneumonia (4,265), normal (1,575))
– Figure 3a and b plots some of the samples of this dataset

Pneumonia Normal COVID Normal

Fig. 3. Examples from the datasets Pneumonia dataset: a and b | COVID-19 dataset:
c and d

COVID-19 and Normal Posteroanterior (PA) X-rays Dataset5

– Number of samples: 280
– Sample desc: Posteroanterior chest X-ray images (varying dimensions)
– Number of classes: 2 (covid (140), normal (140))
– Figure 3c and d plots some of the samples of this dataset
4 https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia.
5 https://www.kaggle.com/tarandeep97/covid19-normal-posteroanteriorpa-xrays.

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/tarandeep97/covid19-normal-posteroanteriorpa-xrays

DNet 155

5.2 Training

This section describes the training over both the datasets discussed above using
the DNet algorithm with different architectures, with the Convolutional Neural
Network (CNN) deep learning configuration as mentioned in Table 1.

Table 1. CNN configuration

Layer (type) Output shape

Conv2D (None, 198, 198, 32)

MaxPooling2 (None, 99, 99, 32)

Conv2D (None, 97, 97, 64)

MaxPooling2 (None, 48, 48, 64)

Conv2D (None, 46, 46, 128)

MaxPooling2 (None, 23, 23, 128)

Conv2D (None, 21, 21, 128)

MaxPooling2 (None, 10, 10, 128)

Flatten (None, 12800)

Dropout (None, 12800)

Dense (None, 512)

Dense (None, 2)

First, we carried the experiment over the Chest X-ray (Pneumonia) dataset.
It is a comprehensive dataset with 5840 X-ray images of pneumonia patients
and healthy people, thus being a binary classification candidate. The algorithm’s
effectiveness was tested on a domain problem in this experiment. The dataset
was split into a 75:25(3:1) train:test set, implying 4380 training images and 1460
test images. The base classifier was trained on the complete training set (with a
4:1 train:validation split) and tested on 1460 samples. It simulates the scenario
where the data from all nodes is pooled, for ground values without federated
setup. The complete training ran for 10 epochs. In the federated experiment,
the training was conducted in an environment with 5 nodes. The number of
local training epochs for each was set to be 10. The number of global iterations
to converge the training was set to 2. We implemented all the code in Keras
2.2.4. The optimizer used was Adam and the loss function used for training, was
binary crossentropy.

The second experiment was conducted over the COVID-19 and Normal Pos-
teroanterior (PA) X-rays dataset. We ran this experiment to verify our proposed
method’s performance for a minimal amount of data. It ran with precisely the
same configuration, parameters, and hyperparameters as of the first experiment.

156 P. P. Kulkarni et al.

6 Results and Discussion

This section discusses the empirical results of all the different experiments per-
formed. It also shows the comparison among the different architectures used with
DNet.

The results for both the experiments carried out, i.e., over the Chest X-
ray (Pneumonia) dataset and over the small COVID 19 dataset, for five nodes
with all the variants of the DNet algorithm are compiled in Table 2. We can
infer that the proposed Binary Tree Representation architecture achieves similar
performance in less than half the number of computations compared to the Fully
Connected variant. The Binary Tree Representation outperforms the traditional
variants with the least number of computations.

Table 2. Results of the experiments

DNet architecture Dataset n1 n2 n3 n4 n5 Average Computations per epoch

Base classifier Pneumonia - - - - - 94.66 -

COVID 19 - - - - - 95.29

Pseudorandom Pneumonia 97.6 95.21 96.58 94.18 95.55 95.824 17

COVID 19 100 92.86 100 100 100 98.57

Cyclic Pneumonia 96.92 95.55 95.55 93.49 92.81 94.864 15

COVID 19 92.86 100 92.86 92.86 85.71 92.86

Fully Connected Pneumonia 96.23 95.55 97.6 95.89 95.2 96.092 28

COVID 19 85.71 85.71 100 100 78.57 90

Binary Tree Representation Pneumonia 93.49 92.12 94.86 95.21 94.86 94.108 12

COVID 19 100 100 100 100 92.86 98.57

From the results of the experiments conducted, we can conclude the following
about DNet:

– DNet performs well on Image data, which is evident from the results of both
the experiments

– DNet handles a real-world healthcare task of image classification, very effi-
ciently. This is made clear by the results of the main experiment.

– DNet also passed the test of performing in the scenario of very less data to
train. This is made clear by the results of the second experiment.

All the variants of DNet are on par with the Base classifier in terms of accu-
racy, while being much more secure and privacy-preserving. The main experi-
ment with the Chest X-ray data showed that this model is feasible to be applied
in the healthcare domain and thus, the model established itself. The results show
that the DNet was on par with the base classifier and hence, the experiment was
a success.

The second experiment was in a different setting, with very less amount of
data. Empirically, the results show that the model does perform well in that
scenario too. In the case of a very small number of data points, the results tend

DNet 157

to depend on particular data points, which means that the results can change
drastically due to even one misclassification by the model. Thus some random
erratic behavior, for e.g. lower accuracy in node n5, is observed. But overall, the
performance of the model was satisfactory.

Comparing the DNet frameworks with each other, we see that all four tend
to perform similarly, as results show that all of them are on par with the base
classifier, and show about equivalent accuracy measure, in all cases. The main
difference comes in the efficiency part. As we can see from Table 2, the Cyclic
and Binary Tree Representation frameworks achieve similar accuracy to the other
nets, but in very few numbers of computations in comparison. The rate at which
the number of computations increases with the number of nodes is as shown in
Fig. 4.

We see that Fully Connected framework has a very high rate of increase in the
number of computations as the number of nodes increase. The Pseudorandom
framework follows with a considerably high rate of increase. Meanwhile, Cyclic
and Binary Tree Representation frameworks show a linear increase rate, thus
being much more efficient than the other two. (Binary being slightly better, as a
number of computations for N nodes, 3N for Cyclic and 3(N – 1) for Binary Tree
Representation). In Fig. 4, due to scale, lines representing Cyclic and Binary
Tree Representation networks are very close to each other, Cyclic being slightly
above.

As far as robustness is concerned, the proposed Binary Tree Representation
framework outclasses the Cyclic one. The collapse of even one node in the Cyclic
framework would completely shut down the training procedure. While, in case
of Binary Tree Representation network, the part of the tree below the malfunc-
tioned node would get cut off from the training, but this won’t stop the process
altogether. Thus, considering factors of performance, efficiency, and robustness,
the proposed Binary Tree Representation framework is the best option among
the four DNet variants we have studied.

There are also certain limitations, a far as the DNet and the Binary Tree
Representation are concerned. In case of the DNet as a whole, the training
procedure is slow, as compared to a traditional Federated Learning scheme. The
absence of a central server, gives rise to more non-simultaneous transfers between
nodes, thus increasing the training time, at the benefit of increase in privacy.
The proposed Binary Tree Representation framework is very rigid, and thus
cannot incorporate nodes entering and exiting while the training is in progress.
The number of nodes needs to be fixed beforehand. Also, the framework lacks
differential privacy. These are some problems which could be addressed in the
future.

158 P. P. Kulkarni et al.

Fig. 4. Rate of increase in the number of computations

7 Conclusion and Future Work

This paper proposed the DNet algorithm with Binary Tree Representation and
compared it with the existing frameworks. It aims to set up a decentralized
Federated Learning system with low communication latency. It achieved slightly
less accuracy by 2% compared to a Fully Connected framework by reducing
communication by more than half. We theoretically proved that the communi-
cation latency of the Binary Tree Representation has the lower upper bound
as compared to the Pseudorandom, Cyclic, and Fully Connected networks. The
network is privacy-preserving in nature but prone to inference and poisoning
attacks. Many works are already going in this direction and should be incor-
porated to make this model more secure. There is also scope for research to
integrate Multimodality, Selective Parameter Sharing, Transfer Learning, Inter-
operability, and local compensation for making the network more robust.

References

1. Agarwal, N., Suresh, A.T., Yu, F.X.X., Kumar, S., McMahan, B.: cpSGD:
communication-efficient and differentially-private distributed SGD. In: Advances
in Neural Information Processing Systems, pp. 7564–7575 (2018)

2. Bonawitz, K., Salehi, F., Konečnỳ, J., McMahan, B., Gruteser, M.: Federated learn-
ing with autotuned communication-efficient secure aggregation. arXiv preprint
arXiv:1912.00131 (2019)

3. Brisimi, T.S., Chen, R., Mela, T., Olshevsky, A., Paschalidis, I.C., Shi, W.: Feder-
ated learning of predictive models from federated electronic health records. Int. J.
Med. Inform. 112, 59–67 (2018)

http://arxiv.org/abs/1912.00131

DNet 159

4. Chen, Y., Qin, X., Wang, J., Yu, C., Gao, W.: Fedhealth: a federated transfer
learning framework for wearable healthcare. IEEE Intell. Syst. 35, 83–93 (2020)

5. Deist, T.M., et al.: Infrastructure and distributed learning methodology for privacy-
preserving multi-centric rapid learning health care: euroCAT. Clin. Transl. Radiat.
Oncol. 4, 24–31 (2017)

6. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Fed-
erated learning: strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492 (2016)

7. Kuo, T.T., Kim, J., Gabriel, R.A.: Privacy-preserving model learning on a
blockchain network-of-networks. J. Am. Med. Inform. Assoc. 27, 343–354 (2020)

8. Lalitha, A., Kilinc, O.C., Javidi, T., Koushanfar, F.: Peer-to-peer federated learn-
ing on graphs (2019)

9. Liu, D., Miller, T., Sayeed, R., Mandl, K.D.: FADL: federated-autonomous deep
learning for distributed electronic health record. arXiv preprint arXiv:1811.11400
(2018)

10. Lu, S., Zhang, Y., Wang, Y., Mack, C.: Learn electronic health records by fully
decentralized federated learning (2019)

11. McMahan, H.B., Moore, E., Ramage, D., Arcas, B.A.: Federated learning of deep
networks using model averaging. CoRR abs/1602.05629 (2016). http://arxiv.org/
abs/1602.05629

12. Ramanan, P., Nakayama, K.: BAFFLE: blockchain based aggregator free federated
learning (2019)

13. Ramaswamy, S., Mathews, R., Rao, K., Beaufays, F.: Federated learning for emoji
prediction in a mobile keyboard. arXiv preprint arXiv:1906.04329 (2019)

14. Shamir, O., Srebro, N., Zhang, T.: Communication efficient distributed optimiza-
tion using an approximate newton-type method. CoRR abs/1312.7853 (2013).
http://arxiv.org/abs/1312.7853

15. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, pp.
1310–1321 (2015)

16. Stephen, O., Sain, M., Maduh, U.J., Jeong, D.U.: An efficient deep learning app-
roach to pneumonia classification in healthcare. J. Healthc. Eng. 2019 (2019)

17. Wang, H., Qu, Z., Guo, S., Gao, X., Li, R., Ye, B.: Intermittent pulling with
local compensation for communication-efficient federated learning. arXiv preprint
arXiv:2001.08277 (2020)

18. Xu, J., Wang, F.: Federated learning for healthcare informatics. arXiv preprint
arXiv:1911.06270 (2019)

http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1811.11400
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1906.04329
http://arxiv.org/abs/1312.7853
http://arxiv.org/abs/2001.08277
http://arxiv.org/abs/1911.06270

Memory Optimized Dynamic Matrix Chain
Multiplication Using Shared Memory in GPU

Girish Biswas(B) and Nandini Mukherjee

Department of Computer Science and Engineering, Jadavpur University, Kolkata, IN, India
girishbiswas@gmail.com, nmukherjee@cse.jdvu.ac.in

Abstract. Number of multiplications needed for Matrix Chain Multiplication of
n matrices depends not only on the dimensions but also on the order to multiply
the chain. The problem is to find the optimal order of multiplication. Dynamic pro-

gramming takesO
(
n3

)
time, along withO

(
n2

)
space in memory for solving this

problem.Now-a-days, Graphics ProcessingUnit (GPU) is very useful to the devel-
opers for parallel programming using CUDA computing architecture. The main
contribution of this paper is to recommend a new memory optimized technique to
solve the Matrix Chain Multiplication problem in parallel using GPU, mapping
diagonals of calculation tables m[][] and s[][] into a single combined calculation

table of size O
(
n2

)
for better memory coalescing in the device. Besides optimiz-

ing the memory requirement, a versatile technique of utilizing Shared Memory in
Blocks of threads is suggested tominimize time for accessing dimensions ofmatri-
ces in GPU. Our experiment shows best ever Speedup as compared to sequential
CPU implementation, run on large problem size.

Keywords: GPU · CUDA · Matrix chain · Memory mapping · Dynamic
programming · Memory optimized technique

1 Introduction

Graphics Processing Unit (GPU) is a common architecture in today’s machines that can
provide high level of performance in graphical platform using many-core processors.
Modern GPU offers the developers to use all cores of processors simultaneously to par-
allelize the general purpose computing. Many studies [2, 4, 6, 8, 9] have been carried out
till date to implement parallel algorithms in CUDA for general computational problems.
There are some Streaming Multiprocessors (SM) in a GPU device and each SM com-
prises of many cores (Fig. 1) which may be allocated to threads in parallel. The whole
computation in the device is done over a Grid of some Blocks, where each Block is con-
stituted of some number of threads. NVIDIA GPUs provide the parallel programming
architecture, called CUDA (Compute Unified Device architecture) [5].

Using GPU architecture for solving the optimization problems with large number of
combinations is challenging due to limited memory in the device and minimum depen-
dency between different threads. The problem of Matrix Chain Multiplication arises in

© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 160–172, 2021.
https://doi.org/10.1007/978-3-030-65621-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-65621-8_10

Memory Optimized Dynamic Matrix Chain Multiplication 161

many real time applications such as image processing, modern physics and modelling
etc. This optimization problem needs to find the optimal order of multiplication of the
matrices.

Dynamic programming approach may be applied to find the optimal solution using
GPU [2] with diagonal mapped matrices of calculation for assuring coalesced memory
access. This approach uses two 2D calculation tables m[][] and s[][], each of n rows and
n columns. So, O

(
2 · n2) size memory space is required to be allocated in GPU device,

which is made of limited space.
The main contribution of our paper is to suggest an efficient way of using only a

single combined calculation table of size O
(
n2

)
, to be allocated in the device, mapping

diagonals of both of m[][] and s[][] into it (Fig. 3). Our memory optimized approach
maintains memory coalescing and shows better results choosing proper Block-size in
GPU (Sect. 4.B) for the varying number of elements in the diagonals of the tables. Also,
a simple trick is taken in our study to use Shared Memory to store only the required
dimensions of matrices (Fig. 4) in Blocks of threads executing in parallel in GPU to
reduce the access time for accessing dimensions of matrices to enrich the Speedup even
more, compared with sequential implementation run in CPU for large datasets. This
paper presents the most effective technique with respect to both memory requirements
and performance.

The paper is organized as follows, Sect. 2 illustrates the idea of CUDA programming
architecture in GPU device. Section 3 provides the Dynamic Programming Techniques
to solve the Matrix Chain Multiplication Problem in GPU. Section 4 discusses about
our Proposed Approach. Section 5 discusses about the results. Section 6 concludes the
paper.

1.1 Previous Works

As per our knowledge, very few studies have been made onMatrix Chain Multiplication
optimization problem until now for parallelizing the problem especially throughGPU. In
2011KazufumiNishida,Yasuaki Ito andKojiNakano [2] proposed an efficient technique
of memory mapping to ensure coalesced memory access for accelerating the dynamic
programming for the Matrix Chain Multiplication in GPU. The diagonals of m[][] and
s[][] were mapped into rows of 2D arrays in a manner that all elements of a diagonal
are consecutive in nature. They have passed all the diagonals of m and s tables to GPU
one by one for computation of all elements of each diagonal by Blocks of threads in
parallel. But, for a problem size of nmatrices, this approach takes memory space of size(
2 · n2), where O

(
n2

)
size of memory is wasted. In addition, much time is wasted in

accessing the array of dimensions from Global Memory of GPU by the threads of each
Block which can be further accelerated with the help of Shared Memory.

Mohsin Altaf Wani and S.M.K Quadri [4] presented an accelerated dynamic pro-
gramming on GPU in 2013. They have not used any mapping of m table, but simply
used single Block of threads for the computation of a single diagonal of m where each
thread independently calculates some elements of that diagonal in parallel. This app-
roach suffers from non-coalesced memory access and does not use multiple Blocks of
threads also.

162 G. Biswas and N. Mukherjee

2 GPU and CUDA

NVIDIA introduced CUDATM, a general purpose computing architecture in GPU in
2006. This massive parallel computing architecture can be applied to solve complex
computational problems in highly efficient manner with respect to equivalent sequen-
tial solution implemented on CPU. Developers may use the high-level language, C in
programming with CUDA [3].

2.1 GPU Architecture

GPU consists of several Streaming Multiprocessors (SM) with many cores and mainly
two types of memory: Global Memory, Shared Memory (Fig. 1) [3]. Also, each SM has
number of registers which are fastest and local to SM. Each SM has its own Shared
Memory, which can be as fast as registers when bank conflict does not happen. Global
Memory of higher memory capacity is potentially 150× slower than Shared Memory.

2.2 CUDA

In programming architecture of CUDA [3], parallelism is achievedwith bunch of threads
combined into a Block and multiple Blocks combined into a Grid. Each Block is always
assigned to a single SMwhile the threads in a Block are scheduled to compute as awarp
of 32 threads at a time. All threads of a Block can be synchronized within that Block and
can access the Shared Memory of that assigned SM only. CUDA permits programmers
to write C function, called Kernel for parallel computations in GPU using Blocks of
threads.

2.3 Coalesced Memory Access

If access requests to Global Memory from multiple threads can be assembled into con-
tiguous location accesses or same location access, this request can be performed at once
which is known as coalesced memory access [3]. As a result of such memory coalescing,
Global Memory works nearly as fast as register memory.

Fig. 1. GPU computing architecture in CUDA

Memory Optimized Dynamic Matrix Chain Multiplication 163

2.4 Shared Memory and Memory Banks

Shared Memory [3, 10] is a collection of multiple banks of equal size which could be
accessed simultaneously. Any memory accesses of n addresses from n distinct memory
banks can effectively be serviced simultaneously. If multiple threads request to the
same bank and to the same address, it is accessed only once and served to all those
threads concurrently as multicast at once. However, multiple access requests to different
addresses from same bank lead to Bank Conflict, which needs much time as requests
are served serially [11]. For the GPU devices of compute capability ≥ 2.x, there are 32
banks with each bank of 32-bits long whereas the warp size is of 32 threads. If multiple
threads of a warp try to access data from the samememory address with same bank, there
happens no bank conflict alsowhich is termed asmulticast.When usedwith 1Byte/2Byte
long data in Shared Memory, each bank contains more than one data. In this case also
there is no bank conflict if threads access these data from single bank, as this is taken as
multicast [12] in GPU device with compute capability ≥ 2.x. GPU devices of compute
capability = 2.x have the default settings of 48 KB Shared Memory/16 KB L1 cache.

3 Matrix Chain Multiplication Problem

Matrix Chain Multiplication or Matrix chain ordering problem requires to finding the
best order for multiplying the given sequence of matrices so that the least number of
multiplications are involved. This is merely an optimization problem using the asso-
ciative property of matrix multiplication. Actually the solution is to provide the fully
parenthesized chain of matrices through the optimal order of multiplication.

Provided the Matrix Chain, containing n matrices {A1,A2,An}, is to be mul-
tiplied where {d1, d2, d3,dn, dn+1} is the set of all dimensions of these matrices,
described as follows:

A1 : d1 × d2
A2 : d2 × d3

.

An : dn × dn+1

Now, the problem is to find the order in which the computation of the product
A1 × A2 × × An needs the minimum number of multiplications and hence find the
fully parenthesized chain denoting the optimal order of multiplication.

3.1 Solving Technique in Dynamic Programming

Dynamic programming is useful for storing the solutions of small sub-problems and
reusing themstepby step to combine into greater problems andfinallyfinding the solution
of the given problem in time efficient approach. Dynamic programming technique [1]
makes it easy to solve the above Matrix Chain Multiplication problem with n matrices
using am[][] table, wherem[

i, j
]
denotes theminimumnumber ofmultiplications needed

164 G. Biswas and N. Mukherjee

to compute the sub-problem <Ai x Ai + 1 x….x Aj> for 1 < i < j < n. Minimum cost
m

[
i, j

]
is calculated using the following recursion:

{
0 if i = j

min
i<k≤j{m[i, k] + m

[
k + 1, j

] + didkdj+1 if i < j
(1)

Here “k” is stored in another table s[][] at s[i, j] when the minimum value for m
[
i, j

]
is

found. Thus m[1, n] refers to the solution for the full problem and s[][] table is used to
determine the parenthesized solution of the chain.

Dynamic programming technique requires time of O
(
n3

)
.

3.2 Accelerated Dynamic Programming in GPU

Dynamic Programming approach for solving Matrix Chain Multiplication problem can
be easily parallelized by computing for the elements of each diagonal of m[][] and s[][]
tables in GPU independently in different threads. But, this is inefficient and time-taking
due to lack of coalescing in Global Memory access.

KazufumiNishida,Yasuaki Ito andKojiNakano [2] innovated a techniqueofmemory
mapping of m and s to ensure coalesced memory access for accelerating the dynamic
programming for the Matrix Chain Multiplication in GPU. m and s are mapped into
arrays of n × n memory spaces in Global Memory of GPU along with the array of
dimensions of matrices, d [].

Let us take a problem sample of six matrices (n = 6):

A1 : 20 × 25,A2 : 25 × 50,A3 : 50 × 35

A4 : 35 × 10,A5 : 10 × 40,A6 : 40 × 30

Dynamic programming starts from the base case m[i]
[
j
] = 0fori = j i.e., the

diagonal-1 (Fig. 2) of m. Then, m[i]
[
j
]
for each diagonal (upper) is to be computed

using recursion (1) where the s table is needed to store values only in upper diagonals 2
to n. Required diagonals of m and s tables are mapped in row by row manner (Fig. 2).
GPU kernel may be called for computation of diagonals one by one from diagonal-2 to
diagonal-n of m and s, which ensures coalescing.

Here,m and s both table are implemented with an array of n×n elements of memory
size O

(
n2

)
. But, in computation we do not need the all locations. Say, the number of

memory spaces wasted in m and s areWm and Ws respectively.
Then, Wm = {(n − 1) + (n − 2) + + 2 + 1} = ∑n−1

i=1 i = n(n−1)
2

Ws = {n + (n − 1) + + 2 + 1} =
∑n

i=1
i = n(n + 1)

2

So,Wm + Ws = n(n − 1)

2
+ n(n + 1)

2
= n2

This technique suffers from memory wastage of size θ
(
n2

)
(i.e. half of the spaces

allocated) in GPU which is very limited in storage.

Memory Optimized Dynamic Matrix Chain Multiplication 165

diagonal 1=>

diagonal 2=>

diagonal 3=>

diagonal 4=>

diagonal 5=>

diagonal 6=>

diagonal 2=>

diagonal 3=>

diagonal 4=>

diagonal 5=>

diagonal 6=>

jj =>
1 2 3 4 5 6

j=>
1 2 3 4 5 6

1 0 25000 60000 35000 43000 53000 1 0 1 0 3 3

2 0 43750 30000 40000 49500 2 1 1 3 3

i 3 0 17500 37500 44500 i 3 2 3 3

4 0 14000 22500 4 3 3

5 0 12000 5 4

6 0 6

(a) m table (b) s table

j==>> 1 2 3 4 5 6 j=> 1 2 3 4 5 6

diagonal-6 53000 1 1

diagonal-5 43000 49500 2 2 3 <diagonal-6

diagonal-4 35000 40000 44500 3 i 3 3 3 <diagonal-5

diagonal-3 60000 30000 37500 22500 4 4 0 3 3 <diagonal-4

diagonal-2 25000 43750 17500 14000 12000 5 5 1 1 3 3 <diagonal-3

diagonal-1 0 0 0 0 0 0 6 6 0 1 2 3 4 <diagonal-2

(c) mapped m table for Coalesced Access (d) mapped s table for Coalesced Access

Fig. 2. Memory Mapping of m & s tables for n = 6

Recursion (1) shows that to compute m[i]
[
j
]
, it needs

to access di, di+1, di+2,dj+1 from the array of dimensions (d []) in Global Memory.
All threads of a Block need to access the dimensions same way in GPU kernel for com-
putation of a diagonal as shown in Fig. 4. Though this technique ensures the coalesced
access of GlobalMemory from d [] by the threads, this accessing time fromGlobalMem-
ory can rather be reduced much by our new efficient technique of using SharedMemory,
which serves much faster with respect to Global Memory.

4 Proposed Approach

4.1 Combined m and s Table

The most significant thing in our approach is to optimize the memory spaces allocated in
Global Memory of GPU device. Without taking two arrays, we have used only an array
of n × n elements for containing m and s tables both combined (Fig. 3), using memory
mapping [2, 8] formaintaining the coalescedmemory access pattern for better efficiency.
Our approach not only assures coalescing but also reduces the space complexity to half

166 G. Biswas and N. Mukherjee

which offers to solve Matrix Chain Multiplication problem of larger datasets even with
limited memory in GPU device.

1 2 3 4 5 6

diagonal 1 of m => 1 0 0 0 0 0 0

diagonal 2 of m => 2 25000 43750 17500 14000 12000 3

diagonal 3 of m => ii 3 60000 30000 37500 22500 3 3

diagonal 4 of m => 4 35000 40000 44500 0 3 3

diagonal 5 of m => 5 43000 49500 1 1 3 3

diagonal 6 of m => 6 53000 0 1 2 3 4

j

<= diagonal 6 of s

<= diagonal 5 of s

<= diagonal 4 of s

<= diagonal 3 of s

<= diagonal 2 of s

Fig. 3. Combined table for Mapped m and s for n = 6

In this approach, we have done computations for all diagonal elements of m and s
from diagonal-2 to diagonal-n. Each element in a diagonal is calculated by single thread
in GPU. After computation, updating values of m[i]

[
j
]
and s[i]

[
j
]
for i < j assures the

coalescing for each diagonal, resulting in fast and effective memory access.

4.2 Block-Size Choosing Technique

l th diagonal (upper) of m and s tables contains e = n − l + 1 elements [1]. When
computation goes forward from 2nd diagonal to nth diagonal, this number of elements
(e) decreases from n to 1. Thus, ifB threads/Block are assigned for each diagonal, then the
diagonals with e < B do not need the whole Block and some threads remain unutilized
in computation. When, e becomes so less with respect to B, most of the threads in the
Block are launched in vain.

In previous approach [2], a total Block ormultiple Blocks of threads were assigned to
the calculation of single element of a diagonal depending on the value of e. We have used
a simple approach to assign varying number of threads per Block for e with less number
of elements. We need to call the kernel with e/B number of Blocks while Block-size B
denotes threads/Block. We have chosen a most suitable value of B provided that some
value B

∧

is taken as threads/Block satisfying B
∧

≥ e and B
∧

mod32 = 0 when e < B. This
technique saves our time, by not launching unnecessary threads for diagonals with few
number of elements.

4.3 Using Shared Memory for d[]
Similar tom and s tables, d [] array of dimensions of theMatrix Chain is copied to Global
Memory in the device. While computation of m[i]

[
j
]
is done for l th diagonal of m and

s, j = i + l − 1 and i ranges from 1 to, where number of elements in the diagonal is
e = n − l + 1 in dynamic programming technique [1]. For computation of m[i]

[
j
]
, it is

Memory Optimized Dynamic Matrix Chain Multiplication 167

required to calculate all values of didkdj+1 for i < k ≤ j according to Recursion (1). In
kernel, threads in a Block need to access the elements of d [] array in coalesced manner
as the threads are accessing contiguous memory locations in parallel (Fig. 4).

Fig. 4. Memory access patterns by the threads of a Block of Block-size B for lth upper diagonal
of m table. Here, j = i + l − 1 and i = B × bx +1

GPU scheduler schedules Blocks one by one while all threads in that Block compute
in parallel in warps of 32 threads at a time. If Block-size is B, then threads have thread-Id
from 0 to B − 1 for any Block with Block-Id bx,where 0 ≤ bx < e/B and e/B is total
number of Blocks for l th diagonal (Sect. 4.B).When, thread Id 0 of Block Id bx is used to
calculate the value of m[i]

[
j
]
(i th element of the l th diagonal), it needs to access values

of di, di+1 . . . dj+1 i.e., di, di+1 . . . di+l of d [] as shown in Fig. 4 where i = B × bx + 1
and j = i+ l−1. Though this large number of Global Memory accesses can be arranged
with coalesced access pattern, this time for memory accesses from Global Memory can
be again reduced, as there is a scope to use Shared Memory to serve this purpose much
rapidly.

We have used Shared Memory to reduce the access time and the number of Global
Memory accesses. Though all threads run independently, they need to access only the
elements of d [] in a range and those values are to be used by multiple threads in that
Block. This range is di, di+1 . . . di+l+B−1 (Fig. 4). Therefore, the total Block of threads
uses only these l + B elements of d [] from Global Memory. Only these l + B number
elements of d [] are copied to Shared Memory for each Block. Each thread of a Block
can access Shared Memory of that Block in very fast and effective manner with no bank
conflict. If we use 1Byte/2Byte long data for each element of d [], the warp of 32 threads
access distinct elements of d [] and results in no bank conflict as discussed in Sect. 2.4
with the help of multicasting. Due to space limitation of Shared Memory, dimensions
can be stored as 1Byte long data. We have used this approach along with the memory
optimization technique (Sect. 4.1) and hence got very effective results.

5 Performance Evaluation

Tests have been carried out on theMatrix Chains containing different number ofmatrices
whose dimensions are randomly generated in the range [1, 100]. Our experiment is made

168 G. Biswas and N. Mukherjee

over a long range of Matrix Chain length (n) i.e. 1000 to 14000 number of matrices in
the chain.

We have used NVIDIA GeForce GT 525 M graphics card of 1 GB for parallel
computation using GPU and Intel Core i5 @2.5 GHz with 4 GB RAM for sequential
processing in CPU. Our GPU device is of Fermi architecture [7] which has 16 SMs of
32 cores each, i.e. total 512 cores and allows maximum 1024 threads/Block.

While e = n− l + 1 specifies the number of elements in l th diagonal of m table, we
obtained the best speed up when we have passed varying number of threads (multiple
of 32) for e < 768 and 768 threads/Block for e >= 768 for l th diagonal for better
occupancy in the GPU kernel.

In Table 1, we can compare the execution time (in sec.) of our Memory Optimized
Approach in GPU with the Sequential Approach in CPU and other two approaches:
Memory Unmapped Approach (diagonals of m[] and s[] tables are not mapped) and
previous Memory Mapped Approach (diagonals of m[] and s[] tables are mapped to
different arrays). Our Memory Optimized Approach using GPU shows increasingly
better performance as the problem size increases in comparison to CPU according to
Fig. 5, showing in logarithmic scale.

Table 1. Execution time (in sec.) of the Sequential Approach in CPU and different Approaches
in GPU: Memory Unmapped Approach and Previous Technique of Memory Mapped Approach
and our Memory Optimized Approach.

Matrix Chain
length (n)

Sequential
Approach in
CPU (tseq)

Unmapped
Approach in
GPU
(tpll)

Previous Memory
Mapped Approach in
GPU
(tpll)

Our Memory
Optimized
Approach in
GPU (tpll)

1000 1.2695 2.45833 0.312 0.3058

2000 13.1489 19.81633 1.33893 1.3018

3000 49.5611 66.682 3.96608 3.63

4000 152.9227 155.0192 7.79234 7.0868

5000 253.3594 297.1772 16.69396 13.9917

6000 449.1240 513.3569 26.90393 22.509

7000 793.9893 834.8231 44.34579 36.4512

8000 1441.5231 1243.0041 55.12547 47.5437

9000 1688.754 1761.305 91.98259 75.0826

10000 2295.8261 2411.3491 118.25785 96.9248

11000 3302.2165 137.9615

12000 4844.4406 149.7597

13000 5947.9613 221.5745

14000 9044.3004 254.0719

Memory Optimized Dynamic Matrix Chain Multiplication 169

 sec

1 sec

10 sec

100 sec

1000 sec

10000 sec

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000

Sequen al Approach in CPU

Our Memory Op mized Approach in
GPU using Shared memory

Fig. 5. Comparison of Execution time (in sec.) of Our Memory Optimized Approach in GPU vs.
Sequential CPU implementation for n = 1000 to 14000.

Speedup factors of the approaches in GPU over the CPU implementation (shown in
Table 2) are computed as follows:

Table 2. Speedup achieved by different Approaches in GPU: Memory Unmapped Approach and
Previous Technique of Memory Mapped Approach and our Memory Optimized Approach.

Matrix Chain length
(n)

Unmapped Approach
in GPU
(tseq/tpll)

Previous Memory
Mapped Approach in
GPU
(tseq/tpll)

Our Memory
Optimized Approach
in GPU (tseq/tpll)

1000 0.52 4.07 4.15

2000 0.66 9.82 10.10

3000 0.74 12.50 13.65

4000 0.99 19.62 21.58

5000 0.85 15.18 18.11

6000 0.87 16.69 19.95

7000 0.95 17.90 21.78

8000 1.16 26.15 30.32

9000 0.96 18.36 22.49

10000 0.95 19.41 23.69

11000 23.94

12000 32.35

13000 26.84

14000 35.60

170 G. Biswas and N. Mukherjee

Speedup = Execution time inCPU Approach

Execution time inGPU Approach

Our approach acquired as much Speedup as 35.6 (Table 2) for the problem size (n)
of 14000 matrices in the chain. Due to lack of available space in our GPU device (1GB),
other Approaches (Table 1) can be run over the datasets of Matrix Chain of length (n)
only upto 10000 in our GPU device because of higher memory requirements, whereas
our Memory Optimized Approach runs successfully upto Matrix Chain of length (n)
upto 14000. Speedup factor our approach is compared with other GPU approaches in
Fig. 6. It’s quite clear that our technique not only requires much less memory in GPU
device but also performs all time better.

0.00

10.00

20.00

30.00

40.00

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000

Our Memory Op mized Approach

Memory Mapped Approach

Unmapped Approach

Fig. 6. Comparison of Speedup of Our Approach with other Approaches in GPU for n =
1000 to 14000.

We have used the Shared Memory to reduce Global Memory Access (Sect. 4.3), but
the previous best Memory Mapped Approach used only Global Memory to access the
array of Dimensions d []. We have listed the total number of Memory Accesses from
the array of Dimensions d [] stored in Global Memory of GPU for Our Approach and
the Memory Mapped Approach in Table 3. Our Approach needs much less number of
Memory Accesses from d [] as compared to the previous best Approach (Fig. 7). Our
Approach is not only better in this access count, but also copies the required portion
Global Memory of d [] to Shared Memory in coalesced manner. For there is only 48 KB
Shared Memory in our device, here, we took 1Byte space for each element of d [] as
it is in the range of [1, 100]. Thus, our Approach reduces the access time to a certain
remarkable factor with the help of Shared Memory with no bank conflict.

Memory Optimized Dynamic Matrix Chain Multiplication 171

Table 3. Number of Global Memory Accesses (in million) from the Dimension array d[] in Our
Approach and Previous Memory Mapped Approach in GPU

Matrix Chain length (n) Previous Memory Mapped
Approach in GPU (C1)

Our Memory Optimized
Approach (C2)

1000 16767 103

2000 133733 487

3000 450900 1281

4000 1068266 2614

5000 2085833 4620

6000 3603599 7427

7000 5721566 11164

8000 8539732 15964

9000 12158099 21956

10000 16676666 29268

0
2000000
4000000
6000000
8000000

10000000
12000000
14000000
16000000
18000000
20000000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Previous Approaches

Our Memory Op mized Approach

Fig. 7. Comparison of Number of Global Memory Accesses (in million) from the Dimension
array d[] between Our Approach and Previous Memory Mapped Approach in GPU for n =
1000 to 10000.

6 Conclusion

In this paper, we have presented a new Dynamic Programming technique for parallel
processing in CUDA enabled GPU to solve the problem of Matrix Chain Multiplication.
All of the previous Approaches, known to us, needed two n× n size arrays (O(2.n2)) to
keep m and s tables which are required in Dynamic Programming to solve this problem.
Here, we have suggested a technique to use only one n × n size array (O(n2)) to which
m and s both tables are to be mapped for minimizing the memory requirements in GPU.
This allows us to solve problems of Matrix Chain with larger number of matrices in
small sized memory in GPU device. Only with the GPU device of 1GB memory, we

172 G. Biswas and N. Mukherjee

have successfully run our Memory Optimized Technique upto matrix chain of length
14000, where the other approaches stuck at only 10000.

Another technique, we used, is to copy only the required elements of array of dimen-
sions to Shared Memory. It reduces the memory access time and accelerates the exe-
cution of our Memory Optimized Approach. Our approach shows so vigorous results
with nearly monotonously increasing speedup with respect to CPU on increasing the
problem size and further proficient compared to other approaches. We have achieved
the speedup factor of 35.6 over CPU-based approach for a randomly generated chain
of 14000 matrices, which is unparalleled to other techniques. As a future scope, our
approach could be run on the GPU device with much storage space and predictably,
larger speedup could be achieved for larger Matrix Chain compared to other techniques.
Hence, our paper proposes a new Memory Optimized and more efficient technique to
solve Matrix Chain Multiplication problem using dynamic programming assisted with
shared memory.

