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�Introduction

The main functions of the respiratory control system are to 
keep adequate tissue oxygenation and insure excretion of 
CO2. To fulfill this, the system is able to respond to a variety 
of stimuli and modify the breathing pattern (amplitude and 
frequency of breathing), matching respiration with the meta-
bolic needs. In addition to the sensors responding to increased 
muscular activity during exercise, or the intricate relations 
between the respiratory and the sleep/wake neuronal net-
works, a particular aspect of this system is that there is a 
constant monitoring of arterial blood gas levels by the 
peripheral and central chemoreceptors. Peripheral chemore-
ceptors are located at the bifurcations of the carotid arteries, 
while central chemoreceptors are found within the brain-
stem, and are respectively responding to low O2 (hypoxia) 
and high CO2 levels (hypercapnia). These sensors are con-
stantly providing a “drive” to the groups of neurons that gen-
erate the respiratory rhythm; the intensity of this drive varies 
with the arterial pressures of O2 (PaO2) and CO2 (PaCO2). In 
a laboratory setting, it is possible to evaluate the intensity of 
these drives, or the chemoreflex functions, by different 
approaches that alter the levels of arterial blood gases. The 
typical responses to hypoxia or hypercapnia are an increased 
neuronal activity of the respiratory control system that is 
transferred to the spinal motoneurons of the phrenic nerve, 
thereby increasing minute ventilation in an attempt to restore 
the levels of arterial blood gases toward normal values. See 

Figs. 2.1, 2.2, and 2.3 for a simplified model of this system. 
One particular aspect of this system for sleep medicine 
emerges from the powerful drive provided by CO2: if for any 
reason the PaCO2 falls below a determined level (called the 
“apneic threshold”), breathing stops, and it is noteworthy 
that the difference between the eupneic and apneic CO2 lev-
els (also called the “CO2 reserve”) varies with age, being 
much smaller in newborns than in adults [1] (Fig.  2.3b). 
Hypoxic or hypercapnic exposures also result in activation of 
the sympathetic nervous system and might induce wakeful-
ness when occurring during sleep.

When considering the physiology of this system for sleep 
medicine in a pediatric population, it is necessary to account 
for the interactions between sleep and breathing, and the 
developmental pattern of the respiratory control system. This 
developmental pattern can conveniently be separated in three 
main periods: fetal life, the early postnatal period (including 
the case of preterm birth, up to 1 year of age), and children. 
This chapter will briefly review the influence of sleep on the 
respiratory control system in the fetus and newborn, and how 
sleep exacerbates respiratory instabilities and apneas. We 
will then describe our current knowledge on the development 
of the respiratory control system during sleep based on stud-
ies from developing human and animal models. The influ-
ence of sex as a factor that modulates the regulation of 
breathing is also briefly discussed. Finally, we will describe 
respiratory control and the influence of sleep across the ages 
from early childhood through adolescence.

�Influence of Sleep on the Respiratory Control 
System

The influence of sleep on the respiratory control system is a 
rich and fascinating field of research, tied to clinical and fun-
damental issues. It is clearly beyond the objectives of this 
chapter to provide a full overview. Several excellent reviews 
have been published over the years [2–4]. We will simply 
highlight the key elements that are pertinent to understand 
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Simplified overview of the respiratory control system
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Fig. 2.1  (a) Sagittal view of the lateral medulla with the main groups 
of respiratory neurons (yellow) extending along the rostro-caudal axis 
up to the dorsal part of the pons. The Vth, VIIth, and XIIth motor nuclei 
are presented (orange) as anatomical landmarks. Groups of intercon-
nected excitatory (green) and inhibitory neurons (red) are distributed 
along the ventral respiratory column. The microcircuit responsible for 
the generation of the breathing rhythm is localized in the PreBötzinger 
complex (PBC). The Bötzinger complex mostly contains expiratory 
neurons inhibiting inspiratory neurons of the PBC. Bulbospinal premo-
toneurons relaying inspiratory or expiratory drives to the spinal moto-
neurons are localized in the ventral respiratory group (VRG). 
Chemoreflex drives are provided by the peripheral chemoreceptors and 
their central projections to the dorsal respiratory group (DRG) of the 
caudal nucleus tractus solitarius (NTS), and by the central chemorecep-
tors of the retrotrapezoid nucleus/parafacial respiratory group (RTN/

