
Chapter 13
Evolving from Fry Fisheries to Early Life
Research on Pelagic Fish Resources

Alberto García, Raúl Laíz-Carrión, Dolores Cortés, José Quintanilla,
Amaya Uriarte, Teodoro Ramírez, Lidia Yebra, Jesús M. Mercado,
Candela García-Gómez, Simone Sammartino, and Jesús García Lafuente

13.1 Brief Historical Background of Fry Fisheries
in Northern Alboran Sea

The northern coasts of the Alboran Sea are known to have thrived from past artisanal
fisheries that exploited the early life stages of fishes. This was mainly carried out by a
suite of different fishing gears dating back to the eighteenth century to the end of the
twentieth century (Sañez-Reguart 1791–1795 reprint 1988; Rodríguez Santamaría
1923). These fishery studies provide detailed descriptions of the fishing gears
employed by fishermen exploiting the Iberian Peninsula coasts and a general account
of the targeted species and their associated catches. In the Andalusian coasts of the
Alboran Sea, beach seines called boliches were among the most common, targeting
on sardines, anchovies, and a number of other fish species, as bonitos and tunas that
preyed on small pelagic shoals (Fig. 13.1).

In this historical description, the Bay of Malaga is cited as most prolific in the use
of this specific fishing gears exploiting nearshore fish resources of northern Alboran
(Rodríguez Santamaría 1923) (Fig. 13.1). These fishing gears continued until the
twentieth century and evolved reducing its size to allow the maneuvering with a
smaller number of persons. Through time, this gear was modified for the fry fishing
of small pelagic species. Its modifications mainly consisted in gradually diminishing
the mesh of cod ends for catching postlarval stages of sardines and anchovies,
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oftentimes capturing shoals of postlarvae and juveniles of other species, such as
Pagellus sp., Boops boops, Mullus spp., etc. (García et al. 1981; Reina-Hervás and
Serrano 1987).

The increase of the coastal populations flanking the Alboran Sea originated from
the touristic boom of the mid-1960s and 1970s led to the increase of fry fishing. This
fishery typified the coastal region with numerous beach seine fishing along the coast
(Fig. 13.2), especially abundant in the beaches facing the Bay of Malaga (García
et al. 1981). The product of the fishery was camouflaged as “chanquete,” the local
denomination for Aphia minuta, a transparent gobid whose adult size was similar to
the fry of sardine, anchovy, and round sardinella. The abundance of sardine in the
Alboran Sea led to the first scientific reports describing their distribution in the area
(Oliver 1955, 1961). An actual description of the fishing methods applied in present
times providing recent data from the coastal fisheries off N Alboran coastline is
reported in García et al. (2012).

With the economy rising in the 1980s, the fishery expanded because its resources
were guaranteed year-round. The inshore coastline of the Alboran Sea is a haven for
the growth of advanced stages of sardine, anchovy, and several other commercial
fish species. Thus, the iconic image of beach seine trawling was commonplace in the
shores of the Bay of Malaga (Fig. 13.2). The demand for the consumption of fry
became so high that another type of artisanal fishing gear, the birorta, also competed
for these early life resources (Fig. 13.3). This kind of fishery consisted in a small type
of purse seine maneuvered by two–three persons that encircled postlarval shoals, and

Fig. 13.1 Engraving of a beach seine doing the encircling maneuver to catch shoaling fishes
(Sañez-Reguart 1791–1795 reprint 1988; personal copy)
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Fig. 13.2 Hauling in the catch of beach seine (boliche) for small pelagic fry (photo from A García)

Fig. 13.3 Small purse seine (birorta) used for fry fishing (photo from A García)
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unlike the beach seine (boliche) did not trawl over the seabed (Fig. 13.2). Such was
the expansion of this type of gear during the early 1980s when as many as over a
hundred small boats could be counted from the beach near the Malaga port entrance
(A. García, unpublished data counts).

.
Upon the integration of young scientists in the late 1970s to work in the

Oceanographic Center of Malaga, it was considered necessary to provide proof for
banning this obsolete fishing practice. Fry fishing was so intensive and out of
regulation control measures that strong management measures were urgently
implemented. Catches as shown in Fig. 13.4 are exemplary of the magnitude of
the impact on small pelagic resources. As a result, during the mid-1980s, the
Autonomic Government of Andalucia issued a ban on fry fishing. Nonetheless, the
local culinary preferences for small fish still persist, and the lack of compliance with
the regulation leads to occasional confiscations of fry catches.

The extraordinary abundance of postlarval stages of small pelagics inshore, at
depths less than 20 m, propitiated research focused on early life history stages
(ELHS, henceforth) of small pelagic fish species, including the modification of
plankton tow procedures regarding duration and plankton gear. As in the fry fishery,
ichthyoplankton sampling of postlarvae was carried out at night time when larvae
surface to inflate their swim bladders, a behavioral habit that initiates schooling
behavior (Santos et al. 2007). To assure greater catches with larger larvae, a squared-
mouth Bongo 90 (Steve Coombs, Spartel Ltd.) was designed. To reduce larval
avoidance, it is geared with a black-tinted mesh (> 1 mm) (Fig. 13.5).

The open mesh employed mostly caught postlarvae which were easily sorted on
board and stored in liquid nitrogen. Short tow duration (10 min) at the surface or
subsurface was considered sufficient to catch postlarvae in good condition for
analyzing larval growth and condition research (García et al. 2003; García et al.
2006a, b). The plankton gear developed for sampling small pelagic larvae was later
used for defining the bluefin tuna spawning habitat and to carry out larval tuna
research studies in the Balearic Sea, the key spawning grounds of Atlantic bluefin

Fig. 13.4 Cod end of beach seine and its fish fry capture (photo from A García)
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tuna in the Mediterranean (García et al. 2006a, b; Alemany et al. 2010; Uriarte
2018).

The change of plankton gear and sampling at night was mainly aimed to collect
larger sized larval specimens, centered on postlarval stages for its longer age history.
A historical time series analysis of the Californian anchovy egg and larval abun-
dance of the CalCOFI surveys was not able to relate neither of these variables to the
recruitment success of the Californian anchovy (Engraulis mordax) (Bradford
1992). The study concluded that recruitment success was not related to egg and
larval abundance, postulating that the abundance of postlarval stages of sizes around
15 mm would have a greater repercussion on annual recruitment.

