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Abstract. We present a specification language aiming at soundly mod-
eling unavailable functions in a static analyzer for C by abstract interpre-
tation. It takes inspiration from Behavioral Interface Specification Lan-
guages popular in deductive verification, notably Frama-C’s ACSL, as
we annotate function prototypes with pre and post-conditions expressed
concisely in a first-order logic, but with key differences. Firstly, the speci-
fication aims at replacing a function implementation in a safety analysis,
not verifying its functional correctness. Secondly, we do not rely on the-
orem provers; instead, specifications are interpreted at function calls by
our abstract interpreter.

We implemented the language into Mopsa, a static analyzer designed
to easily reuse abstract domains across widely different languages (such
as C and Python). We show how its design helped us support a logic-
based language with minimal effort. Notably, it was sufficient to add only
a handful transfer functions (including very selective support for quan-
tifiers) to achieve a sound and precise analysis. We modeled a large part
of the GNU C library and C execution environment in our language,
including the manipulation of unbounded strings, file descriptors, and
programs with an unbounded number of symbolic command-line param-
eters, which allows verifying programs in a realistic setting. We report
on the analysis of C programs from the Juliet benchmarks and Coreutils.

1 Introduction

Sound static analysis of real-world C programs is hampered by several difficult
challenges. In this work, we address the key problem of analyzing calls to exter-
nal library functions, when analyzing library code is not an option (e.g., it is
unavailable, has unsupported features such as system calls or assembly). More
specifically, we target the GNU implementation of the C library [13], a library
used in a large number of applications and featuring thousands of functions
covering various aspects, such as file management, socket communication, string
processing, etc. Several approaches have been proposed to analyze programs that
depend on such complex libraries:
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1 size_t strlen(const char* s

ST ( )4 1 /*@ requires: valid_read_string(s);
2 int size; . o

R 2 @ assigns \result \from indirect:s[0..];

3 __require_allocated_array(s); .

X 3 @ ensures: \result == strlen(s);
4 size = __get_array_length(s); 4 o/
5 return size - 1; .
6 3 5 size_t strlen (const char *s);

(a) Stub of strlen in Infer (b) Stub of strlen in Frama-C

/*$

*/

size_t strlen(const char s);

1 . _ o .
2  * requires: s != NULL A offset(s) € [0, size(s)); 1 int o = rand()4100;

. . ) . 2 char *p = malloc(n + 1);
3 x requires: Ji € [0, size(s)-offset(s)): s[i]l == 0; 3 if (1p) exit (1)
4 % ensures : return € [0, size(s)-offset(s)); :p X . ;

4 for(int i=0;i<n;i++)

5 % ensures : s[return] == 0; 5 [i] = %’
6 * ensures : Vi € [0, return): s[i] !'= 0; . piil =
7 6 aln] = °\0’;
8 7

int m = strlen(p);

(c) Stub of strlen in Mopsa (d) Example with strlen

Fig. 1. Examples of stubs in different analyzers.

Stubs as C Code. A common solution is to provide alternative C implementations
of the library functions, called stubs. In order to remain sound and be effectively
analyzed, stubs are generally simpler and contain calls to special builtins of
the analyzer that provide more abstract information than the classic constructs
of the language. This approach is adopted by many static analyzers, such as
Astrée [4] and Infer [6]. For example, Fig. 1a shows the stub of strlen in Infer:
it uses builtin functions to check that the argument points to a valid block
before returning its allocation size. The approach makes it difficult for the stub
programmer to express complex specifications with higher levels of abstractions,
as key parts of the semantics are hidden within the builtin implementation.
Moreover, writing stubs as C code and hard-coding builtins is acceptable when
targeting embedded code [4], that does not rely much on libraries, but is not
scalable to programs with more dependencies.

Stubs as Logic Formulas. More adapted specification languages have been pro-
posed to overcome these drawbacks, principally based on formulas written in
first-order logic. Some of them exploit the flexibility of the host language in
order to define an embedded domain specific language, such as CodeContracts
checker [11] that can express specifications of C# functions in C# itself. Other
solutions propose a dedicated language and specifications are written as com-
ments annotating the function. The most notable examples are JML for Java
[18] and ACSL for C [3]. They have been widely used in deductive verification,
employing theorem provers that naturally handle logic-based languages, but less
in value static analysis by abstract interpretation. We show in Fig. 1b the spec-
ification of strlen in ACSL, as defined by Frama-C’s value analyzer [9]. The
syntax is less verbose than the C counterpart. Yet, essential parts of the stub
are still computed through builtins. It is worth noting that Frama-C features
another, more natural, specification of strlen, exploiting the expressiveness of
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the logic to avoid builtins. But this specification is large (64 lines) and employs
quantified formulas that are too complex for the value analysis engine: it is used
only by the deductive verification engine.

Abstract Interpretation of Logic Formulas. In this paper, we propose a novel app-
roach based on abstract interpretation [7] that can interpret specifications writ-
ten in a logic-based language of library functions when they are called. Similarly
to CodeContracts checker [11], we do not rely on theorem provers to interpret
formulas; instead, specifications are interpreted by abstract domains tailored to
this task. The key novelty of our solution is that we consider the logic language
as a separate language with its own concrete and abstract semantics, while con-
tracts in cccheck are embedded within the host language as function calls. We
believe that this decoupling makes the design more generic and the language is
not limited by the semantic nor the syntax of the host language.

We implemented the proposed approach into Mopsa [16], a static analyzer
that features a modular architecture that helps reusing abstract domains across
different languages. We leverage this modularity and we illustrate how we can
improve the analysis by extending C abstract domains to add transfer functions
that exploit the expressiveness of formulas and infer better invariants. For exam-
ple, the stub of strlen as defined in Mopsa is shown Fig. 1c. It relies essentially
on constraints expressed as formulas instead of specific analyzer builtins. These
formulas can be handled by Mopsa, and string lengths can be computed precisely
even in the case of dynamically allocated arrays. For instance, at the end of the
program shown in Fig. 1d, Mopsa can infer that m = n.

Contributions. In summary, we propose the following contributions:

— We present in Sect. 2 a new specification language for C functions and we
formalize it with an operational concrete semantic. In addition to standard
constructs found in existing languages, it features a resource management sys-
tem that is general enough to model various objects, such as blocks allocated
by malloc/realloc or file descriptors returned by open. Illustrative examples
can be found in Appendix A.

— We present in Sect. 3 a generic abstract domain for interpreting the specifi-
cation language, that is agnostic of the underlying abstraction of C.

— In Sect. 4, we illustrate how a string abstraction can benefit from the expres-
siveness of the specification language in order to provide better invariants.

— We implemented the analysis in Mopsa and we modeled over 1000 library
functions. In Sect. 5, we report on the results of analyzing some Juliet bench-
marks and Coreutils programs. More particularly, we show how our analysis
combines several symbolic domains in order to analyze C programs with an
unbounded number of command-line arguments with arbitrary lengths. To
our knowledge, Mopsa is the first static analyzer to perform such an analysis.

