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Chapter 8
Microbial Lipid Production 
from Lignocellulosic Biomass Pretreated 
by Effective Pretreatment

Cui-Luan Ma and Yu-Cai He

8.1  �Introduction

A worldwide concern has recently aroused about the soaring depletion of natural 
resources and degradation of environmental conditions, which is leading to an 
increased interest in alternative and renewable energy sources [1, 2]. Biomass, con-
sisting of inedible plant material that does not compete with our food production, is 
regarded as a suitable renewable feedstock [3–6]. From the last decade, there has 
been an increasing interest in the value-added utilization of lignocellulosic biomass, 
which can be used as the most abundant, inexpensive, and renewable source for 
production of platform organic molecules, functional materials, liquid fuels, and 
value-added chemicals [7–21].

Bioresources comprising over 2.0 × 1012 tons of annual production are poten-
tially the world’s largest sustainable and safe source of energy. Very recently, much 
research has been focused on developing new chemical strategies for the valoriza-
tion of biomass into liquid biofuels and chemicals [4, 22–31]. Lipids are one kind 
of value-added energy-rich compounds, which can produce by oleaginous microor-
ganisms using biomass and/or biomass-hydrolysates [16, 32–35]. Microbial lipids 
are composed of saturated and unsaturated fatty acids with potential use as nutra-
ceuticals, food additives, and biofuels [4, 36–38]. Microbial lipids include 
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triacylglycerols (TAGs), glycolipids, phospholipids, and steryl ester, which have 
many similarities with plant oils [39, 40]. Fatty acid of microbial lipid is composed 
of Palmitic acid (C16:0), Palmitoleic acid (C16:1), Stearic acid (C18:0), Oleic acid 
(C18:1), Linoleic acid (C18:2), Linolenic acid (C18:3), etc. The percentage of these 
saturated and unsaturated fatty acids very much depends on the type of oleaginous 
microorganisms and growth conditions [40–43].

Biomass sources like energy crops, agriculture and forest residues, sewage 
sludge, animal and food waste, municipal solid waste, etc. are generally used for 
energy production [9, 17, 44–46]. Typically, biomass valorization processes to pro-
duce both biofuels and/or bio-based chemicals are mainly consisted of three steps: 
biomass pretreatment, enzymatic saccharification, and fermentation [43, 47]. 
Pretreatment is considered as a crucial step in lignocellulosic biomass valorization 
(Fig. 8.1), which can be used for disrupting recalcitrant lignocellulosic structures 
and removing lignin and hemicelluloses to make cellulose more accessible to the 
enzymes for efficient conversion into fermentable sugars [48–53]. Although differ-
ent pretreatments including physical, chemical, physicochemical, biological, or 
their combination are available [54–58], the development of a suitable pretreatment 
to avoid or reduce the formation of inhibitors (furfural and/or hydroxymethyl furfu-
ral) deserves the great challenge in biofuel production [59, 60].

In this chapter, various biomass pretreatments for effectively improving the 
enzymatic saccharification of lignocellulosic biomass are introduced. Furthermore, 
microbial lipid production from lignocellulosic biomass pretreated by effective pre-
treatment is discussed.

Fig. 8.1  Disruption of lignocellulose structure via pretreatment. (Adapted from Ref. [61, 62])
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8.2  �Main Components of Lignocellulosic Biomass

Hemicellulose (C5H10O5)m, cellulose (C6H10O5)n, and lignin (C10H11O3.5) are the 
three major components of lignocellulosic biomass along with small number of 
other organic compounds such as pectin and protein. Chemical compositions of 
some lignocellulosic materials are provided in Table 8.1. Most of the biomass is 
composed of lignocellulose, which is a complex carbohydrate polymer of cellulose, 
hemicellulose, and lignin [63–65]. The percent composition of cellulose, hemicel-
lulose, and lignin in biomass are in the ranges 30–50%, 20–35%, and 10–20%, 
respectively.

Cellulose is a linear polysaccharide consisting of β-1,4-linked-D-glucose resi-
dues, which is made up of crystalline and amorphous region [75–77]. Hemicelluloses 
(also known as polyose), the second most abundant constituent of lignocellulosic 
biomass, are polysaccharides in plant cell walls that have β-(1→4)-linked back-
bones with an equatorial configuration [9, 15, 18, 29]. Hemicelluloses, which have 
linear and branched structures, include glucomannans, xylans, xyloglucans, man-
nans, and β-(1→3,1→4)-glucans. It is more energy dense than carbohydrates (hemi-
celluloses and cellulose) because of its higher carbon-to-oxygen ratio [35, 78]. 
Lignin is a poly-aromatic non-sugar component typically found in biomass, which 
confers high mechanical strength and hydrophobicity to plant walls [79]. It is a 

Table 8.1  Main components (cellulose, hemicellulose, and lignin) in common lignocellulosic 
biomassa

