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Abstract. The research on color Visual Cryptographic Scheme (VCS)
is much more difficult than that of the black and white VCS. This is
essentially because of the fact that in color VCS, the rule for superim-
position of two colors is not that simple as in black and white VCS.
It was a long standing open issue whether linear algebraic technique in
constructing Black and White visual cryptographic schemes could also
be extended for color images. It was thought that such an extension was
impossible. However, we resolve this issue by providing color VCS in
same color model for the threshold access structures by extending linear
algebraic techniques from the binary field Z2 to finite ring Zc of integers
modulo c. We first give a construction method based on linear algebra
to share a color image for an (n, n)-threshold access structure. Then we
give constructions for (2, n)-threshold access structures and in general
(k, n)-threshold access structures. Existing methodology for construct-
ing color VCS in same color model assumes the existence of black and
white VCS, whereas our construction is a direct one. Moreover, we give
closed form formulas for pixel expansion which is combinatorially a diffi-
cult task. Lastly, we give experimental results and propose a method to
reduce pixel expansion.
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1 Introduction

In a visual cryptographic scheme (VCS), on a set of n participants, a dealer who
possesses a secret image encodes it into n shares and distributes these shares
among n participants. Physically, each of the participants obtain a transparency
on which his or her share is photocopied. Only a pre-specified collection of subsets
of participants can visually recover the secret image. However, no subset of
participants which are outside the above mentioned collection can recover the
secret image – in fact, a stronger security condition is achieved viz. such subsets
of participants obtain no information about the secret image. Eligible subsets
are called “qualified” sets and ineligible subsets are termed as “forbidden” sets.

Main motivation to study visual cryptographic scheme is its simple recovery
process. No participation of computing device is needed, the decoding process is
done by the human visual system. Visual secret sharing has found its applications
into several interesting areas - watermarking [15], application to QR-codes [11]
etc. to name a few.

1.1 Related Works

Naor and Shamir [26] proposed the first visual cryptographic scheme and the
concept has been further explored in [1,2,6,7,9,10] and extended to general
access structures. Some recent works gave efficient constructions for few impor-
tant and interesting access structures [5,16,17,20,28]. The work of Adhikari et al.
[2] introduced an elegant linear algebraic technique to construct basis matrices
for a black and white image - one only needs to solve systems of linear equations
over the binary field Z2. The power of the technique was researched and resulted
in a number of works - both in OR model [1,16,29,31] and XOR model [17,30]
for B/W visual cryptography.

Verheul-Tilborg [33] for the first time, conceptualized color visual cryptog-
raphy as an extension of the existing B/W visual cryptography model. They
provided the model of color visual cryptographic scheme and constructed a
color (n, n)-visual cryptographic scheme. Constructing color visual secret sharing
depends on the underlying color-superposition principle. In B/W visual cryptog-
raphy, color superposition principle is easy – two white pixels (when superposed)
results in white pixel but if at least one of the two is a black pixel, the result is a
black pixel. The situation gets complicated in case of color images – two different
colors (when superposed) may result in a completely different third color. There
are three major color models [14] conceptualized in the literature – same color
(SC) model, no darkening (ND) model and general model. In the SC model,
superposition of two different colored pixels is not allowed. However, there is an
exception for the annihilator/masking “•” color which is different from the set
of ingredient colors. In SC model, superposing two same colored pixels results in
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a pixel with same color while superposing a colored pixel with “•” results in “•”.
However in this model the fact of darkening of reconstructed pixel is ignored –
when two same colored pixels are superposed then in reality a darker version of
that color is obtained. The premise is rather simplistic – superposition of two i
colored pixels gives back one i colored pixel. The no-darkening model is similar
to the same color model but in this case the problem of darkening is considered
– when more than two same colored pixels are superimposed then the resulting
pixel is a darker version of the color and therefore, to obtain “non-darkened”
reconstructed pixel a colored pixel can only superpose with a white (transparent)
pixel. The general model of color-superposition puts no restrictions on superpo-
sition principle - the color superposition satisfies real world color superposition
principles.

Cimato et al. [13] considered no-darkening model and put forward construc-
tion of (k, n)-threshold color visual cryptographic scheme with the help of basis
matrices of a (k − 1, k − 1)-threshold B/W visual cryptographic scheme. The

resulting c-color VCS has a pixel expansion of c

(
n

k

)
2k−2 and achieves “maxi-

mal contrast”. The term maximal contrast loosely means that while recovering
a secret pixel of some color i, no other false colored pixel j is reconstructed
(see Definition 3). The authors [13] also provided c-color (2, n)-VCS with pixel
expansion c(n−1). Rijmen et al. [27] was the first to consider the general model
of color superposition along with some of the follow up works [3,24]. Generic
constructions of (2, n)-threshold color visual secret sharing schemes from B/W
cryptographic schemes can be obtained using the techniques from [3,24]. A num-
ber of works [10,12,33,35] exist in the same color model. The main trick is in the
encoding of color pixels – it is done in such a manner that during the implement-
ing “superposition”, same color model is satisfied. Verheul et al. [33] constructed
c color (n, n)-threshold scheme, (k, c−1)-threshold scheme and (k, c)-scheme with
the restriction that c is a prime power. For any value of c, Blundo et al. [10] gave
constructions of c color (2, n)-schemes and (n, n)-schemes. Koga et al. [24] and
Yang et al. [35] provided color visual cryptographic schemes for (k, n)-threshold
access structures. Color VCS realizing general access structures was proposed in
the work of Yang et al. [35]. Recently, Dutta et al. [19] gave a generic construction
of color VCS realizing general access structure and an efficient scheme to real-
ize (k, n)∗-access structure in the same-color model. Several other color visual
cryptographic schemes with extra features have been proposed [21,23,25,32].
Iwamoto [22] introduced a “weaker notion of security” and used techniques of
integer linear programming to obtain color VCS. For more literature one can
refer to [14].