Limitations. The following features are not supported by our analysis: recur-
sive functions, longjumps, bitfields, inline assembly, concurrency and multi-
dimensional variable length arrays.
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stub = (stmt | case)x* form = expr o expr,o € {==,1=,...}
case ::= case { stmt x } expr € set
stmt = effect | cond alive(expr)

| assigns : expr [expr, expr]?; form V form
| free: ezpr; —form

\
\
effect ::= alloc : type ident = new ident; | form A form
\
\
| Vident € [expr, expr] : form
|

cond ::= assumes : form; 3 ident € [expr, expr] : form
| requires: form;
| ensures : form; set = [expr, expr] | ident
expr :=rc,c € R
ntype ::= char | short | int | long | float &ident
stype ::= ntype | ptr *expr

\
\
type = stype | exproezpr,o € {+-,...}
|
|
|

| typelnl,n € N size(expr)
| struct { type ident;...} base(expr)
| union { type ident;...} offset(expr)

Fig. 2. Syntax of the modeling language.

2 Syntax and Concrete Semantics

We define the syntax and operational concrete semantics of the modeling lan-
guage. The syntax is inspired from existing specification languages, such as ACSL
[3] and JML [18], with the addition of resource management. The semantics
expresses a relation between program states before the function call and after.

2.1 Syntax
The syntax is presented in Fig. 2. It features two kinds of statements:

— Side-effect statements specify the part of the input state which is modified by
the function: assigns specifies that a variable (or an array slice) is modified
by the function; alloc creates a fresh resource instance of a specified class
(ident) and assigns its address to a local variable; conversely, free destroys a
previously allocated resource. Any memory portion that is not explicitly men-
tioned by these statements is implicitly assumed to be unchanged. Resources
model dynamic objects, such as memory blocks managed by malloc, realloc
and free, or file descriptors managed by open and close. The models of these
functions can be found in Appendix A. Assigning a class to resources allows
supporting different attributes (e.g., read-only memory blocks) and alloca-
tion semantics (e.g., returning the lowest available integer when allocating a
descriptor, which is needed to model faithfully the dup function).

— Condition statements express pre and post-conditions: requires defines
mandatory conditions on the input environment for the function to behave
correctly; assumes defines assumptions, and is used for case analysis; ensures
expresses conditions on the output environment (the return value, the value
of modified variables, and the size and initial state of allocated resources).
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Cases. We support a disjunctive construct case (akin to Frama-C’s behaviors)
to describe functions with several possible behaviors. Each case is independently
analyzed, after which they are all joined. Statements placed outside cases are
common to all cases, which is useful to factor specification. For the sake of clarity,
we will focus on the formalization of stubs without cases.

Formulas and Ezpressions. Formulas are classic first-order, with conjunctions,
disjunctions, negations and quantifiers. The atoms are C expressions (without
function call nor side-effect), extended with a few built-in functions and predi-
cates: e € set restricts the range of a numeric value or the class of a resource;
alive(e) checks whether a resource has not been freed; given a pointer e, base(e)
returns a pointer to the beginning of the memory block containing e, size(e) is
the block size, and offset(e) is the byte-offset of e in the block.

2.2 Environments

Concrete memories are defined classically. The memory is decomposed into
blocks: B < V U A, which can be either variables in V or heap addresses in
A. Each block is decomposed into scalar elements in S C B x N x stype, where
1b,0,7] € S denotes the memory region in block b starting at offset o and hav-
ing type 7. A scalar element of type 7 can have values in V., where V.. is R for

numeric types and Vi, < B x N is a block-offset pair for pointers!. The set of

all scalar values is V= RU (B x N).

Environments, in £ < M x R, encode the state of the program using: a
memory environment in M © S -, mapping scalar elements to values,
and a resource environment in R = A — (ident x N x B), which is a partial
map mapping allocated resources to their class, size, and liveness status (as a

Boolean).

Ezample 1. Given the declaration: struct s { int id; char *data; } v, the
environment:

< 1v,0,int§ —5 v, 4,ptrf — (@,0)

1@, 0, short| — 3 1@, 2,short| +— —1 @ (malloc,4, true))

encodes the state where field v.id has value 5 and v.data points to a malloc
resource containing two short elements with values 3 and —1 respectively.

2.3 Evaluation

Ezpressions. The evaluation of expressions, given as E[.] € ezpr — & — P(V),
returns the set of possible values to handle possible non-determinism (such as

! To simplify the presentation, we assume that S is given (e.g. using block types)
and omit NULL and invalid pointers. In practice, our analysis uses the dynamic cell
decomposition from [19] to fully handle C pointers, union types, and type-punning.
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E[.] € expr — & — P(V)
E[size(e) |(p,0) & {sizeof(b)|(b,—) € E[e](p,0) AbeV}
U{n|@,-)eE[e](p,o)Abe AN (—,n,—)=0c(b)}

def

E[base(e) [(p,0) = {b]|(b,—) € E[e](p,0)}
E[otset(e)[(p,0) = {o](=,0) €E[e](p,0)}

E[n](p,0) = {n}

El&v](p,0) = {0}

E[*e](p,0) = {p(1b, 0, typeot(xe)]) | (b,0) € E[e](p, o) }

Eferoex](p,0) {viove [v1 €Efer](p,0) Nv2 € E[e2](p,0) }

Fig. 3. Concrete semantics of expressions.

F[.] € form — P(€)

Flee R] = {(p,0) | (b,—) €E[e](p,0) AbE ANT(b) = (R, —,—)}

Fle€la,0]] = {(p.0) |
neE[e](p,o) Nl €E[a](p,0) Nu e E[b](p,0) An€[l,u]}

Flalive(e)] < {(p0)| (b,—) €E[e](p,o) AbeE AAT(b) = (—,—, true) }

Fleioes] = {(p,0) [ m €Eler](p,0) Anz € E[ea](p,0) Aniona}

F[-f] dof F[ de-morgan-negation(f) |

FLfi A f2] = FLAINF[f]

F[AV f2] < FLAJUFLf2]

Flvo € [a,b]: /] = {(p0) |

LeE[a](p,0) NueE[b](p,0) A (p,0) € Micp FLIV/N]}
Fl3vefabl: f] = {(po)|

LeE[a](p,o) NueE[b](p,0) A(p,0) € Uiy FLIV/ ]}

Fig. 4. Concrete semantics of formulas.

reading random values). It is defined by induction on the syntax, as depicted in
Fig.3. The stub builtin size reduces to the C builtin sizeof for variables and
returns the size stored in the resource map for dynamically allocated blocks.
Calls to base and offset evaluate their pointer argument and extract the first
(respectively second) component. To simplify the presentation, we do not give the
explicit definition of the C operators, which is complex but standard. Likewise,
we omit a precise treatment of invalid and NULL pointers (see [19] for a more
complete definition). Finally, we omit here reporting of C run-time errors.

Formulas.