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn.
MIT Press and PHI, New Delhi (2012)

2. Nishida, K., Ito, Y., Nakano, K.: Accelerating the dynamic programming for the matrix chain
product on the GPU. In: Second International Conference on Networking and Computing,
pp. 320–326 (2011)

3. NVIDIA, CUDA C Programming Guide Version 4.2 (2012). https://developer.download.nvi
dia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf. Accessed
22 Jun 2020

4. Wani, M.A., Quadri, S.M.K.: Accelerated dynamic programming on gpu: a study of speed
up and programming approach. In: Int. J. Comput. Appl., 0975–8887 (2013)

5. NVIDIA, CUDA ZONE. https://developer.nvidia.com/cuda-zone. Accessed 12 Jul 2020
6. Fauzia, N., Pouchet, L.N., Sadayappan, P.: Characterizing and enhancing global memory

data coalescing on GPUs. In: IEEE/ACM International Symposium on Code Generation and
Optimization (2015)

7. Whitepaper NVIDIA’s Next Generation CUDATM Compute Architecture: FermiTM.
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Arch
itecture_Whitepaper.pdf. Accessed 15 Jul 2020

8. Ito, Y., Nakano, K.: AGPU implementation of dynamic programming for the optimal polygon
triangulation. IEICE Trans. Inf. Syst., D(12), 2596–2603 (2013)

9. Pimple, M.R., Sathe, S.R.: Analysis of resource utilization on GPU. Int. J. Adv. Comput. Sci.
Appl., 10(2) (2019)

10. Bergeron, J.P.: Programming of shared memory GPUs shared memory systems, University
of Ottawa (2011)

11. NVIDIA, DEVELOPER ZONE. https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
index.html#shared-memory. Accessed 26 Jul 2020

12. NVIDIA, Shared memory bank conflicts with byte arrays. https://forums.developer.nvidia.
com/t/shared-memory-bank-conflicts-with-byte-arrays/20553/4. Accessed 26 Jul 2020

https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
https://developer.nvidia.com/cuda-zone
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#shared-memory
https://forums.developer.nvidia.com/t/shared-memory-bank-conflicts-with-byte-arrays/20553/4

Graph Algorithms and Security

Parameterized Complexity of Defensive
and Offensive Alliances in Graphs

Ajinkya Gaikwad, Soumen Maity(B), and Shuvam Kant Tripathi

Indian Institute of Science Education and Research, Pune, India
{ajinkya.gaikwad,tripathi.shuvamkant}@students.iiserpune.ac.in,

soumen@iiserpune.ac.in

Abstract. In this paper we study the problem of finding small defensive
and offensive alliances in a simple graph. Given a graph G = (V, E) and
a subset S ⊆ V (G), we denote by dS(v) the degree of a vertex v ∈ V
in G[S], the subgraph of G induced by S. A non-empty set S ⊆ V is a
defensive alliance in G = (V, E) if dS(v)+1 ≥ dSc(v) for all v ∈ S. A non-
empty set S ⊆ V is an offensive alliance in G if dS(v) ≥ dSc(v)+1 for all
v ∈ N(S). It is known that the problems of finding small defensive and
offensive alliances are NP-complete. We enhance our understanding of
the problems from the viewpoint of parameterized complexity by showing
that (1) the problems are FPT when parameterized by neighbourhood
diversity of the input graph, (2) the offensive alliance problem is FPT
when parameterized by domino treewidth of the input graph, and (3) the
defensive and offensive alliance problems are polynomial time solvable for
graphs with bounded treewidth.

Keywords: Defensive and offensive alliance · Parameterized
complexity · FPT · W[1]-hard · Treewidth

1 Introduction

In real life, an alliance is a collection of people, groups, or states such that
the union is stronger than individual. The alliance can be either to achieve
some common purpose, to protect against attack, or to assert collective will
against others. This motivates the definitions of defensive and offensive alliances
in graphs. The properties of alliances in graphs were first studied by Kristiansen,
Hedetniemi, and Hedetniemi [16]. They introduced defensive, offensive and pow-
erful alliances. An alliance is global if it is a dominating set. The alliance prob-
lems have been studied extensively during last fifteen years [4,11,20,22,23], and

A. Gaikwad—The first author gratefully acknowledges support from the Ministry of
Human Resource Development, Government of India, under Prime Minister’s Research
Fellowship Scheme (No. MRF-192002-211).
S. Maity—The second author’s research was supported in part by the Science and
Engineering Research Board (SERB), Govt. of India, under Sanction Order No.
MTR/2018/001025.

c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 175–187, 2021.
https://doi.org/10.1007/978-3-030-65621-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-65621-8_11

176 A. Gaikwad et al.

generalizations called r-alliances are also studied [21]. Throughout this article,
G = (V,E) denotes a finite, simple and undirected graph of order |V | = n.
The subgraph induced by S ⊆ V (G) is denoted by G[S]. For a vertex v ∈ V ,
we use NG(v) = {u : (u, v) ∈ E(G)} to denote the (open) neighbourhood
of vertex v in G, and NG[v] = NG(v) ∪ {v} to denote the closed neighbour-
hood of v. The degree dG(v) of a vertex v ∈ V (G) is |NG(v)|. For a subset
S ⊆ V (G), we define its closed neighbourhood as NG[S] =

⋃
v∈S NG[v] and its

open neighbourhood as NG(S) = NG[S] \ S. For a non-empty subset S ⊆ V
and a vertex v ∈ V (G), NS(v) denotes the set of neighbours of v in S, that is,
NS(v) = {u ∈ S : (u, v) ∈ E(G)}. We use dS(v) = |NS(v)| to denote the degree
of vertex v in G[S]. The complement of the vertex set S in V is denoted by Sc.

Definition 1. For an integer r, a non-empty set S ⊆ V is a defensive r-alliance
in G if for each v ∈ S, dS(v) ≥ dSc(v) + r. A set is a defensive alliance if it is a
defensive (−1)-alliance.

A vertex v ∈ S is said to be protected if dS(v) + 1 ≥ dSc(v). A set S ⊆ V is a
defensive alliance if every vertex in S is protected.

Definition 2. For an integer r, a non-empty set S ⊆ V is an offensive r-alliance
in G if for each v ∈ N(S), dS(v) ≥ dSc(v) + r. An offensive 1-alliance is called
an offensive alliance.

Informally, given a graph G = (V,E), we say a set S is an offensive alliance
if every vertex that is adjacent to S is outgunned by S; more of its neighbours
are in S than outside S.

In this paper, we consider Defensive Alliance and Offensive Alliance
problems under structural parameters. We define these problems as follows:

Defensive Alliance
Input: An undirected graph G = (V,E) and an integer 1 ≤ � ≤ |V (G)|.
Question: Is there a defensive alliance S ⊆ V (G) such that 1 ≤ |S| ≤ �?

Offensive Alliance
Input: An undirected graph G = (V,E) and an integer 1 ≤ � ≤ |V (G)|.
Question: Is there an offensive alliance S ⊆ V (G) such that 1 ≤ |S| ≤ �?

A problem with input size n and parameter k is said to be ‘fixed-parameter
tractable (FPT)’ if it has an algorithm that runs in time O(f(k)nc), where
f is some (usually computable) function, and c is a constant that does not
depend on k or n. What makes the theory more interesting is a hierarchy of
intractable parameterized problem classes above FPT which helps in distin-
guishing those problems that are not fixed parameter tractable. Closely related
to fixed-parameter tractability is the notion of preprocessing. A reduction to a
problem kernel, or equivalently, problem kernelization means to apply a data
reduction process in polynomial time to an instance (x, k) such that for the
reduced instance (x′, k′) it holds that (x′, k′) is equivalent to (x, k), |x′| ≤ g(k)
and k′ ≤ g(k) for some function g only depending on k. Such a reduced instance

Parameterized Complexity of Defensive and Offensive Alliances in Graphs 177

is called a problem kernel. We refer to [5] for further details on parameterized
complexity.
Our results are as follows:

– Defensive Alliance and Offensive Alliance problems are FPT when
parameterized by neighbourhood diversity of the input graph.

– Offensive Alliance is FPT when parameterized by domino treewidth of
the input graph.

– Defensive Alliance and Offensive Alliance problems are polynomial
time solvable for graphs with bounded treewith.

Known Results: The decision version for several types of alliances have been
shown to be NP-complete. The defensive r-alliance [21] and global defensive
r-alliance problems [9] are NP-complete for any r. The defensive alliance prob-
lem is NP-complete even when restricted to split, chordal and bipartite graph
[13]. Fernau et al. showed that the offensive r-alliance and global offensive r-
alliance problems are NP-complete for any fixed r [10]. They also proved that
for r > 1, r-offensive alliance is NP-hard, even when restricted to r-regular planar
graphs. Fernau and Raible showed in [8] that the defensive, offensive and pow-
erful alliance problems and their global variants are fixed parameter tractable
when parameterized by solution size k. There are polynomial time algorithms
for finding minimum alliances in trees [3,12,13]. A polynomial time algorithm
for finding minimum defensive alliance in series parallel graph is presented in
[12]. Enciso [6] proved that finding defensive and global defensive alliances is
fixed parameter tractable when parameterized by domino treewidth. Bliem and
Woltran [1] proved that defensive alliance problem is W[1]-hard when parame-
terized by treewidth of the input graph. This puts it among the few problems
that are FPT when parameterized by solution size but not when parameterized
by treewidth (unless FPT = W[1]).

2 FPT Algorithm Parameterized by Neighbourhood
Diversity

In this section, we present FPT algorithms for Defensive Alliance and
Offensive Alliance problems parameterized by neighbourhood diversity. It
is known that the problems are fixed parameter tractable when parameterized
by vertex cover number [15], which is larger than or equal to neighbourhood
diversity. We prove that the problems remain fixed parameter tractable when
parameterized by neighbourhood diversity. We say two vertices u and v have the
same type if N(u)\{v} = N(v)\{u}. The relation of having the same type is an
equivalence relation. The idea of neighbourhood diversity is based on this type
structure.

Definition 3 [17]. The neighbourhood diversity of a graph G = (V,E), denoted
by nd(G), is the least integer k for which we can partition the set V of vertices
into k classes, such that all vertices in each class have the same type.

178 A. Gaikwad et al.

If neighbourhood diversity of a graph is bounded by an integer k, then there
exists a partition {C1, C2, . . . , Ck} of V (G) into k type classes. It is known that
such a minimum partition can be found in linear time using fast modular decom-
position algorithms [24]. Notice that each type class could either be a clique or
an independent set by definition. For algorithmic purpose it is often useful to
consider a type graph H of graph G, where each vertex of H is a type class in G,
and two vertices Ci and Cj are adjacent if and only if there is complete bipartite
clique between these type classes in G. It is not difficult to see that there will be
either a complete bipartite clique or no edges between any two type classes. The
key property of graphs of bounded neighbourhood diversity is that their type
graphs have bounded size.

2.1 Defensive Alliance

In this subsection, we prove the following theorem:

Theorem 1. Defensive Alliance is fixed-parameter-tractable when parame-
terized by the neighbourhood diversity.

Given a graph G = (V,E) with neighbourhood diversity nd(G) ≤ k, we first
find a partition of the vertices into at most k type classes {C1, . . . , Ck}. Next
we guess a set of type classes Ci for which Ci ∩ S �= ∅, where S is a minimum
defensive alliance. Let P ⊆ {C1, . . . , Ck} be a collection of type classes for which
Ci∩S �= ∅. There are at most 2k candidates for P. Finally we reduce the problem
of finding a minimum defensive alliance S to 2k integer linear programming (ILP)
optimizations with at most k variables in each ILP optimization. Since ILP
optimization is fixed parameter tractable when parameterized by the number of
variables [7], we conclude that our problem is fixed parameter tractable when
parameterized by the neighbourhood diversity k.

ILP Formulation: Our goal here is to find a smallest defensive alliance S of
G, with Ci ∩ S �= ∅ when Ci ∈ P and Ci ∩ S = ∅ when Ci /∈ P, where P is
given. For each Ci, we associate a variable xi that indicates |S ∩ Ci| = xi. As
the vertices in Ci have the same neighbourhood, the variables xi determine S
uniquely, up to isomorphism. The objective here is to minimize

∑

Ci∈P
xi under

the condition xi ∈ {1, 2, . . . , |Ci|} for i : Ci ∈ P and the additional conditions
given below. Note that S contains xi > 0 vertices from class Ci if Ci ∈ P and
contains no vertices from class Ci if Ci /∈ P. Let C be a subset of P consisting
of all type classes which are cliques; I = P \ C and R = {C1, . . . , Ck} \ P. We
consider two cases:

Case 1: Suppose v ∈ Cj where Cj ∈ I. Then the degree of v in S, that is,

dS(v) =
∑

Ci∈NH(Cj)∩P
xi (1)

Parameterized Complexity of Defensive and Offensive Alliances in Graphs 179

Thus, including itself, v has 1 +
∑

Ci∈NH(Cj)∩P
xi defenders in G. Note that if

Ci ∈ P, then only xi vertices of Ci are in S and the the remaining ni − xi

vertices of Ci are outside S. The number of neighbours of v outside S, that is,

dSc(v) =
∑

Ci∈NH(Cj)∩P
(ni − xi) +

∑

Ci∈NH(Cj)∩R
ni (2)

Therefore, a vertex v from an independent type class Cj ∈ I is protected if and
only if 1 +

∑

Ci∈NH(Cj)∩P
xi ≥ ∑

Ci∈NH(Cj)∩P
(ni − xi) +

∑

Ci∈NH(Cj)∩R
ni.

Case 2: Suppose v ∈ Cj where Cj ∈ C. The number of neighbours of v in S,
that is,

dS(v) = (xj − 1) +
∑

Ci∈NH(Cj)∩P
xi (3)

This is to ensure that when v is picked in the solution it contributes to the xj

value and hence it itself can’t be accounted as its own neighbour. The number
of neighbours of v outside S, that is,

dSc(v) =
∑

Ci∈NH [Cj]∩P
(ni − xi) +

∑

Ci∈NH [Cj]∩R
ni (4)

Thus a vertex v from clique type class Cj ∈ C is protected if and only if dS(v) +
1 ≥ dSc(v), that is,

∑

Ci∈NH [Cj]∩P
xi ≥ ∑

Ci∈NH [Cj]∩P
(ni − xi) +

∑

Ci∈NH [Cj]∩R
ni.

In the following, we present ILP formulation of defensive alliance problem, where
P ⊆ {C1, . . . , Ck} is given:

Minimize
∑

Ci∈P
xi

Subject to

1 +
∑

Ci∈NH(Cj)∩P
2xi ≥

∑

Ci∈NH(Cj)

ni, for all Cj ∈ I,

∑

Ci∈NH [Cj]∩P
2xi ≥

∑

Ci∈NH [Cj]

ni, for all Cj ∈ C,

xi ∈ {1, 2, . . . , |Ci|} for all i : Ci ∈ P.

Solving the ILP. Lenstra [18] showed that the feasibility version of p-ILP
is FPT with running time doubly exponential in p, where p is the number of
variables. Later, Kannan [14] proved an algorithm for p-ILP running in time
pO(p). In our algorithm, we need the optimization version of p-ILP rather than
the feasibility version. We state the minimization version of p-ILP as presented
by Fellows et al. [7].

180 A. Gaikwad et al.

p-Variable Integer Linear Programming Optimization (p-Opt-ILP): Let
matrices A ∈ Zm×p, b ∈ Zp×1 and c ∈ Z1×p be given. We want to find a
vector x ∈ Zp×1 that minimizes the objective function c · x and satisfies the m
inequalities, that is, A ·x ≥ b. The number of variables p is the parameter. Then
they showed the following:

Proposition 1 [7]. p-Opt-ILP can be solved using O(p2.5p+o(p) · L · log(MN))
arithmetic operations and space polynomial in L. Here L is the number of bits
in the input, N is the maximum absolute value any variable can take, and M is
an upper bound on the absolute value of the minimum taken by the objective
function.

In the formulation for Defensive Alliance problem, we have at most k
variables. The value of objective function is bounded by n and the value of any
variable in the integer linear programming is also bounded by n. The constraints
can be represented using O(k2 log n) bits. Proposition 1 implies that we can solve
the problem with the guess P in FPT time. There are at most 2k choices for P,
and the ILP formula for a guess can be solved in FPT time. Thus Theorem1
holds.

2.2 Offensive Alliance

We also obtain the following result:

Theorem 2 (�1). Offensive Alliance is fixed-parameter-tractable when
parameterized by the neighbourhood diversity.

3 FPT Algorithm Parameterized by Domino Treewidth

It is known that defensive alliance problem is W[1]-hard when parameterized by
treewidth of the input graph [1], thus we look at domino treewidth. Enciso [6]
proved that finding defensive and global defensive alliances is fixed parameter
tractable when parameterized by domino treewidth. In this section, we show
that when parameterized by domino treewidth d, the problem of finding smallest
offensive alliance is fixed parameter tractable. We now review the concept of a
tree decomposition (introduced by Robertson and Seymour in [19]) and introduce
some notations that we use in the paper.

Definition 4 [19]. A tree decomposition of a graph G is a pair (T, {Xt}t∈V (T)),
where T is a tree and each node t of the tree T is assigned a vertex subset
Xt ⊆ V (G), called a bag, such that the following conditions are satisfied:

1. Every vertex of G is in at least one bag.
2. For every edge uv ∈ E(G), there exists a node t ∈ T such that bag Xt contains

both u and v.
1 Due to paucity of space, the proofs of statements marked with a � have been omitted.

Parameterized Complexity of Defensive and Offensive Alliances in Graphs 181

3. For every u ∈ V (G), the set {t ∈ V (T) | u ∈ Xt} induces a connected subtree
of T .

It is important to note that a graph may have several different tree decompo-
sition. Similarly, the same tree decomposition can be valid for several different
graphs. Every graph has a trivial tree decomposition for which T has only one
vertex including all of V . However, this is not effective for the purpose of solving
problems.

Definition 5 [2]. A tree decomposition (T, {Xt}t∈V (T)) is a domino tree decom-
position if for i, j ∈ V (T) where i �= j and (i, j) /∈ E(T), then Xi ∩ Xj = ∅. In
other words, in a domino tree decomposition, every vertex of G appears in at
most two bags in T .

The width of a tree decomposition is defined as width(T) = maxt∈V (T)|Xt|−1
and the treewidth tw(G) of a graph G is the minimum width among all possible
tree decompositions of G. Similarly, domino treewidth dtw(G) is defined for
domino tree decomposition. Note that the number of nodes in a domino tree
decomposition remains order n. Moreover, given a graph G with treewidth k
and maximum degree Δ, the domino treewidth dtw(G) ≤ (9k +7)Δ(Δ+1), can
be obtained in polynomial time [2].

Let τ =
(
T, {Xt}t∈V (T)

)
be a domino tree decomposition of the input n-

vertex graph G that has width at most d. Suppose T is rooted at node r and
Xr = ∅. For a node i of T , let Vi be the union of all bags present in the subtree
of T rooted at i, including Xi. We denote by Gi the subgraph of G induced by
Vi.

Let Xi be a non-leaf bag. Then a vertex v ∈ Xi can be of three types. Type
1: v is also in one of the children of Xi; Type 2: v is also in the parent of Xi;
Type 3: v is only in Xi.

For every bag i and every Si ⊆ Xi, a potential offensive alliance (pOA) is a
smallest set Ŝi such that Si ⊆ Ŝi ⊆ Vi, Ŝi ∩Xi = Si, and Ŝi protects the vertices
of NVi

(Ŝi) − parent(Xi). We use c[i, Si] to denote the size of Ŝi. If no such set
Ŝi exists, then we put c[i, Si] = |Ŝi| = ∞. We now move on to presenting how
the values of c[., .] are computed. We compute the values of c[., .] at each node i
based on the values computed for the children of i. We give a recursive formula
for the computation of c[., .]. The values of c[., .] for leaf node corresponds to
the base case of the recurrence; whereas the values of c[., .] for a non-leaf node i
depend on the values of c[., .] for the children of i. We finally compute c[r, ∅] by
applying the formulas in a bottom-up manner on T . Note that c[r, ∅] is the size
of minimum offensive alliance in G; this is due to the fact that Vr = V (G) and
Sr = ∅ (Fig. 1).

182 A. Gaikwad et al.

Fig. 1. Compatibility of Si with Si1 and Si2 . Set Si is the region bounded by the
dotted line in Xi; Sij is the region bounded by the dotted line in Xij for j = 1, 2.

Leaf Node: If i is a leaf node, then for every Si ⊆ Xi �= ∅, we define c[i, Si] as
follows:

c[i, Si] =

⎧
⎪⎨

⎪⎩

|Si| if Si is a non empty subset of Xi and protects
all vertices in NXi

(Si) − parent(Xi)
∞ otherwise.

Non Leaf Node: Suppose i is a non-leaf node with two children i1 and i2. We
say that a set Si ⊆ Xi is compatible with Si1 ⊆ Xi1 , Si2 ⊆ Xi2 if and only if

1. Xi ∩ Xij ∩ Si = Xi ∩ Xij ∩ Sij for 1 ≤ j ≤ 2.
2. Type 1 and Type 3 vertices of NXi

(Si∪Si1 ∪Si1) are protected by Si∪Si1 ∪Si2 .

For Si ⊆ Xi, if there does not exist any Sij ⊆ Xij that is compatible with Si for
some j, then c[i, Si] = ∞. Otherwise,

c[i, Si] = |Si|+min
{ 2∑

j=1

c[ij , Sij] − |Si ∩ Sij | : Sij ⊆ Xij ; Si1 , Si2 are compatible with Si

}
.

Theorem 3 (�). For every node i in T and every Si ⊆ Xi, c[i, Si] is the size
of the smallest potential offensive alliance Ŝi where Ŝi ⊆ Vi and Ŝi ∩ Xi = Si.
Further, the size of the minimum offensive alliance in G is c[r, ∅], where T is
rooted at node r.

Note that the definition of compatibility and the above recurrence relation
can be easily extended if a non-leaf node i has more than two children. At a
non-leaf node we compute 2d+1 many c[., .] values and the time need to compute
each of these values is O(4d+1), assuming binary domino tree decomposition. As
the number of nodes in domino tree decomposition is O(n), the total running
time of the algorithm is O(8dn).

Parameterized Complexity of Defensive and Offensive Alliances in Graphs 183

4 Graphs of Bounded Treewidth

Bliem and Woltran [1] proved that Defensive Alliance is W[1]-hard when
parameterized by treewidth, which rules out FPT algorithms under common
assumptions. This was surprising as Defensive Alliance is a “subset prob-
lem” and FPT when parameterized by solution size, and “subset problems” that
satisfy this property usually tend to be FPT for bounded treewidth as well.
In this section we prove that Defensive Alliance and Offensive Alliance
problems can be solved in polynomial time for graphs of bounded treewidth. In
other words, this section presents XP-time algorithms for Defensive Alliance
and Offensive Alliance problems parameterized by treewidth. We recall some
necessary definitions.

Definition 6. A tree decomposition (T, {Xt}t∈V (T)) is said to be nice tree
decomposition if the following conditions are satisfied:

1. All bags correspond to leaves are empty. One of the leaves is considered as
root node r. Thus Xr = ∅ and Xl = ∅ for each leaf l.

2. There are three types of non-leaf nodes:
– Introduce node: a node t with exactly one child t′ such that Xt =

Xt′ ∪ {v} for some v /∈ Xt′ ; we say that v is introduced at t.
– Forget node: a node t with exactly one child t′ such that Xt = Xt′ \{w}

for some w ∈ Xt′ ; we say that w is forgotten at t.
– Join node: a node with two children t1 and t2 such that Xt = Xt1 = Xt2 .

Note that, by the third property of tree decomposition, a vertex v ∈ V (G) may
be introduced several time, but each vertex is forgotten only once. Given a tree
decomposition (T, {Xt}t∈V (T)) of width at most k, one can compute a nice tree
decomposition of G of width at most k that has at most O(k|V (G)|) nodes.

4.1 Defensive Alliance

In this subsection, we prove the following theorem:

Theorem 4. Given an n-vertex graph G and its nice tree decomposition T of
width at most k, the size of a minimum defensive alliance of G can be computed
in O(2kn2k+4) time.

Let (T, {Xt}t∈V (T)) be a nice tree decomposition rooted at node r of the input
graph G. For a node t of T , let Vt be the union of all bags present in the subtree
of T rooted at t, including Xt. We denote by Gt the subgraph of G induced
by Vt. For each node t of T , we construct a table dpt(A,n, a, α) ∈ {true, false}
where A ⊆ Xt, n is a vector of length n, and its ith coordinate is positive only
if vi ∈ A; a and α are integers between 0 and n. We set dpt(A,n, a, α) = true if
and only if there exists a set At ⊆ Vt such that:

1. At ∩ Xt = A
2. a = |At|

184 A. Gaikwad et al.

3. the ith coordinate of vector n is

n(i) =

{
dAt

(vi) for vi ∈ A

0 otherwise

4. α is the number of vertices v ∈ At that are protected, that is, dAt
(v) ≥

dG(v)−1
2 .

We compute all entries dpt(A,n, a, α) in a bottom-up manner. Since tw(T) ≤ k,
at most 2knk(n+1)2 = O(2knk+2) records are maintained at each node t. Thus,
to prove Theorem 4, it suffices to show that each entry dpt(A,n, a, α) can be
computed in O(nk+2) time, assuming that the entries for the children of t are
already computed.

Leaf Node: For leaf node t we have that Xt = ∅. Thus dpt(A,n, a, α) is true if
and only if A = ∅, n = 0, a = 0 and α = 0. These conditions can be checked in
O(1) time.

Introduce Node: Suppose t is an introduction node with child t′ such that
Xt = Xt′ ∪ {vi} for some vi /∈ Xt′ . Let A be any subset of Xt. We consider two
cases:

Case (i): Let vi /∈ A. In this case dpt(A,n, a, α) is true if and only if
dpt′(A,n, a, α) is true.

Case (ii): Let vi ∈ A. Here dpt(A,n, a, α) is true if and only if there exist
A′,n′, a′, and α′ such that dpt′(A′,n′, a′, α′)=true, where

1. A = A′ ∪ {vi};
2. n(j) = n′(j) + 1, if vj ∈ NA(vi), n(i) = dA(vi), and n(j) = n′(j) if vj ∈

A \ NA[vi];
3. a = a′ + 1;
4. α = α′ + δ; here δ is the cardinality of the set

{
vj ∈ A | n′(j) <

dG(vj) − 1
2

;n(j) ≥ dG(vj) − 1
2

}
.

That is, to compute α from α′ we need to add the number δ of those vertices
not satisfied in (A′,n′, a′, α′) but satisfied in (A,n, a, α).

For introduce node t, dpt(A,n, a, α) can be computed in O(1) time. This follows
from the fact that there is only one candidate of such tuple (A′,n′, a′, α′).

Forget Node: Suppose t is a forget node with child t′ such that Xt = Xt′ \{vi}
for some vi ∈ Xt′ . Let A be any subset of Xt. Here dpt(A,n, a, α) is true if
and only if either dpt′(A,n, a, α) is true (this corresponds to the case that At

does not contain vi) or dpt′(A′,n′, a, α)=true for some A′,n′ with the following
conditions:

Parameterized Complexity of Defensive and Offensive Alliances in Graphs 185

1. A = A′ \ {vi};
2. n(j) = n′(j) for all j �= i and n(i) = 0;

(this corresponds to the case that At contains vi). For forget node t,
dpt(A,n, a, α) can be computed in O(n) time. This follows from the fact that
there are O(n) candidates of such tuple (A′,n′, a, α).

Join Node: Suppose t is a join node with children t1 and t2 such that Xt =
Xt1 = Xt2 . Let A be any subset of Xt. Then dpt(A,n, a, α) is true if and only if
there exist (A1,n1, a1, α1) and (A2,n2, a2, α2) such that dpt1(A1,n1, a1, α1) =
true and dpt2(A2,n2, a2, α2) = true, where

1. A = A1 = A2;
2. n(i) = n1(i) + n2(i) − dA(vi) for all i ∈ A, and n(i) = 0 if i /∈ A;
3. a = a1 + a2 − |A|;
4. α = α1 + α2 − γ + δ; γ is the cardinality of the set

{
vj ∈ A | n1(j) ≥ dG(vi) − 1

2
; n2(j) ≥ dG(vi) − 1

2

}

and δ is the cardinality of the set

{
vj ∈ A | n1(j) <

dG(vi) − 1
2

; n2(j) <
dG(vi) − 1

2
; n(j) ≥ dG(vi) − 1

2

}
.

To compute α from α1 + α2, we need to subtract the number of those vj
which are satisfied in both the branches and add the number of vertices vj
not satisfied in either of the branches t1 and t1 but satisfied in t.

For join node t, there are nk possible pairs for (n1,n2) as n2 is uniquely deter-
mined by n1; n+1 possible pairs for (a1, a2); and n+1 possible pairs for (α1, α2).
In total, there are O(nk+2) candidates, and each of them can be checked in O(1)
time. Thus, for join node t, dpt(A,n, a, α) can be computed in O(nk+2) time.

At the root node r, we look at all records such that dpr(∅,n, a, α) = true,
a, α > 0 and a = α. The size of a minimum defensive alliance is the minimum a
satisfying dpr(∅,n, a, a) = true and a > 0.

4.2 Offensive Alliance

We also obtain the following result:

Theorem 5 (�). Given an n-vertex graph G and its nice tree decomposition T
of width at most k, the size of a minimum offensive alliance of G can be computed
in O(2kn2k+6) time.

186 A. Gaikwad et al.

5 Conclusion

In this work we proved that Defensive Alliance and Offensive Alliance
problems are FPT when parameterized by neighbourhood diversity; Offensive
Alliance is FPT when parameterized by domino treewidth; Defensive
Alliance and Offensive Alliance problems are solvable in polynomial time
on graphs of bounded treewidth. The paramererized complexity of different kinds
of alliances such as offensive alliance or powerful alliance remains unsettled when
parameterized by clique-width, treewidth or pathwidth.

Acknowledgement. We are grateful to the referees for thorough reading and com-
ments that have made the paper better readable. We would like to thank Prof. Saket
Saurabh, IMSc Chennai, for giving us the open problems on defensive and offensive
alliances.

References

1. Bliem, B., Woltran, S.: Defensive alliances in graphs of bounded treewidth. Discret.
Appl. Math. 251, 334–339 (2018)

2. Bodlaender, H.L., Engelfriet, J.: Domino treewidth. J. Algorithms 24(1), 94–123
(1997)

3. Chang, C.-W., Chia, M.-L., Hsu, C.-J., Kuo, D., Lai, L.-L., Wang, F.-H.: Global
defensive alliances of trees and cartesian product of paths and cycles. Discret. Appl.
Math. 160(4), 479–487 (2012)

4. Chellali, M., Haynes, T.W.: Global alliances and independence in trees. Discuss.
Math. Graph Theory 27(1), 19–27 (2007)

5. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

6. Enciso, R.: Alliances in graphs: parameterized algorithms and on partitioning
series-parallel graphs. Ph.D. thesis, USA (2009)

7. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-92182-0 28

8. Fernau, H., Raible, D.: Alliances in graphs: a complexity-theoretic study. In: Pro-
ceeding Volume II of the 33rd International Conference on Current Trends in The-
ory and Practice of Computer Science (2007)

9. Fernau, H., Rodŕıguez-Velázquez, J.A., Sigarreta, J.M.: Global r-alliances and total
domination. In: CTW (2008)

10. Fernau, H., Rodŕıguez, J.A., Sigarreta, J.M.: Offensive r-alliances in graphs. Dis-
cret. Appl. Math. 157(1), 177–182 (2009)

11. Fricke, G., Lawson, L., Haynes, T., Hedetniemi, M., Hedetniemi, S.: A note on
defensive alliances in graphs. Bull. Inst. Comb. Appl. 38, 37–41 (2003)

12. Jamieson, L.H.: Algorithms and complexity for alliances and weighted alliances of
various types. Ph.D. thesis, USA (2007)

13. Jamieson, L.H., Hedetniemi, S.T., McRae, A.A.: The algorithmic complexity of
alliances in graphs. J. Comb. Math. Comb. Comput. 68, 137–150 (2009)

14. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-540-92182-0_28

Parameterized Complexity of Defensive and Offensive Alliances in Graphs 187

15. Kiyomi, M., Otachi, Y.: Alliances in graphs of bounded clique-width. Discret. Appl.
Math. 223, 91–97 (2017)

16. Kristiansen, P., Hedetniemi, M., Hedetniemi, S.: Alliances in graphs. J. Comb.
Math. Comb. Comput. 48, 157–177 (2004)

17. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64, 19–37 (2012)

18. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8(4), 538–548 (1983)

19. Robertson, N., Seymour, P.: Graph minors. III. Planar tree-width. J. Comb. Theory
Ser. B 36(1), 49–64 (1984)

20. Rodŕıguez-Velázquez, J., Sigarreta, J.: Global offensive alliances in graphs. Elec-
tron. Notes Discret. Math. 25, 157–164 (2006)

21. Sigarreta, J., Bermudo, S., Fernau, H.: On the complement graph and defensive
k-alliances. Discret. Appl. Math. 157(8), 1687–1695 (2009)

22. Sigarreta, J., Rodŕıguez, J.: On defensive alliances and line graphs. Appl. Math.
Lett. 19(12), 1345–1350 (2006)

23. Sigarreta, J., Rodŕıguez, J.: On the global offensive alliance number of a graph.
Discret. Appl. Math. 157(2), 219–226 (2009)

24. Tedder, M., Corneil, D., Habib, M., Paul, C.: Simpler linear-time modular decom-
position via recursive factorizing permutations. In: Aceto, L., Damg̊ard, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70575-8 52

https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1007/978-3-540-70575-8_52

A Reconstructive Model for Identifying
the Global Spread in a Pandemic

Debasish Pattanayak1 , Dibakar Saha2(B) , Debarati Mitra3,
and Partha Sarathi Mandal2

1 Cryptology and Security Research Unit, Indian Statistical Institute, Kolkata, India
drdebmath@gmail.com

2 Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati,
Assam, India

dibakar.saha10@gmail.com, psm@iitg.ac.in
3 Department of Chemistry, Royal Global University, Guwahati, Assam, India

debarati.mitra@rgi.edu.in

Abstract. With existing tracing mechanisms, we can quickly identify
potentially infected people with a virus by choosing everyone who has
come in contact with an infected person. In the presence of abundant
resources, that is the most sure-fire way to contain the viral spread.
In the case of a new virus, the methods for testing and resources may
not be readily available in ample quantity. We propose a method to
determine the highly susceptible persons such that under limited testing
capacity, we can identify the spread of the virus in a community. We
determine highly suspected persons (represented as nodes in a graph)
by choosing paths between the infected nodes in an underlying contact
graph (acquired from location data). We vary parameters such as the
infection multiplier, false positive ratio, and false negative ratio. We show
the relationship between the parameters with the test positivity ratio
(the number of infected nodes to the number of suspected nodes). We
observe that our algorithm is robust enough to handle different infection
multipliers and false results while producing suspected nodes. We show
that the suspected nodes identified by the algorithm result in a high test
positivity ratio compared to the real world. Based on the availability
of the test kits, we can run our algorithm several times to get more
suspected nodes. We also show that our algorithm takes a finite number
of iterations to determine all the suspected nodes.

Keywords: Pandemic · Spread · Infection transmission tree ·
Location tracking · COVID-19

Dibakar Saha would like to acknowledge the Science and Engineering Research Board
(SERB), Government of India, for financial support under the NPDF scheme (File
Number: PDF/2018/000633).

c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 188–202, 2021.
https://doi.org/10.1007/978-3-030-65621-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_12&domain=pdf
http://orcid.org/0000-0003-2862-2795
http://orcid.org/0000-0002-5625-2894
http://orcid.org/0000-0002-8632-5767
https://doi.org/10.1007/978-3-030-65621-8_12

A Reconstructive Model for Identifying the Global Spread in a Pandemic 189

1 Introduction

In any pandemic, the infection grows fast worldwide. In the absence of a proper
medicine or vaccine, to control the spreading; social distancing, self-quarantine,
and wearing a face mask have been widely-used strategies for mitigation. In
this context, mathematical models are required to estimate virus transmission,
recovery, and deaths. A well known Susceptible-Infected-Removed (SIR) model
provides a theoretical framework to investigate the spread of a virus in a pan-
demic. Cooper et al. [1] use the classical SIR model to study how the COVID-19
virus spreads within communities. The delivery of infection from asymptomatic
carriers of COVID-19 in a familial cluster has been studied [2,3]. It is also the
utmost requirement to find such asymptomatic carriers within a community or
in a particular area such as a village, small town, to control the spreading of
the disease. Hence, we propose a generalized model that can identify highly
suspected persons and asymptomatic carriers efficiently.

In this model, we use an estimation of the length of the infectiousness of
COVID-19. It takes 5 to 6 days on an average for a COVID-19 infected person
to show symptoms [4]. He et al. [5] show that around 9% of transmission would
occur three days before the onset of symptoms. Hence it is a reasonable estimate
that we consider a person infected with the virus can spread the virus to other
people after three days of infection [5,6]. Another marker is the duration of infec-
tivity [7]. A person spreads the virus throughout the symptomatic period and
stops spreading the virus after recovery from symptoms and develops immunity
to the virus. Furthermore, all infected persons do not transmit the virus [7].

In any pandemic, the greatest challenge is identifying the infected people in
an initial stage so that the probability of spreading the infection gets minimized.
COVID-19, caused by the dreaded coronavirus, is an example of such a pandemic.
Some companies, including Google, and Apple, along with many countries like
India, China, and South Korea, are engaged in tracking the infected people by
using the location data of their cell phones via apps. This tracking data can
be used to construct a graph where each node represents a person. Now, if the
nodes have been in contact with each other, then there exists an edge between
two nodes. From location data, it can be determined whether a person has come
within 2 m of range of another person or not. The resulting graph is a contact
graph.

We may have a partial data of infected persons for kth and (k + i)th days,
where i ≥ 1. With such data, we try to find the intermediate carriers responsible
for spreading the infection. To find such intermediate nodes is very challenging
where the infection proliferates over time. Let G = (V,E) is the contact graph
constructed, as discussed above. Since the most treacherous fact is that any
person can transmit the virus unknowingly being asymptomatic, it is essential
to determine the links to cease the spread.

Our Contributions. In this paper, we aim to identify the highly suspected per-
sons infected with the virus in a pandemic so that those persons are to be tested
or quarantined to prevent the spreading of the virus and make the following con-
tributions. Our approach works by determining links that connect one infected

190 D. Pattanayak et al.

person to another in the underlying contact graph. We simulate our proposed
method on some ground-truth datasets assumed as the contact graph, such as
Dolphin, Zachary karate club, Football, and Facebook ego. The spread of
the virus is modeled as an infection transmission tree over the contact graph.

– We present an algorithm to determine a set of nodes that are highly suspected
of having been infected.

– We show the robustness of our algorithm even with changing infection param-
eters as well as false positive and false negative results included.

– Our algorithm results in a high test positivity ratio (70%) compared to the
real world (10%).

– The algorithm can be run multiple times to generate suspected nodes by
including the results of previously identified suspected nodes to get a new set
of suspected nodes. This is useful when the availability of test kits is limited.

– We show the number of times our algorithm needs to run before it terminates.
Our algorithm determines more than 80% of the infected nodes on an average.

Outline. The rest of the paper is organized as follows: In Sect. 2, we present the
preliminaries and formulation of the problem. Section 3 describes the proposed
algorithms. Section 5 shows the performance evaluation of the proposed method.
Finally, Sect. 6 concludes the paper.

2 Preliminaries

In this section, we define the notations and describe the problem.

2.1 Notations

Given location data of persons, we construct a contact graph at time t, G =
(V,E) such that V is the set of persons, and each person is represented as a
node. There exists an edge between two nodes if the distance between any two
nodes has been less than 2 m at some time t′ ≤ t. We define the set of symbols
used in Table 1.

