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Abstract. First-order transition systems are a convenient formalism to
specify parametric systems such as multi-agent workflows or distributed
algorithms. In general, any nontrivial question about such systems is
undecidable. Here, we present three subclasses of first-order transition
systems where every universal invariant can effectively be decided via
fixpoint iteration. These subclasses are defined in terms of syntactical
restrictions: negation, stratification and guardedness. While guardedness
represents a particular pattern how input predicates control existential
quantifiers, stratification limits the information flow between predicates.
Guardedness implies that the weakest precondition for every universal
invariant is again universal, while the remaining sufficient criteria enforce
that either the number of first-order variables, or the number of required
instances of input predicates remains bounded, or the number of occur-
ring negated literals decreases in every iteration. We argue for each of
these three cases that termination of the fixpoint iteration can be guar-
anteed.

Keywords: First-order transition systems - Universal invariants -
Second-order quantifier elimination - Stratification + Decidability

1 Introduction

FO transition systems (FO for First-order) are a convenient tool for specifying
systems where the number of agents is not known in advance. This is very useful
for modeling systems like network protocols [22] or web-based workflows like
conference management, banking or commerce platforms. Consider, e.g., the
specification from Fig.1 modeling parts of the review process of a conference
management system as a FO transition system.

Assume that initially, all predicates with the exception of auth are false, i.e.,
the property H given by

V1, za,p, r, d.oconf(x1,p) A —assign(z1,p) A 1)

—report(x1,p,r) A ~discuss(z1, z2, p, d)
holds. The predicates A1, ..., A4 are input predicates whose values either repre-
sent agents’ decisions or actions from the environment. Intuitively, the transition
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conf(x, p) :== auth(z,p) V A1 (z,a)

assign(z, p) == Aa(z,p) A —conf(z, p)

RONOROS

report(z,p, r) = report(z, p,r) V As(z,p,r) A assign(z, p)

discuss(z1, z2, p, d) := discuss(z1, 2, p,d) V Ir1,ra.

As(z1, 22, p,d,71,72) A report(z1, p,r1) A report(xz, p, r2)
Fig. 1. A conference management system.

system works as follows: First, each PC member = possibly declares her conflict
with each paper p. Then, papers p are assigned to PC members x in such a way
that the conf relation is respected. Repeatedly, reports for PC members z about
papers p arrive, where a subsequent discussion between PC members x1, x5 on
some paper p is only possible if both have received a report on that paper and
may update their reviews based on the discussions. Variants of this example have
already been studied in [19,25].

A useful property to ensure in this example is that a discussion between x;
and xo on some paper p is only possible if neither z; nor x5 are authors of p:

V1, 29, p, d.—discuss(z1, X2, p, d) V —auth(z1, p) A —auth(xs, p) (2)

As FO predicate logic is undecidable, we cannot hope to find an effective algo-
rithm for proving an invariant such as (2) for arbitrary FO transition systems.
That does not exclude, though, that at least some invariants can be proven
inductive and thus, to be valid. Also, approximation techniques may be con-
ceived to construct strengthenings of given invariants which, hopefully turn out
to be inductive and thus may serve as certificates for the invariants in question.

The idea of using FO predicate logic for specifying the semantics of sys-
tems has perhaps been pioneered by abstract state machines (ASMs) [6,7,14].
Recently, it has successfully been applied for the specification and verification of
software-defined networks [2,20], of network protocols [23], of distributed algo-
rithms [22]. The corresponding approach is built into the tool Ivy [18,23]. Ivy
is a proof assistant for systems specified in FO logic which is carefully designed
around a decidable many-sorted extension of EPR (Effectively Propositional
Logic, or 3*V*FO logic). In the base setting, invariants are provided manually
and then checked for inductiveness by the theorem prover Z3 [8]. Some effort,
though, has been invested to come up with more automatic techniques for specific
settings such as threshold algorithms [4] or more general FO invariant inference
[15,16]. The fundamental problem thereby is that repeated application of the
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weakest precondition operator may introduce additional first-order variables,
new instances of input predicates or existential quantifiers and thus result in
formulas outside the decidable fragment of FO logic.

This problem also has been encountered in [10,11,19] where noninterfer-
ence [13] is investigated for multi-agent workflows in the spirit of the conference
management system from Fig. 1. In [19], the authors present a a symbolic ver-
ification approach where the agent capabilities as well as declassification and
self-composition of the original system 7 is encoded into a FO transition sys-
tem 72. Noninterference of the original system is thus reduced to a universal
invariant of the resulting system 72. Further abstraction (i.e., strengthening of
the encountered formulas) is applied in order to arrive at a practical algorithm
which iteratively strengthens the initial invariant.

Only for rare cases, so far, decidability could be shown. In [21], Sagiv et al.
show that inferring universal inductive invariants is decidable when the transi-
tion relation is expressed by formulas with unary predicates and a single binary
predicate restricted by the background theory of singly-linked-lists. The same
problem becomes undecidable when the binary symbol is not restricted by a
background theory. In [19] on the other hand, syntactic restrictions are intro-
duced under which termination at least of an abstract fixpoint iteration can be
guaranteed. The abstraction thereby, consists in strengthening each occurring
existential quantifier via appropriate instantiations (see also [9]). The syntactic
restrictions proposed in [19] essentially amount to introducing a stratification on
the predicates and restricting substitutions to be stratified and guarded updates.
It is argued that these restrictions are not unrealistic in specifications of multi-
agent systems where the computation proceeds in stages each of which accumu-
lates information based on the results obtained in earlier stages. The example
transition system from Fig. 1, e.g., is stratified: there is a mapping A assigning
a level A(R) to each predicate R so that the predicates occurring in right-hand
sides which are distinct from the left-hand side have lower levels. In the example,
A could be given by

{auth — 0, conf — 1, assign — 2, report — 3, discuss — 4}

Intuitively, stratification limits dependencies between predicates to be acyclic.
Examples of stratified guarded updates on the other hand, are the two statements
in the loop body of Fig.1. Guarded updates only allow to extend predicates
where the extensions constrain the use of existential quantifiers to the format
oV 3Iz.Ayz N for some input predicate A and quantifier-free subformulas ¢, 1.