Lignocellulosic biomass Cellulose, wt% Hemicellulose, wt% Lignin, wt%

Bamboo shoot shell 38.5 23.1 11.4
Cotton seed hairs 80–95 5–20 0
Corncob 45 35 15
Corn straw 42.6 21.3 10–20
Grass 25–40 35–50 10–30
Hardwood stem 40–50 24–40 18–25
Leaves 15–20 80–85 0
Maize stover 37.5 30 10.3
Nutshell 25–30 25–30 30–40
Newspaper 40–55 25–40 18–30
Oat straw 39.4 27.1 20.7
Paper 85–99 0 0–15
Rice straw 32–47 18–28 5.5–24
Rice husk 34.4 29.3 19.2
Softwood stem 45–50 25–35 25–35
Solid cattle manure 1.6–4.7 1.4–3.3 2.7–5.7
Sugarcane bagasse 32–48 19–24 23–32
Switchgrass 45 31.4 12
Wheat straw 33–45 20–32 8–20

aAdapted from Refs. [66–74]
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highly cross-linked complex aromatic biopolymer formed by polymerization of 
4-hydroxyphenylpropanoid monomer units such as syringyl (S), guaiacyl (G) and 
p-hydroxyphenyl (H) units and linked by ether or C–C bonds [61, 79, 80, 81]. The 
lignin biopolymers are attached to hemicelluloses by covalent bonds creating pro-
tection against chemical and biological degradation, inhibiting usability of raw bio-
mass for producing biofuels and biobased chemicals.

8.3  �Pretreatments of Lignocellulosic Materials 
for Enhancing the Production of Microbial Lipids

Various biomass pretreatments including physical (chipping, irradiation, grinding, 
milling, and pyrolysis) [76, 82–90], chemical (concentrated acid, concentrated 
alkali, deep eutectic solvent, dilute acid, dilute alkali, ionic liquid, N-methyl-
morpholine-N-oxide, ozonolysis, organic solvent, and oxidizing agent) [43, 67, 76, 
91–97], physico-chemical (Ammonia fiber explosion, CO2 explosion, liquid hot 
water, oxidative pretreatment, sulfite pretreatment, and steam pretreatment) [62, 95, 
97, 98–103], biological [67, 75, 104–110], or their combination [99, 110–113] 
(Fig. 8.2) have been developed for enhancing enzymatic saccharification of biomass 
and sequential biofuel production (e.g., microbial lipids). The choice of pretreat-
ment technologies that increase the digestibility of cellulose and hemicelluloses to 
help in cost-effective and eco-friendly conversion of lignocellulosic materials to 
microbial lipids depends on the compositions of biomass and the generated by-
products after pretreatments.

8.3.1  �Physical Pretreatment

8.3.1.1  �Mechanical Pretreatment

Reduction of biomass particle sizes is a necessary procedure for converting biomass 
to biofuels. Milling, grinding, and chipping are known as the common mechanical 
pretreatment techniques for reducing particle sizes [76, 84–88, 90, 114, 115]. 
Grinding and milling can reduce biomass to 0.20 mm, while chipping can reduce 
biomass to 10–30  mm [102]. Various milling methods (e.g., knife, ball milling, 
hammer milling, and attritor milling) can be used for significantly reducing the 
polymerization degrees of cellulose and lignin, which aid in enzymatic sugar release 
and subsequent sugar fermentation into biofuels [116–122], wet disk milling 
(WDM) is used as a popular mechanical pretreatment for treating lignocellulosic 
biomass because of its low energy consumption [123, 124]. The energy require-
ments of milling increase with the reduction of biomass particle sizes [82, 125, 
126]. This pretreatment is environmentally friendly because no chemicals or 
reagents were used during the pretreatment; however, it is generally needed to 
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consume a lot of energy. In addition, although the milling can enhance the enzy-
matic hydrolysis of lignocellulose to a certain extent, it is difficult to thoroughly 
improve the enzymatic saccharification of biomass because the milling cannot 
remove lignin effectively, which limited the access of cellulase to cellulose. In most 
of the cases, a combination of milling and other pretreatments was used to effec-
tively pretreat biomass for enhancing enzymatic saccharification and biofuel pro-
duction. The milled sorghum stalks were pretreated with 1.25% (w/v) NaOH at 
121 °C for 30 min. Commercial cellulases (Cellic C-Tec2 plus Cellic H-Tec2) were 
complexed for the hydrolysis of pretreated biomass for 48  h. The total lipid of 
13.2 g/L and lipid yield of 0.29 g/g were obtained by Trichosporon oleaginosus 
using sorghum stalk hydrolysates as carbon sources [127].

Fig. 8.2  Pretreatment technologies including physical, chemical, physico-chemical, biological, or 
their combination for enhancing enzymatic saccharification and microbial lipid fermentation
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8.3.1.2  �Irradiation

Various pretreatments under the irradiation including electron beam, microwave 
heating, γ-rays, ultrasound, and UV are widely used to treat biomass for improving 
its saccharification [89, 128–132]). Raw lignocellulosic biomass can be pretreated 
to decrease the polymerization degree of cellulose, loose cellulose structure, and 
enhance the enzymatic saccharification under the high-energy irradiation (e.g., UV 
or γ-rays) [133]. However, high-energy electron irradiation is high-cost consump-
tion, which restrict its application on the large-scale [134]. Microwaves are a type 
of non-ionizing electromagnetic radiation with wavelengths ranging from as long as 
one meter to as short as one millimeter [135]. Microwave heating is a volumetric 
and rapid heating technique with high efficiency and a minimal thermal gradient, 
which has been widely used to pretreat lignocellulosic biomass because of its high-
heating capacity in a short time, low-energy consumption, easy to operation, and 
minimum formation of inhibitors [102, 136–139]. Microwave-assisted alkali pre-
treatment of coastal bermudagrass and switchgrass could yield >70% reducing sug-
ars [140, 141]. Ultrasound waves produce cavitation and acoustic streaming, which 
can alter the morphology of biomass and rupture the carbohydrate fractions in lig-
nocellulosic biomass thereby enhancing enzymatic its saccharification [102, 142–
146]. Ultrasound (10–100 kHz) can be used for breaking cell walls and degrading 
of polymers [142]. Microwave and ultrasound could be used for enhancing the pro-
duction of microbial lipids. For example, the total lipid of 38.3 g/100 g CDW was 
obtained from algae Nannochloropsis sp. via microwave-assisted pretreatment com-
pared to 23.0 g/100 g CDW obtained from the water-bath system [139]. By increas-
ing the microwave pretreatment temperature from 80 to 95 °C, the oil extraction was 
obtained from 24% to 33% (dry weight basis) for 30 min of microwave irradiation 
[147]. Different intensities of ultrasound power (0.1–0.5 W/mL) were used at a fre-
quency of 30 kHz and for 5–60 min to treat mixed microalgal culture. Ultrasound 
could affect the cell disruption. Moreover, the lipid extraction efficiency could be 
enhanced under the ultrasound irradiation [148]. At 0.4  kW  h/L, up to twofold 
increase in lipid extraction yields were obtained.

