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Humoral and Other Sleep-Promoting 
Factors

Éva Szentirmai and Levente Kapás

The idea that circulating “humors” may be the ultimate cause 
of sleep dates back to ancient scientists and philosophers, but 
only at the beginning of the last century was the concept first 
addressed experimentally. With the advance of experimental 
techniques and the discovery of the first hormone, secretin, 
the search for humoral sleep factor(s) appeared to be techni-
cally possible and theoretically justified. Kuniomi Ishimori in 
Japan and Henri Pieron in France independently demon-
strated that injection of brain extracts or cerebrospinal fluid 
(CSF) from sleep-deprived dogs to non-sleep-deprived recip-
ients causes robust increases in behavioral sleep [1, 2]. Pieron 
named the putative sleep-inducing substance “hypnotoxin.” 
Schnedorf and Ivy reproduced Pieron’s findings which gave 
further support to the hypnotoxin theory and inspired further 
search for the elusive sleep factor [3]. Kornmüller in 1961 and 
Monnier in 1963 used parabiotic cats and rabbits and demon-
strated that thalamic stimulation of the donor elicits increased 
cortical slow-wave activity and sleep in the recipient animals 
[4, 5]. These experiments led to the isolation of delta sleep-
inducing peptide (DSIP) [6]. A Japanese group led by Shojiro 
Inoue extracted a sleep-promoting substance from the brain-
stem of sleep-deprived rats in the early 1970s, and later they 
identified one component as uridine and another component 
as the oxidized form of glutathione (reviewed in [7]).

The above attempts led to the identification of substances 
with variable and generally modest effects on sleep, and the 
field all but gave up on pursuing their further investigation. 
One series of studies, however, left a lasting effect on sleep 
research. In the late 1960s, Pappenheimer and his coworkers 
undertook a series of studies on extracting sleep-promoting 
substance, which was initially found in the CSF of sleep-
deprived goats [8], subsequently in bovine and rabbit brains 
and CSF, as well as in human urine (reviewed in [9]). The 
somnogenic component of the sleep-promoting material was 
identified as muramyl peptides [10]. Since muramyl peptides 

are bacterial cell wall fragments, not produced by eukary-
otes, there was a general skepticism about their physiologi-
cal role as endogenous sleep-promoting substances. Their 
identification as somnogenic substances, however, led to fur-
ther investigation of their actions and to the important dis-
covery that proinflammatory cytokines, endogenous peptides 
produced mainly by macrophages exposed to bacterial cell 
wall components, possess strong sleep-promoting activities. 
Furthermore, the recent recognition of the microbiota as a 
source of brain signaling and the recognition that products of 
the intestinal bacteria translocate to the internal environment 
of the host put the possible relevance of bacterial products in 
sleep regulation in a new perspective.

�Proinflammatory Cytokines

It has been known since the 1950s that systemic infections 
and administration of components of bacteria, such as endo-
toxin, elicit fever through the stimulation of the production 
of a circulating pyrogen, which was called “endogenous 
pyrogen” at that time. Two lines of evidence suggested that 
the endogenous pyrogen could also be a sleep-inducing fac-
tor. One, in addition to fever, acute systemic infections are 
also characterized by increased sleepiness. Two, cell wall 
components of bacteria that elicit sleep also stimulate the 
production of endogenous pyrogen by immune cells.

In the 1980s, three laboratories characterized the sleep 
effects of purified endogenous pyrogen obtained from the 
supernatants of macrophages or astrocytes activated by heat-
killed bacteria. Krueger and coworkers demonstrated that 
intravenous and intracerebroventricular (icv) administration 
of purified endogenous pyrogens induce prolonged increases 
in non-rapid eye movement sleep (NREMS) and fever in rab-
bits [11]. The effects were attributed to interleukin-1 (IL-1), 
which was the only known endogenous pyrogen at that time, 
but the actual structure of the active component of the injected 
sample was unknown. Tobler and coworkers demonstrated 
that icv administration of astrocyte-derived endogenous pyro-
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gen elicits fever and enhanced slow-wave activity of the elec-
troencephalogram (EEG), a measure of sleep intensity [12]. 
In cats, icv administration of purified human IL-1 caused 
dose-dependent changes in sleep, the lower doses being som-
nogenic, while higher doses wake-promoting [13].

