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Chapter 7

Genetic Diversity of Odocoileus virginianus
veraecrucis (Goldman & Kellog 1940)

and Other’s Subspecies in Mexico:
Implications for Its Genetic Conservation

Ricardo Serna-Lagunes, Erick Jair Pastor-Medina, Ruth Guadalupe Castillo-
Rodriguez, Anabel Cruz-Romero, Juan Salazar-Ortiz, José Luis Del Rosario-
Arellano, Miguel Angel Garcia-Martinez, Norma Mora-Collado,

and Pablo Andrés-Meza

1 Introduction

1.1 Evolution of Odocoileus virginianus

Cervids appeared in Asia at geological period known as Oligocene about 38 million
years ago (MYA) and about 20 MYA colonized North America through the land
bridge that connected current Alaska with northeast Siberia (Clément et al. 2006).
Hassanin et al. (2012) determined that the Capreolinae family, which includes the
Odocoileus genus, originated 10 MYA. Cap et al. (2002) indicated that the
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Odocoileus genus diversified approximately 3 MYA, but a fossil registry relating to
the Odocoileus genus shows that it diverged in the Pleistocene, between approxi-
mately 2 MYA and 10,000 years ago (Kuznetsova et al. 2005; Groves and Grubb
2011). Pitra et al. (2004) estimated that O. virginianus appeared 6.87 MYA.

During the Pleistocene, the world climate cooled down and promoted the spread-
ing of the ancestral O. virginianus towards South America, where it gradually
became a member of specialized fauna with wide ecological plasticity (Merino and
Vieira 2010). In the last 10,000 years, O. virginianus was free of competition or
predators, and its population growth ratio kept increasing constantly (Halls 1981;
Meéndez 1984). Consequently, the species lineages colonized and established them-
selves in different ecosystems in the American Continent (Rees 1969), where each
population is characterized by a likeness of morphological features as a result of the
genotype-environment interaction (Kellogg 1956). This has allowed the recognition
of subspecies (Halls 1984) and generating knowledge of the genetic diversity con-
stitutes primordial information to understand its evolutionary history (Douzery and
Randi 1997) and conserve its genetic diversity through the management of its popu-
lations (Ambriz-Morales et al. 2016).

In the American Continent, there are currently 38 subspecies of O. virginianus,
from southern Canada in North America to Peru, Brazil, and Bolivia (Nowark
1991; Smith 1991). White-tailed deer (Odocoileus virginianus) is one of the 18
cervid species in Latin America (Weber and Gonzalez 2003; Gallina-Tessaro
2019), and it is the ungulate with the widest geographical distribution in Mexico
where 14 species are recognized (Mandujano et al. 2010). Nevertheless, it is not
easy to make a phenotypical distinction between most subspecies, as there is over-
lapping in their areas of natural distribution (Mandujano et al. 2010). In this sense,
studies on the genetic diversity of the O. virginianus subspecies are basic to iden-
tify the genetic diversity parameters that distinguish each subspecies (Table 7.1;
Logan-Lépez et al. 2007; Calder6én 2009; De la Rosa-Reyna et al. 2012; Ambriz-
Morales et al. 2016).

1.2 Genetic Diversity Studies in Subspecies of O. virginianus

Studies have been carried out in different countries analysing the D-loop region of
the O. virginianus mitochondrial DNA (,,DNA). Carr et al. (1986) used ,,DNA
restriction patterns to report hybridization of sympatric populations of O. virginia-
nus and O. hemionus in Texas, USA; later corroborated by Bradley et al. (2003).
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Table 7.1 Summary of genetic diversity indicators described in O. virginianus subspecies. Sample
size (n), number of identified haplotypes (H), haplotype diversity (/), nucleotide diversity (), and
the source of the report are shown. Nr indicates non reported values