8.3.1.3  �Pyrolysis

Pyrolysis is a complex thermochemical conversion process by which a solid or liq-
uid undergoes the thermal degradation into smaller volatile molecules, without 
interacting with O2 or any other oxidants [83, 149, 150]. Pyrolysis has also been 
used for pretreating lignocellulosic biomass in biorefinery processes. The biomass 
pyrolysis processes typically result in the generation of various products including 
solids, liquids, and gases [102]. Pyrolysis is found to be more efficient when con-
ducted in the presence of O2 at lower temperatures [149]. H2SO4 (1.0  M) was 
employed for the pyrolysis of biomass within 2.5 h at 97 °C, and the saccharifica-
tion was obtained at 85% yield [151]. Coupling lipid fermentation with pyrolysis 
has been used for converting biomass into lipid. Carboxylic acids, which generated 
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from pyrolysis, were fermented into lipids by Cryptococcus curvatus [152]. In 
pyrolytic liquor, 20 g/L acetate was fermented with C. curvatus after neutralization 
and detoxification to produce ~7.0 g/L dry biomass and 2.0 g/L lipid.

8.3.2  �Chemical Pretreatment

8.3.2.1  �Alkalic Pretreatment

Alkali-based pretreatment is essentially used for reducing the crystallinity degree, 
swelling fibers, and removing lignin in corn stover, switchgrass, rice straw, wheat 
straw, and softwood [95, 153–155]. Alkali can saponify uronic ester linkages 
between 4-O-methyl-D-glucuronic acid units in xylan and cleave hydrolysable link-
ages in lignin and glycosidic bonds of polysaccharides, which causes a reduction in 
the degree of polymerization and crystallinity, swelling of the fibers, as well as 
disruption of the lignin structure. The alkali-pretreated lignocellulosic materials are 
loose, swollen, and porous, which facilitates the cellulose accessibility to enzymes 
for enhancing their enzymatic saccharification [91, 95]. Various alkaline reagents 
including oxidative alkali, sodium hydroxide (NaOH), potassium hydroxide (KOH), 
calcium hydroxide (Ca(OH)2), and ammonia (NH3·H2O) have been widely used to 
pretreat lignocellulosic materials for enhancing enzymatic saccharification at ambi-
ent temperature and pressure [86, 91, 153]. NaOH–CH3OH solution (NaOH 4.0 g, 
CH3OH 80 mL) was used to pretreat 40 g raw corn stover at high solids loading for 
effectively enhancing its enzymatic saccharification [156]. The hydrolysates were 
used for lipid production by Cutaneotrichosporon oleaginosum. Biomass, lipid con-
tent, and lipid yield were 50.7 g/L, 61.7%, and 0.18 g/g, respectively. Dilute alkali 
(NaOH, 2 wt%) pretreatment of corn stover (10 wt%) was conducted a high-pres-
sure reactor at 121 °C for 20 min, and lipid of Trichosporon dermatis 32,903 could 
reach 20.36 g/L with sugar to lipid yields improved to 0.186 g/g [43]. Compared to 
mineral acid pretreatment, alkali-based pretreatment is required for a relatively long 
pretreatment time. Less inhibitors (e.g., acetic acid, hydroxyl acids, and minor 
amounts of furan aldehydes) form when compared to acid pretreatments [91]. High 
cost of alkali seriously restricts its application. Aqueous ammonia (AA) can be used 
for pretreatment of biomass at ambient condition, and the leftover ammonia is an 
important nitrogen source for the growth of energy microorganisms [157–161]. AA 
can selectively remove lignin from lignocellulosic materials while most of carbohy-
drates (hemicelluloses and cellulose) remain in lignocellulose [158, 159, 162, 163]. 
High enzymatic saccharification was obtained at 73.6% when Pecan Nutshell (PS) 
pretreated with ethylene glycol–H2SO4–water (78:2:20, wt:wt:wt) was further 
treated by AA (25 wt%) for 1 d at 50 °C. Using hydrolysates (20 g/L) as carbon 
source, the lipid content 0.44 g lipid/g DCW was achieved in Rhodococcus opacus 
ACCC41043 cells [4].