pFRG). The pontine respiratory group (PRG) includes the lateral para-
brachial and Kölliker-Fuse nuclei (LPBr–K-F); it regulates the phase 
transition between inspiration and expiration, and is a relay of supra-
pontine afferents contributing to the respiratory drive. K-F also contains 
premotor neurons that control laryngeal muscles and upper airway 
resistances. The strength of the chemoreflex drives is dictated by levels 
of arterial blood gases. (b) Typical respiratory traces in normoxia and in 
response to hypoxia (recorded in a 10-day-old mouse, toward the end of 
the postnatal maturation of the respiratory control system). (c) Typical 
respiratory recording during non-rapid eye movement (non-REM) and 
REM sleep recorded in an adult mouse. Traces show the respiratory 
flow, respiratory frequency (breath-by-breath), electromyogram 
(EMG), and electroencephalogram (EEG). (Redrawn and adapted from 
Smith et  al. [119] with permission from Elsevier. Respiratory traces 
adapted from Refs. [120, 121])
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the intricate relationships. One of the most important drives 
to the respiratory control system arises from the 
wake-promoting neuronal networks localized in the medulla 
and hypothalamic nuclei. When the wake drive disappears 
during non-rapid eye movement (non-REM) sleep, ventila-
tion is slightly reduced, and arterial levels of CO2 increase by 
2–8  mmHg. This reduced respiratory activity leaves the 
respiratory control system under metabolic regulation and 
even a transient and modest reduction in PaCO2 that will 
have no consequence during wakefulness, will induce an 
apnea during sleep.

Furthermore, the resistance of the upper airway increases 
two- to fivefold during sleep. Recordings performed in 
rodents have shown that the activity of the XIIth cranial 
nerve, that innervates the genioglossus muscle, is decreased 
during non-REM sleep compared to wakefulness, and is 
completely suppressed during REM sleep, secondary to the 

withdrawal of excitatory inputs to the airway motor neurons 
[5]. During REM sleep, breathing is generally more variable, 
and the breathing pattern is influenced by non-metabolic 
stimuli [4]. Breathing frequency typically increases during 
periods of rapid eye movements compared to non-REM 
sleep, while tidal volume and minute ventilation are further 
depressed [6]. While some studies have shown that in apneic 
patients, the frequency of apneas is slightly higher during 
REM sleep than during non-REM sleep [7], others have not 
reported such differences [8].

�Control of Breathing in the Fetus

In the fetus, respiratory exchanges occur through the pla-
centa and the maternal respiratory system. However, fetal 
breathing movements (FBM), while limited, are nonetheless 
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Fig. 2.2  Occurrence of fetal 
breathing movements during 
REM sleep in a near-term 
fetal lamb. (Recordings from 
Jansen and Chernick [11]. 
Reprinted with permission 
from The American 
Physiological Society). The 
pontine respiratory group 
exerts a potent inhibition on 
the activity of the respiratory 
neuronal groups of the 
ventrolateral medulla (red 
arrow). However, during 
REM sleep fetal breathing 
movements are visible. The 
pontine inhibition masks the 
effect of peripheral 
chemoreceptors during 
hypoxic exposures, but central 
chemoreceptor exerts a tonic 
activation (see text). See 
legend of Fig. 2.1 for further 
details

2  Control of Breathing During Sleep and Wakefulness in the Fetus, Newborn, and Child
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observable in almost all mammalian species and have been 
particularly well studied in humans [9–11], lambs [12–14], 
and rats [15–17]. FBM play an important role in lung growth 
and respiratory muscle development [18], in particular for 
the diaphragm muscle, which develops concurrently with the 
establishment of the inspiratory drive in utero [16]. In 
humans, FBM can be detected by ultrasound as early as the 
11th week of gestation [19]. At this early stage the FBM are 
continuous with a regular pattern, but they become clearly 
irregular and episodic in nature during the last trimester of 
gestation [9, 20, 21]; an episode of breathing can last 
10–30 minutes with a mean frequency around 60/minute and 
is associated with increased body movements, decreased 
heart rate, and increased heart rate variability [10, 20, 22]. 
Between episodes, there is no breathing activity, and this 
“apneic” period might last up to 120 minutes [10, 20]. This 
developmental period of FBM is associated with the begin-
ning of a clear differentiation of the low- and high-voltage 

electrocortical activity that are the signatures of sleep/wake 
states [23].