Subsequent studies using recombinant IL-1 confirmed 
that central or systemic administration of IL-1 induces 
NREMS in rabbits [14], rats [15], and mice [16]. Circulating 
IL-1β acts on a peripheral target to induce sleep as evidenced 
by the effectiveness of vagotomy to block the somnogenic 
actions of moderate doses of systemically administered 
IL-1β [17, 18]. However, when high doses of IL-1β are 
administered peripherally or directly into the cerebral ven-
tricles or brain tissue, it also has the potential to act on cen-
tral sleep-promoting mechanisms. The site of the central 
actions is unclear, but the locus ceruleus [19], dorsal raphe 
[20], prostaglandin D2 (PGD2)-sensitive basal forebrain 
region [21], and median preoptic area [22] have been sug-
gested, along with growth hormone-releasing hormone-
receptive [23] and serotonergic mechanisms [24, 25]. The 
role of prostaglandins in IL-1β-induced fever has been well 
established, but their contribution to its somnogenic actions 
is controversial [26, 27]. Extensive evidence indicates, how-
ever, that sleep increases in response to IL-1β are not a direct 
consequence of its pyrogenic actions (reviewed in [28]).

In the second half of the 1980s, it became apparent that 
IL-1 is not the only endogenous pyrogen. White blood cells 
that are activated by components of the bacterial cell wall 
secrete other bioactive peptides into the circulation that 
induce fever and have complex effects on immune functions 
(reviewed in [29]). Screening of these peptides revealed that 
interferon α2 (IFNα2) [30] and tumor necrosis factor-α 
(TNFα) [14, 31] also have NREMS-promoting properties.

TNFα, similarly to IL-1β, is a proinflammatory cytokine 
with multiple target sites and complex effects on immune 
functions and metabolism. Its primary source is the immune 
cells, such as macrophages, dendritic cells, and T lympho-
cytes, but it is also expressed in the brain by microglia, astro-
cytes, and neurons [32–34]. After the identification of TNFα 
as another endogenous pyrogen produced by activated white 
blood cells [35], it was soon established that systemic or cen-
tral administration of TNFα induces inflammatory responses, 
including sickness response characterized by increased sleep, 
fever, and loss of appetite (reviewed in [36]). The NREMS-
promoting effects of TNFα are mediated by the TNF receptor 
1 [16] and have been described in rabbits, sheep, mice, and 
rats [14, 16, 26, 31, 37]. TNFα production also correlates with 
sleep-wake activity. In rats, hypothalamic levels of TNFα 
mRNA and TNFα protein are higher during the rest phase 
[38, 39], and sleep loss elevates TNFα mRNA expression in 
the cerebral cortex and basal forebrain [40].

Similarly to IL-1β, vagotomy blocks the sleep-promoting 
effects of systemically administered TNFα pointing to a 
peripheral site of action [41, 42]. Direct delivery of TNFα 