Consequently, in the first analysis between the standard Bongo 40 tows and the
Bongo 90, anchovy larval size increased to an average catch of 15 mm (Fig. 13.6)
larvae in favor of the Bongo 90 gear. Furthermore, the size range of larvae being
collected also increased. This net was later applied in an Atlantic bluefin tuna project
(TUNIBAL) aiming to sample bluefin larvae following an ICCAT recommendation
promoting research of bluefin larvae. The project showed great success in collecting
large numbers of Atlantic bluefin tuna larvae since its first implementation (García
et al. 2003). Similar sampling techniques were also adopted in the spawning grounds
of Atlantic bluefin tuna spawning in the Gulf of Mexico, where this type of gear
excelled all others in a suite of other ichthyoplankton nets (Habtes et al. 2014).

Fig. 13.5 Standard Bongo 90 net pictured in two versions: left picture, the black tint netting
equipped has>1 mm mesh primarily used for nighttime hauls of small pelagic larvae; right picture,
Bongo 90 equipped with 500 μm mesh (photo from A García)
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Thus, this plankton gear has become the standard type of gear for collecting small
and large pelagic larvae in the field, specifically for undertaking larval growth and
condition studies (Cortés 2006; García 2006) as well as ELHS trophodynamic
studies based on stable isotopes analysis (Uriarte 2010; Laíz-Carrión et al. 2011).
In conclusion, the sampling methods of ELHS applied in these studies stem from
observing the conducts of fry fisheries.

13.2 Spawning and Nursery Scenarios of Small Pelagic

13.2.1 Coastal Hydrodynamics and Planktonic Productivity
Drivers

According to the existing literature, small pelagics are particularly abundant in
upwelling areas (Cole and McGlade 1988; Cury et al. 2000) where the enrichment
in nutrients cascades throughout the food web, increasing planktonic production and
thereby, potential larval food resources. The degree of recruitment will depend on
the coupling between the timing of spawning and favorable environmental condi-
tions for the survival of ELHS (Cury and Roy 1989; Bakun 1996; Brochier et al.
2009). The usual physical forces driving the processes that shape these conditions
are winds (wind-inducing upwelling, particularly), tides, and offshore mesoscale and
submesoscale (10–100 km) processes, which have a potential for conveying energy
to the coastal ecosystem and make it available for mixing. All of them, referred to the
northern Alboran Sea, are shortly revisited below.

From geographic and oceanographic viewpoints, the northern Alboran Sea is
divided into two differentiated areas. The first one goes from Punta Europa in the
eastern exit of the Strait of Gibraltar to Punta Calaburras, some 100 km to the east
(Estepona area or EA, hereinafter, Fig. 13.7). The second area spreads to the east of
this point and includes the productive Bay of Malaga (Malaga area, or MA). This
division is motivated by the Atlantic Jet, which flows relatively close to the coast in

Fig. 13.6 Comparative anchovy larval catch between the B40 and B90 plankton nets
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EA and exposes the region to its direct impact, but it detaches from the Spanish shore
and starts veering to the southeast nearby Punta Calaburras, leaving the MA region
partially sheltered from its influence. The jet separation from the shore as it flows
past Punta Europa and Calaburras forces cyclonic circulation in both areas, which
endows them with characteristics of retention zones. The retention of larvae is one of
the processes that define the Bakun triad, which ultimately influences the survival of
larval cohorts (Agostini and Bakun 2002; Agostini and Bakun 2002; Patti et al.
2010).

Because of the similar shoreline orientation, both areas show a similar response to
wind dynamics. Westerlies induce upwelling and cool surface waters, while east-
erlies advect surface waters from offshore, warming the coastal environment and
driving downwelling. Nine years (2003–2011) of data in the Alboran Sea
(Era-Interim reanalysis, Dee et al. Dee et al. 2011) reveal the bimodality of winds,
easteries, and westerlies, the former being slightly more frequent (48% versus 41%)
and weaker (5.9 ms�1 versus 7.1 ms�1) on average. In wintertime, however,
westerlies are more frequent and intense (Sarhan et al. 2000). Upwelling in these
regions enriches the water column and enhances primary production, which, along
with their retention characteristics, meet the three conditions of the “Bakun triad”
(Bakun 1996; Agostini and Bakun 2002) which define suitable environmental
conditions for the spawning and nursery habitats.

Fig. 13.7 Map of the Alboran Sea sketching the typical path of the Atlantic Jet and the two areas
EA and MA mentioned in the text. Winding arrows indicate the location of submarine canyons
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The findings from sardine larval cohorts sampled in the ECOMALAGA project
(Camiñas et al. 1998) on a seasonal basis starting in 1995 and later during the period
from 1997 to 2003 have shown the biological impact of wind on larval growth rates,
as likewise, the effect of strong storms which may cause diminished growth rates
(Maillet and Checkley 1991). The effect of coastal winds off the MA region affects
sardine’s spawning strategy where mature sardines prefer calm wind periods for
spawning. It is in agreement with the “stable ocean” hypothesis (Lasker 1981) by
which calm periods allow the formation of plankton patches, a potential food for the
spawned offspring (Fig. 13.8).

Furthermore, the wind regime influences sardine larval population growth rates of
different seasonal and annual sardine cohorts sampled in 1995 and during the period
1997–2003 as described in Fig. 13.9 (García 2006).

Westerlies in the nursery grounds of MA and EA affect all the northern Alboran
Sea coast, promoting the fertilization of the surface layers and phytoplankton blooms
(Sánchez-Garrido et al. 2014). These intense events of wind-induced upwelling are
frequent, and they are followed by relatively calm periods that allow for a partial
stratification of the water column (Mercado et al. 2007). This sequence of events
may result beneficial, favoring the growth of larvae inhabiting nursery waters
(García 2006).

