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Abstract

It is well understood that twinning during deformation
plays an important role in deformation of Mg and its
alloys [1–8]. In hexagonal close packed (HCP) Mg alloys,
the dominant deformation mode at room temperature
is <a> slip on the basal (0001) plane Mg [9, 10]. The
other slip systems—prismatic <a> slip, pyrami-
dal <a> slip, and pyramidal <c + a> slip—require much
higher stresses to activate during deformation [11].
Mechanical twinning allows for grains to easily deform
along their c-axis [12] and has been the focus of
significant, active research [e.g., 13–23].
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It is well understood that twinning during deformation plays
an important role in deformation of Mg and its alloys [1–8].
In hexagonal close packed (HCP) Mg alloys, the dominant
deformation mode at room temperature is <a> slip on the
basal (0001) plane Mg [9, 10]. The other slip systems—

prismatic <a> slip, pyramidal <a> slip, and pyrami-
dal <c + a> slip—require much higher stresses to activate
during deformation [11]. Mechanical twinning allows for
grains to easily deform along their c-axis [12] and has been
the focus of significant, active research [e.g., 13–23].

In unalloyed Mg and Mg alloys, with a c/a ratio less than
the ideal value of 1.633, the 10�12f gh10�11i extension twin-
ning is the dominant deformation mode, where extension
along the c-axis can be accommodated, but not contractions
along that same direction [16, 24]. As a result, during
mechanical loading the tensile yield strength is significantly
higher than the compressive yield strength resulting in a
tension–compression asymmetry [25]. Begum et al., found
that the tensile yield strength was much higher than the
compressive yield strength during low-cycle fatigue
(LCF) of an AM30 extruded Mg alloy and related this to
twinning that occurs during compression and detwinning
that occurs during tension [5]. During compression, twins
form causing an 86.3° reorientation of the basal pole [9, 11,
15, 22]. During reversed unloading or tensile loading these
twinned regions can undergo detwinning in which twins
become narrower and/or disappear [11, 25, 26]. Detwinning
causes a reorientation of the c-axis from the twin back to the
matrix or parent grain [9, 25–27]. Twins can reappear upon
reloading and thus, the twinning-detwinning behavior con-
tinues until the end of life [28].

In this study, the twinning detwinning behavior of extru-
ded, polycrystalline unalloyed Mg under cyclic loading con-
ditions was investigated at the Cornell High Energy
Synchrotron Source (CHESS) using in-situ high energy X-ray
diffraction. Measurements were conducted at three different
strain amplitudes. The initial crystallographic texture was
such that the c-axis in most grains was normal to the loading
direction and therefore, favorable for extension twinning
during compressive loading. The experimental results showed
that an increase or decrease in the {0002} basal X-ray peak
intensity was observed during low-cycle fatigue and these
changes are indicative of the occurrence of twinning and
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detwinning. During cyclic loading complete twinning-
detwinning occurred for the first few hundred cycles where
all of the twins formed in compression were removed during
tensile loading of the following cycle. Eventually, this phe-
nomenon ceases and residual twins remain in the material
throughout each cycle. At strain amplitudes below 0.5%, there
was no indication of twinning during compressive loading.
The complete article on this study can be found in the Inter-
national Journal of Fatigue [29].
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