into the brain also induces NREMS, possibly acting in the 
locus ceruleus [19], the preoptic region [43], and the PGD2-
sensitive, sleep-promoting zone of the basal forebrain [21]. 
Nitric oxide and prostaglandins have an established role in 
mediating the sleep effects of TNFα [26, 44, 45]. While the 
role of increased secretion of proinflammatory cytokines in 
sleep responses to systemic infections and inflammatory pro-
cesses is widely accepted, their contribution to the regulation 
of sleep-wake activity under healthy conditions appears to be 
less clear. The role of endogenous TNFα in sleep regulation 
was first studied by using anti-TNF antibodies, TNF-binding 
protein, and fragments of TNF receptor 1. The general out-
come of those experiments was that molecules that bind to 
and neutralize endogenous TNFα decrease the time spent in 
NREMS, which pointed to the possibility that TNFα may 
contribute to the maintenance of spontaneous sleep (reviewed 
in [46]). Subsequent advances in TNFα biology revealed fur-
ther complexities in TNFα biochemistry that may necessitate 
the reinterpretation of the initial findings. TNFα is a trans-
membrane protein which can function in its membrane-bound 
form, or it is proteolytically cleaved with the subsequent 
release of the trimeric soluble TNFα, which is the form of 
TNF present in the extracellular environment, including the 
plasma (reviewed in [34]). Antibodies and receptor fragments 
which were used in sleep studies (e.g., [47, 48]) not only bind 
and neutralize soluble TNFα molecules but also are ligands 
for membrane-bound TNF and may, in fact, trigger increased 
TNFα secretion (reviewed in [49]).

The role of endogenous TNFα in sleep regulation has also 
been addressed by using mouse strains with deficient TNF sig-
naling. Studies with TNF receptor-deficient mice led to dispa-
rate findings on their sleep behavior. Both reduced and 
unchanged NREMS were reported in TNF receptor 1 knockout 
(TNF R1 KO) mice [16, 50] and TNF R1 and R2 double-KO 
mice [51, 52]. TNF R2 mice had decreased rapid eye move-
ment sleep (REMS) but normal amounts of NREMS [50]. 
Deficiency of the receptor ligand, as demonstrated in TNFα 
KO [53] and TNFα and lymphotoxin-α double-KO mice [50], 
does not result in reduced NREMS. Regarding REMS, some-
what consistent results have been obtained in experiments 
using exogenous TNFα administration and in studies on spon-
taneous sleep in KO models. Icv or systemic injection of TNFα 
suppresses REMS in mice, rats, and rabbits [14, 41, 54], while 
REMS is increased in both TNF R1 and R2 double-KO mice 
[51] and in TNFα KO mice [53]. This suggests that endoge-
nous TNFα may have a tonic REMS-suppressive activity.

Acute and chronic sleep loss or sleep fragmentation results 
in a proinflammatory state manifested as increased expres-
sion of IL-1β and TNFα and activation of NF-κB signaling in 
the brain and elevated circulating proinflammatory cytokine 
levels (e.g., [55–61]). Sleep rebound after sleep deprivation is 
attenuated by a TNF receptor fragment and anti-IL-1β anti-
bodies [62, 63] and in TNF R1 and IL-1 R1 double-KO mice 
[64] suggesting a possible role for proinflammatory cytokines 
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in response. Studies using TNF receptor and ligand KO mod-
els, however, did not confirm that TNF signaling is necessary 
for these rebound responses [50, 53].

In summary, TNFα and IL-1β have the potency to increase 
NREMS acting on both peripheral and central targets. A few 
cytokine-sensitive brain sites have been identified, but addi-
tional studies will be required to construct a comprehensive 
map of the central targets. Attempts to acutely neutralize 
soluble TNF and IL-1 and the constitutive KO models all 
have their limitations. To gain a clear picture of the role of 
endogenous cytokines in maintaining spontaneous sleep will 
require the use of inducible KO models or pharmacological 
approaches that do not have the potential to stimulate the 
release of proinflammatory cytokines. Three of the endoge-
nous pyrogens, IFNα, TNFα, and IL-1β, show striking simi-
larities in their effects on body temperature and 
NREMS.  Endogenous prostaglandins provide a unifying 
mechanism for the pyrogenic actions of these molecules 
[29]. The identification of similar unifying mechanism for 
their somnogenic actions would provide a valuable insight 
into fundamental mechanisms of sleep regulation.