1.2 Our Contribution

Constructing visual cryptographic schemes using linear algebraic technique has
long been proposed in the literature for B&W images [1,2]. It was a long stand-
ing open issue whether similar technique can be extended for color images. It
was thought that such an extension was impossible. We resolve this issue by
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providing color VCS for the threshold access structures by extending simple lin-
ear algebraic techniques from the binary field Z2 to finite ring Zc of integers
modulo c. In this work we consider the same-color model of color VCS. To the
best our knowledge, all the generic constructions (except [19]) proposed so far
to construct basis matrices for color VCS (in the same-color model) inherently
assume the constructions of basis matrices for B&W images. More concretely,
construction of basis matrices for color VCS used the basis matrices for B&W
images realizing the same access structure. Novelty of our construction is that
our methodology does not assume such existence of basis matrices for B&W
images. Using our simple linear algebra based technique, one can build color
VCS directly. This separates our work from [19] who assumed existence of a
class of “basis matrices” to achieve their schemes. Furthermore, we give closed
form formulas for pixel expansion which is combinatorially a difficult task. Lastly,
we give experimental results and propose a method to reduce pixel expansion.

2 Prerequisites

We describe some basic definitions, fix color-superposition model and state some
mathematical results on finite rings that are required for the paper.

2.1 The Color Model

We follow Verheul-Tilborg [33] model of color visual cryptography (CVCS). The
model can be perceived as the Same Color model (SC model) of color visual
cryptography. In this model, a colored image is an array of pixels each of which
may have one of the c different colors 0, 1, . . . , c − 1.

The color superposition principle is described in the following:
Each secret pixel is divided into m subpixels of color 0, 1, . . . , c − 1. If some
subpixels are placed one top of the other and held to light then a light of color
i filters through the stacked subpixels if and only if all the subpixels are color i.
Otherwise, no light i.e. black color filters through the stacking. The color “black”
is denoted by • and always is distinguishable from the c colors.

The “generalized OR”(GOR) denoted by ∨, of the elements 0, 1, . . . , c − 1 is
defined as follows: i ∨ i = i and i ∨ • = • for all i = 0, 1, . . . , c − 1 and i ∨ j = •
for all i �= j where i, j = 0, 1, . . . , c − 1.

For any n-dimensional vector V with entries from the set {0, 1, . . . , c − 1},
zi(V ) denotes the number of coordinates in V equal to i where i = 0, 1, . . . , c−1.
For example, if V = (0, 1, 0, 2, 2) with entries from the set {0, 1, 2}, then z0(V ) =
2, z1(V ) = 1 and z2(V ) = 2.

2.2 Color Visual Cryptographic Scheme

In a (k, n) threshold access structure subsets of size k or more are called “quali-
fied” set and rest are “forbidden” sets which are subsets of size k − 1 or less. We
now define unconditionally secure c color (k, n)-threshold visual cryptographic
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scheme and denote such a scheme by (k, n)c-CVCS where c denotes the number
of true colors. We require two conditions to be satisfied viz. the “contrast” con-
dition and the “security” condition. The first condition guarantees that secret
image is reconstructed by any set of k (or more) participants whereas the second
is to ensure that no subset of size less than k can get any information about the
image.

For defining (k, n)c-CVCS in concrete terms, we require c basis matrices
S0, S1, . . . , Sc−1 where Sb corresponds to the color b ∈ {0, 1, . . . , c − 1}. The
entries of these matrices belong to the set of colors {0, 1, . . . , c − 1}. To share a
secret pixel b ∈ {0, 1, . . . , c−1}, the dealer in the share generation phase, chooses
the matrix Sb and then applies a random column permutation on the matrix Sb.
Share of participant Pi the i-th row of the resulting permuted matrix. To share
a c-colored image, dealer repeatedly performs the above process (for every secret
pixel) till all the pixels are shared. The formal definition is as follows.

Definition 1. (adopted from [10,35]) A (k, n)c-CVCS with pixel expansion m
is realized using c many n×m matrices S0, S1, . . . , Sc−1 called basis matrices, if
there exist two sequences of non-negative numbers {hX} and,{lX} with lX < hX

such that the following two conditions hold:

1. (contrast condition) If X = {i1, i2, . . . , ik} ⊆ P i.e., if X is a qualified set,
then for any b ∈ {0, 1, . . . , c − 1} the component-wise “GOR” of the rows of
Sb indexed by X denoted by Sb

X , satisfies zb(Sb
X) ≥ hX ; whereas, for b′ �= b

it results in zb′(Sb
X) ≤ lX .