The semantics of formulas F[.] € form — P(£), shown in Fig. 4, returns the
set of environments that satisfy it. It is standard, except for built-in predicates:
to verify the predicate e € R (resp. alive(e)), we resolve the instance pointed
by e and look up the resource map to check that its class equals R (resp. its
liveness flag is true).
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E[.] € expr — € x € = P(V)

E[*e] (e, ¢’) EERE
E[(xe)] (e,&") < E[*e]e’
I?[size(e)]] (e, &) g E[size(e) e
E[size(e) ] {e,e’) L E[size(e)]e’

I:E[[n}]<s,e'> d:et: {n}
I?[[&U]](&,&J) = {(v,0)} ~ -
Eleioex](e,e’) = {viovs|vi€E[er](e,') Avs € B[ e] (e,€') }

E[base(e) ] (e, ") = {b]|(bh-) € Efe](e,¢") }
Efoffset(e)] (e,e’) & {o](—,0) € E[e] (e,&)}

Fig. 5. Concrete semantics of relational expressions.

2.4 Relational Semantics

Statements express some information on pre and post-conditions, that is, on the
relation between input and output environments.

Ezxpressions and Formulas. To allow expressions to mention both the input and
output state, we use the classic prime notation: ¢’ denotes the value of expression
e in the post-state. Denoting expr the set of expressions with primes, their
semantic on an input-output environment pair is given by E[.] € ezpr — &£ x
E — P(V). Figure5 presents the most interesting cases: evaluating a primed
dereference [ (xe) ] (¢, &’) reduces to the non-relational evaluation E[ *e ] on ¢,
while a non-primed dereference reduces to E[ ¢ ] on e. The case of size(e’) and
size(e) is similar. Other cases are analog to non-relational evaluation.

We denote by fo;’m formulas with primes, and define their evaluation function
F[.] € form — P(£ x €) as returning a relation. As shown in Fig. 6, to evaluate
predicates e € R and alive(e), only input environments are inspected, as the
resource class is an immutable property and the liveness flag can be changed
only by free statements in previous calls. The remaining definitions are similar
to the non-relational case.

Ezample 2. Consider again variable v shown in Example 1 and the following
relational formula: v.data’ == v.data + 1 A *(v.data + 1)’ == 10. When applied
on the previous environment we obtain the relation:

lv,0,int§ —5 Ju,4,ptr| — (Q,0)
<(2@,0,short5H3 16,2, short| o —1 @ (malloc,d,true)
( 10,0,int] =5 (v,4,ptr] — (@,2)

1@,0, short{ — 3 1@, 2,short|{ + 10 @ (malloc,4,true)>

Side-effect Statements. We model side-effect statements as relation transformers,
Sefiect [ -] € effect — P(E x &) — P(€ x &) shown in Fig.7. Given an input-
output relation as argument, it returns a new relation where the output part is
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F[.] € form — P(E x &)

Fle€ R] < {(e,¢) |e€Fle€ R]}
e € [a,b]] = {(e) | . .
ne€E[e]{e, YAl eE[a]{e,e)AuecE[b](e,eYAn € [l,u]}
@*ganve(e)ﬂ L (e, e) | e € F[alive(e)] } ~
Iﬁ‘ﬂel oea] dof {(5,5’) |v1 € E[e1] (e,&') Ave € E[ea] {e,&") Aviowa }
Iﬁ‘[[ﬂf]] 4o ]fj‘[[ de—mozﬂgan—negation(f)]]
FLf1 A f2] = FLAINFLf2]
Flfiv fa] < FLAJUF[fe]

a
lle

F[Vo € [a,b] : f] {{e.€) | ) )
~ leE[a] (e, &) AueE[b](e,e") Ae,€’) € Ny FI v/ ]}
Fl3ve(ab]: f] £ {(e) |

leE[a](e,eYAueE[b] (e, e) A () e Uicit,u F[ flv/d] }

Fig. 6. Concrete semantics of relational formulas.

updated to take into account the effect of the statement. Thus, starting from
the identity relation, by composing these statements, we can construct a relation
mapping each input environment to a corresponding environment with resources
allocated or freed, and variables modified. The statement alloc : 7* v = new R
allocates a new instance of resource class R and assigns its address to variable
v. The function scalars € type — P(N x stype) returns the set of scalar types
and their offsets within a given type. We have no information on the block size
(except that it is a non-null multiple of the size of 7) nor the block contents; both
information can be provided later using an ensures statement. The statement
assigns : e[a, b] modifies the memory block pointed by e and fills the elements
located between indices a and b with unspecified values. Finally, free : e frees
the resource pointed by e by updating its liveness flag. These statements only
use non-primed variables, hence, all expressions are evaluated in the input part
of the relation, which is left intact by these transformers.

Condition Statements. A condition statement adds a constraint to the initial
input-output relation built by the side-effect statements. We define their seman-
tics as a function Scond[. ] € cond — P(E x £). Another role of these statements
is to detect specification violation (unsatisfied requires). Thus, we enrich the
set of output environments with an error state {2, so that (e, {2) denotes an
input environment e that does not satisfy a pre-condition. The semantics is
given in Fig.7. Both assumes and requires statements use the simple filter
F[.] as they operate on input environments. In contrast, ensures statements
express relations between the input and the output and use therefore the rela-
tional filter F[.]. Combining two conditions is a little more subtle than inter-
secting their relations, due to the error state. We define a combination operator
¢ that preserves errors detected by conditions. Due to errors, conditions are not
commutative. Indeed assumes : x > 0;requires : x # 0; is not equivalent to
requires : x # 0;assumes : x > 0, as the later will report errors when x # 0.
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Seftect [ - | € effect = P(E x E) = P(E x &)
Sefiect[alloc : 74 x = new R; | X
{{e,(p'[z = (@Q,0),c1,1 — V1,1, Cnym V> Vnm], 0 [@Q — (R, n.sizeof (1), true)])) |
(e,(p',0")) € X NQ & dom(c’') An € N“A{(01,71),...,(0m,Tm) } = scalars(r)
AVi € [1,n],j€[l,m]:c;=1Q,0; + (i — 1)sizeof(r),7; [ Avi; € Vo, . }
Sefiect [ assigns : efa, b]; | X &
{ <€7 (p/[Cl S P e S Uu*lJrlL UI)) | <€’ (Pl7 J/)> €eX
A (b,0) € E[e](p,o) Nl € E[a](p,0) Au€ E[b](p,0) AT = typeof (xe)
AVEe[L,l—u+1]:cp =1b,0+ (k—1)sizeof(7),7 § Avx, € V; }
Seftect[ free : ; | X &
{(e, (0, 0'[@ = (R, n, false)])) | (e,(p',0")) € X A(Q,—) € E[e]e}

def

Sefrect [ 815 82; [ X = Sesrect [ 2] © Sesrect [ s1] X

Scond[[ -] € cond — P(E x &)

Sconalassumes : ;] % {(e,') | € F[£]}

Sconarequires : £;] 2 {(e,) [¢ € F[F]}U{(e.2) |c € F[~f]}
Scond [ ensures : f; | = FI£]

Scona[ 515525 | 3 Scond[ 81 ] $Sconal s1]

RisRy ¥ RiNRU{(e,2) | (,2) e Ri}U{(, ) | (6,2) € RoAle,—) € R1}

Fig. 7. Concrete semantics of statements.

S[.] € stub — P(E) = P(E) x P(E)

S[body I < let Ry = {(e,e) |[e€I}in
let R1 = Seficct [ effects(body) | Ro in
let R2 = Ri §Scond[ conditions(body) | in
let O={e'| (—,YERaAE £ N} in
let X ={e| (6,2) €R2} in
(0,%)

Fig. 8. Concrete semantics of the stub.