Interestingly, similar steps for the appearance of FBM and 
their association with cortical brain organization for sleep 
are observed in fetal sheep, which has been for many decades 
a powerful animal model to characterize the physiology of 
breathing before birth [11, 12, 14]. During the last 3 months 
of gestation, healthy non-anesthetized fetal lambs spend 
roughly 40% of their time in a state characterized by low-
voltage electrocortical activity, with rapid eye movements 
(REM sleep state), 50% of the time is characterized by high-
voltage electrocortical activity associated with non-rapid eye 
movements (non-REM sleep state) [12, 24], and the remain-
ing time is classified as an undetermined state. In fact, the 
typical “wake” behavior (opened eyes with gross body and 
head movements) is only observed after birth [25]. FBM 
typically occur during REM sleep in fetal lambs [26], and in 
human [20], and are notably absent during non-REM sleep 

Development of the chemical drives of the respiratory control system
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Fig. 2.3  (a) Schematic representation of the early postnatal maturation 
of the central and peripheral components of the chemoreflex drives to 
breath, showing general trends of increased efficiency with maturation. 
(b) Maturation of the central respiratory drives widens the “CO2 
reserve,” driving eupneic breathing further away from the apneic 
threshold. (From Alvaro R [122]. Reprinted with permission from 
Springer Nature). (c) Postnatal maturation of the hypoxic ventilatory 

response in mice. Minute ventilation recorded by whole body plethys-
mography at postnatal days 3–4 (newborn) and 12 (mature). Graph 
shows percentage changes of minute ventilation (Tidal volume × 
Respiratory frequency) vs baseline value during a 20-minute exposure 
to 10% O2. Note the sustained response in mature animals, and the 
biphasic pattern of the newborn, with a peak followed by a decline to 
baseline values. Data from Joseph & Bairam laboratories
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[24, 25]. The isolated breaths during non-REM sleep are 
associated with body movements and can represent tonic 
diaphragmatic discharges rather than typical FBM [25].

The precise mechanisms explaining the absence of FBM 
during non-REM sleep remain unclear, but it is worth men-
tioning that sections through the upper pons or mid-collicular 
regions induce FBM independently of the state of electrocor-
tical activity (REM or non-REM) [16, 27–29] (Fig.  2.2). 
Therefore, during non-REM sleep state, there is a powerful 
inhibitory pathway arising from the lateral pons and mid-
brain contributing to reduce the activity of the medullary 
respiratory rhythm generator.

Collectively, the pattern of fetal FBM during the course of 
gestation has been suggested to be an indicator of fetal health 
and nervous system development [30–32], providing infor-
mation about the developmental course of the respiratory 
control system in utero [9]. Notably, an absence of FBM on 
ultrasound examination can be used to detect a short-term 
risk of preterm birth [33].

�Regulation of FBM by Chemoreflex Drives

�Hypoxic Drive and Peripheral Chemoreceptors
Fetuses live in a severe hypoxic environment with PaO2 
being low (about 25–30 mmHg) compared to after birth (55–
70  mmHg) or standard levels beyond the postnatal period 
(95–100 mmHg). Despite this very low PaO2, the activity of 
the peripheral chemoreceptors has been recorded in lambs 
and displays a functional response to hypoxia [34]. However, 
hypoxia [12, 13, 35], or experimental anemia [36], drasti-
cally inhibits the frequency and amplitude of the FBM, and 
also reduces the proportion of time in REM sleep state. A 
prolonged exposure to hypoxia for 24 hours inhibits FBM 
only during the first few hours of exposure [37]. After elec-
trolytic lesion of the lateral pons, in a region corresponding 
to the lateral parabrachial and Kölliker-Fuse nuclei [29], 
hypoxic exposures increase FBM, showing the central origin 
of this inhibition (Figs. 2.1 and 2.3). Interestingly, inhibition 
of FBM in REM sleep state is stronger in fetus near term of 
gestation suggesting an age-dependent maturity of this cen-
tral inhibitory pathway [12]. Finally, it is worth mentioning 
that hyperoxia has no effect on FBM or sleep state, indicat-
ing that fetal PaO2 does not limit the normal expression of 
FBM [35].