The loop of the example thus satisfies the requirements of [19], implying
that an abstract fixpoint iteration is guaranteed to terminate for every univer-
sal invariant. Here, we show that under the given assumptions, no abstraction
is required: the concrete fixpoint iteration in question already terminates and
returns the weakest inductive invariant, which happens to consist of universal
formulas only. We conclude that universal invariants for the given class of FO
transition systems are decidable.

Beyond that, we extend this class of FO transition systems by additionally
allowing stratified guarded resets such as the two assignments before the loop
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in Fig. 1. Guarded stratified resets are seemingly easier than updates, as they
define their left-hand sides solely in terms of predicates of lower levels. In full
generality, though, when there are both updates and resets, we failed to prove
that universal invariants are decidable. We only succeed so—provided further
(mild) restrictions are satisfied. Our results are that jointly, stratified guarded
updates and resets can be allowed

— when resets refer to predicates at the highest and at the lowest level of the
stratification only; or

— when all predicates of level at least 1, occur in right-hand sides only positively;
or

— when all updates are not only guarded, but strictly guarded.

2 Basic Definitions

Assume that we are given a finite set of predicate names R together with a
finite set of constant names C. A FO structure s = (I, p) over a given universe
U consists of an interpretation I of the predicates in R, i.e., a mapping which
assigns to each predicate R € R of arity k > 0, a k-ary relation over U, together
with a valuation p : C — U which assigns to each constant name an element in .
The semantics of FO (first-order) formulas as well as SO (second-order) formulas
with free occurrences of predicates and variables in R and C, respectively, is
defined as usual. We write s |= @ or I, p = ¢ to denote that ¢ is valid for the given
interpretation I and valuation p as provided by s. For FO transition systems,
we distinguish between the set Ryt Of state predicates and the disjoint set A
of input predicates. While the values of constants as well as the interpretation
of the state predicates constitute the state attained by the system, the input
predicates are used to model (unknown) input from the environment or decisions
of participating agents.

At each transition of a FO transition system, the system state s’ after the
transition is determined in terms of the system state s before the transition via
a substitution . For each state predicate R € Rgiqte, 0 provides a FO formula to
specify the interpretation of R after the transition in terms of the interpretation
and valuation in s.

Technically, we introduce a set Y = {y; | i € N} of distinct formal parameters
where CN'Y = (). For a predicate R of arity k > 0, we write Ry for the literal
R(y1,...,yx) and assume that each substitution 6 maps each literal Ry, R €
R state, to some FO formula ( Ry) with predicates in R4t UA and free variables
either from C or occurring among the variables in §. In case that (Ry) = ¢ and
O(R'y) = R’y for all R’ € Rgtate \ {R}, we also denote 6 by Ryj:=1).

Ezxample 1. In the example from Fig. 1, Rt consists of the predicates conf,
auth, assign, report and discuss while Rpnpy: consists of the predicates A; ... A4.
No constants are needed, so C = (). The edge from node 1 to 2, e.g., specifies a
substitution # that updates assign with

f(assign(z,p)) = Aa(z,p) A —conf(z,p)
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but does not change literals of predicates conf, auth, report or discuss. a

Applying 0 to a FO formula ¢ results in the FO formula 6(¢) which is obtained
from ¢ by replacing each literal Rz with the FO formula §(Ry)[z/7]. Here, [Z/9]
represents the simultaneous substitution of the variables in ¢ by the correspond-
ing variables in Zz.

Ezample 2. Consider formula ¢ that specifies that the author of a paper p should
never be assigned to provide a review for p:

© = Vx, p.—assign(x, p) V —auth(z, p)
Applying the substitution 8 from Example 1 results in
0(p) = Va, p.=(Az(x, p) A ~conf(z, p)) V —auth(z, p)
O

A FO transition system 7 (over the given sets Rsqte of predicates, A of input
predicates and C of constant names) consists of a finite set of nodes V' together
with a finite set F of edges of the form e = (u, 8, v) where u,v € V and 6 is a sub-
stitution of the predicates in Rgtqte. W.l.0.g., we assume that each substitution 6
at some edge e always has occurrences of at most one input predicate, which we
denote by A.. For a given universe U, a program state s attained at a program
point is a FO structure for the predicates in R4 ute and the constants in C over
the universe U. Let S denote the set of all program states. A configuration of T
is a pair (v,s) € V x S. A (finite) run 7 of T starting in configuration (vg, sg)
and ending at node v in state s, i.e., in configuration (v, s) is a sequence of con-
figurations (v;, $;), @ = 0,...,n where (v,,s,) = (v,s) and for all ¢ = 1,...,n,
there is some edge e; = (v;_1,6;,v;) € E such that for s;_; = (I, p), s, = (I, p)
where for some interpretation R, of the input predicate A.,, and every valuation
py of the formals, I’ p @ py E Ry it I & {A¢, — R;},p @ py E 0(RY). Assume
that we are given an initial node vg € V together with an initial hypothesis
H, i.e, a FO formula (with predicates in Rt and free variables only in C)
characterizing all possible initial states attained at vg.

Ezample 3. According to the specification in Eq. (1) for the example transition
system in Fig. 1, the single initial state is a pair of state 0 and the FO struc-
ture which interprets the relations auth, assign, report and discuss with the empty
relation. O

Input predicates may take fresh interpretations whenever the substitution of the
corresponding edge is executed. This should be contrasted to state predicates
whose interpretations stay the same if they are not explicitly updated by the
transition system. The constant interpretation of such predicates instead may
be constrained by suitable background theories as provided, e.g., via conjuncts
of the initial hypothesis.