2. (security condition) If Y = {i1, i2, . . . , is} ⊂ P with s < k then the c many
s × mrestricted matrices S0[Y ], S1[Y ], . . . , Sc−1[Y ] obtained by restricting
S0, S1, . . ., Sc−1 respectively to rows indexed by i1, i2, . . . , is are identical
up to column permutations.

The above definition can be suitably modified for any arbitrary access struc-
ture on a set of participants. Although in this paper we do not deal with general
access structure, we discuss for sake of completeness. An access structure on a
set of parties P = {1, 2, . . . , n} can be described by the collection of all qualified
sets Q and forbidden sets F . Basis matrices realizing a general access structure
(Q,F) with c many colors are defined as follows.

Definition 2. (adapted from [35]) A (Q,F)c-CVCS with pixel expansion m is
realized using c many n × m matrices S0, S1, . . . , Sc−1 called basis matrices, if
there exist two non-negative numbers h, l with l < h such that the following two
conditions hold:

1. (contrast condition) If X ∈ Q i.e., if X is a qualified set, then for any b ∈
{0, 1, . . . , c − 1}the component-wise “GOR” of the rows of Sb indexed by X,
satisfies zb(Sb

X) ≥ h; whereas, for b′ �= b it results in zb′(Sb
X) ≤ l.

2. (security condition) If Y ∈ F then the c many s × m restricted matrices
S0[Y ], S1[Y ], . . . , Sc−1[Y ] obtained by restricting S0, S1, . . ., Sc−1 respec-
tively to rows indexed by the participants of Y , are identical up to column
permutations.
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The contrast of reconstructed image in a color VCS [10,33] is defined as
α = h−l

h+l . The loss in contrast is measured by the quantity h−l
m(h+l) . On the other

hand, [12] define the contrast to be the value h−l
m keeping parity with the well-

known definition of contrast given in [26]. A scheme is said to achieve maximal
contrast if l = 0 [10]. In other words, maximal contrast guarantees that while
reconstructing a secret pixel of color i ∈ {0, 1, . . . , c − 1} no pixel of color j(�= i)
is recovered. The formal definition is as follows.

Definition 3. (adopted from [10]) With same notations described in Definition
2, the contrast is defined as α = h−l

h+l for a color visual cryptographic scheme.
Furthermore, it is of maximal contrast if l = 0.

2.3 Some Mathematical Results

We state some mathematical definitions and results [4] that will be needed
through out this paper.

a. For any positive integer c, (Zc,+, .) forms a finite commutative ring with unity.
The addition “+′′ is addition modulo c and the multiplication “.′′ is multiplica-
tion modulo c. The elements of the set Zc are denoted by 0, 1, . . . , c − 1.

b. A non-zero element x ∈ Zc is called a zero-divisor if there exists a non-zero
element y ∈ Zc such that x.y = 0. A non-zero element x ∈ Zc is called a unit
if there exists a non-zero element y ∈ Zc such that x.y = 1. For example,
4 ∈ Z6 is a zero-divisor as 4.3 = 0 and 5 ∈ Z6 is a unit as 5.5 = 1.

c. Any non-zero element in Zc is either a unit or a zero-divisor.
d. An element x ∈ Zc is a unit if and only if gcd(x, c) = 1.
e. Every non-zero element x ∈ Zc is a unit if and only if c is a prime. So when

c is prime Zc is said to form a field i.e. a commutative ring with unity where
every non-zero element is unit.

f. Let Ax = b be a system of linear equations in n many unknowns x1, x2, . . . , xn

where the entries of the matrix A come from the ring Zc and let
α0 = [α1, α2, . . . , αn]t be a particular solution to the above system. If β =
[β1, β2, . . . , βn]t be any solution to the homogeneous system Ax = 0 then
α0 + β is a solution to Ax = b.

g. For any prime power pn there exists a field of size pn.

3 Main Results

We propose a linear algebraic construction for obtaining basis matrices
S0, . . . , Sc−1 for a (k, n)c-CVCS, where 2 ≤ k ≤ n. The methodology though
simple, requires several involved results from algebra to prove correctness and
security of such sharing scheme. First we give details of the underlying technique.
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3.1 Constructing Color VCS from Smaller Schemes

In this section we present a construction for color visual cryptographic schemes
using smaller schemes as building blocks. At this point we mention that we are
considering the same-color model of color superposition to avoid any confusion.
Let us consider a color image with c colors labeled by 0, 1, . . . , c − 1.

Let (Q′, F ′) and (Q′′, F ′′) be two access structures defined on two sets P1

and P2 respectively having cardinality n1 and n2 respectively, where the sym-
bols have their usual meanings. Suppose there exist a (Q′, F ′) color VCS with
pixel expansion m′ and a (Q′′, F ′′) color VCS with pixel expansion m′′. Also
suppose (R0, R1, . . . , Rc−1) denote the basis matrices for the first scheme and
(T 0, T 1, . . . , T c−1) denote the same for the second scheme. We now describe how
to construct a color-VCS for the access structure (Q,F ) = (Q′ ∪ Q′′, F ′ ∩ F ′′)
on the set of participants P = P1 ∪ P1 containig n elements. Let us write
P = {1, 2, . . . , n}.

From the given matrices we construct basis matrices (S0, S1,. . . , Sc−1) real-
izing (Q,F ) in Algorithm 1.