Subspecies n |H & T Source
O. v. acapulcensis | 8 8 |1 0.12523 Ambriz-Morales et al.
(2016)
16 |16 | 1.0+0.0221 0.054 £0.028 | Serna-Lagunes (2016)
O. v. carminis 2 |Nr |Nr Nr Logan-Lopez et al. (2007)
O. v. couesi 20 |19 [0.99474 0.12371 Hernandez (2014)
26 |25 10.9969 £0.0117 0.176 £ 0.087 | Serna-Lagunes (2016)
0. v. gymnotis 16 |13 10.967 0.029 Moscarella et al. (2003)
O. v. goudi 4 4 1 0.005 Moscarella et al. (2003)
O. v. margaritae 6 |6 |1 0.016 Moscarella et al. (2003)
0. v. 18 |16 10.894 Nr Molina (2002)
miquihuanensis 4 |Nr |Nr Nr Logan-Lépez et al. (2007)
4 14 |1 0.019 Herndndez (2014)
O. v. mexicanus 7 17 |1 0.1102 Ambriz-Morales et al.
(2016)
8 |7 10.9643 £0.0772 1 0.2773 £ 0.1521 | Serna-Lagunes (2016)
43 128 10.96678 0.04117 Herndndez (2014)
0. v. nelsoni 14 112 10.9780 £ 0.0345 | 0.5551 + 0.2838 | Serna-Lagunes (2016)
O. v. oaxacensis 6 |4 108+0.1721 0.0021 + 0.0019 | Serna-Lagunes (2016)
O. v. sinaloae 3 3 |Nr 0.533 Caldero6n (2009)
42 132 1097 0.0804 Ambriz-Morales et al.
(2016)
20 |19 10.9947 £0.0178 | 0.3037 £ 0.1518 | Serna-Lagunes (2016)
O. v. texanus 37015 | 0.41 Nr Purdue et al. (2000)
29+ 130*10.978 Nr Molina (2002)
93 |13 |Nr Nr Logan-Lopez et al. (2007)
39 |17 |Nr 0.6 20.88 Calderdn (2009)
O. v. toltecus 4 4 11.0x0.1768 0.3863 +0.2536 | Serna-Lagunes (2016)
0. v. thomasi 11 |10 10.9818 £ 0.0463 | 0.5652 + 0.2960 | Serna-Lagunes (2016)
O. v. veraecrucis 381 Nr Molina (2002)
6 |Nr Nr Nr Logan-Lopez et al. (2007)
20 |15 | Nr 0.57a0.86 Caldero6n (2009)
16 |13 10.95+0.05 0.06 £ 0.01 In this study
O. v. yucatanensis 16 |14 |Nr 0.71 20.86 Calderén (2009)

“There is a greater number of haplotypes than samples, due to the molecular technique used in the
study, where each allele represented a haplotype, therefore, in one sample there could be one or

more haplotypes
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Ellsworth et al. (1994) investigated the biogeographic history of O. virginianus
populations from the southeaster USA and found that the differentiation between
the populations is due to the biogeographic isolation between the populations, while
other studies infer that such differentiation derives from ecological and demo-
graphic effects (Darrell et al. 1994). A study evaluating the phylogeography of three
subspecies of O. virginianus (O. v. margaritae, O. v. goudotii, and O. v. gymnotis)
shows that O. v. gymnotis is polyphyletic, suggesting that each subspecies is an
Evolutionarily Significant Unit (ESU) and therefore are subspecies subject to incor-
poration into a conservation program due to their genetic rarity (Moscarella
et al. 2003).

The bibliographic analysis carried out by Mandujano (2004) reports 501 studies
up to 2001, carried out on Cervid’s distributed in Mexico, which deal with morphol-
ogy, population density, eating habits and diet composition, incidence of diseases,
and reproductive parameters. This analysis sheds light on the lack of studies on the
topics of genetic diversity of O. virginianus and even more so, on the scarce knowl-
edge of the genetic diversity relationships of distributed subspecies in Mexico.
However, genetic diversity studies of O. virginianus have been conducted in the past
two decades and address different subspecies in different geographic regions of
Mexico (Castillo-Rodriguez et al. 2020).

In Mexico, studies have already been carried out on subspecies of O. virginianus
based on the analysis of the D-loop region of the ,,DNA. The pioneering work was
carried out by Molina (2002), who studied the subspecies O. v. miquihuanensis,
O. v. texanus, and O. v. veraecrucis and reported 54 different haplotypes, suggesting
great genetic diversity for each subspecies studied. A recent work (Calderén 2009),
studied the subspecies O. v. carminis, O. v. sinaloae, O. v. texanus, O. v. veraecrucis,
and O. v. yucatanensis. It does not report haplotypic diversity by subspecies, which
is necessary if a genetic improvement program is implemented.

Logan-Lopez et al. (2007) developed the first study to analyse the genetic varia-
tion of four subspecies: O. v. texanus, O. v. carminis, O. v. veraecrucis, and O. v.
miquihuanensis in the states of Nuevo Le6n, Coahuila and Tamaulipas, Mexico, in
order to detect genetic introgression between subspecies resulting from transloca-
tion. In 105 samples of these deer they found shared haplotypes between subspe-
cies, derived from hybridization between subspecies O. v. texanus, O. v. veraecrucis,
and O. v. miquihuanensis, particularly in a habitat convergence zone. This induced
changes in the genetic pool and affected the adaptation and speciation processes of
each subspecies (Galindo-Leal and Weber 1994).

