
27th International Symposium, SAS 2020
Virtual Event, November 18–20, 2020
Proceedings

Static AnalysisLN
CS

 1
23

89
A

RC
oS

S
David Pichardie
Mihaela Sighireanu (Eds.)

Lecture Notes in Computer Science 12389

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0001-9619-1558

More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408

David Pichardie • Mihaela Sighireanu (Eds.)

Static Analysis
27th International Symposium, SAS 2020
Virtual Event, November 18–20, 2020
Proceedings

123

Editors
David Pichardie
Inria, IRISA
ENS Rennes
Bruz, France

Mihaela Sighireanu
LSV
ENS Paris-Saclay
Gif-sur-Yvette, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-65473-3 ISBN 978-3-030-65474-0 (eBook)
https://doi.org/10.1007/978-3-030-65474-0

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2020
Chapters “Stratified Guarded First-Order Transition Systems” and “Counterexample- and Simulation-Guided
Floating-Point Loop Invariant Synthesis” are licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further details see license infor-
mation in the chapters.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2504-1760
https://orcid.org/0000-0002-1925-089X
https://doi.org/10.1007/978-3-030-65474-0
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the proceedings of the 27th edition of the International Static
Analysis Symposium 2020 (SAS 2020), held during November 18–20, 2020, as a co-
located event of SPLASH, the ACM SIGPLAN conference on Systems, Programming,
Languages, and Applications: Software for Humanity. The COVID-19 pandemic
forced us to organize the event online.

Static analysis is widely recognized as a fundamental tool for program verification,
bug detection, compiler optimization, program understanding, and software mainte-
nance. The SAS series has served as the primary venue for the presentation of theo-
retical, practical, and application advances in the area. Previous symposia were held in
Porto, Freiburg, New York, Edinburgh, Saint-Malo, Munich, Seattle, Deauville,
Venice, Perpignan, Los Angeles, Valencia, Kongens Lyngby, Seoul, London, Verona,
San Diego, Madrid, Paris, Santa Barbara, Pisa, Aachen, Glasgow, and Namur.

SAS 2020 called for papers on topics including, but not limited to: abstract domains,
abstract interpretation, automated deduction, data flow analysis, debugging, deductive
methods, emerging applications, model-checking, program transformations, predicate
abstraction, security analysis, tool environments and architectures, type checking.
Authors were also encouraged to submit artifacts accompanying their papers to
strengthen evaluations and reproducibility of results in static analysis.

The conference employed a double-blind review process with an author-response
period. Within the review period, the Program Committee used an internal two-round
review process where each submission received three first-round reviews to drive the
possible selection of additional expert reviews as needed before the author response
period. There were 34 submissions authored by researchers from countries including
China, France, Germany, Hungary, India, Iran, Israel, Italy, Japan, Singapore, Spain,
Sweden, Switzerland, the UK, and the USA. 15 submissions also presented an artifact.
The author response period was followed by a Program Committee discussion period
and culminated in a synchronous, virtual Program Committee meeting on July 16,
2020, to finalize the selection of papers. After thoroughly evaluating the relevance and
quality of each paper, the Program Committee decided to accept 14 contributions. Each
of the artifacts was evaluated by three members of the Artifact Evaluation Committee,
whose comments were available to the Program Committee. Five artifacts were
accepted. The artifacts are available on the FTP server of the staticanalysis.org website.

We were also honored to welcome four invited talks by the following distinguished
researchers during the conference:

– Gogul Balakrishnan (Google, USA) on “Static analysis for privacy-preserving
artificial intelligence”

– Ezgi Çiçek (Facebook, UK) on “Static resource analysis at scale”
– Manuel Hermenegildo (IMDEA Software Institute, Spain) on “Cost analysis of

smart contracts via parametric resource analysis”

– James Worrell (University of Oxford, UK) on “Polynomial invariants for affine
programs”

The last three speakers provided an extended abstract of their work in these pro-
ceedings. SAS 2020 featured two associated workshops held online on November 17,
2020:

– 11th Workshop on Tools for Automatic Program Analysis (TAPAS 2020)

• Chairs: Hakjoo Oh (Korea University, South Korea) and Yulei Sui (University
of Technology Sydney, Australia)

– 9th Workshop on Numerical and Symbolic Abstract Domains (NSAD 2020)

• Chairs: Liqian Chen (National University of Defense Technology, China) and
Khalil Ghorbal (Inria, France)

This program would not have been possible without the substantial efforts of many
people, whom we sincerely thank. The Program Committee, Artifact Evaluation
Committee, subreviewers, and external expert reviewers worked tirelessly to select the
strongest possible program while simultaneously offering constructive and supportive
comments in their reviews. The Organizing Committee of SPLASH, chaired by Hri-
desh Rajan (Iowa State University, USA), were tremendous. We also graciously thank
the SPLASH Virtualization Committee chaired by Alex Potanin and Jan Vitek for the
online organization. The SAS Steering Committee was very helpful, providing to us
leadership and timely advice. Finally, we thank our sponsors Google and Facebook for
supporting this event, as well as Springer for publishing these proceedings.

October 2020 David Pichardie
Mihaela Sighireanu

Jyothi Vedurada

vi Preface

Organization

Program Chairs

David Pichardie IRISA, ENS Rennes, France
Mihaela Sighireanu IRIF, Université de Paris, France

Program Committee

Josh Berdine Facebook, UK
Bor-Yuh Evan Chang University of Colorado Boulder, Amazon, USA
Patrick Cousot New York University, USA
Jerome Feret Inria, ENS Paris, France
Samir Genaim Universidad Complutense de Madrid, Spain
Arie Gurfinkel University of Waterloo, USA
Suresh Jagannathan Purdue University, USA
Murali Krishna Uber Technologies Inc., USA
Francesco Logozzo Facebook, USA
Antoine Miné Sorbonne Université, France
Anders Møller Aarhus University, Denmark
Kedar Namjoshi Nokia Bell Labs, USA
Sylvie Putot Ecole Polytechnique, France
Francesco Ranzato University of Padova, Italy
Xavier Rival Inria, ENS Paris, France
Helmut Seidl Technical University of Munich, Germany
Caterina Urban Inria, France
Tomáš Vojnar Brno University of Technology, Czech Republic
Kwangkeun Yi Seoul National University, South Korea
Enea Zaffanella University of Parma, Italy
Florian Zuleger Vienna University of Technology, Austria

Artifact Evaluation Chair

Jyothi Vedurada Microsoft Research, India

Artifact Evaluation Committee

Umair Z. Ahmed National University of Singapore, Singapore
Marc Chevalier PSL University, France
Pritam Gharat Imperial College, UK
Timothée Haudebourg ENS Rennes, France
Maxime Jacquemin CEA LIST, France
Nicolas Jeannerod Université de Paris, France

Raphaël Monat Sorbonne Université, France
Rashmi Mudduluru University of Washington, USA
Suvam Mukherjee Microsoft Research, India
Olivier Nicole CEA LIST, France
Guillermo Román-Díez Universidad Politécnica de Madrid, Spain
Devika Sondhi IIIT Delhi, India
Pedro Valero IMDEA Software, Spain
Marco Zanella University of Padova, Italy

Steering Committee

Bor-Yuh Evan Chang University of Colorado Boulder, Amazon, USA
Andreas Podelski University of Freiburg, Germany
Francesco Ranzato University of Padova, Italy
Xavier Rival Inria, France
Thomas Jensen Inria, France
Sandrine Blazy University of Rennes 1, France
Patrick Cousot New York University, USA

Additional Reviewers

Ahmed Bouajjani
Thao Dang
Alastair Donaldson
Julian Erhard
Pablo Gordillo
Lukáš Holík
Anastasiia Izycheva
Ondrej Lengal
Richard Mayr
Nikita Mehrotra
Adam Rogalewicz

viii Organization

Polynomial Invariants for Affine Programs
(Invited Talk)

James Worrell

University of Oxford, Department of Computer Science, Parks Road,
Oxford OX1 3QD, UK

james.worrell@cs.ox.ac.uk

Invariants are one of the most fundamental and useful notions in the quantitative
sciences, appearing in a wide range of contexts, from dynamical systems, and control
theory in physics, mathematics, and engineering, to program verification, static anal-
ysis, abstract interpretation, and programming language semantics (among others) in
computer science. In spite of decades of scientific work and progress, automated
invariant synthesis remains a topic of active research, particularly in the fields of the-
orem proving and program analysis, and plays a central role in methods and tools
seeking to establish correctness properties of computer programs; see, e.g., [10], and
particularly Section 8 therein.

In this talk we survey a number of results concerning the synthesis of invariants for
affine programs. Affine programs are a simple kind of nondeterministic imperative
program, with a finite collection of locations in which the only instructions are
assignments whose right-hand sides are affine expressions, such as x3 :¼ x1 � 3x2 þ 7.
Such programs can variously be seen as counter programs in which conditionals have
been over-approximated by nondeterminism, or as types of weighted automata. Affine
programs enable one to reason about more complex programs (see, e.g., [14]). An even
more simple subclass of affine programs that have been studied from the point of view
of loop termination and computing meta-transitions are (single-path) affine loops,
which are essentially affine programs with a single location with a single selfloop (see,
e.g., [8]).

An algorithm due to Michael Karr in 1976 [9] computes the strongest affine invariant
of an affine program, that is, the strongest invariant that is defined by linear equations on
program variables. The strongest such invariant can alternatively be characterised as the
affine hull of the set of reachable program configurations in each location. A more
efficient reformulation of Karr’s algorithm was given by MuÕller-Olm and Seidl [13],
who moreover showed that if the class of affine programs is augmented with equality
guards then it becomes undecidable whether or not a given affine relation holds at a
particular program location. A randomised algorithm for discovering affine relations was
proposed by Gulwani and Necula [6].

In the first part of the talk we consider algebraic invariants for affine programs, that
is, invariants defined by polynomial equations on program variables. A given affine
program has a smallest (or strongest) algebraic invariant. Whereas the strongest affine
invariant corresponds to the affine hull of the set of reachable program configurations in
each location, the strongest algebraic invariant is the Zariski closure of the set of

program configurations in each location. This gives rise to the computational problem
of, given an affine program, computing a finite set of polynomials that define its
strongest algebraic invariant. We describe a solution to this problem from [7], by
reducing it to (and solving) a closely related problem of independent interest: compute
the Zariski closure of a given finitely generated semigroup of matrices.

Algebraic invariants are stronger (i.e., more precise) than affine invariants. Various
other types of domains have been considered in the setting of abstract interpretation,
e.g., intervals, octagonal sets, and convex polyhedra (see, e.g., [3, 4, 11] and references
in [2]). The precision of such domains in general is incomparable to that of algebraic
invariants. Unlike with algebraic and affine invariants, there need not be a strongest
convex polyhedral invariant for a given affine program. A natural decision problem in
this setting is to ask for an inductive invariant that is disjoint from a given set of states
(which one would like to show is not reachable). The version of this decision problem
for convex invariants on affine programs was proposed by Monniaux [12] and remains
open; if the convexity requirement is dropped, the problem is shown to be undecidable
in [5].

In the second half of this talk we consider the class of semi-algebraic invariants,
i.e., those defined by Boolean combinations of polynomial inequalities. These subsume
all the classes of invariants mentioned so far. Here again there is no strongest invariant,
and so the natural invariant synthesis problem takes as input not only the affine pro-
gram but also a semi-algebraic target set of configurations, and the problem asks to
decide whether there is a semi-algebraic invariant that is disjoint from the target set.
Similar to the case of (non-convex) polyhedra, this problem is undecidable for general
affine programs. Here we describe work from [1] that shows how to compute semi-
algebraic invariants for affine loops.

Given an affine loop, while there is no strongest semi-algebraic invariant, there is
something that is almost as good—namely a parameterised family F of invariants that
is uniformly definable in the first-order theory of Rexp (the real field with exponential
function), such that (i)*every semi-algebraic invariant contains some member of F ,
and (ii)*one can decide whether there is some member of F that is disjoint from the
target set of configurations1. From the existence of this canonical family, we derive the
decidability of the synthesis problem for semi-algebraic invariants. In proving this
result we moreover show a strong completeness result for the class of semi-algebraic
invariants on affine loops—if an affine loop and semi-algebraic target admits an
invariant that is disjoint from the target and that is definable in some o-minimal
expansion of Rexp, then there already exists a semi-algebraic invariant that avoids the
target. Extending these results to richer classes of programs is the subject of ongoing
work.

x J. Worrell

1 While the theory of Rexp is decidable assuming Schanuel's conjecture, for the special class of
properties considered here we have unconditional decidability.

References

1. Almagor, S., Chistikov, D., Ouaknine, J., Worrell, J.: O-minimal invariants for linear loops.
In: 45th International Colloquium on Automata, Languages and Programming,
ICALP. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

2. Bradley, A.R., Manna, Z.: The calculus of computation - decision procedures with appli-
cations to verification. Springer, Heidelberg. https://doi.org/10.1007/978-3-540-74113-8
(2007)

3. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Conference Record of the Fourth
ACM Symposium on Principles of Programming Languages. pp. 238–252 (1977)

4. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: Conference Record of the Fifth Annual ACM Symposium on Principles of
Programming Languages. pp. 84–96 (1978)

5. Fijalkow, N., Lefaucheux, E., Ohlmann, P., Ouaknine, J., Pouly, A., Worrell, J.: On the
Monniaux problem in abstract interpretation. In: Chang, B.Y., (eds.) SAS 2019. LNCS, vol.
11822. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32304-2_9

6. Gulwani, S., Necula, G.C.: Discovering affine equalities using random interpretation. In:
Conference Record of POPL 2003: The 30th SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. pp. 74–84. ACM (2003)

7. Hrushovski, E., Ouaknine, J., Pouly, A., Worrell, J.: Polynomial invariants for affine pro-
grams. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS. pp. 530–539. ACM (2018)

8. Jeannet, B., Schrammel, P., Sankaranarayanan, S.: Abstract acceleration of general linear
loops. In: Jagannathan, S., Sewell, P., (eds.) The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL. pp. 529–540. ACM (2014)

9. Karr, M.: Affine relationships among variables of a program. Acta Inf. 6, 133–151 (1976).
https://doi.org/10.1007/BF00268497

10. Kincaid, Z., Cyphert, J., Breck, J., Reps, T.W.: Non-linear reasoning for invariant synthesis.
PACMPL 2(POPL), 54:1–54:33 (2018)

11. Miné, A.: The octagon abstract domain. In: Proceedings of the Eighth Working Conference
on Reverse Engineering, WCRE 2001, Stuttgart, Germany, 2–5 October 2001 (2001)

12. Monniaux, D.: On the decidability of the existence of polyhedral invariants in transition
systems. Acta Inf. 56(4), 385–389 (2019). https://doi.org/10.1007/s00236-018-0324-y

13. Müller-Olm, M., Seidl, H.: A Note on Karr’s Algorithm. In: Díaz, J., Karhumäki, J., Lepistö,
A., Sannella, D., (eds) ICALP 2004. LNCS, vol. 3142. Springer, Berlin, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27836-8_85

14. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra. In:
Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL. pp. 330–341. ACM (2004)

Polynomial Invariants for Affine Programs (Invited Talk) xi

https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1007/978-3-030-32304-2_9
https://doi.org/10.1007/BF00268497
https://doi.org/10.1007/s00236-018-0324-y
https://doi.org/10.1007/978-3-540-27836-8_85

Contents

Invited Talks

Static Resource Analysis at Scale (Extended Abstract) 3
Ezgi Çiçek, Mehdi Bouaziz, Sungkeun Cho, and Dino Distefano

Cost Analysis of Smart Contracts Via Parametric Resource Analysis 7
Víctor Pérez, Maximiliano Klemen, Pedro López-García,
José Francisco Morales, and Manuel Hermenegildo

Regular Papers

Memory-Efficient Fixpoint Computation . 35
Sung Kook Kim, Arnaud J. Venet, and Aditya V. Thakur

Abstract Neural Networks . 65
Matthew Sotoudeh and Aditya V. Thakur

Termination of Polynomial Loops . 89
Florian Frohn, Marcel Hark, and Jürgen Giesl

Stratified Guarded First-Order Transition Systems . 113
Christan Müller and Helmut Seidl

Predicate Abstraction and CEGAR for mHFLZ Validity Checking 134
Naoki Iwayama, Naoki Kobayashi, Ryota Suzuki, and Takeshi Tsukada

Counterexample- and Simulation-Guided Floating-Point Loop
Invariant Synthesis . 156

Anastasiia Izycheva, Eva Darulova, and Helmut Seidl

Formal Framework for Reasoning About the Precision
of Dynamic Analysis . 178

Mila Dalla Preda, Roberto Giacobazzi, and Niccoló Marastoni

Simple and Efficient Computation of Minimal Weak Control Closure 200
Abu Naser Masud

A Library Modeling Language for the Static Analysis of C Programs 223
Abdelraouf Ouadjaout and Antoine Miné

Interprocedural Shape Analysis Using Separation Logic-Based
Transformer Summaries . 248

Hugo Illous, Matthieu Lemerre, and Xavier Rival

Probabilistic Lipschitz Analysis of Neural Networks 274
Ravi Mangal, Kartik Sarangmath, Aditya V. Nori, and Alessandro Orso

On Multi-language Abstraction . 310
Samuele Buro, Roy L. Crole, and Isabella Mastroeni

Exact and Linear-Time Gas-Cost Analysis . 333
Ankush Das and Shaz Qadeer

Farkas-Based Tree Interpolation . 357
Sepideh Asadi, Martin Blicha, Antti Hyvärinen, Grigory Fedyukovich,
and Natasha Sharygina

Author Index . 381

xiv Contents

Invited Talks

Static Resource Analysis at Scale
(Extended Abstract)

Ezgi Çiçek1(B), Mehdi Bouaziz2, Sungkeun Cho1, and Dino Distefano1

1 Facebook Inc., Menlo Park, USA
{ezgi,scho,ddino}@fb.com

2 Nomadic Labs, Paris, France
mehdi@nomadic-labs.com

1 Introduction

Programs inevitably contain bugs. Fortunately, recent research and engineering
efforts across the industry and academia made significant advances in static
analysis techniques allowing automatic detection of bugs that cause a program
to crash or to produce an unintended result. In many settings, it is not enough for
a program to execute without errors. Programs must also finish executing within
expected resource bounds and adhere to a sensible resource usage. At the very
least, we expect the resource usage of programs to not deteriorate significantly
as the source code evolves, hurting the experience of the users or even making
the program unusable.

There are many static analysis techniques for estimating and verifying the
resource usage of a program, ranging from static worst-case execution time
(WCET) analyses (see [13] for a detailed survey) to typed-based approaches
and program logics [2,5–7,10–12]. Research in static WCET analysis has been
widely applied to validation and certification of embedded systems in safety crit-
ical systems. To estimate hard real-time bounds, these analyses must be tuned
carefully to take into account abstract models of caching, scheduling and pipeline
behavior of the embedded system. On the other hand, type based analyses and
program logics are often more abstract but require sophisticated type check-
ing/inference algorithms or specialized tools like proof assistants which make
them unsuitable to be used on big codebases without specialist proof engineers.

In our work, we turn our attention to big codebases for mobile applications.
We observe that although many static analysis techniques have been deployed
to detect functional correctness bugs, not much attention is given to statically
detecting performance regressions in industrial codebases. Most often, develop-
ers in such codebases deal with performance regressions through dynamic anal-
ysis techniques by relying on a combination of performance tests and profilers.
Considering that these applications are developed in a continuous way where
developers regularly add new features or modify existing code, only a limited
amount of testing and monitoring can effectively be done before the code runs
in production. Moreover, once a performance regression is introduced, it may
take several days or even weeks for it to be detected by production monitoring
c© Springer Nature Switzerland AG 2020
D. Pichardie and M. Sighireanu (Eds.): SAS 2020, LNCS 12389, pp. 3–6, 2020.
https://doi.org/10.1007/978-3-030-65474-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65474-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-65474-0_1

4 E. Çiçek et al.

systems. Once the regression is observed, tracking it back to its root cause is
also a very time consuming task: The release of an application has normally
thousands of code changes and singling out the changes responsible for the per-
formance regression is like finding a “needle in the haystack”. This whole process
of identifying and fixing performance regressions is costly not only for the appli-
cation and its users, but also in terms of engineering time. In fact it requires
multiple developers to interact, coordinate, and finally verify that fix improves
the performance.

2 Static Complexity Analysis with Infer

Motivated by these issues, we have developed an inter-procedural static anal-
ysis technique to automatically detect a class of performance regressions early
in the development cycle. Our analysis is based on an abstract-interpretation
technique [3,9] which computes symbolic upper bounds on the resource usage
of programs—execution cost being the main resource we consider. These costs
are expressed in terms of polynomials describing the asymptotic complexity of
procedures with respect to their input sizes. The main input of the analysis
is the source file which is then translated to an intermediate language along
with the control-flow graph of the program. The analysis then operates on this
intermediate language in several phases: 1) a numerical value analysis based on
InferBo [1] computes value ranges for instructions accessing memory, 2) a loop
bound analysis determines upper bounds for the number of iterations of loops
and generates constraints for nodes in the control-flow graph, and 3) a constraint
solving step resolves the constraints generated in the second step and computes
an upper bound on the execution cost. The analysis assumes a simple sequential
model with an abstract cost semantics: each primitive instruction in the inter-
mediate language is assumed to incur a unit execution cost. The analysis is not
limited to inferring bounds for just execution cost. In order to statically detect
regressions in other types of resource usage, we have generalized the analysis to
account costs for different types of resources such as memory allocations.

3 Diff-Time Deployment at Scale

We implemented the analysis on top of the Infer Static Analyser [8], which
is used at Facebook to detect various errors related to memory safety, con-
currency, and many more specialized errors suggested by Facebook developers.
Infer hooks up to the continuous integration mechanism with the internal code
review system where it is run on any code change (diff) over Facebook’s Android
codebase [4,8]. For our diff-based analysis, we rely on this mechanism and infer
polynomial bounds for the original and the updated procedures. Whenever there
is an increase in the degree of the complexity from the original to the modified
version (e.g. from constant to linear or from linear to quadratic), we report a
warning to the developer with a trace explaining where and how the complexity
increase occurred.

Static Resource Analysis at Scale (Extended Abstract) 5

Since the tool was deployed, thousands of complexity increase warnings were
issued in Facebook’s Android codebase where hundreds of these were fixed before
the code was committed. Unlike functional correctness bugs where fix-rate is a
good indicator of whether the issues found by the analyser are useful to the devel-
oper, we do not solely rely on fix-rate as a metric to measure the effectiveness
of asymptotic complexity increase signal. This is because, unsurprisingly, not all
complexity increase warnings point to an actual performance regression: a) the
complexity increase could be intended or the input sizes used in production could
be small enough to have no effect on the performance and b) the warning could
also be a false positive due to limitations of the analyzer. To alleviate these,
we follow a two-pronged approach. First, we ask developers to provide feedback
on whether a warning is good-catch, expected, or wrong (potentially pointing
to a false-positive). Only a small fraction of developers provide such feedback
but they are still useful: the most frequent feedback is that the warning was
expected. Wrong warnings are very rare (a few times a week) and we follow
up these warnings closely to fix weaknesses of the analyzer. Secondly, to help
developers evaluate the severity of the warning, we incorporate different types
of contextual information that surface e.g. whether the procedure with the com-
plexity increase runs on the critical path or main (UI) thread, which critical user
interactions the procedure occurs on, and some dynamic profiling info (e.g. avg
CPU time of the original procedure) when available. We observe that warnings
with such contextual information are fixed (and marked as good-catch) more
frequently in comparison to vanilla complexity increase warnings.

Thanks to the compositional nature of the analysis that enables us to gener-
ate execution costs of procedures independently of calling contexts, it can scale
to large codebases and work incrementally on frequent code modifications. We
believe that there is much unlocked potential and future work opportunities for
applying this type of static performance analysis. Although not all complex-
ity increase signal could be considered an actual performance regression, we
observed that surfacing them to developers is still useful for code quality and
regression prevention.

We are currently working on extending the analysis to detect out-of-memory
errors, combining static analysis with dynamic techniques, and adding support
for handling other languages such as C++ and Objective-C.

References

1. Inferbo: Infer-based numerical buffer overrun analyzer (2017). https://research.fb.
com/blog/2017/02/inferbo-infer-based-buffer-overrun-analyzer/

2. Atkey, R.: Amortised resource analysis with separation logic. Log. Methods Com-
put. Sci (2011)

3. Bygde, S.: Static WCET analysis based on abstract interpretation and counting of
elements. Ph.D. thesis (2010)

4. Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety
of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 459–465. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20398-5 33

https://research.fb.com/blog/2017/02/inferbo-infer-based-buffer-overrun-analyzer/
https://research.fb.com/blog/2017/02/inferbo-infer-based-buffer-overrun-analyzer/
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33

6 E. Çiçek et al.

5. Çiçek, E., Barthe, G., Gaboardi, M., Garg, D., Hoffmann, J.: Relational cost anal-
ysis. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages. POPL 2017, Association for Computing Machinery, New
York, NY, USA (2017)

6. Crary, K., Weirich, S.: Resource bound certification. POPL 2000, Association for
Computing Machinery, New York (2000)

7. Danielsson, N.A.: Lightweight semiformal time complexity analysis for purely
functional data structures. In: Proceedings of the 35th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL 2008, New
York (2008)

8. Distefano, D., Fähndrich, M., Logozzo, F., O’Hearn, P.W.: Scaling static analyses
at facebook. Commun. ACM (2019)

9. Ermedahl, A., Sandberg, C., Gustafsson, J., Bygde, S., Lisper, B.: Loop bound
analysis based on a combination of program slicing, abstract interpretation, and
invariant analysis. In: Proceedings 7th International Workshop on Worst-Case Exe-
cution Time Analysis (WCET 2007) 6 (2007)

10. Hoffmann, J., Das, A., Weng, S.C.: Towards automatic resource bound analysis for
ocaml. SIGPLAN Not (2017)

11. Knoth, T., Wang, D., Reynolds, A., Hoffmann, J., Polikarpova, N.: Liquid resource
types. Proc. ACM Program. Lang. (ICFP) (2020)

12. Wang, P., Wang, D., Chlipala, A.: Timl: A functional language for practical com-
plexity analysis with invariants 1(OOPSLA) (2017)

13. Wilhelm, R., et al.: The worst-case execution-time problem–overview of methods
and survey of tools. ACM Trans. Embed. Comput, Syst (2008)

Cost Analysis of Smart Contracts Via
Parametric Resource Analysis

Vı́ctor Pérez1,2(B), Maximiliano Klemen1,2, Pedro López-Garćıa1,3,
José Francisco Morales1, and Manuel Hermenegildo1,2

1 IMDEA Software Institute, Madrid, Spain
{victor.perez,maximiliano.klemen,pedro.lopez,josef.morales,

manuel.hermenegildo}@imdea.org
2 Universidad Politécnica de Madrid (UPM), Madrid, Spain

3 Spanish Council for Scientific Research (CSIC), Madrid, Spain

Abstract. The very nature of smart contracts and blockchain plat-
forms, where program execution and storage are replicated across a
large number of nodes, makes resource consumption analysis highly rele-
vant. This has led to the development of analyzers for specific platforms
and languages. However, blockchain platforms present significant vari-
ability in languages and cost models, as well as over time. Approaches
that facilitate the quick development and adaptation of cost analyses
are thus potentially attractive in this context. We explore the appli-
cation of a generic approach and tool for cost analysis to the prob-
lem of static inference of gas consumption bounds in smart contracts.
The approach is based on Parametric Resource Analysis, a method that
simplifies the implementation of analyzers for inferring safe bounds on
different resources and with different resource consumption models. In
addition, to support different input languages, the approach also makes
use of translation into a Horn clause-based intermediate representation.
To assess practicality we develop an analyzer for the Tezos platform and
its Michelson language. We argue that this approach offers a rapid, flex-
ible, and effective method for the development of cost analyses for smart
contracts.

Keywords: Blockchain · Smart contracts · Parametric Resource
Analysis · Static analysis · Constraint horn clauses · Program
transformation

1 Introduction

Due to the nature of blockchain platforms [6,63], smart contracts [60] and their
storage are replicated in every node running the chain, and any call to a contract

Partially funded by MICINN PID2019-108528RB-C21 ProCode and Madrid
P2018/TCS-4339 BLOQUES-CM. Thanks to Vincent Botbol, Mehdi Bouaziz, and
Raphael Cauderlier from Nomadic Labs, and Patrick Cousot, for their comments.

c© Springer Nature Switzerland AG 2020
D. Pichardie and M. Sighireanu (Eds.): SAS 2020, LNCS 12389, pp. 7–31, 2020.
https://doi.org/10.1007/978-3-030-65474-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65474-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-65474-0_2

8 V. Pérez et al.

is executed on every client. This fact has led many smart contract platforms to
include upper bounds on execution time and storage, as well as fees associated
with running a contract or increasing its storage size. More concretely, in order
to limit execution time, smart contract platforms make use of a concept called
“gas,” so that each instruction of the smart contract language usually has an
associated cost in terms of this resource. If a transaction exceeds its allowed gas
consumption, its execution is stopped and its effects reverted. However, even
if a transaction does not succeed because of gas exhaustion, it is included in
the blockchain and the fees are taken. Similarly, there are limitations and costs
related to storage size. The cost of running a contract can then be expressed in
terms of these two resources, gas consumed and storage.

In this context, knowing the cost of running a contract beforehand can be
useful, since it allows users to know how much they will be charged for the
transaction, and whether gas limits will be exceeded or not. However, this is
not straightforward in general. Many smart contract platforms do provide users
with simulators which allow performing dry runs of smart contracts in their own
node before performing actual transactions. But this of course returns cost data
only for specific input values, and provides no hard guarantees on the costs that
may result from processing the arbitrary inputs that the contract may receive
upon deployment. Ideally, one would like to be able to obtain instead guaranteed
bounds on this cost statically, or at least through a combination of static and
dynamic methods.

Thus, formal verification of smart contracts, and in particular analysis and
verification of their resource consumption, is receiving increased attention. At
the same time, many different blockchain platforms now exist, using different
languages and cost models, which often take into account different resources
and count them in different, platform-specific ways. Furthermore, within each
platform, the models can also evolve over time. As a consequence, the few existing
resource analysis tools for smart contracts, such as GASTAP [5], GASOL [4],
or MadMax [22], tend to be quite specific, focusing on just a single platform
or language, or on small variations thereof.1 This makes approaches that would
allow quick development of new cost analyses or easily adapting existing ones
potentially attractive in this context.

Parametric Resource Analysis (also referred to as user-defined resource anal-
ysis) [51,52,59] is an approach that simplifies the implementation of analyzers
that infer safe functional bounds on different related resources and with differ-
ent resource consumption models. Our objective in this paper is to explore the
application of this general approach to the rapid and effective development of
static analyses for gas consumption in smart contracts. To this end, we use the
implementation of the method in the CiaoPP [29] framework, and apply it to the
Tezos platform [6] and its Michelson language [1] as a proof of concept.

In the rest of the paper we start by providing an overview of the general
approach (Sect. 2), and then we illustrate successively the translation process
(Sect. 3), how the cost model is encoded (Sect. 4), and how the analysis is per-

1 We discuss this and other relevant related work further in Sect. 7.

Cost Analysis of Smart Contracts Via Parametric Resource Analysis 9

Fig. 1. Overview of the Parametric Resource Analysis approach.

formed (Sect. 5), first in general and then applied to the Michelson language. We
also provide some experimental results in Sect. 6. Section 7 then discusses other
related work and Sect. 8 presents our conclusions and future work.

2 The Parametric Resource Analysis Approach

We start by providing an overview of the approach (Fig. 1). Before getting
into the resource analysis itself, a basic technique used in the model, in
order to support different input languages, is to translate input programs to
a Horn clause-based intermediate representation [46], that we refer to as the
“CHC IR,” a technique used nowadays in many analysis and verification tools
[13,18,20,21,25,27,35,46,54]. The CHC IR is handled uniformly by the analyz-
ers, and the results are then reflected back to the input language. To perform
the Parametric Resource Analysis, assertions are used to define the resources
of interest, including compound resources, and the consumption that basic ele-
ments of the input language (e.g., commands, instructions, bytecodes, built-ins,
etc.) make of such resources. This constitutes the cost model. This model is
normally generated once for each input language, and is the part modified if
the costs change or different resources need to be inferred. Given an input pro-
gram and the cost model, the parametric analyzer then infers, for each program
point (block, procedure, etc.), safe resource usage bound functions that depend
on data sizes and possibly other parameters. Both the resource consumption
expressions inferred and those appearing in the cost models can include e.g.,
polynomial, summation, exponential, and logarithmic, as well as multi-variable
functions. This overall approach, pioneered and supported by the CiaoPP frame-
work, has been successfully applied to the analysis, verification, and optimization
of resource consumption for languages ranging from source to machine code, and
resources ranging from execution time to energy consumption [39–42,47,50,51].

3 Translating into the CHC IR

As mentioned above, in order to support different programming languages and
program representations at different compilation levels, each input language is
translated into a Horn clause-based intermediate program representation, the
CHC IR [46]. A (Constrained) Horn clause ((C)HC) is a formula of first-order
predicate logic (generalized with constraints) of the form ∀(S1 ∧ . . . ∧ Sn → S0)

10 V. Pérez et al.

parameter (list int);
storage (list int);
code { CAR; NIL int; SWAP; ITER { CONS }; NIL operation;

PAIR }

Listing 1.1. A Michelson contract that reverses a list.

where all variables in the clause are universally quantified over the whole formula,
and S0, S1, . . . , Sn are atomic formulas, also called literals, or constraints. CHCs
are usually written: S0 : − S1, . . . , Sn, where S0 is referred to as the head and
S1, . . . , Sn as the body. Given a program p in an input language Lp, plus a
definition of the semantics of Lp, the objective is to translate p into a set of
Horn clauses that capture the semantics of p. Two main styles are generally
used for encoding the operational semantics of Lp [18]: small-step (structural
operational semantics) [55], as in [54], or big-step (natural semantics) [34], as in
[46]. We will be concerned herein with the latter, among other reasons because
the big-step approach is very direct for the case of a language that is structured
and defined functionally, such as Michelson.

Typically, a CHC interpreter of Lp, I, in one of the styles above, together
with a term-based representation of p and its store, would suffice to reflect
the program semantics. However, precise analyses often require a tighter cor-
respondence between predicates and body literals in the CHCs and the blocks
(e.g., in a control-flow graph) and statements (e.g., calls and built-ins) for
p. For example, for an imperative program, the CHCs typically encode a
set of connected code blocks, so that each block is represented by a CHC:
〈block id〉(〈params〉) : − S1, . . . , Sn. The head represents the entry point to
the block and its parameters, and the body the sequence of steps in the block.
Each of these Si steps (or literals) is either a call to another (or the same) block
or a call to one of the basic operations implemented by the interpreter I. Thus,
depending on the input language, literals can represent bytecode instructions,
machine instructions, calls to built-ins, constraints, compiler IR instructions, etc.

Techniques such as partial evaluation and program specialization offer pow-
erful methods to obtain such translations. In particular, using the first Futamura
projection [17], I can be specialized for a given input program p, which, with
appropriate simplifications, results in a set of predicates with the desired cor-
respondences. A direct, automatic translator can be obtained by specializing a
CHC partial evaluator for I (second Futamura projection), which can then be
applied to any program p. In general, these transformations may be automatic,
manual, or use a combination of techniques. Also, preliminary transformations
may be required to express the semantics at the right abstraction level, e.g., mak-
ing all variable scoping explicit, using Static Single Assignment (SSA), reducing
control constructs, etc. [46].

The Michelson Language and Its Semantics. Michelson is the “native”
language used by the Tezos platform. It is interpreted, strongly-typed, and stack-
based. Despite being a low-level language, Michelson provides some high-level
data structures such as lists, sets, maps, and arbitrary precision integers.

Cost Analysis of Smart Contracts Via Parametric Resource Analysis 11

Fig. 2. Semantics of some Michelson instructions.

Michelson contracts consist of three sections. The parameter and storage
sections stipulate the types of the input argument and the storage. E.g., in
Listing 1.1 both are described as lists of Michelson integers. The code section
contains the sequence of instructions to be executed by the Michelson interpreter.
This interpreter can be seen as a pure function that receives a stack and returns
a result stack without altering its environment. The input stack contains just a
pair consisting of the parameter and the contract storage. The output stack will
contain just a pair consisting of the list of blockchain operations to be executed
after the contract returns and the updated storage, to be used as storage value
in the following call to the contract. I.e.:

Interpreter : (pair parameter storage) : [] → (pair (list operation) storage) : []
(p, s) : [] �→ (l, s′) : []

The Michelson instructions can also be seen as pure functions receiving an
input stack and returning a result stack. Figure 2 shows the semantics of the
Michelson instructions used in Listing 1.1—overall, there are 116 typed instruc-
tions and 23 macros. Continuing with the example, its purpose is to reverse the
list passed as a parameter and store it. First, CAR discards the storage of the
contract, as only the list passed as parameter is needed for the computation.
Then, the NIL instruction inserts an empty list on top of the stack. The type
of the elements that will fill the resulting list needs to be provided, in this case
integers. SWAP simply exchanges the top two elements of the stack. After running
these instructions, the stack will have the following shape: parameter : ([]) : [].

The interpreter will now iterate over the input list, prepending each of its
elements to the new list and reversing the former in the process. This action is
carried out by the ITER instruction, which traverses the elements of a list, per-
forming the action indicated by its argument: a macro or a sequence of instruc-
tions; in our case, just { CONS }. CONS receives a stack whose top is an element
and a list of the same type, and returns a stack with just the list on top, but where
the list has the element preprended, while the rest of the stack is unchanged.

12 V. Pérez et al.

Fig. 3. Semantics of the instructions of Fig. 2 in CHC.

Taking into account the semantics of CONS, the semantics of the loop within the
contract can be defined as:

la : lb : S �→ ITER(la : lb : S) =

{
lb : S if la = []
ITER(l′a : (el : lb) : S) if la = el : l′a

There are other instructions which receive code as an argument: the control
structures in the language, e.g., IF or LOOP, are instructions which receive one or
two blocks of code. Likewise, other instructions receive other kinds of arguments,
such as NIL, which as we saw receives the type of the list to build; or PUSH, which
receives the type and value of the element to place on top of the stack. Once
the list has been reversed, the contract inserts a list of operations on top of the
stack, via the NIL instruction, and builds a pair from the two elements left in
the stack, using the PAIR instruction. This way, the result stack will have the
required type, i.e., length and type of its elements:

(pair (list operation) storage) : [], where storage ≡ (list int)

As a concrete example, a call to this contract with the list of numbers from 1 to
3 as parameter would present the following input (S0) and output (S1) stacks:

S0 = ((1 : 2 : 3),) : [] �→ S1 = ([], (3 : 2 : 1)) : []

Note that, as the first instruction in the contract discards the storage, its value
is irrelevant to obtain the result of the computation.

As mentioned before, in addition to performing operations over terms in the
stack, Michelson instructions can also return external operations (i.e., instruc-
tions that perform actions at the blockchain level) to be added to the list of
operations in the return stack. Lack of space prevents us from going into details,
but these operations can be: transactions (operations to transfer tokens and
parameters to a smart contract), originations (to create new smart contracts
given the required arguments), or delegations (operations that assign a number
of tokens to the stake of another account, without transferring them).

CHC Encoding. We implement the Michelson semantics as a big-step recursive
interpreter, via a direct transliteration of the semantics into CHCs (using the

Cost Analysis of Smart Contracts Via Parametric Resource Analysis 13

Ciao system [28]). Figure 3, shows the CHC encoding of the instructions of Fig. 2.
Data structures are represented in the usual way with Herbrand terms.2 The
interpreter in turn is encoded by the following clauses:3

run([], S0, S) :- S=S0.
run([Ins|Insns], S0, S) :- ins(Ins, S0, S1), run(Insns, S1, S).
% Dispatcher (one clause for each I/n instruction)

ins(<<I>>(A1,...,An), S0, S) :- <<I>>(A1,...,An,S0,S).

Predicate run/3 takes the input program and the initial stack (S0), and reduces
it by executing the sequence of Michelson instructions to obtain the resulting
stack S1. ins/3 is the instruction dispatcher, which connects each instruction
term (e.g., push(X)) with its CHC definition (e.g., push(X,S0,S)) (see Fig. 3).

The Michelson to CHC IR Translation. We derive a simple translator,
based on a specialization of a CHC partial evaluation algorithm for this particu-
lar recursive interpreter. In this process special care is taken to materialize stack
prefixes as actual predicate arguments.

Preliminary Transformations. As preliminary transformations we introduce
labeled blocks for sequences of instructions in the program, to help in later steps
of partial evaluation. For the sake of clarity, we consider them simply as new
predicate definitions (we obviate for conciseness some additional information
needed to trace back blocks to the original program points). We also rely on
a simple implementation within the system of Michelson type checking, which
makes knowing the type of the stack (and thus of the operands) at each program
point a decidable problem. This allows us to specialize polymorphic instructions,
depending on the type of the passed arguments. This is particularly useful to
specify (as we will see later) the semantics and cost of each instruction vari-
ant, which can vary depending on those static types. E.g., the ADD instruction
is translated into one of seven possible primitive operations, depending on the
type of the addends:

ADD[A,B] →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

add intint if int(A), int(B)
add intnat if int(A), nat(B)
add natint if nat(A), int(B)
add natnat if nat(A), nat(B)
add timestamp to seconds if timestamp(A), int(B)
add seconds to timestamp if int(A), timestamp(B)
add tez if mutez(A),mutez(B)

(1)

Translation Using Partial Evaluation. Based on our interpreter, we derive step-
wise a simple translator which combines a hand-written specializer for the run/3

2 We do not include the types in Fig. 3 for brevity; they will be present however in
the cost model assertions of Sect. 4.

3 In the actual code, state variables are made implicit by using Definite Clause Gram-
mar (DCG) syntax. We have left all variables explicit however for clarity.

14 V. Pérez et al.

parameter (pair int (list int)) ;
storage int ;
code { CAR ;

UNPAIR ;
DUP ;
SUB ;
DIIP { PUSH int 0 } ;
IFNEQ { ITER { ADD } } { DROP } ;
NIL operation ;
PAIR }

Listing 1.2. A Michelson contract suitable for partial evaluation.

predicate, a stack deforestation pass (including each stack element instead of the
stack itself as predicate arguments), and a generic partial evaluation for the prim-
itive instruction definitions (e.g., evaluate conditions, arithmetic instructions,
etc.). Michelson control-flow instructions receive both the control condition and
the code to execute as inputs, e.g.:

if(Bt,Bf,[B|S0],S) :- ’$if’, if_(B,Bt,Bf,S0,S).
if_(true, Bt,_Bf,S0,S) :- run(Bt,S0,S).
if_(false,_Bt,Bf,S0,S) :- run(Bf,S0,S).

By construction, the code arguments are bound, as explained in the prelimi-
nary transformations, to new constants representing code blocks dispatched from
ins/3. For each call, partial evaluation will unfold if(Bt,Bf,S0,S2) as ’$if’,
S0=[B|S1], if 0(B,S1,S2) and generate new instances, e.g.:

if__0(true, S0,S) :- ... % unfolded run(<<Bt>>,S0,S).
if__0(false,S0,S) :- ... % unfolded run(<<Bf>>,S0,S).

The stack deforestation step is specially useful in the output of control-flow
instructions, which receive n+m arguments instead of the lists of variables, where
n is the size of the input stack and m of the output stack. This transformation
is possible thanks to Michelson’s semantics, which forbids changes to the type of
the stack in loops and forces the type of both output stacks in branch instructions
to match. E.g., for the simple branch instruction IF:

if__0(true, I0,I1,...,In,O0,O1,...,Om) :- ...
if__0(false,I0,I1,...,In,O0,O1,...,Om) :- ...

Following the idea of abstracting away the stack, the translation also abstracts
away simple data structures, such as pairs, whenever possible.

Cost-Preserving Encoding. In order to precisely capture the actual cost of
instructions, while allowing aggressive program transformations such as unfold-
ing, partial evaluation, and replacing the stack arguments by actual parameters,
the instruction definitions are extended to introduce cost markers, e.g.:

Cost Analysis of Smart Contracts Via Parametric Resource Analysis 15

:- pred code/5 : int * list(int) * int * var * var.

code(A,B,C,D,E) :-
’$car’, ’$dup’, ’$car’, ’$dip’, ’$cdr’, ’$dup’,
sub_intint(A,A,F),

’$dip ’(2), ’$push ’(0),
neq(F,G),

’$if’,
if__0(G,[B,0],[E]),
nil(D),

’$pair’.

if__0(true,[A,B],[C]) :-
iter__1(A,[B],[C]).

if__0(false,[A,B],[B]) :-
’$drop ’(A).

iter__1([],[A],[A]) :-
’$iter_end ’.

iter__1([A|B],[C],[D]) :-
’$iter’,
add_intint(A,C,E),

iter__1(B,[E],[D]).

Listing 1.3. CHC IR representation of Listing 1.2.

swap([A,B|S],[B,A|S]) :- ’$swap’.
drop([X|S],S) :- ’$drop ’(X).
if(Bt,Bf,[B|S0],S) :- ’$if’, if_(B,Bt,Bf,S0,S).
if(true, Bt,_Bf,S0,S) :- run(Bt,S0,S).
if(false,_Bt,Bf,S0,S) :- run(Bf,S0,S).

Partial evaluation will replace each of the primitive operations (from a very
reduced set) by its CHC definition in the output CHC IR, while the cost makers,
whose main end is to keep a record of the consumed resources at each step, will
be preserved. Note that as as a result of the transformations, some Michelson

:- pred code/5 : int * list(int) * int * var * var.

code(A,B,C,[],0) :-
’$car’, ’$dup’, ’$car’, ’$dip’, ’$cdr’, ’$dup’,
sub_intint(A,A,0),

’$dip ’(2), ’$push ’(0),
neq(0,false),
’$if’, ’$drop ’(B),
nil([]),
’$pair’.

Listing 1.4. CHC IR representation of Listing 1.2 with partial evaluation enabled.

16 V. Pérez et al.

instructions that simply modify/access the stack will not even be represented in
the output CHC IR, only their cost markers, if relevant.

Translation Example. To illustrate all the steps described in this section, we
show the resulting CHC representation for the contract shown in Listing 1.2.
The direct translation of this contract can be found in Listing 1.3, whereas
Listing 1.4 takes advantage of partial evaluation to perform significant, yet valid
transformations, both in terms of semantics and resource semantics.

Another useful transformation performed by the translation is the inclusion
of explicit arithmetic comparison operations in the contract. This way, Boolean
conditions in control-flow predicates can be replaced by arithmetic tests, which
not only makes the contract more readable for the human eye, but also easier
to analyze. An example of this can be seen in Listing 1.5 and its CHC IR repre-
sentation, Listing 1.6. In this contract one of the comparison operations and the
evaluation of its result are performed in different predicates. This information
can be encoded by attaching information about how they have been generated to
the results of both COMPARE and GT instructions, which will propagate throughout
the translation process inside the stack.

4 Defining Resources and Cost Models

After addressing in the previous section the parametricity of the approach w.r.t.
the programming language, we now address parametricity w.r.t. resources and
cost models. As mentioned before, the role of the cost model in parametric
resource analysis is to provide information about the resource consumption of
the basic elements of the input language, which is then used by the analysis to
infer the resource usage of higher-level entities of programs such as procedures,
functions, loops, blocks, and the whole code. We start by describing a subset of
the assertions proposed in [52] for describing such models, which are part of the
multi-purpose assertion language of the Ciao/CiaoPP framework [9,28,56], used
in our experiments. First, the resources of interest have to be defined and given
a name as follows:

:- resource 〈resname〉.
Then, we can express how each operation of the analyzed language affects the
use of such resource, by means of assertions with trust status:

:- trust pred 〈operation〉 + cost(〈approx〉,〈resname〉,〈arithexpr〉).
where 〈arithexpr〉 expresses the resource usage as a function that depends on
data sizes and possibly other parameters, and which, as mentioned before, can be
polynomial, summation, exponential, or logarithmic, as well as multi-variable.
The 〈approx〉 field states whether 〈arithexpr〉 is providing an upper bound (ub),
a lower bound (lb), a “big O” expression, i.e., with only the order information
(oub), or an Ω asymptotic lower bound (olb). Such assertions can also be used
to describe the resource usage of builtins, libraries, external procedures (e.g.,

Cost Analysis of Smart Contracts Via Parametric Resource Analysis 17

parameter (pair int int) ;
storage int ;
code { UNPPAIIR ;

DIIP { DUP } ;
DUUUP ;
SWAP ;
CMPGT ;
DIP CMPGT ;
IF ASSERT FAIL ;
NIL operation ;
PAIR }

Listing 1.5. A Michelson contract with arithmetic comparisons.

defined in another language), etc. Assertions can also include a calls field, pre-
ceded by :, stating properties that hold at call time. This allows writing several
assertions for the same predicate to deal with polymorphic predicates whose
resource semantics may differ depending on the call states. E.g., for add we
can have assertions with call fields int * int * var and flt * flt * var

with possibly different costs. An optional success field, preceded by =>, can
also be used to state properties that hold for the arguments on success. Addi-
tionally, size metric information can be provided by users if needed using
size metric(Var,〈sz metric〉) properties, although in practice such metrics are
generally derived automatically from the inferred types and shapes. These are the
metrics used to measure data sizes, e.g.: list length, term depth, term size, actual
value of a number, number of steps of the application of a type definition, etc.
(see [52,59] and the use therein of sized types). It is also possible to declare rela-
tionships between the data sizes of the inputs and outputs of procedures, as well
as provide types and actual sizes (size(Var,〈approx〉,〈sz metric〉,〈arithexpr〉)).
In addition to those presented, [52] proposes some additional mechanisms for
defining other aspects of cost models, but they are not required for our presen-
tation.

The Cost Model for the Tezos Platform. We now illustrate how to define
the resources and cost model for our test case, the Tezos platform and its
Michelson language, using the Ciao assertion language. The Tezos/Michelson
cost model varies somewhat with each version of the protocol, which, as men-
tioned before, is one of the motivations for our approach. The model that we
present has been derived from the OCaml source for the Carthage protocol. Gas
is a compound resource that can be defined as a function of other basic resources:

18 V. Pérez et al.

:- pred code/5 : int * int * int * var * var.

code(A,B,C,[],D) :-
’$dup’, ’$car’, ’$dip’, ’$cdr’, ’$dup’, ’$car’, ’$dip’,
’$cdr’, ’$dip ’(2), ’$dup’, ’$dip ’(2), ’$dup’, ’$dig ’(3),
’$swap’,
compare_int(A,C,E),

gt(E,F),

’$dip’,
compare_int(B,C,G),

gt(G,H),

’$if’,
if__0(A,C,B,C,H,C,D),

nil([]),
’$pair’.

if__0(A,B,C,D,E,F,G) :-
A>B,
’$if’,
if__1(C,D,F,G).

if__0(A,B,C,D,E,F,failed(’()’)) :-
A=<B,
’$push ’(’()’),failwith(’()’).

if__1(A,B,C,C) :-
A>B.

if__1(A,B,C,failed(’()’)) :-
A=<B,
’$push ’(’()’),failwith(’()’).

Listing 1.6. CHC IR representation of Listing 1.5.

gas(allocations, steps, reads, writes, bytes read, bytes written) =

= 2−7 ∗

⎛
⎜⎜⎜⎜⎜⎜⎝

allocations
steps
reads
writes

bytes read
bytes written

⎞
⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

2
1

100
160
10
15

⎞
⎟⎟⎟⎟⎟⎟⎠

(2)

In our cost model we first name the resources (Listing 1.7), and then define
michelson gas as a compound resource following Eq. 2 (Listing 1.8).

Each Michelson instruction will consume one or more of these basic resources,
so the next step is to declare this consumption. Since in most cases not all
resources will be consumed by every instruction, we include in the model some
default cost assertions establishing, for example, that the consumption of these

Cost Analysis of Smart Contracts Via Parametric Resource Analysis 19

:- resource michelson_allocations.
:- resource michelson_steps

:- resource michelson_reads.
:- resource michelson_writes.
:- resource michelson_bytes_read.
:- resource michelson_bytes_written.

Listing 1.7. Assertions to declare the resources to study.

:- resource michelson_gas.
:- compound_resource(michelson_gas , 2**(-7) * (

michelson_allocations * 2

+ michelson_steps

+ michelson_reads * 100

+ michelson_writes * 160

+ michelson_bytes_read * 10

+ michelson_bytes_written * 15)).

Listing 1.8. Assertions to declare gas as a compound resource.

basic resources is 0 by default. This avoids having to provide information for all
resources in the cost assertions for every instruction.4

We illustrate the process of declaring specific resource consumptions using
the ADD instruction. Listing 1.9 shows the definition of this basic operation in the
(OCaml) code of the Michelson interpreter, which contains not only the seman-
tics of the instruction, but also its cost semantics. As mentioned before, this is
a polymorphic instruction, so it may be transformed into different predicates
in the translation process. In this case, we will focus on the instance dealing
with integers, which was called add intint in Eq. 1. Comparing Eq. 1 and List-
ing 1.9 we can see that our translation process closely matches the Tezos internal
representation of Michelson instructions.

The corresponding cost expression, as found in the Tezos source code, is
shown in Listing 1.10, which is given in turn in terms of atomic step cost,
Listing 1.11. This function is used to express the cost of a great number of
operations, which, as in this case, can be given as a function of their arguments.
Using this definition and that of int bytes:

int bytes(x) = 1 +
⌊

log2 |x|
8

⌋
(3)

we can simplify add intint’s cost expression:

costadd intint(A,B) = 2 ∗
⎛
⎝51 +

max
(
1 +

⌊
log2 |A|

8

⌋
, 1 +

⌊
log2 |B|

8

⌋)
62

⎞
⎠

= 102 +
1 +

⌊
log2 max (|A|,|B|)

8

⌋
31

(4)

20 V. Pérez et al.

| (Add_intint , Item (x, Item (y, rest))) ->
consume_gas_binop

descr (Script_int.add, x, y)

Interp_costs.add rest ctxt

| (Add_intnat , Item (x, Item (y, rest))) ->
consume_gas_binop

descr (Script_int.add, x, y)

Interp_costs.add rest ctxt

Listing 1.9. Some of the definitions for ADD.

let add i1 i2 =
atomic_step_cost

(51 +
(Compare.Int.max

(int_bytes i1) (int_bytes i2) / 62))

Listing 1.10. Cost definition for add intint.

The assertion used to include this cost in our CiaoPP model is shown in List-
ing 1.12. It expresses the exact cost of this instruction in terms of its inputs.
Both an upper and a lower bound are given. Since they are the same, the cost is
exact—this can also be expressed with the exact keyword. Note that these asser-
tions can also include properties of instruction arguments. In this case we state
the types and sizes of the arguments of the add intint predicate on success, as
well as other information such as non-failure, determinacy, or cardinality, which
increase the precision of the resource analysis. In fact, since every Michelson
instruction is a deterministic function defined in all of its domain, they never
fail and they always return one solution. Note the direct correspondence between
the arithmetic expression that defines the cost of the instruction and Eq. 4, which
contributes to the readability of the model.

Fig. 4. Overview of analysis in the Parametric Resource Analysis approach.

4 We do not include examples of default assertions due to space constraints.

Cost Analysis of Smart Contracts Via Parametric Resource Analysis 21

let atomic_step_cost n =
{ allocations = Z.zero;

steps = Z.of_int (2 * n);
reads = Z.zero;
writes = Z.zero;
bytes_read = Z.zero;
bytes_written = Z.zero; }

Listing 1.11. atomic step cost definition.

:- trust pred add_intint(A,B,C)

=> (int(A), int(B), int(C),
size(ub,C,int(A)+int(B)),
size(lb,C,int(A)+int(B)))

+ (not_fails , covered, is_det, cardinality(1,1),
cost(lb,michelson_steps ,102+(1+log2(max(int(A),int(B)))/8)/31),
cost(ub,michelson_steps ,102+(1+log2(max(int(A),int(B)))/8)/31)).

Listing 1.12. Cost assertion for add intint in the cost model.

5 Performing the Resource Analysis

As already mentioned in Sect. 2, the input to the the parametric resource ana-
lyzer is the program in CHC IR form and the resource model (Fig. 1). The core
analyzer is based on an approach in which recursive equations (cost relations),
representing the resource consumption of the program, are extracted from the
program and solved, obtaining upper- and lower-bound cost functions in terms
of the program’s inputs [2,15,16,59,62]. As mentioned before, these functions
can be polynomial, exponential or logarithmic, etc., and they express the cost
for each Horn clause (block) in the CHC IR, which can then be reflected back to
the input language. Space restrictions prevent us from describing the process in
detail; we provide an overview of the tasks performed by the analyzer (Fig. 4):

1. Perform all the required supporting analyses. This includes typically,
among others: a) sized types/shapes analysis for inferring size metrics (for
heap manipulating programs), to simplify the control-flow graph, and to
improve overall precision (e.g., class hierarchy analysis); b) pointer shar-
ing/aliasing analysis for correctness and precision; c) Non-failure (no excep-
tions) analysis, needed for inferring non-trivial lower bounds; d) Determinacy
and mutual exclusion analyses to obtain tighter bounds; e) other instrumental
analyses such as, e.g., polyhedra for handling constraints.

2. Size analysis: a) Set up recurrence equations representing the size of each
(relevant) output argument as a function of input data sizes, based on data
dependency graphs that determine the relative sizes of variable contents at
different program points. The size metrics are derived from the inferred shape
(type) information. Then, b) compute bounds to the solutions of these recur-
rence equations to obtain output argument sizes as functions of input sizes.
We use a hierarchical recurrence solver that classifies the equations and dis-
patches them to an internal solver or interfaces with existing tools like Mathe-

22 V. Pérez et al.

:- pred code/4 : list(int) * list(int) * var * var.

code(A,B,[],C) :-
’$car’,
nil([]),
’$swap’,
iter__0(A,[],C),
nil([]),
’$pair’.

iter__0([],A,A) :-
’$iter_end ’.

iter__0([A|B],C,D) :-
’$iter’,
cons(A,C,[A|C]),
iter__0(B,[A|C],D).

Listing 1.13. CHC IR representation of contract 1.1.

:- true pred code(A,B,C,D)

: (list(int,A), list(int,B), var(C), var(D))

=> (list(int,A), list(int,B), list(C), list(D),
size(lb,A,length(A)), size(lb,B,length(B)),
size(lb,C,0), size(lb,D,0))

+ (cost(lb,michelson_gas ,0.6875*length(A)+1.21875),
cost(lb,michelson_steps ,80*length(A)+140)).

:- true pred code(A,B,C,D)

: (list(int,A), list(int,B), var(C), var(D))

=> (list(int,A), list(int,B), list(C), list(D),
size(ub,A,length(A)), size(ub,B,length(B)),

size(ub,C,inf), size(ub,D,inf))

+ (cost(ub,michelson_gas ,0.6875*length(A)+1.21875),
cost(ub,michelson_steps ,80*length(A)+140)).

Listing 1.14. Analysis output for contract 1.1.

matica, PURRS, PUBS, Matlab, etc., and also combine with techniques such
as ranking functions.

3. Resource analysis: Use the size information to set up recurrence equa-
tions representing the resource consumptions of each version of each predicate
(block), and again compute bounds to their solutions, as above, to obtain the
output resource usage bound functions.

In the CiaoPP implementation all of these analysis tasks are performed by
the PLAI abstract interpretation framework [30,49] of CiaoPP, using different
abstract domains (Fig. 4). The generic resource analysis is also fully based on
abstract interpretation [12] and defined as a PLAI-style abstract domain of piece-
wise functions and equations [59]. This brings in features such as multivariance,
efficient fixpoints, assertion-based verification and user interaction, etc.

Cost Analysis of Smart Contracts Via Parametric Resource Analysis 23

Michelson Contract Analysis Example. As an example of the analysis pro-
cess, we analyze the contract of Listing 1.1. In the CHC IR representation of
the contract in Listing 1.13, we can observe how the translation has generated a
predicate with two clauses that emulates the semantics of the ITER instruction: it
takes the list over which to iterate as a parameter and performs the CONS action
specified by the body of the ITER instruction. In both clauses the translation tool
includes a cost marker to measure the cost of each iteration step, and of leaving
the loop. The output from CiaoPP, after performing analyses for shapes/mea-
sures, sharing, non-failure, sizes, and resources is shown in Listing 1.14. The cost
in gas of this contract is inferred to be linear w.r.t. the length of the input list.

6 Some Experimental Results

We have constructed a prototype which transforms Michelson contracts to CHC
IR, as well as the cost model that provides CiaoPPwith the required information on
the Michelson instructions. This cost model contains 97 cost assertions, covering
a large percentage of Michelson instructions, and is easy to extend, as shown in
Sect. 4.

Regarding the translator, it is 700 lines long, ofwhich 190 correspond to instruc-
tion definitions, transliterated from the specification, and 175 to instruction meta-
data. The whole system was developed in about two months. In our prototype and
experiments we have concentrated on the gas cost of executing a contract. How-
ever, we believe that the framework can be instantiated to other costs such as type
checking or storage size, using the sized types-based analyses in the system [58,59].

We have tested this prototype on a wide range of contracts, a few self-made
and most of them published, both in Michelson’s “A contract a day” examples
and the Tezos blockchain itself. Results for a selection are listed in Table 1. In this
selection, we have tried to cover a reasonable range of Michelson data structures
and control-flow instructions, as well as different cost functions using different
metrics.5 Column Contract lists the contracts, and Metrics shows the metrics
used to measure the parameter and the storage. The metrics used are: value for
the numeric value of an integer, length for the length of a list, and size which
maps every ground term to the number of constants and functions appearing in
it. Column Resource A(nalysis) shows for brevity just the order of the resource
usage function inferred by the analysis in terms of the sizes of the parameter (α)
and the storage (β) or k if the inferred function is constant. However, the actual
expressions inferred also include the constants. For complex metrics, sub-indices
starting from 1 are used to refer to the size of each argument; e.g., α2 refers to
the size of the second argument of the parameter. Finally, Time shows the time
taken to perform all the analyses using the different abstract domains provided
by CiaoPP, version 1.19 on a medium-loaded 2.3 GHz Dual-Core Intel Core i5,
16 GB of memory, running macOS Catalina 10.15.6. Many optimizations and
improvements are possible, as well as more comprehensive benchmarking, but we
believe that the results shown suggest that relevant bounds can be obtained in
reasonable times, which, given the relative simplicity of development of the tool,
seem to support our expectations regarding the advantages of the approach.
5 The benchmarks themselves are briefly explained in Table 2 in the Appendix.

24 V. Pérez et al.

Table 1. Results of analysis for selected Michelson contracts.

Contract Metrics Resource A. Time

Parameter (α) Storage (β) gas (ms)

reverse length length α 216

addition value value log α 147

michelson arith value value log (α2 + 2 ∗ β) 208

bytes value length β 229

list inc value length β 273

lambda value value log α 99

lambda apply (value, size) size k 114

inline size value log β 870

cross product (length, length) value α1 + α2 424

lineal value value α 244

assertion map (value, size) length log β ∗ log α1 393

quadratic length length α ∗ β 520

queue size (value, size, length) log β1 ∗ log β3 831

king of tez size (value, value, size) k 635

set management length length α ∗ log β 357

lock size (value, value, size) k 421

max list length size α 473

zipper length (length, length, length) k 989

auction size (value, value, size) k 573

union (length, length) length α1 ∗ log α2 486

append (length, length) length α1 371

subset (length, length) size α1 ∗ log α2 389

7 Related Work

As mentioned in the introduction, the tools that have been proposed to date
for resource analysis of smart contracts are platform- and language-specific.
GASPER [10] and MadMax [22] are both aimed at identifying parts of con-
tracts that have high gas consumption in order to optimize them or to avoid
gas-related vulnerabilities. GASPER is based on recognizing control-flow pat-
terns using symbolic computation while MadMax searches for both control- and
data-flow patterns. Marescotti et al. [44] also use a limited-depth path explo-
ration approach to estimate worst-case gas consumption. These tools are useful
programmer aids for finding bugs, but cannot provide safe cost bounds. GASPER
and MadMax are specific to contracts written for the Ethereum platform [63],
in Solidity, and translated to Ethereum Virtual Machine (EVM) bytecode. The
Solidity compiler can generate gas bounds, but these bounds can only be con-
stant, i.e., they cannot depend on any input parameters, or if they do the bound
generated is infinite. This tool is of course also specific to the Ethereum platform.

Cost Analysis of Smart Contracts Via Parametric Resource Analysis 25

Closer to our work are GASTAP [5] and its extension GASOL [4]. These tools
infer upper bounds for gas consumption, using similar theoretical underpinnings
as those used by CiaoPP, i.e., recurrence relation solving, combined with rank-
ing functions, etc. GASOL is a more evolved version of GASTAP that includes
optimization and allows users to choose between a number of predefined con-
figuration options, such as counting particular types of instructions or storage.
These are powerful tools that have been proven effective at inferring accurate gas
bounds with reasonable analysis times, in a good percentage of cases. However,
they are also specific to Ethereum Solidity contracts and EVM.

Parametric Resource Analysis (also referred to as user-defined resource anal-
ysis) was proposed in [52] and developed further in [51,59]. The approach builds
on Wegbreit’s seminal work [62] and the first full analyzers for upper bounds,
in the context of task granularity control in automatic program parallelization
[14,15]. This in turn evolved to cover other types of approximations (e.g., lower
bounds [16]), and to the idea of supporting resources defined at the user level
[51,52]. This analysis was extended to be fully based on abstract interpretation
[12] and integrated into the PLAI multi-variant framework, leading to context-
sensitive resource analyses [59]. Other extensions include static profiling [43],
static bounding of run-time checking overhead [38], or analysis of parallel pro-
grams [37]. Other applications include the previously mentioned analyses of
platform-dependent properties such as time or energy [39–42,47,50,51].

Resource analysis has received considerable additional attention lately [3,7,
8,11,19,23,24,26,31,31–33,36,45,48,53,57,61]. While these approaches are not
based on the same idea of user-level parametricity that is instrumental in the
approach proposed herein, we believe the parametric approach is also relevant
for these analyses.

8 Conclusions and Future Work

We have explored the application of a generic approach and tool for resource
consumption analysis to the problem of static inference of gas consumption
bounds in smart contracts. The objective has been to provide a quick devel-
opment path for cost analyses for new smart contract platforms and languages,
or easily adapting existing ones to changes. To this end, we have used the tech-
niques of Parametric Resource Analysis and translation to Horn clause-based
intermediate representations, using the Ciao/CiaoPP system as tool and the
Tezos platform and its Michelson language as test cases. The Horn clause trans-
lator together with the cost model and Ciao/CiaoPP constitute a gas consump-
tion analyzer for Tezos smart contracts. We also applied this tool to a series
of smart contracts obtaining relevant bounds with reasonable processing times.
We believe our experience and results are supportive of our hypothesis that this
general approach allows rapid, flexible, and effective development of cost anal-
yses for smart contracts, which can be specially useful in the rapidly changing
environment in blockchain technologies, where new languages arise frequently
and cost models are modified with each platform iteration. In fact, while prepar-
ing the final version of this paper, a new protocol, Delphi, was released and we

26 V. Pérez et al.

were able to update the cost model in less than a day by modifying just the cost
assertions. As a final remark, we would also like to point out that the approach
and tools that we have used bring in much additional functionality beyond that
discussed herein, which is inherited from the Ciao/CiaoPP framework used, such
as resource usage certification, static debugging of resource consumption, static
profiling, or abstraction-carrying code.

A Brief Description of Selected Michelson Contracts

Table 2. Overview of the selected Michelson contracts.

Contract Overview

reverse Reverses the input list and stores the result

addition Performs a simple Michelson addition

michelson arith Calculates the function: f(x, y) = x2 + 2 ∗ y + 1

bytes Slices the bytes storage according to the provided parameter

list inc Increments list of numbers in the storage by the provided
parameter

lambda Runs a lambda function passing the parameter as argument

lambda apply Specializes the provided lambda function and creates a
Michelson operation

inline Runs a lambda function several times passing different
arguments

cross product Performs the cross product of the lists passed as parameters

linear Loops over a number

assertion map Performs a series of operations on a Michelson map

quadratic Loops over the parameter and storage lists

queue Implements a queue in which calls can push or pop elements

king of tez Stores the identity of the highest bidder

set management Iterates the input list from left to right and removes from the
storage set those elements already in it and inserts those which
are not present yet

lock Implements a lock on a contract

max list Obtains the largest number in a list

zipper Implements a zipper data structure

auction Implements a distributed auction with a time limit

union Calculates the union of two sets

append Appends two input lists

subset States whether an input set is a subset of the other

Cost Analysis of Smart Contracts Via Parametric Resource Analysis 27

References

1. The Michelson Language Site. https://www.michelson-lang.com
2. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static

cost analysis. J. Autom. Reason. 46(2), 161–203 (2011)
3. Albert, E., Genaim, S., Masud, A.N.: More precise yet widely applicable cost anal-

ysis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 38–53.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4 5

4. Albert, E., Correas, J., Gordillo, P., Román-Dı́ez, G., Rubio, A.: GASOL: gas
analysis and optimization for ethereum smart contracts. In: Tools and Algorithms
for the Construction and Analysis of Systems, TACAS 2020. LNCS, vol. 12079, pp.
118–125. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-45237-
7 7

5. Albert, E., Gordillo, P., Rubio, A., Sergey, I.: Running on fumes - preventing out-
of-gas vulnerabilities in ethereum smart contracts using static resource analysis. In:
VECoS 2019. LNCS, vol. 11847, pp. 63–78. Springer, October 2019. DOI: https://
doi.org/10.1007/978-3-030-35092-5 5

6. Allombert, V., Bourgoin, M., Tesson, J.: Introduction to the tezos blockchain.
CoRR abs/1909.08458 (2019). http://arxiv.org/abs/1909.08458

7. Avanzini, M., Lago, U.D.: Automating sized-type inference for complexity analysis.
Proc. ACM Program. Lang. 1(ICFP), 43:1–43:29 (2017). https://doi.org/10.1145/
3110287

8. Blazy, S., Pichardie, D., Trieu, A.: Verifying constant-time implementations by
abstract interpretation. In: European Symposium on Research in Computer Secu-
rity - ESORICS 2017. Lecture Notes in Computer Science, vol. 10492, pp. 260–277.
Springer, September 2017. https://doi.org/10.1007/978-3-319-66402-6 16

9. Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M.V., Lopez-Garcia, P., Puebla-
(Eds.), G.: The Ciao System. Ref. Manual (v1.13). Tech. rep., School of Computer
Science, T.U. of Madrid (UPM) (2009). http://ciao-lang.org

10. Chen, T., Li, X., Luo, X., Zhang, X.: Under-optimized smart contracts devour your
money. In: IEEE 24th International Conference on Software Analysis, Evolution
and Reengineering, SANER 2017. pp. 442–446. IEEE Computer Society, February
2017 https://doi.org/10.1109/SANER.2017.7884650

11. Çiçek, E., Barthe, G., Gaboardi, M., Garg, D., Hoffmann, J.: Relational cost
analysis. In: Castagna, G., Gordon, A.D. (eds.) Principles of Programming Lan-
guages, POPL 2017, pp. 316–329. ACM (2017). http://dl.acm.org/citation.cfm?
id=3009858

12. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: ACM Sym-
posium on Principles of Programming Languages (POPL 1977), pp. 238–252. ACM
Press (1977)

13. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Semantics-based gen-
eration of verification conditions by program specialization. In: 17th International
Symposium on Principles and Practice of Declarative Programming, pp. 91–102.
ACM (July 2015). https://doi.org/10.1145/2790449.2790529

14. Debray, S.K., Lin, N.W.: Cost analysis of logic programs. ACM Trans. Program.
Lang. Syst. 15(5), 826–875 (1993)

15. Debray, S.K., Lin, N.W., Hermenegildo, M.V.: Task granularity analysis in logic
programs. In: Proceedings 1990 ACM Conference on Programming Language
Design and Implementation (PLDI), pp. 174–188. ACM Press (June 1990)

https://www.michelson-lang.com
https://doi.org/10.1007/978-3-642-18275-4_5
https://doi.org/10.1007/978-3-030-45237-7_7
https://doi.org/10.1007/978-3-030-45237-7_7
https://doi.org/10.1007/978-3-030-35092-5_5
https://doi.org/10.1007/978-3-030-35092-5_5
http://arxiv.org/abs/1909.08458
https://doi.org/10.1145/3110287
https://doi.org/10.1145/3110287
https://doi.org/10.1007/978-3-319-66402-6_16
http://ciao-lang.org
https://doi.org/10.1109/SANER.2017.7884650
http://dl.acm.org/citation.cfm?id=3009858
http://dl.acm.org/citation.cfm?id=3009858
https://doi.org/10.1145/2790449.2790529

28 V. Pérez et al.

16. Debray, S.K., Lopez-Garcia, P., Hermenegildo, M.V., Lin, N.W.: Lower bound cost
estimation for logic programs. In: 1997 International Logic Programming Sympo-
sium, pp. 291–305. MIT Press, Cambridge, MA (October 1997)

17. Futamura, Y.: Partial evaluation of computation process - an approach to a
compiler-compiler. Systems, Computers, Controls 2(5), 45–50 (1971)

18. Gallagher, J., Hermenegildo, M.V., Kafle, B., Klemen, M., Lopez-Garcia, P.,
Morales, J.: From big-step to small-step semantics and back with interpreter spe-
cialization (invited paper). In: International WS on Verification and Program
Transformation (VPT 2020). pp. 50–65. EPTCS, Open Publishing Association
(2020). http://eptcs.web.cse.unsw.edu.au/paper.cgi?VPTHCVS2020.4

19. Giesl, J., Ströder, T., Schneider-Kamp, P., Emmes, F., Fuhs, C.: Symbolic evalu-
ation graphs and term rewriting: a general methodology for analyzing logic pro-
grams. In: Proceedings of PPDP 2012, pp. 1–12. ACM (2012)

20. Gómez-Zamalloa, M., Albert, E., Puebla, G.: Decompilation of java bytecode to
prolog by partial evaluation. JIST 51, 1409–1427 (2009)

21. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: Vitek, J., Lin, H., Tip, F. (eds.) ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2012,
pp. 405–416. ACM (2012). https://doi.org/10.1145/2254064.2254112

22. Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., Smaragdakis, Y.: Mad-
Max: surviving out-of-gas conditions in ethereum smart contracts. PACMPL
2(OOPSLA), 116:1–116:27 (2018). https://doi.org/10.1145/3276486

23. Grobauer, B.: Cost recurrences for DML programs. In: Proceedings of ICFP 2001,
pp. 253–264. ACM, New York (2001). https://doi.org/10.1145/507635.507666,
http://doi.acm.org/10.1145/507635.507666

24. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: precise and efficient static
estimation of program computational complexity. In: The 36th Symposium on
Principles of Programming Languages (POPL 2009), pp. 127–139. ACM (2009)

25. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification
framework. In: International Conference on Computer Aided Verification, CAV
2015, pp. 343–361. No. 9206 in LNCS, Springer (July 2015)

26. Handley, M.A.T., Vazou, N., Hutton, G.: Liquidate your assets: reasoning about
resource usage in liquid haskell. Proc. ACM Program. Lang. 4(POPL), 24:1–24:27
(2020). https://doi.org/10.1145/3371092

27. Henriksen, K.S., Gallagher, J.P.: Abstract interpretation of pic programs through
logic programming. In: SCAM 2006. pp. 184–196. IEEE Computer Society (2006)

28. Hermenegildo, M.V., et al.: An overview of Ciao and its design philosophy. TPLP
12(1–2), 219–252 (2012). http://arxiv.org/abs/1102.5497

29. Hermenegildo, M.V., Puebla, G., Bueno, F., Lopez-Garcia, P.: Integrated pro-
gram debugging, verification, and optimization using abstract interpretation (and
the Ciao system preprocessor). Sci. Comput. Program. 58(1–2), 115–140 (2005).
https://doi.org/10.1016/j.scico.2005.02.006

30. Hermenegildo, M.V., Puebla, G., Marriott, K., Stuckey, P.: Incremental analysis
of constraint logic programs. ACM TOPLAS 22(2), 187–223 (2000)

31. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM TOPLAS 34(3), 14:1–14:62 (2012)

32. Hofmann, M., Moser, G.: Multivariate amortised resource analysis for term rewrite
systems. In: Altenkirch, T. (ed.) 13th International Conference on Typed Lambda
Calculi and Applications. LIPIcs, vol. 38, pp. 241–256. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (July 2015). https://doi.org/10.4230/LIPIcs.TLCA.2015.
241

http://eptcs.web.cse.unsw.edu.au/paper.cgi?VPTHCVS2020.4
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1145/3276486
https://doi.org/10.1145/507635.507666
http://doi.acm.org/10.1145/507635.507666
https://doi.org/10.1145/3371092
http://arxiv.org/abs/1102.5497
https://doi.org/10.1016/j.scico.2005.02.006
https://doi.org/10.4230/LIPIcs.TLCA.2015.241
https://doi.org/10.4230/LIPIcs.TLCA.2015.241

Cost Analysis of Smart Contracts Via Parametric Resource Analysis 29

33. Igarashi, A., Kobayashi, N.: Resource usage analysis. In: Symposium on Principles
of Programming Languages, pp. 331–342. ACM (2002). http://www.citeseer.ist.
psu.edu/igarashi02resource.html

34. Kahn, G.: Natural semantics. Lecture Notes in Computer Science, vol. 247, pp.
22–39. Springer, Cham, February 1987. https://doi.org/10.1007/BFb0039592

35. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: JayHorn: a framework for verifying
Java programs. In: Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verification -
28th International Conference, CAV 2016. LNCS, vol. 9779, pp. 352–358. Springer,
Cham, July 2016. https://doi.org/10.1007/978-3-319-41528-4 19

36. Kincaid, Z., Breck, J., Cyphert, J., Reps, T.W.: Closed forms for numerical loops.
Proc. ACM Program. Lang. 3(POPL), 55:1–55:29 (2019). https://doi.org/10.1145/
3290368

37. Klemen, M., Lopez-Garcia, P., Gallagher, J., Morales, J., Hermenegildo, M.V.: A
general framework for static cost analysis of parallel logic programs. In: Interna-
tional Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR’19). LNCS, vol. 12042, pp. 19–35. Springer, Heidelberg, April 2020. https://
doi.org/10.1007/978-3-030-45260-5 2

38. Klemen, M., Stulova, N., Lopez-Garcia, P., Morales, J.F., Hermenegildo, M.V.:
Static performance guarantees for programs with run-time checks. In: International
Symposium on Principles and Practice of Declarative Programming (PPDP 2018).
ACM, September 2018. https://doi.org/10.1145/3236950.3236970

39. Liqat, U., Banković, Z., Lopez-Garcia, P., Hermenegildo, M.V.: Inferring energy
bounds via static program analysis and evolutionary modeling of basic blocks. In:
Logic-Based Program Synthesis and Transformation - 27th International Sympo-
sium. LNCS, vol. 10855. Springer (2018)

40. Liqat, U., et al.: Inferring parametric energy consumption functions at differ-
ent software levels: ISA vs. LLVM IR. In: Proceedings of FOPARA. LNCS, vol.
9964, pp. 81–100. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-
46559-3 5

41. Liqat, U., et al.: Energy consumption analysis of programs based on XMOS ISA-
level models. In: Proceedings of LOPSTR 2013. LNCS, vol. 8901, pp. 72–90.
Springer, New York (2014). https://doi.org/10.1007/978-3-319-14125-1 5

42. Lopez-Garcia, P., Darmawan, L., Klemen, M., Liqat, U., Bueno, F., Hermenegildo,
M.V.: Interval-based Resource Usage Verification by Translation into Horn Clauses
and an Application to Energy Consumption. Theory and Practice of Logic Pro-
gramming, Special Issue on Computational Logic for Verification 18(2), 167–223
(March 2018), https://arxiv.org/abs/1803.04451

43. Lopez-Garcia, P., Klemen, M., Liqat, U., Hermenegildo, M.V.: A general framework
for static profiling of parametric resource usage. TPLP (ICLP 2016 Special Issue)
16(5–6), 849–865 (2016). https://doi.org/10.1017/S1471068416000442

44. Marescotti, M., Blicha, M., Hyvärinen, A.E.J., Asadi, S., Sharygina, N.: Computing
exact worst-case gas consumption for smart contracts. In: Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA 2018). LNCS, vol. 11247,
pp. 450–465. Springer, Cham, November 2018. https://doi.org/10.1007/978-3-030-
03427-6 33

45. Maroneze, A.O., Blazy, S., Pichardie, D., Puaut, I.: A formally verified WCET
estimation tool. In: Workshop on Worst-Case Execution Time Analysis - WCET
2014. OASICS, vol. 39, pp. 11–20. Schloss Dagstuhl (2014). https://doi.org/10.
4230/OASIcs.WCET.2014.11

http://www.citeseer.ist.psu.edu/igarashi02resource.html
http://www.citeseer.ist.psu.edu/igarashi02resource.html
https://doi.org/10.1007/BFb0039592
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1145/3290368
https://doi.org/10.1145/3290368
https://doi.org/10.1007/978-3-030-45260-5_2
https://doi.org/10.1007/978-3-030-45260-5_2
https://doi.org/10.1145/3236950.3236970
https://doi.org/10.1007/978-3-319-46559-3_5
https://doi.org/10.1007/978-3-319-46559-3_5
https://doi.org/10.1007/978-3-319-14125-1_5
https://arxiv.org/abs/1803.04451
https://doi.org/10.1017/S1471068416000442
https://doi.org/10.1007/978-3-030-03427-6_33
https://doi.org/10.1007/978-3-030-03427-6_33
https://doi.org/10.4230/OASIcs.WCET.2014.11
https://doi.org/10.4230/OASIcs.WCET.2014.11

30 V. Pérez et al.

46. Méndez-Lojo, M., Navas, J., Hermenegildo, M.: A flexible (C)LP-based approach
to the analysis of object-oriented programs. In: LOPSTR. LNCS, vol. 4915, pp.
154–168. Springer, Heidelberg, August 2007. https://doi.org/10.1007/978-3-540-
78769-3 11

47. Mera, E., Lopez-Garcia, P., Carro, M., Hermenegildo, M.V.: Towards execution
time estimation in abstract machine-based languages. In: PPDP 2008, pp. 174–
184. ACM Press, July 2008. https://doi.org/10.1145/1389449.1389471

48. Moser, G., Schneckenreither, M.: Automated amortised resource analysis for term
rewrite systems. Sci. Comput. Program. 185 (2020). https://doi.org/10.1016/j.
scico.2019.102306

49. Muthukumar, K., Hermenegildo, M.: Compile-time derivation of variable depen-
dency using abstract interpretation. J. Logic Program. 13(2/3), 315–347 (1992)

50. Navas, J., Méndez-Lojo, M., Hermenegildo, M.: Safe upper-bounds inference of
energy consumption for java bytecode applications. In: The Sixth NASA Langley
Formal Methods Workshop (LFM 2008). pp. 29–32, April 2008. Extended Abstract

51. Navas, J., Méndez-Lojo, M., Hermenegildo, M.V.: User-definable resource usage
bounds analysis for java bytecode. In: BYTECODE 2009. ENTCS, vol. 253, pp.
6–86. Elsevier, March 2009. http://www.cliplab.org/papers/resources-bytecode09.
pdf

52. Navas, J., Mera, E., Lopez-Garcia, P., Hermenegildo, M.: User-definable resource
bounds analysis for logic programs. In: Proceedings of ICLP 2007. LNCS, vol.
4670, pp. 348–363. Springer, New York (2007). https://doi.org/10.1007/978-3-540-
74610-2 24

53. Nielson, F., Nielson, H.R., Seidl, H.: Automatic complexity analysis. In: Le
Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp. 243–261. Springer, Heidel-
berg (2002). https://doi.org/10.1007/3-540-45927-8 18

54. Peralta, J., Gallagher, J., Sağlam, H.: Analysis of imperative programs through
analysis of constraint logic programs. In: Levi, G. (ed.) Static Analysis. 5th Inter-
national Symposium, SAS 1998, Pisa. LNCS, vol. 1503, pp. 246–261 (1998)

55. Plotkin, G.: A structural approach to operational semantics. Technical report
DAIMI FN-19, Computer Science Department, Aarhus University, Denmark (1981)

56. Puebla, G., Bueno, F., Hermenegildo, M.V.: An assertion language for constraint
logic programs. In: Analysis and Visualization Tools for Constraint Programming,
pp. 23–61. No. 1870 in LNCS, Springer, New York (2000)

57. Qu, W., Gaboardi, M., Garg, D.: Relational cost analysis for functional-imperative
programs. Proc. ACM Program. Lang. 3(ICFP), 92:1–92:29 (2019). https://doi.
org/10.1145/3341696

58. Serrano, A., Lopez-Garcia, P., Bueno, F., Hermenegildo, M.V.: Sized type analysis
for logic programs (technical communication). In: Swift, T., Lamma, E. (eds.) The-
ory and Practice of Logic Programming, 29th International Conference on Logic
Programming (ICLP 2013) Special Issue, On-line Supplement, vol. 13, pp. 1–14.
Cambridge University Press, August 2013

59. Serrano, A., Lopez-Garcia, P., Hermenegildo, M.V.: Resource usage analysis of logic
programs via abstract interpretation using sized types. TPLP, ICLP 2014 Special
Issue 14(4–5), 739–754 (2014). https://doi.org/10.1017/S147106841400057X

60. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (1997). https://doi.org/10.5210/fm.v2i9.548

61. Vasconcelos, P.B., Hammond, K.: Inferring cost equations for recursive, polymor-
phic and higher-order functional programs. In: Trinder, P., Michaelson, G.J., Peña,
R. (eds.) IFL 2003. LNCS, vol. 3145, pp. 86–101. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27861-0 6

https://doi.org/10.1007/978-3-540-78769-3_11
https://doi.org/10.1007/978-3-540-78769-3_11
https://doi.org/10.1145/1389449.1389471
https://doi.org/10.1016/j.scico.2019.102306
https://doi.org/10.1016/j.scico.2019.102306
http://www.cliplab.org/papers/resources-bytecode09.pdf
http://www.cliplab.org/papers/resources-bytecode09.pdf
https://doi.org/10.1007/978-3-540-74610-2_24
https://doi.org/10.1007/978-3-540-74610-2_24
https://doi.org/10.1007/3-540-45927-8_18
https://doi.org/10.1145/3341696
https://doi.org/10.1145/3341696
https://doi.org/10.1017/S147106841400057X
https://doi.org/10.5210/fm.v2i9.548
https://doi.org/10.1007/978-3-540-27861-0_6

Cost Analysis of Smart Contracts Via Parametric Resource Analysis 31

62. Wegbreit, B.: Mechanical program analysis. Commun. ACM 18(9), 528–539 (1975)
63. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger (2016).

https://gavwood.com/paper.pdf

https://gavwood.com/paper.pdf

Regular Papers

Memory-Efficient Fixpoint Computation

Sung Kook Kim1(B) , Arnaud J. Venet2, and Aditya V. Thakur1

1 University of California, Davis, CA 95616, USA
{sklkim,avthakur}@ucdavis.edu

2 Facebook, Inc., Menlo Park, CA 94025, USA
ajv@fb.com

Abstract. Practical adoption of static analysis often requires trading
precision for performance. This paper focuses on improving the memory
efficiency of abstract interpretation without sacrificing precision or time
efficiency. Computationally, abstract interpretation reduces the problem
of inferring program invariants to computing a fixpoint of a set of equa-
tions. This paper presents a method to minimize the memory footprint
in Bourdoncle’s iteration strategy, a widely-used technique for fixpoint
computation. Our technique is agnostic to the abstract domain used. We
prove that our technique is optimal (i.e., it results in minimum memory
footprint) for Bourdoncle’s iteration strategy while computing the same
result. We evaluate the efficacy of our technique by implementing it in a
tool called Mikos, which extends the state-of-the-art abstract interpreter
IKOS. When verifying user-provided assertions, Mikos shows a decrease
in peak-memory usage to 4.07% (24.57×) on average compared to IKOS.
When performing interprocedural buffer-overflow analysis, Mikos shows
a decrease in peak-memory usage to 43.7% (2.29×) on average compared
to IKOS.

1 Introduction

Abstract interpretation [14] is a general framework for expressing static analysis
of programs. Program invariants inferred by an abstract interpreter are used in
client applications such as program verifiers, program optimizers, and bug find-
ers. To extract the invariants, an abstract interpreter computes a fixpoint of an
equation system approximating the program semantics. The efficiency and preci-
sion of the abstract interpreter depends on the iteration strategy, which specifies
the order in which the equations are applied during fixpoint computation.

The recursive iteration strategy developed by Bourdoncle [10] is widely used
for fixpoint computation in academic and industrial abstract interpreters such
as NASA IKOS [11], Crab [32], Facebook SPARTA [16], Kestrel Technology
CodeHawk [48], and Facebook Infer [12]. Extensions to Bourdoncle’s approach
that improve precision [1] and time efficiency [26] have also been proposed.

This paper focuses on improving the memory efficiency of abstract interpre-
tation. This is an important problem in practice because large memory require-
ments can prevent clients such as compilers and developer tools from using

c© Springer Nature Switzerland AG 2020
D. Pichardie and M. Sighireanu (Eds.): SAS 2020, LNCS 12389, pp. 35–64, 2020.
https://doi.org/10.1007/978-3-030-65474-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65474-0_3&domain=pdf
http://orcid.org/0000-0001-8281-3379
http://orcid.org/0000-0003-3166-1517
https://doi.org/10.1007/978-3-030-65474-0_3

36 S. K. Kim et al.

sophisticated analyses. This has motivated approaches for efficient implemen-
tations of abstract domains [4,25,44], including techniques that trade precision
for efficiency [5,17,24].

This paper presents a technique for memory-efficient fixpoint computation.
Our technique minimizes the memory footprint in Bourdoncle’s recursive iter-
ation strategy. Our approach is agnostic to the abstract domain and does not
sacrifice time efficiency. We prove that our technique exhibits optimal peak-
memory usage for the recursive iteration strategy while computing the same
fixpoint (Sect. 3). Specifically, our approach does not change the iteration order
but provides a mechanism for early deallocation of abstract values. Thus, there
is no loss of precision when improving memory performance. Furthermore, such
“backward compatibility” ensures that existing implementations of Bourdoncle’s
approach can be replaced without impacting clients of the abstract interpreter,
an important requirement in practice.

1 2 3 4 5 6

8 7 9

Fig. 1. Control-flow graph G1

Suppose we are tasked with proving assertions at program points 4 and 9 of
the control-flow graph G1(V,) in Fig. 1. Current approaches (Sect. 2.1) allocate
abstract values for each program point during fixpoint computation, check the
assertions at 4 and 9 after fixpoint computation, and then deallocate all abstract
values. In contrast, our approach deallocates abstract values and checks the
assertions during fixpoint computation while guaranteeing that the results of
the checks remain the same and that the peak-memory usage is optimal.

We prove that our approach deallocates abstract values as soon as they are no
longer needed during fixpoint computation. Providing this theoretical guarantee
is challenging for arbitrary irreducible graphs such as G1. For example, assuming
that node 8 is analyzed after 3, one might think that the fixpoint iterator can
deallocate the abstract value at 2 once it analyzes 8. However, 8 is part of the
strongly-connected component {7, 8}, and the fixpoint iterator might need to
iterate over node 8 multiple times. Thus, deallocating the abstract value at 2
when node 8 is first analyzed will lead to incorrect results. In this case, the
earliest that the abstract value at 2 can be deallocated is after the stabilization
of component {7, 8}.

Furthermore, we prove that our approach performs the assertion checks as
early as possible during fixpoint computation. Once the assertions are checked,
the associated abstract values are deallocated. For example, consider the asser-
tion check at node 4. Notice that 4 is part of the strongly-connected components
{4, 5} and {3, 4, 5, 6}. Checking the assertion the first time node 4 is analyzed

Memory-Efficient Fixpoint Computation 37

could lead to an incorrect result because the abstract value at 4 has not con-
verged. The earliest that the check at node 4 can be executed is after the conver-
gence of the component {3, 4, 5, 6}. Apart from being able to deallocate abstract
values earlier, early assertion checks provide partial results on timeout.

The key theoretical result (Theorem 1) is that our iteration strategy is
memory-optimal (i.e., it results in minimum memory footprint) while computing
the same result as Bourdoncle’s approach. Furthermore, we present an almost-
linear time algorithm to compute this optimal iteration strategy (Sect. 4).

We have implemented this memory-optimal fixpoint computation in a tool
called Mikos (Sect. 5), which extends the state-of-the-art abstract interpreter
for C/C++, IKOS [11]. We compared the memory efficiency of Mikos and IKOS
on the following tasks:

T1 Verifying user-provided assertions. Task T1 represents the program-
verification client of a fixpoint computation. We performed interprocedu-
ral analysis of 784 SV-COMP 2019 benchmarks [6] using reduced product
of Difference Bound Matrix with variable packing [17] and congruence [20]
domains.

T2 Proving absence of buffer overflows. Task T2 represents the bug-finding and
compiler-optimization client of fixpoint computation. In the context of bug
finding, a potential buffer overflow can be reported to the user as a potential
bug. In the context of compiler optimization, code to check buffer-access
safety can be elided if the buffer access is verified to be safe. We performed
interprocedural buffer overflow analysis of 426 open-source programs using
the interval abstract domain.

On Task T1, Mikos shows a decrease in peak-memory usage to 4.07% (24.57×)
on average compared to IKOS. For instance, peak-memory required to analyze
the SV-COMP 2019 benchmark ldv-3.16-rc1/205_9a-net-rtl8187 decreased
from 46 GB to 56 MB. Also, while ldv-3.14/usb-mxl111sf spaced out in
IKOS with 64 GB memory limit, peak-memory usage was 21 GB for Mikos.
On Task T2, Mikos shows a decrease in peak-memory usage to 43.7% (2.29×)
on average compared to IKOS. For instance, peak-memory required to analyze
a benchmark ssh-keygen decreased from 30 GB to 1 GB.

The contributions of the paper are as follows:

– A memory-optimal technique for Bourdoncle’s recursive iteration strategy
that does not sacrifice precision or time efficiency (Sect. 3).

– An almost-linear time algorithm to construct our memory-efficient iteration
strategy (Sect. 4).

– Mikos, an interprocedural implementation of our approach (Sect. 5).
– An empirical evaluation of the efficacy of Mikos using a large set of C bench-

marks (Sect. 6).

Sect. 2 presents necessary background on fixpoint computation, including Bour-
doncle’s approach; Sect. 7 presents related work; Sect. 8 concludes.

38 S. K. Kim et al.

2 Fixpoint Computation Preliminaries

This section presents background on fixpoint computation that will allow us to
clearly state the problem addressed in this paper (Sect. 2.3). This section is
not meant to capture all possible approaches to implementing abstract interpre-
tation. However, it does capture the relevant high-level structure of abstract-
interpretation implementations such as IKOS [11].

Consider an equation system Φ whose dependency graph is G(V,). The
graph G typically reflects the control-flow graph of the program, though this is
not always true. The aim is to find the fixpoint of the equation system Φ:

Pre[v] =
⊔

{Post[p] | p v} v ∈ V (1)

Post[v] = τv(Pre[v]) v ∈ V

The maps Pre : V → A and Post : V → A maintain the abstract values at the
beginning and end of each program point, where A is an abstract domain. The
abstract transformer τv : A → A overapproximates the semantics of program
point v ∈ V . After fixpoint computation, Pre[v] is an invariant for v ∈ V .

Client applications of the abstract interpreter typically query these fixpoint
values to perform assertion checks, program optimizations, or report bugs. Let
VC ⊆ V be the set of program points where such checks are performed, and let
ϕv : A → bool represent the corresponding functions that performs the check for
each v ∈ VC . To simplify presentation, we assume that the check function merely
returns true or false. Thus, after fixpoint computation, the client application
computes ϕv(Pre[v]) for each v ∈ VC .

The exact least solution of the system Eq. 1 can be computed using Kleene
iteration provided A is Noetherian. However, most interesting abstract domains
require the use of widening (▽) to ensure termination followed by narrowing to
improve the post solution. In this paper, we use “fixpoint” to refer to such an
approximation of the least fixpoint. Furthermore, for simplicity of presentation,
we restrict our description to a simple widening strategy. However, our imple-
mentation (Sect. 5) uses more sophisticated widening and narrowing strategies
implemented in state-of-the-art abstract interpreters [1,11].

An iteration strategy specifies the order in which the individual equations
are applied, where widening is used, and how convergence of the equation sys-
tem is checked. For clarity of exposition, we introduce a Fixpoint Machine (FM)
consisting of an imperative set of instructions. An FM program represents a par-
ticular iteration strategy used for fixpoint computation. The syntax of Fixpoint
Machine programs is defined by the following grammar:

Prog :: = exec v | repeat v [Prog] | Prog # Prog , v ∈ V (2)

Informally, the instruction exec v applies τv for v ∈ V ; the instruction
repeat v [P1] repeatedly executes the FM program P1 until convergence and
performs widening at v; and the instruction P1 #P2 executes FM programs P1 and
P2 in sequence.

Memory-Efficient Fixpoint Computation 39

The syntax (Eq. 2) and semantics (Fig. 2) of the Fixpoint Machine are suffi-
cient to express Bourdoncle’s recursive iteration strategy (Sect. 2.1), a widely-
used approach for fixpoint computation [10]. We also extend the notion of iter-
ation strategy to perform memory management of the abstract values as well as
perform checks during fixpoint computation (Sect. 2.2).

2.1 Bourdoncle’s Recursive Iteration Strategy

In this section, we review Bourdoncle’s recursive iteration strategy [10] and show
how to generate the corresponding FM program.

Bourdoncle’s iteration strategy relies on the notion of weak topological order-
ing (WTO) of a directed graph G(V,). A WTO is defined using the notion of
a hierarchical total ordering (HTO) of a set.

Definition 1. A hierarchical total ordering H of a set S is a well parenthesized
permutation of S without two consecutive “(”. �

An HTO H is a string over the alphabet S augmented with left and right paren-
thesis. Alternatively, we can denote an HTO H by the tuple (S, �, ω), where �
is the total order induced by H over the elements of S and ω : V → 2V . The
elements between two matching parentheses are called a component, and the first
element of a component is called the head. Given l ∈ S, ω(l) is the set of heads
of the components containing l. We use C : V → 2V to denote the mapping from
a head to its component.