Table 1. Notations

Notation Description Notation Description

G The contact graph V Set of nodes

E Set of edges λ Infection multiplier

h Maximum hop distance Ti ith time interval

ITi
Infected node list at time Ti S Set of suspected nodes

S+ Set of positive nodes C Set of carrier nodes

P Set of paths Δ Maximum degree of the graph

Φ Cutoff length of a path � Number of paths

| · | Size of the set test results Test result of the nodes

A Reconstructive Model for Identifying the Global Spread in a Pandemic 191

2.2 Problem Formulation

Let G(V,E) be an undirected unweighted graph, where V is a set of vertices or
nodes, and E is a set of edges generated from the location data. Let G′ = (V ′, E′)
be a subgraph of G, where V ′ is a set of nodes infected with the virus, and E′

represents a set of connections among the nodes in V ′. G′ can be considered
the infection transmission tree of the virus on the graph G. The structure of
G′ is cycle-free because an infected node cannot be infected again, and since
we consider the edge from the first node that infects another node. Hence, G′

maybe a forest. We may not have the complete information of all the nodes with
the virus. With tests performed on people with symptoms, we can determine a
subset of V ′ with the virus by time Tj . Our objective is to determine the graph
G′, which represents the actual spread of the virus. This may not be possible due
to the availability of partial information about the nodes carrying the virus. The
available partial information is the positive test results that have been done in
the past. We have two sets of nodes with confirmed positive test cases denoted
as ITi

and ITj
, where Ti < Tj . So, we try to determine a set C ⊆ V , which is the

set of suspected nodes. We have I = C ∪ ITi
∪ ITj

, which should be very close to
the set V ′. The symmetric difference of two sets measures the closeness of two
sets. If two sets are identical, then their symmetric difference is null. We have
the following problem definition.

Problem Definition. Given a contact graph G, and two sets ITi
and ITj

, the
target is to determine I ⊆ V that minimizes the symmetric difference of V ′ and
I, i.e., minimize((V ′ ∪ I) \ (V ′ ∩ I)).

3 Find Suspected Nodes from ITi
and ITj

In this section, we describe Algorithm 1 (Find Infected nodes). The algorithm
consists of Procedure 1 (Find suspected nodes) as a subroutine. We have a set
I as an input that contains the day wise test results on T = {T0, T1, . . . , Tt}.
We determine ITi

as the set of nodes infected before Ti and I + Tj as the set of
nodes infected between Ti and Tj . Given two sets of nodes ITi

and ITj
as input,

Procedure 1 finds a set of nodes S as the output. To find the suspected node
set S, we compute paths between nodes in ITi

and ITj
. To choose paths that

are more likely to contain the infected nodes, we define infection parameters for
the nodes. The infection parameter of a node depends on the hop distance from
a known infected node, and the infection parameter of a path is the average
of infection parameter of the nodes. Based on this, we determine the paths
between nodes with high infection parameters. We choose the first � paths in the
decreasing order of the infection parameter. The suspected nodes S contains the
intermediate nodes of these paths that are not present in ITi

and ITj
. Algorithm 1

runs with a feedback process. We can run the procedure once with ITi
and ITj

;
and then we get S. Tests can be conducted for the nodes in S, and we determine
S+ as the set of nodes that tested positive. With this added input S+, we can
rerun Procedure 1 to find the next set of suspected nodes. We can continue this

192 D. Pattanayak et al.

process until the number of tests available is exhausted. If we have sufficient test
kits for the entire population, that is the best way to determine the spread of
the virus. When a limited number of test kits available, it is better to test only
the highly suspected nodes.

3.1 Infection Criteria

The COVID-19 virus has spread rapidly. Hence, testing and identification of
the infected nodes are essential to prevent the spread. COVID-19 can infect
people from another infected person. The virus can be spread from one person
to another through small droplets from the nose or mouth, released when a
person with COVID-19 coughs or exhales. These droplets land on objects and
surfaces around the person. Other people may get infected when they touch
those objects or surfaces, touching their eyes, nose, or mouth. People can also
catch COVID-19 if they breathe in droplets from a person with COVID-19 who
coughs out or exhales droplets that can travel up to 2 m from an infected person
with high concentration.

Infection Parameter for a Node. The COVID-19 virus can infect people from
another infected person. Thus, we consider that a node may get infected by its
infected neighbors, and the chance of infection depends on the hop distance from
an infected node. Let λi be the infection parameter at hop distance i. Let ki be
the number of infected neighbors of a node u at a hop distance i. Here we define
the infection parameter of a node u as

P(u) =
h∑

i=1

λiki, (1)

where h is the maximum hop distance considered.

Infection Parameter for a Path. Let u and v be two infected nodes with causal
relation as u has been infected before v. By causal relation, there should be a
transmission path of the virus from u to v. We can determine multiple paths
from u to v. Now, we need to determine the most probable path that the virus
has followed. If a path contains multiple nodes with suspected infection, it is a
more likely path of virus transmission.

We determine the parameter of transmission along ith path P i
uv as the sum

of the infection parameter of the path P i
uv. Let P i

uv = (u, u1, u2, . . . , ul, v) be a
path. The average infection parameter is

P(P i
uv) =

1
l

l∑

j=1

P(uj) (2)

A Reconstructive Model for Identifying the Global Spread in a Pandemic 193

3.2 Algorithm to Find Suspected Nodes

Initially, we are given a graph G(V,E), which is a Geo-location-based net-
work. We also have day wise test results, i.e., a set of time intervals T =
{T1, T2, . . . , Tt}, where for each Ti ∈ T , we have a list of infected nodes. We
are given a graph G and two lists of infected nodes ITi

and ITj
corresponding to

infected nodes before Ti and infected nodes between Ti and Tj , where Ti < Tj .
We aim to propose an algorithm to find the intermediate nodes responsible for
spreading the infection among the nodes in ITj

. Thus, the algorithm can detect
the carrier or infected nodes to be tested to prevent the infection’s spreading.
This algorithm executes the following steps.

Step-1: First, we compute the infection parameter P(u) of each node u ∈ G(V).
Step-2: Next, for each pair of nodes u ∈ ITi

and v ∈ ITj
, we explore all paths

of length less than or equal to Φ. Let Pu,v = {P 1
u,v, P 2

u,v, · · · , Pm
u,v}

be the set of paths from u to v in the graph G, where the ith path
P i

u,v = {u, u1, u2, . . . , ul, v}. Here, uj , j = 1, . . . , l, are the intermediate
nodes in the path P i

u,v ∈ Pu,v. We extract the first � paths in the
decreasing order of P(Pu,v).

Step-3: Once we extracted all the paths P = {Pu,v, Pu,v′ , . . .}, we discard those
paths having at least one intermediate node has tested report nega-
tive (not infected) or all intermediate nodes are tested positive. Hence,
for each path Pu,v ∈ P , we check each of the intermediate nodes test
reports. If at least one node has a negative report, then we discard that
path from P . Here, only the positive or not tested cases are considered.

Step-4: Once we find all such paths, we report the updated P and all the inter-
mediate nodes that are to be tested.

3.3 Example

In this example, we start with the Zachary Karate club network as the initial
graph G(V,E), as shown in Fig. 1(a). The corresponding underlying is shown in
Fig. 1(b). In the infection transmission tree, all the nodes are infected.

– We first compute the infection parameter P(u), for each node u ∈ G. We get
P = {1, 0.87, 0.87, 0.87, 1, 0.87, 0.87, 0.66, 0.66, 0.27, 1, 0.66, 0.66, 1, 0.18, 0.18,
0.27, 0.66, 0.18, 0.66, 0.18, 0.66, 0.18, 0.48, 0.69, 1, 0.18, 0.36, 0.57, 0.27, 0.27, 1,
0.57, 0.78}

– Let ITi
= {0, 10} and ITj

= {4, 13, 25, 31} be the two lists of infected nodes
reported by day Ti and day Tj , respectively. All the nodes in ITi

and ITj
are

represented by the red color in Fig. 1(c).
– Now, we compute all the paths of cutoff length Φ = 4 between each pair of

nodes u, v, where u ∈ ITi
and v ∈ ITj

, and extracts the path having maximum
infection parameter.

– We find the suspected node list S = {3, 5, 6, 33}. Each node in S is represented
by orange color in the Fig. 1(c).

194 D. Pattanayak et al.

Procedure 1: Find suspected nodes(G, ITi
, ITj

, �)

Input: G, ITi
, ITj

Output: P, S
1 for each node v ∈ G do
2 P(v) ← Compute the infection parameter by Eq. 1;

// P is the set containing all node probabilities.

// Computing highest probability paths between (u, v) where
u ∈ ITi

and v ∈ ITj

3 Φ ← (Ti − Tj)/3;
4 for each node u ∈ ITi

do
5 for each node v ∈ ITj

do
6 Compute Puv; // find all the paths from u to v using

Iteratively deepening Depth-first Search with maximum
length Φ

7 for each path P i
uv ∈ Puv do

8 Compute the infection parameter of the path using Eq. 2 if
P i

uv has nodes from ITi
and ITj

then
9 discard the path

10 if P i
uv has a node with negative test result then

11 discard the path

12 Take � paths with highest infection parameter and add it to P

13 for each path p ∈ P do
14 S = S ∪ intermediate nodes ∈ p

15 return P and S

Algorithm 1: Find Infected nodes

Input: G,T, IT , test results, �
Output: Updated C

1 ITj+1 = ITj
;

2 C = {};
3 do
4 S = Find suspected nodes(G, ITi

, ITj+1 ∪ C, �); // Execute
Procedure 1

5 Perform test for nodes in S and find positive nodes S+;
6 Update test results;
7 C = C ∪ S+;
8 while |S| > 0;

We get all paths are:
P0,31 : {0, 13, 33, 31}
P0,13 : {0, 31, 33, 13}
P0,4 : {0, 5, 10, 4}
P0,25 : {0, 13, 33, 31, 25}

P10,31 : {10, 4, 6, 0, 31}
P10,13 : {10, 4, 0, 3, 13}
P10,4 : {10, 0, 6, 4}
P10,25 : {10, 5, 0, 31, 25}

A Reconstructive Model for Identifying the Global Spread in a Pandemic 195

Fig. 1. A sample run of the algorithm on a graph generated from Zachary Karate

Club network (Color figure online)

– Next, we test each node in u ∈ S, and if u has a negative test report, we
remove u from S.

– We find node 3 and 6 have negative test reports, and we update S+ = {5, 33}.
– Next, we add this S+ in ITj

. We have updated ITj
= {4, 5, 13, 25, 31, 33}.

– We recompute the infection parameter for each node in G. We get P =
{1, 1.05, 1.05, 0, 1, 1, 0, 0.75, 1.05, 0.57, 1, 0.75, 0.75, 1, 0.48, 0.48, 0.57, 0.75, 0.48,
1.05, 0.48, 0.75, 0.48, 0.78, 0.78, 1, 0.48, 0.66, 0.87, 0.57, 0.57, 1, 0.87, 1}.

– We again compute the final paths P :

P0,31 : {0, 2, 8, 33, 31}
P0,13 : {0, 19, 1, 2, 13}
P0,4 : {0, 10, 5, 6, 4}
P0,25 : {0, 19, 33, 31, 25}
P0,33 : {0, 19, 33}
P0,5 : {0, 10, 4, 6, 5}

P10,31 : {10, 0, 19, 33, 31}
P10,13 : {10, 0, 19, 1, 13}
P10,4 : {10, 0, 5, 6, 4}
P10,25 : {10, 0, 31, 24, 25}
P10,33 : {10, 0, 2, 8, 33}
P10,5 : {10, 0, 4, 6, 5}

– We get the suspected node list S′ = {1, 2, 8, 19, 24}.
– Next, we test each node in u ∈ S′ and find node 8 has a negative test report.

Hence, we remove 8 from S′. The updated S+′ is {1, 2, 19, 24}.

196 D. Pattanayak et al.

– Finally, we find the carrier nodes C = S+∪S+′ = {1, 2, 5, 19, 24, 33}, as shown
in Fig. 1(d). The nodes having negative test reports are shown by green color
in Fig. 1(d).

4 Complexity Analysis

In this section, we analyze the complexity of Procedure 1. There are three main
parts of the algorithm for which we estimate the running time separately. We
have ITi

and ITj
nodes as inputs. First, we determine the infection parameter

for a node. If we consider the neighbors up to h hop, then in the worst case, we
need to find all the neighbors of a node at hop distance h. A node can have at
most Δ neighbors. Thus, the total number of neighbors up to h is Δh. We repeat
this process for all infected nodes in the graph and thus gain the complexity of
O((|ITi

| + |ITj
|)Δh). Second, we compute all simple paths between two nodes

that are part of the input. The paths are computed using iterative deepening
Depth First Search up to a cutoff Φ. Here, we compute all paths smaller or equal
to length Φ for a pair of nodes u and v, where u ∈ ITi

and v ∈ ITj
. There

can be at most ΔΦ nodes at a distance Φ from a node. Thus we can find all
paths with an iterative deepening DFS with time complexity O(ΔΦ) for a node
u ∈ ITi

. Iterating through all the paths, we can determine the paths that end at
v ∈ ITj

, and compute the corresponding infection parameter of the path. Hence,
we arrive at a time complexity of O((|ITi

| + |ITj
|)Δh + ΔΦ|ITi

|) time.

5 Performance Evaluation

Extensive simulation studies have been done to evaluate the performance of the
proposed algorithm. In our simulation study, we use small real-world benchmark
datasets as the contact graphs like, Zachary karate club, Dolphin, Football
and Facebook ego networks having 34, 62, 115, 4039 nodes and 78, 159, 613,
88234 edges, respectively. The algorithm is implemented using python3. Initially,
for each of the datasets, we generate a random tree treated as the actual infection
transmission tree to show how the infection spreads over the network.

Infection Transmission Tree Generation. We consider the persons as a node in
the graph. We first randomly select a root node for the infection transmission
tree. We assume that there is a single source of infection for the virus in a com-
munity. A node can spread the virus to its neighbors with a certain probability.
We choose random neighbors of an infected node to select the next neighbor that
is infected with a probability of 30%. We continue to grow the infection transmis-
sion tree subsequently. As an example, Fig. 1(b) shows the infection transmission
tree of the Zachary Karate club network.

A Reconstructive Model for Identifying the Global Spread in a Pandemic 197

Fig. 2. Size of suspected nodes (|S|) and nodes tested positive among the suspected
(|S+|) with respect to number of total infected nodes (|V ′|) and the remaining positive
nodes (|V ′|− |ITi |− |ITj |) for different contact graphs based on Zachary karate club,
Dolphin, Football and Facebook ego networks.

Input Data Generation. We take Ti and Tj as the two time instances. The
infection transmission tree contains all the nodes that are infected. Now we
choose the subset of nodes from the tree which are tested positive. We choose a
subset of the nodes that are infected before Ti with higher probability (80% for
simulation), which becomes the set ITi

, since it is highly likely for nodes infected
earlier to show symptoms and get tested. Next, we similarly choose nodes for
ITj

with moderate to low probability (30% for simulation), because the onset of
the symptoms takes time as well as in most cases, the symptoms are very mild.

Suspected Node Identification. Procedure 1 takes the two sets of nodes (ITi
and

ITj
) as input and returns a set of nodes (S) suspected of having been infected. We

choose the first � paths with highest infection parameter based on the computed
infection parameter of a path with maximum length Φ = 4 between a node from
ITi

and a node from ITj
.

We show in Fig. 2 the ratio of the size of suspected nodes to the size of
the infected nodes, i.e., |S|/(|V ′|). We also show the ratio of the size of pos-
itive suspected nodes to the size of remaining positive undetected nodes, i.e.,
|S+|/(|V ′| − |ITi

| − |ITj
|). We run our algorithm 100 times for different ITi

and
ITj

for the same infection transmission tree and take the average. We plot it
against the value of � chosen from {1, 2, 3}. Observe that we can safely choose a
higher value of � to get more suspected nodes and correspondingly also get more
positive nodes.

198 D. Pattanayak et al.

Fig. 3. Different IT1 and IT4 vs. Test positivity ratio on different networks.

We show the comparison between the test positivity ratio for the high-
est priority path, two high priority paths, and three high priority paths
in Dolphin, Zachary karate club, Football, Facebook ego networks, as
shown in Fig. 3(a–d). We define test positivity ratio as the ratio of the number
of nodes that is tested positive to the number of suspected nodes, i.e., |S+|/|S|.

We observe that our proposed method results in a better positivity ratio for
the highest priority path. In contrast, if we consider two or three high priority
paths for finding the suspected nodes, then the positivity ratio decreases a little.
For example, in the Dolphin networks, considering the highest priority path, we
get on an average 77% positivity ratio. When we consider the two and three high
priority paths, we get the positivity ratio 70% and 72%.

In the real world, as of 17 August 2020, we have around 3,09,41,264 samples
tested in India as per the data from the Indian Council of Medical Research
website [8] with 27,01,604 people tested positive [9,10]. It is interesting to observe
that our proposed method results in a significant positivity ratio as compared to

A Reconstructive Model for Identifying the Global Spread in a Pandemic 199

(a) Dolphin Network (b) Zachary Karate Club Network

(c) Football Network (d) Facebook ego Network

Fig. 4. λ1 and λ2 vs. No. of Suspected Nodes and No. of Positive Nodes out of the
suspected nodes between time interval T1 and T4 on different networks.

the real-world test positivity ratio, which is around 10% in India [10], whereas
it was as low as 1% in some states at the initial stages of the pandemic.

Variation of Infection Multiplier λ. We compute the infection parameter of a
node by Eq. 1(a–d). For simulation, we have considered infection parameters
up to two hops. Specifically, we vary the value of λ1 and λ2 for the same infection
transmission tree, and input node set ITi

and ITj
. We present the results of the

variation in Fig. 4. Here, our target is to find suitable values for λ1 and λ2.
We find that for the different values of (λ1, λ2) such as (0.1, 0.01), (0.1, 0.09),
(0.1, 0.25), (0.3, 0.01), (0.3, 0.09), (0.3, 0.25), (0.5, 0.01), (0.5, 0.09), (0.5, 0.25),
the variation between the number of identified positive nodes and the total
number of the suspected nodes is minimal. We choose (0.3, 0.09) as the default
values of λ1, λ2 for other simulations presented in this paper.

Algorithmic Feedback. We can run our algorithm repeatedly with added input
to arrive at more and more suspected nodes. If we get entirely correct feedback,
i.e., all test results of suspected nodes are accurate (be it positive or negative),
we can run it again to get more suspected nodes. As of now, some of the test
kits used for detection of the virus is not very accurate. So, in the feedback

200 D. Pattanayak et al.

Fig. 5. (False Positive Ratio, False Negative Ratio) vs. No. of Suspected Nodes/No.
of Positive Nodes out of the suspected between time interval T1 and T4 on different
networks.

input, we vary the false positive and false negative percentages for the values
{5%, 10%, 15%}. We plot the suspected node list and the corresponding positive
node list in Fig. 5(a–d).

In this study, Fig. 5 show how the number of suspected nodes varies with
the False Positive Ratio, False Negative Ratio. We see that size of the suspected
nodes increases as we increase the false positive ratio and the actual positive
nodes decrease as we increase the false negative ratio. Notice that, even with
high false positive and false negative ratios, our algorithm performs well, and
the test positivity ratio remains high.

Assuming that the test results are entirely correct, we determine the total
number of runs of Algorithm 1 required before all the positive nodes are detected.
We execute the algorithm 100 times with different tree sizes and different input
data to show the number of runs Algorithm1 requires before it stops in Fig. 6(a).
We observe from the simulation that the algorithm may not find all the pos-
itive nodes. We stop the algorithm when Procedure 1 returns an empty set.

A Reconstructive Model for Identifying the Global Spread in a Pandemic 201

Fig. 6. (a) The number of runs of the algorithm, (b) total suspected, and (c) total
positive nodes detected with respect to total infected nodes for different contact graphs
based on Dolphin, Zachary karate club and Football networks

In Fig. 6(b), we plot the ratio of total suspected nodes that have been generated
from the algorithm and the total infected nodes in the infection transmission
tree. In Fig. 6(c), we plot the ratio of total positive nodes that have been found
by testing the suspected nodes and the total infected nodes. Observe that, for
the contact graph based on Dolphin network, we need on an average of 5 rounds
to determine 83.84% of the infected nodes on an average, whereas the total sus-
pected nodes generated by the algorithm is 109.88% of the total infected nodes
on an average. Similarly for Zachary Karate Club and Football networks.

6 Conclusion

In this paper, we identify suspected persons infected with the virus so that
they can be tested or quarantined to prevent the spreading of the virus. Our
proposed approach works by determining a path connecting one infected person
to another in the underlying contact graph. We simulate our proposed method
on some benchmark datasets considered as the contact graph, such as Dolphin,
Zachary karate club, Football, and Facebook ego.

We show that our proposed method of finding suspected nodes results in
a significantly higher test positivity ratio (around 70%) than the real world
(around 10%). Our assumptions rely on the availability of location data as well as
testing data of previous days. The real world test positivity ratio is small due to
various factors, including the testing criteria and tracing mechanism. Depending
on the availability of the test kits, we can run our algorithm multiple times to
get more suspected nodes. Since the suspected node size is directly correlated
with the input size, we get more suspected nodes as output as we include the
test results of the previously suspected nodes. We show the robustness of our
algorithm with different infection multiplier (λ). Even when false positive and

202 D. Pattanayak et al.

false negative test results are included, our algorithm maintains a high test
positivity ratio. Finally, we also determine the number of runs our algorithm
needs to terminate, which is very small. We show that our algorithm, when run
to completion, finds more than 80% of the positive nodes on an average. This is
also helpful in identifying asymptomatic carriers that may be infectious.

References

1. Cooper, I., Mondal, A., Antonopoulos, C.G.: A SIR model assumption for the
spread of COVID-19 in different communities. Chaos, Solitons Fractals 139, 110057
(2020)

2. Ye, F., et al.: Delivery of infection from asymptomatic carriers of COVID-19 in a
familial cluster. Int. J. Infect. Dis. 94, 133–138 (2020)

3. Bai, Y., et al.: Presumed asymptomatic carrier transmission of COVID-19. JAMA
323, 1406–1407 (2020)

4. Lauer, S.A., et al.: The incubation period of coronavirus disease 2019 (COVID-19)
from publicly reported confirmed cases: estimation and application. Ann. Internal
Med. 172(2020), 577–582 (2019)

5. He, X., et al.: Author correction: temporal dynamics in viral shedding and trans-
missibility of COVID-19. Nat. Med. 26, 1491–1493 (2020)

6. He, X., et al.: Temporal dynamics in viral shedding and transmissibility of COVID-
19. Nat. Med. 26, 672–675 (2020)

7. Widders, A., Broom, A., Broom, J.: SARS-CoV-2: the viral shedding vs infectivity
dilemma. Infect. Dis. Health 25, 210–215 (2020)

8. Indian Council of Medical Research: Samples tested in India (2020). https://www.
icmr.gov.in/. Accessed 17 Aug 2020

9. Ministry of Health and Family Welfare: COVID-19 Status in India (2020). https://
www.mohfw.gov.in/. Accessed 17 Aug 2020

10. covid19india.org: Coronavirus Outbreak in India (2020). https://www.
covid19india.org/. Accessed 17 Aug 2020

https://www.icmr.gov.in/
https://www.icmr.gov.in/
https://www.mohfw.gov.in/
https://www.mohfw.gov.in/
https://www.covid19india.org/
https://www.covid19india.org/

Cost Effective Method for Ransomware
Detection: An Ensemble Approach

Parthajit Borah1(B), Dhruba K. Bhattacharyya1, and J. K. Kalita2

1 Department of Computer Science, Tezpur University, Tezpur, Assam, India
parthajit@tezu.ernet.in

2 Department of Computer Science, University of Colorado,

Colorado Springs, CO 80918, USA

Abstract. In recent years, ransomware has emerged as a new malware
epidemic that creates havoc on the Internet. It infiltrates a victim sys-
tem or network and encrypts all personal files or the whole system using
a variety of encryption techniques. Such techniques prevent users from
accessing files or the system until the required amount of ransom is paid.
In this paper, we introduce an optimal, yet effective classification scheme,
called ERAND (Ensemble RANsomware Defense), to defend against ran-
somware. ERAND operates on an optimal feature space to yield the best
possible accuracy for the ransomware class as a whole as well as for each
variant of the family.

Keywords: Malware · Feature · Optimal · Classification · Static ·
Dynamic · Analysis

1 Introduction

With rapid advances in technology, more than one third of the world’s popu-
lation has now entered the digital world. The Internet provides the backbone
to the digital world where people constantly make use of beneficial services and
applications available on the Internet. The Internet is used for basic communica-
tion purposes as well as for numerous online transactions. The services available
on the Internet can be exploited by people with destructive intentions. Malicious
software or Malware is used to further increase the harmful intentions of such
people. There are various types of malware available in the wild and each of
them has been designed for specific purpose. Ransomware is a type of malware
which has been emerged as one of the most sophisticated malware in the recent
past.

Locker and Crypto are primarily the two categories of ransomware. Both
kinds of ransomware utilize the same infection vectors like drive by down-
load, social engineering, phishing, spam emails, or removable media to get into
the information devices and systems, including mobile and Internet of Things
devices. However, the way of compromising the victim’s system is different for
both types of ransomware. The locker ransomware is designed to lock the target
c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 203–219, 2021.
https://doi.org/10.1007/978-3-030-65621-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-65621-8_13

204 P. Borah et al.

system and denies user access to the system without making any modification to
the file system and then a certain amount of ransom is demanded from the victim.
On the other hand, crypto ransomware, after getting into the victim’s system,
encrypts all or selected files in the system using various encryption techniques
like AES or RSA [1]. After encryption, a message with all the payment instruc-
tions is displayed to the users. To gain access to the system, a required ransom
need to be paid to the attackers and in return a decryption key is obtained.
The cyber-attacks carried out by ransomware is growing and becoming more
sophisticated to defend against.

This paper presents a fast, yet reliable ransomware defense solution, referred
to as ERAND, powered by an optimal feature selection method to discriminate
the ransomware class as a whole, as well as the eleven variants of the ransomware
family from the goodware instances.

The proposed solution is significant, considering the following clauses.

1. It is able to identify an optimal subset of Indicator of Compromises (IoCs)
for the ransomware as a family as well as its individual variants to ensure
better accuracy.

2. It is able to classify or discriminate instances of ransomware class (as a whole)
from non ransomware as well as instances corresponding to individual variants
from one another with high accuracy.

The rest of the paper is organised as follows. Section 2 discusses back-
ground and related work. In Sect. 3, we present our defense solution, ERAND.
Section 4 discusses about performance comparison of ERAND with other recent
approaches. Section 5 contains implementation and discusses the results. Finally,
in Sect. 6, we give the concluding remarks.

2 Background and Related Work

Cyber threats involving ransomware or ransom malware are growing at an expo-
nential rate to extort money from individual users or organizations. In the recent
past, several defense solutions have been proposed to combat ransomware. To
combat malware, it is necessary to analyze the malware binaries properly to
extract the IoCs to distinguish malware from goodware. As shown in Fig. 1,
malware files are fed as input to the host machine of the analysis framework,
which executes the binaries in an emulated environment and records their static
and dynamic characteristics, and provides an output report to the user. These
reports are finally used to extract the IoCs.

Gazet et al. [14] made first attempt at analysing ransomware families. The
authors carried out a technical review on quality of ransomware codes and its
functionality. The authors concluded that the ransomware under analysis were
designed for mass propagation but not for mass extortion.

Scaife et al. [18] propose a ransomware detection system called Cryptodrop
which promises to give early warnings in case of breach. It also combines three
IoCs related to ransomware for rapid detection of ransomware.

Cost Effective Method for Ransomware Detection: An Ensemble Approach 205

Host Machine
VM1 VM2 VMn

Input
file(PDF,EXE,WORD etc)

Output
File(XML,JSON,HTML,PDF

etc)

Database
User

Interface

Emulated Environment

.......

Analysis and Report Genera on

Fig. 1. A generic architecture of malware analysis framework

Homayoun et al. [16] propose a sequential pattern mining approach for com-
bating ransomware. The approach helps to identify best features for classification
of ransomware applications from benign apps as well as identifying a ransomware
sample family.

2.1 Discussion

We observe the following, based on the conducted review.

– Both supervised and semi-supervised learning approaches have been used for
detection of known and unknown malware.

– Among supervised approaches, there is scope for further enhancement of
detection performance in terms of classification accuracy. Recently, several
faster and effective classifiers as well as ensemble approaches have been pro-
posed to address the issue.

– Identification of an appropriate and optimal subset of IoCs can improve the
performance of the detection method in terms of both accuracy and cost
effectiveness.

– Most learning approaches fail to perform well for all kinds of malware due
to non-availability of adequate training instances. Active learning approaches
could be a better alternative for detection of both known as well as unknown
malware with a low rate of false alarms.

3 Proposed Framework

This section presents the proposed detection framework, referred to as ERAND,
and discusses its components. Figure 2 illustrates the architecture of the proposed
framework and its components.

3.1 Data Collection

We evaluate our method using two datasets. For the first, we collect 2288 ran-
somware samples from [7]. In addition to that, we also collect 933 goodware

206 P. Borah et al.

Redundant(Zero variance) feature elimina�on

Preprocessor

Original Feature Data

FSA1 FSA2 FSA3 FSAN

Select features with least relevance

Op�mal Feature/IoC subset, Sfinal

………….
.

Core subset S1 iden�fica�on
using intersec�on Extended subset S2 iden�fica�on

Eliminate feature with �e
breaking(if any)

Co
m

bi
na

�o
n

Fu
nc

�o
n

Re
cu

rs
iv

e
El

im
in

a�
on

Evaluate the new subset S’

S (S1 U S2)

Fig. 2. ERAND Detection framework for Ransomware and its variants

samples from Google Play Store1. After this, we analyse the collected samples
for feature extraction. We extract two categories of features: a) Permission and
b) API. A total of 241 features are extracted out of which 214 features belong to
permission based and the remaining 27 belong to API category. The whole pro-
cess of feature dataset generation is represented in Fig. 3. The final description
of the dataset is given in Table 1.

Analysis Module Data Preprocessing

F1 F2 F3 F4

Database

Android APKs

API Permission

Feature Extrac on

Fig. 3. The ransomware feature dataset generation framework

For our experiment, we use another feature dataset from Sgandurra et al.
[19]. The dataset contains 582 samples of ransomware with 11 variants and 942
samples of benign programs. The dataset has 30,962 attributes which represent
all instances both goodware and ransomware present in the dataset. A detailed
description of the dataset is given in the Table 2.
1 https://play.google.com/.

https://play.google.com/

Cost Effective Method for Ransomware Detection: An Ensemble Approach 207

Table 1. Ransomware dataset with two classes

No. of instances No. of classes No. of features

Ransomware 2288 2 Permission-based 214

Goodware 933 API-based 27

Total instances: 3221 Total features: 241

Table 2. Ransomware dataset with Normal and 11 ransomware subclasses

Sl no. Class No. of samples

1 Goodware 942

2 Critroni 50

3 CryptLocker 107

4 CryptoWall 46

5 KOLLAH 25

6 Kovter 64

7 Locker 97

8 MATSNU 59

9 PGPCODER 4

10 Reveton 90

11 TeslaCrypt 6

12 Trojan-Ransom 34

Total samples: 1524

Total features: 30962

3.2 Data Preprocessing

Data preprocessing helps convert the input data into an appropriate format to
make it suitable for further analysis. In our work, we preprocessed our original
dataset before performing subsequent analysis. In the preprocessing phase, we
removed all those attributes whose variance is zero. In addition to that, we have
discarded all those malware binaries that are failed to execute during analysis
phase.

3.3 Ensemble Feature Selection

Data mining or machine learning algorithms may face the curse of dimension-
ality issues while dealing with high dimensional data. Additionally, the learning
models may overfit in the presence of a large number of features which may lead
to performance degradation, in addition to increased memory requirements and
computational cost. Therefore, it is necessary to remove irrelevant features. Since
both the datasets have large number of features (241 for dataset 1 and 30,962
for dataset 2), we perform feature selection to find an optimal subset of features.

208 P. Borah et al.

Each variant of ransomware exhibits different characteristics and as such fea-
ture selection techniques are used for each of them present in our dataset. More
specifically, we use an ensemble feature selection approach, where the results of
the base feature selection algorithms are combined with a consensus to generate
an optimal subset of features.

Selection of the Base Feature Selection Algorithms. Ensemble feature
selection eliminates the biases of individual participating feature selection meth-
ods to yield the best possible output using an appropriate consensus function.
Similar to other ensemble approaches, there are two steps in ensemble feature
selection. First, we need a set of well-performing feature selectors, each of which
provides a subset of features found relevant. Second, based on the output received
from each ranker or feature selection algorithm, we apply an appropriate con-
sensus function to yield the best possible subset of relevant features. Guided by
our experimental results, we use the following three feature selectors, namely,
CMIM [12], MIFS [3], and ReliefF [17].

(a) Conditional Mutual Information Maximization (CMIM) [12]: For a
given set of selected features, CMIM feature selector functions in an iterative
manner by selecting features with maximum mutual information with the
class labels. In other words, CMIM discards those features which are similar
to the previously selected features even though its predictive power is strong
concerning the class labels. For each unselected feature Xi, the feature score
is calculated using Eq. 1.

JCMIM (Xi) = minXjεS [I(Xi; Y |Xj)] (1)

(b) Mutual Information Feature Selection (MIFS) [3]: A good feature
should be highly correlated with the class label, but it should not have high
correlation with other features. Both feature relevance and feature redun-
dancy are taken into consideration by MIFS during feature selection phase.
The feature score is calculated for each unselected feature Xk using Eq. 2.

JMIFS(XK) = I(Xk; Y) − β
∑

XjεS

I(Xj ; Xk) (2)

(c) ReliefF [17]: ReliefF selects features to efficiently separate instances from
different classes. Assume that l data instances are randomly selected among
all n instances, then the feature score of any feature fi in ReliefF is estimated
using Eq. 3.

ReliefFscore(fi) = 1/c

l∑

j=1

(−1/mj)
∑

xrεNH(j)

d(X(j, i) − X(r, i))

+
∑

y �=y j

1/hjyp(y)/(1 − p(y))
∑

xrεNM(jy)

d(X(j, i)X(r, i))
(3)

Cost Effective Method for Ransomware Detection: An Ensemble Approach 209

where NH(j) and NM(j, y) are the nearest instances of xj in the same class
and in class y, respectively. Their sizes are mj and hjy, respectively. p(y) is
the ratio of instances with class label y.

Combination Function to Generate Initial Feature Subset. In this work,
we introduce a 3-step consensus building process to identify an initial optimal
subset of features for the subsequent recursive optimality test.

C1 Consider the intersection of selected feature subsets given by each base fea-
ture selection algorithm to obtain a core subset of features, which we denote
as S1.

C2 Consider the scores of all features given by all individual algorithms and
select those features (other than those included in S1) for each algorithm
with scores higher than a user defined threshold (say, α). We consider all
those features whose score value is greater than 0. Finally, this step out-
puts a feature set S2 based on contributions from all the feature selection
algorithms.

C3 Obtain the initial optimal feature subset S by taking union of S1 and S2

for consideration of the recursive optimality test, described next, towards
generation of the final optimal feature subset, i.e., Sfinal.

Generation of Final Optimal Feature Subset Using Recursive Opti-
mality Test. In this section, a recursive elimination method is applied to get
the final optimal feature subset Sfinal based on S. There are three steps in this
process, which are stated below.

O1 Consider the feature subset, i.e., S as input and identifies one or more fea-
tures with least relevance score.

O2 Eliminate the feature(s) to obtain a new subset, S′. In case of tie, based
on relevance score estimated for an identified pair of candidate features, we
choose feature for elimination given by an inconsistent performing ranker
algorithm.

O3 Evaluate S′ in terms of classification accuracy. It terminates the elimination
process if and only if a significant performance degradation is observed in
terms of accuracy due to the elimination of a feature, and considers the
recent Si as Sfinal.

Optimal Feature Subset for Each Class and for the Whole Family. Ini-
tially, the three feature selection algorithms namely: CMIM, MIFS and ReliefF
generate 3 feature subsets for each variant of ransomware. The naming conven-
tion for each subset is Ran subij, where i goes from 1 to n and j goes from
1 to 3. Next, we apply a consensus function (described in Sect. 3.3) on these
subset of features to generate a common subset for each class of ransomware.
This generates n feature subsets for each variant of ransomware present in the
dataset. Now, for each of the n feature subsets, an optimal feature subset is

210 P. Borah et al.

Table 3. Number of optimal features for each ransomware dataset

Dataset No. of optimal features

Dataset 1 15

Dataset 2 (class 1) 23

Dataset 2 (class 2) 36

Dataset 2 (class 3) 19

Dataset 2 (class 4) 42

Dataset 2 (class 5) 20

Dataset 2 (class 6) 36

Dataset 2 (class 7) 31

Dataset 2 (class 8) 4

Dataset 2 (class 9) 32

Dataset 2 (class 10) 8

Dataset 2 (class 11) 25

Table 4. List of selected features for
dataset 1

Feature rank Feature name

1 SEND SMS

2 RECEIV E BOOT COMPLETED

3 GET TASKS

4 Ljava/net/URL;− > openConnection

5 V IBRATE

6 WAKE LOCK

7 KILL BACKGROUND PROCESSES

8 SY STEM ALERT WINDOW

9 ACCESS WIFI STATE

10 DISABLE KEY GUARD

11 Landroid/location/LocationManager;− >
getLastKnownLocation

12 READ PHONE STATE

13 RECEIV E SMS

14 CHANGE WIFI STATE

15 WRITE EXTERNAL STORAGE

Table 5. List of top ranked feature cate-
gories for dataset 2

Feature rank Feature category

1 RegistryKeysOperations

2 APICalls

3 Strings

4 Filesoperations

5 Fileextensions

6 Directoryoperations

7 Droppedfiles

identified using the process described in the Sect. 3.3. The number of optimal
features identified for each dataset with each variant of ransomware is given in
the Table 3. Table 4 lists all the optimal features for ransomware dataset 1 and
Table 5 lists top ranked feature categories for dataset 2.

Correctness of Feature Selection Results. To establish the correctness of
our feature selection results, we propose the following two lemmas.

Cost Effective Method for Ransomware Detection: An Ensemble Approach 211

Lemma 1. For discrimination of each ransomware variant, i.e., Ri from benign
instances, selected feature subset, i.e. Ran subi is optimal.