Ambriz (2010) analysed the genetic structure and variability of three subspecies:
0. v. sinaloae, O. v. mexicanus, and O. v. acapulcencis distributed in four
biogeographical regions (delimited by mountain ranges, vegetation and climates) of
the Michoacan state, Mexico. The results show a differential genetic structure
between subspecies due to geographic barriers and the environment that each sub-
species inhabits. Subsequently, Ambriz (2012) sequenced the mitochondrial genome
of four subspecies: O. v. texanus, O. v. veraecrucis, O. v. sinaloe, and O. v. yucata-
nensis, identifying phylogenetic separation between the subspecies of the southeast,
north, centre, and south of the country (Ambriz-Morales et al. 2016). Hernandez
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(2014) analyzed the subspecies O. v. mexicanus, O. v. couesi, and O. v. miquihua-
nensis determining that these last two form a single phylogenetic clade, which is
associated with the geographical proximity of these two subspecies.

The phylogenetic relationship tree showed a greater number of interspecific vari-
ations between O. v. sinaloe and O. v. yucatanensis, while the most related subspe-
cies O. v. texanus, O. v. veraecrucis, and O. v. yucatanensis were grouped into a
clade. Another study evidenced that the O. v. yucatanensis, O. v. texanus, O. v. car-
minis, O. v. veraecrucis, and O. v. sinaloae subspecies show a genetic-geographical
association pattern (De la Rosa-Reyna et al. 2012).

For his part, Serna-Lagunes (2016) characterized the genetic diversity and struc-
ture, the genealogical and phylogenetic relationships of eight subspecies of O. vir-
ginianus distributed in Western Mexico: O. v. acapulquensis, O. v. couesi, O. V.
mexicanus, O. v. nelsoni, O. v. sinaloae, O. v. oaxaquensis, O. v. thomasi, and O. v.
toltecus. Gene genealogy showed that O. v. acapulcensis and O. v. couesi present
ancestral haplotypes that originated haplotypes of O. v. sinaloae. No isolation pat-
tern was detected by distance, this due to the limited geographic-gene flow between
subspecies, so each subspecies must be considered an ESU and a Conservation
Operational Unit (OCU).

This geographical-genetic diversity association of O. virginianus subspecies, it’s
a hypothesis of a possible indicator of a genetic structure associated with the geo-
graphical region where each O. virginianus subspecies is distributed (Moscarella
et al. 2003). Hence the importance of their conservation since they are genetic res-
ervoirs (Pisanty et al. 2016) that, after to their genetic characterization, could be
used in gene restoration programs in populations (wild and/or captivity) with genetic
erosion processes (Moscarella et al. 2003; Serna-Lagunes 2016).

1.3 The Management of O. virginianus in Mexico

The management of O. virginianus is carried out by Units for the Conservation,
Management and Sustainable Use of Wildlife (UMAs) which regulates populations
through habitat management (INE 2000). These UMAs aim to ensure that the
annual harvest rate of deer is less than the annual population growth rate. However,
there is no data to support the design of genetic conservation programs for the sub-
species of O. virginianus in western Mexico (Castillo-Rodriguez et al. 2020). Such
programs should include, for example, artificially restocking populations that have
a genetic diversity deficit with genetically different individuals in order to improve
the stability in the genetic structure.

Currently, UMAs operate as breeding foot production systems, gene-banks,
examples of conservation and reproduction alternatives, environmental education
and training (Garcia-Marmolejo et al. 2008). This has led to research to generate
optimal management strategies for ungulates under the UMA scheme (Escalante
and Martinez-Meyer 2013). In the case of O. virginianus, there is already a White
Tail Deer Management Plan for temperate and tropical zones, which proposes gen-
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eral management actions in-sifu and ex-situ and population studies are required to
extract individuals (SEMARNAT 2014). Population report to SEMARNAT who
rules the harvest rate of specimens in the UMA at established times (SEMARNAP
1997). To achieve the objectives of this system of production of wild fauna and
flora, it is necessary to adequately manage the genetic component of populations in
the long term of populations to improve productivity parameters (Castillo-Rodriguez
et al. 2020). However, the management plans authorized for the white-tailed deer
UMA s do not have genetic diversity conservation programs or genetic improvement
plans that help to obtain specimens with phenotypic characteristics demanded by
the hunting sector. To achieve this, it is important to characterize the genetic diver-
sity of the populations and subspecies of O. virginianus, which will eventually
allow making decisions for genetic management such as: the design of genetic
improvement programs and the application of concepts of genetic conservation
biology for the rescue of populations and/or subspecies identified with low genetic
diversity.