Tides follow winds in importance as a physical mechanism influencing the
environmental conditions in the northern Alboran Sea (Sánchez-Garrido et al.
2015). Inside the Mediterranean Sea, tides are almost inexistent except for a few
places. One of them is nearby the Strait of Gibraltar and, of course, the strait itself
(García Lafuente et al. 2000). Even though tidal vertical oscillations are very reduced
(amplitude less than few tens of cm), the associated tidal currents can become
important; the closer to the strait, the greater the current, so that tidal dynamics is
enhanced in EA with regard to MA. Actually, García Lafuente et al. (1999) reported
tidal currents up to 50 cm/s in the submarine canyons located in EA (Fig. 13.7),

Fig. 13.8 The number of larvae born in relation to the wind stress indices observed during
birthdates of all sampled sardine larvae sampled during the ECOMALAGA time series (1995,
1997–2003)
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whereas numerical simulations indicate values of only a few cm/s in MA. The
available kinetic energy of tidal origin is therefore much greater in EA than in MA.

Significant differences between both regions also arise from the response to
offshore mesoscale processes. In EA, the proximity of the jet to the shore
(Fig. 13.7) causes a close dependence of the region dynamics on the fluctuations
in the position of the Atlantic Jet, which are linked to the hydrodynamics of the water
exchange through the Strait. Sarhan et al. (2000) showed that the north-to-south
variation of the main path of the jet drives upwelling in a comparable way to the
classical wind-induced upwelling, although the latter is more productive biologically
due to the characteristics of the upwelled water. This mechanism is much weaker in
the MA region and is concomitant with the wind regime to a large extent.

Considering the physical processes that act on both areas altogether, the EA
region presents more vigorous dynamics driven by tides and by the transfer of
energy from offshore mesoscale processes linked to the proximity of the Atlantic
Jet. Wind-induced dynamics is similar in both regions, so that differences among
them arise from the intensity of the two other mechanisms, which are noticeably
more vigorous in EA. It means more available energy for mixing here and, hence,
more potential for primary production, which is a positive feedback. But there is also
a negative aspect related to the stability of EA as a retention area, because the
accumulation of energy may eventually lead to instabilities. Sánchez-Garrido et al.
(2013) showed that EA is a region prone to the release of submesoscale eddies that
wander across the Alboran Sea carrying biological products with them. Even though
it is essentially driven by the same mechanisms, the MA region has weaker dynamics
because the energy input from offshore and the tidal energy are secondary processes,
and the main driving and fertilizing mechanism here is the wind-driven upwelling.
Neither instabilities like those reported in EA are observed in MA, so that the
stability of this region as a retention area is considerably greater, which has obvious
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biological advantages for the reproduction strategy of small pelagic species and
other coastal dwelling species.

13.3 Phytoplankton and Zooplankton Variability
of the Alboran Sea Coast

The coastal hydrodynamics in the Alboran Sea which affects the formation of
advection and upwelling processes that propitiate phytoplankton production and
enriches plankton communities has been highlighted widely. In fact, the northwest-
ern Alboran Sea represents the most productive area in the Western Mediterranean
Sea in terms of chlorophyll-a (Chl-a), primary production and phytoplankton abun-
dance (Rodríguez et al. 1998; García-Gorriz and Carr 2001; Ruíz et al. 2001, 2013;
Bosc et al. 2004; Mercado et al. 2008, 2012, 2014; Patti et al. 2010; Navarro et al.
2011). Consequent with the Alboran Sea’s high phytoplankton production, zoo-
plankton biomass and production estimates of the Alboran Sea (García and Camiñas
1985; Sampaio et al. 2005; Yebra et al. 2017) have ranked among highest in the
western Mediterranean (Champalbert 1996; Siokou-Frangou et al. 2010). A quar-
terly monitoring project carried out in MA since 1992, ECOMALAGA, describes
the temperature/salinity time series (Fig. 13.10), as well as the mesozooplankton
abundance and chlorophyll concentration (Fig. 13.11). The data were obtained from
quarterly samplings performed principally in January–February (winter), March–
April (spring) July–August (summer), and October–November (autumn). These data
indicate that the annual maximum in temperature and minimum in salinity is
normally obtained in summer-autumn. However, the occurrence of annual cycles
departing significantly from these typical cycles is frequent (for instance, see the
periods 1994–1995 and the years 1999 and 2003; Mercado et al. 2007, 2012).

The TS time series depicts strong seasonal differences in which temperature
between winter and spring/summer periods differs by 6�C. Likewise, the salinity
profiles provide a picture of upwelling events observed, such as that of 1993, 1999,
and 2012. Such hydrographic seasonal variability shows its influence in the
mesozooplankton and chlorophyll a variability (Fig. 13.11). The upwelling events
that occurred during 1993 and 1999 showed peaks of mesozooplankton abundance
and chlorophyll a values, while that of 2012 was mainly reflected by the peaks of
chlorophyll a concentration. Nevertheless, the gap observed in 2013 was covered by
another monthly sampling project of MA (REMALA) that also showed strong
upwelling events in the winter of 2013 and summer of 2014 (see Fig. 13.10).

These data show the complex time variability patterns that feature the plankton
community in the Alboran Sea. Thus, conspicuous peaks in the abundance of
mesozooplankton are often registered (years 1993, 1998–1999), which are normally
attributable to copepods, but it does not apply in every case. It is also notable that
peaks of zooplankton often were not related to periods of elevated phytoplankton
biomass (Fig. 13.11).
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Fig. 13.10 Time series of temperature and salinity in the 20 m upper layer of a station located in the
shelf of MA

Fig. 13.11 Time series of mesozooplankton abundance (closed circles, continuous line) and
concentration of chlorophyll a (open squares, dashed line) obtained in a coastal station in MA
(https://www.st.nmfs.noaa.gov/copepod/time-series/es-50301/) from quarterly samplings carried
out in 1992–2001 and 2010–2015 (data of chlorophyll for 2002–2007 are also shown)
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This high productivity is primarily linked to the enrichment of the euphotic layer
with inorganic nutrients (mainly nitrate), which supports communities of phyto-
plankton usually dominated by diatoms (Rodríguez et al. 1998; Arin et al. 2002;
Reul et al. 2005; Mercado et al. 2005, 2007, 2011). However, the analysis of the
interannual variability in the taxonomic composition reveals complex patterns (Balle
1963; Margalef 1969; Delgado 1990; Rubín et al. 1999; Mercado et al. 2005). Thus,
the early works of Rodríguez et al. (1982) and Delgado (1990) reported a community
dominated by small flagellates and diatoms which can be considered typical of
upwelling areas. However, Mercado et al. (2005) described two well-differenced
communities: one was dominated by small flagellates and diatoms (diatom-
dominated community), while the other community was characterized by the dom-
inance of coccolithophorids and dinoflagellates (non-siliceous algal-dominated com-
munities). The analysis of time series for the period 1992–2002 revealed that both
communities were temporally segregated, with diatom-dominated community
prevailing from 1994 to 1997 and non-siliceous algal-dominated communities
doing it from 2000 to 2002. The diatom-dominated community was mainly com-
posed of chain-forming pennate diatoms belonging to the genus Pseudo-nitzschia
and the centric diatoms Thalassiosira, Rhizosolénia, Leptocylindrus, and
Skeletonema. The dinoflagellates belonging to the species Scrippsiella trochoidea,
Protoperidinium depressum, and Prorocentrum minimum also appeared frequently.
The second community was characterized by the coccolithophorids Calcidiscus and
Gephyrocapsa and the dinoflagellates Prorocentrum compressum, Ceratium
extensum, and Ceratium furca which were dominant during 2000–2002 (in special
Gephyrocapsa sp.).