Proof: Suppose for the sake of contradiction, we assume that for a ransomware
variant Ri, Ran subi is non optimal and |Ran subi| = k. Also, assume that
|Ran subi|+1 gives us the best possible accuracy. However, as shown in Table 12
and also stated in Sect. 3.3, the highest possible accuracy to discriminate Ri

from normal or goodware after recursive elimination is for the subset of features
Ran subi. Any addition or deletion of features from Ran subi does not improve
accuracy. Hence, the assumption is false and it contradicts the non-optimality
assumption. Hence, Ran subi is optimal.

Lemma 2. The accuracy given by Ran suball cannot be greater than the overall
highest accuracy given by the individual optimal subset of features i.e., Ran subi.

Proof: A feature subset Ran subi for each ransomware variant Ri is identified
and its optimality as stated in the Lemma 1 is established. Ran suball includes
Ran subi and some additional features. In other words, for discrimination of
Ri, Ran suball includes some additional redundant features with reference to
Ran subi. Such additional features cannot improve classifier performance for
Ri (as substantiated by Lemma 1). Hence, the accuracy given by Ran suball ≯

Ran subi (where i varies from 1 to 11).

3.4 Classification of Ransomware Family and Its Variants

After obtaining the dataset using an optimal feature subset, it is necessary to
establish the performance of the features to distinguish the ransomware from the
goodware and supervised approach can be used to achieve the same. To avoid
biases of classifiers, we consider an ensemble approach for unbiased evaluation
of the optimality of the subset of IoCs given by the previous step. However,
ensemble methods are also not totally free from drawbacks due to the limitations
of the inherent combination/consensus function used. Therefore, in our study,
we consider a number of consistent performing ensemble classifiers for optimal
classification. The five ensemble classifiers used in our work are Random forest
[5], Extra Tree [15], Adaboost [13], Gradient boosting [4], and XGBoost [8].

To avoid individual biases of these ensemble methods, we combine their out-
puts to yield best possible classification performance by minimizing false alarms.

Balancing of Classes. Data balancing is a technique to make an approximately
balanced number of instances in each class. An imbalanced data distribution
may lead to unusual model performance. Our dataset is highly imbalanced as
shown in Table 2 of class distribution and hence, it needs to be balanced. For
data balancing, we need additional class specific instances which are difficult to
collect because ransomware data are not readily available due to various other
reasons in addition to security reasons. Therefore, we use a sampling technique
to handle the class imbalance problem. In general, there are three sampling
techniques: undersampling, oversampling, and hybrid sampling. In our case, we
use an oversampling technique called SMOTE [6], where the minority class is

212 P. Borah et al.

oversampled by creating “synthetic” examples rather than by over-sampling with
replacement. Finally, in the dataset all the class instance distributions become
50:50. In addition to that, we also validate our method’s performance in other
data distributions also like 60:40, 70:30 and 80:20.

Classification of Ransomware Variants. The above mentioned classifiers,
i.e., Random forest, Extra tree, Adaboost, Gradient boosting, and XGboost are
used to build a predictive model for each Ran subi dataset, where i goes from
1 to 11 and each dataset includes the instances of goodware and ransomware
variants.

Classification of Ransomware Family. The classifier models are also built
using the Ran suball dataset, where all the instances of ransomware variants are
included as a single ransomware class along with the goodware instances.

4 Comparison with Existing Methods

In this section, we compare our method with some of the existing ransomware
detection methods. The similarity and dissimilarity of our method with the exist-
ing methods can be described in the following ways. Table 6 presents comparative
study of the proposed method with some of the existing methods.

– Like [2,21,22], our method also employ the various supervised approaches for
classification of ransomware instances into their respective families.

– Like [2,21,22], our work is also based on multi-class classification ransomware
instances. But in [2,21,22], the proposed method is experimented against
8, 9, and 7 families of ransomware whereas our method uses 11 families of
ransomware for validation.

– Like [22], our dataset is also not balanced in terms of goodware and ran-
somware samples. But unlike [22], we apply data balancing technique to val-
idate our method with different class distributions.

– Unlike [2,22], our method uses the different platform specific ransomware for
which both dynamic and static behaviors of ransomware are extracted as
features to discriminate ransomware from goodware.

– In [21], the stable performance is obtained for 131 features which is too high
in comparisons to ours. The maximum feature dimension used by our method
is 45 and minimum feature dimension is 4 for which we get the stable perfor-
mance among the ransomware families.

– In [22], the stable performance is obtained for 123 features which is too high
in comparisons to ours. The maximum feature dimension used by our method
is 45 and minimum feature dimension is 4 for which we get the stable perfor-
mance among the ransomware families.

– In [2], the highest accuracy is obtained with 8 features which 97.10 but our
method achieves highest accuracy of 98.7 with only 4 features for Dataset 2
(class 8).

Cost Effective Method for Ransomware Detection: An Ensemble Approach 213

– Unlike [2,22], our method achieves better accuracy in terms of classification.
The best possible accuracy obtained by the method [22] is 91.43% while our
method obtained 98.7%.

5 Results

The experimental analysis is performed in a Python environment. The experi-
ments are carried out on a workstation with 64 GB main memory, 2.26 Intel(R)
Xeon processor and Ubuntu operating system.

To build consensus based on decisions given by the individual classifiers, we
use a weighted majority approach. The approach uses individual weights of the
classifiers given by a multiobjective optimization technique for unbiased combi-
nations of the individual decisions to achieve best possible accuracy.

5.1 Computation of Weights for Classifiers Using NSGA-II

We use multiobjective evolutionary method to compute best possible set of
weighting factors for the participating classifiers based on their classification
performances on each of the 11 variants of ransomware. Since none of the clas-
sifiers has been found to give winning performance consistently for all the vari-
ants of ransomware, we decided to exploit weighted majority based combination
function to achieve best possible classification accuracy. A good number of mul-
tiobjective evolutionary algorithms are available in the literature and some of
their comparisons are available at [9,23]. NSGA-II has already been established
as a promising optimization method to handle multiobjective problem due to
its elitist approach. An arithmetic crossover and Gaussian mutation operators
generates offspring population from parent population. Offspring populations
are then added to the current population. The NSGA-II algorithm uses (i) non-
dominated sorting method for ranking individuals into different non-domination
levels and (ii) crowding distance method to sort individuals within the same
level. An individual dominates another individual if it is strictly better in at
least one objective and no worse in all the other objectives.

In this work, we exploit the NSGA-II to compute an optimal set of weighting
factor for the five classifiers (c1 to c5) based on their individual performances
for 11 variants. We use their 5 × 11 = 55 performance values as input to the
NSGA-II for computation of the optimal set of weights. The optimal weights
obtained are given in Table 7.

214 P. Borah et al.

Table 6. Comparison of the proposed method
with existing methods

Methods Ransomware
samples

Total class Features (S/D) Total features Accuracy (%)

[22] 1787 10 S 123 91.43

[2] 210 10 D 8 97.1

[10] 500 6 D 23 97.03

[11] 256 2 D 8 87

[21] 755 8 D 131 98

[20] 574 12 S/D 98.25

Proposed 2288 (Dataset 1) 2 S 15 98.2

582 (Dataset 2) 12 D Min:4 Max:42 98.8

Table 7. Weightage of the classi-
fiers given by NSGA-II

Classifier, ci Weightage

ExtraTree (c1) 0.35

Gradient Boosting (c2) 0.28

AdaBoost (c3) 0.15

XGBoost (c4) 0.12

Random Forest (c5) 0.10

5.2 Weighted Majority Based Combination Function

To generate an unbiased classification output, ERAND uses ‘weighted majority
voting‘ to build consensus among the outputs given by the individual classifiers.
We initially carry out an exhaustive experimentation with these classifiers using
the datasets described in Sect. 3.1 and consider their performance as the basis for
subsequent processing to decide their weights while building the consensus. Our
experimental study based on weighted majority voting uses Eq. 4 to decide the
class label of a test instance. It computes anomaly score, Si for each test instance
given by Eq. 4 to recognise either as ‘goodware’ or ‘malware’ with respect to a
user defined threshold, β.

Si = w1c1 + w2c2 + w3c3 + w4c4 + w5c5 (4)

If the value of Si ≥ β (a user-defined threshold), the instance is considered
anomalous or belonging to a malware class. In our experimentation, we consider
β = 0.63. Because if any two best performers (like (c1,c2) or (c1,c3) agree, then
their total weights are used as threshold. The value of ci for a given class can
be either 1 (if belongs to the class) or 0 (if not). In case of tie, we give priority
to the decision of the best performers. For example, if c1 and c4 are on one side
and c2, c3 and c5 are on the other side, we prefer the decision of (c1, c4).

5.3 Classification of Ransomware Variants

We evaluate the performance of the selected subset of features to distinguish
the instances of the ransomware family from the goodware, using five classifiers
individually. The classification results of dataset 1 and dataset 2 are given in
Tables 8 and 9. It can be observed from Tables 8 and 9 that ERAND consistently
performs well like ExtraTree and Gradient Boosting in classifying each variant
of the ransomware malware.

Cost Effective Method for Ransomware Detection: An Ensemble Approach 215

Table 8. Classification accu-
racies of dataset 1

Classifiers Accuracy

Gradient Boosting 97.5

Adaboost 96.47

Random Forest 98

Extra Tree 98.27

XGBoost 97.2

ERAND 98.2

Table 9. Classification accuracies of dataset 2 for
each variant

Ransomware family Classifiers

Gradient Boosting Adaboost Random Forest Extra Tree XGBoost ERAND

Critroni 98.7 98.7 98 98.1 98.7 98.8

CryptLocker 96.8 96.8 96.7 96.8 96.7 96.8

CryptoWall 96.3 96.17 96.23 96.44 96.33 96.42

KOHLER 98.6 98.56 98.61 98.8 98.7 98.83

Kovter 98.76 97.88 97.8 98.1 98.23 98.78

Locker 96.39 96.34 96.50 96.92 96.39 96.55

MATSNU 97.61 97.70 97.77 97.70 97.88 97.88

PGPCODER 98.12 98.12 98.43 98.7 98.43 98.7

Reveton 98.40 98.72 98.84 97.7 98.72 98.79

TeslaCrypt 98.87 98.62 98.77 98.6 97.88 98.86

Trojan-Ransom 98.43 97.78 98.32 98.61 97.86 98.67

5.4 Classification of Ransomware Family

To calculate the performance of the selected features to distinguish whole ran-
somware family from the goodware, we used five classifiers namely, Random
forest, Gradient boosting, Adaboost, Extratree and XGboost. The classification
results of whole ransomware family with respect to goodware are enlisted in
Table 10.

5.5 Metrics and Cross Validation

For effective evaluation of our method, four machine learning performance met-
rics are used namely: Accuracy, Recall, Precision and F-Measure. The precision,
recall and F1 Score values of each classifier are reported in Table 11. On the
other hand, the classification accuracies of each classifier are reported in Table 9
for 50:50 class distribution.

– Accuracy : The no of instances correctly detected by a classifier divided by
the total of goodware and ransomware instances gives the accuracy.

Accuracy =
TP + TN

TP + TN + FP + FN

– Precision: It defines what proportion of predicted ransomware are actually
correct. Thus, Precision of a model is calculated as follows:

Precision =
TP

TP + FP

Table 10. Classification accuracies of whole ransomware family

Goodware Ransomware Classifiers ERAND

Random Forest Extra Tree AdaBoost XGBoost Gradient Boosting

942 618 97.8 98.7 97.9 98.1 98.6 98.6

216 P. Borah et al.

T
a
b
le

1
1
.
P

re
ci

si
o
n
,
R

ec
a
ll
,
a
n
d

F
1

sc
o
re

o
f
a
ll

th
e

cl
a
ss

ifi
er

s

D
a
ta

se
ts

P
re

c
is
io
n

R
e
c
a
ll

F
1
-S

c
o
re

G
ra

d
ie
n
t

B
o
o
st
in

g

A
d
a
b
o
o
st

R
a
n
d
o
m

F
o
re

st

E
x
tr
a

T
re

e

X
G
B
o
o
st

G
ra

d
ie
n
t

B
o
o
st
in

g

A
d
a
b
o
o
st

R
a
n
d
o
m

F
o
re

st

E
x
tr
a

T
re

e

X
G
B
o
o
st

G
ra

d
ie
n
t

B
o
o
st
in

g

A
d
a
b
o
o
st

R
a
n
d
o
m

F
o
re

st

E
x
tr
a

T
re

e

X
G
B
o
o
st

D
a
ta

se
t
1

9
8
.1

9
7

9
8
.9

9
8
.7

9
8
.4

9
7
.9

9
7
.5

9
8
.1

9
8

9
7
.6

9
8

9
7
.2
2

9
8
.5

9
8
.6

9
7
.8

D
a
ta

se
t
2

(C
la
ss

1
)

9
8
.9

9
8
.8
9

9
8
.8
9

9
8
.8
8

9
8
.8
9

9
8

9
8
.3

9
8
.3

9
8

9
8
.4

9
8

9
8
.1

9
7
.9

9
8
.7

9
8
.4

D
a
ta

se
t
2

(C
la
ss

2
)

9
5
.7

9
5
.9

9
6
.8

9
6
.2

9
5
.8

9
8
.8

9
8
.8

9
7
.5

9
8
.7

9
8
.3

9
7
.2

9
7
.4

9
6
.7

9
7
.2

9
7
.1

D
a
ta

se
t
2

(C
la
ss

3
)

9
4
.3

9
3
.2

9
3
.4

9
3
.3

9
3
.1

9
8
.7

9
8
.6

9
8
.5

9
8
.8

9
8
.7

9
6
.5

9
6
.2

9
6
.4

9
6
.5

9
6
.3

D
a
ta

se
t
2

(C
la
ss

4
)

9
8
.7

9
8
.7

9
8
.7

9
8
.8

9
8
.8

9
8
.6

9
8
.6

9
8
.6

9
8
.6

9
8
.6

9
8
.7

9
8
.7

9
8
.7

9
8
.7

9
8
.7

D
a
ta

se
t
2

(C
la
ss

5
)

9
8
.5

9
8
.7

9
8
.2

9
8
.6

9
8
.6

9
8
.3

9
8
.6

9
8

9
8
.5

9
8

9
8
.9

9
8
.6

9
8
.7

9
8

9
8
.8

D
a
ta

se
t
2

(C
la
ss

6
)

9
5
.4

9
4
.5

9
4
.7

9
4
.6

9
4
.3

9
8
.1

9
8
.3

9
8
.6

9
8
.2

9
8
.7

9
6
.7

9
6
.5

9
6
.6

9
6
.8

9
6
.4

D
a
ta

se
t
2

(C
la
ss

7
)

9
8
.6

9
8
.4

9
8
.7

9
8
.5

9
8
.6

9
8

9
8
.8

9
8
.2

9
8
.7

9
8
.9

9
8
.3

9
8
.1

9
8
.2

9
8
.1

9
8
.3

D
a
ta

se
t
2

(C
la
ss

8
)

9
7
.7

9
8
.8

9
8
.7
6

9
8
.8

9
8
.8
8

9
7
.8

9
7
.8

9
7
.7

9
8
.8

9
7
.8

9
7
.8

9
7
.9

9
7
.8

9
8
.7

9
7
.9

D
a
ta

se
t
2

(C
la
ss

9
)

9
8
.1

9
8
.6

9
8
.3

9
8
.4

9
8
.2

9
8
.2

9
8
.5

9
8
.6

9
8
.7

9
8
.2

9
8
.6

9
8

9
8
.8
9

9
8
.8
9

9
8
.7

D
a
ta

se
t
2

(C
la
ss

1
0
)

9
8
.4

9
8
.7

9
8
.8

9
8
.8

9
7
.3

9
8
.7

9
8
.6

9
8
.5

9
8
.8
8

9
7
.5

9
8
.6

9
8
.7

9
8
.8

9
7
.8

9
8
.4

D
a
ta

se
t
2

(C
la
ss

1
1
)

9
8
.5

9
8
.4

9
8
.8

9
8
.6

9
8
.4

9
8
.4

9
8
.3

9
8
.3

9
8
.5

9
8
.6

9
8
.5

9
8
.4

9
8
.5

9
8
.6

9
8
.5

Cost Effective Method for Ransomware Detection: An Ensemble Approach 217

– Recall : It defines what proportion of all ransomware samples are correctly
predicted. The recall of a model is calculated as follows:

Recall =
TP

TP + FN

– F1-score is calculated by taking the weighted average of precision and recall.
F1-score is defined as follows:

F1 Score =
2 ∗ (Recall ∗ Precision)
(Recall + Precision)

Where TP: True Positive, TN: True Negative, 1.65 cm FP: False Positive, FN:
False Negative. In order to evaluate the performance of the proposed method,
we used the K-Fold cross validation where we set the value of K = 10. Table 11
presents the Precision, Recall, and F1 score of all the classifiers.

6 Conclusion

In order to counter the ransomware, a cost effective method is proposed based
on the dynamic features of ransomware. For identification of most discriminative
features of ransomware families, an ensemble approach is introduced. Finally, a
weighted majority based combination function is proposed to get highest possible
classification accuracy in ransomware detection. ERAND performs consistently
well on all the malware datasets. As a future work, we are developing an unsu-
pervised approach to counter zero-day ransomware.

Table 12. Result of Recursive Optimality test for ransomware variant 1

No. of

features

Classification

accuracy

No. of

features

Classification

accuracy

No. of

features

Classification

accuracy

No. of

features

Classification

accuracy

1 0.883264278 10 0.954893617 19 0.977217245 28 0.982049272

2 0.892821948 11 0.954893617 20 0.977743561 29 0.982575588

3 0.911394177 12 0.954893617 21 0.978269877 30 0.982575588

4 0.907183651 13 0.954893617 22 0.978226204 31 0.982575588

5 0.926254199 14 0.954893617 23 0.982049272 32 0.982575588

6 0.935828667 15 0.954893617 24 0.982575588 33 0.982049272

7 0.953309071 16 0.954893617 25 0.982575588 34 0.982575588

8 0.953309071 17 0.954893617 26 0.982575588 35 0.982049272

9 0.954367301 18 0.96393617 27 0.982575588

218 P. Borah et al.

References

1. The Evolution of Ransomware (2008). https://www.symantec.com/content/en/
us/. Accessed 14 Feb 2019

2. Alhawi, O.M.K., Baldwin, J., Dehghantanha, A.: Leveraging machine learning
techniques for windows ransomware network traffic detection. In: Dehghantanha,
A., Conti, M., Dargahi, T. (eds.) Cyber Threat Intelligence. AIS, vol. 70, pp. 93–
106. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73951-9 5

3. Battiti, R.: Using mutual information for selecting features in supervised neural
net learning. IEEE Trans. Neural Netw. 5(4), 537–550 (1994)

4. Breiman, L.: Arcing the edge. Technical report (1997)
5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
6. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic

minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
7. Chen, J., Wang, C., Zhao, Z., Chen, K., Du, R., Ahn, G.: Uncovering the face

of android ransomware: characterization and real-time detection. IEEE Trans.
Inf. Forensics Secur. 13(5), 1286–1300 (2018). https://doi.org/10.1109/TIFS.2017.
2787905

8. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2016, pp. 785–794. ACM, New York (2016). https://doi.org/
10.1145/2939672.2939785, http://doi.acm.org/10.1145/2939672.2939785

9. Coello, C.A.: An updated survey of GA-based multiobjective optimization tech-
niques. ACM Comput. Surv. 32(2), 109–143 (2000). https://doi.org/10.1145/
358923.358929

10. Cohen, A., Nissim, N.: Trusted detection of ransomware in a private cloud
using machine learning methods leveraging meta-features from volatile memory.
Exp. Syst. Appl. 102, 158–178 (2018). https://doi.org/10.1016/j.eswa.2018.02.039.
http://www.sciencedirect.com/science/article/pii/S0957417418301283

11. Cusack, G., Michel, O., Keller, E.: Machine learning-based detection of ransomware
using SDN. In: Proceedings of the 2018 ACM International Workshop on Security
in Software Defined Networks & Network Function Virtualization, pp. 1–6. ACM
(2018)

12. Fleuret, F.: Fast binary feature selection with conditional mutual information. J.
Mach. Learn. Res. 5, 1531–1555 (2004)

13. Friedman, J., Hastie, T., Tibshirani, R., et al.: Additive logistic regression: a sta-
tistical view of boosting (with discussion and a rejoinder by the authors). Ann.
Stat. 28(2), 337–407 (2000)

14. Gazet, A.: Comparative analysis of various ransomware virii. J. Comput. Virol.
6(1), 77–90 (2010). https://doi.org/10.1007/s11416-008-0092-2

15. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn.
63(1), 3–42 (2006)

16. Homayoun, S., Dehghantanha, A., Ahmadzadeh, M., Hashemi, S., Khayami, R.:
Know abnormal, find evil: frequent pattern mining for ransomware threat hunting
and intelligence. IEEE Trans. Emerg. Top. Comput. 8, 341–351 (2017)

17. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of relieff
and rrelieff. Mach. Learn. 53(1–2), 23–69 (2003)

18. Scaife, N., Carter, H., Traynor, P., Butler, K.R.: Cryptolock (and drop it): stopping
ransomware attacks on user data. In: 2016 IEEE 36th International Conference on
Distributed Computing Systems (ICDCS), pp. 303–312. IEEE (2016)

https://www.symantec.com/content/en/us/
https://www.symantec.com/content/en/us/
https://doi.org/10.1007/978-3-319-73951-9_5
https://doi.org/10.1109/TIFS.2017.2787905
https://doi.org/10.1109/TIFS.2017.2787905
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1145/358923.358929
https://doi.org/10.1145/358923.358929
https://doi.org/10.1016/j.eswa.2018.02.039
http://www.sciencedirect.com/science/article/pii/S0957417418301283
https://doi.org/10.1007/s11416-008-0092-2

Cost Effective Method for Ransomware Detection: An Ensemble Approach 219

19. Sgandurra, D., Muñoz-González, L., Mohsen, R., Lupu, E.C.: Automated dynamic
analysis of ransomware: benefits, limitations and use for detection. CoRR
abs/1609.03020 (2016). http://arxiv.org/abs/1609.03020

20. Shaukat, S.K., Ribeiro, V.J.: Ransomwall: a layered defense system against cryp-
tographic ransomware attacks using machine learning. In: 2018 10th International
Conference on Communication Systems Networks (COMSNETS), pp. 356–363
(January 2018). https://doi.org/10.1109/COMSNETS.2018.8328219

21. Vinayakumar, R., Soman, K., Velan, K.S., Ganorkar, S.: Evaluating shallow and
deep networks for ransomware detection and classification. In: 2017 Interna-
tional Conference on Advances in Computing, Communications and Informatics
(ICACCI), pp. 259–265. IEEE (2017)

22. Zhang, H., Xiao, X., Mercaldo, F., Ni, S., Martinelli, F., Sangaiah, A.K.:
Classification of ransomware families with machine learning based on N-gram
of opcodes. Future Gener. Comput. Syst. 90, 211–221 (2019). https://doi.
org/10.1016/j.future.2018.07.052. http://www.sciencedirect.com/science/article/
pii/S0167739X18307325

23. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

http://arxiv.org/abs/1609.03020
https://doi.org/10.1109/COMSNETS.2018.8328219
https://doi.org/10.1016/j.future.2018.07.052
https://doi.org/10.1016/j.future.2018.07.052
http://www.sciencedirect.com/science/article/pii/S0167739X18307325
http://www.sciencedirect.com/science/article/pii/S0167739X18307325

Social Networks and Machine Learning

Exploring Alzheimer’s Disease Network
Using Social Network Analysis

Swati Katiyar , T. Sobha Rani(B), and S. Durga Bhavani(B)

School of Computer and Information Sciences,
University of Hyderabad, Hyderabad, India

swatikatiyarcs0107@gmail.com, {sobharani,sdbcs}@uohyd.ac.in

Abstract. Alzheimer’s is a degenerative disease with changes occurring
in different regions of the brain at different rates resulting in progressive
deterioration. A lot of functional brain connectivity is altered, the process
itself is insufficiently understood. In this work, an attempt is made to
understand the progressive deterioration of the brain by locating the
regions that show significant changes in the connectivity in the five lobes
of the brain at different stages of the disease. Methods available in social
network analysis like community and maximal clique analysis along with
degree distributions, and centrality measures have been used to observe
the network evolution of these regions at different stages. Networks of
four diagnostic stages i.e., Normal, Early MCI (eMCI), Late MCI (lMCI),
and Alzheimer’s Disease (AD), taken from ADNI (Alzheimer’s Disease
Neuroimaging Initiative) database, are used for this study. Nine Regions
of Interest (ROIs) from the five lobes are identified and a higher degree of
change is observed in the connections of regions from the temporal and
frontal lobes. There is a splurge of new connections in the eMCI stage
for all regions except for those from the frontal lobe. We also observed
more rearrangement among the left hemisphere nodes as compared to
the right hemisphere nodes. There is an overall loss of edges between the
normal and AD stages. This confirms that the study is able to identify
the regions that are affected by the progression of the disease.

Keywords: Disease progression · Differential degree · Community
discovery · Regions of the brain

1 Introduction

Alzheimer’s is a degenerative disease that destroys memory and other important
mental functions. It is an irreversible process, which may ultimately lead to
the inability to perform even simple tasks [12]. Main focus of this work is on
understanding these functional changes caused by the Alzheimer’s Disease. An
attempt to gain insights into the effects of this disease on the brain including
the changing connectivity patterns as the disease progresses from one stage to
the next is being attempted here. The concept of Network biology [3] is used for
the purpose of visualising the brain as a network where the regions of interest
c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 223–237, 2021.
https://doi.org/10.1007/978-3-030-65621-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_14&domain=pdf
http://orcid.org/0000-0002-7042-8200
http://orcid.org/0000-0003-4413-0328
https://doi.org/10.1007/978-3-030-65621-8_14

224 S. Katiyar et al.

(ROI) of the brain become nodes wherein two nodes are connected if there is a
pathway between these regions.

1.1 Motivation

More than 4 million people are estimated to be suffering from Alzheimer’s in
India (the third highest caseload in the world). In most cases the patients’ lives
are characterised by a total loss of independence in the last years [1,11]. Through
this work we aim to identify changes which could be indicative of early signs of
the disease onset in the brain network.

1.2 Objectives

The goal as mentioned earlier, is to understand the changes in the brain net-
work as the Alzheimer’s disease progresses. For this purpose we have used meth-
ods available in social network analysis literature: community analysis, maxi-
mal clique, degree distributions and centrality measures. We also locate specific
regions from the five lobes of the brain that show significant changes and visualise
their connections through the stages.

2 Related Literature

Barabasi and their group of co-authors have pioneered the work on network
biology [3]. A biological network is built using concerned entities as nodes and
interactions between the respective molecular components as edges. Many a time,
if the strength of the interaction can be captured then these are weighted net-
works. Network medicine is a branch of network biology that studies and analyzes
human diseases using a network based approach. This enables a possibility of
personalised therapies and treatment [2].

Disease modelling refers to the quantification of the features of any disease
along with an understanding of the underlying patterns of the disease growth.
The network analysis of cancer disease has been carried out in [7,13,15].

In [16], the authors model diseases and symptoms which are the phenotype
manifestations of a disease in a network. They construct a symptom-based net-
work of human diseases (HSDN) in which two diseases are linked if they exhibit
similar symptoms. The authors study the complex network obtained by inte-
grating HSDN with disease—gene interactions along with the corresponding
protein-protein interaction (PPI) data to obtain interesting results of shared
genes among diseases and disease clusters.

In an interesting work [6], using network analysis, a disease is linked to a well-
defined local neighbourhood of the human interactome, known as the disease
module. It is shown that the modules extracted are distinct for each disease.

Exploring Alzheimer’s Disease Network Using Social Network Analysis 225

There is less work regarding Alzheimer’s disease with network analysis. Our
work considers the data set extracted by [14] in which the authors construct
the disease networks for Alzheimer’s disease in various stages. They apply the
important problem of link prediction from social network analysis in order to
discern the patterns of links lost and gained in various stages of the disease using
measures like Adamic Adar, Preferential attachment etc.

In a study to understand the changes in brain laterization in patients with
MCI and Alzheimer’s disease conducted by Liu and Zhang [8] they have used
the intrinsic laterality index approach to compute the functional laterality of the
brain hemispheres.

It is important to mention the key work of [5] who crafted Desikan-Killiany
atlas. In an effort to aid clinical investigation, an automated labeling system was
developed. This was used for the subdivision of the cerebral cortex into various
gyri. 35 ROIs were manually identified in each hemisphere on a data set of 40
MRI scans. This was encoded as an atlas which could be used to label the cortical
regions automatically. A comparison between the automated and the manual
labelling of ROIs was done using both ICC (intra-class correlation coefficients)
and mean distance measures to guage the percentage of mismatch between them.
It turned out that the automated labelling was extremely accurate, with an
average ICC of 0.835 and a mean distance error of less than 1 mm [5]. These
metric values suggest that the system developed was both valid and reliable.
Figures 1 shows the identified ROIs using the Desikan-Killiany atlas.

Fig. 1. Cortical Representations of the ROIs in one Hemisphere (L) and their Index
(R) [5,9].

226 S. Katiyar et al.

3 Data Set

3.1 Initial Data Set

Data used in this work is taken from ADNI (Alzheimer’s Disease Neuroimag-
ing Initiative) database [14]. The main goal of ADNI has been to assess the
progression of early Alzheimer’s and MCI (Mild Cognitive Impairment) from
PET (Positron Emission Tomography), MRI (Magnetic Resonance Imaging),
and other biological markers. DWIs (diffusion-weighted images) of 202 partici-
pants are scanned for this purpose. Table 1 shows the demographic information
for the 202 participants [14]. Here, N is the number of participants in each cat-
egory, age is the age of the participants, MMSE (Mini Mental State Exam)
scores.

Table 1. Demographic information.

Normal eMCI lMCI AD Total

N 50 72 38 42 202

Age (mean± SD in years) 72.6± 6.1 72.4± 7.9 72.6± 5.6 75.5± 8.9 73.1± 7.4

MMSE (mean±SD) 28.9± 1.4 28.1± 1.5 26.9± 2.1 23.3± 1.9 27.1± 2.7

Sex 22M/28F 45M/27F 25M/13F 28M/14F 120M/82F

3.2 Final Data Set

Applying whole-brain tractography using the Hough transform on every scan
recovered 10000 fibers for each participant. 35 regions of interest(ROI) are
extracted from each hemisphere from MRI scans using the Desikan-Killiany
atlas. A connectivity matrix of size 70 × 70 (35 from each hemisphere) was
obtained for each one of the 202 participants. Mean of matrices from each diag-
nostic group is obtained and are converted into boolean values. Four matrices of
size 70 × 70, one for each diagnostic group: Normal, eMCI, lMCI, and AD are
obtained. The corpus callosum region is eliminated by replacing rows 3 and 38
by 0s which represents the region in left and right hemispheres respectively.

3.3 Network Construction

Here, a method is described to convert the given data-set into a form useful for
our experimentation. Also the nodes of our networks are mapped to the regions
of interest of the brain.

Four binary matrices of dimensions 70× 70 are obtained, where every row
and column index corresponds to a ROI of the brain, deduced from the Desikan-
Killiany atlas, and each matrix corresponds to a stage of the Alzheimer’s disease
i.e., normal, eMCI, lMCI and AD.

Exploring Alzheimer’s Disease Network Using Social Network Analysis 227

These four matrices are taken and visualised as graphs containing 70 nodes,
connected to each other by non-weighted edges. These were our four networks
of the brain corresponding to the different stages of the Alzheimer’s disease.
All experiments and observations are a result of analysis done on these four
networks.

4 Experiments and Results

Our analysis focuses on three broad categories: Network Analysis, Node-wise
analysis, Edge-wise analysis.

Network Analysis. Number of Edges, Average Path Length, Average Cluster-
ing Coefficient

Node-Wise Analysis. Degree Distribution, Eigenvector Centrality, Maximal
Clique Analysis, Community Analysis - Girvan Newman (GN) algorithm and
Louvain methods, Degree Differential Analysis

Edge Distribution. Visualisation of connections for chosen ROIs from the five
lobes based on the above analysis.

4.1 Global Network Analysis

These are dense networks with high clustering coefficients and small path lengths
therefore satisfying the small-world property. This goes with our previous knowl-
edge of brain networks being small-world networks. Table 2 shows the values
obtained for each stage.

Table 2. Observations of Global Network Properties.

Stage Normal eMCI lMCI AD

No. of edges 1490 1510 1380 1364

Avg. path length 1.346 1.337 1.397 1.402

Avg. clustering coefficient 0.753 0.751 0.738 0.736

4.2 Degree Distribution

Figure 2 shows degree distribution for the 4 stages. It is surprising to observe
a Normal distribution instead of power law distribution which is observed in
many biological networks. There is a possible loss of the Normal behaviour as
the disease progresses. A number of edges are lost in the later stages.

4.3 Eigenvector Centrality

Figure 3 shows the plots for degree vs. eigen vector centrality. Wider range of
values are observed for degree as compared to eigenvector centrality. High degree

228 S. Katiyar et al.

Fig. 2. Degree Distribution Plots for various stages.

nodes are connected to the other high degree nodes signifying the assortativity
property. An observable drop in the highest degree can be noticed from normal
to AD stages. eMCI and AD have more nodes with 0.08 eigenvector centrality.
Entorhinal Cortex and Frontal Pole belong to this case. Eigenvector centrality
for the Temporal Pole is 0.08 in normal which decreases to 0.06 in AD. Posterior
Cingulate Cortex has eigenvector centrality 0.17 in normal which drops to 0.15
in AD. Eigenvector centrality is not varying much. Hence, it can be concluded
that the shortest paths are not disturbed if a rewiring happens in normal to AD
stages, still it is maintaining the connections in such a way to retain the shortest
paths.

4.4 Maximal Clique Analysis

Maximal cliques are those cliques which cannot be extended any further by
including another adjacent vertex. Then it becomes a maximal clique, meaning
it is not a subset of a larger clique. Again a sizable loss of connections can signify
the loss of functionality as the disease progresses. Total number of maximal
cliques observed in each stage are:

– Normal - 414
– eMCI - 611
– lMCI - 424
– AD - 333

Exploring Alzheimer’s Disease Network Using Social Network Analysis 229

Fig. 3. Degree vs Eigenvector centrality of nodes.

Figure 4 shows the number of cliques and the size of the clique. Two size 1 cliques
are nodes 3 and 38 (Corpus Callosum). The frequency of maximal cliques is
higher for bigger sizes in normal and eMCI. In stages lMCI and AD more number
of maximal cliques appear for comparatively smaller size values.

4.5 Community Analysis

The GN algorithm [10] is run until the highest modularity value was found.
This resulted in the formation of two major communities i.e., the left and right
hemispheres along with a few isolated node communities. On applying the Lou-
vain method [4], the entire network was divided into left and right hemispheres
as communities with higher modularity values. Table 3 shows the modularity val-
ues using GN and Louvain community discovery algorithms. Communities that
are obtained when the modularity is highest are chosen as the best communities.

Table 3. Modularity values for communities.

Community discovery method Normal eMCI lMCI AD

Girvan Newman 0.169 0.176 0.214 0.225

Louvain 0.207 0.198 0.232 0.242

230 S. Katiyar et al.

Fig. 4. Count vs. Size of Maximal Cliques.

4.6 Degree Differential Analysis

Degree differential analysis is taken up between each of the stages for all the
70 nodes. From the Fig. 5, it is evident that eMCI to lMCI and Normal to AD
has similar structure where there is loss of edges almost for all nodes. Loss
of connections between the nodes may signify the loss of functionality that is
experienced in the progression of the disease.

5 List of Selected ROIs

In order to carry out a deeper analysis, nine ROIs (at least one ROI from each
of the five lobes of the brain) are chosen based on the eigen vector centrality
and degree differential analysis explained earlier. These are chosen on the basis
of the change in their network properties and their functionalities. Each ROI
is represented by a node pair (x, y) where x ∈ [0, 34] and y ∈ [35, 69]. They
are listed in Fig. 6 which provides the change of connections for each node pair
in all the 4 stages. That is, the node pair (22,57) has 64 and 59 connections in
Normal stage, 63 and 60 in eMCI, 58 and 55 in lMCI, 53 and 52 in AD stages
respectively.

On visualising their connections we observed a significant amount of rear-
rangement between the normal state and the disease stages. We describe this
rearrangement for three selected ROIs in the following sections. There is a cer-
tain degree of randomness in the way connections are changing in the disease
stages.

Exploring Alzheimer’s Disease Network Using Social Network Analysis 231

Fig. 5. Degree difference plots.

5.1 Posterior Cingulate Cortex (22, 57)

The Posterior Cingulate Cortex participates in diverse functions and communi-
cates with various regions in the brain. It was identified as one of the significant
regions from Eigenvector centrality analysis. Refer Fig. 7.

– 22 and 57 are connected to each other in Normal stage. 57 is connected to
the entire map of the region’s connections in all the stages.

– It is also connected to all the regions in the parietal lobe through all the four
stages.

– In AD, 22 lost its connection with the cuneus cortex which is responsible for
visual processing.

232 S. Katiyar et al.

– 22 lost many connections after the eMCI stage with the temporal lobe.
Only connects to parahippocampal gyrus responsible formemory encoding
and retrieval, fusiform gyrus responsible for object recognition and banks of
superior temporal sulcus which plays a role in (social perception remained
in lMCI. It still connects to middle temporal gyrus and transverse temporal
cortex, involved in processing of tone in AD.

– This region has links to every region of the frontal lobe except for the left
hemispheres of lateral orbital frontal gyrus, frontal pole and pars orbitalis in
normal and eMCI. Links are lost with pars opercularis and pars triangularis,
both having functions in language formation and semantic processing, in lMCI
and to pars orbitalis language processing and rostral middle frontal gyrus
attention switch in AD.

– It is connected to all the regions within the cingulate cortex in the first three
stages, lost it’s link to left hemisphere node of insular cortex in AD. Insular
cortex is involved in consciousness.

5.2 Parahippocampal Gyrus (15, 50)

This surrounds the hippocampus and contains the entorhinal cortex hence plays
an important role in the memory function. This region is selected because of the
role it plays in memory related tasks. Refer Fig. 8.

– 15 and 50 are connected to each other in all the four stages.
– A lot of rearrangement occurred in the connections with Occipital lobe. In

the eMCI stage, both 15 and 50 got linked to all its regions. They got divided
by hemispheres again in lMCI except for lingual gyrus vision and dreaming;
visual processing of the written word.

– Connections with every region in the parietal lobe are maintained until AD
stage. 15 got linked to the right hemisphere node of inferior parietal cortex
(perception of facial stimuli) and 50 gained connections to the left hemi-
spheres of supramarginal gyrus and superior parietal cortex (involved in spa-
tial orientation) in eMCI which are lost again in lMCI.