Particularly, the O. v. veraecrucis subspecies is subject to different anthropic
pressures, like cynegetic use (Weber 1993) and selective harvesting of specimens
with cynegetic interesting features (Logan-Lépez et al. 2006; Cienfuegos-Rivas
et al. 2011), although it has not been included in the list of species at risk of the
Mexican legislation and globally (IUCN red list), but in Mexico, Central America
and South America most of the populations are declining, and most of the subspe-
cies status are unknown (Gallina and Lopez-Arevalo 2016). Therefore, generating
information on reproductive biology, its genetic diversity, and the status of its popu-
lations will help guide the level of risk found. This subspecies shows seasonal repro-
duction (Ahuja-Aguirre et al. 2017) and has a lower population density (4.2 + 2.8
deer km?) than other subspecies (Del Angel and Mandujano 2017), while its habitat
is constantly being fragmented (Gallina-Tessaro et al. 2007; Gallina et al. 2010;
Delfin-Alfonso et al. 2009).

The objectives of this study are (a) to review of studies of the genetic diversity of
O. virginianus subspecies, (b) to describe the genetic diversity, genetic structure,
and phylogenetic relationships of the D-loop region of the ,,DNA of O. virginianus
subspecies; information that could be incorporated into conservation programs to
restore genetic processes in wild populations (Xiang-Dong et al. 2005). To achieve
this last objective we described the phylogenetic relationships and compare the pat-
terns of genetic diversity of the D-loop region between the subspecies of O. virgin-
ianus reported with distribution in Mexico, since the sequences of the D-loop region
are often capable of providing information to study the genetic conservation status
of a subspecies and determine the genetic limits between infraspecific taxa (Avise
2006, 2009) and this information can contribute to the restoration of populations, in
decision-making in genetic improvement programs and consequently implement
more effective genetic conservation strategies (Arif and Khan 2009). This study is
an incentive for technicians and managers of subspecies of O. virginianus to geneti-
cally characterize their populations and for this information to be incorporated into
improvement programs that guarantee the conservation of the genetic diversity of
subspecies under the UMA scheme.
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2 Material and Methods

2.1 Bibliometric Analysis

The review of the investigations carried out in Mexico on the genetic diversity of
subspecies of O. virginianus was carried out by means of a bibliometric analysis
(Avila-Ndjera et al. 2018) applied in the scientific databases available in the virtual
library of the Universidad Veracruzana (BiVUYV; https://www.uv.mx/bvirtual/). The
collected information was synthesized and the genetic diversity values of the O. vir-
ginianus subspecies reported in the literature were analysed. This information was
included in the introductory section of this chapter to describe the current state of
the implications for conservation genetics in O. virginianus subspecies.

2.2 Description of the Deer Samples of O. v. veraecrucis

We studied 16 adult deer of the O. v. veraecrucis subspecies kept in captivity in the
“El Pochote” UMA, located in the municipality of Ixtaczoquitldn, Veracruz, Mexico,
authorized to handle this species (registry: SEMARNAT-UMA-IN-CR-0196-
VER/18). The studied deer come from different geographical zones due to the inter-
change of specimens with other UMAs in order to avoid inbreeding problems. Thus,
six deer come from the municipality of Las Vigas, four deer from the municipality
of Tuxpan, three deer from the municipality of Paso de Ovejas, and three deer from
the municipality of Ixtaczoquitldn, Veracruz, Mexico (Fig. 7.1). These places are
within the geographical distribution area of O. v. veraecrucis (Mandujano
et al. 2010).

Prior to selecting the sample and in order to guarantee that the studied deer
belong to the O. v. veraecrucis subspecies, we used the values of the body charac-
teristics of the deer under study and contrasted them against those reported in the
literature for this subspecies (Logan-Lopez et al. 2006). Those specimens that did
not correspond morphologically were discarded from the sample. The deer were
sedated, and 2 mL of blood were extracted from each one with a Vaccutainer® with
EDTA as anticoagulant (Serna-Lagunes 2016). To do this, we considered the ethical
norms for the treatment of each animal (Sikes et al. 2016).

2.3 DNA Extraction and Amplification of the D-Loop Region

The DNA was extracted with the Promega® DNA extraction kit. To verify the DNA
quality an aliquot of 3uL of the DNA extraction was used, mixed with 1pL. Diamond®
(Promega®) and 1pL Green GoTaq (Promega®) buffer. The mix was run in agar gel
at 1% under a horizontal electrophoresis camera at 90 V for 30 min.
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Fig. 7.1 Geographical origin of the O. v. veraecrucis specimens analysed in this study

To describe the genetic diversity of O. virginianus specimens we used the D-loop
region of ,,DNA, since it represents a non-codifying genetic region and it is easy to
obtain and analyze (Purdue et al. 2006); it has a simple genetic structure with no
repetitions or presence of pseudogenes or introns, and an exclusively matrilineal
transmission marker. Moreover, it has no genetic recombination or genetic fixes,
and therefore tends to homoplasmy and a high nucleotide substitution ratio
(Yamamoto 2001). In this sense, the D-loop region is genetically very variable and
provides valuable information to infer relationships between individuals (Avise
et al. 1987; Avise 2000, 2004).