Iterator. Figure8 shows the semantic function S[.] € stub — P(E) —
P(E) x P(E) of a complete stub. It first executes its side-effect statements only
effects(body), then condition statements conditions(body), and finally applies
the resulting relation Ry to the initial states at function entry I. It returns two
sets of environments: the environments O at function exit when pre-conditions
are met, and the environments X at function entry that result in a violation of
a pre-condition.

3 Generic Abstract Semantics

We show how an existing abstract domain for C can be extended to abstract the
concrete semantics of our stubs in a generic way. The next section will focus on
specific abstractions exploiting more finely the structure of stub statements.
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3.1 Abstract Domain

C Domain. We assume we are given an abstract domain M¥ of memories P (M)
with the standard operators: least element 1 a4, join Lipg, and widening Va4,
as well as a sound abstraction S%[.] € stmtr — M* — M? for classic mem-
ory statement stmtag, including: z < y, to model assignments of C expres-
sions; forget(b, z,y), to assign random values to a byte slice [x,y] of a mem-
ory block b; add(b), to add a memory block with random values; remove(b) to
remove a memory block; and the array sumarization operators expand (b1, by) and
fold(by, b2) from [14]. expand(by,be) creates a weak copy by of block by, i.e. both
b1 and bs have the same constraints without being equal. For example, executing
expand(z, z) when z > yAx € [1,10] yields ¢ > yAz € [1,10]Az > yAz € [1,10].
The converse operation, fold(by,bs), creates a summary in by by keeping only the
constraints also implied by by, and then removes by. We exploit them to abstract
unbounded memory allocation and perform weak updates.

Heap Abstraction. We also assume that we are given an abstraction of heap
addresses P(A) into a finite set A* of abstract addresses, with least element
1L 4 and join LI 4. Classic examples include call-site abstraction, and the recency
abstraction [2] we use in our implementation. An abstract address may represent
a single concrete address or a (possibly unbounded) collection of addresses, which
is indicated by a cardinality operator ||.|.4 € A* — { single, many }. Finally, we
assume the domain provides an allocation function A*[.] € P(A*) x M* —
At x ME. As an abstract allocation may cause memory blocks to be expanded
or folded, and the pointers to point to different abstract addresses, the function
also returns an updated memory environment.

Environments. For each abstract block in A%, we maintain its byte size in a
numeric variable size* € A* — B in the memory environment, and track its
possible resource classes in P(C), and possible liveness status in the boolean
lattice P({true, false}). The abstraction £ of environment sets P(&) is thus:

EF = MP x A — (P(C) x P({true, false})) (1)

The Lg, Lg, and Vg operators are derived naturally from those in M* and A*,
and we lift C statements to Sé[[s]}(pﬂ, of) = (Sfu[ s]pt, o).

3.2 Evaluations

Our abstraction leverages the modular architecture and the communication
mechanisms introduced in the Mopsa framework [16]. We will employ notably
symbolic and disjunctive evaluations, which we recall briefly.

Ezpressions. In the concrete semantics, expressions are evaluated into values.
Abstracting expression evaluation as functions returning abstract values, such as
intervals, would limit the analysis to non-relational properties. Instead, domains
in Mopsa can evaluate expressions into other expressions: based on the current
abstract state, expression parts are simplified into more abstract ones that other



A Library Modeling Language for the Static Analysis of C Programs 233

domains can process. A common example is relying on abstract variables. For
instance, the memory domain will replace a size(e) expression into the variable
sizet(b) after determining that e points to block b, producing a purely numeric
expression. Communicating expressions ensures a low coupling between domains,
while preserving relational information (e.g., size(e) < ireduces to comparing
two numeric variables, size”(b) and 7). A domain can also perform a case analysis
and transform one expression into a disjunction of several expressions, associated
to a partition of the abstract state (e.g., if e can point to several blocks). Formally,
a domain Df implements expression evaluation as a function: ¢ € expr — Df —
P(expr x D). To express concisely that the rest of the abstract computation
should be performed in parallel on each expression and then joined, we define
here (and use in our implementation) a monadic bind operator:

letf, (f,Y*) € ¢le]X* in body = @)
I_l(g7Zﬁ)€¢[g]Xﬁ body(f/g,Y*/Z"]

We illustrate formally abstract expression evaluation Eﬁ[[ﬂ on the size(e)

expression. First, the pointer domain handles the pointer expression e: E”[[eﬂen

returns a set of triples (b, 0,&’) where b is an abstract block, o a numeric off-

set expression, and ¢’ the part of € where e points into block b. Thanks to this

disjunction, the abstract semantics of size(e) follows closely the concrete one:

Ef]size(e)]e! & let!, ((b,—),€%) € Ef[e] & in
if b € V then { (sizeof(b),e!)} (3)
else { (size*(b),eh) }

Formulas. Evaluation of formulas is defined by the function F*[.] € formula —
&t — &% shown in Fig.9. We focus on the most interesting cases which are
the quantified formulas. Existential quantification reduces to assigning to v the
interval [a, b] and keeping only environments that satisfy f. Universal quantifi-
cation are handled very similarly to a loop for(v=a; v<=b; v++) assume(f). We
perform an iteration with widening for v from a to b and we over-approximate
the sequence of states statisfying f. The overall formula is satisfied for states
reaching the end of the sequence. These generic transfer functions can be impre-
cise in practice. We will show later that specific domains can implement natively
more precise transfer functions for selected quantified formulas.

Relations. The concrete semantics requires evaluating expressions and formulas
not only on states, by also on relations. To represent relations in the abstract,
we simply introduce a family of primed variables: primed* € B — B returns the
primed version of a block (i.e., the block in the post-state). This classic technique
allows lifting any state domain to a relation domain. Combined with relational
domains, we can express complex relationships between values in the pre- and
the post-state, if needed. The relation abstractions E[.] and F*[.] of E[.] and
FF[.] can be easily expressed in terms of the state abstractions E*[.] and F¥[. ]
we already defined. As an example, the evaluation of a primed dereference (x¢)’
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F[. ] € form — EF — &F
Ff[alive(e) |(pf, o) &
letfe ((b,-), (p%,0")) € Ef[e] (p*,0%) in
if b ¢ A then L else
let (C, f) = o*(b) in
if f ={false} then L else
let f' =if ||b|]|.a = single then { true } else f in
(0, o*[b = (C, f)])
e € R](p*,0%) =
letuug ((6,-), (pﬁ70.ﬁ)) € Et[[e]] (puva—u) in
if b ¢ A* then L else
let (C, f) = o*(b) in
if R ¢ C then L else
let C' = if ||b]|a|| = single then { R} else C in
(¢, %o (C', )
F[3v € [a,b] : f]ef & Sé[[remove(v)]] oF*[ f] oSé[[v +— [a,b]] oSé[[add(v)]] et
F Vo € [a,b] : f]ef &
let el = F[v <b] oSL[v + a] oS, add(v)] & in
let ef = 1fp AX. X Ve (eh Ue SE[v v+ 1] o F*[ f] o F¥[v < b]X) in
SL[ remove(v) ] o F¥[v > b] &

Fig. 9. Abstract semantics of formulas.

simply evaluates e into a set of memory blocks b and offset expressions o, and
outputs a dereference of the primed block primed*(b) at the (non-primed) offset
expression o, which can be handled by the (relation-unaware) memory domain:

Ef] (xe)' et = leth ((b,0),6%) € Efe] et in ()
{ (*(typeo£ (e))((char*)&primed® (b) + 0),e%) }

3.3 Transfer Functions

Side-effect Statements. The effect of a statement is approximated by Siﬂ-oct[[ Je
effect — £ — £ defined in Fig. 10. Resource allocation alloc : v = new R first
asks the underlying heap abstraction for a new abstract address with A*[.],
which is bound to a new variable v; a new size variable size” is created and the
resource map is updated with the class and liveness information. The block is
also initialized with random values using forget. Assignments assigns : e[z, y]
reduces to forget on the primed version of the block b e points to (recall that the
output value is specified by a later ensures). Finally, free : e resets the liveness
flag of the primed block.