�Adipokines

In addition to its role in energy storage, the white adipose tis-
sue is also recognized as an endocrine organ. Hormones 
secreted by the adipose tissue are collectively referred to as 
adipokines. Adipokines, such as leptin, adiponectin, and 
resistin, have diverse effects on metabolism by acting on mul-
tiple tissues, including the brain (reviewed in [65]). Leptin is 
a 167-amino acid peptide produced by white adipose tissue in 
proportion to the amount of body fat, thereby reflecting the 
status of long-term energy stores. The most widely recog-
nized action of leptin is its potency to reduce body weight by 
decreasing food intake and increasing energy expenditure, 
but leptin may also provide a link between metabolism and 
the regulation of sleep. Systemic or icv administration of 
leptin increases NREMS in rats, suggesting that leptin 
released from the adipose tissue may be a sleep-promoting 
molecule [66, 67]. Obesity, however, leads to increased sleep 
in rats and mice independently of leptin as shown by increased 
sleep amounts in obese rodents with deficient leptin signaling 
[68–71]. A major source of circulating TNFα is the white adi-
pose tissue; thus TNFα is often regarded as an adipokine. 
Within adipose tissue, macrophages account for nearly all 
TNFα production [72]. Circulating TNFα concentration rises 
with increasing obesity and correlates with insulin resistance 
[73]. Increased sleep observed in obese rodents may be linked 
to enhanced production of TNFα [68–70, 74, 75].

In addition to adipokines, lipolysis itself may result in the 
production of sleep-promoting signals. In nocturnal rodents, 
the feeding period (dark phase) is characterized by lipogene-
sis, while in the rest phase (light), when feeding is minimal, 

lipolysis provides the main energy source. By using sequen-
tial infusions of lipolytic and lipogenic hormones, the lipo-
genic and lipolytic phases can be reversed in these nocturnal 
animals, which leads to the complete reversal of the sleep-
wake cycles to a diurnal pattern [76]. Further, restricting feed-
ing to the light period also causes the reversal of the lipolytic 
and lipogenic phases with the concomitant reversal of the 
sleep-wake pattern [77–80]. In addition, strong lipolytic sig-
nals, such as IL-1β, TNFα, epinephrine, β3-adrenergic recep-
tor (β3-AR) activation, and 2-deoxy glucose, all enhance 
NREMS [14, 37, 53, 81–83].

�Gastrointestinal Hormones

The relationship between sleep and energy balance has long 
been recognized. In general, feeding and positive energy 
states facilitate sleep, while fasting and negative energy bal-
ance induce wakefulness (e.g., [74, 84–86]). This relationship 
pointed to the possible role key metabolic organs as well as 
satiety and orexigenic hormones in sleep signaling. The best 
characterized satiety hormone is cholecystokinin (CCK), a 
product of the “I” enteroendocrine cells of the small intes-
tines, which is produced postprandially in response to dietary 
fat and protein, and its systemic administration suppresses 
feeding [87]. The actions of ghrelin, a product of the X/A-like 
cells of the gastric mucosa, are the opposite of those of CCK. 
Ghrelin secretion increases under conditions of negative 
energy balance, such as starvation and cachexia, and declines 
under conditions of positive energy balance, such as feeding 
and obesity [88]. Ghrelin is the only known peripheral hor-
mone that stimulates feeding [89]. In addition to their gastro-
intestinal sources, ghrelin and CCK are also produced by 
neurons in the brain, and their receptors are widely expressed 
both in the periphery and the central nervous system [87, 90]. 
Ghrelin and CCK have antagonistic actions not only on feed-
ing but also on sleep. CCK was first identified as a sleep-
inducing hormone in cats; two pioneering studies 
demonstrated that feeding or intraduodenal administration of 
fat elicits sleep, and the sleep-inducing effects were repro-
duced by the iv administration of CCK [91, 92]. Subsequently, 
NREMS-promoting effects of systemically injected CCK 
were also described in rats [93, 94], rabbits [95], and mice 
[96]. CCK elicits the complete behavioral sequence of satiety, 
and its effects are indistinguishable from the signs of natu-
rally occurring postprandial state [97, 98]. REMS amounts 
are not affected by CCK in intact animals, but in para-chloro-
phenylalanine-induced insomniac cats, CCK restores REMS 
[99], and in normal rats, CCK increases REMS frequency 
[100] and decreases REMS latency [98].