Alkalic salts (e.g., Na2CO3, Na3PO4, Na2S, Na2SO3) with its low corrosivity have 
been employed to pretreat biomass for improving its enzymatic saccharification 
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[159, 164–169]. Alkalic salts containing sulfite (SO3
2−) can cleave β-benzyl ether, 

α-benzyl ether, and α-alkyl ether linkages on phenolic lignin units [170]. H2O2/
Na2CO3 (15% H2O2, 40% Na2CO3) and Na2S/ Na3PO4(4% Na3PO4, 10% sulfidity) 
were employed to pretreat corn stover at 120 °C for 40–60 min [171, 172], most of 
carbohydrates (hemicelluloses and cellulose) in pretreated biomass could be sac-
charified to fermentable sugars. However, it has several disadvantages include the 
degradation of biomass-derived sugar, large amount of water for post-pretreatment 
washing of biomass, and high cost for recovering pretreatment chemicals [102]. 
Using dilute alkali salts (0.4 wt% Na3PO4, 0.03 wt% Na2SO3) as pretreatment chem-
icals for treating sugarcane bagasse in an autoclave within 40 min at 110 °C, enzy-
matic in situ saccharifications of biomass were carried out at 50 °C [173], which 
avoided the steps for post-pretreatment washing of biomass and recovery of pre-
treatment chemicals. High saccharification was obtained at 67.6%. Combination 
pretreatment (BP-AP) by sequential biological treatment with Galactomyces sp. 
and dilute Na2CO3 (0.82 wt%) was employed to treat corn stover for improving its 
enzymatic saccharification. The fermentable sugars containing 25.6  g/L glucose 
without removal of Na2CO3 could be effectively fermented into microbial lipid by 
Rhodococcus pyridinivorans CCZU-B16. Fatty acids rich in C16 and C18 including 
oleic acid, stearic acid, palmitoleic acid, and palmitic acid were detected in whole-
cells [40].

8.3.2.2  �Acid Pretreatment

Industrially, various mineral and organic acids are widely used for pretreating bio-
mass [34]. Acid pretreatment can hydrolyze hemicelluloses into monomeric sugars 
by destroying the polymeric bonds, increasing the availability of cellulose, and 
thereby enhancing the saccharification. Inorganic acids (e.g., H2SO4, HCl, HF, 
HNO3, H3PO4) are common acid catalysts for acid-catalyzed lignocellulose biomass 
pretreatment. Concentrated and diluted acids can be employed to destroy the rigid 
structure of the lignocellulosic material. Out of these acids H2SO4 is mostly used 
because of its low cost and high efficiency in lignin removal [95]. It is performed at 
120–210 °C with H2SO4 (<4 wt%) at the different pretreatment time from minutes 
to hours. Although acid pretreatment is cost-effective, it has some of the drawbacks 
of high reactor cost for their usage, gypsum formation during neutralization after 
pretreatment, and formation of inhibitory by-products (HMF, furfural, aliphatic car-
boxylic acids, etc.). Recently, organic carboxylic acids (e.g., acetic acid, fumaric 
acid, maleic acid, oxalic acid, succinic acid) are considered as alternatives to inor-
ganic acids. Organic acid pretreatment has the advantages including low energy 
consumption for acid recovery and low equipment corrosions. High recovery of 
cellulose components in biomass can be obtained by organic acid pretreatment; 
however, hemicelluloses are recovered at low yields [95]. Dilute acid (H2SO4 
1 wt%) pretreatment of corn stover (10 wt%) was conducted a high-pressure reactor 
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at 160 °C for 10 min, and lipid of T. dermatis 32,903 could reach 11.4 g/L with 
sugar to lipid yields improved to 0.16  g/g [43]. Corn fiber and sweet sorghum 
bagasse were pretreated with dilute H2SO4 at a severity factor of 1.06 and 1.02. The 
sweet sorghum bagasse hydrolysates, which were derived from pretreatment at the 
severity factor of 1.02, were used for microbial lipid of C. curvatus at 10.8 g/L with 
a lipid content of 40% (w/w) [174]. After the pretreatment with 0.25 wt% H2SO4 
and 2 h, 11.5 g/kg of microbial lipid was obtained with glucan and xylan recovery 
rate of 82% and 62% [175], respectively.

8.3.2.3  �Ionic Liquid Pretreatment

Ionic liquids (ILs), one kind of salts with low melting points (< 100 °C) and high 
vapor pressure [176, 177], are regarded as being green solvents because of their 
high thermostability, low toxicity, excellent solvency, nonvolatility, and recyclabil-
ity [178–187]. Swatloski et al. [188] reported for the first time that imidazolium-
based ILs (e.g., [Bmim][C1]) can dissolve cellulose very well. However, many 
chlorine-free ILs have been developed because chloride-based ILs can be toxic and 
corrosive [189]. Acetate-based ILs have higher capability to solubilize cellulose 
[190] and are less toxic and corrosive [112, 177, 191–196]. ILs have tunable capa-
bility to dissolve lignocellulosic materials, resulting in reduction of lignin content, 
increase of surface area, and enhancement of enzymatic saccharification [92, 95, 
197, 198]. However, IL pretreatment is costly because of its high prices compared 
to commercial solvents, which restricts its application on large-scale in the pretreat-
ment of lignocellulose [95, 179, 187, 199, 200]. Hydrolysates from enzymatic sac-
charification of IL-treated biomass could be effectively employed as carbon source 
to produce microbial lipids. Simultaneous saccharification and enhanced lipid pro-
duction (SSELP) were used for converting IL 1-ethyl-3-methylimidazolium acetate 
(EmimOAc)-pretreated corn stover into lipids. At 5% (w/v) of solid loading, lipid 
titer could reach 6.2 g/L after 2 d of fermentation by C. curvatus cells, and lipid 
coefficient was 112 mg/g regenerated biomass, or 81 mg/g raw biomass [201]. IL 
N-methylpyrrolidone (NMP)-1-ethyl-3-methyl imidazolium acetate (EmimAc) 
could dissolve ≥10 wt% corn stover at 140 °C in 1 h. Enzymatic hydrolysis of pre-
treated corn stover afforded an 83% total reducing sugars yield and 61% glucose 
yield within 1 d. The hydrolysates without detoxification could be used as carbon 
sources for producing microbial lipid by Rhodosporidium toruloides Y4 [202].