�Hypercapnic Drive and Central Chemoreceptors
In response to hypercapnia or hypocapnia during REM sleep, 
there are respectively an increased and a decreased incidence 
and amplitude of FBM [28, 38]. The response to hypercapnia 
is stronger in near term than in younger fetuses [13, 35, 39]. 
Interestingly, the effect of age and CO2-concentration was 
evaluated in 30 human fetuses divided into 3 groups of 
24–26, 28–30, and 32–34 weeks of gestation, while mothers 

breathed CO2 at 2% or 4%. These fetuses show an age- and 
CO2-concentration-dependent increase in FBM response, 
with higher responses at 32–34 weeks than 24–26 weeks of 
age [9].

Hence, in the fetus, the sensory mechanisms that underlie 
the responses to hypoxia and hypercapnia develop during 
gestation, and FBM are predominantly controlled by central 
mechanisms rather than by peripheral chemoreceptors (see 
Fig. 2.2). Although high CO2 levels (hypercapnia) appear to 
be an important stimulus to regulate FBM, hypercapnia does 
not induce continuous breathing during non-REM sleep, fur-
ther supporting the suggestion that central inhibitory mecha-
nisms on the respiratory control system are strong during the 
fetal life. Maternal and intrauterine conditions can modify 
FBM pattern and several studies suggest that these factors 
can induce changes in the normal developmental course of 
the respiratory control system after birth, such as alteration 
of the ventilatory response to hypoxia [40], increased fre-
quency of apnea [41], and disruption of the brainstem respi-
ratory rhythm generation [42]. Different mechanisms have 
been proposed to explain such alterations in respiratory con-
trol in neonates born from stressed mothers, such as distur-
bances in neurotransmitter function (GABAergic and 
serotoninergic systems [41, 43] and enhancement in the 
neuro-inflammatory processes in the brainstem and spinal 
cord [42].

�Control of Breathing in the Newborn

After the transition from liquid to gas breathing at birth, and 
once the continuous breathing pattern has been established 
(a topic not covered here), wakefulness and arterial blood 
gases remain the most powerful respiratory drives. As men-
tioned earlier, however, the “CO2 reserve”—which repre-
sents the tolerance of breathing to a drop of PaCO2 before an 
apnea occurs—is much smaller in newborn (about 1.0–
1.3  mmHg in term and preterm neonates) than in adults 
(around 3.5 mmHg) [1] (Fig. 2.3b). With this small reserve, 
periodic breathing and apneas are commonly observed. In 
term infants at a mean age of 27 days, even a very small, 
spontaneous, increase in ventilation (frequency increasing 
from 32.8 to 33.9 breaths/min) can “precipitate” a decrease 
in PaCO2 below the apneic threshold (from 39.7 to 
38.7 mmHg) and initiate a sequence of periodic breathing or 
apnea [1]. In preterm neonates, the apneas during periodic 
breathing are typically associated with decreased arterial 
oxygen saturation [44, 45]; thus, this is a highly significant 
clinical concern exposing the newborn to intermittent 
hypoxia.

Postnatal development of the respiratory control system 
involves the peripheral and central chemoreceptors, the cen-
tral integration pathways in the brainstem, and the effector 
muscles (respiratory diaphragmatic and intercostal muscles) 
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[46]. This maturation widens the CO2 reserve, and conse-
quently the newborns become less prone to exhibit recurrent 
apneas (Fig. 2.3). In humans, the maturity of the respiratory 
control system occurs progressively during the first year of 
life, in parallel with the maturation of sleep architecture [23, 
47, 48]. The low- and high-voltage electrocortical activity in 
the fetus correspond in the newborn to active (AS) and quiet 
sleep (QS), respectively, and are considered as precursors of 
infant and adult REM and non-REM sleep. During the first 
postnatal year, there is a progressive increase in the propor-
tion of time spent in AS and wakefulness, with a decrease in 
the proportion of time spend in QS [23, 49, 50].