Condition Statements. The abstract semantics of condition statements is given
by Sf:()rld[[.ﬂ € cond — &% — &% x & defined in Fig. 10. The function returns
a pair of abstract environments: the first one over-approximates the output
environments satisfying the condition, while the second one over-approximates
the input environments violating mandatory conditions specified with requires

statements.
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Sgﬁ’ect[[ H € eﬁECt - gu - gu Sioud[[ ]] € cond — gu - 5)1 X gu
St [alloc : v = new R (s, o) ™ .. [assunes : f; ]t &
let (@, p) = A*[ dom(*)] o in (F[£], Le)
let o = of[@ — ({ R}, { true })] in St lrequires: f; Jef &
let £ = SE[v ¢ @] o SE[ add(v)] (pf,0%) in E[F ]! F[~f]e")
let ef = S [size?(@) > 0] o SL[ add(size" (@)) ] €} in Simld[[ensures Cfi et
SE;[[fOTgEt(@,O, Sizet(@) - 1)]]6?3 (Fj[[fﬂaﬁvJ-f)
Sifrecy[assigns : efz, y] Jef < SEonall 513 82; [ <
letnug (b, o),sg S Et[[e]] et in let (sg,wg) = Sf_ond[[slﬂsn in
let n = sizeof(*e) in let (e5,w?) = S/ [s2] et in
Sgrj[[forget(primedj(b), o+zxn),o+yxn]| eﬁ (6%,&)? Ue wg)

g [ £ree s e]e?

let&g (b7 7)7 (pg,ag) € En[[eﬂ Eu in

if b A® then Lg else

let C, f = of(b) in

if ||b]|4 = single then (p®, ot [primed? (b) — (C, { false })])
else (pf, ot [primed® (b) = (C, f U { false })])

Fig. 10. Abstract semantics of statements.

Iterator. The abstract semantic of a whole stub is defined in Fig. 11. First, the
expand function is used to construct an identity relation over the input abstract
state 5%. To improve efficiency, this is limited to the blocks that are effectively
modified by the stub; this set is over-approximated using the assigned function,
which resolves the pointer expressions occurring in assigns statement. Then,
side-effect statements are evaluated. Note that, for an assigns : a[x,y] state-
ment, while whole blocks pointed by a are duplicated in the output state, only
the parts in the [z,y] range are assigned random values. Condition statements
are then executed, collecting contract violation and refining the output state.
Finally, we remove the unprimed version of primed (i.e., modified) blocks and
the primed block into its unprimed version, thus reverting to a state abstraction
that models the output state. In case of a primed block b modeling several con-
crete blocks (i.e., ||b||.4 = many), the primed block is folded into the unprimed
version, so as to preserve the values before the call, resulting in a weak update.

4 Specific Abstract Semantics: The Case of C Strings

We now show how we can design a formula-aware abstract domain, with an
application to C string analysis. The domain handles precisely selective quan-
tified formula, while reverting in the other cases (as all other domains) to the
generic operators.

String Length Domain. Strings in C are arrays of char elements containing a
delimiting null byte *\0’ indicating the end of the string. Many functions in the
standard C library take strings as arguments and assume they contain a null byte
delimiter. We want to express and check this assumption in the function stubs.
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SH[.] € stub — EF — £ x £F

SH body e =
let (a1,...,an) = assigned(body) in
letﬁug ((b1, —),6%) € Efa1] sg in

letuug ((bn,=),€%) € E'lan] eﬁH in
let 5?, = S'&[[pm‘me(bn)ﬂ 0---0 Sé,[[pm’me(bl) ]]65, in
let é’i = Siﬂe”[[effects(body) | ég in
let ég,wn = Sg(md[[conditions(body)ﬂ ég in
let e = §g,[[ unprime(b,) ] o---o Sé [ unprime(b1) ]]5”2 in
(e',wh)
where:
prime(b) % expand(b, primed! (b))
unprime(b) <
if b € A* A ||b]|4 = many then fold(primed® (b), b) else rename(primed® (b), b)

Fig.11. Abstract semantics of the stub.

We exploit a classic abstraction already present in Mopsa: the STRINGLENGTH
domain [17] that maintains a numeric abstract variable length® € B — B for
arrays to store the offset of the first null byte. It thus infers, for each array a, an
invariant of the form:

Vi € [0, length®(a) — 1] : afi] # 0 A aflength®(a)] = 0 (5)
Ezample 3. Consider the following example, where n ranges in [0, 99]:
1 for (int i = 0; i < n; i++) ali]l = ’x’;
2 a[n] = ’\0’;

An analysis with the INTERVALS domain will infer that length®(a) € [0,99)].
Adding the POLYHEDRA domain, we will moreover infer that length®(a) = n.

Stub Transfer Functions. Within a stub, a pre-condition stating the validity of
a string pointed to by an argument named s is naturally expressed as:

requires : Ji € [0,size(s) — offset(s) — 1] : s[i] == 0; (6)

Proving this requirement requires checking the emptiness of its negation, which
involves a universal quantifier. Using the generic abstraction from last section,
it is equivalent to proving emptiness after the loop for (i = 0; i < size(s)-
offset(s); i++) s[i] != 0. This, in turn, requires an iteration with widening
and, unless s has constant length, a relational domain with sufficient precision,
which is costly.

To solve these problems, we propose a direct interpretation of both formulas
in the string domain, i.e., we add transfer functions for F*[ Ji € [lo, hi] : s[i] == 0]
and F*[ Vi € [lo, hi] : s[i] 1= 0],% as shown in Table. 1. They perform a case anal-
ysis: the abstract state e is split into two cases according to a condition, and

2 We actually support the comparison of s[#] with arbitrary expressions. We limit the
description to the case of comparisons with 0 for the sake of clarity.
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Table 1. Transfer functions of formulas in the string length domain.