The D-loop region of ,,DNA was amplified through PCR in triplicate in order to
discard the origin of the variation being from PCR artifice. The PCR amplifications
were done at a final volume of 25uL, containing 2.5pL. ADN, 0.5pL primer (final
concentration of 10pM) DL-F (5-ATC GCC CAC TCT TTC CTC TT-3’), and
0.5puL primer DL-R (5" TCA GTG CCT TGC TTT ATT GT-3’) developed for
Capreolus capreolus (Tsaparis et al. 2019), 7.2uL PCR Master Mix 2x (25 mM
Tris-HCI pH 9, 25 mM NaCl, 2.5 mM MgCl,, 100uM of each nucleotide, 0.5 U Tag
DNA polymerase, 0.05 mg mL BSA) Promega®, and 14.3pL nuclease-free water.

The amplification program through PCR of the D-loop region was done in a
thermocycler (Axygen® MaxyGeneTM II Thermal Cycler) with the following
sequence: polymerase activation at 95 °C for 3 min, denaturation at 95 °C for 30 s,
followed by 31 cycles that included: 95 °C for 30 s (denaturation), 55 °C for 30 s
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(alignment), and 72 °C for 30 s (polymeration). Finally, a conservation cycle was
programmed at 4 °C. The amplification of the target region was verified using an
aliquot of 3pL of the PCR product mixed with 0.5pL. Diamond® and set in an agar
gel at 1% to test the presence of a fragment between 400 and 550 base pairs (bp),
based on a known molecular weight marker. The standard sequencing of nucleo-
tides was done with an Applied Biosystems 3130 Genetic Analyzer sequencer,
through the Sanger and Coulson technique (Sanger and Coulson 1975).

2.4 Phylogenetic and Molecular Evolutionary Analyses of
0. virginianus Subspecies

The electropherograms of each sequence were edited manually with the Chromas v
2.1.1 software (Technelysium 2012), compared against the sequences deposited in
the GenBank database (National Center for Biotechnology Information) to deter-
mine its identity and deposited in the GenBank (number accession GenBank:
MHS800299-MH800314). After that, the sequences were aligned with the Clustal W
algorithm of Molecular Evolutionary Genetics Analysis Version X software
(MEGA; Kumar et al. 2018).

Before building the phylograms (Hall 2013) in MEGA version X (Kumar et al.
2018), three sequences of the D-loop region of O. virginianus were downloaded
(idGenBank: KX171760.1, KX171759, and KX171758.1) and used as external
group (Heffelfinger 2011). Additionally, sequences from the D-loop region of other
subspecies with geographic distribution in the West of Mexico, reported on the
GenBank platform were obtained to compare the diversity and genetic structure
with that found in O. v. veraecrucis in this study. The sequences used were (popset
Genbank accession: 307088077), of which 7 sequences belonged of O. v. mexica-
nus, 32 sequences to O. v. sinaloe, and 8 from O. v. acapulcencis (Ambriz-Morales
et al. 2016). In total, this study analysed a total of 66 sequences (including external
group) of the D-loop region of four subspecies of O. virginianus.

Phylogenetic and molecular evolutionary analyses were conducted using MEGA
version X (Kumar et al. 2018). Nucleotide substitution models were tested to
describe the substitution pattern the best (Nei and Kumar 2000; Kumar et al. 2018)
and substitution of nucleotide matrix in the control region of ,DNA was calculate.
The genetic distance measurements within and between subspecies were overall
mean distance (d + s.e.) (Tamura and Nei 1993), within group mean distance,
between group mean distance, and net between group mean distance (Tamura et al.
2004). The measures of genetic diversity within and between subspecies were mean
diversity within subspecies, mean diversity in entire subspecies, mean inter-
subspecies diversity and coefficient of differentiation (Nei and Kumar 2000; Tamura
et al. 2004).
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Initial tree(s) for the heuristic search were obtained automatically by applying
Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated
using the Maximum Composite Likelihood (MCL) approach, and then selecting the
topology with superior log likelihood value. A discrete Gamma distribution was
used to model evolutionary rate differences among sites (5 categories (+G, param-
eter = 0.3108)). There were a total of 377 positions in the final dataset.