Irrespective of these interannual patterns, the abundance of diatoms is usually
greater in spring, coinciding with greater nutrient availability. In contrast, the
abundance of dinoflagellates does not follow a clear seasonal pattern. The analysis
of the zooplankton abundance data also reveals a seasonal cycle characterized by
maxima in summer (1964 ind m�3) and minima in spring (467 ind m�3, Sampaio
et al. 2005). Copepods are the predominant group throughout the year, doubling
their abundance in summer. However, at this time, cladocerans represent up to 40%
of the relative abundance. Gelatinous plankton in general represents less than 5% of
the community (Rodríguez et al. 1982; Sampaio et al. 2005). Interestingly, this
seasonal cycle in zooplankton contrasts with the seasonal variations obtained for
other locations in the western Mediterranean Sea, where lower biomasses of zoo-
plankton are usually found in summer whereas higher values are obtained from April
to June (Sabates et al. 1989; Fernandez de Puelles 1990; Champalbert 1996).

The joint analysis of the phytoplankton and zooplankton data series for the
Alboran Sea carried out by Mercado et al. (2008) revealed that zooplankton exerts
a strong top-down control on phytoplankton at the seasonal scale. However, the
aforementioned interannual changes in phytoplankton composition reflected in
changes in the zooplankton composition as the abundance of copepods and brachio-
pods decreased in 1992–1999 (possibly due to the interannual shifts in the phyto-
plankton communities). Furthermore, strong spring blooms of phytoplankton are
normally followed by noticeable peaks of zooplankton in summer. In fact,
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zooplankton biomass and abundance in the NW Alboran coastal area were found to
be highly correlated to chlorophyll a in summer (Yebra et al. 2017), indicating that
taxonomic composition and abundance of the phytoplankton are the driving forces
which in turn strongly influence the fate of zooplankton production (Poulet et al.
1995; Laabir et al. 1995). This planktonic production variability would in turn shape
the ichthyoplankton recruitment success in the region since both abundance and
quality of the potential prey for larvae vary significantly, which is probably reflected
in the growth status of small pelagic larvae as is commented below.

13.4 Seasonal Characterization of the Alboran Sea
Ichthyoplankton

The relative contribution of small pelagic larval catches by the fry fishery depicts the
reproductive seasonality of sardine and anchovy larvae (García et al. 1981; García
and Rubín 1985; García et al. 1987). The seasonal cycle extends from autumn to late
spring, in which sardine larvae comprise the major fraction of catches, while in
spring anchovy larvae overlap with sardine attaining its peak during the summer
months. During autumn/winter, both species also overlap (Rodríguez 1990; Mafalda
et al. 2008) (Fig. 13.12).

The Alboran Sea constitutes a natural passage where the exchange of Atlantic and
Mediterranean water masses occurs and endows the region with an exceptional

Fig. 13.12 Relative abundance of sardine and anchovy larvae in MA (N / 10 m2), together with the
average temperature at 10 m during September 2013 to August 2014 under the REMALA project
(Baro et al. 2014). Note that the abundance scale is logarithmic
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species diversity clearly manifested in the specific composition of ichthyoplankton.
An ichthyoplankton seasonal study throughout an annual cycle carried out in MA
reveals the high species diversity (Marina et al. 2015; García et al. 2015). A grand
total of 87 taxonomic groups were identified, in which 82 were to the species level. It
is interesting to note that species of the meso- and bathypelagic domains were
predominant in spite of the nine sampling stations located at shallow coastal and
shelf waters (Fig. 13.13); specially noticeable is the fact that12 species representing
47.9% of the total account of larvae present during the annual cycle belonged to the
Myctophidae family. Their nearshore abundance indicated an upwelling origin
(Marina et al. 2015; García et al. 2015). The high species diversity is greater than
that reported by Rodríguez (1990) and Mafalda et al. (2008).

The next dominant group was represented by the Clupeidae family accounting
14.38% of the total larvae collected. Sardina pilchardus larvae are found almost
throughout the whole year (Fig. 13.14). Sardine starts spawning in September and
develops its peak season during winter when temperature is lower and upwelling is
more frequent and intense. Nevertheless, their larvae may still be found until late
spring and early summer (Fig. 13.14).

With respect to anchovy (Engraulis encrasicolus), it shows the preference for
warmer temperatures compared to sardine (García and Palomera 1996; Palomera
et al. 2007). The Alboran Sea anchovy starts spawning in May and develops its full
spawning capacity during summer and continues during autumn (Fig. 13.14).

Fig. 13.13 Satellite mapping indicating study area and the ichthyoplankton and physical ocean-
ography sampling stations in the study area during daytime (green cross) and nighttime (red square)
from September 2013 to August 2014
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Although much less abundant than the aforementioned groups, commercially
important species were represented by hake (Merluccius merluccius), blue whiting
(Micromesistius poutassou), axillary seabream (Pagellus acarne), spotted seabream
(Pagellus bogaraveo), black seabream (Spondyliosoma cantharus), two horse mack-
erel species (Trachurus trachurus and T. mediterraneus), chub mackerel (Scomber
japonicus), and the two Mediterranean species of mullets (Mullus surmuletus and
M. barbatus).