Formula Case Condition State transformer
1 | th? hi et L
Ji € [lo, hi] : s[i] == 7 eng _(S) > ‘ €
#2 length®(s) < hi el et
1 | length? lo, hi el et
Vi€ [lohi) : sli] 1=0 L | leneth’(s) & [lo, kil e
#2 | length?(s) € [lo, hi] et L

we keep all environments in one case (\e. €) and none in the other (\ef. 1). For
instance, assuming that (5) holds, then Case #1 of F*[3i € [lo, hi] : s[i] == 0]
states that the quantification range [lo, hi] covers only elements before the null
byte, so that the formula does not hold. Case #2 states that there is a value in
[lo, hi] greater than or equal to the string length, in which case s[i] may be null
and the formula may be valid. Similarly, Case #1 of F*[Vi € [lo, hi] : s[i] 1=0]
arises when the null byte is outside the quantification range, so that the for-
mula may be valid. In Case #2, the null byte is in the range, and the formula
is definitely invalid. We stress on the fact that all the conditions are interpreted
symbolically in the numeric domain; hence, lo and hi are not limited to con-
stants, but can be arbitrary expressions.

Ezample 4. Let us illustrate how the predicate (6) can be verified on the follow-
ing abstract environment:

ls,0,ptr] — {(@,0)}
e = size?(@) > 1 ,@ — ({malloc }, true) (7)
length®(@) € [0, size*(@) — 1]

which represents the case of a variable s pointing to a resource instance @ allo-
cated by malloc with at least one byte. The string domain indicates that the
position of the null byte is between 0 and size’ (@) — 1. When checking the for-
mula 3i € [0, size(s) —offset(s)—1] : s[i] == 0, the condition for Case #1 never
holds since:

(size(s) — offset(s) — 1 = size*(@) — 1) A (length®(Q) < size* (@) — 1)

When checking its negation, Vi € [0,size(s) — offset(s) — 1] : s[i] != 0, Case
#1 is also unsatisfiable, for the same reason. As the transformer for Case #2
returns L, the overall result is L, proving that Requirement (6) holds: the stub
does not raise any alarm.

Genericity of Formulas. An important motivation for using a logic language is to
exploit its expressiveness within abstract domains to analyze several stubs with
the same transfer functions. We show that this is indeed the case: the transfer
function that was used to validate strings in the previous section can be used,
without modification, to compute string lengths.
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Ezxample 5. Let us go back to the example of the strlen function defined as:

1 /#*$

2  * requires: s != NULL A offset(s) € [0, size(s));
3 * requires: Ji € [0, size(s)-offset(s)): s[i] == 0;
4  x ensures : return € [0, size(s)-offset(s));

5 * ensures : s[return] == 0;

6 * ensures : Vi € [0, return): s[i] '= 0;

7T x/

8 size_t strlen(const char s);

and consider again the environment (7). As shown before, the requires
statements at line 3 validating the string do not raise any alarm. At line 5, the
classic transfer functions of the STRINGLENGTH domain [17] infer that:

0 < length®(@) < return

since s[return] =0 and Iengthﬁ(@) is the position of the first null byte. Finally,
at line 6, both cases of the second transfer function in Table 1 are valid. Since
we keep a non- 1 post-state only for Case #1, we obtain:

0< |engthn(@) < return A Iengtht(@) ¢ [0, return — 1]
& 0 < length?(@) < return A length?(@) > return — 1
& 0 < length?(@) = return

hence the domain precisely infers that strlen returns the length of string Q.

5 Experiments

We implemented our analysis in the Mopsa framework [16]. It consists of 29503
lines of OCaml code (excluding parsers). Among them, 16449 lines (56%) are
common with analyses of other languages, such as Python. C domains consist
of 11342 lines (38%) and the stub abstraction consists of 1712 lines (6%).

We wrote 14191 lines of stub, modeling 1108 functions from 50 headers from
the Glibc implementation of the standard C library, version 8.28 [13]. All stubs
thoroughly check their arguments (pointers, strings, integers, floats), soundly
model their side effects, dynamic memory allocation, open files and descriptors.
We refrained form implicit assumptions, such as non-aliasing arguments. At an
average of 8 meaningful lines per stub, the language proved to be concise enough.
Some examples can be found in Appendix A.

To assess the efficiency and the precision of our implementation, we target two
families of programs. We run our analysis on part of NIST Juliet Tests Suite [5],
a large collection of small programs with artificially injected errors. These tests
are precious to reveal soundness bugs in analyzers, but do not reflect real-world
code bases. Hence, we also target more realistic programs from the Coreutils
package [12], which are widely used command-line utilities. These programs,
while not very large, depend heavily on the C standard library. We run all our
tests on an Intel Xeon 3.40 GHz processor running Linux.
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Table 2. Analysis results on Juliet. @: precise analysis, A: analysis with false alarms.
Code Title Tests | Lines | Time (h:m:s) | @
CWE121 | Stack-based Buffer Overflow | 2508 | 234k | 00:59:12 26% | 74%
CWE122 | Heap-based Buffer Overflow | 1556 | 174k | 00:37:12 28% | 72%
CWE124 | Buffer Underwrite 758 | 93k | 00:18:28 86% | 14%
CWE126 | Buffer Over-read 600 | 75k | 00:14:45 40% | 60%
CWE127 | Buffer Under-read 758 | 89k | 00:18:26 87% | 13%
CWE190 | Integer Overflow 3420 | 440k | 01:24:47 52% | 48%
CWE191 | Integer Underflow 2622 | 340k | 01:02:27 55% | 45%
CWE369 | Divide By Zero 497 | 109k | 00:13:17 55% | 45%
CWEA415 | Double Free 190 | 17k | 00:04:21 100% | 0%
CWEA416 | Use After Free 118 | 14k | 00:02:40 99% | 1%
CWE469 | Illegal Pointer Subtraction 18 1k | 00:00:24 100% | 0%
CWEA476 | NULL Pointer Dereference 216 | 21k | 00:04:53 100% | 0%

5.1 Juliet

The Juliet Tests Suite [5] is organized using the Common Weakness Enumeration
taxonomy [1]. It consists of a large number of tests for each CWE. Each test
contains bad and good functions. Bad functions contain one instance of the CWE,
while good functions are safe.

We selected 12 categories from NIST Juliet 1.3 matching the safety violations
detected by Mopsa. For each test, we have analyzed the good and the bad func-
tions and measured the analysis time and the number of reported alarms. Three
outcomes are possible. The analysis is precise if it reports (i) exactly one alarm
in the bad function that corresponds to the tested CWE, and (i7) no alarm in
the good function. The analysis is unsound if no alarm is reported in the bad
function. Otherwise, the analysis is imprecise.

The obtained results are summarized in Table 2. From each category, we have
excluded tests that contain unsupported features or that do not correspond to
runtime errors. As expected, all analyses are sound: Mopsa detects the target
CWE in every bad test. However, half of the tests were imprecise. Much of this
imprecision comes from the gap between Mopsa’s error reporting and the CWE
taxonomy. For instance, an invalid string passed to a library function may be
reported as a stub violation while Juliet expects a buffer overflow. By considering
precise an analysis reporting no alarm in the good function and exactly one
alarm in the bad function (without considering its nature), the overall precision
increases to 71% (e.g. 89% of CWE121 tests become precise). Other factors also
contribute to the imprecisions, such as the lack of disjunctive domains. Finally,
many tests use the socket API to introduce non-determinism, and the current
file management abstraction was not precise enough to prove the validity of some
file descriptors.
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5.2 Coreutils

Our second benchmark includes 19 out of 106 programs from Coreutils version
8.30 [12]. Each program consists in a principal C file containing the main func-
tion, and library functions that are shared among all Coreutils programs. Due to
these complex dependencies, it was difficult to extract the number of lines cor-
responding to individual programs. Instead, we computed the number of atomic
statements, consisting of assignments and tests (e.g. in for, while and switch
statements), in the functions reached by the analysis. This gives an indication of
the size of the program, but the scale is not comparable with line count metrics.