Since the phylogram did not show a grouping structure by subspecies (see
Results), the historical demographic structure for the set of sequences obtained
from O. virginianus (n = 66 sequences) was studied to have an estimate of whether
changes in population size promoted changes in nucleotide diversity. The analysis
included a Mismatch distribution test under the model in a constant population
that compares the observed frequencies with respect to the expected frequencies,
where a population expansion is inferred if the distribution is unimodal and does
not differ from the distribution expected (Rozas et al. 2017). This analysis was
developed in DNA Sequence Polymorphism (DnaSP) software version 6.11
(Rozas et al. 2017).

Finally, to test the geographic-genetic association process of the subspecies of
O. virginianus that have been inferred in the literature (Table 7.1), a haplotype net-
work with Median Joining Network algorithm was built in the Population Analysis
with Reticulate Trees software (PopArt) version 1.7 (Leigh and Bryant 2015).
Network structures are used in population genetics to summarise the genetic diver-
sity in a population (Leigh and Bryant 2015).

3 Results

The sequences had an average length of 395 bp and with a nucleotide composition
mainly represented by a higher proportion of T (31.2%). In these sequences 333
identical nucleotide bases, 32 transitional pairs, and 23 transverse pairs were
obtained (ratio = 1.38). The best substitution evolutionary model was Hasegawa-
Kishino-Yano (HKY) + G (BIC = 10223.988425279). Substitution of nucleotide
matrix in the control region of ,, DNA indicated up to 20 nucleotides between A and
G (Table 7.2, data in parentheses).

Table 7.2 Estimates of Evolutionary Divergence over Sequence Pairs between Groups (below the
diagonal) and standard deviation (above the diagonal) and substitution of nucleotide (in
parentheses) of sequences of ,,DNA D-loop of O. virginianus subspecies

To
From A T C G
A - 0.059 (6.15) 0.044 (4.57) 0.105 (11.85)
T 0.054 (5.65) - 0.145 (12.21) 0.032 (3.32)
C 0.054 (5.65) 0.195 (16.43) - 0.032 (3.32)
G 0.179 (20.1) 0.059 (6.15) 0.044 (4.57) -
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Table 7.3 Estimates of Net Evolutionary Divergence between Groups of Sequences (under the
diagonal) and Estimates of Evolutionary Divergence over Sequence Pairs (above the diagonal) of
O. v. subspecies in Mexico. References: 1. O. v. mexicanus, 2. O. v. sinaloe, 3. O. v. acapulcensis,
4. O. v. outgroup, 5. O. v. veraecrucis

1 2 3 4 5
1 0.01 =0.00 0.04 = 0.01 1.06 = 0.38 0.02 +0.00
2 0.13 = 0.02 0.04 = 0.01 1.02 = 0.37 0.02 = 0.00
3 0.16 = 0.02 0.15 = 0.02 1.06 = 0.40 0.05 = 0.01
4 1.15+0.03 1.09 = 0.31 1.14 £ 0.34 1.04 = 0.37
5 0.12 = 0.02 0.10 = 0.01 0.14 £ 0.02 1.10 £ 0.32

The number of base substitutions per site from averaging over all sequence pairs
and net evolutionary divergence between groups is shown in Table 7.3. Overall
mean distance (d = 0.21 + 0.04), within mean group distance (O. v. mexicanus:
d=0.13 £ 0.02; O. v. sinaloe: d = 0.1 £ 0.02; O. v. acapulcensis: d = 0.12 = 0.02;
0. v. veraecrucis: 0.08 = 0.01).

The evolutionary history of O. virginianus subspecies inferred by using the
Maximum Likelihood method and the Hasegawa-Kishino- Yano model showed two
defined clades (Fig. 7.2). The phylogram with the highest log likelihood (—3869.46)
with the percentage of trees in which the associated taxa clustered together next to
the branches is shown. The clades grouped the sequences of the four subspecies
indistinctly, the groupings show close genetic distances between haplotypes, which
may be an indicator that the genetic diversity between subspecies is similar. This
inference could reject the hypothesis of the genetic recognition of the subspecies
that make up the group of O. virginianus, since the structure of the phylogram does
not represent a genetic structure associated with the geographical distribution of the
subspecies of O. virginianus (Fig. 7.2).

Expected values for constant population size of the sequence set of O. virginia-
nus shows that nucleotide diversity (n = 0.12694), the average number of pairs of
differences (k = 42.78; variance of k = 1988.74; observed CV of k = 1.0464),
Raggedness statistic (r = 0.0017) mean absolute error (MAE = 0.9176) and Ramos-
Onsins and Rozas (R? statistic = 0.0885), and parameters estimation (estimate of
Theta initial = 44.113; estimate of Tau = 0.000) conform to a multimodal distribu-
tion. This is indicative of no population expansion and implies that the changes in
the genetic diversity of O. virginianus are not due to population expansions
(Fig. 7.3).