Example 1. Let V = {1, 2, 3, 4, 5, 6, 7, 8, 9}. An example HTO H1(V, �, ω) is
1 2 (3 (4 5) 6) (7 8) 9. ω(3) = {3}, ω(5) = {3, 4}, and ω(1) = ∅. It has compo-
nents C(4) = {4, 5}, C(7) = {7, 8} and C(3) = {3, 6} ∪ C(4). �

A weak topological ordering (WTO) W of a directed graph G(V,) is an
HTO H(V, �, ω) satisfying certain constraints listed below:

Definition 2. A weak topological ordering W(V, �, ω) of a directed graph
G(V,) is an HTO H(V, �, ω) such that for every edge u → v, either (i) u ≺ v,
or (ii) v � u and v ∈ ω(u). �

Example 2. HTO H1 in Example 1 is a WTO W1 of the graph G1 (Fig. 1). �

Given a directed graph G(V,) that represents the dependency graph of the
equation system, Bourdoncle’s approach uses a WTO W(V, �, ω) of G to derive
the following recursive iteration strategy:

– The total order � determines the order in which the equations are applied.
The equation after a component is applied only after the component stabilizes.

– The stabilization of a component C(h) is determined by checking the stabi-
lization of the head h.

– Widening is performed at each of the heads.

40 S. K. Kim et al.

We now show how the WTO can be represented using the syntax of our Fixpoint
Machine (FM) defined in Eq. 2. The following function genProg: WTO → Prog

maps a given WTO W to an FM program:

genProg(W) :=











repeat v [genProg(W ′)] if W = (v W ′)

genProg(W1) # genProg(W2) if W = W1 W2

exec v if W = v

(3)

Each node v ∈ V is mapped to a single FM instruction by genProg; we use Inst[v]
to refer to this FM instruction corresponding to v. Note that if v ∈ V is a head,
then Inst[v] is an instruction of the form repeat v [. . .], else Inst[v] is exec v.

Example 3. The WTO W1 of graph G1 (Fig. 1) is 1 2 (3 (4 5) 6) (7 8) 9.
The corresponding FM program is P1 = genProg(W1) = exec 1 # exec 2 #
repeat 3 [repeat 4 [exec 5] # exec 6] # repeat 7 [exec 8] # exec 9. The
colors used for brackets and parentheses are to more clearly indicate the corre-
spondence between the WTO and the FM program. Note that Inst[1] = exec 1,
and Inst[4] = repeat 4 [exec 5]. �

Ignoring the text in gray, the semantics of the FM instructions shown in Fig. 2
capture Bourdoncle’s recursive iteration strategy. The semantics are parameter-
ized by the graph G(V,) and a WTO W(V, �, ω).

2.2 Memory Management During Fixpoint Computation

In this paper, we extend the notion of iteration strategy to indicate when abstract
values are deallocated and when checks are executed. The gray text in Fig. 2
shows the semantics of the FM instructions that handle these issues. The right-
hand side of ⇒ is executed if the left-hand side evaluates to true. Recall that
the set VC ⊆ V is the set of program points that have assertion checks. The map
Ck : VC → bool records the result of executing the check ϕu(Pre[u]) for each
u ∈ VC . Thus, the output of the FM program is the map Ck. In practice, the
functions ϕu are expensive to compute. Furthermore, they often write the result
to a database or report the output to a user. Consequently, we assume that only
the first execution of ϕu is recorded in Ck.

The memory configuration M is a tuple (Dpost,Achk,Dpost
ℓ,Dpre

ℓ)
where

– The map Dpost : V → V controls the deallocation of values in Post that
have no further use. If v = Dpost[u], Post[u] is deallocated after the execu-
tion of Inst[v].

– The map Achk : VC → V controls when the check function ϕu corresponding
to u ∈ VC is executed, after which the corresponding Pre value is deallocated.
If Achk[u] = v, assertions in u are checked and Pre[u] is subsequently deal-
located after the execution of Inst[v].

Memory-Efficient Fixpoint Computation 41

Fig. 2. The semantics of the Fixpoint Machine (FM) instructions of Eq. 2.

– The map Dpost
ℓ : V → 2V control deallocation of Post values that are

recomputed and overwritten in the loop of a repeat instruction before its
next use. If v ∈ Dpost

ℓ[u], Post[u] is deallocated in the loop of Inst[v].
– The map Dpre

ℓ : VC → 2V control deallocation of Pre values that recom-
puted and overwritten in the loop of a repeat instruction before its next use.
If v ∈ Dpre

ℓ[u], Pre[u] is deallocated in the loop of Inst[v].

To simplify presentation, the semantics in Fig. 2 does not make explicit the
allocations of abstract values: if a Post or Pre value that has been deallocated
is accessed, then it is allocated and initialized to ⊥.

2.3 Problem Statement

Two memory configurations are equivalent if they result in the same values for
each check in the program:

42 S. K. Kim et al.

Definition 3. Given an FM program P , memory configuration M1 is equivalent
to M2, denoted by JP KM1

= JP KM2
, iff for all u ∈ VC , we have Ck1[u] =

Ck2[u], where Ck1 and Ck2 are the check maps corresponding to execution of
P using M1 and M2, respectively. �

The default memory configuration Mdflt performs checks and deallocations
at the end of the FM program after fixpoint has been computed.

Definition 4. Given an FM program P , the default memory configuration Mdflt

(Dpostdflt,Achkdflt,Dpost
ℓ
dflt,Dpre

ℓ
dflt) is Dpostdflt[v] = z for all v ∈ V ,

Achkdflt[c] = z for all c ∈ VC , and Dpost
ℓ
dflt = Dpre

ℓ
dflt = ∅, where z is the

last instruction in P . �

Example 4. Consider the FM program P1 from Example 3. Let VC = {4, 9}.
Dpostdflt[v] = 9 for all v ∈ V . That is, all Post values are deallocated at the
end of the fixpoint computation. Also, Achkdflt[4] = Achkdflt[9] = 9, meaning
that assertion checks also happen at the end. Dpost

ℓ
dflt = Dpre

ℓ
dflt = ∅, so

the FM program does not clear abstract values whose values will be recomputed
and overwritten in a loop of repeat instruction. �

Given an FM program P , a memory configuration M is valid for P iff it is
equivalent to the default configuration; i.e., JP KM = JP KMdflt

.
Furthermore, a valid memory configuration M is optimal for a given FM

program iff memory footprint of JP KM is smaller than or equal to that of JP KM′

for all valid memory configuration M′. The problem addressed in this paper can
be stated as:

Given an FM program P , find an optimal memory configuration M.

An optimal configuration should deallocate abstract values during fixpoint
computation as soon they are no longer needed. The challenge is ensuring that
the memory configuration remains valid even without knowing the number of
loop iterations for repeat instructions. Sect. 3 gives the optimal memory con-
figuration for the FM program P1 from Example 3.

3 Declarative Specification of Optimal Memory

Configuration Mopt

This section provides a declarative specification of an optimal memory configu-
ration Mopt(Dpostopt,Achkopt,Dpost

ℓ
opt,Dpre

ℓ
opt). The proofs of the the-

orems in this section can be found in Appendix A. Sect. 4 presents an efficient
algorithm for computing Mopt.

Definition 5. Given a WTO W(V, �, ω) of a graph G(V,), the nesting rela-
tion N is a tuple (V, �N) where x �N y iff x = y or y ∈ ω(x) for x, y ∈ V . �

Memory-Efficient Fixpoint Computation 43

Let ⌊⌊v⌉�N

def

= {w ∈ V | v �N w}; that is, ⌊⌊v⌉�N
equals the set containing v

and the heads of components in the WTO that contain v. The nesting relation
N(V, �N) is a forest ; i.e. a partial order such that for all v ∈ V , (⌊⌊v⌉�N

, �N) is a
chain (Theorem 4, Appendix A.1).

Example 5. For the WTO W1 of G1 in Example 2, N1(V, �N) is:
1 2 3 7 9

4 6

5

8 .

Note that ⌊⌊5⌉�N
= {5, 4, 3}, forming a chain 5 �N 4 �N 3. �

3.1 Declarative Specification of Dpostopt

Dpostopt[u] = v implies that v is the earliest instruction at which Post[u] can
be deallocated while ensuring that there are no subsequents reads of Post[u] dur-
ing fixpoint computation. We cannot conclude Dpostopt[u] = v from a depen-
dency u v as illustrated in the following example.

Example 6. Consider the FM program P1 from Example 3, whose graph G1(V,)
is in Fig. 1. Although 2 8, memory configuration with Dpost[2] = 8 is not
valid: Post[2] is read by Inst[8], which is executed repeatedly as part of Inst[7];
if Dpost[2] = 8, Post[2] is deallocated the first time Inst[8] is executed, and
subsequent executions of Inst[8] will read ⊥ as the value of Post[2]. �

In general, for a dependency u v, we must find the head of maximal com-
ponent that contains v but not u as the candidate for Dpostopt[u]. By choosing
the head of maximal component, we remove the possibility of having a larger
component whose head’s repeat instruction can execute Inst[v] after deallo-
cating Post[u]. If there is no component that contains v but not u, we simply
use v as the candidate. The following Lift operator gives us the candidate of
Dpostopt[u] for u v:

Lift(u, v)
def

= max�N
((⌊⌊v⌉�N

\ ⌊⌊u⌉�N
) ∪ {v}) (4)

⌊⌊v⌉�N
gives us v and the heads of components that contain v. Subtracting ⌊⌊u⌉�N

removes the heads of components that also contain u. We put back v to account
for the case when there is no component containing v but not u and ⌊⌊v⌉�N

\⌊⌊u⌉�N

is empty. Because N(V, �N) is a forest, ⌊⌊v⌉�N
and ⌊⌊u⌉�N

are chains, and hence,
⌊⌊v⌉�N

\ ⌊⌊u⌉�N
is also a chain. Therefore, maximum is well-defined.

Example 7. Consider the nesting relation N1(V, �N) from Example 5.
Lift(2, 8) = max�N

(({8, 7} \ {2}) ∪ {8}) = 7. We see that 7 is the head of the
maximal component containing 8 but not 2. Also, Lift(5, 4) = max�N

(({4, 3} \
{5, 4, 3}) ∪ {4}) = 4. There is no component that contains 4 but not 5. �

For each instruction u, we now need to find the last instruction from among
the candidates computed using Lift. Notice that deallocations of Post values
are at a postamble of repeat instructions in Fig. 2. Therefore, we cannot use the
total order � of a WTO to find the last instruction: � is the order in which the
instruction begin executing, or the order in which preambles are executed.

44 S. K. Kim et al.

Example 8. Let Dpostto[u]
def

= max�{Lift(u, v) | u v}, u ∈ V , an incor-
rect variant of Dpostopt that uses the total order �. Consider the FM program
P1 from Example 3, whose graph G1(V,) is in Fig. 1 and nesting relation
N1(V, �N) is in Example 5. Post[5] has dependencies 5 4 and 5 3.
Lift(5, 4) = 4, Lift(5, 3) = 3. Now, Dpostto[5] = 4 because 3 � 4. How-
ever, a memory configuration with Dpost[5] = 4 is not valid: Inst[4] is nested
in Inst[3]. Due to the deletion of Post[5] in Inst[4], Inst[3] will read ⊥ as the
value of Post[5]. �

To find the order in which the instructions finish executing, or the order in
which postambles are executed, we define the relation (V, ≤), using the total
order (V, �) and the nesting relation (V, �N):

x ≤ y
def

= x �N y ∨ (y 6�N x ∧ x � y) (5)

In the definition of ≤, the nesting relation �N takes precedence over �. (V, ≤)
is a total order (Theorem 5, Appendix A.1). Intuitively, the total order ≤ moves
the heads in the WTO to their corresponding closing parentheses ‘)’.

Example 9. For G1 (Fig. 1) and its WTO W1, 1 2 (3 (4 5) 6) (7 8) 9, we have
1 ≤ 2 ≤ 5 ≤ 4 ≤ 6 ≤ 3 ≤ 8 ≤ 7 ≤ 9. Note that 3 � 6 while 6 ≤ 3. Postamble of
repeat 3 [. . .] is executed after Inst[6], while preamble of repeat 3 [. . .] is
executed before Inst[6]. �

We can now define Dpostopt. Given a nesting relation N(V, �N) for the graph
G(V,), Dpostopt is defined as:

Dpostopt[u]
def

= max≤{Lift(u, v) | u v}, u ∈ V (6)

Example 10. Consider the FM program P1 from Example 3, whose graph
G1(V,) is in Fig. 1 and nesting relation N1(V, �N) is in Example 5. An optimal
memory configuration Mopt defined by Eq. 6 is:

Dpostopt[1] = 2, Dpostopt[2] = Dpostopt[3] = Dpostopt[8] = 7, Dpostopt[4] = 6,

Dpostopt[5] = Dpostopt[6] = 3, Dpostopt[7] = Dpostopt[9] = 9.

Successors of u are first lifted to compute Dpostopt[u]. For example, to
compute Dpostopt[2], 2’s successors, 3 and 8, are lifted to Lift(2, 3) = 3 and
Lift(2, 8) = 7. To compute Dpostopt[5], 5’s successors, 3 and 4, are lifted to
Lift(5, 3) = 3 and Lift(5, 4) = 4. Then, the maximum (as per the total order ≤)
of the lifted successors is chosen as Dpostopt[u]. Because 3 ≤ 7, Dpostopt[2] = 7.
Thus, Post[2] is deleted in Inst[7]. Also, because 4 ≤ 3, Dpostopt[5] = 3, and
Post[5] is deleted in Inst[3]. �

Memory-Efficient Fixpoint Computation 45

3.2 Declarative Specification of Achkopt

Achkopt[u] = v implies that v is the earliest instruction at which the assertion
check at u ∈ VC can be executed so that the invariant passed to the assertion
check function ϕu is the same as when using Mdflt. Thus, guaranteeing the same
check result Ck.

Because an instruction can be executed multiple times in a loop, we cannot
simply execute the assertion checks right after the instruction, as illustrated by
the following example.

Example 11. Consider the FM program P1 from Example 3. Let VC = {4, 9}.
A memory configuration with Achk[4] = 4 is not valid: Inst[4] is executed
repeatedly as part of Inst[3], and the first value of Pre[4] may not be the final
invariant. Consequently, executing ϕ4(Pre[4]) in Inst[4] may not give the same
result as executing it in Inst[9] (Achkdflt[4] = 9). �

In general, because we cannot know the number of iterations of the loop in a
repeat instruction, we must wait for the convergence of the maximal component
that contains the assertion check. After the maximal component converges, the
FM program never visits the component again, making Pre values of the elements
inside the component final. Only if the element is not in any component can its
assertion check be executed right after its instruction.

Given a nesting relation N(V, �N) for the graph G(V,), Achkopt is defined
as:

Achkopt[u]
def

= max�N
⌊⌊u⌉�N

, u ∈ VC (7)

Because N(V, �N) is a forest, (⌊⌊u⌉�N
, �N) is a chain. Hence, max�N

is well-
defined.

Example 12. Consider the FM program P1 from Example 3, whose graph
G1(V,) is in Fig. 1 and nesting relation N1(V, �N) is in Example 5. Sup-
pose that VC = {4, 9}. Achkopt[4] = max�N

{4, 3} = 3 and Achkopt[9] =
max�N

{9} = 9. �

3.3 Declarative Specification of Dpost
ℓ
opt

v ∈ Dpost
ℓ[u] implies that Post[u] can be deallocated at v because it is recom-

puted and overwritten in the loop of a repeat instruction before a subsequent
use of Post[u].

Dpost
ℓ
opt[u] must be a subset of ⌊⌊u⌉�N

: only the instructions of the heads
of components that contain v recompute Post[u]. We can further rule out
the instruction of the heads of components that contain Dpostopt[u], because

Inst[Dpostopt[u]] deletes Post[u]. We add back Dpostopt[u] to Dpost
ℓ
opt

when u is contained in Dpostopt[u], because deallocation by Dpostopt happens

after the deallocation by Dpost
ℓ
opt.

Given a nesting relation N(V, �N) for the graph G(V,), Dpost
ℓ
opt is

defined as:

Dpost
ℓ
opt[u]

def

= (⌊⌊u⌉�N
\ ⌊⌊d⌉�N

) ∪ (u �N d ? {d} : ∅) , u ∈ V (8)

46 S. K. Kim et al.

where d = Dpostopt[u] as defined in Eq. 6, and (b ? x : y) is the ternary condi-
tional choice operator.

Example 13. Consider the FM program P1 from Example 3, whose graph
G1(V,) is in Fig. 1, nesting relation N1(V, �N) is in Example 5, and Dpostopt

is in Example 10.

Dpost
ℓ
opt[1] = {1}, Dpost

ℓ
opt[2] = {2}, Dpost

ℓ
opt[3] = {3},

Dpost
ℓ
opt[4] = {4}, Dpost

ℓ
opt[5] = {3, 4, 5}, Dpost

ℓ
opt[6] = {3, 6},

Dpost
ℓ
opt[7] = {7}, Dpost

ℓ
opt[8] = {7, 8}, Dpost

ℓ
opt[9] = {9}.

For 7, Dpostopt[7] = 9. Because 7 6�N 9, Dpost
ℓ
opt[7] = ⌊⌊7⌉�N

\ ⌊⌊9⌉�N
=

{7}. Therefore, Post[7] is deleted in each iteration of the loop of Inst[7]. While
Inst[9] reads Post[7] in the future, the particular values of Post[7] that are
deleted by Dpost

ℓ
opt[7] are not used in Inst[9]. For 5, Dpostopt[5] = 3. Because

5 �N 3, Dpost
ℓ
opt[5] = ⌊⌊5⌉�N

\ ⌊⌊3⌉�N
∪ {3} = {5, 4, 3}. �

3.4 Declarative Specification of Dpre
ℓ
opt

v ∈ Dpre
ℓ[u] implies that Pre[u] can be deallocated at v because it is recom-

puted and overwritten in the loop of a repeat instruction before a subsequent
use of Pre[u].

Dpre
ℓ
opt[u] must be a subset of ⌊⌊u⌉�N

: only the instructions of the heads of
components that contain v recompute Pre[u]. If Inst[u] is a repeat instruction,
Pre[u] is required to perform widening. Therefore, u must not be contained in
Dpre

ℓ
opt[u].

Example 14. Consider the FM program P1 from Example 3. Let VC = {4, 9}.
A memory configuration with Dpre

ℓ[4] = {3, 4} is not valid, because Inst[4]
would read ⊥ as the value of Post[4] when performing widening. �

Given a nesting relation N(V, �N) for the graph G(V,), Dpre
ℓ
opt is defined

as:
Dpre

ℓ
opt[u]

def

= ⌊⌊u⌉�N
\ {u} , u ∈ VC (9)

Example 15. Consider the FM program P1 from Example 3, whose graph
G1(V,) is in Fig. 1 and nesting relation N1(V, �N) is in Example 5. Let
VC = {4, 9}. Dpre

ℓ
opt[4] = {4, 3} \ {4} = {3} and Dpre

ℓ
opt[9] = {9} \ {9} = ∅.

Therefore, Pre[4] is deleted in each loop iteration of Inst[3]. �

The following theorem is proved in Appendix A.2:

Theorem 1. The memory configuration Mopt(Dpostopt, Achkopt,

Dpost
ℓ
opt, Dpre

ℓ
opt) is optimal.

Memory-Efficient Fixpoint Computation 47

Algorithm 1: GenerateFMProgram(G)

Input: Directed graph G(V,)

Output: FM program pgm, Mopt(Dpostopt, Achkopt, Dpost
ℓ
opt, Dpre

ℓ
opt)

1 D := DepthFirstForest(G)
2 B := back edges in D
3 CF := cross & forward edges in D

4
′ := \ B

5 for v ∈ V do rep(v) := v; R[v] := ∅
6 P := ∅
7 removeAllCrossFwdEdges()
8 for h ∈ V in descending DFND do

9 restoreCrossFwdEdges(h)
10 generateFMInstruction(h)

11 pgm := connectFMInstructions()
12 return pgm, Mopt

13 def removeAllCrossFwdEdges():
14 for (u, v) ∈ CF do

15
′ := ′ \ {(u, v)}

⊲ Lowest common ancestor.
16 R[lcaD(u, v)] := R[lcaD(u, v)] ∪ {(u, v)}

17 def restoreCrossFwdEdges(h):
18

′ := ′ ∪ {(u, rep(v)) | (u, v) ∈ R[h]}

19 def findNestedSCCs(h):
20 Bh := {rep(p) | (p, h) ∈ B}

21 Nh := ∅ ⊲ Nested SCCs except h.

22 W := Bh \ {h} ⊲ Worklist.
23 while there exists v ∈ W do

24 W, Nh := W \ {v}, Nh ∪ [v]

25 for u s.t. u ′ v do

26 if rep(u) /∈ Nh ∪ {h} ∪ W then

27 W := W ∪ {rep(u)}

28 return Nh, Bh

29 def generateFMInstruction(h):
30 Nh, Bh := findNestedSCCs(h)
31 if Bh = ∅ then

32 Inst[h] := exec h
33 return

34 for v ∈ Nh in desc. postDFND do

35 Inst[h] := Inst[h] # Inst[v]

⋆36 for u s.t. u ′ v do

⋆37 Dpostopt[u] := v
⋆38 T[u] := rep(u)

39 Inst[h] := repeat h [Inst[h]]
⋆40 for u s.t. u B h do

⋆41 Dpostopt[u] := T[u] := h

42 for v ∈ Nh do

43 merge(v, h); P := P ∪ {(v, h)}

44 def connectFMInstructions():

45 pgm := ǫ ⊲ Empty program.
46 for v ∈ V in desc. postDFND do

47 if rep(v) = v then

48 pgm := pgm # Inst[v]

⋆49 for u s.t. u ′ v do

⋆50 Dpostopt[u] := v
⋆51 T[u] := rep(u)

⋆52 if v ∈ VC then

⋆53 Achkopt[v] := rep(v)

⋆54 Dpre
ℓ
opt[v] := ⌊⌊v, rep(v)⌉⌉P∗ \ {v}

⋆55 for v ∈ V do

⋆56 Dpost
ℓ
opt[v] := ⌊⌊v, T [v]⌉⌉P∗

57 return pgm

4 Efficient Algorithm to Compute Mopt

Algorithm GenerateFMProgram (Algorithm 1) is an almost-linear time algorithm
for computing an FM program P and optimal memory configuration Mopt for a
given directed graph G(V,). Algorithm 1 adapts the bottom-up WTO con-
struction algorithm presented in Kim et al. [26]. In particular, Algorithm 1
applies the genProg rules (Eq. 3) to generate the FM program from a WTO. Line
32 generates exec instructions for non-heads. Line 39 generates repeat instruc-
tions for heads, with their bodies ([]) generated on Line 35. Finally, instructions
are merged on Line 48 to construct the final output P .

Algorithm GenerateFMProgram utilizes a disjoint-set data structure. Opera-
tion rep(v) returns the representative of the set that contains v. In Line 5, the
sets are initialized to be rep(v) = v for all v ∈ V . Operation merge(v, h) on Line
43 merges the sets containing v and h, and assigns h to be the representative
for the combined set. lcaD(u, v) is the lowest common ancestor of u, v in the
depth-first forest D [47]. Cross and forward edges are initially removed from ′

48 S. K. Kim et al.

on Line 7, making the graph (V, ′ ∪ B) reducible. Restoring it on Line 9 when
h = lcaD(u, v) restores some reachability while keeping (V, ′ ∪ B) reducible.

Lines indicated by ⋆ in Algorithm 1 compute Mopt. Lines 37, 41, and 50
compute Dpostopt. Due to the specific order in which the algorithm traverses
G, Dpostopt[u] is overwritten with greater values (as per the total order ≤) on
these lines, making the final value to be the maximum among the successors.
Lift is implicitly applied when restoring the edges in restoreCrossFwdEdges:
edge u v whose Lift(u, v) = h is replaced to u ′ h on Line 9.

Dpost
ℓ
opt is computed using an auxiliary map T : V → V and a relation

P : V ×V . At the end of the algorithm, T[u] will be the maximum element (as per
�N) in Dpost

ℓ
opt[u]. That is, T[u] = max�N

((⌊⌊u⌉�N
\⌊⌊d⌉�N

)∪(u �N d ? {d} : ∅)),
where d = Dpostopt[u]. Once T[u] is computed by lines 38, 41, and 51, the

transitive reduction of �N, P, is used to find all elements of Dpost
ℓ
opt[u] on

Line 56. P is computed on Line 43. Note that P∗ =�N and ⌊⌊x, y⌉⌉P∗

def

= {v |
x P∗v∧v P∗y}. Achk and Dpre

ℓ are computed on Lines 53 and 54, respectively.
An example run of the algorithm on graph G1 can be found in the extended
version of this paper [27].

The proofs of the following theorems are in Appendix A.3:

Theorem 2. GenerateFMProgram correctly computes Mopt, defined in Sect. 3.

Theorem 3. Running time of GenerateFMProgram is almost-linear.

5 Implementation

We have implemented our approach in a tool called Mikos, which extends
NASA’s IKOS [11], a WTO-based abstract-interpreter for C/C++. Mikos

inherits all abstract domains and widening-narrowing strategies from IKOS. It
includes the localized narrowing strategy [1] that intertwines the increasing and
decreasing sequences.

Abstract Domains in IKOS. IKOS uses the state-of-the-art implementations
of abstract domains comparable to those used in industrial abstract interpreters
such as Astrée. In particular, IKOS implements the interval abstract domain [14]
using functional data-structures based on Patricia Trees [35]. Astrée imple-
ments intervals using OCaml’s map data structure that uses balanced trees [8,
Section 6.2]. As shown in [35, Section 5], the Patricia Trees used by IKOS are
more efficient when you have to merge data structures, which is required often
during abstract interpretation. Also, IKOS uses memory-efficient variable pack-
ing Difference Bound Matrix (DBM) relational abstract domain [17], similar to
the variable packing relational domains employed by Astrée [5, Section 3.3.2].

Interprocedural Analysis in IKOS. IKOS implements context-sensitive
interprocedural analysis by means of dynamic inlining, much like the semantic
expansion of function bodies in Astrée [15, Section 5]: at a function call, formal
and actual parameters are matched, the callee is analyzed, and the return value
at the call site is updated after the callee returns; a function pointer is resolved

Memory-Efficient Fixpoint Computation 49

to a set of callees and the results for each call are joined; IKOS returns top for a
callee when a cycle is found in this dynamic call chain. To prevent running the
entire interprocedural analysis again at the assertion checking phase, invariants
at exits of the callees are additionally cached during the fixpoint computation.

Interprocedural Extension of Mikos. Although the description of our iter-
ation strategy focused on intraprocedural analysis, it can be extended to inter-
procedural analysis as follows. Suppose there is a call to function f1 from a basic
block contained in component C. Any checks in this call to f1 must be deferred
until we know that the component C has stabilized. Furthermore, if function
f1 calls the function f2, then the checks in f2 must also be deferred until C
converges. In general, checks corresponding to a function call f must be deferred
until the maximal component containing the call is stabilized.

When the analysis of callee returns in Mikos, only Pre values for the
deferred checks remain. They are deallocated when the checks are performed
or when the component containing the call is reiterated.

6 Experimental Evaluation

The experiments in this section were designed to answer the following questions:

RQ0 [Accuracy] Does Mikos (Sect. 5) have the same analysis results as IKOS?
RQ1 [Memory footprint] How does the memory footprint of Mikos compare

to that of IKOS?
RQ2 [Runtime] How does the runtime of Mikos compare to that of IKOS?

Experimental Setup. All experiments were run on Amazon EC2 r5.2 × large
instances (64 GiB memory, 8 vCPUs, 4 physical cores), which use Intel Xeon
Platinum 8175M processors. Processors have L1, L2, and L3 caches of sizes 1.5
MiB (data: 0.75 MiB, instruction: 0.75 MiB), 24 MiB, and 33 MiB, respectively.
Linux kernel version 4.15.0-1051-aws was used, and gcc 7.4.0 was used to compile
both Mikos and IKOS. Dedicated EC2 instances and BenchExec [7] were used
to improve reliability of the results. Time and space limit were set to an hour and
64 GB, respectively. The experiments can be reproduced using https://github.
com/95616ARG/mikos_sas2020. Further experimental data can be found in the
extended version of this paper [27].

Benchmarks. We evaluated Mikos on two tasks that represent different
client applications of abstract interpretation, each using different benchmarks
described in Sects. 6.1 and 6.2. In both tasks, we excluded benchmarks that did
not complete in both IKOS and Mikos given the time and space budget. There
were no benchmarks for which IKOS succeeded but Mikos failed to complete.
Benchmarks for which IKOS took less than 5 s were also excluded. Measure-
ments for benchmarks that took less than 5 s are summarized in Appendix B of
our extended paper [27].

https://github.com/95616ARG/mikos_sas2020
https://github.com/95616ARG/mikos_sas2020

50 S. K. Kim et al.

Metrics. To answer RQ1, we define and use memory reduction ratio (MRR):

MRR
def

= Memory footprint of Mikos / Memory footprint of IKOS (10)

The smaller the MRR, the greater reduction in peak-memory usage in Mikos.
If MRR is less than 1, Mikos has smaller memory footprint than IKOS.

For RQ2, we report the speedup, which is defined as below:

Speedup
def

= Runtime of IKOS / Runtime of Mikos (11)

The larger the speedup, the greater reduction in runtime in Mikos. If speedup
is greater than 1, Mikos is faster than IKOS.

RQ0: Accuracy of Mikos. As a sanity check for our theoretical results, we
experimentally validated Theorem 1 by comparing the analysis results reported
by IKOS and Mikos. Mikos used a valid memory configuration, reporting the
same analysis results as IKOS. Recall that Theorem 1 also proves that the fix-
point computation in Mikos is memory-optimal (, it results in minimum memory
footprint).

6.1 Task T1: Verifying User-Provided Assertions

Fig. 3. Task T1. Log-log scatter plots of (a) memory footprint and (b) runtime of
IKOS and Mikos, with an hour timeout and 64 GB spaceout. Benchmarks that did
not complete in IKOS are marked ×. All ×s completed in Mikos. Benchmarks below
y = x required less memory or runtime in Mikos.

Benchmarks. For Task T1, we selected all 2928 benchmarks from DeviceDriver-
sLinux64, ControlFlow, and Loops categories of SV-COMP 2019 [6]. These cat-
egories are well suited for numerical analysis, and have been used in recent

Memory-Efficient Fixpoint Computation 51

works [26,45,46]. From these benchmarks, we removed 435 benchmarks that
timed out in both Mikos and IKOS, and 1709 benchmarks that took less than
5 s in IKOS. That left us with 784 SV-COMP 2019 benchmarks.

Abstract Domain. Task T1 used the reduced product of Difference Bound
Matrix (DBM) with variable packing [17] and congruence [20]. This domain is
much richer and more expressive than the interval domain used in task T2.

Task. Task T1 consists of using the results of interprocedural fixpoint compu-
tation to prove user-provided assertions in the SV-COMP benchmarks. Each
benchmark typically has one assertion to prove.

RQ1: Memory footprint of Mikos compared to IKOS. Figure 3(a) shows
the measured memory footprints in a log-log scatter plot. For Task T1, the MRR
(Eq. 10) ranged from 0.895 to 0.001. That is, the memory footprint decreased to
0.1% in the best case. For all benchmarks, Mikos had smaller memory footprint
than IKOS: MRR was less than 1 for all benchmarks, with all points below the
y = x line in Fig. 3(a). On average, Mikos required only 4.1% of the memory
required by IKOS, with an MRR 0.041 as the geometric mean.

As Fig. 3(a) shows, reduction in memory tended to be greater as the memory
footprint in the baseline IKOS grew. For the top 25% benchmarks with largest
memory footprint in IKOS, the geometric mean of MRRs was 0.009. While a
similar trend was observed in task T2, the trend was significantly stronger in
task T1. Our extended paper has more detailed numbers [27].

RQ2: Runtime of Mikos compared to IKOS. Figure 3(b) shows the mea-
sured runtime in a log-log scatter plot. We measured both the speedup (Eq. 11)
and the difference in the runtimes. For fair comparison, we excluded 29 bench-
marks that did not complete in IKOS. This left us with 755 SV-COMP 2019
benchmarks. Out of these 755 benchmarks, 740 benchmarks had speedup > 1.
The speedup ranged from 0.87× to 1.80×, with geometric mean of 1.29×. The
difference in runtimes (runtime of IKOS − runtime of Mikos) ranged from
−7.47 s to 1160.04 s, with arithmetic mean of 96.90 s. Our extended paper has
more detailed numbers [27].

6.2 Task T2: Proving Absence of Buffer Overflows

Benchmarks. For Task T2, we selected all 1503 programs from the official
Arch Linux core packages that are primarily written in C and whose LLVM
bitcodes are obtainable by gllvm [19]. These include, but are not limited to,
coreutils, dhcp, gnupg, inetutils, iproute, nmap, openssh, vim, etc. From
these benchmarks, we removed 76 benchmarks that timed out and 8 benchmarks
that spaced out in both Mikos and IKOS. Also, 994 benchmarks that took less
than 5 s in IKOS were removed. That left us with 426 open-source benchmarks.

Abstract Domain. Task T2 used the interval abstract domain [14]. Using a
richer domain like DBM caused IKOS and Mikos to timeout on most bench-
marks.

52 S. K. Kim et al.

Fig. 4. Task T2. Log-log scatter plots of (a) memory footprint and (b) runtime of
IKOS and Mikos, with an hour timeout and 64 GB spaceout. Benchmarks that did
not complete in IKOS are marked ×. All ×s completed in Mikos. Benchmarks below
y = x required less memory or runtime in Mikos.

Task. Task T2 consists of using the results of interprocedural fixpoint compu-
tation to prove the safety of buffer accesses. In this task, most program points
had checks.

RQ1: Memory footprint of Mikos compared to IKOS. Figure 4(a) shows
the measured memory footprints in a log-log scatter plot. For Task T2, MRR
(Eq. 10) ranged from 0.998 to 0.022. That is, the memory footprint decreased to
2.2% in the best case. For all benchmarks, Mikos had smaller memory footprint
than IKOS: MRR was less than 1 for all benchmarks, with all points below the
y = x line in Fig. 4(a). On average, Mikos’s memory footprint was less than
half of that of IKOS, with an MRR 0.437 as the geometric mean. Our extended
paper has more detailed numbers [27].

RQ2: Runtime of Mikos compared to IKOS. Figure 4(b) shows the mea-
sured runtime in a log-log scatter plot. We measured both the speedup (Eq. 11)
and the difference in the runtimes. For fair comparison, we excluded 1 benchmark
that did not complete in IKOS. This left us with 425 open-source benchmarks.
Out of these 425 benchmarks, 331 benchmarks had speedup > 1. The speedup
ranged from 0.88× to 2.83×, with geometric mean of 1.08×. The difference in
runtimes (runtime of IKOS − runtime of Mikos) ranged from −409.74 s to
198.39 s, with arithmetic mean of 1.29 s. Our extended paper has more detailed
numbers [27].

Memory-Efficient Fixpoint Computation 53

7 Related Work

Abstract interpretation has a long history of designing time and memory efficient
algorithms for specific abstract domains, which exploit variable packing and clus-
tering and sparse constraints [13,18,22,24,43–46]. Often these techniques rep-
resent a trade-off between precision and performance of the analysis. Nonethe-
less, such techniques are orthogonal to the abstract-domain agnostic approach
discussed in this paper. Approaches for improving precision via sophisticated
widening and narrowing strategies [2,3,21] are also orthogonal to our memory-
efficient iteration strategy. Mikos inherits the interleaved widening-narrowing
strategy implemented in the baseline IKOS abstract interpreter.

As noted in Sect. 1, Bourdoncle’s approach [10] is used in many industrial
and academic abstract interpreters [11,12,16,32,48]. Thus, improving memory
efficiency of WTO-based exploration is of great applicability to real-world static
analysis. Astrée is one of the few, if not only, industrial abstract interpreters
that does not use WTO exploration, because it assumes that programs do not
have gotos and recursion [8, Section 2.1], and is targeted towards a specific class
of embedded C code [5, Section 3.2]. Such restrictions makes is easier to com-
pute when an abstract value will not be used anymore by naturally following
the abstract syntax tree [29, Section 3.4.3]. In contrast, Mikos works for gen-
eral programs with goto and recursion, which requires the use of WTO-based
exploration.

Generic fixpoint-computation approaches for improving running time of
abstract interpretation have also been explored [26,30,52]. Most recently, Kim
et al. [26] present the notion of weak partial order (WPO), which generalizes
the notion of WTO that is used in this paper. Kim et al. describe a parallel
fixpoint algorithm that exploits maximal parallelism while computing the same
fixpoint as the WTO-based algorithm. Reasoning about correctness of concur-
rent algorithms is complex; hence, we decided to investigate an optimal memory
management scheme in the sequential setting first. However, we believe it would
be possible to extend our WTO-based result to one that uses WPO.

The nesting relation described in Sect. 3 is closely related to the notion
of Loop Nesting Forest [36,37], as observed in Kim et al. [26]. The almost-
linear time algorithm GenerateFMProgram is an adaptation of LNF construc-
tion algorithm by Ramalingam [36]. The Lift operation in Sect. 3 is similar
to the outermost-loop-excluding (OLE) operator introduced by Rastello [38,
Section 2.4.4].

Seidl et al. [42] present time and space improvements to a generic fixpoint
solver, which is closest in spirit to the problem discussed in this paper. For
improving space efficiency, their approach recomputes values during fixpoint
computation, and does not prove optimality, unlike our approach. However, the
setting discussed in their work is also more generic compared to ours; we assume
a static dependency graph for the equation system.

Abstract interpreters such as Astrée [8] and CodeHawk [48] are implemented
in OCaml, which provides a garbage collector. However, merely using a refer-
ence counting garbage collector will not reduce peak memory usage of fixpoint

54 S. K. Kim et al.

computation. For instance, the reference count of Pre[u] can be decreased to
zero only after the final check/assert that uses Pre[u]. If the checks are all con-
ducted at the end of the analysis (as is currently done in prior tools), then using
a reference counting garbage collector will not reduce peak memory usage. In
contrast, our approach lifts the checks as early as possible enabling the analysis
to free the abstract values as early as possible.

Symbolic approaches for applying abstract transformers during fixpoint com-
putation [23,28,40,41,49–51] allow the entire loop body to be encoded as a single
formula. This might appear to obviate the need for Pre and Post values for
individual basic blocks within the loop; by storing the Pre value only at the
header, such a symbolic approach might appear to reduce the memory footprint.
First, this scenario does not account for the fact that Pre values need to be
computed and stored if basic blocks in the loop have checks. Note that if there
are no checks within the loop body, then our approach would also only store the
Pre value at the loop header. Second, such symbolic approaches only perform
intraprocedural analysis [23]; additional abstract values would need to be stored
depending on how function calls are handled in interprocedural analysis. Third,
due to the use of SMT solvers in such symbolic approaches, the memory foot-
print might not necessarily reduce, but might increase if one takes into account
the memory used by the SMT solver.

Sparse analysis [33,34] and database-backed analysis [54] improve the mem-
ory cost of static analysis. For specific classes of static analysis such as the IFDS
framework [39], there have been approaches for improving the time and memory
efficiency [9,31,53,55].

8 Conclusion

This paper presented an approach for memory-efficient abstract interpretation
that is agnostic to the abstract domain used. Our approach is memory-optimal
and produces the same result as Bourdoncle’s approach without sacrificing time
efficiency. We extended the notion of iteration strategy to intelligently deallocate
abstract values and perform assertion checks during fixpoint computation. We
provided an almost-linear time algorithm that constructs this iteration strat-
egy. We implemented our approach in a tool called Mikos, which extended the
abstract interpreter IKOS. Despite the use of state-of-the-art implementation of
abstract domains, IKOS had a large memory footprint on two analysis tasks.
Mikos was shown to effectively reduce it. When verifying user-provided asser-
tions in SV-COMP 2019 benchmarks, Mikos showed a decrease in peak-memory
usage to 4.07% (24.57×) on average compared to IKOS. When performing inter-
procedural buffer-overflow analysis of open-source programs, Mikos showed a
decrease in peak-memory usage to 43.7% (2.29×) on average compared to IKOS.

Memory-Efficient Fixpoint Computation 55

A Proofs

This section provides proofs of theorems presented in the paper.

A.1 Nesting forest (V, �N) and total order (V, ≤) in Sect. 3

This section presents the theorems and proofs about �N and ≤ defined in Sect. 3.
A partial order (S, R) is a forest if for all x ∈ S, (⌊⌊x⌉R, R) is a chain, where

⌊⌊x⌉R

def

= {y ∈ S | x R y}.

Theorem 4. (V, �N) is a forest.

Proof. First, we show that (V, �N) is a partial order. Let x, y, z be a vertex in
V .

– Reflexivity: x �N x. This is true by the definition of �N.
– Transitivity: x �N y and y �N z implies x �N z. (i) If x = y, x �N z.

(ii) Otherwise, by definition of �N, y ∈ ω(x). Furthermore, (ii-1) if y = z,
z ∈ ω(x); and hence, x �N z. (ii-2) Otherwise, z ∈ ω(y), and by definition of
HTO, z ∈ ω(x).

– Anti-symmetry: x �N y and y �N x implies x = y. Suppose x 6= y. By
definition of �N and premises, y ∈ ω(x) and x ∈ ω(y). Then, by definition of
HTO, x ≺ y and y ≺ x. This contradicts that � is a total order.

Next, we show that the partial order is a forest. Suppose there exists v ∈ V
such that (⌊⌊v⌉�N

, �N) is not a chain. That is, there exists x, y ∈ ⌊⌊v⌉�N
such that

x 6�N y and y 6�N x. Then, by definition of HTO, C(x) ∩ C(y) = ∅. However, this
contradicts that v ∈ C(x) and v ∈ C(y). ⊓⊔

Theorem 5. (V, ≤) is a total order.

Proof. We prove the properties of a total order. Let x, y, z be a vertex in V .

– Connexity: x ≤ y or y ≤ x. This follows from the connexity of the total
order �.

– Transitivity: x ≤ y and y ≤ z implies x ≤ z. (i) Suppose x �N y. (i-1) If
y �N z, by transitivity of �N, x �N z. (ii-2) Otherwise, z 6�N y and y � z.
It cannot be z �N x because transitivity of �N implies z �N y, which is
a contradiction. Furthermore, it cannot be z ≺ x because y � z ≺ x and
x �N y implies y ∈ ω(z) by the definition of HTO. By connexity of �, x � z.
(ii) Otherwise y 6�N x and x � y. (ii-1) If y �N z, z 6�N x because, otherwise,
transitivity of �N will imply y �N x. By connexity of �, it is either x � z or
z ≺ x. If x � z, x ≤ z. If z ≺ x, by definition of HTO, z ∈ ω(z).

– Anti-symmetry: x ≤ y and y ≤ x implies x = y. (i) If x �N y, it should be
y �N x for y ≤ x to be true. By anti-symmetry of �N, x = y. (ii) Otherwise,
y 6�N x and x � y. For y ≤ x to be true, x 6�N y and x � y. By anti-symmetry
of �, x = y.

56 S. K. Kim et al.

⊓⊔

Theorem 6. For u, v ∈ V , if Inst[v] reads Post[u], then u ≤ v.

Proof. By the definition of the mapping Inst, there must exists v′ ∈ V such
that u v′ and v′ �N v for Inst[v] to read Post[u]. By the definition of WTO,
it is either u ≺ v′ and v′ /∈ ω(u), or v′ � u and v′ ∈ ω(u). In both cases, u ≤ v′.
Because v′ �N v, and hence v′ ≤ v, u ≤ v. ⊓⊔

A.2 Optimality of Mopt in Sect. 3

This section presents the theorems and proofs about the optimality of Mopt

described in Sect. 3. The theorem is divided into optimality theorems of the
maps that constitute Mopt.

Given M(Dpost,Achk,Dpost
ℓ,Dpre

ℓ) and a map Dpost0, we use
M Dpost0 to denote the memory configuration (Dpost0, Achk, Dpost

ℓ,
Dpre

ℓ). Similarly, M Achk0 means (Dpost, Achk0, Dpost
ℓ, Dpre

ℓ), and
so on. For a given FM program P , each map X that constitutes a memory config-
uration is valid for P iff M X is valid for every valid memory configuration M.
Also, X is optimal for P iff M X is optimal for an optimal memory configura-
tion M.

Theorem 7. Dpostopt is valid. That is, given an FM program P and a valid
memory configuration M, JP KM Dpostopt

= JP KM.

Proof. Our approach does not change the iteration order and only changes where
the deallocations are performed. Therefore, it is sufficient to show that for all
u v, Post[u] is available whenever Inst[v] is executed.

Suppose that this is false: there exists an edge u v that violates it. Let
d be Dpostopt[u] computed by our approach. Then, the execution trace of P
has execution of Inst[v] after the deallocation of Post[u] in Inst[d], with no
execution of Inst[u] in between.

Because ≤ is a total order, it is either d < v or v ≤ d. It must be v ≤ d,
because d < v implies d < v ≤ Lift(u, v), which contradicts the definition of
Dpostopt[u]. Then, by definition of ≤, it is either v �N d or (d 6�N v) ∧ (v � d).
In both cases, the only way Inst[v] can be executed after Inst[d] is to have
another head h whose repeat instruction includes both Inst[d] and Inst[v].
That is, when d ≺N h and v ≺N h. By definition of WTO and u v, it is either
u ≺ v, or u �N v. It must be u ≺ v, because if u �N v, Inst[u] is part of Inst[v],
making Inst[u] to be executed before reading Post[u] in Inst[v]. Furthermore,
it must be u ≺ h, because if h � u, Inst[u] is executed before Inst[v] in each
iteration over C(h). However, that implies h ∈ (⌊⌊v⌉�N

\ ⌊⌊u⌉�N
), which combined

with d ≺N h, contradicts the definition of Dpostopt[u]. Therefore, no such edge
u v can exist and the theorem is true. ⊓⊔

Theorem 8. Dpostopt is optimal. That is, given an FM program P , memory
footprint of JP KM Dpostopt

is smaller than or equal to that of JP KM for all valid
memory configuration M.

Memory-Efficient Fixpoint Computation 57

Proof. For Dpostopt to be optimal, deallocation of Post values must be
determined at earliest positions as possible with a valid memory configura-
tion M Dpostopt. That is, there should not exists u, b ∈ V such that if
d = Dpostopt[u], b 6= d, M (Dpostopt[u ← b]) is valid, and Inst[b] deletes
Post[u] earlier than Inst[d].

Suppose that this is false: such u, b exists. Let d be Dpostopt[u], computed
by our approach. Then it must be b < d for Inst[b] to be able to delete Post[u]
earlier than Inst[d]. Also, for all u v, it must be v ≤ b for Inst[v] to be
executed before deleting Post[u] in Inst[b].

By definition of Dpostopt, v ≤ d for all u v. Also, by Theorem 6, u ≤ v.
Hence, u ≤ d, making it either u �N d, or (d 6�N u) ∧ (u � d). If u �N d,
by definition of Lift, it must be u d. Therefore, it must be d ≤ b, which
contradicts that b < d. Alternative, if (d 6�N u) ∧ (u � d), there must exist
v ∈ V such that u v and Lift(u, v) = d. To satisfy v ≤ b, v �N d, and
b < d, it must be b �N d. However, this makes the analysis incorrect because
when stabilization check fails for C(d), Inst[v] gets executed again, attempting
to read Post[u] that is already deleted by Inst[b]. Therefore, no such u, b can
exist, and the theorem is true. ⊓⊔

Theorem 9. Achkopt is valid. That is, given an FM program P and a valid
memory configuration M, JP KM Achkopt

= JP KM

Proof. Let v = Achkopt[u]. If v is a head, by definition of Achkopt, C(v) is the
largest component that contains u. Therefore, once C(v) is stabilized, Inst[u]
can no longer be executed, and Pre[u] remains the same. If v is not a head,
then v = u. That is, there is no component that contains u. Therefore, Pre[u]
remains the same after the execution of Inst[u]. In both cases, the value passed
to Cku are the same as when using Achkdflt. ⊓⊔

Theorem 10. Achkopt is optimal. That is, given an FM program P , memory
footprint of JP KM Achkopt

is smaller than or equal to that of JP KM for all valid
memory configuration M.

Proof. Because Pre value is deleted right after its corresponding assertions are
checked, it is sufficient to show that assertion checks are placed at the earliest
positions with Achkopt.

Let v = Achkopt[u]. By definition of Achkopt, u �N v. For some b to perform
assertion checks of u earlier than v, it must satisfy b ≺N v. However, because
one cannot know in advance when a component of v would stabilize and when
Pre[u] would converge, the assertion checks of u cannot be performed in Inst[b].
Therefore, our approach puts the assertion checks at the earliest positions, and
it leads to the minimum memory footprint. ⊓⊔

Theorem 11. Dpost
ℓ
opt is valid. That is, given an FM program P and a valid

memory configuration M, JP KM Dpostℓ
opt

= JP KM.

58 S. K. Kim et al.

Proof. Again, our approach does not change the iteration order and only changes
where the deallocations are performed. Therefore, it is sufficient to show that
for all u v, Post[u] is available whenever Inst[v] is executed.

Suppose that this is false: there exists an edge u v that violates it. Let d′

be element in Dpost
ℓ
opt[u] that causes this violation. Then, the execution trace

of P has execution of Inst[v] after the deallocation of Post[u] in Inst[d′], with
no execution of Inst[u] in between. Because Post[u] is deleted inside the loop
of Inst[d′], Inst[v] must be nested in Inst[d′] or be executed after Inst[d′] to
be affected. That is, it must be either v �N d′ or d′ ≺ v. Also, because of how
Dpost

ℓ
opt[u] is computed, u �N d′.

First consider the case v �N d′. By definition of WTO and u v, it is
either u ≺ v or u �N v. In either case, Inst[u] gets executed before Inst[v]
reads Post[u]. Therefore, deallocation of Post[u] in Inst[d′] cannot cause the
violation.

Alternatively, consider d′ ≺ v and v 6�N d′. Because u �N d′, Post[u] is
generated in each iteration over C(d′), and the last iteration does not delete
Post[u]. Therefore, Post[u] will be available when executing Inst[v]. Therefore,
such u, d′ does not exists, and the theorem is true. ⊓⊔

Theorem 12. Dpost
ℓ
opt is optimal. That is, given an FM program P , memory

footprint of JP KM Dpostℓ
opt

is smaller than or equal to that of JP KM for all valid
memory configuration M.

Proof. Because one cannot know when a component would stabilize in advance,
the decision to delete intermediate Post[u] cannot be made earlier than the
stabilization check of a component that contains u. Our approach makes such
decisions in all relevant components that contains u.

If u �N d, Dpost
ℓ
opt[u] = ⌊⌊u⌉�N

∩ ⌊d⌉⌉�N
. Because Post[u] is deleted in

Inst[d], we do not have to consider components in ⌊⌊d⌉�N
\ {d}. Alternatively, if

u 6�N d, Dpost
ℓ
opt[u] = ⌊⌊u⌉�N

\ ⌊⌊d⌉�N
. Because Post[u] is deleted Inst[d], we

do not have to consider components in ⌊⌊u⌉�N
\ ⌊⌊d⌉�N

. Therefore, Dpost
ℓ
opt is

optimal. ⊓⊔

Theorem 13. Dpre
ℓ
opt is valid. That is, given an FM program P and a valid

memory configuration M, JP KM Dpreℓ
opt

= JP KM.

Proof. Pre[u] is only used in assertion checks and to perform widening in
Inst[u]. Because u is removed from Dpre

ℓ[u], the deletion does not affect widen-
ing.

For all v ∈ Dpre
ℓ[u], v �N Achkopt[u]. Because Pre[u] is not deleted when

C(v) is stabilized, Pre[u] will be available when performing assertion checks in
Inst[Achkopt[u]]. Therefore, Dpre

ℓ is valid. ⊓⊔

Theorem 14. Dpre
ℓ
opt is optimal. That is, given an FM program P , memory

footprint of JP KM Dpreℓ
opt

is smaller than or equal to that of JP KM for all valid
memory configuration M.

Memory-Efficient Fixpoint Computation 59

Proof. Because one cannot know when a component would stabilize in advance,
the decision to delete intermediate Pre[u] cannot be made earlier than the sta-
bilization check of a component that contains u. Our approach makes such deci-
sions in all components that contains u. Therefore, Dpre

ℓ
opt is optimal. ⊓⊔

Theorem 1. The memory configuration Mopt(Dpostopt, Achkopt,

Dpost
ℓ
opt, Dpre

ℓ
opt) is optimal.

Proof. This follows from theorems Theorem 11 to 14. ⊓⊔

A.3 Correctness and efficiency of GenerateFMProgram in Sect. 4

This section presents the theorems and proofs about the correctness and effi-
ciency of GenerateFMProgram (Algorithm 1, Sect. 4).

Theorem 2. GenerateFMProgram correctly computes Mopt, defined in Sect. 3.

Proof. We show that each map is constructed correctly.

– Dpostopt: Let v′ be the value of Dpostopt[u] before overwritten in Line
50, 37, or 41. Descending post DFN ordering corresponds to a topological
sorting of the nested SCCs. Therefore, in Line 50 and 37, v′ ≺ v. Also,
because v �N h for all v ∈ Nh in Line 41, v′ �N v. In any case, v′ ≤ v.
Because rep(v) essentially performs Lift(u, v) when restoring the edges, the
final Dpostopt[u] is the maximum of the lifted successors, and the map is
correctly computed.

– Dpost
ℓ
opt: The correctness follows from the correctness of T. Because the

components are constructed bottom-up, rep(u) in Line 51 and 38 returns
max�N

(⌊⌊u⌉�N
\ ⌊⌊Dpostopt[u]⌉�N

). Also, N
∗ =�N. Thus, Dpost

ℓ
opt is cor-

rectly computed.
– Achkopt: At the end of the algorithm rep(v) is the head of maximal com-

ponent that contains v, or v itself when v is outside of any components.
Therefore, Achkopt is correctly computed.

– Dpre
ℓ
opt: Using the same reasoning as in Achkopt, and because N

∗ =�N,

Dpre
ℓ
opt is correctly computed.

⊓⊔

Theorem 3. Running time of GenerateFMProgram is almost-linear.

Proof. The base WTO-construction algorithm is almost-linear time [26]. The
starred lines in Algorithm 1 visit each edge and vertex once. Therefore, time
complexity still remains almost-linear time. ⊓⊔

60 S. K. Kim et al.

References

1. Amato, G., Scozzari, F.: Localizing widening and narrowing. In: Static Analysis -
20th International Symposium, SAS 2013, Seattle, WA, USA, June 20–22, 2013.
Proceedings. pp. 25–42 (2013). https://doi.org/10.1007/978-3-642-38856-9_4

2. Amato, G., Scozzari, F., Seidl, H., Apinis, K., Vojdani, V.: Efficiently intertwining
widening and narrowing. Sci. Comput. Program. 120, 1–24 (2016). https://doi.
org/10.1016/j.scico.2015.12.005

3. Apinis, K., Seidl, H., Vojdani, V.: Enhancing top-down solving with widening and
narrowing. In: Probst, C.W., Hankin, C., Hansen, R.R. (eds.) Semantics, Log-
ics, and Calculi - Essays Dedicated to Hanne Riis Nielson and Flemming Nielson
on the Occasion of Their 60th Birthdays. Lecture Notes in Computer Science,
vol. 9560, pp. 272–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-319-27810-0_14

4. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008). https://doi.
org/10.1016/j.scico.2007.08.001

5. Bertrane, J., et al.: Static analysis by abstract interpretation of embedded critical
software. ACM SIGSOFT Softw. Eng. Notes 36(1), 1–8 (2011). https://doi.org/
10.1145/1921532.1921553

6. Beyer, D.: Automatic verification of C and java programs: SV-COMP 2019. In:
Tools and Algorithms for the Construction and Analysis of Systems - 25 Years
of TACAS: TOOLympics, Held as Part of ETAPS 2019, Prague, Czech Republic,
April 6–11, 2019, Proceedings, Part III, pp. 133–155 (2019). https://doi.org/10.
1007/978-3-030-17502-3_9

7. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-
tions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2017). https://doi.org/
10.1007/s10009-017-0469-y

8. Blanchet, B., et al.: Design and implementation of a special-purpose static pro-
gram analyzer for safety-critical real-time embedded software. In: Mogensen, T.Æ.,
Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation, Complexity,
Analysis, Transformation. Essays Dedicated to Neil D. Jones [on occasion of his
60th birthday]. Lecture Notes in Computer Science, vol. 2566, pp. 85–108. Springer,
Cham (2002). https://doi.org/10.1007/3-540-36377-7_5

9. Bodden, E.: Inter-procedural data-flow analysis with IFDS/IDE and soot. In: Bod-
den, E., Hendren, L.J., Lam, P., Sherman, E. (eds.) Proceedings of the ACM
SIGPLAN International Workshop on State of the Art in Java Program analy-
sis, SOAP 2012, Beijing, China, June 14, 2012, pp. 3–8. ACM (2012). https://doi.
org/10.1145/2259051.2259052

10. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Bjørner,
D., Broy, M., Pottosin, I.V. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141.
Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0039704

11. Brat, G., Navas, J.A., Shi, N., Venet, A.: IKOS: A framework for static analysis
based on abstract interpretation. In: Software Engineering and Formal Methods
- 12th International Conference, SEFM 2014, Grenoble, France, September 1–5,
2014. Proceedings, pp. 271–277 (2014). https://doi.org/10.1007/978-3-319-10431-
7_20

12. Calcagno, C., Distefano, D.: Infer: An automatic program verifier for memory safety
of C programs. In: Bobaru, M.G., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)

https://doi.org/10.1007/978-3-642-38856-9_4
https://doi.org/10.1016/j.scico.2015.12.005
https://doi.org/10.1016/j.scico.2015.12.005
https://doi.org/10.1007/978-3-319-27810-0_14
https://doi.org/10.1007/978-3-319-27810-0_14
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1145/1921532.1921553
https://doi.org/10.1145/1921532.1921553
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/3-540-36377-7_5
https://doi.org/10.1145/2259051.2259052
https://doi.org/10.1145/2259051.2259052
https://doi.org/10.1007/BFb0039704
https://doi.org/10.1007/978-3-319-10431-7_20
https://doi.org/10.1007/978-3-319-10431-7_20

Memory-Efficient Fixpoint Computation 61

NASA Formal Methods - Third International Symposium, NFM 2011, Pasadena,
CA, USA, April 18–20, 2011. Proceedings. Lecture Notes in Computer Science,
vol. 6617, pp. 459–465. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20398-5_33

13. Chawdhary, A., King, A.: Compact difference bound matrices. In: Chang, B.E.
(ed.) Programming Languages and Systems - 15th Asian Symposium, APLAS 2017,
Suzhou, China, November 27–29, 2017, Proceedings. Lecture Notes in Computer
Science, vol. 10695, pp. 471–490. Springer (2017). https://doi.org/10.1007/978-3-
319-71237-6_23

14. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
Los Angeles, California, USA, January 1977, pp. 238–252 (1977). https://doi.org/
10.1145/512950.512973

15. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The astreé analyzer. In: Sagiv, S. (ed.) Programming Languages and Systems,
14th European Symposium on Programming, ESOP 2005, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2005,
Edinburgh, UK, April 4–8, 2005, Proceedings. Lecture Notes in Computer Science,
vol. 3444, pp. 21–30. Springer, Cham (2005). https://doi.org/10.1007/978-3-540-
31987-0_3

16. Facebook: Sparta. https://github.com/facebookincubator/SPARTA (2020)
17. Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: An abstract

domain of uninterpreted functions. In: Verification, Model Checking, and Abstract
Interpretation - 17th International Conference, VMCAI 2016, St. Petersburg, FL,
USA, January 17–19, 2016. Proceedings. pp. 85–103 (2016). https://doi.org/10.
1007/978-3-662-49122-5_4

18. Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Exploiting
sparsity in difference-bound matrices. In: Rival, X. (ed.) Static Analysis - 23rd
International Symposium, SAS 2016, Edinburgh, UK, September 8–10, 2016, Pro-
ceedings. Lecture Notes in Computer Science, vol. 9837, pp. 189–211. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7_10

19. gllvm. https://github.com/SRI-CSL/gllvm (2020)
20. Granger, P.: Static analysis of arithmetical congruences. Int. J. Comput. Math.

30(3–4), 165–190 (1989). https://doi.org/10.1080/00207168908803778
21. Halbwachs, N., Henry, J.: When the decreasing sequence fails. In: Static Analysis

- 19th International Symposium, SAS 2012, Deauville, France, September 11–13,
2012. Proceedings, pp. 198–213 (2012). https://doi.org/10.1007/978-3-642-33125-
1_15

22. Halbwachs, N., Merchat, D., Gonnord, L.: Some ways to reduce the space dimen-
sion in polyhedra computations. Formal Methods Syst. Des. 29(1), 79–95 (2006).
https://doi.org/10.1007/s10703-006-0013-2

23. Henry, J., Monniaux, D., Moy, M.: PAGAI: a path sensitive static analyser. Elec-
tron. Notes Theor. Comput. Sci. 289, 15–25 (2012). https://doi.org/10.1016/j.
entcs.2012.11.003

24. Heo, K., Oh, H., Yang, H.: Learning a variable-clustering strategy for octagon
from labeled data generated by a static analysis. In: Rival, X. (ed.) Static Analysis
- 23rd International Symposium, SAS 2016, Edinburgh, UK, September 8–10, 2016,
Proceedings. Lecture Notes in Computer Science, vol. 9837, pp. 237–256. Springer,
Cham (2016). https://doi.org/10.1007/978-3-662-53413-7_12

https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-319-71237-6_23
https://doi.org/10.1007/978-3-319-71237-6_23
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3
https://github.com/facebookincubator/SPARTA
https://doi.org/10.1007/978-3-662-49122-5_4
https://doi.org/10.1007/978-3-662-49122-5_4
https://doi.org/10.1007/978-3-662-53413-7_10
https://github.com/SRI-CSL/gllvm
https://doi.org/10.1080/00207168908803778
https://doi.org/10.1007/978-3-642-33125-1_15
https://doi.org/10.1007/978-3-642-33125-1_15
https://doi.org/10.1007/s10703-006-0013-2
https://doi.org/10.1016/j.entcs.2012.11.003
https://doi.org/10.1016/j.entcs.2012.11.003
https://doi.org/10.1007/978-3-662-53413-7_12

62 S. K. Kim et al.

25. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification, 21st
International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009.
Proceedings. Lecture Notes in Computer Science, vol. 5643, pp. 661–667. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_52

26. Kim, S.K., Venet, A.J., Thakur, A.V.: Deterministic parallel fixpoint computation.
PACMPL 4(POPL), 14:1–14:33 (2020). https://doi.org/10.1145/3371082

27. Kim, S.K., Venet, A.J., Thakur, A.V.: Memory-efficient fixpoint computation
(2020). https://arxiv.org/abs/2009.05865

28. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with SMT solvers. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2014, San Diego, CA, USA, January 20–21, 2014. pp. 607–618. ACM (2014).
https://doi.org/10.1145/2535838.2535857

29. Miné, A.: Tutorial on static inference of numeric invariants by abstract interpreta-
tion. Found. Trends Program. Lang. 4(3–4), 120–372 (2017). https://doi.org/10.
1561/2500000034

30. Monniaux, D.: The parallel implementation of the astrée static analyzer. In:
Programming Languages and Systems, Third Asian Symposium, APLAS 2005,
Tsukuba, Japan, November 2–5, 2005, Proceedings, pp. 86–96 (2005). https://doi.
org/10.1007/11575467_7

31. Naeem, N.A., Lhoták, O., Rodriguez, J.: Practical extensions to the IFDS algo-
rithm. In: Gupta, R. (ed.) Compiler Construction, 19th International Conference,
CC 2010, Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2010, Paphos, Cyprus, March 20–28, 2010. Proceedings.
Lecture Notes in Computer Science, vol. 6011, pp. 124–144. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11970-5_8

32. Navas, J.A.: Crab: Cornucopia of abstractions: a language-agnostic library for
abstract interpretation. https://github.com/seahorn/crab (2019)

33. Oh, H., Heo, K., Lee, W., Lee, W., Park, D., Kang, J., Yi, K.: Global sparse analysis
framework. ACM Trans. Program. Lang. Syst. 36(3), 8:1–8:44 (2014). https://doi.
org/10.1145/2590811

34. Oh, H., Heo, K., Lee, W., Lee, W., Yi, K.: Design and implementation of sparse
global analyses for c-like languages. In: ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2012, Beijing, China - June
11–16, 2012, pp. 229–238 (2012). https://doi.org/10.1145/2254064.2254092

35. Okasaki, C., Gill, A.: Fast mergeable integer maps. In: Workshop on ML, pp. 77–86
(1998)

36. Ramalingam, G.: Identifying loops in almost linear time. ACM Trans. Program.
Lang. Syst. 21(2), 175–188 (1999). https://doi.org/10.1145/316686.316687

37. Ramalingam, G.: On loops, dominators, and dominance frontiers. ACM Trans. Pro-
gram. Lang. Syst. 24(5), 455–490 (2002). https://doi.org/10.1145/570886.570887

38. Rastello, F.: On Sparse Intermediate Representations: Some Structural Properties
and Applications to Just-In-Time Compilation. University works, Inria Grenoble
Rhône-Alpes (Dec 2012). https://hal.inria.fr/hal-00761555, habilitation à diriger
des recherches, École normale supérieure de Lyon

39. Reps, T.W., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Conference Record of POPL 1995: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Francisco,
California, USA, January 23–25, 1995, pp. 49–61 (1995). https://doi.org/10.1145/
199448.199462

https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1145/3371082
https://arxiv.org/abs/2009.05865
https://doi.org/10.1145/2535838.2535857
https://doi.org/10.1561/2500000034
https://doi.org/10.1561/2500000034
https://doi.org/10.1007/11575467_7
https://doi.org/10.1007/11575467_7
https://doi.org/10.1007/978-3-642-11970-5_8
https://github.com/seahorn/crab
https://doi.org/10.1145/2590811
https://doi.org/10.1145/2590811
https://doi.org/10.1145/2254064.2254092
https://doi.org/10.1145/316686.316687
https://doi.org/10.1145/570886.570887
https://hal.inria.fr/hal-00761555
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462

Memory-Efficient Fixpoint Computation 63

40. Reps, T.W., Sagiv, S., Yorsh, G.: Symbolic implementation of the best transformer.
In: Steffen, B., Levi, G. (eds.) Verification, Model Checking, and Abstract Interpre-
tation, 5th International Conference, VMCAI 2004, Venice, Italy, January 11–13,
2004, Proceedings. Lecture Notes in Computer Science, vol. 2937, pp. 252–266.
Springer, New York (2004). https://doi.org/10.1007/978-3-540-24622-0_21

41. Reps, T.W., Thakur, A.V.: Automating abstract interpretation. In: Jobstmann, B.,
Leino, K.R.M. (eds.) Verification, Model Checking, and Abstract Interpretation -
17th International Conference, VMCAI 2016, St. Petersburg, FL, USA, January
17–19, 2016. Proceedings. Lecture Notes in Computer Science, vol. 9583, pp. 3–40.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5_1

42. Seidl, H., Vogler, R.: Three improvements to the top-down solver. In: Sabel, D.,
Thiemann, P. (eds.) Proceedings of the 20th International Symposium on Princi-
ples and Practice of Declarative Programming, PPDP 2018, Frankfurt am Main,
Germany, September 03–05, 2018, pp. 21:1–21:14. ACM (2018). https://doi.org/
10.1145/3236950.3236967

43. Singh, G., Püschel, M., Vechev, M.T.: Making numerical program analysis fast. In:
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, Portland, OR, USA, June 15–17, 2015, pp. 303–313
(2015). https://doi.org/10.1145/2737924.2738000

44. Singh, G., Püschel, M., Vechev, M.T.: Fast polyhedra abstract domain. In:
Castagna, G., Gordon, A.D. (eds.) Proceedings of the 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18–20, 2017, pp. 46–59. ACM (2017). https://doi.org/10.1145/3009837.
3009885

45. Singh, G., Püschel, M., Vechev, M.T.: Fast numerical program analysis with rein-
forcement learning. In: Computer Aided Verification - 30th International Con-
ference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14–17, 2018, Proceedings, Part I. pp. 211–229 (2018). https://
doi.org/10.1007/978-3-319-96145-3_12

46. Singh, G., Püschel, M., Vechev, M.T.: A practical construction for decompos-
ing numerical abstract domains. In: Proceedings ACM Programming Language
2(POPL), 55:1–55:28 (2018). https://doi.org/10.1145/3158143

47. Tarjan, R.E.: Applications of path compression on balanced trees. J. ACM 26(4),
690–715 (1979). https://doi.org/10.1145/322154.322161

48. Technology, K.: Codehawk. https://github.com/kestreltechnology/codehawk
(2020)

49. Thakur, A.V., Elder, M., Reps, T.W.: Bilateral algorithms for symbolic abstrac-
tion. In: Miné, A., Schmidt, D. (eds.) Static Analysis - 19th International Sym-
posium, SAS 2012, Deauville, France, September 11–13, 2012. Proceedings. Lec-
ture Notes in Computer Science, vol. 7460, pp. 111–128. Springer, Cham (2012).
https://doi.org/10.1007/978-3-642-33125-1_10

50. Thakur, A.V., Lal, A., Lim, J., Reps, T.W.: Posthat and all that: automating
abstract interpretation. Electron. Notes Theor. Comput. Sci. 311, 15–32 (2015).
https://doi.org/10.1016/j.entcs.2015.02.003

51. Thakur, A.V., Reps, T.W.: A method for symbolic computation of abstract opera-
tions. In: Madhusudan, P., Seshia, S.A. (eds.) Computer Aided Verification - 24th
International Conference, CAV 2012, Berkeley, CA, USA, July 7–13, 2012 Pro-
ceedings. Lecture Notes in Computer Science, vol. 7358, pp. 174–192. Springer,
Heeidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_17

https://doi.org/10.1007/978-3-540-24622-0_21
https://doi.org/10.1007/978-3-662-49122-5_1
https://doi.org/10.1145/3236950.3236967
https://doi.org/10.1145/3236950.3236967
https://doi.org/10.1145/2737924.2738000
https://doi.org/10.1145/3009837.3009885
https://doi.org/10.1145/3009837.3009885
https://doi.org/10.1007/978-3-319-96145-3_12
https://doi.org/10.1007/978-3-319-96145-3_12
https://doi.org/10.1145/3158143
https://doi.org/10.1145/322154.322161
https://github.com/kestreltechnology/codehawk
https://doi.org/10.1007/978-3-642-33125-1_10
https://doi.org/10.1016/j.entcs.2015.02.003
https://doi.org/10.1007/978-3-642-31424-7_17

64 S. K. Kim et al.

52. Venet, A., Brat, G.P.: Precise and efficient static array bound checking for large
embedded C programs. In: Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation 2004, Washington, DC, USA,
June 9–11, 2004 pp. 231–242 (2004). https://doi.org/10.1145/996841.996869

53. Wang, K., Hussain, A., Zuo, Z., Xu, G.H., Sani, A.A.: Graspan: A single-machine
disk-based graph system for interprocedural static analyses of large-scale systems
code. In: Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS
2017, Xi’an, China, April 8–12, 2017, pp. 389–404 (2017). https://doi.org/10.1145/
3037697.3037744

54. Weiss, C., Rubio-González, C., Liblit, B.: Database-backed program analysis for
scalable error propagation. In: 37th IEEE/ACM International Conference on Soft-
ware Engineering, ICSE 2015, Florence, Italy, May 16–24, 2015, vol. 1. pp. 586–597
(2015). https://doi.org/10.1109/ICSE.2015.75

55. Zuo, Z., Gu, R., Jiang, X., Wang, Z., Huang, Y., Wang, L., Li, X.: Bigspa: an
efficient interprocedural static analysis engine in the cloud. In: 2019 IEEE Inter-
national Parallel and Distributed Processing Symposium, IPDPS 2019, Rio de
Janeiro, Brazil, May 20–24, 2019, pp. 771–780. IEEE (2019). https://doi.org/10.
1109/IPDPS.2019.00086

https://doi.org/10.1145/996841.996869
https://doi.org/10.1145/3037697.3037744
https://doi.org/10.1145/3037697.3037744
https://doi.org/10.1109/ICSE.2015.75
https://doi.org/10.1109/IPDPS.2019.00086
https://doi.org/10.1109/IPDPS.2019.00086

Abstract Neural Networks

Matthew Sotoudeh(B) and Aditya V. Thakur

University of California, Davis, USA
{masotoudeh,avthakur}@ucdavis.edu

Abstract. Deep Neural Networks (DNNs) are rapidly being applied
to safety-critical domains such as drone and airplane control, motivat-
ing techniques for verifying the safety of their behavior. Unfortunately,
DNN verification is NP-hard, with current algorithms slowing exponen-
tially with the number of nodes in the DNN. This paper introduces
the notion of Abstract Neural Networks (ANNs), which can be used
to soundly overapproximate DNNs while using fewer nodes. An ANN
is like a DNN except weight matrices are replaced by values in a given
abstract domain. We present a framework parameterized by the abstract
domain and activation functions used in the DNN that can be used to
construct a corresponding ANN. We present necessary and sufficient con-
ditions on the DNN activation functions for the constructed ANN to
soundly over-approximate the given DNN. Prior work on DNN abstrac-
tion was restricted to the interval domain and ReLU activation function.
Our framework can be instantiated with other abstract domains such
as octagons and polyhedra, as well as other activation functions such as
Leaky ReLU, Sigmoid, and Hyperbolic Tangent.

Keywords: Deep Neural Networks · Abstraction · Soundness

1 Introduction

Deep Neural Networks (DNNs), defined formally in Sect. 3, are loop-free com-
puter programs organized into layers, each of which computes a linear combi-
nation of the layer’s inputs, then applies some non-linear activation function
to the resulting values. The activation function used varies between networks,
with popular activation functions including ReLU, Hyperbolic Tangent, and
Leaky ReLU [13]. DNNs have rapidly become important in a variety of applica-
tions, including image recognition and safety-critical control systems, motivating
research into the problem of verifying properties about their behavior [9,18].

Although they lack loops, the use of non-linear activation functions intro-
duces exponential branching behavior into the DNN semantics. It has been shown
that DNN verification is NP-hard [18]. In particular, this exponential behavior
scales with the number of nodes in a network. DNNs in practice have very large
numbers of nodes, e.g., the aircraft collision-avoidance DNN ACAS Xu [17] has
300 and a modern image recognition network has tens of thousands [20]. The
number of nodes in modern networks has also been growing with time as more
effective training methods have been found [3].
c© Springer Nature Switzerland AG 2020
D. Pichardie and M. Sighireanu (Eds.): SAS 2020, LNCS 12389, pp. 65–88, 2020.
https://doi.org/10.1007/978-3-030-65474-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65474-0_4&domain=pdf
http://orcid.org/0000-0003-2060-1009
http://orcid.org/0000-0003-3166-1517
https://doi.org/10.1007/978-3-030-65474-0_4

66 M. Sotoudeh and A. V. Thakur

One increasingly common way of addressing this problem is to compress the
DNN into a smaller proxy network which can be analyzed in its place. How-
ever, most such approaches usually do not guarantee that properties of the
proxy network hold in the original network (they are unsound). Recently, Prab-
hakar et al. [29] introduced the notion of Interval Neural Networks (INNs), which
can produce a smaller proxy network that is guaranteed to over-approximate the
behavior of the original DNN. While promising, soundness is only guaranteed
with a particular activation function (ReLU) and abstract domain (intervals).

In this work, we introduce Abstract Neural Networks (ANNs), which are like
DNNs except weight matrices are replaced with values in an abstract domain.
Given a DNN and an abstract domain, we present an algorithm for constructing a
corresponding ANN with fewer nodes. The algorithm works by merging groups
of nodes in the DNN to form corresponding abstract nodes in the ANN. We
prove necessary and sufficient conditions on the activation functions used for
the constructed ANN to over-approximate the input DNN. If these conditions
are met, the smaller ANN can be soundly analyzed in place of the DNN. Our
formalization and theoretical results generalize those of Prabhakar et al. [29],
which are an instantiation of our framework for ReLU activation functions and
the interval domain. Our results also show how to instantiate the algorithm
such that sound abstraction can be achieved with a variety of different abstract
domains (including polytopes and octagons) as well as many popular activation
functions (including Hyperbolic Tangent, Leaky ReLU, and Sigmoid).

Outline. In this paper, we aim to lay strong theoretical foundations for research
into abstracting neural networks for verification. Section 2 gives an overview of
our technique. Section 3 defines preliminaries. Section 4 defines Abstract Neural
Networks (ANNs). Section 5 presents an algorithm for constructing an ANN from
a given DNN. Section 6 motivates our theoretical results with a number of exam-
ples. Section 7 proves our soundness theorem. Section 8 discusses related work,
while Sect. 9 concludes with a discussion of future work. Code implementing our
framework can be found at https://doi.org/10.5281/zenodo.4031610. Detailed
proofs of all theorems are in the extended version of this paper [34].

x1

h1

h2

y1

y2

y3

1

−1

1

1

0

1

0

1

(a) DNN N1

x1 h

y1

y2

y3

[−1, 1]

[2, 2]

[0, 2]

[0, 2]

(b) Corresponding INN

x1 h

y1

y2

y3

0.5

2

2

0

(c) One instantiation of the
INN

Fig. 1. Example DNN to INN and one of many instantiations of the INN.

https://doi.org/10.5281/zenodo.4031610

Abstract Neural Networks 67

2 Motivation

DNNs are often denoted by a graph of the form shown in Fig. 1a. The input
node x1 is assigned the input value, then the values of h1 and h2 are computed
by first a linear combination of the values of the previous layer (in this case x1)
followed by some non-linear activation function. The behavior of the network
is dependent on the non-linear activation function used. We will assume that
the output layer with nodes y1, y2, and y3 uses the identity activation function
I(x) = x. For the hidden layer with nodes h1 and h2 we will consider two
scenarios, each using one of the following two activation functions:

σ(x) =

{
x if x ≥ 0
0 otherwise.

φ(x) =

{
x if x ≥ 0
0.5x otherwise.

.

Using σ as the activation function for the hidden layer, when x1 = 1 we
have h1 = σ(1x1) = 1 and h2 = σ(−1x1) = 0. That in turn gives us y1 =
I(1h1 + 1h2) = 1, y2 = I(1h1 + 0h2) = 1, and y3 = I(0h1 + 1h2) = 0.

Using σ as the activation function for the hidden layer, when x1 = 1, we have

h1 = σ(1x1) = 1 h2 = σ(−1x1) = 0
y1 = I(1h1 + 1h2) = 1 y2 = I(1h1 + 0h2) = 1 y3 = I(0h1 + 1h2) = 0.

Using φ as the activation function for the hidden layer, when x1 = 1, we have

h1 = φ(1) = 1 h2 = φ(−1) = −0.5
y1 = 0.5 y2 = 1 y3 = −0.5.

2.1 Merging Nodes

Our goal is to merge nodes and their corresponding weights in this DNN to
produce a smaller network that over-approximates the behavior of the original
one. One way of doing this was proposed by Prabhakar et al. [29], where nodes
within a layer can be merged and the weighted interval hull of their edge weights
is taken. For example, if we merge all of the hi nodes together into a single h
node, this process results in an Interval Neural Network (INN) shown in Fig. 1b.

Intuitively, given this new INN we can form a DNN instantiation by picking
any weight within the interval for each edge. We can then find the output of
this DNN instantiation on, say, x1 = 1. We take the output of the INN on an
input x1 to be the set of all such (y1, y2, y3) triples outputted by some such
instantiated DNN on x1.

For example, we can take the instantiation in Fig. 1c. Using the σ activation
function, this implies (y1 = 1, y2 = 1, y3 = 0) is in the output set of the INN
on input x1 = 1. In fact, the results of Prabhakar et al. [29] show that, if the σ
activation function is used, then for any input x1 we will have some assignment
to the weights which produces the same output as the original DNN (although

68 M. Sotoudeh and A. V. Thakur

many assignments will produce different outputs—the output set is an over-
approximation of the behavior of the original network).

However, something different happens if the network were using the φ acti-
vation function, a case that was not considered by Prabhakar et al. [29]. In that
scenario, the original DNN had an output of (0.5, 1,−0.5), so if the INN were
to soundly over-approximate it there would need to be some instantiation of the
weights where y1 and y3 could have opposite signs. But this cannot happen—
both will have the same (or zero) sign as h!

These examples highlight the fact that the soundness of the algorithm
from Prabhakar et al. [29] is specific to the ReLU activation function (σ above)
and Interval abstract domain. Their results make no statement about whether
INNs over-approximate DNNs using different activation functions (such as φ
above), or if abstractions using different domains (such as the Octagon Neural
Networks defined in Definition 11) also permit sound DNN over-approximation.

This paper develops a general framework for such DNN abstractions, parame-
terized by the abstract domain and activation functions used. In this framework,
we prove necessary and sufficient conditions on the activation functions for a
Layer-Wise Abstraction Algorithm generalizing that of Prabhakar et al. [29] to
produce an ANN soundly over-approximating the given DNN. Finally, we discuss
ways to modify the abstraction algorithm in order to soundly over-approximate
common DNN architectures that fail the necessary conditions, extending the
applicability of model abstraction to almost all currently-used DNNs.

These results lay a solid theoretical foundation for research into Abstract
Neural Networks. Because our algorithm and proofs are parameterized by the
abstract domain and activation functions used, our proofs allow practitioners to
experiment with different abstractions, activation functions, and optimizations
without having to re-prove soundness for their particular instantiation (which,
as we will see in Sect. 7, is a surprisingly subtle process).

3 Preliminaries

In this section we define Deep Neural Networks and a number of commonly-used
activation functions.

3.1 Deep Neural Networks

In Sect. 2, we represented neural networks by graphs. While this is useful for
intuition, in Sect. 4 we will talk about, e.g., octagons of layer weight matrices,
for which the graph representation makes significantly less intuitive sense. Hence,
for the rest of the paper we will use an entirely equivalent matrix representation
for DNNs, which will simplify the definitions, intuition, and proofs considerably.
With this notation, we think of nodes as dimensions and layers of nodes as
intermediate spaces. We then define a layer to be a transformation from one
intermediate space to another.

Abstract Neural Networks 69

Definition 1. A DNN layer from n to m dimensions is a tuple (W,σ) where W
is an m × n matrix and σ : R → R is an arbitrarily-chosen activation function.

We will often abuse notation such that, for a vector v, σ(v) is the vector
formed by applying σ to each component of v.

Definition 2. A Deep Neural Network (DNN) with layer sizes s0, s1, . . . , sn is a
collection of n DNN layers (W (1), σ(1)), . . . , (W (n), σ(n)), where the (W (i), σ(i))
layer is from si−1 to si dimensions.

Every DNN has a corresponding function, defined below.

Definition 3. Given a DNN from s0 to sn dimensions with layers (W (i), σ(i)),
the function corresponding to the DNN is the function f : R

s0 → R
sn given

by f(v) = v(n), where v(i) is defined inductively by v(0) = v and v(i) =
σ(i)(W (i)(v(i−1))).

Where convenient, we will often refer to the corresponding function as the
DNN or vice-versa.

Example 1. The DNN N1 from Fig. 1a, when using the σ hidden-layer activation

function, is represented by the layers
([

1
−1

]
, σ
)

and
([

1 1
1 0
0 1

]
, I

)
. The function

corresponding to the DNN is given by N1(x1) =
[
1 1
1 0
0 1

]
σ
([

1
−1

]
[x1]

)
.

3.2 Common Activation Functions

There are a number of commonly-used activation functions, listed below.

Definition 4. The Leaky Rectified Linear Unit (LReLU) [22], Rectified Linear
Unit (ReLU), Hyperbolic Tangent (tanh), and Threshold (thresh) activation
functions are defined:

LReLU(x; c) :=

{
x x ≥ 0
cx x < 0

, ReLU(x) := LReLU(x; 0),

tanh :=
e2x − 1
e2x + 1

, thresh(x; t, v) :=

{
x if x ≥ t

v otherwise
.

Here LReLU and thresh actually represent families of activation functions
parameterized by the constants c, t, v. The constants used varies between net-
works. c = 0 is a common choice for the LReLU parameter, hence the explicit
definition of ReLU.

All of these activation functions are present in standard deep-learning toolk-
its, such as Pytorch [26]. Libraries such as Pytorch also enable users to implement
new activation functions. This variety of activation functions used in practice
will motivate our study of necessary and sufficient conditions on the activation
function to permit sound over-approximation.

70 M. Sotoudeh and A. V. Thakur

4 Abstract Neural Networks

In this section, we formalize the syntax and semantics of Abstract Neural Net-
works (ANNs). We also present two types of ANNs: Interval Neural Networks
(INNs) and Octagon Neural Networks (ONNs).

An ANN is like a DNN except the weights in each layer are represented by
an abstract value in some abstract domain. This is formalized below.

Definition 5. An n × m weight set abstract domain is a lattice A with Galois
connection (αA, γA) with the powerset lattice P(Rn×m) of n × m matrices.

Definition 6. An ANN layer from n to m dimensions is a triple (A, A, σ) where
A is a member of the weight set abstraction A and σ : R → R is an arbitrarily-
chosen activation function.

Thus, we see that each ANN layer (A, A, σ) is associated with a set of weights
γA(A). Finally, we can define the notion of an ANN:

Definition 7. An Abstract Neural Network (ANN) with layer sizes
s0, s1, . . . , sn is a collection of n ANN layers (A(i), A(i), σ(i)), where the ith layer
is from si−1 to si dimensions.

We consider the output of the ANN to be the set of outputs of all instantia-
tions of the ANN into a DNN, as illustrated in Fig. 2.

Definition 8. We say a DNN with layers (W (i), σ(i)) is an instantiation of an
ANN T with layers (A(i), A(i), σ(i)) if each W (i) ∈ γA(i)(A(i)). The set of all
DNNs that are instantiations of an ANN T is given by γ(T).

The semantics of an ANN naturally lift those of the DNN instantiations.

Definition 9. For an ANN T from s0 to sn dimensions, the function cor-
responding to T is the set-valued function T : R

s0 → P(Rsn) defined by
T (v) := {g(v) | g ∈ γ(T)}.

Space constraints prevent us from defining a full Galois connection here, how-
ever one can be established between the lattice of ANNs of a certain architecture
and the powerset of DNNs of the same architecture.

The definition of an ANN above is agnostic to the actual abstract domain(s)
used. For expository purposes, we now define two particular types of ANNs:
Interval Neural Networks (INNs) and Octagon Neural Networks (ONNs).

Definition 10. An Interval Neural Network (INN) is an ANN with layers
(A(i), A(i), σ(i)), where each A(i) is an interval hull domain [5]. The interval
hull domain represents sets of matrices by their component-wise interval hull.

Notably, the definition of INN in Prabhakar et al. [29] is equivalent to the
above, except that they further assume every activation function σ(i) is the ReLU
function.

Abstract Neural Networks 71

Fig. 2. Visualization of ANN semantics for a 3-layer ANN T (first row). Different
DNN instantiations (other rows) of T are formed by replacing each abstract weight
matrix A(i) by some concrete weight matrix H(j,i) ∈ γ(A(i)). v(j,3) is the output of
each instantiation on the input v. The set of all such outputs producable by some valid
instantiation is taken to be the output T (v) of the ANN on vector v.

Example 2. We first demonstrate the interval hull domain: γInt

([
[−1, 1] [0, 2]

[−3, −2] [1, 2]

])
=

{[
a b
c d

]
| a ∈ [−1, 1], b ∈ [0, 2], c ∈ [−3, −2], d ∈ [1, 2]

}
. We can thus define a two-layer INN

f(v) :=
[
[0, 1] [0, 1]

]
ReLU

([
[−1, 1] [0, 2]
[−3, −2] [1, 2]

]
v
)
. We can instantiate this network in

a variety of ways, for example g(v) :=
[
0.5 1

]
ReLU

([
0 2

−2.5 1.5

]
v
)

∈ γ(f). Taking

arbitrarily (1, 1)T as an example input, we have g((1, 1)T) =
[
1
] ∈ f((1, 1)T). In

fact, f((1, 1)T) is the set of all values that can be achieved by such instantiations,
which in this case is the set given by f((1, 1)T) =

[
[0, 3]

]
.

Definition 11. An Octagon Neural Network (ONN) is an ANN with layers
(A(i), A(i), σ(i)), where each A(i) is an octagon hull domain [23]. The octagon
hull domain represents sets of matrices by octagons in the space of their compo-
nents.

Example 3. Octagons representing a set of n × m matrices can be thought of
exactly like an octagon in the vector space R

n·m. Unfortunately, this is partic-
ularly difficult to visualize in higher dimensions, hence in this example we will
stick to the case where nm = 2.

Let O1, O2 be octagons such that

γOct(O1) =
{[

a
b

]
| a − b ≤ 1,−a + b ≤ 1, a + b ≤ 2,−a − b ≤ 2

}
,

γOct(O2) =
{[

a b
] | a − b ≤ 2,−a + b ≤ 3, a + b ≤ 4,−a − b ≤ 5

}
.

72 M. Sotoudeh and A. V. Thakur

We can thus define a two-layer ONN f(v) := O2ReLU (O1v). One instantiation
of this ONN f is the DNN g(v) :=

[
3 1
]
ReLU

([
0.5
1.5

]
v
)

∈ γ(f). We can confirm

that g(1) =
[
3
] ∈ f(1).

We can similarly define Polyhedra Neural Networks (PNNs) using the poly-
hedra domain [6].

5 Layer-Wise Abstraction Algorithm

Given a large DNN, how might we construct a smaller ANN which soundly
over-approximates that DNN? We define over-approximation formally below.

Definition 12. An ANN T over-approximates a DNN N if, for every v ∈ R
n,

N(v) ∈ T (v).

Remark 1. By Definition 9, then, T over-approximates N if, for every v we can
find some instantiation Tv ∈ γ(T) such that Tv (v) = N(v).

Algorithm 3 constructs a small ANN that, under certain assumptions dis-
cussed in Sect. 2, soundly over-approximates the large DNN given. The basic
idea is to merge groups of dimensions together, forming an ANN where each
dimension in the ANN represents a collection of dimensions in the original DNN.
We formalize the notion of “groups of dimensions” as a layer-wise partitioning.

Definition 13. Given a DNN with layer sizes s0, s1, . . . , sn, a layer-wise parti-
tioning P of the network is a set of partitionings P

(0),P(1), . . . ,P(n) where each
P
(i) partitions {1, 2, . . . , si}. For ease of notation, we will write partitionings with

set notation but assume they have some intrinsic ordering for indexing.

Remark 2. To maintain the same number of input and output dimensions
in our ANN and DNN, we assume P

(0) = {{1}, {2}, . . . , {s0}} and P
(n) =

{{1}, {2}, . . . , {sn}}.

Example 4. Consider the DNN corresponding to the function

f(x1) =
[
1 1
1 0
0 1

]
ReLU

([
1

−1

]
[x1]

)
. The layer sizes are s0 = 1, s1 = 2, s2 = 3.

Hence, one valid layer-wise partitioning is to merge the two inner dimensions:
P
(0) = {{1}} P

(1) = {{1, 2}} P
(2) = {{1}, {2}, {3}}. Here we have, e.g.,

P
(0)
1 = {1}, P(1)

1 = {1, 2}, and P
(2)
3 = {3}.

Abstract Neural Networks 73

Algorithm 1: α̂(M,Pin,Pout,A)
Input: Matrix M .

Partitionings Pin,
Pout with |Pin| = k.
Abstract domain A.

Output: Abstract element
representing all
merges of M .

1 S ← {}
2 w ← (|Pin

1 |, |Pin
2 |, . . . , |Pin

k |)
3 for C ∈ PCMs(Pin) do
4 for D ∈ PCMs(Pout) do
5 S ← S ∪

{ScaleCols(DT MC,w))}

6 return αA(S)

Algorithm 2: α̂bin(M,Pin,Pout,A)
Input: Matrix M .

Partitionings Pin, Pout

with |Pin| = k.
Abstract domain A.

Output: Abstract element
representing all
binary merges of M

1 S ← {}
2 w ← (|Pin

1 |, |Pin
2 |, . . . , |Pin

k |)
3 for C ∈ BinPCMs(Pin) do
4 for D ∈ BinPCMs(Pout) do
5 S ← S ∪

{ScaleCols(DT MC,w))}

6 return αA(S)

Algorithm 3: AbstractLayerWise〈A, Σ〉(N,P,A)

Input: DNN N consisting of n layers (W (i), σ(i)) with each σ(i) ∈ Σ.
Layer-wise partitioning P of N . List of n abstract weight
domains A(i) ∈ A.

Output: An ANN with layers (A(i), A(i), σ(i)) where A(i) ∈ A(i) ∈ A.
1 A ← []
2 for i ∈ {1, 2, . . . , n} do
3 A(i) ← α̂(W (i),P(i−1),P(i),A(i))
4 A.append

(
(A(i), A(i), σ(i))

)
5 return A

Our layer-wise abstraction algorithm is shown in Algorithm 3. For each layer
in the DNN, we will call Algorithm 1 to abstract the set of mergings of the
layer’s weight matrix. This abstract element becomes the abstract weight A(i)

for the corresponding layer in the constructed ANN.
The functions PCMs and ScaleCols are defined more precisely below.

Definition 14. Let P be some partition, i.e., non-empty subset, of {1, 2, . . . , n}.
Then a vector c ∈ R

n is a partition combination vector (PCV) if (i) each
component ci is non-negative, (ii) the components of ci sum to one, and (iii)
ci = 0 whenever i
∈ P .

Definition 15. Given a partitioning P of {1, 2, . . . , n} with |P| = k, a parti-

tioning combination matrix (PCM) is a matrix C =
[

c1 c2 · · · ck

]
, where each ci

is a PCV of partition Pi. We refer to the set of all such PCMs for a partitioning
P by PCMs(P).

74 M. Sotoudeh and A. V. Thakur

Definition 16. A PCM is binary if each entry is either 0 or 1. We refer to the
set of all binary PCMs for a partitioning P as BinPCMs(P).

Definition 17. For an n × m matrix M , PCM C of partitioning Pin of
{1, 2, . . . ,m}, and PCM D for partitioning Pout of {1, 2, . . . , n}, we call DT MC
a merging of M .

The jth column in MC is a convex combination of the columns of M that
belong to partition Pin

j , weighted by the jth column of C. Similarly, the ith row
in DT M is a convex combination of the rows in M that belong to partition Pout

i .
In total, the i, jth entry of merged matrix DT MC is a convex combination of the
entries of M with indices in Pout

i ×Pin
j . This observation will lead to Theorem 1

in Sect. 5.1.

Definition 18. Given a matrix M , the column-scaled matrix formed by
weights w1, w2, . . . , wk is the matrix with entries given component-wise by
ScaleCols(M, (w1, . . . , wk))i,j := Mi,jwj.

Intuitively, column-scaling is needed because what were originally n dimen-
sions contributing to an input have been collapsed into a single representative
dimension. This is demonstrated nicely for the specific case of Interval Neural
Network and ReLU activations by Figs. 3 and 4 in Prabhakar et al. [29].

Example 5. Given the matrix M =

[
m1,1 m1,2 m1,3
m2,1 m2,2 m2,3
m3,1 m3,2 m3,3
m4,1 m4,2 m4,3

]
, partitioning P

(0) =

{{1, 3}, {2}} of the input dimensions and P
(1) = {{2, 4}, {1, 3}} of the out-

put dimensions, we can define a PCM for P
(0) as C :=

[
0.25 0
0 1

0.75 0

]
and a PCM

for P
(1) as: D :=

[
0 0.99
0.4 0
0 0.01
0.6 0

]
. We can then compute the column–merged matrix

MC =

[
0.25m1,1 + 0.75m1,3 m1,2
0.25m2,1 + 0.75m2,3 m2,2
0.25m3,1 + 0.75m3,3 m3,2
0.25m4,1 + 0.75m4,3 m4,2

]
, and furthermore the column-row–merged matrix

DT MC =
[

0.4(0.25m2,1 + 0.75m2,3) + 0.6(0.25m4,1 + 0.75m4,3) 0.4m2,2 + 0.6m4,2
0.99(0.25m1,1 + 0.75m1,3) + 0.01(0.25m3,1 + 0.75m3,3) 0.99m1,2 + 0.01m3,2

]
.

Finally, we can column-scale this matrix like so:

ScaleCols(DTMC, (2, 2))

=

[
0.8(0.25m2,1 + 0.75m2,3) + 1.2(0.25m4,1 + 0.75m4,3) 0.8m2,2 + 1.2m4,2

1.98(0.25m1,1 + 0.75m1,3) + 0.02(0.25m3,1 + 0.75m3,3) 1.98m1,2 + 0.02m3,2

]
.

5.1 Computability

In general, there are an infinite number of mergings. Hence, to actually compute
α̂ (Algorithm 1) we need some non-trivial way to compute the abstraction of the
infinite set of mergings. If the abstract domain A(i) is convex, it can be shown
that one only needs to iterate over the binary PCMs, of which there are finitely
many, producing a computationally feasible algorithm.

Abstract Neural Networks 75

Definition 19. A weight set abstract domain A is convex if, for any set S of
concrete values, γA(αA(S)) is convex.

Many commonly-used abstractions—including intervals [5], octagons [23],
and polyhedra [6]—are convex.

Theorem 1. If A is convex, then α̂(M,Pin,Pout,A) = α̂bin(M,Pin,Pout,A).

Remark 3. Consider PCMs C and D corresponding to merged matrix DT W (i)C.
We may think of C and D as vectors in the vector space of matrices. Then their
outer product D ⊗C forms a convex coefficient matrix of the binary mergings R
of W (i), such that (D⊗C)R = DT W (i)C. From this intuition, it follows that the
converse to Theorem 1 does not hold, as every matrix E cannot be decomposed
into vectors D ⊗ C as described (i.e., not every matrix has rank 1). Hence, the
convexity condition may be slightly weakened. However, we are not presently
aware of any abstract domains that satisfy such a condition but not convexity.

Example 6. Let W (i) =
[
1 −2 3
4 −5 6
7 −8 9

]
and consider P

(i−1) = {{1, 2}, {3}} and P
(i) =

{{1, 3}, {2}}. Then we have the binary PCMs BinPCMs(P(i−1)) =⎧⎨
⎩
⎡
⎣1 0

0 0
0 1

⎤
⎦ ,

⎡
⎣0 0

1 0
0 1

⎤
⎦
⎫⎬
⎭ and BinPCMs(P(i)) =

{[
1 0
0 1
0 0

]
,

[
0 0
0 1
1 0

]}
. These correspond to

the column-scaled binary mergings
{[

2 3
8 6

]
,
[

−4 3
−10 6

]
,
[
14 9
8 6

]
,
[

−16 9
−10 6

]}
.