Additional insight into mechanisms underlying ventila-
tory pattern instability during infancy can be derived from 
the concept of loop gain (LG), a dimensionless number that 
describes the stability of the respiratory control system [51]. 
When LG is low, respiratory control is stable and rapidly 
returns to a stable condition after a perturbation such as a 
sigh or movement. High LG indicates a tendency for breath-
ing to become unstable and oscillate when the respiratory 
control system is perturbed. Calculation of LG from the ven-
tilatory response to spontaneous sigh, in sleeping (QS) 
infants over the first 6 months of life, revealed low LG in 
1–2  days after birth (stable), steadily increasing LG until 
~4 weeks of age (increasing instability), followed by gradual 
fall in LG to a more stable level by 6 months of age (late 
postnatal stabilization) [51, 52]. Analysis of the components 
that comprise LG strongly indicated that early postnatal ven-
tilatory pattern instability and subsequent stabilization 
reflect, in large part, maturation of peripheral chemoreceptor 
responses [51].

The contribution of the peripheral chemoreceptors to rest-
ing normoxic ventilation can be determined by suddenly 
exposing infants to hyperoxia while measuring the immedi-
ate response of minute ventilation within 15–30 seconds (the 
“hyperoxic test”). The sudden rise in PaO2 silences the 
peripheral chemoreceptors, leading to sudden withdrawal of 
their input; the resulting drop in minute ventilation reflects 
the proportion of resting drive from the peripheral chemore-
ceptors. Using this approach, the contribution of the periph-
eral chemoreceptors to normoxic resting ventilatory drive in 
full-term infants during QS was found to be ~6% at 24 hours, 
~25% at 10 days, ~40% at 10 weeks, and ~50% at 6 months 
[53, 54]. This remarkable developmental increase in periph-
eral chemoreceptor drive during the first 6 months of life is 
believed to be responsible, in large part, for the changes in 
LG noted above and the high degree of ventilatory pattern 
instability observed during infancy [51].

When LG is high, any disturbance affecting breathing 
(such as a sigh or body movement), will likely trigger peri-
odic oscillations of ventilatory drive. Whether the respiratory 
control system oscillates with or without periodic apnea 
(periodic breathing) depends on the arterial PCO2 and 
whether it dips below the apneic threshold as ventilatory 

drive oscillates [55]. A recent study using respiratory induc-
tance plethysmography to record breathing in sleeping (QS) 
preterm infants at 36  weeks post-menstrual age confirmed 
that LG, determined from the ventilatory response to sponta-
neous sighs, strongly correlated with the percentage of peri-
odic breathing [56]. This finding further unifies postnatal 
developmental changes in LG with numerous studies show-
ing a low incidence of periodic breathing in the first days of 
life, an increase in periodicity until about 4 weeks of age, and 
a decline thereafter [57, 58]. A full discussion of LG and 
ventilatory pattern maturation are beyond the scope of this 
chapter. The reader is referred to a recent in-depth review of 
the numerous complex factors influencing ventilatory stabil-
ity during infant development [51].

�Regulation of Breathing in Neonates 
in Relation to Sleep, Chemoreflex Drives

�Normoxic Breathing Pattern in Neonates 
in Relation to Sleep States
In newborns, it is generally accepted that minute ventilation 
is higher during AS, due to a higher respiratory frequency 
[59], and this contributes to a greater variability of arterial 
oxygen saturation [50] and of PaCO2. Although apnea and 
periodic breathing are present in both AS and QS, their prev-
alence is higher in AS than in QS [60–62]. The frequency 
and duration of these apneic events are typically inversely 
proportional to the gestational age [49, 52, 63–65] and pro-
gressively decrease during the first year of life in either pre-
term or term infant [59, 62]. In preterm neonates, immaturity 
of the respiratory control system and exaggerated laryngeal 
chemoreflexes [66] greatly contribute to increase the fre-
quency of apneas. Progressive development of these ele-
ments toward a mature phenotype contributes to a gradual 
reduction in apnea frequency [67] that becomes comparable 
to full-term infants near 1 month of corrected gestational age 
(44–46 weeks) [62, 68]. Interestingly, respiratory recordings 
performed in rats at 1, 4, 7, 12, 21, and 90 postnatal days 
illustrate this developmental sequence and the progressive 
establishment of a regular breathing pattern at rest, associ-
ated with a decreased apnea frequency [66, 67] (Fig. 2.4).