– It’s connection to the caudal anterior cingulate cortex is lost in lMCI stage. It
gains a connection to the left hemisphere of rostral anterior cingulate cortex
in AD.

– With the frontal lobe, 50 lost its connections to the left hemisphere nodes of
caudal middle frontal gyrus (reorients attention) and pars opercularis (lan-
guage production) in eMCI. 15 lost its connections with the left hemispheres
of frontal pole and rostral middle frontal gyrus whereas 50 gained a link to
the right hemisphere of the frontal pole in lMCI. Frontal pole controls the
ability to communicate.

– Within the temporal lobe it was connected to every other region in the
normal and lMCI states, divided by hemispheres. eMCI showed formation
of links from 15 to right hemispheres of fusiform gyrus (facial recognition),
middle temporal gyrus (semantic memory processing) and inferior temporal
gyrus (Sensory integration). In AD, 15 gets linked to the right hemisphere of
entorhinal cortex.

Exploring Alzheimer’s Disease Network Using Social Network Analysis 233

5.3 Caudal Middle Frontal Gyrus (2, 37)

This region from the frontal lobe is chosen since it displayed a high degree
difference in the differential analysis of nodes. It acts as a circuit breaker and
diverts attention towards external stimuli. Refer Fig. 9.

– 2 and 37 are linked to each other till the last stage.
– In eMCI, 37 lost its link to the right hemisphere of the precuneus cortex
memory recollection but regained it in lMCI. 2 lost all its connections to the
parietal lobe in lMCI.

– In the occipital lobe it had connections to every region except for the cuneus
cortex, divided by hemispheres, in the normal stage. 2 lost all it’s connections
in eMCI and 37 gained a link to the right hemisphere of the cuneus cortex in
AD.

– Both 2 and 37 are completely connected to the cingulate cortex in the Normal
stage. 2 lost it’s links to the right hemispheres of the insular cortex and
isthmus cingulate cortex in eMCI. Both 2 and 37 lost their connections to
the left hemispheres of insular cortex and isthmus cingulate cortex in lMCI.
Insular cortex has many functions in self-awareness, empathy, cognition, etc.

Fig. 6. List of selected ROIs.

234 S. Katiyar et al.

Fig. 7. Connections of Posterior Cingulate Cortex to other lobes.

Fig. 8. Connections of Parahippocampal Gyrus to other lobes.

– In the temporal lobe it is connected to all regions except the temporal pole.
2 lost all its connections in the eMCI stage. Temporal Pole is the site for
auditory perception and also has functions in semantic and personal memory.

– Within the frontal lobe they kept their connections to every other region but
the number of common nodes kept decreasing with every stage. 37 lost its
connections with the left hemispheres of pars opercularis, pars orbitalis, pars
triangularis the language processing regions and frontal pole. 2 lost its link to
the right hemisphere of the paracentral lobule which has motor functions.

Exploring Alzheimer’s Disease Network Using Social Network Analysis 235

Fig. 9. Connections of Caudal Middle Frontal Gyrus to other lobes.

6 Conclusion

6.1 Conclusions from the Node Wise Analysis and Network
Analysis Experiments

A significant loss of edges can be observed from Normal to AD stage. Loss
of Normal distribution through the disease stages can be observed from global
network properties and degree distribution. High degree of rearrangement can be
seen from maximal clique analysis. It is highly plausible that the rearrangement
in the network occurs in a way that it gives the brain a false impression of
working properly but in hindsight, some secondary or tertiary connections could
be missing which causes some malfunction.

6.2 Conclusions from Edge Distribution and Visualisation

Rostral anterior cingulate cortex lost connections with regions responsible for
motor functions. Entorhinal cortex and parahippocampal gyrus lost connections
with major regions of the cingulate cortex and regions responsible for communi-
cation (among others) in the frontal lobe. Temporal lobe is a region of auditory
perception which loses its links with the language processing unit. Pars tri-
angularis loses links with the memory hub and other regions of the language
processing unit.

Regions from the temporal lobe and the frontal lobe had connections divided
by hemispheres which are disturbed in the disease stages. The connections of a
region with the right hemisphere nodes in Normal are replicated in lMCI. This is
most prominent in the parietal lobe. An explosion of new connections happened
in the eMCI stage for all regions except for those from the frontal lobe. High
loss of edges in lMCI and AD stages can be seen in every lobe. Higher degree
of rearrangement and loss of connections happens among the left hemisphere

236 S. Katiyar et al.

nodes as compared to the right hemisphere. In another work by Liu and Zhang
[8], they found an abnormal rightward dominance in the patients with MCI and
AD. According to them this could be indicative of such patients using additional
brain resources to compensate for the loss of cognitive function. Disappearance
of the leftward laterality was also observed in the patients with AD. This was
associated with the damage in the left hemisphere.

6.3 Limitations

We were limited by the data set we used which only gave us binary information in
the form matrices averaged over N subjects. For a work as this one it is possible
to get better results if data is made available per subject hence, all of the results
we produce are obtained from a generalised perspective.

References

1. Alzheimer’s Association: 10 early signs and symptoms of alzheimer’s (2020).
https://www.alz.org/alzheimers-dementia/10 signs. Accessed 26 Jun 2020

2. Barabási, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based
approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011). https://doi.
org/10.1038/nrg2918

3. Barabási, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional
organization. Nat. Rev. Genet. 5(2), 101–113 (2004). https://doi.org/10.1038/
nrg1272

4. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Community structure
in social and biological networks. J. Stat. Mech. Theor. Exp. (2008). https://doi.
org/10.1088/1742-5468/2008/10/P10008

5. Desikan, R.S., et al.: An automated labeling system for subdividing the human
cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage
31(3), 968–980 (2006). https://doi.org/10.1016/j.neuroimage.2006.01.021

6. Ghiassian, S.D., Menche, J., Barabási, A.L.: A disease module detection (DIA-
MOnD) algorithm derived from a systematic analysis of connectivity patterns of
disease proteins in the human interactome. PLOS Comput. Biol. 11(4), e1004120
(2015)

7. Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100(1), 57–70 (2000)
8. Hao, L., et al.: Changes in brain lateralization in patients with mild cognitive

impairment and Alzheimer’s disease: a resting-state functional magnetic resonance
study from Alzheimer’s disease neuroimaging initiative. Front. Neurol. 9, 3 (2018).
https://doi.org/10.3389/fneur.2018.00003

9. Lisowska, A., Rekik, I.: Joint pairing and structured mapping of convolutional brain
morphological multiplexes for early dementia diagnosis. Brain Connect. 9(1), 22–36
(2019). https://doi.org/10.1089/brain.2018.0578

10. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. 99, 7821–7826 (2002)

11. NIA: Alzheimer’s disease fact sheet (2020). https://www.nia.nih.gov/health/
alzheimers-disease-fact-sheet. Accessed 26 Jun 2020

12. NIA: What is Alzheimer’s disease? (2020). https://www.nia.nih.gov/health/what-
alzheimers-disease. Accessed 26 Jun 2020

https://www.alz.org/alzheimers-dementia/10_signs
https://doi.org/10.1038/nrg2918
https://doi.org/10.1038/nrg2918
https://doi.org/10.1038/nrg1272
https://doi.org/10.1038/nrg1272
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.3389/fneur.2018.00003
https://doi.org/10.1089/brain.2018.0578
https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet
https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet
https://www.nia.nih.gov/health/what-alzheimers-disease
https://www.nia.nih.gov/health/what-alzheimers-disease

Exploring Alzheimer’s Disease Network Using Social Network Analysis 237

13. Sahoo, R., Rani, T., Bhavani, S.: Differentiating cancer from normal protein-
protein interactions through network analysis, Chap. 17. In: Arabnia, H., Tran,
Q.N. (eds.) Emerging Trends in Applications and Infrastructures for Computa-
tional Biology, Bioinformatics, and Systems Biology (2017)

14. Sulaimany, S., Khansari, M., Zarrineh, P., Daianu, M., Thompson, N.J.P.M.,
Masoudi-Nejad, A.: Predicting brain network changes in Alzheimer’s disease with
link prediction algorithms. Mol. BioSyst. 13(4), 725–735 (2017). https://doi.org/
10.1039/c6mb00815a

15. Wu, G., Feng, X., Stein, L.: A human functional protein interaction network and
its application to cancer data analysis. Genome Biol. 11, 1 (2010)

16. Zhou, X., Menche, J., Barabási, A.L., Sharma, A.: Human symptoms-disease net-
work. Nat. Commun. 5, 4212 (2014)

https://doi.org/10.1039/c6mb00815a
https://doi.org/10.1039/c6mb00815a

Stroke Prediction Using Machine
Learning in a Distributed Environment

Maihul Rajora1, Mansi Rathod1(B), and Nenavath Srinivas Naik2

1 Department of Electronics and Communication Engineering, IIIT Naya Raipur,
Naya Raipur, India

{maihul17101,mansi17101}@iiitnr.edu.in
2 Department of Computer Science and Engineering, IIIT Naya Raipur,

Naya Raipur, India
srinu@iiitnr.edu.in

Abstract. As with our changing lifestyles, certain biological dimensions
of human lives are changing, making people more vulnerable towards
stroke problem. Stroke is a medical condition in which parts of the brain
do not get blood supply and a person attains stroke condition which can
be fatal at times. As these stroke cases are increasing at an alarming
rate, there is a need to analyze about factors affecting the growth rate
of these cases. There is a need to design an approach to predict whether
a person will be affected by stroke or not. This paper analyse different
machine learning algorithms for better prediction of stroke problem. The
algorithms used for analysis include Naive Bayes, Logistic Regression,
Decision Tree, Random Forest and Gradient Boosting. We use dataset,
which consists of 11 features such as age, gender, BMI (body mass index),
etc. The analysis of these features is done using univariate and multi-
variate plots to observe the correlation between these different features.
The analysis also shows how some features such as age, gender, smok-
ing status are important factors and some feature like residence are of
less importance. The proposed work is implemented using Apache Spark,
which is a distributed general-purpose cluster-computing framework. The
Receiver Operating Curve (ROC) of each algorithm is compared and it
shows that the Gradient Boosting algorithm gives the best results with
the ROC area score of 0.90. After fine-tuning, certain parameters in Gra-
dient Boosting algorithm like optimization of the learning rate, depth of
the tree, the number of trees and minimum sample split. The obtained
ROC area score is 0.94. Other performance parameters such as Accu-
racy, Precision, Recall and F1 score values before fine-tuning are 0.867,
0.8673, 0.866 and 0.8659 respectively and after fine-tuning the values are
0.9449, 0.9453, 0.9449 and 0.9448 respectively.

Keywords: Stroke · Distributed environment · Apache spark ·
Machine learning

c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 238–252, 2021.
https://doi.org/10.1007/978-3-030-65621-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-65621-8_15

Stroke Prediction Using Machine Learning in a Distributed Environment 239

1 Introduction

A stroke is a cerebrovascular disease in which arteries carrying oxygen and nutri-
ents to the brain gets ruptured and there is no blood supply to the parts of the
brain. This result in complete damage of blood cells in the brain [6]. A Fairly
large number of people are losing life, especially in developing countries [5].
According to the reports of the American Heart Association [10], the mortality
rate for 2017 was 37.6 in every 100,000 stroke cases. According to the World
Health Organization [12], stroke has been classified under non-communicable
disease. The reports of 2012 say that Stroke was the main cause of death due to
non-communicable disease, causing 17.5 million deaths.

Stroke is also the fourth major cause of death in India [16]. It is also the
fifth major cause of death in the United States. Nearly 800,000 people have a
stroke per year which equates to one person every 40 s. As this issue is increasing
at an alarming rate, there is an emergent need to examine the health data and
develop a system which could predict whether a person is likely to suffer a stroke
or not. As with the advancement in maintaining medical data [4], it is easier to
maintain Electronic Health records. As with growth in data, the importance
of big data analytic [1] comes into play. The data used to make decisions in
this system consists of various attributes like age, gender, BMI, smoking status,
glucose level etc. The objective of the paper is to maximize the stroke detection
rate of the patient i.e. correctly categorize the patients who are at risk of stroke
and reduce the false alarms rate which will reduce the number of patients visiting
hospitals if not necessary. The parameter SaveLife is the number of people who
were saved due to correct prediction made by the system. MissLife is the number
of people who had chances of stroke but were predicted of not having the stroke.
FalseAlarm is the number of people who didn’t have the chances of stroke but
were predicted as having the stroke. Hence, the two terms i.e detection rate and
false alarm rate can be described as

DetectionRate =
Savelife

saveLife + MissLife

FalseAlarmRate =
FalseAlarm

SaveLife + FalseAlarm

To develop a robust system, stroke detection rate should maximize and false
alarm rate should minimize. Hence this trade-off is shown in Fig. 1. As the data is
growing at an alarming rate, the importance of big data is comprehended. With
this, the need for frameworks to process this enormous data is rapidly increasing,
especially in the healthcare field. Apache Hadoop [2,17] is the emerging big
data technology framework for distributed data storage and parallel processing.
Apache Spark [9,15] is one of the framework which is designed for fast processing
using in-memory computation.

In this paper, we use Apache spark as a data processing framework. Spark
provides abstraction known as Resilient distributed dataset [18]. Spark executes
operation 10 times faster on disk and 100 times faster in-memory than Hadoop.

240 M. Rajora et al.

Fig. 1. Trade-off between stroke detection and false alarm rate

The Spark stack currently consists of Spark core engine along with libraries
i.e MLlib for executing machine learning task in spark, Cluster Management
to acquire cluster resource for performing jobs and Spark SQL which combines
relational processing with Spark functional API.

The rest of the paper is organized as follows. In Sect. 2, the related work is
described by comparing it with the proposed system performance. In Sect. 3, an
elaborate description of the proposed solution is presented. It contains details
about the data used and explanation of the system model. Section 4 contains
the experimental analysis and results and also performance analysis of different
models and Sect. 5 concludes the paper.

2 Related Work

In [13], an artificial neural network was used to predict the thrombo-embolic
stroke disease. The dataset consisted of eight important features to be considered
for prediction. Simple ANN model was built which evaluated the accuracy score
of 0.89. It uses a relatively smaller dataset as it should use when working with
deep learning models.

In [14], Support vector machine algorithm with all its four kernels i.e linear,
quadratic, polynomial and RBF were used. The dataset consisted of features
like - age, sex, atrial fibrillation, walking symptoms, face deficit, arm deficit, Leg
deficit, dyphasia, visuospatial disorder, hemianopia, infarct visible on CT and
cerebellar signs. They worked with 300 training samples and 50 testing samples.
Accuracy score of the four kernels are as follows: linear was 91%, quadratic was
81%, RBF was 59% and polynomial was 87.9%.

In [8], authors used the dataset which consisted the attributes like Sex, Age,
Province, Marital status, Education and occupation. They used three machine

Stroke Prediction Using Machine Learning in a Distributed Environment 241

learning algorithms i.e. naive bayes, decision tree and neural network with six
input layer, one hidden layer and two output layer to predict the stroke. The
accuracy score obtained from decision tree was 75%, by naive bayes was 72%
and by neural network it was 74%.

In [11], the data set consisted of 29074 records, of which 30% was used for
testing and 70% training. The algorithm used was decision tree, random forest
and neural network. The accuracy presented by decision tree was 74.31%, by
random forest was 74.53% and 75.02% by neural network.

The limitation of the paper [8] and [11] is their accuracy score. The result
depicts the predictions on which person’s life depends and risking accuracy in
medical domain costs high.

Among the related works, the accuracy predicted by our model has better
results. We compared six models to choose the best performing model and then
tuned the parameter to reach the state of art. The main contribution of our work
is implanting Gradient Boosting algorithm and then tuning various parameters
to reach an accuracy of 0.9449.

3 Proposed Solution

The objective of the paper is to build the robust system which can accurately
detect whether a person will suffer from stroke or not. For this purpose, machine
learning classification algorithms are applied on processed data in Apache spark
framework. The proposed model works in a pseudo distributed environment. A
Detailed description is given in following sub-sections.

3.1 Data Description

The dataset consists of 43400 entries of patients and 12 attributes as shown in
Table 1. These attributes can be majorly divided into three parts i.e lifestyles
factors, medical risk factors and non-controllable factors. Lifestyle factors con-
stitutes the habit and indulgence of a person in a certain activity due to his
own will. They consist of smoking, drinking habits, eating habits and physical
activities. Medical risk factors are those factors for which chances of stroke can
be controlled like high blood pressure, atrial fibrillation, high cholesterol, dia-
betes and circulation problems. Non-controllable factors include age, gender and
ethnicity.

The data set contains various attributes like: gender, age, hypertension, heart
disease, marital status, kind of occupation, residence area (rural or urban), aver-
age glucose level, Body Mass Index (BMI), smoking status and the stroke status.

3.2 System Architecture

The System architecture explains elaborately about each step as shown in Fig. 2.
It is carried out from importing libraries to predicting whether patients will suffer
from stroke or not. It explains the step by step process of the implementation

242 M. Rajora et al.

Table 1. Data set description

Attributes Description

ID Patients ID to avoid duplicity

Gender Gender of patient

Age Age of patient

Hypertension No hypertension-0 Suffering hypertension-1

Heart disease No heart disease-0 Suffering heartdisease-1

Marital status Married or not

Work-type Kind of Occupation person is involved

Residence area Lives in urban or rural area

Avg-Glucose Average glucose level of patient measured after meal

BMI Body Mass Index of patient

Smoking-status Patient smoking status

Stroke status No Stroke-0 Stroke suffered-1

of stroke prediction system architecture. The very first step includes importing
certain spark libraries. As we work with columnar data, we import Spark SQL
libraries. The first point to use spark SQL is an object called Spark Session. It
initializes the spark application and sets up the session where we can process
data. After the session is created we load our data into the session. As the data
is loaded into the session, we perform exploratory data analysis.

Fig. 2. System architecture

Exploratory Data Analysis. We analyse the uni-variate plots for six features
such as Age, Avg-Glucose, BMI, heart disease, hypertension and stroke. From
Fig. 3, we can observe that heart disease and hypertension happens to show
correlation with each other. The plot of average glucose is slightly bi-modal in
nature and not normal distribution as it seems to be. The standard deviation
of average glucose is 43 with an average value of 140. The BMI plot is slightly

Stroke Prediction Using Machine Learning in a Distributed Environment 243

skewed to the right and age is not uniform distribution but comes out that stroke
is common around the age of 42 and a spike for old age and infants.

Next, we check the influence of Gender, BMI and Age on predicting the
stroke percentage. It comes out that age is an important factor to be considered
while evaluating the probability of stroke. In Fig. 4, it shows there is an abrupt
increase in the stroke rate above the age of 40 years and diminishing rate below
20 years. The plots also help us to conclude that BMI is a relevant feature as it
has less number of outliers and also high BMI value contributes to the greater
probability of stroke than people with lower BMI values. Gender is also another
factor, as per the data of 43400 people, 25665 are females and 17724 are males
with females having 2.89% and males having 3.49% chances of getting a stroke.

Fig. 3. Univariate plots

Fig. 4. Influence of age, gender and BMI on stroke

244 M. Rajora et al.

Fig. 5. Influence of age, smoking status and BMI on stroke

The effect of Smoking status, BMI and age on stroke is also analysed in
Fig. 5. The smoking status is divided into four parts i.e. unknown, never smoked,
formally smoked and smokes. It reveals that smoking is a factor to be considered
when looked upon smokers versus non-smokers. Present smokers have less BMI
than people who never smoked or older in age. The risk of stroke is highest for
former smokers having age above 40.

Data Cleaning. After the analysis of data in the above section, there is a need
to remove the outliers, duplicate values and also fill the missing values. In the
dataset, it is observed that

– Age values range from negatives to values above 100.
– Patients-Ids which are duplicated, need to be resolved. Here we have 43400

Ids out of which 38713 unique Ids.
– Also, we ponder over the missing data and found that 1461 fields of BMI fea-

ture are missing. Since only 3% of BMI data is missing, we fill these fields with
the mean value. This marginally reduces the correlation with other features.

– The missing data for a smoking status attribute is about 30% hence we fill the
missing fields with new category which is unknown except with the intuitive
knowledge we put “never smoked” for children of age below 10. Hence data
cleaning is required.

Stroke Prediction Using Machine Learning in a Distributed Environment 245

Table 2. Statistical description of data.

Id Age Hypertension Heart-disease Avg-glucose-level BMI Stroke

Count 43400.00 43400.00 43400.00 43400.00 43400.00 41938.00 43400.00

Mean 36326.14 42.22 0.09 0.05 104.48 28.61 0.02

Std 21072.13 22.52 0.29 0.21 43.11 7.77 0.13

Min 1.00 0.08 0.00 0.00 55.00 10.10 0.00

25% 18038.50 24.00 0.00 0.00 77.54 23.20 0.00

50% 36351.50 44.00 0.00 0.00 91.58 27.70 0.00

75% 54514.25 60.00 0.00 0.00 112.07 32.90 0.00

Max 72943.00 82.00 1.00 1.00 291.05 97.60 1.00

Table 2 gives the statistical description of the dataset. It shows total count,
mean, standard deviation, minimum value, maximum value and quartile division.
These quartile are made on the values of features present in the dataset.

Data Preprocessing. As we have cleaned the data, with no outliers and miss-
ing values, now we proceed to eradicate the issue of imbalance. If a class is
imbalanced then the predicted output will always be biased. To address the
issue, SMOTE technique has been used. Instead of directly oversampling the
minority class, it first randomly selects a point from minority class and find the
nearest neighbour. Now, among the neighbours, a point is chosen and a synthetic
instance is created between these two. In this way, enumerable synthetic points
can be generated [3] and the class imbalance can be re-balanced. This is shown
in Figs. 6 and 7.

Preparing Data for PySpark to Process. After the data is processed, PyS-
park does not process the data in this form for implementation of machine learn-
ing algorithms. Machine learning algorithms cannot work solely with categorical
data, it has further requirements which are fulfilled through String Indexer,
One-hot encoder and Vector assembler. These are the steps for machine learning
pipeline [7] as shown in Fig. 8.

Machine Learning Models. For this stroke Prediction Model, we used five
ML models such as Naive Bayes, Logistic Regression, Decision Tree, Random
Forest, Gradient Boosting algorithms.

246 M. Rajora et al.

Fig. 6. Before class rebalancing

Fig. 7. After class re-balancing using SMOTE

Evaluating Classifiers. To evaluate the classifiers, we use the concept of con-
fusion matrix. We define its four terms as below

TP (True Positive): Stroke is predicted, the person actually suffers from a
stroke. We call it “Save Life”.
TN (True Negative): No stroke is predicted, there is actually no stroke. We
call it “Save Time”.

Fig. 8. Machine learning pipeline

Stroke Prediction Using Machine Learning in a Distributed Environment 247

FP (False Positive): Stroke is predicted but actually there is no Stroke. We
call it “False Alarm”.
FN (False Negative): No stroke is predicted but there is actually a stroke. We
call it “Missed Life”.

In order to evaluate the classifier and find out the most robust and efficient of
all, we aim to maximize the Detection rate as

DetectionRate(Recall) =
TP

TP + FN

To maximize Detection Rate term, we need to minimize FN i.e missed life. Also,
we aim to reduce the False alarm rate such as

FalseAlarmRate =
FP

TN + FP

To view the results, we use Receiver Operating Characteristic curve (ROC). Few
parameters for performance criteria are defined as below

Accuracy =
TP + TN

TP + FP + FN + TN

Precision =
TP

FP + TP

Recall =
TP

TP + FN

F1Measure =
2 ×Recall × Precision

Recall + Precision

Optimization of Algorithm. After evaluating various classifiers, an algorithm
with the best result is chosen for further optimization. The ROC score of different
machine learning algorithms is 0.66 for Naive Bayes, 0.83 for Decision Tree, 0.82
for Random Forest, 0.78 for Logistic Regression and 0.90 for gradient boosting
as described in Fig. 13. The results show that the gradient boosting algorithm
has the best ROC score of 0.90 and hence it is further optimized. The parameter
optimized for gradient boosting algorithm are learning rate, tree depth, number
of trees and minimum sample leaf. The optimal value for these parameters is
chosen such that overfitting and underfitting are avoided. Figure 9 shows the
performance of the model with varying learning rates. The value of the learning
rate is varied from 0.0 to 1.6. The optimal value chosen is 0.9, for which model
produces the best results.

Figure 10 shows the performance of the model with a varying number of
trees. Increasing the number of trees results in more learning. This increases the
training time, hence an optimal value is chosen. The number of trees is varied
from 1 to 900. 600 is chosen for which model produces the best results.

248 M. Rajora et al.

Fig. 9. Optimizing learning rate.

Fig. 10. Optimizing number of trees.

Figure 11 shows the performance of the model with varying the depth of the
tree. Deeper the tree, better it learns. But increasing too much depth increases
the overfitting. Hence the optimal value is 8 for this case. Figure 12 shows the
performance of the model with varying the number of samples required to split
an internal node. The value is varied from 1% to 30% and it is observed the
increasing the value results in underfitting of data. Hence, the optimal value
chosen is 0.04.

Stroke Prediction Using Machine Learning in a Distributed Environment 249

Fig. 11. Optimizing depth of the tree.

Fig. 12. Optimizing number of sample at node split.

4 Results and Analysis

In this section, we evaluate the ROC curve for each of the machine learning
algorithms as shown in Fig. 13. We observe that Gradient Boosting algorithm has
the highest accuracy of the value of 0.867. The ROC score obtained is 0.90. The
precision, recall and F1 score are 0.8673, 0.866 and 0.8659 respectively. In order
to predict more precisely, we tune the parameters of gradient boosting algorithm
by optimizing the learning rate, tree depth, minimum number of samples required
at the node split and the number of trees. After these tuning, the accuracy is
0.9449. The ROC score obtained is 0.94. The precision, recall and F1 scores are
0.9453, 0.9449, 0.9448. The ROC curve before and after fine tuning is as shown
in Fig. 14.

250 M. Rajora et al.

Fig. 13. Receiver operating curve

Fig. 14. Receiver pperating curve before and after tuning

Table 3 describes the classification report of Gradient boosting algorithm
before tuning and Table 4 describes the classification report after tuning. The
class 0 and class 1 represents No stroke and Stroke respectively. Figure 14 gives
the insight about ROC value of each algorithm with gradient boosting perform-
ing the best and naive-bayes performing the least as it is a simple classifica-
tion technique and requires data with no least correlating feature. The ROC
score of different machine learning algorithm is 0.66 for Naive Bayes, 0.83 for
Decision Tree, 0.82 for Random Forest, 0.78 for Logistic Regression and 0.90

Stroke Prediction Using Machine Learning in a Distributed Environment 251

Table 3. Classification report before tuning

Precision Recall F1

Class 0 0.89 0.83 0.86

Class 1 0.84 0.90 0.87

Avg/Total 0.87 0.87 0.87

Table 4. Classification report after tuning

Precision Recall F1

Class 0 0.93 0.96 0.95

Class 1 0.96 0.93 0.94

Avg/Total 0.95 0.95 0.94

for gradient boosting as described in Fig. 14. Figure 14 gives the insight about
the comparative performance before and after tuning parameters in gradient
boosting algorithm.

5 Conclusion

As the stroke disease is ranked fourth major cause of death in the category
of non-communicable diseases, it is the need of the hour to bring this stroke
prediction system which can predict the chances of whether the person can
suffer from a stroke or not. Based on the results and extensive analysis of the
data, preventive measures can be advised to patients to avoid the chances of
suffering from a stroke. The system is built in a distributed machine learning
environment using the Apache Spark framework. Among various classifiers, the
gradient boosting algorithm performed the best with ROC of 0.88 score before
tuning and 0.9449 score after tuning. The novel work contributed is training
gradient boosting algorithm and improvising the accuracy from 0.867 to 0.9449
and ROC score from 0.90 to 0.95 by optimizing various parameters of gradient
boosting algorithms. The future work will be to attain the state of art results
by training deep learning models for a larger dataset.

References

1. Bates, D.W., Saria, S., Ohno-Machado, L., Shah, A., Escobar, G.: Big data in
health care: using analytics to identify and manage high-risk and high-cost patients.
Health Aff. 33(7), 1123–1131 (2014)

2. Borthakur, D.: The Hadoop distributed file system: architecture and design.
Hadoop Proj. Website 11(2007), 21 (2007)

3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

252 M. Rajora et al.

4. Chen, M., Hao, Y., Hwang, K., Wang, L., Wang, L.: Disease prediction by machine
learning over big data from healthcare communities. IEEE Access 5, 8869–8879
(2017)

5. Donaldson, M.S., Corrigan, J.M., Kohn, L.T., et al.: To Err is Human: Building a
Safer Health System, vol. 6. National Academies Press, Washington, D.C. (2000)

6. Hafermehl, K.T.: High spatial resolution diffusion-weighted imaging (DWI) of
ischemic stroke and transient ischemic attack (TIA) (2016)

7. Haihong, E., Zhou, K., Song, M.: Spark-based machine learning pipeline construc-
tion method. In: 2019 International Conference on Machine Learning and Data
Engineering (iCMLDE), pp. 1–6. IEEE (2019)

8. Kansadub, T., Thammaboosadee, S., Kiattisin, S., Jalayondeja, C.: Stroke risk
prediction model based on demographic data. In: 2015 8th Biomedical Engineering
International Conference (BMEiCON), pp. 1–3. IEEE (2015)

9. Karau, H., Konwinski, A., Wendell, P., Zaharia, M.: Learning Spark: Lightning-
Fast Big Data Analysis. O’Reilly Media, Inc., Sebastopol (2015)

10. Roger, V.L., et al.: Heart disease and stroke statistics—2012 update: a report
from the American heart association. Circulation 125(1), e2 (2012). Writing Group
Members

11. Nwosu, C.S., Dev, S., Bhardwaj, P., Veeravalli, B., John, D.: Predicting stroke
from electronic health records. In: 2019 41st Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5704–5707.
IEEE (2019)

12. World Health Organization, et al.: Global status report on noncommunicable dis-
eases 2014. No. WHO/NMH/NVI/15.1. World Health Organization (2014)

13. Shanthi, D., Sahoo, G., Saravanan, N.: Designing an artificial neural network model
for the prediction of thrombo-embolic stroke. Int. J. Biometric Bioinform. (IJBB)
3(1), 10–18 (2009)

14. Singh, M.S., Choudhary, P., Thongam, K.: A comparative analysis for various
stroke prediction techniques. In: Nain, N., Vipparthi, S.K., Raman, B. (eds.) CVIP
2019. CCIS, vol. 1148, pp. 98–106. Springer, Singapore (2020). https://doi.org/10.
1007/978-981-15-4018-9 9

15. Apache Spark: Apache spark: lightning-fast cluster computing, pp. 2168–7161
(2016). http://spark.apache.org

16. Subha, P.P., Geethakumari, S.M.P., Athira, M., Nujum, Z.T.: Pattern and risk
factors of stroke in the young among stroke patients admitted in medical college
hospital, Thiruvananthapuram. Ann. Indian Acad. Neurol. 18(1), 20 (2015)

17. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc., Sebastopol (2012)
18. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for

in-memory cluster computing. In: Presented as Part of the 9th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI} 2012), pp.
15–28 (2012)

https://doi.org/10.1007/978-981-15-4018-9_9
https://doi.org/10.1007/978-981-15-4018-9_9
http://spark.apache.org

Automated Diagnosis of Breast Cancer
with RoI Detection Using YOLO

and Heuristics

Ananya Bal1, Meenakshi Das2, Shashank Mouli Satapathy1(B) ,
Madhusmita Jena3, and Subha Kanta Das4

1 School of Computer Science and Engineering, Vellore Institute of Technology,
Vellore, Tamil Nadu 632014, India

shashankamouli@gmail.com
2 Department of Computer Science and Engineering, Indraprastha Institute of

Information Technology Delhi, New Delhi 110020, India
3 Department of Pathology, East Point College of Medical Sciences and Research

Centre, Bengaluru, Karnataka 560049, India
4 Department of Pathology, MKCG Medical College,

Brahmapur, Odisha 760004, India

Abstract. Breast Cancer (specifically Ductal Carcinoma) is widely
diagnosed by Fine Needle Aspiration Cytology (FNAC). Deep Learn-
ing techniques like Convolutional Neural Networks (CNNs) can auto-
matically diagnose this condition by processing images captured from
FNAC. However, CNNs are trained on manually sampled RoI (Region
of Interest) patches or hand-crafted features. Using a Region Proposal
Network (RPN) can automate RoI detection and save time and effort. In
this study, we have proposed the use of the YOLOv3 network as an RPN
and supplemented it with image-based heuristics for RoI patch detection
and extraction from cytology images. The extracted patches were used
to train 3 CNNs - VGG16, ResNet-50 and Inception-v3 for classification.
YOLOv3 identified 164 RoIs in 26 out of 27 images and we achieved
96.6%, 98.8% and 98.9% classification accuracies with VGG16, ResNet-
50 and Inception-v3 respectively.

Keywords: Breast cancer · Computer aided diagnosis · Deep
learning · RoI extraction and classification · YOLO

1 Introduction

The most common cancer among Indian women is breast cancer. In 2018, more
than 1,60,000 new incidences of breast cancer were reported in India [5]. Ductal
carcinoma is a cancer originating from the cells that line the milk ducts in
breasts. More than 80% of all breast cancer cases are Ductal Carcinomas [4]. The
National Cancer Registry Programme by the Indian Council of Medical Research
estimates the rate of growth per decade of breast cancer in India lies within 15%
and 20% [14]. Additionally, breast cancer prognosis in India is far worse than
c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 253–267, 2021.
https://doi.org/10.1007/978-3-030-65621-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_16&domain=pdf
http://orcid.org/0000-0002-1665-8101
https://doi.org/10.1007/978-3-030-65621-8_16

254 A. Bal et al.

the prognosis in developed countries with merely 50% women surviving [13]. The
lack of awareness and screening are two major causes for this dismal statistic.
India also has very burdened diagnostic systems. Therefore, creating intelligent
CAD (Computer-Automated Diagnosis) systems is necessary to improve breast
cancer diagnosis and treatment.

Fine Needle Aspiration Cytology (FNAC) is the industry standard to diag-
nose breast cancer (Ductal Carcinoma). Pathologists use a narrow-gauge needle
to collect a tissue sample from the breast for microscopic examination. The aspi-
rated sample is fixed onto a slide and stained (common stains are Haematoxylin
and Eosin (H&E), Pap, and Giemsa). A cytopathologist views stained slides
under a microscope and makes a diagnosis. FNAC is preferred as it is minimally
invasive and quick. While the process of FNAC remains manual, diagnosis from
the microscopic images can be automated with the help of Computer Vision
techniques.

Deep Learning can be used to extract features for visual context and classify
cytology images from FNAC lesions. Convolutional Neural Networks (CNN), a
class of deep learning models, yield state-of-the-art results for image classifica-
tion problems. They are increasingly being adopted for digital diagnosis. While
CNNs can tackle medical image classification, they require a lot of data prepa-
ration and manually extracted RoIs which contain the objects that need to be
classified. Most medical and cellular images have a lot of irrelevant data. Thus,
extracting RoIs from these images is time-consuming and is mostly done man-
ually. A Region Proposal Network (RPN) can automatically detect RoIs which
can then be classified by CNNs. We aimed to build a pipeline that could auto-
matically detect RoIs, extract them and classify them. We have achieved this by
using YOLOv3, heuristics and CNNs.

We present related literature in Sect. 2 and then outline our framework in
detail in Sect. 3. This is followed by results and discussion in Sect. 4 and 5.

2 Prior Work

Given that mammograms usually have a single mass to be detected, YOLO has
performed well in tumour detection in mammograms. Al-masni et al. [3] trained
a YOLO-based CAD model that detected masses in mammograms and classi-
fied them as benign or malignant. The proposed system detected mass locations
with 96.33% accuracy and distinguished between benign and malignant lesions
with an accuracy of 85.52%. Mugahed A. et al. [2] proposed an integrated CAD
system for lesion detection and classification from entire mammograms. A deep
learning YOLO detector was used and evaluated for breast lesion detection.
Then, three deep learning classifiers, a regular feedforward CNN, ResNet-50, and
InceptionResNet-V2, were used for classification. Mugahed A. et al. [1] have uti-
lized YOLO, a full-resolution convolutional network (FrCN) and Alexnet for RoI
detection, segmentation and classification respectively. They achieved 98.96%
mass detection accuracy, 92.97% segmentation accuracy and 95.64% classifica-
tion accuracy.

Breast Cancer Diagnosis with RoI Detection Using YOLO and Heuristics 255

YOLO is especially effective in identifying RoIs in video frames. Gao et al. [7]
proposed an approach to detect Squamous Cell Carcinomas from Oesophageal
Endoscopic Videos using mask-RCNN and YOLOv3. They have used a Non-
Maxima Technique to ensure the detection of a single bounding box. The bound-
ing box region is classified into three classes. YOLOv3 gave a detection accuracy
of 85% and a classification accuracy of 74%. Ding et al. [6] proposed a novel
approach for lesion localization in gastroscopic videos with a cloud-edge col-
laborative framework. They have detected upper gastrointestinal disease with a
Tinier-YOLO algorithm and have improved the model performance by integrat-
ing lesion RoI segmentation into the YOLOv3 algorithm. Their results exhibit
superior performance in mean Average Precision (mAP) and Intersection over
Union (IOU) of lesion detection.

Spanhol et al. [19] used deep learning on histopathological images from
BreakHis public dataset. They concluded that CNN performed better than other
machine learning models. They also tested the combination of different CNNs
using simple fusion rules, obtaining some improvement in performance. Saikia
et al. [17] used CNNs for the diagnosis of cell samples from FNAC images and
tested VGG16 and other network architectures for a comparative study. The
results showed that GoogLeNet-V3 achieved 96.25% accuracy. Vesal et al. [22]
fine-tuned the Inception-v3 and ResNet-50 networks and used transfer learning
with weights from the ImageNet competition to classify the BACH 2018 chal-
lenge data. They achieved 97.08% classification accuracy for Inception-v3 and
96.66% classification accuracy for ResNet-50.

3 Proposed Framework

The workflow of our proposed framework can be seen in Fig. 1. The framework
can be divided into six modules which are as follows:

3.1 Data Collection

Pathologists view slides with stained tissue from FNAC under microscopes for
diagnosis. The microscopic lesions, as viewed under the microscope, can be cap-
tured by a camera to produce digital images. For this study, FNAC images of
breast lesions with Giemsa stain were captured in the pathology labs at East
Point College of Medical Sciences and Research Centre, Bangalore, India and
Maharaja Krushna Chandra Gajapati Medical College, Brahmapur, Odisha,
India following all ethical protocols.