We can take any PCMs such as C =
[
0.75 0
0.25 0
0 1

]
for P(i−1) as well as D =

[
0.5 0
0 1
0.5 0

]
for P

(i), resulting in the scaled merging ScaleCols(DT W (i)C, (2, 1)) =
[
3.5 6
3.5 6

]
.

According to Theorem 1, we can write this as a convex combination of the four
column-scaled binary merged matrices. In particular, we find the combination

[
3.5 6
3.5 6

]
=(1.5/2)(1)(0.5)(1)

[
2 3
8 6

]
+ (0.5/2)(1)(0.5)(1)

[−4 3
−10 6

]

+ (1.5/2)(1)(0.5)(1)

[
14 9
8 6

]
+ (0.5/2)(1)(0.5)(1)

[−16 9
−10 6

]
.

We can confirm that this is a convex combination, as

(1.5/2)(1)(0.5)(1) + (0.5/2)(1)(0.5)(1) + (1.5/2)(1)(0.5)(1) + (0.5/2)(1)(0.5)(1) = 1.

Because we can find such a convex combination for any such non-binary
merging in terms of the binary ones, and because the abstract domain is assumed
to be convex, including only the binary mergings will ensure that all mergings
are represented by the abstract element A(i).

5.2 Walkthrough Example

Example 7. Consider again the DNN from Example 4 corresponding to

f(x1) =
[
1 1
1 0
0 1

]
σ
([

1
−1

]
[x1]

)
, the partitioning P

(0) = {{1}},P(1) = {{1, 2}},P(2) =

76 M. Sotoudeh and A. V. Thakur

{{1}, {2}, {3}}, which collapses the two hidden dimensions, and assume the
abstract domains A(i) are all convex.

For the input layer, we have w = (1), because the only partition in P
(0) has

size 1. Similarly, the only binary PCM for P
(0) is C =

[
1
]
. However, there are

two binary PCMs for P(1), namely D =
[
1
0

]
or D =

[
0
1

]
. These correspond to the

binary merged matrices
[
1
]

and
[−1

]
. Hence, we get A(1) = αA(1)({[1] ,

[−1
]}),

completing the first layer.
For the output layer, we have w = (2), because the only partition in P

(1)

contains two nodes. Hence, the column scaling will need to play a role: because
we have merged two dimensions in the domain, we should interpret any value
from that dimension as being from both of the dimensions that were merged. We

have two binary mergings, namely
[
1
1
0

]
and

[
1
0
1

]
, which after rescaling gives us

A(2) = αA(2)

({[
2
2
0

]
,

[
2
0
2

]})
.

In total then, the returned ANN can be written (A(1), σ), (A(2), x �→ x) or
in a more functional notation as g(x) = A(2)σ(A(1)x), where in either case

A(1) = αA(1)({[1] ,
[−1

]}), and A(2) = αA(2)

({[
2
2
0

]
,

[
2
0
2

]})
.

Note in particular that, while the operation of the algorithm was agnostic to
the exact abstract domains A and activation functions Σ used, the semantics of
the resulting ANN depend entirely on these. Hence, correctness of the algorithm
will depend on the abstract domain and activation functions satisfying certain
conditions. We will discuss this further in Sect. 6.

6 Layer-Wise Abstraction: Instantiations and Examples

This section examines a number of examples. For some DNNs, Algorithm 3 will
produce a soundly over-approximating ANN. For others, the ANN will provably
not over-approximate the given DNN. We will generalize these examples to nec-
essary and sufficient conditions on the activation functions Σ used in order for
AbstractLayerWise〈A, Σ〉(N,P,A) to soundly over-approximate N .

6.1 Interval Hull Domain with ReLU Activation Functions

Consider again the DNN from Example 7 given by f(x1) =
[
1 1
1 0
0 1

]
ReLU

([
1

−1

]
[x1]

)
and partitioning which merges the two intermediate dimen-

sions. Using the interval hull domain in Example 7 gives the corresponding INN:

g(x1) =
[
[2, 2]
[0, 2]
[0, 2]

]
ReLU ([[−1, 1]] [x1]).

In fact, because the ReLU activation function and interval domain was used,
it follows from the results of Prabhakar et al. [29] that g in fact over-approximates

Abstract Neural Networks 77

f . To see this, consider two cases. If x1 > 0, then the second component in the
hidden dimension of f will always become 0 under the activation function. Hence,

f(x1) =
[
1
1
0

]
ReLU ([1] [x1]) =

[
2
2
0

]
ReLU ([0.5] [x1]), which is a valid instantiation

of the weights in g. Otherwise, if x1 ≤ 0, we find f(x1) =
[
2
0
2

]
ReLU ([−0.5] [x1]),

which is again a valid instantiation. Hence in all cases, the true output f(x1) can
be made by some valid instantiation of the weights in g. Therefore, f(x1) ∈ g(x1)
for all x1 and so g over-approximates f .

Sufficiency Condition. The soundness of this particular instantiation can be
generalized to a sufficiency theorem, Theorem 2, for soundness of the layer-wise
abstraction algorithm. Its statement relies on the activation function satisfying
the weakened intermediate value property, which is defined below:

Definition 20. A function f : R → R satisfies the Weakened Intermediate
Value Property (WIVP) if, for every a1 ≤ a2 ≤ · · · ≤ an ∈ R, there exists some
b ∈ [a1, an] such that f(b) =

∑
i f(ai)

n .

Every continuous function satisfies the IVP and hence the WIVP. Almost
all commonly-used activation functions, except for thresh, are continuous and,
therefore, satisfy the WIVP. However, the WIVP is not equivalent to the IVP,
as the below proof shows by constructing a function f such that f((a, b)) = Q

for any non-empty open interval (a, b).
We now state the soundness theorem below, which is proved in Sect. 7.

Theorem 2. Let A be a set of weight set abstract domains and Σ a set of acti-
vation functions. Suppose (i) each σ ∈ Σ has entirely non-negative outputs, and
(ii) each σ ∈ Σ satisfies the Weakened Intermediate Value Property (Defini-
tion 20). Then T = AbstractLayerWise〈A, Σ〉(N,P,A) (Algorithm 3) soundly
over-approximates the DNN N .

6.2 Interval Hull Domain with Leaky ReLUs

Something different happens if we slightly modify f in Example 7 to use an
activation function producing negative values in the intermediate dimensions.
This is quite common of activation functions like Leaky ReLU and tanh, and
was not mentioned by Prabhakar et al. [29]. For example, we will take the
Leaky ReLU function (Definition 4) with c = 0.5 and consider the DNN

f(x1) =
[
1 1
1 0
0 1

]
LReLU

([
1

−1

]
[x1]; 0.5

)
. Using the same partitioning gives us the

INN g(x1) =
[
[2, 2]
[0, 2]
[0, 2]

]
LReLU ([[−1, 1]] [x1]; 0.5).

Surprisingly, this small change to the activation function in fact makes the
constructed ANN no longer over-approximate the original DNN. For example,
note that f(1) =

[
0.5 1 −0.5

]T and consider g(1). In g, the output of the LReLU

78 M. Sotoudeh and A. V. Thakur

is one-dimensional, hence, it will have either positive, negative, or zero sign. But
no matter how the weights in the final matrix are instantiated, every component
of g(1) will have the same (or zero) sign, and so f(1)
∈ g(1), because f(1) has
mixed signs.

Necessary Condition: Non-negative Values. We can generalize this coun-
terexample to the following necessary condition on soundness:

Theorem 3. Suppose some σ ∈ Σ is an activation function with neither entirely
non-negative nor entirely non-positive outputs, and every A ∈ A is at least as
precise as the interval hull abstraction. Then there exists a neural network N that
uses σ and a partitioning P such that T = AbstractLayerWise〈A, Σ〉(N,P,A)
does not over-approximate N .

Handling Negative Values. Thankfully, there is a workaround to support
sometimes-negative activation functions. The constructive theorem below implies
that a given DNN can be modified into a shifted version of itself such that the
input-output behavior on any arbitrary bounded region is retained, but the
intermediate activations are all non-negative.

Theorem 4. Let N be a DNN and suppose that, on some input region R, the
output of the activation functions are lower-bounded by a constant C. Then,
there exists another DNN N ′, with at most one extra dimension per layer, which
satisfies (i) N ′(x) = N(x) for any x ∈ R, (ii) N ′ has all non-negative activation
functions, and (iii) the new activation functions σ′ are of the form σ′(x) =
max(σ(x) + |C|, 0).

Notably, the proof of this theorem is constructive with a straightforward
construction. The one requirement is that a lower-bound C be provided for the
output of the nodes in the network. This lower-bound need not be tight, and
can be computed quickly using the same procedure discussed for upper bounds
immediately following Eq. 1 in Prabhakar et al. [29]. For tanh in particular, its
output is always lower-bounded by −1 so we can immediately take C = −1 for
a network using only tanh activations.

6.3 Interval Hull Abstraction with Non-continuous Functions

Another way that the constructed ANN may not over-approximate the DNN
is if the activation function does not satisfy the Weakened Intermediate Value
Property (WIVP) (Definition 20). For example, consider the threshold activation
function (Definition 4) with parameters t = 1, v = 0 and the same overall

network, i.e. f(x1) =
[
1 1
1 0
0 1

]
thresh

([
1

−1

]
[x1]; 1, 0

)
and the same partitioning. We

get the INN g(x1) =
[
[2, 2]
[0, 2]
[0, 2]

]
thresh ([[−1, 1]] [x1]; 1, 0). We have f(1) =

[
1 1 0

]T ,

however, in g(1), no matter how we instantiate the [−1, 1] weight, the output

Abstract Neural Networks 79

of the thresh unit will either be 0 or 1. But then the output of the first output
component must be either 0 or 2, neither of which is 1, and so g does not over-
approximate f .

Necessary Condition: WIVP. We can generalize this example to the follow-
ing necessary condition:

Theorem 5. Suppose some σ ∈ Σ is an activation function which does
not satisfy the WIVP, and every A ∈ A is at least as precise as the
interval hull abstraction. Then there exists a neural network N using only
the identity and σ activation functions and partitioning P such that T =
AbstractLayerWise〈A, Σ〉(N,P,A) does not over-approximate N .

While this is of some theoretical curiosity, in practice almost all commonly-
used activation functions do satisfy the WIVP. Nevertheless, if one does wish to
use such a function, one way to soundly over-approximate it with an ANN is to
replace the scalar activation function with a set-valued one. The ANN semantics
can be extended to allow picking any output value from the activation function
in addition to any weight from the weight set.

For example, consider again the thresh(x; 1, 0) activation function. It can be
completed to a set-valued activation function which satisfies the WIVP such as

thresh′(x; 1, 0) :=

{
{x} if x > 1

{a | a ∈ [0, 1]} if x = 1

{0} otherwise

. The idea is that we “fill the gap” in

the graph. Whereas in the original threshold function we had an issue because
there was no x ∈ [0, 1] which satisfied thresh(x; 1, 0) = f(0)+f(1)

2 = 1
2 , on the

set-valued function we can take x = 1 ∈ [0, 1] to find 1
2 ∈ thresh′(1; 1, 0).

6.4 Powerset Abstraction, ReLU, and α̂bin

Recall that α̂ (Algorithm 1) requires abstracting the, usually-infinite, set of all
merged matrices DT W (i)C. However, in Sect. 5.1 we showed that for convex
abstract domains it suffices to only consider the finitely-many binary mergings.
The reader may wonder if there are abstract domains for which it is not sufficient
to consider only the binary PCMs. This section presents such an example.

Suppose we use the same ReLU DNN f as in Sect. 6.1, for which we noted
before the corresponding INN over-approximates it. However, suppose instead
of intervals we used the powerset abstract domain, i.e., α(S) = S and A
 B =
A ∪ B. If we (incorrectly) used α̂bin instead of α̂, we would get the powerset

ANN g(x1) =
{[

2
2
0

]
,

[
2
0
2

]}
ReLU

({[1] ,
[−1

]} [x1

])
. Recall that f(1) =

[
1 1 0

]T .

However, with g(1), the first output will always be either 0 or 2, so g does not
over-approximate f . The basic issue is that to get the correct output, we need
to instantiate the inner weight to 0.5, which is in the convex hull of the original
weights, but is not either one of the original weights itself.

Note that, in this particular example, it is possible to find an ANN that over-
approximates the DNN using only finite sets for the abstract weights. However,

80 M. Sotoudeh and A. V. Thakur

this is only because ReLU is piecewise-linear, and the size of the sets needed
will grow exponentially with the number of dimensions. For other activation
functions, e.g., tanh infinite sets are required in general.

In general, non-convex abstract domains will need to use some other method
of computing an over-approximation of α̂. One general-purpose option is to use
techniques such as those developed for symbolic abstraction [36] to iteratively
compute an over-approximation of the true A(i) and use that instead.

7 Proof of Sufficient Conditions

We now prove Theorem 2, which provides sufficient conditions on the acti-
vation functions for which Algorithm 3 produces an ANN that soundly over-
approximates the given DNN.

The structure of the proof is illustrated in Fig. 3. To show that ANN T
over-approximates DNN N , we must show that N(v) ∈ T (v) for every v. This
occurs, by definition, only if there exists some instantiation Tv ∈ γ(T) of T for
which N(v) = Tv (v). Recall that an instantiation of an ANN is a DNN formed by
replacing each abstract weight A(i) with a concrete weight matrix H(i) ∈ γ(A(i)).
In particular, our proof will proceed layer-by-layer. On an input v = v(0), the
ith layer of DNN N maps v(i−1) to v(i) until the output v(n) is computed.
We will prove that, for each abstract layer (A(i), σ(i),A(i)), there is a matrix
H(i) = G(A(i),v(i−1)) ∈ γ(A(i)) for which the instantiated layer (H(i), σ(i)),
roughly speaking, also maps v(i−1) to v(i). However, by design the abstract layer
will have fewer dimensions, hence the higher-dimensional v(i−1) and v(i) may not
belong to its domain and range (respectively). We resolve this by associating
with each vector v(i) in the intermediate spaces of N a mean representative
vector v(i)

/P(i) in the intermediate spaces of Tv . Then we can rigorously prove
that the instantiated layer (H(i), σ(i)) maps v(i−1)

/P(i−1) to v(i)
/P(i) . Applying

this fact inductively gives us Tv (v/P(0)) = (N(v))/P(n) . Because P
(0) and P

(n)

are the singleton partitionings, this gives us exactly the desired relationship
Tv (v) = N(v).

Fig. 3. Visualization of the relationships between concrete, abstract, and instantiated
elements in the soundness proof. The original DNN’s action on an input vector v(0)

is shown on the top row. This DNN is abstracted to an ANN, represented by the
A(i)s on the middle row. We will show that we can instantiate the ANN such that the
instantiation has the same output as the original DNN on v(0).

Abstract Neural Networks 81

Algorithm 4: G(M,Pin,Pout,v,w′)

Input: An n × m matrix M . Partitionings Pin, Pout. A vector v with
non-negative entries. A vector w′ ∈ R(Mv,Pout).

Output: A matrix H ∈ γ(α̂(M,Pin,Pout)) such that H(v/Pin) = w′.
1 C,D ← 0|Pin|×n, 0|Pout|×m

2 for i = 1, 2, . . . , |Pin| do
3 for j ∈ Pin

i do
4 Cj,i ← vj/(

∑
k∈Pin

i
vk)

5 w ← Mv
6 for i = 1, 2, . . . , |Pout| do
7 a, b ← argmaxp∈Pout

i
wp, argminp∈Pout

i
wp

8 Da,i ← (w′
i − wb)/(wa − wb)

9 Db,i ← 1 − Da,i

10 s ← (|Pin
1 |, . . . , |Pin

|Pin||)
11 return ScaleCols

(
DT MC, s

)

7.1 Vector Representatives

Our proof relies heavily on the concept of representatives.

Definition 21. Given a vector v = (v1, v2, . . . , vn) and a partitioning P
of {1, 2, . . . , n} with |P| = k, we define the convex representative set of v under
P to be R(v,P) =

{
(z1, z2, . . . , zk) | ∀j.minh∈Pj

vh ≤ zj ≤ maxh∈Pj
vh

}
.

R(v,P) is referred to as AV (v) in Prabhakar et al. [29], and is always a box
in R

k.
One representative will be particularly useful, so we give it a specific notation:

Definition 22. Given a vector (v1, v2, . . . , vn) and a partitioning P of
{1, 2, . . . , n} with |P| = k, we define the mean representative of v under P
to be v/P =

(∑
j∈P1

vj

|P1| , . . . ,
∑

j∈Pk
vj

|Pk|
)

Example 8. Consider the vector v := (5, 6, 11, 2, 1) and the partitioning P =
{{1, 3}, {2, 4, 5}}. Then we have v/P = ((5 + 11)/2, (6 + 2 + 1)/3) = (8, 3) and
R(v,P) = {(z1, z2) | z1 ∈ [5, 11], z2 ∈ [1, 6]}.

7.2 Proof of Soundness Theorem

The operation G presented in Algorithm 4 shows how to instantiate an abstract
weight matrix such that it has input/output behavior corresponding to that of
the original DNN layer. We now prove the correctness of Algorithm 4.

82 M. Sotoudeh and A. V. Thakur

Lemma 1. Given any w′ ∈ R(Mv,Pin), a vector v with non-negative entries,
and H = G(M,Pin,Pout,v,w′), then H ∈ γ(α̂(M,Pin,Pout)) and H(v/Pin) =
w′.

Proof. To prove correctness of Algorithm 4, it suffices to show that (i) C and D
are PCMs, and (ii) the returned matrix H satisfies the equality H(v/Pin) = w′.

C is a PCM by construction: The ith column only has non-zero entries
for rows that are in the ith partition. The sum of all entries in a column is∑

j∈Pin
i

vj/(
∑

k∈Pin
i

vk) = 1. All entries are non-negative by assumption on v.
D is also a PCM: The ith column only has two entries. It suffices to show

that Da,i is in [0, 1], which follows because w′ ∈ R(Mv,Pout) implies w′
i is in

between the minimum b and maximum a.
By associativity, line 11 is equivalent to returning H = DT ME where E =

ScaleCols(C, s). Thus, to show that H(v/Pin) = w′, it suffices to show (i) that
E(v/Pin) = v, and (ii) that DT Mv = w′.

Note that here Ej,i = Cj,i|Pin
i |. Then to show (i), consider any index

j ∈ Pin
i . Then we find that the jth output component of E(v/Pin) is

(vj/(
∑

k∈Pin
i vk

))|Pin
i |((∑k∈Pin

i vk
)/|Pin

i |) = vj . Hence, the entire output vector
is v.

To show (ii), note that each column of D is exactly the convex combination
that produces the output w′

i from the maximum/minimum indices of Mv.
In total then, the returned matrix is in γ(α̂(M,Pin,Pout)) and satisfies

H(v/Pin) = w′. �

The next lemma implies that we can always find such a w′ ∈ R(Mv,Pin)

satisfying the relations in Fig. 3.

Lemma 2. Let σ be an activation function satisfying the WIVP, w any vector,
and P a partitioning the dimensions of w. Then there exists a vector w′ ∈
R(w,P) such that σ(w′) = (σ(w))/P .

Proof. Because σ(i) is defined to be a component-wise activation function, we can
assume WLOG that P(i) has only a single partition, i.e., P(i) = {{1, 2, . . . , s(i)}}.

In that case, label the components of w(i) such that w
(i)
1 ≤ w

(i)
2 ≤ . . . ≤ w

(i)
n .

Then the statement of the lemma is equivalent to the assertion that there exists
some b ∈ [w(i)

1 , w
(i)
n] such that σ(i)(b) = (

∑
j w

(i)
j)/n. But this is exactly the

definition of the WIVP. Hence, by assumption that σ(i) satisfies the WIVP, we
complete the proof. �

We are finally prepared to prove the soundness theorem. It is restated here
for clarity.

Theorem 2. Let A be a set of weight set abstract domains and Σ a set of acti-
vation functions. Suppose (i) each σ ∈ Σ has entirely non-negative outputs, and
(ii) each σ ∈ Σ satisfies the Weakened Intermediate Value Property (Defini-
tion 20). Then T = AbstractLayerWise〈A, Σ〉(N,P,A) (Algorithm 3) soundly
over-approximates the DNN N .

Abstract Neural Networks 83

Proof. A diagram of the proof is provided in Fig. 3.
Consider the ith layer. By Lemma 2, there exists some vector w

′(i) ∈
R(w(i),P(i)) such that σ(i)(w

′(i)) = v/P(i) . Furthermore, by Lemma 1 there exists
some H(i) ∈ γ(A(i)) such that H(i)(v(i−1)

/P(i−1)) = w
′(i). Therefore, in total we

can instantiate the ith abstract layer to (H(i), σ(i)), which maps v(i−1)
/P(i−1) to

v(i)
/P(i) .
By applying this construction to each layer, we find an instantiation of the

ANN that maps v(0)
/P(0) to v(n)

/P(n) . Assuming P
(0) and P

(n) are the singleton
partitionings, then, we have that the instantiation maps v(0) = v to v(n) = N(v),
as hoped for. Hence, N(v) ∈ T (v) for any such vector v, and so the ANN
overapproximates the original DNN. �

8 Related Work

The recent results by Prabhakar et al. [29] are the closest to this paper. Prab-
hakar et al. introduce the notion of Interval Neural Networks and a sound quo-
tienting (abstraction) procedure when the ReLU activation function is used.
Prabhakar et al. also proposed a technique for verification of DNNs using ReLU
activation functions by analyzing the corresponding INN using a MILP encod-
ing. Prabhakar et al. leaves open the question of determining the appropriate
partitioning of the nodes, and their results assume the use of the ReLU activa-
tion function and interval domain. We have generalized their results to address
the subtleties of other abstract domains and activation functions as highlighted
in Sect. 6.

There exists prior work [2,8,27] on models using interval-weighted neural net-
works. The goal of such approaches is generally to represent uncertainty, instead
of improve analysis time of a corresponding DNN. Furthermore, their semantics
are defined using interval arithmetic instead of the more-precise semantics we
give in Sect. 4. Nevertheless, we believe that future work may consider applica-
tions of our more general ANN formulation and novel abstraction algorithm to
the problem of representing uncertainty.

There have been many recent approaches exploring formal verification of
DNNs using abstractions. ReluVal [38] computes interval bounds on the outputs
of a DNN for a given input range. Neurify [37] extends ReluVal by using sym-
bolic interval analysis. Approaches such as DeepPoly [33] and AI2 [9] perform
abstract interpretation of DNNs using more expressive numerical domains such
as polyhedra and zonotopes. In contrast, Abstract Neural Networks introduced
in this paper use abstract values to represent the weight matrices of a DNN, and
are a different way of applying abstraction to DNN analysis.

This paper builds upon extensive literature on numerical abstract domains
[5,6,23,24], including libraries such as APRON [16] and PPL [1]. Of particular
relevance are techniques for verification of floating-point computation [4,28,28].

Techniques for compression of DNNs reduce their size using heuristics [7,14,
15]. They can degrade accuracy of the network, and do not provide theoretical

84 M. Sotoudeh and A. V. Thakur

guarantees. Gokulanathan et al. [12] use the Marabou Verification Engine [19] to
simplify neural networks so that the simplified network is equivalent to the given
network. Shriver et al. [32] refactor the given DNN to aid verification, though
the refactored DNN is not guaranteed to be an overapproximation.

9 Conclusion and Future Directions

We introduced the notion of an Abstract Neural Network (ANN). The weight
matrices in an ANN are represented using numerical abstract domains, such
as intervals, octagons, and polyhedra. We presented a framework, parameter-
ized by abstract domain and DNN activation function, that performs layer-wise
abstraction to compute an ANN given a DNN. We identified necessary and suffi-
cient conditions on the abstract domain and the activation function that ensure
that the computed ANN is a sound over-approximation of the given DNN. Fur-
thermore, we showed how the input DNN can be modified in order to soundly
abstract DNNs using rare activation functions that do not satisfy the sufficiency
conditions are used. Our framework is applicable to DNNs that use activation
functions such as ReLU, Leaky ReLU, and Hyperbolic Tangent. Our framework
can use convex abstract domains such as intervals, octagons, and polyhedra.
Code implementing our framework can be found at https://doi.org/10.5281/
zenodo.4031610. Detailed proofs of all theorems are in the extended version of
this paper [34].

The results in this paper provide a strong theoretical foundation for further
research on abstraction of DNNs. One interesting direction worth exploring is
the notion of completeness of abstract domains [11] in the context of Abstract
Neural Networks. Our framework is restricted to convex abstract domains; the
use of non-convex abstract domains, such as modulo intervals [25] or donut
domains [10], would require a different abstraction algorithm. Algorithms for
computing symbolic abstraction might show promise [21,30,31,35,36].

This paper focused on feed-forward neural networks. Because convolutional
neural networks (CNNs) are special cases of feed-forward neural networks, future
work can directly extend the theory in this paper to CNN models as well. Such
future work would need to consider problems posed by non-componentwise acti-
vation functions such as MaxPool, which do not fit nicely into the framework
presented here. Furthermore, extensions for recursive neural networks (RNNs)
and other more general neural-network architectures seems feasible.

On the practical side of things, it would be worth investigating the impact of
abstracting DNNs on the verification times. Prabhakar et al. [29] demonstrated
that their abstraction technique improved verification of DNNs. The results in
this paper are a significant generalization of the results of Prabhakar et al.,
which were restricted to interval abstractions and ReLU activation functions.
We believe that our approach would similarly help scale up verification of DNNs.

Acknowledgments. We thank the anonymous reviewers and Cindy Rubio González
for their feedback on this work.

https://doi.org/10.5281/zenodo.4031610
https://doi.org/10.5281/zenodo.4031610

Abstract Neural Networks 85

References

1. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008). https://doi.
org/10.1016/j.scico.2007.08.001

2. Beheshti, M., Berrached, A., de Korvin, A., Hu, C., Sirisaengtaksin, O.: On inter-
val weighted three-layer neural networks. In: Proceedings 31st Annual Simulation
Symposium (SS 1998), 5–9 April 1998, Boston, MA, USA. pp. 188–194. IEEE
Computer Society (1998). https://doi.org/10.1109/SIMSYM.1998.668487

3. Brown, T.B., et al.: Language models are few-shot learners. CoRR abs/2005.14165
(2020). https://arxiv.org/abs/2005.14165

4. Chen, L., Miné, A., Cousot, P.: A sound floating-point polyhedra abstract domain.
In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 3–18. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-89330-1 2

5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Graham,
R.M., Harrison, M.A., Sethi, R. (eds.) Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, California,
USA, January 1977, pp. 238–252. ACM (1977). https://doi.org/10.1145/512950.
512973

6. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Aho, A.V., Zilles, S.N., Szymanski, T.G. (eds.) Conference Record
of the Fifth Annual ACM Symposium on Principles of Programming Languages,
Tucson, Arizona, USA, January 1978, pp. 84–96. ACM Press (1978). https://doi.
org/10.1145/512760.512770

7. Deng, L., Li, G., Han, S., Shi, L., Xie, Y.: Model compression and hardware accel-
eration for neural networks: a comprehensive survey. Proc. IEEE 108(4), 485–532
(2020). https://doi.org/10.1109/JPROC.2020.2976475

8. Garczarczyk, Z.A.: Interval neural networks. In: IEEE International Symposium on
Circuits and Systems, ISCAS 2000, Emerging Technologies for the 21st Century,
Geneva, Switzerland, 28–31 May 2000, Proceedings. pp. 567–570. IEEE (2000).
https://doi.org/10.1109/ISCAS.2000.856123

9. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: 2018 IEEE Symposium on Security and Privacy, SP 2018, Pro-
ceedings, 21–23 May 2018, San Francisco, California, USA, pp. 3–18. IEEE Com-
puter Society (2018). https://doi.org/10.1109/SP.2018.00058

10. Ghorbal, K., Ivančić, F., Balakrishnan, G., Maeda, N., Gupta, A.: Donut
domains: efficient non-convex domains for abstract interpretation. In: Kuncak, V.,
Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 235–250. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9 16

11. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations com-
plete. J. ACM 47(2), 361–416 (2000). https://doi.org/10.1145/333979.333989

12. Gokulanathan, S., Feldsher, A., Malca, A., Barrett, C.W., Katz, G.: Simplify-
ing neural networks with the marabou verification engine. CoRR abs/1910.12396
(2019). http://arxiv.org/abs/1910.12396

13. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive Compu-
tation and Machine Learning. MIT Press (2016). http://www.deeplearningbook.
org/

https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1109/SIMSYM.1998.668487
https://arxiv.org/abs/2005.14165
https://doi.org/10.1007/978-3-540-89330-1_2
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.1109/ISCAS.2000.856123
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1007/978-3-642-27940-9_16
https://doi.org/10.1145/333979.333989
http://arxiv.org/abs/1910.12396
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/

86 M. Sotoudeh and A. V. Thakur

14. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In: Bengio, Y., LeCun, Y.
(eds.) 4th International Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2–4, 2016, Conference Track Proceedings (2016). http://
arxiv.org/abs/1510.00149

15. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.:
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model
size. CoRR abs/1602.07360 (2016). http://arxiv.org/abs/1602.07360

16. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 52

17. Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression
for aircraft collision avoidance systems. CoRR abs/1810.04240 (2018). http://arxiv.
org/abs/1810.04240

18. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

19. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C.,
Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3–6, 2012, Lake Tahoe, Nevada,
United States, pp. 1106–1114 (2012). http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks

21. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with SMT solvers. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2014, San Diego, CA, USA, January 20–21, 2014. pp. 607–618. ACM (2014).
https://doi.org/10.1145/2535838.2535857

22. Maas, A., Hannun, A., Ng, A.: Rectifier nonlinearities improve neural network
acoustic models. In: Proceedings of the International Conference on Machine Learn-
ing (2013)

23. Miné, A.: The octagon abstract domain. High. Order Symb. Comput. 19(1), 31–100
(2006). https://doi.org/10.1007/s10990-006-8609-1

24. Miné, A.: Tutorial on static inference of numeric invariants by abstract interpreta-
tion. Found. Trends Program. Lang. 4(3–4), 120–372 (2017). https://doi.org/10.
1561/2500000034

25. Nakanishi, T., Joe, K., Polychronopoulos, C.D., Fukuda, A.: The modulo interval:
a simple and practical representation for program analysis. In: Proceedings of the
1999 International Conference on Parallel Architectures and Compilation Tech-
niques, Newport Beach, California, USA, October 12–16, 1999, pp. 91–96. IEEE
Computer Society (1999). https://doi.org/10.1109/PACT.1999.807422

http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1602.07360
https://doi.org/10.1007/978-3-642-02658-4_52
http://arxiv.org/abs/1810.04240
http://arxiv.org/abs/1810.04240
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://doi.org/10.1145/2535838.2535857
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1561/2500000034
https://doi.org/10.1561/2500000034
https://doi.org/10.1109/PACT.1999.807422

Abstract Neural Networks 87

26. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learn-
ing library. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc,
F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, 8–14 December 2019, Vancouver, BC, Canada, pp. 8024–
8035 (2019). http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library

27. Patiño-Escarcina, R.E., Callejas Bedregal, B.R., Lyra, A.: Interval computing in
neural networks: one layer interval neural networks. In: Das, G., Gulati, V.P. (eds.)
CIT 2004. LNCS, vol. 3356, pp. 68–75. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-30561-3 8

28. Ponsini, O., Michel, C., Rueher, M.: Verifying floating-point programs with con-
straint programming and abstract interpretation techniques. Autom. Softw. Eng.
23(2), 191–217 (2016). https://doi.org/10.1007/s10515-014-0154-2

29. Prabhakar, P., Afzal, Z.R.: Abstraction based output range analysis for neu-
ral networks. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc,
F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, 8–14 December 2019, Vancouver, BC, Canada, pp. 15762–
15772 (2019). http://papers.nips.cc/paper/9708-abstraction-based-output-range-
analysis-for-neural-networks

30. Reps, T., Sagiv, M., Yorsh, G.: Symbolic implementation of the best transformer.
In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 252–266.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 21

31. Reps, T., Thakur, A.: Automating abstract interpretation. In: Jobstmann, B.,
Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 3–40. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5 1

32. Shriver, D., Xu, D., Elbaum, S.G., Dwyer, M.B.: Refactoring neural networks for
verification. CoRR abs/1908.08026 (2019). http://arxiv.org/abs/1908.08026

33. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL), 411–4130 (2019). https://
doi.org/10.1145/3290354

34. Sotoudeh, M., Thakur, A.V.: Abstract neural networks. CoRR abs/2009.05660
(2020). http://arxiv.org/abs/2009.05660

35. Thakur, A., Elder, M., Reps, T.: Bilateral algorithms for symbolic abstraction. In:
Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 111–128. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33125-1 10

36. Thakur, A., Reps, T.: A method for symbolic computation of abstract operations.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 174–192.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 17

http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library
https://doi.org/10.1007/978-3-540-30561-3_8
https://doi.org/10.1007/978-3-540-30561-3_8
https://doi.org/10.1007/s10515-014-0154-2
http://papers.nips.cc/paper/9708-abstraction-based-output-range-analysis-for-neural-networks
http://papers.nips.cc/paper/9708-abstraction-based-output-range-analysis-for-neural-networks
https://doi.org/10.1007/978-3-540-24622-0_21
https://doi.org/10.1007/978-3-662-49122-5_1
http://arxiv.org/abs/1908.08026
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
http://arxiv.org/abs/2009.05660
https://doi.org/10.1007/978-3-642-33125-1_10
https://doi.org/10.1007/978-3-642-31424-7_17

88 M. Sotoudeh and A. V. Thakur

37. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety anal-
ysis of neural networks. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman,
K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neural Information Processing Sys-
tems 2018, NeurIPS 2018, 3–8 December 2018, Montréal, Canada, pp. 6369–
6379 (2018). http://papers.nips.cc/paper/7873-efficient-formal-safety-analysis-of-
neural-networks

38. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analy-
sis of neural networks using symbolic intervals. In: Enck, W., Felt, A.P. (eds.)
27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15–17, 2018, pp. 1599–1614. USENIX Association (2018). https://www.
usenix.org/conference/usenixsecurity18/presentation/wang-shiqi

http://papers.nips.cc/paper/7873-efficient-formal-safety-analysis-of-neural-networks
http://papers.nips.cc/paper/7873-efficient-formal-safety-analysis-of-neural-networks
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi

Termination of Polynomial Loops

Florian Frohn1 , Marcel Hark2(B) , and Jürgen Giesl2

1 Max Planck Institute for Informatics and Saarland Informatics Campus,
Saarbrücken, Germany

2 LuFG Informatik 2, RWTH Aachen University, Aachen, Germany
marcel.hark@cs.rwth-aachen.de

Abstract. We consider the termination problem for triangular weakly
non-linear loops (twn-loops) over some ring S like Z, Q, or R. Essentially,
the guard of such a loop is an arbitrary Boolean formula over (possibly
non-linear) polynomial inequations, and the body is a single assignment[

x1
. . .
xd

]
←

[
c1 · x1 + p1

. . .
cd · xd + pd

]
where each xi is a variable, ci ∈ S, and each pi is a

(possibly non-linear) polynomial over S and the variables xi+1, . . . , xd.
We present a reduction from the question of termination to the exis-

tential fragment of the first-order theory of S and R. For loops over R,
our reduction entails decidability of termination. For loops over Z and
Q, it proves semi-decidability of non-termination.

Furthermore, we present a transformation to convert certain non-twn-
loops into twn-form. Then the original loop terminates iff the trans-
formed loop terminates over a specific subset of R, which can also be
checked via our reduction. This transformation also allows us to prove
tight complexity bounds for the termination problem for two important
classes of loops which can always be transformed into twn-loops.

1 Introduction

Let RA denote the real algebraic numbers. We consider loops of the form

while ϕ do �x ← �a. (1)

Here, �x is a vector1 of d ≥ 1 pairwise different variables that range over a ring
Z ≤ S ≤ RA, where ≤ denotes the subring relation. Moreover, �a ∈ (S[�x])d where

1 We use row- and column-vectors interchangeably to improve readability.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) - 389792660 as part of TRR 248, by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) - 235950644 (Project GI 274/6-2), and by the DFG
Research Training Group 2236 UnRAVeL.

c© Springer Nature Switzerland AG 2020
D. Pichardie and M. Sighireanu (Eds.): SAS 2020, LNCS 12389, pp. 89–112, 2020.
https://doi.org/10.1007/978-3-030-65474-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65474-0_5&domain=pdf
http://orcid.org/0000-0003-0902-1994
http://orcid.org/0000-0001-5111-3177
http://orcid.org/0000-0003-0283-8520
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-65474-0_5

90 F. Frohn et al.

S[�x] is the set of all polynomials over �x with coefficients from S. The condition ϕ is
an arbitrary propositional formula over the atoms {p � 0 | p ∈ S[�x], � ∈ {≥, >}}.2

We require S ≤ RA instead of S ≤ R, as it is unclear how to represent
transcendental numbers on computers. However, in Sect. 5 we will see that the
loops considered in this paper terminate over R iff they terminate over RA. Thus,
our results immediately carry over to loops where the variables range over R.
Hence, we sometimes also consider loops over S = R. However, even then we
restrict ourselves to loops (1) where all constants in ϕ and �a are algebraic.

We often represent a loop (1) by the tuple (ϕ,�a) of the loop condition ϕ and
the update �a = (a1, . . . , ad). Unless stated otherwise, (ϕ,�a) is always a loop on
Sd using the variables �x = (x1, . . . , xd) where Z ≤ S ≤ RA. A linear-update loop
has the form (ϕ,A · �x + �b) and it has real spectrum if A has real eigenvalues
only. A linear loop is a linear-update loop where ϕ is linear (i.e., its atoms are
only linear3 inequations). A conjunctive loop is a loop (ϕ,�a) where ϕ does not
contain disjunctions.

There exist several decidability results for the termination of linear loops
[6,8,15,24,34,37,41,53], but there are only very few results on the decidability of
termination for certain forms of non-linear loops [35,36,38,55]. Moreover, all of
these previous works only consider conjunctive loops besides [38] which only allows
for loop conditions defining compact sets. In this paper, we regard (linear and non-
linear) loops with arbitrary conditions, i.e., they may also contain disjunctions and
define non-compact sets. Furthermore, we study the decidability of termination for
non-linear loops over Z, Q, RA, and R, whereas the existing decidability results for
non-linear loops are restricted to loops over R. So we identify new sub-classes of
loops of the form (1) where (non-)termination is (semi-)decidable. Moreover, we
also investigate the complexity of the termination problem.

Contributions: We study a sub-class of loops of the form (1) (so-called twn-loops
(Sect. 2)), and present an (incomplete) transformation Tr from non-twn-loops
to twn-loops (Sect. 3). Then we show that termination of twn-loops over RA

and R is decidable and that non-termination over Z and Q is semi-decidable
(Sect. 4 and 5). For those classes of non-twn-loops where our transformation Tr
is complete, we obtain analogous decidability results. For all other loops of the
form (1), our (semi-)decision procedures still apply if Tr is applicable.

Finally, we prove Co-NP-completeness of termination of linear loops over Z,
Q, RA, and R with real spectrum and ∀R-completeness of termination of linear-
update loops with real spectrum over RA and R (Sect. 6).

All missing proofs can be found in [16].

2 Preliminaries

For any entity s, s[x/t] is the entity that results from s by replacing all free
occurrences of x by t. Similarly, if �x = (x1, . . . , xd) and �t = (t1, . . . , td), then
2 Note that negation is syntactic sugar in our setting, as, e.g., ¬(p > 0) is equivalent to

−p ≥ 0. So w.l.o.g. ϕ is built from atoms, ∧, and ∨.
3 In this paper “linear” refers to “linear polynomials” and thus includes affine func-

tions.

Termination of Polynomial Loops 91

s[�x/�t] results from s by replacing all free occurrences of xi by ti, for each 1 ≤
i ≤ d.

Any vector of polynomials �a ∈ (S[�x])d can also be regarded as a function �a :
(S[�x])d → (S[�x])d, where for any �p ∈ (S[�x])d, �a(�p) = �a[�x/�p] results from applying
the polynomials �a to the polynomials �p. In a similar way, we can also apply a
formula to polynomials �p ∈ (S[�x])d. To this end, we define ψ(�p) = ψ[�x/�p] for first-
order formulas ψ with free variables �x. As usual, function application associates
to the left, i.e., �a(�b)(�p) stands for (�a(�b))(�p). However, since applying polynomials
only means that one instantiates variables, we obviously have (�a(�b))(�p) = �a(�b(�p)).

Definition 1 formalizes the intuitive notion of termination for a loop (ϕ,�a).

Definition 1 (Termination). The loop (ϕ,�a) is non-terminating (over S) if

∃�c ∈ Sd. ∀n ∈ N. ϕ(�an(�c)).

Then �c is a witness for non-termination. Otherwise, (ϕ,�a) terminates (over S).

Here, �an denotes the n-fold application of �a, i.e., �a0(�c) = �c and �an+1(�c) =
�a(�an(�c)). Termination (which is sometimes also called universal termination) is
not to be confused with the halting problem, where one is interested in termi-
nation w.r.t. a given input. In contrast, Definition 1 considers termination w.r.t.
all inputs.

For any entity s, let V(s) be the set of all free variables that occur in s.
Given an assignment �x ← �a, the relation 	�a ∈ V(�a) × V(�a) is the transitive
closure of {(xi, xj) | i, j ∈ {1, . . . , d}, i
= j, xj ∈ V(ai)}. We call (ϕ,�a) triangular
if 	�a is well founded. So the restriction to triangular loops prohibits “cyclic
dependencies” of variables (e.g., where the new values of x1 and x2 both depend
on the old values of x1 and x2). For example, a loop with the body

[x1
x2

] ←[
x1 + x2

2
x2 − 1

]
is triangular since 	 = {(x1, x2)} is well founded, whereas a loop with

the body
[x1
x2

] ←
[

x1 + x2
2

x1 − 1

]
is not triangular. Triangularity is used to compute a

closed form for the n-fold application of the loop update �a, i.e., a vector �q of d
expressions over the variables �x and n such that �q = �an. From a practical point
of view, the restriction to triangular loops seems quite natural. For example, in
[18], 1511 polynomial loops were extracted from the Termination Problems Data
Base [54], the benchmark collection which is used at the annual Termination and
Complexity Competition [21], and only 26 of them were non-triangular.

The loop (ϕ,�a) is weakly non-linear if for no i, xi occurs in a non-linear
monomial of ai. So for example, a loop with the body

[x1
x2

] ←
[

x1 + x2
2

x2 − 1

]
is weakly

non-linear, whereas a loop with the body
[x1
x2

] ← [x1 · x2
x2 − 1

]
is not. Together with

triangularity, weak non-linearity ensures that we can always compute closed
forms. In particular, weak non-linearity excludes loops like (ϕ, x ← x2) that need
exponential space, as the values of some variables grow doubly exponentially.

A twn-loop is triangular and weakly non-linear. So in other words, by per-
muting variables every twn-loop can be transformed to the form

[x1
. . .
xd

]
←

[c1 · x1 + p1
. . .

cd · xd + pd

]

92 F. Frohn et al.

where ci ∈ S and pi ∈ S[xi+1, . . . , xd]. If (ϕ,�a) is weakly non-linear and xi’s
coefficient in ai is non-negative for all 1 ≤ i ≤ d, then (ϕ,�a) is non-negative. A
tnn-loop is triangular and non-negative (and thus, also weakly non-linear).

Our twn-loops are a special case of solvable loops [48].

Definition 2 (Solvable Loops). A loop (ϕ,�a) is solvable if there is a parti-
tioning J = {J1, . . . , Jk} of {1, . . . , d} such that for each 1 ≤ i ≤ k we have

�aJi
= Ai · �xJi

+ �pi,

where �aJi
is the vector of all aj with j ∈ Ji (and �xJi

is defined analogously),
di = |Ji|, Ai ∈ Sdi×di , and �pi ∈ (S[�xJi+1 , . . . , �xJk

])di . The eigenvalues of a
solvable loop are defined as the union of the eigenvalues of all Ai.

So solvable loops allow for blocks of variables with linear dependencies, and
twn-loops correspond to the case that each such block has size 1. While our
approach could easily be generalized to solvable loops with real eigenvalues, in
Sect. 3 we show that such a generalization does not increase its applicability.

For a ring Z ≤ S ≤ RA, the existential fragment of the first-order theory
of S is the set Th∃(S) of all formulas ∃�y ∈ Sk. ψ, where ψ is a propositional
formula over the atoms {p � 0 | p ∈ Q[�y, �z], � ∈ {≥, >}} and k ∈ N [44,51].
Here, �y and �z are pairwise disjoint vectors of variables (i.e., the variables �z are
free). Moreover, Th∃(S, RA) is the set of all formulas ∃�y ′ ∈ R

k′
A

, �y ∈ Sk. ψ,
with a propositional formula ψ over {p � 0 | p ∈ Q[�y ′, �y, �z], � ∈ {≥, >}} where
k′, k ∈ N and the variables �y ′, �y, and �z are pairwise disjoint. As usual, a formula
without free variables is closed. In the following, we also consider formulas over
inequations p � 0 where p’s coefficients are from RA to be elements of Th∃(RA)
(resp. Th∃(S, RA)). The reason is that real algebraic numbers are Th∃(RA)-
definable.

Finally, note that validity of formulas from Th∃(S) or Th∃(S, RA) is decidable
if S ∈ {RA, R} and semi-decidable if S ∈ {Z, Q} [11,52]. By undecidability of
Hilbert’s Tenth Problem, validity is undecidable for S = Z. While validity of
full first-order formulas (i.e., also containing universal quantifiers) over S = Q

is undecidable [45], it is still open whether validity of formulas from Th∃(Q) or
Th∃(Q, RA) is decidable. However, validity of linear formulas from Th∃(S) or
Th∃(S, RA) is decidable for all S ∈ {Z, Q, RA, R}.

3 Transformation to Triangular Weakly Non-linear Form

We first show how to handle loops that are not yet twn. To this end, we introduce
a transformation of loops via polynomial automorphisms in Sect. 3.1 and show
that our transformation preserves (non-)termination (Theorem10). In Sect. 3.2,
we use results from algebraic geometry to show that the question whether a loop
can be transformed into twn-form is reducible to validity of Th∃(RA)-formulas
(Theorem 20). Moreover, we show that it is decidable whether a linear automor-
phism can transform a loop into a special case of the twn-form (Theorem 23).

Termination of Polynomial Loops 93

3.1 Transforming Loops

Clearly, the polynomials x1, . . . , xd are generators of the S-algebra S[�x], i.e.,
every polynomial from S[�x] can be obtained from x1, . . . , xd and the operations
of the algebra (i.e., addition and multiplication). So far, we have implicitly chosen
a special “representation” of the loop based on the generators x1, . . . , xd.

We now change this representation, i.e., we use a different set of d polynomials
which are also generators of S[�x]. Then the loop has to be modified accordingly
in order to adapt it to this new representation. This modification does not affect
the loop’s termination behavior, but it may transform a non-twn-loop into twn-
form.

The desired change of representation is described by S-automorphisms of
S[�x]. As usual, an S-endomorphism of S[�x] is a mapping η : S[�x] → S[�x] which
is S-linear and multiplicative.4 We denote the ring of S-endomorphisms of S[�x]
by EndS(S[�x]) (where the operations on this ring are pointwise addition and
function composition ◦). The group of S-automorphisms of S[�x] is EndS(S[�x])’s
group of units, and we denote it by AutS(S[�x]). So an S-automorphism of S[�x]
is an η ∈ EndS(S[�x]) that is invertible. Thus, there exists an η−1 ∈ EndS(S[�x])
such that η ◦η−1 = η−1 ◦η = idS[�x], where idS[�x] is the identity function on S[�x].

Example 3 (Automorphism). Let η ∈ EndS (S[x1, x2]) with η(x1) = x2, η(x2) =
x1 − x2

2. Then η ∈ AutS (S[x1, x2]), where η−1(x1) = x2
1 + x2 and η−1(x2) = x1.

As S[�x] is free on the generators �x, an endomorphism η ∈ EndS(S[�x]) is
uniquely determined by the images of the variables, i.e., by η(x1), . . . , η(xd).
Hence, we have a one-to-one correspondence between elements of (S[�x])d and
EndS(S[�x]). In particular, every tuple �a = (a1, . . . , ad) ∈ (S[�x])d corresponds to
the unique endomorphism ã ∈ EndS(S[�x]) with ã(xi) = ai for all 1 ≤ i ≤ d. So
for any p ∈ S[�x] we have ã(p) = p(�a). Thus, the update of a loop induces an
endomorphism which operates on polynomials.

Example 4 (Updates as Endomorphisms). Consider the loop

while x3
2 + x1 − x2

2 > 0do (x1, x2) ← (a1, a2)

where a1 = ((−x2
2 + x1)2 + x2)2 − 2 · x2

2 + 2 · x1 and a2 = (−x2
2 + x1)2 + x2, i.e.,

ϕ = (x3
2+x1−x2

2 > 0) and �a = (a1, a2). Then �a induces the endomorphism ã with
ã(x1) = a1 and ã(x2) = a2. So we have ã(2·x1+x3

2) = (2·x1+x3
2)(�a) = 2·a1+a3

2.
For tuples of numbers (e.g., �c = (5, 2)), the endomorphism c̃ is c̃(x1) = 5 and

c̃(x2) = 2. Thus, we have c̃(x3
2 +x1 −x2

2) = (x3
2 +x1 −x2

2)(5, 2) = 23 +5−22 = 9.

We extend the application of endomorphisms η : S[�x] → S[�x] to vectors
of polynomials �a = (a1, . . . , ad) by defining η(�a) = (η(a1), . . . , η(ad)) and to
formulas ϕ ∈ Th∃(S) by defining η(ϕ) = ϕ(η(�x)), i.e., η(ϕ) results from ϕ by
applying η to all polynomials that occur in ϕ. This allows us to transform (ϕ,�a)
into a new loop Trη(ϕ,�a) using any automorphism η ∈ AutS(S[�x]).
4 So we have η(c · p + c′ · p′) = c · η(p) + c′ · η(p′), η(1) = 1, and η(p · p′) = η(p) · η(p′)

for all c, c′ ∈ S and all p, p′ ∈ S[�x].

94 F. Frohn et al.

Definition 5 (Tr). Let η ∈ AutS(S[�x]). We define Trη(ϕ,�a) = (ϕ′,�a′) where5

ϕ′ = η−1(ϕ) and �a′ = (η−1 ◦ ã ◦ η)(�x).

Example 6 (Transforming Loops). We transform the loop (ϕ,�a) from Example 4
with the automorphism η from Example 3. We obtain Trη(ϕ,�a) = (ϕ′,�a′) where

ϕ′ = η−1(ϕ) = ((η−1(x2))3 + η−1(x1) − (η−1(x2))2 > 0)

= (x3
1 + x2

1 + x2 − x2
1 > 0) = (x3

1 + x2 > 0) and

�a′ = ((η−1 ◦ ã ◦ η)(x1), (η−1 ◦ ã ◦ η)(x2)) = (η−1(ã(x2)), η−1(ã(x1 − x2
2)))

= (η−1(a2), η−1(a1 − a2
2)) = (x1 + x2

2, 2 · x2).

So the resulting transformed loop is (x3
1+x2 > 0, (x1+x2

2, 2·x2)). Note that while
the original loop (ϕ,�a) is neither triangular nor weakly non-linear, the resulting
transformed loop is twn. Also note that we used a non-linear automorphism
with η(x2) = x1 − x2

2 for the transformation.

While the above example shows that our transformation can indeed trans-
form non-twn-loops into twn-loops, it remains to prove that this transformation
preserves (non-)termination. Then we can use our techniques for termination
analysis of twn-loops for twn-transformable-loops as well, i.e., for all loops (ϕ,�a)
where Trη(ϕ,�a) is twn for some automorphism η. (The question how to find
such automorphisms will be addressed in Sect. 3.2.)

As a first step, by Lemma 7, our transformation is “compatible” with the
operation ◦ of the group AutS(S[�x]), i.e., it is an action.

Lemma 7. Tr is an action of AutS(S[�x]) on loops, i.e., for η1, η2 ∈ AutS(S[�x])

Tr idS[�x](ϕ,�a) = (ϕ,�a) and Trη1◦η2(ϕ,�a) = Trη2(Trη1(ϕ,�a)).

The next lemma shows that a witness for non-termination of (ϕ,�a) is trans-
formed by η(�x) into a witness for non-termination of Trη(ϕ,�a).

Lemma 8. If �c witnesses non-termination of (ϕ,�a), then η̂(�c) witnesses non-
termination of Trη(ϕ,�a). Here, η̂ : Sd → Sd maps �c to η̂(�c) = c̃(η(�x)) =
(η(�x))(�c).

Example 9 (Transforming Witnesses). For the tuple �c = (5, 2) from Example 4
and the automorphism η from Example 3 with η(x1) = x2 and η(x2) = x1 − x2

2,
we obtain

η̂(�c) = (η(x1), η(x2)) (�c) = (2, 5 − 22) = (2, 1).

As �c = (5, 2) witnesses non-termination of Example 4, η̂(�c) = (2, 1) witnesses
non-termination of Trη(ϕ,�a) due to Lemma 8.

5 In other words, we have �a′ = (η(�x)) (�a) (η−1(�x)), since (η−1 ◦ ã ◦ η)(�x) =
η−1(η(�x)[�x/�a]) = η(�x)[�x/�a][�x/η−1(�x)] = (η(�x))(�a)(η−1(�x)).

Termination of Polynomial Loops 95

Finally, Theorem10 states that transforming a loop preserves (non-)termination.

Theorem 10 (Tr Preserves Termination). If η ∈ AutS(S[�x]), then (ϕ,�a)
terminates iff Trη(ϕ,�a) terminates. Furthermore, η̂ is a bijection between the
respective sets of witnesses for non-termination.

Up to now, we only transformed a loop (ϕ,�a) on Sd using elements of
AutS(S[�x]). However, we can also transform it into the loop Trη(ϕ,�a) on R

d
A

using an automorphism η ∈ AutRA
(RA[�x]). Nevertheless, our goal remains to

prove termination on Sd instead of R
d
A
, which is not equivalent in general. Thus,

in Sect. 5 we will show how to analyze termination of loops on certain subsets
F of R

d
A
. This allows us to analyze termination of (ϕ,�a) on Sd by checking

termination of Trη(ϕ,�a) on the subset η̂(Sd) ⊆ R
d
A

instead.
By our definition of loops over a ring S, we have �a(�c) ∈ Sd for all �c ∈ Sd,

i.e., Sd is �a-invariant. This property is preserved by our transformation.

Definition 11 (�a-Invariance). Let (ϕ,�a) be a loop on Sd and let F ⊆ Sd.
We call F �a-invariant or update-invariant if for all �c ∈ F we have �a(�c) ∈ F .

Lemma 12. Let (ϕ,�a) be a loop on Sd, let F ⊆ Sd be �a-invariant, and let η ∈
AutRA

(RA[�x]). Furthermore, let Trη(ϕ,�a) = (ϕ′,�a′). Then η̂(F) is �a′-invariant.

Recall that our goal is to reduce termination to a Th∃(S, RA)-formula.
Clearly, termination on F cannot be encoded with such a formula if F can-
not be defined via Th∃(S, RA). Thus, we require that F is Th∃(S, RA)-definable.

Definition 13 (Th∃(S, RA)-Definability). A set F ⊆ R
d
A

is Th∃(S, RA)-de-
finable if there is a ψ ∈ Th∃(S, RA) with free variables �x such that for all �c ∈ R

d
A

�c ∈ F iff ψ(�c) is valid.

An example for a Th∃(Z, RA)-definable set is {(a, 0, a) | a ∈ Z}, which is cha-
racterized by the formula ∃a ∈ Z. x1 = a ∧ x2 = 0 ∧ x3 = a.

To analyze termination of (ϕ,�a) on Sd, we can analyze termination of
Trη(ϕ,�a) on η̂(Sd) ⊆ R

d
A

instead. The reason is that �c ∈ Sd witnesses non-
termination of (ϕ,�a) iff η̂(�c) witnesses non-termination of Trη(ϕ,�a) due to
Theorem 10, i.e., Sd contains a witness for non-termination of (ϕ,�a) iff η̂(Sd) con-
tains a witness for non-termination of Trη(ϕ,�a). While Sd is clearly Th∃(S, RA)-
definable, the following lemma shows that η̂(Sd) is Th∃(S, RA)-definable, too.
More precisely, Th∃(S, RA)-definability is preserved by polynomial endomor-
phisms.

Lemma 14. Let Z ≤ S ≤ RA and let η ∈ EndRA
(RA[�x]). If F ⊆ R

d
A

is
Th∃(S, RA)-definable then so is η̂(F).

Example 15. The set Z
2 is Th∃(Z, RA)-definable, as we have (x1, x2) ∈ Z

2 iff

∃a, b ∈ Z. x1 = a ∧ x2 = b.

96 F. Frohn et al.

Let η ∈ EndRA
(RA[�x]) with η(x1) = 1

2 · x2
1 + x2

2 and η(x2) = x2
2. Then η̂(Z2) is

also Th∃(Z, RA)-definable, because for x1, x2 ∈ RA, we have (x1, x2) ∈ η(Z2) iff

∃y1, y2 ∈ RA, a, b ∈ Z. y1 = a ∧ y2 = b ∧ x1 = 1
2 · y2

1 + y2
2 ∧ x2 = y2

2 .

The following theorem shows that instead of regarding solvable loops [48],
w.l.o.g. we can restrict ourselves to twn-loops. The reason is that every solv-
able loop with real eigenvalues can be transformed into a twn-loop by a
linear automorphism η, i.e., the degree deg(η) of η is 1, where deg(η) =
max1≤i≤d deg(η(xi)).

Theorem 16. Let (ϕ,�a) be a solvable loop with real eigenvalues. Then one can
compute a linear automorphism η ∈ AutRA

(RA[�x]) such that Trη(ϕ,�a) is twn.

We recapitulate our most important results on Tr in the following corollary.

Corollary 17 (Properties of Tr). Let (ϕ,�a) be a loop, η ∈ AutRA
(RA[�x]),

Trη(ϕ,�a) = (ϕ′,�a′), and F ⊆ Sd be �a-invariant and Th∃(S, RA)-definable. Then

1. η̂(F) ⊆ R
d
A

is �a′-invariant and Th∃(S, RA)-definable,
2. (ϕ,�a) terminates on F iff (ϕ′,�a′) terminates on η̂(F), and
3. �c ∈ F witnesses non-termination of (ϕ,�a) iff

η̂(�c) ∈ η̂(F) witnesses non-termination of (ϕ′,�a′).

3.2 Finding Automorphisms to Transform Loops into twn-Form

The goal of the transformation from Sect. 3.1 is to transform (ϕ,�a) into twn-form,
such that termination of the resulting loop Trη(ϕ,�a) can be analyzed by the
technique which will be presented in Sect. 4 and 5. Hence, the remaining challenge
is to find a suitable automorphism η ∈ AutRA

(RA[�x]) such that Trη(ϕ,�a) is twn.
In this section, we will present two techniques to check the existence of such
automorphisms constructively, i.e., these techniques can also be used to compute
such automorphisms.

Note that the search for suitable automorphisms is closely related to the
question if a polynomial endomorphism can be conjugated into a “de Jon-
quiéres”-automorphism, a difficult question from algebraic geometry [14]. So
future advances in this field may help to improve the results of the current
section.

The first technique (Theorem 20) reduces the search for a suitable automor-
phism of bounded degree to Th∃(RA). It is known that for any automorphism
the degree of its inverse has an upper bound in terms of the length d of �x, see
[14, Cor. 2.3.4].

Theorem 18. Let η ∈ AutRA
(RA[�x]). Then we have deg(η−1) ≤ (deg(η))d−1.

By Theorem 18, checking if an endomorphism is indeed an automorphism can
be reduced to Th∃(RA). To do so, one encodes the existence of suitable coeffi-
cients of the polynomials η−1(x1), . . . , η−1(xd), which all have at most degree
(deg(η))d−1.

Termination of Polynomial Loops 97

Lemma 19. Let η ∈ EndRA
(RA[�x]). Then the question whether η ∈

AutRA
(RA[�x]) holds is reducible to Th∃(RA).

Based on Lemma 19, we now present our first technique to find an automor-
phism η that transforms a loop into twn-form.

Theorem 20 (Tr with Automorphisms of Bounded Degree). For any
δ ≥ 0, the question whether there exists an η ∈ AutRA

(RA[�x]) with deg(η) ≤ δ
such that Trη(ϕ,�a) is twn is reducible to Th∃(RA).

So if the degree of η is bounded a priori, then it is decidable whether there
exists an η ∈ AutRA

(RA[�x]) such that Trη(ϕ,�a) is twn, since Th∃(RA) is decid-
able.

We call a loop twn-transformable if there is an η ∈ AutRA
(RA[�x]) such

that Trη(ϕ,�a) is twn. By Theorem 20, twn-transformability is semi-decidable,
since one can increment δ until a suitable automorphism is found. So in other
words, any loop which is transformable to a twn-loop can be transformed via
Theorem 20.

We call our transformation Tr complete for a class of loops if every loop
from this class is twn-transformable. For such classes of loops, a suitable auto-
morphism is computable by Theorem 20. Together with Theorem 16, we get the
following corollary.

Corollary 21. Tr is complete for solvable loops with real eigenvalues.

Note that for solvable loops (ϕ,�a), instead of computing η using Theorem 20,
the proof of Theorem 16 yields a more efficient way to compute a linear auto-
morphism η such that Trη(ϕ,�a) is twn. To this end, one computes the Jordan
normal form of each Ai (see Definition 2), which is possible in polynomial time
(see e.g., [19,46]).

Our second technique to find suitable automorphisms for our transformation
is restricted to linear automorphisms. In this case, it is decidable whether a loop
can be transformed into a twn-loop (ϕ′,�a′) where the monomial for xi has the
coefficient 1 in each a′

i. The decision procedure checks whether a certain Jacobian
matrix is strongly nilpotent, i.e., it is not based on a reduction to Th∃(RA).

Definition 22 (Strong Nilpotence). Let J ∈ (RA[�x])d×d be a matrix of poly-
nomials. For all 1 ≤ i ≤ d, let �y(i) be a vector of fresh variables. J is strongly
nilpotent if

∏d
i=1 J [�x/�y(i)] = 0d×d, where 0d×d ∈ (RA[�x])d×d is the zero matrix.

Our second technique is formulated in the following theorem which follows
from an existing result in linear algebra [13, Thm. 1.6.].

Theorem 23 (Tr with Linear Automorphisms [13, Thm. 1.6.]). Let (ϕ,�a)
be a loop. The Jacobian matrix (∂(ai−xi)

∂xj
)1≤i,j≤d ∈ (RA[�x])d×d is strongly nilpo-

tent iff there exists a linear automorphism η ∈ AutRA
(RA[�x]) with

Trη(ϕ,�a) = (ϕ′, (x1 + p1, . . . , xd + pd)) (2)

and pi ∈ RA[xi+1, . . . , xd]. Thus, Trη(ϕ,�a) is twn.

98 F. Frohn et al.

As strong nilpotence of the Jacobian matrix is clearly decidable, Theorem23
gives rise to a decision procedure for the existence of a linear automorphism that
transforms (ϕ,�a) to the form (2).

Example 24 (Finding Automorphisms). The following loop on S3 shows how our
results enlarge the class of loops where termination is reducible to Th∃(S, RA).

while 4 · x2
2 + x1 + x2 + x3 > 0 do (x1, x2, x3) ← (a1, a2, a3) (3)

with a1 = x1 + 8 · x1 · x2
2 + 16 · x2

3 + 16 · x2
2 · x3

a2 = x2 − x1
2 − 4 · x1 · x2 − 4 · x1 · x3 − 4 · x2

2 − 8 · x2 · x3 − 4 · x3
2

a3 = x3 − 4 · x1 · x2
2 − 8 · x2

3 − 8 · x2
2 · x3 + x1

2 + 4 · x1 · x2 +

4 · x1 · x3 + 4 · x2
2 + 8 · x2 · x3 + 4 · x3

2

It is clearly not in twn-form. To transform it, we use Theorem 23. The Jaco-
bian matrix J of (a1 − x1, a2 − x2, a3 − x3) is:

[
8·x2

2 16·x1·x2+48·x2
2+32·x2·x3 16·x2

2−2·x1−4·x2−4·x3 −4·x1−8·x2−8·x3 −4·x1−8·x2−8·x3

−4·x2
2+2·x1+4·x2+4·x3 −8·x1·x2−24·x2

2−16·x2·x3+4·x1+8·x2+8·x3 −8·x2
2+4·x1+8·x2+8·x3

]

One easily checks that J is strongly nilpotent. Thus, by Theorem23 the loop
can be transformed into twn-form by a linear automorphism. Indeed, consider
the linear automorphism η ∈ AutRA

(RA[�x]) induced by the matrix M =
[
1 1 1
0 2 0
1 2 2

]
,

i.e.,
x1 �→ x1 + x2 + x3, x2 �→ 2 · x2, x3 �→ x1 + 2 · x2 + 2 · x3

with its inverse η−1

x1 �→ 2 · x1 − x3, x2 �→ 1
2 · x2, x3 �→ −x1 − 1

2 · x2 + x3.

If we transform our loop with η, we obtain the following twn-loop:

while x1 + x2
2 > 0 do

⎡
⎢⎢⎢⎣

x1

x2

x3

⎤
⎥⎥⎥⎦←

⎡
⎢⎢⎢⎢⎣

x1 + x2
2 · x3

x2 − 2 · x2
3

x3

⎤
⎥⎥⎥⎥⎦

(4)

If S = RA, then (4) terminates on R
3
A

iff (3) terminates on R
3
A

by Theorem 10.
Now assume S = Z, i.e., we are interested in termination of (3) on Z

3 instead
of R

3
A
. Note that η̂ maps Z

3 to the set of all Z-linear combinations of columns
of M , i.e.,

η̂(Z3) = {a · (1, 0, 1) + b · (1, 2, 2) + c · (1, 0, 2) | a, b, c ∈ Z} .

By Corollary 17, (4) terminates on η̂(Z3) iff (3) terminates on Z
3. Moreover,

η̂(Z3) is Th∃(Z, RA)-definable: We have (x1, x2, x3) ∈ η̂(Z3) iff

∃a, b, c ∈ Z. x1 = a · 1 + b · 1 + c · 1 ∧ x2 = b · 2 ∧ x3 = a · 1 + b · 2 + c · 2.

In the following sections, we will see how to analyze termination of loops like (4)
on sets that can be characterized by such formulas.

Termination of Polynomial Loops 99

To summarize, if a loop is twn-transformable, then we can always find a
suitable automorphism via Theorem20. So whenever Theorem 23 is applicable, a
suitable linear automorphism can also be obtained by using Theorem20 for some
fixed degree δ ≥ 1. Hence, our first technique from Theorem 20 subsumes our
second one from Theorem 23. However, while Theorem 20 is always applicable,
Theorem 23 is easier to apply. The reason is that for Theorem20 one has to
check validity of a possibly non-linear formula over the reals, where the degree
of the occurring polynomials depends on δ and the update �a of the loop. So even
when searching for a linear automorphism, one may obtain a non-linear formula
if the loop is non-linear. In contrast, Theorem23 only requires linear algebra.
So it is preferable to first check whether the loop can be transformed into a
twn-loop (ϕ′, (x1 + p1, . . . , xd + pd)) with xi /∈ V(pi) via a linear automorphism.
This check is decidable due to Theorem 23.

Note that the proof of Theorem20 and the proof of [13, Thm. 1.6.] which
implies Theorem 23 are constructive. Thus, we can not only check the existence
of a suitable automorphism, but we can also compute it whenever its existence
can be proven.

4 Computing Closed Forms

Now we show how to reduce the termination problem of a twn-loop on a
Th∃(S, RA)-definable set to validity of a formula from Th∃(S, RA). Our reduction
exploits that for twn-loops (ϕ,�a), there is a closed form for the n-fold application
of �a which can be represented as a vector of poly-exponential expressions.

As in [15], we restrict ourselves to tnn-loops (instead of twn-loops), because
each twn-loop can be transformed into a tnn-loop via chaining.

Definition 25 (Chaining). Chaining a loop (ϕ,�a) yields (ϕ ∧ ϕ(�a),�a(�a)).

Clearly, (ϕ,�a) terminates iff (ϕ ∧ ϕ(�a),�a(�a)) terminates. Moreover, if (ϕ,�a)
is a twn-loop then (ϕ∧ϕ(�a),�a(�a)) is a tnn-loop, i.e., the coefficient of each xi in
ai(�a) is non-negative. Thus, analogous to [15], we obtain the following theorem.

Theorem 26. Termination of twn-loops is reducible to termination of tnn-
loops.

It is well known that closed forms for tnn-loops are computable, see, e.g.,
[28]. The reason is that the bodies of tnn-loops correspond to a special case of
C-finite recurrences, which are known to be solvable [26]. The resulting closed
forms may contain polynomial arithmetic and exponentiation w.r.t. n (as, e.g.,
x1 ← 2 · x1 has the closed form x1 · 2n) as well as certain piecewise defined
functions. For example, the closed form of x1 ← 1 is x

(n)
1 = x1 if n = 0 and

x
(n)
1 = 1, otherwise.

We use poly-exponential expressions [15]6 to represent closed forms where
piecewise defined functions are simulated via characteristic functions. Given a
6 Our definition of poly-exponential expressions slightly generalizes [15, Def. 9] (e.g.,

we allow polynomials over the variables �x instead of just linear combinations).

100 F. Frohn et al.

formula ψ over n, its characteristic function �ψ� : N → {0, 1} evaluates to 1
iff ψ is satisfied (i.e., �ψ� (c) = 1 if ψ[n/c] holds and �ψ� (c) = 0, otherwise). In
this way, we avoid handling piecewise defined functions via disjunctions (as done
in the closed form of [28]). Poly-exponential expressions are sums of arithmetic
terms over the variables �x and the additional designated variable n, where it
is always clear which addend determines the asymptotic growth of the whole
expression when increasing n. This is crucial for our reducibility proof in Sect. 5.
In the following, for any set X ⊆ R, any k ∈ X, and � ∈ {≥, >}, let X�k = {x ∈
X | x � k}.

Definition 27 (Poly-Exponential Expressions). Let C be the set of all
finite conjunctions over {n = c, n
= c | c ∈ N} where n is a designated variable.
The set of all poly-exponential expressions with the variables �x is

PE[�x] =
{∑�

j=1 �ψj� · αj · naj · bn
j

∣
∣
∣ 	, aj ∈ N, ψj ∈ C, αj ∈ RA[�x], bj ∈ (RA)>0

}
.

So an example for a poly-exponential expression is

�n
= 0 ∧ n
= 1� · (12 · x1
2 + 3

4 · x2 − 1) · n3 · 3n + �n = 1� · (x1 − x2).

Note that the restriction to triangular loops ensures that the closed form does
not contain complex numbers. For example, for arbitrary matrices A ∈ Sd×d,
the update �x ← A · �x is known to admit a closed form as in Definition 27 with
complex bj ’s, whereas real numbers suffice for triangular matrices. Moreover,
non-negativity is required to ensure bj > 0 (e.g., the non-tnn loop x1 ← −x1 has
the closed form x1 · (−1)n). So together with triangularity, weak non-linearity
ensures that for every tnn-loop, one can compute a closed form �q ∈ (PE[�x])d

with �q = �an.

Example 28 (Closed Forms). Reconsider the loop (4) from Example 24. This
loop is tnn as 	(4)= {(x1, x2), (x1, x3), (x2, x3)} is well founded. Moreover, every
variable xi occurs with a non-negative coefficient in its corresponding update ai.
A closed form for the update after n ∈ N loop iterations is:

�q =

[
4
3
·x5

3 ·n3 +
(−2·x5

3 − 2·x2 ·x3
3

)·n2 +
(
x2
2 ·x3 + 2

3
·x5

3 + 2·x2 ·x3
3

)·n + x1

−2 · x2
3 · n + x2

x3

]

5 Reducing Termination of tnn-Loops to Th∃(S,RA)

It is known that the bodies of tnn-loops can be linearized [39], i.e., one can
reduce termination of a tnn-loop (ϕ,�a) to termination of a linear-update tnn-
loop (ϕ′,�a′) where ϕ′ may be non-linear. Moreover, [55] showed decidability of
termination for certain classes of conjunctive linear-update loops over R, which
cover conjunctive linear-update tnn-loops. So, by combining the results of [39]
and [55], one can conclude that termination for conjunctive tnn-loops over R is
decidable.

Termination of Polynomial Loops 101

However, we will now present a reduction of termination of tnn-loops to
Th∃(S, RA) which applies to tnn-loops over any ring Z ≤ S ≤ R and can handle
also disjunctions in the loop condition. Moreover, our reduction yields tight
complexity results on termination of linear loops over Z, Q, RA, and R, and on
termination of linear-update loops over RA and R (Sect. 6).

The idea of our reduction is similar to [15]. However, in [15], we considered
conjunctive linear loops over Z. In contrast, we now analyze termination of
(ϕ,�a) on an �a-invariant Th∃(S, RA)-definable subset of R

d
A

and allow arbitrary
propositional formulas and non-linearity in the condition. So the correctness
proofs differ substantially from [15]. For reasons of space, we only show the
major steps of our reduction and refer to [16] for more details.

In the following, let (ϕ,�a) be tnn, let F ⊆ R
d
A

be �a-invariant and Th∃(S, RA)-
definable by the formula ψF , and let �q ∈ (PE[�x])d be the closed form of �an.

We now show how to encode termination of (ϕ,�a) on F into a Th∃(S, RA)-
formula. More precisely, we show that there is a function with the following
specification that is computable in polynomial time:

Input : (ϕ,�a), �q, and ψF as above
Result : a closed formula χ ∈ Th∃(S, RA) such that

χ is valid iff (ϕ,�a) does not terminate on F

(5)

We use the concept of eventual non-termination [8,53], where the loop con-
dition may be violated finitely often, i.e., �c witnesses eventual non-termination
of (ϕ,�a) if �an0(�c) witnesses non-termination for some n0 ∈ N. Clearly, (ϕ,�a) is
non-terminating iff it is eventually non-terminating [41]. The formula χ in (5)
will encode the existence of a witness for eventual non-termination.

By the definition of �q, (ϕ,�a) is eventually non-terminating on F iff

∃�x ∈ F, n0 ∈ N. ∀n ∈ N>n0 . ϕ(�q). (6)

Example 29. Continuing Examples 24 and 28, (4) is eventually non-terminating
on

F = η̂(Z3) = {a · (1, 0, 1) + b · (1, 2, 2) + c · (1, 0, 2) | a, b, c ∈ Z}
iff there is a corresponding witness �c = (x1, x2, x3), i.e., iff

∃x1, x2, x3 ∈ F, n0 ∈ N. ∀n ∈ N>n0 . p > 0, where (7)

p =
(
4
3 · x5

3

) · n3 +
(−2 · x5

3 − 2 · x2 · x3
3 + 4 · x4

3

) · n2 +
(
x2
2 · x3 + 2

3 · x5
3 + 2 · x2 · x3

3 − 4 · x2 · x2
3

) · n +
(
x1 + x2

2

)
.

Let �qnorm be like �q, but each factor �ψ� is replaced by 0 if it contains an
equation and by 1, otherwise. The reason is that for large enough n, equations
in ψ become false and negated equations become true. Thus, (6) is equivalent to

∃�x ∈ F, n0 ∈ N. ∀n ∈ N>n0 . ϕ(�qnorm). (8)

In this way, we obtain normalized poly-exponential expressions.

102 F. Frohn et al.

Definition 30 (Normalized PEs). We call p ∈ PE[�x] normalized if it is in

NPE[�x] =
{∑�

j=1 αj · naj · bn
j

∣
∣
∣ 	, aj ∈ N, αj ∈ RA[�x], bj ∈ (RA)>0

}
.

W.l.o.g., we always assume (bi, ai)
= (bj , aj) if i
= j. We define NPE = NPE[∅].

As ϕ is a propositional formula over RA[�x]-inequations, ϕ(�qnorm) is a propo-
sitional formula over NPE[�x]-inequations. By (8), we need to check if there is an
�x ∈ F such that ϕ(�qnorm) is valid for large enough n. To do so, we generalize [15,
Lemma 24]. As usual, g : N → R dominates f : N → R asymptotically (f ∈ o(g))
if for all m > 0 there is an n0 ∈ N such that |f(n)| < m · |g(n)| for all n ∈ N>n0 .

Lemma 31. Let b1, b2 ∈ (RA)>0 and a1, a2 ∈ N. If (b2, a2) >lex (b1, a1), then
na1 · bn

1 ∈ o(na2 · bn
2), where (b2, a2) >lex (b1, a1) iff b2 > b1 or b2 = b1 ∧ a2 > a1.

In the following, let p ≥ 0 or p > 0 occur in ϕ(�qnorm). Then we can order the
coefficients of p according to the asymptotic growth of their addends w.r.t. n.

Definition 32 (Ordering Coefficients). Marked coefficients are of the form
α(b,a) where α ∈ RA[�x], b ∈ (RA)>0, and a ∈ N. We define unmark

(
α(b,a)

)
= α

and α
(b2,a2)
2 	coef α

(b1,a1)
1 if (b2, a2) >lex (b1, a1). Let p =

∑�
j=1 αj · naj · bn

j ∈
NPE[�x], where αj
= 0 for all 1 ≤ j ≤ 	. Then the marked coefficients of p are

coefs (p) = {0(1,0)} if 	 = 0 and coefs (p) = {α
(bj ,aj)
j | 0 ≤ j ≤ 	}, otherwise.

Example 33. Continuing Example 29, coefs (p) is {α
(1,3)
1 , α

(1,2)
2 , α

(1,1)
3 , α

(1,0)
4 }

where:

α1 = 4
3 · x5

3 α2 = −2 · x5
3 − 2 · x2 · x3

3 + 4 · x4
3

α3 = x2
2 · x3 + 2

3 · x5
3 + 2 · x2 · x3

3 − 4 · x2 · x2
3 α4 = x2

2 + x1

Note that p(�c) ∈ NPE for any �c ∈ R
d
A
, i.e., the only variable in p(�c) is n. Now

the 	coef -maximal addend determines the asymptotic growth of p(�c):

o(p(�c)) = o(k · na · bn) where k(b,a) = max�coef
(coefs (p(�c))) . (9)

Note that (9) would be incorrect for the case k = 0 if we replaced o(p(�c)) =
o(k · na · bn) with o(p(�c)) = o(na · bn) as o(0) = ∅
= o(1). Obviously, (9) implies

∃n0 ∈ N. ∀n ∈ N>n0 . sign (p(�c)) = sign (k) (10)

where sign (0) = 0, sign (k) = 1 if k > 0, and sign (k) = −1 if k < 0. This already
allows us to reduce eventual non-termination to Th∃(S, RA) if ϕ is an atom.

Lemma 34. Given p ∈ NPE[�x] and � ∈ {≥, >}, one can reduce validity of

∃�x ∈ F, n0 ∈ N. ∀n ∈ N>n0 . p � 0 (11)

to validity of a closed formula from Th∃(S, RA) in polynomial time.7

7 More precisely, the reduction of Lemma 34 and of the following Theorem 36 takes
polynomially many steps in the size of the input of the function in (5).

Termination of Polynomial Loops 103

More precisely, (11) can be reduced to a formula ∃�x ∈ R
d
A
. ψF ∧ red(p � 0),

where red(p � 0) is constructed as follows. By (10), we have p(�c) > 0 for large
enough values of n iff the coefficient of the asymptotically fastest-growing addend
α(�c) ·na · bn of p that does not vanish (i.e., where α(�c)
= 0) is positive. Similarly,
we have p(�c) < 0 for large enough n iff α(�c) < 0. If all addends of p vanish when
instantiating �x with �c, then p(�c) = 0. In other words, (11) holds iff there is a �c ∈ F
such that unmark

(
max�coef

(coefs (p(�c)))
)
� 0. To express this in Th∃(S, RA), let

α1, . . . , α� be the coefficients of p, ordered according to the asymptotic growth
of the respective addends where α1 belongs to the fastest-growing addend. Then

red(p > 0) is
∨�

j=1

(
αj > 0 ∧ ∧j−1

i=1 αi = 0
)

and red(p ≥ 0) is red(p > 0) ∨ ∧�
i=1 αi = 0.

Hence, (11) is equivalent to ∃�x ∈ R
d
A
. ψF ∧ red(p � 0).

Example 35 (Reducing Eventual Non-Termination to Th∃(S, RA)). We finish
Example 33 resp. Example 24 for S = Z, where unmark

(
max�coef

(coefs (p))
)

=
4
3 · x5

3 and ψF is

∃a, b, c ∈ Z. x1 = a + b + c ∧ x2 = b · 2 ∧ x3 = a + b · 2 + c · 2.

Thus, (7) is valid iff ∃x1, x2, x3 ∈ RA. ψF ∧ red(p > 0) is valid where

red(p > 0) = α1 > 0 ∨ (α2 > 0 ∧ α1 = 0)

∨ (α3 > 0 ∧ α1 = α2 = 0) ∨ (α4 > 0 ∧ α1 = α2 = α3 = 0) .

Then [x1/1, x2/0, x3/1] satisfies ψF ∧α1 > 0 as (1, 0, 1) ∈ F (see Example 29) and(
4
3 · x5

3

)
[x1/1, x2/0, x3/1] > 0. Thus, (1, 0, 1) witnesses eventual non-termination

of (4). So the original loop (3) is non-terminating on Z
3 by Corollary 17 resp.

Theorem 10.

Now we lift our reduction to propositional formulas. Note that a version of
the following Theorem 36 that only covers conjunctions is a direct corollary of
Lemma 34. To handle disjunctions, the proof of Theorem36 exploits the crucial
additional insight that a tnn-loop (ϕ ∨ ϕ′,�a) terminates iff (ϕ,�a) and (ϕ′,�a)
terminate, which is not true in general (as, e.g., witnessed by the loop (x >
0 ∨ −x > 0,−x)).

Theorem 36. Given a propositional formula ξ over the atoms {p � 0 | p ∈
NPE[�x], � ∈ {≥, >}}, one can reduce validity of

∃�x ∈ F, n0 ∈ N. ∀n ∈ N>n0 . ξ (12)

to validity of a formula ∃�x ∈ R
d
A
. ψF ∧ red(ξ) ∈ Th∃(S, RA) in polynomial time.

Here, red(ξ) results from replacing each atom p � 0 in ξ by red(p � 0).
Theorem 36 shows that the function (5) is computable (in polynomial time).

This leads to the main result of this section.

104 F. Frohn et al.

Theorem 37 (Reducing Termination). Termination of tnn-loops (resp.
twn-loops) on �a-invariant and Th∃(S, RA)-definable sets is reducible to
Th∃(S, RA).

However, in general this reduction is not computable in polynomial time.
The reason is that closed forms �q of �an cannot be computed in polynomial time
if the update �a contains non-linear terms. For example, consider the following
tnn-loop:

while true do �x ← (d · x1, x
d
1, . . . , x

d
d−2, x

d
d−1) (13)

The closed form for x
(n)
i is qi = d(di−1·(n−i+1)) · x

(di−1)
1 for all n ≥ d. Note

that log d(dd−1) grows faster in d than any expression of the form cd, where
c ∈ N. Thus, the closed form qd ∈ PE[�x] for x

(n)
d contains constants whose

logarithm grows faster than any expression cd. Hence, qd cannot be computed
in polynomial time. As mentioned at the beginning of this section, the bodies
of tnn-loops could also be linearized [39]. However, since the linearization of
(13) contains these constants as well, it cannot be computed in polynomial time,
either.

Note that our reduction also works if S = R, i.e., termination over R is
reducible to Th∃(R, RA). As R and RA are elementary equivalent, i.e., a first-
order formula is valid over R iff it is valid over RA, we get the following corollary.

Corollary 38 ((Semi-)Decidability of (Non-)Termination). Let (ϕ,�a) be
a twn-loop and let F ⊆ R

d
A

be �a-invariant and Th∃(S, RA)-definable.

(a) The loop (ϕ,�a) terminates over RA iff it terminates over R.
(b) Termination of (ϕ,�a) on F is decidable if S = RA or S = R.
(c) Non-termination of (ϕ,�a) on F is semi-decidable if S = Z or S = Q.

Moreover, by Theorem20 it is semi-decidable if a loop is twn-transformable. For
conjunctive twn-loops, Corollary 38 (b) also follows from combining [39] and [55].

Our technique does not yield witnesses for non-termination, but the formula
constructed by Theorem 36 describes all witnesses for eventual non-termination.
So, the set of witnesses of eventual non-termination is Th∃(S, RA)-definable
whereas in general, the set of witnesses of non-termination is not (see [12]).

Lemma 39. Let ξ = ϕ(�qnorm). Then �c ∈ R
d
A

witnesses eventual non-
termination of (ϕ,�a) on F iff ψF (�c) ∧ (red(ξ)) (�c).

However, in [23] we showed how to compute witnesses for non-termination
from witnesses for eventual non-termination of twn-loops. Thus, Lemma 39 com-
bined with our results from [23] yields a technique to enumerate all witnesses
for non-termination.

If (ϕ,�a) results from the original loop by first transforming it into twn-form
(Sect. 3) and by subsequently chaining it in order to obtain a loop in tnn-form

Termination of Polynomial Loops 105

(Sect. 4), then our approach can also be used to obtain witnesses for eventual
non-termination of the original loop. In other words, one can compute a witness
for the original loop from the witness for the transformed loop as in Corol-
lary 17, since chaining clearly preserves witnesses for eventual non-termination.
Algorithm 1 summarizes our technique to check termination of twn-
transformable-loops.

Algorithm 1: Checking Termination
Input: a twn-transformable-loop (ϕ,�a) and ψF ∈ Th∃(S, RA)
Result: � resp. ⊥ if (non-)termination of (ϕ,�a) on F is proven, ? otherwise
(ϕ,�a) ← Trη(ϕ,�a), ψF ← ψη̂(F), such that (ϕ,�a) becomes twn
(ϕ,�a) ← (ϕ ∧ ϕ(�a),�a(�a)), such that (ϕ,�a) becomes tnn
�q ← closed form of �an

if (un)satisfiability of ψF ∧ red(ϕ(�qnorm)) cannot be proven then return ?
if ψF ∧ red(ϕ(�qnorm)) is satisfiable then return ⊥ else return �

6 Complexity Analysis

We now analyze the complexity of our technique. We first regard linear-update
loops, i.e., where the update is of the form �x ← A·�x+�b with A ∈ Sd×d and�b ∈ Sd.
More precisely, we show that termination of linear loops with real spectrum is
Co-NP-complete if S ∈ {Z, Q, RA} and that termination of linear-update loops
with real spectrum is ∀R-complete if S = RA. Since our proof is based on a
reduction to Th∃(S, RA), and RA and R are elementary equivalent, our results
also hold if the program variables range over R.

For our complexity results, we assume the usual dense encoding of univariate
polynomials, i.e., a polynomial of degree k is represented as a list of k + 1
coefficients. As discussed in [47], many problems which are considered to be
efficiently solvable become intractable if polynomials are encoded sparsely (e.g.,
as lists of monomials where each monomial is a pair of its non-zero coefficient
and its degree). With densely encoded polynomials, all common representations
of algebraic numbers can be converted into each other in polynomial time [3].

When analyzing linear-update loops, w.l.o.g. we can assume �b = �0, since

while ϕ do �x ← A · �x +�b terminates iff (14)

while ϕ ∧ x�b = 1do
[

�x
x�b

]
←

[
A �b

�0T 1

]
·
[

�x
x�b

]
(15)

terminates, where x�b is a fresh variable (see [24,41]). Moreover, �c witnesses
(eventual) non-termination for (14) iff

[
�c
1

]
witnesses (eventual) non-termination

106 F. Frohn et al.

for (15). Note that the only eigenvalue of
[

A �b
�0T 1

]
whose multiplicity increases in

comparison to A is 1. Thus, to decide termination of linear-update loops with
real spectrum, it suffices to decide termination of loops of the form (ϕ,A · �x)
where A has only real eigenvalues.

Such loops can always be transformed into twn-form using our transformation
Tr from Sect. 3. To compute the required automorphism η, we compute the
Jordan normal form Q of A together with the corresponding transformation
matrix T , i.e., T is an invertible real matrix such that A = T−1 · Q · T . Then Q
is a triangular real matrix whose diagonal consists of the eigenvalues λ ∈ RA of
A. Now we define η ∈ EndRA

(RA[�x]) by η(�x) = T ·�x. Then η ∈ AutRA
(RA[�x]) has

the inverse η−1(�x) = T−1 · �x. Thus, Trη(ϕ,A · �x) is a twn-loop with the update

(η(�x)) (A · �x) (η−1(�x)) = T · A · T−1 · �x = Q · �x.

The Jordan normal form Q as well as the matrices T and T−1 can be com-
puted in polynomial time [19,46]. Hence, we can decide whether all eigenvalues
are real numbers in polynomial time by checking the diagonal entries of Q. Thus,
we obtain the following lemma.

Lemma 40. Let (ϕ,A · �x) be a linear-update loop.

(a) It is decidable in polynomial time whether A has only real eigenvalues.
(b) If A has only real eigenvalues, then we can compute a linear η ∈

AutRA
(RA[�x]) such that Trη(ϕ,A · �x) is a linear-update twn-loop in poly-

nomial time.
(c) If (ϕ,A · �x) is a linear loop, then so is Trη(ϕ,A · �x).

Hence, the transformation from Sect. 3 is complete for linear(-update) loops with
real spectrum, i.e., every such loop can be transformed into a linear(-update)
twn-loop. Note that the first part of Lemma40 yields an efficient check whether
a given linear(-update) loop has real spectrum.

As chaining (Definition 25) can clearly be done in polynomial time, w.l.o.g. we
may assume that Trη(ϕ,A·�x) = (ϕ′, Q·�x) is tnn. Next, to analyze termination of
a loop, our technique of Sect. 4 computes a closed form for the n-fold application
of the update. For tnn-loops of the form (ϕ′, Q·�x) where Q is a triangular matrix
with non-negative diagonal entries, a suitable (i.e., poly-exponential) closed form
can be computed in polynomial time analogously to [28, Prop. 5.2]. This closed
form is linear in �x.

According to our approach in Sect. 5, we now proceed as in Algorithm 1 and
compute red(ϕ(�qnorm)) ∈ Th∃(S, RA). The construction of this formula can be
done in polynomial time due to Theorem36. Hence, we get the following lemma.

Lemma 41. Let (ϕ,A · �x) be a linear-update loop with real spectrum. Then we
can compute a formula ψ ∈ Th∃(S, RA) in polynomial time, such that ψ is valid
iff the loop is non-terminating. If ϕ is linear, then so is ψ.

Note that ψ is existentially quantified. Hence, if ϕ (and thus, also ψ) is linear and
S ∈ {Z, Q, RA, R}, then invalidity of ψ is in Co-NP as validity of such formulas
is in NP [42]. Thus, we obtain the first main result of this section.

Termination of Polynomial Loops 107

Theorem 42 (Co-NP-Completeness). Termination of linear loops (ϕ,A ·�x+
�b) with real spectrum over Z, Q, RA, and R is Co-NP-complete.

For Co-NP-hardness, let ξ be a propositional formula over the variables �x. Then
(ξ[xi/(xi > 0) | 1 ≤ i ≤ d], �x) terminates iff ξ is unsatisfiable. So Co-NP-hardness
follows from Co-NP-hardness of unsatisfiability of propositional formulas.

We now consider linear-update loops with real spectrum (and possibly non-
linear loop conditions) on R

d
A

and R
d. Here, non-termination is ∃R-complete.

Definition 43 (∃R [50,51]). Let Th∃(R)� = {ψ ∈ Th∃(R) | ψ is satisfiable}.
The complexity class ∃R is the closure of Th∃(R)� under poly-time-reductions.

We have NP ⊆ ∃R ⊆ PSPACE. By Lemma 41, non-termination of linear-update
loops with real spectrum is in ∃R. It is also ∃R-hard since (ϕ, �x) is non-
terminating iff ϕ is satisfiable. So non-termination is ∃R-complete, i.e., termina-
tion is Co-∃R-complete (where Co-∃R = ∀R [51]).

Theorem 44 (∀R-Completeness). Termination of linear-update loops with
real spectrum over RA and R is ∀R-complete.

Recall that the bodies of tnn-loops can be linearized [39]. The loop (13)
showed that in general, this linearization is not computable in polynomial time.
However, if the number of variables d is bounded by a constant D, then the
linearization is in EXPTIME (see the proof of Theorem 45 in [16]). If the number
of variables is bounded, then checking validity of an existential formula over the
reals is in P (see [2]). So in this case, combining the fact that linearization is in
EXPTIME with Lemma 41 yields Theorem 45.

Theorem 45. Let D ∈ N be fixed. Termination of twn-loops over RA and R is
in EXPTIME if the number of variables is at most D.

7 Related Work and Conclusion

We presented a reduction from termination of twn-loops to Th∃(S, RA). This
implies decidability of termination over S = RA and S = R and semi-decidability
of non-termination over S = Z and S = Q. Moreover, we showed how to
transform certain non-twn-loops into twn-form, which generalizes our results
to a wider class of loops, including solvable loops with real eigenvalues. We also
showed that twn-transformability is semi-decidable. Finally, we used our results
to prove Co-NP-completeness (resp. ∀R-completeness) of termination of linear
(resp. linear-update) loops with real spectrum.

108 F. Frohn et al.

Related Work: In contrast to automated termination analysis (e.g., [1,4,5,7,
9,10,17,20–22,30–33,43]), we investigate decidability of termination for certain
classes of loops. Clearly, such decidability results can only be obtained for quite
restricted classes of programs.

Nevertheless, many techniques used in automated tools for termination anal-
ysis (e.g., the application of ranking functions) focus on similar classes of loops,
since such loops occur as sub-programs in (abstractions of) real programs.
Tools based on these techniques have turned out to be very successful, also for
larger classes of programs. Thus, these tools could benefit from integrating our
(semi-)decision procedures and applying them instead of incomplete techniques
for any sub-program that can be transformed into a twn-loop.

Related work on decidability of termination also considers related (and often
more restricted) classes of loops. For linear conjunctive loops (where the loop
condition is a conjunction), termination over R [34,37,53], Q [8], and Z [24] is
decidable. Tiwari [53] uses the special case of our twn-transformation from Sect. 6
where the loop and the automorphism are linear. In contrast to these techniques,
our approach applies to non-linear loops with arbitrary loop conditions over
various rings.

Linearization is an alternative attempt to handle non-linearity. While the
update of solvable loops can be linearized [39,49], the guard cannot. Otherwise,
one could linearize any loop (p = 0, �x), which terminates over Z iff p has no
integer root. With [24], this would imply decidability of Hilbert’s Tenth Problem.

Regarding complexity, [41] proves that termination of conjunctive linear loops
over Z with update �x ← A · �x +�b is in EXPSPACE if A is diagonalizable resp.
in PSPACE if |�x| ≤ 4. Moreover, [41] states that the techniques from [8,53] run
in polynomial time. So termination of conjunctive linear loops over Q and R is
in P.

Our Co-NP-completeness result is orthogonal to those results as we allow
disjunctions in the loop condition. Moreover, Co-NP-completeness also holds for
termination over Z, whereas [8,53] only consider termination over Q resp. R.

In the non-linear case, [35] proves decidability of termination for conjunc-
tive loops on R

d for the case that the loop condition defines a compact and
connected subset of R

d. In [55], decidability of termination of conjunctive linear-
update loops on R

d with the non-zero minimum property is shown, which covers
conjunctive linear-update loops with real spectrum. In combination with [39],
this yields a decision procedure for termination of conjunctive twn-loops over R.
For general conjunctive linear-update loops on R

d undecidability is conjectured.
Furthermore, [38] proves that termination of (not necessarily conjunctive) linear-
update loops is decidable if the loop condition describes a compact set. Finally,
[56] gives sufficient criteria for (non-)termination of solvable loops and [36] intro-
duces sufficient conditions under which termination of non-deterministic non-
linear loops on R

d can be reduced to satisfiability of a semi-algebraic system.
For linear-update loops with real spectrum over R, we prove ∀R-completeness

of termination, whereas [55] does not give tight complexity results. The approach
from [56] is incomplete, whereas we present a complete reduction from termina-

Termination of Polynomial Loops 109

tion to the respective first-order theory. The work in [36] is orthogonal to ours
as it only applies to loops that satisfy certain non-trivial conditions. Moreover,
we consider loops with arbitrary loop conditions over various rings, whereas
[35,36,55] only consider conjunctive loops over R and [38] only considers loops
over R where the loop condition defines a compact set.

Finally, several other works exploit the existence of closed forms for solvable
(or similar classes of) loops to, e.g., analyze termination for fixed inputs or deduce
invariants (e.g., [23,25,27–29,39,40,48,49]). While our approach covers solvable
loops with real eigenvalues (by Corollary 21), it also applies to loops which are
not solvable, see Example 24. Note that our transformation from Sect. 3 may also
be of interest for other techniques for solvable or other sub-classes of polynomial
loops, as it may be used to extend the applicability of such approaches.

Acknowledgments. We thank Alberto Fiori for help with the example loop (13) and
Arno van den Essen for useful discussions.