Assume that ¥ assigns to each program point v € V, a FO formula ¥[v].
Then ¥ is a valid invariant (relative to the initial hypothesis H), if every run 7
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of the system starting in a configuration (vg, sg) with so = H and visiting some
configuration (v, s), it holds that s = ¥[v]. ¥ is inductive if

Ulu] — 0(P[v]) forall (u,0,v) € E (3)
If ¥ is inductive, then ¥ is a valid whenever
H — ¥[uv] (4)

Indeed, it is this observation which is used in the Ivy project to verify distributed
algorithms such as the PAX0Os protocol, essentially, by manually providing the
invariant ¥ and verifying properties (3) and(4) via the theorem prover Z3 [8].
Not each valid invariant ¥, though, is by itself inductive. If this is not yet
the case, iterative strengthenings W™ h > 0, of ¥ may be computed as follows:

7O [y] = wlu]

W) =wVun A\ VAL (O@P V) for h >0 (5)
e=(u,0,v)EE

For computing the next iterate in (5), universal SO quantification over the input
predicate A, is required in order to account for every input possibly occurring
during a run at the given edge. As, e.g., noted in [25], s = W"[u] iff every run
of length at most h starting in (u,s), ends in some configuration (u',s’) with
s’ = W[u/]. In particular, the assignment ¥ is a valid invariant iff H — @) [y]
for all A~ > 0. The iteration thus can be considered as computing the weakest
pre-condition of the given invariant ¥ — as opposed to the collecting semantics
of the FO transition system, which corresponds to the set of all configurations
reachable from the set of all initial configurations (v, s), s = H. Whenever the
fixpoint iteration (5) terminates, we obtain the weakest strengthening of the
given invariant ¥ which is inductive. We have:

Lemma 1. Let T be a FO transition system and let ¥ an invariant. Assume
that for some h > 0, W) = W+ holds. Then M) is the weakest inductive
invariant implying W. Moreover, W is valid iff H — &™) [v]. O

In general, the required SO quantifier elimination may not always be possible,
i.e., there need not always exist an equivalent FO formula [1], and even if SO
quantifier elimination is always possible, the fixpoint iteration need not termi-
nate. Non-termination may already occur when all involved predicates either
have no arguments or are monadic [25]. Termination as well as effective com-
putability can be enforced by applying abstraction (see, e.g., [24] for a general
discussion). Applying an abstraction ov amounts to computing a sufficient condi-
tion for the invariant ¥ to hold. Technically, an abstraction maps each occurring
formula ¢ to a formula «[t¢)] (hopefully of a simpler form) so that a[¢] — .
Subsequently, we list three examples for such strengthenings.

Ezample 4. Abstraction of existentials. In [19], formulas with universal SO
quantifiers and universal as well as existential quantifiers are strengthened to



Stratified Guarded First-Order Transition Systems 119

formulas with universal quantifiers only. The idea is to replace an existentially
quantified subformula Jz.¢ with a disjunction \/ .y ¢[y/2] where Y is the sub-
set of constants and those universally quantified variables in whose scope ¢
occurs. So, the formula Yy, ys.3x.R(z) is abstracted by Vy1,y2.R(y1) V R(y2).
This abstraction is particularly useful, since SO universal quantifiers can be
eliminated from universally quantified formulas.

Abstraction of Universals. Fixpoint iteration for universally quantified formulas
still may not terminate due to an ever increasing number of quantified variables.
The universally quantified variable x in an otherwise quantifier-free formula
in negation normal form can be removed by replacing each literal containing
x with false. In this way, the formula Vz. (Rx V =Sy V Tz) A (wRx vV —Ty) is
strengthened to (—Sy VvV Tz) A —Ty.

Abstraction of Conjunctions. Assume that the quantifier-free formula 1 is a
conjunction of clauses. Then 1 is implied by the single clause ¢ consisting of all
literals which all clauses in ¢ have in common. The formula (Rx V =Sy VvV Tz) A
(Rx VvV TzV —Tx), e.g., can be strengthened to Rz V T'z. O

In this paper, rather than focusing on using abstractions, we identify sufficient
criteria when the concrete iteration (5) terminates without any further abstrac-
tion.

3 Stratification and Guardedness

Subsequently, we concentrate on initial conditions in the 3*V* fragment and
universal invariants, i.e., where the invariant ¥ consists of universal FO formulas
only. Already for this setting, non-termination of the inference algorithm may
occur even without SO quantification when a single binary predicate is involved.

Ezxample 5. Consider the FO transition system 7 over a monadic state predicate
R, a binary state predicate E and a constant element a. 7 consists of a single
state u with a single transition:

R(y) :== R(y) V 3z. E(y,2) A R(2)

Consider the invariant ¥[u] = —R(a). Then for h > 0,

h k—1
M [u] = =R(a) A )\ Va1,..., 2. ~E(a,21) V \/ =E(2i, 2i41) V ~R(2x)
k=1 =1

The weakest inductive invariant thus represents the set of elements which are
not reachable from a via the edge relation E. This property is not expressible in
FO predicate logic. Accordingly, ¥ [u] # #"+1[¢] must hold for all h > 0. O

Our goal is to identify useful non-trivial classes of FO transition systems where
the fixpoint iteration is guaranteed to terminate. One ingredient for this defi-
nition is a stratification mapping A : Rstate — N which assigns to each state
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predicate R a level A(R). Intuitively, this mapping is intended to describe how
the information flows between predicates. Thereby, we use the convention that
A(R) = 0 only for predicates R which are never substituted, i.e., whose values
stay the same throughout each run of the transition system.