We now have the following theorem (a parallel version of it is proved for
B & W image in Theorem 4.4 of [6]).

Theorem 1. Let (Q′, F ′) and (Q′′, F ′′) be two access structures defined on
two sets P1 and P2 respectively having cardinality n1 and n2 respectively.
Suppose there exist a (Q′, F ′,m′) color VCS and a (Q′′, F ′′,m′′) color VCS
with basis matrices (R0, R1, . . . , Rc−1) and (T 0, T 1, . . . , T c−1) respectively. Then
Algorithm1 yields a (Q′ ∪ Q′′, F ′ ∩ F ′′,m′ + m′′) color VCS on the set of partic-
ipants P = P1 ∪ P2.
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The above theorem can be extended to multiple access structures.

Corollary 1. Let (Q,F ) be an access structure such that Q = Q1 ∪ . . . ∪ Qr

and F = F1 ∩ . . . ∩ Fr. If there exists (Qi, Fi,mi) color VCS for all i = 1, . . . , r
then using Algorithm1 repeatedly we get hold of a (Q,F,m) color VCS with
m = m1 + · · · + mr.

On the basis of Corollary 1 we build our linear algebraic scheme for construct-
ing basis matrices. We first give a high level idea of the entire methodology which
consists of three main steps.

1. First, we partition the collection Qmin of all minimal qualified sets into groups
G1, G2, . . . , Gt such that every group contains precisely two minimal quali-
fied sets (|Gi| = 2 for all i), any two groups are disjoint (Gi ∩ Gj = ∅ for
i �= j), union of the groups gives back the collection Qmin (i.e. ∪Gi = Qmin).
Moreover we want this grouping is done in such a way that two minimal qual-
ified sets belonging in the same group have maximum intersection. This step
corresponds to the decomposition of the given access structure into smaller
access structures as stated in Corollary 1.

2. We associate a variable xi to participant Pi for every i and formulate system
of two linear equations for each group Gj . Thus we will have exactly those
many systems of linear equations as the number of groups. For a system we
will write all possible n-tuples of solutions of the variables as columns to
construct a matrix. Here we emphasize that if a variable xt is absent in a
system we will set xt = •. In this scenario notice that every entry of the
t-th row of the above-mentioned matrix is •. We do this for every system
of linear equations. This step merges the procedure of constructing basis
matrices of smaller schemes (whose existence were assumed) in Corollary 1
and the procedure of “preparation of intermediate matrices” in Algorithm1.

3. In the third step, we concatenate these matrices to get the basis matrices.
This step corresponds to the procedure of “construction of basis matrices” of
Algorithm 1.

3.2 Construction of (n, n)c-CVCS

Let us assume for the time being that n and c are relatively prime i.e. gcd(n, c) =
1. Consider an (n, n)-threshold structure on the set of n many parties. There is
only one qualified set namely, the set of participants P itself. Therefore there is
only one group. Let us associate the variable xi to the i-th participant, where
i = 1, 2, . . . , n.

Consider the linear equation over the ring Zc

x1 + x2 + · · · + xn = a
}

where a ∈ Zc and + denotes the operation addition modulo c.
First we notice that we have a unique r ∈ Zc such that x1 = x2 = · · · = xn = r
satisfying the above equation. This follows from the fact that nr = a has a
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unique solution r = n−1a since (n, r) = 1 implies n has a multiplicative inverse.
It is easy to see that in the equation if we fix the values of any n − 1 many
variables then the value of the n-th one is automatically fixed. Thus there are
cn−1 many solutions to the equation. If we write all the solutions as columns to
form an n × cn−1 matrix then it has the following properties:

– exactly one column has all entries equal to r ∈ Zc,
– rest cn−1 − 1 columns contain at least two distinct entries from Zc.

Since the rows of this matrix are the shares of the n parties therefore super-
position of all of them will yield the color r. Moreover any submatrix of size
(n − i) × cn−1 contains all possible cn−i columns each occurring exactly ci−1

times and thus revealing no information about r. Varying a over Zc we get all
the basis matrices S0, S1, . . . , Sc−1 to realize an (n, n)c-CVCS.

Theorem 2. Suppose c and n are relatively prime. Then there exists an (n, n)c-
CVCS with pixel expansion cn−1 and h = 1, l = 0.

Note 1. We note that the construction gives a maximal contrast (see Definition 3)
color visual cryptographic scheme.

Example 1. Let us construct a (2, 2)5-CVCS on the set of parties P = {1, 2}.
The five colors are identified as the elements of Z5 = {0, 1, 2, 3, 4}. Only minimal
qualified set is {1, 2}. Following five matrices realize (2, 2)5-CVCS.

S0 =
[

0 1 2 3 4
0 4 3 2 1

]
, S1 =

[
0 1 2 3 4
2 1 0 4 3

]
, S2 =

[
0 1 2 3 4
4 3 2 1 0

]
, S3 =

[
0 1 2 3 4
1 0 4 3 2

]
,

S4 =
[

0 1 2 3 4
3 2 1 3 4

]
which are obtained by solving (over Z5) the equations x1+x2 =

0, x1 + x2 = 2, x1 + x2 = 4, x1 + x2 = 1, x1 + x2 = 3 respectively.