The monthly mean temperature and salinity data collected during the surveys
deviated from the annual average temperature and salinity historical series
(Fig. 13.10) consequent with the observed upwelling events during winter and
summer. Such events explain the high species diversity and the timing of spawning
of sardine and anchovy (Fig. 13.14). During the initiation of the annual cycle, from
September to December, we observed that the waters were predominantly of Atlantic
origin defined by their characteristic salinity signatures. The interphase salinity
between Atlantic and Mediterranean water masses is 37.5. From February to April,
salinities were within the range of Mediterranean waters, explained by upwelling
processes evidenced by the lower-temperature regime observed in the MA during the
sampled period. From May to August, during the anchovy spawning season, salin-
ities drop to interphase values between Atlantic and Mediterranean waters, and the
temperatures rise.

It is important to remark thermic preference for warmer waters of anchovy
(Palomera et al. 2007) as shown by the decrease in the abundance of anchovy larvae
during July, consequential with the temperature drop resulting from the summer
upwelling event (Fig. 13.12).

13.5 Ecophysiology of ELHS of Small Pelagics

13.5.1 Scientific Scope of Early Life History Research

Recruitment of small pelagic species such as sardine and anchovy is characterized by
strong interannual fluctuations (Giráldez and Abad 1991) that are attributed to the

Fig. 13.14 Average monthly temperature and salinity throughout the anchovy and sardine sam-
pling period carried out during the REMALA project (September 2013–August 2014)
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survival success during the early life stages. Several factors affect fish larval
mortality rates during the ELHS, although the most important ones are mortality
caused by enhanced predation and/or starvation (Hewitt et al. 1985; McGurk 1986;
Bailey and Houde 1989).

The survival of ELHS is therefore crucial for stock recruitment where small
changes in growth rates can have important repercussions on larval mortality
(Houde 1987, 2008). Mortality rates during early life are influenced by starvation
and predation, generally in that sequence because starvation leads to poorer nutri-
tional status of larvae making them more vulnerable to predation (Bailey and Houde
1989; Folkvord and Hunter 1986). Also, slower growth rates turn fish larvae extend
temporally the ontogenic development at particular sensitive stages, thereby increas-
ing predation pressure (Buckley 1984; Folkvord and Hunter 1986).

Therefore, somatic larval growth rates are critical in determining the time that
larvae spend in the size classes more susceptible to be preyed upon. The research
conducted on growth and condition studies at ELHS of small pelagics has shown that
growth rates are influenced mainly by the surrounding temperature regime and the
amount and quality of trophic resources (Ramírez et al. 2001; García et al. 2003;
Mercado et al. 2007), although maternal effects can have a consequential influence
on growth variability (García et al. 2003; Uriarte et al. 2016).

Temperature is a key factor controlling fish growth. Temperature affects meta-
bolic rates of ELHS by increasing or decreasing the catabolism and anabolism of
proteins and therefore the accretion of muscular tissue and the development organs
during the development of ELHS. Several studies have reported enhanced larval
growth at higher temperatures both in the field- and in laboratory-reared larvae
(Blaxter 1991; Folkvord et al. 2004). On the other hand, nutritional condition indices
are also affected by temperature. Thus, the existing studies on this subject (e.g.,
Goolish et al. 1984; Ferguson and Danzmann 1990) have shown that larval fish
RNA/DNA tends to decrease with increasing seawater temperature. According to
Goolish et al. (1984), the underlying reason for a decline in RNA/DNA in fish
inhabiting increased seawater temperature would be due to the existence of a
metabolic mechanism that compensates for lower RNA activity at lower tempera-
tures, producing an increase in RNA concentration.

Alternatively, food availability (i.e., suitable prey density) and larval success in
capturing their prey affect directly to the intake rates of proteins, carbohydrates,
lipids, and other nutrients by fish larvae. Laboratory and mesocosm experiments
have shown that food availability directly affects somatic larval growth, with well-
fed larvae growing at faster rates than larvae under poor food availability. Food
availability not only affects growth, but it also affects the biochemical composition
of larval tissue. A poor nutritional condition, or even starvation caused by compe-
tition for food resources or by low prey density, not only has a direct effect on
protein synthesis and tissue accretion rates, but it also turns larvae more sensitive to
predators as their swimming capacity is reduced, thus prone to predators (Purcell
1985; Purcell and Grover 1990).

The findings reported by earlier research studies on larval growth (based on
otolith microstructure) and nutritional condition (mainly based on RNA/DNA)
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clearly demonstrated the joint use of otolith microstructure and biochemical analysis
as new tools for assessing the effect of the processes affecting larval survival and
better understand the underlying causes of interannual fluctuations in the recruitment
success of small pelagic species (Buckley 1984; Campana and Neilson 1985;
Moksness and Wespestad 1989; Clemmessen 1994). Some of these studies and
others demonstrated that enhanced growth at early life stages shows significant
relationships with larval survival rates for many fish species around the world
(Hovenkamp 1992; Takasuka et al. 2003; García et al. 2003; Meekan et al. 2006).

The implementation of these research tools was applied in the field, beginning
with the NW Mediterranean anchovy which represents the greatest resource of this
species in the Spanish Mediterranean (García et al. 1998). The experience gathered
in these ELHS research proved in later years that the early life stages of sardines and
anchovies confirm the growth-mortality hypothesis (Anderson 1988) by which
growth is intricately related to larval mortality (Houde 1987, 2008).

In small pelagic larvae, enhanced growth is attained with higher RNA/DNA
influenced by the amount of trophic resources between regions in western Mediter-
ranean coasts (García et al. 1998, 2003; Quintanilla et al. 2015).

Thus, differences in somatic growth, otolith growth, and larval nutritional con-
dition of anchovy larvae, from different spawning areas of the NW Mediterranean,
suggested important effect of seawater temperature on larval condition as estimated
from RNA/DNA. Those effects were confirmed by Ramírez et al. (2004) who
studied the effect of temperature and microzooplankton biomass on biochemical
nutrition indices of anchovy larvae in the NWMediterranean Sea where temperature
and microzooplankton accounted for >70% of the variability in RNA, DNA, and
protein. However, the ratios of RNA/DNA and protein/DNA were only related to
temperature. On average, both ratios in anchovy larvae decreased with temperature,
probably reflecting the effect of temperature on larval metabolism, supporting the
findings of previous studies conducted with other species (e.g., Goolish et al. 1984;
Ferguson and Danzmann 1990).