We will consider substitutions which are guarded and stratified. A substitu-
tion @ is called guarded if it modifies at most one predicate R € Rgiqte at a time
and is of one of the following forms:

Update : Ry:=RyVpV3Iz. Ayz Ay (6)
Reset : Ry:=@V3z. Ayz AN (7)

where A € Rinput is an input predicate and ¢, ¢ are quantifier-free FO formulas
without occurrences of predicate A. If additionally, each predicate R’ occurring
in ¢ or ¢ has level less than A(R), then 6 is called stratified.

According to our definition, a guarded substitution only updates a single
predicate R. We might wonder whether the single update restriction could be
lifted by additionally allowing simultaneous updates of several predicates which
are coupled via the same input predicate. For this extension, however, termina-
tion can no longer be guaranteed.

Lemma 2. There exists a FO transition system T using stratified simultaneous
guarded updates and resets, together with some universal invariant ¥ such that
for each h > 0, W) is universal FO definable, but W™ [u] £ WD) for some
program point u.

Proof. Consider the FO transition system 7 as shown in Fig. 2 for some binary
predicate E, together with the invariant ¥ = {1 — error V =hull(a,b),0,2 — T}
for constants a, b. Initially, the predicate hull is set to L. By executing the loop h
times, either the error flag error is set to T, or hull receives kfold compositions of
E for k=0,...,h. Still, we can assign levels to the predicates used by 7 which
meet the requirements of a stratification:

A={F+ 0,add — 0, hull — 1, error — 2}

For h > 0, we obtain W(h)[l] =

h j—1
/\ Vyi ...y;. error V =hull(a, b) V —hull(a, y1) V \/ —E(Yi, Yi+1) V ~E(y;,b)
j=1 i=1

For the required SO quantifier elimination of A;, As, we note that in order to
avoid error to be set to T, add(z,y, z) must imply hull(z,y) A E(y, z). In order
to falsify the invariant at program point 1 whenever possible, thus, A;(z,y, 2)
should be set to hull(z,y) A E(y, ), and As(x, z,y) at least to add(z,y, z). Alto-
gether thus, the weakest inductive invariant for program point 0 is given by
error V - E*(a,b) where E* is the transitive closure of E. As transitive closure is
not FO definable, we conclude that the fixpoint iteration cannot terminate. O



Stratified Guarded First-Order Transition Systems 121

hull(z, z) := L

add(z,y, 2) := A1 (z,y, 2);
error := error V 3z, y, z. A1(z,y,2) A —(hull(z,y) A E(y, 2))

hull(z, z) := hull(z, 2) V 3y. Az(x, z,y) A add(z, y, 2)
Fig. 2. FO transition system capturing transitive closure.

At the expense of slightly more complicated formulas for ¥(®) | the right-hand
side for add could be brought into the form (6). Thus, the crucial issue which
results in inexpressible weakest inductive invariants, is the use of the same input
predicate in two simultaneous updates. In the next section, we indicate how to
generally deal with SO quantifiers, once a guarded substitution has been applied.

4 Universal So Quantifier Elimination

It is well-known that universal SO quantifiers can be removed from otherwise
quantifier-free formulas [12,19]. For example,

VA.RTV AV —Az +«— RzV(j=2)
where for y = (y1,...,yx) and z = (z1,...,2k), ¥ = Z is a shortcut for the

formula (y;3 = z1) A ... A (yr = 21). Interestingly, there are also cases where SO
quantifier elimination is possible even in presence of FO existential quantifiers.

Ezample 6. Consider the substitution 6
R(y) := R(y) v 3z. Ay, 2) A S(y, 2)
In that case, O(R(a) V ~R(b)) is given by

Vz1. R(a) V 3z. A(a, z) A S(a,z) V =R(b) A (mA(b, z1) V =S (b, z1))
«— Vz. (R(a) V 3z. A(a, z) A S(a,z) V ~R(b)) A
(R(a) vV (3z. A(a,z) A S(a,2)) V—A(b,z1) V=S(b, z1))

A closer inspection reveals that in this case, SO quantifier elimination of A is
possible where VA.8(R(a) V ~R(b)) is equivalent to

Vz1. (R(a) V =R(b)) A ((R(a) V (a =b) A S(a,z1)) V—=S(b, z1))
—— Vz1. (R(a) V=R(b)) A ((R(a) V (a=b) AN S(b,z1)) VS(b, z1))
—Vz1. (R(a) V=R(b)) A(R(a) V (a=0b) vV —S(b, z1)

—Vz1. R(a) V R(b) A ((a =b) vV =S(b, 1))

In particular, the resulting FO formula has universal FO quantifiers only. a
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The observation in Example 6 can be generalized.

Lemma 3. 1. If ¥ is of the form
\/ 3z. Agiz A /7)) \/ (V2.AY} 2V ~[5) /7)) 8)

forn,m € N where ¢ is a FO formula without occurrences of A. Then VA. ¥
s equivalent to

V (V5= 5) v (¥l /) ©

2. If U is of the form

o' v\ Gz AzzAolmi/g) v\ (YZoAgzV -ely/ul) Av;  (10)
i=1 j=1

for nym € N where ¢, (pl,i/Jé- all are FO formulas without occurrences of A.

Then VA. ¥ is equivalent to

o VNV @ = 7)) v (VZ0l; /) A (11)

Proof. For proving statement (1), we consider the negated formula 3A.—~¥ and
apply Ackermann’s lemma in order to remove existential SO quantification. We
calculate:

JAAY —— 371 20 3AVE Ny ALy (CAGZ Y —l5:/T)) N AT5Z A ¢l5/9, 2] 7]
— 3z Zme NIy ANJLy (@ # 55) V —0l8i/9, 2/ 2) A N2 elT5/9, 25/ 7)
— 3z Zme N2y ALy (@ £ 55V ~elU3 /5, 25/ 20) A N2y el55/3/ 25/ 7)
— Iz w2 Ny N2y (@ # 55) Y el /90) A el /. /77
— Aoy NjLy (@ # 95) Vv 32 9lg;/9])

where the last formula is equivalent to the negation of formula (9). The second
statement then follows from statement (1) by distributivity. O

Interestingly, the same result is obtained when the existentially quantified vari-
ables z do not occur as arguments to the input predicate A.