Studies using CCK2 agonists and CCK1 receptor antago-
nist indicate that CCK2 receptor activation is not sufficient, 
but CCK1 receptor activation is necessary for the somno-
genic effects of CCK [101–103]. Spontaneous sleep of 

11  Humoral and Other Sleep-Promoting Factors



126

CCK1 receptor-deficient rats is not altered, suggesting that 
the activation of the receptor is not required for maintaining 
baseline sleep [104], but pharmacological blockade of CCK1 
receptors abolished feeding-induced sleep, indicating a role 
for CCK in postprandial sleep increases [105].

Central administration of ghrelin triggers the dark onset 
syndrome, the behavioral sequence characteristic of the first 
hours of the active period in nocturnal rodents, including long 
bouts of wakefulness and increased feeding activity [106, 
107]. In microinjection studies, the lateral hypothalamus, 
medial preoptic area, and hypothalamic paraventricular 
nucleus were identified as potential target sites for the wake-
inducing actions of ghrelin [106]. It has been proposed that a 
hypothalamic circuit, containing ghrelin – orexin – neuropep-
tide-Y neurons, forms a shared mechanism for both the orexi-
genic and wake-promoting effects of orexigenic signals [108].

The extent to which peripheral ghrelin-sensitive targets are 
also involved in the wake-promoting actions of the hormone 
is unclear. In rats and mice, systemic administration of ghre-
lin induced both wakefulness [109] and sleep [110] or had no 
effect on vigilance [107]. In humans, intravenous administra-
tion of ghrelin also led to inconclusive findings. The most potent 
known synthetic agonist of the ghrelin receptors, hexarelin, 
suppressed deep sleep [111], whereas ghrelin itself was either 
wake- or sleep-promoting or had no effect depending on the 
gender of the subjects and the treatment paradigm [112–115]. 
Ghrelin receptor KO mice or mice with the deletion of the 
GHRL gene that encodes the peptide preproghrelin, a precursor 
to ghrelin and obestatin, have more fragmented sleep, but the 
amount of sleep and the rebound sleep response after sleep loss 
do not show any alteration suggesting that ghrelin signaling is 
not key to maintaining baseline sleep or to homeostatic sleep 
responses [116, 117]. Ghrelin signaling, however, plays a role 
in arousal responses to several physiological stimuli. Exposure 
to novel environment or fasting suppresses sleep in mice, a 
response that is absent in ghrelin receptor KO animals [117]. 
Furthermore, ghrelin plays a role in integrating sleep and ther-
moregulatory responses to metabolic challenges. In response 
to fasting at low ambient temperatures, wild-type mice enter 
short torpor bouts, but preproghrelin knockout mice develop 
protracted hypothermia associated with reduced sleep, which 
culminates in a marked drop in body temperature to near-ambi-
ent levels [118]. The sleep promoting effects of proinflamma-
tory stimuli, such as lipopolysaccharide, are accentuated in 
preproghrelin KO mice suggesting that ghrelin-associated 
arousal circuits may have a role to balance sleep-wake activity 
in inflammatory conditions [119].

�Prolactin

Circulating levels of most pituitary hormones show 24-h 
rhythms and thus correlate with sleep-wake cycles, and 
exogenous administration of some of these hormones affects 

sleep under certain conditions. These findings, while sugges-
tive, do not necessarily indicate a role for a hormone in the 
regulation of sleep. The most complete set of evidence that a 
pituitary hormone may be a physiological modulator of 
sleep, mainly REMS, and therefore could be considered a 
humoral sleep factor has accumulated for prolactin. Plasma 
prolactin levels increase after sleep onset, independent of the 
time of the day when sleep occurs, suggesting that prolactin 
secretion is regulated by sleep-wake activity rather than cir-
cadian factors (reviewed in [120]).