Accurate estimates of growth rates and nutritional condition of larvae were
needed to understand and predict fluctuations in recruitment. The ECOMALAGA
quarterly sampling program supported the small pelagic larval sampling which is a
methodological framework in establishing precision and accuracy under an
EU-funded project (PARS, FAIR961371) grouping teams from different EU
countries.

The research conducted involved different interlaboratory test studies, including
samples of Alboran Sea sardine larvae, to analyze the precision and accuracy of
otolith readings and the use of the RNA/DNA as tools for determining larval growth
and nutritional condition. Among the main outcomes of the project was the publi-
cation of a practical manual of the tools used for recruitment studies of small pelagic
fish species (Belchier et al. 2004) where different protocols regarding otolith micro-
structure analysis and nutritional condition were tested through intercalibration pro-
cedures and applied accordingly.

García et al. (2006a, b) observed differentiated larval growth patterns between the
sardine stocks of the NW Mediterranean and the northern Alboran Sea. Larval daily
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growth rate, otolith growth rate, as well as RNA, DNA, and protein content at a
given age were comparatively higher in larvae collected in the NW Mediterranean
coast (Ebro Delta). From the somatic point of view, the NW Mediterranean sardine
grew faster in body size in comparison to the Alboran Sea larvae which tended to
distribute body mass increase by means of increasing body weight, suggesting in the
latter that growth tends to build up body reserves possibly due to their dependence
on intermittent pulses of productivity caused by wind-induced upwelling.

The NW Mediterranean sardine is exposed to differentiated environmental
drivers prompting productivity, principally the Ebro river outflow that induces
hydrographic frontal structures and the upwelling resulting from the Northern
Current flow along the Catalonian coastline (Palomera et al. 2007). Therefore,
these differences in growth rates and biochemical indices were attributed to a higher
microzooplankton abundance in the NW Mediterranean, particularly in areas close
to the Ebro Delta. According to previous studies, the higher abundance of
microzooplankton in the closest areas to the Ebro Delta could also explain to some
extent the differences in nutritional condition and growth rates found in anchovy
larvae from different spawning sites located in the NW Mediterranean (García et al.
1998), although in the south of the Ebro river outlet, microzooplankton biomass has
been reported to be much lower (García et al. 2006a, b). A previous study of
Palomera and Lleonart (1989) larval mortality revealed differences between the
northern and southern spawning sites in agreement with the former study of García
et al. (1998) whereby greater growth rates were observed in the northern spawning
site, within the surroundings of the highly productive Gulf of Lions.

It is interesting to also highlight the existence of differences in the biochemical
composition of sardine larvae between different areas of the Alboran Sea. García
et al. (2006a, b) reported that sardine larvae from the Almeria Bay presented higher
carbohydrate content than sardine collected in the Malaga Bay. These differences in
carbohydrate content could not be explained by differences in microzooplankton
abundance or composition. Quite to the contrary, microzooplankton from the
Almeria Bay presented higher protein content which was not reflected in different
larval protein content. Based on these results, García et al. (2006a, b) suggested that
larvae in the Almeria Bay could feed on other preys with higher carbohydrate
content. It has been reported that sardine larvae feed actively on copepods eggs,
nauplii, and copepodites, these accounting for 78–89% of the gut content (Conway
et al. 1994; Yebra et al. 2019). However, there are also studies reporting passive
feeding of clupeid fish larvae, including sardine, on phytoplankton (Lasker 1978;
Walsh et al. 1980; Rasoanarivo et al. 1991).

Carbohydrate content of phytoplankton ranges from 14.1 to 55.8%, while protein
content seems to be more stable ranging from 50.7 to 34.1%, (Ríos et al. 1998). In
the case of zooplankton, the main constituents are proteins followed by lipids and
carbohydrates (Jo et al. 2018; Jagadeesan et al. 2010). The inclusion of phytoplank-
ton in the diet of sardine larvae from the Almeria Bay would explain their high
carbohydrate content (García et al. 2006a, b; Mercado et al. 2007). From such
findings, we can be likewise infer that the quality of feeding resources may be as
important as the abundance of trophic resources.
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The effect of quality feeding resources versus quantity was demonstrated in the
larvae of the Mediterranean bluefin tuna in which three annual larval cohorts from
2003 to 2005 were analyzed from both the growth and condition standpoint. The
greatest larval growth of bluefin tuna larvae was attained in 2003, under extreme
temperature changes and extremely low production caused by the historical Medi-
terranean heat wave (García et al. 2013).

13.5.2 Larval Growth and Larval Condition Research Studies

Ramírez et al. (2001) revealed that the growth strategy of the ELHS of the winter-
spawned sardine larvae in the northwestern Alboran Sea is characterized by a
decrease of length increment growth rates with increasing larval ages, while growth
in somatic mass gain tends to increase with age. This sardine larval growth strategy
was corroborated by other studies conducted with northern Alboran Sea sardine
larvae (Ramírez et al. 2004). However, studies conducted with sardine larvae in post-
flexion stages (García et al. 2006a, b; size range from about 16 to 28 mm) found that
size at age followed a linear pattern rather than a power pattern and thereby, the
resulting growth rates for those size classes are constant (around 0.32 mm/day). The
results of all these studies indicate that there is an inflection in sardine somatic
growth rates, both in length and weight, which could be due to ontogenic changes of
larvae during its development and by the changes in larval food items. Thus,
Conway et al. (1994) based on the analysis of the gut content reported an increase
in copepodites in the diet of sardine larvae larger than 15 mm collected in the north
Iberian continental shelf.

Otolith growth also provides important information to understand the variability
in recruitment. Thus, for the northern Alboran Sea sardine, Ramírez et al. (2001)
reported that otolith larval growth was faster for older age groups in comparison with
younger larvae. These differences could be attributed to growth-dependent mortality
during the earlier stages of sardine larval development (Ramírez et al. 2001).
Likewise, growth-dependent mortality could explain the observed increase in nutri-
tional condition with larval length (Ramírez et al. 2001), since well-fed larvae would
also have more survival rates than poor feed or starved larvae.