Lemma 4. 1. If¥ is of the form

m

V' A5 A Gz elpa/g) v\ ~Ag; v (922005, /) (12)

Jj=1

for n,m € N where ¢ is a FO formula without occurrences of A. Then VA. ¥
18 equivalent to

\/(\/ Ui = 75) V (V2[5 /5]) (13)
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2. If ¥ is of the form

(—Ag; v (Vzely; /9) Ay (14)

=

o' v\ Agin Bz elni/y) v

i=1 7j=1

for nym € N where go,go’,l/); all are FO formulas without occurrences of A.
Then YA. ¥ is equivalent to

' v\ (@i =75) v (V2-0lg; /7)) A (15)

=1 i=1

Proof. For proving statement (1), we again consider the negated formula 3A.—¥
and apply Ackermann’s lemma in order to remove existential SO quantification.
By introducing the shortcut @ for 3z. ¢, we calculate:

JA-T — JA. N\, /\;.”:1 (—Ag; vV =P[y; /y]) N Ag; A =Py} /]

— Ny N2y (@ # 95) v 2l /9) A N2 @l5;/7)
— Niey A2y (B # 95) v —2ly; /9) A Nj=y 9175/ 9)
— Ny N2y (s # 55) v —2ly; /9) A 2ly; /7]

— Ny N2y (@ # 05) A 2[5} /9))

where the last formula is equivalent to the negation of formula (13). Again, the
second statement then follows from statement (1) by distributivity. O

In light of Lemmas 3 and 4, we introduce simplified versions of guarded updates
and resets where the input predicate no longer occurs in the scope of existential
quantifiers:

Simplified Update: Ry:=RyvV oV AjAIZ. (16)
Simplified Reset: Ry:=pVAgAIZ. Y (17)
As a first corollary, we obtain:

Corollary 1. Assume that 0 is a guarded update of the form (6) (guarded reset
of the form (7)), and that 8’ is the corresponding simplified update (16) (simpli-
fied reset (17)). Then for every universal FO formula ¥,

VA O(W) —— VA 0'()
O

In light of Corollary 1, we subsequently consider FO transition systems with
simplified guarded updates and resets only.

Example 7. Consider the second update in the loop of the transition system
from Fig. 1. Its simplified variant removes r; and ro from the signature of A4:

discuss(x1, x2,p, d) = discuss(x1,x2,p,d) V Ag(x1,22,p,d) A
ry,re. report(xy,p,r1) A report(xa, p,72)
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Let 6, denote this simplified update, and consider the invariant (2) from the
introduction. Application of 6, results in the formula

Va1, x2,p,d,r1, 9. ~discuss(z1, 2, p,d) A
(‘!A4(I‘17 T2, D, d) \ "report(xl7p7 Tl) \ ﬁreport(xQ,]L 7"2)) \
(—auth(z1,p) A —auth(xz,p))

Since A4 only occurs negatively, universal SO quantifier elimination of A4 yields

V1, Za,p, d,r1, ra.discuss(zy, X2, p, d)A
(_‘report(xlypv 7"1) \ _'report(IQap7 TZ)) \
(—mauth(z1,p) A —auth(zz,p))

O

Corollary 2. Assume ¥ is a formula of the form (14). Then VA. ¥ «—— 6(¥)
where 0 is given by

=

Ay =, (5 #9) (18)

i=1

The definition (18) thus provides us with the worst adversarial strategy to defeat
the proposed invariant. As another consequence of Lemma3, we find that in
presence of subsequent SO quantifier elimination, the effect of a guarded substi-
tution of the forms (16) or (17) could also be simulated by the corresponding
nonuniform substitutions:

Ry == RyV eV Ay

—Ry := =Ry A -pA(mAGV Vz.-) (19)
and
Ry = oV Ay
—Rjj = —p A (AGV Vz.~)) (20)

respectively. Here, nonuniform means that positive and negative occurrences of
literals are substituted differently. We have:

Corollary 3. Assume that 0 is a guarded substitution of the form (16) or (17).
Assume that 0’ is the nonuniform substitution of the corresponding form (19) or
(20), respectively. Then for every universal formula ¥,

VA.O(W) s YA.0(W)

Finally, as another important consequence of Lemma 3, we obtain:

Theorem 1. Assume that T is a F'O transition system with guarded (simplified)
updates and resets only, and ¥ a universal FO invariant.
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1. The iterates WM [u),h > 0, in (5) all are effectively equivalent to universal
FO formulas.

2. The iteration terminates, i.e., W = &+ for some h > 0, iff for each
program point u, the weakest strengthening of all iterates W) [u] is FO-
definable.

Proof. Due to Lemmas3 and 4, for each universal FO formula ¢ and each
guarded (simplified) update or reset § with input predicate A, VA. (6¢) is equiv-
alent to a universal FO formula. That implies statement (1). Now assume for
for each h > 0 and each v € V, @[] is FO definable. Then due to the com-
pactness theorem for FO predicate logic [5], there is some h > 0 such that
T[] « wr+)[y] holds for all v € V and j > 0, iff for each v € V, the
conjunction A\, s, %™ [v] is again FO definable. O

Ezxample 8. Consider again the specification from Fig. 1, and let 61,65, 03, and
0, denote the simplified substitutions occurring therein. Assume that ¥ equals
the universal formula in (2), and we are interested in its validity at program
point 2 of the transition system. The formula VAs. 03(VA4. 04(%)) is given by