�Hypoxic Ventilatory Responses (HVR) 
in Neonates in Relation to Sleep State
This response has been characterized in different mamma-
lian species including in preterm and term human neonates 
[69–74]. The main feature of the hypoxic ventilatory 
responses (HVR) at this stage is its biphasic pattern, with an 
initial increase in ventilation, followed by a “roll-off” or 
inhibitory phase. During this inhibition, minute ventilation 
may decrease below the baseline normoxic level; the magni-
tude of this inhibition gradually decreases with age; see 
example from developing rats (Fig.  2.5). It is now under-
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stood that the initial phase of increase in ventilation results 
from stimulation of peripheral chemoreceptors (primarily 
located in the carotid bodies), while the late depressive phase 
is mediated by central inhibitory pathways under the control 
of mechanisms overriding the excitatory inputs from periph-
eral chemoreceptors (changes in metabolism, in cerebral cir-
culation, and in inhibitory/excitatory neurotransmitters; 
Figs. 2.3c and 2.5) [72–75].

In relation to sleep state, studies in preterm and term 
infants showed that this biphasic response is present in both 
AS and QS [60] and persists until at least 6 months of age in 
infants born at term [76]. In humans, the sleep state did not 
affect the magnitude of the HVR [76, 77], but in lambs, ven-
tilation during the late phase of a hypoxic test was higher in 
QS than AS [78], illustrating possible inter-species effects.

One study found that in infants born at term and that were 
followed at the age of 2–5  weeks, 2–3  months, and 
5–6 months, hypoxic exposures during AS are systematically 
associated with arousal [76], while this occurs only in half of 
the infants during QS [76]. Arousal was related to a faster 
and deeper decrease in arterial oxygen saturation, suggesting 
that this awakening during hypoxia is a protective mecha-
nism against further desaturation. Furthermore, during QS, 
and for the exposures that did not induce an arousal, the 
HVR was clearly following a maturational course that was 
not fully completed by 6  months of age since the older 
infants did not demonstrated a sustained HVR throughout 
the hypoxic exposure (15% O2—5 minutes). This leads to the 
suggestion that significant development of the HVR occurs 
in QS [76], and that this developmental course is somehow 
masked during QS sleep. These developmental changes in 
the pattern of the hypoxic response with age are related to 
maturation of O2-sensing mechanisms and establishment of 
functional synapses in peripheral chemoreceptors [73–75, 
79–81], to a reduced central inhibitory mechanism, and to 
development of excitatory pathways during hypoxia [72, 74, 
75, 82].

�Hypercapnic Ventilatory Response (HcVR) 
in Neonates in Relation to Sleep State
Under normoxic conditions, ventilation is largely dictated by 
arterial PCO2, which is sensed mainly centrally within the 
brainstem. Nonetheless, the contribution of the peripheral 
chemoreceptors to hypercapnic ventilatory response (HcVR) 
is estimated to be around 20–40% depending on the species 
studied [17, 82]. Although CO2 responsiveness in term 
infants is nearly mature at birth [53, 83], it increases progres-
sively after birth in preterm neonates [69, 83]. In newborn 
animal models, the response to hypercapnia undergoes matu-
rational changes during the first 2  weeks of life, and this 
maturation involves both the central (brainstem) and periph-
eral (carotid body) sites [17, 75, 82, 84, 85]. Furthermore, an 

additive and/or synergistic interaction between hypoxia and 
hypercapnia is also age-dependent in human [53] and animal 
[17, 85] during the postnatal development. However, a par-
ticularity in response to hypercapnia in preterm is that CO2 
administered during periodic breathing increases minute 
ventilation and the respiratory frequency. Contrastingly, if 
administered during a regular breathing pattern, CO2 
increases tidal volume [61]. In addition, these responses 
were not affected by sleep state. The changes in CO2 response 
with age involve cellular, molecular, and genetic modifica-
tions, as well as modifications in neurotransmitter patterns in 
a site-dependent manner [17, 69, 75, 80, 81].