Exogenous administration of prolactin induces selective 
REMS increases in rats and rabbits [121–123]. Stimulation of 
prolactin secretion by vasoactive intestinal peptide or by pro-
lactin-releasing peptide and the induction of hyperprolac-
tinemia by transplanted pituitary grafts led to increases in 
REMS [123–125]. Anti-prolactin antibodies suppress REMS 
in rats [126, 127]. In mutant hypoprolactinemic rats, REMS is 
suppressed during the light period [128]. Prolactin-deficient 
transgenic mice have reduced amounts of spontaneous REMS 
and diminished REMS rebound after sleep deprivation [129].

Increased circulating prolactin levels correlate with 
enhanced REMS amount in pregnancy/pseudopregnancy 
and during recovery after exposure to certain stressors, thus 
suggesting that prolactin may play a role in REMS responses 
in these conditions [130–133]. In fact, ether stress-induced 
REMS is diminished after anti-prolactin antibody treatment 
or in prolactin KO animals [129, 134].

�Sleep Signaling by Metabolic Organs

The findings that phase shifts in metabolic processes greatly 
influence the diurnal distribution of sleep and wakefulness 
and that positive and negative energy balances affect sleep 
the opposite way suggested that signals from key metabolic 
organs may play a role in sleep regulation. Adipose tissue 
plays a central role in the interplay between nutrition, energy 
balance, and sleep. Two types of adipose tissue with funda-
mentally different functions exist. White adipose tissue is 
responsible for storing excess energy in the form of fat, 
whereas brown adipose tissue (BAT) dissipates energy as 
heat. The tightly regulated balance between the activities of 
the two fat tissues is critical in maintaining metabolic homeo-
stasis [135]. BAT controls energy balance via regulated 
(adaptive) heat production. The thermogenic property of 
BAT is conferred by the tissue-specific presence of uncou-
pling protein 1 (UCP-1). UCP-1 is a H+ transporter on the 
inner mitochondrial membrane of brown adipocytes [136]. 
The thermogenic activity of the BAT is regulated by the sym-
pathetic nervous system through β3-ARs expressed by brown 
adipocytes. Stimulation of BAT by β3-AR agonists elicits 
robust sleep increases [53, 81, 137], which is absent or atten-
uated in UCP-1 KO mice [81] indicating that thermogenic 
activation of BAT promotes sleep. The somnogenic actions 

É. Szentirmai and L. Kapás



127

of BAT activation are independent of changes in core body 
temperature and are mediated by capsaicin-sensitive affer-
ents arising from the organ [81]. Systemic inflammation or 
warm ambient temperature-induced sleep and rebound sleep 
increases after sleep loss are abolished or attenuated in 
UCP-1 KO mice indicating that BAT-derived somnogenic 
signaling plays a role in sleep responses to systemic inflam-
mation and thermoregulatory challenges, and it is required 
for the full activity of homeostatic sleep regulation [54, 138].

In the immune system, macrophages provide a signifi-
cant source of sleep-inducing signals. After demonstrating 
the sleep-inducing effects of endogenous pyrogen(s), sev-
eral studies focused on the role of macrophages in sleep 
responses during clinically manifest infections. It was deter-
mined that macrophages play a role in the production and 
metabolism of somnogenic substances, inflammatory cyto-
kines, after microbial challenge [139, 140]. Subsequently, it 
was demonstrated that macrophages also play a role in sleep 
signaling under physiological conditions. Depletion of the 
peripheral macrophage pool by clodronate-containing lipo-
somes suppresses rebound sleep responses after sleep loss 
in mice and macrophage-depleted animals unable to main-
tain normal sleep amounts when exposed to moderately cold 
temperatures. These findings indicate that in the absence of 

an inflammatory challenge, under normal physiological 
conditions, macrophage function/signaling is required for 
maintaining normal sleep [141]. The lack of alternatively 
activated (M2) macrophage subpopulation leads to similar 
deficiencies in sleep as the complete macrophage deficiency, 
which suggests a central role for M2 cells in sleep signaling 
[142].