The 66 analysed sequences presented high values of haplotype diversity
(H = 0.95), a moderate nucleotide diversity (x = 0.176), 235 segregating sites, and
220 parsimoniously informative sites. According to the results of the Tajima’s test
(D =0.711) [(p(D > 0.711317) = 0.48)] the sequences do not show departures of
DNA polymorphisms from the neutral expectations. The frequencies of the poly-
morphisms do not represent evidence of selection, recombination, population sub-
division, or changes in population size. The haplotype network does not show a
structure that allows inferring any phylogeographic relationship between the
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Fig. 7.2 Hypothesis of the phylogenetic relations between sequences of the D-loop region of
«DNA of O. virginianus subspecies. The branches show the values obtained by Bootstrap based

on maximum likelihood (ML)

subspecies of O. virginanus evaluated in this study (Fig. 7.4). The small sample size
(n = 66) is another factor that limits the identification of a pattern of genetic-
geographic association that supports the assumption of recognition of subspecies,
which until now have been recognized by their morphometric, phenotypic, or delim-
ited traits based on the correspondence of the type of vegetation and the range of

geographic distribution.
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Fig. 7.3 Multimodal curve resulting from the Mismatch distribution analysis. The observed mul-
timodal distribution does not indicate processes of population expansion that have modified the
genetic diversity observed in O. virginianus

4 Discussion

In the bibliographic review carried out in this work, we found around ten research
works related to the study of the genetic diversity of subspecies of O. virginianus in
Mexico. This represents a challenge to increase knowledge on this and other topics
related to the management of wild or captive populations and under different exploi-
tation schemes in Mexico (Mandujano 2004). On the other hand, the information
reported in the literature shows variations in the components of genetic diversity
(haplotype diversity and nucleotide diversity) of each subspecies of O. virginianus.
However, the low sizes of samples analysed prevent to reach more precise
conclusions on the genetic differentiation of subspecies and to test genetic-geo-
graphic or phylogeographic hypotheses. It is important that technicians, wildlife
managers, the Secretary of Environment and Natural Resources of Mexico and
researchers specializing in studies of genetic diversity in cervids, articulate efforts
to increase knowledge about the genomic, nuclear, and mitochondrial diversity of
subspecies of O. virginianus that are under management in intensive UMA systems,
in order to generate a pattern of white-tailed deer with outstanding genetic charac-
teristics and that can be considered in a genetic improvement program. With this
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Fig. 7.4 Haplotype network of sequences of the D-loop region of the ,,DNA of four subspecies of
O. virginianus with distribution in Mexico

\

information, the translocation of deer with desirable morphological characteristics
to geographic regions where other subspecies are distributed would be avoided,
since the information would be available on where to acquire stallions or even arti-
ficial insemination techniques can be chosen due to the different advantages that
this represents.

The D-loop region of ,DNA is often used in studies to describe genetic diversity
due to its high level of polymorphism (Serna-Lagunes 2016). The haplotypic diver-
sity (h) and moderate nucleotide diversity () values reported in the literature and
recorded for subspecies of O. virginianus have been attributed to an increase in new
mutations (Avise et al. 1984). These patterns of genetic diversity may be the result
of the reproductive biology of O. virginianus and that the frequency of haplotypes
in the population decreases. The haplotypes registered in the present study showed
low frequency, which could be due to the reproductive biology of the species, as the
females maintain philopatry and the males migrate great distances to mate with
other females (Nelson and Mech 1992; Nelson 1993). This behaviour decreases the
frequency in ,DNA transference of O. virginianus (Purdue et al. 2000, 2006) and
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mould the heterogeneity of the genetic flow (Nelson 1993) and the socio-genetic
structure of the species (Mathews and Porter 1993).

The h and & values for the sequences of the four subspecies of O. virginianus
studied as a single population, indicate that these genetic diversity parameters in this
population are stable due to a long evolutionary history, or, it is the result of a
genetic exchange between populations that were geographically isolated; females
would colonize new types of vegetation, thereby dispersing new haplotypes due to
cross-breeding between different lineages (Purdue et al. 2006). This result implies
that the analyses of the genetic structure of O. virginianus carried out for the D-loop
region, infer that the sample studied is composed of a single population without
subdivisions (subspecies), while the observed genetic differences are represented by
variations at the individual level between or within populations (Cronin et al. 1991).