Benign FNAC samples collected from 40 patients and malignant FNAC sam-
ples (Ductal Carcinoma NOS) collected from 30 patients were used. These sam-
ples were observed at 400x magnification by certified cytopathologists using a
CH-20i Olympus Binocular Microscope and an LM-52–6000 Lawrence and Mayo
Multi viewing Microscope. The diagnosis for each sample has been confirmed by
histopathology. Image collection methods were consistent.

256 A. Bal et al.

On an average, 1 to 2 images were taken per patient’s sample. This produced
79 images of benign lesions and 56 images of malignant lesions. Roughly 80% of
these images were used for training (64 benign images and 44 malignant images)
the YOLOv3 network after annotation. The remaining images were used for
testing (15 benign images and 12 malignant images). All test images belonged
to different patients. For training the CNN, 4 to 8 RoI patches of size 256 ×
256 pts were extracted from each image in the training set depending on the
cellular content. This resulted in 389 benign patches and 300 malignant patches
as presented in Table 1.

Fig. 1. Proposed framework

Breast Cancer Diagnosis with RoI Detection Using YOLO and Heuristics 257

Table 1. Data distribution

Category Benign Malignant

Slide Images 79 56

Images for training YOLO 64 44

Images for testing YOLO 15 12

RoI patches for training CNN 389 300

Augmented patches for training CNN 2334 1800

3.2 Image Augmentation for CNNs

Neural networks can overfit on small datasets, rendering them unable general-
ize to larger unseen test data. To avoid this and to obtain good classification
accuracy, we have increased the cardinality of our training data for the CNN
classifiers through data augmentation. We applied geometric transformations,
i.e., flipping, mirroring and rotation. Microscopic cellular images are rotation-
ally invariant i.e., a pathologist will be able to make a diagnosis irrespective of
the angle of rotation of the image. Therefore, our image patches were rotated by
90◦ three times, resulting in 4 images. Similarly, flipped or mirrored images of
cells can still be diagnosed by a pathologist. As a result of the augmentation, the
cardinality of our training data grew by a factor of 6, resulting in 2334 benign
training patches and 1800 malignant training patches. Nearly 75% of these RoI
patches were placed under the training set and the remaining were placed under
the validation set as provided in Table 1.

3.3 Annotation for YOLOv3

The training images need to be annotated to define ground truth for the RoI
detection model. Annotation is the process of identifying an object in an image
with a box and tagging the object with a label. This was done with the help of
the Microsoft Visual Object Tagging Tool (VoTT) software. This process saves
the x and y coordinates of the boxes we draw to enclose the RoIs. The process
is seen in Fig. 2.

Object annotation is largely subjective. There is no set method for annotating
irregularly-shaped cell clusters. Many cell clusters are big and occupy a large part
of the image. These clusters were not annotated with single large boxes as this
would pick up more background information than is desirable. Instead, as seen
in Fig. 2, multiple smaller and tight-fitting boxes were used to cover the entire
cell cluster. This resulted in higher object to background ratio.

3.4 RoI Detection with YOLO

YOLO (You Only Look Once) is a unified CNN-based architecture that can
identify and classify objects [15]. It is faster than other networks used for object

258 A. Bal et al.

Fig. 2. Image annotation with Micrsoft VoTT

detection and is therefore uniquely suited to object detection in video frames.
As the name suggests, YOLO looks at the entire image to learns context instead
of looking at smaller parts of the image. Object detection is formulated as a
regression problem in the YOLO architecture.

An image is divided into a grid and each grid cell detects bounding boxes for
objects whose centres lie within the cell. The grid cells predict bounding boxes
for objects by resizing a fixed number of boxes of different aspect ratios called
anchors. After this, confidence values for the boxes are calculated (Eqs. 1 and
2). They indicate the model’s confidence in the accuracy of the box’s fit to an
object.

Duplicate boxes or boxes having a high degree of overlap with other boxes are
discarded by Non-maximal Suppression (NMS) which looks at the Intersection
Over Union (IOU) between proposed bounding boxes. In NMS, the proposed
bounding box with the highest confidence is added to a list and other proposed
bounding boxes which have a high IOU with the boxes already in the list are
discarded on the grounds of duplicity. This process is done iteratively and an
IOU threshold is set for the same.

IOU =
Area in intersection

Area in union
(1)

ConfidenceV alue (cv) = P (RoI) × IOU (2)

where,
P (RoI) is the probability of the object being in the bounding box.

A CNN is used to learn the parameters of bounding boxes - the coordinates of
the centre of the box relative to the grid cell, height, width and the confidence

Breast Cancer Diagnosis with RoI Detection Using YOLO and Heuristics 259

value (x, y, h, w, cv). The class of the object can also be learned by the CNN.
But in our framework, taking inspiration from studies [1,2], we test YOLO as a
region proposal network only. Hence, we have used it for RoI detection solely and
not to classify the suggested RoIs. Features are extracted in the first few layers
while the fully-connected layers at the end predict bounding box coordinates as
well as class probabilities, if classification is also to be done. The loss function of
the CNN is a modified sum squared error function. This is similar to the squared
error losses (Root Mean Squared error and Mean Squared Error) in regression.

Since FNAC is the conclusive diagnostic test for breast cancer, testing the
efficiency of YOLO as an RPN on cytology images is crucial. We have not found
literature which has attempted this. There are certain challenges associated with
cytological images because they contain cell clusters that do not have clearly
demarcated boundaries. They vary a lot in size and shape. But the biggest
challenge with these images is the presence of multiple RoIs in close proximity,
unlike in the case of most radiological images, where there is only one RoI. Hence,
multiple bounding-boxes are required to cover all and many of these overlap. To
conclude, identifying RoIs in these images is a complex problem and required
modifications in the YOLO network.

YOLOv3 Network
The YOLOv3 network is an improved version of YOLO. It has two parts - a
Feature Extractor and a Detector. The architecture can be seen in Fig. 3.

DarkNet53 is the feature extractor [16] and has 53 layers - 52 convolution
layers and one fully-connected layer. There are 23 residual blocks which contain
residual layers. Residual blocks use skip connections [8]. The convolution layers
use the Leaky ReLU activation function (Eq. 3) [12] to avoid dying neurons
which occur with the ReLU (Eq. 4) function when the input is lower than 0.

The detector module has 53 layers consisting of 1 × 1 and 3 × 3 convolution
layers and two upsampling layers. The feature extractor downsizes the input
and the detector module applies 1 × 1 detection kernels on feature maps from
the last layers of the last three residual blocks. The detection occurs at three
different scales. The feature map from the first scale is upsampled (enlarged)
by a factor of 2 for the second scale and the feature map from the second scale
is upsampled by a factor of 2 for the third scale. Each grid cell predicts three
bounding boxes using three anchors at each scale, making the total number of
anchors used 9. The different scales help the network detect objects of all sizes,
especially small ones.

The confidence values are calculated for all detected boxes and the best
fitting box is retained by NMS. The final output is a list of detected bounding
boxes which enclose RoIs. We used transfer learning by leveraging the pre-trained
DarkNet53 weights on ImageNet data. The training continued for 50 epochs with
an initial learning rate of 0.0001 which was gradually reduced. We implemented
the network with Keras and Tensorflow in Python.

260 A. Bal et al.

Fig. 3. YOLOv3 architecture

Leaky ReLU activation function :

f(x) =

{
x if x > 0;
0.1x otherwise

(3)

After fine-tuning hyperparameters, we established a batch size of 12 for the
network and used the RMSprop optimizer [9] instead of Adam [11] which is the
default optimizer in DarkNet53. 15% of the training data was used for valida-
tion. The key change in our implementation was the choice of the confidence
value threshold. Traditionally, a value (0.5-0.95) is used to retain the best-fitting
bounding boxes that have confidence scores above the threshold. However, given
the complex nature of our images and RoIs, the threshold was lowered to 0.1 to
retain a few poorly fit bounding boxes. This ensures that bounding boxes are
retained for most RoIs and a sufficient number of RoIs are detected for diagnosis
by classification.

3.5 Heuristic RoI Patch Extraction

The YOLOv3 network performed reasonably well in detecting RoIs in the test
images. To use CNNs for classification, all RoI patches need to be of a uniform
size. However, the bounding boxes and their respective RoIs, vary in size and
shape. One solution to overcome this hurdle is to resize all RoIs to a single
dimension. However, resizing alters the shape of cells especially if the aspect
ratio of the RoI is not maintained. The RoIs vary in shape and so resizing them
all to a single fixed size (256 × 256 in our case) would stretch the cells in the
patches. Since the distinction in shape between benign and malignant cells is
important in interpreting features for a diagnosis, it is not wise to resize the
RoIs. The other solution is to take a smaller, fixed-size patch from each RoI.
But this approach leads to loss of data. The cells which are in the RoI but not
in the patch may be essential features. Therefore, our objective was to extract
a minimum number of patches from any suggested RoI such that we maximized
the features covered, while having minimum overlap among patches. We tackled
this with heuristics.

Upon examination of the dimensions of all bounding boxes, we identified 10
categories of RoIs based on variations in width (x) and height (y). The number

Breast Cancer Diagnosis with RoI Detection Using YOLO and Heuristics 261

of 256 × 256 patches that could be extracted from an RoI depended on the
category into which the RoI fell. The categories are:

– Category 1 (x < 256 and y <256): RoIs in this category had x and y values
which were nearly equal and only slightly less than 256 pts. Thus, they could
be enlarged to 256 × 256 pts without significant changes to their aspect ratios.
The enlarged RoI was taken as a single 256×256 patch.

– Category 2 (256 ≤ x ≤ 350 and 256 ≤ y ≤ 350): Due to the square-like
shape and smaller size, a single patch was taken from the centre of RoIs in
this category.

– Category 3 (256 ≤ x < 350 and 350 ≤ y < 500): RoIs in this category were
rectangles since their heights are larger than their widths. For these RoIs, two
patches were taken vertically along the midpoint of the width.

– Category 4 (350 ≤ x < 500 and 256 ≤ y < 350): RoIs in this category were
also rectangles since their widths are larger than their heights. For these RoIs,
two patches were taken horizontally along the midpoint of the height.

– Category 5 (350 ≤ x < 500 and 350 ≤ y < 500): RoIs in this category were
square-like in shape. Four patches were taken from the corners for these RoIs.

– Category 6 (300 ≤ x < 500 and 500 ≤ y): RoIs in this category were rect-
angles. For these RoIs, four patches were taken from the corners and two
patches were taken horizontally along the midpoint of the height.

– Category 7 (500 ≤ x and 300 ≤ y < 500): RoIs in this category were also
rectangles. For these RoIs, four patches were taken from the corners and two
patches were taken vertically along the midpoint of the width.

– Category 8 (500 ≤ x and 500 ≤ y): These RoIs could be square or rectangles
but since we know that most of the cells lie in the centre of the RoI, we take
one patch from the centre and four other patches along the sides of the central
patch.

– Category 9 (256 ≤ x < 300 and 500 ≤ y): Three patches are taken vertically
for these RoIs along the midpoint of the width.

– Category 10 (500 ≤ x and 256 ≤ y < 300): Three patches are taken hori-
zontally for these RoIs along the midpoint of the height.

The visual representation of heuristic categories is presented in Fig. 4.

3.6 Classification with CNNs

We have tested three different CNNs on the extracted RoI patches. The networks
use the 256 × 256 patches taken from the training images and predicts class
labels (benign and malignant) for all the RoI patches from the previous module.

VGG16: VGG stands for Visual Geometry Group, the team that submitted
the network for the ILSVRC-2014 [18]. VGG16 comprises of 16 layers - 13 con-
volution layers and three fully-connected layers. All layers, except the last, use
the ReLU (Eq. 4) activation function. The layers can be segregated into blocks
where the first two blocks have two layers each, and the next three blocks have

262 A. Bal et al.

Fig. 4. Suggested RoIs and their Heuristic categories

three layers each. The number of filters in the convolution layers block-wise is
64, 128, 256, 512, and 512. There are five max-pooling layers, one at the end of
each block. The network uses 3 × 3 sized filters and 2 × 2 max pooling. The
first two fully-connected layers have 4096 nodes each. The last fully-connected
layer has a single node and uses the Sigmoid activation function. The VGG16
architecture is presented in Fig. 5.

Fig. 5. VGG16 architecture

ResNet-50: ResNet-50 is a deep CNN which employs residual learning via skip
connections. This helps solve the vanishing gradient problem [8]. The network
architecture has two types of blocks - convolution blocks and identity blocks.
The convolution block has four convolution layers. Three are positioned back to
back and the fourth convolution layer is along the skip connection. The identity
block has three convolution layers back to back and a skip connection to bypass

Breast Cancer Diagnosis with RoI Detection Using YOLO and Heuristics 263

these layers. The network starts with a 7 × 7 convolution layer which is followed
by 4 residual blocks and 12 identity blocks where multiple identity blocks follow
one residual block. This is followed by a global average-pooling layer and a fully-
connected layer with a single node. The activation function is ReLU. The last
layer uses Sigmoid function. The architecture is seen in Fig. 6.

Fig. 6. (a) ResNet-50 network (b) Convolution block (c) Identity block

Inception-V3: This network was first introduced during the ImageNet Recog-
nition challenge. It stacks inception modules [20], where each module consists of
convolutional layers with ReLU activation function and pooling layers in parallel.
Inception modules are used in CNNs for efficient computation through dimen-
sionality reduction. They have sparsely connected with 1 × 1, 1 × 3, 3 × 1, 3
× 3, 1 × 7, and 7 × 1 sized convolution layers whose outputs are concatenated
into a single vector and used as the input for the next layer [21]. The network
is faster to train than previous Inception networks due to the addition of Batch
Normalization [10]. The architecture of inception modules and the network can
be seen in [20]. Before the last fully-connected layer, we have added an average
pooling layer followed by batch normalization and dropout of 0.5, respectively.

All the three networks have a single node in the last fully-connected layer
and use the sigmoid activation function (Eq. 5) here because ours is a binary
classification problem. All networks were implemented with Keras and Tensor-
flow in Python. They were trained for 50 epochs using NVIDIA Tesla P100 GPU
support from Kaggle. We used the RMSprop optimizer and a learning rate of
0.0001

264 A. Bal et al.

ReLU (Rectified Linear Unit) activation function :

f(x) =

{
0 if x < 0
x if x ≥ 0

(4)

Sigmoid Activation function f(x) =
1

1 + e−x
(5)

The test set consisting of RoI patches was passed to the compiled model
to produce class probabilities (0–1). The probabilities were thresholded at 0.5
to obtain class labels 0 (benign) and 1 (malignant). With another vector of
the actual class labels, confusion matrices were generated and used to calculate
evaluation parameters.

4 Results

YOLOv3 identified 164 RoIs in 26 images. It failed to identify RoIs in one image.
Applying heuristics to RoIs, 584 patches (240 benign and 344 malignant) were
extracted.

The YOLOv3 detector identified 164 RoIs that had a confidence score > 0.1
and an IOU with the ground truth >= 0.5. Our implementation of YOLOv3
generated an Average Precision of 29.3% with 560 bounding boxes, failing to
predict any RoI with confidence score > 0.1 for one image in 27 images. This
indicates the complexity of cytology images and that YOLOv3 was 96% effective
in detecting RoIs in cytological images.

Table 2. Results

Metric Formula VGG16 ResNet-50 Inception-v3

Accuracy (TP + TN)
Total Cases

0.966 0.988 0.989

Precision TP
(TP + FP)

0.996 0.985 1

Recall (or Sensitivity) TP
(TP + FN)

0.944 0.994 0.982

Specificity TN
(FP + TN)

0.996 0.979 1

False Positive Rate FP
(FP + TN)

0.004 0.021 0

False Negative Rate FN
(FN + TP)

0.055 0.005 0.017

The final diagnosis was the majority class from the predicted labels for all
RoIs in images from a patient’s sample. We tested the system for accuracy in
diagnosing a patient’s sample. The framework gave the correct diagnosis for all
but one patient’s test image, failing only when the YOLO detector could not
find any RoIs.

Breast Cancer Diagnosis with RoI Detection Using YOLO and Heuristics 265

Fig. 7. Confusion matrices for VGG16, ResNet-50 and Inception-v3

Among the CNN classifiers, Inception-v3 performed the best for our data
shown in Table 2. Sensitivity and specificity are especially important for assess-
ing the performance of medical tests and while all three networks give above-
satisfactory values, Inception-v3 and ResNet-50 are the obvious choices, because
their sensitivity and specificity values are both high. Inception-v3 has a slight
edge over Resnet-50 as it does not falsely classify any benign patches as malignant
(False positive rate is 0). While VGG16 has a high specificity value, its sensi-
tivity value is low. This combined with its lower accuracy value makes VGG16
an inferior model. Refer Table 2. All metrics provided in Table 2 are calculated
from the confusion matrices shown in Fig. 7.

5 Conclusion

Our implementation of YOLOv3 is 96% effective in suggesting RoIs. It fails for
one image only but since the diagnosis is dependent on RoIs, having zero RoIs
from an image will result in no diagnosis. This needs to be overcome with further
improvements to the YOLOv3 detector network. The addition of more data to
the pipeline will also certainly improve the bounding box detection.

Overall, our framework performed very well in detecting and classifying RoIs
in cytology images from breast FNAC lesions. The diagnostic accuracy of our
framework lies between 96.6% and 98.9% depending on the choice of classifier
network. High precision, sensitivity and specificity values make the framework
suitable for industry applications. We conclude that the YOLOv3 network is an
effective Region Proposal Network for cytological images. The combination of
YOLOv3, heuristics and CNNs fully automates the diagnosis of Ductal Carci-
noma with good classification accuracy and with further improvement, can be
used in medical laboratories.

266 A. Bal et al.

6 Discussion and Future Work

While lowering the confidence threshold in YOLO can retain more bounding
boxes, unless the RPN is improved in terms of training and/or architecture,
there can be cases where no RoIs are detected and a diagnosis is not possible.
The RPN can either be trained on datasets which are similar to ours or be
trained on more data. Also, other RPN architectures such as SSD (Single Shot
Detector) and Faster RCNN can be tested in the pipeline. In the future, we will
work on integrating detection and classification into a single network.

YOLOv3 detects more bounding boxes for the malignant test images even
though they are lesser in number than the benign test images. Therefore, the
number of malignant patches is also higher. This shows that the learning is
skewed and that the network identifies malignant cells better than it identifies
benign cells. Again, the addition of more data is expected to resolve this issue.

Acknowledgment. We acknowledge the help and support of lab technicians and
pathologists at East Point College of Medical Sciences and Research Centre and Hos-
pital, Bengaluru, India, and Maharaja Krushna Chandra Gajapati Medical College,
Brahmapur, Odisha, India. Their diligent efforts and coordination have made this study
possible.

This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

References

1. Al-Antari, M.A., Al-Masni, M.A., Choi, M.T., Han, S.M., Kim, T.S.: A fully inte-
grated computer-aided diagnosis system for digital x-ray mammograms via deep
learning detection, segmentation, and classification. Int. J. Med. Inf. 117, 44–54
(2018)

2. Al-antari, M.A., Kim, T.S.: Evaluation of deep learning detection and classification
towards computer-aided diagnosis of breast lesions in digital x-ray mammograms.
Computer Methods and Programs in Biomedicine p. 105584 (2020)

3. Al-masni, M.A., et al.: Detection and classification of the breast abnormalities
in digital mammograms via regional convolutional neural network. In: 2017 39th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC). pp. 1230–1233. IEEE (2017)

4. Breastcancer.org: Invasive ductal carcinoma: Diagnosis, treatment, and more.
https://www.breastcancer.org/symptoms/types/idc (2019)

5. Cancer Today: International Agency for research on Cancer: Iarc world can-
cer report 2020. https://www.iccp-portal.org/sites/default/files/resources/IARC-
World-Cancer-Report-2020.pdf (2018). Accessed: 20 Feb 2020

6. Ding, S., Li, L., Li, Z., Wang, H., Zhang, Y.: Smart electronic gastroscope system
using a cloud-edge collaborative framework. Future Generation Comput. Syst. 100,
395–407 (2019)

7. Gao, X., Braden, B., Taylor, S., Pang, W.: Towards real-time detection of squamous
pre-cancers from oesophageal endoscopic videos. In: 2019 18th IEEE International
Conference on Machine Learning and Applications (ICMLA). pp. 1606–1612. IEEE
(2019)

https://www.breastcancer.org/symptoms/types/idc
https://www.iccp-portal.org/sites/default/files/resources/IARC-World-Cancer-Report-2020.pdf
https://www.iccp-portal.org/sites/default/files/resources/IARC-World-Cancer-Report-2020.pdf

Breast Cancer Diagnosis with RoI Detection Using YOLO and Heuristics 267

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 770–778 (2016)

9. Hinton, G., Srivastava, N., Swersky, K.: Coursera: Neural networks for machine
learning: Lecture 6(a)–overview of mini-batch gradient descent. https://www.cs.
toronto.edu/∼tijmen/csc321/slides/lecture slides lec6.pdf (2014)

10. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

12. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: Proceedings of ICML. vol. 30, p. 3 (2013)

13. National Cancer Institute (NCI-AIIMS: Cancer statistics — drupal. http://
nciindia.aiims.edu/en/cancer-statistics (2020)

14. National Centre for Disease Informatics and Research: NCPR three-year report
of population based cancer registries 2012–2014. https://ncdirindia.org/NCRP/
ALL NCRP REPORTS/PBCR REPORT 2012 2014/ALL CONTENT/PDF
Printed Version/Chapter10 Printed.pdf (2020)

15. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 779–788 (2016)

16. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

17. Saikia, A.R., Bora, K., Mahanta, L.B., Das, A.K.: Comparative assessment of cnn
architectures for classification of breast fnac images. Tissue Cell 57, 8–14 (2019)

18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

19. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: Breast cancer histopatho-
logical image classification using convolutional neural networks. In: 2016 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp. 2560–2567. IEEE (2016)

20. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE
Conference On Computer Vision And Pattern Recognition. pp. 1–9 (2015)

21. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference On
Computer Vision And Pattern Recognition, pp. 2818–2826 (2016)

22. Vesal, S., Ravikumar, N., Davari, A.A., Ellmann, S., Maier, A.: Classification of
breast cancer histology images using transfer learning. In: Campilho, A., Karray, F.,
ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 812–819. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93000-8 92

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980
http://nciindia.aiims.edu/en/cancer-statistics
http://nciindia.aiims.edu/en/cancer-statistics
https://ncdirindia.org/NCRP/ALL_NCRP_REPORTS/PBCR_REPORT_2012_2014/ALL_CONTENT/PDF_Printed_Version/Chapter10_Printed.pdf
https://ncdirindia.org/NCRP/ALL_NCRP_REPORTS/PBCR_REPORT_2012_2014/ALL_CONTENT/PDF_Printed_Version/Chapter10_Printed.pdf
https://ncdirindia.org/NCRP/ALL_NCRP_REPORTS/PBCR_REPORT_2012_2014/ALL_CONTENT/PDF_Printed_Version/Chapter10_Printed.pdf
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1409.1556
https://doi.org/10.1007/978-3-319-93000-8_92

Short Papers

An Efficient Approach for Event
Prediction Using Collaborative Distance

Score of Communities

B. S. A. S. Rajita(B) , Bipin Sai Narwa, and Subhrakanta Panda

CSIS, BITS-Pilani, Hyderabad Campus, Pilani, India
{p20150409,f20170030,spanda}@hyderabad.bits-pilani.ac.in

Abstract. An effective technique for prediction of events can capture
the evolution of communities and help understand the collaborative
trends in massive dataset applications. One major challenge is to find
the derived features that can improve the accuracy of ML models in effi-
cient prediction of events in such evolutionary patterns.

It is often observed that a group of researchers associate with another
set of researchers having similar interests to pursue some common
research goals. A study of such associations forms an essential basis to
assess collaboration trends and to predict evolving topics of research.
A hallmarked co-authorship dataset such as DBLP plays a vital role in
identifying collaborative relationships among the researchers based on
their academic interests.

The association between researchers can be calculated by comput-
ing their collaborative distance. Refined Classical Collaborative Distance
(RCCD) proposed in this paper is an extension of existing Classical Col-
laborative distance (CCD).

This computed RCCD score is then considered as a derived feature
along with other community features for effective prediction of events in
DBLP dataset.

The experimental results show that the existing CCD method pre-
dicts events with an accuracy of 81.47%, whereas the accuracy of our
proposed RCCD method improved to 84.27%. Thus, RCCD has been
instrumental in enhancing the accuracy of ML models in the effective
prediction of events such as trending research topics.

Keywords: Social networks · Community mining · Event prediction ·
Collaboration distance · Machine learning

1 Introduction

A massive data set is a collection of voluminous data that can be represented
in the form of a social network (SN) to understand relations among the data
such as associations, behavior, interactions, and collaborative trends etc. A SN
is a graphical representation of the dataset consisting of nodes interconnected

c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 271–279, 2021.
https://doi.org/10.1007/978-3-030-65621-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_17&domain=pdf
http://orcid.org/0000-0003-0319-9601
http://orcid.org/0000-0003-4768-772X
https://doi.org/10.1007/978-3-030-65621-8_17

272 B. S. A. S. Rajita et al.

through edges. Such graphical representation of these SNs consists of nodes
that correspond to individual entities, and edges correspond to the relationship
between the nodes (entities) [8].

A community is defined to be a subset (subgraph) of the graphical repre-
sentation of a social network. A community represents dense intra-connection
among its nodes and sparse inter-connection with the nodes that are outside
the community. The structure of these communities change according to the
occurrence of different events, such as Form, Dissolve, Same, Split, and Merge
[2].

Researchers often form different collaborations in order to discover new
knowledge, improve individual skills or specialization, and also for pursuing
inter-disciplinary research goals. Such association is an essential basis to assess
collaborative trends and to identify trending (evolving) topics of research. Sup-
posing a researcher X switches to another research domain (community) then it
will certainly impact the structure of both parent and host communities. Such
structural changes (transitions) also reflect a collaborative change that attributes
to SN evolution [4,9]. Therefore, prediction of events is essential in many areas
of SN applications related to mining the underlying structure and detection of
the network’s structural properties. Thus prediction of the future state of the
communities have recently drawn significant attention of the researchers [11].

This paper aims to improve the accuracy in the prediction of events that
are likely to occur within the communities. But, one of the major challenges in
such evolutionary patterns, in a massive dataset, is finding the derived features
of communities that improve the accuracy of ML models for efficient predic-
tion events [6]. This paper envisages to calculate the collaborative change by
calculating the distance between community of researchers (Authors of research
articles), who change their publishing pattern (area of interest). Thereby influ-
ences a collaborative change in the communities (occurrence of an event) of a
co-authorship dataset. For this purpose, collaborative distance is proposed as
an additional feature along with other community features to train the machine
learning models for better accuracy in prediction.

The organization of the rest of the paper is as follows: Sect. 2 gives the
details of the background and the proposed methodology. The performance and
comparative analysis of the experimental results of our proposed approach are
available in Sect. 3. Section 4 concludes the work with some insights into our
future work.

2 Background and Proposed Methodology

In this section, we give a basic understanding of the SNs and our methodology.
A SN can be represented as a set of graphs over a set of timestamps, {1,2, . . . ,
T}. Thus, a SN can be represented in the form of {Gt}Tt=1, where each Gt =
(V t, Et) represents the entire snapshot (graphical representation) at timestamp
t, V t = {v1, v2, v3, ...vm} is the set of m vertices and Et = {e1, e2, e3, ...en} is the
set of n edges. The timestamp considered in this paper to construct the graphs
is one year.

Event Prediction Using Collaborative Distance 273

Fig. 1. A proposed framework for event prediction in a social network.

Table 1. Comparative analysis of nine community detection algorithms

Community Algorithm CC M Time(sec)

Louvain 0.83 0.96 20

Multilevel 0.73 0.96 40

Fastgreedy 0.73 0.95 756

Label propagation 0.88 0.88 831

Infomap 0.67 0.87 3433

Walktrap 0.65 0.84 5996

Eigenvector 0.61 0.77 533

Spinglass 0.55 0.78 42083

Edgebetweeness 0.45 0.36 44592

A community, CG, where CG ⊆ G, is a sub-graph having densely connected
internal nodes and these nodes have a sparse connection with other G − CG

nodes. The density is computed as the average degree of vertices in CG, given

as DCG
=

∑N
i=1(d

+
CG

(Vi)+d−
CG

(Vi))

N , to find the communities of G. So, a set of i
communities of Graph G for year t is represented as CGt = {C1t, C2t, C3t, ...Cit}.

Community mining refers to the detection of structural changes in a sequence
of communities over a period of time [5,13]. Supposing CG1 to CGt are sequence
of communities over the years, y1 to yt, 1 ≤ t ≤ T . Next we need a technique to
identify the dependence of changes in these communities on the behavior of the
nodes in the community [1,10]. This can be depicted by finding direct features
(Community features) and Derived features.

The proposed framework (shown in Fig. 1) is to detect the communities,
extract features from the communities, compute RCCD values, and predict
events using ML (Machine Learning) models. The first step in Fig. 1 is to convert
XML format of DBLP data into a vector format. The second step is to graph-
ically represent the temporal data of each year. In the third step, we detect
the communities for each year of data using the Louvain approach. The results

274 B. S. A. S. Rajita et al.

proves that Louvain detects communities in less Time with high Clustering Co-
efficient(CC) and Modularity(M) as compared to the other eight methods (refer
Table 1). In the fourth step, we applied the algorithm in [2] to mine (identify
the events) detected communities in previous step. These identified events are
labeled with their communities using LDA approach [7]. In the fifth step, we
compute the community features (Sect. 2.1) and the RCCD score (Sect. 2.2) of
the communities. These scores are then used as feature of the ML model for the
prediction of events.

2.1 Community Features

The extraction of community features is significant in identifying the evolution-
ary patterns of the communities. In this work, we identified 13 categorical com-
munity features [12] for better internal connectivity. The identified community
features are Year, Node Degree, Edge Degree, Number of Inter edges, Number
of Inter edges,Degree, Conductance, Density, Connected components, Clustering
Co-efficient,Activeness, Aging, and Events. Experiments were carried out to jus-
tify the relevance of these 13 community features using the Pearson correlation
heatmap [12]. The plot of the Pearson correlation heatmap in Fig. 2(a) shows the
correlation of the community features (independent variables) with the Events
(output variable). Generally, the correlation coefficient ranges between -1 to 1,
but Fig. 2(a) shows that the correlation coefficient values of community features
range between -0.8 to 0.8. Therefore, it is inferred from the experimental results
in Fig. 2(a) that our identified community features are beneficial for predicting
events of the communities.

(a) Correlation between Community
Features and Events

(b) Average value of RCCD Score at
each year

Fig. 2. Scores

This work focuses on calculating the relationships among authors (nodes)
involved in the change of interactions and derive properties to predict the events
of communities. The association between authors can be calculated by comput-
ing their collaborative distance. The proposed Refined Classical Collaborative
Distance (RCCD) is an extension of existing Classical Collaborative distance.
Collaborative distance between two nodes is the shortest edge length between

Event Prediction Using Collaborative Distance 275

them in a given community. It signifies how similar nodes influence a commu-
nity to change its structure (number of edges necessary to reach a node from
another node). Existing approaches are based on similarity measure within the
community only.

Refined Classical Collaboration Distance of a node (author) is calculated
by using intersection between two authors based on paper publication on same

topic in a given graph. RCCD =
n∑

i=0

1
|p(ai) ∩ p(a(i+1))| . Where p(ai) is the set

of papers of author ai and | · | is the cardinality operator. RCCD score of the
community is calculated by considering the centrality of the community : σ2 =
n∑

i=1

(RCCDi − μ)2

n .

Fig. 3. Probability distribution function between RCCD and events

2.2 RCCD Score

Observation. How to know the RCCD Score could be a good measure for
detecting event changes? The above question is answered by the usage of two
strategies called PDF and Poisson distribution.

First Strategy: We added a new feature called RCCD to improve the accuracy
of the ML model. Before that we needed to check whether the newly derived
feature affects the target variable (Events). This effect can be identified by iden-
tifying relation between newly derived feature and the target variable. Relation
can be identified by using two steps [3]. Step one calculates the average value of
new feature at each time-interval. Figure 2(b) shows the outcome of the first step.
The inference from Fig. 2(b) is that the average value of RCCD increased every
year (this justifies the first step). In second step we identified impact of RCCD
on each Event by calculating probability density function (PDF). The outcome
of this step is represented in Fig. 3 and shows the PDF values of Merge (which
is 1.6), Split (which is 1.6), Form (which is 2.5), Same (which is 0.012), and
Dissolve (which is 0.0035) events. The average values of RCCD (from Fig. 2(b))
are matching with these PDF values. It is expected as RCCD score signifies the

276 B. S. A. S. Rajita et al.

Table 2. Poisson multiple regression results

Parameters Beta value Std. err

RCCD score 0.0289 0.008

Conductance 0.4086 0.173

Connected components 0.0016 0.000

Degree 0.0155 0.002

Density 0.0138 0.004

Aging 0.2086 0.113

tendency of nodes to link with other nodes that have a similar degree distribution
(authors tend to collaborate with other authors having similar paper publica-
tions). The inference from Fig. 3 is that RCCD score is considerably impacting
Merge, Split and Form events and has less impact on Same and Dissolve events.

Second Strategy: In this strategy, we observed the effect of independent vari-
ables on dependent variables by using Poisson regression model [5]. We start
by assigning weights to the event changes. The higher weight associated with
RCCD Score (0.0289) in Table 2 proves that it indeed is a good measure for
detecting event changes. So, based on above justifications, we included RCCD
Score as an additional feature along with community features. The pseudo-code
of our proposed algorithm to compute the RCCD score of all the communities
is given in Algorithm 1.

Algorithm 1: RCCD Algorithm
Input : Features Data frame=df{}
Output: RCCD Score

1 n = 0
2 auth ano = []
3 list ind = int(df[year][index])-2001
4 for auth in df[names][index]

5 RCCD =
n∑

i=0

1

p(ai) ∩ p(a(i+1))

6 RCCD Score =

n∑

i=1
(RCCDi − µ)2

n
7 end for
8 return RCCD Score

3 Performance and Comparative Analysis of Results

We conducted experiments on several ML multi-classification algorithms to find
the best accuracy model for predicting the events of the communities. We used
Decision Tree , Naive Bayes, Neural Networks, SVM , and Logistic
Regression ML models for our experimentation. For all the ML models, all
the classifiers are evaluated by 10-fold cross-validation approach.

Event Prediction Using Collaborative Distance 277

3.1 Performance Analysis

We included all sets of community and derived features in our experimentation.
We compared the results obtained by considering only the community features
(shown in Table 3) with the results obtained by considering RCCD scores as an
additional feature along with community features. Accuracy gives the measure
of the correctness of predicted events based on the training events. As can be
inferred from Table 3, the addition of the RCCD score as a feature improved the
performance of the Logistic Regression model from 81.47% to 84.27% (aprox.
3.43% improvement). Precision gives the measure of the positivity of the cor-
rectly predicted events based on the training events. Our results in Table 3 show
that the precision of the Logistic Regression model improved from 79.68% to
83.62% (aprox. 4.94% improvement). The recall is the ratio of correctly predicted
positive events to all the predicted events. It measures the completeness (how
relevant the results are) of the ML models. Recall value of the Logistic Regression
model improved from 76.37% to 83.53% (aprox. 9.37% improvement). F-measure
or F1 score is the weighted average of Precision and Recall. Our results in Table
3 show that the F-score of the Logistic Regression model improved from 76.83%
to 83.57% (aprox. 11.67% improvement).

Table 3. Experimental comparison of ML models.

Classifiers Accuracy Precision Recall F-measure

Approach CF RCCD CF RCCD CF RCCD CF RCCD

Decision Tree 52.92 77.82 51.98 70.48 50.98 73.41 51.24 71.79

Naive Bayes 73.92 79.91 72.61 72.31 71.72 73.71 72.16 72.89

NN 81.84 79.34 72.14 78.63 75.53 77.24 74.25 77.94

SVM 81.17 82.17 79.92 81.57 71.82 81.59 70.85 81.58

LR 81.47 84.27 79.68 83.62 76.37 83.53 76.83 83.57

3.2 Comparative Analysis with Existing Work

Classical Collaborative Distance (CCD) method [8] finds common neighbors.
And verified a correlation between the number of common neighbors of vi

and vj at the time t, and the probability that they will collaborate in the future.
So, it identified collaboration of only two nodes in the future.

Table 4. Performance analysis of RCCD and CCD on Logistic Regression Model.

Metrics Accuracy Precision Recall F-measure

Approach CCD RCCD CCD RCCD CCD RCCD CCD RCCD

LR 82.54 84.27 81.12 83.62 82.67 83.53 81.45 83.57

278 B. S. A. S. Rajita et al.

Whereas, the novelty in our proposed RCCD approach is that it considers the
similarity measure of both intra- and inter- communities and is Table 3 infers that
the logistic regression (LR) model predicted events more accurately compared
to the remaining four ML models. In Table 4, we compared logistic regression
model with the performance of our proposed model. Our model predicts events
approximately with 2.09% more accuracy than CCD approach. The precision of
our prediction is approximately 3.08 % more compared to CCD approach. Our
proposed method predicts events with 83.53% recall, which is approximately
1.04% improvement over CCD approach. Similarly, the F-measure for our model
is 83.57%, which is approximately 2.60% better than CCD approach.

4 Conclusion and Future Work

This paper presented a scalable and parallel framework for modeling a co-
authorship SN and demonstrated how the proposed new feature, called RCCD
score, improved the performance of the ML models for the prediction of the
events in social network communities. The performance and effectiveness of the
proposed framework show that the addition of the RCCD score as a feature
improved the accuracy of the ML model. Thus, the accuracy of the proposed
approach in prediction of the events improved from 81.47% to 84.27%.

In the future, we plan to design a strategy to measure similarity using GAN
and stochastic gradient methods for further improvement in accuracy.