References

1. Babić, D., Cook, B., Hu, A.J., Rakamaric, Z.: Proving termination of nonlinear
command sequences. Formal Aspects Comput. 25(3), 389–403 (2013). https://doi.
org/10.1007/s00165-012-0252-5

2. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry, Algo-
rithms and Computation in Mathematics, vol. 10. Springer, Heidelberg (2006).
https://doi.org/10.1007/3-540-33099-2

3. Basu, S., Mishra, B.: Computational and quantitative real algebraic geometry.
In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and
Computational Geometry, 3rd edn. Chapman and Hall/CRC, pp. 969–1002 (2017).
https://doi.org/10.1201/9781315119601

4. Ben-Amram, A.M., Genaim, S.: On multiphase-linear ranking functions. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 601–620.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 32

5. Ben-Amram, A.M., Doménech, J.J., Genaim, S.: Multiphase-linear ranking func-
tions and their relation to recurrent sets. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS,
vol. 11822, pp. 459–480. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32304-2 22

6. Bozga, M., Iosif, R., Konecný, F.: Deciding conditional termination. Logical Meth.
Comput. Sci. 10(3) (2014). https://doi.org/10.2168/LMCS-10(3:8)2014

7. Bradley, A.R., Manna, Z., Sipma, H.B.: Termination of polynomial programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 113–129. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30579-8 8

8. Braverman, M.: Termination of integer linear programs. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 372–385. Springer, Heidelberg (2006).
https://doi.org/10.1007/11817963 34

9. Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through cooper-
ation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 413–429.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 28

https://doi.org/10.1007/s00165-012-0252-5
https://doi.org/10.1007/s00165-012-0252-5
https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1201/9781315119601
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-030-32304-2_22
https://doi.org/10.1007/978-3-030-32304-2_22
https://doi.org/10.2168/LMCS-10(3:8)2014
https://doi.org/10.1007/978-3-540-30579-8_8
https://doi.org/10.1007/11817963_34
https://doi.org/10.1007/978-3-642-39799-8_28

110 F. Frohn et al.

10. Chen, H.-Y., Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.: Proving nontermination
via safety. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp.
156–171. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-
8 11

11. Cohen, P.J.: Decision procedures for real and p-adic fields. Commun. Pure Appl.
Math. 22(2), 131–151 (1969). https://doi.org/10.1002/cpa.3160220202

12. Dai, L., Xia, B.: Non-termination sets of simple linear loops. In: Roychoudhury, A.,
D’Souza, M. (eds.) ICTAC 2012. LNCS, vol. 7521, pp. 61–73. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32943-2 5

13. van den Essen, A., Hubbers, E.: Polynomial maps with strongly nilpotent Jacobian
matrix and the Jacobian conjecture. Linear Algebra Appl. 247, 121–132 (1996).
https://doi.org/10.1016/0024-3795(95)00095-X

14. van den Essen, A.: Polynomial Automorphisms and the Jacobian Conjecture.
Springer, Basel (2000). https://doi.org/10.1007/978-3-0348-8440-2

15. Frohn, F., Giesl, J.: Termination of triangular integer loops is decidable. In: Dillig,
I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 426–444. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5 24

16. Frohn, F., Hark, M., Giesl, J.: On the decidability of termination for polynomial
loops. CoRR abs/1910.11588 (2019). https://arxiv.org/abs/1910.11588

17. Frohn, F., Giesl, J.: Proving non-termination via loop acceleration. In: Barrett,
C.W., Yang, J. (eds.) FMCAD 2019, pp. 221–230 (2019). https://doi.org/10.23919/
FMCAD.2019

18. Frohn, F.: A calculus for modular loop acceleration. In: Biere, A., Parkerm D. (eds.)
TACAS 2020. LNCS, vol. 12078, pp. 58–76. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45190-5 4

19. Giesbrecht, M.: Nearly optimal algorithms for canonical matrix forms. SIAM J.
Comput. 24(5), 948–969 (1995). https://doi.org/10.1137/S0097539793252687

20. Giesl, J.: Analyzing program termination and complexity automatically with
AProVE. J. Autom. Reasoning 58(1), 3–31 (2017). https://doi.org/10.1007/
s10817-016-9388-y

21. Giesl, J., Rubio, A., Sternagel, C., Waldmann, J., Yamada, A.: The termination and
complexity competition. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.)
TACAS 2019. LNCS, vol. 11429, pp. 156–166. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17502-3 10

22. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.: Proving non-
termination. In: Necula, G.C., Wadler, P. (eds.) POPL 2008, pp. 147–158 (2008).
https://doi.org/10.1145/1328438.1328459

23. Hark, M., Frohn, F., Giesl, J.: Polynomial loops: beyond termination. In: Albert,
E., Kovács, L. (eds.) LPAR 2020. EPiC, vol. 73, pp. 279–297 (2020). https://doi.
org/10.29007/nxv1

24. Hosseini, M., Ouaknine, J., Worrell, J.: Termination of linear loops over the
integers. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.)
ICALP 2019. LIPIcs, vol. 132, 118:1–118:13 (2019). https://doi.org/10.4230/
LIPIcs.ICALP.2019.118

25. Humenberger, A., Jaroschek, M., Kovács, L.: Invariant generation for multi-path
loops with polynomial assignments. In: Dillig, I., Palsberg, J. (eds.) VMCAI 2018.
LNCS, vol. 10747, pp. 226–246. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-73721-8 11

26. Kauers, M., Paule, P.: The Concrete Tetrahedron – Symbolic Sums, Recurrence
Equations, Generating Functions, Asymptotic Estimates. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-7091-0445-3

https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1002/cpa.3160220202
https://doi.org/10.1007/978-3-642-32943-2_5
https://doi.org/10.1016/0024-3795(95)00095-X
https://doi.org/10.1007/978-3-0348-8440-2
https://doi.org/10.1007/978-3-030-25543-5_24
https://arxiv.org/abs/1910.11588
https://doi.org/10.23919/FMCAD.2019
https://doi.org/10.23919/FMCAD.2019
https://doi.org/10.1007/978-3-030-45190-5_4
https://doi.org/10.1007/978-3-030-45190-5_4
https://doi.org/10.1137/S0097539793252687
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1145/1328438.1328459
https://doi.org/10.29007/nxv1
https://doi.org/10.29007/nxv1
https://doi.org/10.4230/LIPIcs.ICALP.2019.118
https://doi.org/10.4230/LIPIcs.ICALP.2019.118
https://doi.org/10.1007/978-3-319-73721-8_11
https://doi.org/10.1007/978-3-319-73721-8_11
https://doi.org/10.1007/978-3-7091-0445-3

Termination of Polynomial Loops 111

27. Kincaid, Z., Cyphert, J., Breck, J., Reps, T.W.: Non-linear reasoning for invariant
synthesis. Proc. ACM Program. Lang. 2(POPL), 54:1–54:33 (2018). https://doi.
org/10.1145/3158142

28. Kincaid, Z., Breck, J., Cyphert, J., Reps, T.W.: Closed forms for numerical loops.
Proc. ACM Program. Lang. 3(POPL), 55:1–55:29 (2019). https://doi.org/10.1145/
3290368

29. Kovács, L.: Reasoning algebraically about p-solvable loops. In: Ramakrishnan,
C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 249–264. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78800-3 18

30. Larraz, D., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Proving termination
of imperative programs using Max-SMT. In: Jobstmann, B., Ray, S. (eds.) FMCAD
2013, pp. 218–225 (2013). https://doi.org/10.1109/FMCAD.2013.6679413

31. Larraz, D., Nimkar, K., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Proving
non-termination Using Max-SMT. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 779–796. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9 52

32. Leike, J., Heizmann, M.: Ranking templates for linear loops. Logical Method Com-
put. Sci. 11(1) (2015). https://doi.org/10.2168/LMCS-11(1:16)2015

33. Leike, J., Heizmann, M.: Geometric nontermination arguments. In: Beyer, D., Huis-
man, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 266–283. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89963-3 16

34. Li, Y.: A recursive decision method for termination of linear programs. In: Zhi, L.,
Watt, S.M. (eds.) SNC 2014, pp. 97–106 (2014). https://doi.org/10.1145/2631948.
2631966

35. Li, Y.: Termination of single-path polynomial loop programs. In: Sampaio, A.,
Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 33–50. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46750-4 3

36. Li, Y.: Termination of semi-algebraic loop programs. In: Larsen, K.G., Sokolsky,
O., Wang, J. (eds.) SETTA 2017. LNCS, vol. 10606, pp. 131–146. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69483-2 8

37. Li, Y.: Witness to non-termination of linear programs. Theoret. Comput. Sci. 681,
75–100 (2017). https://doi.org/10.1016/j.tcs.2017.03

38. Neumann, E., Ouaknine, J., Worrell, J.: On ranking function synthesis and termi-
nation for polynomial programs. In: Konnov, I., Kovács, L. (eds.) CONCUR 2020.
LIPIcs, vol. 171, pp. 15:1–15:15 (2020). https://doi.org/10.4230/LIPIcs.CONCUR.
2020.15

39. de Oliveira, S., Bensalem, S., Prevosto, V.: Polynomial invariants by linear algebra.
In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 479–
494. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 30

40. de Oliveira, S., Bensalem, S., Prevosto, V.: Synthesizing invariants by solving solv-
able loops. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 327–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 22

41. Ouaknine, J., Pinto, J.S., Worrell, J.: On termination of integer linear loops.
In: Indyk, P. (ed.) SODA 2015, pp. 957–969 (2015). https://doi.org/10.1137/
19781611973730.65

42. Pia, A.D., Dey, S.S., Molinaro, M.: Mixed-integer quadratic programming is in
NP. Math. Program. 162(1–2), 225–240 (2017). https://doi.org/10.1007/s10107-
016-1036-0

https://doi.org/10.1145/3158142
https://doi.org/10.1145/3158142
https://doi.org/10.1145/3290368
https://doi.org/10.1145/3290368
https://doi.org/10.1007/978-3-540-78800-3_18
https://doi.org/10.1109/FMCAD.2013.6679413
https://doi.org/10.1007/978-3-319-08867-9_52
https://doi.org/10.1007/978-3-319-08867-9_52
https://doi.org/10.2168/LMCS-11(1:16)2015
https://doi.org/10.1007/978-3-319-89963-3_16
https://doi.org/10.1145/2631948.2631966
https://doi.org/10.1145/2631948.2631966
https://doi.org/10.1007/978-3-319-46750-4_3
https://doi.org/10.1007/978-3-319-69483-2_8
https://doi.org/10.1016/j.tcs.2017.03
https://doi.org/10.4230/LIPIcs.CONCUR.2020.15
https://doi.org/10.4230/LIPIcs.CONCUR.2020.15
https://doi.org/10.1007/978-3-319-46520-3_30
https://doi.org/10.1007/978-3-319-68167-2_22
https://doi.org/10.1007/978-3-319-68167-2_22
https://doi.org/10.1137/19781611973730.65
https://doi.org/10.1137/19781611973730.65
https://doi.org/10.1007/s10107-016-1036-0
https://doi.org/10.1007/s10107-016-1036-0

112 F. Frohn et al.

43. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-
0 20

44. Renegar, J.: On the computational complexity and geometry of the first-order the-
ory of the reals, part I: Introduction. Preliminaries. The geometry of semi-algebraic
sets. The decision problem for the existential theory of the reals. J. Symbolic Com-
put. 13(3), 255–300 (1992). https://doi.org/10.1016/S0747-7171(10)80003-3

45. Robinson, J.: Definability and decision problems in arithmetic. J. Symbolic Logic
14(2), 98–114 (1949). https://doi.org/10.2307/2266510

46. Roch, J.-L., Villard, G.: Fast parallel computation of the Jordan normal form of
matrices. Parallel Process. Lett. 06(02), 203–212 (1996). https://doi.org/10.1142/
S0129626496000200

47. Roche, D.S.: What Can (and Can’t) we Do with Sparse Polynomials?” In: Kauers,
M., Indyk, Ovchinnikov, A., Schost, É (eds.) ISSAC 2018, pp. 25–30 (2018).
https://doi.org/10.1145/3208976.3209027

48. Rodŕıguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial loop
invariants: algebraic foundation. In: Gutierrez, J. (ed.) ISSAC 2004, pp. 266–273
(2004). https://doi.org/10.1145/1005285.1005324

49. Rodŕıguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple
loops. J. Symbolic Comput. 42(4), 443–476 (2007). https://doi.org/10.1016/j.jsc.
2007.01.002

50. Schaefer, M.: Complexity of some geometric and topological problems. In: Epp-
stein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 334–344. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11805-0 32

51. Schaefer, M., Štefankovič, D.: Fixed points, Nash equilibria, and the existential
theory of the reals. Theory Comput. Syst. 60(2), 172–193 (2017). https://doi.org/
10.1007/s00224-015-9662-0

52. Tarski, A.: A decision method for elementary algebra and geometry. In: Cavi-
ness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic
Decomposition. Originally appeared in 1951, University of California Press, Berke-
ley and Los Angeles, pp. 24–84. Springer, Vienna (1998). https://doi.org/10.1007/
978-3-7091-9459-1 3

53. Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27813-9 6

54. TPDB (Termination Problems Data Base). http://termination-portal.org/wiki/
TPDB

55. Xia, B., Zhang, Z.: Termination of linear programs with nonlinear constraints. J.
Symbolic Comput. 45(11), 1234–1249 (2010). https://doi.org/10.1016/j.jsc.2010.
06.006

56. Xu, M., Li, Z.: Symbolic termination analysis of solvable loops. J. Symbolic Com-
put. 50, 28–49 (2013). https://doi.org/10.1016/jjsc.2012.05.005

https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1016/S0747-7171(10)80003-3
https://doi.org/10.2307/2266510
https://doi.org/10.1142/S0129626496000200
https://doi.org/10.1142/S0129626496000200
https://doi.org/10.1145/3208976.3209027
https://doi.org/10.1145/1005285.1005324
https://doi.org/10.1016/j.jsc.2007.01.002
https://doi.org/10.1016/j.jsc.2007.01.002
https://doi.org/10.1007/978-3-642-11805-0_32
https://doi.org/10.1007/s00224-015-9662-0
https://doi.org/10.1007/s00224-015-9662-0
https://doi.org/10.1007/978-3-7091-9459-1_3
https://doi.org/10.1007/978-3-7091-9459-1_3
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6
http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki/TPDB
https://doi.org/10.1016/j.jsc.2010.06.006
https://doi.org/10.1016/j.jsc.2010.06.006
https://doi.org/10.1016/jjsc.2012.05.005

Stratified Guarded First-Order Transition
Systems

Christan Müller and Helmut Seidl(B)

TU München, Boltzmannstraße 3, Garching, Germany
seidl@in.tum.de

Abstract. First-order transition systems are a convenient formalism to
specify parametric systems such as multi-agent workflows or distributed
algorithms. In general, any nontrivial question about such systems is
undecidable. Here, we present three subclasses of first-order transition
systems where every universal invariant can effectively be decided via
fixpoint iteration. These subclasses are defined in terms of syntactical
restrictions: negation, stratification and guardedness. While guardedness
represents a particular pattern how input predicates control existential
quantifiers, stratification limits the information flow between predicates.
Guardedness implies that the weakest precondition for every universal
invariant is again universal, while the remaining sufficient criteria enforce
that either the number of first-order variables, or the number of required
instances of input predicates remains bounded, or the number of occur-
ring negated literals decreases in every iteration. We argue for each of
these three cases that termination of the fixpoint iteration can be guar-
anteed.

Keywords: First-order transition systems · Universal invariants ·
Second-order quantifier elimination · Stratification · Decidability

1 Introduction

FO transition systems (FO for First-order) are a convenient tool for specifying
systems where the number of agents is not known in advance. This is very useful
for modeling systems like network protocols [22] or web-based workflows like
conference management, banking or commerce platforms. Consider, e.g., the
specification from Fig. 1 modeling parts of the review process of a conference
management system as a FO transition system.

Assume that initially, all predicates with the exception of auth are false, i.e.,
the property H given by

∀x1, x2, p, r, d.¬conf(x1, p) ∧ ¬assign(x1, p) ∧
¬report(x1, p, r) ∧ ¬discuss(x1, x2, p, d)

(1)

holds. The predicates A1, . . . , A4 are input predicates whose values either repre-
sent agents’ decisions or actions from the environment. Intuitively, the transition
c© The Author(s) 2020
D. Pichardie and M. Sighireanu (Eds.): SAS 2020, LNCS 12389, pp. 113–133, 2020.
https://doi.org/10.1007/978-3-030-65474-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65474-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-65474-0_6

114 C. Müller and H. Seidl

0

1

2

3

conf(x, p) := auth(x, p) ∨ A1(x, a)

assign(x, p) := A2(x, p) ∧ ¬conf(x, p)

report(x, p, r) := report(x, p, r) ∨ A3(x, p, r) ∧ assign(x, p)

discuss(x1, x2, p, d) := discuss(x1, x2, p, d) ∨ ∃r1, r2.
A4(x1, x2, p, d, r1, r2) ∧ report(x1, p, r1) ∧ report(x2, p, r2)

Fig. 1. A conference management system.

system works as follows: First, each PC member x possibly declares her conflict
with each paper p. Then, papers p are assigned to PC members x in such a way
that the conf relation is respected. Repeatedly, reports for PC members x about
papers p arrive, where a subsequent discussion between PC members x1, x2 on
some paper p is only possible if both have received a report on that paper and
may update their reviews based on the discussions. Variants of this example have
already been studied in [19,25].

A useful property to ensure in this example is that a discussion between x1

and x2 on some paper p is only possible if neither x1 nor x2 are authors of p:

∀x1, x2, p, d.¬discuss(x1, x2, p, d) ∨ ¬auth(x1, p) ∧ ¬auth(x2, p) (2)

As FO predicate logic is undecidable, we cannot hope to find an effective algo-
rithm for proving an invariant such as (2) for arbitrary FO transition systems.
That does not exclude, though, that at least some invariants can be proven
inductive and thus, to be valid. Also, approximation techniques may be con-
ceived to construct strengthenings of given invariants which, hopefully turn out
to be inductive and thus may serve as certificates for the invariants in question.

The idea of using FO predicate logic for specifying the semantics of sys-
tems has perhaps been pioneered by abstract state machines (ASMs) [6,7,14].
Recently, it has successfully been applied for the specification and verification of
software-defined networks [2,20], of network protocols [23], of distributed algo-
rithms [22]. The corresponding approach is built into the tool Ivy [18,23]. Ivy
is a proof assistant for systems specified in FO logic which is carefully designed
around a decidable many-sorted extension of EPR (Effectively Propositional
Logic, or ∃∗∀∗FO logic). In the base setting, invariants are provided manually
and then checked for inductiveness by the theorem prover Z3 [8]. Some effort,
though, has been invested to come up with more automatic techniques for specific
settings such as threshold algorithms [4] or more general FO invariant inference
[15,16]. The fundamental problem thereby is that repeated application of the

Stratified Guarded First-Order Transition Systems 115

weakest precondition operator may introduce additional first-order variables,
new instances of input predicates or existential quantifiers and thus result in
formulas outside the decidable fragment of FO logic.

This problem also has been encountered in [10,11,19] where noninterfer-
ence [13] is investigated for multi-agent workflows in the spirit of the conference
management system from Fig. 1. In [19], the authors present a a symbolic ver-
ification approach where the agent capabilities as well as declassification and
self-composition of the original system T is encoded into a FO transition sys-
tem T 2. Noninterference of the original system is thus reduced to a universal
invariant of the resulting system T 2. Further abstraction (i.e., strengthening of
the encountered formulas) is applied in order to arrive at a practical algorithm
which iteratively strengthens the initial invariant.

Only for rare cases, so far, decidability could be shown. In [21], Sagiv et al.
show that inferring universal inductive invariants is decidable when the transi-
tion relation is expressed by formulas with unary predicates and a single binary
predicate restricted by the background theory of singly-linked-lists. The same
problem becomes undecidable when the binary symbol is not restricted by a
background theory. In [19] on the other hand, syntactic restrictions are intro-
duced under which termination at least of an abstract fixpoint iteration can be
guaranteed. The abstraction thereby, consists in strengthening each occurring
existential quantifier via appropriate instantiations (see also [9]). The syntactic
restrictions proposed in [19] essentially amount to introducing a stratification on
the predicates and restricting substitutions to be stratified and guarded updates.
It is argued that these restrictions are not unrealistic in specifications of multi-
agent systems where the computation proceeds in stages each of which accumu-
lates information based on the results obtained in earlier stages. The example
transition system from Fig. 1, e.g., is stratified: there is a mapping λ assigning
a level λ(R) to each predicate R so that the predicates occurring in right-hand
sides which are distinct from the left-hand side have lower levels. In the example,
λ could be given by

{auth �→ 0, conf �→ 1, assign �→ 2, report �→ 3, discuss �→ 4}
Intuitively, stratification limits dependencies between predicates to be acyclic.
Examples of stratified guarded updates on the other hand, are the two statements
in the loop body of Fig. 1. Guarded updates only allow to extend predicates
where the extensions constrain the use of existential quantifiers to the format
ϕ ∨ ∃z̄.Aȳz̄ ∧ ψ for some input predicate A and quantifier-free subformulas ϕ,ψ.

The loop of the example thus satisfies the requirements of [19], implying
that an abstract fixpoint iteration is guaranteed to terminate for every univer-
sal invariant. Here, we show that under the given assumptions, no abstraction
is required: the concrete fixpoint iteration in question already terminates and
returns the weakest inductive invariant, which happens to consist of universal
formulas only. We conclude that universal invariants for the given class of FO
transition systems are decidable.

Beyond that, we extend this class of FO transition systems by additionally
allowing stratified guarded resets such as the two assignments before the loop

116 C. Müller and H. Seidl

in Fig. 1. Guarded stratified resets are seemingly easier than updates, as they
define their left-hand sides solely in terms of predicates of lower levels. In full
generality, though, when there are both updates and resets, we failed to prove
that universal invariants are decidable. We only succeed so—provided further
(mild) restrictions are satisfied. Our results are that jointly, stratified guarded
updates and resets can be allowed

– when resets refer to predicates at the highest and at the lowest level of the
stratification only; or

– when all predicates of level at least 1, occur in right-hand sides only positively;
or

– when all updates are not only guarded, but strictly guarded.

2 Basic Definitions

Assume that we are given a finite set of predicate names R together with a
finite set of constant names C. A FO structure s = 〈I, ρ〉 over a given universe
U consists of an interpretation I of the predicates in R, i.e., a mapping which
assigns to each predicate R ∈ R of arity k ≥ 0, a k-ary relation over U , together
with a valuation ρ : C → U which assigns to each constant name an element in U .
The semantics of FO (first-order) formulas as well as SO (second-order) formulas
with free occurrences of predicates and variables in R and C, respectively, is
defined as usual. We write s |= ϕ or I, ρ |= ϕ to denote that ϕ is valid for the given
interpretation I and valuation ρ as provided by s. For FO transition systems,
we distinguish between the set Rstate of state predicates and the disjoint set A
of input predicates. While the values of constants as well as the interpretation
of the state predicates constitute the state attained by the system, the input
predicates are used to model (unknown) input from the environment or decisions
of participating agents.

At each transition of a FO transition system, the system state s′ after the
transition is determined in terms of the system state s before the transition via
a substitution θ. For each state predicate R ∈ Rstate , θ provides a FO formula to
specify the interpretation of R after the transition in terms of the interpretation
and valuation in s.

Technically, we introduce a set Y = {yi | i ∈ N} of distinct formal parameters
where C ∩ Y = ∅. For a predicate R of arity k ≥ 0, we write Rȳ for the literal
R(y1, . . . , yk) and assume that each substitution θ maps each literal Rȳ, R ∈
Rstate , to some FO formula θ(Rȳ) with predicates in Rstate∪A and free variables
either from C or occurring among the variables in ȳ. In case that θ(Rȳ) = ψ and
θ(R′ȳ) = R′ȳ for all R′ ∈ Rstate \ {R}, we also denote θ by Rȳ := ψ.

Example 1. In the example from Fig. 1, Rstate consists of the predicates conf,
auth, assign, report and discuss while Rinput consists of the predicates A1 . . . A4.
No constants are needed, so C = ∅. The edge from node 1 to 2, e.g., specifies a
substitution θ that updates assign with

θ(assign(x, p)) = A2(x, p) ∧ ¬conf(x, p)

Stratified Guarded First-Order Transition Systems 117

but does not change literals of predicates conf, auth, report or discuss. ��

Applying θ to a FO formula ϕ results in the FO formula θ(ϕ) which is obtained
from ϕ by replacing each literal Rz̄ with the FO formula θ(Rȳ)[z̄/ȳ]. Here, [z̄/ȳ]
represents the simultaneous substitution of the variables in ȳ by the correspond-
ing variables in z̄.

Example 2. Consider formula ϕ that specifies that the author of a paper p should
never be assigned to provide a review for p:

ϕ = ∀x, p.¬assign(x, p) ∨ ¬auth(x, p)

Applying the substitution θ from Example 1 results in

θ(ϕ) = ∀x, p.¬(A2(x, p) ∧ ¬conf(x, p)) ∨ ¬auth(x, p)

��

A FO transition system T (over the given sets Rstate of predicates, A of input
predicates and C of constant names) consists of a finite set of nodes V together
with a finite set E of edges of the form e = (u, θ, v) where u, v ∈ V and θ is a sub-
stitution of the predicates in Rstate . W.l.o.g., we assume that each substitution θ
at some edge e always has occurrences of at most one input predicate, which we
denote by Ae. For a given universe U , a program state s attained at a program
point is a FO structure for the predicates in Rstate and the constants in C over
the universe U . Let S denote the set of all program states. A configuration of T
is a pair (v, s) ∈ V × S. A (finite) run τ of T starting in configuration (v0, s0)
and ending at node v in state s, i.e., in configuration (v, s) is a sequence of con-
figurations (vi, si), i = 0, . . . , n where (vn, sn) = (v, s) and for all i = 1, . . . , n,
there is some edge ei = (vi−1, θi, vi) ∈ E such that for si−1 = 〈I, ρ〉, si = 〈I ′, ρ〉
where for some interpretation Ri of the input predicate Aei

, and every valuation
ρY of the formals, I ′, ρ ⊕ ρY |= Rȳ iff I ⊕ {Aei

�→ Ri}, ρ ⊕ ρY |= θ(Rȳ). Assume
that we are given an initial node v0 ∈ V together with an initial hypothesis
H, i.e., a FO formula (with predicates in Rstate and free variables only in C)
characterizing all possible initial states attained at v0.

Example 3. According to the specification in Eq. (1) for the example transition
system in Fig. 1, the single initial state is a pair of state 0 and the FO struc-
ture which interprets the relations auth, assign, report and discuss with the empty
relation. ��

Input predicates may take fresh interpretations whenever the substitution of the
corresponding edge is executed. This should be contrasted to state predicates
whose interpretations stay the same if they are not explicitly updated by the
transition system. The constant interpretation of such predicates instead may
be constrained by suitable background theories as provided, e.g., via conjuncts
of the initial hypothesis.

Assume that Ψ assigns to each program point v ∈ V , a FO formula Ψ [v].
Then Ψ is a valid invariant (relative to the initial hypothesis H), if every run τ

118 C. Müller and H. Seidl

of the system starting in a configuration (v0, s0) with s0 |= H and visiting some
configuration (v, s), it holds that s |= Ψ [v]. Ψ is inductive if

Ψ [u] → θ(Ψ [v]) forall (u, θ, v) ∈ E (3)

If Ψ is inductive, then Ψ is a valid whenever

H → Ψ [v0] (4)

Indeed, it is this observation which is used in the Ivy project to verify distributed
algorithms such as the Paxos protocol, essentially, by manually providing the
invariant Ψ and verifying properties (3) and(4) via the theorem prover Z3 [8].

Not each valid invariant Ψ , though, is by itself inductive. If this is not yet
the case, iterative strengthenings Ψ (h), h ≥ 0, of Ψ may be computed as follows:

Ψ (0)[u] = Ψ [u]

Ψ (h)[u] = Ψ (h−1)[u] ∧
∧

e=(u,θ,v)∈E

∀Ae. (θ(Ψ (h−1)[v]) for h > 0 (5)

For computing the next iterate in (5), universal SO quantification over the input
predicate Ae is required in order to account for every input possibly occurring
during a run at the given edge. As, e.g., noted in [25], s |= Ψ (h)[u] iff every run
of length at most h starting in (u, s), ends in some configuration (u′, s′) with
s′ |= Ψ [u′]. In particular, the assignment Ψ is a valid invariant iff H → Ψ (h)[v0]
for all h ≥ 0. The iteration thus can be considered as computing the weakest
pre-condition of the given invariant Ψ – as opposed to the collecting semantics
of the FO transition system, which corresponds to the set of all configurations
reachable from the set of all initial configurations (v0, s), s |= H. Whenever the
fixpoint iteration (5) terminates, we obtain the weakest strengthening of the
given invariant Ψ which is inductive. We have:

Lemma 1. Let T be a FO transition system and let Ψ an invariant. Assume
that for some h ≥ 0, Ψ (h) = Ψ (h+1) holds. Then Ψ (h) is the weakest inductive
invariant implying Ψ . Moreover, Ψ is valid iff H → Ψ (h)[v0]. ��

In general, the required SO quantifier elimination may not always be possible,
i.e., there need not always exist an equivalent FO formula [1], and even if SO
quantifier elimination is always possible, the fixpoint iteration need not termi-
nate. Non-termination may already occur when all involved predicates either
have no arguments or are monadic [25]. Termination as well as effective com-
putability can be enforced by applying abstraction (see, e.g., [24] for a general
discussion). Applying an abstraction α amounts to computing a sufficient condi-
tion for the invariant Ψ to hold. Technically, an abstraction maps each occurring
formula ψ to a formula α[ψ] (hopefully of a simpler form) so that α[ψ] → ψ.
Subsequently, we list three examples for such strengthenings.

Example 4. Abstraction of existentials. In [19], formulas with universal SO
quantifiers and universal as well as existential quantifiers are strengthened to

Stratified Guarded First-Order Transition Systems 119

formulas with universal quantifiers only. The idea is to replace an existentially
quantified subformula ∃x.ϕ with a disjunction

∨

y∈Y ϕ[y/x] where Y is the sub-
set of constants and those universally quantified variables in whose scope ϕ
occurs. So, the formula ∀y1, y2.∃x.R(x) is abstracted by ∀y1, y2.R(y1) ∨ R(y2).
This abstraction is particularly useful, since SO universal quantifiers can be
eliminated from universally quantified formulas.

Abstraction of Universals. Fixpoint iteration for universally quantified formulas
still may not terminate due to an ever increasing number of quantified variables.
The universally quantified variable x in an otherwise quantifier-free formula ψ
in negation normal form can be removed by replacing each literal containing
x with false. In this way, the formula ∀x. (Rx ∨ ¬Sy ∨ Tz) ∧ (¬Rx ∨ ¬Ty) is
strengthened to (¬Sy ∨ Tz) ∧ ¬Ty.

Abstraction of Conjunctions. Assume that the quantifier-free formula ψ is a
conjunction of clauses. Then ψ is implied by the single clause c consisting of all
literals which all clauses in ψ have in common. The formula (Rx ∨ ¬Sy ∨ Tz) ∧
(Rx ∨ Tz ∨ ¬Tx), e.g., can be strengthened to Rx ∨ Tz. ��

In this paper, rather than focusing on using abstractions, we identify sufficient
criteria when the concrete iteration (5) terminates without any further abstrac-
tion.

3 Stratification and Guardedness

Subsequently, we concentrate on initial conditions in the ∃∗∀∗ fragment and
universal invariants, i.e., where the invariant Ψ consists of universal FO formulas
only. Already for this setting, non-termination of the inference algorithm may
occur even without SO quantification when a single binary predicate is involved.

Example 5. Consider the FO transition system T over a monadic state predicate
R, a binary state predicate E and a constant element a. T consists of a single
state u with a single transition:

R(y) := R(y) ∨ ∃z. E(y, z) ∧ R(z)

Consider the invariant Ψ [u] = ¬R(a). Then for h ≥ 0,

Ψ (h)[u] = ¬R(a) ∧
h
∧

k=1

∀z1, . . . , zk.¬E(a, z1) ∨
k−1
∨

i=1

¬E(zi, zi+1) ∨ ¬R(zk)

The weakest inductive invariant thus represents the set of elements which are
not reachable from a via the edge relation E. This property is not expressible in
FO predicate logic. Accordingly, Ψ (h)[u] �= Ψ (h+1)[u] must hold for all h ≥ 0. ��

Our goal is to identify useful non-trivial classes of FO transition systems where
the fixpoint iteration is guaranteed to terminate. One ingredient for this defi-
nition is a stratification mapping λ : Rstate → N which assigns to each state

120 C. Müller and H. Seidl

predicate R a level λ(R). Intuitively, this mapping is intended to describe how
the information flows between predicates. Thereby, we use the convention that
λ(R) = 0 only for predicates R which are never substituted, i.e., whose values
stay the same throughout each run of the transition system.

We will consider substitutions which are guarded and stratified. A substitu-
tion θ is called guarded if it modifies at most one predicate R ∈ Rstate at a time
and is of one of the following forms:

Update : Rȳ := Rȳ ∨ ϕ ∨ ∃z̄. Aȳz̄ ∧ ψ (6)
Reset : Rȳ := ϕ ∨ ∃z̄. Aȳz̄ ∧ ψ (7)

where A ∈ Rinput is an input predicate and ϕ,ψ are quantifier-free FO formulas
without occurrences of predicate A. If additionally, each predicate R′ occurring
in ϕ or ψ has level less than λ(R), then θ is called stratified.

According to our definition, a guarded substitution only updates a single
predicate R. We might wonder whether the single update restriction could be
lifted by additionally allowing simultaneous updates of several predicates which
are coupled via the same input predicate. For this extension, however, termina-
tion can no longer be guaranteed.

Lemma 2. There exists a FO transition system T using stratified simultaneous
guarded updates and resets, together with some universal invariant Ψ such that
for each h ≥ 0, Ψ (h) is universal FO definable, but Ψ (h)[u] �→ Ψ (h+1)[u] for some
program point u.

Proof. Consider the FO transition system T as shown in Fig. 2 for some binary
predicate E, together with the invariant Ψ = {1 �→ error ∨ ¬hull(a, b), 0, 2 �→ �}
for constants a, b. Initially, the predicate hull is set to ⊥. By executing the loop h
times, either the error flag error is set to �, or hull receives kfold compositions of
E for k = 0, . . . , h. Still, we can assign levels to the predicates used by T which
meet the requirements of a stratification:

λ = {E �→ 0, add �→ 0, hull �→ 1, error �→ 2}

For h ≥ 0, we obtain Ψ (h)[1] =

h
∧

j=1

∀y1 . . . yj . error ∨ ¬hull(a, b) ∨ ¬hull(a, y1) ∨
j−1
∨

i=1

¬E(yi, yi+1) ∨ ¬E(yj , b)

For the required SO quantifier elimination of A1, A2, we note that in order to
avoid error to be set to �, add(x, y, z) must imply hull(x, y) ∧ E(y, z). In order
to falsify the invariant at program point 1 whenever possible, thus, A1(x, y, z)
should be set to hull(x, y) ∧ E(y, z), and A2(x, z, y) at least to add(x, y, z). Alto-
gether thus, the weakest inductive invariant for program point 0 is given by
error∨ ¬E∗(a, b) where E∗ is the transitive closure of E. As transitive closure is
not FO definable, we conclude that the fixpoint iteration cannot terminate. ��

Stratified Guarded First-Order Transition Systems 121

0

1

2

hull(x, z) := ⊥

add(x, y, z) := A1(x, y, z);
error := error ∨ ∃x, y, z. A1(x, y, z) ∧ ¬(hull(x, y) ∧ E(y, z))

hull(x, z) := hull(x, z) ∨ ∃y. A2(x, z, y) ∧ add(x, y, z)

Fig. 2. FO transition system capturing transitive closure.

At the expense of slightly more complicated formulas for Ψ (h), the right-hand
side for add could be brought into the form (6). Thus, the crucial issue which
results in inexpressible weakest inductive invariants, is the use of the same input
predicate in two simultaneous updates. In the next section, we indicate how to
generally deal with SO quantifiers, once a guarded substitution has been applied.

4 Universal So Quantifier Elimination

It is well-known that universal SO quantifiers can be removed from otherwise
quantifier-free formulas [12,19]. For example,

∀A.Rx̄ ∨ Aȳ ∨ ¬Az̄ ←→ Rx̄ ∨ (ȳ = z̄)

where for ȳ = (y1, . . . , yk) and z̄ = (z1, . . . , zk), ȳ = z̄ is a shortcut for the
formula (y1 = z1) ∧ . . . ∧ (yk = zk). Interestingly, there are also cases where SO
quantifier elimination is possible even in presence of FO existential quantifiers.

Example 6. Consider the substitution θ

R(y) := R(y) ∨ ∃z.A(y, z) ∧ S(y, z)

In that case, θ(R(a) ∨ ¬R(b)) is given by

∀z1. R(a) ∨ ∃z.A(a, z) ∧ S(a, z) ∨ ¬R(b) ∧ (¬A(b, z1) ∨ ¬S(b, z1))
←→ ∀z1. (R(a) ∨ ∃z.A(a, z) ∧ S(a, z) ∨ ¬R(b)) ∧

(R(a) ∨ (∃z.A(a, z) ∧ S(a, z)) ∨ ¬A(b, z1) ∨ ¬S(b, z1))

A closer inspection reveals that in this case, SO quantifier elimination of A is
possible where ∀A. θ(R(a) ∨ ¬R(b)) is equivalent to

∀z1. (R(a) ∨ ¬R(b)) ∧ ((R(a) ∨ (a = b) ∧ S(a, z1)) ∨ ¬S(b, z1))
←→ ∀z1. (R(a) ∨ ¬R(b)) ∧ ((R(a) ∨ (a = b) ∧ S(b, z1)) ∨ ¬S(b, z1))
←→ ∀z1. (R(a) ∨ ¬R(b)) ∧ (R(a) ∨ (a = b) ∨ ¬S(b, z1)
←→ ∀z1. R(a) ∨ R(b) ∧ ((a = b) ∨ ¬S(b, z1))

In particular, the resulting FO formula has universal FO quantifiers only. ��

122 C. Müller and H. Seidl

The observation in Example 6 can be generalized.

Lemma 3. 1. If Ψ is of the form
n
∨

i=1

(∃z̄. Aȳiz̄ ∧ ϕ[ȳi/ȳ]) ∨
m
∨

j=1

(∀z̄.¬Aȳ′
j z̄ ∨ ¬ϕ[ȳ′

j/ȳ]) (8)

for n,m ∈ N where ϕ is a FO formula without occurrences of A. Then ∀A. Ψ
is equivalent to

m
∨

j=1

(
n
∨

i=1

ȳi = ȳ′
j) ∨ (∀z̄.¬ϕ[ȳ′

j/ȳ]) (9)

2. If Ψ is of the form

ϕ′ ∨
n
∨

i=1

(∃z̄. Aȳiz̄ ∧ ϕ[ȳi/ȳ]) ∨
m
∨

j=1

(∀z̄.¬Aȳ′
j z̄ ∨ ¬ϕ[ȳ′

j/ȳ]) ∧ ψ′
j (10)

for n,m ∈ N where ϕ,ϕ′, ψ′
j all are FO formulas without occurrences of A.

Then ∀A. Ψ is equivalent to

ϕ′ ∨
m
∨

j=1

(
n
∨

i=1

(ȳi = ȳ′
j) ∨ (∀z̄.¬ϕ[ȳ′

j/ȳ]) ∧ ψ′
j (11)

Proof. For proving statement (1), we consider the negated formula ∃A.¬Ψ and
apply Ackermann’s lemma in order to remove existential SO quantification. We
calculate:

∃A.¬Ψ ←→ ∃z̄1 . . . z̄m.∃A.∀z̄.
∧n

i=1

∧m
j=1 (¬Aȳiz̄ ∨ ¬ϕ[ȳi/ȳ]) ∧ Aȳ′

j z̄j ∧ ϕ[ȳ′
j/ȳ, z̄j/z̄]

←→ ∃z̄1 . . . z̄m.
∧n

i=1

∧m
j=1 ((ȳi �= ȳ′

j) ∨ ¬ϕ[ȳi/ȳ, z̄j/z̄]) ∧ ∧m
j=1 ϕ[ȳ′

j/ȳ, z̄j/z̄]

←→ ∃z̄1 . . . z̄m.
∧n

i=1

∧m
j=1 ((ȳi �= ȳ′

j) ∨ ¬ϕ[ȳj/ȳ, z̄j/z̄]) ∧ ∧m
j=1 ϕ[ȳ′

j/ȳ/z̄j/z̄]

←→ ∃z̄1 . . . z̄m.
∧n

i=1

∧m
j=1 ((ȳi �= ȳ′

j) ∨ ¬ϕ[ȳj/ȳ]) ∧ ϕ[ȳ′
j/ȳ, /z̄j/z̄]

←→ ∧n
i=1

∧m
j=1 ((ȳi �= ȳ′

j) ∨ ∃z̄. ϕ[ȳ′
j/ȳ])

where the last formula is equivalent to the negation of formula (9). The second
statement then follows from statement (1) by distributivity. ��
Interestingly, the same result is obtained when the existentially quantified vari-
ables z̄ do not occur as arguments to the input predicate A.

Lemma 4. 1. If Ψ is of the form
n
∨

i=1

Aȳi ∧ (∃z̄. ϕ[ȳi/ȳ]) ∨
m
∨

j=1

¬Aȳ′
j ∨ (∀z̄.¬ϕ[ȳ′

j/ȳ]) (12)

for n,m ∈ N where ϕ is a FO formula without occurrences of A. Then ∀A. Ψ
is equivalent to

m
∨

j=1

(
n
∨

i=1

ȳi = ȳ′
j) ∨ (∀z̄.¬ϕ[ȳ′

j/ȳ]) (13)

Stratified Guarded First-Order Transition Systems 123

2. If Ψ is of the form

ϕ′ ∨
n
∨

i=1

Aȳi ∧ (∃z̄. ϕ[ȳi/ȳ]) ∨
m
∨

j=1

(¬Aȳ′
j ∨ (∀z̄.¬ϕ[ȳ′

j/ȳ])) ∧ ψ′
j (14)

for n,m ∈ N where ϕ,ϕ′, ψ′
j all are FO formulas without occurrences of A.

Then ∀A. Ψ is equivalent to

ϕ′ ∨
m
∨

j=1

(
n
∨

i=1

(ȳi = ȳ′
j) ∨ (∀z̄.¬ϕ[ȳ′

j/ȳ]) ∧ ψ′
j (15)

Proof. For proving statement (1), we again consider the negated formula ∃A.¬Ψ
and apply Ackermann’s lemma in order to remove existential SO quantification.
By introducing the shortcut Φ for ∃z̄. ϕ, we calculate:

∃A.¬Ψ ←→ ∃A.
∧n

i=1

∧m
j=1 (¬Aȳi ∨ ¬Φ[ȳi/ȳ]) ∧ Aȳ′

j ∧ ¬Φ[ȳ′
j/ȳ]

←→
∧n

i=1

∧m
j=1 ((ȳi �= ȳ′

j) ∨ ¬Φ[ȳi/ȳ]) ∧
∧m

j=1 Φ[ȳ′
j/ȳ]

←→
∧n

i=1

∧m
j=1 ((ȳi �= ȳ′

j) ∨ ¬Φ[ȳj/ȳ]) ∧
∧m

j=1 Φ[ȳ′
j/ȳ]

←→
∧n

i=1

∧m
j=1 ((ȳi �= ȳ′

j) ∨ ¬Φ[ȳj/ȳ]) ∧ Φ[ȳ′
j/ȳ]

←→
∧n

i=1

∧m
j=1 ((ȳi �= ȳ′

j) ∧ Φ[ȳ′
j/ȳ])

where the last formula is equivalent to the negation of formula (13). Again, the
second statement then follows from statement (1) by distributivity. ��

In light of Lemmas 3 and 4, we introduce simplified versions of guarded updates
and resets where the input predicate no longer occurs in the scope of existential
quantifiers:

Simplified Update: Rȳ := Rȳ ∨ ϕ ∨ Aȳ ∧ ∃z̄. ψ (16)
Simplified Reset: Rȳ := ϕ ∨ Aȳ ∧ ∃z̄. ψ (17)

As a first corollary, we obtain:

Corollary 1. Assume that θ is a guarded update of the form (6) (guarded reset
of the form (7)), and that θ′ is the corresponding simplified update (16) (simpli-
fied reset (17)). Then for every universal FO formula Ψ ,

∀A. θ(Ψ) ←→ ∀A. θ′(Ψ)

��

In light of Corollary 1, we subsequently consider FO transition systems with
simplified guarded updates and resets only.

Example 7. Consider the second update in the loop of the transition system
from Fig. 1. Its simplified variant removes r1 and r2 from the signature of A4:

discuss(x1, x2, p, d) := discuss(x1, x2, p, d) ∨ A4(x1, x2, p, d) ∧
∃r1, r2. report(x1, p, r1) ∧ report(x2, p, r2)

124 C. Müller and H. Seidl

Let θ4 denote this simplified update, and consider the invariant (2) from the
introduction. Application of θ4 results in the formula

∀x1, x2, p, d, r1, r2.¬discuss(x1, x2, p, d) ∧
(¬A4(x1, x2, p, d) ∨ ¬report(x1, p, r1) ∨ ¬report(x2, p, r2)) ∨
(¬auth(x1, p) ∧ ¬auth(x2, p))

Since A4 only occurs negatively, universal SO quantifier elimination of A4 yields

∀x1, x2, p, d, r1, r2.¬discuss(x1, x2, p, d)∧
(¬report(x1, p, r1) ∨ ¬report(x2, p, r2)) ∨
(¬auth(x1, p) ∧ ¬auth(x2, p))

��

Corollary 2. Assume Ψ is a formula of the form (14). Then ∀A.Ψ ←→ θ(Ψ)
where θ is given by

Aȳ :=
n
∧

i=1

(ȳi �= ȳ) (18)

The definition (18) thus provides us with the worst adversarial strategy to defeat
the proposed invariant. As another consequence of Lemma3, we find that in
presence of subsequent SO quantifier elimination, the effect of a guarded substi-
tution of the forms (16) or (17) could also be simulated by the corresponding
nonuniform substitutions:

Rȳ := Rȳ ∨ ϕ ∨ Aȳ

¬Rȳ := ¬Rȳ ∧ ¬ϕ ∧ (¬Aȳ ∨ ∀z̄.¬ψ) (19)
and

Rȳ := ϕ ∨ Aȳ

¬Rȳ := ¬ϕ ∧ (¬Aȳ ∨ ∀z̄.¬ψ) (20)

respectively. Here, nonuniform means that positive and negative occurrences of
literals are substituted differently. We have:

Corollary 3. Assume that θ is a guarded substitution of the form (16) or (17).
Assume that θ′ is the nonuniform substitution of the corresponding form (19) or
(20), respectively. Then for every universal formula Ψ ,

∀A. θ(Ψ) ←→ ∀A. θ′(Ψ)

��

Finally, as another important consequence of Lemma 3, we obtain:

Theorem 1. Assume that T is a FO transition system with guarded (simplified)
updates and resets only, and Ψ a universal FO invariant.

Stratified Guarded First-Order Transition Systems 125

1. The iterates Ψ (h)[u], h ≥ 0, in (5) all are effectively equivalent to universal
FO formulas.

2. The iteration terminates, i.e., Ψ (h) = Ψ (h+1) for some h ≥ 0, iff for each
program point u, the weakest strengthening of all iterates Ψ (h)[u] is FO-
definable.

Proof. Due to Lemmas 3 and 4, for each universal FO formula ϕ and each
guarded (simplified) update or reset θ with input predicate A, ∀A. (θϕ) is equiv-
alent to a universal FO formula. That implies statement (1). Now assume for
for each h ≥ 0 and each v ∈ V , Φ(h)[v] is FO definable. Then due to the com-
pactness theorem for FO predicate logic [5], there is some h ≥ 0 such that
Ψ (h)[v] ↔ Ψ (h+j)[v] holds for all v ∈ V and j ≥ 0, iff for each v ∈ V , the
conjunction

∧

h≥0 Ψ (h)[v] is again FO definable. ��

Example 8. Consider again the specification from Fig. 1, and let θ1, θ2, θ3, and
θ4 denote the simplified substitutions occurring therein. Assume that Ψ equals
the universal formula in (2), and we are interested in its validity at program
point 2 of the transition system. The formula ∀A3. θ3(∀A4. θ4(Ψ)) is given by

∀A3. θ3(∀x1, x2, p, d, r1, r2.¬discuss(x1, x2, p, d) ∧
(¬report(x1, p, r1) ∨ ¬report(x2, p, r2)) ∨ (¬auth(x1, p) ∧ ¬auth(x2, p))

←→ ∀x1, x2, p, d, r1, r2.¬discuss(x1, x2, p, d) ∧
(¬report(x1, p, r1) ∧ ¬assign(x1, p) ∨ ¬report(x2, p, r2) ∧ ¬assign(x2, p)) ∨
(¬auth(x1, p) ∧ ¬auth(x2, p))

The resulting formula Ψ ′ already equals the fixpoint for the loop. Since the
predicate assign only occurs negatively in Ψ ′ and conf only negatively in the
right-hand side for assign, the formula ∀A1.θ1(∀A2.θ2(Φ′)) construction from Ψ ′

via the substitution θassign defined by

assign(y1, y2) := ¬auth(y1, y2)

This means the formula Ψ ′′ for the initial node of the transition system is given
by

∀x1, x2, p, d, r1, r2.¬discuss(x1, x2, p, d) ∧
(¬report(x1, p, r1) ∧ auth(x1, p) ∨ ¬report(x2, p, r2) ∧ auth(x2, p)) ∨
(¬auth(x1, p) ∧ ¬auth(x2, p))

By the initial condition H from the introduction, ¬discuss(x1, x2, p, d) holds
at the initial node of the transition system, as well as ¬report(x1, p, r1) and
¬report(x2, p, r2) for all x1, x2, p, d, r1, r2. Therefore, H implies Ψ ′′, and the prop-
erty Ψ at the exit of the transition system is valid. ��

In this section we have shown comprehensively how to eliminate universal SO
quantifiers introduced by guarded updates in a FO transition system and intro-
duced a non-uniform variant of any guarded updates and resets which removes all
possibly introduced existential FO quantifiers. In the next two sections, we will
apply these results to FO transition systems which additionally are stratified.

126 C. Müller and H. Seidl

5 Stratified Guarded Updates

In [19], termination was announced for FO transition systems with stratified
guarded updates where instantiation of existential quantifiers was applied as an
abstraction to enforce all occurring formulas to be universal. Here, we improve
on that result in two respects. First, we present a proof that termination can
also be guaranteed without any abstraction. Second, we generalize the setting
to allow stratified guarded resets—at least at the maximal and minimal levels.

Theorem 2. Assume that T is a FO transition system where each occurring
substitution is stratified guarded with the restriction that resets only occur for
predicates of level 1 and the maximal level L. Then for every universal invari-
ant Ψ , the weakest inductive invariant is again universal and can effectively be
computed.

Proof. W.l.o.g., we assume that each occurring substitution is a simplified
update or reset, i.e., either of the form (16) or (17). We show that there is some
h ≥ 0, so that Ψ (h+1) = Ψ (h). Since by Lemma 4, Ψ (h)[u] is a universal formula
for all h ≥ 0 and program points u, the statement of the theorem follows.

Assume that each simplified update θ of a predicate R always is specified
by means of the same input predicate AR. Let Θ denote the finite set of strat-
ified guarded substitutions occurring in T , and Φ a universal FO formula. Let
π = θN , . . . , θ1 be any sequence of nonuniform substitutions where for each
i = 1, . . . , N , θi = θ′

i[Ai/AR] holds for a fresh input predicate Ai, and a nonuni-
form substitution θ′

i of the form (19) corresponding to a simplified update or
reset θ′′ ∈ Θ with left-hand side Rȳ.

Lemma 5. There is some number V only depending on Φ and Θ so that π(Φ) =
θN (. . . θ1(Φ) . . .) =

∧N
h=t(∀z̄t.ct) for clauses ct where the number of FO variables

in z̄t is bounded by V . In particular, V is independent of the number N of
substitutions in π.

Given Lemma 5, the number of argument tuples z̄ of occurring literals Aiz̄ in any
ct is bounded. Due to Corollary 2, a bounded number of substitutions of the form
(18) therefore suffices to realize SO quantifier elimination of A1, . . . , AN in ct. As
a consequence, the number of universal FO formulas possibly occurring in each
conjunct of ∀A1 . . . AN . π(Φ), and thus also the number of conjunctions of these
formulas is finite. Accordingly, there must be some h ≥ 0 so that Φ(h+1) = Φ(h),
and the theorem follows. It therefore remains to prove Lemma 5.

Proof (of Lemma 5). Let us first consider the case where there is no reset of
predicates at maximal level L. We introduce a dedicated class of formulas g as
finite conjunctions of generalized clauses c which are built up according to the
following abstract grammar

g :: = � | c ∧ g

c :: = c0 | Aā ∨ c′ | fRb̄ ∨ c′ | ob̄ ∨ c′

fRb̄ :: = ¬Rb̄ ∧ ∀z̄R.
∧r

n=1(¬Anb̄ ∨ cn)
ob̄ :: = ∀z̄.

∧r
n=1(¬Anb̄ ∨ cn)

Stratified Guarded First-Order Transition Systems 127

where c0 is an ordinary clause without occurrences of input predicates, R is a
predicate, A,An are input predicates, ā, b̄ are sequences of arguments, z̄R is a
sequence of fresh variables whose length only depends on R, and formulas ob̄

where all state predicates are of level 0. A formula fRb̄ is also called negation
tree with head ¬Rb̄, while we call a formula ob̄ a level 0 chunk. Moreover,

(a) All literals occurring in the generalized clauses cn inside the conjunction
within fRb̄ are of levels less than λ(R);

(b) For any two negation trees ϕ1, ϕ2 with identical head ¬Rb̄, there is some
formula Δ so that either ϕ1 = ϕ2 ∧ Δ or vice versa, ϕ2 = ϕ1 ∧ Δ holds.

Φ can be brought into the form ∀z̄.
∧m

t=1 ct where each ct is an ordinary clause
without occurrences of input predicates, i.e., a plain disjunction of literals and
(dis-)equalities. Therefore, now consider a single generalized clause c which satis-
fies properties (a) and (b). We show that for each nonuniform update substitution
θ of the form

Rȳ := Rȳ ∨ ϕ ∨ Ahȳ

¬Rȳ := ¬Rȳ ∧ ¬ϕ ∧ (¬Ahȳ ∨ ¬∀z̄.¬ψ)

θ(c) can again be represented as a conjunction of generalized clauses satisfying
properties (a) and (b), and whose free variables are all contained in the set of
free variables from c and θ. Assume that c is of the form c′∨

∨s
i=1 Rāi∨

∨t
j=1 fRb̄j

where c′ is a generalized clause without further top-level occurrences either of
positive literals Rā′ or negation trees with head ¬Rb̄′ for any ā′, b̄′, and fRb̄j =
¬Rb̄j ∧ ∀z̄R.

∧uj

ν=1(¬Aj,ν b̄j ∨ cj,ν) is a negation tree with head ¬Rb̄j . Then

θ(c) =
∧

c1,...,cs∈C
∧

J⊆[1,t]

∧

j∈J,c̄j∈C̄ θ(c′)∨
∨s

i=1 Rāi ∨ Aāi ∨ ci[āi/ȳ] ∨
∨

j∈J c̄j [b̄j/ȳ] ∨
∨

j �∈J ¬Rb̄j ∧ (∀z̄R. Ab̄j ∨ ψ[b̄j/ȳ]) ∧
∧uj

ν=1(¬Aj,ν b̄j ∨ ψj,ν)

where C and C̄ are the sets of clauses in the normal forms of ϕ and ¬ϕ, respec-
tively. The resulting formula can indeed be represented as a conjunction of gener-
alized clauses satisfying property (a). Concerning property (b), we observe that
for every fresh negative literal property (b) trivially holds, while for existing
negation trees, this property is preserved. If on the other hand, θ is a reset of
a predicate at level 1, θ(c) is a conjunction of generalized clauses where some
negation trees have been replaced by level 0 chunks. In particular, properties (a)
and (b) still hold.

Assume now that we are given a generalized clause c satisfying properties
(a) and (b). Then c is called flat up to level i, if the roots of all negation trees
occurring in c with a nonempty conjunction, have level at most i, and for every
predicate R of level i and every possible argument tuple b̄, there is at most one
negation tree with head ¬Rb̄. For a generalized clause c which is flat up to level
i, we define the transformation flatteni as follows. Assume that c is of the form

c′ ∨
t

∨

j=1

¬Rj b̄j ∧ ∀z̄j .

uj
∧

ν=1

(¬Aj,ν b̄j ∨ cj,ν)

128 C. Müller and H. Seidl

where the ¬Rj b̄j represent all occurrences of negated literals of level i. Then

c ←→
∧

J={j1<...<jk}⊆[1,t]

∧

ν1∈[1,uj1],...,νk∈[1,ujk
]

(∀z̄j1 . . . z̄jk . c′ ∨
∨

j �∈J Rj b̄j ∨
∨k

l=1 ¬Ajl,νl
b̄j ∨ cjl,νl

)

In each quantified clause ∀z̄j1 . . . z̄jk . c′ in the conjunction, all occurring negation
trees have level less than i. Now due to property (2), c′ can be simplified so that
for each negated literal R′b̄ where R′ is of level i−1, there is at most one negation
tree. The resulting conjunction of quantified clauses is denoted by flatteni c.
To compute a bound on the number of possible argument variables, let us intro-
duce the following structural parameters:

v — the number of variables occurring in Φ
L — the number of levels of predicates
r — maximal arity of a predicate
m — maximal number predicates at some level i

l —
maximal length of z̄ in subformulas ∀z̄.¬ψ
occurring in the substitutions from Θ

Successive application of flattenL, . . . , flatten1 allows us to construct for a gen-
eralized clause c satisfying properties (a) and (b), an equivalent conjunction of
formulas ∀z̄′. c′ where c′ is disjunction of literals, (dis-)equalities and level 0
chunks ob̄ only, and z̄′ is the list of globally bound variables occurring freely in
c′.

For i = L, . . . , 1, we inductively determine a bound Vi to the number of
distinct FO variables possibly occurring as arguments of literals at level i in
a clause c′. For i = L, we can set VL = v, since the only literals at level L
occurring in c′ already must have occurred in Φ. Therefore, assume that i < L
and a bound Vi+1 has already been found. Then Vi can be bound as follows:
Given the number Vi+1, the number of literals of predicates at level i+ 1 can be
bound by m · V r

i+1. For each of these literals, a fresh list of variables of length at
most l can be provided. Accordingly,

Vi = Vi+1 + l · m · V r
i+1 ≤ (1 + l · m) · V r

i+1

Altogether, this means that the total number of variables possibly occurring in
literals of c′ (outside of level 0 chunks) at level at least 0 is bounded by

V ≤
{

(1 + l · m)L · v if r = 1

(1 + l · m)
rL−1
r−1 · vrL

if r > 1
(21)

Now given that there is a bound V1 to the number of variables possibly occurring
as arguments of predicates at level 1, there is also only a bounded number
O of non-equivalent subformulas ob̄ (after SO quantifier elimination) in any of
the generalized clauses from flatten1(. . . flattenL(c′) . . .). Accordingly, V0 + O · l
bounds the number of variables occurring in equalities, disequalities and literals
of predicates at level 0.

Stratified Guarded First-Order Transition Systems 129

Let us finally also consider the case when additionally resets of predicates at
maximal level L occur. Such a reset for a predicate R takes effect at most once.
It thus introduces one fresh list of universally quantified variables for each occur-
rence ¬Rb̄ of the negated the negated literal at most once where we w.l.o.g. may
even assume that the list of outside universal quantifiers of the negation tree for
that literal can be reused. Thus, no further universal quantifiers are introduced.
Altogether, therefore, the number of FO variables in quantified clauses ∀z̄′.c′

contained in π(Φ) remains bounded. This completes the proof of Lemma 5. ��
We remark that Theorem 2 remains true if there are predicates R′ with strat-

ified guarded updates as well as resets also at non-extremal levels—given that
neither their updates nor their resets introduce FO variables, i.e., the variable
lists z̄ in (6) and (7) ((16) and (17)) are empty. In general, though, the proof
technique of Theorem 2 cannot easily be extended to FO transition systems with
arbitrary resets of the form (7), since then conjunctions of the form ob̄ with non-
empty lists of quantified variables may also occur at higher levels—where it is
no longer clear how to prove that their number is finite.

6 Allowing Guarded Stratified Resets

We would like to extend Theorem 2 from the last section to FO transition systems
which additionally have resets at arbitrary levels. We succeed in doing so in two
special cases (see Theorems 3 and 4, respectively). Let us call an update strictly
guarded it it is of the form:

Rȳ := Rȳ ∨ Aȳ ∧ ∃z̄. ψ (22)

for some predicate R and quantifier-free FO formula ψ without occurrences of
A. Furthermore, let us call an update or reset θ positive if all predicates only
occur positively in the right-hand side.

Theorem 3. Consider a FO transition system T where all substitutions are
stratified, guarded, and all substitutions of predicates not of level 0 are positive.
Then for every universal invariant Ψ , the weakest inductive invariant is again
universal and can effectively be computed.

Proof. Let Θ denote the set of substitutions occurring in T . As in the proof of The-
orem 2, let π = θN , . . . , θ1 be any sequence of nonuniform substitutions where for
each i = 1, . . . , N , θi = θ′

i[Ai/AR] holds for a fresh input predicate Ai, and a
nonuniform substitution θ′

i of the form (19) corresponding to an update or reset
substitution θ′′ ∈ Θ with left-hand side Rȳ. Let

∧M
j=1(∀z̄j . cj) denote the con-

junction of quantified generalized clauses for π(Φ)—now possibly also with sub-
formulas ob̄ holding predicates of level > 0. Then each FO variable x occurring in
a positive literal Aiā in any cj , already occurs in Φ. In light of Corollary 2, it there-
fore suffices to use only a globally bounded number of input predicates in each cj .
If the number of predicate symbols is bounded, then also the number of general-
ized clauses as well as the number of non-equivalent formulas ∀A1 . . . AN . π(Φ)—
implying that for every universal invariant Ψ , Ψ (h+1) = Ψ (h) for some h ≥ 0. From
that, the statement of the theorem follows. ��

130 C. Müller and H. Seidl

The proof argument for Theorem3 cannot easily be extended to unrestricted
stratified guarded substitutions. In presence of negated literals in substitutions,
it is no longer the case that the arguments of positive literals Rā occurring in
π(Φ) have already occurred in Φ, so for the next result we have to rely on a
different proof strategy.

Theorem 4. Consider a FO transition system T where all substitutions are
guarded and stratified. Assume furthermore that all updates are strictly guarded.
Then for every universal invariant Ψ , the weakest inductive invariant is again
universal and can effectively be computed.

Proof. For this proof, it is convenient to use the notation Φ � ∀x̄. c for a universal
FO formula Φ, a clause c, and a list x̄ of distinct variables so that for the prenex
CNF ∀z̄. c1 ∧ . . . ∧ cm of Φ, c occurs among the cj , and x̄ is the subsequence of
variables in z̄ which occur in c. We rely on the following technical lemma:

Lemma 6. Assume that c is a clause and θ a stratified reset or stratified strictly
guarded update with input predicate A which substitutes a predicate R with
λ(R) = s. Let c′ be a clause with ∀A. θ(c) � ∀x̄. c′ where x̄ is the list of newly
introduced variables in c′. Then either c = c′ and x̄ is empty, or the number of
literals at level s of c′ is less than the corresponding number of c.

Proof. Assume that the clause c is of the form

c0 ∨ Rȳ1 ∨ . . . ∨ Rȳn ∨ ¬Rȳ′
1 ∨ · · · ∨ ¬Rȳ′

m

where c0 does not contain the predicate R. If θ is a reset, all literals containing R
are eliminated. Therefore, the assertion of the lemma trivially holds. Now assume
that θ is a strictly guarded update, i.e., of the form (22). Then by Lemma 3,

∀A. θ(Riȳ) ←→ c0 ∨
∨m

j=1 ¬Rȳ′
j ∧ (

∨n
i=1(ȳi = ȳ′

j) ∨ ¬ψ[ȳ′
j/ȳ])

←→
∧

J⊆[1,m] ∀z̄J . (c0 ∨
∨

j �∈J ¬Rȳ′
j ∨

∨

j∈J

∨n
i=1(ȳi = ȳ′

j) ∨ ¬ψ[ȳ′
j/ȳ, z̄j/z̄])

where z̄j is a fresh list of FO variables of the same length as z̄, and z̄J is the
concatenation of all lists z̄j , j ∈ J . In particular for J = ∅, z̄J is empty and
the corresponding clause equals c. If on the other hand J �= ∅, the number of
negated literals occurring in the clause has decreased. ��

By Lemma 6, the number of literals at level s therefore either decreases,
or the clause stays the same. Let Θ denote a finite set of stratified guarded
substitutions where all updates in Θ are strictly guarded, and let c0 denote any
clause. Consider a sequence (θt,∀x̄t.ct), t ≥ 1, where for all t ≥ 1, θt ∈ Θ with
some input predicate At, and ∀At. (θtct−1) � ∀x̄t. ct holds. We claim that then
there is some t′ ≥ 1 so that ct′ = ct′′ and x̄t′′ is empty for all t′′ > t′.

Stratified Guarded First-Order Transition Systems 131

In order to prove that claim, we introduce for t ≥ 1, the vector vt =
(vt,L, . . . , vt,1) ∈ N

L where L is the maximal level of a predicate in Rstate , and
vt,i is the number of literals with predicates of level i. By Lemma 6, it holds for all
t ≥ 0, that either ct = ct+1 and z̄t is empty, or vt > vt+1 w.r.t. the lexicographic
order on N

L. Since the lexicographical ordering on N
L is well-founded, the claim

follows. We conclude that the set of quantified clauses ∀z̄.c with Ψ (h)[u] � ∀z̄.c
for any u and h, is finite. From that, the statement of the theorem follows. ��

Theorem 4 leaves open the case of transition systems with stratified guarded
resets and stratified guarded updates of which some are not strictly guarded.
To these, the presented proof technique cannot be easily extended. The reason
is that a non-strictly guarded update θ for some predicate R, when applied to
some clause c, may result in a quantified clause ∀z̄. c′ with ∀A.θ(c) � ∀z̄. c′ so
that neither c = c′ holds nor does the number of literals ¬Rb̄ decrease.

7 Conclusion

We have investigated FO transition systems where all substitutions are either
guarded updates or guarded resets. For these, we observed that the exact weak-
est pre-condition of a universal FO formula is again a universal FO formula,
thus allowing us to realize a fixpoint computation of iterated strengthening for
proving the validity of universal invariants. In order to identify sub-classes of
FO transition systems where termination can be guaranteed, we relied on a nat-
ural notion of stratification. Here, we were able to prove termination (and thus
decidability) for three interesting sub-classes of stratified guarded FO transition
systems. However, it remains as an open question whether termination can be
proven for all FO transition systems with stratified guarded updates and resets.

The results of our paper can immediately be applied to the multi-agent work-
flow language as considered in [19] for analyzing noninterference in presence of
declassification and agent coalitions. There, transformations are presented to
encode noninterference properties as invariants of the self-composition of the
given workflow [3,17]. At least for the case of stubborn agents [11], i.e., agents
who do not participate in adversarial coalitions, the given transformation pre-
serves both guardedness and the stratification. The same also holds true if the
size of adversarial coalitions is bounded. For these cases, our novel decidability
results therefore translate into decidability of noninterence.

References

1. Ackermann, W.: Untersuchungen über das Eliminationsproblem der mathematis-
chen Logik. Math. Ann. 110, 390–413 (1935)

2. Ball, T., et al.: Vericon: towards verifying controller programs in software-defined
networks. In: ACM Sig-plan Notices number 6, vol. 49, pp. 282–293. ACM (2014)

3. Barthe, G., Crespo, J.M., Kunz, C.: Product programs and relational program
logics. J. Log. Algebraic Methods Program. 85(5), 847–859 (2016). https://doi.
org/10.1016/j.jlamp.2016.05.004

https://doi.org/10.1016/j.jlamp.2016.05.004
https://doi.org/10.1016/j.jlamp.2016.05.004

132 C. Müller and H. Seidl

4. Berkovits, I., Lazić, M., Losa, G., Padon, O., Shoham, S.: Verification of threshold-
based distributed algorithms by decomposition to decidable logics. In: Dillig, I.,
Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 245–266. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5 15

5. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer, Heidelberg (1997)

6. Börger, E., Stärk, R.: History and survey of ASM research. In Abstract State
Machines: A Method for High-Level System Design and Analysis, pp. 343–367.
Springer, Heidelberg (2003). ISBN: 978-3-642-18216-7. https://doi.org/10.1007/
978-3-642-18216-7 9

7. Böorger, E., Stäark, R.: Tool support for ASMs. In: Abstract State Machines:
A Method for High-Level System Design and Analysis, pp. 313–342. Springer,
Heidelberg (2003). ISBN: 978-3-642-18216-7, https://doi.org/10.1007/978-3-642-
18216-7 8

8. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

9. Feldman, Y.M.Y., Padon, O., Immerman, N., Sagiv, M., Shoham, S.: Bounded
quantifier instantiation for checking inductive invariants. Logical Methods Comput.
Sci. 15, 3 (2019). https://doi.org/10.23638/LMCS-15(3:18)2019

10. Finkbeiner, B., Müller, C., Seidl, H., Zalinescu, E.: Verifying security policies in
multi-agent work OWS with loops. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS 2017), pp. 633–645.
IEEE (2017). https://doi.org/10.1145/3133956.3134080

11. Finkbeiner, B., Seidl, H., Müller, C.: Specifying and verifying secrecy in workflows
with arbitrarily many agents. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA
2016. LNCS, vol. 9938, pp. 157–173. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46520-3 11

12. Gabbay, D.M., Schmidt, R., Szalas, A.: Second Order Quantifier Elimination: Foun-
dations. Computational Aspects and Applications, College Publications (2008)

13. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, Oakland, CA, USA, April 26–28, 1982. IEEE
Computer Society (1982). https://doi.org/10.1109/SP.1982.10014

14. Gurevich, Y.: Evolving algebras 1993: Lipari guide. arXiv preprint
arXiv:1808.06255 (2018)

15. Karbyshev, A., Bjørner, N., Itzhaky, S., Rinetzky, N., Shoham, S.: Property-
directed inference of universal invariants or proving their absence. J. ACM (JACM)
64(1), 7 (2017)

16. Koenig, J.R., Padon, O., Immerman, N., Aiken, A.: [n. d.] Firstorder quantified
separators. In: Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2020) (2020, to appear)

17. Kovács, M., Seidl, H., Finkbeiner, B.: Relational abstract interpretation for the
verification of 2-hypersafety properties. In: Sadeghi, A.-R., Gligor, V.D., Yung, M.
(eds.) 2013 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS 2013, Berlin, Germany, November 4–8, 2013, pp. 211–222. ACM (2013).
https://doi.org/10.1145/2508859.2516721

18. McMillan, K.L., Padon, O.: Deductive verification in decidable fragments with ivy.
In: Podelski, A. (ed.) SAS 2018. LNCS, vol. 11002, pp. 43–55. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99725-4 4

https://doi.org/10.1007/978-3-030-25543-5_15
https://doi.org/10.1007/978-3-642-18216-7_9
https://doi.org/10.1007/978-3-642-18216-7_9
https://doi.org/10.1007/978-3-642-18216-7_8
https://doi.org/10.1007/978-3-642-18216-7_8
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.23638/LMCS-15(3:18)2019
https://doi.org/10.1145/3133956.3134080
https://doi.org/10.1007/978-3-319-46520-3_11
https://doi.org/10.1007/978-3-319-46520-3_11
https://doi.org/10.1109/SP.1982.10014
http://arxiv.org/abs/1808.06255
https://doi.org/10.1145/2508859.2516721
https://doi.org/10.1007/978-3-319-99725-4_4

Stratified Guarded First-Order Transition Systems 133

19. Müller, C., Seidl, H., Zalinescu, E.: Inductive invariants for noninterference in
multi-agent work flows. In: 31st IEEE Computer Security Foundations Symposium,
(CSF 2018), pp. 247–261. IEEE (2018). https://doi.org/10.1109/CSF.2018.00025

20. Padon, O., Immerman, N., Karbyshev, A., Lahav, O., Sagiv, M., Shoham, S.:
Decentralizing SDN policies. In: ACM SIGPLAN Notices, vol. 50, no. 1, pp. 663–
676. ACM (2015)

21. Padon, O., Immerman, N., Shoham, S., Karbyshev, A., Sagiv, M.: Decidability of
inferring inductive invariants. In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016. ACM,
217–231 (2016). https://doi.org/10.1145/2837614.2837640

22. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reasoning
about distributed protocols. In: Proceedings of the ACM Programming Language,
1, OOPSLA, 108:1–108:31 (2017). https://doi.org/10.1145/3140568

23. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety veri-
fication by interactive generalization. ACM SIG- PLAN Notices 51(6), 614–630
(2016)

24. Ranzato, F.: Decidability and synthesis of abstract inductive invariants. CoRR,
abs/2004.03170. arXiv:2004.03170 (2020). https://arxiv.org/abs/2004.03170

25. Seidl, H., Müller, C., Finkbeiner, B.: How to win first-order safety games. In: Beyer,
D., Zufferey, D. (eds.) VMCAI 2020. LNCS, vol. 11990, pp. 426–448. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-39322-9 20

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/CSF.2018.00025
https://doi.org/10.1145/2837614.2837640
https://doi.org/10.1145/3140568
http://arxiv.org/abs/2004.03170
https://arxiv.org/abs/2004.03170
https://doi.org/10.1007/978-3-030-39322-9_20
http://creativecommons.org/licenses/by/4.0/

Predicate Abstraction and CEGAR
for νHFLZ Validity Checking

Naoki Iwayama1, Naoki Kobayashi1(B) , Ryota Suzuki1,
and Takeshi Tsukada2

1 The University of Tokyo, Tokyo, Japan
{iwayama,koba,rsuzuki}@kb.is.s.u-tokyo.ac.jp

2 Chiba University, Chiba, Japan
tsukada@math.s.chiba-u.ac.jp

Abstract. We propose an automated method for νHFLZ validity check-
ing. HFLZ is an extension of the higher-order fixpoint logic HFL with
integers, and νHFLZ is a restriction of it to the fragment without the least
fixpoint operator. The validity checking problem for HFLZ has recently
been shown to provide a uniform approach to higher-order program veri-
fication. The restriction to νHFLZ studied in this paper already provides
an automated method for a large class of program verification problems
including safety and non-termination verification, and also serves as a key
building block for solving the validity checking problem for full HFLZ.
Our approach is based on predicate abstraction and counterexample-
guided abstraction refinement (CEGAR). We have implemented the
proposed method, and applied it to program verification. According to
experiments, our tool outperforms a closely related tool called Horus in
terms of precision, and is competitive with a more specialized program
verification tool called MoCHi despite the generality of our approach.

1 Introduction

HFLZ [13] is an extension of the higher-order fixpoint logic HFL [22] with inte-
gers. Kobayashi et al. [13,23] have shown that various program verification prob-
lems for functional programs can be reduced to HFLZ validity checking prob-
lems.1 For example, consider the following OCaml program.

let rec sum f n k = if n<=0 then k 0
else f n (fun x-> sum f (n-1) (fun y -> k(x+y)))

let main n = sum (fun x k -> k(x+x)) n (fun r->assert(r>=n))

The main function takes an integer n as an argument, computes the sum r =∑n
x=1(x+x), and asserts that r ≥ n (here, the function sum is represented in the

1 Kobayashi et al. [13] actually considered model checking problems, but it is actu-
ally sufficient to consider validity checking problems for formulas without modal
operators, as shown in a follow-up paper [23]; thus, throughout this paper, we shall
consider only validity checking for formulas without modal operators.

c© Springer Nature Switzerland AG 2020
D. Pichardie and M. Sighireanu (Eds.): SAS 2020, LNCS 12389, pp. 134–155, 2020.
https://doi.org/10.1007/978-3-030-65474-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65474-0_7&domain=pdf
http://orcid.org/0000-0002-0537-0604
http://orcid.org/0000-0002-2824-8708
https://doi.org/10.1007/978-3-030-65474-0_7

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 135

continuation-passing style to make the correspondence with the formula below
clear). By using the reduction of [13], the property that the assertion never fails
for any integer n can be expressed by the HFLZ formula ∀n.main n, where main
is defined by:

main n =ν sum (λx.λk.k(x + x)) n (λr.r ≥ n)
sum f n k =ν (n ≤ 0 ⇒ k 0) ∧ (n > 0 ⇒ f n (λx.sum f (n − 1) λy.k(x + y))).

Here, the subscript ν of each equality symbol indicates that main and sum are
the greatest predicates that satisfy the equations. Notice that the formulas above
(whose precise semantics will be introduced later) directly correspond to the def-
initions of the main and sum functions; for example, the part n ≤ 0 ⇒ k 0 in the
equation for the sum predicate corresponds to the then-part of the sum function.
Watanabe et al. [23] have shown that verification of arbitrary regular properties
(i.e., those expressible in the modal μ-calculus) of simply-typed, higher-order
recursive functional programs can be reduced to HFLZ validity checking in a
similar (but a little more elaborated) manner: more precisely, given a closed
program P and a regular property A, one can construct a closed HFLZ for-
mula ϕP,A such that P satisfies A just if ϕP,A is valid. Thus, an automated
HFLZ validity checker would yield a very general automated verification tool for
higher-order functional programs.

As the first step towards the development of an automated HFLZ validity
checker, in the present paper, we focus on a fragment of HFLZ called νHFLZ,
and develop an automated method for validity checking of νHFLZ formulas (note
that our method is sound but necessarily incomplete, as the problem is undecid-
able). The fragment νHFLZ is obtained by removing the least fixpoint operator
from HFLZ. A νHFLZ validity checker can be used for verifying various prop-
erties of higher-order functional programs, such as safety and non-termination
properties. In fact, the verification of properties expressible in the ν-only frag-
ment of the modal μ-calculus can be reduced to validity checking of a νHFLZ

formula. This fragment is powerful enough to verify the (un)reachability prob-
lem in the presence of both angelic and demonic branches; in contrast, most
of the previous automated verification tools for higher-order programs (such as
MoCHi [11]) only deal with demonic branches. A νHFLZ validity checker can
also be used as a building block for a (forthcoming) full HFLZ validity checker
(which can then be used for verification of arbitrary properties expressive in the
full the modal μ-calculus, like “an event A occurs infinitely often”), by using the
technique developed for a first-order fixpoint logic [10].

Our method is based on predicate abstraction and counterexample-guided
abstraction refinement (CEGAR). The techniques of predicate abstraction and
CEGAR have been used in the context of model checking. In this paper, we adapt
them for proving the validity of a νHFLZ formula. Given a νHFLZ formula ϕ
and a set of predicates on integers, we compute a pure HFL formula ϕ′ without
integers, as an underapproximation of ϕ, so that if ϕ′ is valid, so is ϕ. The valid-
ity of the pure HFL formula ϕ′ is decidable; one can use either an HFL model
checker (such as HomuSat [6]) or a HORS model checker (such as [8]) based on

136 N. Iwayama et al.

the reduction from HORS to HFL model checking [9]. For example, suppose that
we have chosen the predicate λx.x > 0 for abstracting integers. Then, the integer
predicate λx.λy.x + y > 0 can be abstracted to λbx>0.λb′

y>0.bx>0 ∧ b′
y>0, where

bx>0 (b′
y>0, resp.) is instantiated to true just if the value of the original argu-

ment x (y, resp.) is positive. The formula λbx>0.λb′
y>0.bx>0 ∧ b′

y>0 semantically
represents the predicate λx.λy.x > 0∧y > 0, which is an underapproximation of
the original predicate λx.λy.x + y > 0. As in the ordinary predicate abstraction
technique for model checking, the success of validity checking heavily depends on
the choice of the predicates used for abstraction; we thus use CEGAR to refine
the set of predicates in an on-demand manner, based on counterexamples. Due
to the generality of νHFLZ validity checking (which, as mentioned earlier, can
deal with the reachability in the presence of both angelic and demonic branches),
we need a more elaborate method for CEGAR than the previous methods for
CEGAR for higher-order program verification.

We have implemented an automated νHFLZ validity checker PaHFL based
on the method above, and compared through experiments with two related tools:
Horus [2] and MoCHi [11]. Horus is a satisfiability checker for HoCHC, higher-
order constrained Horn clauses. As we discuss in Sect. 2, the validity check-
ing problem for νHFLZ and the satisfiability problem for HoCHC are reducible
to each other; thus Horus can also be used as a νHFLZ validity checker. As
demonstrated through the experiments, however, Horus is not powerful enough
to prove the validity of many formulas obtained from higher-order program ver-
ification problems, although Horus often terminates quickly when it succeeds.
MoCHi [11] is an automated program verification tool for OCaml, developed
based on HORS model checking. The original version of MoCHi is tailor-made
for (non-)reachability verification, although various extensions for proving and
disproving termination and fair termination have been developed later. In con-
trast, our νHFLZ validity checker can deal with a wider class of properties than
the original version of MoCHi, in a more uniform and general manner than the
various extensions of MoCHi mentioned above. According to our experiments,
PaHFL is competitive with MoCHi, despite the generality.

The rest of this paper is structured as follows. Section 2 reviews the defi-
nition of HFLZ and its validity checking problem. Sections 3 and 4 formalize
our method. Section 5 reports our implementation and experiments. Section 6
discusses related work and Sect. 7 concludes the paper.

2 Preliminaries: Higher-Order Fixed-Point Logic νHFLZ

This section reviews (modal-free) νHFLZ and its validity checking problem. The
logic νHFLZ is a higher-order logic with arithmetic (over integers) and greatest
fixed-point operators νx.ψ, hence the name. It is a fragment of HFLZ [13], which
is an extension of HFL [22] with arithmetic (over integers).2

2 It is possible to further extend HFLZ with other data structures such as lists and
trees, and extend our predicate abstraction method accordingly, as long as the back-
ground solvers (such as SMT and CHC solvers) support them.

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 137

Γ, x : τ �ST x : τ
(S-Var)

b ∈ {true, false}
Γ �ST b : • (S-Bool)

Γ �ST n : int
(S-Int)

Γ �ST ai : int for each i

Γ �ST p(a1, ..., an) : • (S-Pred)
Γ �ST ai : int for each i

Γ �ST op(a1, ..., an) : int
(S-Op)

Γ �ST ψ : τ̄ → τ Γ �ST ψ̄ : τ̄

Γ �ST ψψ̄ : τ
(S-App)

Γ, x : τ̄ �ST ψ : τ

Γ �ST λxτ̄ .ψ : τ̄ → τ
(S-Abs)

Γ �ST ψ1 : • Γ �ST ψ2 : •
Γ �ST ψ1 ∧ ψ2 : • (S-And)

Γ �ST ψ1 : • Γ �ST ψ2 : •
Γ �ST ψ1 ∨ ψ2 : • (S-Or)

Γ, x : τ �ST ψ : τ

Γ �ST νxτ .ψ : τ
(S-Nu)

Fig. 1. Simple typing of νHFLZ

The set of types, ranged over by τ , is defined by:

τ (types) ::= • | τ̄ → τ τ̄ (extended types) ::= τ | int.
The type • describes propositions. Note that int can occur only on the lefthand
side of →; for example, int → int is invalid. Every type τ can be written in the
form τ1 → · · · → τk → •.

The set of νHFLZ formulas, ranged over ψ, is defined by:

ψ (formula) ::= xτ | true | false | ψ1 ∨ ψ2 | ψ1 ∧ ψ2

| νxτ .ψ | λxτ̄ .ψ | ψψ̄ | p(ã)
a (arithmetic expression) ::= n | xint | op(ã)
ψ̄ (extended formula) ::= ψ | a

Here, the metavariables x, n, p, and op respectively range over the sets of vari-
ables, integers, integer predicates (such as <) , and integer operators (such as
+). We often use infix notations for predicates and operators. The formula νxτ .ψ
denotes the greatest fixpoint of λxτ .ψ. We often omit the type annotation on
the shoulder of a variable.

We use a standard simple type system for the λ-calculus to restrict the shape
of formulas. As usual, a type environment, denoted by the metavariableΓ , is a
finite map from a set of variables to the set of extended types. The typing
relation Γ 	ST ψ̄ : τ̄ is defined by the rules in Fig. 1. Henceforth, we consider
only well-typed formulas.

The interpretation of a type τ̄ is a poset (Dτ̄ ,
τ̄), inductively defined by:

D• := {tt, ff}
• := { (ff, ff), (ff, tt), (tt, tt) }
Dint := Z
int := {(n, n) | n ∈ Z}

Dτ̄→τ := Dτ̄ → Dτ
τ̄→τ := {(f, g) | ∀v ∈ Dτ̄ . f(v)
τ g(v)}.

Here, Dτ̄ → Dτ denotes the set of monotone functions from Dτ̄ to Dτ . Note
that (Dτ ,
τ) is a complete lattice (although (Dint,
int) is not). Hence, for

138 N. Iwayama et al.

every function f ∈ Dτ→τ , there exists a greatest fixpoint. gfp(f) of f , given by:
gfp(f) =

⊔{ v ∈ Dτ | v
τ f(v) }.
We define the interpretation of formulas. Given a type environment Γ , a

valuation for Γ is a mapping ρ such that ρ(x) ∈ Dτ for each (x : τ) ∈ Γ . We
assume that the interpretations [[op]] and [[p]] of operators and atomic predicates
are given a priori. For a formula Γ 	ST ψ : τ and a valuation ρ for Γ , the
interpretation [[ψ]]ρ is defined by:

[[x]]ρ := ρ(x) [[true]]ρ := tt [[false]]ρ := ff [[n]]ρ := n

[[op(a1, . . . , an)]]ρ := [[op]]([[a1]]ρ, . . . , [[an]]ρ)
[[p(a1, . . . , an)]]ρ := [[p]]([[a1]]ρ, . . . , [[an]]ρ)

[[ψ ψ̄]]ρ := [[ψ]]ρ([[ψ̄]]ρ) [[λxτ̄ .ψ]]ρ = { v �→ [[ψ]]ρ∪{x�→v} | v ∈ Dτ̄ }
[[νxτ .ψ]]ρ := gfp([[λxτ .ψ]]ρ).

For a formula ψ of type •, we write ρ |= ψ to mean [[ψ]]ρ = tt. If ρ |=
ψ for every valuation ρ, we write |= ψ and say that ψ is valid. The νHFLZ

validity checking problem asks if a formula of type • is valid. Since the universal
quantifiers are definable (see Examples 3 and 4 below), we can assume without
loss of generality that an input of the validity checking problem is a closed
formula. The validity checking problem for νHFLZ is undecidable.

Example 1. Let ψ be νX.λn.(n = 0 ∨ (n > 0 ∧ X(n − 2))). Then |= ψ(n) holds
just if n is a non-negative even number.
�
Example 2. The example in Sect. 1 is expressed by ∀n.main n, where main is
defined by:

main := λnint.sum (λx.λk.k(x + x)) n (λr.r ≥ n)
sum := νsumτ .λfint→(int→•)→•.λnint.λkint→•.(n > 0 ∨ k 0)

∧(n ≤ 0 ∨ f n (λxint.sum f (n − 1) λyint.k(x + y)))
τ := (int → (int → •) → •) → int → (int → •) → •.

Note that the subformula n > 0 ∨ k 0 is equivalent to n ≤ 0 ⇒ k 0, which in
turn corresponds to the then-part of the sum function in the source program.
We emphasize again that the formula above mimics the structure of the source
program in the continuation passing style, where the answer type of the source
program corresponds to the type • of formulas.
�
Example 3. The universal quantifier over integers is definable. Let forallint :=
λfint→•.

((
νXint→•.λyint.(f y) ∧ (X (y + 1)) ∧ (X (y − 1))

)
0
)
. Then, given a

formula of type int → •, one has [[forallint ψ]]ρ = tt iff ∀n ∈ Z. [[ψ]]ρ(n) = tt.
�
Example 4. The universal quantifiers over predicates can be given without using
the fixed-point operators. Since the interpretation of a formula is monotone,
[[ψ]]ρ(⊥τ) = tt if and only if ∀v ∈ Dτ . [[ψ]]ρ(v) = tt, where ⊥τ is the least element

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 139

of Dτ . Since ⊥τ = [[λx1.λxk.false]] (where τ = τ1 → · · · → τk → •), the
universal quantifier can be defined by forallτ := λfτ→•.f (λx1.λxk.false).
One can define existential quantifiers on predicates by the same technique, using
the greatest element λx1.λxk.true instead of the least one.3
�

A νHFL formula is a νHFLZ formula that has no arithmetic subformula. It
is known that the validity checking of closed νHFL formulas is decidable. We
shall use νHFL as the target of the predicate abstraction in Sect. 3.

Remark 1. The νHFLZ validity checking problem is polynomial-time equivalent
to the HoCHC satisfiability checking problem [2] with arithmetic as the under-
lying constraint language. The mutual reductions between the two problems
are obtained in essentially the same way as those between the validity checking
problem for the first-order fragment of νHFLZ and the satisfiability problem for
CHC [10]. Existential quantifiers in HoCHC correspond to universal quantifiers
in νHFLZ, which can be expressed as discussed in Examples 3 and 4 above.
�

3 Predicate Abstraction

This section formalizes a predicate abstraction method for νHFLZ. It computes
a pure νHFL formula ϕ (for which validity checking is decidable) as an under-
approximation of an input νHFLZ formula ψ, by abstracting information about
integers. We can then check the validity of ϕ by using either a (pure) νHFL
model checker [6], or using a reduction to HORS model checking [9]. If ϕ is
valid, we can conclude that the original formula ψ is also valid; otherwise, we
proceed to the CEGAR phase described in Sect. 4.

Following the predicate abstraction method of Kobayashi et al. [11] for
higher-order functional programs, we use abstraction types to express how each
subformula should be abstracted. The syntax of abstraction type is given by:

(abstraction type) σ ::= • | x : int[P1, ..., Pk] → σ | σ1 → σ2

(predicate) P,Q ::= true | false | p(ã) | P1 ∧ P2 | P1 ∨ P2

(environment) Σ ::= ∅ | Σ, x : int | Σ, x : σ

Here x in x :int[P1, . . . , Pk] → σ is a binding variable whose scope is P1, . . . , Pk

and σ. The type (x : int[P1, . . . , Pn] → σ) describes predicates whose first
integer argument x should be abstracted by using the predicates P1, . . . , Pn.
For example, given an abstraction type (x : int[x = 0, 1 < x, x < 5] → •),
the predicate λx.(0 ≤ x ∧ x ≤ 10) on integers is abstracted to the predicate
λbx=0b1<xbx<5.

(
bx=0 ∨ (b1<x ∧ bx<5)

)
on Booleans bx=0, b1<x, and bx<5, which

respectively represent underapproximations of the values of x = 0, 1 < x, and
x < 5. Thus, (λx.(0 ≤ x ∧ x ≤ 10))2 is abstracted to (λbx=0b1<xbx<5.bx=0 ∨
(b1<x ∧ bx<5))false true true, which evaluates to tt. Intuitively, the abstract
Boolean predicate above corresponds to λx.

(
x = 0 ∨ (1 < x ∧ x < 5)

)
, which is

an underapproximation of the original predicate λx.(0 ≤ x∧x ≤ 10). As another
3 In contrast, the existential quantifier over integers is not definable in this logic.

140 N. Iwayama et al.

example, let us consider the higher-order predicate λx.λk.k(x + x). Given the
abstraction type x : int[x ≥ 0] → (r : int[r ≥ x] → •) → •, λx.λk.k(x + x) is
abstracted to λbx≥0.λk′.k′ bx≥0. Here, k′ expects as its argument an underap-
proximation of r ≥ x, where r refers to the argument x + x of k in the original
expression. Since x ≥ 0 implies x+x ≥ x, we can pass bx≥0 to k′ as an underap-
proximation of r ≥ x. The formula (λx.λk.k(x+x))1 (λr.r ≥ 1) is then abstracted
to (λbx≥0.λk′.k′ bx≥0)true (λbr≥1.br≥1), which evaluates to true. In contrast, by
using the same abstraction type, (λx.λk.k(x + x))1 (λr.r ≥ 2) is abstracted to
(λbx≥0.λk′.k′ bx≥0)true (λbr≥1.false), which is equivalent to false; note that
br≥1 only gives an underapproximation of r ≥ 1, which is not useful to conclude
r ≥ 2, although r in the original formula evaluates to 2.4 As the last example
shows, the result of predicate abstraction only provides an underapproximation
of the original formula (which is equivalent to true in the last example).

In order to clarify the shapes of input and output formulas of predicate
abstraction, let us define the following two translations from abstraction types
to simple types:

•� := • (x :int[P1, ..., Pk] → σ)� = int → σ� (σ1 → σ2)� = σ�
1 → σ�

•� = • (x :int[P1, ..., Pk] → σ)� =
k

︷ ︸︸ ︷• → · · · → • → σ� (σ1 → σ2)� = σ�
1 → σ�.

Given an abstraction type σ, our predicate abstraction converts a νHFLZ for-
mula of type σ� to a νHFL formula of type σ�; for instance, as in the above
examples, the abstraction type x : int[x = 0, 1 < x, x < 5] → • is used to
abstract a formula of type (x : int[x = 0, 1 < x, x < 5] → •)� = int → • to a
formula of type (x : int[x = 0, 1 < x, x < 5] → •)� = • → • → • → •.

Our predicate abstraction is formalized as the predicate abstraction relation
Σ | Θ 	 ψ : σ � ϕ (where the metavariable Θ denotes a sequence of predi-
cates P1, . . . , Pk; we sometimes use set notations for Θ when the order is not
important) given in Fig. 2. It means that assuming that the free variables in
ψ are abstracted according to the abstraction type environment Σ, and that
underapproximations of Θ = P1, . . . , Pk are available as special Boolean vari-
ables bP1 , . . . , bPk

, ψ can be abstracted to φ according to the abstraction type
σ. The abstraction relation Σ | P1, . . . , Pk 	 ψ : σ � ϕ is used to convert
a νHFLZ formula ψ such that Σ� 	 ψ : σ� to a νHFL formula ϕ such that
Σ�, bP1 : •, . . . , bPk

: • 	 ϕ : σ�, where Σ� and Σ� are pointwise extensions of the
corresponding translations for types, defined by:

∅� := ∅ (Σ, x : int)� := Σ�, x : int (Σ, x : σ)� := Σ�, x : σ�

∅� := ∅ (Σ, x : int)� := Σ� (Σ, x : σ)� := Σ�, x : σ�

We explain the main rules in Fig. 2. (A-Pred) translates a predicate into a
corresponding Boolean variable provided that the predicate is currently avail-
able. In (A-IntAbs), the integer variable x of λx.ψ is translated into Boolean
4 We can prove the validity of (λx.λk.k(x + x))1 (λr.r ≥ 2) if we use a different

abstraction type, like x : int[] → (r : int[r ≥ 2x] → •) → • for λx.λk.k(x + x).

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 141

Fig. 2. Abstraction relation

variables bP1 , . . . , bPk
where P1, . . . , Pk is predicates attached to x; the predi-

cates P1, ..., Pk, as well as corresponding variables bPi
, are available in the body

ψ. These Boolean variables are supplied in (A-IntApp), which applies Boolean
variables b̃P to the abstraction ϕ of the function. The (A-Coerce) rule is used

142 N. Iwayama et al.

to change the abstraction type σ and predicates P̃ in a judgment. Its major
premise is the coercion relation Σ 	 ϕ : (Θ, σ) � (Θ′, σ′) � ϕ′, which we shall
explain below.

The coercion relation Σ 	 ϕ : (Θ, σ) � (Θ′, σ′) � ϕ′ transforms an abstrac-
tion ϕ following (Θ, σ) into another abstraction ϕ′ following (Θ′, σ′). For exam-
ple, let Θ = (x = 0, P̃) and Θ′ = (x ≤ 0, x ≥ 0, P̃). Then an abstraction ϕ
following (Θ, σ) can be rewritten to another abstraction [(bx≤0 ∧ bx≥0)/bx=0]ϕ
following (Θ′, σ) since |= x = 0 ⇐⇒ (x ≤ 0 ∧ x ≥ 0); hence Σ 	 ϕ : (Θ, σ) �
(Θ′, σ) � [(bx≤0 ∧ bx≥0)/bx=0]ϕ.5 Another interesting example is

Σ 	 ϕ : ((x ≤ 0, x ≥ 0), •) � ((), •)
� ([true/bx≤0, false/bx≥0]ϕ) ∧ ([false/bx≤0, true/bx≥0]ϕ).

Although an abstraction following ((), •) has no information on x, we know that
|= (x ≤ 0) ∨ (x ≥ 0) and the above coercion means that it suffices to check
the two cases, namely the cases that x ≤ 0 and that x ≥ 0.6 The most impor-
tant rule is (AC-Base), which is a generalization of the above argument. Since
[[XP1 · · · Pk]]ρ �• [[ξQ1 · · · Ql]]ρ for arbitrary X, substituting λb̃P .ϕ for X results
in the judgment of the conclusion. Note that (AC-Base) is non-deterministic in
the choice of ξ. In general, the most precise ξ is given by the following formula.

ξ = λb̃Q.
∨

Φ,Ψ

|=Ψ(Q̃)=⇒Φ(P̃)

⎛

⎜
⎜
⎝Ψ(b̃Q) ∧

⎛

⎜
⎜
⎝

∧

ṽ∈{true,false}n

|=Φ(ṽ)

X ṽ

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

where n and m are the lengths of P̃ and Q̃, and Φ and Ψ range over positive
Boolean formulas over n and m variables. In practice, since computing the best
abstraction is too costly, we restrict the shape and size of Ψ and Φ (for example,
Ψ is restricted to conjunctive formulas of a certain size, as in [1]).

We present basic properties of the proposed abstraction. The first property
is soundness, as stated in the following theorem; see [7] for a proof.

Theorem 1 (Soundness of predicate abstraction). Suppose 	 ψ : • � ϕ.
If ϕ is valid, so is ψ.

The second property is about expressivity. The theorem below (see [7] for a
proof) says that the proposed predicate abstraction (followed by νHFL validity
checking) is at least as expressive as a refinement intersection type system (see [7]
for the definition). In particular, this result indicates that our approach is more

5 More precisely there exists a formula ϕ′ such that Σ � ϕ : (Θ, σ) � (Θ′, σ) � ϕ′

and ϕ′ =βη [(bx≤0 ∧ bx≥0)/bx=0]ϕ.
6 Note that the case where both x ≤ 0 and x ≥ 0 hold (i.e. x = 0) is

not problematic because of monotonicity: if [true/bx≤0, false/bx≥0]ϕ is true, then
[true/bx≤0, true/bx≥0]ϕ is true as well.

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 143

powerful than the approach of Horus for HoCHC [2], because their approach is
based on a refinement type system without intersection types.

Theorem 2 (Completeness with respect to refinement intersection
system). If 	 ψ : tt is provable in the refinement dependent intersection type
system, then there exists a νHFL formula ϕ such that 	 ψ : • � ϕ and ϕ is
valid.