Our results show that the studied sample of O. virginianus presents a genetic
diversity that has not been modified by historical demographic processes such as
population expansions (Rogers and Harpending 1992; Rogers et al. 1996). However,
the pressure of clandestine hunting and legal hunting of the specie in Mexico
(SEMARNAT 2013), its ecology and management (Gallina and Mandujano 2009),
habitat fragmentation, poaching, consumption by local communities, and predators
(Mandujano 2011; Gallina-Tessaro et al. 2019) are constant pressures on the popu-
lations of this species. This decreases the effective size of the mating population in
wild populations (Mandujano and Gonzalez-Zamora 2009), thus only a few lin-
eages go on to the next generation while other lineages go extinct or are less fre-
quent within the population (Rogers et al. 1996; Vazquez-Dominguez 2002). As
expected for important game species, with poaching or commercial hunting, a simi-
lar effect was observed in the Tibetan antelope (Pantholops hodgsonii), a species at
risk of extinction due to the loss of its genetic diversity (Xiang-Dong et al. 2005).

The phylogram showed two groups, the first consisting of eight sequences of
0. v. acapulcensis, two of O. v. sinaloae, two of O. v. veraecrucis, and one of O. v.
mexicanus. The other group was made up of the remaining 50 sequences where a
polymorphic arrangement of subgroups is presented, showing a mix in the forma-
tion of the group between the different sequences, but without an arrangement that
allows differentiating subspecies. Haplotypes are grouped as two monophyletic
clades but they do not correspond to the subspecies studied, possibly because the
sample studied corresponds to individuals with ancestral lineages that became
established in the population and therefore there has not been enough evolutionary
time to accumulate mutations that allow to genetically differentiating subpopula-
tions (Cerritos 2007). Another fundamental aspect of the phylogram is that it also
differentiates the phylogroups with a lower number of haplotypes. This means that
haplotypes showed substitution rates of differential nucleotides and high levels of
intraspecific polymorphism in the D-loop region, associated with an individual spe-
ciation process (Lunt et al. 1998). The branches of the phylograms showed a length
over 95%, which indicated a similar divergence time between the haplotypes (Ruiz-
Garcia et al. 2007).
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4.1 Implications of Genetic Management of the Subspecies
of O. virginianus in Mexico

The deer of the subspecies of O. virginianus have socioeconomic, cultural, nutri-
tional, and ecological importance; this species has been exploited since pre-
Columbian times by providing meat, skin, bones, oil, fat, bait, pigments, medicinal,
and natural properties aphrodisiac (Naranjo et al. 2010). The use of O. virginianus
in UMA should be planned to avoid the unfavourable selective impact towards cer-
tain specimens of greater size and morphometry of antlers (characters of hunting
interest) and to avoid the reduction of genetic diversity (Cienfuegos-Rivas
et al. 2011).

Some biological conditions that this implies are morpho-physiological changes
that limit their average longevity (Galindo-Leal and Weber 1998) because the suc-
cessful mating of males with large antlers is correlated with the size of the individ-
ual and the structure of its antlers, a reflection of its genetic expression (Monteith
et al. 2013). The loss of genetic diversity in subspecies of O. virginianus not only
affects biological aspects such as the evolutionary potential to adapt to the environ-
ment (physical and biological) (Pifiero et al. 2008a, b), but also affects the environ-
mental services that the species generates for rural communities (Wright et al. 2000).

It is a priority to describe and conserve the genetic diversity of O. v. veraecrucis
populations in captivity as a genetic reservoir to restore genetic erosion processes in
wild populations. In the deer samples, we observed haplotypes that were frequently
shared and haplotypes that were infrequent and which differ from the others by a
few mutational changes (Cronin et al. 1991). This information shows unique genetic
collections associated with specific geographical regions and could be useful to
increase the frequency of rare genes in wild populations of the O. v. veraecrucis
subspecies with problems of genetic erosion (Ellsworth et al. 1994).

The reduction of pressures on O. virginianus is necessary for its conservation
(Crandall et al. 2000). Although we do not have information on the number, age, and
sex of deer authorized for legal hunting in Mexico, we are aware of poaching of the
subspecies O. v. veraecrucis in the centre of Veracruz, Mexico (Tlapaya and Gallina
2010). This is a threat to the genetic diversity of this subspecies in wildlife; there-
fore, studies of genetic diversity of populations of this subspecies in UMAs could
generate a pool for use in genetic conservation programs.

5 Conclusions

The genetic diversity of the O. v. veraecrucis subspecies in the present study showed
a genetic pattern characteristic of this subspecies, but different from other subspe-
cies reported in the literature. A high number of unique haplotypes and low nucleo-
tide diversity could be due to the geographical independence of the origin of deers
and a low mutation rate, respectively. The genetic diversity of the deer in the El
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Pochote UMA represents a valuable genetic reservoir to restore genetic processes in
wild populations through a planned crossing program between deer with contrasting
genetic patterns, previously genetically characterized, to conserve the genetic diver-
sity of this subspecies.
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