Very recently, ecologically friendly deep eutectic solvents (DESs) are effectively 
used for pretreating lignocellulosic materials [203, 204], which, can be synthesized 
by mixing hydrogen bond acceptors (HBAs) and hydrogen bond donors (HBDs) at 
the appropriate molar ratio and heating this mixture at the moderate temperature 
(60–100 °C) under stirring for a few hours until a homogeneous clear DES liquid 
form (100% atom economy). Dissolution of lignocellulosic materials with DESs 
can be conducted by using glycerol, ethylene glycol, lactic acid, malic acid, malonic 
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acid, formic acid, nicotinic acid, and oxalic acid as hydrogen bond donors combined 
in a variety of molar ratios with hydrogen bond acceptors alanine, betaine, choline 
chloride, proline, histidine, and glycine [67, 203, 204]. Lignin and hemicelluloses 
in biomass can be effectively removed with various DESs [204, 205]. Glucose 
yields over 80% were obtained after the enzymatic saccharification of biomass pre-
treatment with cholinium lysinate ([Ch][Lys]). The hydrolysates were fermented 
directly by R. toruloides—with glucose, xylose, acetate, and lactate fully consumed 
during fermentation [206].

8.3.2.4  �Organosolv Pretreatment

Organosolv pretreatment can be effectively used for the extraction of lignin in bio-
mass, which works by breaking the noncovalent bonds between the lignocellulosic 
components and disrupting the recalcitrant structures [207–209] Recalcitrance. It 
has the ability to fractionate lignocellulosic biomass into hemicellulose, cellulose, 
and lignin with high purity, easy solvent recovery, and solvent reuse. Various organic 
solvents (e.g., acetone, alcohol, amines, dioxane, esters, formaldehyde, phenol, pro-
pionic acid) or aqueous-organic solvent system with and without catalyst have been 
used for pretreating biomass at temperatures ranging from 100 to 250  °C [210]. 
Low-molecular-weight alcohols (e.g., methanol and ethanol) are often used as sol-
vents for organosolv pretreatment due to their low boiling points and ease of 
removal. However, the low-boiling-point alcohols can seriously hinder the develop-
ment of biomass pretreatment process due to their high volatility and flammability 
under the high-pressure operation [211, 212]. To avoid these drawbacks of low-
boiling-point alcohol pretreatments, high-boiling solvents are of great interest. 
Glycerol and ethylene glycol (EG) are the most widely used high-boiling solvents 
for treating lignocellulosic biomass [195, 196, 210, 213–215]. Under the microwave 
irradiation (200 W) at 100 °C for 5 min, the lignin in corn stover could be effectively 
removed with EG-HClO4-water (88.8:1.2:10, w/w/w) media [211]. Combination 
pretreatment with EG-H2SO4-water (78:2:20, w/w/w) at 130 °C for 0.5 h and AA 
(25 wt%) at 50 °C for 1 d was employed to improve the enzymatic hydrolysis of 
Pecan nutshell. The hydrolysates could be effectively fermented into microbial lip-
ids at 17.1 g lipid/g reducing sugars by R. opacus ACCC41043 [4].

To help meet the challenge of biomass conversion, N-methyl-morpholine-N-
oxide (NMMO) has attracted substantial research interest for pretreating biomass. 
NMMO is a hygroscopic compound crystalline at room temperature [216, 217]. It 
has melting point at 170 °C, implying nonvolatility and nonflammability. NMMO 
molecules are capable of softening and dissolving cellulose in biomass because of 
their high polarity of N–O bonds, which disrupt the hydrogen bonds of the cellulose 
and further form new hydrogen bonds with the solutes [218]. The operation condi-
tions for these pretreatments are much milder (< 100 °C and atmosphere pressure) 
as compared to the conventional pretreatment methods. NMMO retains all the 
advantages of the ionic liquids-ability to dissolve a variety of lignocellulosic sub-
strates (up to 20% by weight) without the need to chemically modify them and more 
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than 99% of the solvent can be recovered due to its low vapor pressure [93]. It is also 
non-toxic and biodegradable as proven by the work of Lenzig researchers 
(Ramakrishnan et al. 2010). Cellulose withdrawn from NMMO solutions has also 
generated increased rates of hydrolysis by cellulases thus implying its potential use 
in pretreating lignocellulosic biomass for biofuels [218].