Remark 1. We emphasize that the fact gcd(c, n) = 1 is of immense importance.
In the proof we have used that n has a multiplicative inverse in Zc. When
gcd(c, n) �= 1 then our method fails. Suppose we want to construct a (2, 2)-
CVCS with 4 colors identified as the four elements {0, 1, 2, 3} of Z4. Solving

x1 + x2 = 0 we get
[

0 1 2 3
0 3 2 1

]
which does not satisfy the contrast condition of

Definition 1 because of [0, 0]t and [2, 2]t appearing once each. We will discuss a
method to fix the problem of non-coprime in Sect. 3.5.

3.3 Construction of (2, n)c-CVCS

Let us now consider the case of (2, n)-threshold access structure and we have
a secret image with c colors. The colors are identified as the elements of Zc =
{0, 1, . . . , c − 1}. We give a detailed analysis of the construction method and
proofs. This technique can essentially be generalized further to construct (k, n)c-
CVCS. We again make the following

Assumption: The numbers c and n are relatively prime, i.e. gcd(2, c) = 1.
We will show why this assumption is necessary for our construction.
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Let P = {1, 2, . . . , n} be the set of participants. Thus Qmin = {Q ⊂ P : |Q| = 2}
which implies |Qmin| =

(
n

2

)
= n(n−1)

2 . We will denote n(n−1)
2 by r. We arrange

the elements of Qmin in the lexicographic order, say B1, B2, . . . , Br. We will
collect these subsets to form groups {G}i, such that when r is even

– each group Gi contains exactly two sets Bu, Bw with |Bu ∩ Bw| = 1
– there are r

2 many groups

and when r is odd

– each group Gi for i = 1, 2, . . . , r−1
2 contains exactly two sets Bu, Bw with

|Bu ∩ Bw| = 1
– the last group G r+1

2
contains a single set Br.

Let us attach variable xi to participant i for i = 1, 2, . . . , n. Let fBj
= α

denote the linear equation Σk∈Bj
xk = α over Zc where α ∈ Zc.

For each group Gi = {Bu, Bw} consider the following systems of linear equations
over Zc:

fBu = 0
fBw = 0

}
–i(0) ,

fBu = 1
fBw = 1

}
–i(1) ,........,

fBu = c− 1
fBw = c− 1

}
–i(c-1).

When Gi is singleton {Br} then consider

fBr = 0} –i(0) , fBr = 1} –i(1) ,........., fBr = c− 1} –i(c-1).

We solve (for xi s) these systems and if some variable(s) is(are) absent then
we set the value of the variable to be •.

Let M0
1 ,M0

2 , . . . ,M0
� r
2 � be the matrices whose columns are respec-

tively the solutions of equations 1(0), 2(0), . . . , � r
2
(0). Construct S0 =

M0
1 ||M0

2 || . . . ||M0
� r
2 �, where || denotes concatenation of the matrices. In gen-

eral, we solve systems 1(α), 2(α), . . . , � r
2
(α) to get M

� c
2 �α

1 ,M
� c
2 �α

2 , . . . ,M
� c
2 �α

� r
2 �

and then concatenate them to obtain S� c
2 �α for every color α = 0, 1, . . . , c − 1.

We claim that these matrices S0, S1, . . . , Sc−1 are basis matrices realizing the
(2, n)c-CVCS. Proof of the claim is given in Theorem 3. Before that we give a
concrete example.

Example 2. Let P = {1, 2, 3} and we have three colors 0, 1, 2. Thus, Qmin =
{12, 13, 23}, where 12 means the set {1, 2} etc. We will sometimes denote a set in
this form for brevity, when there is no scope for confusion. We form two groups
G1 = {12, 13} and G2 = {23}. Consider the following systems of equations
over Z3:

x1 + x2 = 0
x1 + x3 = 0

}
–1(0) ,

x1 + x2 = 1
x1 + x3 = 1

}
-1(1) and

x1 + x2 = 2
x1 + x3 = 2

}
–1(2).

and
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x2 + x3 = 0} –2(0) , x2 + x3 = 1} –2(1) and x2 + x3 = 2} –2(2).

Solving 1(0) and 2(0) we get, S0 =

⎡
⎣012 • • •

021 012
021 021

⎤
⎦. Notice that the •s are present

due to the absence of x1 in Equation 2(0).

Solving 1(1) and 2(1) we get, S2 =

⎡
⎣012 • • •

102 012
102 102

⎤
⎦.

Lastly, solving 1(2) and 2(2) we get, S1 =

⎡
⎣012 • • •

210 012
210 210

⎤
⎦.

Theorem 3. Let the numbers 2 and c are relatively prime, where c denote
the number of colors. The matrices S0, S1, . . . , Sc−1 constructed above are basis
matrices realizing a (2, n)c-CVCS. Moreover, the construction has pixel expan-
sion �n(n−1)

4 
c.
Proof. First we prove the security condition in Definition 1. Let us take a for-
bidden set X = {i} consisting of one single participant {i}. If we are able
to prove that M0

k [i] and M j
k [i] are equal upto a column permutation for any

j = 0, 1, . . . , c − 1 and for any k = 1, 2, . . . , � r
2
 where r =

(
n

2

)
then it is not

hard to see the S0[i] and Sj [i] are equal upto a column permutation. From this
the proof will follow. We recall that the kth blocks are obtained by solving the
simultaneous linear equations corresponding to the kth group Gk = {B,C}, say.
Note that if i is not present in group Gk then M0

k [i] = [• • . . . •]1×c = M j
k [i] and

hence they are equal.
If i is present in Gk = {B,C} then i ∈ B − C or i ∈ C − B or belongs to

both.
Suppose i ∈ B − C, then there exists a party μ such that μ ∈ B ∩ C (our

algorithm ensures that there is always such a party) and another party β ∈ C−B.
Thus B = {i, μ} and C = {μ, β}.