The studies conducted in the Alboran Sea have also allowed further insights on
how larval growth, otolith growth, and nutritional condition are related. Under ideal
conditions, a close relationship between larval somatic growth and nutritional
condition is expected. Thus, previous studies with other species related recent
somatic fish larval growth with RNA/DNA (Buckley 1984; Hovenkamp and Whitte
1991; Westerman and Holt 1994). However, the studies conducted with field-caught
sardine larvae suggest that RNA/DNA is not a good indicator of somatic growth in
length or age. Thus, Ramírez et al. (2001) found that the RNA/DNA and protein/
DNA ratios were weakly related to somatic larval growth in mass as well as to recent
otolith growth. On the other hand, previous studies have used the width of the last
three-six otolith daily microincrements as a proxy of recent larval growth in some
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species, showing strong correlations with RNA/DNA ratios in other fish spe-
cies (Clemmessen and Doan 1996). However, the studies conducted in the North
Alboran Sea with sardine larvae show that the RNA/DNA ratios in larvae is
generally highly variable. This may be due to a more rapid response of RNA to
exogenous factors, such as temperature (Goolish et al. 1984), while changes related
with somatic and otolith growth rates have a slower response to external factors
(Ramírez et al. 2004).

On the other hand, the studies conducted with sardine larvae collected in the
northwestern Alboran Sea revealed that RNA, DNA, protein, and carbohydrate
content of larvae is highly dependent on larval age, length, and weight (Ramírez
et al. 2001; Ramírez et al. 2004; Cortés 2006). Although both length and weight at a
given age are indicators of somatic growth, according to the research on sardine
larvae in the Alboran Sea, weight accounts for a higher percent of variability in
biochemical parameters than larval length (García et al. 2005). This higher depen-
dence on weight can be explained by the fact that these biochemical parameters are
intrinsically related to cell metabolism and tissue accretion.

Although larval growth is highly influenced by the surrounding hydrobiological
conditions predominating in their nursery sites, the influence of maternal qualities
cannot be overlooked (Høie et al. 1999; Green and McCormick 2005; Uriarte et al.
2016). Recent results have shown that pre-flexion larvae of bluefin reared under
controlled laboratory conditions showed maternal transmission of the stable isotopes
of carbon and nitrogen (Uriarte et al. 2016) enabling future prospects of analyzing
the trophodynamics of spawning females.

13.5.3 Seasonal and Interannual Variability of Larval
Growth and Condition Research

The temporal variability of larval growth and condition (RNA/DNA) research of
larval stages of sardines and anchovies was enabled by the ECOMALAGA sampling
time series. The temporal and seasonal variability of larval sardine (García 2006;
Cortés 2006) and an interannual comparison of anchovy larvae (García et al. 2003)
allowed investigating the environmental and climatic drivers that influence ELHS
development.

ANCOVA using daily increments (DI) as covariant showed highest sizes at age
(SL) and dry weight (DW) at age between comparably equal larval size classes of
sardine larval cohorts, which is consequential to having greater daily growth rates.
Maximum growth corresponded to maximum DNA and RNA content during the
winters of 1995 and 2001 (Fig. 13.15). During spring, the sardine larval cohorts of
1998 and 2001 showed highest growth rates.

Motivated by the faster is better hypothesis whereby faster-growing individuals
are prone to have higher survival rates (Houde 1987; Anderson 1988; Meekan et al.
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2006), a field-based experiment was set to verify the consequences of enhanced
larval growth in the survival of the Alboran Sea sardine and anchovy.

A field test experiment verified this hypothesis on mortality of sardine larvae. A
surviving cohort of sardine larvae from its original population was analyzed by
backtracking growth curves and compared with the original cohort sampled 2 weeks
earlier in the same nursery site (García et al. 2007). Sardine juveniles sampled and
aged on a monthly basis followed postlarval growing cohorts to their juvenile stages
also indicated that surviving juveniles showed enhanced growth rates (Alemany
et al. 2006).

In conclusion, larval survival of both species is clearly linked to faster growth
rates and better nutritional conditions. Nevertheless, the Alboran Sea sardine can
show two differentiated growth strategies, favoring growth in length or alternatively
in somatic mass (García 2006). The highest larval growth occurred during the
winters of 1995 and 2001. Since the Alboran Sea sardine is a protracted spawner
(early autumn, September to late spring, May), significantly different seasonal
growth patterns occur from winter- to spring-spawned larvae. In general, greater
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growth occurs during spring when temperatures increase (Ramírez et al. 2004;
Mercado et al. 2007).

The overall larval sardine population collected from the ECOMALAGA surveys
show differentiated growth patterns as shown by the accretion of daily increments
considered a good proxy of growth. It corresponds to a greater protein buildup of
somatic mass (Fig. 13.16). In year-by-year cases, this general picture can vary
greatly because winter corresponds to greater nutrient resources, thereby enhancing
growth in body mass under a low-temperature regime. On the other hand, spring
shows greater hydroclimatic and nutrient variability which undoubtedly affects
growth variability.

At the sardine nursery site of Malaga, wind stress showed significant linear
relationships with somatic growth variables of sardine larvae monitored from 1995
to 2003 (García et al. 2006a, b) (Fig. 13.9). Alemany et al. (2006) indicated that
larval survival and larval and juvenile growth rates showed a positive correlation
with westerlies that induce upwelling events (Sarhan et al. 2000), in the coastal shelf
and calm sea weather conditions in the inshore nursery grounds.

In general, the spring larval cohorts showed faster somatic growth rates, both in
length and weight, than those born during the winter season (García et al. 2005;
García 2006) due to more favorable environmental conditions with higher temper-
atures and higher planktonic biomass coupled to spring blooms (García et al. 2005;
Ramírez et al. 2005; Mercado et al. 2007). Faster somatic growth observed in the
spring-spawned sardine larvae is coupled with faster otolith growth in comparison
with larvae winter-spawned larvae. Consequently, spring-spawned sardine larvae
have larger otoliths with wider daily increment widths than winter-spawned sardine
larvae (García et al. 2005; García 2006).

In general, spring-spawned sardine larvae presented better nutritional conditions
than winter-spawned larvae showing significantly higher RNA, DNA, protein, and
carbohydrate content at age (García et al. 2005; Cortés 2006; Mercado et al. 2007).
However, no significant differences were observed with respect to RNA/DNA
between both seasonal periods suggesting the resilience of this species to changing

Fig. 13.16 Average increment widths observed by microstructure analysis of larval sardine otoliths
(left) and protein content with estimated increments. (García 2006; Cortés 2006) (ECOMALAGA
time series)
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seasonal conditions. In this case, differences in sea temperature act as a physiological
driver that modulates the estimated RNA/DNA ratios. A decoupling between larval
growth and biochemical indices can be observed consequent of a delayed response
of larval growth to sudden changes in environmental conditions (Ramírez et al.
2004).