As indicated in the example below, an abstraction of a valid formula is not
necessarily valid. One needs to find a good abstraction type to obtain an abstrac-
tion that is valid.

Example 5. Let ψ := ψ0 7ψ1 where

ψ0 := (λn.λf.(f 5) ∧ (f n)) and ψ1 := (λy.(0 ≤ y ∧ y ≤ 10)).

It is easy to see that ψ is valid. For the abstraction type σ0 :=
(
n : int[0 ≤ n] →

(y : int[0 ≤ y, y ≤ 5] → •) → •), we obtain:

	 ψ0 :σ0 � λb0≤n.λf.

f true true ∧ (
(b0≤n ∧ f true false) ∨ (f true false ∧ f false true)

)
.

Here f true true is the abstraction of f 5 and the remaining part of the body of
the function is the abstraction of f n. This is indeed the “most precise” abstrac-
tion of ψ0 following σ0. An abstraction of ψ1 following σ2 := (y : int[0 ≤ y, y ≤
5] → •) is λb0≤yby≤5.b0≤y ∧ by≤5. Hence

	 ψ0 7ψ1 : • �

(
λb0≤n.λf.f true true ∧ (

(b0≤n ∧ f true false)

∨ (f true false ∧ f false true)
))

true (λb0≤yby≤5.b0≤y ∧ by≤5).

The result of the abstraction is invalid. This suggests that a better abstraction
type is required for ψ0.
�
Example 6. Recall Example 2. Let the abstraction type σsum for sum be:

(x:int[x ≥ 0] → (y:int[y ≥ x] → •) → •) → n:int[] → (r:int[r ≥ n] → •) → •.

The body ψsum of sum can be abstracted as follows.

Γ ;n > 0, n ≤ 0 	 ψsum : σsum �

(bn>0 ∨ k bn≤0)
∧ (bn≤0 ∨ f bn>0 (λbx≥n.sum f (λby≥n−1.k(bx≥n ∧ by≥n−1 ∧ bn≤0)))).

Here, Γ = sum : σsum , x : int, f : (y : int[y ≥ x] → •) → •, n : int, k : r :
int[r ≥ n] → •. By (A-Coerce) (let ξ in (AC-Base) be (λX.X false true ∨
X true false)X), we get:

144 N. Iwayama et al.

Γ ;	 ψsum : σsum � (λX.X false true ∨ X true false)
(λbn>0bn≤0.(bn>0 ∨ k bn≤0)

∧ (bn≤0 ∨ f bn>0 (λbx≥n.sum f (λby≥n−1.k(bx≥n ∧ by≥n−1 ∧ bn>0))))).

The output formula can be simplified to:

k true ∨ f true λbx≥n.sum f λby≥n−1.k(bx≥n ∧ by≥n−1).

Thus, the whole formula is abstracted to sum ′ (λbx≥0.λk.k bx≥0) λbr≥n.br≥n,
where

sum ′ := νsum.λf.λk.k true ∨ f true λbx≥n.sum f λby≥n−1.k(bx≥n ∧ by≥n−1),

which is equivalent to true (as can be confirmed by a HFL model checker);
hence, we can conclude that the original formula is also valid.
�

4 Counterexample-Guided Abstraction Refinement

This section describes the second component of our method, counterexample-
guided abstraction refinement (CEGAR). Let ϕ be an abstraction of ψ, i.e. 	 ψ :
• � ϕ. If ϕ is valid, then ψ is valid and we are done, as discussed in the previous
section. Otherwise either ψ is invalid or the abstraction is too coarse (or both).
Below we first introduce the notion of a counterexample (which shows why ϕ
is invalid) in our context in Sect. 4.1. We then discuss, in Sect. 4.2, a way to
determine whether the counterexample also implies the invalidity of ψ. If that is
the case, we can conclude that ψ is invalid; otherwise, we refine the abstraction
by finding new predicates, as discussed in Sect. 4.3.

4.1 Counterexample

In the context of our νHFLZ validity checking, a counterexample is a witness of
the invalidity of a closed proposition. Formally the set of candidate counterex-
amples used in this paper is given by the following grammar:

c ::= false | c ∧ ∗ | ∗ ∧ c | c ∨ c.

Intuitively a candidate counterexample is a sufficiently large part of a formula,
which ensures the invalidity of the formula; replacing each ∗ in a counterexample
to an arbitrary formula results in a false formula.

A candidate counterexample c is a counterexample of ψ, written c � ψ, if c
witnesses the invalidity of ψ. Intuitively c�ψ means that ψ matches the pattern
of c. For example, counterexamples of

(
(1 = 0) ∧ (10 > 1)

) ∨ (
(4 �= 2 + 2) ∧ (3 < 0)

)

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 145

Fig. 3. Rules for the counterexample relation c � ψ

are (
false ∧ ∗) ∨ (

false ∧ ∗) and
(
false ∧ ∗) ∨ (∗ ∧ false

)
.

Here, the subformulas 1 = 0, 4 �= 2+2, and 3 < 0 “match” false, since they are
equivalent to false. The counterexamples above evaluate to false irrespectively
of which formula we substitute for ∗.

The relation c � ψ is formally defined inductively by the rules in Fig. 3.

Example 7. Let ϕ be the result of the abstraction in Example 5, i.e.,

	 ψ0 7ψ1 : • �

(
λb0≤n.λf.f true true ∧ (

(b0≤n ∧ f true false)

∨ (f true false ∧ f false true)
))

true (λb0≤yby≤5.b0≤y ∧ by≤5).

Then c � ϕ for

c = ∗ ∧ (∗ ∧ (∗ ∧ false)
) ∨ (∗ ∧ (false ∧ ∗)

)
.

In fact, we have

c�(true∧true)∧
((

true∧(true∧false)
)∨(

(true∧false)∧(false∧true)
))

,

from which we can derive c � ϕ by using the rule for β-redexes in Fig. 3.
�
Every invalid formula has a counterexample. This follows easily from the fact

that, for co-continuous arguments, [[νxτ .ψ]]ρ coincides with
�

i∈ω[[λxτ .ψ]]iρ(�τ)
in the semantics of νHFLZ formulas7; see, e.g. Lemma 14 of [12]:

Proposition 1. For any closed νHFLZ formula ψ of type •, [[ψ]] = ff if and
only if c � ψ for some c.

Let ψ be a νHFLZ formula, and ϕ be a νHFL formula obtained by applying
predicate abstraction to ϕ, and suppose that ϕ is invalid. The goal of the rest
of this subsection is to compute a set of candidate counterexamples for ψ.

By using a model-checker for νHFL (without arithmetic), we can obtain a
counterexample c for ϕ (i.e., c such that c�ϕ). Note, however, that the shape of
c does not necessarily match that of ψ, due to the conjunctions and disjunctions
7 This is not the case for full HFLZ.

146 N. Iwayama et al.

that may have been introduced in the predicate abstraction phase. For example,
recall ϕ in Example 7, which is an abstraction of the formula ψ in Example 5.
The counterexample c in Example 7 is not a counterexample of ψ. In fact, the
original formula has just conjunctions, and the disjunctions (and also some of
the conjunctions) in c have been introduced by the abstraction.

To address the issue above, we distinguish between boolean connectives in
an original formula and those introduced in the abstraction phase, by writing
∧̄ and ∨̄ for the latter. We assume that the boolean connectives in (AC-Base)
(used in ξ) are ∧̄ and ∨̄. A counterexample with ∧̄ or ∨̄ is called an abstract
counterexample.

An abstract counterexample c induces a set of (candidate) counterexamples
C(c) defined by:

C(false) := {false} C(c1 ∨ c2) := {c′
1 ∨ c′

2 | c′
i ∈ C(ci)}

C(∗ ∧ c) := { ∗ ∧ c′ | c′ ∈ C(c) } C(c ∧ ∗) := { c′ ∧ ∗ | c′ ∈ C(c) }
C(c1 ∨̄ c2) := C(c1) ∪ C(c2) C(∗ ∧̄ c) := C(c) C(c ∧̄ ∗) := C(c).

Example 8. The formula in Example 7 should be written as
(
λb0≤n.λf.f true true ∧ (

(b0≤n ∧̄ f true false)

∨̄ (f true false ∧̄ f false true)
))

true (λb0≤yby≤5.b0≤y ∧ by≤5).

and an abstract counterexample is c = ∗ ∧
((∗ ∧̄ (∗ ∧ false)

) ∨̄ (∗ ∧̄ (false ∧
∗)

))
. Then C(c) = { ∗ ∧ (∗ ∧ false), ∗ ∧ (false ∧ ∗) }.
�

Assume that 	 ψ : • � ϕ and ϕ is invalid. Then a model-checker generates an
abstract counterexample c of ϕ. We randomly pick a candidate counterexample
from C(c) and proceed to feasibility checking.

4.2 Feasibility Check

Let ψ be a closed formula, and c be a candidate counterexample of ψ. We would
like to check whether c � ψ.

The rules in Fig. 3 can be seen as the definition of a procedure for checking
c � ψ. For example, to check whether c1 ∨ c2 � ψ1 ∨ ψ2, the procedure checks
whether c1 � ψ1 and c2 � ψ2. If the candidate counterexample c comes from an
abstract counterexample of an abstraction of ψ, the procedure to check c � ψ
terminates.8

If c � ψ, then ψ is invalid. Otherwise we refine the abstraction by using c, as
discussed in the next subsection.

Remark 2. In the actual implementation, we allow ψ to contain free integer
variables x1, . . . , xk, and judge the validity of ∀x1, . . . , xk.ψ. In this case, the
feasibility check is a little more involved.
8 This procedure does not terminate in general. An example is false � (νf.λx.f x) 0.

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 147

4.3 Predicate Discovery and Abstraction Refinement

Let c be an infeasible candidate counterexample c of ψ. To improve the precision
of abstraction, we would like to find predicates that are useful to show the validity
of ψ. Our approach is based on a refinement dependent intersection type system.

Our type system is a variant of the refinement intersection type system for
higher-order functional programs [19]. An important feature of our type system
is a type of the form ¬c, for each candidate counterexample c. Intuitively, a
formula ψ has type ¬c if ψ does not have c as a counterexample (i.e. if c � ψ).
The typing rules include:

Δ | Φ 	 ψ2 : ¬c

Δ | Φ 	 ψ1 ∧ ψ2 : ¬(∗ ∧ c)
and

Δ | Φ 	 ψi : ¬ci (i = 1 or 2)
Δ | Φ 	 ψ1 ∨ ψ2 : ¬(c1 ∨ c2)

where Δ is a type environment and Φ is a precondition. The former rule checks
the specified branch, ignoring the discarded part (i.e. ψ1) corresponding to ∗. So
	 false ∧ true : ¬(∗ ∧ false) is a valid type judgment although false ∧ true
is an invalid formula. The latter rule says that, to show (c1 ∨ c2) � (ψ1 ∨ ψ2), it
suffices to prove either c1 � ψ or c2 � ψ2. The complete list of typing rules can
be found in [7].

Example 9. Here is an example of a derivation in the refinement intersection
type system.

y : int | y ≤ 9 	 (y ≤ 10) : ¬(false)
y : int | y ≤ 9 	 (0 ≤ y) ∧ (y ≤ 10) : ¬(∗ ∧ false)

ε | true 	 λy.(0 ≤ y) ∧ (y ≤ 10)) : y :{int | y ≤ 9} → ¬(∗ ∧ false)

Although the condition y ≤ 9 does not imply that the body is true, y ≤ 9 implies
that ∗∧false is not a valid counterexample for the body (since the right branch
of the conjunction y ≤ 10 is actually true).
�

The abstraction refinement phase proceeds as follows. Given an infeasible
candidate counterexample c of ψ, we construct a derivation 	 ψ : ¬c, a proof of
c � ψ. Then we extract predicates from the derivation.

We can use a template-based dependent type inference [19,20] to find a
derivation for 	 ψ : ¬c. We first prepare a template of each refinement type,
which is completely determined by ψ and c. For example, the template for the
formula ψ in Example 5 with candidate counterexample ∗ ∧ (∗ ∧ false) is

(λn.λf.fn) :
n :{int | P (n)} → (

y :{int | Q(n, y)} → ¬(∗ ∧ false)
) → ¬(∗ ∧ false)

(λy.(0 ≤ y) ∧ (y ≤ 10)) : y :{int | R(y)} → ¬(∗ ∧ false)

where P , Q and R are predicate variables. We then generate constraints on
predicate variables so that the formula has type ¬c if and only if the constraints
are satisfied, in a manner similar to [11]. We then solve the constraints by using
a CHC solver [4,20] (see the remark below) and obtain a derivation for 	 ψ : ¬c.

148 N. Iwayama et al.

Remark 3. The constraints generated are actually more complex than those gen-
erated in the CEGAR phase of [11]. The constraints generated in our CEGAR
phase are conjunctions of clauses of the form:

P1(x̃1) ∨ · · · ∨ Pk(x̃k) ⇐ A1 ∧ · · · ∧ Am,

where k ≥ 0, and each Ai is an atom of the form P
(ỹ) or p(ã). The constraints
are acyclic (in the sense that there is no circular dependency like P (x) ∨ · · · ⇐
Q(x)∧· · · and Q(x)∨· · · ⇐ P (x)∧· · ·). In contrast, the constraints generated in
the CEGAR phase of [11] are acyclic CHCs, obtained by imposing the restriction
k ≤ 1 to the form of constraints above. Thanks to the acyclicity, we can solve
the extended constraints by invoking a CHC solver multiple times.
�

The extraction of predicates from a derivation for 	 ψ : ¬c is rather straight-
forward. For example, suppose a subformula λx.ψ0 of ψ that has simple type
int → τ . Because our type system has intersection types, this subformula may
have several types, say x : {int | Pi(x)} → δi for each i = 1, . . . , k. Then the
extracted abstraction type for this subformula is x : int[P1, . . . , Pk] → σ for
some σ.

Example 10. Let ψ be a formula in Example 5, i.e. ψ = ψ0 7ψ1 where ψ0 =
(λn.λf.f5 ∧ fn) and ψ1 = (λy.(0 ≤ y) ∧ (y ≤ 10)). Assume that a candidate
counterexample is ∗ ∧ (∗ ∧ false) (cf. Example 8). A derivation of 	 ψ : ¬(∗ ∧
(∗ ∧ false)) contains the following typing to subformulas:

ψ0 : n :{int | n ≤ 7} → (
y :{int | y ≤ 8} → ¬(∗ ∧ false)

) → ¬(∗ ∧ (∗ ∧ false))

ψ1 : y :{int | y ≤ 9} → ¬(∗ ∧ false)

(how to infer those refinement types is briefly discussed in the paragraph below
this example). The abstraction types for ψ0 and ψ1 extracted from this proof
are

σ′
0 := n :int[n ≤ 7] → (y :int[y ≤ 8] → •) → • σ′

1 := y :int[y ≤ 9] → •.

By adding this information to the abstraction types in Example 5, one obtains

σ′′
0 := n : int[0 ≤ n, n ≤ 7] → (y : int[0 ≤ y, y ≤ 5, y ≤ 8] → •) → •

σ′′
2 := y : int[0 ≤ y, y ≤ 5, y ≤ 9] → •.

After this refinement, there exists an abstraction that is true.
�
The refinement process enjoys the progress property in the following sense.

Theorem 3 (Progress). Assume a derivation of 	 ψ : ¬c in the dependent
intersection type system. Then there exists an abstraction 	 ψ : • � ϕ following
the abstraction types extracted from the derivation such that, for any abstract
counterexample c′ of ϕ, the set C(c′) contains a candidate counterexample that
differs from c.

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 149

5 Implementation and Evaluation

We have implemented a νHFLZ validity checker PaHFL based on the method
described so far. PaHFL uses the following tools as backend solvers:

– Z3 [15], as a backend SMT solver for computing predicate abstraction.
– HorSat2, as a backend model checker for checking the validity of (pure) νHFL

formulas and extracting an abstract counterexample if there is any. (HorSat2
is a HORS model checker, but it can also be used as a νHFL model checker
by using the reduction of Kobayashi et al. [9].)

– RCaml [20] and HoIce [4] as backend constraint solvers, for the predicate
discovery phase.

Given a νHFLZ formula, PaHFL starts with the empty set of predicates, and
repeats the CEGAR loop until it succeeds to prove or disprove the validity of
the formula; of course, it may run forever since the validity checking problem is
undecidable.

We have conducted experiments to compare our tool with two related tools:

– A HoCHC solver called Horus [2], which solves the satisfiability of HoCHC
(a higher-order extension of CHC, constrained Horn Clauses). Since the
HoCHC satisfiability problem and νHFLZ can be mutually reducible (recall
Remark 1), Horus is a direct competitor of our tool.

– An automated higher-order program verification tool MoCHi, developed by
Kobayashi et al. [11,14,17]. Since the main application of our νHFLZ validity
checking is higher-order program verification, MoCHi is also an (indirect)
competitor of our tool. Like PaHFL, MoCHi uses predicate abstraction and
CEGAR, though its main building block is HORS model checking (rather
than HFL validity checking. Actually, the goal of our project has been to
replace the HORS-based approach of MoCHi with the HFL-based approach,
where the latter provides a more uniform approach to program verification.
Thus the goal of the comparison with MoCHi is to confirm that our new
tool PaHFL works at least as effectively as MoCHi, for program verification
problems. There are other fully automated verification tools for functional
programs, including those based on refinement type inference [3,5,24–26].
We have chosen MoCHi as the target of the experimental comparison, as
the underlying technique is directly related; other tools can be indirectly
compared through their experimental comparison with MoCHi found in the
respective papers [3,25,26].

Both experiments were conducted on a Linux server with Intel Xeon CPU E5-
2680 v3 and 64 GB of RAM with a timeout set to 180 s.

Comparison with Horus. We used two benchmark sets in this experiment:
Benchmarks A and B. Benchmark A has been taken from that of Horus [2],
which in turn comes from a benchmark set of MoCHi for safety property ver-
ification [11]. Benchmark B has been obtained from another benchmark set of

150 N. Iwayama et al.

Table 1. Comparison of PaHFL with Horus

Benchmark A Benchmark B

Ours Solved 8 50

Timeout 0 8

Horus Solved 7 19

Timeout 0 3

Unknown 1 35

MoCHi, by using our own translation (based on [13,23]). Benchmark A has 10
instances and B has 58. We used Z3 as a backend CHC solver of Horus.

The result is shown in Table 1 and Fig. 4. In the table, the row ‘Unknown’
means that Horus could not prove the validity of νHFLZ formula due to its
incompleteness; as mentioned in Sect. 1, Horus reduces HoCHC problems to CHC
problems in a sound but incomplete manner. The “unknown” case of Horus in
Benchmark A is attributed to the lack of intersection types in the type system
used by Horus; recall our remark before Theorem 2. As is clear from Fig. 4, Horus
is much faster than PaHFL when Horus succeeds. In fact, Horus terminated
within 0.1 s in those cases. In contrast, PaHFL clearly outperforms Horus in the
number of solved instances. That is more apparent for the subset of benchmarks
consisting of only higher-order inputs: see [7].

Fig. 4. Comparison of PaHFL with Horus (left) and MoCHi (right)

Comparison with MoCHi. Figure 4 shows the result of the comparison with
MoCHi. We used two benchmark sets; Benchmark I consists of 258 of 262 safety
property verification problems of OCaml programs used in [17] and Benchmark

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 151

Fig. 5. Distribution of the number of
CEGAR loops

Table 2. Average percentage of
time spent in each phase

PaHFL MoCHi

Preprocess 31.0 39.2

Abstraction 47.7 45.4

Refine 19.1 13.9

Model Checking 2.21 1.49

II consists of a modified version9 of 10 non-termination property verification
problems used in [14]. All the benchmark programs are small (each around 10
lines of OCaml programs), but many of them are tricky. The νHFLZ formulas
in both benchmark sets have been obtained by using the translation used for
obtaining Benchmark B. Different modes of MoCHi have been used for the two
benchmark sets: the reachability verification mode [11] for Benchmark I, and
the non-termination verification mode [14] for Benchmark II. PaHFL solved 221
instances for Benchmark I and 4 for II while MoCHi solved 252 for Benchmark
I and 9 for II. Although PaHFL is a little inferior to MoCHi in the number of
solved instances, PaHFL is competitive in terms of the running times for solved
instances, as shown in Fig. 4.

Figure 5 and Table 2 respectively show the distribution of the number of
CEGAR loops and the average percentage of the time spent in each phase for
solved instances in Benchmark I and II. PaHFL and MoCHi have similar ten-
dencies in both the figure and the table.

6 Related Work

Burn et al. [2] introduced higher-order constrained Horn clauses (HoCHC), and
developed Horus, a type-based HoCHC satisfiability checker. As already men-
tioned, Horus is a direct competitor of our tool PaHFL, since the satisfiability
problem for HoCHC is essentially equivalent to the validity problem for νHFLZ.
As confirmed by experiments, our tool is often slower than Horus, but can solve
more problem instances. Ong and Wagner [16] also studied some theoretical
aspects of HoCHC, but have not developed an actual verification tool, to our
knowledge.

Our technique of predicate abstraction has been inspired by the correspond-
ing techniques developed for MoCHi [11,14]; in particular, we have borrowed the
9 Existential quantifiers that arise from the original programs have been replaced with

finite disjunctions.

152 N. Iwayama et al.

notion of abstraction types from their work. Our predicate abstraction technique
is, however, different from theirs, in that our technique is used for abstracting
formulas, while their technique is for abstracting programs. Our technique can
also be considered more general since the techniques of MoCHi [11,14] are spe-
cialized for the verification of either reachability or non-termination, whereas
our technique can be used for the verification of arbitrary branching-time safety
properties, including the reachability and non-termination properties.

Higher-order fixpoint logic (HFL) has originally been proposed by
Viswanathan and Viswanathan [22]. Kobayashi et al. [13,23] introduced HFLZ,
an extension of HFL with integers, and showed its applications to higher-order
program verification. Although a pure HFL model checker has already been
developed by Hosoi et al. [6], there is no automated validity checker for HFLZ,
to our knowledge. Kobayashi et al. [10] have recently developed a validity checker
for the first-order fragment of HFLZ, which reduces (in a sound but incomplete
manner) the validity problem for the first-order fragment of HFLZ to that for
the ν-only, first-order fragment of HFLZ. We expect that the same technique can
be used to obtain a full HFLZ validity checker from our νHFLZ validity checker.

Another major approach to automated verification of higher-order programs
is a type-based one [3,5,19,24–26], some of which incorporates counterexample-
guided refinement [19,24]. Most of them are restricted to verification of the
(un)reachability problem in the presence of only demonic branches (except [21]),
and do not support intersection types (except [19]). Our support of both kinds of
(i.e., angelic and demonic) branches is crucial for building the full HFLZ validity
checker as mentioned above. Intersection types are also crucial for high precision.
To mitigate the high cost of predicate abstraction and discovery, Sato et al. [17]
combined higher-order model checking and type inference.

7 Conclusion

We have proposed a new method for automated νHFLZ validity checking based
on predicate abstraction and CEGAR, and developed a tool based on the pro-
posed technique. According to our experiments on applications to program veri-
fication, our tool outperformed Horus in terms of precision, and was competitive
with a more specialized program verification tool MoCHi. We plan to develop
a full HFLZ validity checker, by combining the present work with the work of
Kobayashi et al.’s [10] for the first-order HFLZ validity checker. It is also left
for future work to extending the logic with data structures (such as lists and
trees), which is important for verification of higher-order functional programs
that manipulate data structures. To this end, we plan to exploit two approaches:
one is to encode data structures as higher-order functions as in MoCHi [18], and
the other is to directly handle data structures, as in the refinement-type-based
approach [5,26].

Acknowledgments. We would like to thank anonymous referees for useful com-
ments. This work was supported by JSPS KAKENHI Grant Number JP15H05706,
JP20H00577 and JP20H05703.

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 153

References

1. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: Burke, M., Soffa, M.L. (eds.) Proceedings of the
2001 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), Snowbird, Utah, USA, 20–22 June 2001, pp. 203–213. ACM
(2001). https://doi.org/10.1145/378795.378846

2. Burn, T.C., Ong, C.L., Ramsay, S.J.: Higher-order constrained horn clauses for
verification. Proc. ACM Program. Lang. 2(POPL), 11:1–11:28 (2018). https://doi.
org/10.1145/3158099

3. Champion, A., Chiba, T., Kobayashi, N., Sato, R.: ICE-based refinement type dis-
covery for higher-order functional programs. J. Autom. Reason. (2010, to appear).
A preliminary summary appeared in Proceedings of TACAS 2018

4. Champion, A., Chiba, T., Kobayashi, N., Sato, R.: ICE-based refinement type
discovery for higher-order functional programs. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10805, pp. 365–384. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89960-2 20

5. Hashimoto, K., Unno, H.: Refinement type inference via horn constraint optimiza-
tion. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 199–216.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48288-9 12

6. Hosoi, Y., Kobayashi, N., Tsukada, T.: A type-based HFL model checking algo-
rithm. In: Lin, A.W. (ed.) APLAS 2019. LNCS, vol. 11893, pp. 136–155. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34175-6 8

7. Iwayama, N., Kobayashi, N., Suzuki, R., Tsukada, T.: Predicate abstraction and
CEGAR for νHFLZ validity checking (2020). A long version of this paper. https://
www.kb.is.s.u-tokyo.ac.jp/∼koba/papers/sas2020-long.pdf

8. Kobayashi, N.: HorSat2: a saturation-based model checker for higher-order recur-
sion schemes (2015). https://www.kb.is.s.u-tokyo.ac.jp/∼koba/horsat2/

9. Kobayashi, N., Lozes, É., Bruse, F.: On the relationship between higher-order
recursion schemes and higher-order fixpoint logic. In: Castagna, G., Gordon, A.D.
(eds.) Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL 2017, Paris, France, 18–20 January 2017, pp. 246–259.
ACM (2017)

10. Kobayashi, N., Nishikawa, T., Igarashi, A., Unno, H.: Temporal verification of
programs via first-order fixpoint logic. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS,
vol. 11822, pp. 413–436. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32304-2 20

11. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Hall, M.W., Padua, D.A. (eds.) Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2011, San Jose, CA, USA, 4–8 June 2011, pp. 222–233. ACM (2011).
https://doi.org/10.1145/1993498.1993525

12. Kobayashi, N., Tsukada, T., Watanabe, K.: Higher-order program verification via
HFL model checking. CoRR abs/1710.08614 (2017). http://arxiv.org/abs/1710.
08614

13. Kobayashi, N., Tsukada, T., Watanabe, K.: Higher-order program verification via
HFL model checking. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp.
711–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89884-1 25

https://doi.org/10.1145/378795.378846
https://doi.org/10.1145/3158099
https://doi.org/10.1145/3158099
https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1007/978-3-662-48288-9_12
https://doi.org/10.1007/978-3-030-34175-6_8
https://www.kb.is.s.u-tokyo.ac.jp/~koba/papers/sas2020-long.pdf
https://www.kb.is.s.u-tokyo.ac.jp/~koba/papers/sas2020-long.pdf
https://www.kb.is.s.u-tokyo.ac.jp/~koba/horsat2/
https://doi.org/10.1007/978-3-030-32304-2_20
https://doi.org/10.1007/978-3-030-32304-2_20
https://doi.org/10.1145/1993498.1993525
http://arxiv.org/abs/1710.08614
http://arxiv.org/abs/1710.08614
https://doi.org/10.1007/978-3-319-89884-1_25

154 N. Iwayama et al.

14. Kuwahara, T., Sato, R., Unno, H., Kobayashi, N.: Predicate abstraction and
CEGAR for disproving termination of higher-order functional programs. In: Kroen-
ing, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 287–303. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21668-3 17

15. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

16. Ong, C.L., Wagner, D.: HoCHC: a refutationally complete and semantically invari-
ant system of higher-order logic modulo theories. In: 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada,
24–27 June 2019, pp. 1–14. IEEE (2019). https://doi.org/10.1109/LICS.2019.
8785784

17. Sato, R., Iwayama, N., Kobayashi, N.: Combining higher-order model checking with
refinement type inference. In: Hermenegildo, M.V., Igarashi, A. (eds.) Proceedings
of the 2019 ACM SIGPLAN Workshop on Partial Evaluation and Program Manip-
ulation, PEPM@POPL 2019, Cascais, Portugal, 14–15 January 2019, pp. 47–53.
ACM (2019). https://doi.org/10.1145/3294032.3294081

18. Sato, R., Unno, H., Kobayashi, N.: Towards a scalable software model checker for
higher-order programs. In: Albert, E., Mu, S. (eds.) Proceedings of the ACM SIG-
PLAN 2013 Workshop on Partial Evaluation and Program Manipulation, PEPM
2013, Rome, Italy, 21–22 January 2013, pp. 53–62. ACM (2013). https://doi.org/
10.1145/2426890.2426900

19. Terauchi, T.: Dependent types from counterexamples. In: Hermenegildo, M.V.,
Palsberg, J. (eds.) Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2010, Madrid, Spain, 17–23 Jan-
uary 2010, pp. 119–130. ACM (2010). https://doi.org/10.1145/1706299.1706315

20. Unno, H., Kobayashi, N.: Dependent type inference with interpolants. In: Porto,
A., López-Fraguas, F.J. (eds.) Proceedings of the 11th International ACM SIG-
PLAN Conference on Principles and Practice of Declarative Programming, Coim-
bra, Portugal, 7–9 September 2009, pp. 277–288. ACM (2009). https://doi.org/10.
1145/1599410.1599445

21. Unno, H., Satake, Y., Terauchi, T.: Relatively complete refinement type system
for verification of higher-order non-deterministic programs. Proc. ACM Program.
Lang. 2(POPL), 12:1–12:29 (2018). https://doi.org/10.1145/3158100

22. Viswanathan, M., Viswanathan, R.: A higher order modal fixed point logic. In:
Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 512–528.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8 33

23. Watanabe, K., Tsukada, T., Oshikawa, H., Kobayashi, N.: Reduction from
branching-time property verification of higher-order programs to HFL validity
checking. In: Hermenegildo, M.V., Igarashi, A. (eds.) Proceedings of the 2019
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
PEPM@POPL 2019, Cascais, Portugal, 14–15 January 2019, pp. 22–34. ACM
(2019). https://doi.org/10.1145/3294032.3294077

24. Zhu, H., Jagannathan, S.: Compositional and lightweight dependent type inference
for ML. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 295–314. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35873-9 19

https://doi.org/10.1007/978-3-319-21668-3_17
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/LICS.2019.8785784
https://doi.org/10.1109/LICS.2019.8785784
https://doi.org/10.1145/3294032.3294081
https://doi.org/10.1145/2426890.2426900
https://doi.org/10.1145/2426890.2426900
https://doi.org/10.1145/1706299.1706315
https://doi.org/10.1145/1599410.1599445
https://doi.org/10.1145/1599410.1599445
https://doi.org/10.1145/3158100
https://doi.org/10.1007/978-3-540-28644-8_33
https://doi.org/10.1145/3294032.3294077
https://doi.org/10.1007/978-3-642-35873-9_19
https://doi.org/10.1007/978-3-642-35873-9_19

Predicate Abstraction and CEGAR for νHFLZ Validity Checking 155

25. Zhu, H., Nori, A.V., Jagannathan, S.: Learning refinement types. In: Fisher, K.,
Reppy, J.H. (eds.) Proceedings of the 20th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2015, Vancouver, BC, Canada, 1–
3 September 2015, pp. 400–411. ACM (2015). https://doi.org/10.1145/2784731.
2784766

26. Zhu, H., Petri, G., Jagannathan, S.: Automatically learning shape specifications.
In: Krintz, C., Berger, E. (eds.) Proceedings of the 37th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2016, Santa
Barbara, CA, USA, 13–17 June 2016, pp. 491–507. ACM (2016). https://doi.org/
10.1145/2908080.2908125

https://doi.org/10.1145/2784731.2784766
https://doi.org/10.1145/2784731.2784766
https://doi.org/10.1145/2908080.2908125
https://doi.org/10.1145/2908080.2908125

Counterexample- and Simulation-Guided
Floating-Point Loop Invariant Synthesis

Anastasiia Izycheva1(B), Eva Darulova2, and Helmut Seidl1

1 Fakultät für Informatik, TU München, Munich, Germany
{izycheva,seidl}@in.tum.de

2 MPI-SWS, Kaiserslautern, Germany
eva@mpi-sws.org

Abstract. We present an automated procedure for synthesizing sound
inductive invariants for floating-point numerical loops. Our procedure
generates invariants of the form of a convex polynomial inequality that
tightly bounds the values of loop variables. Such invariants are a prereq-
uisite for reasoning about the safety and roundoff errors of floating-point
programs. Unlike previous approaches that rely on policy iteration, linear
algebra or semi-definite programming, we propose a heuristic procedure
based on simulation and counterexample-guided refinement. We observe
that this combination is remarkably effective and general and can han-
dle both linear and nonlinear loop bodies, nondeterministic values as
well as conditional statements. Our evaluation shows that our approach
can efficiently synthesize loop invariants for existing benchmarks from
literature, but that it is also able to find invariants for nonlinear loops
that today’s tools cannot handle.

Keywords: Invariant synthesis · Floating-point arithmetic · CEGIS ·
Simulation

1 Introduction

Finding and proving inductive loop invariants is one of the fundamental tasks
in program verification, allowing to prove a property for all program executions
even in the presence of unbounded loops. Proving (or disproving) that a given
loop invariant is inductive is generally an easier task and can in many cases be
straight-forwardly automated using off-the-shelf SMT solvers [6,31]. Finding a
loop invariant, however, is in general difficult to do manually, and automating
this process remains an important challenge [7,14,16,19].

In this paper, we focus on numerical loops over floating-point variables, which
are found across domains such as embedded control systems and scientific com-
puting. Reasoning about floating-point arithmetic is additionally complex due
to its unintuitive nature: every arithmetic operation introduces a roundoff error
w.r.t. the ideal real-valued execution and overflow or invalid operations introduce
the special values ±infinity and Not-a-Number. For floating-point computations,
c© The Author(s) 2020
D. Pichardie and M. Sighireanu (Eds.): SAS 2020, LNCS 12389, pp. 156–177, 2020.
https://doi.org/10.1007/978-3-030-65474-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65474-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-65474-0_8

Floating-Point Loop Invariant Synthesis 157

it is thus of utmost importance to bound the values of variables as accurately as
possible. This information is required for proving safety, absence of floating-point
special values, and bounds of roundoff errors [13].

Some previous techniques for loop invariant synthesis for numerical programs
require a target property to be given [19,29,38,40,43]; in most cases this is a set
of unsafe states that should be proven to be unreachable. However, for floating-
point loops where the goal is to compute as tight invariants as possible, specifying
unsafe states essentially amounts to finding the invariant itself.

Abstract interpretation-based techniques [9] do not require a target property.
Nonetheless, existing efficient linear abstract domains that rely on widening are
often not strong enough to find non-trivial inductive invariants, i.e. where the
bounds are not ±infinity. As our evaluation shows, even conjunctions of linear
inequalities as provided by convex polyhedra [4,10] are often insufficient.

We thus require nonlinear loop invariants expressed as polynomial inequalities
to handle many numerical loops. However, existing techniques each have limita-
tions, as they require templates to be given by the user [1]; are limited to linear
loops only [36]; do not always produce invariants that satisfy the precondition [33];
or require a target range in order to produce tight invariants [29].

Here, we propose a rather pragmatic approach. We use concrete executions
and polynomial approximation in order to obtain candidate invariants which,
when combined with counterexample-guided refinement, allows us to synthesize
invariants for floating-point loops. Our approach does not require a target bound,
efficiently produces tight polynomial inequality invariants, handles linear as well
as nonlinear loops, and soundly takes into account floating-point roundoff errors.
Our algorithm thus generates exactly the invariants we are looking for. This
generality, naturally, comes at a certain cost. While previous approaches provide
certain completeness guarantees [29,33,36] at the expense of the above listed
limitations, our algorithm effectively trades completeness for a wider applicabil-
ity. Nevertheless, we empirically observe that our proposed algorithm, despite
being based on a heuristic search, is remarkably effective.

Our algorithm performs a form of iterative counterexample-guided invariant
generation: it proposes a candidate invariant, checks it using an off-the-shelf
SMT solver, and if the solver returns a counterexample, uses it to adjust the
next candidate invariant. We cannot query the SMT solver for the polynomial
coefficients directly, as such a query would require quantifiers, which neither the
real-valued nor the floating-point SMT theories support well. Instead, candi-
date invariants are generated based on simulation, i.e. concrete executions of the
loop, and polynomial approximation which guesses the shape of the invariant
based on the convex hull of seen program values. Concrete executions (instead
of abstractions) starting from a given precondition allow our algorithm to accu-
rately capture the behavior of linear as well as nonlinear loop bodies, and thus to
generate tight invariants. Our algorithm abstracts the floating-point semantics
of the loop body by a sound roundoff error bound, adds it as nondeterminis-
tic noise, and then uses a real-valued decision procedure to verify the proposed
candidate invariants. This approach is more efficient than using the currently

158 A. Izycheva et al.

Fig. 1. Running example

limited floating-point decision procedures, but at the same time accurate, as the
error bound is computed based on a concrete candidate invariant, and thus adds
only as much noise as is necessary.

Our approach is motivated by the fact that the numerical invariants we are
looking for are robust to some noise [36], and the loops of interest do not have a
single inductive invariant, but they admit many similar invariants. The robust-
ness to noise is important; few developers program with the exact floating-point
semantics in mind, rather they treat it as a noisy version of real arithmetic. If a
loop was not robust to noise, even small changes in roundoff errors e.g. due to
non-associativity, would lead to large changes in the overall loop behavior. This
robustness allows us to use a heuristic search to find one of these invariants.

We implement our algorithm as a Python library in a tool called Pine. Pine
can fully automatically handle non-nested loops with linear and nonlinear assign-
ments, nondeterministic noise and conditional statements. In this paper, we focus
on convex invariants that consist of a single polynomial inequality of degree two,
and note that an extension to more complex bounded invariant shapes (non-
convex shapes, disjunctive invariants, higher degrees) requires mainly engineer-
ing work to find a suitable way to fit the polynomial(s) from the simulated points.
We evaluate Pine on a number of existing benchmarks from literature and show
that it computes invariants that are on average 12.4x smaller than those com-
puted by existing tools. Furthermore, we show that Pine computes invariants
for nonlinear loops, which are out of reach for state-of-the-art tools.

Contributions. To summarize, our paper makes the following contributions:

– a novel algorithm for polynomial inequality invariant synthesis for linear and
nonlinear floating-point loops,

– an open-source prototype implementation Pine1, and
– a detailed evaluation on existing and new benchmarks.

1 https://github.com/izycheva/pine.

https://github.com/izycheva/pine

Floating-Point Loop Invariant Synthesis 159

Fig. 2. Nonlinear benchmark candidate invariants (Color figure online)

2 Overview

Before explaining our invariant synthesis algorithm in detail, we illustrate it at
a high-level on an example. Figure 1a shows our example loop that simulates a
dynamical system together with the precondition on the loop variables.

Pine starts by simulating the loop to collect a set of concrete points that
an inductive invariant definitely has to include. For this, Pine samples m = 100
random values from the input ranges x ∈ [0, 0.1] and y ∈ [0, 0.1], and executes
the loop n = 1000 times for each point. Sampled points are shown in light blue
in Fig. 2a–2b. Since we are looking for a convex invariant, Pine next computes
the convex hull of the sampled points. This reduces the number of points to
consider and gives us an initial estimate of the shape of the invariant.

We consider invariants that include variable ranges and a shape enclosing
all values expressed as an ellipsoid, i.e. a second degree polynomial inequality.
We obtain the polynomial coefficients by computing the minimum volume ellip-
soid enclosing the convex hull, and the variable bounds from the minimum and

160 A. Izycheva et al.

maximum values seen in the sampled points:

−0.0009x − 0.004y + 0.0103x2 + 0.021xy + 0.0298y2 ≤ 5.4 · 10−5 ∧
x ∈ [−0.2098, 0.0976], y ∈ [−0.0159, 0.1723]

The computed ellipsoid is depicted in Fig. 2a by blue dashed ellipse. We observe
that this candidate invariant is noisy. To remove (a part of) this noise, we scale
and round the (normalized) polynomial coefficients and the range bounds (the
latter is rounded outwards). Obtained ellipsoid and ranges form the first candi-
date invariant (marked green in Fig. 2a):

−0.03x − 0.13y + 0.35x2 + 0.7xy + y2 ≤ 0.01 ∧ x ∈ [−0.3, 0.1], y ∈ [−0.1, 0.2]

Pine uses an off-the-shelf SMT solver (Z3) to check whether this candidate
invariant is inductive. For our candidate invariant the check fails and the solver
returns a counterexample C1 : (x = 0.0, y = −0.0542) (red dot in Fig. 2b). By
counterexample, we mean a point that itself satisfies the candidate invariant,
but after one loop iteration results in a point for which the invariant no longer
holds. In our example C1 satisfies the candidate invariant, but after one iteration
we obtain C ′

1 : (x = 0.001626, y = −0.054742) that violates the invariant.
Pine uses this counterexample to refine the candidate invariant. However,

instead of recomputing the convex hull and ellipsoid shape immediately, we gen-
erate additional counterexamples in order to not bias the shape in a single direc-
tion that is (randomly) determined by the solver’s counterexample. In particular,
Pine computes counterexamples that are symmetric to C1 along the symmetry
axes of the ellipsoid and satisfy the candidate invariant. Figure 2b shows the
counterexamples generated for our running example (purple dots).

Pine then uses another round of simulation, starting from the set of coun-
terexamples, to obtain a new set of points that need to be included in an invariant
(by transitivity, if a counterexample point is included after one loop iteration,
then the points after additional iterations also have to be included). The new set
of points is then used to generate the next candidate invariant. Figure 2c shows
simulated points in red, and the new candidate invariant in green. Note that
Fig. 2c contains three simulation traces - one for each counterexample, and the
traces originated from the bottom left counterexample and C1 coincide.

Pine repeats this iterative process until either an invariant is found, or a
maximum number of refinement iterations is reached. For our example, Pine
finds an inductive invariant (shown green in Fig. 2d) after 6 iterations.

The invariant so found holds for a real-valued loop, i.e. when the loop body
is evaluated under real arithmetic. The last step of Pine’s algorithm is to ver-
ify that the invariant also holds under a floating-point loop semantics. To do
this, Pine uses an off-the-shelf analysis tool to get the worst-case roundoff error
bound for each expression in the loop body. The errors are then added as nonde-
terministic noise terms to the loop, and the invariant is re-checked by the SMT
solver. For our running example, this check succeeds, and the following invariant
is confirmed:

−0.03x − 0.1y + 0.44x2 + xy + 0.86y2 ≤ 0.02 ∧ x ∈ [−0.5, 0.3], y ∈ [−0.2, 0.4]

Floating-Point Loop Invariant Synthesis 161

Figure 2d shows several invariants generated by Pine for our example, for
different parameters of its algorithm. Note that these invariants are similar, but
differ slightly in shape and volume. The range component of the invariant is
shown by the green and blue boxes; the red box denotes the input ranges.

3 Problem Definition

The input to our algorithm is a loop body together with a precondition. We
consider simple non-nested loops given by the following grammar:

L ::= while(true){ B }

B ::= if (G) S else S | S

S ::= ε | xi := p(x1, ..., xn) + uj; S

G ::= * | p ≤ 0

In each iteration, the loop updates a set of variables xi ∈ X . The right-hand-side
of each assignment consists of polynomial expressions p in the loop variables
together with an (optional) nondeterministic noise term uj , which is bounded in
magnitude and that denotes any additional noise, e.g. input error from sensor
values. The loop body can include a top-level conditional statement, which can
also be used to express the loop exit condition. The conditions of the if-statement
can either be nondeterministic choice or a polynomial inequality. We note that
adding support for more complex conditions as well as nested and chained if-
statements would only affect the way we parse the loop and encode it in the
SMT query and is not a fundamental limitation of our algorithm.

The precondition specifies the initial ranges for all variables xi, as well as
bounds on the nondeterministic noise variables: xi ∈ [ai, bi], uj ∈ [cj , dj]. The
loop and noise variables take values in the set F of floating-point values. Then
the semantics of a loop body b is given by [[b]] :: (X → F) → 2(X→F), which is
defined by

[[ε]] ρ = {ρ}
[[xi := p + uj ; s]] ρ =

⋃{[[s]](ρ ⊕ {xi �→ p(ρ) + u}) | u ∈ [cj , dj]}
[[if (∗) s1 else s2]] ρ = [[s1]] ρ ∪ [[s2]] ρ
[[if (p ≤ 0) s1 else s2]] ρ = {ρ1 ∈ [[s1]] ρ | p(ρ) ≤ 0} ∪

{ρ2 ∈ [[s2]] ρ | p(ρ) > 0}

Here, p(ρ) denotes the value of the polynomial p for the variable assignment ρ
under the floating-point arithmetic semantics specified by the IEEE 754 standard
[22]. The set of initial program states is given by

Init = {ρ : X → R | ∀xi ∈ X . ρ(xi) ∈ [ai, bi]}

Our goal is to find an inductive invariant I such that

Init ⊆ I ∧ ∀ρ ∈ I. [[b]] ρ ⊆ I (1)

162 A. Izycheva et al.

i.e., I subsumes the initial states and is preserved by each iteration of the loop.
We consider convex invariants given by a polynomial inequality together with
ranges for variables:

I = {ρ | P(ρ) ≤ 0, ρ(xi) ∈ Ri = [li, hi]}

The goal is thus to find the coefficients of the polynomial P and the lower and
upper bounds (li, hi) for the variables of the loop. In this paper, we consider poly-
nomials P of degree two, although our algorithm generalizes to higher degrees.
We observe that second degree polynomials are already sufficient for a large class
of loops.

Additionally, we are interested in finding as small an invariant as possible,
where we measure size by the volume enclosed by an invariant. We note that
the ellipsoid (the polynomial inequality), is not only needed to prove the induc-
tiveness of many invariants, but it can also enable more accurate verification
based on our inductive invariants, for instance by techniques relying on SMT
solving. For this reason, we do not only measure the volume as the size of the
box described by R, but rather as the intersection between the box and the
ellipsoid shape, which can be substantially smaller.

4 Algorithm

Figure 3 shows a high-level view of our invariant synthesis algorithm. The input
to the algorithm is a loop together with a precondition on the loop variables,
and the output is a polynomial P and a set of ranges R, a range Ri for each
program variable xi, that define the synthesized invariant:

P(x1, ..., xn) ≤ 0 ∧ x1 ∈ R1 ∧ . . . ∧ xn ∈ Rn (2)

The key component of our algorithm is the invariant synthesis, which infers
the shape of the bounding polynomial and the variable ranges (lines 1–21). The
algorithm first synthesizes an invariant assuming a real-valued semantics for the
loop body (withRoundoff == False).

The synthesis starts by simulating the loop on a number of random inputs
from the precondition, keeping track of all the seen points, i.e. tuples (x1, ..., xn).
From the obtained points, the algorithm next guesses the shape of a candidate
invariant, i.e. a polynomial P and a set of ranges R (line 5–7). We check this
candidate invariant using an off-the-shelf SMT solver (line 12). If the candidate
is not an invariant or is not inductive, the solver returns a counterexample.
The algorithm generalizes from the counterexample (line 16–20) and uses the
newly obtained points to refine the candidate invariant. We repeat the process
until either an invariant is found, or we reach a maximum number of iterations
(empirically, all benchmarks required less than 100 iterations).

After the real-valued invariant is generated, the algorithm checks whether
it also holds for the floating-point implementation of the loop (line 29). Should
this not be the case, invariant synthesis is repeated taking floating-point roundoff

Floating-Point Loop Invariant Synthesis 163

Fig. 3. High-level invariant synthesis algorithm (parameters are in cursive)

errors into account in every refinement iteration. Since roundoff errors are usually
relatively small, this recomputation is seldom necessary, so that Pine first runs
real-valued invariant synthesis for performance reasons.

4.1 Simulation

The synthesis starts by simulating the loop execution. For this, Pine samples m
values from the variables’ input ranges Init uniformly at random, and concretely
executes the loop n times for every sample. As a result, we obtain m×n points,
i.e. combinations of variable values, that appear in the concrete semantics of the
loop and thus have to be included in an invariant. The sampled points provide
a starting point for the invariant search.

164 A. Izycheva et al.

4.2 Candidate Invariant Conjecture

The invariant we are looking for has two parts: variable ranges R and a polyno-
mial shape P(x) enclosing all variable values. To obtain R and P(x), Pine first
reduces the number of samples by computing the convex hull of the sampled
points. We consider invariant shapes that are convex, therefore the values inside
the shape can be safely discarded. Extending our algorithm to non-convex shapes
is a matter of finding an appropriate way to reduce the number of samples.

The minimum and maximum values of each loop variable xi in the convex
hull vertices determine the range Ri.

Pine infers the shape P(x) enclosing the convex hull vertices using two
optimization methods: minimum volume enclosing ellipsoid (MVEE), and least
squares curve fitting. The minimum volume enclosing ellipsoid method computes
a bounding ellipsoid such that all points are inside the shape. Pine utilizes a
library that computes MVEE by solving the following optimization problem:

minimize log(det(E))

s.t.(xi − c)TE (xi − c) ≤ 1

where xi are the individual points, c is a vector containing the center of the
ellipsoid and E contains the information about the ellipsoid shape [30].

While MVEE computes the desired shape, the library that we use supports
only two dimensions, and it is furthermore possible that it diverges. To support
higher-dimensional loops, or when MVEE fails, we resort to using least squares.
With the method of least squares, we find coefficients such that the sum of the
squares of the errors w.r.t. to the given points is minimized. For a degree 2
polynomial in variables x and y, Pine transforms the points into the matrix A
with entries having the values of [1, x, y, x2, xy], and a vector b which consists of
the values of y2. By solving the system of equations Az = b for z, we obtain the
coefficients of the polynomial. By setting b = y2, we set the last coefficient to 1
in order to avoid the trivial (zero) solution. Least squares computes a tight fit,
but will, in general, not include all of the points inside the polynomial shape, so
that we additionally have to enlarge the ‘radius’ such that it includes all points.
While we do not explore this further in this work, we note that the above sketched
least-squares approach also generalizes to fit polynomials of higher degree than
2, using suitable constraints to ensure convex shapes [27].

In this paper, we only consider convex shapes described by a single poly-
nomial inequality (and ranges). However, with a suitable fitting method it is
possible to include more complex shapes. For instance, for disjunctive invariants
one can first perform clustering, and then fit the polynomials using MVEE or
the least squares method.

4.3 Reducing the Noise

Both methods used to infer a shape are approximate, i.e. they find a polyno-
mial that is close to the actual shape up to a tolerance bound. Furthermore,

Floating-Point Loop Invariant Synthesis 165

they fit a set of points that is incomplete in that it only captures a (random)
subset of all of the possible concrete executions. This makes the inferred poly-
nomial shapes inherently noisy and unlikely to be an invariant. We reduce the
noise by first normalizing and then rounding the polynomial coefficients to a
predefined precision precpoly, i.e. to a given (relatively small) number of digits
after the decimal point. This effectively discards coefficients (rounds to zero)
whose magnitude is significantly smaller than the largest coefficient found. For
the remaining coefficients, it removes the—likely noisy—least significant digits.

Similarly, the lower and upper bounds of the computed ranges R capture
only the values seen in simulation and are thus likely to be under-approximating
the true ranges. We round the lower and upper bounds outwards to a predefined
precision precrange, thus including additional values.

The precisions (number of decimal digits) chosen for rounding the polynomial
coefficients and the ranges should be high enough to not lead to too large over-
approximations, but nonetheless small enough to discard most of the noise. We
have empirically observed that the polynomial coefficients should be more precise
than the range bounds by one digit, and that precpoly = 2 and precrange = 1
seems to be a good default choice.

4.4 Checking a Candidate Invariant

The obtained polynomial and variables ranges form a candidate invariant, which
we check for inductiveness using an off-the-shelf SMT solver by encoding the
(standard) constraint (Init → I(x)) ∧ (I(x) ∧ L → I(x′)), where I(x) = P(x) ≤
0
∧

i xi ∈ Ri, L is the loop body relating the variables x before the execution of
the loop body to the variables x′ after.

We translate conditional statements using the SMT command ite. Non-
deterministic terms receive fresh values from the user-defined range at every
loop iteration. Since the ranges do not change we add constraints on the ranges
of non-deterministic terms only to I and Init. We encode the above constraint in
SMT-LIB using the real-valued theory [24]. The SMT solver evaluates the query
and returns a counterexample if it exists. If no counterexample is returned, a
candidate invariant is confirmed to be inductive and returned.

4.5 Generalizing from Counterexamples

The counterexample returned by the SMT solver is added to the existing set of
points that the invariant has to cover. However, this additional point is arbitrary,
depending on the internal heuristics of the solver. In order to speed up invariant
synthesis, and to avoid biasing the search in a single direction and thus skewing
the invariant shape, we generate additional points that also have to be covered
by the next invariant candidate. We consider three different generalizations:
additional counterexamples, symmetric points and nearby points.

Pine obtains additional counterexamples from the solver by extending the
SMT query such that the initial counterexample is blocked and the new coun-
terexample has to be a minimum distance d away from it. Pine will iteratively

166 A. Izycheva et al.

generate up to cex_num additional counterexamples, as long as the solver
returns them within a (small) timeout (cex_num is a parameter of the algo-
rithm).

Our second generalization strategy leverages the fact that the candidate
invariant is an ellipsoid and thus has several axes of symmetry. Pine computes
points that are symmetric to the counterexample with respect to all axes of
symmetry of the ellipsoid, and adds them as additional points if they satisfy I
or Init (i.e. they are also valid counterexamples).

Nearby points are the points that are at a distance d to the counterexample.
Pine computes these points in all directions, i.e. xi ± d, and adds them to
the set of points, if they are valid counterexamples. The rationale behind this
generalization is that points in the vicinity of a counterexample are often also
likely counterexamples. Adding the nearby points allows us to explore an entire
area, instead of just a single point.

Pine then performs a second simulation of the loop starting from the newly
added set of counterexamples for k iterations. All obtained points are added to
the original sampled values and we proceed to synthesize the next candidate
invariant.

4.6 Floating-Point Invariant

We encode the SMT queries to check the inductiveness of our candidate invari-
ants using the real-valued theory. We note that it is in principle possible to encode
the queries using the floating-point theory, and thus to encode the semantics of
the loop body, including roundoff errors, exactly. However, despite the recent
advances in floating-point decision procedures [8], we have observed that their
performance is still prohibitively slow for our purpose (CVC4’s state-of-the-art
floating-point procedure [8] was several orders of magnitude slower than Z3’s
real-valued procedure [24]).

We thus use a real-valued SMT encoding and soundly over-approximate
the roundoff errors in the loop body. We compute a worst-case roundoff error
bound rnd for each expression in the loop body using an off-the-shelf round-
off analysis tool. Static analyses for bounding roundoff errors [12,42] assume
the following abstraction of floating-point arithmetic operations: (x ◦fl y) =
(x ◦ y)(1 + e) + d |e| ≤ ε, |d| ≤ η, where ◦ ∈ {+,−, ∗, /} and ◦fl is the floating-
point counter-part. The so-called machine epsilon ε bounds the relative error for
arithmetic operations on normal numbers and η bounds the absolute error on the
so-called subnormal numbers (very small numbers close to zero that have a spe-
cial representation). The static analyses use interval abstract domains to bound
the ranges of all intermediate arithmetic expressions, and from those compute
the new roundoff errors committed by each arithmetic operation, as well as their
propagation through the rest of the program. These techniques compute round-
off error bounds for loop-free code, which is sufficient for our purpose, since we
only need to verify that I(x) ∧ L → I(x′), i.e. the executions of the (loop-free)
loop body remain within the bounds given by I.

Floating-Point Loop Invariant Synthesis 167

The computed roundoff error bound is added to the expression as a non-
deterministic noise term bounded by [−rnd, rnd]. Note that unlike in existing
work [36] that derives one general error bound for all programs assuming a
large enough number of arithmetic operations, our roundoff error is computed
on-demand for each particular candidate invariant. The magnitude of roundoff
errors depends on ranges of inputs, and so by computing the roundoff error only
for the invariant’s ranges, we are able to add only as little noise as is necessary.

Our algorithm first finds a real-valued invariant and then verifies whether it
also holds under a floating-point loop semantics. If not, we restart the invariant
synthesis and take roundoff errors into account for each candidate invariant,
recomputing a new tight roundoff error in each iteration of our algorithm (line
11). We do not include roundoff errors in the first run of the synthesis for better
performance, since in practice, we rarely need to recompute the invariant.

Except for the roundoff error analysis, our algorithm is agnostic to the finite
precision used for the implementation of the loop. By choosing to compute round-
off errors w.r.t. different precisions, it thus supports in particular both single
and double floating-point precision, but also fixed-point arithmetic of different
bit lengths [12], which is particular relevant for embedded platforms that do not
have a floating-point unit.

4.7 Implementation

We have implemented the algorithm from Fig. 3 in the tool Pine as a Python
library in roughly 1600 lines of code, relying on the following main libraries
and tools: the Qhull library for computing the convex hull2, a library for com-
puting the minimum volume ellipsoid3, the least-squares function from scipy
(scipy.linalg.lstsq), the Python API for the Z3 SMT solver version 4.8.7, and
the Daisy tool [12] for computing roundoff errors. Simulations of the loop are
performed in 64-bit floating-point arithmetic.

5 Experimental Evaluation

We evaluate Pine on a set of benchmarks from scientific computing and control
theory domains. We aim to answer the following research questions:

RQ1: How does Pine compare with state-of-the-art tools?
RQ2: How quickly does Pine generate invariants?
RQ3: How sensitive is Pine’s algorithm to parameter changes?

5.1 State-of-the-Art Techniques

We compare the invariants synthesized by Pine to those generated by two state-
of-the-art tools: Pilat [33] and SMT-AI [36]. These two tools are the only ones
2 www.qhull.org.
3 https://github.com/minillinim/ellipsoid.

www.qhull.org
https://github.com/minillinim/ellipsoid

168 A. Izycheva et al.

that compute polynomial inequality invariants for floating-point loops without
requiring a target condition to be given.

Pilat reduces the generation of invariants of a loop body f to computing the
eigenvector φ of f that is associated to the eigenvalue 1, i.e. f(φ) = φ and φ
is thus an invariant. Pilat can, in principle, handle nonlinear loops by introduc-
ing a new variable for each nonlinear term and thus effectively linearizing it.
This transformation is similar to how we use least-squares to fit a polynomial
(Sect. 4.2). Pilat handles floating-point roundoff errors by (manually) including
nondeterministic noise for each floating-point operation that captures the round-
off error: (x◦y) ·δ, where ◦ ∈ {+,−,×, /} and |δ| ≤ ε is bounded by the machine
epsilon. For simplicity, we ignore errors due to subnormal numbers.

SMT-AI [36] and Adje et al. [1] implement policy iteration using the ellip-
soid abstract domain. The approach by Adje et al. requires the ellipsoid template
to be provided, while SMT-AI generates templates automatically. For our com-
parison we therefore consider the more general approach of SMT-AI. SMT-AI
generates the ellipsoid templates from Lyapunov functions [3], which are func-
tions known from control theory for proving that equilibrium points of dynamical
systems are stable. These functions prove that a loop is bounded and thus the
shape effectively serves as an invariant. It is known that for linear loops one can
generate the polynomial shapes automatically using semi-definite programming.
Since such an automated method does not exist for nonlinear functions, SMT-
AI is limited to linear loops. Semi-definite programming can compute different
polynomial shapes, and SMT-AI selects shapes to be tight using a binary search.
SMT-AI first computes a real-valued invariant, like Pine, and then verifies that
it also satisfies a floating-point loop. Unlike Pine, SMT-AI derives one generic
roundoff error bound for all (reasonably-sized) loops, and does not recompute the
invariant if the floating-point verification fails. We were unfortunately not able
to install SMT-AI, so that we perform our comparison on the benchmarks used
by SMT-AI, comparing to the (detailed) results reported in the paper [35,36].

Interproc [18] is a static analyzer based on abstract interpretation. It infers
numerical invariants using boxes, octagons, linear congruences and convex poly-
hedra. A user can choose between two libraries that implement these domains:
APRON [23] and Parma Polyhedra Library [4]. We tried Interproc on our set of
benchmarks, and on 2 benchmarks it produced some bounds for a subset of the
program variables. However, the invariants were not convex, and we could not
compute their volume. We therefore exclude Interproc from the comparison.

Another potential competitor is an approach by Mine et al. [29] that combines
interval and octagon abstract domains with constraint solving. The invariants
discovered are effectively ellipsoids, i.e. second-degree polynomial inequalities.
However, their approach fundamentally requires target bounds. Since the goal
of Pine is to find such tight bounds, and not only prove that they are inductive,
we do not compare with Mine et al. [29].

Floating-Point Loop Invariant Synthesis 169

5.2 Experimental Setup

Our set of benchmarks contains both linear and nonlinear loops. Each benchmark
consists of a loop body which iterates an infinite number of times. The linear
benchmarks filter_goubault, filter_mine*, arrow_hurwicz, harmonic, symplectic
are taken from related work [1,29] and implement linear filters and oscillators.
Benchmarks ex* are taken from the evaluation of SMT-AI [35] and comprise
linear controllers, found for instance in embedded systems.

We additionally include the nonlinear benchmark pendulum*, that simulates
a simple pendulum and rotation*, which repeatedly rotates a 2D vector by an
(small) angle that is nondeterministically picked in each iteration. Both bench-
marks use the sine function, which we approximate using a Taylor approxi-
mation. The nonlin_example* are nonlinear dynamical systems collected from
textbook examples on Lyapunov functions.

Three of our benchmarks contain operations on nondeterministic noise terms.
Most benchmarks are 2-dimensional, except for ex4*, which has 3 variables, ex2*
and ex5*, which have 4 variables, and ex6* that has 5 variables.

We run our evaluation on a MacBook Pro with an 3.1GHz Intel Core i5
CPU, 16GB RAM, and macOS Catalina 10.15.3.

5.3 Comparison with State-of-the-Art

Each tool generates an invariant with an elliptic shape, and Pine and SMT-AI
provide additionally ranges for variables. We compare the inductive invariants
generated by each tool based on their volume. The volume of an invariant is given
by the set of points satisfying P(x) ≤ 0 ∧ ∧

i xi ∈ Ri, where the variable ranges
may intersect with the ellipsoid. We compute this intersection (approximately)
using a Monte-Carlo simulation with 3 · 106 samples, by comparing how many
samples are within the invariant to how many are inside the variable ranges (for
the latter we know the volume exactly). Our volume estimates are accurate to
two decimal digits.

We run Pine with a default set of parameters, that we determined empirically
(see Sect. 5.5). In order to compare with other tools that only support single
floating-point precision, Pine computes roundoff errors (and invariants) for 32-
bit floating-point precision.

Columns 2–4 in Table 1 show the volumes of the invariants generated by
SMT-AI, Pilat, and Pine. ‘-’ denotes the cases where a tool did not generate an
invariant. Benchmarks for which we did not have data for SMT-AI are marked
as ‘undef’. ‘PF’ denotes cases where an invariant was generated, but it did not
satisfy the given precondition. ‘TO’ marks cases when a tool took longer than
20min to generate an invariant. Here, smaller volume is better, the best volumes
are marked bold.

Due to the inherent randomness in its algorithm, we run Pine 4 times and
compute the average volume and running time across the runs. The last column
shows variations in volume with respect to the average (i.e. (max - min)/average).

170 A. Izycheva et al.

Table 1. Volumes of invariants generated by Pine, Pilat and SMT-AI, Pine’s average
running time and variation in invariant volumes across 4 runs

Benchmark SMT-AI Pilat Pine
Pine

avg time, s
Volume
variation

N
on

-l
in

ea
r

pendulum-approx undef - 12.92 21.09 30.03%
rot.nondet-small undef - 5.97 30.13 16.25%
rot.nondet-large undef - 6.67 33.78 10.87%
nonlin-ex1 undef - 0.23 14.43 18.51%
nonlin-ex2 undef - 0.56 7.32 5.23%
nonlin-ex3 undef - 7.07 12.45 3.35%

L
in

ea
r

arrow-hurwitz undef - 4.40 4.75 7.00%
harmonic undef 18.41 3.52 10.81 9.70%
symplectic undef PF 2.32 7.71 12.11%
filter-goubault undef PF 1.84 4.94 1.31%
filter-mine1 undef PF 6.32 7.18 1.58%
filter-mine2 undef 1.16 0.49 4.48 71.92%
filter-mine2-nondet undef 4.92 4.45 10.70 66.38%
pendulum-small undef 12.53 9.10 7.11 7.51%
ex1- filter 475.06 498.37 - 43.61 -
ex1-reset-filter 475.98 - - 45.95 -
ex2-2order 17.37 1.07 4.92 7.45 46.73%
ex2-reset-2order 17.36 - 3.08 6.28 6.65%
ex3-leadlag - - - 46.68 -
ex3-reset-leadlag - - - 44.56 -
ex4-gaussian 0.61 - 0.22 16.93 46.16%
ex4-reset-gaussian 17.05 - 1.45 23.10 137.47%
ex5-coupled-mass 5,538.47 TO 100.61 8.63 9.48%
ex5-reset-coupled-mass 5,538.34 - 81.02 8.44 27.54%
ex6-butterworth 65.25 - 25.43 16.34 272.89%
ex6-reset-butterworth 700.06 - 10.30 219.34 0.00%
ex7-dampened 12.17 - 18.68 19.96 15.71%
ex7-reset-dampened 12.17 - - 39.70 -
ex8-harmonic 5.75 - 2.32 6.99 9.77%
ex8-reset-harmonic 5.75 - 2.85 7.15 28.08%
ex5+6 6,927.12 TO TO TO -

We observe that Pine produces the tightest invariants on 17/24 (70%) of
the linear benchmarks. Additionally, Pine generates invariants for all nonlinear
benchmarks in our set, whereas Pilat was not able to generate invariants for any
of them. Pine produces invariants that are in the best case on average 20x tighter
than the ones by SMT-AI, and 2.7x tighter than the ones by Pilat (compared
on the 6 benchmarks, for which it was able to generate an invariant). In the
worst case (observed over our 4 runs), the factors decrease to 13.8x and 1.8x
respectively. Only for the benchmarks ex6-butterworth and filter-mine2-nondet,
the worst-case volumes computed by Pine become 1.9x and 1.6x larger than the
ones computed by SMT-AI and Pilat, respectively, and are thus still of the same
order of magnitude.

Floating-Point Loop Invariant Synthesis 171

Table 2. Top-5 minimum volume configurations

m n cex_num d k symPts nearbyPts volume

100 1000 0 0.5 500 � 2.283
100 1000 0 0.5 100 � 2.297
100 10000 5 0.25 100 � 2.311
100 1000 2 0.25 100 � 2.314
100 10000 1 0.5 500 � 2.335

5.4 Efficiency

Pine generates invariants in on average 25, and at most 220 s; the largest running
time is also the benchmark with the largest number of variables. Pine was able
to confirm the real-valued invariant also for the floating-point semantics for all
but two rotation* benchmarks, for which it had to recompute the invariants two
out of four times. We consider the running times to be acceptably low such that
it is feasible to re-run Pine several times for an input loop, in order to obtain a
smaller invariant, if needed.

5.5 Parameter Sensitivity

We now evaluate the influence of different parameter settings on the perfor-
mance of our proposed algorithm in terms of its ability to find tight inductive
invariants. For this, we explored the parameter space of our algorithm on 13 of
our benchmarks that include (non-)linear infinite loops without branching. We
evaluate the different combinations of varying the following parameters:

– whether or not symmetric points are used
– whether or not nearby points are used
– number of random inputs and loop iterations for initial simulation (algorithm

parameter m–n): 100–1k, 1k–1k, 100–10k
– number of loop iterations for counterexamples simulation (k): 0, 100, 500
– number of additional counterexamples (cex_num): 0, 1, 2, 5 (when

cex_num = 0, no additional counterexample is generated)
– distance to nearby points (in % of the range) (d): 10%, 25%, 50%
– three different precisions for rounding: (precpoly = 1, precrange = 0),

(precpoly = 2, precrange = 1), (precpoly = 3, precrange = 2), where precpoly,
precrange give the number of decimal digits for the polynomial coefficients
and the variable ranges, respectively.

In total, we obtain 1296 configurations. We run Pine with each of them once.

Default Configuration. 185 parameter configurations were successful on all of the
13 benchmarks. From these, we select the configuration that generates invariants
with the smallest average volume across the benchmarks as our default config-
uration: precpoly = 2, precrange = 1,m = 100, n = 1000, k = 500. To generalize
from counterexamples the default configuration uses only symmetric points.

172 A. Izycheva et al.

Fig. 4. Proportion of parameters
appearing in successful configura-
tions

Fig. 5. Volumes of invariants with
successful configurations

Table 2 shows the 5 best configurations, according to average volume (we
normalized the volume across benchmarks). We note that the differences between
volumes for successful configurations are small, so that we could have chosen any
of these configurations as the default.

Successful Configurations. We study the 185 successful configurations to see
which parameter values appear the most frequently, and thus seem most suc-
cessful in finding invariants. Figure 4 shows the distribution of the different
parameters in the set of successful configurations. For instance, the precisions
(precpoly = 1, precrange = 0) and (precpoly = 3, precrange = 2) do not appear
at all in the successful configurations, i.e. only (precpoly = 2, precrange = 1) was
able to find invariants for all benchmarks. On the other hand, nearby points are
included in the generalization in roughly half of the configurations.

From Fig. 4, we conclude that simulating the loop starting from counterex-
amples (line 21 in Fig. 3) is crucial in finding an invariant - none of the config-
urations without this additional simulation worked on all benchmarks. On the
other hand, whether this simulation runs 100 or 500 loop iterations seems to
make less of a difference.

For the remaining parameters, we do not observe a strong significance; they
are roughly equally distributed among the successful configurations. From this
we conclude that our algorithm is not sensitive to particular parameter settings,
and will find invariants successfully for many different parameter configurations.

The choice of parameters does, however, influence the size of the invariants
generated, at least for certain benchmarks. Figure 5 shows the minimum, maxi-
mum and average volumes for each benchmark across successful configurations.
While for some benchmarks, the variation is small, for others the best configu-
ration produces invariants that are half the size from the worst one.

Floating-Point Loop Invariant Synthesis 173

Across the 1296 configurations, we observe that if a real-valued invariant is
found, it is also confirmed in 89% of cases, and thus has to be re-computed
in only 11% of cases. The only outlier that needs recomputation more often is
rotation-nondet-large, which rotates a vector by a larger angle, and therefore is
understandably more sensitive to enlarging the coordinates with some noise.

Last but not least, we used Pine’s default configuration to generate invariants
for fixed-point precision with uniform 16 bit length for all our 30 benchmarks
(including ex*). The smaller bit length results in larger roundoff errors, so that
Pine had to recompute an invariant for 5 additional benchmarks (i.e. where
the real-valued invariant was not confirmed), but was able to find an inductive
invariant for as many loops as with floating-point implementation.

6 Related Work

Many tools and libraries [23] infer invariants over program variables using
abstract interpretation. The abstract domains range from efficient and imprecise
intervals [11], over octagons [28], to more expensive and expressive polyhedra
[4,41]. For programs with elliptic invariants most linear abstract domains are
insufficient to express an invariant [36].

Ellipsoid domains have been defined that work for specific types of programs,
e.g. digital filters [17] and programs where variables grow linearly with respect to
the enclosing loop counters [34]. Performing abstract interpretation using policy
iterations instead of widening allows the use of the ellipsoid abstract domain
more generally [1,20]. This approach requires templates of the ellipsoids to be
given, however. Recent works [33,36] are able to discover ellipsoid inductive
loop invariants without the need for templates, but being based on semidefinite
programming and linear algebra, respectively, are fundamentally limited to linear
loops only. Alternatively, Bagnara et.al. [5] have explored an abstract domain
that approximates polynomial inequalities by convex polyhedra and leverages
the operations, including widening, of polyhedra. Sankaranarayanan et.al. [37]
show how to generate polynomial equality invariants by reducing the problem
to a constraint satisfaction problem.

Our algorithm builds on several ideas that have been explored in loop invari-
ant synthesis previously, including the use of concrete executions to derive poly-
nomial templates and counter-example based refinement. Floating-point loops
and in particular the uncertainties introduced due to roundoff errors pose unique
challenges that existing techniques cannot handle, as we discuss next.

Several works have explored the use of machine-learning in teacher-learner
frameworks [19,43]: the learner guesses a candidate invariant from a set of exam-
ples, and the teacher checks whether the invariant is inductive. If it is not, the
teacher provides feedback to the learner in form of additional (counter)examples.
These approaches rely on a target property to be given (to provide negative
examples) and are thus not immediately applicable to synthesizing floating-point
inequality invariants. The framework C2I [38] employs a learner-teacher frame-
work, but where the learner uses a randomized search to generate candidate

174 A. Izycheva et al.

invariants. While surprisingly effective, the approach is, however, limited to a
a fixed search, e.g. linear inequalities with a finite set of given constants as
coefficients. Sharma et.al. [40] present a learning based algorithm to generate
invariants that are arbitrary boolean combinations of polynomial inequalities,
but require a set of good and bad states and thus an assertion to be given.

The tool InvGen [21] generates integer linear invariants from linear tem-
plates, using concrete program executions to derive constraints on the template
parameters. The tool NumInv [32] and the Guess-And-Check algorithm [39]
generate polynomial equality invariants using a similar approach. For integer
programs and in particular equality constraints, this approach is exact. In our
setting with floating-point programs and inequalities such constraints cannot be
solved exactly and thus require a different, approximate, approach. NumInv and
Guess-And-Check furthermore employ counterexamples returned by the solver
for refinement of the invariant. These counterexamples are program inputs, how-
ever, due to the complexity of the floating-point or real-arithmetic decision pro-
cedures, this technique does not scale to our target numerical programs. We are
thus restricted to counterexamples to the invariant property.

Abductive inference in the tool Hola [14] and enumerative synthesis in Fre-
qHorn [15] are two further techniques that have been used to generate invariants
for numerical programs, but are unfortunately not applicable to generate the
invariants we are looking for. Hola relies on quantifier elimination which solvers
do not support (well) for floating-points and reals; FreqHorn generates the invari-
ant grammar from the program’s source code, but for our invariants the terms
do not appear in the program itself.

Allamigeon et al. [2] extend ellipsoidal analyses to generate disjunctive and
non-convex invariants for switched linear systems. We do not consider disjunctive
invariants in this work and leave their exploration to future work.

Recurrence-based techniques [25,26] generate loop invariants that exactly
capture the behavior of a numerical integer loop. While these techniques work for
arbitrary conditional branches, imperative code and nested loops, they generate
invariants of a different form, i.e. in general not polynomial inequalities and are
thus orthogonal to our approach.

7 Conclusion

We propose a novel algorithm for synthesizing polynomial inequality invariants
for floating-point loops. For this, we show how to extend the well-know technique
of counterexample-guided invariant synthesis to handle the uncertainties arising
from finite-precision arithmetic. The key insight to make our iterative refinement
work is that a single counterexample is not sufficient and the algorithm has
to explore the space of counterexamples more evenly in order to successfully
generalize. While the resulting algorithm is heuristic in nature, it proved to be
remarkably effective on existing benchmarks as well as on handling benchmarks
out of reach of existing tools.

Floating-Point Loop Invariant Synthesis 175

Acknowledgements. We would like to thank Sebastian Bruggisser for helping to
debug our ellipsoids.

References

1. Adjé, A., Gaubert, S., Goubault, E.: Coupling policy iteration with semi-definite
relaxation to compute accurate numerical invariants in static analysis. Logical
Methods Comput. Sci. 8(1), 23–42 (2012)

2. Allamigeon, X., Gaubert, S., Goubault, E., Putot, S., Stott, N.: A fast method
to compute disjunctive quadratic invariants of numerical programs. ACM Trans.
Embedded Comput. Syst. 16(5s), 166:1–166:19 (2017)

3. Astrom, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press, Princeton (2008)

4. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1), 3–21 (2008)

5. Bagnara, R., Rodríguez-Carbonell, E., Zaffanella, E.: Generation of basic semi-
algebraic invariants using convex polyhedra. In: Hankin, C., Siveroni, I. (eds.) SAS
2005. LNCS, vol. 3672, pp. 19–34. Springer, Heidelberg (2005). https://doi.org/10.
1007/11547662_4

6. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

7. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

8. Brain, M., Schanda, F., Sun, Y.: Building better bit-blasting for floating-point
problems. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp.
79–98. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_5

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Fourth
ACM Symposium on Principles of Programming Languages (1977)

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among vari-
ables of a program. In: 5th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL 1978 (1978)

11. Cousot, P., Radhia, C.: Static determination of dynamic properties of programs.
In: ISOP (1976)

12. Darulova, E., Izycheva, A., Nasir, F., Ritter, F., Becker, H., Bastian, R.: Daisy
- framework for analysis and optimization of numerical programs (tool paper).
In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 270–287.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_15

13. Darulova, E., Kuncak, V.: Towards a compiler for reals. ACM Trans. Program.
Lang. Syst. 39(2), 8:1–8:28 (2017)

14. Dillig, I., Dillig, T., Li, B., McMillan, K.L.: Inductive invariant generation via
abductive inference. In: Object Oriented Programming Systems Languages &
Applications (OOPSLA) (2013)

15. Fedyukovich, G., Bodík, R.: Accelerating syntax-guided invariant synthesis. In:
Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 251–269.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_14

https://doi.org/10.1007/11547662_4
https://doi.org/10.1007/11547662_4
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-030-17462-0_5
https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1007/978-3-319-89960-2_14

176 A. Izycheva et al.

16. Fedyukovich, G., Kaufman, S.J., Bodík, R.: Sampling invariants from frequency
distributions. In: FMCAD (Formal Methods in Computer Aided Design) (2017)

17. Feret, J.: Static analysis of digital filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS,
vol. 2986, pp. 33–48. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24725-8_4

18. Gal Lalire, M. Argoud, B.J.: A web interface to the interproc analyzer. http://
pop-art.inrialpes.fr/interproc/interprocwebf.cgi

19. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust framework for
learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 69–87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_5

20. Gawlitza, T.M., Seidl, H.: Numerical invariants through convex relaxation and
max-strategy iteration. Formal Methods Syst. Des. 44(2), 101–148 (2014)

21. Gupta, A., Rybalchenko, A.: InvGen: an efficient invariant generator. In: Bouajjani,
A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634–640. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02658-4_48

22. IEEE Computer Society: IEEE Standard for Floating-Point Arithmetic. IEEE Std
754-2008 (2008)

23. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_52

24. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_27

25. Kincaid, Z., Cyphert, J., Breck, J., Reps, T.W.: Non-linear reasoning for invariant
synthesis. Proc. ACM Program. Lang. 2(POPL), 54:1–54:33 (2018)

26. Kovács, L.: Reasoning algebraically about p-solvable loops. In: Ramakrishnan,
C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 249–264. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78800-3_18

27. Magnani, A., Lall, S., Boyd, S.: Tractable fitting with convex polynomials via sum-
of-squares. In: Proceedings of the 44th IEEE Conference on Decision and Control
(2005)

28. Miné, A.: The octagon abstract domain. High. Order Symb. Comput. 19(1), 31–100
(2006). https://doi.org/10.1007/s10990-006-8609-1

29. Miné, A., Breck, J., Reps, T.: An algorithm inspired by constraint solvers to infer
inductive invariants in numeric programs. In: Thiemann, P. (ed.) ESOP 2016.
LNCS, vol. 9632, pp. 560–588. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49498-1_22

30. Moshtagh, N.: Minimum Volume Enclosing Ellipsoid (2020). https://www.
mathworks.com/matlabcentral/fileexchange/9542-minimum-volume-enclosing-
ellipsoid. Accessed 21 May 2020

31. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

32. Nguyen, T., Antonopoulos, T., Ruef, A., Hicks, M.: Counterexample-guided app-
roach to finding numerical invariants. In: Foundations of Software Engineering
(ESEC/FSE) (2017)

33. de Oliveira, S., Bensalem, S., Prevosto, V.: Synthesizing invariants by solving solv-
able loops. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 327–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2_22

https://doi.org/10.1007/978-3-540-24725-8_4
https://doi.org/10.1007/978-3-540-24725-8_4
http://pop-art.inrialpes.fr/interproc/interprocwebf.cgi
http://pop-art.inrialpes.fr/interproc/interprocwebf.cgi
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-642-02658-4_48
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/978-3-540-78800-3_18
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/978-3-662-49498-1_22
https://doi.org/10.1007/978-3-662-49498-1_22
https://www.mathworks.com/matlabcentral/fileexchange/9542-minimum-volume-enclosing-ellipsoid
https://www.mathworks.com/matlabcentral/fileexchange/9542-minimum-volume-enclosing-ellipsoid
https://www.mathworks.com/matlabcentral/fileexchange/9542-minimum-volume-enclosing-ellipsoid
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-68167-2_22
https://doi.org/10.1007/978-3-319-68167-2_22

Floating-Point Loop Invariant Synthesis 177

34. Oulamara, M., Venet, A.J.: Abstract interpretation with higher-dimensional ellip-
soids and conic extrapolation. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9206, pp. 415–430. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21690-4_24

35. Roux, P., Garoche, P.-L.: Integrating policy iterations in abstract interpreters.
In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 240–254.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-8_18

36. Roux, P., Garoche, P.: Practical policy iterations - a practical use of policy iter-
ations for static analysis: the quadratic case. Formal Methods Syst. Des. 46(2),
163–196 (2015)

37. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant genera-
tion using gröbner bases. In: Principles of Programming Languages, POPL (2004)

38. Sharma, R., Aiken, A.: From invariant checking to invariant inference using ran-
domized search. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
88–105. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_6

39. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data
driven approach for algebraic loop invariants. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 574–592. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37036-6_31

40. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Verification as learn-
ing geometric concepts. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS,
vol. 7935, pp. 388–411. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38856-9_21

41. Singh, G., Püschel, M., Vechev, M.: A practical construction for decomposing
numerical abstract domains. Proc. ACM Program. Lang. 2(POPL), 1–28 (2017)

42. Solovyev, A., Jacobsen, C., Rakamaric, Z., Gopalakrishnan, G.: Rigorous estima-
tion of floating-point round-off errors with symbolic Taylor expansions. In: Formal
Methods (FM) (2015)

43. Zhu, H., Magill, S., Jagannathan, S.: A data-driven CHC solver. In: Programming
Language Design and Implementation (PLDI) (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-21690-4_24
https://doi.org/10.1007/978-3-319-21690-4_24
https://doi.org/10.1007/978-3-319-02444-8_18
https://doi.org/10.1007/978-3-319-08867-9_6
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-642-38856-9_21
https://doi.org/10.1007/978-3-642-38856-9_21
http://creativecommons.org/licenses/by/4.0/

Formal Framework for Reasoning About
the Precision of Dynamic Analysis

Mila Dalla Preda(B), Roberto Giacobazzi, and Niccoló Marastoni

Dipartimento di Informatica, University of Verona, Verona, Italy
{mila.dallapreda,roberto.giacobazzi,niccolo.marastoni}@univr.it

Abstract. Dynamic program analysis is extremely successful both in
code debugging and in malicious code attacks. Fuzzing, concolic, and
monkey testing are instances of the more general problem of analysing
programs by dynamically executing their code with selected inputs.
While static program analysis has a beautiful and well established theo-
retical foundation in abstract interpretation, dynamic analysis still lacks
such a foundation. In this paper, we introduce a formal model for under-
standing the notion of precision in dynamic program analysis. It is
known that in sound-by-construction static program analysis the preci-
sion amounts to completeness. In dynamic analysis, which is inherently
unsound, precision boils down to a notion of coverage of execution traces
with respect to what the observer (attacker or debugger) can effectively
observe about the computation. We introduce a topological characteri-
sation of the notion of coverage relatively to a given (fixed) observation
for dynamic program analysis and we show how this coverage can be
changed by semantic preserving code transformations. Once again, as
well as in the case of static program analysis and abstract interpreta-
tion, also for dynamic analysis we can morph the precision of the analy-
sis by transforming the code. In this context, we validate our model on
well established code obfuscation and watermarking techniques. We con-
firm the efficiency of existing methods for preventing control-flow-graph
extraction and data exploit by dynamic analysis, including a validation
of the potency of fully homomorphic data encodings in code obfuscation.

1 Introduction

Program analysis allows us to infer information on programs behaviour (seman-
tics). It is well known from the Rice theorem that, in general, it is not possible
to decide whether a given program satisfies a semantic property. For this rea-
son analysts recur to approximation either by static or dynamic analysis. Static
analysis computes an over-approximation of program semantics, while dynamic
analysis under-approximates program semantics. In both cases, we have a decid-
able evaluation of the semantic property on an approximation of program seman-
tics. For this reason what we can conclude regarding the semantic property of
programs has to take into account false positives for static analysis and false
negatives for dynamic analysis. Static analysis is precise when it is complete (no
c© Springer Nature Switzerland AG 2020
D. Pichardie and M. Sighireanu (Eds.): SAS 2020, LNCS 12389, pp. 178–199, 2020.
https://doi.org/10.1007/978-3-030-65474-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65474-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-65474-0_9

Formal Framework for Reasoning About the Precision of Dynamic Analysis 179

false positives) and this relates to the well studied notion of completeness in
abstract interpretation [10,11,20]. Dynamic analysis is precise when it is sound
(no false negatives), this happens when the execution traces considered by the
dynamic analysis exhibit all the behaviours of the program that are relevant wrt
the semantic property of interest. Code coverage is the metric typically used by
dynamic analysis to evaluate its soundness, namely the amount of false negatives
[1].

Program analysis has been originally developed for program verification and
debugging and researchers have put a great effort in developing efficient analysis
techniques and tools that reduce the number of both false positives and false
negatives. In this setting, analysis precision relates to the ability of identifying
bugs and vulnerabilities that may lead to unexpected behaviours, or that may
be exploited by an adversary for malicious purposes.

Software protection is another interesting scenario where program analysis
plays a central role but in a dual way. Indeed, in the software protection scenario
program analysis is used by adversaries to reverse engineer proprietary code and
then illicitly reuse portions of the code or tamper with the code in some unau-
thorised way. Here, the intellectual property and integrity of programs is guar-
anteed when the analysis is imprecise or very expensive since this complicates
the attacks. In this setting, researchers have developed program transformations,
called code obfuscations, with the explicit intent of complicating program anal-
ysis. In the last years many different kinds of obfuscation techniques and tools
have been proposed [5]. Code obfuscation proved its efficiency in degrading the
results of static program analysis while it is less efficient with respect to dynamic
program analysis [28].

Fig. 1. Code obfuscation

For example, consider a program whose control flow graph is depicted on
the left of Fig. 1 where we have three blocks of sequential instructions A,B and
C executed in the order specified by the arrows A → B → C. A true opaque
predicate OPT is a predicate that always evaluates to true, but this invariant
behaviour is not known to the attacker that considers as possible also the execu-
tion of the false branch [6]. In the middle of Fig. 1 we can see what happens to
the control flow graph when we insert a true opaque predicate, where block D

180 M. Dalla Preda et al.

has to be considered in the static analysis of the control flow even if it is never
executed at runtime. Thus, A → OPT → D → C is a false positive path added
by obfuscation to static analysis, while no imprecision is added to dynamic anal-
ysis since all executions follow the path A → OPT → B → C. On the right
of Fig. 1 we have the control flow graph of the program obtained inserting an
unknown opaque predicate. An unknown opaque predicate OP? is a predicate
that sometimes evaluates to true and sometimes evaluates to false. These pred-
icates are used to diversify program execution by inserting in the true and false
branches sequences of instructions that are different but functionally equivalent
(e.g. blocks B and B1) [6]. Observe that this transformation adds confusion to
dynamic analysis: a dynamic analyser has to consider more execution traces in
order to observe all possible program behaviours. Indeed, if the dynamic analysis
observes only traces that follow the original path A → OP? → B → C it may
not be sound as it misses the traces that follow A → OP? → B1 → C (false
negative).

The abstract interpretation framework has been used to formally prove the
efficiency of code obfuscation in making static analysers imprecise [13]. Indeed,
code obfuscation hampers static analysis by exploiting its conservative nature,
namely by increasing its imprecision (false positives) while preserving the pro-
gram intended behaviour. It has been observed that adding false positives to
the analysis can be formalised in terms of incompleteness in the analysis of the
transformed program [13,14,18,21]. Observe that, in general, the imprecision
added by these obfuscating transformations in order to confuse a static analyzer
is not able to confuse a dynamic attacker that looks at the real program exe-
cution and thus cannot be deceived by false positives. Indeed, dynamic analysis
observes only paths that are actually executed. For this reason common deob-
fuscation approaches often recur to dynamic analysis to understand obfuscated
code [3,7,31,38].

It is clear that to hamper dynamic analysis we need to develop obfuscation
techniques that exploit the Achilles heel of dynamic analysis and that increases
the number of false negatives. In the literature, there are defense techniques
that focus on hampering dynamic analysis [2,25–27]. We would like to provide
a formal framework where it is possible to prove and discuss the efficiency of
these techniques in complicating dynamic analysis in terms of the imprecision
(false negatives) that they introduce in the analysis. This will allow us to better
understand the potential and limits of code obfuscation against dynamic program
analysis. We start by providing a formalisation of dynamic analysis and software
protection techniques in terms of program semantics and equivalence reactions
over semantic domains, and we characterise when a program transformation
hampers a dynamic analysis in terms of topological features.

The contribution of this work are: (1) formal specification for dynamic anal-
ysis/attacks based on program semantics and equivalence relations; (2) formal
definition of software-based protection transformations against dynamic attacks
that induce imprecision in dynamic analysis (false negatives); (3) validation of
the model on some known software-based defense strategies.

Formal Framework for Reasoning About the Precision of Dynamic Analysis 181

2 Preliminaries

Basic Lattice and Fix-Point Theory: Given two sets S and T , we denote with
℘(S) the powerset of S, with S× T the Cartesian product of S and T , with S ⊂ T

strict inclusion, with S ⊆ T inclusion, with S ⊆F T the fact that S is a finite
set. 〈C,�,∨,∧,�,⊥〉 denotes a complete lattice on the set C, with ordering
�, least upper bound (lub) ∨, greatest lower bound (glb) ∧, greatest element
(top) �, and least element (bottom) ⊥. Let C and D be complete lattices. Then,
C

m−→D and C
c−→D denote, respectively, the set and the type of all monotone

and (Scott-)continuous functions from C to D. Recall that f ∈ C
c−→D if and

only if f preserves lub’s of (nonempty) chains if and only if f preserves lub’s of
directed subsets. Let f : C → C be a function on a complete lattice C, we denote
with lfp(f) the least fix-point, when it exists, of function f on C. The well-known
Knaster-Tarski’s theorem states that any monotone operator f : C

m−→C on a
complete lattice C admits a least fix point. It is known that if f : C

c−→C is
continuous then lfp(f) = ∨i∈INfi(⊥C), where, for any i ∈ IN and x ∈ C, the i-th
power of f in x is inductively defined as follows: f0(x) = x; fi+1(x) = f(fi(x)).

Given a relation R ⊆ C×D between two sets C and D, and two elements x ∈ C

and y ∈ D, then (x,y) ∈ R denotes that the pair (x,y) belongs to the relation R.
A binary relation R on a set C, namely R ⊆ C × C, is an equivalence relation if
R is reflexive ∀x ∈ C : (x, x) ∈ R, symmetric ∀x,y ∈ C : (x,y) ∈ R ⇒ (y, x) ∈ R

and transitive ∀x,y, z ∈ C : (x,y) ∈ R ∧ (y, z) ∈ R ⇒ (x, z) ∈ R. Given a set C

equipped with an equivalence relation R, we consider for each element x ∈ C the
subset [x]R of C containing all the elements of C in equivalence relation with x,
i.e., [x]R = {y ∈ C | (x,y) ∈ R}. The sets [x]R are called equivalence classes of C

wrt relation R. Let eq(C) be the set of equivalence relations over the set C. The
equivalence classes of an equivalence relation R ∈ eq(C) form a partition of the
set C, namely ∀x,y ∈ C : [x]R = [y]R ∨ [x]R ∩ [y]R = ∅ and ∪{[x]R | x ∈ C} = C.
The partition of C induced by the set of equivalence classes of relation R is called
the quotient set of C and it is denoted by C/R. A partition C/R1 is a refinement
of a partition C/R2 , namely R1 if finer than R2 or R2 is coarser than R1, if
every equivalence class in C/R1 is a subset of some equivalence class in C/R2 .
We denote with R1 � R2 the fact that the equivalence relation R1 is finer than
the equivalence relation R2. Given a subset S ⊆ C we denote with R(S) the set
of equivalence classes of the elements of S, namely R(S) = {[x]R | x ∈ S}, and
with S/R the partition of the subset S induced by the equivalence relation R,
namely S/R = {[x]R ∩ S | x ∈ S}.

Program Semantics: Let Prog be a set of programs ranged over by P. Let v ∈ I

denote a possible input and let I
∗ denote the set of input sequences ranged

over by I, let PP denote the set of program points ranged over by pp, let Com
denote the set of program statements ranged over by C and let Mem denote the
set of memory maps that associates values to variables ranged over by m : Var →
Values. Σ = I

∗ ×PP ×Com ×Mem is the set of program states. Thus, a program
state s ∈ Σ is a tuple s = 〈I, pp,C,m〉 where I denotes the sequence of inputs that
still needs to be consumed to terminate the execution, pp denotes the program

182 M. Dalla Preda et al.

point of the next instruction C that has to be executed, and m is the current
memory. We denote with C1;C2 the sequential composition of statements and we
refer to skip as the identity statement whose execution has no effects on memory.
Given a program P we denote with IP ⊆ I

∗ the set of the initial input sequences
for the execution of program P, and with InitP = {s ∈ Σ | s = 〈I, pp,C,m〉, I ∈ IP}

the set of its initial states. We use Σ∗ to denote the set of all finite and infinite
sequences or traces of states, where ε ∈ Σ∗ is the empty sequence, |σ| the length
of sequence σ ∈ Σ∗. Σ+ ⊂ Σ∗ denotes the set of finite sequences of elements of
Σ. We denote the concatenation of sequences σ,ν ∈ Σ∗ as σν. Given σ,ν ∈ Σ∗,
ν � σ means that ν is a subsequence of σ, namely that there exists σ1,σ2 ∈ Σ∗

such that σ = σ1νσ2. Given s ∈ Σ we write s ∈ σ when s is an element occurring
in sequence σ, and we denote with σ0 ∈ Σ the first element of sequence σ and
with σf the final element of the finite sequence σ ∈ Σ+. Let R ⊆ Σ × Σ denote
the transition relation between program states, thus (s, s ′) ∈ R means that state
s ′ can be obtained from state s in one computational step. The (finite) trace
semantics of a program P is defined, as usual, as the least fix-point computation
of function FP : ℘(Σ∗) → ℘(Σ∗) [9]:

FP(X)
def
= InitP ∪ {

σsisi+1

∣
∣ (si, si+1) ∈ R,σsi ∈ X

}

The trace semantics of P is [[P]] = lfp(FP) =
⋃

i∈IN Fi
P(⊥C). Den[[P]] denotes the

denotational (finite) semantics of program P which abstracts away the history
of the computation by observing only the input-output relation of finite traces.
Therefore we have Den[[P]] = {σ ∈ Σ+ | ∃η ∈ [[P]] : η0 = σ0,ηf = σf}.

3 Topological Characterisation of the Precision
of Dynamic Analysis

We start our investigation by considering dynamic analysis that observes fea-
tures of single execution traces, as for example: the order of successive accesses to
memory, the order of execution of instructions, the location of the first instruc-
tion of a function, the target of jumps, function location, possible data values
at certain program points, etc. The extension of the framework to properties of
sets of traces (hyper-properties) and relational properties among traces is left as
future work.

The simplest way to model properties of single traces is in terms of equiva-
lence relations over program traces. Indeed, an equivalence relation R ∈ eq(Σ∗)
groups together all those execution traces that are equivalent wrt the property
used to establish the equivalence for R. In this setting, each equivalence class
[σ]R ⊆ Σ∗ represents the set of execution traces that are equivalent to σ wrt R,
namely all those execution traces that R is not able to distinguish from σ. In
general, given a program P ∈ Prog and an equivalence relation R ∈ eq(Σ∗) it may
not be possible to precisely observe property R of program semantics, namely the
set R([[P]]) = {[σ]R | σ ∈ [[P]]} may not be precisely observable. This means that
it may not be possible to decide whether R([[P]]) ⊆ Π, for some Π ∈ ℘(Σ∗/R),

Formal Framework for Reasoning About the Precision of Dynamic Analysis 183

a set of equivalence classes representing a possible feature of program execution
that can be expressed in terms of R. In order to verify these features, analysts
resort to approximation either by static or dynamic analysis.

Example 1. Consider function ι : Σ → I that observes the first input value
v ∈ I of a program state, namely ι(〈vI, pp,C,m〉) def

= v . We can define the equiv-
alence relation Rι as (σ,ν) ∈ Rι iff ι(σ0) = ι(ν0), grouping together traces with
the same starting input values. Based on Rι we can define features of program
behaviour as for example Π1,Π2 ∈ ℘(Σ∗/Rι

) where Π1 = {[σ]Rι
| ι(σ) � 0}

observes the equivalence classes of traces whose first input value is positive, and
Π2 = {[σ]Rι

| ι(σ) ∈ [l,u]} observes the equivalence classes of traces whose first
input value is in the interval [l,u].

We can think about relation R as the granularity at which the analysis observes
program executions. Given R1 � R2 we have that R1 describes an analysis that
is more precise than R2 in distinguishing program traces, while R2 describes
an analysis that groups together more traces than R1. The equivalence classes
can then be combined to describe properties of programs at different levels of
abstraction.

In the literature there exists a formal investigation of the effects of code
obfuscation to the precision of static analysis [13,14,18,21]. This has lead to
a better understanding of the potential and limits of obfuscation, and it has
been useful in the design of obfuscation techniques that target specific program
properties [14,18,19].

In the following we apply a similar approach to dynamic analysis. To this
end we formalise the absence of false negatives, namely the precision of dynamic
analysis, in terms of topological properties of program trace semantics and of the
equivalence relation R modelling the property to be observed. False negatives
happen when the set of traces considered by dynamic analysis misses some traces
that would modify the equivalence classes observed by property R. We show how
to transform a program in order to hinder the dynamic analysis of a property
R, namely in order to make the dynamic analysis of the transformed program
not sound.