References

1. Alamuri, M., Surampudi, B.R., Negi, A.: A survey of distance/similarity measures
for categorical data. In: 2014 IJCNN, pp. 1907–1914. IEEE (2014)

2. Bommakanti, S.R., Panda, S.: Events detection in temporally evolving social net-
works. In: 2018 ICBK, pp. 235–242. IEEE (2018)

3. Chakraborty, T., Srinivasan, S., Ganguly, N., Mukherjee, A., Bhowmick, S.: On
the permanence of vertices in network communities. In: Proceedings of the 20th
ACM SIGKDD, pp. 1396–1405. ACM (2014)

4. Kong, X., Shi, Y., Yu, S., Liu, J., Xia, F.: Academic social networks: modeling, anal-
ysis, mining and applications. J. Network Comput. Appl. 132(3), 86–103 (2019)

5. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of
community structure in large social and information networks. In: Proceedings of
the 17th ICWWW, pp. 695–704. ACM (2008)

6. Newman, M.E.: Co-authorship networks and patterns of scientific collaboration. In:
Proceedings of the National Academy of Sciences 101(1), pp. 5200–5205. National
Acad Sciences (2004)

7. Papanikolaou, Y., Foulds, J.R., Rubin, T.N., Tsoumakas, G.: Dense distributions
from sparse samples: improved gibbs sampling parameter estimators for LDA. J.
Mach. Learn Res. 18(1), 2058–2115 (2017)

8. Pereira, F.S., de Amo, S., Gama, J.: Detecting events in evolving social networks
through node centrality analysis. In: ECML, pp. 47–60 (2016)

Event Prediction Using Collaborative Distance 279

9. Pradhan, A.K., Mohanty, H., Lal, R.P.: Event detection and aspects in twitter:
a bow approach. In: Fahrnberger, G., Gopinathan, S., Parida, L. (eds.) ICDCIT
2019. LNCS, vol. 11319, pp. 194–211. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-05366-6 16

10. Rajita, B.S.A.S., Kumari, D., Panda, S.: A comparative analysis of community
detection methods in massive datasets. In: Goel, N., Hasan, S., Kalaichelvi, V.
(eds.) MoSICom 2020. LNEE, vol. 659, pp. 174–183. Springer, Singapore (2020).
https://doi.org/10.1007/978-981-15-4775-1 19

11. Rajita, B.S.A.S., Ranjan, Y., Umesh, C.T., Panda, S.: Spark-based parallel method
for prediction of events. Arabian J. Sci. Eng. 45(4), 3437–3453 (2020). https://doi.
org/10.1007/s13369-020-04437-2

12. Saganowski, S., Bródka, P., Koziarski, M., Kazienko, P.: Analysis of group evolution
prediction in complex networks. PLoS ONE 14(10), e0224194 (2019)

13. Sharma, A., Bhavani, S.D.: A network formation model for collaboration networks.
In: Fahrnberger, G., Gopinathan, S., Parida, L. (eds.) ICDCIT 2019. LNCS, vol.
11319, pp. 279–294. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
05366-6 24

https://doi.org/10.1007/978-3-030-05366-6_16
https://doi.org/10.1007/978-3-030-05366-6_16
https://doi.org/10.1007/978-981-15-4775-1_19
https://doi.org/10.1007/s13369-020-04437-2
https://doi.org/10.1007/s13369-020-04437-2
https://doi.org/10.1007/978-3-030-05366-6_24
https://doi.org/10.1007/978-3-030-05366-6_24

A Distributed System for Optimal Scale
Feature Extraction and Semantic

Classification of Large-Scale Airborne
LiDAR Point Clouds

Satendra Singh and Jaya Sreevalsan-Nair(B)

Graphics-Visualization-Computing Lab, International Institute of Information
Technology, 26/C, Electronics City, Bangalore 560100, Karnataka, India

jnair@iiitb.ac.in

http://www.iiitb.ac.in/gvcl

Abstract. Airborne LiDAR (Light Detection and Ranging) or aerial
laser scanning (ALS) technology can capture large-scale point cloud data,
which represents the topography of large regions. The raw point clouds
need to be managed and processed at scale for exploration and contex-
tual understanding of the topographical data. One of the key processing
steps is feature extraction from pointwise local geometric descriptors
for object-based classification. The state of the art involves finding an
optimal scale for computing the descriptors, determined using descrip-
tors across multiple scales, which becomes computationally intensive in
the case of big data. Hence, we propose the use of a widely used big
data analytics framework integration of Apache Spark and Cassandra,
for extracting features at optimal scale, semantic classification using a
random forest classifier, and interactive visualization. The visualization
involves real-time updates to the selection of regions of interest, and dis-
play of feature vectors upon a change in the computation of descriptors.
We show the efficacy of our proposed application through our results in
the DALES aerial LiDAR point cloud.

Keywords: Big data framework · Apache Spark · Cassandra · LiDAR
point cloud · Multiscale feature extraction · Semantic classification

1 Introduction

Three-dimensional (3D) topographical data for large expanses of region is cap-
tured effectively using airborne Light Detection and Ranging (LiDAR) technol-
ogy. The data is procured in the format of point clouds, which are unstructured.
Contextual understanding of such data is necessary to make sense of the envi-
ronment and its constituents. Hence, semantic classification is a key processing

Supported by Early Career Research Award, Science and Engineering Research Board,
Government of India.

c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 280–288, 2021.
https://doi.org/10.1007/978-3-030-65621-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_18&domain=pdf
http://orcid.org/0000-0001-6333-4161
https://doi.org/10.1007/978-3-030-65621-8_18

A Distributed Optimal-Scale Analytics System for Large-Scale Point Clouds 281

Fig. 1. Our proposed 3-stage workflow for data management, optimal scale feature
extraction, and visual analytics involving interactive visual exploration and semantic
classification of large-scale airborne LiDAR point clouds using Apache Spark-Cassandra
integrated framework, with Datastax Spark-Cassandra Connector. The processed data
is managed using resilient distributed datasets (RDDs).

method applied on the point clouds. The state of the art in semantic classifi-
cation of LiDAR point clouds is mostly supervised learning including ensemble
learning techniques, such as random forest classifiers [12], and deep learning
techniques [11]. The feature vector for the learning task is obtained using local
geometric descriptors computed using local neighborhood, which is determined
at multiple scales [1,12]. The combination of feature extraction at optimal scale
of local neighborhood and a random forest classifier has been recommended as an
appropriate framework for semantic classification in terms of both accuracy and
computational efficiency [12]. Upon evaluating multiple scales, the optimal scale
is determined at the argmin of Shannon entropy computed from eigenvalues of
the covariance matrix representing the local neighborhood at the scale.

However, the existing solutions for this compute-intensive combination do
not directly scale for large-scale point clouds in data analytic applications, such
as, interactive feature visualization and semantic classification. As an example,
DALES (Dayton Annotated LiDAR Earth Scan) [11] is one of the largest publicly
available annotated point cloud dataset acquired using aerial laser scanning, with
∼0.5 billion 3D points at considerably high point resolution of 50 ppm (points
per meter). The dataset spans a region of 10 km2 in the city of Surrey in British
Columbia, stored in 40 tiles, with each tile containing 12 million points. That
said, existing big data tools and frameworks can be tapped into and re-purposed
for addressing this gap. In our previous work, we have proposed an integrated
framework of Apache Spark and Cassandra to perform semantic classification
using feature extraction from local geometric descriptors using multiscale aggre-
gation of saliency map [10]. Here, we extend the framework for optimal scale
feature extraction, and interactive visualization (Fig. 1). Our main contributions

282 S. Singh and J. Sreevalsan-Nair

are in extending framework for: (a) feature extraction from large-scale point
clouds at optimal scale, for semantic classification using conventional classifiers,
such as random forest classifier; and (b) interactive visualization.

Local neighbor search is one of the most compute-intensive steps in feature
extraction for point cloud processing. The computational requirements multi-
ply when performing feature extraction across multiple scales by determining
an optimal scale based on Shannon entropy [1]. Parallel processing has been
exploited for implementing semantic classification has been implemented on
large-scale point clouds. The classification of Semantic3D has been done using
random forest classifiers using OpenMP [3], and deep learning frameworks, such
as Torch [2]. k-nearest neighborhood has been used widely used type of local
neighborhood with deep learning methods to optimize the performance of these
architectures. For instance, Adam optimizer has been used in RandLA-Net [5],
which also performs down-sampling of the point cloud on the GPU. While paral-
lelized and optimized machine learning frameworks can improve computational
efficiency, the big data frameworks have been largely used for both dataset man-
agement and processing. Apache Spark has been used for extraction of tree
crowns from LiDAR point cloud, using spherical neighborhood [7].

Background: Apache Spark is a unified data analytics engine for large-scale
data using in-memory processing [13]. Integration of Spark with storage sys-
tems, such as key-value stores, e.g., Cassandra [6], provides persistent storage.
Both Spark and Cassandra are horizontally scalable, as more distributed sys-
tems, or nodes, can be added to the cluster. Spark uses Resilient Distributed
Data (RDD) distributed across multiple cluster nodes for loading data in logi-
cal partitions across many servers for parallel processing on the cluster nodes.
Apache Spark-Cassandra Connector from Datastax1 is used to query Cassandra
tables from RDDs, after which the query results are stored in Cassandra. The
connector leverages data locality to mitigate the network latency. Apache Spark
also integrates complex tools such as MLlib, for machine learning.

2 Methodology

We use an integrated Apache Spark-Cassandra framework for semantic clas-
sification of large-scale airborne LiDAR point clouds using optimal scale fea-
ture extraction, and interactive visualization. We design an appropriate 3-stage
workflow for utilizing this framework effectively. Here, the choice of Apache
Spark with Cassandra has been made for: (a) parallelizing and scaling with
data as well as nodes, and (b) optimized performance in semantic classification
using tools like Spark ML, and interactive visualization. The persistent storage
using Cassandra serves two purposes in our case: (a) storage of processed data
in compute-intensive interactive applications, e.g., visualization, (b) distributed
data management, as, in a multi-partitioned node, only a single partition can be
in-memory in Spark at any given time. A partition key is needed for partitioning

1 https://github.com/datastax/spark-cassandra-connector.

https://github.com/datastax/spark-cassandra-connector

A Distributed Optimal-Scale Analytics System for Large-Scale Point Clouds 283

data across nodes, and is computed based on the user-defined strategy on Spark.
A hash value of the partition key is needed for inserting and retrieving data and
it is computed using a function Partitioner in Apache Spark during the read-
write operations on the cluster. We exploit the feature in Cassandra to store the
data in distributed nodes based on the partition key and optimize the search
using clustering columns. In our work, we partition 3D data in the x-y plane,
assign the partitions a region-ID, use the region-ID as the partition key, and
assign the x, y, z variables as the clustering columns. When the Spark executor
and Cassandra nodes are deployed on the same machine, the integrated frame-
work processes the region data without incurring any network traffic, owing to
the use of Spark-Cassandra Connector.

2.1 Our Proposed Workflow

Our workflow implemented on the integrated framework comprises of the follow-
ing three stages (Fig. 1): the partition assignment of large-scale point cloud on
the framework [S1S1S1], spatial partitioning and feature extraction [S2S2S2], and visual
analytics [S3S3S3]. Within S3S3S3, the framework performs interactive visualization of
features in the point cloud, S3AS3AS3A, and semantic classification, S3BS3BS3B. Compared to
our previous work [10], here, we compute more features, modify S2S2S2 to determine
the optimal scale, and include S3AS3AS3A.

Stage S1S1S1: For initializing the framework, we load the 3D point cloud P into
the Apache Spark as an RDD. We normalize all points in P to be contained
inside a cube of size 2 units centered at (0,0,0), without altering its aspect
ratio. We then partition only along one axis, referred to as the principal axis,
to strategize the partition layout with fewer partition boundaries. The partition
boundaries pose an overhead of inter-node communication, as, for the points close
to the boundaries, their local neighborhoods are split across different partitions,
and hence, across different nodes. Thus, fewer partition boundaries are used to
reduce the inter-node communication for collating neighborhood information.
We select the axis with maximum range as principal axis p, either x or y axes,
here. Spatial partitions of P into N contiguous regions along the p axis, have
partition boundaries at pi, for i = 0, 1, 2, . . . , N , where N is determined using the
maximum scale value, lmax, range of data along p-axis in P (Δp = pmax −pmin),
and the number of available cluster nodes n. Thus, N = Δp

lmax.n , and the ith

partition boundary pi = pmin + i ∗ n ∗ lmax. A region-ID assigned to each point
x in P, serves as the partition key in Spark, K, where the p-coordinate of the
point satisfies the boundary condition, p(K−1) ≤ xp < p(K) for K = 1, 2, . . . , N .
For each partition, a buffer region is introduced by extending the right and
left boundaries to pi ± lmax, respectively. Buffer regions provide complete local
neighborhood information for boundary points, and features are extracted for
all points except those in buffer regions. We store the resultant RDD in the
Cassandra cluster using partition key, K.

Stage S2S2S2: We create partitions with the assigned K in S1S1S1 using our custom par-
titioner in the RDD. The custom partitioner enforces our computed partitioning,

284 S. Singh and J. Sreevalsan-Nair

thus, overriding the default random one on Spark. The partition key is crucial for
the spatial contiguity in P as it ensures that a partition is contained in a single
node without being split across nodes. A single node can still load multiple par-
titions, and process them in parallel. The feature extraction algorithm consists
of four sequential processes implemented for each point, namely, local neighbor-
hood determination, descriptor computation, its eigenvalue decomposition, and
feature vector computation. Point-wise processing makes the algorithm embar-
rassingly data-parallel. Here, we use the cubical neighborhood [8] over the con-
ventional spherical or k-nearest, to reduce computations. Cubical neighborhood
uses Chebyshev distance (infinity (L∞) or maximum norm) for neighbor-search,
instead of Euclidean distance (L2 norm). A spherical neighborhood of radius r
is approximated by the cubical neighborhood of l = 2r.

Definition 1. l-cubical neighborhood Nl of a point x in P, such that P = {p ∈
R

d}, is a set of points which satisfy the criterion based on Chebyshev distance,

Nl(x) = {y ∈ P | max
{0≤i<d}

(|xi − yi|)}.

The local geometric descriptor provides the shape of the local neighborhood,
e.g. the covariance tensor T3DCM [10], and its size is the scale. The eigenvalue
decomposition of the descriptor gives the likelihood of the corresponding point
being on a surface, line, or junction (point) type feature [10], given by the saliency
map [Cl, Cs, Cp]. For eigen values of the descriptor, such that, λ1 ≥ λ2 ≥ λ3:

Cl = (λ1 − λ2)/
∑

λ, Cs = 2(λ2 − λ3)/
∑

λ, Cp = 3(λ3)/
∑

λ; for
∑

λ = (λ1 + λ2 + λ3).

There are different 3D features computed using geometric and the shape
properties [12]. The eight different local 3D shape features using eigenvalues of
the descriptors are: omnivariance Oλ, eigen-sum

∑
λ, eigen-entropy Eλ, change

of curvature Cλ, linearity Lλ, planarity Pλ, scattering Sλ, and anisotropy Aλ.
Oλ and

∑
λ are tensor invariants of second-order tensor, namely, determinant

and trace; with Oλ = 3
√

λ1λ2λ3. Eigen-entropy gives the Shannon entropy in
descriptor shape, given by Eλ = −∑3

i=1 λi ln(λi). Other measures are: Cλ =
λ3/

∑
λ, Lλ = (λ1 − λ2)/λ1, Pλ = (λ2 − λ3)/λ1, Sλ=λ3/λ1, Aλ = (λ1 − λ3)/λ1.

Since Cp and Cλ are equivalent, we ignore Cλ. The semantics of the saliency map
[Cl, Cs, Cp] and the descriptor shape [Lλ, Pλ, Sλ] are the same; thus, we keep
[Cl, Cs, Cp]. Of four geometric features we use, three are height-based, namely,
the absolute height z of each point, and the range zΔ and standard deviation
zσ of the height distribution in the local neighborhood of the point. The fourth
feature is local point density D [12], given by D = (np + 1)/(43πr3), where np is
the number of points in the l-cubical neighborhood, and r = 0.5l. Thus, we get
a 11-feature vector at each point in P as:

vf = [z, zΔ, zσ,D,Cl, Cs, Cp, Oλ,
∑

λ, Eλ, Aλ].

In the case of annotated data, the class label for each point is stored along
with vf in an RDD in Spark and the Cassandra cluster, using K. The class label
is used for training data for the classifier, and validation.

A Distributed Optimal-Scale Analytics System for Large-Scale Point Clouds 285

Optimal Scale Determination: We compute the feature vector at different scales,
i.e., size of the cubical neighborhood, l, such that lmin ≤ l ≤ lmax, using ns

uniform scales. Thus, scale step-size is Δl = (lmax−lmin)
(ns−1) . The optimal scale is

the argmin of Eλ. We then use the feature vector v(i)
f at the optimal scale at

each point as the feature vector for the concerned point in the classification stage
(S3BS3BS3B). These point-wise feature vectors at different scales are stored in the same
RDD to determine the global minimum of Eλ [1], and thus, the optimal scale.

Stage S3AS3AS3A: Our visualization tool is inspired by Potree [9], a browser-based
visualization tool for large-scale point clouds using WebGL. It loads the data
from file, organizes data in the octree data structure, and stores on the local
disk on the web server. Potree provides interactive visualization of the point
clouds loaded from file, using Poisson disk sampling. Potree, however, does not
perform real-time analytics. To facilitate real-time analytics and visualization,
we load the Cassandra-resident data on the local disk as required, and render
the point clouds using OpenGL on a desktop application. We propose the sys-
tem architecture to perform not just interactive visualization but also perform
selective analytics on the fly using Apache Spark. The real-time performance
is facilitated by Cassandra storage, and the Spark-Cassandra Connector. As an
example usage of our visualization tool, we change scale on the fly and visualize
the features computed for the scale, using parallel processing.

Stage S3BS3BS3B: For training, the feature RDD of the training data is loaded into
Apache Spark ML. Then, any classifier on Spark ML, e.g. random forest classi-
fier (RFC) or gradient boost tree classifier (GBT), is initiated, and stored as a
classifier model in file. For testing the model, the feature RDD of the testing data
is loaded, and the classifier is run on vf to determine point-wise class labels. The
resultant RDD with the vf and the class label is stored in the local Cassandra
node, and efficiently retrieved using the Connector. We perform training/testing
using 80/20 split, and for labelled data, we validate the model seamlessly.

3 Experiments and Results

We have used Apache Spark 2.4 integrated with Cassandra 3.0., with three
executor nodes on Apache Spark, of which one executor node runs on master
node. All the four nodes use Intel i7 processor @2.80 GHz, 4 cores, 8 logical
processors, and 8 GB RAM. For our experiment, we have used the DALES
dataset [11], with 0.5 billion points across 8 semantic classes, stored in 40 tiles.
In our distributed system, there are five spatially contiguous partitions (Fig. 2),
of which one partition is loaded on the executor running on master node, and
two each in the other executor nodes. We have used feature vectors computed
at optimal scale determined cubical neighborhood sizes l = 1m, 2m, 3m, 4m,
5m, 6m, 7m, 8m, 9m, 10m in metric space. We have trained the RFC on Spark
ML using ∼34 million points in tiles 5110 54460, 5110 54475, and 5110 54495 of
DALES (Fig. 2), and tested on ∼11 million points in 5080 54470.

286 S. Singh and J. Sreevalsan-Nair

Fig. 2. Visualization of a region 5110 54495 of DALES dataset (∼12 million points) –
(a) Labeled data for training, and our customized partitioning strategy; (b) real-time
updates of semantic classification in our visualization system, (i)–(vi), from unlabeled
points (black) to class labels; (c) tiling of the point cloud, computation of saliency map
on the fly, and point rendering with color (RGB) corresponding to the saliency map
(Cl, Cs, Cp), with its interactive rotation using our visualization system.

In our case study, we observe that the buffer regions add data for 10 m, on
either side of each partition. This implies each partition has up to 8K points
(∼1.3 MB) overhead, with 50 ppm. This becomes a significant overhead when we
consider massive point cloud datasets, as the buffer region grow proportional to
the point cloud size. However, we observe that the local descriptor used for gen-
erating a predominant part of the vector is an additive tensor. Hence, when the
local neighborhood is truncated for the boundary points in a partition, the local
descriptor is a coarser approximation. The overall accuracy (OA) of semantic
classification is not expected to be affected drastically owing to the low percent-
age of boundary points. As an experiment, we estimate the trade-off. We have
determined the Intersection Over Union (IoU) values for mean, overall accuracy
(OA), and per class (Table 1). RFC gives an OA of 81.7%, with 78.1% for ground
class. We observe that the absence of buffer region gives us an OA of 79.8% with
76% for ground class. For each square tile of 0.5 km, the total buffer region with
5 partitions is 0.1 km. Thus, we observe that we can have a trade-off of 16%
of additional storage by 2% reduction in overall accuracy in semantic classifica-
tion. RFC and GBT classifier perform comparably. We demonstrate the use of
our visualization system in progressive rendering of the progression in semantic
classification as the results get updated; and the visualization of saliency map
in the point cloud, on the fly after sectioning (Fig. 2).

Overall, we have explored the use of an integrated Apache Spark-Cassandra
framework as a distributed system for optimal scale feature extraction from a
point cloud and its semantic classification, using customized region-based spa-
tial partitioning. Our proposed 3-stage workflow for interactive visualization and

A Distributed Optimal-Scale Analytics System for Large-Scale Point Clouds 287

Table 1. Semantic classification result for our case study of DALES point cloud, using
33,825,345 training points, using different classifiers in a distributed system

Buffer Region OA Mean Ground Vegetation Cars Trucks Power Fence Pole Building

(# test points) line

Random Forest Classifier (RFC)/Gradient Boost Tree Classifier

With 0.817 0.357 0.781 0.739 0.154 0.199 0.238 0.159 0.190 0.395

(10,773,000) 0.792 0.351 0.746 0.626 0.030 0.110 0.447 0.177 0.206 0.464

Without 0.798 0.327 0.760 0.703 0.155 0.186 0.153 0.134 0.182 0.346

(12,654,558) 0.773 0.341 0.719 0.657 0.041 0.133 0.487 0.217 0.149 0.321

semantic classification has been effectively implemented on the integrated frame-
work using our design choices. We found that not using buffer region saves the
additional 16% of storage needed, with only 2% reduction in overall accuracy.

References

1. Demantké, J., Mallet, C., David, N., Vallet, B.: Dimensionality based scale selection
in 3D LiDAR point clouds. In: The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, vol. 38(Part 5), W12 (2011)

2. Hackel, T., Wegner, J.D., Savinov, N., Ladicky, L., Schindler, K., Pollefeys, M.:
Large-scale supervised learning for 3D point cloud labeling: semantic3D. Net. Pho-
togram. Eng. Remote Sens. 84(5), 297–308 (2018)

3. Hackel, T., Wegner, J.D., Schindler, K.: Joint classification and contour extraction
of large 3D point clouds. ISPRS J. Photogram. Remote Sens. 130, 231–245 (2017)

4. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface recon-
struction from unorganized points. Siggraph Comp. Graph. 26(2), 71–78 (1992)

5. Hu, Q., et al.: RandLA-Net: efficient semantic segmentation of large-scale point
clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11108–11117 (2020)

6. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Syst. Rev. 44(2), 35–40 (2010)

7. Liu, K., Boehm, J.: Classification of big point cloud data using cloud computing.
ISPRS-Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 40, 553–557 (2015)

8. Olofsson, K., Holmgren, J.: Single tree stem profile detection using terrestrial laser
scanner data, flatness saliency features and curvature properties. Forests 7(9), 207
(2016)

9. Schütz, M.: Potree: Rendering Large Point Clouds in Web Browsers. Technische
Universität Wien, Wiedeń (2016)

10. Singh, S., Sreevalsan-Nair, J.: A distributed system for multiscale feature extrac-
tion and semantic classification of large-scale LiDAR point clouds. In: Proceedings
of the IEEE India Geoscience and Remote Sensing Symposium (INGARSS) (to
appear) (2020)

11. Varney, N., Asari, V.K., Graehling, Q.: DALES: a large-scale aerial LiDAR data
set for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pp. 186–187 (2020)

288 S. Singh and J. Sreevalsan-Nair

12. Weinmann, M., Jutzi, B., Hinz, S., Mallet, C.: Semantic point cloud interpretation
based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS
J. Photogram. Remote Sens. 105, 286–304 (2015)

13. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Com-
mun. ACM 59(11), 56–65 (2016)

Load Balancing Approach
for a MapReduce Job Running

on a Heterogeneous Hadoop Cluster

Kamalakant Laxman Bawankule(B) , Rupesh Kumar Dewang(B) ,
and Anil Kumar Singh(B)

Department of Computer Science and Engineering, Motilal Nehru National Institute
of Technology Allahabad, Prayagraj, India

{kamalakant,rupeshdewang,ak}@mnnit.ac.in
http://www.mnnit.ac.in/

Abstract. Hadoop MapReduce has become the de-facto standard
in today’s Big data world to process the more prominent data sets on
a distributed cluster of commodity hardware. Today computing nodes
in a commodity cluster do not have the same hardware configuration,
which leads to heterogeneity. Heterogeneity has become common in the
industry, research institutes, and academics. Our study shows that the
current rules for calculating the required number of Reduce tasks (Reduc-
ers) for a MapReduce job are fallacious, leading to significant computing
resources’ overutilization. It also degrades MapReduce job performance
running on a heterogeneous Hadoop cluster. However, there is no defi-
nite answer to the question: What is the optimal number of Reduce tasks
required for a MapReduce job to get Hadoop’s most accomplished per-
formance in a heterogeneous cluster? We have proposed a new rule that
decides the required number of reduce tasks for a MapReduce job run-
ning on a heterogeneous Hadoop cluster accurately. The proposed rule
balances the load among the heterogeneous nodes in the Reduce phase of
MapReduce. It also minimizes computing resources’ overutilization and
improves the MapReduce job execution time by an average of 18% and
28% for TeraSort and PageRank applications running on a heterogeneous
Hadoop cluster.

Keywords: Heterogeneous cluster · Hadoop · Load balancing ·
MapReduce · Reduce tasks

1 Introduction

An enormous amount of data is generated every day through various platforms
such as the world wide web, social media, news channels, and research institutes.
The traditional databases and computational models cannot store and compute
this vast amount of data [3]. Distributed storage and parallel processing is an
intelligent way to store and process Big data [15]. Google proposed the most
popular and significant computational model, MapReduce, capable of handling
c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 289–298, 2021.
https://doi.org/10.1007/978-3-030-65621-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_19&domain=pdf
http://orcid.org/0000-0003-2486-4949
http://orcid.org/0000-0002-9188-0140
http://orcid.org/0000-0002-5994-6007
https://doi.org/10.1007/978-3-030-65621-8_19

290 K. L. Bawankule et al.

massive data [5]. It processes large scale data in a parallel fashion on the cluster
of commodity machines.

Hadoop is the most popular open-source framework developed by Yahoo [16].
It is used for the implementation of Google’s MapReduce. Facebook, Amazon,
Yahoo, and many other industry giants use it to store and process the data in
terabytes. MapReduce is a simple model that a programmer can use without
any prior knowledge of distributed and parallel data processing. The model is
very efficient that can handle the failures automatically.

We have observed that the model’s performance degrades in a heterogeneous
Hadoop cluster where nodes are of different computing capabilities. The existing
rule to calculate the Reduce tasks (Reducers) is not efficient in calculating the
exact number of required Reducers for a MapReduce job running on a heteroge-
neous Hadoop cluster [13]. The model creates the load imbalance in the Reduce
phase of a MapReduce by either generating more Reducers or fewer Reducers
for a job running on a heterogeneous Hadoop cluster [14]. The existing rule
either use 0.95 or 1.75 multiplication factor to calculate the required number of
Reducers for a MapReduce job running on a heterogeneous Hadoop cluster.

We have proposed a new rule for calculating the required number of Reducers
for a MapReduce job by combining the existing rules. The proposed rule gen-
erates an accurate number of required Reducers for a MapReduce job running
on a heterogeneous Hadoop cluster. It balances the load among the slower and
faster nodes to complete the job execution simultaneously. In the experiment, we
have compared the proposed rule with the default Hadoop’s rule. We have used
HiBench benchmark suite [7] workloads such as a Micro benchmark TeraSort
workload and a Websearch benchmark PageRank workload to test the proposed
rule’s performance in a heterogeneous Hadoop cluster [7].

The remaining paper is organized as Sect. 2 presents the related work.
Section 3 presents a brief overview of background and motivation. Section 4
presents a detailed study of the proposed rule. Section 5 presents the perfor-
mance evaluation with little information on experimental results and graphs.
Section 6 concludes the paper with some future work.

2 Related Work

MapReduce model is capable of large scale data processing on the cluster of com-
modity hardware. The commodity hardware used to create a cluster can be of
the same or different hardware configuration [18]. A MapReduce job running on
a heterogeneous Hadoop cluster creates a load imbalance in the Reduce phase of
MapReduce [14]. Several efforts have been made to improve the performance of
a MapReduce in the Reduce phase. Wei Yan et al. [17] proposed a dynamic load
balancing algorithm for the heterogeneous Hadoop clusters that allocates the
data based on the nodes’ computation power. However, the authors do not bal-
ance a MapReduce program, but it balances the complete heterogeneous Hadoop
cluster.

Load Balancing Approach for a MapReduce Job Running 291

Wei Lu et al. [11] designed a new partitioner for YARN to balance the load
between the Reducers in a heterogeneous Hadoop cluster. The proposed parti-
tioner balances the workload among the Reducers efficiently and improves the
performance of MapReduce in a heterogeneous Hadoop cluster. Xiaofei Hou et al.
[6] finds the workload imbalance for a MapReduce application and proposed the
algorithm for balancing the workload among different racks on a Hadoop cluster
based on information gathered by investigating the log files of Hadoop. However,
the proposed method balances the workload of the Hadoop job. Rohan Gandhi
et al. [4] investigated the MapReduce program’s key design issues running on
a heterogeneous Hadoop cluster and proposed an algorithm to articulate the
load adjustment tradeoff between the estimation accuracy versus wasted work
to rebalance the load. Zhihong Liu et al. [10] reports the Hadoop schedulers load
imbalance issue in the Reduce phase. However, the proposed approach predicts
the workload of each Reducer at run time for the assignment of the Reduce tasks
on the particular machine. Still, it fails to balance the load of a heterogeneous
Hadoop cluster.

Rohit Paravastu et al. [14] proposed Flubber the new rule for deciding the
number of reducers before running the job on a homogenous Hadoop clus-
ter. However, authors have calculated the required reducers on a homogeneous
Hadoop cluster. Peter P et al. [13] proposed an algorithm that finds the opti-
mal number of task resources for any workload running on Hadoop MapReduce.
It also verifies that current thumb rules for calculating the required number of
reduce tasks. It finds the current rule is inaccurate and could significantly waste
energy and computing resources. However, the authors proposed the work for
a MapReduce program running on a homogeneous Hadoop cluster. We have
found that limited works have been proposed to estimate the required number
of Reducers for a MapReduce job running on a heterogeneous Hadoop cluster.

3 Background and Motivation

The section provides a background study related to the MapReduce computation
model and also presents the motivation behind the work.

3.1 MapReduce

In 2008, Google proposed MapReduce for data-intensive computation [3].
MapReduce data computation is divided into two phases Map and Reduce, as
shown in Fig. 1. The client submits the MapReduce job to the JobTracker, and
then it divides the job into multiple Map and Reduce tasks [2]. Finally, Job-
Tracker assigns these tasks to TaskTraker based on the available slots to com-
plete their execution. In the Map task, the Mapper function is applied to the
input data to generate a list of key-value pairs [1]. The Reduce task calls the
Reducer function to copy the intermediate data to the Reducer node that acts
as input to the reducer function [3]. It applies the Reducer function to the key-
value pairs having the same key [5]. Reducer function generates the final output
as a key-value pair by performing sort, shuffle, and reduce operation [3].

292 K. L. Bawankule et al.

Fig. 1. MapReduce computation model

A MapReduce program has only 1 Reducer by default. But by using
Job.setNumReduceTasks(int) function, the user can set the number of Reducers
for a MapReduce program. When the number of Reducers is more, it reduces
the cluster overhead and improves load balancing by lessening the cost of fail-
ures [12]. A MapReduce job needs to set the number of Reducers correctly. If
Reducers are not set correctly, it may lead to load imbalance and increase the
job execution time [6].

3.2 Motivation

The user sets the required number of reducers for the job using a function
Job.setNumReduceTasks(int) [13]. It uses JobConf for the Reducer implemen-
tations via the JobConfigurable.configure(JobConf) method. Each Reducer in
MapReduce has three phases: shuffle, sort, and reduce [14].

The existing thumb rule uses Eqs. 1 or 2 to decide the number of Reducers for
each MapReduce job. When the multiplication factor is 0.95, all the reduces can
launch immediately and start transferring the map outputs as the maps finish
its execution [14]. When the multiplication factor is 1.75, the faster nodes end
their first-round and begin a second wave of reduces to perform a better load
balancing job [13]. The rule works and balances the load perfectly in a homo-
geneous cluster where compute nodes in the cluster are of the same capabilities
[9]. When we increase the number of reducers, the framework reduces the over-
head and enhances load balancing by lowering the cost of failures. The user sets
mappers and Reducers values before MapReduce job execution.

Example: job.setNumReduceTasks(2); // 2 reducers
Example: Suppose a heterogeneous cluster consists of 12 nodes, and each node
has a maximum of 2 containers. Then using the thumb rule required number of
Reducers for a MapReduce job will be:

= 0.95 ∗ (< no.ofnodes > ∗ < no.ofthemaximumcontainerpernode >) (1)

Load Balancing Approach for a MapReduce Job Running 293

=0.95 * (12 * 2) = 22.8

= 1.75 ∗ (< no.ofnodes > ∗ < no.ofthemaximumcontainerpernode >) (2)

=1.75 * (12 * 2) = 42

Fig. 2. Heterogeneous Hadoop cluster

In the heterogeneous cluster, the thumb rule creates fewer required Reducers
when multiplied by the factor 0.95, and creates more required Reducers when mul-
tiplied by factor 1.75 [17]. Nodes with higher computing capabilities complete their
first round of reduces and launch a second stream of reduces. In contrast, nodes
with lower computing capabilities will near-complete their first round of reduces
and start a second stream of reduces when the first-round gets complete [8]. This
uneven estimation of Reducers for a MapReduce job running on a heterogeneous
Hadoop cluster motivates us to correctly estimate the specified number of Reduc-
ers for a MapReduce job in a heterogeneous Hadoop cluster [10].

4 Proposed Approach to Estimate Required Number
of Reducers for a MapReduce Job Running on a
Heterogeneous Hadoop Cluster

The existing rule does not estimate the correct number of required Reducers for
a MapReduce job running on a heterogeneous Hadoop cluster. It creates the load
imbalance by wasting the computing resources. To improve a MapReduce job’s
performance in a heterogeneous Hadoop cluster, we have modified the existing
rule to calculate the required number of Reducers. The existing rule uses either
0.95 or 1.75 multiplication factors to estimate the required number of Reducers.
The rule either overload the cluster or underutilizes the cluster resources, leading
to load imbalance in a heterogeneous Hadoop cluster.

We have proposed a new rule by modifying and combining the existing rules.
While changing the rule for a heterogeneous cluster, we have assumed that some
nodes are faster, and other nodes are slower. The proposed rule uses both Eqs. 3

294 K. L. Bawankule et al.

and 4 with the above assumption to modify the existing rule for calculating the
required number of Reducers. Finally, the values obtained from Eqs. 3 and 4
are added to estimate the required number of Reducers for a MapReduce job
running on a heterogeneous Hadoop cluster.

= 0.95 ∗ (< no.offasternodes > ∗ < no.ofthemaximumcontainerpernode >)
(3)

= 1.75 ∗ (< no.ofslowernodes > ∗ < no.ofthemaximumcontainerpernode >)
(4)

We will take the same above examples to understand the proposed rule. Sup-
pose a heterogeneous cluster consists of 12 nodes, and each node has a maximum
of 2 containers. Using the proposed rule, we assumed some nodes as faster and
other nodes as slower.

Example 1: We assume that out of 12 nodes, 4 nodes as faster nodes and 8
nodes as slower nodes. So the required number of Reducers for a MapReduce
job will be:
=0.95 * (4 * 2) = 7.6
=1.75 * (8 * 2) = 28
Number of required Reducers = 7.6 + 28 = 35.6

Example 2: We assume that out of 12 nodes, 6 nodes as faster nodes and 6
nodes as slower nodes. So the required number of Reducers for a MapReduce
job will be:
=0.95 * (6 * 2) = 11.472
=1.75 * (6 * 2) = 21
Number of required Reducers = 11.472 + 21 = 32.472

For a heterogeneous cluster, the proposed rule estimates an exact number
of required Reducers when multiplied by both the factor 0.95 and 1.75. The
proposed rule distribute more Reducers to the faster nodes and less number of
Reducers to slower nodes. The above Example 1 creates a total of 36 Reducers
in a heterogeneous cluster, out of which it will assign 28 Reducers to the faster
nodes and 8 Reducers to slower nodes. The above Example 2 creates 32 Reducers
in a heterogeneous cluster, out of which it will assign 21 Reducers to the faster
nodes and 11 Reducers to slower nodes.

Faster nodes complete their first round of reduces and launch a second wave
of reduces, whereas all the Reducers scheduled on slower nodes start simulta-
neously. The new rule helps to complete the execution of all the Reducers at
the same time. The proposed rule works well for a MapReduce job running on
a heterogeneous Hadoop cluster and balances the MapReduce’s job load in the
Reduce phase of MapReduce.

Load Balancing Approach for a MapReduce Job Running 295

5 Performance Evaluation

The section presents the information regarding the experimental environment,
the benchmark programs, and the experimental results.

5.1 Experimental Environment

In our experiment, we have tested the performance of the proposed rules by
simulating a heterogeneous environment. To simulate the heterogeneous envi-
ronment, we have used four physical machines. Each physical device has 20 GB
of memory, 4 CPUs, and 500 GB of disk. Table 1 provides the detailed specifi-
cation of all the seven VMs (virtual machines) used to simulate a heterogeneous
environment. Except for one physical node where the Master node is running,
other physical nodes run two slave nodes. For varying each node’s computing
capabilities, we used the Oracle VM VirtualBox 5.2 platform for simulation of a
heterogeneous environment. We have used Ubuntu 16.04 LTS operating system
VMs and installed a stable version of Hadoop-2.7.2.

Table 1. Virtual machines specification

SrNo Node CPU Memory Disk

1 Master 6 10 GB 40 GB

2 Slave1 2 6 GB 30 GB

3 Slave2 4 8 GB 40 GB

4 Slave3 3 4 GB 30 GB

5 Slave4 6 8 GB 40 GB

6 Slave5 3 3 GB 30 GB

7 Slave6 5 10 GB 20 GB

We have evaluated the proposed rule’s performance on a micro bench-
mark workload and a websearch benchmark such as TeraSort and PageRank
of HiBench benchmark suite [7]. These benchmark programs are realistic and
widely used to test the performance of Hadoop. We have tested the proposed
rule’s performance on data sizes 5 GB, 10 GB, and 20 GB. We have varied
data sizes to analyze the proposed rule’s performance in the Reduce phase of
MapReduce.