The variability of seasonal growth patterns in small pelagic larvae, is modulated
by the temperature and feeding resources which may undergo abrupt changes.
Strong changes of trophic resources for larvae can originate from changes in the
phytoplankton composition as observed by Mercado et al. (2007), where a phyto-
plankton diatom-based community shifted towards a coccolithophorid type of com-
munity in 2001. Highest larval growth of anchovy and sardine cohorts corresponded
to this year-class (García 2006; García et al. 2003). Moreover, changes in phyto-
plankton community may have contributed to having higher carbohydrate content in
sardine larvae sampled in winter 2000 and 2001 (García et al. 2005; Cortés 2006;
García 2006; Mercado et al. 2007).

With respect to the Alboran Sea anchovy, its peak spawning occurs during
summer (July–August) (Rodríguez 1990). An unexpected high anchovy recruitment
occurred during 2001 (Abad and Giráldez 1990). Growth data on anchovy of the
2000 and 2001 year-class were compared which yielded a field-based study on the
influence of growth on annual recruitment (García et al. 2003). The 2001 anchovy
larval cohort showed a 20% increase in daily growth rates in comparison to the
previous year (García et al. 2003). The birth date distribution of both cohorts showed
that during 2001 these were born at an earlier period (late spring) which possibly
coupled with the spring bloom because zooplankton biomass was unexpectedly high
in 2001 in comparison to the previous year. Furthermore, Mercado et al. (2005,
2007) revealed important interannual changes in the predominance of the different
phytoplankton groups in the Alboran Sea) shifting from a diatom-based community
to a coccolithophorid- and dinoflagellate-based phytoplankton grouping.

Nevertheless, it is reasonable to think that a single event like the strong 2001
anchovy recruitment must have been triggered by changes or driving forces of
biological and hydro-physical nature that occurred in the Alboran Sea. Ruíz et al.
(2013) observed a relationship between the variability of the path and intensity of
Atlantic Jet with the anchovy recruitment. A high kinetic energy of the current favors
the production in northern Alboran, but negatively impacting anchovy recruitment,
possibly inducing a greater degree of larval advection and dispersion. The year 2001
constituted an outlier of the time series of data from 1988 to 2010. The climatic and
hydrographic forces of the Atlantic current are also responsible for maintaining the
temporal persistence of the anchovy and sardine nursery grounds (Macías et al. 2011).

13.6 New Approaches Towards ELHS Trophodynamics

The joint analysis of growth at ELHS together with other analytical tools has led
way to the development of new digital imaging tools for growth otolith microstruc-
ture analysis (Nava et al. 2018). This digital imaging tool is open to otolith experts
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and is continuously being updated with new applications, as otolith asymmetry. It
has been shown that larval trophodynamics are strongly relevant for enhancing daily
growth (Pepin et al. 2015). Studies of the trophic transfer of C and N from
phytoplankton to zooplankton and ichthyoplankton by determining the isotopic
composition (13C and 15N) of different size fractions revealed that sardine and
anchovy larvae modify their diet depending on the quality or the type of food
available, namely, the phytoplankton and/or zooplankton groups present (Uriarte
2010; Laíz-Carrión et al. 2011; Quintanilla et al. 2015; Quintanilla 2016). Further
findings show that the stable isotope of nitrogen (δ15N) showed a linear relationship
between faster- and slower-growing individuals with the average values of δ15N by
daily age class. This link was further corroborated on the species Auxis rochei from
the Balearic Sea. Two cohorts of this species originating from two hydrographically
different water masses showed differentiated growth patterns in which enhanced
growth was linked to greater δ15N values (Laíz-Carrión et al. 2013).

With respect to anchovy, a comparison between the NW Mediterranean anchovy
and Alboran Sea anchovy stable isotope analysis linking larval growth study showed
that the NW Mediterranean anchovy population showed specialized prey selectivity
associated with a low productive ecosystem in contrast to the Alboran Sea popula-
tion, which showed a more generalist feeding behavior associated with an ecosystem
of higher food resources. The differences between ecosystems were shown by the
significant differences in the δ13C values indicating differences in the carbon sources
of each larval habitat (Uriarte 2010). Higher growth rates recorded greater δ15N
values, thereby a higher trophic position which indicates a greater feeding special-
ization in larvae originating in less productive regions (Uriarte 2010; Quintanilla
et al. 2015). From the population viewpoint, differences in the amino acid compo-
sition of anchovy egg and larvae further corroborated stock differentiation (Riveiro
et al. 2003).

A similar study comparison was carried out in the Alboran Sea sardine which has
nursery grounds in widely distinct environmental characteristics, the bays of Almeria
and Malaga, being the former distinguished by its lower productivity consequent
with the less influence of the Atlantic current (Quintanilla et al. 2020). While δ15N
values were conditioned by the seasonal plankton community structure particular to
each nursery area, trophic levels are influenced by larval trophodynamics. In this
case, higher somatic and otolith biometric growth was related to higher trophic levels
due to the higher enrichment of larvae from their potential feeding resources.

Recently, these trophic relationships have been further investigated through the
molecular characterization of the diet of Sardina pilchardus larvae in the Bay of
Malaga. The development and application of new molecular tools have allowed
detecting the presence of certain groups of phytoplankton and zooplankton in the gut
of ichthyoplanktonic larvae. For example, specific primers and a multiplex PCR
assay have been designed to target copepod species and phytoplankton groups
identified as potential preys (Hernández de Rojas et al. unpubl.), allowing us to
determine their contribution, at least qualitatively, to the diet of S. pilchardus larvae
in the nursery area (Yebra et al. 2019). Also, recent developments in high-
throughput sequencing techniques have allowed the metabarcoding of the entire
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prey field in the gut of these larvae and its variability through the spawning season
(Fig. 13.17), using the mtCOI gene as a marker. Preliminary results indicate that
larval sardines have opportunistic feeding habits, rather than species-specific selec-
tivity (Yebra et al. 2018).
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