VAs.03(Vx1, x2,p,d, r1,r2.~discuss(x1, 2, p, d) A
(—report(x1,p,71) V —report(za, p,r2)) V (—mauth(z1, p) A —~auth(z2, p))
— Va1, 22,p,d, 1, 72.~discuss(z1, z2,p,d) A
(—report(x1,p,r1) A —assign(z1, p) V —report(xz2, p, r2) A —assign(zz,p)) V
(—auth(z1, p) A —auth(zz, p))

The resulting formula ¥’ already equals the fixpoint for the loop. Since the
predicate assign only occurs negatively in ¥’ and conf only negatively in the
right-hand side for assign, the formula VA;.0;(VA2.02(9")) construction from ¥’
via the substitution f,sign defined by

assign(y1, y2) := —auth(y1,y2)

This means the formula ¥” for the initial node of the transition system is given
by

Va1, x2,p,d,r1,re.~discuss(xy, ro, p,d) A
(—report(z1,p,r1) Aauth(zq,p) V —report(xe, p,r2) A auth(ze,p)) V
(—auth(z1,p) A —auth(xz,p))

By the initial condition H from the introduction, —discuss(z1,z2,p,d) holds
at the initial node of the transition system, as well as —report(z1,p,r1) and
—report(xg, p, ro) for all 21, xa, p, d, r1, 9. Therefore, H implies ¥, and the prop-
erty ¥ at the exit of the transition system is valid. O

In this section we have shown comprehensively how to eliminate universal SO
quantifiers introduced by guarded updates in a FO transition system and intro-
duced a non-uniform variant of any guarded updates and resets which removes all
possibly introduced existential FO quantifiers. In the next two sections, we will
apply these results to FO transition systems which additionally are stratified.
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5 Stratified Guarded Updates

In [19], termination was announced for FO transition systems with stratified
guarded updates where instantiation of existential quantifiers was applied as an
abstraction to enforce all occurring formulas to be universal. Here, we improve
on that result in two respects. First, we present a proof that termination can
also be guaranteed without any abstraction. Second, we generalize the setting
to allow stratified guarded resets—at least at the maximal and minimal levels.

Theorem 2. Assume that T is a FO transition system where each occurring
substitution is stratified quarded with the restriction that resets only occur for
predicates of level 1 and the maximal level L. Then for every universal invari-
ant ¥, the weakest inductive invariant is again universal and can effectively be
computed.

Proof. W.l.o.g., we assume that each occurring substitution is a simplified
update or reset, i.e., either of the form (16) or (17). We show that there is some
h >0, so that ¥+ = ¥ Since by Lemmad4, ¥ (") [y] is a universal formula
for all h > 0 and program points u, the statement of the theorem follows.

Assume that each simplified update 6 of a predicate R always is specified
by means of the same input predicate Ar. Let @ denote the finite set of strat-
ified guarded substitutions occurring in 7, and @ a universal FO formula. Let
™ = On,...,07 be any sequence of nonuniform substitutions where for each
i=1,...,N, 0; =0.[A;/AR] holds for a fresh input predicate 4;, and a nonuni-
form substitution @} of the form (19) corresponding to a simplified update or
reset 0 € © with left-hand side Ry.

Lemma 5. There is some number V only depending on @ and © so that n(P) =
ON(...01(D)...) = /\ﬁ:t(vz.ct) for clauses c; where the number of FO variables
in Z; is bounded by V. In particular, V is independent of the number N of
substitutions in .

Given Lemma 5, the number of argument tuples Z of occurring literals A;Z in any
¢; is bounded. Due to Corollary 2, a bounded number of substitutions of the form
(18) therefore suffices to realize SO quantifier elimination of Ay, ..., Ay in ¢;. As
a consequence, the number of universal FO formulas possibly occurring in each
conjunct of VA; ... Ay.m(®P), and thus also the number of conjunctions of these
formulas is finite. Accordingly, there must be some h > 0 so that $(*+1) = o)
and the theorem follows. It therefore remains to prove Lemma5.

Proof (of Lemma5). Let us first consider the case where there is no reset of
predicates at maximal level L. We introduce a dedicated class of formulas g as
finite conjunctions of generalized clauses ¢ which are built up according to the
following abstract grammar

g ==T | c¢Ag

¢c u=c | Aavd | fmVd | oV
frp = RbAVZR. /\;:1(—\14”5 Voen)

o5 =Vz. \l_ (mA.bV ey,)
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where ¢g is an ordinary clause without occurrences of input predicates, R is a
predicate, A, A, are input predicates, a,b are sequences of arguments, Zp is a
sequence of fresh variables whose length only depends on R, and formulas o
where all state predicates are of level 0. A formula fp; is also called negation
tree with head —Rb, while we call a formula oy a level 0 chunk. Moreover,

(a) All literals occurring in the generalized clauses ¢, inside the conjunction
within fr; are of levels less than A(R); -

(b) For any two negation trees 1,2 with identical head —Rb, there is some
formula A so that either ¢ = po A A or vice versa, @2 = 1 A A holds.