�Alteration of Ventilatory Chemoreflexes 
in Neonates by Chronic Intermittent Hypoxia

The succession of hypoxemic events associated with apneas 
and periodic breathing exposes the newborn infants to 
chronic intermittent hypoxia. It is increasingly recognized 
that apneic preterm infants have quantitative and qualitative 
impairments of the peripheral and central ventilatory control 
system that, in turn, favor further development of respiratory 
instabilities. Compared to non-apneic, apneic neonates have 
lower basal arterial oxygen saturation [86], lower ventila-
tion, and higher breathing irregularities [45, 87–89]; a weak 
response to hypercapnia under normoxic [88, 90–92] or 
hypoxic conditions [1, 17]; and, alterations of the initial 
phase of the ventilatory response to hypoxia or hyperoxia 
[87, 88, 90, 93]. The mechanisms underlying these effects 
are related to an immature response to O2–CO2 interaction 
and to an elevated peripheral chemosensitivity to hypoxia 
[87, 88, 93]. The elevated peripheral chemosensitivity might 
further destabilize breathing by driving arterial PCO2 below 
the apneic threshold in response to transient (and small) 
hypoxemic/hypercapnic events [70, 87, 88, 93, 94]. 
Altogether this participates in maintaining and increasing 
respiratory irregularities [45].

Similar to what is observed in preterm neonates, exposure 
to intermittent hypoxia in newborn rats enhances the carotid 
body chemosensory activity in response to hypoxia [95, 96] 
with greater magnitude than that observed in adult rats [97]. 
Exposure to intermittent hypoxia also decreases normoxic 
ventilation, increases the frequency of apnea [98, 99], and 
enhances the initial increase in ventilation in response to 
hypoxia [95, 99], while it reduces the late phase [99] and 
disrupts the ventilatory and chemoreceptor responses to O2–
CO2 interactions [100]. Peripheral and central inflammatory 
reactions and production of reactive oxygen species in the 
central and peripheral nervous system have been proposed to 
mediate some effects of intermittent hypoxia on the breath-
ing control system [101–104].
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�Sex and Control of Breathing at Neonatal Ages

The effect of sex in respiratory control before puberty and in 
neonates has not been adequately investigated, yet some data 
highlight, either directly or indirectly, its importance. The 
best example is that males are at higher risk for respiratory 
distress syndrome and sudden infant death syndrome [105], 
in which protective respiratory chemoreflexes are thought to 
be impaired. Suffocation accidents are also more often fatal 
in males than in females [106], and, finally, male neonates 
also develop more bronchopulmonary dysplasia and are less 
resistant to hypoxemic/ischemic cerebral injuries than 
females [107]. In a recent study, it has been found that treat-
ment with caffeine for apnea in preterm infants is maintained 
for longer period in males than in females, indirectly sug-
gesting a faster maturation of respiratory control in females 
than in males [108]. In this line of reasoning, experimental 
studies in newborn rats showed that males have more vari-
abilities in respiratory frequency, tidal volume, and higher 
apnea frequency [41, 109]. Our understanding of such het-
erogeneity between males and females remains limited but 
some recent reviews discussed eventual underlying mecha-
nisms [42, 109].

�Respiratory Control in Older Children 
and Effects of Sleep State

Although respiratory control has been well studied in pre-
term and term infants, there are only a few studies in older 
children and very few that span the entire age range of child-
hood. There are even fewer studies that have examined the 
effects of sleep per se on respiratory control in older children 
and adolescents. In the following paragraphs, we describe 
normal ventilation and ventilatory responses to O2 and CO2 
in older children. We do not address normal upper airway 
motor control or hypoxia and hypercapnia as stimuli for 
arousal from sleep, as these topics are addressed in Chaps. 4 
and 36, respectively.