3.1 Modelling Dynamic Program Analysis

Dynamic analysis observes a finite subset of finite execution traces of a program
and from this partial observation tries to drive conclusions on the whole program
behaviour.

Definition 1 (Dynamic Execution). The execution traces of program P with
initial states in TP ⊆F InitP and with time limits t ∈ N, are defined as:

Exe(P, TP, t) def
=

{
σ ∈ [[P]]

∣
∣ |σ| � t,σ = s0σ

′, s0 ∈ TP

}

Note that Exe(P, TP, t) is a finite set and that each trace in Exe(P, TP, t) is
finite (it has at most t states). This correctly implies that: Exe(P, TP, t) ⊆F [[P]].

184 M. Dalla Preda et al.

Fig. 2. Dynamic analysis and soundness

The goal of dynamic analysis is to derive knowledge of a semantic property
of a program by observing a finite subset Exe(P, TP, t) of its execution traces.
Dynamic analysis is therefore specified as the set of observed execution traces
Exe(P, TP, t) and of an equivalence relation on traces R ∈ eq(Σ∗).

Definition 2 (Dynamic Analysis). A dynamic analysis of property R ∈
eq(Σ∗) of program P ∈ Prog, is defined as a pair 〈R,Exe(P, TP, t)〉.

Let us consider program P on the left of Fig. 2 where the block of code to
execute depends on the input value of x. Consider a property of traces R̄ ∈ eq(Σ∗)
that observes which block B1, B2 or B3 of program P is executed. On the right of
Fig. 2 we represent the partition of the traces of program P induced by property
R̄ where xInit denotes the input value of variable x.

Dynamic analysis 〈R,Exe(P, TP, t)〉 can precisely observe property R of the
semantics of P (no false negatives) when Exe(P, TP, t) contains at least one trace
for each one of the equivalence classes of the traces of [[P]].

Definition 3 (Soundness). Given P ∈ Prog and R ∈ eq(Σ∗) a dynamic anal-
ysis 〈R,Exe(P, TP, t)〉 is sound if ∀x ∈ [[P]] : [x]R ∈ R(Exe(P, TP, t)).

When a dynamic analysis 〈R,Exe(P, TP, t)〉 is sound we have no false negatives,
namely ∀y ∈ [[P]] : [y]R ∈ R(Exe(P, TP, t)). When this happens, all the behaviours
of program P that relation R is able to distinguish are taken into account by
the partial observation of program behaviour Exe(P, TP, t). In the example in
Fig. 2 we have that a dynamic analysis 〈R̄,Exe(P, TP, t)〉 is sound if Exe(P, TP, t)
contains at least one execution trace for each one of the three equivalence classes
depicted on the right of Fig. 2.

Definition 4 (Covers). Given P ∈ Prog, and R ∈ eq(Σ∗), we say that S ⊆ [[P]]
covers P wrt R when: R(S) = R([[P]]).

It is clear that when S covers P wrt R we have that the partial observation
S of the behaviours of P is sound wrt R, since it allows us to observe all the
equivalence classes of R that we would observe by having access to all the traces
in [[P]] (no false negatives). Thus, in the example in Fig. 2 we have that the set
of traces {σ1,η1} does not cover P wrt R̄, while the set of traces {σ1,η1,η2,μ2}

does. The following theorem comes straight from the definitions.

Formal Framework for Reasoning About the Precision of Dynamic Analysis 185

Theorem 1. Given P ∈ Prog and R ∈ eq(Σ∗), if Exe(P, TP, t) covers P wrt R

then the dynamic analysis 〈R,Exe(P, TP, t)〉 is sound (no false negatives).

The goal of dynamic analysis of a property R on a program P, is to identify the
set TP of inputs, and the length t that induce a partial observation of program
semantics that makes the analysis sound (no false negatives) wrt R. Thus, a
possible way to hamper dynamic analysis is to transform programs in order to
increase the number of traces that it is necessary to observe to ensure soundness.
Indeed, by tying the precision of dynamic analysis to the observation of a wider
set of traces (worst case being the observation of all possible traces) we are
limiting the advantages of using dynamic analysis.

In order to formalise this idea, in the following we provide a characterisation
of the set of traces that are needed to guarantee the soundness of the dynamic
analysis of a program P wrt a semantic property R. We use this characterisation
to formalise what it means for a software-based defense transformation to harm
dynamic analysis. We validate our model by showing how it naturally relates to
the notion of code coverage of dynamic analysis, and by showing how existing
techniques for hindering dynamic analysis fit in our framework.

3.2 Harming Dynamic Analysis

Given an equivalence relation R ∈ eq(Σ∗) concerning what we can observe and a
set of equivalence classes X ∈ ℘(Σ∗/R) we would like to characterise the minimal
sets of traces that the relation R maps to X.

Definition 5 (Core). Consider R ∈ eq(Σ∗) and X ∈ ℘(Σ∗/R):

Core(X,R)
def
=

{
T = {σ ∈ Σ∗ | [σ]R ∈ X}

∣
∣
∣
∣

∀σ1,σ2 ∈ T ,σ1 �= σ2 ⇒ [σ1]R �= [σ2]R
∀[ν]R ∈ X : ∃σ ∈ T : [σ]R = [ν]R

}

Theorem 2. Consider R ∈ eq(Σ∗) and X ∈ ℘(Σ∗/R):

1. Given T ∈ Core(X,R) we have that: R(T) = X

2. ∀S ∈ ℘(Σ∗): If R(S) = X then ∃T ∈ Core(X,R) : T ⊆ S

This means that Core(R([[P]]),R) characterises the minimal sets of execution
traces that provide a sound dynamic analysis of property R for program P. In the
example in Fig. 2 we have that Core([[P]], R̄) identifies those sets of trace that have
exactly three traces: one trace with xinit < 50, one trace with 50 � xinit � 100
and one trace with xinit > 100.

Corollary 1. Given P ∈ Prog and R ∈ eq(Σ∗) we have that:

– ∀T ∈ Core(R([[P]]),R) we have that T covers [[P]] wrt R.
– Given TP ⊆F InitP and t ∈ N the dynamic analysis 〈R,Exe(P, TP, t)〉 is sound

iff ∃T ∈ Core(R([[P]]),R) such that T ⊆ Exe(P, TP, t).

186 M. Dalla Preda et al.

– For every semantic feature Π ∈ ℘(Σ∗/R) expressed in terms of equivalence
classes of R, we have that if Exe(P, TP, t) covers [[P]] wrt R then we can pre-
cisely evaluate [[P]] ⊆ Π by evaluating Exe(P, TP, t) ⊆ Π.

Thus, a dynamic analysis 〈R,Exe(P, TP, t)〉 is sound if Exe(P, TP, t) observes at
least one execution trace for each one of the equivalence classes of the traces in
[[P]] for the relation R. In the worst case we have a different equivalence class
for every execution trace of P. When this happens, a sound dynamic analysis
of property R on program P has to observe all possible execution traces, which
is unfeasible in the general case. Thus, if we want to protect a program from
a dynamic analysis that is interested in the property R, we have to diversify
property R as much as possible among the execution traces of the program.

This allows us to define when a program transformation is potent wrt a
dynamic analysis, namely when a program transformation forces a dynamic anal-
ysis to observe a wider set of traces in order to be sound. See [5] for the general
notion of potency of a program transformation, i.e., a program transformation
that foils a given attack (in our case a dynamic analysis).

Definition 6 (Potency). A program transformation T : Prog → Prog that
preserves the denotational semantics of programs is potent for a program P ∈
Prog wrt an observation R ∈ eq(Σ∗) if the following two conditions hold:

1. ∀σ1,σ2 ∈ [[T(P)]] : [σ1]R = [σ2]R we have that ∀ν1,ν2 ∈ [[P]] : Den(ν1) =
Den(σ1) ∧ Den(ν2) = Den(σ2) then [ν1]R = [ν2]R

2. ∃ν1,ν2 ∈ [[P]] : [ν1]R = [ν2]R for which ∃σ1,σ2 ∈ [[T(P)]] : Den(ν1) =
Den(σ1) ∧ Den(ν2) = Den(σ2) such that [σ1]R �= [σ2]R

Figure 3 provides a graphical representation of the notion of potency. On the
left we have the traces of the original program P partitioned according to the
equivalence relation R, while on the right we have the traces of the transformed
program T(P) partitioned according to R. Traces that are denotationally equiva-
lent have the same shape (triangle, square, circle, oval), but are filled differently
since they are in general different traces. The first condition means that the
traces of T(P) that property R maps to the same equivalence class (triangle and
square), are denotationally equivalent to traces of P that property R maps to
the same equivalence class. This means that what is grouped together by R on
[[T(P)]] was grouped together by R on [[P]], modulo the denotational equivalence
of traces. The second condition requires that there are traces of P (circle and
oval) that property R maps to the same equivalence class and whose denotation-
ally equivalent traces in T(P) are mapped by R to different equivalence classes.
This means that a defense technique against dynamic analysis wrt a property
R is successful when it transforms a program into a functionally equivalent one
for which property R is more diversified among execution traces. This implies
that it is necessary to collect more execution traces in order for the analysis to
be precise. At the limit we have an optimal defense technique when R varies at
every execution trace.

Formal Framework for Reasoning About the Precision of Dynamic Analysis 187

Fig. 3. Transformation potency

Example 2. Consider the following programs P and Q that compute the sum of
natural numbers from x � 0 to 49 (we assume that the inputs values for x are
natural numbers).

P

input x;
sum := 0;
while x < 50
• � X = [0, 49] �

sum := sum + x;
x := x + 1;

Q

input x;
n : = select(N,x)
x := x * n;
sum := 0;
while x < 50 * n
• � X = [0,n ∗ 50 − 1] �

sum := sum + x/n;
x := x + n;

x := x/n;

Consider a dynamic analysis that observes the maximal value assumed by x at
program point •. For every possible execution of program P we have that the
maximal value assumed by x at program point • is 49. Consider a state s ∈ Σ

as a tuple 〈I, pp,C, [valx, val sum]〉, where valx and val sum denote the current
values of variables x and sum respectively. We define a function τ : Σ → N that
observes the value assumed by x at state s when s refers to program point •,
and function Max : Σ∗ → N that observes the maximal value assumed by x at •
along an execution trace:

τ(s)
def
=

{
valx if pp = •
∅ otherwise Max (σ) def

= max ({τ(s) | s ∈ σ})

This allows us to define the equivalence relation RMax ∈ eq(Σ∗) that observes
traces wrt the maximal value assumed by x at •, as (σ,σ ′) ∈ RMax iff Max (σ) =
Max (σ ′). The equivalence classes of RMax are the sets of traces with the same
maximal value assumed by x at •. We can observe that all the execution traces of
P belong to the same equivalence class of RMax . In this case, a dynamic analysis
〈RMax ,Exe(P, TP, t)〉 is sound if Exe(P, TP, t) contains at least one execution
trace of P. This happens because the property that we are looking for is an
invariant property of program executions and it can be observed on any execution
trace.

Let us now consider program Q. Q is equivalent to P, i.e., Den[[P]] = Den[[Q]],
but the value of x is diversified by multiplying it by the parameter n. The guard

188 M. Dalla Preda et al.

and the body of the while are adjusted in order to preserve the functionality
of the program. When observing property RMax on Q, we have that the maxi-
mal value assumed by x at program point • is determined by the parameter n

generated in the considered trace. The statement n:=select(N,x) assigns to n

a value in the range [0,N] depending on the input value x. We have that the
traces of program Q are grouped by RMax depending on the value assumed by
n. Thus, R([[Q]]) contains an equivalence class for every possible value assumed
by n during execution. This means that the transformation that rewrites P into
Q is potent according to Definition 6. Dynamic analysis 〈RMax ,Exe(Q, TQ, t)〉
is sound if Exe(Q, TQ, t) contains at least one execution trace for each of the
possible values of n generated during execution.

4 Model Validation

In this section we show how the proposed framework can be used to model exist-
ing code obfuscation techniques. In particular we model the way these transfor-
mations deceive dynamic analysis of control flow and data flow properties of
programs. We also show how the measures of code coverage used by dynamic
analysis tools can be naturally interpreted in the proposed framework.

4.1 Control Flow Analysis

Dynamic Extraction of the Control Flow Graph. The control flow graph
CFG of a program P is a graph CFGP = (V,E) where each node v ∈ V is a pair
(pp,C) denoting a statement C at program point pp in P, and E ⊆ V×V is the set
of edges such that (v1, v2) ∈ E means that the statement in v2 could be executed
after the statement in v1 when running P. Thus, we define the domain of nodes
as Nodes def

= PP × Com, and the domain of edges as Edges def
= Nodes × Nodes.

It is possible to dynamically construct the CFG of a program by observing the
commands that are executed and the edges that are traversed when the program
runs. Let us define η : Σ → Nodes that observes the command to be executed
together with its program point, namely η(s) = η(〈I, pp,C,m〉) def

= (pp,C). By
extending this function on traces we obtain function path : Σ∗ → Nodes ×Edges
that extracts the path of the CFG corresponding to the considered execution
trace, abstracting from the number of times that an edge is traversed or a node
is computed:

path(σ) def
= ({η(s) | s ∈ σ}, {(η(s),η(s ′)) | ss ′ � σ})

where s ∈ σ means that s is a state that appears in trace σ and ss ′ � σ means
that s and s ′ are successive states in σ. This allows us to define the equivalence
relation RCFG ∈ eq(Σ∗) that observes traces up to the path that they define,
as (σ,σ ′) ∈ RCFG iff path(σ) = path(σ ′). Indeed, RCFG groups together those
traces that execute the same set of nodes and traverse the same set of edges,
abstracting from the number of times that nodes are executed and edges are
traversed.

Formal Framework for Reasoning About the Precision of Dynamic Analysis 189

The CFG of a program P can be defined as the union of the paths of its
execution traces, namely CFGP =

⊔
{path(σ) | σ ∈ [[P]]}, where the union of

graphs is defined as (V1,E1) � (V2,E2) = (V1 ∪ V2,E1 ∪ E2). The dynamic
extraction of the CFG of a program P from the observation of a set X ⊆F [[P]]
of execution traces, is given by

⊔
{path(σ) | σ ∈ X}. In the general case we have

⊔
{path(σ) | σ ∈ X} ⊆ CFGP.

Preventing Dynamic CFG Extraction. Control code obfuscations are pro-
gram transformations that modify the program’s control flow in order to make it
difficult for an adversary to analyse the flow of control of programs [5]. Accord-
ing to Sect. 3.2, a program transformation T : Prog → Prog is a potent defence
against the dynamic extraction of the CFG of a program P when T diversifies the
paths taken by the execution traces of T(P) wrt the paths taken by the traces of
P. In the following, we show how two known defence techniques for preventing
dynamic analysis actually work by diversifying program traces with respect to
property RCFG .

Range Dividers: Range Divider (RD) is a transformation designed to prevent
dynamic symbolic execution and it is an efficient protection against the dynamic
extraction of the CFG [2]. RD relies on the existence of n program transforma-
tions Ti : Prog → Prog with i ∈ [1,n] that:

1. Preserve the denotational semantics of programs:
∀P ∈ Prog , i ∈ [1,n] : Den[[P]] = Den[[Ti(P)]]

2. Modify the paths of the CFG of programs in different ways:
∀P ∈ Prog , ∀i, j ∈ [1,n]: RCFG([[Ti(P)]]) = RCFG([[Tj(P)]]) ⇒ i = j.

Given a program P, the RD transformation works by inserting a switch control
statement with n cases and whose condition depends on program inputs. Every
case of the switch contains a semantically equivalent version Ti(P) of P that
is specialised wrt the input values. Thus, depending on the input values we

Fig. 4. CFG of P, RD(P) and GD(P)

190 M. Dalla Preda et al.

would execute one of the diversified programs T1(P), . . . ,Tn(P). Since for each
variant Ti(P) with i ∈ [1,n] the set of execution traces are mapped by RCFG

into different equivalent classes, we have that property RCFG has been diversified
among the traces of RD(P). Thus, the transformation RD is potent wrt RCFG

and harms the dynamic extraction of the CFG.
A simple example is provided in Fig. 4 where on the left we have the CFG

of the original program P. P verifies the parity of the input value and then
computes the integer division. The second graph in Fig. 4 represents the CFG of
program P transformed by RD . The CFG of program RD(P) has four different
paths depending on the value of the input variable x. Each one of these paths
is functionally equivalent to the corresponding path in P (case 0 and case 2
are equivalent to the path taken when x is even, while case 1 and case 3 are
equivalent to the path taken when x is odd). We can easily observe that in this
case the paths of RD(P) have been diversified wrt the paths of P. Indeed, a
dynamic analysis has to observe two execution traces to precisely build the CFG
for P, while four traces are need to precisely build the CFG of RD(P).

Gadget Diversification: In [27] the authors propose a program transformation,
denoted GD : Prog → Prog that hinders the dynamic CFG analysis. GD starts
by identifying a sequence Qseq of sequential command (no branches) in program
P. Next, GD assumes to have access to a set of diversifying transformations Ti :
Prog → Prog with i ∈ [1,n] that diversify command sequences while preserving
their functionality. These transformations are then applied to portions of Qseq

in order to generate a wide set Sseq = {Q1..Qm} of command sequences where
each Qj ∈ Sseq is functionally equivalent to Qseq , while every pair Qj,Ql ∈ Sseq

are such that RCFG([[Qj]]) �= RCFG([[Ql]]). This means that each execution trace
generated by the run of a sequence in Sseq belongs to a different equivalence
class wrt relation RCFG , while being denotationally equivalent by definition.

Transformation GD proceeds by adding a branching function to the orig-
inal program P that, depending on the input values, deviates the control flow to
one of the sequences of commands in Sseq . Thus, depending on the input values,
GD diversifies the path that is executed. This makes the transformation GD
potent wrt RCFG according to the proposed framework.

A simple example of GD can be observed in the third graph of Fig. 4, where
the original program is transformed to reveal a peculiar CFG structure. The
branch function is here symbolized as the central block from which all other
blocks are called and to which all other blocks return (except for print(x)
which represents the end of the program). The branch function will only allow
the following sequences of edges:

odd(x) →
{

1 → 2 → 5
1 → 4 → 5

}
even(x) →

{
1 → 3 → 5
1 → 6 → 5

}

We can easily observe that the paths of GD(P) have been diversified wrt the
paths of P and while the dynamic construction of the CFG for P requires to
observe two execution traces, we need to observe 4 execution traces to precisely
build the CFG of GD(P).

Formal Framework for Reasoning About the Precision of Dynamic Analysis 191

4.2 Code Coverage

Most dynamic algorithms use code coverage to measure the potential soundness
of the analysis [1]. Intuitively, given a program P and a partial observation
Exe(P, TP, t) of its execution traces, code coverage wants to measure the amount
of program behaviour considered by Exe(P, TP, t) wrt the set of all possible
behaviours [[P]]. In the following we describe some known code coverage measures.

Statement coverage considers the statements of the program that have been
executed by the traces in Exe(P, TP, t). This is a function st : Σ∗ → Nodes that
collects commands annotated with their program point, that are executed along
a considered trace: st(σ) def

= {η(s) | s ∈ σ}. This allows us to define the equivalence
relation Rst ∈ eq(Σ∗) that groups together traces that execute the same set of
statements.

Count-Statement coverage considers how many times each statement of the
program has been executed by the traces in Exe(P, TP, t). Thus, it can be for-
malised in terms of an equivalence relation R+

st ∈ eq(Σ∗) that groups together
traces that execute the same set of statements the same amount of times. It is
clear that relation R+

st is finer than relation Rst , namely R+
st � Rst .

Path coverage observes the nodes executed and edges traversed by the
traces in Exe(P, TP, t). This precisely corresponds to the observation of prop-
erty RCFG ∈ eq(Σ∗) defined above, where the paths of the CFG are observed by
abstracting form the number of times that edges are traversed. It is clear that
relation RCFG is finer than relation Rst , namely RCFG � Rst .

Count-Path coverage considers the different paths in Exe(P, TP, t), where the
number of times that edges are traversed in a trace is taken into account. This
can be formalised in terms of an equivalence relation R+

CFG ∈ eq(Σ∗) that groups
together traces that execute and traverse the same nodes and edges the same
number of times. It is clear that relation R+

CFG is finer than relation RCFG ,
namely R+

CFG � RCFG .
Trace coverage considers the traces of commands that have been executed

abstracting from the memory map. In this case we can define the code coverage in
terms of function trace : Σ∗ → Com × PP defined as trace(ε) def

= ε and trace(sσ)
def
= η(s)trace(σ). The equivalence relation Rtrace ∈ eq(Σ∗) is such that (σ,σ ′) ∈
Rtrace if trace(σ) = trace(σ ′). This equivalence relation is finer than R+

CFG since
it keeps track of the order of execution of the edges.

In order to avoid false negatives, dynamic algorithms automatically look for
inputs whose execution traces have to exhibit new behaviours with respect to the
code coverage metric used (e.g., they have to execute new statements or execute
them a different number of times, traverse new edges or change the number
of times edges are traversed, or execute nodes in a different order). This can
be naturally formalised in our framework. Given a set Exe(P, TP, t) of observed
traces, an automatically generated input increases the code coverage measured
as Rst (or R+

st ,RCFG ,R+
CFG ,Rtrace) if the execution trace σ generated by the

input is mapped in a new equivalence class of Rst (or R+
st ,RCFG ,R+

CFG ,Rtrace),
namely in an equivalence class that was not observed by traces in Exe(P, TP, t),
namely if [σ]Rst

�∈ Rst(Exe(P, TP, t)) (analogously for R+
st , RCFG , R+

CFG , Rtrace).

192 M. Dalla Preda et al.

We have seen above that some of the common measures for code coverage can
be expressed in terms of semantic program properties with different degrees of
precision id � Rtraces � R+

CFG � RCFG � Rst . This means, for example, that
automatically generated inputs could add coverage for R+

CFG but not for Rst .
Indeed, a new input generates a new behaviour depending on the metric used
for code coverage.

Fuzzing and dynamic symbolic execution are typical techniques used by
dynamic analysis to automatically generate inputs in order to extend code cov-
erage. The metrics that fuzzing and symbolic execution use to measure code
coverage are sometimes a slight variations of the ones mentioned earlier.

Fuzzing: The term fuzzing refers to a family of automated input generating
techniques that are widely used in the industry to find vulnerabilities and bugs
in all kinds of software [35]. In general, a fuzzer aims at discovering inputs that
generate new behaviors, thus one measure of success for fuzzer is code coverage.
Simple statement coverage is rarely a good choice, since crashes do not usually
depend on a single program statement, but on a specific sequence of statements
[39]. Most fuzzing algorithms choose to define their own code coverage metric.
American Fuzzy Lop (AFL) is a state of the art fuzzer that has seen extensive
use in the industry in its base form, while new fuzzers are continuously built on
top of it [32]. The measure used by AFL for code coverage lays between path
and count-path coverage as it approximates the number of times that edges are
traversed by specified intervals of natural numbers ([1], [2], [3], [4–7], [8–15],
[16–31], [32–127], [128,∞]). Libfuzzer [30] and Honggfuzz [36] employ count-
statement coverage. To the best our knowledge trace coverage is never used as
it is infeasible in practice [16].

Dynamic Symbolic Execution: DSE is a well known dynamic analysis technique
that combines concrete and symbolic execution [22]. DSE typically starts by
executing a program on a random input and then generates branch conditions
that take into account the executed branches. When execution ends, DSE looks
at the last branch condition generated and uses a theorem prover to solve the
negated predicate in order to explore the branch that was not executed. This
is akin to symbolic execution, but DSE can use the concrete values obtained in
the execution to simplify the job of the theorem prover. The ideal goal of DSE
is to reach path coverage, which is always guaranteed if the conditions in the
target program only contain linear arithmetics [22]. Thus, the efficacy of DSE
in generating new inputs is measured in terms of path coverage formalised as
RCFG in our framework.

Let us denote with R ∈ eq(Σ∗) the equivalence relation modelling the code
coverage metric used either by fuzzing or symbolic execution or any other algo-
rithm for input generation. When Exe(P, TP, t) covers P wrt R, we have that the
fuzzer or symbolic execution algorithm has found all the inputs that allow us
to observe the different behaviours of P wrt R. In general, a dynamic analysis
may be interested in a property RA ∈ eq(Σ∗) that is different from the property
R used to measure code coverage. When R � RA we have that if Exe(P, TP, t)

Formal Framework for Reasoning About the Precision of Dynamic Analysis 193

covers P wrt R, then Exe(P, TP, t) covers P also wrt RA and this means that the
code coverage metric R can help in limiting the number of false negative of the
dynamic analysis 〈RA,Exe(P, TP, t)〉. When R �� RA then a different metric for
code coverage should be used (for example RA itself).

4.3 Harming Dynamic Data Analysis

Data obfuscation transformations change the representation of data with the
aim of hiding both variable content and usage. Usually, data obfuscation requires
the program code to be modified, so that the original data representation can be
reconstructed at runtime. Data obfuscation is often achieved through data encod-
ing [5,28]. More specifically, in [15,23] data encoding for a variable x is formalised
as a pair of statements: encoding statement Cenc = x := f(x) and decoding state-
ment Cdec = x := g(x) for some function f and g, such that Cdec ;Cenc = skip.
According to [15,23] a program transformation T(P)

def
= Cdec ; tx(P);Cenc is a

data obfuscation for x where tx adjusts the computations involving x in order
to preserve program’s functionality, namely Den[[P]] = Den[[Cdec ; tx(P);Cenc]].
In Fig. 5 we provide a simple example of data obfuscation from [15,23] where
Cenc = x := 2 ∗ x and Cdec = x := x/2 and T(P) = x := x/2; tx(P); x := 2 ∗ x

and program P is the one considered in Example 2. This data transformation
induces imprecision in the static analysis of the possible values assumed by x

at program point •. Indeed, the static analysis of the interval of values of x at
program point • in T(P) is different and wider (it contains spurious values) than
the interval of possible values of x at • in P. However, the dynamic analysis of
properties on the values assumed by x during execution at the different program
points (e.g., maximal/minimal value, number of possible values, interval of pos-
sible values) has not been hardened in T(P). The values assumed by x at • in
T(P) are different from the values assumed by x at • in P but these properties on
the values assumed by x are precisely observable by dynamic analysis on T(P).
Transformation T(P) changes the properties of data values wrt P, but it does it
in an invariant way: during every execution of T(P) we have that x is iteratively
incremented by 2 and the guard of the loop becomes x < 2 ∗ 50 − 1, and this
is observable on any execution of T(P). This means that by dynamic analysis
we could learn that the maximal value assumed by x is 99(= 2 ∗ 50 − 1). Thus,
transformation T is not potent wrt properties of data values according to Defi-
nition 6 since it does not diversify the properties of values assumed by variables
among traces. In order to hamper dynamic analysis we need to diversify data
among traces, thus forcing dynamic analysis to observe more execution traces
to be sound. We could do this by making the encoding and decoding state-
ments parametric on some natural number n as described by the third program
Tn(P) = x := x/n; tx,n(P); x := n ∗ x in Fig. 5 (which is the same as Q in Exam-
ple 2). Indeed, the parametric transformation Tn(P) is potent wrt properties that
observe data values since it diversifies the values assumed by x among different
executions thanks to the parameter n. For example, to observe the maximal
value assumed by x in Tn(P) we should observe an execution for every possible
value of n.

194 M. Dalla Preda et al.

Fig. 5. From the left: programs P, T(P), Tn(P) and TH(P)

This confirms what observed [28]: existing data obfuscation makes static
analysis imprecise but it is less effective against dynamic analysis. Interpreting
data obfuscation in our framework allows us to see that, in order to hamper
dynamic analysis, data encoding needs to diversify among traces. This can be
done by making the existing data encoding techniques parametric.

Homomorphic Encryption: As argued above, in order to preserve program func-
tionality the original program code needs to be adapted to the encoding. In
general, automatically deriving the modified code tx(P) for a given encoding on
every possible program may be complicated. In this setting, an ideal situation
is the one provided by fully homomorphic encryption where any operation on
the original data has its respective for the encrypted data. It has been proven
that fully homomorphic encryption is possible on any circuit [17]. Let He and
Hd be the fully homomorphic encryption and decryption procedures. We could
design a data obfuscation for the variables in P as Hd;PH;He where the program
variables are encrypted with He, the computation is carried on the encrypted
values by using homomorphic operations (denoted with subscript H), and at the
end the final values of the variables are decrypted with Hd. Thus, the original
program P and PH are exactly the same programs where the operations have
been replaced by their homomorphic version. In Fig. 5 on the right we show
how a homomorphic encoding of program P would work, where the subscript H

denotes the homomorphic operations on the encrypted values. Encryption and
decryption procedures have a random nature and use a key (that may be depen-
dent on input values). Thus, the values of encrypted data varies among program
traces. Moreover, since successive encryptions of the same values would lead to
different encrypted values, we have that re-runs on the same values would gener-
ate different encrypted values. This proves that homomorphic encryption could
be useful to design a potent data obfuscation against dynamic analysis: as it
can diversify the encrypted data values among traces and the original values are
retrieved only at the end of the computation.

Abstract Software Watermarking: In [12] the authors propose a sophisticated
software watermarking algorithm and prove its resilience against static program
analysis. The watermark can be extracted only by analysing the program on

Formal Framework for Reasoning About the Precision of Dynamic Analysis 195

a specific congruence domain that acts like a secret key. The authors discuss
some possible countermeasures against dynamic analysis that could reveal the
existence of the watermark (and then remove it). Interestingly, the common idea
behind these countermeasures is diversification of the property of data values
that the dynamic analyses observe.

5 Related Works

To the best of our knowledge we are the first to propose a formal framework
for dynamic analysis efficacy based on semantic properties. Other works have
proposed more empirical ways to assess the impact of dynamic analysis.

Evaluating Reverse Engineering. Program comprehension guided by dynamic
analysis has been evaluated with specific test cases, quantitative measures and
the involvement of human subjects [8]. For example, comparing the effectiveness
of static analysis and dynamic analysis towards the feature location task has
been carried out through experiments involving 2 teams of analysts solving the
same problem with a static analysis and a dynamic analysis approach respec-
tively [37]. In order to compare the effectiveness of different reverse engineering
techniques (which often employ dynamic analysis), Sim et al. propose the use
of common benchmarks [34]. The efficacy of protections against human subjects
has been evaluated in a set of experiments by Ceccato et al., finding that pro-
gram executions are important to understand the behavior of obfuscated code [4].
Our approach characterizes dynamic attacks and protections according to their
semantic properties which is an orthogonal work that can be complemented by
more empirical approaches.

Obfuscations Against Dynamic Analysis. One of the first works tackling obfus-
cations specifically geared towards dynamic analysis is by Schrittwieser and
Katzenbeisser [27]. Their approach adopts some principles of software diver-
sification in order to generate additional paths in the CFG that are dependent
on program input (i.e. they do not work for other inputs). Similar to this app-
roach, Pawlowski et al. [26] generate additional branches in the CFG but add
non-determinism in order to decide the executed path at runtime. Both of these
works empirically evaluate their methodology and classify it with potency and
resilience, two metrics introduced by Collberg et al. [6]. Banescu et al. empir-
ically evaluated some obfuscations against dynamic symbolic execution (DSE)
[2], finding that DSE does not suffer from the addition of opaque branches since
they do not depend on program input. To overcome this limitation they propose
the Range Dividers obfuscation that we illustrated in Sect. 4. A recent work by
Ollivier et al. refines the evaluation of protections against dynamic symbolic exe-
cution with a framework that enables the optimal design of such protections [25].
All these works share with us the intuition that dynamic analysis suffers from
insufficient path exploration and they prove this intuition with extensive exper-
imentation. Our work aims at enabling the formal study of these approaches.

196 M. Dalla Preda et al.

Formal Systems. Dynamic taint analysis has been formalized by making explicit
the taint information in the program semantics [29]. Their work focuses on writ-
ing correct algorithms and shows some possible pitfalls of the various approaches.
Ochoa et al. [24] use game theory to quantify and compare the effectiveness of dif-
ferent probabilistic countermeasures with respect to remote attacks that exploit
memory-safety vulnerabilities. In our work we model MATE attacks. Shu et
al. introduce a framework that formalizes the detection capability in existing
anomaly detection methods [33]. Their approach equates the detection capabil-
ity to the expressiveness of the language used to characterize normal program
traces.

6 Discussion and Future Works

This work represents the first step towards a formal investigation of the precision
of dynamic analysis in relation with dynamic code attack and defences. The
results that we have obtained so far confirm the initial intuition: diversification
is the key for harming dynamic analysis. Dynamic analysis generalises what it
learns from a partial observation of program behaviour, diversification makes
this generalisation less precise (dynamic analysis cannot consider what it has
not observed). We think that this work would be the basis for further interesting
investigations. Indeed, there are many aspects that still need to be understood
for the development of a complete framework for the formal specification of
the precision of dynamic analysis (no false negatives), and for the systematic
development of program transformations that induce imprecision.

We plan to consider more sophisticated properties than the ones that can
be expressed as equivalence relations. It would be interesting to generalise the
proposed framework wrt to any semantic property that can be formalised as
a closure operator on trace semantics. The properties that we have considered
so far correspond to the set of atomistic closures where the abstract domain
is additive. We would like to generalise our framework to properties modelled
as abstract domains and where the precision of dynamic analysis is probably
characterised in terms of the join-irreducible elements of such domains. A further
investigation would probably lead to a classification of the properties usually
considered by dynamic analysis: properties of traces, properties of sets of traces,
relational properties, hyper-properties, together with a specific characterisation
of the precision of the analysis and of the program transformations that can
reduce it. This unifying framework would provide a common ground where to
interpret and compare the potency of different software protection techniques in
harming dynamic analysis.

We can view dynamic analysis as a learner that observes properties of some
execution traces (training set) and then generalises what it has observed, where
the generalisation process is the identity function. We wonder what would hap-
pen if we consider more sophisticated generalisation processes such as the ones
used by machine learning. Would it be possible to define what is learnable?
Would it be possible to formally define robustness in the adversarial setting? We
think that this is an intriguing research direction and we plan to pursue it.

Formal Framework for Reasoning About the Precision of Dynamic Analysis 197

Acknowledgments. The research has been partially supported by the project
“Dipartimenti di Eccellenza 2018–2022” funded by the Italian Ministry of Education,
Universities and Research (MIUR).

References

1. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press, Cambridge (2016)

2. Banescu, S., Collberg, C., Ganesh, V., Newsham, Z., Pretschner, A.: Code obfus-
cation against symbolic execution attacks. In: Proceedings of the 32nd Annual
Conference on Computer Security Applications, pp. 189–200 (2016)

3. Blazytko, T., Contag, M., Aschermann, C., Holz, T.: Syntia: synthesizing the
semantics of obfuscated code. In: 26th USENIX Security Symposium, USENIX
Security 2017, Vancouver, BC, Canada, 16–18 August 2017, pp. 643–659. USENIX
Association (2017)

4. Ceccato, M., Di Penta, M., Falcarin, P., Ricca, F., Torchiano, M., Tonella, P.:
A family of experiments to assess the effectiveness and efficiency of source code
obfuscation techniques. Empir. Softw. Eng. 19(4), 1040–1074 (2013). https://doi.
org/10.1007/s10664-013-9248-x

5. Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection. Addison-Wesley Professional, Boston
(2009)

6. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 1998, pp. 184–196.
ACM Press (1998)

7. Coogan, K., Lu, G., Debray, S.K.: Deobfuscation of virtualization-obfuscated soft-
ware: a semantics-based approach. In: Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS 2011, Chicago, Illinois, USA, 17–21
October 2011, pp. 275–284. ACM (2011)

8. Cornelissen, B., Zaidman, A., Van Deursen, A., Moonen, L., Koschke, R.: A sys-
tematic survey of program comprehension through dynamic analysis. IEEE Trans.
Softw. Eng. 35(5), 684–702 (2009)

9. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theor. Comput. Sci. 277(1–2), 47–103 (2002)

10. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the 4th ACM Symposium on Principles of Programming Languages,
POPL 1977, pp. 238–252. ACM Press (1977)

11. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Conference Record of the 6th ACM Symposium on Principles of Programming
Languages, POPL 1979, pp. 269–282. ACM Press (1979)

12. Cousot, P., Cousot, R.: An abstract interpretation-based framework for software
watermarking. In: Conference Record of the Thirtyfirst Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 173–185. ACM
Press, New York (2004)

13. Dalla Preda, M., Giacobazzi, R.: Semantic-based code obfuscation by abstract
interpretation. J. Comput. Secur. 17(6), 855–908 (2009)

14. Dalla Preda, M., Mastroeni, I.: Characterizing a property-driven obfuscation strat-
egy. J. Comput. Secur. 26(1), 31–69 (2018)

https://doi.org/10.1007/s10664-013-9248-x
https://doi.org/10.1007/s10664-013-9248-x

198 M. Dalla Preda et al.

15. Drape, S., Thomborson, C., Majumdar, A.: Specifying imperative data obfusca-
tions. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 299–314. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75496-1 20

16. Gan, S., et al.: Collafl: path sensitive fuzzing. In: 2018 IEEE Symposium on Security
and Privacy (SP), pp. 679–696. IEEE (2018)

17. Gentry, C., Boneh, D.: A Fully Homomorphic Encryption Scheme, vol. 20. Stanford
University, Stanford (2009)

18. Giacobazzi, R.: Hiding information in completeness holes - new perspectives in
code obfuscation and watermarking. In: Proceedings of the 6th IEEE International
Conferences on Software Engineering and Formal Methods, SEFM 2008, pp. 7–20.
IEEE Press (2008)

19. Giacobazzi, R., Jones, N.D., Mastroeni, I.: Obfuscation by partial evaluation of
distorted interpreters. In: Kiselyov, O., Thompson, S. (eds.) Proceedings of the
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, PEPM 2012, pp. 63–72. ACM Press (2012)

20. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretation complete.
J. ACM 47(2), 361–416 (2000)

21. Giacobazzi, R., Mastroeni, I., Dalla Preda, M.: Maximal incompleteness as obfus-
cation potency. Formal Aspects Comput. 29(1), 3–31 (2016). https://doi.org/10.
1007/s00165-016-0374-2

22. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 213–223 (2005)

23. Majumdar, A., Drape, S.J., Thomborson, C.D.: Slicing obfuscations: design, cor-
rectness, and evaluation. In: DRM 2007: Proceedings of the 2007 ACM Workshop
on Digital Rights Management, pp. 70–81. ACM (2007)

24. Ochoa, M., Banescu, S., Disenfeld, C., Barthe, G., Ganesh, V.: Reasoning about
probabilistic defense mechanisms against remote attacks. In: 2017 IEEE European
Symposium on Security and Privacy, EuroS&P 2017, Paris, France, 26–28 April
2017, pp. 499–513. IEEE (2017)

25. Ollivier, M., Bardin, S., Bonichon, R., Marion, J.-Y.: How to kill symbolic deob-
fuscation for free (or: unleashing the potential of path-oriented protections). In:
Proceedings of the 35th Annual Computer Security Applications Conference, pp.
177–189 (2019)

26. Pawlowski, A., Contag, M., Holz, T.: Probfuscation: an obfuscation approach using
probabilistic control flows. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.)
DIMVA 2016. LNCS, vol. 9721, pp. 165–185. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40667-1 9

27. Schrittwieser, S., Katzenbeisser, S.: Code obfuscation against static and dynamic
reverse engineering. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011.
LNCS, vol. 6958, pp. 270–284. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24178-9 19

28. Schrittwieser, S., Katzenbeisser, S., Kinder, J., Merzdovnik, G., Weippl, E.R.: Pro-
tecting software through obfuscation: can it keep pace with progress in code anal-
ysis? ACM Comput. Surv. 49(1), 4:1–4:37 (2016)

29. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: 2010 IEEE Symposium on Security and Privacy, pp. 317–331. IEEE
(2010)

https://doi.org/10.1007/978-3-540-75496-1_20
https://doi.org/10.1007/978-3-540-75496-1_20
https://doi.org/10.1007/s00165-016-0374-2
https://doi.org/10.1007/s00165-016-0374-2
https://doi.org/10.1007/978-3-319-40667-1_9
https://doi.org/10.1007/978-3-319-40667-1_9
https://doi.org/10.1007/978-3-642-24178-9_19
https://doi.org/10.1007/978-3-642-24178-9_19

Formal Framework for Reasoning About the Precision of Dynamic Analysis 199

30. Serebryany, K.: Continuous fuzzing with libfuzzer and addresssanitizer. In: 2016
IEEE Cybersecurity Development (SecDev), pp. 157–157. IEEE (2016)

31. Sharif, M.I., Lanzi, A., Giffin, J.T., Lee, W.: Automatic reverse engineering of
malware emulators. In: 30th IEEE Symposium on Security and Privacy, S&P 2009,
Oakland, California, USA, 17–20 May 2009, pp. 94–109. IEEE Computer Society
(2009)

32. She, D., Pei, K., Epstein, D., Yang, J., Ray, B., Jana, S.: NEUZZ: efficient fuzzing
with neural program smoothing. In: 2019 IEEE Symposium on Security and Pri-
vacy (SP), pp. 803–817. IEEE (2019)

33. Shu, X., Yao, D.D., Ryder, B.G.: A formal framework for program anomaly detec-
tion. In: Bos, H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS, vol. 9404, pp.
270–292. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26362-5 13

34. Sim, S.E., Easterbrook, S., Holt, R.C.: Using benchmarking to advance research: a
challenge to software engineering. In: Proceedings of the 25th International Con-
ference on Software Engineering, pp. 74–83. IEEE (2003)

35. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery.
Pearson Education, London (2007)

36. Swiecki, R.: Honggfuzz (2016). http://code.google.com/p/honggfuzz
37. Wilde, N., Buckellew, M., Page, H., Rajlich, V., Pounds, L.T.: A comparison of

methods for locating features in legacy software. J. Syst. Softw. 65(2), 105–114
(2003)

38. Yadegari, B., Johannesmeyer, B., Whitely, B., Debray, S.: A generic approach to
automatic deobfuscation of executable code. In: 2015 IEEE Symposium on Security
and Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015, pp. 674–691. IEEE
Computer Society (2015)

39. Zalewski, M.: Technical “whitepaper” for afl-fuzz (2014). http://lcamtuf.coredump.
cx/afl/technical details.txt

https://doi.org/10.1007/978-3-319-26362-5_13
http://code.google.com/p/honggfuzz
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

Simple and Efficient Computation
of Minimal Weak Control Closure

Abu Naser Masud(B)

School of Innovation, Design and Engineering,
Mälardalen University, Vasteras, Sweden

masud.abunaser@mdh.se

Abstract. Control dependency is a fundamental concept in many pro-
gram analyses, transformation, parallelization, and compiler optimiza-
tion techniques. An overwhelming number of definitions of control depen-
dency relations are found in the literature that capture various kinds of
program control flow structures. Weak and strong control closure (WCC
and SCC) relations capture nontermination insensitive and sensitive con-
trol dependencies and subsume all previously defined control dependency
relations. In this paper, we have shown that static dependency-based pro-
gram slicing requires the repeated computation of WCC and SCC. The
state-of-the-art WCC algorithm provided by Danicic et al. has the cubic
worst-case complexity in terms of the size of the control flow graph and is
a major obstacle to be used in static program slicing. We have provided
a simple yet efficient method to compute the minimal WCC which has
the quadratic worst-case complexity and proved the correctness of our
algorithms. We implemented ours and the state-of-the-art algorithms in
the Clang/LLVM compiler framework and run experiments on a num-
ber of SPEC CPU 2017 benchmarks. Our method performs a maximum
of 23.8 times and on average 10.6 times faster than the state-of-the-art
method. The performance curves of our WCC algorithm for practical
applications are closer to the NlogN curve in the microsecond scale. Evi-
dently, we improve the practical performance of WCC computation by
an order of magnitude.

Keywords: Control dependency · Weak control closure · Strong
control closure · Program slicing · Nontermination (in)sensitive

1 Introduction

Control dependency is a fundamental concept in many program analyses, trans-
formation, parallelization and compiler optimization techniques. It is used to
express the relation between two program statements such that one decides
whether the other statement can be executed or not. One of the key appli-
cations of control dependency is program slicing [20] that transforms an original
program into a sliced program with respect to a so-called slicing criterion. The
slicing criterion specifies the variables at a particular program point that will
c© Springer Nature Switzerland AG 2020
D. Pichardie and M. Sighireanu (Eds.): SAS 2020, LNCS 12389, pp. 200–222, 2020.
https://doi.org/10.1007/978-3-030-65474-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65474-0_10&domain=pdf
http://orcid.org/0000-0002-4872-1208
https://doi.org/10.1007/978-3-030-65474-0_10

Simple and Efficient Computation of Minimal Weak Control Closure 201

affect the execution of the sliced program. All program instructions in the orig-
inal program that does not affect the slicing criterion are discarded from the
sliced code. Control dependency is used to identify the program instructions
that indirectly affect the slicing criterion due to the execution of conditional
expressions in the loops or conditional instructions.

The standard definition of control dependency provided by Ferrante et al. [6]
has been widely used for over two decades. This definition is provided at the level
of the control flow graph (CFG) representation of a program assuming that the
CFG has a unique end node (i.e. the program has a single exit point). Several
recent articles on control dependency illustrate that this definition does not suffi-
ciently capture the intended control dependency of programs having the modern
programming language features. For instance, the exception or halt instructions
cause multiple exits of the programs, or reactive systems, web services or dis-
tributed real-time systems have nonterminating program instructions without an
end node. The standard definition of control dependency did not intend to han-
dle the above systems. The possibility of having nontermination in the program
code introduces two different types of control dependency relations: the weak
and strong control dependencies that are nontermination insensitive and non-
termination sensitive. One of the distinguishing effects between the two types of
control dependencies is that an original nonterminating program remains non-
terminating or may be transformed into a terminating program if the slicing
method uses strong or weak control dependence respectively.

Numerous authors provided an overwhelming number of definitions of control
dependencies [2,6,16,19,20] given at the level of CFG and describe computation
methods to obtain such dependencies. Danicic et al. [4] unified all previously
defined control dependence relations by providing the definitions and theoreti-
cal insights of weak and strong control-closure (WCC and SCC) that are most
generalized and capture all non-termination insensitive and nontermination sen-
sitive control dependence relations. Thus, WCC and SCC subsume all control
dependency relations found in the literature. However, Danicic et al. provided
expensive algorithms to compute WCC and SCC. In particular, the algorithms
for computing WCC and SCC have the cubic and quartic worst-case asymp-
totic complexity in terms of the size of the CFG. We have shown that static
program slicing requires the repeated computation of WCC and/or SCC. The
state-of-the-art WCC and SCC algorithms are not only expensive, but the use
of these algorithms in client applications such as program slicing will make these
applications underperforming.

In this article, we have provided a simple and efficient method to compute
WCC. We have formalized several theorems and lemmas demonstrating the
soundness, minimality, and complexity of our algorithm. Our WCC algorithm
has the quadratic worst-case time complexity in terms of the size of the CFG. We
implemented ours and the WCC algorithm of Danicic et al. in the Clang/LLVM
compiler framework [9] and performed experiments on a number of benchmarks
selected from SPEC CPU 2017 [3]. Our algorithm performs a maximum of 23.8
times and on average 10.6 times faster than the WCC algorithm of Danicic

202 A. N. Masud

et al. Moreover, the practical performance of our WCC algorithm is closer to
the NlogN curve, and thus we improve the theoretical as well as the practical
performance of WCC computation by an order of magnitude.

Outline. The remainder of this paper is organized as follows. Section 2 provides
some notations and backgrounds on WCC, Sect. 3 illustrates the changes to
be performed in static program slicing due to WCC/SCC, Sect. 4 provides the
detailed description of our WCC computation method, prove the correctness, and
the worst-case time complexity of our method, Sect. 5 compares the performance
of ours and the WCC computation method of Danicic et al. on some practical
benchmarks, Sect. 6 discusses the related works, and Sect. 7 concludes the paper.

2 Background

We provide the following formal definition of control flow graph (CFG).

Definition 1 (CFG). A CFG is a directed graph (N,E) where

1. N is the set of nodes that includes a Start node from where the execution
starts, at most one End node where the execution terminates normally, Cond
nodes representing boolean conditions, and nonCond nodes; and

2. E ⊆ N × N is the relation describing the possible flow of execution in the
graph. An End node has no successor, a Cond node n has at most one true
successor and at most one false successor, and all other nodes have at most
one successor.

Like Danicic et al. [4], we assume the following:

– The CFG is deterministic. So, any Cond node n cannot have multiple true
successors and/or multiple false successors.

– We allow Cond nodes to have either or both of the successors missing. We
may also have non-End nodes having no successor (i.e. out-degree zero). An
execution that reaches these nodes are silently nonterminating as it is not
performing any action and does not return control to the operating system.

– If the CFG G has no End nodes, then all executions of G are nonterminating.
– Moreover, if a program has multiple terminating exit points, nodes repre-

senting those exit points are connected to the End node to model those ter-
minations. Thus, the CFG in Definition 1 is sufficiently general to model a
wide-range of real-world intraprocedural programs.

The sets of successor and predecessor nodes of any CFG node n in a CFG
(N,E) are denoted by succ(n) and pred(n) where succ(n) = {m : (n,m) ∈ E}
and pred(n) = {m : (m,n) ∈ E}.

Definition 2 (CFG paths). A path π is a sequence n1, n2, . . . , nk of CFG
nodes (denoted by [n1..nk]) such that k ≥ 1 and ni+1 ∈ succ(ni) for all 1 ≤ i ≤
k − 1.

Simple and Efficient Computation of Minimal Weak Control Closure 203

A path is non-trivial if it contains at least two nodes. We write π − S to denote
the set of all nodes in the path π that are not in the set S. The length of any
path [n1..nk] is k − 1. A trivial path [n] has path length 0.

Definition 3 (Disjoint paths). Two finite paths [n1..nk] and [m1..ml] such
that k, l ≥ 1 in any CFG G are disjoint paths if and only if no ni is equal to
mj for all 1 ≤ i ≤ k and 1 ≤ j ≤ l. In other words, the paths do not meet at a
common vertex.

Sometimes, we shall use the phrase “two disjoint paths from n” to mean that
there exist two paths n1 = n, . . . , nk and n′

1 = n, . . . , n′
l such that [n2..nk] and

[n′
2..n

′
l] are disjoint paths. In other words, the paths are disjoint after the first

common vertex.
Ferrante et al. [6] provided the first formal definition of control dependency

relation based on postdominator [17] relation. Computing postdominator rela-
tions on a CFG G requires that G has a single End node ne and there is a path
from each node n in G to ne. A node n postdominates a node m if and only
if every path from m to ne goes through n. Node n strictly postdominates m
if n postdominates m and n �= m. The standard postdominator-based control
dependency relation can then be defined as follows:

Definition 4 (Control Dependency [6,19]). Node n is control dependent
on node m (written m

cd→ n) in the CFG G if (1) there exists a nontrivial path
π in G from m to n such that every node m′ ∈ π − {m,n} is postdominated by
n, and (2) m is not strictly postdominated by n.

The relation m
cd→ n implies that there must be two branches of m such that n

is always executed in one branch and may not execute in the other branch.

Example 1. The CFG in Fig. 1 that we shall use as a running example is obtained
from the perlbench in SPEC CPU2017 [3]. The details of the source code and
the labeling of true and false branches of Cond nodes are omitted for simplicity.
The control dependency graph (CDG) is computed from the CFG based on com-
puting postdominator relations such that an edge (n,m) in the CDG represents
the control dependency relation n

cd→ m.

Podgurski and Clarke [16] introduced the weak control dependence which
is nontermination sensitive. A number of different nontermination sensitive and
nontermination insensitive control dependency relations conservatively extend-
ing the standard relation above are defined in successive works [1,14–16,19].
Danicic et al. [4] unified all previous definitions and presented two generaliza-
tions called weak and strong control closure which are non-termination insen-
sitive and non-termination sensitive. WCC and SCC capture all the existing
non-termination (in)sensitive control dependency relations found in the litera-
ture. In this paper, we shall focus mostly on the efficient computation of WCC
and occasionally mention SCC. We now recall some relevant definitions and
terminologies of WCC from Danicic et al. [4].

204 A. N. Masud

n18(Start)

n17

n16

n15

n14

n13 n10n12

n3

n9

n7

n6n1n2

n0(End) n11
n5

n4

n8

(a)

n1 n3

n11

n4

n5 n6 n7

n8 n9

n10

n14 n15

n12 n13

n17 n16

(b)

Fig. 1. (a) CFG obtained from a benchmark in SPEC CPU2017 [3] (we omit the
program instructions for simplicity), (b) control dependency graph computed using
postdominator relations.

Definition 5 (N ′-Path). An N ′-path is a finite path [n1..nk] in a CFG G such
that nk ∈ N ′ and ni �∈ N ′ for all 1 < i ≤ k − 1.

Note that n1 may be in N ′ in the above definition. Thus, an N ′-path from n
ends at a node in N ′ and no node in this path are in N ′ except n1 which may
or may not be in N ′.

Definition 6 (N ′-weakly committing vertex). Let G = (N,E) be any
CFG. A node n ∈ N is N ′-weakly committing in G if all N ′-paths from n have
the same endpoint. In other words, there is at most one element of N ′ that is
’first-reachable’ from n.

Definition 7 (Weak control closure). Let G = (N,E) be any CFG and let
N ′ ⊆ N . N ′ is weakly control-closed in G if and only if all nodes n ∈ N \ N ′

that are reachable from N ′ are N ′-weakly committing in G.

The concept of weakly deciding vertices is introduced to prove that there
exists minimal and unique WCC of a set of nodes N ′ ⊆ N . Since program

Simple and Efficient Computation of Minimal Weak Control Closure 205

slicing uses control dependence relations to capture all control dependent nodes
affecting the slicing criterion, using minimal WCC in program slicing gives us
smaller nontermination insensitive slices.

Definition 8 (Weakly deciding vertices). A node n ∈ N is N ′-weakly
deciding in G if and only if there exist two finite proper N ′-paths in G that
both start at n and have no other common vertices. WDG(N ′) denotes the set of
all N ′-weakly deciding vertices in G.

Thus, if there exists an N ′-weakly deciding vertex n, then n is not N ′-weakly
committing. The WCC of an arbitrary set N ′ ⊆ N can be formally defined using
weakly deciding vertices as follows:

WCC(N ′) = {n : n ∈ WDG(N ′), n is reachable from N ′ in G} ∪ N ′

Example 2. Consider the CFG in Fig. 1. Let N ′ = {n5, n8, n10}. The N ′-paths
in this CFG include n9, . . . , n5 and n4, . . . , n6, n4, n8. The path n6, n5, n4, n8

is not an N ′-path since n5 ∈ N ′. Nodes n12, n13, n14 and n15 are N ′-weakly
committing. However, n9 and n6 are not N ′-weakly committing due to the N ′-
paths [n9..n10] and [n9..n5], and n6, n5 and n6, n4, n8. Nodes n9 and n6 are thus
N ′-weakly deciding and N ′ is not weakly control closed. However, all N ′-weakly
deciding vertices n4, n6 and n9 are reachable from N ′ and thus N ′ ∪{n4, n6, n9}
is a weak control-closed set capturing all the relevant control dependencies of
N ′.

3 Program Slicing Using WCC and SCC

Program slicing is specified by means of a slicing criterion which is usually a set
of CFG nodes representing program points of interest. Static backward/forward
program slicing then asks to select all program instructions that directly or
indirectly affect/ affected by the computation specified in the slicing criterion.
Static dependence-based program slicing [7,11,20] is performed by constructing
a so-called program dependence graph (PDG) [6]. A PDG explicitly represents
the data and the control dependence relations in the control flow graph (CFG)
of the input program. Any edge n1 → n2 in a PDG represents either the control
dependence relation n1

cd→ n2 or the data dependence relation n1
dd→ n2. The

relation n1
dd→ n2 holds if n2 is using the value of a program variable defined at

n1. A PDG is constructed by computing all the data and the control dependence
relations in the CFG of a program beforehand, and then include all edges (n,m)
in the PDG if n1

dd→ n2 or n1
cd→ n2 holds. A forward/backward slice includes

the set of all reachable nodes in the PDG from the nodes in the slicing criterion
in the forward/backward direction.

The existence of the numerous kinds of control dependence in the litera-
ture puts us in the dilemma of which control dependence algorithm is to be
used to construct PDG. Control dependence computation algorithms such as
postdominator-based algorithms exist that cannot compute control dependen-
cies from the following code having no exit point:

206 A. N. Masud

if (p) { L1: x=x+1; goto L2; } else { L2: print(x);goto L1; }
Building a PDG by using a particular control dependence computation algorithm
may miss computing certain kinds of control dependencies, and the program
slicing may produce unsound results. With the advent of WCC and SCC, we
obtain a more generalized method to compute control closure of a wide-range of
programs. However, the above approach of static program slicing is not feasible
with WCC and SCC. This is due to the fact that even though WCC and SCC
capture/compute the weak and strong form of control dependencies that are
nontermination (in)sensitive, it is not possible to tell specifically which node
is control dependent on which other nodes. Given any set N ′ of CFG nodes,
the weak/strong control closure cl(N ′) of N ′ captures all control dependencies
n1

cd→ n2 such that n2 ∈ cl(N ′) implies n1, n2 ∈ cl(N ′). However, by looking into
the set cl(N ′), it is not possible to tell if the relation n1

cd→ n2 holds or not for
any n1, n2 ∈ cl(N ′). Since we cannot compute all individual control dependencies
n1

cd→ n2 beforehand, it is not possible to compute a PDG from a CFG using weak
or strong control closed sets. However, Algorithm 1 can be applied to perform
the static program slicing using weak or strong control closures.

The relation
dd

→∗ denotes the transitive-reflexive closure of dd→. The above
algorithm computes the slice set S for backward slicing containing all CFG nodes
that affect the computation at the nodes in C. For forward slicing, the relation
dd

→∗ has to be computed in the forward direction. To compute the relation
dd

→∗, we
can build a data dependency graph (DDG) capturing only the data dependency
relations. Then, step 1 in Algorithm 1 can be accomplished by obtaining the set
of all reachable nodes in the DDG from the nodes in S in the forward/backward
direction.

Algorithm 1 illustrates that step 2 needs to be performed iteratively until
a fixpoint S = S′ is reached. Given any CFG (N,E), Danicic et al. provided
expensive algorithms to compute weak and strong control closures with worst-
case time complexity O(|N |3) and O(|N |4) respectively. These algorithms are
not only computationally expensive, they cause the static forward/backward
program slicing practically inefficient. In the next section, we shall provide an
alternative simple yet practically efficient method of computing a minimal weak
control closed set.

Algorithm 1 (Slicing). Let C be the the slicing criterion, and let S = C.

1. S′ :=
⋃

n∈S

{m : m
dd

→∗ n}
2. S := cl(S′)
3. if (S = S′) then EXIT

4. else GOTO step 1

Simple and Efficient Computation of Minimal Weak Control Closure 207

4 Efficient Computation of Minimal WCC

The relationship between WCC and weakly deciding vertices are the following
(Lemma 51 in [4]): the set of CFG nodes N ′ ⊆ N is weakly control-closed in the
CFG G = (N,E) iff all N ′-weakly deciding vertices in G that are reachable from
N ′ are in N ′. Moreover, N ′ ∪ WDG(N ′) is the unique minimal weakly control-
closed subset of N that contains N ′ (Theorem 54 in [4]). We perform a simple and
efficient two-step process of computing all N ′-weakly deciding vertices WDG(N ′)
followed by checking the reachability of these vertices from N ′ to compute the
weakly control-closed subset of N containing N ′.

In what follows, let G = (N,E) be a CFG, let N ′ ⊆ N , and let N be the set
of nodes such that WDG(N ′) ∪ N ′ ⊆ N ⊆ N . The set of all N ′-weakly deciding
vertices WDG(N ′) are computed in the following two steps:

1. We compute a set of CFG nodes WD which is an overapproximation of the
set of all N ′-weakly deciding vertices, i.e., WDG(N ′) ⊆ WD. The WD set
includes all CFG nodes n such that n has two disjoint N ′-paths. However,
WD also contains spurious nodes having overlapping N ′-paths or a single N ′

path which are not N ′-weakly deciding. Thus, N = WD ∪ N ′ is a weakly
control-closed subset of N containing N ′ which is not minimal.

2. For each node n ∈ WD, the above process also indicates all CFG nodes m ∈ N
such that either [n..m] is an N ′-path or there exists an N ′-path from n that
must go through m. From this information, we build a directed graph (N , E)
such that any edge (n,m) ∈ E indicates that n is possibly a weakly deciding
vertex, m ∈ N , and there exists an N -path [n..m] in G. Next, we perform a
verification process to check that each node in WD has two disjoint N ′-paths
using the graph (N , E) and discard all nodes in WD that do not have two
such paths.

Table 1. The N -paths discovered by our algorithm. CFG nodes are visited in two
different orders denoted by S1 and S2. Ti represents the sequence of visited CFG nodes
and Pi represents the sequence of discovered N -paths during the corresponding visits
for 1 ≤ i ≤ 4. The superscript on a path denotes its length.

T1 = m1 → n6 → n5 → n4 → n3 → n2 → n1 → n2

S1 P1 = [m1]
0 [n6,m1]

1 [n5..m1]
2 [n4..m1]

3 [n3..m1]
4 [n2..m1]

5 [n1..m1]
6

T2 = m2 → n5 → n4 → n3 → n2 → n1 → n2

P2 = [m2]
0 [n5]

0 [n4, n5]
1 [n3..n5]

2 [n2]
0 [n1..n2]

1

T3 = m1 → n6 → n5 → n4

S2 P3 = [m1]
0 [n6,m1]

1 [n5..m1]
2 [n4..m1]

3

T4 = m2 → n5 → n4 → n3 → n2 → n1 → n2

P4 = [m2]
0 [n5]

0 [n4, n5]
1 [n3..n5]

2 [n2..n5]
3 [n1..n5]

4

4.1 An Informal Account of Our Approach

In this section, we give an informal description of our algorithm to compute the
N ′-weakly deciding vertices. The first step of this algorithm keeps track of all

208 A. N. Masud

N ′-paths (or N -paths to be more specific where N = N ′ initially) in the CFG.
We traverse the CFG backward from the nodes in N ′ and record all N -paths at
each visited node of the CFG. During this process, we discover all CFG nodes
n that have more than one N -paths ending at different CFG nodes, and n is
included in WD (and thus n ∈ N) as it is a potential N ′-weakly deciding vertex.
In the following, we illustrate this process using the CFG G in Fig. 2 where
m1,m2 ∈ N ′.

n2

n3 n1

n4

n5

n6

m1

m2

n2

n5

m1 m2

CFG G

Graph G

Fig. 2. CFG G used for the informal illustration of our approach. The graph G is
generated by our analysis for the verification of potential N ′-weakly deciding vertices.

We have trivial N -paths [m1] and [m2] of lengths zero at CFG nodes m1 and
m2 respectively. The N -paths from a node are identified from the N -paths of its
successor nodes. The trivial N -path [m1] leads to the N -path [n6,m1] of length
1 which in turn leads to [n5..m1] of length 2. Similarly, [m2] leads to the N -path
[n5,m2] of length 1. Since two N -paths [n5..m1] and [n5,m2] are identified from
n5, n5 is included in WD and a new trivial N -path [n5] of length 0 is identified.
Different orders of visiting CFG nodes may produce different N -paths.

Table 1 presents two possible orders of visiting the CFG nodes. The sequence
of N -paths denoted by P1 is produced due to visiting the node sequence T1. Note
that an earlier visit to n2 has produced the N -path [n2..m1] of length 5, and
the last visit to n2 from n1 (via the backward edge) in T1 does not produce
any new N -path at n2 as it could generate the N -path [n2..m1] of length 7
which is not preferred over [n2..m1] of length 5 by our algorithm. While visiting
the sequence of nodes in T2, our algorithm identifies two N -paths [n5..m1] and
[n5..m2], and thus it includes n5 in WD. Moreover, a new trivial N -path [n5] is
generated, and the successive visits to the remaining sequence of nodes replace
the old N -paths by the newly generated paths of smaller lengths. From the N -
paths [n3..n5] and [n1..m1] at the successor nodes of n2, our algorithm infers
that there exist two N -paths [n2..m1] and [n2..n5] from n2, and thus it includes
n2 in WD even though no two disjoint N -paths exist in G. Thus, WD is an
overapproximation of WDG(N ′). When CFG nodes are visited according to the

Simple and Efficient Computation of Minimal Weak Control Closure 209

order specified in S2, our algorithm does not infer two N -paths at n2, and thus
it becomes more precise by not including n2 in WD. Note that this order of
visiting CFG nodes does not affect the soundness (as we prove it later in this
section), but the precision and performance of the first step our analysis, which
is a well-known phenomenon in static program analysis. Note that our algorithm
does not compute path lengths explicitly in generating N -paths; it is accounted
implicitly by our analysis.

The second step of our algorithm generates a graph G consisting of the set of
nodes N ′ ∪WD and the edges (n,m) such that n ∈ WD, n′ ∈ succ(n), and [n′..m]
is the N -path discovered in the first step of the analysis. Thus, [n..m] is an N -path
in the CFG. The graph G in Fig. 2 is generated from the WD set and the N -paths
generated due to visiting node sequences T1 and T2 in Table 1. Next, we traverse
the graph G from N ′ backward; if a node n ∈ WD is reached, we immediately know
one of the N -paths from n and explore the other unvisited branches of n to look for
a second disjoint N -path. For the graph G in Fig. 2, if n5 ∈ WD is reached from m1,
it ensures that [n5..m1] is anN -path in theCFG.Next, we look for a secondN -path
in the other branch of n5. In this particular case, the immediate successor of n5 that
is not yet visited is m2 ∈ N ′ such that [n5..m2] is the second N -path disjoint from
[n5..m1], which verifies that n5 is an N ′-weakly deciding vertex. We could have
that m2 �∈ N ′, and in that case, we traverse the graph G from m2 in the forward
direction to look for an N -path different from [n5..m1], include n5 in WDG(N ′)
if such a path is found, and excluded it from WDG(N ′) otherwise. Similarly, we
discover the N -path [n2..n5] by reaching n2 from n5. However, since any N -path
from n2 through the other branch of n2 overlaps with [n2..n5], n2 is discarded to
be a N ′-weakly deciding vertex. When all nodes in WD are verified, we obtain the
set WDG(N ′) ⊆ WD and the algorithm terminates.

4.2 An Overapproximation of the Weakly Deciding Vertices

We perform a backward traversal of the CFG from the nodes in N ′. Initially,
N = N ′. We maintain a function A(n) for each CFG node n ∈ N . This function
serves the following purposes:

1. If the backward traversal of the CFG visits only one N -path [n..m], then we
set A(n) = m.

2. If two disjoint N -paths [n..m1] and [n..m2] are visited during the backward
traversal of the CFG, then we set A(n) = n.

We initialize the function A(n) as follows:

A(n) =

{
⊥ n ∈ N \ N ′

n n ∈ N ′ (1)

The valuation A(n) = ⊥ indicates that no N -path from n is visited yet. If we
visit a CFG node n ∈ N \ N ′ with two N ′-paths (which may possibly be not
disjoint due to overapproximation), then n is a potential N ′-weakly deciding

210 A. N. Masud

vertex. In this case, we set A(n) = n, n is included in WD (and hence n ∈ N),
and the function A(n) will not be changed further.

If A(n) �= n, then A(n) may be modified multiple times during the walk of
the CFG. If A(n) = m1 is modified to A(n) = m2 such that n �= m1 �= m2, then
there exists a path n, . . . ,m2, . . . ,m1 in G such that m1,m2 ∈ N and [n..m2]
is an N -path in G. This may happen when (i) visiting the CFG discovers the
N -path [n..m1] such that m2 �∈ N , and (ii) in a later visit to m2, m2 is included
in WD (and in N) that invalidates the path [n..m1] as an N -path and obtains
a new N -path [n..m2]. Note that if [n..m] is an N -path and m �∈ N ′, then there
exists an N ′-path from n that go through m which we prove later in this section.

Algorithm 2 computes the set WD which is an overapproximation of weakly
control-closed subset of N containing N ′. It uses a worklist W to keep track of
which CFG nodes to visit next. Note the following observations for Algorithm 2.

– For any node n in W , A(n) �= ⊥ due to the initializations in Eq. 1 and steps
2(b) and 2(c).

– The set Sm in step 2(a) is never empty due to the fact that n is a successor
of m and A(n) �= ⊥.

– If A(m) = m, then m will never be included in W in 2(b) and 2(c) as further
processing of node m will not give us any new information.

– Since m can only be included in WD in step (2b) if A(m) �= m, and A(m) = m
for any m ∈ N ′ due to Eq. 1, we must have WD ∩ N ′ = ∅.

– Node m can only be included in W in step 2(c) if A(m) = x is updated to
A(m) = y such that y �= x.

– If any path [n..m] is traversed such that A(m) = m and no node in [n..m] −
{m} is in WD, then m is transferred such that A(n′) = m for all n′ ∈
[n..m] − {m} due to step (2c). Also, note that if A(n) = m, then we must
have A(m) = m.

– The functions A are both the input and the output of the algorithm. This
facilitates computing WD incrementally. This incremental WD computation
will improve the performance of client applications of WCC such as program
slicing (see Algorithm 1). We leave the study on the impact of incremental
WD computation on program slicing as a future work.

Algorithm 2 (OverapproxWD). Input: G = (N,E), N ′, A, Output: A,WD

1. Initialization:
(a) Set WD = ∅
(b) Set the worklist W = N ′

2. Remove an element n from W . Forall m ∈ pred(n) do the following:
(a) Compute Sm = {A(m′) : m′ ∈ succ(m), A(m′) �= ⊥}

if (|Sm| > 1) then GOTO (b) else GOTO (c)
(b) if (A(m) �= m) then insert m into W , update A(m) = m, and

add m to WD. GOTO (3).
(c) if (A(m) �= m and x ∈ Sm) then (i) obtain y = A(m),

(ii) update A(m) = x, and (iii) if (y �= x) then insert m into W .
GOTO (3).

3. if (W is empty) then EXIT else GOTO (2)

Simple and Efficient Computation of Minimal Weak Control Closure 211

Theorems 1 and 2 below state the correctness of Algorithm 2 which we prove
using an auxiliary lemma.

Lemma 1. If A(n) = m and n �= m, then there exists an N ′-path from n and
all N ′-paths from n must include m.

Proof. Since A(n) = m, there exists a path π = [n..m] visited in Algorithm 2
from m backward. The transfer of m to A(n) is only possible if we have Sx = {m}
for all x ∈ π − {m} and A(x) = m is set in step (2c). Since A(x) �= x, no node
x ∈ π − {m} is in WD ∪ N ′. Also, there exists a predecessor y of m such that
Sy = {m} which is only possible if A(m) = m. Thus, we must have m ∈ N ′∪WD
and π is a (WD ∪ N ′)-path.

If m ∈ N ′, then the lemma trivially holds. Suppose m = m1 �∈ N ′. Then, we
must have m1 ∈ WD, and there exists a successor n1 of m1 such that A(n1) =
m2. If m2 �∈ N ′, then m2 ∈ WD and there exists a successor n2 of m2 such
that A(n2) = m3. Thus, we obtain a subsequence of nodes n1, . . . , nk such that
A(ni) = mi+1 for all 1 ≤ i ≤ k and eventually we have mk+1 ∈ N ′ since the
CFG is finite and it is traversed from the nodes in N ′ backward. Thus, [n..mk+1]
is an N ′-path which go through m. �

Corollary 1. If A(n) = m, then m ∈ N ′ ∪ WD.

Proof. The proof follows from the first part of the proof of Lemma 1.

Theorem 1. For any WD computed in Algorithm 2, WDG(N ′) ⊆ WD.

Proof. Suppose the lemma does not hold. So, there exists an N ′-weakly deciding
vertex n ∈ WDG(N ′) such that n �∈ WD. Thus, there are two disjoint N ′-
paths from n. Let n1 = n, . . . , nk and m1 = n, . . . , ml be two N ′-paths. Since
nk,ml ∈ N ′, A(nk) = nk and A(ml) = ml due to Eq. 1. Algorithm 2 traverses
these paths and update A(ni) and A(mj) in step (2c) such that

A(ni) �= ⊥ and A(mj) �= ⊥ for all 1 ≤ i < k and 1 ≤ j < l.

Since n �∈ WD, |Sn| ≤ 1 in (2a). Node n has at most two successors according
to the definition of CFG (Definition 1). Since A(n2) �= ⊥ and A(m2) �= ⊥,
|Sn| ≤ 1 is only possible if A(n2) = A(m2). Let A(n2) = m. Then, we must have
A(n) = m and all N ′-paths must include m according to Lemma 1. Thus, we
conclude that n is not an N ′-weakly deciding vertex since the N ′-paths from n
are not disjoint, and we obtain the contradiction. �

Theorem 2. Algorithm 2 eventually terminates.

Proof. Algorithm 2 iterates as long as there exist elements in W . For all n ∈ N
such that A(n) = n, n is included in WD and it never gets included in W again.
If the value of A(n) remains ⊥, then n is never reached and included in W during
the walk of the CFG. Thus the algorithm can only be nonterminating for some
node n such that A(n) �= n �= ⊥. According to step (2c) in the algorithm, n can

212 A. N. Masud

only be included in W if the new value of A(n) is different from the old one. Thus,
in order for the algorithm to be nonterminating, there exists an infinite update
to A(n) by the sequence of values m1, . . . ,mk, . . . such that no two consecutive
values are the same, i.e., mi �= mi+1 for all i ≥ 1.

According to Lemma 1, A(n) = mi implies that there exists an N ′-path from
n and all N ′-paths from n must include mi. Thus, there exists a path [n..mi] in
the CFG. If A(n) is updated by mi+1, then mi+1 ∈ WD and A(mi+1) = mi+1.
Node mi+1 must be in the path [n..mi] as otherwise we eventually have Sn =
{mi,mi+1} in (2a) which will lead to A(n) = n. So, A(n) will never become mi

again in (2c) as all N ′-paths from n must go through mi+1 ∈ WD. Similarly, if
A(n) is updated by mi+2, mi+2 must be in the path [n..mi+1] and A(n) will never
be updated by mi+1 again. Since the path [n..mi+1] has a finite number of nodes,
A(n) cannot be updated infinitely, and the algorithm eventually terminates. �

Example 3. Let N ′ = {n5, n8} for the CFG in Fig. 1. Algorithm 2 computes A
and WD as follows:

– A(n) = ⊥ for n ∈ {n0, n2}
– A(ni) = ni for i ∈ {4, . . . , 6, 8, . . . , 10, 14, 15, 17}
– A(ni) = n10 for i ∈ {1, 3, 11, 13}
– A(n7) = n6, A(n12) = n15, A(n16) = n15, A(n18) = n17

– WD = {n4, n6, n9, n10, n14, n15, n17}
Note that CFG nodes n9, n10, n14, n15, and n17 have no disjoint N ′-paths as all
N ′-paths from these nodes must go through n10. Thus, these nodes do not belong
to WDG(N ′). However, we have WDG(N ′) = {n4, n6} and WDG(N ′) ⊆ WD
holds.

4.3 Generating Minimal Weakly Deciding Vertices

Algorithm 2 is sound according to Theorem 1. However, as illustrated in Sect. 4.1,
the WD set computed in this algorithm contains spurious nodes that are not N ′-
weakly deciding. In what follows, we provide a general and efficient algorithm to
verify the results obtained from Algorithm 2 and discard all incorrectly identified
N ′-weakly deciding vertices. Thus, both algorithms together provide minimal
and sound N ′-weakly deciding vertices. We first represent the solutions generated
by Algorithm 2 as a directed graph G as follows:

Definition 9. G = (N , E) is a directed graph, where

– N = N ′ ∪ WD, and
– E = {(n,A(m)) : n ∈ WD,m ∈ succ(n), A(m) �= ⊥}.
Note that succ(n) is the set of successors of n in the CFG. In Fig. 3, G = (N , E)
is constructed from A and WD in Example 3 and the CFG in Fig. 1. Any graph
G constructed according to Definition 9 has the following properties:

Simple and Efficient Computation of Minimal Weak Control Closure 213

n14 n17

n15

n4

n10n9n6n8

n5

Fig. 3. Graph G = (N , E) constructed according to Definition 9 from the CFG in
Fig. 1, and A and WD in Example 3

– If there exists an edge (n,m) in E such that m ∈ N ′, then there exists an
N ′-path [n..m] in the CFG G.

– An edge (n,m) in E such that m ∈ WD implies that there exists an N ′-path
from n going through m (from Lemma 1).

– There exist no successors of a node in N ′ since WD ∩ N ′ = ∅.
– Graph G may be an edge-disjoint graph since there may exist N ′-weakly

deciding vertices and their N ′-paths do not overlap.
– Since our CFG has at most two successors according to Definition 1, any node

in G has at most two successors. However, some nodes in G may have self-loop
or only one successor due to the spurious nodes generated in WD. Moreover,
|N | ≤ |N |, |E| ≤ |E|.
The intuitive idea of the verification process is the following. For any n ∈ N ′,

we consider a predecessor m of n in G. Thus, we know that [m..n] is an N ′-path
in the CFG G. If there exist another successor n′ ∈ N ′ of m such that n �= n′,
then [m..n′] is another N ′-path disjoint from [m..n] and m is an N ′-weakly
deciding vertex. However, all other successors of m might be from WD instead
of N ′. Let succG(m) and predG(m) be the sets of successors and predecessors of
m in G. Then, we traverse G from the nodes in succG(m) \ N ′ in the forward
direction to find an N ′-path from m which is disjoint from [m..n]. If it visits
a node in N ′ different from n, then m is an N ′-weakly deciding vertex due to
having two disjoint N ′-paths. Otherwise, we exclude m from WD. Most nodes
in WD can be immediately verified by looking into their immediate successors
without traversing the whole graph G. Also, the graph G is usually much smaller
than the CFG. Thus, the whole verification process is practically very efficient.

Given the graph G = (N , E), Algorithm 3 generates WDmin which is the
set of minimal N ′-weakly deciding vertices. Like Algorithm 2, we use a func-
tion Ā(n) to keep track of N ′-paths visited from n. Initially, Ā(n) = ⊥ for
all n ∈ N \ N ′ and Ā(n) = n otherwise. A boolean function T (n) is set to
true if n ∈ N ′, and T (n) = false otherwise. Another boolean function V (n),
which is initially false, is set to true if n is already verified. The procedure
noDisjointNPath(m,G, Rn,WDmin, N ′) used in the algorithm traverses the
graph G from the nodes in Rn in the forward direction visiting each node at most
once. If a node in N ′ ∪ WDmin different from m is visited, then it returns true,
otherwise false. During this traversal, no successors of a node in N ′ ∪WDmin are
visited as an N ′-path must end at a node in N ′. We skip providing the details of
this procedure since it is a simple graph traversal algorithm. Note that Sn �= ∅ in

214 A. N. Masud

step (3). This is because there exists a successor m of n from which n is reached
during the backward traversal of the graph G and Ā(m) �= ⊥.

Algorithm 3 (VerifyWDV). Input: G = (N , E) and N ′, Output: WDmin

1. Initialization :
(a) Forall (n ∈ N \ N ′) do

Ā(n) = ⊥, V (n) = false, and T (n) = false
(b) Forall (n ∈ N ′) do

Ā(n) = n, V (n) = true, and T (n) = true
(c) Set the worklist W =

⋃
n∈N ′ predG(n), and set WDmin = ∅

2. if (W is empty) then EXIT else remove n from W and set V (n) = true
3. Compute the following sets:

Sn = {Ā(m) : m ∈ succG(n), Ā(m) �= ⊥}
Rn = {m : m ∈ succG(n), Ā(m) = ⊥}

Let m ∈ Sn. if (|Sn| > 1) then GOTO (a) else GOTO (b)
(a) Set Ā(n) = n. if (T (n) = false) then WDmin = WDmin ∪ {n}. GOTO

(4)
(b) if (noDisjointNPath(m,G, Rn,WDmin, N ′)) then set Ā(n) = Ā(m)

and GOTO (4) else GOTO (a)
4. Forall (n′ ∈ predG(n) such that V (n′) = false) do

W = W ∪ {n′}
GOTO (2)

Theorem 3 below proves that WDmin is the minimal weakly control-closed
subset of N containing N ′.

Theorem 3. For any WDmin computed in Algorithm 3, WDG(N ′) = WDmin.

Proof. “⊆”: Let n ∈ WDG(N ′). According to Theorem 1, WDG(N ′) ⊆ WD and
thus n ∈ WD. Suppose m1,m2 ∈ succ(n) since there exist two disjoint N ′-paths
from n, and also assume that A(mi) = ni

1 for i = 1, 2. Thus, (n, ni
1) is an edge

in G for i = 1, 2. According to Corollary 1, ni
1 ∈ N ′ ∪ WD. If ni

1 �∈ N ′, we can
show similarly that there exists a node ni

2 such that (ni
1, n

i
2) is an edge in G for

some 1 ≤ i ≤ 2 and ni
2 ∈ N ′ ∪ WD. Since graph G and the CFG G are finite,

eventually we have the following sequence of edges

(n, n1
1), (n

1
1, n

1
2), . . . , (n

1
k−1, n

1
k) and (n, n2

1), (n
2
1, n

2
2), . . . , (n

2
l−1, n

2
l)

such that n1
k, n

2
l ∈ N ′ for some k, l ≥ 1. The graph G is traversed backward

from ni
k ∈ N ′ and n will be reached in successive iterations in Algorithm 3.

Thus, n is reached by traversing an N ′-path [n..n1
k] backward. Either another

N ′-path [n..n2
l] will be discovered immediately during the construction of Sn in

step (3) or it will be discovered by calling the procedure noDisjointNPath and
we eventually have n ∈ WDmin.

“⊇”: Let n ∈ WDmin. Thus, there exists a node m ∈ N ′ such that n is reached
during traversing the graph G backward and thus [n..m] is an N ′-path. Also,
there exists a successor m′ �= m of n such that either m′ ∈ N ′ or noDisjointNPath
procedure traverses an N ′-path from m2 which is disjoint from [n..m].Thus,

n ∈ WDG(N ′) due to having two disjoint N ′-paths.

Simple and Efficient Computation of Minimal Weak Control Closure 215

4.4 Computing Minimal WCC

After obtaining the WDmin set containing minimal N ′-weakly deciding vertices,
computing minimal WCC requires checking the reachability of these nodes from
the nodes in N ′. Algorithm 4 below provides the complete picture of computing
minimal WCC.

Algorithm 4 (minimalWCC). Input: G = (N,E) and N ′, Output: WCC

1. Apply Eq. 1 to initialize A and set WCC = N ′

2. (A,WD) = OverapproxWD(G,N ′)
3. Construct G = (N , E) according to Definition 9
4. WDmin = V erifyWDV (G, N ′)
5. Traverse G forward from the nodes in N ′ visiting each node n ∈ N at most

once and include n to WCC if n ∈ WDmin

Example 4. For the graph G in Fig. 3 and N ′ = {n5, n8}, Algorithm 3 generates
WDmin = {n4, n6}. Algorithm 4 computes WCC = {n4, n5, n6, n8} for the CFG
in Fig. 1 and N ′ as above.

4.5 Worst-Case Time Complexity

Lemma 2. The worst-case time complexity of Algorithm 2 is O(|N |2).
Proof. The worst-case time complexity is dominated by the costs in step (2)
of Algorithm 2. Since |succ(n)| ≤ 2 for any CFG node n, all the operations
in steps (2a)-(2c) have constant complexity. However, after removing a node n
from W , all the predecessors of n are visited. If the CFG G has no N ′-weakly
deciding vertices, then Algorithm 2 visits at most |N | nodes and |E| edges after
which the operation y �= x in (2c) is always false, no node will be inserted in
W , and thus the cost will be O(|N | + |E|). In order to obtain a vertex in WD,
it needs to visit at most |N | nodes and |E| edges and the maximum cost will
be O(|N | + |E|). If a node n is included in WD, then we set A(n) = n and n
will never be included in W afterwards due to the first conditional instruction
in step (2c). Since we can have at most |N | N ′-weakly deciding vertices, the
total worst-case cost will be O((|N | + |E|) ∗ |N |). Since any CFG node has at
most two successors, O(|E|) = O(|N |), and thus the worst-case time complexity
is O(|N |2).
Lemma 3. The worst-case time complexity of Algorithm 3 is O(|N |2).
Proof. The initialization steps in Algorithm 3 have the worst-case cost O(|N |).
The worst-case cost of Algorithm 3 is dominated by the main loop in steps
(2)–(4). This main loop iterates at most |N | times since (i) once an element is
removed from W , it is marked as visited and never inserted into W again, and (ii)
the loop iterates as long as there are elements in W . Computing the sets Sn and
Rn have constant costs since |succG(n)| ≤ 2. The costs of all other operations in
step (3) are also constant except the noDisjointNPath procedure which has the

216 A. N. Masud

Table 2. Experimental results on selected benchmarks from SPEC CPU 2017 [3]

Benchmarks KLOC #Proc Twcc TwccD Speedup

1 Mcf 3 40 9.6 56.7 5.9

2 Nab 24 327 55.1 418.6 7.6

3 Xz 33 465 40.5 116.5 2.9

4 X264 96 1449 155.7 896.0 5.8

5 Imagick 259 2586 334.8 2268.9 6.8

6 Perlbench 362 2460 1523.3 32134.8 21.1

7 GCC 1304 17827 26658.1 634413.9 23.8

Average Speedup = 10.6

worst-case cost of O(|N |+|E|) as it is a simple forward graph traversal algorithm
visiting each node and edge at most once and other operations have constant
cost. Step (4) visits the edges in E to insert elements in W and cannot visit more
than |E| edges. Thus, the dominating cost of Algorithm 3 is O((|N |+ |E|)×|N |).
Since |N | ≤ N , |E| ≤ E, and O(|N |) = O(|E|), O(|N |2) is the worst-case time
complexity of this algorithm.

Theorem 4. The worst-case time complexity of Algorithm 4 is O(|N |2).
Proof. The worst-case time complexity of Algorithm 4 is dominated by the
V erifyWDV and OverapproxWD procedures which have the worst-case time
complexity O(|N |2) according to Lemma 2 and 3.

5 Experimental Evaluation

We implemented ours and the weak control closure algorithms of Danicic et al. [4]
in the Clang/LLVM compiler framework [9] and run experiments in an Intel(R)
Core(TM) i7-7567U CPU with 3.50 GHz. The experiments are performed on a
number of benchmarks consisting of approximately 2081 KLOC written in C
language.

Table 2 shows experimental results performed on seven benchmarks selected
from the SPEC CPU 2017 [3]. The #Proc column indicates the number of pro-
cedures analyzed in the respective benchmarks, Twcc and TwccD columns show
total runtime of the algorithms of ours and Danicic et al., and the Speedup
column indicates the speedup of our approach over Danicic et al. which is cal-
culated as TwccD/Twcc. Each procedure is analyzed 10 times and the N ′-sets
are chosen randomly for each run. All times are recorded in microseconds which
are converted to milliseconds and the analysis times reported in Table 2 are the
average of 10 runs.

Regarding the correctness, both algorithms compute the same weakly control
closed sets. As shown in Table 2, we obtain the highest and the lowest speedup
of 23.8 and 2.9 from the GCC and the Xz benchmarks, and an average speedup

Simple and Efficient Computation of Minimal Weak Control Closure 217

Fig. 4. Comparing execution times of Algorithm 2 and 3. Execution time curves are
also compared with the NlogN and N2 functions where N represents the number of
nodes in the CFG. X-axis represents selected CFGs from the respective benchmarks. Y-
axis represents either the execution times of the algorithms measured in microseconds
or the value of NlogN and N2. All charts are displayed in the logarithmic scale.

from all benchmarks is 10.6. The Xz benchmark provides the lowest speedup due
to the fact that it has fewer procedures than GCC and the sizes of the CFGs for
most procedures in this benchmark are very small; the average size of a CFG (i.e.
number of CFG nodes) is only 8 per procedure. On the other hand, GCC has
38 times more procedures than Xz and the average size of a CFG per procedure
is 20. Also, the greater speedups are obtained in larger CFGs. There are 171
and 55 procedures in GCC with the size of the CFGs greater than 200 and 500
respectively and the maximum CFG size is 15912, whereas the maximum CFG
size in Xz is 87. For benchmarks like Mcf and Nab, even though they have fewer
procedures than Xz, the average CFG size per procedure in these benchmarks
are 21 and 16.

Since Algorithm 2 and 3 dominates the computational complexity of com-
puting WCC, we compare the execution times of these algorithms in Fig. 4. We
also plotted the functions NlogN and N2 to compare the execution curves of
the algorithms with these functions. All times are measured in microseconds and
an average of 10 runs. If there exist several CFGs with the same size, we keep
the execution time of only one of them. As illustrated in the figure, Algorithm 2
performs consistently. However, the performance of Algorithm 3 varies above
or below the performance of Algorithm 2. This due to the fact that it shows
optimal performance when noDisjointNPath procedure is called minimally. The
performance curves of both algorithms are closer to the NlogN curve for perl-

218 A. N. Masud

bench benchmark and closer to the linear curve for other benchmarks depicted
in Fig. 4 when the times are measured in microseconds. In the appendix, we
provide execution curves of other benchmarks.

We also have evaluated our algorithms by performing the same experiments
on a virtual machine (VM) running on the real machine as specified above. The
virtual machine uses a 64-bit Ubuntu OS with 10 GB RAM having 2 cores and
the real machine runs Mac OS Version 10.15.4 with 16 GB RAM. Due to random-
ization, the experiments have different N ′ sets. We obtain a maximum speedup
of 12 for Perlbench and an average speedup of 5.7 on all benchmarks from the
experiments on the VM. Even though we obtain a smaller speedup compared
to the speedup on the real machine, our algorithm is still several times faster
than the WCC computation of Danicic et al., and we obtain similar perfor-
mance curves for all benchmarks on VM. Evidently, our algorithm improves the
state-of-the-art computation of weak control closure by an order of magnitude.

6 Related Work

Denning and Denning [5] are the pioneers to use dominator-based approach
to identify program instructions influenced by the conditional instructions in
the context of information-flow security. Weiser [20], the pioneer and prominent
author in program slicing, used their approach in program slicing. However, the
first formal definition of control dependence is provided by Ferrante et al. [6] in
developing the program dependence graph (PDG) which is being used for pro-
gram slicing and program optimization. This definition became standard after-
ward and is being used for over two decades.

Podgurski and Clarke [16] provided two control dependence relations called
weak and strong syntactic dependence. The strong control dependence corre-
sponds to the standard control dependence relation. The weak control depen-
dence subsumes the strong control dependence relation in the sense that any
strong control dependence relation is also a weak control dependence. Moreover,
the weak control dependence relation is nontermination sensitive. Bilardi and
Pingali [2] provided a generalized framework for the standard and the weak con-
trol dependence relation of Podgurski and Clarke by means of the dominance
relation parameterized with respect to a set of CFG paths. Different classes of
CFG path set provides different control dependence relations.

Ranganath et al. [18,19] considered CFGs possibly having multiple end nodes
or no end node. These kinds of CFGs originate from programs containing modern
program instructions like exceptions or nonterminating constructs often found in
web services or distributed systems. They also considered low-level code such as
JVM producing irreducible CFGs, and defined a number of control dependency
relations that are nontermination (in)sensitive and conservatively extend the
standard control dependency relation. The worst-case time complexity of the
algorithms for computing their control dependences is O(|N |4log|N |) where |N |
is the number of vertices of the CFG.

The control dependence relations defined later are progressively generalized
than the earlier definitions, but one may be baffled by the overwhelming number

Simple and Efficient Computation of Minimal Weak Control Closure 219

of such definitions, e.g. in [19], to choose the right one. Danicic et al. [4] unified all
previously defined control dependence relations and provided the most general-
ized non-termination insensitive and nontermination sensitive control dependence
called weak and strong control-closure. These definitions are based on the weak
and strong projections which are the underlying semantics for control dependence
developed by the authors. These semantics are opposite to that of Podgurski and
Clark in the sense that Danicic et al.’s weak (resp. strong) relation is similar to
Podgurski and Clark’s strong (resp. weak) relation. The worst-case time complex-
ity of their weak and strong control closure algorithms are O(|N |3) and O(|N |4)
where |N | is the number of vertices of the CFG. Léchenet et al. [10] provided auto-
mated proof of correctness in the Coq proof assistant for the weak control closure
algorithm of Danicic et al. and presented an efficient algorithm to compute such
control closure. The efficiency of their method is demonstrated by experimental
evaluation. However, no complexity analysis of their algorithm is provided.

Khanfar et al. [8] developed an algorithm to compute all direct control depen-
dencies to a particular program statement for using it in demand-driven slicing.
Their method only works for programs that must have a unique exit point.
Neither the computational complexity nor the practical performance benefits
of their algorithm are stated. On the other hand, we compute minimal weak
control closure for programs that do not have such restrictions. Our method
improves the theoretical computational complexity of computing weak control
closure than the state-of-the-art methods, and it is also practically efficient.

7 Conclusion and Future Work

Danicic et al. provided two generalizations called weak and strong control closure
(WCC and SCC) that subsume all existing nontermination insensitive and non-
termination sensitive control dependency relations. However, their algorithms to
compute these relations have cubic and quartic worst-case complexity in terms
of the size of the CFG which is not acceptable for client applications of WCC
and/or SCC such as program slicing. In this paper, we have developed an effi-
cient and easy to understand method of computing minimal WCC. We provided
the theoretical correctness of our method. Our WCC computation method has
the quadratic worst-case time complexity in terms of the size of the CFG. We
experimentally evaluated the algorithms for computing WCC of ours and Dani-
cic et al. on practical benchmarks and obtained the highest 23.8 and on average
10.6 speedups compared to the state-of-the-art method. The performance of our
WCC algorithm for practical applications is closer to either NlogN or linear
curve in most cases when time is measured in microseconds. Thus we improve
the practical performance of WCC computation by an order of magnitude.

We have applied our algorithms of computing minimal weakly deciding ver-
tices in the computation of strongly control closed sets, implemented ours and
the state-of-the-art SCC method in the Clang/LLVM framework, and evaluated
these algorithms on practical benchmarks. We also obtained similar speedups in
computing SCC. However, we have not included our SCC computation method
in this paper due to space limitations.

220 A. N. Masud

As regards future work, our algorithm to compute minimal weakly deciding
vertices can be applied to compute minimal SSA programs. Recently, Masud
and Ciccozzi [12,13] showed that the standard dominance frontier-based SSA
construction method increases the size of the SSA program by computing a sig-
nificant amount of unnecessary φ functions. However, they provided complex and
expensive algorithms that can generate minimal SSA programs. Our algorithm
can be adapted to get an efficient alternative method in computing minimal
SSA programs. Another future direction would be to compute WCC and SCC
for interprocedural programs.

Acknowledgment. This research is supported by the Knowledge Foundation through
the HERO project.

A Appendix

See Fig. 5.

Fig. 5. Comparing execution times of Algorithm 2 and 3. Execution time curves are
also compared with the NlogN and N2 functions where N represents the number of
nodes in the CFG. X-axis represents selected CFGs from the respective benchmarks. Y-
axis represents either the execution times of the algorithms measured in microseconds
or the value of NlogN and N2. All charts are displayed in the logarithmic scale.

Simple and Efficient Computation of Minimal Weak Control Closure 221

References

1. Amtoft, T.: Correctness of practical slicing for modern program structures. Depart-
ment of Computing and Information Sciences, Kansas State University, Technical
report (2007)

2. Bilardi, G., Pingali, K.: A framework for generalized control dependence. SIG-
PLAN Not. 31(5), 291–300 (1996). https://doi.org/10.1145/249069.231435

3. Bucek, J., Lange, K.D., Kistowski, J.V.: Spec cpu2017: next-generation compute
benchmark. In: Companion of the 2018 ACM/SPEC International Conference on
Performance Engineering, pp. 41–42. ICPE 2018, ACM, New York (2018). https://
doi.org/10.1145/3185768.3185771

4. Danicic, S., Barraclough, R., Harman, M., Howroyd, J.D., Kiss, Á., Laurence, M.:
A unifying theory of control dependence and its application to arbitrary program
structures. Theor. Comput. Sci. 412(49), 6809–6842 (2011)

5. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
Commun. ACM 20(7), 504–513 (1977). https://doi.org/10.1145/359636.359712

6. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987).
https://doi.org/10.1145/24039.24041

7. Khanfar, H., Lisper, B., Masud, A.N.: Static backward program slicing for safety-
critical systems. In: de la Puente, J.A., Vardanega, T. (eds.) Ada-Europe 2015.
LNCS, vol. 9111, pp. 50–65. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-19584-1 4

8. Khanfar, H., Lisper, B., Mubeen, S.: Demand-driven static backward slicing
for unstructured programs. Technical report (May 2019). http://www.es.mdh.se/
publications/5511-

9. Lattner, C., Adve, V.: The LLVM Compiler Framework and Infrastructure Tuto-
rial. In: LCPC’04 Mini Workshop on Compiler Research Infrastructures. West
Lafayette, Indiana (September 2004)

10. Léchenet, J.-C., Kosmatov, N., Le Gall, P.: Fast computation of arbitrary control
dependencies. In: Russo, A., Schürr, A. (eds.) FASE 2018. LNCS, vol. 10802, pp.
207–224. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89363-1 12

11. Lisper, B., Masud, A.N., Khanfar, H.: Static backward demand-driven slicing. In:
Asai, K., Sagonas, K. (eds.) Proceedings of the 2015 Workshop on Partial Evalua-
tion and Program Manipulation, PEPM, Mumbai, India, 15–17 January 2015. pp.
115–126. ACM (2015). https://doi.org/10.1145/2678015.2682538

12. Masud, A.N., Ciccozzi, F.: Towards constructing the SSA form using reaching
definitions over dominance frontiers. In: 19th International Working Conference
on Source Code Analysis and Manipulation, SCAM 2019, Cleveland, OH, USA,
September 30 - October 1, 2019. pp. 23–33. IEEE (2019). https://doi.org/10.1109/
SCAM.2019.00012

13. Masud, A.N., Ciccozzi, F.: More precise construction of static single assignment
programs using reaching definitions. J. Syst. Softw. 166, 110590 (2020). https://
doi.org/10.1016/j.jss.2020.110590

14. Ottenstein, K.J., Ottenstein, L.M.: The program dependence graph in a software
development environment. SIGSOFT Softw. Eng. Notes 9(3), 177–184 (1984).
https://doi.org/10.1145/390010.808263

15. Pingali, K., Bilardi, G.: Optimal control dependence computation and the roman
chariots problem. ACM Trans. Program. Lang. Syst. 19(3), 462–491 (1997)

https://doi.org/10.1145/249069.231435
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/24039.24041
https://doi.org/10.1007/978-3-319-19584-1_4
https://doi.org/10.1007/978-3-319-19584-1_4
http://www.es.mdh.se/publications/5511-
http://www.es.mdh.se/publications/5511-
https://doi.org/10.1007/978-3-319-89363-1_12
https://doi.org/10.1145/2678015.2682538
https://doi.org/10.1109/SCAM.2019.00012
https://doi.org/10.1109/SCAM.2019.00012
https://doi.org/10.1016/j.jss.2020.110590
https://doi.org/10.1016/j.jss.2020.110590
https://doi.org/10.1145/390010.808263

222 A. N. Masud

16. Podgurski, A., Clarke, L.A.: A formal model of program dependences and its impli-
cations for software testing, debugging, and maintenance. IEEE Trans. Softw. Eng.
16(9), 965–979 (1990)

17. Prosser, R.T.: Applications of Boolean matrices to the analysis of flow diagrams.
In: Papers Presented at the December 1–3, 1959, Eastern Joint IRE-AIEE-ACM
Computer Conference, pp. 133–138. IRE-AIEE-ACM ’59 (Eastern), ACM, New
York (1959)

18. Ranganath, V.P., Amtoft, T., Banerjee, A., Dwyer, M.B., Hatcliff, J.: A new foun-
dation for control-dependence and slicing for modern program structures. In: Sagiv,
M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 77–93. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31987-0 7

19. Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.: A new foun-
dation for control dependence and slicing for modern program structures. ACM
Trans. Program. Lang. Syst. 29(5), 27-es (2007)

20. Weiser, M.: Program slicing. In: Proceedings 5th International Conference on Soft-
ware Engineering, pp. 439–449. ICSE 1981, IEEE Press, Piscataway, NJ, USA
(1981). http://dl.acm.org/citation.cfm?id=800078.802557

https://doi.org/10.1007/978-3-540-31987-0_7
http://dl.acm.org/citation.cfm?id=800078.802557

A Library Modeling Language for the
Static Analysis of C Programs

Abdelraouf Ouadjaout1(B) and Antoine Miné1,2

1 Sorbonne Université, CNRS, LIP6, 75005 Paris, France
{abdelraouf.ouadjaout,antoine.mine}@lip6.fr

2 Institut Universitaire de France, 75005 Paris, France

Abstract. We present a specification language aiming at soundly mod-
eling unavailable functions in a static analyzer for C by abstract interpre-
tation. It takes inspiration from Behavioral Interface Specification Lan-
guages popular in deductive verification, notably Frama-C’s ACSL, as
we annotate function prototypes with pre and post-conditions expressed
concisely in a first-order logic, but with key differences. Firstly, the speci-
fication aims at replacing a function implementation in a safety analysis,
not verifying its functional correctness. Secondly, we do not rely on the-
orem provers; instead, specifications are interpreted at function calls by
our abstract interpreter.