8.3.3  �Physical-Chemical Pretreatment

8.3.3.1  �Ammonia Fiber Explosion (AFEX)

AFEX is one kind of alkaline thermal pretreatment with aqueous ammonia ([88, 
[219–221]). The merit of this pretreatment process is that it does not require small 
particle size for efficiency, and further, inhibitors are not formed during the pretreat-
ment [149]. AFEX can be carried out at ambient temperature. High saccharification 
rates (> 90%) based on the carbohydrate content in AFEX-treated biomass can be 
obtained. During the AFEX pretreatment, ammonia molecules can cause swelling, 
removal of lignin, and phase change of cellulose crystallinity in lignocellulosic bio-
mass, which promotes in the reactivity of hemicelluloses and cellulose in pretreated 
biomass [102]. During AFEX pretreatment, no highly inhibitory products (e.g., phe-
nols, furfural, and HMF) generate, which avoids the detoxification step. In addition, 
aqueous ammonia is easily recycled for reducing overall performance cost. Thus, 
AFEX is a cost-effective pretreatment technique for treating lignocellulosic bio-
mass if aqueous ammonia can be recovered and recycled for repeated pretreatment. 
Microbial lipid production from AFEX pretreated and hydrolyzed corn stover using 
an oleaginous yeast Lipomyces tetrasporus. 36.7 g lipids were produced from 1 kg 
AFEX-pretreated corn stover via SHF at a titer of 8.4 g/L [222].

8.3.3.2  �CO2 Explosion

CO2 explosion is similar to AFEX. It is a supercritical CO2-based pretreatment of 
lignocellulosic biomass [223]. Supercritical CO2 is considered as one kind of green 
solvent due to its abundance, low-cost, non-toxicity, non-flammable, and ease to 
recover [99]. Its critical pressure and critical temperature are 1071 psi and 31 °C, 
respectively [224]. Various parameters including extraction bed size, performance 
pressure, performance temperature, and solvent flow can be set to obtain the high 
yields of specific compounds [225]. The supercritical CO2 molecules enter lignocel-
lulosic materials at the required temperature and time under the high-performance 
pressure [99]. Subsequently, the formed H2CO3 can hydrolyze hemicelluloses in 
biomass. The CO2 release after CO2 explosion can break the structures of cellulose 
and hemicelluloses, thereby increasing the surface area of biomass for enhancing its 
hydrolysis [223, 226]. For CO2 explosion, no toxin formation makes it an attractive 
for the pretreatment of biomass [110, 227]. Pretreatment can be used for improving 
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lipid recovery from biomass by disrupting wet cell walls prior to extraction. The 
extraction of lipid was carried out under the pressurized CO2 (3500 kPa) [228]. The 
solubility of CO2 in Rhodotorula glutinis was higher than that of sugar broth media 
and spent media due to the presence of lipid in R. glutinis.

8.3.3.3  �Liquid Hot Water (LHW) Pretreatment

LHW pretreatment, commonly known as autohydrolysis, uses pressure to keep 
water in the liquid state at elevated temperature [95]. It is regarded as an effective 
pretreatment strategy for selectively recovering hemicelluloses in the liquid 
stream  [54]. In the solid phase, lignin components can be easily recovered with 
minor losses. No additional chemicals are needed [75]. LHW pretreatment can 
remove up to 80% of the hemicellulose and to enhance the enzymatic saccharifica-
tion of pretreated biomass [229]. LHW can be carried out at relatively low pretreat-
ment temperature in the low cost of pretreatment solvent; however, a large amount 
of water is needed to be recovered in downstream processing [75]. Hot water was 
used to enhance the microbial lipid production by oleaginous R. opacus PD630 and 
DSM 1069. R. opacus PD630 could accumulate lipid from detoxified sweet gum 
autohydrolysate with the lipid yield of 0.25 g/L of its cell dry weight in lipids while 
growing on that translates to 0.25 g/L lipid yield, while R. opacus DSM 1069 could 
accumulate lipid from detoxified pine autohydrolysate with the lipid yield of 
0.3 g/L [230]. 

8.3.3.4  �Oxidative Pretreatment

Delignification of lignocellulosic biomass can be conducted by using oxidizing 
agents such as O2, O3, H2O2, air, or per acetic acid [76, 231–238]. Various reactions 
including side chain displacements, electrophilic substitution, and oxidative cleav-
age of aromatic nuclei or cleavage of alkyl aryl ether linkages may happen during 
the oxidative pretreatment of biomass. The delignification effectiveness is attributed 
to the high reactivity of oxidizing agents with aromatic rings of lignin in lignocel-
lulosic biomass. The lignin polymers can be oxidized into carboxylic acids, which 
act as potential inhibitors in the biotransformation or fermentation steps. These 
inhibitors must be neutralized or removed by additional processes. Oxidative pre-
treatment can also influence hemicellulose fractions in lignocellulosic biomass. 
Lignin peroxidase (LiP) can execute the H2O2-dependent Cα-Cβ cleavage of lignin 
in biomass [239]. H2O2 pretreatment undergoes the oxidative delignification by 
detaching and solubilizing lignin in biomass [240, 241]. Ozonolysis pretreatment 
can be used for delignification by breaking aromatic rings structures of lignin in 
bagasse, cotton straw, and wheat straw [88, 242].