Scenarios. Three scenarios were considered. The first one consists in analyzing
the function main without any argument. In the second scenario, we call main
with one symbolic argument with arbitrary size. The last scenario is the most
general: main is called with a symbolic number of symbolic arguments.

Abstractions. For each scenario, four abstractions were compared. In the first
abstraction A;, we employed the CELLS memory domain [19] over the INTER-
VALS domain. The second abstraction A, enriches A; with the STRINGLENGTH
domain [17] improved as discussed in Sect. 4. The third abstraction As enriches
As with the POLYHEDRA domain [8,15] with a static packing strategy [4]. Finally,
Ay enriches A3 with a POINTERSENTINEL domain that tracks the position of the
first NULL pointer in an array of pointers; it is similar to the string length domain
and useful to represent a symbolic argv and handle functions such as getopt (see
Appendix A 4).

Limitations. The analysis of recursive calls is not yet implemented in Mopsa.
We have found only one recursive function in the analyzed programs, which we
replaced with a stub model. The second limitation concerns the getopt family of
functions. We have not considered the case where these functions modify the argv
array by rearranging its elements in some specific order, since such modifications
make the analysis too imprecise. However, we believe that this kind of operation
can be handled by an enhanced POINTERSENTINEL domain. This is left as future
work.

Precision. Figure 12a shows the number of alarms for every analysis. The most
advanced abstraction A4 reduces significantly the number of alarms, specially for
the fully symbolic scenario. This gain is not due to one specific abstraction, but it
comes from the cooperation of several domains, most notably between POLYHE-
DRA and STRINGLENGTH. This also emphasizes the effectiveness of domain com-
munication mechanisms within Mopsa [16], notably symbolic expression evalua-
tion.

Efficiency. As shown in Fig.12b, the gain in precision comes at the cost of
degraded performances. The most significant decrease corresponds to the intro-
duction of the POLYHEDRA domain. Note that our current packing strategy is
naive (assigning for each function one pack holding all its local variables); a more
advanced strategy could improve scalability.
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No arg. One symbolic arg. Fully symbolic args.

Program  Statements A Ay Ay A | AL A As A | A A A5 A,
cksum 292 53 29 28 36 | 135 106 106 53 | 136 107 106 53
dircolors 507 104 54 47 47 | 185 158 154 100 | 186 159 154 99
dirname 183 59 14 13 13 | 120 90 90 22 | 120 90 90 21
echo 241 16 3 3 3 | 216 179 175 33 | 216 179 175 34
false 131 0 0 0 0 89 61 61 13 89 61 61 13
hostid 193 25 9 8 8 91 63 63 16 92 64 63 16
id 193 25 9 8 8 91 63 63 16 92 64 63 16
logname 196 25 8 7 7 93 62 62 15 94 63 62 15
nice 323 16 3 3 3 145 105 104 18 151 111 105 20
nproc 356 81 36 35 35| 136 99 99 33 | 137 100 99 32
printenv 179 70 29 28 28 | 159 131 130 59 | 161 133 130 59
pwd 342 81 23 20 20 | 116 70 68 23 | 116 70 68 22
sleep 289 25 8 7 71125 97 97 29 | 128 99 97 29
stdbuf 546 97 53 52 52 | 327 269 267 125 | 329 271 268 127
true 131 0 0 0 0 89 61 61 13 89 61 61 13
uname 251 67 25 24 24 | 105 72 72 27 | 106 73 73 33
unexpand 478 149 93 92 92 | 226 179 179 95 | 226 179 179 94
unlink 204 25 8 7 7 98 68 68 15 | 103 71 68 15
whoami 202 27 9 8 8 95 63 63 16 96 64 63 16

(a) Number of reported alarms.

No arg. One symbolic arg. Fully symbolic args.

Al A2 A3 A4 A1 A2 A3 A4 Al A2 AS A4
cksum [12.62 15.76 46.86 46.32 | 33.69 39.67 175.92 174.45| 34.21 39.3 174.5 193.64
dircolors|70.27 88.49 292.38 228.75|174.46 192.94 514.1 646.22|160.91 198.07 533.13 595.14
dirname |22.56 29.04 97.96 85.65|22.95 30.38 90.99 140.88| 24.97 28.89 96.04 119.86
echo 8.73 9.12 13.38 12.48|10.74 13.52 26.03 25.44 | 11.44 13.24 24.75 156.15
false |8.72 9.17 1338 13.45| 9.33 11.35 19.63 189 | 10.05 11.26 19.54 19.18
hostid |9.87 10.18 21.7 20.63|14.74 16.72 41.13 53.68 | 14.17 16.61 42.08 53.41
id 9.51 11.53 22.68 20.65|13.66 16.5 43.39 55.37 | 13.75 18.96 40.51 54.57
logname |9.31 10.75 20.13 19.42 | 15.97 16.51 39.37 45.06 | 13.47 17.05 40.69 48.72
nice 9.26 9.08 13.64 12.57|25.42 30.04 113.35 177.38| 23.98 30.73 148.1 238.55
nproc | 23.1 30.35 103.64 90.52 | 25.72 32.96 110.4 150.21| 25.7 34.17 112.39 128.86
printenv |21.43 27.63 93.83 94.08 | 22.82 28.34 111.41 206.16| 22.52 28.06 131.27 200.63
pwd 23.81 29.34 9541 84.18| 24.1 29.05 88.72 127.68| 22.41 29.59 98.15 113.56
sleep [11.48 13.11 26.93 24.77 | 17.54 19.86 59.62 65.49 | 16.64 21.42 62.27 71.32
stdbuf |37.23 56.73 214.48 190.39| 42.37 63.34 229.52 291.24| 42.32 65.75 215.85 255.32
true 8.73 9.13 12,57 12.08 | 10.89 11.27 18.64 19.4 |10.04 11.62 18.95 21.63
uname [21.85 28.46 86.38 81.68 |24.19 289 85.85 102.31|23.95 30.97 95.13 129.77
unexpand |68.75 137.73 400.55 366.1 | 65.14 138.18 361.77 525.35| 61.9 149.1 378.31 364.11
unlink [11.35 12.88 26.24 27.23|14.74 16.05 40.34 49.04 | 16.82 18.63 49.03 58.85
whoami [10.51 11.17 21.28 22.17 | 14.98 16.13 41.89 59.91 | 14.27 16.69 48.57 61.3

Program

(b) Analysis time in seconds.
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(c) Coverage of abstraction Ay.