We implemented the language into Mopsa, a static analyzer designed
to easily reuse abstract domains across widely different languages (such
as C and Python). We show how its design helped us support a logic-
based language with minimal effort. Notably, it was sufficient to add only
a handful transfer functions (including very selective support for quan-
tifiers) to achieve a sound and precise analysis. We modeled a large part
of the GNU C library and C execution environment in our language,
including the manipulation of unbounded strings, file descriptors, and
programs with an unbounded number of symbolic command-line param-
eters, which allows verifying programs in a realistic setting. We report
on the analysis of C programs from the Juliet benchmarks and Coreutils.

1 Introduction

Sound static analysis of real-world C programs is hampered by several difficult
challenges. In this work, we address the key problem of analyzing calls to exter-
nal library functions, when analyzing library code is not an option (e.g., it is
unavailable, has unsupported features such as system calls or assembly). More
specifically, we target the GNU implementation of the C library [13], a library
used in a large number of applications and featuring thousands of functions
covering various aspects, such as file management, socket communication, string
processing, etc. Several approaches have been proposed to analyze programs that
depend on such complex libraries:

This work is partially supported by the European Research Council under Consolidator
Grant Agreement 681393 — MOPSA.

c© Springer Nature Switzerland AG 2020
D. Pichardie and M. Sighireanu (Eds.): SAS 2020, LNCS 12389, pp. 223–247, 2020.
https://doi.org/10.1007/978-3-030-65474-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65474-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-65474-0_11

224 A. Ouadjaout and A. Miné

1 size_t strlen(const char* s) {

2 int size;

3 __require_allocated_array(s);

4 size = __get_array_length(s);

5 return size - 1;

6 }

(a) Stub of strlen in Infer

1 /*@ requires: valid_read_string(s);
2 @ assigns \result \from indirect:s[0..];
3 @ ensures: \result == strlen(s);
4 @*/
5 size_t strlen (const char *s);

(b) Stub of strlen in Frama-C

1 /*$

2 * requires: s != NULL ∧ offset(s) ∈ [0, size(s));
3 * requires: ∃i ∈ [0, size(s)-offset(s)): s[i] == 0;

4 * ensures : return ∈ [0, size(s)-offset(s));
5 * ensures : s[return] == 0;

6 * ensures : ∀i ∈ [0, return): s[i] != 0;

7 */

8 size_t strlen(const char s);

(c) Stub of strlen in Mopsa

1 int n = rand()%100;

2 char *p = malloc(n + 1);

3 if (!p) exit (1);

4 for(int i=0;i<n;i++)

5 p[i] = ’x’;

6 a[n] = ’\0’;

7 int m = strlen(p);

(d) Example with strlen

Fig. 1. Examples of stubs in different analyzers.

Stubs as C Code. A common solution is to provide alternative C implementations
of the library functions, called stubs. In order to remain sound and be effectively
analyzed, stubs are generally simpler and contain calls to special builtins of
the analyzer that provide more abstract information than the classic constructs
of the language. This approach is adopted by many static analyzers, such as
Astrée [4] and Infer [6]. For example, Fig. 1a shows the stub of strlen in Infer:
it uses builtin functions to check that the argument points to a valid block
before returning its allocation size. The approach makes it difficult for the stub
programmer to express complex specifications with higher levels of abstractions,
as key parts of the semantics are hidden within the builtin implementation.
Moreover, writing stubs as C code and hard-coding builtins is acceptable when
targeting embedded code [4], that does not rely much on libraries, but is not
scalable to programs with more dependencies.

Stubs as Logic Formulas. More adapted specification languages have been pro-
posed to overcome these drawbacks, principally based on formulas written in
first-order logic. Some of them exploit the flexibility of the host language in
order to define an embedded domain specific language, such as CodeContracts
checker [11] that can express specifications of C# functions in C# itself. Other
solutions propose a dedicated language and specifications are written as com-
ments annotating the function. The most notable examples are JML for Java
[18] and ACSL for C [3]. They have been widely used in deductive verification,
employing theorem provers that naturally handle logic-based languages, but less
in value static analysis by abstract interpretation. We show in Fig. 1b the spec-
ification of strlen in ACSL, as defined by Frama-C’s value analyzer [9]. The
syntax is less verbose than the C counterpart. Yet, essential parts of the stub
are still computed through builtins. It is worth noting that Frama-C features
another, more natural, specification of strlen, exploiting the expressiveness of

A Library Modeling Language for the Static Analysis of C Programs 225

the logic to avoid builtins. But this specification is large (64 lines) and employs
quantified formulas that are too complex for the value analysis engine: it is used
only by the deductive verification engine.

Abstract Interpretation of Logic Formulas. In this paper, we propose a novel app-
roach based on abstract interpretation [7] that can interpret specifications writ-
ten in a logic-based language of library functions when they are called. Similarly
to CodeContracts checker [11], we do not rely on theorem provers to interpret
formulas; instead, specifications are interpreted by abstract domains tailored to
this task. The key novelty of our solution is that we consider the logic language
as a separate language with its own concrete and abstract semantics, while con-
tracts in cccheck are embedded within the host language as function calls. We
believe that this decoupling makes the design more generic and the language is
not limited by the semantic nor the syntax of the host language.

We implemented the proposed approach into Mopsa [16], a static analyzer
that features a modular architecture that helps reusing abstract domains across
different languages. We leverage this modularity and we illustrate how we can
improve the analysis by extending C abstract domains to add transfer functions
that exploit the expressiveness of formulas and infer better invariants. For exam-
ple, the stub of strlen as defined in Mopsa is shown Fig. 1c. It relies essentially
on constraints expressed as formulas instead of specific analyzer builtins. These
formulas can be handled by Mopsa, and string lengths can be computed precisely
even in the case of dynamically allocated arrays. For instance, at the end of the
program shown in Fig. 1d, Mopsa can infer that m = n.

Contributions. In summary, we propose the following contributions:

– We present in Sect. 2 a new specification language for C functions and we
formalize it with an operational concrete semantic. In addition to standard
constructs found in existing languages, it features a resource management sys-
tem that is general enough to model various objects, such as blocks allocated
by malloc/realloc or file descriptors returned by open. Illustrative examples
can be found in Appendix A.

– We present in Sect. 3 a generic abstract domain for interpreting the specifi-
cation language, that is agnostic of the underlying abstraction of C.

– In Sect. 4, we illustrate how a string abstraction can benefit from the expres-
siveness of the specification language in order to provide better invariants.

– We implemented the analysis in Mopsa and we modeled over 1000 library
functions. In Sect. 5, we report on the results of analyzing some Juliet bench-
marks and Coreutils programs. More particularly, we show how our analysis
combines several symbolic domains in order to analyze C programs with an
unbounded number of command-line arguments with arbitrary lengths. To
our knowledge, Mopsa is the first static analyzer to perform such an analysis.

Limitations. The following features are not supported by our analysis: recur-
sive functions, longjumps, bitfields, inline assembly, concurrency and multi-
dimensional variable length arrays.

226 A. Ouadjaout and A. Miné

stub ::= (stmt | case)∗ form ::= expr � expr , � ∈ { ==, !=, . . . }
case ::= case { stmt ∗ } | expr ∈ set
stmt ::= effect | cond | alive(expr)
effect ::= alloc : type ident = new ident ; | form ∧ form

| assigns : expr [expr , expr]?; | form ∨ form
| free : expr ; | ¬form

| ∀ ident ∈ [expr , expr] : form
cond ::= assumes : form; | ∃ ident ∈ [expr , expr] : form

| requires : form;
| ensures : form; set ::= [expr , expr] | ident

expr ::= c, c ∈ R

ntype ::= char | short | int | long | float | &ident
stype ::= ntype | ptr | *expr
type ::= stype | expr � expr , � ∈ { +, -, . . . }

| type[n], n ∈ N | size(expr)
| struct { type ident ; . . . } | base(expr)
| union { type ident ; . . . } | offset(expr)

Fig. 2. Syntax of the modeling language.

2 Syntax and Concrete Semantics

We define the syntax and operational concrete semantics of the modeling lan-
guage. The syntax is inspired from existing specification languages, such as ACSL
[3] and JML [18], with the addition of resource management. The semantics
expresses a relation between program states before the function call and after.

2.1 Syntax

The syntax is presented in Fig. 2. It features two kinds of statements:

– Side-effect statements specify the part of the input state which is modified by
the function: assigns specifies that a variable (or an array slice) is modified
by the function; alloc creates a fresh resource instance of a specified class
(ident) and assigns its address to a local variable; conversely, free destroys a
previously allocated resource. Any memory portion that is not explicitly men-
tioned by these statements is implicitly assumed to be unchanged. Resources
model dynamic objects, such as memory blocks managed by malloc, realloc
and free, or file descriptors managed by open and close. The models of these
functions can be found in Appendix A. Assigning a class to resources allows
supporting different attributes (e.g., read-only memory blocks) and alloca-
tion semantics (e.g., returning the lowest available integer when allocating a
descriptor, which is needed to model faithfully the dup function).

– Condition statements express pre and post-conditions: requires defines
mandatory conditions on the input environment for the function to behave
correctly; assumes defines assumptions, and is used for case analysis; ensures
expresses conditions on the output environment (the return value, the value
of modified variables, and the size and initial state of allocated resources).

A Library Modeling Language for the Static Analysis of C Programs 227

Cases. We support a disjunctive construct case (akin to Frama-C’s behaviors)
to describe functions with several possible behaviors. Each case is independently
analyzed, after which they are all joined. Statements placed outside cases are
common to all cases, which is useful to factor specification. For the sake of clarity,
we will focus on the formalization of stubs without cases.

Formulas and Expressions. Formulas are classic first-order, with conjunctions,
disjunctions, negations and quantifiers. The atoms are C expressions (without
function call nor side-effect), extended with a few built-in functions and predi-
cates: e ∈ set restricts the range of a numeric value or the class of a resource;
alive(e) checks whether a resource has not been freed; given a pointer e, base(e)
returns a pointer to the beginning of the memory block containing e, size(e) is
the block size, and offset(e) is the byte-offset of e in the block.

2.2 Environments

Concrete memories are defined classically. The memory is decomposed into
blocks: B def= V ∪ A, which can be either variables in V or heap addresses in
A. Each block is decomposed into scalar elements in S ⊆ B × N × stype, where
�b, o, τ� ∈ S denotes the memory region in block b starting at offset o and hav-
ing type τ . A scalar element of type τ can have values in Vτ , where Vτ is R for
numeric types and Vptr

def= B × N is a block-offset pair for pointers1. The set of
all scalar values is V

def= R ∪ (B × N).
Environments, in E def= M × R, encode the state of the program using: a

memory environment in M def= S → V, mapping scalar elements to values,
and a resource environment in R def= A ⇀ (ident × N × B), which is a partial
map mapping allocated resources to their class, size, and liveness status (as a
Boolean).

Example 1. Given the declaration: struct s { int id; char *data; } v, the
environment:(

�v, 0, int� �→ 5 �v, 4, ptr� �→ (@, 0)
�@, 0, short� �→ 3 �@, 2, short� �→ −1 ,@ �→ (malloc, 4, true)

)

encodes the state where field v.id has value 5 and v.data points to a malloc

resource containing two short elements with values 3 and −1 respectively.

2.3 Evaluation

Expressions. The evaluation of expressions, given as E� . � ∈ expr → E → P(V),
returns the set of possible values to handle possible non-determinism (such as

1 To simplify the presentation, we assume that S is given (e.g. using block types)
and omit NULL and invalid pointers. In practice, our analysis uses the dynamic cell
decomposition from [19] to fully handle C pointers, union types, and type-punning.

228 A. Ouadjaout and A. Miné

Fig. 3. Concrete semantics of expressions.

Fig. 4. Concrete semantics of formulas.

reading random values). It is defined by induction on the syntax, as depicted in
Fig. 3. The stub builtin size reduces to the C builtin sizeof for variables and
returns the size stored in the resource map for dynamically allocated blocks.
Calls to base and offset evaluate their pointer argument and extract the first
(respectively second) component. To simplify the presentation, we do not give the
explicit definition of the C operators, which is complex but standard. Likewise,
we omit a precise treatment of invalid and NULL pointers (see [19] for a more
complete definition). Finally, we omit here reporting of C run-time errors.

Formulas.
The semantics of formulas F� . � ∈ form → P(E), shown in Fig. 4, returns the

set of environments that satisfy it. It is standard, except for built-in predicates:
to verify the predicate e ∈ R (resp. alive(e)), we resolve the instance pointed
by e and look up the resource map to check that its class equals R (resp. its
liveness flag is true).

A Library Modeling Language for the Static Analysis of C Programs 229

Fig. 5. Concrete semantics of relational expressions.

2.4 Relational Semantics

Statements express some information on pre and post-conditions, that is, on the
relation between input and output environments.

Expressions and Formulas. To allow expressions to mention both the input and
output state, we use the classic prime notation: e′ denotes the value of expression
e in the post-state. Denoting ˜expr the set of expressions with primes, their
semantic on an input-output environment pair is given by Ẽ� . � ∈ ˜expr → E ×
E → P(V). Figure 5 presents the most interesting cases: evaluating a primed
dereference Ẽ� (*e)′ � 〈ε, ε′〉 reduces to the non-relational evaluation E� *e � on ε′,
while a non-primed dereference reduces to E� *e � on ε. The case of size(e′) and
size(e) is similar. Other cases are analog to non-relational evaluation.

We denote by ˜form formulas with primes, and define their evaluation function
F̃� . � ∈ ˜form → P(E ×E) as returning a relation. As shown in Fig. 6, to evaluate
predicates e ∈ R and alive(e), only input environments are inspected, as the
resource class is an immutable property and the liveness flag can be changed
only by free statements in previous calls. The remaining definitions are similar
to the non-relational case.

Example 2. Consider again variable v shown in Example 1 and the following
relational formula: v.data′ == v.data + 1 ∧ *(v.data + 1)′ == 10. When applied
on the previous environment we obtain the relation:

〈
(

�v, 0, int� �→ 5 �v, 4, ptr� �→ (@, 0)
�@, 0, short� �→ 3 �@, 2, short� �→ −1 ,@ �→ (malloc, 4, true)

)

,(
�v, 0, int� �→ 5 �v, 4, ptr� �→ (@,2)

�@, 0, short� �→ 3 �@, 2, short� �→ 10 ,@ �→ (malloc, 4, true)
)

〉

Side-effect Statements. We model side-effect statements as relation transformers,
Seffect� . � ∈ effect → P(E × E) → P(E × E) shown in Fig. 7. Given an input-
output relation as argument, it returns a new relation where the output part is

230 A. Ouadjaout and A. Miné

Fig. 6. Concrete semantics of relational formulas.

updated to take into account the effect of the statement. Thus, starting from
the identity relation, by composing these statements, we can construct a relation
mapping each input environment to a corresponding environment with resources
allocated or freed, and variables modified. The statement alloc : τ* v = new R
allocates a new instance of resource class R and assigns its address to variable
v. The function scalars ∈ type → P(N × stype) returns the set of scalar types
and their offsets within a given type. We have no information on the block size
(except that it is a non-null multiple of the size of τ) nor the block contents; both
information can be provided later using an ensures statement. The statement
assigns : e[a, b] modifies the memory block pointed by e and fills the elements
located between indices a and b with unspecified values. Finally, free : e frees
the resource pointed by e by updating its liveness flag. These statements only
use non-primed variables, hence, all expressions are evaluated in the input part
of the relation, which is left intact by these transformers.

Condition Statements. A condition statement adds a constraint to the initial
input-output relation built by the side-effect statements. We define their seman-
tics as a function Scond� . � ∈ cond → P(E ×E). Another role of these statements
is to detect specification violation (unsatisfied requires). Thus, we enrich the
set of output environments with an error state Ω, so that 〈ε,Ω〉 denotes an
input environment ε that does not satisfy a pre-condition. The semantics is
given in Fig. 7. Both assumes and requires statements use the simple filter
F� . � as they operate on input environments. In contrast, ensures statements
express relations between the input and the output and use therefore the rela-
tional filter F̃� . �. Combining two conditions is a little more subtle than inter-
secting their relations, due to the error state. We define a combination operator
� that preserves errors detected by conditions. Due to errors, conditions are not
commutative. Indeed assumes : x > 0; requires : x
= 0; is not equivalent to
requires : x
= 0; assumes : x > 0, as the later will report errors when x
= 0.

A Library Modeling Language for the Static Analysis of C Programs 231

Fig. 7. Concrete semantics of statements.

Fig. 8. Concrete semantics of the stub.

Iterator. Figure 8 shows the semantic function S� . � ∈ stub → P(E) →
P(E) × P(E) of a complete stub. It first executes its side-effect statements only
effects(body), then condition statements conditions(body), and finally applies
the resulting relation R2 to the initial states at function entry I. It returns two
sets of environments: the environments O at function exit when pre-conditions
are met, and the environments X at function entry that result in a violation of
a pre-condition.

3 Generic Abstract Semantics

We show how an existing abstract domain for C can be extended to abstract the
concrete semantics of our stubs in a generic way. The next section will focus on
specific abstractions exploiting more finely the structure of stub statements.

232 A. Ouadjaout and A. Miné

3.1 Abstract Domain

C Domain. We assume we are given an abstract domain M� of memories P(M)
with the standard operators: least element ⊥M, join �M, and widening �M,
as well as a sound abstraction S

�
M� . � ∈ stmtM → M� → M� for classic mem-

ory statement stmtM, including: x ← y, to model assignments of C expres-
sions; forget(b, x, y), to assign random values to a byte slice [x, y] of a mem-
ory block b; add(b), to add a memory block with random values; remove(b) to
remove a memory block; and the array sumarization operators expand(b1, b2) and
fold(b1, b2) from [14]. expand(b1, b2) creates a weak copy b2 of block b1, i.e. both
b1 and b2 have the same constraints without being equal. For example, executing
expand(x, z) when x ≥ y∧x ∈ [1, 10] yields x ≥ y∧x ∈ [1, 10]∧z ≥ y∧z ∈ [1, 10].
The converse operation, fold(b1, b2), creates a summary in b1 by keeping only the
constraints also implied by b2, and then removes b2. We exploit them to abstract
unbounded memory allocation and perform weak updates.

Heap Abstraction. We also assume that we are given an abstraction of heap
addresses P(A) into a finite set A� of abstract addresses, with least element
⊥A and join �A. Classic examples include call-site abstraction, and the recency
abstraction [2] we use in our implementation. An abstract address may represent
a single concrete address or a (possibly unbounded) collection of addresses, which
is indicated by a cardinality operator ‖.‖A ∈ A� → { single,many }. Finally, we
assume the domain provides an allocation function A

�� . � ∈ P(A�) × M� →
A� × M�. As an abstract allocation may cause memory blocks to be expanded
or folded, and the pointers to point to different abstract addresses, the function
also returns an updated memory environment.

Environments. For each abstract block in A�, we maintain its byte size in a
numeric variable size� ∈ A� → B in the memory environment, and track its
possible resource classes in P(C), and possible liveness status in the boolean
lattice P({true, false}). The abstraction E� of environment sets P(E) is thus:

E� def= M� × A� → (P(C) × P({true, false})) (1)

The ⊥E , �E , and �E operators are derived naturally from those in M� and A�,
and we lift C statements to S

�
C� s �(ρ�, σ�) def= (S�

M� s �ρ�, σ�).

3.2 Evaluations

Our abstraction leverages the modular architecture and the communication
mechanisms introduced in the Mopsa framework [16]. We will employ notably
symbolic and disjunctive evaluations, which we recall briefly.

Expressions. In the concrete semantics, expressions are evaluated into values.
Abstracting expression evaluation as functions returning abstract values, such as
intervals, would limit the analysis to non-relational properties. Instead, domains
in Mopsa can evaluate expressions into other expressions: based on the current
abstract state, expression parts are simplified into more abstract ones that other

A Library Modeling Language for the Static Analysis of C Programs 233

domains can process. A common example is relying on abstract variables. For
instance, the memory domain will replace a size(e) expression into the variable
size�(b) after determining that e points to block b, producing a purely numeric
expression. Communicating expressions ensures a low coupling between domains,
while preserving relational information (e.g., size(e) < ireduces to comparing
two numeric variables, size�(b) and i). A domain can also perform a case analysis
and transform one expression into a disjunction of several expressions, associated
to a partition of the abstract state (e.g., if e can point to several blocks). Formally,
a domain D� implements expression evaluation as a function: φ ∈ expr → D� →
P(expr × D�). To express concisely that the rest of the abstract computation
should be performed in parallel on each expression and then joined, we define
here (and use in our implementation) a monadic bind operator:

let�
� (f, Y �) ∈ φ[e]X� in body

def=⊔
(g,Z�)∈φ[e]X� body[f/g, Y �/Z�]

(2)

We illustrate formally abstract expression evaluation E
�� . � on the size(e)

expression. First, the pointer domain handles the pointer expression e: E�� e �ε�

returns a set of triples (b, o, ε′) where b is an abstract block, o a numeric off-
set expression, and ε′ the part of ε where e points into block b. Thanks to this
disjunction, the abstract semantics of size(e) follows closely the concrete one:

E
�� size(e) �ε� def= let�

� ((b,−), ε�
1) ∈ E

�� e � ε� in
if b ∈ V then { (sizeof(b), ε�

1) }
else { (size�(b), ε�

1) }
(3)

Formulas. Evaluation of formulas is defined by the function F
�� . � ∈ formula →

E� → E�, shown in Fig. 9. We focus on the most interesting cases which are
the quantified formulas. Existential quantification reduces to assigning to v the
interval [a, b] and keeping only environments that satisfy f . Universal quantifi-
cation are handled very similarly to a loop for(v=a; v<=b; v++) assume(f). We
perform an iteration with widening for v from a to b and we over-approximate
the sequence of states statisfying f . The overall formula is satisfied for states
reaching the end of the sequence. These generic transfer functions can be impre-
cise in practice. We will show later that specific domains can implement natively
more precise transfer functions for selected quantified formulas.

Relations. The concrete semantics requires evaluating expressions and formulas
not only on states, by also on relations. To represent relations in the abstract,
we simply introduce a family of primed variables: primed� ∈ B → B returns the
primed version of a block (i.e., the block in the post-state). This classic technique
allows lifting any state domain to a relation domain. Combined with relational
domains, we can express complex relationships between values in the pre- and
the post-state, if needed. The relation abstractions Ẽ�� . � and F̃

�� . � of Ẽ� . � and
F̃� . � can be easily expressed in terms of the state abstractions E

�� . � and F
�� . �

we already defined. As an example, the evaluation of a primed dereference (*e)′

234 A. Ouadjaout and A. Miné

Fig. 9. Abstract semantics of formulas.

simply evaluates e into a set of memory blocks b and offset expressions o, and
outputs a dereference of the primed block primed�(b) at the (non-primed) offset
expression o, which can be handled by the (relation-unaware) memory domain:

Ẽ
�� (*e)′ �ε� def= let�

� ((b, o), ε�
1) ∈ Ẽ

�� e � ε� in
{ (*(typeof(e))((char*)&primed�(b) + o), ε�

1) } (4)

3.3 Transfer Functions

Side-effect Statements. The effect of a statement is approximated by S
�
effect� . � ∈

effect → E� → E� defined in Fig. 10. Resource allocation alloc : v = new R first
asks the underlying heap abstraction for a new abstract address with A

�� . �,
which is bound to a new variable v; a new size variable size� is created and the
resource map is updated with the class and liveness information. The block is
also initialized with random values using forget . Assignments assigns : e[x, y]
reduces to forget on the primed version of the block b e points to (recall that the
output value is specified by a later ensures). Finally, free : e resets the liveness
flag of the primed block.

Condition Statements. The abstract semantics of condition statements is given
by S

�
cond� . � ∈ cond → E� → E� × E�, defined in Fig. 10. The function returns

a pair of abstract environments: the first one over-approximates the output
environments satisfying the condition, while the second one over-approximates
the input environments violating mandatory conditions specified with requires
statements.

A Library Modeling Language for the Static Analysis of C Programs 235

Fig. 10. Abstract semantics of statements.

Iterator. The abstract semantic of a whole stub is defined in Fig. 11. First, the
expand function is used to construct an identity relation over the input abstract
state ε�

0. To improve efficiency, this is limited to the blocks that are effectively
modified by the stub; this set is over-approximated using the assigned function,
which resolves the pointer expressions occurring in assigns statement. Then,
side-effect statements are evaluated. Note that, for an assigns : a[x, y] state-
ment, while whole blocks pointed by a are duplicated in the output state, only
the parts in the [x, y] range are assigned random values. Condition statements
are then executed, collecting contract violation and refining the output state.
Finally, we remove the unprimed version of primed (i.e., modified) blocks and
the primed block into its unprimed version, thus reverting to a state abstraction
that models the output state. In case of a primed block b modeling several con-
crete blocks (i.e., ‖b‖A = many), the primed block is folded into the unprimed
version, so as to preserve the values before the call, resulting in a weak update.

4 Specific Abstract Semantics: The Case of C Strings

We now show how we can design a formula-aware abstract domain, with an
application to C string analysis. The domain handles precisely selective quan-
tified formula, while reverting in the other cases (as all other domains) to the
generic operators.

String Length Domain. Strings in C are arrays of char elements containing a
delimiting null byte ’\0’ indicating the end of the string. Many functions in the
standard C library take strings as arguments and assume they contain a null byte
delimiter. We want to express and check this assumption in the function stubs.

236 A. Ouadjaout and A. Miné

Fig. 11. Abstract semantics of the stub.

We exploit a classic abstraction already present in Mopsa: the StringLength
domain [17] that maintains a numeric abstract variable length� ∈ B → B for
arrays to store the offset of the first null byte. It thus infers, for each array a, an
invariant of the form:

∀i ∈ [0, length�(a) − 1] : a[i]
= 0 ∧ a[length�(a)] = 0 (5)

Example 3. Consider the following example, where n ranges in [0, 99]:

1 for (int i = 0; i < n; i++) a[i] = ’x’;

2 a[n] = ’\0’;

An analysis with the Intervals domain will infer that length�(a) ∈ [0, 99].
Adding the Polyhedra domain, we will moreover infer that length�(a) = n.

Stub Transfer Functions. Within a stub, a pre-condition stating the validity of
a string pointed to by an argument named s is naturally expressed as:

requires : ∃i ∈ [0, size(s) − offset(s) − 1] : s[i] == 0; (6)

Proving this requirement requires checking the emptiness of its negation, which
involves a universal quantifier. Using the generic abstraction from last section,
it is equivalent to proving emptiness after the loop for (i = 0; i < size(s)-

offset(s); i++) s[i] != 0. This, in turn, requires an iteration with widening
and, unless s has constant length, a relational domain with sufficient precision,
which is costly.

To solve these problems, we propose a direct interpretation of both formulas
in the string domain, i.e., we add transfer functions for F��∃i ∈ [lo, hi] : s[i] == 0 �
and F

��∀i ∈ [lo, hi] : s[i] != 0 �,2 as shown in Table. 1. They perform a case anal-
ysis: the abstract state ε� is split into two cases according to a condition, and
2 We actually support the comparison of s[i] with arbitrary expressions. We limit the

description to the case of comparisons with 0 for the sake of clarity.

A Library Modeling Language for the Static Analysis of C Programs 237

Table 1. Transfer functions of formulas in the string length domain.

Formula Case Condition State transformer

∃i ∈ [lo, hi] : s[i] == 0
#1 length�(s) > hi λε�. ⊥
#2 length�(s) ≤ hi λε�. ε�

∀i ∈ [lo, hi] : s[i] != 0
#1 length�(s) �∈ [lo, hi] λε�. ε�

#2 length�(s) ∈ [lo, hi] λε�. ⊥

we keep all environments in one case (λε�. ε) and none in the other (λε�.⊥). For
instance, assuming that (5) holds, then Case #1 of F

��∃i ∈ [lo, hi] : s[i] == 0 �
states that the quantification range [lo, hi] covers only elements before the null
byte, so that the formula does not hold. Case #2 states that there is a value in
[lo, hi] greater than or equal to the string length, in which case s[i] may be null
and the formula may be valid. Similarly, Case #1 of F��∀i ∈ [lo, hi] : s[i] != 0 �
arises when the null byte is outside the quantification range, so that the for-
mula may be valid. In Case #2, the null byte is in the range, and the formula
is definitely invalid. We stress on the fact that all the conditions are interpreted
symbolically in the numeric domain; hence, lo and hi are not limited to con-
stants, but can be arbitrary expressions.

Example 4. Let us illustrate how the predicate (6) can be verified on the follow-
ing abstract environment:

ε� =

⎛
⎝ �s, 0, ptr� �→ { (@, 0) }

size�(@) ≥ 1
length�(@) ∈ [0, size�(@) − 1]

,@ �→ ({ malloc }, true)

⎞
⎠ (7)

which represents the case of a variable s pointing to a resource instance @ allo-
cated by malloc with at least one byte. The string domain indicates that the
position of the null byte is between 0 and size�(@) − 1. When checking the for-
mula ∃i ∈ [0, size(s)−offset(s)−1] : s[i] == 0, the condition for Case #1 never
holds since:

(size(s) − offset(s) − 1 = size�(@) − 1) ∧ (length�(@) ≤ size�(@) − 1)

When checking its negation, ∀i ∈ [0, size(s) − offset(s) − 1] : s[i] != 0, Case
#1 is also unsatisfiable, for the same reason. As the transformer for Case #2
returns ⊥, the overall result is ⊥, proving that Requirement (6) holds: the stub
does not raise any alarm.

Genericity of Formulas. An important motivation for using a logic language is to
exploit its expressiveness within abstract domains to analyze several stubs with
the same transfer functions. We show that this is indeed the case: the transfer
function that was used to validate strings in the previous section can be used,
without modification, to compute string lengths.

238 A. Ouadjaout and A. Miné

Example 5. Let us go back to the example of the strlen function defined as:

1 /*$

2 * requires: s != NULL ∧ offset(s) ∈ [0, size(s));
3 * requires: ∃i ∈ [0, size(s)-offset(s)): s[i] == 0;

4 * ensures : return ∈ [0, size(s)-offset(s));
5 * ensures : s[return] == 0;

6 * ensures : ∀i ∈ [0, return): s[i] != 0;

7 */

8 size_t strlen(const char s);

and consider again the environment (7). As shown before, the requires
statements at line 3 validating the string do not raise any alarm. At line 5, the
classic transfer functions of the StringLength domain [17] infer that:

0 ≤ length�(@) ≤ return

since s[return] = 0 and length�(@) is the position of the first null byte. Finally,
at line 6, both cases of the second transfer function in Table 1 are valid. Since
we keep a non-⊥ post-state only for Case #1, we obtain:

0 ≤ length�(@) ≤ return ∧ length�(@)
∈ [0, return − 1]
⇔ 0 ≤ length�(@) ≤ return ∧ length�(@) > return − 1
⇔ 0 ≤ length�(@) = return

hence the domain precisely infers that strlen returns the length of string @.

5 Experiments

We implemented our analysis in the Mopsa framework [16]. It consists of 29503
lines of OCaml code (excluding parsers). Among them, 16449 lines (56%) are
common with analyses of other languages, such as Python. C domains consist
of 11342 lines (38%) and the stub abstraction consists of 1712 lines (6%).

We wrote 14191 lines of stub, modeling 1108 functions from 50 headers from
the Glibc implementation of the standard C library, version 8.28 [13]. All stubs
thoroughly check their arguments (pointers, strings, integers, floats), soundly
model their side effects, dynamic memory allocation, open files and descriptors.
We refrained form implicit assumptions, such as non-aliasing arguments. At an
average of 8 meaningful lines per stub, the language proved to be concise enough.
Some examples can be found in Appendix A.

To assess the efficiency and the precision of our implementation, we target two
families of programs. We run our analysis on part of NIST Juliet Tests Suite [5],
a large collection of small programs with artificially injected errors. These tests
are precious to reveal soundness bugs in analyzers, but do not reflect real-world
code bases. Hence, we also target more realistic programs from the Coreutils
package [12], which are widely used command-line utilities. These programs,
while not very large, depend heavily on the C standard library. We run all our
tests on an Intel Xeon 3.40 GHz processor running Linux.

A Library Modeling Language for the Static Analysis of C Programs 239

Table 2. Analysis results on Juliet. �: precise analysis, �: analysis with false alarms.

Code Title Tests Lines Time (h:m:s) � �

CWE121 Stack-based Buffer Overflow 2508 234k 00:59:12 26% 74%

CWE122 Heap-based Buffer Overflow 1556 174k 00:37:12 28% 72%

CWE124 Buffer Underwrite 758 93k 00:18:28 86% 14%

CWE126 Buffer Over-read 600 75k 00:14:45 40% 60%

CWE127 Buffer Under-read 758 89k 00:18:26 87% 13%

CWE190 Integer Overflow 3420 440k 01:24:47 52% 48%

CWE191 Integer Underflow 2622 340k 01:02:27 55% 45%

CWE369 Divide By Zero 497 109k 00:13:17 55% 45%

CWE415 Double Free 190 17k 00:04:21 100% 0%

CWE416 Use After Free 118 14k 00:02:40 99% 1%

CWE469 Illegal Pointer Subtraction 18 1k 00:00:24 100% 0%

CWE476 NULL Pointer Dereference 216 21k 00:04:53 100% 0%

5.1 Juliet

The Juliet Tests Suite [5] is organized using the Common Weakness Enumeration
taxonomy [1]. It consists of a large number of tests for each CWE. Each test
contains bad and good functions. Bad functions contain one instance of the CWE,
while good functions are safe.

We selected 12 categories from NIST Juliet 1.3 matching the safety violations
detected by Mopsa. For each test, we have analyzed the good and the bad func-
tions and measured the analysis time and the number of reported alarms. Three
outcomes are possible. The analysis is precise if it reports (i) exactly one alarm
in the bad function that corresponds to the tested CWE, and (ii) no alarm in
the good function. The analysis is unsound if no alarm is reported in the bad
function. Otherwise, the analysis is imprecise.

The obtained results are summarized in Table 2. From each category, we have
excluded tests that contain unsupported features or that do not correspond to
runtime errors. As expected, all analyses are sound: Mopsa detects the target
CWE in every bad test. However, half of the tests were imprecise. Much of this
imprecision comes from the gap between Mopsa’s error reporting and the CWE
taxonomy. For instance, an invalid string passed to a library function may be
reported as a stub violation while Juliet expects a buffer overflow. By considering
precise an analysis reporting no alarm in the good function and exactly one
alarm in the bad function (without considering its nature), the overall precision
increases to 71% (e.g. 89% of CWE121 tests become precise). Other factors also
contribute to the imprecisions, such as the lack of disjunctive domains. Finally,
many tests use the socket API to introduce non-determinism, and the current
file management abstraction was not precise enough to prove the validity of some
file descriptors.

240 A. Ouadjaout and A. Miné

5.2 Coreutils

Our second benchmark includes 19 out of 106 programs from Coreutils version
8.30 [12]. Each program consists in a principal C file containing the main func-
tion, and library functions that are shared among all Coreutils programs. Due to
these complex dependencies, it was difficult to extract the number of lines cor-
responding to individual programs. Instead, we computed the number of atomic
statements, consisting of assignments and tests (e.g. in for, while and switch

statements), in the functions reached by the analysis. This gives an indication of
the size of the program, but the scale is not comparable with line count metrics.

Scenarios. Three scenarios were considered. The first one consists in analyzing
the function main without any argument. In the second scenario, we call main

with one symbolic argument with arbitrary size. The last scenario is the most
general: main is called with a symbolic number of symbolic arguments.

Abstractions. For each scenario, four abstractions were compared. In the first
abstraction A1, we employed the Cells memory domain [19] over the Inter-
vals domain. The second abstraction A2 enriches A1 with the StringLength
domain [17] improved as discussed in Sect. 4. The third abstraction A3 enriches
A2 with the Polyhedra domain [8,15] with a static packing strategy [4]. Finally,
A4 enriches A3 with a PointerSentinel domain that tracks the position of the
first NULL pointer in an array of pointers; it is similar to the string length domain
and useful to represent a symbolic argv and handle functions such as getopt (see
Appendix A.4).

Limitations. The analysis of recursive calls is not yet implemented in Mopsa.
We have found only one recursive function in the analyzed programs, which we
replaced with a stub model. The second limitation concerns the getopt family of
functions. We have not considered the case where these functions modify the argv

array by rearranging its elements in some specific order, since such modifications
make the analysis too imprecise. However, we believe that this kind of operation
can be handled by an enhanced PointerSentinel domain. This is left as future
work.

Precision. Figure 12a shows the number of alarms for every analysis. The most
advanced abstraction A4 reduces significantly the number of alarms, specially for
the fully symbolic scenario. This gain is not due to one specific abstraction, but it
comes from the cooperation of several domains, most notably between Polyhe-
dra and StringLength. This also emphasizes the effectiveness of domain com-
munication mechanisms within Mopsa [16], notably symbolic expression evalua-
tion.

Efficiency. As shown in Fig. 12b, the gain in precision comes at the cost of
degraded performances. The most significant decrease corresponds to the intro-
duction of the Polyhedra domain. Note that our current packing strategy is
naive (assigning for each function one pack holding all its local variables); a more
advanced strategy could improve scalability.

A Library Modeling Language for the Static Analysis of C Programs 241

Program Statements
No arg. One symbolic arg. Fully symbolic args.

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

cksum 292 53 29 28 36 135 106 106 53 136 107 106 53
dircolors 507 104 54 47 47 185 158 154 100 186 159 154 99
dirname 183 59 14 13 13 120 90 90 22 120 90 90 21
echo 241 16 3 3 3 216 179 175 33 216 179 175 34
false 131 0 0 0 0 89 61 61 13 89 61 61 13
hostid 193 25 9 8 8 91 63 63 16 92 64 63 16

id 193 25 9 8 8 91 63 63 16 92 64 63 16
logname 196 25 8 7 7 93 62 62 15 94 63 62 15
nice 323 16 3 3 3 145 105 104 18 151 111 105 20
nproc 356 81 36 35 35 136 99 99 33 137 100 99 32

printenv 179 70 29 28 28 159 131 130 59 161 133 130 59
pwd 342 81 23 20 20 116 70 68 23 116 70 68 22

sleep 289 25 8 7 7 125 97 97 29 128 99 97 29
stdbuf 546 97 53 52 52 327 269 267 125 329 271 268 127
true 131 0 0 0 0 89 61 61 13 89 61 61 13
uname 251 67 25 24 24 105 72 72 27 106 73 73 33

unexpand 478 149 93 92 92 226 179 179 95 226 179 179 94
unlink 204 25 8 7 7 98 68 68 15 103 71 68 15
whoami 202 27 9 8 8 95 63 63 16 96 64 63 16

(a) Number of reported alarms.

Program
No arg. One symbolic arg. Fully symbolic args.

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

cksum 12.62 15.76 46.86 46.32 33.69 39.67 175.92 174.45 34.21 39.3 174.5 193.64
dircolors 70.27 88.49 292.38 228.75 174.46 192.94 514.1 646.22 160.91 198.07 533.13 595.14
dirname 22.56 29.04 97.96 85.65 22.95 30.38 90.99 140.88 24.97 28.89 96.04 119.86
echo 8.73 9.12 13.38 12.48 10.74 13.52 26.03 25.44 11.44 13.24 24.75 156.15
false 8.72 9.17 13.38 13.45 9.33 11.35 19.63 18.9 10.05 11.26 19.54 19.18
hostid 9.87 10.18 21.7 20.63 14.74 16.72 41.13 53.68 14.17 16.61 42.08 53.41

id 9.51 11.53 22.68 20.65 13.66 16.5 43.39 55.37 13.75 18.96 40.51 54.57
logname 9.31 10.75 20.13 19.42 15.97 16.51 39.37 45.06 13.47 17.05 40.69 48.72
nice 9.26 9.08 13.64 12.57 25.42 30.04 113.35 177.38 23.98 30.73 148.1 238.55
nproc 23.1 30.35 103.64 90.52 25.72 32.96 110.4 150.21 25.7 34.17 112.39 128.86

printenv 21.43 27.63 93.83 94.08 22.82 28.34 111.41 206.16 22.52 28.06 131.27 200.63
pwd 23.81 29.34 95.41 84.18 24.1 29.05 88.72 127.68 22.41 29.59 98.15 113.56

sleep 11.48 13.11 26.93 24.77 17.54 19.86 59.62 65.49 16.64 21.42 62.27 71.32
stdbuf 37.23 56.73 214.48 190.39 42.37 63.34 229.52 291.24 42.32 65.75 215.85 255.32
true 8.73 9.13 12.57 12.08 10.89 11.27 18.64 19.4 10.04 11.62 18.95 21.63
uname 21.85 28.46 86.38 81.68 24.19 28.9 85.85 102.31 23.95 30.97 95.13 129.77

unexpand 68.75 137.73 400.55 366.1 65.14 138.18 361.77 525.35 61.9 149.1 378.31 364.11
unlink 11.35 12.88 26.24 27.23 14.74 16.05 40.34 49.04 16.82 18.63 49.03 58.85
whoami 10.51 11.17 21.28 22.17 14.98 16.13 41.89 59.91 14.27 16.69 48.57 61.3

(b) Analysis time in seconds.

 0

 20

 40

 60

 80

 100

cksum
dircolors

dirname
echo

false
hostid

id logname
nice nproc

printenv
pwd sleep

stdbuf
true uname

unlink
whoami

C
ov

er
ag

e
(%

)

No arg. One symbolic arg. Fully symbolic args.

(c) Coverage of abstraction A4.

Fig. 12. Analysis results on Coreutils programs.

242 A. Ouadjaout and A. Miné

Coverage. We have also measured the ratio of statements reached by the analysis
in the three scenarios. While not a formal guarantee of correctness, a high level
of coverage provides some reassurance that large parts of the programs are not
ignored due to soundness errors in our implementation or our stubs. We discuss
only the case of abstraction A4, as other cases provide similar results. Figure 12c
presents the results. In most cases, using one symbolic argument helps covering a
significantly larger part of the program compared to analyzing main without any
argument. Coverage with one or several symbolic arguments is roughly the same,
possibly due to the control flow over-approximations caused by even a single
symbolic argument. Nevertheless, only the last scenario, covering an unbounded
number of arguments, provides a soundness guarantee that all the executions of
the program are covered. As far as we know, this is not supported in the static
value analyses by Frama-C [10] nor Astrée [4].

6 Conclusion

We presented a static analysis by abstract interpretation of C library func-
tions modeled with a specification language. We defined an operational concrete
semantics of the language and proposed a generic abstraction that can be sup-
ported by any abstract domain. We also showed how a C string domain could
be enriched with specialized transfer functions for specific formulas appearing
in stubs, greatly improving the analysis precision. We integrated the proposed
solution into the Mopsa static analyzer and experimented it on Juliet bench-
marks and Coreutils programs. In the future, we plan to extend our coverage of
the standard C library, provide models for other well-known libraries, such as
OpenSSL, and experiment on larger program analyses. In addition, we envisage
to upgrade our specification language to support more expressive logic. Finally,
we want to improve the quality of our results by adding more precise abstrac-
tions, such as trace partitioning, or more efficient modular iterators.

A Stub Examples

This appendix presents additional representative examples of the stubs we devel-
oped for the GNU C library.

A.1 Predicates

To simplify stub coding, following other logic-base specification languages,
Mopsa allows defining logic predicates, that can be then used in stubs. For
instance, we define the following useful predicates on C strings: valid string(s)
states that s is zero-terminated, and is useful as argument precondition;
in string(x,s) states that x points within string s before its null character,
which is useful to state post-conditions.

A Library Modeling Language for the Static Analysis of C Programs 243

1 /*$

2 * predicate valid_string(s):

3 * s != NULL ∧ offset(s) ∈ [0, size(s) - 1]

4 * ∧ ∃ k ∈ [0, size(s) - offset(s) - 1]: s[k] == 0;

5 */

6
7 /*$

8 * predicate in_string(x,s):

9 * ∃ k ∈ [0, size(s) - offset(s) - 1]:

10 * (x == s + k

11 * ∧ ∀ l ∈ [0, k - 1]: s[l] != 0);

12 */

A.2 Memory Management

Memory allocation functions show examples of resource allocation, and the use
of cases to simplify the specification of functions with several behaviors.

1 /*$

2 * case {

3 * alloc: void* r = new malloc;

4 * ensures: size(r) == __size;

5 * ensures: return == r;

6 * }

7 *

8 * case {

9 * assigns: _errno;

10 * ensures: return == NULL;

11 * }

12 *

13 * case {

14 * assumes: __size == 0;

15 * ensures: return == NULL;

16 * }

17 */

18 void *malloc (size_t __size);

1 /*$

2 * case {

3 * assumes: __ptr == NULL;

4 * }

5 *

6 * case {

7 * assumes: __ptr != NULL;

8 * requires: __ptr ∈ malloc;

9 * requires: alive(__ptr);
10 * requires: offset(__ptr) == 0;

11 * free: __ptr;

12 * }

13 */

14 void free (void *__ptr);

244 A. Ouadjaout and A. Miné

1 /*$

2 * case {

3 * assumes: __ptr == NULL;

4 * assumes: __size == 0;

5 * ensures: return == NULL;

6 * }

7 *

8 * case {

9 * assumes: __ptr == NULL;

10 * alloc: void* r = new malloc;

11 * ensures: size(r) == __size;

12 * ensures: return == r;

13 * }

14 *

15 * case {

16 * assumes: __ptr != NULL;

17 * assumes: __size == 0;

18 * requires: __ptr ∈ malloc;

19 * free: __ptr;

20 * ensures: return == NULL;

21 * }

22 *

23 * case {

24 * assumes: __ptr != NULL;

25 * requires: __ptr ∈ malloc;

26 * local: void* r = new malloc;

27 * ensures: size(r) == __size;

28 * ensures: size(__ptr) >= __size ⇒
29 * ∀ i ∈ [0, __size):

30 * ((unsigned char*)r)[i] == ((unsigned char*)__ptr)[i];

31 * ensures: size(__ptr) <= __size ⇒
32 * ∀ i ∈ [0, size(__ptr)):
33 * ((unsigned char*)r)[i] == ((unsigned char*)__ptr)[i];

34 * free: __ptr;

35 * ensures: return == r;

36 * }

37 *

38 * case {

39 * assigns: _errno;

40 * ensures: return == NULL;

41 * }

42 */

43 void *realloc (void *__ptr, size_t __size);

A.3 File Descriptors

File descriptors are another example of resource allocation, but use a specific
class that the analyzer can track to allocate integer file descriptors according to
the C library policy: the least unused integer is picked. This allows modeling

A Library Modeling Language for the Static Analysis of C Programs 245

precisely patterns such as close(0); int f = open("...");. read reads non-
deterministic values, after checking that the file has been opened and not closed.

1 /*$

2 * requires: valid_string(__file);

3 *

4 * case {

5 * alloc: int fd = new FileDescriptor;

6 * ensures: return == fd;

7 * }

8 *

9 * case {

10 * assigns: _errno;

11 * ensures: return == -1;

12 * }

13 */

14 int open (const char *__file, int __oflag, ...);

1 /*$

2 * requires: __fd ∈ FileDescriptor;

3 * requires: alive(__fp as FileDescriptor);

4 * requires: size(__buf) >= offset(__buf) + __nbytes;

5 *

6 * case {

7 * assigns: ((char*)__buf)[0, __nbytes);

8 * ensures: return ∈ [0, __nbytes];

9 * }

10 *

11 * case {

12 * assigns: _errno;

13 * ensures: return == -1;

14 * }

15 */

16 ssize_t read (int __fd, void *__buf, size_t __nbytes);

1 /*$

2 * requires: __fd ∈ FileDescriptor;

3 * requires: alive(__fp as FileDescriptor);

4 *

5 * case {

6 * free: __fd as FileDescriptor;

7 * ensures: return == 0;

8 * }

9 *

10 * case {
11 * assigns: _errno;

12 * ensures: return == -1;

13 * }

14 */

15 int close (int __fd);

246 A. Ouadjaout and A. Miné

A.4 Command-Line Arguments

We provide the simplified model of the getopt function we used in Coreutil
analyses.
1 /*$

2 * requires: ___argc > 0;

3 * requires: optind ∈ [0, ___argc];

4 * requires: valid_string(__shortopts);

5 * requires: ∀ i ∈ [0, ___argc - 1]: valid_string(___argv[i]);

6 * assigns: optind;

7 * assigns: opterr;

8 * assigns: optopt;

9 * assigns: optarg;

10 * ensures: optind′∈[1, ___argc];

11 * ensures: optarg′ != NULL ⇒ ∃ i ∈ [0, ___argc - 1]:

12 * in_string(optarg′, ___argv[i]);

13 * ensures: return ∈ [-1, 255];

14 * case {

15 * assigns: ___argv[0, ___argc - 1];

16 * ensures: ∀ i ∈ [0, ___argc - 1]: ∃ j ∈ [0, ___argc - 1]:

17 * (___argv[i])′ == ___argv[j];

18 * }

19 */

20 int getopt (int ___argc, char *const *___argv, const char *__shortopts);

References

1. Common weakness enumeration: A community-developed list of software weakness
types. https://cwe.mitre.org/. Accessed 24 May 2020

2. Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. In:
Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006).
https://doi.org/10.1007/11823230 15

3. Baudin, P., Cuoq, P., Fillâtre, J., Marché, C., Monate, B., Moy, Y., Prevosto, V.:
ACSL:ANSI/ISO C Specification Language. http://frama-c.com/acsl.html

4. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.:
Static analysis and verification of aerospace software by abstract interpretation.
In: AIAA Infotech@Aerospace, pp. 1–38. No. 2010–3385, AIAA, April 2010

5. Black, P.E.: Juliet 1.3 test suite: changes from 1.2. Tech. Rep. NIST TN - 1995,
NIST, June 2018

6. Calcagno, C., et al.: Moving fast with software verification. In: NFM, pp. 3–11.
Springer, Heidelberg (2015)

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL 1977, pp. 238–252. ACM, January 1977

8. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Conference Record of the 5th Annual ACM SIGPLAN/SIGACT
Symposium on Principles of Programming Languages (POPL 1978), pp. 84–97.
ACM (1978)

9. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015).
https://doi.org/10.1007/s00165-014-0326-7

https://cwe.mitre.org/
https://doi.org/10.1007/11823230_15
http://frama-c.com/acsl.html
https://doi.org/10.1007/s00165-014-0326-7

A Library Modeling Language for the Static Analysis of C Programs 247

10. Bühler, P.C., Yakobowski, B.: Eva: The evolved value analysis plug-in
11. Fähndrich, M.: Static verification for code contracts. In: Cousot, R., Martel, M.

(eds.) SAS 2010. LNCS, vol. 6337, pp. 2–5. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15769-1 2

12. GNU: Coreutils: GNU core utilities. https://www.gnu.org/software/coreutils/
13. GNU: The GNU C library. https://www.gnu.org/software/libc/
14. Gopan, D., DiMaio, F., Dor, N., Reps, T., Sagiv, M.: Numeric domains with sum-

marized dimensions. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol.
2988, pp. 512–529. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24730-2 38

15. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Proceedings of the 21st International Conference on Computer Aided
Verification, pp. 661–667. CAV 2009, Springer, Heidelberg (2009)

16. Journault, M., Miné, A., Monat, M., Ouadjaout, A.: Combinations of reusable
abstract domains for a multilingual static analyzer. In: Proceedings of VSTTE
2019, pp. 1–17 (2019)

17. Journault, M., Ouadjaout, A., Miné, A.: Modular static analysis of string manip-
ulations in C programs. In: Proceedings of SAS 2018. LNCS (2018)

18. Leavens, G., Ruby, C., Leino, K.R.M., Poll, E., Jacobs, B.: JML: Notations and
tools supporting detailed design in Java. In: Proceedings of OOPSLA 2018, pp.
105–106 (2000)

19. Miné, A.: Field-sensitive value analysis of embedded C programs with union types
and pointer arithmetics. In: Proceedings of LCTES 2006, pp. 54–63. ACM, June
2006

https://doi.org/10.1007/978-3-642-15769-1_2
https://doi.org/10.1007/978-3-642-15769-1_2
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/libc/
https://doi.org/10.1007/978-3-540-24730-2_38
https://doi.org/10.1007/978-3-540-24730-2_38

Interprocedural Shape Analysis Using
Separation Logic-Based Transformer

Summaries

Hugo Illous1,2, Matthieu Lemerre1, and Xavier Rival2(B)

1 Université Paris -Saclay, CEA, List, F-91120 Palaiseau, France
matthieu.lemerre@cea.fr

2 INRIA Paris/CNRS/École Normale Supérieure/PSL Research University,
Paris, France

xavier.rival@inria.fr

Abstract. Shape analyses aim at inferring semantic invariants related
to the data-structures that programs manipulate. To achieve that, they
typically abstract the set of reachable states. By contrast, abstractions
for transformation relations between input states and output states not
only provide a finer description of program executions but also enable the
composition of the effect of program fragments so as to make the analysis
modular. However, few logics can efficiently capture such transformation
relations. In this paper, we propose to use connectors inspired by sepa-
ration logic to describe memory state transformations and to represent
procedure summaries. Based on this abstraction, we design a top-down
interprocedural analysis using shape transformation relations as proce-
dure summaries. Finally, we report on implementation and evaluation.

1 Introduction

Static analyses based on abstractions of sets of states (or for short, state anal-
yses) compute an over-approximation of the states that a program may reach,
so as to answer questions related, e.g., to safety (absence of errors or structural
invariant violations). By contrast, one may also design static analyses that dis-
cover relations between program initial states and output states. In this paper,
we refer to such static analyses as transformation analyses. A transformation
relation between the initial state and the output state of a given execution can
provide an answer to questions related to the functional correctness of a program
(i.e., does it compute a correct result when it does not crash and terminates).
Another application of such a transformation relation is to let the analysis reuse
multiple times the result obtained for a given code fragment (e.g., a procedure),
provided the analysis can compose transformation relations. The great advan-
tage of this approach is to reduce the analysis cost, by avoiding to recalculate
the effect, e.g., of a procedure in multiple calling contexts. This is known as the
relational approach to interprocedural analysis [35].

However, a major difficulty is to find an accurate and lightweight represen-
tation of the input-output transformation relation of each procedure. A first
c© Springer Nature Switzerland AG 2020
D. Pichardie and M. Sighireanu (Eds.): SAS 2020, LNCS 12389, pp. 248–273, 2020.
https://doi.org/10.1007/978-3-030-65474-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65474-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-65474-0_12

Interprocedural Shape Analysis 249

solution is to resort to tables of abstract pre- and post-conditions that are all
expressed in a given state abstract domain [2,10,15,22]. However, this generally
makes composition imprecise unless very large tables can be computed. A sec-
ond solution is to build upon a relational abstract domain, namely, an abstract
domain that can capture relations across distinct program variables. The trans-
formation between states is then expressed using “primed” and “non-primed”
variables where the former describe the input state and the latter the output
state [24,26,27]. As an example, we consider a procedure that computes the
absolute value of input x and stores it into y (for the sake of simplicity we
assume mathematical integers):

– Using the intervals abstract domain [9], we can provide the table [((x ∈
[−5,−1], y ∈]−∞,+∞[) �→ (x ∈ [−5,−1], y ∈ [1, 5])); ((x ∈ [−1, 10], y ∈
]−∞,+∞[) �→ (x ∈ [−1, 10], y ∈ [0, 10]))] (this table is obviously not unique);

– Using the relational abstract domain of polyhedra [11], we can construct the
transformation relation (x′ = x ∧ y′ ≥ x ∧ y′ ≥ −x).

We note that, while the expressiveness of the two is not comparable, the lat-
ter option is more adapted to compositional reasoning. For instance, given pre-
condition −10 ≤ x ≤ −5, the analysis based on a table either returns a very impre-
cise answer or requires enriching the table whereas the analysis with a relational
domain can immediately derive x′ = x ∈ [−10,−5] (x has not changed) and y′ ≥ 5.

Such reasoning becomes more complex when considering non-numerical facts,
such as memory shape properties. Many works rely on the tabulation approach,
using a conventional shape state abstraction [2,15,22]. In general, the tabula-
tion approach restricts the ability to precisely relate procedure input and output
states and may require large tables of pairs of formulas for a good level of pre-
cision. The approach based on a relational domain with primed and non-primed
variables has been implemented by [18,19] in the TVLA shape analysis frame-
work [33]. However, it is more difficult to extend shape analyses that are based
on separation logic [28] since a separation logic formula describes a region of
a given heap; thus, it does not naturally constrain fragments of two different
states. To solve this issue, a first approach is to modify the semantics of sep-
aration logic connectors to pairs of states [34]. A more radical solution is to
construct novel logical connectors over state transformation relations that are
inspired by separation logic [17]. These transformations can describe the effect
of a program and express facts such as “memory region A is left untouched
whereas a single element is inserted into the list stored inside memory region
B and the rest of that list is not modified”. The analysis of [17] is designed as
a forward abstract interpretation which produces abstract transformation rela-
tions. Therefore, it can describe tranfsormations precisely using separation logic
predicates and without accumulating tables of input and output abstract states.

However, this analysis still lacks several important components to actually
make interprocedural analysis modular. In particular, it lacks a composition algo-
rithm over abstract transformation relations. Modular interprocedural analysis
also needs to synchronize two distinct processes that respectively aim at com-
puting procedure summaries and at instantiating them at a call-site. In this

250 H. Illous et al.

Fig. 1. Simple and double list append procedures.

paper, we propose a top-down analysis based on shape summaries and make the
following contributions:

– in Sect. 2, we demonstrate the use of abstract shape transformations;
– in Sect. 3 and Sect. 4, we formalize transformation summaries based on sepa-

ration logic (intraprocedural analysis is presented in Sect. 5);
– in Sect. 6, we build a composition algorithm over transformation summaries;
– in Sect. 7, we formalize a modular interprocedural analysis;
– in Sect. 8, we report on implementation and evaluation.

2 Overview

In this section, we study a restricted example to highlight some issues in inter-
procedural analysis. We consider a recursive implementation of C linked lists,
with a couple of procedures shown in Fig. 1. The function append takes two lists
as arguments and assumes the first one non-empty, it traverses the first list, and
mutates the pointer field of the last element. The function double append takes
three lists as arguments (the first one is assumed non-empty) and concatenates
all three by calling append. The topic of our discussion is only the invariants
underlying this code and their discovery, not the efficiency of the code itself.

State Abstraction and Analysis. We consider an abstraction based on separa-
tion logic [28], as shown, e.g., in [6,13]. To describe sets of states, we assume a
predicate lseg(α0, α1) that represents heap regions that consist of a list segment
starting at some address represented by the symbolic variable α0 and such that
the last element points to some address represented by α1. Such a segment may
be empty. For short, we note list(α) for the instance lseg(α,0x0), which denotes
a complete singly-linked list (as the last element contains a null next link). A
single list element writes down α0 · n �→ α1 where n denotes the next field offset
(we elide other fields). More generally, α0 �→ α1 denotes a single memory cell
of address α0 and content α1. Thus &x �→ α expresses that variable x stores
a value α (which may be either a base value or the address of a memory cell).
Predicates lseg and list are summary predicates as they describe unbounded
memory regions; their denotation is naturally defined by induction. As usual,
separating conjunction ∗ conjoins predicates over disjoint heap regions.

Interprocedural Shape Analysis 251

Fig. 2. A shape transformation procedure summary and composition.

Assuming the abstract precondition &l0 �→ α0plseg(α0, α1) ∗ α1 · n �→
0x0 ∗ &l1 �→ α2 ∗ list(α2), existing state shape analyses [6,13] can derive
the post-condition &l0 �→ α0 ∗ lseg(α0, α1) ∗ α1 · n �→ α2 ∗ &l1 �→ α2 ∗
list(α2) by a standard forward abstract interpretation [9] of the body of append.
The analysis proceeds by abstract interpretation of basic statements, unfolds
summaries when analyzing reads or writes into the regions that they represent,
and folds basic predicates into summaries at loop heads. The convergence of the
loop analysis takes a few iterations and involves widening which is often a rather
costly operation.

The analysis of double append by inlining follows similar steps. One impor-
tant note though is that it analyses the body of append twice, namely once per
calling context, and thus also the loop inside append. In turn, if double append
is called in several contexts in a larger program, or inside a loop, its body will
also be analyzed multiple times, which increases even more the overall analysis
cost.

Transformation Analysis. Unlike state analyses, transformation analyses com-
pute abstractions of the input-output relation of a program fragment. As an
example, given the above abstract pre-condition, the analysis of [17] infers rela-
tions as shown in Fig. 2(a). This graphical view states that the procedure
append keeps both summary predicates unchanged and only modifies the mid-
dle list element so as to append the two lists. This transformation is formally
represented using three basic kinds of relational predicates that respectively state
that one region is preserved, that one region is “transformed” into another one,
and that two transformations are conjoined at the transformation level. To stress
the difference, we write ∗T for the latter, instead of just ∗. Although it uses trans-
formation predicates, the analysis follows similar abstract interpretation steps
as [6,13].

252 H. Illous et al.

Towards Modular Analysis: Composition of Transformation Abstractions. The
first advantage of transformation predicates such as Fig. 2(a) is that they can be
applied to state predicates in the abstract, as a function would be in the concrete.
Indeed, if we apply this abstract transformation to the abstract pre-condition
given above, we can match each component of the abstract transformation of
Fig. 2(a), and derive its post-condition. In this example, the body of each sum-
mary is left unchanged, whereas the last element of the first list is updated. The
result is shown in Fig. 2(b) and it can be derived without reanalyzing the body
of append.

While these steps produce a state analysis of the body of double append,
we may want to summarize the effect of this function too, as it may be called
somewhere else in a larger program. To achieve this, we need not only to apply
an abstract transformation to an abstract state, but to compose two abstract
transformations together. Intuitively, this composition should proceed in a simi-
lar way as the application that we sketc.hed above. In the case of double append,
the analysis requires case splits depending on whether k1 is empty or not. For
brevity, we show only the case where this list is non-empty in Fig. 2(c). In general,
the composition of two transformations requires to match the post-condition of
the first and the pre-condition of the second, and to refine them, using some kind
of intersection as shown in Sect. 6. Another important issue is the summary com-
putation process. Bottom-up analyses strive for general summaries whatever the
calling context. However, a procedure may behave differently when applied to
other structures (e.g., a binary tree or a doubly linked list), thus the top-down
approach which provides information about the calling contexts before they are
analyzed seems more natural. However, this means that the analysis should infer
summaries and apply them simultaneously, and that the discovery of new calling
contexts may require for more general summaries. We describe this in Sect. 7.

3 Abstraction of Sets of States and State Transformations

In the following sections, we restrict ourselves to a small imperative language
that is sufficient to study procedure transformation summaries, although our
implementation described in Sect. 8 supports a larger fragment of C. We also
only consider basic singly linked lists in the formalization although the imple-
mentation supports a large range of list or tree-like inductive data-structures.

Concrete States, Programs, and Semantics. We write X for the set of program
variables and V for the set of values, which include memory addresses. The
address of a variable x is assumed fixed and noted &x. Structure fields are viewed
both as names and as offsets; they include the null offset (basic pointer) and n, the
“next” field of a list element. We let a memory state σ ∈ M be a partial function
from variable addresses and heap addresses to values. We write dom(σ) for the
domain of σ, that is the set of elements for which it is defined. Additionally, if
σ0, σ1 are such that dom(σ0) ∩ dom(σ1) = ∅, we let σ0 � σ1 be the memory
state obtained by appending σ1 to σ0 (its domain is dom(σ0) ∪ dom(σ1)). If
a is an address and v a value, we write [a �→ v] for the memory state σ such

Interprocedural Shape Analysis 253

Fig. 3. Syntax and concretization of the abstract states.

that dom(σ) = {a} and σ(a) = v. A command C is either an assignment, a
local variable declaration or a loop (we omit tests and memory allocation out
as our procedure summary analysis handles them in a very standard way). A
procedure P is defined by a list of arguments and a body (we let function returns
be encoded via parameter passing by reference). A program is made of a series
of procedures including a main. All variables are local. The syntax of programs
is defined by the grammar below:

C :: = x = y | x = v | x -> n = y | x = y -> n | C; C | while(x
= 0x0){C}
| decl x; | f(x0, . . . , xk)

P :: = proc f(p0, . . . , pk){C} R :: = P0 . . . Pl proc main(){C}

We let the semantics of a command C be a function �C�T : P(M) → P(M) that
maps a set of input states into a set of output states. We do not detail the
definition of this semantics as it is standard. In the following, require for more
general summaries, that respectively describe sets of states and relations over
states.

Abstract States and Transformations. The syntax of abstract heaps h� ∈ H is
shown in Fig. 3(a). We let A = {α, α′, . . .} denote a set of symbolic variables that
abstract heap addresses and values. A symbolic name n ∈ N is either a variable
address &x or a symbolic value α. Numerical constraints c� describe predicates
over symbolic names. An abstract heap (or state) h� ∈ H is the (possibly) sepa-
rating conjunction of region predicates that abstract separate regions [28], which
consist either of an empty region emp, or of a basic memory block (described
by a points-to predicate n · f �→ n′), or inductive summaries, and may include
some numerical constraints (that do not represent any memory region and only
constrain symbolic names). We note ∗S for separating conjunction over states.
The abstract states defined in Fig. 3(a) are of a comparable level of expressive-
ness as the abstractions used in common shape analysis tools such as [2,6,13,14]
to verify properties such as the absence of memory errors or the preservation of
structural invariants.

254 H. Illous et al.

Fig. 4. Syntax and concretization of abstract transformations.

The concretization of abstract states is shown in Fig. 3(b). It uses valuations
to tie the abstract names and the value they denote. A valuation consists of a
function ν : N → V. We assume the concretization γC(c�) of a numeric constraint
c� returns the set of valuations that meet this constraint. Abstract heaps are
concretized into sets of pairs made of a heap and of the valuation that realizes
this heap. The concretization of summary predicates list and lseg is defined
recursively, by unfolding. Indeed, we let γH(h�

0) =
⋃{γH(h�

1) | h�
0 →U h�

1}, where
→U is defined by (cases for list are similar):

lseg(α0, α1) →U emp ∧ α0 = α1

lseg(α0, α1) →U α0 · n �→ α2 ∗S lseg(α2, α1) ∧ α0
= α1

Example 1 (Abstract state). The abstract state in Fig. 2(b) writes down as:

&l0 �→ α0 ∗S &l1 �→ α2 ∗S lseg(α0, α1) ∗S α1 · n �→ α2 ∗S list(α2)

Assuming both lseg(α0, α1) and list(α2) unfold to structures of length one, it
concretizes in the same way as:

&l0 �→ α0 ∗S &l1 �→ α2 ∗S α0 · n �→ α1 ∗S α1 · n �→ α2 ∗S α2 · n �→ α3 ∧ α3 = 0

Abstract Transformations. Abstract transformations are defined on top of
abstract states and rely on specific logical connectors. Their syntax is defined
in Fig. 4(a). A heap transformation is either the identity Id(h�), which denotes
physical equality over pairs of states that are both described by h�, a state trans-
formation [h�

i ��� h�
o] which captures input/output pairs of states respectively

defined by h�
i and by h�

o, or a separating conjunction of transformations t�
0 ∗T t�

1

(we write ∗T to stress the distinction with the state separating conjunction ∗S).
The concretization of transformations is shown in Fig. 4(b). It is built upon the
previously defined γH and also utilizes valuations. The most interesting case is
that of ∗T: this connector imposes disjointness not only of the sub-heaps in both

Interprocedural Shape Analysis 255

the pre- and post-state, but also across them. In this paper, we study only a basic
form of the transformation predicate ∗T although it may be strengthened with
additional constraints [16], e.g., to assert that the footprint has not changed or
that only specific fields may have been modified. We leave out such constraints
as their goal is orthogonal to the focus of this paper. Finally, the analysis uses
finite disjunctions of transformations.

Example 2 (Abstract transformation). The transformation informally described
in Fig. 2(a) is captured by the abstract transformation below:

t� = Id (&l0 �→ α0 ∗S &l1 �→ α2 ∗S lseg(α0, α1) ∗S list(α2))
∗T [(α1 · n �→ 0x0) ��� (α1 · n �→ α2)]

In the following, we write h�
0 →U h�

1 when h�
0 may be rewritten into h�

1 by
applying →U to any of its sub-terms. We use this notation for both heaps and
transformations. Last, we let →U[α] denote unfolding of a list(α) or lseg(α, . . .)
predicate.

4 Procedure Summarization

The semantics of a procedure boils down to a relation between its input states
and its output states, thus our first attempt at summaries over-approximates
the input-output relation of the procedure. To express this, we introduce the
following notation. If f : P(A) → P(B) is a function and R ⊆ A × B is a
relation, we note f � R if and only if ∀X ⊆ A, X × f(X) ⊆ R.

Definition 1 (Global transformation summary). A sound global transfor-
mation summary (or, for short, global summary) of procedure proc f(. . .){C} is
an abstract transformation t� that over-approximates �C�T in the sense that:

�C�T � {(σi, σo) | ∃ν, (σi, σo, ν) ∈ γT(t�)}

For example, function append (Fig. 1) can be described using a global procedure
summary (noted t� in Example 2). While this notion of summary may account
for the effect of a procedure, it is not adequate to describe intermediate analysis
results. As an example, a procedure f is likely to be called in multiple contexts.
In that case, when the analysis reaches a first context, it computes a summary
t�, that accounts for the effect of the procedure in that context, for a given
set of procedure input states. When it reaches a second context, it should be
able to decide whether t� also covers the states that reach the procedure in that
second context. Observe that the pre-state of t� does not suffice since t� may have
been computed for some very specific context. Moreover, the left projection of
t� may not account for some call states encountered so far when these lead to
non-termination or to an error in the body of f. To overcome this issue, an over-
approximation of the procedure input states observed so far should be adjoined
to the global summary:

256 H. Illous et al.

Definition 2 (Context transformation summary). A sound context
transformation summary (or, for short, context summary) of procedure
proc f(. . .){C} is a pair (h�

f, t
�
f) such that the following holds:

(λ(M ⊆ {σ | ∃ν, (σ, ν) ∈ γH(h�
f)})·�C�T (M)) � {(σi, σo) | ∃ν, (σi, σo, ν) ∈ γT(t�

f)}
Intuitively, Definition 2 asserts that (h�

f, t
�
f) captures all the functions such that

their restriction to states in h�
f can be over-approximated by relation t�

f. Although
we do not follow this approach here, the h�

f component may be used in order
to augment summaries with context sensitivity. We note that h�

f accounts for
all states found to enter the body of f so far, even though they may lead to no
output state in t�

f (e.g., if the evaluation of the body of f from them does not
terminate or fails due to an error, as shown in Example 4).
Example 3 (Context summary). We let h� = &l0 �→ α0 ∗S lseg(α0, α1) ∗S

α1 · n �→ 0x0 ∗S &l1 �→ α2 ∗S list(α2) and assume that t� is defined as in
Example 2. Then, (h�, t�) defines a valid context summary for append (Fig. 1).

Example 4 (Role of the pre-condition approximation in context summaries). We
consider the function below and assume it is always called in a state where l0 is
a valid pointer and l1 points to a well-formed, but possibly empty, singly-linked
list:

Obviously, this function will crash when the list is empty, i.e., when l0 is
the null pointer. However, the pair (h�

f, t
�
f) below defines a valid transformation

summary for this procedure:

h�
f = &l0 �→ α0 ∗S α0 �→ α1 ∗S &l1 �→ α2 ∗S list(α2)

t�
f = Id(&l0 �→ α0 ∗S &l1 �→ α2 ∗S α2 · n �→ α3 ∗S list(α3))

∗T [α0 �→ α1 ��� α0 �→ α3]

We observe that the h�
f component describes not only states for which the proce-

dure returns but also states for which it crashes since the list pointer cl1 is null.
The former are not part of the concretization of the transformation component
h�
f.

The above example shows the importance of the first component of the trans-
formation summary: it conveys the fact that a set of states have been considered
by the analysis as a pre-condition for a program fragment, even when the pro-
gram fragment may not produce any post-condition for these states hereby they
can be omitted from the transformation part.

5 Intraprocedural Analysis

The analysis performs a forward abstract interpretation [9] over abstract trans-
formations (rather than on abstract states). More precisely, the abstract seman-
tics �C��

T of a command C inputs a transformation describing the entire compu-
tation so far, before executing C, and outputs a new transformation that reflects

Interprocedural Shape Analysis 257

the effect of C on top of that computation. Intuitively, the input of �C��
T may

be viewed the dual of a continuation. Formally, the analysis is designed so as to
meet the following soundness statement, for any transformation t�:

∀(σ0, σ1, ν) ∈ γT(t�), σ2 ∈ M, (σ1, σ2) ∈ �C�T =⇒ (σ0, σ2, ν) ∈ γT(�C��
T(t�)) (1)

The analysis of assignments and loops follows from [17]. It may require finite
disjunctions of transformations although we do not formalize this aspect since
it is orthogonal to the goal of this paper. We recall the main aspects of their
algorithms in this section and refer the reader to [17] for a full description.

Post-conditions for Assignment. We consider an assignment command x->n = y
(the analysis of other kinds of commands is similar), and a pre-transformation
t�, and we discuss the computation of �x -> n = y��

T(t�). To do this, the analysis
should first localize both x -> n and y in the post-state of t�, by rewriting t� into
an expression of the form Id(&x �→ α0 ∗S &y �→ α1) ∗T t�

0 or [(. . .) ��� (&x �→
α0 ∗S &y �→ α1)] ∗T t�

0, and searching for α0 in t�
0. Two main cases may arise:

– if t�
0 contains a term of the form Id(α0 · n �→ α2) or [(. . .) ��� (α0 · n �→ α2)],

the post-transformation is derived by a mutation over the pointer cell, which
produces a term of the form [(. . .) ��� (α0 · n �→ α1)];

– if t�
0 contains a term Id(h�

0) or [(. . .) ��� h�
0] where h�

0 is either list(α0) or
lseg(α0, . . .), the summary should be unfolded so that the modified cell can
be resolved as in the previous case; this step relies on relation →U (Sect. 3).

It is also possible that the localization of x -> n fails, which typically indicates
that the program being analyzed may dereference an invalid pointer. Besides
assignment, the analysis also supports other such operations; for instance, we
write newVT

�[x0, . . . , xn] (resp., delVT
�[x0, . . . , xn]) for the operation that adds

(resp., removes) variables x0, . . . , xn to the output state of the current transfor-
mation. They over-approximate concrete operations noted newV and delV.

Weakening. The analysis of loop statements proceeds by abstract iteration over
the loop body with widening. Intuitively, the widening t�

0 �T t�
1 of transfor-

mations t�
0, t

�
1 returns a new transformation t�, such that γT(t�

i) ⊆ γT(t�) for
all i ∈ {0, 1}. In the state level, widening replaces basic blocks with sum-
maries (effectively inversing →U). In the transformation level, widening com-
mutes with Id and ∗T whenever their arguments can be widened as above, and
weakens them into [���] transformations otherwise. Furthermore, this transfor-
mation introduces summary predicates so as to ensure termination of all widen-
ing sequences [17]. Similarly, t�

0 �T t�
1 conservatively decides inclusion test (if

t�
0 �T t�

1 holds, then γT(t�
0) ⊆ γT(t�

1)).

Example 5 (Analysis of the loop of append). In this example, we consider the
loop at line 4 in the append function (Fig. 1) and only present the part of the
memory reachable from c. The analysis of the loop starts with the transformation
Id(&l0 �→ α ∗S &c �→ α ∗S list(α)) ∧ α
= 0. The analysis of the assignment

258 H. Illous et al.

inside the loop body forces the unfolding of list, and produces Id(&l0 �→ α ∗S

α · n �→ α′ ∗S list(α′)) ∗T [(&c �→ α) ��� (&c �→ α′)] ∧ α
= 0. The widening of
these two transformations produces Id(&l0 �→ α ∗S lseg(α, α′) ∗S list(α′)) ∗T

[(&c �→ α) ��� (&c �→ α′)] ∧ α
= 0, which also turns out to be the loop
invariant.

6 Abstract Composition

In this section, we set up the abstract operations that are required to rely on
transformations for modular analysis. In Sect. 2, we mentioned application and
composition. We remark that the application of a transformation t� to an abstract
state h� boils down to the abstract composition of t� with Id(h�), since the latter
represents exactly the set of pairs (σ, σ) where σ is described by h�. Moreover,
we observed in Sect. 2 that composition requires to reason over intersection of
abstract states. Thus, we only define intersection and composition in this section.

Abstract Intersection. In this paragraph, we set up an abstract operator inter�,
which inputs two abstract states and returns a disjunctive abstract state that
over-approximates their intersection. The computation over abstract heaps is
guided by a set of rewriting rules that are shown in Fig. 5. The predicate
h�
0 � h�

1 �� H means that the computation of the intersection of h�
0 and h�

1

may produce the disjunction of abstract heaps H (there may exist several solu-
tions for a given pair of arguments). We remark that the definition of γH lets
symbolic variables be existentially quantified, thus they may be renamed without
changing the concretization, following usual α-equivalence. Therefore, the rules
of Fig. 5 assume that both arguments follow a consistent naming, although the
implementation should perform α-equivalence whenever needed and maintain a
correspondence of symbolic variables [5]. Rule �∗S

states that intersection can
be computed locally. Rule �= expresses that intersection behaves like identity

Fig. 5. Abstract intersection rewriting rules.

Interprocedural Shape Analysis 259

Fig. 6. Abstract composition rewriting rules (rules �Id,���,r, �weak,Id,r, �weak,∗T,r, and
�unf,r which are right versions of rules �Id,���,l, �weak,Id,l, �weak,∗T,l, and �unf,l, can be
systematically derived by symmetry, and are omitted for the sake of brevity).

when both of its arguments are the same basic term. Rules �[l, s] and �[s, s]
implement structural reasoning over summaries. Finally, rule �u unfolds one
argument so as to consider all subsequent cases. The result may differ depend-
ing on the order of application or even on the way each rule is applied. As an
example, �∗S

may produce different results depending on the way both argu-
ments are split into h�

i,0 and h�
i,1, which may affect precision. Therefore, our

implementation follows a carefully designed application strategy that attempts
to maximize the use of �=. We omit the numerical predicate intersection (han-
dled by a numerical domain intersection operator). Given two abstract heaps
h�
0,h

�
1, the computation of inter�(h�

0,h
�
1) proceeds by proof search following the

rules of Fig. 5 up-to commutativity (standard rule, not shown). In case this sys-
tem fails to infer a solution, returning either argument provides a sound result.

Definition 3 (Abstract intersection algorithm). The operator inter� is a
partial function that inputs two abstract heaps h�

0,h
�
1 and returns a disjunction

of abstract heaps H such that h�
0 � h�

1 �� H following Fig. 5.

Theorem 1 (Soundness of abstract intersection). Abstract intersection
is sound in the sense that, for all h�

0,h
�
1, γH(h�

0) ∩ γH(h�
1) ⊆ γH(inter�(h�

0,h
�
1)).

Example 6 (Abstract intersection). Let us consider:

260 H. Illous et al.

– h�
0 = &x �→ α0 ∗S &y �→ α2 ∗S lseg(α0, α2) ∗S α2 · n �→ α3 ∗S list(α3) and

– h�
1 = &x �→ α0 ∗S &y �→ α2 ∗S lseg(α0, α1) ∗S α1 · n �→ α2 ∗S list(α2).

Then, inter�(h�
0,h

�
1) returns &x �→ α0 ∗S &y �→ α2 ∗S lseg(α0, α1) ∗S α1 · n �→

α2 ∗S α2 ·n �→ α3 ∗S list(α3). Note that the computation involves the structural
rule �[s, s] and the unfolding rule to derive this result, where both the segment
between x and y and the list pointed to by y are non-empty. This result is
exact (no precision is lost) and the result is effectively more precise than both
arguments.

Composition of Abstract Transformations. We now study the composition of
abstract transformations. Again, the computation is based on a rewriting system,
that gradually processes two input transformations into an abstraction of their
composition. The rules are provided in Fig. 6. The predicate t�

0 � t�
1 �� T means

that the effect of applying transformation t�
0 and then transformation t�

1 can be
described by the union of the transformations in T . Rule �∗T

enables local reason-
ing over composition, at the transformation level. Rules �Id and ���� respectively
compose matching identity transformations and matching modifying transforma-
tions. Similarly, �Id,���,l composes an identity followed by a modifying transfor-
mation with a consistent support (this rule, as the following, has a corresponding
right version that we omit for the sake of brevity). Rule �weak,Id,l implements a
weakening based on the inclusion γT(Id(t�)) ⊆ γT([t� ��� t�]) (the inclusion is
proved in [17]). Similarly, rule �weak,∗T,l weakens [h�

0,i ��� h�
0,o] ∗T [h�

1,i ��� h�
1,o]

into [(h�
0,i ∗S h�

1,i) ��� (h�
0,o ∗S h�

1,o)]. Finally, rule �unf,l unfolds a summary
to enable composition. The abstract composition operation performs a proof
search. Just as for intersection, the composition operator may produce differ-
ent results depending on the application order; our implementation relies on a
strategy designed to improve precision by maximizing the use of �Id.

Definition 4 (Abstract composition algorithm). The operator comp� is
a partial function that inputs two abstract transformations t�

0, t
�
1 and returns a

set of abstract transformations T such that t�
0 � t�

1 �� T following Fig. 6.

Theorem 2 (Soundness of abstract composition). Let t�
0, t

�
1 be two trans-

formations, h�
0,h

�
1,h

�
2 be abstract heaps and ν be a valuation. We assume that

comp�(t�
0, t

�
1) evaluates to the set of transformations T . Then:

(σ0, σ1, ν) ∈ γT(t�
0) ∧ (σ1, σ2, ν) ∈ γT(t�

1) =⇒ ∃t� ∈ T, (σ0, σ2, ν) ∈ γT(t�)

Example 7 Abstract composition and analysis compositionality). In this exam-
ple, we study the classical case of an in-place list reverse code snippet:

Interprocedural Shape Analysis 261

The effects of and of can be described by the abstract
transformations t�

0 and t�
1:

t�
0 = Id(&l �→ α0 ∗S α0 · n �→ α1 ∗S &x �→ α2 ∗S list(α1) ∗S list(α2))

∗T [(&c �→ α3) ��� (&c �→ α1)]
t�
1 = Id(&l �→ α0 ∗S &x �→ α2 ∗S &c �→ α1 ∗S list(α1) ∗S list(α2))

∗T [(α0 · n �→ α1) ��� (α0 · n �→ α2)]

The composition of these two transformations needs to apply the weakening rules
to match terms that are under the Id constructors. The result is the following
transformation t�

0 � t�
1:

Id(&l �→ α0 ∗S &x �→ α2 ∗S list(α1) ∗S list(α2))
∗T [(&c �→ α3) ��� (&c �→ α1)] ∗T [(α0 · n �→ α1) ��� (α0 · n �→ α2)]

This description is actually a very precise account for the effect of the sequence
of these two assignment commands. This example shows that composition may
be used not only for interprocedural analysis (as we show in the next section),
but also to supersede some operations of the intraprocedural analysis of Sect. 5.

Example 8 (Abstract application). As observed at the beginning of the section,
composition may also be used as a means to analyze the application of a transfor-
mation to an abstract state. We consider the composition of the transformation
t� corresponding to function append (shown in Example 2 and Fig. 1) and the
abstract pre-state h� = &l0 �→ α0 ∗S &l1 �→ α2 ∗S lseg(α0, α1) ∗S α1 · n �→
α3 ∗S list(α2) ∧ α3 = 0x0. Then, the composition Id(h�) � t� returns:

&l0 �→ α0 ∗S &l1 �→ α2 ∗S lseg(α0, α1) ∗S α1 · n �→ α2 ∗S list(α2)

7 Interprocedural Analysis Based on Function Summaries

In this section, we study two mutually dependent aspects: the application of
summaries at call-sites and their inference by static analysis in a top down
manner. We first focus on non-recursive calls and discuss recursive calls at the
end of the section. The analysis maintains a context summary (h�

f, t
�
f) for each

procedure f. Initially, this context summary is set to (⊥,⊥). When the analysis
reaches a call to procedure f it should attempt to utilize the existing summary
(Sect. 7.1). When the existing summary does not account for all the states that
may reach the current context, a new summary needs to be computed first
(Sect. 7.2).

7.1 Analysis of a Call Site Using an Existing Summary

We assume a procedure proc f(p0, . . . , pk){C} and a sound context summary
(h�

f, t
�
f). We consider the analysis �f(x0, . . . , xk)��

T of a call to this procedure,
with transformation t�

pre as a pre-transformation. To analyze the call, the anal-
ysis should (1) process parameter passing, (2) detect which part of t�

pre may

262 H. Illous et al.

be modified by f, (3) check whether the context summary covers this context,
and (4) apply the summary, if (3) succeeds (the case where it fails is studied in
Sect. 7.2).

Parameter Passing. Parameter passing boils down to creating the variables
p0, . . . , pk using transfer function newVT

� and then to analyzing assignment
statements p0 = x0, . . . , pk = xk. These operations can all be done using the
transfer functions defined in Sect. 5:

t�
pars = (�pk = xk�

�
T ◦ . . . ◦ �p0 = x0�

�
T ◦ newVT

�[p0, . . . , pk])(t�
pre)

Procedure Footprint. To identify the fragment of the abstract heap that f can
view and may modify, the analysis should first extract from t�

pars an abstraction of
the set of states that enter the body of f. This is the goal of function O : T → H:

O(Id(h�)) = h� O(t�
0 ∗T t�

1) = O(t�
0) ∗S O(t�

1)
O([h�

0 ��� h�
1]) = h�

1 O(t� ∧ c�) = O(t�) ∧ c�

Intuitively, O projects the “output” part of a transformation. Thus O(t�
pars)

over-approximates the set of states that enter C. However, only the fragment of
O(t�

pars) that is reachable from the parameters of f is relevant. Given an abstract
heap h�, we can compute the set of symbolic names R[h�] that are relevant based
on the following rules:

The slice R[p0, . . . , pk](h�) of h� with respect to p0, . . . , pk retains only the
terms of h� that contain only names in R[h�] defined as the least solution of
the above rules. Similarly, we let I[p0, . . . , pk](h�) be the abstract heap made of
the remaining terms. Therefore, we have the equality h� = R[p0, . . . , pk](h�) ∗S

I[p0, . . . , pk](h�).

Context Summary Coverage Test. Based on the above, the set of states that reach
the body of f under the calling context defined by t�

pre can be over-approximated
by h�

in,f = R[p0, . . . , pk](O(t�
pars)). We let h�

rem = I[p0, . . . , pk](O(t�
pars)) be the

remainder part. The context summary (h�
f, t

�
f) covers h�

in,f if and only if h�
in,f �H

h�
f holds where �H is a sound abstract state inclusion test as defined in, e.g., [6,

13]. When this condition does not hold, the context summary should be re-
computed with a more general pre-condition (this point is discussed in Sect. 7.2).

Summary Application. Given the above notation, the effect of the procedure
(described by t�

f) should be applied to h�
in,f whereas h�

rem should be preserved.
To do this, the following transformation should be composed with the abstract
transformation t�

f ∗T Id(h�
rem) (note that the identity part is applied to the part

of the pre-transformation that is not relevant to the execution of the body of f).

Interprocedural Shape Analysis 263

Fig. 7. Interprocedural analysis: algorithm for the analysis of a procedure call.

Thus, the transformation that accounts for the computation from the program
entry point till the return point of f is:

delVT
�[p0, . . . pk](comp�(t�

pars, t
�
f ∗T Id(h�

rem)))

Example 9 (Context summary coverage and application). In this example, we
assume the context summary defined in Example 3 for procedure append:

– h� = &l0 �→ α0 ∗S lseg(α0, α1) ∗S α1 · n �→ 0x0 ∗S &l1 �→ α2 ∗S list(α2);
– t� = Id(&l0 �→ α0 ∗S lseg(α0, α1)) ∗T [(α1 · n �→ 0x0) ��� (α1 · n �→ α2)] ∗T

Id(&l1 �→ α2 ∗S list(α2))

Moreover, we consider the call with the abstract transformation
below as a pre-condition (note that variable c is not accessed by append):

Id(&a �→ α0 ∗S α0 · n �→ 0x0 ∗S &b �→ α1 ∗S α1 · n �→ 0x0 ∗S &c �→ α3)

After parameter passing, computation of the heap fragment f may view, and pro-
jection of the output, we obtain the abstract state &l0 �→ α0 ∗S α0 ·n �→ 0x0 ∗S

&l1 �→ α1 ∗S α1 · n �→ 0x0, which is obviously included in h�. The composition
with the summary of the procedure produces the abstract transformation below:

Id(&a �→ α0) ∗T [(α0 · n �→ 0x0) ��� (α0 · n �→ α1)]
∗T Id(&b �→ α1 ∗S α1 · n �→ 0x0 ∗S &c �→ α3)

The whole algorithm is shown in Fig. 7. It implements the steps described above
and in Sect. 7.2. The case considered in this subsection (when h�

in,f �H h�
f holds)

corresponds to the case where the if branch at lines 5–6 is not taken.

264 H. Illous et al.

7.2 Inference of a New Context Summary

We now discuss the case where the previously existing context summary of f
does not cover the executions corresponding to t�. As mentioned above, this
corresponds to the case where the abstract inclusion h�

in,f �H h�
f does not hold.

Summary Computation. The computation of a new context summary should
take into account a context that is general enough to encompass both h�

f and
h�
in,f:

– the new abstract context is h�
f �H h�

in,f using abstract state widening �H [6];
– the new summary related to this abstract context is derived by analysis of

the body of f, thus by updating t�
f with �C��

T(Id(h�
f �T h�

in,f)).

Then, the context summary for f is updated with this new context summary.

Application. Once a new summary has been computed, by definition, it satisfies
the inclusion h�

in,f �H h�
f, thus it can be applied so as to compute an abstract

transformation after the call to f as shown in Sect. 7.1.
The overall procedure call analysis algorithm is displayed in Fig. 7. The case

examined in this subsection corresponds to the case where the if branch at
lines 5–6 is taken. We observe that it necessarily occurs whenever a procedure
is analyzed for the first time, as context summaries are initially set to (⊥,⊥).
Moreover, we note that the application of the summary after its update is done
as in Sect. 7.1.

The following result formalizes the soundness of Fig. 7, under the assumption
that there is no recursive call.

Theorem 3 (Soundness of the analysis of a procedure call using a
context summary). We consider the call to f with the abstract transfor-
mation t�

pre as input, and the post-condition t�
post returned by the algorithm of

Fig. 7. We denote by (h�
f, t

�
f) the context summary for f after the analysis of

the call. We let (σ0, σ1, ν) ∈ γT(t�
pre), σ′

1 ∈ �p0 = x0�T ◦ . . . ◦ �pk = xk�T ◦
newV[p0, . . . pk]({σ1}), σ′

2 ∈ �C�T ({σ′
1}), and σ2 ∈ delV[p0, . . . , pk]({σ′

2}) (i.e.,
σ2 ∈ �f(x0, . . . , xk)�T ({σ1})). Then, the following property holds:

(σ0, σ2, ν) ∈ γT(t�
post) ∧ (σ′

1, ν) ∈ γH(h�
f) ∧ (σ′

1, σ
′
2, ν) ∈ γT(t�

f)

This result means that not only the transformation t�
post over-approximates the

state after the call, but also the new context summary accounts for this call. This
entails that context summaries account for all the calls that are encountered in
the analysis of a complete interprocedural program. Moreover, Theorem 3 entails
Eq. 1 for procedure calls.

Example 10 (Context summary computation). In this example, we consider the
function append again, but assume that the analysis starts with the (⊥,⊥) con-
text summary for it. We study the code where a, b,
and c are initially lists of length 1. Then:

Interprocedural Shape Analysis 265

– the first call results in the update of the summary with a context summary
(h�, t�) where h� assumes that the first argument is a single list element, i.e.,
is of the form &l0 �→ α0 ∗S α0 · n �→ 0x0 ∗S &l1 �→ α1 ∗S . . .;

– when the second call is encountered this first summary does not cover the
second context (at this point, the argument a has length 2), thus a new
context summary needs to be calculated; this new summary (h�, t�) is such
that h� only assumes that the first argument may be a list of any length (as
derived by widening), i.e., it is of the form &l0 �→ α0 ∗S lseg(α0, α1) ∗S

α1 · n �→ 0x0 ∗S &l1 �→ α1 ∗S

This last summary may still not be as general as the summary shown in Exam-
ple 9, and may thus be generalized even more at subsequent call points.

Analysis of Recursive Calls. So far, we have focused on the case where there are
no recursive calls. Actually, the presence of recursive calls changes relatively little
to the principle of our analysis (although the formalization would be significantly
heavier and is left out). Indeed, it only requires to extend the algorithm of Fig. 7
with a fixpoint computation over context summaries, so as to determine an over-
approximation of both components of the procedure context summary.

– when a recursive call is encountered and when the calling context is not
accounted for in the current context summary (Fig. 7, condition at line 4
evaluated to false), the h�

f component should be widened and the current t�
f

should be used directly;
– at the end of the analysis of the procedure body, the t�

f component should be
widened with the previously known transformation, and the analysis of the
procedure body iterated until this transformation stabilizes.

Convergence is ensured by widening both on abstract states and transformations.

8 Experimental Evaluation

In this section, we report on the evaluation of the interprocedural analysis based
on function summaries, with respect to the following questions:

1. Is it able to infer precise invariants?
2. Does it scale better than a classical call-string-based analysis?
3. How effective are context summaries, i.e., do they often have to be recom-

puted?

We have implemented the interprocedural analysis based on context summaries
for a large fragment of the C language. Our tool is a plugin for Frama-C [20]. It
supports conventional control flow structures of C and can be parameterized by
the inductive definition of the structure to consider, as in [5]. However, it leaves
out non-recursive structures and data-types that are not immediately related
to the analysis principle (strings, arrays, numeric types). Furthermore, we have

266 H. Illous et al.

Fig. 8. Per-function comparison of analysis runtime (times in seconds)

also implemented as another extension of Frama-C an analysis relying on the
call-string approach, i.e., that inlines procedures at call sites.

Experiments and Raw Data. We did two experiments. First, we ran the two
analyses on a fragment of the GNU Emacs 25.3 editor. This fragment comprises
22 functions of the Fx show tip feature and is implemented in C. It manipulates
descriptions of Lisp objects including lists built as Cons pairs. The analyzed code
corresponds to about 3 kLOC. Analyses were ran on an Intel Core i7 laptop at
2.3 GHz with 16 Gb of RAM. The raw data are provided in Appendix A and
the following paragraphs discuss the main points related to the above questions.
Second, we analyzed a set of basic recursive functions on trees and lists to validate
the recursive call analysis.

Precision. We compared the result of the analysis of the body of each procedure.
More precisely, we checked whether the transformation computed for the whole
procedure body for its entry abstract state (the first component of context sum-
maries) is at least as precise as the post-condition produced by the state analysis.
For 15 functions, the body contains nested calls and the result is as precise. The
remaining 7 functions do not contain any call, thus are not relevant to validate
the absence of precision loss at call sites.

Scalability. The total measured analysis time was 14.20 s for the transformation-
based analysis against 877.12 s for the state analysis, which shows a high overall
speedup. Secondly, we show the average analysis time of the body of each func-
tion in Fig. 8 (these values are average analysis times, and not total time spent
analyzing each function, as the effectiveness of summary reuse is the topic of
the next paragraph). We observe that for some functions the speedup is low or
even negative. These functions mostly correspond to low analysis times. Upon
inspection, they all occupy a low position in the call tree: they call few func-
tions, and the transformation analysis overhead is not compensated by a high
gain from many summary applications to avoid the analysis of down calls. Con-
versely functions at the top of the call graph (such as the entry point) show a
very high gain.