Wet oxidation is a simple pretreatment process using air/oxygen along with H2O 
or H2O2 to fractionate lignocellulosic materials at ≥120 °C [243–246]. The crystal-
line structure of cellulose in biomass can be opened by wet oxidation [247]. High 
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delignification (65%) is achieved with wheat straw [248]. Alkaline peroxide-assisted 
wet air oxidation can solubilize 67% of hemicellulose and 88% of lignin in rice 
husk [249]. Wet oxidation combined with alkali generates the limited formation of 
fermentation inhibitors (e.g. furan aldehydes and phenolaldehydes), and the main 
degradation products found from hemicellulose and lignin are carboxylic acids, 
CO2, and H2O. In the wet oxidation, addition of Na2CO3 can decrease performance 
temperature and enhance the removal of hemicellulose, which can avoid the forma-
tion of potential inhibitors (e.g., furfurals and HMF) [249]. Hydrolysates could be 
used to produce microbial lipids from herbaceous lignocellulosic biomass utilizing 
alkaline hydrogen peroxide pretreatment with NaOH and H2O2, which were com-
posed of xylose and glucose as well as acetate and phenolic monomers that could be 
used as renewable carbon to produce microbial lipids [250].

8.3.3.5  �Steam Explosion

Steam explosion is a physico-chemical pretreatment process for the breakdown the 
lignocellulosic structural components by hot steam (160–260 °C) under the pres-
sure (0.7–4.8 MPa) on the large-scale [75, 98, 101, 102]. Subsequently, the rapid 
reduction of performance pressure can generate strong shear force in an explosive 
decompression event, which facilitates the hydrolysis of beta-glycosidic bonds and 
hydrogen-bonds between the glucose chains, resulting in the degradation of hemi-
cellulose and depolymerization of lignin thereby increasing the cellulose accessibil-
ity to cellulases [95, 102]. The advantages of steam explosion include limited use of 
hazardous chemicals, low energy consumption, and low environmental impact. 
However, the generation of degradation products from lignin and biomass-derived 
sugars is unavoidable [75, 251]. Steam explosion pretreatment of microalgae gave 
the highest lipid extraction yields. The experimental results demonstrate the effi-
cacy and feasibility of the acid catalyzed steam explosion pretreatment, followed by 
n-hexane lipid extraction. High sugar yields (up to 96%) were obtained with 1.7% 
H2SO4 at 150  °C during steam explosion, and high lipid extraction of exploded 
microalgae was achieved using n-hexane [252].

8.3.4  �Biological Pretreatment (BP)

Lignocellulosic materials are composed of carbohydrate polymers (hemicelluloses 
and cellulose), coexisting in complex matrices with high carbon content and high 
aromaticity of highly aromatic biopolymer lignin [38]. Lignin, which is known as 
the second most abundant terrestrial biopolymers on earth, constitutes ~15–30% of 
lignocellulosic biomass. Lignin can be underutilized as renewable feedstock for 
value-added chemicals. The lignin polymer is highly recalcitrant toward chemical 
and biological degradation due to its molecular architecture. Biomass and its com-
ponents (e.g., hemicelluloses, lignin, and lignin-derived polyphenols) can be uti-
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Table 8.2  Summary of some pretreatment technologies

Pretreatment 
method Advantages Disadvantages

Acid pretreatment Effective removal of hemicellulose 
and lignin

High cost, harmful by-products, 
equipment corrosion requirement of 
intensive energy

Alkalic 
pretreatment

Effective removal of lignin and 
increase of accessible surface areas

Long residence times required, high 
cost, harmful by-products, 
requirement of intensive energy

Ammonia fiber 
explosion (AFEX)

Removal of lignin and 
hemicellulose to an extent; no 
generation of inhibitors

Low efficiency for biomass with high 
lignin content

Biological 
pretreatment (BP)

Degradation of hemicellulose and 
lignin to an extent; low energy 
consumption

Long pretreatment time

CO2 explosion Cost-effective; no generation of 
inhibitors

Low efficiency for removing 
hemicellulose and lignin; requirement 
of high cost of high temperature-high 
pressure equipment and system

Deep eutectic 
solvent (DES)

Environmentally friendly 
performance with DES

Lack of economical solutions to DES 
recycling

Ionic liquid (IL) Pretreatment by IL with high 
thermostability, inflammability, low 
volatility and recyclability; high 
delignification

Lack of economical solutions to IL 
recycling

Liquid hot water 
(LHW)

Requirement of low cost of solvent; 
generation of minimum inhibitors 
at low performance temperature

Requirement of a large amount of 
water; high energy consumption in 
downstream process

Milling Environmentally friendly 
performance without addition of 
chemicals

High energy consumption, low 
delignification

Organic solvent Effective removal of hemicellulose 
and lignin

Low biomass recovery; solvents need 
to be drained from the reactor, 
evaporated, condensed, and recycled; 
high operation cost

N-methyl-
morpholine-N-
oxide pretreatment 
(NMMO)

Environmentally friendly 
performance under below 100 °C

Lack of economical solutions to 
NMMO recycling

Microwave 
irradiation

High-heating capacity in a short 
time, low-energy consumption, 
easy to operation, and minimum 
formation of inhibitors

High cost of pretreatment; lack of 
large-scale equipment

Ozonolysis Effective removal of hemicellulose 
and lignin at ambient pressure and 
temperature

A large amount of ozone required

Pyrolysis High efficient in the presence of O2 
at lower temperature

High energy consumption

(continued)
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lized via the microbial action by highly efficient bacteria or/and fungi with 
low-energy consumption, high substrate-specificity, and no generation of undesir-
able toxic compounds [106, 107, 253–258]. Bacteria and fungi can consume lignin 
breakdown products and utilize them as carbon sources [16, 33, 35, 259–264], 
potentiating fuel and chemical production via lignin-consolidated bioprocessing.