Let the equations we solved to obtain M0
k and M j

k be respectively

xi + xμ = 0
xβ + xμ = 0

}
–k(0) and

xi + xμ = a
xβ + xμ = a

}
–k(a).

where 2j = a(mod c). A particular solution to the system k(a) is given by
xi = 0 = xβ and xμ = a and every solution to this system is obtained by adding
this particular solution to every solution of k(0). That is, there is a particular
solution which assigns 0 to the variable xi and that is all we need. Now it is
easy to see that M0

k [i] and M j
k [i] are equal upto a column permutation. The case

when i ∈ C − B is handled similarly.
Lastly, when i ∈ B ∩ C, it is easy to see that there exist parties α ∈ B and

γ ∈ C so that B = {i, α} and C = {i, γ}. Then, xα = a = xγ and xi = 0 is
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a particular solution to k(a). Again we can conclude that M0
k [i] and M j

k [i] are
equal upto a column permutation.

Therefore, in any case we see that M0
k [i] and M j

k [i] are equal upto a column
permutation for any j = 0, 1, . . . , c − 1 and for all k = 1, 2, . . . , � r

2
. This implies
that the matrices S0[i] and Sj [i] are equal upto a column permutation. The
proof now follows.

To prove the contrast condition let us first choose a minimal qualified set
B = {i1, i2}. Let j be any color from the set of colors {0, 1, . . . , c − 1}. Also let
the corresponding matrix Sj is obtained by solving the systems in which the
right hand side is equal to the constant a. Thus we know 2j = a(mod c). Now
since B is a minimal qualified set therefore it belongs to a group Gk (possibly)
together with another minimal qualified set. Thus the equation xi1 + xi2 = a
appears in the system k(a) and solving this system we obtain M j

k . Note that
xi1 = j = xi2 is a solution to this system.

Let us restrict our view to M j
k [B] which is the restriction of M j

k to the rows
indexed by B. We observe that the column vector [j j]t occurs exactly once
in this restricted matrix and no other [l l]t type column occurs in M j

k [B]. The
reason for this is the equation 2x = a has a unique solution in Zc as 2 being
relatively prime to c, has a unique multiplicative inverse in Zc. Moreover the
unique solution is j. Thus the G-OR of the rows i1, i2, when restricted to the
block M j

k gives one j and the rest are equal to •.
On the other hand, it is possible that i1 and i2 occur in another group say,

Gt = {{i1, μ}, {i2, μ}}. We obtain the block M j
t by solving the system

xi1 + xμ = a
xi1 + xμ = a

}
——–t(a) .

We notice that in the above system if we fix any value from {0, 1, . . . , c − 1} for
xμ then the values of xi1 and xi2 are equal. Thus, we have

M j
t [B] =

[
0 1 ... c − 1
0 1 ... c − 1

]
which shows that the G-OR of the rows i1, i2, when

restricted to the block M j
t gives every color α exactly once.

Lastly, if at least one of i1 and i2 is absent in any group say, Gs then the
absent variable assumes •. Thus, in the block M j

s at least one of i1 and i2-th row
has all its entries equal to •. Hence G-OR of i1 and i2-th rows when restricted
to the block M j

s gives • in all entries.
Combining the above three cases we can easily see that the G-OR of the two

rows of restricted matrix Sj [{i1, i2}] has at least one more j than any other color
l ∈ Zc − {j}. Thus the contrast condition is satisfied.

We notice that in any system of the linear equations if we fix the value of one
variable then the values of other variables are uniquely determined. This gives
the pixel expansion of the scheme to be �n(n−1)

4 
c.
Thus we have a (2, n)c-CVCS when gcd(2, c) = 1. ��

Remark 2. We note that in light of Remark 1 the assumption gcd(2, c) = 1 plays
a crucial role in the correctness of construction method. However the grouping
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technique does not play any role whatsoever in the construction of (2, n)c-CVCS.
Our pairing algorithm gives a closed form of pixel expansion and it is the mini-
mum pixel expansion one can get while using the linear algebraic technique. But
any type of pairing of the minimal qualified sets will admit a (2, n)c-CVCS, only
with higher pixel expansion.

3.4 Construction of (k, n)c-CVCS

Taking cue from Remark 2 we now construct a color visual secret sharing scheme
on (k, n)-threshold access structure. Again we assume that gcd(k, c) = 1. The
method of construction remains the same - we first pair the minimal qualified
sets to form groups, form and solve corresponding systems of linear equations
and collect the solutions to construct basis matrices. The proofs of correctness
and secrecy follow an essentially same line of argument that has been used in
Theorem 3.