Fig. 12. Analysis results on Coreutils programs.
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Coverage. We have also measured the ratio of statements reached by the analysis
in the three scenarios. While not a formal guarantee of correctness, a high level
of coverage provides some reassurance that large parts of the programs are not
ignored due to soundness errors in our implementation or our stubs. We discuss
only the case of abstraction A4, as other cases provide similar results. Figure 12¢
presents the results. In most cases, using one symbolic argument helps covering a
significantly larger part of the program compared to analyzing main without any
argument. Coverage with one or several symbolic arguments is roughly the same,
possibly due to the control flow over-approximations caused by even a single
symbolic argument. Nevertheless, only the last scenario, covering an unbounded
number of arguments, provides a soundness guarantee that all the executions of
the program are covered. As far as we know, this is not supported in the static
value analyses by Frama-C [10] nor Astrée [4].

6 Conclusion

We presented a static analysis by abstract interpretation of C library func-
tions modeled with a specification language. We defined an operational concrete
semantics of the language and proposed a generic abstraction that can be sup-
ported by any abstract domain. We also showed how a C string domain could
be enriched with specialized transfer functions for specific formulas appearing
in stubs, greatly improving the analysis precision. We integrated the proposed
solution into the Mopsa static analyzer and experimented it on Juliet bench-
marks and Coreutils programs. In the future, we plan to extend our coverage of
the standard C library, provide models for other well-known libraries, such as
OpenSSL, and experiment on larger program analyses. In addition, we envisage
to upgrade our specification language to support more expressive logic. Finally,
we want to improve the quality of our results by adding more precise abstrac-
tions, such as trace partitioning, or more efficient modular iterators.

A Stub Examples

This appendix presents additional representative examples of the stubs we devel-
oped for the GNU C library.

A.1 Predicates

To simplify stub coding, following other logic-base specification languages,
Mopsa allows defining logic predicates, that can be then used in stubs. For
instance, we define the following useful predicates on C strings: valid_string(s)
states that s is zero-terminated, and is useful as argument precondition;
in_string(x,s) states that x points within string s before its null character,
which is useful to state post-conditions.
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1 /x$

2  * predicate valid_string(s):

3 * s !=NULL A offset(s) € [0, size(s) - 1]
4 *x A Jk € [0, size(s) - offset(s) - 1]: s[k] == 0;
5 x/

6

7 /3

8  * predicate in_string(x,s):

9 * 3Jk € [0, size(s) - offset(s) - 1]:

10 = (x==s5+k
11 = AV 1el0o, k-1]: s[1] '=0);
12 %/

A.2 Memory Management

Memory allocation functions show examples of resource allocation, and the use
of cases to simplify the specification of functions with several behaviors.

1 /=*$

2 * case {

3 * alloc: void* r = mew malloc;
4 * ensures: size(r) == __size;
5 *  ensures: return == r;

6 * }

7 *

8 * case {

9 *  assigns: _errno;
10 * ensures: return == NULL;
11 * ¥
12 *
13 * case {
14 * assumes: __size == 0;
15 * ensures: return == NULL;
16 * }
17 =/
18 void *malloc (size_t __size);
1 /*$

2 * case {

3 * assumes: __ptr == NULL;
4 x 3}

5 *

6 * case {

7 * assumes: __ptr != NULL;
8 * requires: __ptr € malloc;
9 x  requires: alive(__ptr);
10 * requires: offset(__ptr) == 0;
11 * free: __ptr;

12 * }

13 =/

14 void free (void *__ptr);
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1 /*$
2 * case {
3 * assumes: __ptr == NULL;
4 * assumes: __size == 0;
5 * ensures: return == NULL;
6 * }
7 *
8 * case {
9 % assumes: __ptr == NULL;
10 * alloc: void* r = new malloc;
11 *  ensures: size(r) == __size;
12 * ensures: return == r;
13 1}
14 *
15 * case {
16 * assumes: __ptr != NULL;
17 * assumes: __size == 0;
18 * requires: __ptr € malloc;
19 * free: __ptr;
20 * ensures: return == NULL;
21 * }
22 *
23 * case {
24 x  assumes: __ptr != NULL;
25 % requires: __ptr € malloc;
26 * local: void* r = new malloc;
27 * ensures: size(r) == __size;
28 *x  ensures: stize(__ptr) >= __size =
29  * Vi€ [0, __size):
30 % ((unsigned char*)r)[i] ==
31 x ensures: size(__ptr) <= __size =
32 * Vi€ [0, stze(__ptr)):
33  x ((unsigned charx)r)[i] ==
34 * free: __ptr;
35 * ensures: return == r;
36 x }
37 %
38 * case {
39 * assigns: _errno;
40 * ensures: return == NULL;
41 * }
42 x/
43 void #*realloc (void *__ptr, size_t __size);

A.3 File Descriptors

((unsigned charx)__ptr) [i];

((unsigned charx)__ptr) [i];

File descriptors are another example of resource allocation, but use a specific
class that the analyzer can track to allocate integer file descriptors according to
the C library policy: the least unused integer is picked. This allows modeling
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precisely patterns such as close(0); int f = open("...");. read reads non-
deterministic values, after checking that the file has been opened and not closed.
1 /%$
2  * requires: valid_string(__file);
3 *
4 * case {
5 * alloc: int fd = new FileDescriptor;
6 * ensures: return == fd;
7 %}
8 *
9 * case {
10 * assigns: _errno;
11 * ensures: return == -1;
12 = }
13 %/
14 int open (const char *__file, int __oflag, ...);
/*$
* requires: __fd € FileDescriptor;
* requires: alive(__fp as FileDescriptor);
* requires: size(__buf) >= offset(__buf) + __nbytes;
*
* case {
*  assigns: ((char*)__buf) [0, __nbytes);
*  ensures: return € [0, __nbytes];
* }
*
* case {
*  assigns: _errno;
* ensures: return == -1;
* }
*/

—_
Ut

16

S

size_t read (int __fd, void *__buf, size_t __nbytes);

1 /x$

2 * requires: __fd € FileDescriptor;
3  * requires: alive(__fp as FileDescriptor);
4 *

5 * case {

6 * free: __fd as FileDescriptor;
7 % ensures: return == 0;

8 * 1}

9 *

10 * case {

11 * assigns: _errno;

12 * ensures: return == -1;

13 * 3}

14 */

15 int close (int __fd);
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A.4 Command-Line Arguments

We provide the simplified model of the getopt function we used in Coreutil

analyses.
1 /%3
2 * requires: ___argc > 0;
3  * requires: optind € [0, ___argcl;
4 % requires: valid_string(__shortopts);
5 * requires: V i € [0, ___argc - 1]: valid_string(___argv[i]);
6  * assigns: optind;
7 * assigns: opterr;
8  * assigns: optopt;
9  * assigns: optarg;
10  * ensures: optind’'€[l, ___argcl;
11  * ensures: optarg’ != NULL = 3 i € [0, ___argc - 1]:
12 = in_string(optarg’, ___argv[il);
13 * ensures: return € [-1, 255];
14 * case {
15 *  assigns: ___argv[0, ___argc - 1];
16 * ensures: V i € [0, ___argc - 1]: 3 j € [0, ___argc - 1]:
17 * (___argv[i])' == ___argv[jl;
18  * }
19 */

20 1int getopt (int ___argc, char *const *___argv, const char *__shortopts);
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