Biological pretreatments (BPs) by fungi (e.g., white-rot and brown-rot fungi) 
have been widely employed as environmentally-friendly approached for pretreating 
biomass for production of biobased chemicals and biofuels [104, 106, 107, 108, 
109, 110, 265–268]. White-rot fungi (e.g., Trametes versicolor, Phlebia radiata, 
Phanerochaete chrysosporium, Dichomitus squalen) are the most effective for del-
ignification in nature [109]. Laccase, manganese peroxidase (MnP), and lignin per-
oxidase (LiP) are the main extracellular lignin-degrading enzymes of white-rot 
fungi [255, 269, 270, 271]. LiP catalyzes the homolytic Ca-Cß cleavage of lignin and 
depolymerizes methylated lignin in vitro. MnP has the ability to catalyze the oxida-
tion of Mn2+ to Mn3+ with H2O2 on phenolic (or non-phenolic) lignin units. Laccase 
is a copper-containing enzyme, part of the group of so-called blue oxidase, that 
catalyzes the one-electron oxidation of aromatic compounds (e.g., phenolics and 
amines) by oxygen. Brown-rot fungi, on the other hand, slightly oxidize lignin in 
wood, which preferentially degrades the polysaccharide components [258, 272]. 
Although pretreatment with fungi can be carried out with simple protocols, low 
downstream processing costs, low energy-consumption, and no generation of inhib-
itors to biofuel fermentation, it has several disadvantages, including slow delignifi-
cation rates, substantial holocellulose loss, and long pretreatment time.

Compared to fungi pretreatment, BP with bacteria harboring oxidases involving 
lignin depolymerization are more promising candidates for delignification because 
of their environmental adaptability and immense biochemical versatility [32, 259, 
261, 264, 269, 273, 274]. For bacteria pretreatments, a series of enzymes (demeth-
ylase, MnP, LiP, catalase, peroxidase, phenol oxidase, etc.) have been isolated and 

Table 8.2  (continued)

Pretreatment 
method Advantages Disadvantages

Steam explosion Removal of hemicellulose and 
lignin to an extent, limited use of 
hazardous chemicals, low energy 
consumption, and low 
environmental impact

Generation of degradation products 
from lignin and biomass-derived 
sugars at high temperature

Sulfite 
pretreatment 
(SPORL)

Removal of hemicellulose and 
lignin with high efficiency

Degradation of biomass–derived 
sugar; requirement of large amount of 
water for post-pretreatment washing 
of biomass; high cost for recovering 
pretreatment chemicals

Ultrasonic 
irradiation

Effective change of the biomass 
morphology and rupture of 
carbohydrate fractions in biomass

Lack of large-scale equipment

Wet oxidation High delignification High pretreatment temperature
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identified [38, 39, 45, 95, 261, 264]. These enzymes in bacteria can catalyze the 
demethylation, alkyl-aryl cleavage, cross-linking, and Cα–Cβ bonds cleavage, and 
value-added lignin derivatives, such as protocatechuic acid, vanillic acid, guaiacol, 
vanillin, and 4-ethoxy-3-methoxybenzaldehyde, can form under the ambient 
condition [95, 275]. R. opacus PD630 metabolized aromatics, gluconate, alkanes, 
and acetate, to produce microbial lipids [32, 35, 260, 276], Rhodococcus jostii 
RHA1 degraded lignin to a series of phenolics [38, 263]. Degradation of lignin 
(39.6%, dry weight) was achieved by performing cofermentation with wild R. opa-
cus PD630 and R. jostii RHA1 VanA−. Fatty acids (C13–C24), especially palmitic 
acid (C16:0; 35.8%) and oleic acid (C18:1; 47.9%), were accumulated in cells [41]. 
Co-culture of R. jostii RHA1, R. jostii RHA1 VanA−, and R. opacus PD630 to pro-
duce extracellular peroxidases and oxidases for degrading 33.6% of low-molecular 
weight lignin derived from dilute acid-pretreated poplar wood, and the lipid content 
in cells was 0.017 g lipid/g DCW [38].

One-step BP is known as a slow pretreatment process that requires careful con-
trol (e.g., growth and equipment conditions) [67]. Combination pretreatments 
including Sphingobacterium sp. LD-1 with NaOH/urea [261], Pleurotus ostreatus 
with 2 wt% H2O2 [238], and Echinodontium taxodii with 0.25 wt% H2SO4 [277] 
were found to have higher pretreatment efficiency and saccharification than single 
BP, indicating that combination of BP and other pretreatments has high application 
for improving enzymatic hydrolysis of biomass and biofuels production [67, 261].

8.4  �Conclusion and Future Recommendations

In response to growing concerns about environmental sustainability, energy secu-
rity, and societal sustainability, various renewable lignocellulosic biomasses have 
been used as inexpensive feedstock for producing biofuels (e.g., microbial lipids) in 
recent years. The most applicable pretreatment technologies on lignocellulosic 
materials such as physical, chemical, physico-chemical, biological, or their combi-
nations for biofuel production have been developed [79, 88, 99, 110, 120, 278–285]. 
The disadvantages and advantages of these common pretreatment technologies for 
treating lignocellulosic materials are illustrated in Table 8.2. The trend of future 
research should be directed to address some issues including the increase in the 
commercialization on large-scale by analysis of economic aspects and application 
of a suitable method based on the different biomass structures. Thus, the design of 
suitable research in order to find an efficient combination of the existing methods is 
recommended [286–288]. In future, the development of cost-effective pretreatment 
technologies for improving the enzymatic digestion and microbial lipid production 
deserve in-depth exploration.
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