We note that size of any minimal qualified set is k and therefore every system
of linear equations contains 2k many variables. If 2k ≤ n then there is a possi-
bility that these 2k variables occurring in a system can be all different. In order
to solve such a system of linear equations we need to fix the values of 2k − 2
variables which results in c2k−2 many solutions for that system.

Theorem 4. If gcd(k, c) = 1, 2 ≤ k ≤ n and m denotes the pixel expansion of

a (k, n)c-CVCS then m ≤ � l
2
c2k−2, where l =

(
n

k

)
.

If we can adopt a technique for grouping such that in every group the pair of
minimal qualified sets have k − 1 common participants then we have a (k, n)c-
CVCS with much better pixel expansion. Such a pairing technique is possible,
see [8]. We now have the following theorem.

Theorem 5. If gcd(k, c) = 1 and 2 ≤ k ≤ n then we have a (k, n)c-CVCS with

pixel expansion � l
2
ck−1, where l =

(
n

k

)
.

3.5 Modification of the Technique

We have noticed that the condition gcd(k, c) = 1 plays a crucial role in the
construction where k denotes the threshold value and c is the number of colors.
In fact, the methodology fails if c, k are not relatively prime (see Remark 1).
To overcome the difficulty when the numbers are not relatively prime, we can
introduce some dummy colors c, . . . , r such that r is the least positive integer
which is greater than c and also relatively prime with k. We can now work with
the ring Zr of colors where the last r − c colors are dummy. Basis matrices for
each of the first c colors can now be constructed using linear algebraic technique.
Then we get rid of the dummy colors by replacing them with •. It can be easily
checked that after this replacement the resulting matrices constitute the basis
matrices realizing the original (k, n)c-CVCS according to Definition 1.
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To gain clarity into the above discussion we describe construction of basis
matrices of a (3, 4)-CVCS with 3 colors {0, 1, 2}. As we have observed earlier,
number of colors and the threshold value are not relatively prime. We will intro-
duce one dummy color to make number of colors and threshold value relatively
prime. Thus, the new color set can be thought of as Z4 = {0, 1, 2, 3}. Following
the same (usual) notations, the system of equations over Z4

x1 + x2 + x3 = 0
x1 + x2 + x4 = 0

}
–1(0) ,

x1 + x2 + x3 = 1
x1 + x2 + x4 = 1

}
–1(1) & x1 + x2 + x3 = 2

x1 + x2 + x4 = 2

}
–1(2) .

and

x1 + x3 + x4 = 0
x2 + x3 + x4 = 0

}
–2(0) ,

x1 + x3 + x4 = 1
x2 + x3 + x4 = 1

}
–2(1) & x1 + x3 + x4 = 2

x2 + x3 + x4 = 2

}
–2(2) .

Solving the above systems over Z4 and using the concatenation technique (Sub-
sect. 3.1) we get

U0 =

⎡
⎢⎢⎣

0000 1111 2222 3333 0321 3210 2103 1032
0123 0123 0123 0123 0321 3210 2103 1032
0321 3210 2103 1032 0123 0123 0123 0123
0321 3210 2103 1032 0000 1111 2222 3333

⎤
⎥⎥⎦,

U1 =

⎡
⎢⎢⎣

3333 0000 1111 2222 0321 3210 2103 1032
0123 0123 0123 0123 0321 3210 2103 1032
0321 3210 2103 1032 0123 0123 0123 0123
0321 3210 2103 1032 3333 0000 1111 2222

⎤
⎥⎥⎦,

U2 =

⎡
⎢⎢⎣

2222 3333 1111 0000 0321 3210 2103 1032
0123 0123 0123 0123 0321 3210 2103 1032
0321 3210 2103 1032 0123 0123 0123 0123
0321 3210 2103 1032 2222 3333 1111 0000

⎤
⎥⎥⎦.

We observe that U0, U1, U2 are the basis matrices for the colors 0, 1, 2 respec-
tively when we consider (3, 4)4-CVCS with 4 colors. But in the original image the
fourth color 3 was not present. It is the dummy color that we have introduced.
Therefore we replace this dummy color by • to obtain the following three matri-
ces. It is now easy to check that the following three are basis matrices realizing
a (3, 4)3-CVCS.

S0 =

⎡
⎢⎢⎣

0000 1111 2222 • • •• 0 • 21 •210 210• 10 • 2
012• 012• 012• 012• 0 • 21 •210 210• 10 • 2
0 • 21 •210 210• 10 • 2 012• 012• 012• 012•
0 • 21 •210 210• 10 • 2 0000 1111 2222 • • ••

⎤
⎥⎥⎦,

S1 =

⎡
⎢⎢⎣

• • •• 0000 1111 2222 0 • 21 •210 210• 10 • 2
012• 012• 012• 012• 0 • 21 •210 210• 10 • 2
0 • 21 •210 210• 10 • 2 012• 012• 012• 012•
0 • 21 •210 210• 10 • 2 • • •• 0000 1111 2222

⎤
⎥⎥⎦,
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S2 =

⎡
⎢⎢⎣

2222 • • •• 1111 0000 0 • 21 •210 210• 10 • 2
012• 012• 012• 012• 0 • 21 •210 210• 10 • 2
0 • 21 •210 210• 10 • 2 012• 012• 012• 012•
0 • 21 •210 210• 10 • 2 2222 • • •• 1111 0000

⎤
⎥⎥⎦.