In this section, the proposed rule’s performance is measured on the MapRe-
duce jobs running on a heterogeneous Hadoop cluster by performing a series of
experiments. For each set of tests, the Reduce tasks execution time is recorded
by varying the data sizes. We evaluate the performance of the proposed rule by
using the execution time metric:

296 K. L. Bawankule et al.

Execution Time: Total time required from submission of Reduce task until
the end of its execution. It can be formalized as follows:

ExecutionT ime(ret) = EndTimeofReducetask(ert) − StartT imeofReducetask(srt)
(5)

To calculate the total time required to execute all the Reduce tasks, we have
added the execution time of each Reduce task completed on heterogeneous
Hadoop cluster.

Total Execution Time: Sum of total turnaround time required to execute all
the Reduce tasks of a MapReduce job in a heterogeneous cluster.

TotalExecutionT ime(tet) = ret(rt1) + ret(rt2) + ... + ret(rtn) (6)

5.2 Results

Fig. 3. Total execution time of a TeraSort application

We have performed a series of experiments by varying the number of Reduc-
ers and data sizes to measure the total execution time required to execute all
the Reduce tasks. In the first iteration, the total execution time of TeraSort and
PageRank is recorded for different data sizes. Figure 3 and 4 shows the total exe-
cution time required to execute all the Reduce tasks for TeraSort and PageRank
application on 5 GB, 10 GB, and 20 GB data.

In Fig. 3 and 4, we have compared the results of the existing rule with the
proposed rule using total execution time. For the current rule of 0.95, it creates
23 Reducers, while using the 1.75 factor, it creates 42 Reducers. Subsequently,
by using the proposed rule, it creates 29 Reducers. For the TeraSort applica-
tion, we improved the execution time by nearly 18%, and for the PageRank
application, we improved the execution time by nearly 28%. Based on the test
results, regardless of the data sizes, the proposed rule generates the exact num-
ber of Reducers. It balances the heterogeneous Hadoop cluster’s workload and
improves the MapReduce Reduce phase’s total execution time.

Load Balancing Approach for a MapReduce Job Running 297

Fig. 4. Total execution time of a PageRank application

6 Conclusion and Future Work

In a heterogeneous Hadoop cluster, load imbalance in the Reduce phase of MapRe-
duce delays the job execution. The current rule is not proficient in calculating the
required number of Reducers for a heterogeneous Hadoop cluster. We have pro-
posed a new rule by modifying the existing rule to balance a load of a MapRe-
duce program in a heterogeneous cluster. It calculates the exact number of required
Reducers for a MapReduce program running on a heterogeneous Hadoop cluster.
Experimental results prove that the proposed rule balances the load and improves
the execution time of all the Reducers of a MapReduce job running on a heteroge-
neous Hadoop cluster compared to the existing rule on all data sizes and minimizes
computing resources’ overutilization. Our future research will focus on scheduling
more Reduce tasks on faster processing nodes and fewer Reduce tasks on the slower
processing nodes in a heterogeneous cluster.

References

1. Ahmad, F., Chakradhar, S.T., Raghunathan, A., Vijaykumar, T.: Tarazu: optimiz-
ing mapreduce on heterogeneous clusters. In: ACM SIGARCH Computer Archi-
tecture News, vol. 40, pp. 61–74. ACM (2012)

2. Anjos, J.C., Carrera, I., Kolberg, W., Tibola, A.L., Arantes, L.B., Geyer, C.R.:
Mra++: scheduling and data placement on mapreduce for heterogeneous environ-
ments. Future Gen. Comput. Syst. 42, 22–35 (2015)

3. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

4. Gandhi, R., Xie, D., Hu, Y.C.: {PIKACHU}: how to rebalance load in optimiz-
ing mapreduce on heterogeneous clusters. In: 2013 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 13), pp. 61–66 (2013)

5. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles, pp. 29–43
(2003)

6. Hou, X., Thomas, J.P., Varadharajan, V.: Dynamic workload balancing for Hadoop
mapreduce. In: Proceedings of the 2014 IEEE Fourth International Conference on
Big Data and Cloud Computing, pp. 56–62 (2014)

298 K. L. Bawankule et al.

7. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The hibench benchmark suite:
characterization of the mapreduce-based data analysis. In: 2010 IEEE 26th Inter-
national Conference on Data Engineering Workshops (ICDEW 2010), pp. 41–51.
IEEE (2010)

8. Kwon, Y., Balazinska, M., Howe, B., Rolia, J.: Skewtune: mitigating skew in mapre-
duce applications. In: Proceedings of the 2012 ACM SIGMOD International Con-
ference on Management of Data, pp. 25–36. ACM (2012)

9. Lee, C.W., Hsieh, K.Y., Hsieh, S.Y., Hsiao, H.C.: A dynamic data placement strat-
egy for Hadoop in heterogeneous environments. Big Data Res. 1, 14–22 (2014)

10. Liu, Z., Liu, Y., Wang, B., Gong, Z.: A novel run-time load balancing method
for mapreduce. In: 2015 4th International Conference on Computer Science and
Network Technology (ICCSNT), vol. 1, pp. 150–154. IEEE (2015)

11. Lu, W., Chen, L., Yuan, H., Wang, L., Xing, W., Yang, Y.: Improving mapreduce
performance by using a new partitioner in yarn. In: The 23rd International Confer-
ence on Distributed Multimedia Systems, Visual Languages and Sentient Systems,
pp. 24–33 (2017)

12. Naik, N.S., Negi, A., BR, T.B., Anitha, R.: A data locality based scheduler
to enhance mapreduce performance in heterogeneous environments. Future Gen.
Comput. Syst. 90, 423–434 (2019)

13. Nghiem, P.P., Figueira, S.M.: Towards efficient resource provisioning in mapreduce.
J. Parallel Distrib. Comput. 95, 29–41 (2016)

14. Paravastu, R., Scarlat, R., Chandrasekaran, B.: Adaptive load balancing in mapre-
duce using flubber. Duke University Project Report (2012)

15. Shvachko, K., Kuang, H., Radia, S., Chansler, R., et al.: The Hadoop distributed
file system. MSST. 10, 1–10 (2010)

16. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc., Massachusetts
(2012)

17. Yan, W., Li, C., Du, S., Mao, X.: An optimization algorithm for heterogeneous
Hadoop clusters based on dynamic load balancing. In: 2016 17th International
Conference on Parallel and Distributed Computing, Applications and Technologies
(PDCAT), pp. 250–255. IEEE (2016)

18. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R.H., Stoica, I.: Improving mapre-
duce performance in heterogeneous environments. In: Osdi, vol. 8, p. 7 (2008)

Study the Significance of ML-ELM Using
Combined PageRank and Content-Based

Feature Selection

Rajendra Kumar Roul1(B) and Jajati Keshari Sahoo2

1 Department of Computer Science and Engineering,
Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India

raj.roul@thapar.edu
2 Department of Mathematics,

BITS-Pilani, K.K.Birla Goa Campus, Zuarinagar 403726, Goa, India
jksahoo@goa.bits-pilani.ac.in

Abstract. Scalable big data analysis frameworks are of paramount importance
in the modern web society, which is characterized by a huge number of resources,
including electronic text documents. Hence, choosing an adequate subset of fea-
tures that provide a complete representation of the document while discarding the
irrelevant one is of utmost importance. Aiming in this direction, this paper stud-
ies the suitability and importance of a deep learning classifier called Multilayer
ELM (ML-ELM) by proposing a combined PageRank and content-based feature
selection (CPRCFS) technique on all the terms present in a given corpus. Top
k% terms are selected to generate a reduced feature vector which is then used
to train different classifiers including ML-ELM. Experimental results show that
the proposed feature selection technique is better or comparable with the baseline
techniques and the performance of Multilayer ELM can outperform state-of-the-
arts machine and deep learning classifiers.

Keywords: Classification · Deep learning · Feature selection · Machine
learning · Multilayer ELM · PageRank

1 Introduction

Modern web society is characterized by a huge number of resources, including elec-
tronic text documents, and a large number of end users as active participants. In order to
personalize vast amounts of information to the needs of each individual user, systematic
ways to organize data and retrieve useful information in real time are necessary. Doc-
ument classification is a machine learning technique which can handle a huge volume
of data very efficiently by categorizing the unseen test data into their respective groups.
Different research on classification methods can be found in [1–4]. The problem with
classification technique is that visualizing the data becomes more difficult when the
dataset size increases, and it needs a large storage size. In order to handle such problem,
feature selection technique is essential which selects the important features from a large
corpus and removes the unnecessary features during the model construction [5–7]. A
good feature selection technique is not enough to make the classification process faster.
Along with the feature selection technique, choice of a good classifier also affects the
c© Springer Nature Switzerland AG 2021
D. Goswami and T. A. Hoang (Eds.): ICDCIT 2021, LNCS 12582, pp. 299–307, 2021.
https://doi.org/10.1007/978-3-030-65621-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65621-8_20&domain=pdf
http://orcid.org/0000-0001-6295-262X
http://orcid.org/0000-0001-6104-5171
https://doi.org/10.1007/978-3-030-65621-8_20

300 R. K. Roul and J. K. Sahoo

entire classification process. There are many traditional machine and deep learning clas-
sifiers exist, but they face many limitations such as need a high amount of training time,
require more parameters, unable to manage a huge volume of data etc. Multilayer ELM
[8], a deep learning network architecture is one of the most popular classifiers among
them because of its good characteristics such as being able to manage a huge volume of
data, no backpropagation, faster learning speed, maximum level of data abstraction etc.
Keeping all these things in mind, a novel feature selection technique named as CPRCFS
along with the Multilayer ELM classifier is introduced for text classification, which is
the main motivation of this paper. The novelty of this feature selection technique is that
it is very simple to understand, easy to implement, and comparable to the conventional
feature selection technique. Although much work has been done in text classification,
the realm of Multilayer ELM provides a relatively unexplored pool of opportunities.
The major contributions of the proposed approach are as follows:

i. A novel feature selection technique (CPRCFS) is introduced by combining the
PageRank mechanism with the content-based similarity measures to select the
important features from the corpus which improves the performance of the clas-
sification technique.

ii. The proposed CPRCFS technique is compared with the conventional feature selec-
tion technique to measure its efficacy.

iii. The performance of Multilayer ELM using the proposed CPRCFS technique is
compared with state-of-the-arts machine and deep learning classifiers to justify its
competency and effectiveness.

Rest of the paper is as follows: Sect. 2 highlights the methods and materials used for
the proposed approach. The methodology of the proposed work is discussed in Sect. 3.
Section 4 discusses the experimental work and finally, Sect. 5 concludes the work with
some future enhancements.

2 Materials Used

2.1 Multilayer ELM

Multilayer ELM (ML-ELM) is an artificial neural network having multiple hidden lay-
ers [8] and it is shown in Fig. 1. Equations 1, 2 and 3 are used for computing β (output
weight vector) in ELM Autoencoder where H represents the hidden layer, X is the input
layer, n and L are number of nodes in the input and hidden layer respectively.

i. n = L
β = H−1X (1)

ii. n < L

β = HT (
I

C
+ HHT)

−1

X (2)

iii. n > L

β =
(

I

C
+ HTH

)−1

HTX (3)

Here, I
C generalize the performance of ELM [9] and is known as regularization

parameter.

Study the Significance of ML-ELM Using Combined PageRank 301

Fig. 1. Architecture of Multilayer ELM

Multilayer ELM uses Eq. 4 to map the features to higher dimensional space and thereby
makes them linearly separable [9].

h(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

h1(x)
h2(x)

.

.

.
hL(x)

⎤
⎥⎥⎥⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎢⎢⎢⎣

g(w1, b1, x)
g(w2, b2, x)

.

.

.
g(wL, bL, x)

⎤
⎥⎥⎥⎥⎥⎥⎦

T

(4)

where, hi(x) = g(wi.x + bi). h(x) = [h1(x)...hi(x)...hL(x)]
T can directly use for

feature mapping [10,11].wi is the weight vector between the input nodes and the hidden
nodes and bi is the bias of the ith hidden node, and x is the input feature vector with g
as the activation function. ML-ELM takes the benefit of the ELM feature mapping [9]
extensively as shown in Eq. 5.

lim
L→+∞

||y(x) − yL(x)|| = lim
L→+∞

||y(x) −
L∑

i=1

βihi(x)|| = 0 (5)

Using Eq. 6, Multilayer ELM transfers the data between the hidden layers.

Hi = g((βi)THi-1) (6)

302 R. K. Roul and J. K. Sahoo

3 Proposed Methodology

The following steps are used to select the important features from a given corpus to
generate the training feature vector.

1. Document Pre-processing:
Consider a corpus P having a set of classes C = {c1, c2, · · · , cn}. At the beginning,
the documents of all the classes of P are merged into a large document set called
Dlarge = {d1, d2, · · · , db}. Then all documents of Dlarge of P are pre-processed
using lexical-analysis, stop-word elimination, removal of HTML tags, stemming1,
and then index terms are extracted using Natural Language Toolkit2.

2. Calculation of content-based similarities:
The content-based similarities between every pair of terms (tp and tq) of the corpus
P are calculated using the following four conventional techniques.
i. Dice Coefficient is calculated as follows:

dice(tp, tq) =
2(tp.tq)

||tp||2 + ||tq||2
ii. Extended Jaccard Coefficient is computed as follows:

e-jac(tp, tq) =
tp.tq

||tp||2 + ||tq||2 − (tp.tq)

iii. Cosine Similarity is a similarity measure and computed as follows:

cosine(tp, tq) =
tp.tq

||tp|| ∗ ||tq||
iv. Euclidean Distance is computed as follows:

eucl(tp, tq) =

√√√√ n∑
p=q=1

(ap − bq)2

where tp = {a1, a2, · · · , an} and tq = {b1, b2, · · · , bn} are the co-ordinates of
tp and tq respectively. The average similarity between every pair of terms tp and
tq of P are calculated using the Eq. 7.

Avgsim(tp, tq) =
dice(tp, tq) + e-jac(tp, tq) + cosine(tp, tq) + eucl(tp, tq)

4
(7)

3. Graph Creation:
An undirected graph is created where each term represents a node and the average
similarity value (Avgsim(tp, tq)) is the edge between two terms tp and tq of the
corpus P . Now all the term-pairs (i.e., edges) are arranged in the descending order
of their average similarity values. Of this, the top n% similarity values are selected.
If a term-pair (both inclusive) is not present in the top n% similarity values then
there will be no edge between that term-pair.

1 https://pythonprogramming.net/lemmatizing-nltk-tutorial/.
2 https://www.nltk.org/.

https://pythonprogramming.net/lemmatizing-nltk-tutorial/
https://www.nltk.org/

Study the Significance of ML-ELM Using Combined PageRank 303

4. PageRank calculation:
PageRank [12] is an algorithm used to determine the relevance or importance of a
web page and rank it in the search results. The rank value indicates the importance of
a particular page. We have modified the existing PageRank algorithm so that it can
be used on terms where each term is assumed to be a web page in the real PageRank
algorithm. Assume that term T has incoming edges from terms T1, T2, T3, · · · , Tn.
The PageRank of a term T is given by Eq. 8 where ‘d’ represents the damping factor
and its value lies between 0 and 1 and C(T) represents the number of edges that
leaving out from the term T . The PageRanks form a probability distribution over the
terms, hence the sum of the PageRank of all the terms PR(T) will be one.

PR(T) = (1 − d) + d
(PR(T1)

C(T1)
+ · · · + PR(Tn)

C(Tn)

)
(8)

If there are a lot of terms that link to the term T then there is a common belief that
the term T is an important term. The importance of the terms linking to T is also
taken into account, and using PageRank terminology, it can be said that terms T1, T2,
T3, · · · , Tn transfer their importance to T , albeit in a weighted manner. Thus, it is
possible to iteratively assign a rank to each term, based on the ranks of the terms that
point to it. In the proposed approach, the PageRank algorithm is run on the graph
created in the previous step, with damping factor d = 0.5.

5. Generating the training feature vector:
All the terms of the corpus P are sorted in descending order based on their PageRank
score and out of these, top k% terms are selected. The TF-IDF values of these terms
will act as the values of the features for the documents. Finally, all these top k%
terms are merged into a new list Lnew, which constitute the training feature vector
for the classifiers.

6. Performance evaluation
With the known class labels, the unknown documents are tested against each classi-
fier to predict their performances.

4 Experimental Framework

4.1 Dataset Used

To conduct the experiment, two benchmark datasets (20-Newsgroups3 and Classic44)
are used. The details about these two datasets are shown in the Table 1.

4.2 Experimental Setup Details

Parameter settings of different deep learning classifiers are depicted in the Table 2.
Approximate sizes of feature vectors used for ELM and Multilayer ELM is shown in
the Table 3, where ‘ILN’ represents input layer nodes and ‘HLN’ indicates hidden layer
nodes. The values of the parameters for these classifiers are decided based on the best
results that are obtained by experiment.

3 http://qwone.com/∼jason/20Newsgroups/.
4 http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets/.

http://qwone.com/~jason/20Newsgroups/
http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets/

304 R. K. Roul and J. K. Sahoo

Table 1. Details of the datasets

Dataset No. of training docs No. of testing docs No. of terms used for training

20-NG 11293 7528 32270

Classic4 4257 2838 15971

Table 2. Parameters used for deep learning classifiers

Classifiers No. of hidden layers Activation function Dropout Optimizers Epochs

ANN 3 Sigmoid 0.1 SGD 500

CNN 3 Relu 0.2 SGD 500

RNN 3 Tanh 0.2 SGD 400

ML-ELM 20-NG = 4, Classic4 = 3 Sigmoid 0.1 SGD 450

Table 3. Approximate size of the feature vectors of ELM and ML-ELM

Dataset Terms used for
training

ILN
(Top 1%)

HLN
(Top 1%)

ILN
(Top 5%)

HLN
(Top 5%)

ILN
(Top 10%)

HLN
(Top 10%)

20-NG 32270 320 350 1610 1630 3230 3250

Classic4 15971 160 195 800 870 1600 1650

Table 4. Top 1% (20-NG)

ML Classifier MI IG Chi-square BNS CPRCFS

SVC (linear) 0.89122 0.87161 0.87362 0.88947 0.87515

SVM (linear) 0.89234 0.88967 0.89151 0.89444 0.89428

Gradient Boosting 0.85583 0.83784 0.84084 0.86063 0.85224

Decision Trees 0.88227 0.86307 0.86992 0.87514 0.87782

NB(Multinomial) 0.86303 0.83860 0.83796 0.85794 0.88662

Adaboost 0.87322 0.88314 0.88381 0.88472 0.87335

Random Forest 0.85993 0.85847 0.85902 0.84243 0.85584

Extra Trees 0.89672 0.87606 0.88643 0.88235 0.88762

ELM 0.89242 0.87041 0.87542 0.89575 0.88420

MLELM 0.91703 0.91237 0.90511 0.91668 0.93802

Table 5. Top 5% (20-NG)

MI IG Chi-square BNS CPRCFS

0.93460 0.92817 0.92815 0.93015 0.93454

0.94377 0.93461 0.93729 0.93375 0.95509

0.89954 0.88561 0.89489 0.89591 0.87908

0.93516 0.88816 0.90252 0.92878 0.93314

0.93122 0.90103 0.91607 0.92511 0.92191

0.89075 0.88366 0.86261 0.87112 0.87184

0.85997 0.86254 0.85813 0.85763 0.85618

0.90426 0.88001 0.90223 0.89423 0.89717

0.93551 0.92673 0.93012 0.93682 0.92331

0.93873 0.94882 0.94664 0.95584 0.96746

Study the Significance of ML-ELM Using Combined PageRank 305

Table 6. Top 10% (20-NG)

ML Classifier MI IG Chi-square BNS CPRCFS

SVC (linear) 0.94742 0.93732 0.93648 0.94377 0.94921

SVM (linear) 0.94286 0.94559 0.93647 0.94654 0.94536

Gradient boosting 0.90147 0.89582 0.89861 0.90510 0.89582

Decision trees 0.93996 0.91012 0.93353 0.93992 0.91133

NB (Multinomial) 0.93822 0.92344 0.93272 0.93732 0.91937

Adaboost 0.88266 0.86261 0.86341 0.87253 0.87686

Random Forest 0.86372 0.84923 0.86605 0.85911 0.85641

Extra Forest 0.89293 0.89242 0.89472 0.89273 0.90572

ELM 0.93228 0.94051 0.93443 0.94672 0.92886

MLELM 0.95636 0.96882 0.95567 0.95814 0.96928

Table 7. Top 1% (Classic4)

MI IG Chi-square BNS CPRCFS

0.91491 0.88286 0.89942 0.91784 0.90147

0.92632 0.90663 0.92185 0.92799 0.91670

0.90966 0.83336 0.88875 0.88188 0.88345

0.83281 0.79881 0.87911 0.86601 0.83021

0.84197 0.76852 0.80705 0.85317 0.88163

0.89162 0.88094 0.88437 0.88986 0.88393

0.86046 0.84001 0.85312 0.86365 0.85874

0.91773 0.89212 0.91534 0.91801 0.88714

0.90286 0.88143 0.89944 0.92382 0.90182

0.94651 0.92222 0.91885 0.94563 0.95707

4.3 Comparison of the Performance ML-ELM Using CPRCFS with other
machine learning classifiers

The proposed CPRCFS is compared with the traditional feature selection techniques
such as mutual information (MI), Information Gain (IG), Chi-square, and Bi-normal
separation (BNS) (shown in Tables 4, 5, 6, 7, 8, 9) where a bold result indicates the
maximum F-measure achieved by a feature selection technique. From the results, it can
be concluded that Multilayer ELM can outperform the conventional machine learning
classifiers.

Table 8. Top 5% (Classic4)

ML Classifier MI IG Chi-square BNS CPRCFS

SVC (linear) 0.94596 0.92333 0.94105 0.94302 0.95655

SVM (linear) 0.96511 0.93916 0.94052 0.94794 0.96021

Gradient boosting 0.93412 0.92598 0.92952 0.93951 0.93278

Decision trees 0.92632 0.90763 0.91492 0.90218 0.90987

NB (Multinomial) 0.93814 0.92327 0.93095 0.94525 0.94667

Adaboost 0.87345 0.88184 0.84973 0.85482 0.84585

Random Forest 0.84925 0.84846 0.84887 0.85559 0.84849

Extra Trees 0.91893 0.91891 0.91656 0.91921 0.89554

ELM 0.94532 0.92522 0.94676 0.94172 0.94578

MLELM 0.96668 0.94888 0.96253 0.96548 0.96541

Table 9. Top 10% (Classic4)

MI IG Chi-square BNS CPRCFS

0.94547 0.92125 0.92338 0.96869 0.96551

0.94542 0.92652 0.92758 0.97287 0.96768

0.94021 0.93594 0.93951 0.94238 0.93991

0.92031 0.90688 0.91548 0.91054 0.89722

0.95097 0.94561 0.94778 0.95352 0.96918

0.85482 0.85482 0.85482 0.84587 0.84587

0.85072 0.84735 0.85205 0.84573 0.85087

0.91525 0.92688 0.91851 0.91436 0.91675

0.92333 0.94672 0.95634 0.96948 0.95633

0.97106 0.95877 0.96886 0.97944 0.98077

4.4 Comparison of the Performance ML-ELM Using CPRCFS with other deep
learning classifiers

The existing deep learning techniques have high computational cost, require massive
training data and training time. The F-measure and accuracy comparisons of Multi-
layer ELM along with other deep learning classifiers such as Recurrent Neural Network

306 R. K. Roul and J. K. Sahoo

(RNN), Convolution Neural Network (CNN), and Artificial Neural Network (ANN)
using CPRCFS technique on top 10% features are depicted in Figs. 2 and 3 respec-
tively. Results show that the performance of Multi-layer ELM outperforms existing
deep learning classifiers. Reason behind the good performance of ML-ELM is that,
using the universal approximation [13] and classification capabilities [14] of ELM, it
can able to map a huge volume of features from a low to high dimensional feature space
and can separate those features linearly in higher dimensional space with less cost.

Fig. 2. Deep learning (F-measure) Fig. 3. Deep learning (Accuracy)

5 Conclusion

A novel feature selection technique named asCPRCFS is introduced in this paper which
combined the ranking ability of PageRank with four similarity measures to select the
relevant features from a corpus of documents. By using the similarity measures, top
n% of term-pairs are selected. A graph is created based on this selected term-pair set,
and the PageRank algorithm is run on it which gives the most relevant features. Per-
formance of different machine and deep learning classifiers using this relevant features
are measured. Empirical results indicate that the proposed CPRCFS is comparable with
the conventional techniques and the performance of Multilayer ELM outperformed the
state-of-the-arts machine and deep learning classifiers. This work can be extended by
running the machine learning classifiers on the feature space of Multilayer ELM which
can further enhance the classification results.

References

1. Du, J., Vong, C.-M., Chen, C. P.: Novel efficient RNN and LSTM-like architectures: Recur-
rent and gated broad learning systems and their applications for text classification. IEEE
Trans. Cybern. (2020)

2. Sambasivan, R., Das, S.: Classification and regression using augmented trees. Int. J. Data
Sci. Anal. 7(4), 259–276 (2019)

3. Joseph, S.I.T., Sasikala, J., Juliet, D.S.: A novel vessel detection and classification algorithm
using a deep learning neural network model with morphological processing (m-dlnn). Soft
Comput. 23(8), 2693–2700 (2019)

4. Roul, R.K., Asthana, S.R., Kumar, G.: Study on suitability and importance of multilayer
extreme learning machine for classification of text data. Soft Comput. 21(15), 4239–4256
(2017)

Study the Significance of ML-ELM Using Combined PageRank 307

5. Sayed, G.I., Hassanien, A.E., Azar, A.T.: Feature selection via a novel chaotic crow search
algorithm. Neural Comput. Appl. 31(1), 171–188 (2019)

6. Tsai, C.-J.: New feature selection and voting scheme to improve classification accuracy. Soft
Comput. 23(15), 1–14 (2019)

7. Roul, R.K., Rai, P.: A new feature selection technique combined with elm feature space for
text classification. In: Proceedings of the 13th International Conference on Natural Language
Processing, pp. 285–292 (2016)

8. Kasun, L.L.C., Zhou, H., Huang, G.-B., Vong, C.M.: Representational learning with extreme
learning machine for big data. IEEE Intell. Syst. 28(6), 31–34 (2013)

9. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and
multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 513–529
(2012)

10. Huang, G.-B., Chen, L., Siew, C.K., et al.: Universal approximation using incremental con-
structive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4),
879–892 (2006)

11. Roul, R.K.: Suitability and importance of deep learning feature space in the domain of text
categorisation. Int. J. Comput. Intell. Stud. 8(1–2), 73–102 (2019)

12. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order
to the web. Tech. Rep, Stanford InfoLab (1999)

13. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: ”Extreme learning machine for regression and
multiclass classification. IEEE Trans. Syst. Man Part B Cybern.(Cybern.) 42(2), 513–529
(2011)

14. Huang, G.-B., Chen, Y.-Q., Babri, H.A.: Classification ability of single hidden layer feedfor-
ward neural networks. IEEE Trans. Neural Netw. 11(3), 799–801 (2000)

Author Index

Bal, Ananya 253
Basappa, Manjanna 114
Bawankule, Kamalakant Laxman 289
Bhattacharyya, Dhruba K. 203
Bhavani, S. Durga 223
Biswas, Girish 160
Borah, Parthajit 203

Das, Meenakshi 253
Das, Rajib K. 65
Das, Satyabrata 81, 98
Das, Subha Kanta 253
Dewang, Rupesh Kumar 289
Dinesha, K. V. 129

Gaikwad, Ajinkya 175
Gogolla, Martin 24

Jena, Madhusmita 253

Kalita, J. K. 203
Karmakar, Kamalesh 65
Kasyap, Harsh 145
Katiyar, Swati 223
Khatua, Sunirmal 65
Kshemkalyani, Ajay D. 3
Kulkarni, Parth Parag 145

Maity, Soumen 175
Mandal, Partha Sarathi 188
Mishra, Sudeepta 114
Misra, Anshuman 3

Mitra, Debarati 188
Mukherjee, Nandini 160

Naik, Nenavath Srinivas 238
Narwa, Bipin Sai 271
Nayak, Sanjib Kumar 81
Nguyen, Le-Minh 44

Panda, Sanjaya Kumar 81, 98
Panda, Subhrakanta 271
Pande, Sohan Kumar 81, 98
Pattanayak, Debasish 188

Rajesh Kumar, R. 129
Rajita, B. S. A. S. 271
Rajora, Maihul 238
Rani, T. Sobha 223
Rathod, Mansi 238
Roul, Rajendra Kumar 299

Saha, Dibakar 188
Sahoo, Jajati Keshari 299
Satapathy, Shashank Mouli 253
Shanbhag, Vivek 129
Singh, Anil Kumar 289
Singh, Satendra 280
Sreevalsan-Nair, Jaya 280

Tarafdar, Anurina 65
Tran, Xuan-Chien 44
Tripathi, Shuvam Kant 175
Tripathy, Somanath 145

	Preface
	Organization
	Contents
	Invited Talks
	The Bloom Clock for Causality Testing
	1 Introduction
	1.1 Background and Motivation
	1.2 Contributions

	2 System Model
	3 The Bloom Clock Protocol
	4 Properties of the Bloom Clock
	5 Experiments for the Complete Graph
	5.1 Number of Processes
	5.2 Internal Event Probability
	5.3 Number of Hash Functions
	5.4 Size of Bloom Clock
	5.5 Plots for prp and prfp

	6 Experiments for the Star Graph
	7 Observations and Discussion
	7.1 Summary of Results
	7.2 Causality Spread

	8 Conclusions
	References

	Model Development in the Tool USE: Explorative, Consolidating and Analytic Steps for UML and OCL Models
	1 Introduction
	2 Overview on Discussed Development Steps
	3 Explorative Steps
	4 Consolidating Steps
	5 Analytic Steps
	6 Related Work
	7 Conclusion and Future Work
	References

	ReLink: Open Information Extraction by Linking Phrases and Its Applications
	1 Introduction
	2 Related Work
	3 Verb Phrases and Noun Phrases
	3.1 Verb Groups
	3.2 Noun Phrases
	3.3 Disputed Noun Phrases

	4 ReLink
	4.1 Phrase Identification
	4.2 Phrase Linking
	4.3 Relation Extraction

	5 Experiments
	5.1 Results
	5.2 Evaluation on Other Datasets
	5.3 Application of ReLink for COVID-19 Data

	6 Conclusion and Future Work
	References

	Cloud Computing and Networks
	Energy-Efficient Scheduling of Deadline-Sensitive and Budget-Constrained Workflows in the Cloud
	1 Introduction
	2 Related Work
	3 System Models
	3.1 Cloud Data Center Model
	3.2 Workflow Model
	3.3 Energy Model
	3.4 Budget Constraint of the Workflow

	4 Workflow Scheduling Strategy
	4.1 Deadline, Priority and Budget of a Task
	4.2 Proposed Approach

	5 Performance Evaluation
	5.1 Performance Metrics
	5.2 Experimental Setup
	5.3 Experimental Results and Analysis

	6 Conclusion and Future Work
	References

	An Efficient Renewable Energy-Based Scheduling Algorithm for Cloud Computing
	1 Introduction
	2 Related Work
	3 Models and Problem Statement
	3.1 Cloud System Model
	3.2 Cost and Energy Model
	3.3 Problem Statement

	4 Proposed Algorithm
	4.1 Phase 1: Estimation
	4.2 Phase 2: Selection
	4.3 Phase 3: Assignment and Execution
	4.4 An Illustration

	5 Performance Metrics, Datasets and Simulation Results
	5.1 Performance Metrics
	5.2 Datasets
	5.3 Simulation Results

	6 Conclusion
	References

	A Revenue-Based Service Management Algorithm for Vehicular Cloud Computing
	1 Introduction
	2 Related Work
	3 Vehicular Cloud Model and Problem Statement
	3.1 Vehicular Cloud Model
	3.2 Problem Statement

	4 Proposed Algorithm
	5 Performance Metrics
	5.1 Total Revenue
	5.2 Total Download
	5.3 Total Number of Completed Requests

	6 Simulation Results
	7 Conclusion
	References

	Interference Reduction in Directional Wireless Networks
	1 Introduction
	2 Related Work
	3 Minimum Ply Covering Problem
	3.1 Preliminaries
	3.2 Problem Description
	3.3 Algorithm
	3.4 NP-Hardness of MPC Problem

	4 Channel Allocation in Directional Wireless Networks
	5 Conclusion
	References

	Distributed Algorithms, Concurrency and Parallelism
	Automated Deadlock Detection for Large Java Libraries
	1 Introduction
	2 Problem Statement
	3 Solution Details
	3.1 Solution Steps
	3.2 Implementation

	4 Results
	5 Conclusions
	References

	DNet: An Efficient Privacy-Preserving Distributed Learning Framework for Healthcare Systems
	1 Introduction
	2 Background and Related Work
	2.1 Federated Learning
	2.2 Related Work

	3 Traditional Frameworks
	4 Distributed Net
	4.1 Training Algorithm (DNet)
	4.2 Binary Tree Representation
	4.3 Theoretical Analysis

	5 Experiments
	5.1 Datasets
	5.2 Training

	6 Results and Discussion
	7 Conclusion and Future Work
	References

	Memory Optimized Dynamic Matrix Chain Multiplication Using Shared Memory in GPU
	1 Introduction
	1.1 Previous Works

	2 GPU and CUDA
	2.1 GPU Architecture
	2.2 CUDA
	2.3 Coalesced Memory Access
	2.4 Shared Memory and Memory Banks

	3 Matrix Chain Multiplication Problem
	3.1 Solving Technique in Dynamic Programming
	3.2 Accelerated Dynamic Programming in GPU

	4 Proposed Approach
	4.1 Combined m and s Table
	4.2 Block-Size Choosing Technique
	4.3 Using Shared Memory for d[]

	5 Performance Evaluation
	6 Conclusion
	References

	Graph Algorithms and Security
	Parameterized Complexity of Defensive and Offensive Alliances in Graphs
	1 Introduction
	2 FPT Algorithm Parameterized by Neighbourhood Diversity
	2.1 Defensive Alliance
	2.2 Offensive Alliance

	3 FPT Algorithm Parameterized by Domino Treewidth
	4 Graphs of Bounded Treewidth
	4.1 Defensive Alliance
	4.2 Offensive Alliance

	5 Conclusion
	References

	A Reconstructive Model for Identifying the Global Spread in a Pandemic
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Problem Formulation

	3 Find Suspected Nodes from ITi and ITj
	3.1 Infection Criteria
	3.2 Algorithm to Find Suspected Nodes
	3.3 Example

	4 Complexity Analysis
	5 Performance Evaluation
	6 Conclusion
	References

	Cost Effective Method for Ransomware Detection: An Ensemble Approach
	1 Introduction
	2 Background and Related Work
	2.1 Discussion

	3 Proposed Framework
	3.1 Data Collection
	3.2 Data Preprocessing
	3.3 Ensemble Feature Selection
	3.4 Classification of Ransomware Family and Its Variants

	4 Comparison with Existing Methods
	5 Results
	5.1 Computation of Weights for Classifiers Using NSGA-II
	5.2 Weighted Majority Based Combination Function
	5.3 Classification of Ransomware Variants
	5.4 Classification of Ransomware Family
	5.5 Metrics and Cross Validation

	6 Conclusion
	References

	Social Networks and Machine Learning
	Exploring Alzheimer's Disease Network Using Social Network Analysis
	1 Introduction
	1.1 Motivation
	1.2 Objectives

	2 Related Literature
	3 Data Set
	3.1 Initial Data Set
	3.2 Final Data Set
	3.3 Network Construction

	4 Experiments and Results
	4.1 Global Network Analysis
	4.2 Degree Distribution
	4.3 Eigenvector Centrality
	4.4 Maximal Clique Analysis
	4.5 Community Analysis
	4.6 Degree Differential Analysis

	5 List of Selected ROIs
	5.1 Posterior Cingulate Cortex (22, 57)
	5.2 Parahippocampal Gyrus (15, 50)
	5.3 Caudal Middle Frontal Gyrus (2, 37)

	6 Conclusion
	6.1 Conclusions from the Node Wise Analysis and Network Analysis Experiments
	6.2 Conclusions from Edge Distribution and Visualisation
	6.3 Limitations

	References

	Stroke Prediction Using Machine Learning in a Distributed Environment
	1 Introduction
	2 Related Work
	3 Proposed Solution
	3.1 Data Description
	3.2 System Architecture

	4 Results and Analysis
	5 Conclusion
	References

	Automated Diagnosis of Breast Cancer with RoI Detection Using YOLO and Heuristics
	1 Introduction
	2 Prior Work
	3 Proposed Framework
	3.1 Data Collection
	3.2 Image Augmentation for CNNs
	3.3 Annotation for YOLOv3
	3.4 RoI Detection with YOLO
	3.5 Heuristic RoI Patch Extraction
	3.6 Classification with CNNs

	4 Results
	5 Conclusion
	6 Discussion and Future Work
	References

	Short Papers
	An Efficient Approach for Event Prediction Using Collaborative Distance Score of Communities
	1 Introduction
	2 Background and Proposed Methodology
	2.1 Community Features
	2.2 RCCD Score

	3 Performance and Comparative Analysis of Results
	3.1 Performance Analysis
	3.2 Comparative Analysis with Existing Work

	4 Conclusion and Future Work
	References

	A Distributed System for Optimal Scale Feature Extraction and Semantic Classification of Large-Scale Airborne LiDAR Point Clouds
	1 Introduction
	2 Methodology
	2.1 Our Proposed Workflow

	3 Experiments and Results
	References

	Load Balancing Approach for a MapReduce Job Running on a Heterogeneous Hadoop Cluster
	1 Introduction
	2 Related Work
	3 Background and Motivation
	3.1 MapReduce
	3.2 Motivation

	4 Proposed Approach to Estimate Required Number of Reducers for a MapReduce Job Running on a Heterogeneous Hadoop Cluster
	5 Performance Evaluation
	5.1 Experimental Environment
	5.2 Results

	6 Conclusion and Future Work
	References

	Study the Significance of ML-ELM Using Combined PageRank and Content-Based Feature Selection
	1 Introduction
	2 Materials Used
	2.1 Multilayer ELM

	3 Proposed Methodology
	4 Experimental Framework
	4.1 Dataset Used
	4.2 Experimental Setup Details
	4.3 Comparison of the Performance ML-ELM Using CPRCFS with other machine learning classifiers
	4.4 Comparison of the Performance ML-ELM Using CPRCFS with other deep learning classifiers

	5 Conclusion
	References

	Author Index