�Respiratory Rate, Tidal Volume, and Minute 
Ventilation: Effects of Age and Sleep

Respiratory rate (RR) is highest during the newborn period 
and, in general, decreases with age during the first year of 
life [110] as breathing becomes more regular by about 
8 months of age and the difference in RR between REM and 
non-REM sleep narrows [111]. A recent multicenter study of 
209 healthy children ranging in age from 1 to 18 years con-
firmed that RR in quiet sleep is highest in infants and steadily 

decreases across the entire age spectrum [112] (Fig.  2.6). 
Specifically, RR in year 1 averaged ~22 breaths/min and by 
age mid-late adolescence average RR was ~15 breaths/min 
with a steady decrease over the age spectrum [112]. 
Interestingly, the variation in normal RR during quiet sleep 
was large, such that there was significant overlap in normal 
RR for 1- vs 18-year-old healthy subjects (Fig. 2.6). In nor-
mal, healthy adolescents, RR was highest during wakeful-
ness, significantly decreased during stage 2 and 4 non-REM 
sleep, and intermediate in REM sleep [113]. Similarly, min-
ute ventilation was highest during wakefulness, decreased 
about 8% during stage 2 and 4 non-REM sleep, and was 
intermediate in REM sleep. These changes in minute ventila-
tion were entirely due to sleep-related changes in RR, as tidal 
volume (VT) did not vary at all with sleep state [113]. As 
expected, the variability (coefficient of variation) for minute 
ventilation, VT, and RR were all significantly higher during 
wakefulness and REM sleep compared to non-REM sleep in 
normal adolescents [113].

In the same study of normal adolescents, as RR slowed 
during non-REM sleep, inspiratory time (TI) increased 25%, 
expiratory time (TE) did not change, and TI/Ttot did not 
change [113]. The increase in TI in non-REM sleep, with no 
associated changes in VT, resulted in a non-REM sleep-
related 20% decrease in VT/TI (ml/s, mean inspiratory flow). 
In contrast to normal infants, which exhibit paradoxical 
inward rib cage motion (PIRCM) during REM sleep, PIRCM 
was not observed in any of the normal, healthy adolescents 
during REM sleep [113]. In a similar study of otherwise 
healthy adolescents diagnosed with moderate–severe asthma, 
paradoxical inward rib cage motion was observed during 
REM sleep in every subject, indicating that asthma alone can 
cause REM-sleep-related PIRCM in otherwise normal ado-
lescents [114].
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Fig. 2.6  Postnatal changes in respiratory rate during non-REM sleep. 
(From Scholle et al. [112]. Reprinted with permission from Elsevier)
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�Ventilatory Response to Hypoxia 
and Hypercapnia: Effects of Age and Sleep

Beyond the first year of life, there are very few studies of 
ventilatory control in childhood and only one study spans the 
age range across the pediatric and adult age range. Hypoxic 
and hypercapnic ventilatory responses were studied in 59 
healthy subjects ranging in age from 4 to 49  years [115]. 
Hypercapnic ventilatory responses (HcVR) were measured 
with a hyperoxic rebreathing method as described by Read 
[116] and hypoxic ventilatory responses (HVR) were mea-
sured using an isocapnic rebreathing method of Rebuck and 
Campbell [117]. Due to the very wide age and size range of 
the subjects, results were normalized by body weight [115]. 
The slope of the HcVR (normalized to weight) was highest 
in the youngest children, decreased with age until ~ age 
10–15  years, and did not change thereafter. Similarly, the 
slope of the HVR (normalized to body weight) was greatest 
in the youngest children, decreased until ~ age 10 years, and 
remained unchanged thereafter in adults up to 49 years of 
age [115]. Although there is no consensus on the best 
approach to normalizing ventilatory response data, it is 
important to note that weight-normalized HVR and HcVR 
did not change between ~ ages 10 and 49 years, even though 
weight in a normal child nearly doubles between age 10 and 
18. Another study of children 7–18 years of age found that 
the normalized (to body weight, surface area, or lean body 
mass) ventilatory response to CO2 was highest in the young-
est children, declined rapidly from age 7–8 to age 11–12, and 
then stabilized to age 18 [118]. However, the same study did 
not find differences in the hypoxic ventilatory responses of 
children from 7 to 18 years of age.
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