4 Discussions and Experimental Results

In this section we discuss some experimental results and consider the problem
of reducing share size.

In Fig. 1 we implement a (2, 2)-threshold visual cryptographic scheme for a
color image. The secret image is a picture with three colors and we use the
construction technique shown in Subsect. 3.2. We observe that since the scheme
is of maximal contrast, corresponding to one secret pixel three subpixels are
reconstructed - one true color pixel and two •. Presence of two •’s makes the
reconstructed image dark.

Fig. 1. (2, 2)-CVCS with 3 colors using Subsect. 3.2 (i) secret image, (ii)–(iii) shares of
P1, P2 respectively, (iv) GOR(share1, share2) (Color figure online)

In Fig. 2 we implement a (2, 3)-threshold visual cryptographic scheme using
the construction technique described in Example 2.

The main issue with deterministic GOR based color visual cryptographic
scheme is its pixel expansion which is the share size of the scheme. Same prob-
lem occurs in the deterministic OR based black and white visual cryptographic
scheme. To reduce share size, Yang [34] introduced a novel idea for B&W visual
cryptographic scheme. Instead of distributing rows of a basis matrix to the par-
ticipants as their shares, the dealer chooses randomly one column from a basis
matrix and distribute the corresponding entries to the parties. Although the pixel
expansion is reduced to 1, which implies the share size is equal to secret image
size, but the deterministic recovery of the secret pixel is hampered. An error
probability of correct reconstruction of secret pixel is automatically introduced.
For black and white image there are only two choices for every reconstructed
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Fig. 2. (2, 3)-CVCS with 3 colors using Subsect. 3.3 (i) secret image, (ii)-(iv) shares
of P1, P2, P3 respectively, (v) GOR(share1, share2), (vi) GOR(share2, share3), (vii)
GOR(share1, share2, share3)

pixel- either black or white and this can be directly translated to “either cor-
rect or incorrect”. The problem with color visual secret sharing is more tricky.
Although the meaning of “correct reconstruction” of a colored pixel remains the
same but “incorrect reconstruction” now perhaps includes more options.

Let us consider the basis matrix S0 of Example 2. The discussion for S1, S2 will
be similar. First let us focus on shares of P2, P3. If a column from S0 is randomly
selected and the entries are given as shares then incorrect reconstruction can hap-
pen in three different manner- reconstruction of • or 1 or 2. If a • is observed then
it is not possible to guess the actual color of the corresponding pixel but if 1 or
2 is reconstructed then there is problem of misinterpreting the true color of the
original pixel. It is easily seen that the probability of reconstructing color 1 is 1

6
and that of color 2 is also 1

6 . However, probability of reconstructing true color 0
is higher viz. 2

6 . On the other hand, if we consider the shares of P1, P2 it can be
easily seen that there is no possibility of misinterpretation of the recovered color
- either it is the pixel of color 0 or •. In other words, these two shares satisfy the
conditions of maximal contrast (see Definition 3).
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In Fig. 3 we implement a probabilistic color visual cryptographic scheme using
the basis matrices given in Example 2 and then choosing columns of Sc randomly
to share a pixel of color c. The recovered images from the shares of P2 and P3 are
brighter [item (vi) in Fig. 2 and Fig. 3]. This matches with our theory because
for the shares P2, P3 the recovery of • is less (probable). On the other hand,
share of P1 contributes more •s into the recovered images and thereby resulting
in more darker versions of recovered images [(v) & (vii) of Fig. 2 and Fig. 3].

Fig. 3. (2, 3)-PCVCS with 3 colors using Subsect. 3.3 (i) secret image, (ii)-(iv) shares
of P1, P2, P3 respectively, (v) GOR(share1, share2), (vi) GOR(share2, share3), (vii)
GOR(share1, share2, share3) (Color figure online)

4.1 Comparison

In Table 1 and Table 2 we compare our results (from Sect. 3) with the existing
works of Yang-Laih [35] and Verheul-Tilborg [33].
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Table 1. Comparison of pixel expansions among our proposed scheme, Yang et al. [35]
& Verheul-Tilborg [33] with three colors.

Schemes Pixel expansion

Our Yang-Laih[35] Verheul-Tilborg [33]

(2,2) 3 5 9

(2,3) 6 8 12

(2,4) 9 11 15

(3,3) 16 12 27

(3,4) 32 18 75

(4,4) 27 23 81

Table 2. Comparison of pixel expansions among our proposed scheme, Yang et al. [35]
& Verheul-Tilborg [33] with four colors.

Schemes Pixel expansion

Our Yang-Laih [35] Verheul-Tilborg [33]

(2,2) 5 7 12

(2,3) 10 11 12

(2,4) 15 15 15

(3,3) 16 13 48

(3,4) 32 24 75

(4,4) 125 31 142

5 Conclusion

We have given a linear algebraic method for constructing basis matrices realizing
color visual cryptographic scheme for threshold access structures. Using the same
technique to construct general access structures have some inherent difficulties
e.g. the number of colors and number of parties in every minimal qualified set
have to be relatively prime. Introducing dummy colors we may fix the problem
but that will incur in huge pixel expansion. Efficient solution to this question
can be a direction for further research.
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