@ can be brought into the form Vz. A}", ¢; where each ¢; is an ordinary clause
without occurrences of input predicates, i.e., a plain disjunction of literals and
(dis-)equalities. Therefore, now consider a single generalized clause ¢ which satis-
fies properties (a) and (b). We show that for each nonuniform update substitution
0 of the form

Ry:=RyV eV Ary
=Ry := "Ry A —p A (mALG V —VZ.—)

O(c) can again be represented as a conjunction of generalized clauses satisfying
properties (a) and (b), and whose free variables are all contained in the set of
free variables from ¢ and 6. Assume that ¢ is of the form ¢/ V\/;_, Ra; \/\/z-:1 frs,
where ¢’ is a generalized clause without further top-level occurrences either of
positive literals Ra’ or negation trees with head —Rb' for any a',V/, and fr, =
ﬁRl;j AVZg. /\Z;l(ﬁAj,VBj V ¢j,) is a negation tree with head ﬁRBj. Then

0(c) = /\cl,...,cSEC /\Jg[l,t] /\jeJ,éjeég(cl)\/ -
Vioi Rai Vv Aa; V cilai/g) v Ve, €10 /9] v .
Vjgs 7Rb; A (Vzr. Aby vV lb; /9]) ANy (245005 V )

where C and C are the sets of clauses in the normal forms of ¢ and —¢, respec-
tively. The resulting formula can indeed be represented as a conjunction of gener-
alized clauses satisfying property (a). Concerning property (b), we observe that
for every fresh negative literal property (b) trivially holds, while for existing
negation trees, this property is preserved. If on the other hand, 6 is a reset of
a predicate at level 1, 6(c) is a conjunction of generalized clauses where some
negation trees have been replaced by level 0 chunks. In particular, properties (a)
and (b) still hold.

Assume now that we are given a generalized clause ¢ satisfying properties
(a) and (b). Then c is called flat up to level i, if the roots of all negation trees
occurring in ¢ with a nonempty conjunction, have level at most ¢, and for every
predicate R of level i and every possible argument tuple b, there is at most one
negation tree with head —Rb. For a generalized clause ¢ which is flat up to level
i, we define the transformation flatten; as follows. Assume that ¢ is of the form

t Uj
dv \/ ﬁRji)j A Vij. /\ (_‘Aj,yBj \Y Cjw)

j=1 v=1
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where the = R;b; represent all occurrences of negated literals of level i. Then

c /\J:{j1<...<jk}§[1,t]/\u1€[1,u_,»1],...,Vke[l,ujk]
_ _ T k T
(V,Zj1 e Zgp v \/ng R;b; v \/l:1 ﬁAjl,VLbj Vv cjz,l/z)

In each quantified clause Vz;, ... Z;, . ¢ in the conjunction, all occurring negation
trees have level less than 7. Now due to property (2), ¢’ can be simplified so that
for each negated literal R’b where R’ is of level i —1, there is at most one negation
tree. The resulting conjunction of quantified clauses is denoted by flatten; c.

To compute a bound on the number of possible argument variables, let us intro-
duce the following structural parameters:

— the number of variables occurring in @

— the number of levels of predicates

— maximal arity of a predicate

— maximal number predicates at some level 4
maximal length of Z in subformulas Vz. -
occurring in the substitutions from ©

Sﬁb@

o~

Successive application of flatteny, ..., flatten; allows us to construct for a gen-
eralized clause ¢ satisfying properties (a) and (b), an equivalent conjunction of
formulas VZ'. ¢ where ¢ is disjunction of literals, (dis-)equalities and level 0
chunks oy only, and z’ is the list of globally bound variables occurring freely in
c.

For ¢ = L,...,1, we inductively determine a bound V; to the number of
distinct FO variables possibly occurring as arguments of literals at level 4 in
a clause ¢’. For i = L, we can set V; = v, since the only literals at level L
occurring in ¢’ already must have occurred in @. Therefore, assume that ¢ < L
and a bound V;;; has already been found. Then V; can be bound as follows:
Given the number V;, 1, the number of literals of predicates at level i + 1 can be
bound by m - V/ ;. For each of these literals, a fresh list of variables of length at
most [ can be provided. Accordingly,

Vi=Vipr+l-m- Vi, <(1+1-m)- Vi,

Altogether, this means that the total number of variables possibly occurring in
literals of ¢’ (outside of level 0 chunks) at level at least 0 is bounded by

{(1+l-m)L~v ifr =1

V < rfo1 L (21)
I+1-m)—T 0" ifr>1

Now given that there is a bound V; to the number of variables possibly occurring
as arguments of predicates at level 1, there is also only a bounded number
O of non-equivalent subformulas oj (after SO quantifier elimination) in any of
the generalized clauses from flatten;(...flatteny(¢’)...). Accordingly, Vo + O - 1
bounds the number of variables occurring in equalities, disequalities and literals
of predicates at level 0.
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Let us finally also consider the case when additionally resets of predicates at
maximal level L occur. Such a reset for a predicate R takes effect at most once.
It thus introduces one fresh list of universally quantified variables for each occur-
rence —Rb of the negated the negated literal at most once where we w.l.o.g. may
even assume that the list of outside universal quantifiers of the negation tree for
that literal can be reused. Thus, no further universal quantifiers are introduced.
Altogether, therefore, the number of FO variables in quantified clauses Vz'.c/
contained in 7(®) remains bounded. This completes the proof of Lemma5. O

We remark that Theorem 2 remains true if there are predicates R’ with strat-
ified guarded updates as well as resets also at non-extremal levels—given that
neither their updates nor their resets introduce FO variables, i.e., the variable
lists Z in (6) and (7) ((16) and (17)) are empty. In general, though, the proof
technique of Theorem 2 cannot easily be extended to FO transition systems with
arbitrary resets of the form (7), since then conjunctions of the form oz with non-
empty lists of quantified variables may also occur at higher levels—where it is
no longer clear how to prove that their number is finite.

6 Allowing Guarded Stratified Resets

We would like to extend Theorem 2 from the last section to FO transition systems
which additionally have resets at arbitrary levels. We succeed in doing so in two
special cases (see Theorems 3 and 4, respectively). Let us call an update strictly
guarded it it is of the form:

Ryj:=Ryv AgA3z.¢ (22)

for some predicate R and quantifier-free FO formula ¢ without occurrences of
A. Furthermore, let us call an update or reset 6 positive if all predicates only
occur positively in the right-hand side.

Theorem 3. Consider a FO transition system T where all substitutions are
stratified, guarded, and all substitutions of predicates not of level 0 are positive.
Then for every universal invariant ¥, the weakest inductive invariant is again
universal and can effectively be computed.