The liver has a central role in the regulation of metabolism 
and immune defenses. It harbors about 80% of the body’s 
macrophage population and is responsible for removing circu-
lating microbial molecules, such as endotoxin and other prod-
ucts of the microbiota or intruding pathogens. The first direct 
evidence about the role of liver in sleep signaling came for 
studies demonstrating that local, passive warming of the organ 
results in increased NREMS [143]. Depletion of liver macro-
phages diminishes feeding-induced sleep [144] and recovery 
sleep responses after sleep loss [141]. More recently it was 
demonstrated that the hepatoportal region contains a sleep-
promoting viscerosensory mechanism which is sensitive to 
butyrate, a short-chain fatty acid, a product of the intestinal 
microbiota [145]. This finding suggests that products of the 
intestinal microbiota, after translocating from the gut lumen to 
the portal circulation, may enhance sleep by acting in the hep-
atoportal region (Fig. 11.1). Consistent with this notion are the 

Fig. 11.1  Hepatoportal viscerosensory sleep signaling. The effects of 
commensal bacteria on extra-intestinal organs, including the brain, are 
explained by the exchange of microbial molecules to virtually all tis-
sues of the body. Bacterial translocation is defined as the migration of 
viable bacteria or bacterial products from the intestinal lumen to the 
portal circulation. During bacterial growth, division, and death, compo-
nents of bacterial cell wall are released and translocated through the 
intestinal microcirculation to the portal blood in biologically significant 
quantities. Fragments of the bacterial cell wall, such as lipopolysaccha-
ride, and bacterial metabolites, such as short-chain fatty acids, are 
detected in the portal and systemic circulation even under physiological 

conditions [155–157]. Low doses of intraportally, but not systemically, 
administered short-chain fatty acids and lipopolysaccharide induce 
robust sleep increases, indicating that the hepatoportal region is a privi-
leged site for the somnogenic actions of microbial products [145, 158]. 
Portally circulating microbial molecules reach the liver, which may act 
directly on hepatic afferents or may activate liver macrophages and 
other hepatic cells to secrete bioactive molecules, such as prostaglan-
dins and tumor necrosis factor-α. These secretory products may reach 
brain sleep circuits through the systemic circulation, or they may also 
act on local sensory nerves
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findings that the depletion of the intestinal microbiota results 
in decreased sleep in rats and mice [146, 147].

It has been proposed that somnogenic signals for the liver 
reach core sleep circuits of the brain via sensory vagus inner-
vation. The role of vagus in peripheral sleep signaling has 
been known for long. For example, stimulation of the vagus 
elicits EEG synchronization and complete sleep cycles 
[148–150]. Vagotomy attenuates or abolishes the sleep-
promoting actions of systemically administered lipopolysac-
charide, IL-1β, and TNFα [17, 18, 41, 42, 151].

�Conclusions

For long, it has been thought that sleep is of the brain, by the 
brain, and for the brain [152]. In light of the recent advances 
in the field and after careful reinterpretation of old findings, 
this notion needs revision. Sleep is a complex behavior, in 
which the entire organism, including the brain, participates. 

Core circuits of sleep regulation, just like core circuits of all 
behavioral manifestations, are located in the brain. These cir-
cuits receive extensive ascending somatic and visceral inputs 
from metabolic organs and the immune and endocrine sys-
tems through humoral and neural pathways (Fig. 11.2). The 
significance of these inputs is to help align the timing and 
intensity of sleep behavior with the actual metabolic status of 
the body. Sleep loss and misalignment between sleep and the 
circadian system have a negative impact not only on the 
brain but on the function of metabolic organs and immune 
system [153, 154].
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