Proof. Let O denote the set of substitutions occurring in 7. As in the proof of The-
orem 2, let m = Oy, ..., 0; be any sequence of nonuniform substitutions where for
eachi = 1,...,N, 0; = 0/[A;/Ag] holds for a fresh input predicate 4;, and a
nonuniform substitution 6, of the form (19) corresponding to an update or reset
substitution §” € © with left-hand side Ry. Let /\jj\/il(VZj. ¢;) denote the con-
junction of quantified generalized clauses for 7(®)—now possibly also with sub-
formulas o5 holding predicates of level > 0. Then each FO variable x occurring in
a positive literal A;a in any c¢;, already occurs in @. In light of Corollary 2, it there-
fore suffices to use only a globally bounded number of input predicates in each c;.
If the number of predicate symbols is bounded, then also the number of general-
ized clauses as well as the number of non-equivalent formulas VA; ... Ay.7(®)—
implying that for every universal invariant &, #*+1) = &%) for some h > 0. From
that, the statement of the theorem follows. a
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The proof argument for Theorem 3 cannot easily be extended to unrestricted
stratified guarded substitutions. In presence of negated literals in substitutions,
it is no longer the case that the arguments of positive literals Ra occurring in
m(®) have already occurred in @, so for the next result we have to rely on a
different proof strategy.

Theorem 4. Consider a FO transition system T where all substitutions are
guarded and stratified. Assume furthermore that all updates are strictly guarded.
Then for every universal invariant ¥, the weakest inductive invariant is again
universal and can effectively be computed.

Proof. For this proof, it is convenient to use the notation ¢ 3 VZ. ¢ for a universal
FO formula @, a clause ¢, and a list Z of distinct variables so that for the prenex
CNF Vz.ci A ... Ay, of @, c occurs among the ¢;, and Z is the subsequence of
variables in Z which occur in c¢. We rely on the following technical lemma:

Lemma 6. Assume that ¢ is a clause and 0 a stratified reset or stratified strictly
guarded update with input predicate A which substitutes a predicate R with
MR) = s. Let ¢ be a clause with YA.6(c) > VZ.c' where T is the list of newly
introduced variables in ¢’. Then either c = ¢’ and T is empty, or the number of
literals at level s of ¢’ is less than the corresponding number of c.

Proof. Assume that the clause c is of the form
coV R V...V Ry, V=R V-V Ry,

where ¢y does not contain the predicate R. If 8 is a reset, all literals containing R
are eliminated. Therefore, the assertion of the lemma trivially holds. Now assume
that 0 is a strictly guarded update, i.e., of the form (22). Then by Lemma 3,

VA.O(Riy) « co V= ~R7; A (Vi (G = 7) V =¥ [5;/7))
— /\ngvm] Vz. (co V \/ng ﬁgyg Vv
Vies Viei (@i = 7)) V ~4[7;/9, 2/ 7))

where z; is a fresh list of FO variables of the same length as z, and z; is the
concatenation of all lists z;,j € J. In particular for J = 0, Z; is empty and
the corresponding clause equals ¢. If on the other hand J # (), the number of
negated literals occurring in the clause has decreased. a

By Lemma6, the number of literals at level s therefore either decreases,
or the clause stays the same. Let @ denote a finite set of stratified guarded
substitutions where all updates in © are strictly guarded, and let ¢y denote any
clause. Counsider a sequence (0, VZ;.c),t > 1, where for all t > 1, 6; € © with
some input predicate A;, and VA;. (0ic—1) 5 VZ;. ¢ holds. We claim that then
there is some t’ > 1 so that ¢y = ¢y and Ty is empty for all £ > ¢'.
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In order to prove that claim, we introduce for t > 1, the vector v, =
(ve,Ly---,v1) € NF where L is the maximal level of a predicate in Raze, and
v,; is the number of literals with predicates of level 4. By Lemma 6, it holds for all
t > 0, that either ¢; = ¢;41 and Zz; is empty, or vy > v;41 w.r.t. the lexicographic
order on NZ. Since the lexicographical ordering on N” is well-founded, the claim
follows. We conclude that the set of quantified clauses Vz.c with (" [u] 5 Vz.c
for any u and h, is finite. From that, the statement of the theorem follows. O

Theorem 4 leaves open the case of transition systems with stratified guarded
resets and stratified guarded updates of which some are not strictly guarded.
To these, the presented proof technique cannot be easily extended. The reason
is that a non-strictly guarded update 6 for some predicate R, when applied to
some clause ¢, may result in a quantified clause Vz. ¢ with VA.0(c) 3 Vz.¢ so
that neither ¢ = ¢’ holds nor does the number of literals —Rb decrease.

7 Conclusion

We have investigated FO transition systems where all substitutions are either
guarded updates or guarded resets. For these, we observed that the exact weak-
est pre-condition of a universal FO formula is again a universal FO formula,
thus allowing us to realize a fixpoint computation of iterated strengthening for
proving the validity of universal invariants. In order to identify sub-classes of
FO transition systems where termination can be guaranteed, we relied on a nat-
ural notion of stratification. Here, we were able to prove termination (and thus
decidability) for three interesting sub-classes of stratified guarded FO transition
systems. However, it remains as an open question whether termination can be
proven for all FO transition systems with stratified guarded updates and resets.

The results of our paper can immediately be applied to the multi-agent work-
flow language as considered in [19] for analyzing noninterference in presence of
declassification and agent coalitions. There, transformations are presented to
encode noninterference properties as invariants of the self-composition of the
given workflow [3,17]. At least for the case of stubborn agents [11], i.e., agents
who do not participate in adversarial coalitions, the given transformation pre-
serves both guardedness and the stratification. The same also holds true if the
size of adversarial coalitions is bounded. For these cases, our novel decidability
results therefore translate into decidability of noninterence.
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