Interprocedural Shape Analysis 267

Effectiveness. Finally, we assessed the effectiveness of the summary reuse, which
depends not only on the call graph shape (functions that are called at a single
site offer no gain opportunity) but also on the function behavior and the analysis
(depending on the contexts that are encountered, some procedure may need to
be reanalyzed multiple times or not). We observed that only one procedure
needed to be reanalyzed (Fcons was reanalyzed 3 times). All other summaries
were computed only once (i.e., the branch at lines 4–6 in Fig. 7 is taken only
once). For functions called at a single point (11 of the total) summaries could
not be reused, but for 8 functions, summaries were reused multiple times (3 to 44
times). By contrast, the state analysis had to reanalyze most functions several
times: in particular 11 functions were reanalyzed 15 times or more (up to 296
times). Therefore, the summary-based analysis provides significant gain even for
small functions.

Recursive Calls. We ran the analysis on a series of recursive implementations
of classical functions on lists and binary trees, including size, allocation, deal-
location, insertion, search and deep copy, and also list concatenation and filter.
For all these functions, the expected invariants could be inferred in under 5 ms
(Appendix A).

9 Related Works and Conclusion

Since Sharir and Pnueli’s seminal paper [35], many works have studied
approaches to interprocedural analyses. The relational approach strives for mod-
ularity, which has been a concern in static analysis even beyond interprocedural
code [8,10]. A major advantage of modular approaches is to avoid the reanalysis
of program fragments that are called repeatedly. However, it is generally difficult
to apply as it requires an accurate and efficient representation for summaries.
While relational numerical abstract domains [11] naturally provide a way to cap-
ture numerical input/output relations [26,27], this is harder to achieve when con-
sidering memory abstractions. The TVLA framework [33] supports such relation
using the classical “primed variables” technique [18,19] where input and output
variables are distinguished using prime symbols. Some pointer analyses such
as [12] rely on specific classes of procedure summaries to enable modular analy-
sis. However, separation logic [28] does not naturally support this since formulas
describe regions of a given heap. The classical solution involves the tabulation of
pairs of separation logic formulas [2,15,22], but this approach does not allow to
relate the description of heap regions in a fine manner. To circumvent this, we
use transformations introduced in [17], which are built on connectors inspired
by separation logic. The advantage is twofold: it enables not only a more concise
representation of transformations (since tables of pairs may need to grow large to
precisely characterize the effect of procedures) but also a more local description
of the relation between procedure input and output states. Our graph represen-
tation of abstract states and transformations opens the way to a resolution of
the frame problem [29,30] using intersection operation. The results of our top-

268 H. Illous et al.

down, context summary-based analysis confirm that this approach brings a gain
in analysis scalability once the upfront cost of summaries is amortized.

Many pointer analyses and weak forms of shape analyses have intro-
duced specific techniques in order to construct and compute procedure sum-
maries [21,23,25]. These works typically rely on some notion of graph that
describes both knowledge about memory entities and procedure calls, there-
fore the interprocedural analysis reduces to graph algorithms. Moreover, context
sensitivity information may be embedded into these graphs. Our approach dif-
fers in that it relies on a specific algebra of summaries, although we may also
augment our summaries with context information. Another difference is that the
summary predicates our abstract domain is based on allow a very high level of
precision and that the abstract procedure call analysis algorithm (with inter-
section and composition) aims at preserving this precision. We believe that two
interesting avenues for future works would consider the combination of various
levels of context sensitivity and of less less expressive summaries with our anal-
ysis framework.

A very wide range of techniques have been developed to better cope with
interprocedural analysis, many of which could be combined with context sum-
maries. First, we do not consider tabulation of procedure summaries [10], how-
ever, we could introduce this technique together with some amount of context
sensitivity [1]. Indeed, while relations reduce the need for tables of abstract pre-
and post-conditions, combining context summaries and finer context abstrac-
tion may result in increased precision [7]. Bi-abduction [3] has been proposed
as a technique to infer relevant abstract pre-conditions of procedures. In [3],
this process was implemented on a state abstract domain, but the core princi-
ple of the technique is orthogonal to that choice, thus bi-abduction could also
be applied to abstract transformations. Moreover, while our analysis proceeds
top-down, it would be interesting to consider the combination with a bottom-up
inference of summaries for some procedures [4]. Last, many works have consid-
ered the abstraction of the stack-frame and of the relations between the stack
frame structure and the heap structures manipulated by procedures [31,32]. The
notion of cut-points has been proposed in [29,30] to describe structures tightly
intertwined with the stack. An advantage of our technique is that the use of
an abstraction based on transformations which can express that a region of the
heap is preserved reduces the need to reason over cutpoints.

Acknowledgments. We would like to thank the anonymous reviewers for their sug-
gestions that helped greatly improve the quality of this paper. This work has received
support from the French ANR as part of the VeriAMOS grant.

Interprocedural Shape Analysis 269

A Raw Experimental Data

Analysis of Fx show tip. The table below lists the per call average analysis
times of each procedure, whether the summary analysis is as precise as the state
analysis (“as precise” means the results are at least as precise; “irrel.” means
the measure is irrelevant as the function body does not contain any call) and
the depth in the call graph.

Function name State time Summary time Precision Depth
(s) (s)

Fcons 0.33 0.34 irrel. 8

list2 0.32 0.32 as precise 7

list4 0.33 0.32 as precise 7

Fassq 2.16 6.46 irrel. 6

Fcar 0.32 0.33 irrel. 3

Fcdr 0.33 0.33 irrel. 2

Fnthcdr 0.33 0.34 irrel. 3

Fnth 0.34 0.34 as precise 2

make monitor attribute list 0.33 0.74 as precise 6

check x display info 0.33 0.33 irrel. 3

Fx display monitor attributes list 0.41 0.86 as precise 2

x get monitor for frame 0.40 0.37 irrel. 6

x make monitor attribute list 0.47 0.87 as precise 5

x get monitor attributes fallback 0.35 1.01 as precise 4

x get monitor attributes 0.35 1.11 as precise 3

x get arg 11.82 8.76 as precise 5

x frame get arg 21.75 8.87 as precise 4

x default parameter 23.00 8.91 as precise 3

compute tip xy 38.24 16.80 as precise 1

x default font parameter 39.06 7.17 as precise 2

x create tip frame 321.77 6.96 as precise 1

Fx show tip 877.12 14.20 as precise 0

The table below lists the number of times the body of a procedure is reana-
lyzed:

– column #state counts reanalyses by the state analysis;
– column #total counts the number of times a call site to this procedure is

encountered by the summary analysis;
– column #recomp counts the number of times the summary based analysis

needs to reanalyze the body of this procedure to come up with more general
summary;

– column #reuse counts the number of times a summary is reused without
recomputation.

270 H. Illous et al.

Function name #state #total #recomp #reuse

Fcons 296 47 3 44

list2 12 2 1 1

list4 24 4 1 3

Fassq 64 16 1 15

Fcar 24 1 1 0

Fcdr 12 4 1 3

Fnthcdr 24 1 1 0

Fnth 24 8 1 7

make monitor attribute list 6 2 1 1

check x display info 3 1 1 0

Fx display monitor attributes list 3 1 1 0

x get monitor for frame 6 2 1 1

x make monitor attribute list 3 1 1 0

x get monitor attributes fallback 3 1 1 0

x get monitor attributes 3 1 1 0

x get arg 19 5 1 4

x frame get arg 15 1 1 0

x default parameter 15 15 1 14

compute tip xy 3 3 1 2

x default font parameter 1 1 1 0

x create tip frame 1 1 1 0

Fx show tip 1 1 1 0

Analysis of recursive list and tree classical algorithms. The table below lists the
analysis times of a series of classical functions over lists and trees.

Structure function time (ms)

List length 1.256

List get n 2.179

List alloc 1.139

List dealloc 0.842

List concat 1.833

List map 0.904

List deep copy 1.540

List filter 3.357

Tree visit 1.078

Tree size 1.951

Tree search 3.818

Tree dealloc 1.391

Tree insert 5.083

Tree deep copy 2.603

Interprocedural Shape Analysis 271

References

1. Bourdoncle, F.: Abstract interpretation by dynamic partitioning. J. Funct. Pro-
gram 2(4), 407–423 (1992)

2. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Footprint analysis: a shape
analysis that discovers preconditions. In: Nielson, H.R., Filé, G. (eds.) SAS 2007.
LNCS, vol. 4634, pp. 402–418. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74061-2 25

3. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: Symposium on Principles of Programming Languages
(POPL), pp. 289–300. ACM (2009)

4. Castelnuovo, G., Naik, M., Rinetzky, N., Sagiv, M., Yang, H.: Modularity in lat-
tices: a case study on the correspondence between top-down and bottom-up anal-
ysis. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 252–274.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48288-9 15

5. Chang, B.Y.E., Rival, X.: Relational inductive shape analysis. In Symposium on
Principles of Programming Languages (POPL), pp. 247–260. ACM (2008)

6. Chang, B.-Y.E., Rival, X., Necula, G.C.: Shape analysis with structural invariant
checkers. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 384–401.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74061-2 24

7. Chatterjee, R., Ryder, B.G., Landi, W.A.: Relevant context inference. In: Sympo-
sium on Principles of Programming Languages (POPL), pp. 133–146. ACM (1999)

8. Codish, M., Debray, S.K., Giacobazzi, R.: Compositional analysis of modular logic
programs. In: Symposium on Principles of Programming Languages (POPL), pp.
451–464. ACM (1993)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Symposium
on Principles of Programming Languages (POPL), ACM (1977)

10. Cousot, P., Cousot, R.: Modular static program analysis. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 159–179. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45937-5 13

11. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Symposium on Principles of Programming Languages (POPL),
pp. 84–97. ACM (1978)

12. Dillig, I., Dillig, T., Aiken, A. and Sagiv, M.: Precise and compact modular pro-
cedure summaries for heap manipulating programs. In: Hall, M.W., Padua, D.A.
(eds.) Conference on Programming Languages Design and Implementation (PLDI),
pp. 567–577. ACM (2011)

13. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006). https://doi.org/10.1007/11691372 19

14. Dudka, K., Peringer, P., Vojnar, T.: Predator: a practical tool for checking manip-
ulation of dynamic data structures using separation logic. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 372–378. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22110-1 29

15. Gulavani, B.S., Chakraborty, S., Ramalingam, G., Nori, A.V.: Bottom-up shape
analysis. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 188–204.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03237-0 14

16. Illous, H.: Abstract Heap Relations for a Compositional Shape Analysis. PhD the-
sis, École Normale Supérieure (2018)

https://doi.org/10.1007/978-3-540-74061-2_25
https://doi.org/10.1007/978-3-540-74061-2_25
https://doi.org/10.1007/978-3-662-48288-9_15
https://doi.org/10.1007/978-3-540-74061-2_24
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/11691372_19
https://doi.org/10.1007/978-3-642-22110-1_29
https://doi.org/10.1007/978-3-642-03237-0_14

272 H. Illous et al.

17. Illous, H., Lemerre, M., Rival, X.: A relational shape abstract domain. In: Bar-
rett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 212–229.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 15

18. Jeannet, B., Loginov, A., Reps, T., Sagiv, M.: A relational approach to interpro-
cedural shape analysis. ACM Trans. Program. Lang. Syst. (TOPLAS) 32(2), 5
(2010)

19. Jeannet, B., Loginov, A., Reps, T.W., Sagiv, S.: A relational approach to interpro-
cedural shape analysis. In: Static Analysis Symposium (SAS), pp. 246–264 (2004)

20. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-c:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015)

21. Lattner, C., Lenharth, A., Adve, V.: Making context-sensitive points-to analysis
with heap cloning practical for the real world. In: Ferrante, J., McKinley, K.S. (eds),
Conference on Programming Languages Design and Implementation (PLDI), pp.
278–289. ACM (2007)

22. Le, Q.L., Gherghina, C., Qin, S., Chin, W.-N.: Shape analysis via second-order bi-
abduction. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 52–68.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 4

23. Lei, Y., Sui, Y.: Fast and precise handling of positive weight cycles for field-sensitive
pointer analysis. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 27–47.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32304-2 3

24. Manna, Z., Pnueli, A.: Axiomatic approach to total correctness of programs. Acta
Informatica 3, 243–263 (1974)

25. Marron, M., Hermenegildo, M., Kapur, D., Stefanovic, D.: Efficient context-
sensitive shape analysis with graph based heap models. In: Hendren, L. (ed.) CC
2008. LNCS, vol. 4959, pp. 245–259. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78791-4 17

26. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra.
In: Symposium on Principles of Programming Languages (POPL), pp. 330–341.
ACM (2004)

27. Popeea, C., Chin, W.-N.: Inferring disjunctive postconditions. In: Okada, M.,
Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 331–345. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77505-8 26

28. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: Sym-
posium on Logics In Computer Science (LICS), pp. 55–74. IEEE (2002)

29. Rinetzky, N., Bauer, J., Reps, T., Sagiv, M., Wilhelm, R.: A semantics for proce-
dure local heaps and its abstractions. In: Symposium on Principles of Programming
Languages (POPL), pp. 296–309 (2005)

30. Noam Rinetzky, Mooly Sagiv, and Eran Yahav. Interprocedural shape analysis
for cutpoint-free programs. In: Hankin, C., Siveroni, I. (eds.) Static Analysis
Symposium (SAS), Springer, Berlin, pp. 284–302 (2005) https://doi.org/10.1007/
11547662 20

31. Rinetzky, N., Sagiv, M.: Interprocedural shape analysis for recursive programs. In:
Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp. 133–149. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45306-7 10

32. Rival, X., Chang, B.Y.E.: Calling context abstraction with shapes. In: Symposium
on Principles of Programming Languages (POPL), pp. 173–186. ACM (2011)

33. Sagiv, M., Reps, T., Whilhelm, R.: Solving shape-analysis problems in languages
with destructive updating. ACM Trans. Program. Lang. Syst. (TOPLAS) 20(1),
50 (1998)

https://doi.org/10.1007/978-3-319-57288-8_15
https://doi.org/10.1007/978-3-319-08867-9_4
https://doi.org/10.1007/978-3-030-32304-2_3
https://doi.org/10.1007/978-3-540-78791-4_17
https://doi.org/10.1007/978-3-540-78791-4_17
https://doi.org/10.1007/978-3-540-77505-8_26
https://doi.org/10.1007/11547662_20
https://doi.org/10.1007/11547662_20
https://doi.org/10.1007/3-540-45306-7_10

Interprocedural Shape Analysis 273

34. Schaefer, I., Podelski, A.: Local reasoning for termination. In: COSMICAH 2005:
Workshop on Verification of COncurrent Systems with dynaMIC Allocated Heaps,
pp. 16–30 (2005)

35. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications, chapter 7. Prentice-Hall Inc,
Englewood Cliffs, New Jersey (1981)

Probabilistic Lipschitz Analysis of Neural
Networks

Ravi Mangal1(B), Kartik Sarangmath1, Aditya V. Nori2, and Alessandro Orso1

1 Georgia Institute of Technology, Atlanta, GA 30332, USA
{rmangal3,kartiksarangmath,orso}@gatech.edu
2 Microsoft Research, Cambridge CB1 2FB, UK

Aditya.Nori@microsoft.com

Abstract. We are interested in algorithmically proving the robustness
of neural networks. Notions of robustness have been discussed in the
literature; we are interested in probabilistic notions of robustness that
assume it feasible to construct a statistical model of the process generat-
ing the inputs of a neural network. We find this a reasonable assumption
given the rapid advances in algorithms for learning generative models of
data. A neural network f is then defined to be probabilistically robust
if, for a randomly generated pair of inputs, f is likely to demonstrate
k-Lipschitzness, i.e., the distance between the outputs computed by f is
upper-bounded by the kth multiple of the distance between the pair of
inputs. We name this property, probabilistic Lipschitzness.

We model generative models and neural networks, together, as pro-
grams in a simple, first-order, imperative, probabilistic programming lan-
guage, pcat. Inspired by a large body of existing literature, we define a
denotational semantics for this language. Then we develop a sound local
Lipschitzness analysis for cat, a non-probabilistic sublanguage of pcat.
This analysis can compute an upper bound of the “Lipschitzness” of a
neural network in a bounded region of the input set. We next present a
provably correct algorithm, PROLIP, that analyzes the behavior of a neu-
ral network in a user-specified box-shaped input region and computes -
(i) lower bounds on the probabilistic mass of such a region with respect
to the generative model, (ii) upper bounds on the Lipschitz constant of
the neural network in this region, with the help of the local Lipschitz-
ness analysis. Finally, we present a sketch of a proof-search algorithm
that uses PROLIP as a primitive for finding proofs of probabilistic Lips-
chitzness. We implement the PROLIP algorithm and empirically evaluate
the computational complexity of PROLIP.

1 Introduction

Neural networks (NNs) are useful for modeling a variety of computational tasks
that are beyond the reach of manually written programs. We like to think of NNs
as programs in a first-order programming language specialized to operate over
vectors from high-dimensional Euclidean spaces. However, NNs are algorithmi-
cally learned from observational data about the task being modeled. These tasks
c© Springer Nature Switzerland AG 2020
D. Pichardie and M. Sighireanu (Eds.): SAS 2020, LNCS 12389, pp. 274–309, 2020.
https://doi.org/10.1007/978-3-030-65474-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65474-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-65474-0_13

Probabilistic Lipschitz Analysis of Neural Networks 275

typically represent natural processes for which we have large amounts of data
but limited mathematical understanding. For example, NNs have been successful
at image recognition [40] - assigning descriptive labels to images. In this case,
the underlying natural process that we want to mimic computationally is image
recognition as it happens in the human brain. However, insufficient mathematical
theory about this task makes it hard to develop a hand-crafted algorithm.

Given that NNs are discovered algorithmically, it is important to ensure that
a learned NN actually models the computational task of interest. With the per-
spective of NNs as programs, this reduces to proving that the NN behaves in accor-
dance with the formal specification of the task at hand. Unfortunately, limited
mathematical understanding of the tasks implies that, in general, we are unable
to even state the formal specification. In fact, it is precisely in situations where
we are neither able to manually design an algorithm nor able to provide formal
specifications in which NNs tend to be deployed. This inability to verify or make
sense of the computation represented by a NN is one of the primary challenges to
the widespread adoption of NNs, particularly for safety critical applications. In
practice, NNs are tested on a limited number of manually provided tests (referred
to as test data) before deploying. However, a natural question is, what formal
correctness guarantees, if any, can we provide about NNs?

A hint towards a useful notion of correctness comes from an important obser-
vation about the behavior of NNs, first made by [51]. They noticed that state-
of-the-art NNs that had been learned to perform the image recognition task
were unstable - small changes in the inputs caused the learned NNs to produce
large, unexpected, and undesirable changes in the outputs. In the context of
the image recognition task, this meant that small changes to the images, imper-
ceptible to humans, caused the NN to produce very different labels. The same
phenomenon has been observed by others, and in the context of very different
tasks, like natural language processing [2,35] and speech recognition [13,14,45].
This phenomenon, commonly referred to as lack of robustness, is widespread
and undesirable. This has motivated a large body of work (see [43,59,62] for
broad but non-exhaustive surveys) on algorithmically proving NNs robust. These
approaches differ not only in the algorithms employed but also in the formal
notions of robustness that they prove.

An majority of the existing literature has focused on local notions of robust-
ness. Informally, a NN is locally robust at a specific input, x0, if it behaves robustly
in a bounded, local region of the input Euclidean space centered at x0. There
are multiple ways of formalizing this seemingly intuitive property. A common
approach is to formalize this property as, @x.(‖x − x0‖ ď r) Ñ φ((fx), (fx0)),
where f is the NN to be proven locally robust at x0, (fx) represents the result
of applying the NN f on input x, φ((fx), (fx0)) represents a set of linear con-
straints imposed on (fx), and ‖·‖ represents the norm or distance metric used
for measuring distances in the input and output Euclidean spaces (typically,
an lp norm is used with p P {1, 2, 8}). An alternate, less popular, formulation
of local robustness, referred to as local Lipschitzness at a point, requires that
@x, x′.(‖x − x0‖ ď r) ^ (‖x′ − x0‖ ď r) Ñ (‖fx − fx′‖ ď k ˚ ‖x − x′‖). Local

276 R. Mangal et al.

Lipschitzness ensures that in a ball of radius r centered at x0, changes in the
input only lead to bounded changes in the output. One can derive other forms of
local robustness from local Lipschitzness. (see Theorem 3.2 in [58]). We also find
local Lipschitzness to be an aesthetically more pleasing and natural property of
a function. But, local Lipschitzness is a relational property [6,12]/hyperproperty
[18] unlike the first formulation, which is a safety property [41]. Algorithms for
proving safety properties of programs have been more widely studied and there
are a number of mature approaches to build upon, which may explain the preva-
lence of techniques for proving the former notion of local robustness. For instance,
[28,49] are based on variants of polyhedral abstract interpretation [10,21,37,38]
encode the local robustness verification problem as an SMT constraint.

Local robustness (including local Lipschitzness) is a useful but limited guar-
antee. For inputs where the NN has not been proven to be locally robust, no
guarantees can be given. Consequently, a global notion of robustness is desir-
able. Local Lipschitzness can be extended to a global property - a NN f is globally
Lipschitz or k-Lipschitz if, @x, x′.(‖fx − fx′‖ ď k ˚ ‖x − x′‖). Algorithms have
been proposed in programming languages and machine learning literature for
computing Lipschitz constant upper bounds. Global robustness is guaranteed if
the computed upper bound is ď k.

Given the desirability of global robustness over local robustness, the focus
on local robustness in the existing literature may seem surprising. There are
two orthogonal reasons that, we believe, explain this state of affairs - (i) prov-
ing global Lipschitzness, particularly with a tight upper bound on the Lipschitz
constant, is more technically and computationally challenging than proving local
Lipschitzness, which is itself hard to prove due its relational nature; (ii) requir-
ing NNs to be globally Lipschitz with some low constant k can be an exces-
sively stringent specification, unlikely to be met by most NNs in practice. NNs,
unlike typical programs, are algorithmically learnt from data. Unless the learning
algorithm enforces the global robustness constraint, it is unlikely for a learned
NN to exhibit this “strong” property. Unfortunately, learning algorithms are ill-
suited for imposing such logical constraints. These algorithms search over a set
of NNs (referred to as the hypothesis class) for the NN minimizing a cost function
(referred to as loss function) that measures the “goodness” of a NN for model-
ing the computational task at hand. These algorithms are greedy and iterative,
following the gradient of the loss function. Modifying the loss function in order
to impose the desired logical constraints significantly complicates the function
structure and makes the gradient-based, greedy learning algorithms ineffective.1

Consequently, in this work, we focus on a probabilistic notion of global robust-
ness. This formulation, adopted from [44], introduces a new mathematical object
to the NN verification story, namely, a probability measure over the inputs to the
NN under analysis. One assumes it feasible to construct a statistical model of
the process generating the inputs of a NN. We find this a reasonable assumption
given the rapid advances in algorithms for learning generative models of data
[32,39]. Such a statistical model yields a distribution D over the inputs of the

1 Recent work has tried to combine loss functions with logical constraints [27].

Probabilistic Lipschitz Analysis of Neural Networks 277

NN. Given distribution D and a NN f , this notion of robustness, that we refer to
as probabilistic Lipschitzness, is formally stated as,

Pr
x,x′„D

(‖fx − fx′‖ ď k ˚ ‖x − x′‖ ∣
∣ ‖x − x′‖ ď r) ě 1 − ε

This says that if we randomly draw two samples, x and x′ from the distribution
D, then, under the condition that x and x′ are r-close, there is a high probability
(ě (1− ε)) that NN f behaves stably for these inputs. If the parameter ε = 0 and
r = 8, then we recover the standard notion of k-Lipschitzness. Conditioning
on the event of x and x′ being r-close reflects the fact that we are primarily
concerned with the behavior of the NN on pairs of inputs that are close.

To algorithmically search for proofs of probabilistic Lipschitzness, we model
generative models and NNs together as programs in a simple, first-order, imper-
ative, probabilistic programming language, pcat. First-order probabilistic pro-
gramming languages with a sample construct, like pcat, have been well-studied.2

Programs in pcat denote transformers from Euclidean spaces to probability mea-
sures over Euclidean spaces. pcat, inspired by the non-probabilistic language cat
[28], is explicitly designed to model NNs, with vectors in R

n as the basic datatype.
The suitability of pcat for representing generative models stems from the fact
that popular classes of generative models (for instance, the generative network
of generative adversarial networks [32] and the decoder network of variational
autoencoders [39]) are represented by NNs. Samples from the input distribution
D are obtained by drawing a sample from a standard distribution (typically a
normal distribution) and running this sample through generative or decoder net-
works. In pcat, this can be represented as the program, z ø N(0, 1); g, where
the first statement represents the sampling operation (referred to as sampling
from the latent space, with z as the latent variable) and g is the generative or
decoder NN. If the NN to be analyzed is f , then we can construct the program,
z ø N(0, 1); g; f , in pcat, and subject it to our analysis.

Adapting a language-theoretic perspective allows us to study the problem
in a principled, general manner and utilize existing program analysis and veri-
fication literature. In particular, we are interested in sound algorithms that can
verify properties of probabilistic programs without needing manual intervention.
Thus approaches based on interactive proofs [8,9], requiring manually-provided
annotations and complex side-conditions [7,15,36] or only providing statistical
guarantees [11,46] are precluded. Frameworks based on abstract interpretation
[22,54] are helpful for thinking about analysis of probabilistic programs but we
focus on a class of completely automated proof-search algorithms [1,29,47] that
only consider probabilistic programs where all randomness introducing state-
ments (i.e., sample statements) are independent of program inputs, i.e. samples
are drawn from fixed, standard probability distributions, similar to our setting.
These algorithms analyze the program to generate symbolic constraints (i.e.,
sentences in first-order logic with theories supported by SMT solvers) and then
compute the probability mass or “volume”, with respect to a fixed probability

2 pcat has no observe or score construct and cannot be used for Bayesian reasoning.

278 R. Mangal et al.

measure, of the set of values satisfying these constraints. These algorithms are
unsuitable for parametric probability measures but suffice for our problem. Both
generating symbolic constraints and computing volumes can be computationally
expensive (and even intractable for large programs), so a typical strategy is to
break down the task into simpler sub-goals. This is usually achieved by defining
the notion of “program path” and analyzing each path separately. This per path
strategy is unsuitable for NNs, with their highly-branched program structure. We
propose partitioning the program input space (i.e., the latent space in our case)
into box-shaped regions, and analyzing the program behavior separately on each
box. The box partitioning strategy offers two important advantages - (i) by not
relying explicitly on program structure to guide partitioning strategy, we have
more flexibility to balance analysis efficiency and precision; (ii) computing the
volume of boxes is easier than computing the same for sets with arbitrary or
even convex structure.

For the class of probabilistic programs we are interested in (with structure,
z ø N(0, 1); g; f), the box-partitioning strategy implies repeatedly analyzing
the program g; f while restricting z to from box shaped regions. In every run,
the analysis of g; f involves computing a box-shaped overapproximation, xB, of
the outputs computed by g when z is restricted to some specific box zB and com-
puting an upper bound on the local Lipschitz constant of f in the box-shaped
region xB . We package these computations, performed in each iteration of the
proof-search algorithm, in an algorithmic primitive, PROLIP. For example, con-
sider the scenario where f represents a classifier, trained on the MNIST dataset,
for recognizing hand-written digits, and g represents a generative NN modeling
the distribution of the MNIST dataset. In order to prove probabilistic Lipschitz-
ness of f with respect to the distribution D represented by the generative model
z ø N(0, 1); g, we iteratively consider box-shaped regions in the latent space
(i.e., in the input space of g). For each such box-shaped region σB in the input
space of g, we first compute an overapproximation σ̃B of the corresponding box-
shaped region in the output space of g. Since the output of g is the input of f , we
next compute an upper bound on the local Lipschitz constant of f in the region
σ̃B . If the computed upper bound is less than the required bound, we add the
probabilistic mass of region σB to an accumulator maintaining the probability
of f being Lipschitz with respect to the distribution D.

For computing upper bounds on local Lipschitz constants, we draw inspi-
ration from existing literature on Lipschitz analysis of programs [16] and NNs
[19,26,33,42,51–53,57,61]. In particular, we build on the algorithms presented
in [57,61]. We translate these algorithms in to our language-theoretic setting
and present the local Lipschitzness analysis in the form of an abstract semantics
for the cat language, which is a non-probabilistic sublanguage of pcat. In the
process, we also simplify and generalize the original algorithms.

To summarize, our primary contributions in this work are - (i) we present
a provably sound algorithmic primitive PROLIP and a sketch of a proof-search
algorithm for probabilistic Lipschitzness of NNs, (ii) we develop a simplified and
generalized version of the local Lipschitzness analysis in [57], capable of comput-

Probabilistic Lipschitz Analysis of Neural Networks 279

Fig. 1. pcat syntax

ing an upper bound on the local Lipschitz constant of box-shaped input regions
for any program in the cat language, (iii) we develop a strategy for computing
proofs of probabilistic programs that limits probabilistic reasoning to volume
computation of regularly shaped sets with respect to standard distributions, (iv)
we implement the PROLIP algorithm, and evaluate its computational complexity.

2 Language Definition

2.1 Language Syntax

pcat (probabilistic conditional affine transformations) is a first-order, impera-
tive probabilistic programming language, inspired by the cat language [28]. pcat
describes always terminating computations on data with a base type of vectors
over the field of reals (i.e., of type

⋃

nPN R
n). pcat is not meant to be a practi-

cal language for programming, but serves as a simple, analyzable, toy language
that captures the essence of programs structured like NNs. We emphasize that
pcat does not capture the learning component of NNs. We think of pcat pro-
grams as objects learnt by a learning algorithm (commonly stochastic gradient
descent with symbolic gradient computation). We want to analyze these learned
programs and prove that they satisfy the probabilistic Lipschitzness property.

pcat can express a variety of popular NN architectures and generative models.
For instance, pcat can express ReLU, convolution, maxpool, batchnorm, trans-
posed convolution, and other structures that form the building blocks of popular
NN architectures. We describe the encodings of these structures in Appendix F.
The probabilistic nature of pcat further allows us to express a variety of gen-
erative models, including different generative adversarial networks (GANs) [32]
and variational autoencoders (VAEs) [39].

pcat syntax is defined in Fig. 1. pcat variable names are drawn from a set V
and refer to vector of reals. Constant matrices and vectors appear frequently in
pcat programs, playing the role of learned weights and biases of NNs, and are
typically represented by w and β, respectively. Programs in pcat are composed of
basic statements for performing linear transformations of vectors (y Ð w ·x + β)
and sampling vectors from normal distributions (y ø N(0, 1)). Sampling from
parametric distributions is not allowed. Programs can be composed sequentially

280 R. Mangal et al.

Fig. 2. pcat denotational semantics

(s; s) or conditionally (if b then s else s). pcat does not have a loop construct,
acceptable as many NN architectures do not contain loops. pcat provides a pro-
jection operator π(x, n) that reads the nth element of the vector referred by x.
For pcat programs to be well-formed, all the matrix and vector dimensions need
to fit together. Static analyses [31,50] can ensure correct dimensions. In the rest
of the paper, we assume that the programs are well-formed.

2.2 Language Semantics

We define the denotational semantics of pcat in Fig. 2, closely following those
presented in [8]. We present definitions required to understand these semantics.

Definition 1. A σ−algebra on a set X is a set Σ of subsets of X such that
it contains X, is closed under complements and countable unions. A set with a
σ−algebra is a measurable space and the subsets in Σ are measurable.

Probabilistic Lipschitz Analysis of Neural Networks 281

A measure on a measurable space (X,Σ) is a function μ : Σ Ñ [0, 8] such
that μ(H) = 0 and μ(

⋃

iPN Bi) =
∑

iPN μ(Bi) such that Bi is a countable family
of disjoint measurable sets. A probability measure or probability distribution is a
measure μ with μ(X) = 1.

Given set X, we use P (X) to denote the set of all probability measures
over X. A Dirac distribution centered on x, written δx, maps x to 1 and all
other elements of the underlying set to 0. Note that when giving semantics to
probabilistic programming languages, it is typical to consider sub-distributions
(measures such that μ(X) ď 1 for a measurable space (X,Σ)), as all programs in
pcat terminate, we do not describe the semantics in terms of sub-distributions.
Next, following [8], we give a monadic structure to probability distributions.

Definition 2. Let μ P P (A) and f : A Ñ P (B). Then, Ea„μ[f] P P (B) is
defined as, Ea„μ[f] fi λν.

∫

A
f(a)(ν) dμ(a)

Note that in the rest of the paper, we write expressions of the form
∫

A
f(a) dμ(a) as

∫

aPA
μ(a) · f(a) for notational convenience. The metalanguage

used in Fig. 2 and the rest of the paper is standard first-order logic with ZFC
set theory, but we borrow notation from a variety of sources including languages
like C and ML as well as standard set-theoretic notation. As needed, we provide
notational clarification.

We define the semantics of pcat with respect to the set Σ of states. A state σ
is a map from variables V to vectors of reals of any finite dimension. The choice
of real vectors as the basic type of values is motivated by the goal of pcat to
model NN computations. The set P (Σ) is the set of probability measures over
Σ. A pcat statement transforms a distribution over Σ to a new distribution over
the same set. [[e]] and [[b]] denote the semantics of expressions and conditional
checks, respectively. Expressions map states to vectors of reals while conditional
checks map states to boolean values.

The semantics of statements are defined in two steps. We first define the
standard semantics [[s]] where statements map incoming states to probability
distributions. Next, the lifted semantics, [̂[s]], transform a probability distribu-
tion over the states, say μ, to a new probability distribution. The lifted semantics
([̂[s]]) are obtained from the standard semantics ([[s]]) using the monadic construc-
tion of Definition 2. Finally, we also defined a lowered semantics (~[[s−]]) for the
cat sublanguage of pcat. As per these lowered semantics, statements are maps
from states to states. Moreover, the lowered semantics of cat programs is tightly
related to their standard semantics, as described by the following lemma.

Lemma 3. (Equivalence of semantics)
@p P s−, σ P Σ. [[p]](σ) = δ

}[[p]](σ)

Proof. Appendix A �

The lemma states that one can obtain the standard probabilistic semantics for a
program p in cat, given an initial state σ, by a Dirac delta distribution centered
at |[[p]](σ). Using this lemma, one can prove the following useful corollary.

282 R. Mangal et al.

Corollary 4. @p P s−, σ P Σ,μ P P (σ). [̂[p]](μ)(|[[p]](σ)) ě μ(σ)

Proof. Appendix B �

3 Lipschitz Analysis

A function f is locally Lipschitz in a bounded set S if, @x, x′ P S.‖fx − fx′‖ ď
k · ‖x − x′‖, where ‖·‖ can be any lp norm. Quickly computing tight upper
bounds on the local Lipschitzness constant (k) is an important requirement
of our proof-search algorithm for probabilistic Lipschitzness of pcat programs.
However, as mentioned previously, local Lipschitzness is a relational property
(hyperproperty) and computing upper bounds on k can get expensive.

The problem can be made tractable by exploiting a known relationship
between Lipschitz constants and directional directives of a function. Let f be
a function of type R

m Ñ R
n, and let S Ă R

m be a convex bounded set. From
[58] we know that the local Lipschitz constant of f in the region S can be upper
bounded by the maximum value of the norm of the directional directives of f in S,
where the directional directive, informally, is the derivative of f in the direction
of some vector v. Since f is a vector-valued function (i.e., mapping vectors to vec-
tors), the derivative (including directional derivative) of f appears as a matrix of

the form, J =

⎡

⎣

∂y1
∂x1

... ∂y1
∂xm

... ...
∂yn

∂x1
... ∂yn

∂xm

⎤

⎦, referred to as the Jacobian matrix of f (with x and

y referring to the input and output of f). Moreover, to compute the norm of J, i.e.
‖J‖, we use the operator norm, ‖J‖ = inf{c ě 0 | ‖Jv‖ ď c‖v‖ for all v P R

m}.
Intuitively, thinking of a matrix M as a linear operator mapping between two
vector spaces, the operator norm of M measures the maximum amount by which
a vector gets “stretched” when mapped using M .

For piecewise linear functions with a finite number of “pieces”(i.e., the type
of functions that can be computed by cat), using lemma 3.3 from [58], we can
compute an upper bound on the Lipschitz constant by computing the opera-
tor norm of the Jacobian of each linear piece, and picking the maximum value.
Since each piece of the function is linear, computing the Jacobian for a piece is
straightforward. But the number of pieces in piecewise linear functions repre-
sented by NNs (or cat programs) can be exponential in the number of layers in
the NN, even in a bounded region S. Instead of computing the Jacobian for each
piece, we instead define a static analysis inspired by the Fast-Lip algorithm pre-
sented in [57] that computes lower and upper bounds of each element (i.e., each
partial derivative) appearing in the Jacobian. Since our analysis is sound, such
an interval includes all the possible values of the partial derivative in a given
convex region S. We describe this Jacobian analysis in the rest of the section.

3.1 Instrumented cat Semantics

We define an instrumented denotational semantics for cat (the non-probabilistic
sublanguage of pcat) in Fig. 3 that computes Jacobians for a particular program

Probabilistic Lipschitz Analysis of Neural Networks 283

Fig. 3. cat denotational semantics instrumented with Jacobians

path, in addition to the standard meaning of the program (as defined in Fig. 2).
The semantics are notated by |[[·]]

D
(notice the subscript D). Program states, ΣD ,

are pairs of maps such that the first element of each pair belongs to the previously
defined set Σ of states, while the second element of each pair is a map that
records the Jacobians. The second map is of type V Ñ ((

⋃

m,nPN(R)m×n) × V),
mapping each variable in V to a pair of values, namely, a Jacobian which is
matrix of reals, and a variable in V . A cat program can map multiple input
vectors to multiple output vectors, so one can compute a Jacobian of the cat
program for each output vector with respect to each input vector. This explains
the type of the second map in ΣD - for each variable, the map records the
corresponding Jacobian of the cat program computed with respect to the input
variable that forms the second element of the pair.

Before explaining the semantics in Fig. 3, we clarify the notation used in the
figure. We use subscript indices, starting from 1, to refer to elements in a pair or
a tuple. For instance, we can read ((σD

2 (x))1)i,k in the definition of ­[[w · x + β]]
D

as follows - σD
2 refers to the second map of the σD pair, σD

2 (x)1 extracts the
first element (i.e., the Jacobian matrix) of the pair mapped to variable x, and
then finally, we extract the element at location (i, k) in the Jacobian matrix.
Also, we use let expressions in a manner similar to ML, and list comprehensions
similar to Haskell (though we extend the notation to handle matrices). dim is
polymorphic and returns the dimensions of vectors and matrices.

The only interesting semantic definitions are the ones associated with the
expression w · x + β and the statement y Ð w · x + β. The value associated
with any variable in a cat program is always of the form, wn(wn−1(...(w2(w1 ·
x + β1) + β2)...) + βn−1) + βn = wn · wn−1 · ... · w2 · w1 · x + wn · wn−1 · ... ·

284 R. Mangal et al.

w2 · β1 + wn · wn−1 · ... · w3 · β2 + ... + βn. The derivative (the Jacobian) of this
term with respect to x is wn · wn−1 · ... · w2 · w1. Thus, calculating the Jacobian
of a cat program for a particular output variable with respect to a particular
input variable only requires multiplying the relevant weight matrices together
and the bias terms can be ignored. This is exactly how we define the semantics
of w · x + β.

Fig. 4. cat abstract semantics for Jacobian analysis

3.2 Jacobian Analysis

The abstract version of the instrumented denotational semantics of cat is defined
in Fig. 4. The semantics are notated by [[·]]

L
(notice the subscript L). The analysis

Probabilistic Lipschitz Analysis of Neural Networks 285

computes box-shaped overapproximations of all the possible outcomes of a cat
program when executed on inputs from a box-shaped bounded set. This is simi-
lar to standard interval analysis except that cat operates on data of base type of
real vectors. The analysis maintains bounds on real vectors by computing inter-
vals for every element of a vector. In addition, this analysis also computes an
overapproximation of all the possible Jacobian matrices. Note that the Jacobian
matrices computed by the instrumented semantics of cat only depend on the
path through the program, i.e. the entries in the computed Jacobian are control-
dependent on the program inputs but not data-dependent. Consequently, for
precision, it is essential that our analysis exhibit some notion of path-sensitivity.
We achieve this by evaluating the branch conditions using the computed inter-
vals and abstractly interpreting both the branches of an if then else statement
only if the branch direction cannot be resolved.

An abstract program state, σL P ΣL , is a pair of maps. The first map in an
abstract state maps variables in V to abstract vectors representing a box-shaped
set of vectors. Each element of an abstract vector is pair of reals representing a
lower bound and an upper bound on the possible values (first element of the pair
is the lower bound and second element is the upper bound). The second map in
an abstract state maps variables in V to pairs of abstract Jacobian matrices and
elements in V extended with a top and a bottom element. Like abstract vectors,
each element of an abstract Jacobian matrix is a pair of reals representing lower
and upper bounds of the corresponding partial derivative.

The definition of the abstract semantics is straightforward but we describe the
abstract semantics for affine expressions and for conditional statements. First,
we discuss affine expressions. As a quick reminder of the notation, a term of
the form (((σL

2 (x))1)i,k)1 represents the lower bound of the element at location
(i, k) in the abstract Jacobian associated with variable x. Now, recall that the
instrumented semantics computes Jacobians simply by multiplying the weight
matrices. In the abstract semantics, we multiply abstract Jacobians such that
the bounds on each abstract element in the output abstract Jacobian reflect the
minimum and maximum possible values that the element could take given the
input abstract Jacobians. The abstract vectors for the first map are computed
using the abstract box semantics (notated by [[·]]

B
), defined in Appendix G. For

conditional statements, as mentioned previously, we first evaluate the branch
condition using the abstract state. If this evaluation returns �, meaning that the
analysis was unable to discern the branch to be taken, we abstractly interpret
both the branches and then join the computed abstract states. Note that before
abstractly interpreting both branches, we update the abstract state to reflect
that the branch condition should hold before executing s1 and should not hold
before executing s2. However, the assert b statement is not a part of the cat
language, and only used for defining the abstract semantics. The join operation
(
⋃

L) is as expected, except for one detail that we want to highlight - in case
the Jacobians along different branches are computed with respect to different
input variables we make the most conservative choice when joining the abstract
Jacobians, bounding each element with (−8, 8) as well as recording � for the
input variable.

286 R. Mangal et al.

Next, we define the concretization function (γL) for the abstract program
states that maps elements in ΣL to sets of elements in ΣD and then state the
soundness theorem for our analysis.

Definition 5. (Concretization function for Jacobian analysis)
γL(σL) = {σD | (

∧

vPV .σL
1 (v)1 ď σD

1 (v) ď σL
1 (v)2)^(

∧

vPV .(σL
2 (v)1)1 ď σD

2 (v)1 ď
(σL

2 (v)1)2) ^ σD
2 (v)2 P γV (σL

2 (v)2)} where γV (v) = v and γV (�) = V

Theorem 6. (Soundness of Jacobian analysis)
@p P s−, σL P ΣL . {|[[p]]

D
(σD) | σD P γL(σL)} Ď γL([[p]]

L
(σL))

Proof. Appendix C �
We next define the notion of operator norm of an abstract Jacobian. This defini-
tion is useful for stating Corollary 8. Given an abstract Jacobian, we construct
a matrix J such that every element of J is the maximum of the absolute values
of the corresponding lower and upper bound in the abstract Jacobian.

Definition 7. (Operator norm of abstract Jacobian)
If J = σL

2 (v)1 for some σL and v, and (m,n) = dim(J) then ‖J‖
L
is defined as,

‖J‖
L

= ‖[max{|(Jk,l)1|, |(Jk,l)2|} | k P {1, ...,m}, l P {1, ..., n}]‖
Corollary 8 shows that the operator norm of the abstract Jacobian computed by
the analysis for some variable v is an upper bound of the operator norms of all
the Jacobians possible for v when a program p is executed on the set of inputs
represented by γL(σL), for any program p and any abstract state σL .

Corollary 8. (Upper bound of Jacobian operator norm)
@p P s−, σL P ΣL , v P V.

max{
∥
∥
∥((|[[p]]

D
(σD))2)(v)1

∥
∥
∥ | σD P γL(σL)} ď ‖(([[p]]

L
(σL))2(v))1‖

L

Proof. Appendix D �

3.3 Box Analysis

The box analysis abstracts the lowered cat semantics instead of the instrumented
semantics. Given a box-shaped set of input states, it computes box-shaped over-
approximations of the program output in a manner similar to the Jacobian
analysis. In fact, the box analysis only differs from the Jacobian analysis in not
computing abstract Jacobians. We define a separate box analysis to avoid com-
puting abstract Jacobians when not needed. The concretization function (γB)
for the box analysis and the soundness theorem are stated below. However, we
do not provide a separate proof of soundness for the box analysis since such
a proof is straightforward given the soundness proof for the Jacobian analysis.
Details of the box analysis are available in Appendix G.

Definition 9. (Concretization function for box analysis)
γB(σB) = {σ | ∧

vPV .σB (v)1 ď σ(v) ď σB (v)2}
Theorem 10. (Soundness of box analysis)
@p P s−, σB P ΣB . {|[[p]](σ)|σ P γB(σB)} Ď γB([[p]]

B
(σB))

Probabilistic Lipschitz Analysis of Neural Networks 287

4 Algorithms

We now describe our proof-search algorithms for probabilistic Lipschitzness of
NNs. The PROLIP algorithm (Sect. 4.1) is an algorithmic primitive that can be
used by a proof-search algorithm for probabilistic Lipschitzness. We provide the
sketch of such an algorithm using PROLIP in Sect. 4.2.

4.1 PROLIP Algorithmic Primitive

The PROLIP algorithm expects a pcat program p of the form z ø N(0, 1); g; f as
input, where g and f are cat programs. z ø N(0, 1); g represents the generative
model and f represents the NN under analysis. Other inputs expected by PROLIP
are a box-shaped region zB in z and the input variable as well as the output
variable of f (in and out respectively). Typically, NNs consume a single input
and produce a single output. The outputs produced by PROLIP are (i) kU , an
upper bound on the local Lipschitzness constant of f in a box-shaped region of in
(say inB) that overapproximates the set of in values in the image of zB under g,
(ii) d, the maximum distance between in values in inB , (iii) vol, the probabilistic
volume of the region zB × zB with respect to the distribution N(0, 1) × N(0, 1).

Algorithm 1: PROLIP algo-
rithmic primitive
Input:

p: pcat program.
zB : Box in z.
in: Input variable of f .
out: Output variable of f .

Output:
kU : Lipschitz constant.
d: Max in distance.
vol: Mass of zB × zB .

1 σB := λv.(−8, 8);
2 σ̃B := [[g]]

B
(σB [z �Ñ zB]);

3 σL := (σ̃B , λv.(I, v));
4 σ̃L := [[f]]

L
(σL);

5 if (σ̃L
2 (out)2 = in) then

6 J := σ̃L
2 (out)1;

7 kU := ‖J‖
L
;

8 else
9 kU := 8;

10 d := DIAG LEN(σ̃B (in));
11 vol := VOL(N × N, zB × zB);
12 return (kU , d, vol);

PROLIP starts by constructing an ini-
tial abstract program state (σB) suitable
for the box analysis (line 1). σB maps
every variable in V to abstract vectors
with elements in the interval (−8, 8). We
assume that for the variables accessed in
p, the length of the abstract vectors is
known, and for the remaining variables we
just assume vectors of length one in this
initial state. Next, the initial entry in σB

for z is replaced by zB , and this updated
abstract state is used to perform box anal-
ysis of g, producing σ̃B as the result (line
2). Next, σ̃B is used to create the initial
abstract state σL for the Jacobian analy-
sis of f (line 3). Initially, every variable is
mapped to an identity matrix as the Jaco-
bian and itself as the variable with respect
to which the Jacobian is computed. The
initial Jacobian is a square matrix with
side length same as that of the abstract
vector associated with the variable being
mapped. Next, we use σL to perform Jaco-
bian analysis of f producing σ̃L as the
result (line 4). If the abstract Jacobian
mapped to out in σ̃L is computed with
respect to in (line 5), we proceed down

288 R. Mangal et al.

the true branch else we assume that nothing is known about the required Jaco-
bian and set kU to 8 (line 9). In the true branch, we first extract the abstract
Jacobian and store it in J (line 6). Next, we compute the operator norm of the
abstract Jacobian J using Definition 7, giving us the required upper bound on the
Lipschitz constant (line 7). We then compute the maximum distance between
in values in the box described by σ̃B (in) using the procedure DIAG LEN that
just computes the length of the diagonal of the hyperrectangle represented by
σ̃B (in) (line 10). We also compute the probabilistic mass of region zB × zB with
respect to the distribution N(0, 1) × N(0, 1) (line 11). This is an easy computa-
tion since we can form an analytical expression and just plug in the boundaries
of zB. Finally, we return the tuple (kU , d, vol) (line 12). This PROLIP algorithm
is correct as stated by the following theorem.

Theorem 11. (Soundness of PROLIP)
Let p = z ø N(0, 1); g; f where g, f P s−, (kU , d, vol) = PROLIP(p, zB), z /P
outv(g), z /P outv(f), x P inv(f), and y P outv(f) then, @σ0 P Σ.

Pr
σ,σ′„[[p]](σ0)

((‖σ(y) − σ′(y)‖ ď kU · ‖σ(x) − σ′(x)‖)^ (σ(z), σ′(z) P γ(zB))) ě vol

Proof. Appendix E �

This theorem is applicable for any program p in the required form, such that g
and f are cat programs, variable z is not written to by g and f (outv(·) gives the
set of variables that a program writes to, inv(·) gives the set of live variables at
the start of a program). It states that the result (kU , d, vol) of invoking PROLIP
on p with box zB is safe, i.e., with probability at least vol, any pair of program
states (σ, σ′), randomly sampled from the distribution denoted by [[p]](σ0), where
σ0 is any initial state, satisfies the Lipschitzness property (with constant kU) and
has z variables mapped to vectors in the box zB .

4.2 Sketch of Proof-Search Algorithm

We give a sketch of a proof-search algorithm that uses the PROLIP algorithm as a
primitive. The inputs to such an algorithm are a pcat program p in the appropri-
ate form, the constants r, ε, and k that appear in the formulation of probabilistic
Lipschitzness, and a resource bound gas that limits the number of times PROLIP
is invoked. This algorithm either finds a proof or runs out of gas. Before describ-
ing the algorithm, we recall the property we are trying to prove, stated as follows,

Pr
σ,σ′„[[p]](σ0)

(‖σ(y) − σ′(y)‖ ď k ˚ ‖σ(x) − σ′(x)‖ ∣
∣ ‖σ(x) − σ′(x)‖ ď r) ě 1 − ε

The conditional nature of this probabilistic property complicates the design
of the proof-search algorithm, and we use the fact that Pr(A | B) = Pr(A ^
B)/Pr(B) for computing conditional probabilities. Accordingly, the algorithm
maintains three different probability counters, namely, prl, prr, and prf , which
are all initialized to zero as the first step (line 1).

Probabilistic Lipschitz Analysis of Neural Networks 289

Algorithm 2: Checking Proba-
bilistic Robustness.
Input:

p: pcat program.
r: Input closeness bound.
ε: Probabilistic bound.
k: Lipschitz constant.
gas: Iteration bound.

Output: {tt, ?}
1 prl := 0; prr := 0; prf := 0;
2 α := INIT AGENT(dim(z), r, ε, k);
3 while (prl < (1 − ε)) ^ (gas �= 0)

do
4 gas := gas − 1;
5 zB := CHOOSE(α);
6 (kU , d, vol) :=

PROLIP(p, zB , x, y);
7 UPDATE AGENT(α, kU , d, vol);
8 if d ď r then
9 prr := prr + vol;

10 if kU ď k then
11 prl := prl + vol;
12 prf := prf/prr;
13

14

15 end while
16 if gas = 0 then
17 return ? ;
18 else
19 return tt ;
20

prl records the probability that
a randomly sampled pair of pro-
gram states (σ, σ′) satisfies the
Lipschitzness and closeness prop-
erty (i.e., (‖σ(y) − σ′(y)‖ ď k ˚
‖σ(x) − σ′(x)‖) ^ (‖σ(x) − σ′(x)‖ ď
r)). prr records the probability that
a randomly sampled pair of program
states satisfies the closeness property
(i.e., ‖σ(x) − σ′(x)‖ ď r). prf tracks
the conditional probability which is
equal to prl/prr. After initializing the
probability counters, the algorithm
initializes an “agent” (line 2), which
we think of as black-box capable of
deciding which box-shaped regions in
z should be explored. Ideally, we want
to pick a box such that - (i) it has a
high probability mass, (ii) it satisfies,
both, Lipschitzness and closeness. Of
course, we do not know a priori if Lip-
schitzness and closeness will hold for
a particular box in z, the crux of the
challenge in designing a proof-search
algorithm. Here, we leave the algo-
rithm driving the agent’s decisions
unspecified (and hence, refer to the
proof-search algorithm as a sketch).
After initializing the agent, the algo-
rithm enters a loop (lines 3–13) that
continues till we have no gas left or
we have found a proof. Notice that if
(prl ě (1 − ε)), the probabilistic Lip-

schitzness property is certainly true, but this is an overly strong condition that
maybe false even when probabilistic Lipschitzness holds. For instance, if ε was
0.1 and the ground-truth value of prr for the program p was 0.2, then prl could
never be ě0.9, even if probabilistic Lipschitzness holds. However, continuing
with our algorithm description, after decrementing gas (line 4), the algorithm
queries the agent for a box in z (line 5), and runs PROLIP with this box, assum-
ing x as the input variable of f and y as the output (line 6). Next, the agent
is updated with the result of calling PROLIP, allowing the agent to update it’s
internal state (line 7). Next, we check if for the currently considered box (zB),
the maximum distance between the inputs to f is less than r (line 8), and if so,
we update the closeness probability counter prr (line 9). We also check if the
upper bound of the local Lipschitzness constant returned by PROLIP is less than

290 R. Mangal et al.

k (line 10), and if so, update prl (line 11) and prf (line 12). Finally, if we have
exhausted the gas, we were unable to prove the property, otherwise we have a
proof of probabilistic Lipschitzness.

4.3 Discussion

Informally, we can think of the Jacobian analysis as computing two different
kinds of “information” about a neural network: (i) an overapproximation of the
outputs, given a set of inputs σB , using the box analysis; (ii) an upper bound
on the local Lipschitz constant of the neural network for inputs in σB . The
results of the box analysis are used to overapproximate the set of “program
paths” in the neural network exercised by inputs in σB , safely allowing the
Jacobian computation to be restricted to this set of paths. Consequently, it is
possible to replace the use of box domain in (i) with other abstract domains
like zonotopes [30] or DeepPoly [49] for greater precision in overapproximating
the set of paths. In contrast, one needs to be very careful with the abstract
domain used for the analysis of the generative model g in Algorithm 1, since
the choice of the abstract domain has a dramatic effect on the complexity of
the volume computation algorithm VOL invoked by the PROLIP algorithm. While
Gaussian volume computation of boxes is easy, it is hard for general convex
bodies [4,23,25] unless one uses randomized algorithms for volume computation
[20,24]. Finally, note that the design of a suitable agent for iteratively selecting
the input regions to analyze in Algorithm 2 remains an open problem.

5 Empirical Evaluation

We aim to empirically evaluate the computational complexity of PROLIP. We
ask the following questions: (RQ1) Given a program, is the run time of PROLIP
affected by the size and location of the box in z? (RQ2) What is the run time
of PROLIP on popular generative models and NNs?

5.1 Experimental Setup

We implement PROLIP in Python, using Pytorch, Numpy, and SciPy for the core
functionalities, and Numba for program optimization and parallelization. We
run PROLIP on three pcat programs corresponding to two datasets: the MNIST
dataset and the CIFAR-10 dataset. Each program has a generator network g and
a classifier network f . The g networks in each program consist of five convolution
transpose layers, four batch norm layers, four ReLU layers, and a tanh layer. The
full generator architectures and parameter weights can be seen in [48]. The f
network for the MNIST program consists of three fully connected layers and two
ReLU layers. For the CIFAR-10 dataset, we create two different pcat programs:
one with a large classifier architecture and one with a small classifier architecture.
The f network for the large CIFAR-10 program consists of seven convolution
layers, seven batch norm layers, seven ReLU layers, four maxpool layers, and one

Probabilistic Lipschitz Analysis of Neural Networks 291

fully connected layer. The f network for the small CIFAR-10 program consists
of two convolution layers, two maxpool layers, two ReLU layers, and three fully
connected layers. The full classifier architectures and parameter weights for the
MNIST and large CIFAR-10 program can be seen in [17].

In our experiments, each generative model has a latent space dimension
of 100, meaning that the model samples a vector of length 100 from a multi-
dimensional normal distribution, which is then used by the generator network.
We create five random vectors of length 100 by randomly sampling each element
of the vectors from a normal distribution. For each vector, we create three differ-
ent sized square boxes by adding and subtracting a constant from each element
in the vector. This forms an upper and lower bound for the randomly-centered
box. The constants we chose to form these boxes are 0.00001, 0.001, and 0.1.
In total, 15 different data points are collected for each program. We ran these
experiments on a Linux machine with 32 vCPU’s, 204 GB of RAM, and no GPU.

5.2 Results

(a) (b) (c)

Fig. 5. PROLIP run times

RQ1. As seen in Figs. 5a and 5b, there is a positive correlation between box size
and run time of PROLIP on the MNIST and small CIFAR-10 programs. This is
likely because as the z input box size increases, more branches in the program
stay unresolved, forcing the analysis to reason about more of the program. How-
ever, z box size does not seem to impact PROLIP run time on the large CIFAR-10
program (Fig. 5c) as the time spent in analyzing convolution layers completely
dominates any effect on run time of the increase in z box size.

RQ2. There is a significant increase in the run time of PROLIP for the large
CIFAR-10 program compared to the MNIST and small CIFAR-10 programs,
and this is due to the architectures of their classifiers. When calculating the
abstract Jacobian matrix for an affine assignment statement (y Ð w · x + β),
we multiply the weight matrix with the incoming abstract Jacobian matrix. The
dimensions of a weight matrix for a fully connected layer is Nin×Nout where Nin

292 R. Mangal et al.

is the number of input neurons and Nout is the number of output neurons. The
dimensions of a weight matrix for a convolution layer are Cout ·Hout ·Wout ×Cin ·
Hin · Win where Cin, Hin, and Win are the input’s channel, height, and width
dimensions and Cout, Hout, and Wout are the output’s channel, height, and width
dimensions. For our MNIST and small CIFAR-10 classifiers, the largest weight
matrices formed had dimensions of 784 × 256 and 4704 × 3072 respectively. In
comparison, the largest weight matrix calculated in the large CIFAR-10 classifier
had a dimension of 131072 × 131072. Propagating the Jacobian matrix for the
large CIFAR-10 program requires first creating a weight matrix of that size,
which is memory intensive, and second, multiplying the matrix with the incoming
abstract Jacobian matrix, which is computationally expensive. The increase in
run time of the PROLIP algorithm can be attributed to the massive size blow-up
in the weight matrices computed for convolution layers.

Other Results. Table 1 shows the upper bounds on local Lipschitz constant
computed by the PROLIP algorithm for every combination of box size and pcat
program considered in our experiments. The computed upper bounds are com-
parable to those computed by the Fast-Lip algorithm from [57] as well as other
state-of-the-art approaches for computing Lipschitz constants of neural networks.
A phenomenon observed in our experiments is the convergence of local Lipschitz
constants to an upper bound, as the z box size increases. This occurs because
beyond a certain z box size, for every box in z, the output bounds of g repre-
sent the entire input space for f . Therefore any increase in the z box size, past

Table 1. Local Lipschitz constants discovered by PROLIP

Box size MNIST Large CIFAR Small CIFAR

lip constant lip constant lip constant

1e−05 1.683e1 5.885e14 3.252e5

0.001 1.154e2 8.070e14 4.218e5

0.1 1.154e2 8.070e14 4.218e5

1e−05 1.072e1 5.331e14 1.814e5

0.001 1.154e2 8.070e14 4.218e5

0.1 1.154e2 8.070e14 4.218e5

1e−05 1.460e1 6.740e14 2.719e5

0.001 1.154e2 8.070e14 4.218e5

0.1 1.154e2 8.070e14 4.218e5

1e−05 1.754e1 6.571e14 2.868e5

0.001 1.154e2 8.070e14 4.218e5

0.1 1.154e2 8.070e14 4.218e5

1e−05 1.312e1 5.647e14 2.884e5

0.001 1.154e2 8.070e14 4.218e5

0.1 1.154e2 8.070e14 4.218e5

Probabilistic Lipschitz Analysis of Neural Networks 293

the tipping point, results in computing an upper bound on the global Lipschitz
constant of f .

The run time of the PROLIP algorithm can be improved by utilizing a GPU
for matrix multiplication. The multiplication of massive matrices computed in
the Jacobian propagation of convolution layers or large fully connected layers
accounts for a significant portion of the run time of PROLIP, and the run time
can benefit from GPU-based parallelization of matrix multiplication. Another
factor that slows down our current implementation of PROLIP algorithm is the
creation of the weight matrix for a convolution layer. These weight matrices are
quite sparse, and constructing sparse matrices that hold ‘0’ values implicitly can
be much faster than explicitly constructing the entire matrix in memory, which
is what our current implementation does.

6 Related Work

Our work draws from different bodies of literature, particularly literature on
verification of NNs, Lipschitz analysis of programs and NNs, and semantics and
verification of probabilistic programs. These connections and influences have been
described in detail in Sect. 1. Here, we focus on describing connections with
existing work on proving probabilistic/statistical properties of NNs.

[44] is the source of the probabilistic Lipschitzness property that we consider.
They propose a proof-search algorithm that (i) constructs a product program
[5], (ii) uses an abstract interpreter with a powerset polyhedral domain to com-
pute input pre-conditions that guarantee the satisfaction of the Lipschitzness
property, (iii) computes approximate volumes of these input regions via sam-
pling. They do not implement this algorithm. If one encodes the Lipschitzness
property as disjunction of polyhedra, the number of disjuncts is exponential in
the number of dimensions of the output vector. There is a further blow-up in
the number of disjuncts as we propagate the abstract state backwards.

Other works on probabilistic properties of NNs [55,56] focus on local robust-
ness. Given an input x0, and an input distribution, they compute the probability
that a random sample x′ drawn from a ball centered at x0 causes non-robust
behavior of the NN at x′ compared with x0. [55] computes these probabilities via
sampling while [56] constructs analytical expressions for computing upper and
lower bounds of such probabilities. Finally, [3] presents a model-counting based
approach for proving quantitative properties of NNs. They translate the NN as
well as the property of interest into SAT constraints, and then invoke an approx-
imate model-counting algorithm to estimate the number of satisfying solutions.
We believe that their framework may be general enough to encode our problem
but the scalability of such an approach remains to be explored. We also note
that the guarantees produced by [3] are statistical, so one is unable to claim
with certainty if probabilistic Lipschitzness is satisfied or violated.

294 R. Mangal et al.

7 Conclusion

We study the problem of algorithmically proving probabilistic Lipschitzness of
NNs with respect to generative models representing input distributions. We
employ a language-theoretic lens, thinking of the generative model and NN,
together, as programs of the form z ø N(0, 1); g; f in a first-order, imperative,
probabilistic programming language pcat. We develop a sound local Lipschitz-
ness analysis for cat, a non-probabilistic sublanguage of pcat that performs a
Jacobian analysis under the hood. We then present PROLIP, a provably correct
algorithmic primitive that takes in a box-shaped region in the latent space of the
generative model as an input, and returns a lower bound on the volume of this
region as well as an upper bound on a local Lipschitz constant of f . Finally, we
sketch a proof-search algorithm that uses PROLIP and avoids expensive volume
computation operations in the process of proving theorems about probabilis-
tic programs. Empirical evaluation of the computational complexity of PROLIP
suggests its feasibility as an algorithmic primitive, although convolution-style
operations can be expensive and warrant further investigation.

A Proof of Lemma 3

Lemma 3. (Equivalence of semantics)
@p P s−, σ P Σ. [[p]](σ) = δ

}[[p]](σ)

Proof. We prove this by induction on the structure of statements in s−.
We first consider the base cases:

(i) skip
By definition, for any state σ,
[[skip]](σ) = δσ = δ

­[[skip]](σ)

(ii) y Ð w · x + β
Again, by definition, for any state σ,
[[y Ð w · x + β]](σ) = δσ[y �Ñ[[w·x+β]](σ)] = δ

­[[yÐw·x+β]](σ)

Next, we consider the inductive cases:

(iii) s−
1 ; s−

2

[[s−
1 ; s−

2]](σ) = Eσ̃„[[s−
1]](σ)[[[s

−
2]]]

= λν.
∫

σ̃PΣ
[[s−

1]](σ)(σ̃) · [[s−
2]](σ̃)(ν)

= λν.
∫

σ̃PΣ
δ

~

[[s−
1]](σ)

(σ̃) · δ
~

[[s−
2]](σ̃)

(ν) (using inductive hypothesis)

= λν.δ
~

[[s−
2]](

~

[[s−
1]](σ))

(ν)

= δ
~

[[s−
2]](

~

[[s−
1]](σ))

= δ
­

[[s−
1 ;s−

2]](σ)

Probabilistic Lipschitz Analysis of Neural Networks 295

(iv) if b then s−
1 else s−

2

[[if b then s−
1 else s−

2]](σ) = if ([[b]](σ)) then [[s−
1]](σ) else [[s−

2]](σ)
= if ([[b]](σ)) then δ

~

[[s−
1]](σ)

else δ
~

[[s−
2]](σ)

(using inductive hypothesis)
= δ

if ([[b]](σ)) then
~

[[s−
1]](σ) else

~

[[s−
2]](σ)

= δ
­

[[if ([[b]](σ)) then s−
1 else s−

2]](σ)
�

B Proof of Corollary 4

Corollary 4. @p P s−, σ P Σ,μ P P (Σ). [̂[p]](μ)(|[[p]](σ)) ě μ(σ)

Proof. By definition,

[̂[p]](μ) = Eσ„μ[[[p]]]
= λν.

∫

σPΣ
μ(σ) · [[p]](σ)(ν)

= λν.
∫

σPΣ
μ(σ) · δ

}[[p]](σ)
(ν) (using previous lemma)

Now suppose, ν = |[[p]](σ̃). Then, continuing from above,

[̂[p]](μ)(|[[p]](σ̃)) =
∫

σPΣ
μ(σ) · δ

}[[p]](σ)
(|[[p]](σ̃))

ě μ(σ̃)
�

C Proof of Theorem 6

We first prove a lemma needed for the proof.

Lemma 12. (Soundness of abstract conditional checks)
@c P b, σL P ΣL . {|[[c]]

D
(σD) | σD P γL(σL)} Ď γC([[c]]

L
(σL)) where

γC(tt) = {tt}, γC(ff) = {ff}, γC(�) = {tt,ff}
Proof. We prove this by induction on the structure of the boolean expressions
in b.
We first consider the base cases:

(i) π(x,m) ě π(y, n)
By definition, [[π(x,m) ě π(y, n)]]

L
(σL) = [[π(x,m) ě π(y, n)]]

B
(σL

1)

Consider the case where, [[π(x,m) ě π(y, n)]]
B
(σL

1) = tt, then, by the seman-
tics described in Fig. 6, we know that,

σL
1 (x)m)1 ě (σL

1 (y)n)2) (1)

296 R. Mangal et al.

By the definition of γL (Definition 5), we also know that,

@σD P γL. (σL
1 (x)1 ď σD

1 (x) ď σL
1 (x)2) ^ (σL

1 (y)1 ď σD
1 (y) ď σL

1 (y)2) (2)

where the comparisons are performed pointwise for every element in the
vector.

From 1 and 2, we can conclude that,

@σD P γL(σL). σD
1 (y)n ď (σL

1 (y)n)2 ď (σL
1 (x)m)1 ď σD

1 (x)m (3)

Now,

­[[π(x,m) ě π(y, n)]]
D

(σD) = [[π(x,m) ě π(y, n)]](σD
1) =

if σD
1 (x)m ě σD

1 (y)n then tt else ff
(4)

From 3 and 4, we can conclude that,
@σD P γL(σL). ­[[π(x,m) ě π(y, n)]]

D
(σD) = tt, or in other words,

{ ­[[π(x,m) ě π(y, n)]]
D

(σD) | σD P γL(σL)} Ď γC([[π(x,m) ě π(y, n)]]
L
(σL))

when the analysis returns tt.
We can similarly prove the case when the analysis returns ff . In case, the
analysis returns �, the required subset containment is trivially true since
γC(�) = {tt,ff}.

(ii) π(x,m) ě 0
The proof is very similar to the first case, and we skip the details.

(iii) π(x,m) < 0
The proof is very similar to the first case, and we skip the details.

We next consider the inductive cases:

(iv) b1 ^ b2
By the inductive hypothesis, we know that,
{}[[b1]]

D
(σD) | σD P γL(σL)} Ď γC([[b1]]

L
(σL))

{}[[b2]]
D

(σD) | σD P γL(σL)} Ď γC([[b2]]
L
(σL))

If [[b1]]
L
(σL) = � ∨ [[b2]]

L
(σL) = �, then, as per the semantics in Fig. 6,

[[b1 ^ b2]]
L
(σL) = �, and the desired property trivially holds.

However, if [[b1]]
L
(σL) �= � ^ [[b2]]

L
(σL) �= �, then using the inductive

hypotheses, we know that for all σD P γL(σL), }[[b1]]
D

(σD) evaluates to the
same boolean value as [[b1]]

L
(σL). We can make the same deduction for b2. So,

evaluating ­[[b1 ^ b2]]
D

also yields the same boolean value for all σD P γL(σL),
and this value is equal to [[b1 ^ b2]]

L
(σL).

(v) ¬b
By the inductive hypothesis, we know that,
{|[[b]]

D
(σD) | σD P γL(σL)} Ď γC([[b]]

L
(σL))

Probabilistic Lipschitz Analysis of Neural Networks 297

If [[b]]
L
(σL) = tt, then @σD P γL(σL). |[[b]]

D
(σD) = tt.

So, @σD P γL(σL). }[[¬b]]
D

(σD) = ff , and we can conclude that,

{ }[[¬b]]
D

(σD) | σD P γL(σL)} Ď γC([[¬b]]
L
(σL)) = {ff}.

We can similarly argue about the case when [[b]]
L
(σL) = ff , and as stated

previously, the case with, [[b]]
L
(σL) = � trivially holds.

�

Theorem 13. (Soundness of Jacobian analysis)
@p P s−, σL P ΣL . {|[[p]]

D
(σD) | σD P γL(σL)} Ď γL([[p]]

L
(σL))

Proof. We prove this by induction on the structure of statements in s−.
We first consider the base cases:

(i) skip
By definition, for any state σL ,

[[skip]]
L
(σL) = σL (5)

{ ­[[skip]]
D

(σD) | σD P γL(σL)} = {σD | σD P γL(σL)} = γL(σL) (6)

From Eqs. 5 and 6,

{ ­[[skip]]
D

(σD) | σD P γL(σL)} Ď γL([[skip]]
L
(σL)) (7)

(ii) y Ð w · x + β
We first observe that when multiplying an interval (l, u) with a constant
c, if c ě 0, then the result is simply given by the interval (c · l, c · u). But
if c < 0, then the result is in the interval (c · u, c · l), i.e., the use of the
lower bounds and upper bounds gets flipped. Similarly, when computing
the dot product of an abstract vector v with a constant vector w, for each
multiplication operation vi · wi, we use the same reasoning as above. Then,
the lower bound and upper bound of the dot product result are given by,

(
n∑

i=1^wiě0

wi·(vi)1 +
n∑

i=1^wi<0

wi·(vi)2,
n∑

i=1^wiě0

wi·(vi)2 +
n∑

i=1^wi<0

wi·(vi)1)

where (vi)1 represents the lower bound of the ith element of v and (vi)2
represents the lower bound of the ith element of v, and we assume dim(w) =
dim(v) = n.
We do not provide the rest of the formal proof for this case since it just
involves using the definitions.

Next, we consider the inductive cases:

(iii) s−
1 ; s−

2

From the inductive hypothesis, we know,

L1 = {~[[s−
1]]

D
(σD) | σD P γL(σL)} Ď γL([[s−

1]]
L
(σL)) (8)

298 R. Mangal et al.

L2 = {~[[s−
2]]

D
(σD) | σD P γL([[s−

1]]
L
(σL))} Ď γL([[s−

2]]
L
([[s−

1]]
L
(σL))) (9)

From Eqs. 8 and 9, we conclude,

{~[[s−
2]]

D
(σD) | σD P L1} Ď L2 Ď γL([[s−

2]]
L
([[s−

1]]
L
(σL))) (10)

Rewriting, we get,

{~[[s−
2]]

D
(~[[s−

1]]
D

(σD)) | σD P γL(σL)} Ď γL([[s−
2]]

L
([[s−

1]]
L
(σL))) (11)

and this can be simplified further as,

{ ­[[s−
1 ; s−

2]]
D

(σD) | σD P γL(σL)} Ď γL([[s−
1 ; s−

2]]
L
(σL)) (12)

(iv) if b then s−
1 else s−

2

From the inductive hypothesis, we know,

{~[[s−
1]]

D
(σD) | σD P γL(σL)} Ď γL([[s−

1]]
L
(σL)) (13)

{~[[s−
2]]

D
(σD) | σD P γL(σL)} Ď γL([[s−

2]]
L
(σL)) (14)

The conditional check can result in three different outcomes while perform-
ing the analysis - tt, ff , or �. From Lemma 12, we know that the abstract
boolean checks are sound. We analyze each of the three cases separately.

(a) tt
Since we only consider the true case, we can write,

[[if b then s−
1 else s−

2]]
L
(σL) = [[s−

1]]
L
(σL) (15)

Also, from Lemma 12,

{ ­[[if b then s−
1 else s−

2]]
D

(σD) | σD P γL(σL)} = {~[[s−
1]]

D
(σD) | σD P γL(σL)}

(16)

From 13, 15, and 16,

{ ­[[if b then s−
1 else s−

2]]
D
(σD) | σD P γL(σL)} Ď γL([[if b then s−

1 else s−
2]]

L
(σL))

(17)

(b) ff
Similar to the tt case, for the ff case, we can show,

{ ­[[if b then s−
1 else s−

2]]
D
(σD) | σD P γL(σL)} Ď γL([[if b then s−

1 else s−
2]]

L
(σL))

(18)

Probabilistic Lipschitz Analysis of Neural Networks 299

(c) �
We first prove the following about the join (

⊔

L) operation,

γL(σL) ∪ γL(σ̃L) Ď γL(σL �L σ̃L) (19)

By definition of γL,

γL(σL) = {σD | (
∧

vPV

.σL
1 (v)1 ď σD

1 (v) ď σL
1 (v)2) ^

(
∧

vPV

.(σL
2 (v)1)1 ď σD

2 (v)1 ď (σL
2 (v)1)2) ^

σD
2 (v)2 P γV (σL

2 (v)2)}

(20)

γL(σ̃L) can be defined similarly.

The join operation combines corresponding intervals in the abstract states
by taking the smaller of the two lower bounds and larger of the two upper
bounds. We do not prove the following formally, but from the definition
of γL and

⊔

L, one can see that the intended property holds.
Next, we consider the assert statements that appear in the abstract deno-
tational semantics for the � case.
Let us call, σL

1 = [[assert b]]
L
(σL) and σL

2 = [[assert ¬b]]
L
(σL).

From inductive hypothesis (13 and 14) we know,

L1 = {~[[s−
1]]

D
(σD) | σD P γL(σL

1)} Ď γL([[s−
1]]

L
(σL

1)) (21)

L2 = {~[[s−
2]]

D
(σD) | σD P γL(σL

2)} Ď γL([[s−
2]]

L
(σL

2)) (22)
From 19, 21, and 22,

L1 ∪ L2 Ď γL([[s−
1]]

L
(σL

1)) ∪ γL([[s−
2]]

L
(σL

2)) Ď γL([[s−
1]]

L
(σL

1) � [[s−
2]]

L
(σL

2))
(23)

Then, if we can show that,

{σD | σD P γL(σL) ^ [[b]](σD) = tt} Ď γL(σL
1) (24)

{σD | σD P γL(σL) ^ [[b]](σD) = ff} Ď γL(σL
2) (25)

then, from 21, 22, 23, 24, 25, and the semantics of if b then s−
1 else s−

2 ,
we can say,

{ ­[[if b then s−
1 else s−

2]]
D
(σD) | σD P γL(σL)} Ď γL([[if b then s−

1 else s−
2]]

L
(σL))

(26)

Now, we need to show that 24 and 25 are true. The assert statements
either behave as identity or produce a modified abstract state (see Fig. 6).
When assert behaves as identity, 24 and 25 are obviously true. We skip
the proof of the case when assert produces a modified abstract state.

�

300 R. Mangal et al.

D Proof of Corollary 8

Corollary 8. (Upper bound of Jacobian operator norm)
@p P s−, σL P ΣL , v P V.

max{
∥
∥
∥((|[[p]]

D
(σD))2)(v)1

∥
∥
∥ | σD P γL(σL)} ď ‖(([[p]]

L
(σL))2(v))1‖

L

Proof. From Theorem 6, we know that for any p P s−, σL P ΣL ,

{|[[p]]
D

(σD) | σD P γL(σL)} Ď γL([[p]]
L
(σL)) (1)

Let us define, DV = {((|[[p]]
D

(σD))2(v))1 | σD P γL(σL)}. This is the set of all
Jacobian matrices associated with the variable v after executing p on the set of
input states, γL(σL). Note that the set DV does not distinguish the Jacobians
on the basis of the input that we are differentiating with respect to.
Let DL

V = {(σ̃D
2 (v))1 | σ̃D P γL([[p]]

L
(σL))}, and J = (([[p]]

L
(σL))2(v))1.

Using Definition 5 of γL, we can show,

@d P DL
V . J1 ď d ď J2 (2)

where ď is defined pointwise on the matrices, and J1(J2) refers to the matrix of
lower(upper) bounds.
Then, from 1 and definitions of DV and DL

V , we can deduce that,

DV Ď DL
V (3)

From 2 and 3,
@d P DV . J1 ď d ď J2 (4)

Let J ′ = [max{|(Jk,l)1|, |(Jk,l)2|} | k P {1, ...,m}, l P {1, ..., n}]. Then,

@d P DV . |d| ď J ′ (5)

where |·| applies pointwise on matrices d.
Using definition of operator norm, one can show that,

M1 ď M2 =⇒ ‖M1‖ ď ‖M2‖ (6)

where M1 and M2 are matrices with ď applied pointwise.
Finally, from 5 and 6, we conclude,

@d P DV . ‖d‖ ď ‖J ′‖ = ‖J‖ (7)

Unrolling the definitions,

max{
∥
∥
∥((|[[p]]

D
(σD))2)(v)1

∥
∥
∥ | σD P γ(σL)} ď ‖(([[p]]

L
(σL))2(v))1‖

L
(8)

�

Probabilistic Lipschitz Analysis of Neural Networks 301

E Proof of Theorem 11

Theorem 11. (Soundness of PROLIP)
Let p = z ø N(0, 1); g; f where g, f P s−, (kU , d, vol) = PROLIP(p, zB), z /P
outv(g), z /P outv(f), x P inv(f), and y P outv(f) then, @σ0 P Σ.

Pr
σ,σ′„[[p]](σ0)

((‖σ(y) − σ′(y)‖ ď kU · ‖σ(x) − σ′(x)‖)^ (σ(z), σ′(z) P γ(zB))) ě vol

Proof. We prove this theorem in two parts.

First, let us define set ΣP as, ΣP = {σ | σ P γB([[f]]
L
([[g]]

B
(σB [z �Ñ zB])))1)}

In words, ΣP is the concretization of the abstract box produced by abstractly
“interpreting” g; f on the input box zB . Assuming that z is not written to by
g or f , it is easy to see from the definitions of the abstract semantics in Figs. 6
and 4 that, ([[f]]

L
([[g]]

B
(σB [z �Ñ zB])))1(z) = zB , i.e., the final abstract value

of z is the same as the initial value zB. Moreover, from Theorem 8, we know
that the operator norm of the abstract Jacobian matrix, ‖J‖

L
upper bounds the

operator norm of every Jacobian of f for variable y with respect to x (since
x P inv(f), y P outv(f)) for every input in γB([[g]]

B
(σB [z �Ñ zB])), which itself

is an upper bound on the local Lipschitz constant in the same region.
In other words, we can say that,
@σ, σ′ P ΣP . σ(z), σ′(z) P γ(zB) ^ ‖σ(y) − σ′(y)‖ ď kU · ‖σ(x) − σ′(x)‖.

To complete the proof, we need to show that, Pr
σ,σ′„[[p]](σ0)

(σ, σ′ P ΣP) ě vol. We

show this in the second part of this proof.
Using the semantic definition of pcat (Fig. 2), we know that,
[[p]](σ0) = [̂[f]]([̂[g]]([[z ø N(0, 1)]](σ0)))
We first analyze [[z ø N(0, 1)]](σ0). Again using the semantic definition of pcat,
we write,

[[z ø N(0, 1)]](σ0) = Ez„N(0,1)[λν.δσ0[z �Ñν]]
= λν′.

∫

a
N(a) · δσ0[z �Ña](ν′)

= λν′.1ν′=σ0[z �Ña] · N(a)
(1)

We are interested in the volume of the set Σz, defined as, Σz = {σ | σ(z) P zB}.
Using the expression for [[z ø N(0, 1)]](σ0) from above, we can now compute
the required probability as follows,

Pr
σ„[[zøN(0,1)]](σ0)

(σ P Σz) =
∫

σPΣ
([[z ø N(0, 1)]](σ0))(σ) · 1σPΣz

=
∫

σPΣ
(1σ=σ0[z �Ña] · N(a)) · 1σPΣz

=
∫

σPΣz
(1σ=σ0[z �Ña] · N(a))

=
∫

aPzB
N(a) (by uniqueness of σ0[z �Ñ a])

= vol′

(2)

This shows that starting from any σ0 P Σ, after executing the first statement of
p, the probability that the value stored at z lies in the box zB is vol′.

302 R. Mangal et al.

Next, we analyze [[z ø N(0, 1)]](σ0). In particular, we are interested in the
volume of the set, |[[g]](Σz) (which is notational abuse for the set {|[[g]](σ) | σ P
Σz}). We can lower bound this volume as follows,

Pr
σ„ ̂[[g]]([[zøN(0,1)]](σ0))

(σ P |[[g]](Σz)) =
∫

σPΣ([̂[g]]([[z ø N(0, 1)]](σ0))(σ) · 1
σP}[[g]](Σz)

=
∫

σP}[[g]](Σz)
[̂[g]]([[z ø N(0, 1)]](σ0))(σ)

ě ∫
σPΣz

[[z ø N(0, 1)]](σ0))(σ) (from Corollary 4)

= vol′ (from 2)

(3)

We can similarly show that,

Pr
σ„ ̂[[f]](̂[[g]]([[zøN(0,1)]](σ0)))

(σ P |[[f]](|[[g]](Σz))) ě vol′ (4)

Now, σB [z �Ñ zB] defined on line 2 of Algorithm 1 is such that
γ(σB [z �Ñ zB]) = Σz. From Theorem 10, we can conclude that,

|[[g]](Σz) Ď γ([[g]]
B
(σB [z �Ñ zB])) (5)

Similarly, from Theorem 6, we can conclude that,

|[[f]](|[[g]](Σz)) Ď γ([[f]]
L
([[g]]

B
(σB [z �Ñ zB]))1) (6)

From 4 and 6, we conclude that,

Pr
σ„[[p]](σ0)

(σ P γ([[f]]
L
([[g]]

B
(σB [z �Ñ zB])))1) ě vol′ (7)

Consequently,

Pr
σ,σ′„[[p]](σ0)

(σ, σ′ P γ([[f]]
L
([[g]]

B
(σB [z �Ñ zB])))1) ě vol′ × vol′ = vol (8)

since each act of sampling is independent. �

F Translating Neural Networks into pcat

NNs are often described as a sequential composition of “layers”, with each layer
describing the computation to be performed on an incoming vector. Many com-
monly used layers can be expressed in the pcat language. For instance, [28]
describes the translation of maxpool, convolution, ReLU, and fully connected
layers into the cat language. Here, we describe the translation of two other com-
mon layers, namely, the batchnorm layer [34] and the transposed convolution
layer (also referred to as the deconvolution layer) [60].

Batchnorm Layer. A batchnorm layer typically typically expects an input
x P R

C×H×W which we flatten, using a row-major form in to x′ P R
C·H·W

where, historically, C denotes the number of channels in the input, H denotes

Probabilistic Lipschitz Analysis of Neural Networks 303

the height, and W denotes the width. For instance, given an RGB image of
dimensions 28 × 28 pixels, H = 28, W = 28, and C = 3.

A batchnorm layer is associated with vectors m and v such that dim(m) =
dim(v) = C where dim(·) returns the dimension of a vector. m and v rep-
resent the running-mean and running-variance of the values in each channel
observed during the training time of the NN. A batchnorm layer is also associ-
ated with a scaling vector s1 and a shift vector s2, both also of dimension c.
For a particular element xi,j,k in the input, the corresponding output element is
s1i · (xi,j,k−mi√

vi+ε
) + s2i where ε is a constant that is added for numerical stability

(commonly set to 1e−5). Note that the batchnorm operation produces an output
of the same dimensions as the input. We can represent the batchnorm operation
by the statement, y Ð w · x′ + β, where x′ is the flattened input, w is a weight
matrix of dimension C · H · W × C · H · W and β is a bias vector of dimension
C · H · W , such that,

w = I · [
s1

�i/H·W�√
v�i/H·W�+ε

| i P {1, ..., C · H · W}]

β = [− s1
�i/H·W�·m�i/H·W�√

v�i/H·W�+ε
+ s2�i/H·W� | i P {1, ..., C · H · W}]

where I is the identity matrix with dimension (C · H · W,C · H · W), �·� is the
floor operation that rounds down to an integer, and [|] is the list builder/com-
prehension notation.

Transposed Convolution Layer. A convolution layer applies a kernel or a fil-
ter on the input vector and typically, compresses this vector so that the output
vector is of a smaller dimension. A deconvolution or transposed convolution layer
does the opposite - it applies the kernel in a manner that produces a larger out-
put vector. A transposed convolution layer expects an input x P R

Cin×Hin×Win

and applies a kernel k P R
Cout×Cin×Kh×Kw using a stride S. For simplicity of

presentation, we assume that Kh = Kw = K and Win = Hin. In pcat, the trans-
posed convolution layer can be expressed by the statement, y Ð w · x′, where
x′ is the flattened version of input x, w is a weight matrix that we derive from
the parameters associated with the transposed convolution layer, and the bias
vector, β, is a zero vector in this case. To compute the dimensions of the weight
matrix, we first calculate the height (Hout) and width (Wout) of each channel in
the output using formulae, Hout = Hin · S + K, and Wout = Win · S + K. Since
we assume Win = Hin, we have Wout = Hout here. Then, the dimension of w is
Cout · Hout · Wout × Cin · Hin · Win, and the definition of w is as follows,

w =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

let x = �i/Cout� in
let y = �j/Cin� in
let h = 1 + �((i mod Cout) − (�((j mod Cin) − 1)/Hin�·

Hout · S + 1 + (((j mod Cin) − 1) mod Hin) · S))/Hout� in
let w = 1 + ((i mod Cout) − (�((j mod Cin) − 1)/Hin�·

Hout · S + 1 + (((j mod Cin) − 1) mod Hin) · S)) mod Hout in
if h, w P {1...K} then kx,y,h,w else 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

i P I,
j P J

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where I = {1, ..., Cout · Hout · Wout} and J = {1, ..., Cin · Hin · Win}

304 R. Mangal et al.

G Details of Box Analysis

Fig. 6. cat abstract semantics for box analysis

Probabilistic Lipschitz Analysis of Neural Networks 305

References

1. Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.V.: FairSquare: probabilistic
verification of program fairness. Proc. ACM Program. Lang. 1(OOPSLA), 80:1–
80:30 (2017)

2. Alzantot, M., Sharma, Y., Elgohary, A., Ho, B.J., Srivastava, M., Chang, K.W.:
Generating natural language adversarial examples. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pp. 2890–2896.
Association for Computational Linguistics, Brussels (October 2018)

3. Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative verification
of neural networks and its security applications. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, pp.
1249–1264. Association for Computing Machinery, London (November 2019)

4. Bárány, I., Füredi, Z.: Computing the volume is difficult. Discret. Comput. Geom.
2(4), 319–326 (1987)

5. Barthe, G., D’Argenio, P., Rezk, T.: Secure information flow by self-composition.
In: Proceedings of 17th IEEE Computer Security Foundations Workshop, 2004,
pp. 100–114 (June 2004)

6. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 17

7. Barthe, G., Espitau, T., Ferrer Fioriti, L.M., Hsu, J.: Synthesizing probabilistic
invariants via Doob’s decomposition. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 43–61. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4 3

8. Barthe, G., Espitau, T., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.-Y.: An
assertion-based program logic for probabilistic programs. In: Ahmed, A. (ed.)
ESOP 2018. LNCS, vol. 10801, pp. 117–144. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89884-1 5

9. Barthe, G., Espitau, T., Grégoire, B., Hsu, J., Strub, P.Y.: Proving expected sensi-
tivity of probabilistic programs. Proc. ACM Program. Lang. 2(POPL), 57:1–57:29
(2017)

10. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi,
A.: Measuring neural net robustness with constraints. In: Lee, D.D., Sugiyama,
M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information
Processing Systems, vol. 29, pp. 2613–2621. Curran Associates, Inc. (2016). http://
papers.nips.cc/paper/6339-measuring-neural-net-robustness-with-constraints.pdf

11. Bastani, O., Zhang, X., Solar-Lezama, A.: Probabilistic verification of fairness
properties via concentration. Proc. ACM Program. Lang. 3(OOPSLA), 118:1–
118:27 (2019)

12. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2004, pp. 14–25. Association for
Computing Machinery, Venice (January 2004)

13. Carlini, N., et al.: Hidden voice commands. In: 25th USENIX Security Symposium
(USENIX Security 16), pp. 513–530 (2016). https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/carlini

14. Carlini, N., Wagner, D.: Audio adversarial examples: targeted attacks on speech-
to-text. In: 2018 IEEE Security and Privacy Workshops (SPW), pp. 1–7 (May
2018)

https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-319-41528-4_3
https://doi.org/10.1007/978-3-319-41528-4_3
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1007/978-3-319-89884-1_5
http://papers.nips.cc/paper/6339-measuring-neural-net-robustness-with-constraints.pdf
http://papers.nips.cc/paper/6339-measuring-neural-net-robustness-with-constraints.pdf
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/carlini

306 R. Mangal et al.

15. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 34

16. Chaudhuri, S., Gulwani, S., Lublinerman, R., Navidpour, S.: Proving programs
robust. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ESEC/FSE 2011,
pp. 102–112. Association for Computing Machinery, Szeged (September 2011)

17. Chen, A.: Aaron-xichen/pytorch-playground (May 2020). https://github.com/
aaron-xichen/pytorch-playground

18. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: 2008 21st IEEE Computer
Security Foundations Symposium, pp. 51–65 (June 2008)

19. Combettes, P.L., Pesquet, J.C.: Lipschitz certificates for neural network structures
driven by averaged activation operators. arXiv:1903.01014 (2019)

20. Cousins, B., Vempala, S.: Gaussian cooling and O˚(n3) algorithms for volume and
Gaussian volume. SIAM J. Comput. 47(3), 1237–1273 (2018)

21. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL 1978, pp. 84–96. Association for
Computing Machinery, Tucson (January 1978)

22. Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: Seidl, H. (ed.)
ESOP 2012. LNCS, vol. 7211, pp. 169–193. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28869-2 9

23. Dyer, M.E., Frieze, A.M.: On the complexity of computing the volume of a poly-
hedron. SIAM J. Comput. 17(5), 967–974 (1988)

24. Dyer, M., Frieze, A., Kannan, R.: A random polynomial-time algorithm for approx-
imating the volume of convex bodies. J. ACM 38(1), 1–17 (1991)

25. Elekes, G.: A geometric inequality and the complexity of computing volume. Dis-
cret. Comput. Geom. 1(4), 289–292 (1986)

26. Fazlyab, M., Robey, A., Hassani, H., Morari, M., Pappas, G.: Efficient and accu-
rate estimation of lipschitz constants for deep neural networks. In: Wallach,
H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 32, pp. 11427–11438.
Curran Associates, Inc. (2019). http://papers.nips.cc/paper/9319-efficient-and-
accurate-estimation-of-lipschitz-constants-for-deep-neural-networks.pdf

27. Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang, C., Vechev,
M.: DL2: training and querying neural networks with logic. In: International Con-
ference on Machine Learning, pp. 1931–1941 (May 2019). http://proceedings.mlr.
press/v97/fischer19a.html

28. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18 (May
2018)

29. Geldenhuys, J., Dwyer, M.B., Visser, W.: Probabilistic symbolic execution. In:
Proceedings of the 2012 International Symposium on Software Testing and Analy-
sis, ISSTA 2012, pp. 166–176. Association for Computing Machinery, Minneapolis
(July 2012)

30. Ghorbal, K., Goubault, E., Putot, S.: The zonotope abstract domain Taylor1+. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 627–633. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 47

https://doi.org/10.1007/978-3-642-39799-8_34
https://github.com/aaron-xichen/pytorch-playground
https://github.com/aaron-xichen/pytorch-playground
http://arxiv.org/abs/1903.01014
https://doi.org/10.1007/978-3-642-28869-2_9
https://doi.org/10.1007/978-3-642-28869-2_9
http://papers.nips.cc/paper/9319-efficient-and-accurate-estimation-of-lipschitz-constants-for-deep-neural-networks.pdf
http://papers.nips.cc/paper/9319-efficient-and-accurate-estimation-of-lipschitz-constants-for-deep-neural-networks.pdf
http://proceedings.mlr.press/v97/fischer19a.html
http://proceedings.mlr.press/v97/fischer19a.html
https://doi.org/10.1007/978-3-642-02658-4_47

Probabilistic Lipschitz Analysis of Neural Networks 307

31. Gibbons, J.: APLicative programming with Naperian functors. In: Yang, H. (ed.)
ESOP 2017. LNCS, vol. 10201, pp. 556–583. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54434-1 21

32. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M.,
Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Informa-
tion Processing Systems, vol. 27, pp. 2672–2680. Curran Associates, Inc. (2014).
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

33. Gouk, H., Frank, E., Pfahringer, B., Cree, M.: Regularisation of neural networks
by enforcing lipschitz continuity. arXiv:1804.04368 (September 2018). http://arxiv.
org/abs/1804.04368

34. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: Proceedings of the 32nd International Confer-
ence on International Conference on Machine Learning, ICML 2015, vol. 37, pp.
448–456. JMLR.org, Lille (July 2015)

35. Jia, R., Liang, P.: Adversarial examples for evaluating reading comprehension sys-
tems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pp. 2021–2031. Association for Computational Linguistics,
Copenhagen (September 2017)

36. Katoen, J.-P., McIver, A.K., Meinicke, L.A., Morgan, C.C.: Linear-invariant gen-
eration for probabilistic programs. In: Cousot, R., Martel, M. (eds.) SAS 2010.
LNCS, vol. 6337, pp. 390–406. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15769-1 24

37. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) Computer Aided Verification, CAV 2017. Lecture Notes in Computer
Science, vol. 10426. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63387-9 5

38. Katz, G., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

39. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv:1312.6114
(May 2014). http://arxiv.org/abs/1312.6114

40. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–
1105. Curran Associates, Inc. (2012). http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf

41. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw.
Eng. 3(2), 125–143 (1977)

42. Latorre, F., Rolland, P., Cevher, V.: Lipschitz constant estimation of neural net-
works via sparse polynomial optimization. arXiv:2004.08688 (April 2020). http://
arxiv.org/abs/2004.08688

43. Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for
verifying deep neural networks. arXiv:1903.06758 (March 2019). http://arxiv.org/
abs/1903.06758

44. Mangal, R., Nori, A.V., Orso, A.: Robustness of neural networks: a probabilistic
and practical approach. In: Proceedings of the 41st International Conference on
Software Engineering: New Ideas and Emerging Results, ICSE-NIER 2019, pp.
93–96. IEEE Press, Montreal (May 2019)

https://doi.org/10.1007/978-3-662-54434-1_21
https://doi.org/10.1007/978-3-662-54434-1_21
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1804.04368
http://arxiv.org/abs/1804.04368
http://arxiv.org/abs/1804.04368
https://doi.org/10.1007/978-3-642-15769-1_24
https://doi.org/10.1007/978-3-642-15769-1_24
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/2004.08688
http://arxiv.org/abs/2004.08688
http://arxiv.org/abs/2004.08688
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1903.06758

308 R. Mangal et al.

45. Qin, Y., Carlini, N., Cottrell, G., Goodfellow, I., Raffel, C.: Imperceptible, robust,
and targeted adversarial examples for automatic speech recognition. In: Inter-
national Conference on Machine Learning, pp. 5231–5240 (May 2019). http://
proceedings.mlr.press/v97/qin19a.html

46. Sampson, A., Panchekha, P., Mytkowicz, T., McKinley, K.S., Grossman, D., Ceze,
L.: Expressing and verifying probabilistic assertions. In: Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2014, pp. 112–122. Association for Computing Machinery, Edinburgh
(June 2014)

47. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilis-
tic programs: inferring whole program properties from finitely many paths. In:
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2013, pp. 447–458. Association for Computing
Machinery, Seattle (June 2013)

48. Singh, C.: Csinva/gan-vae-pretrained-pytorch (May 2020). https://github.com/
csinva/gan-vae-pretrained-pytorch

49. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL), 41:1–41:30 (2019)

50. Slepak, J., Shivers, O., Manolios, P.: An array-oriented language with static rank
polymorphism. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 27–46. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8 3

51. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Con-
ference on Learning Representations (2014). http://arxiv.org/abs/1312.6199

52. Tsuzuku, Y., Sato, I., Sugiyama, M.: Lipschitz-margin training: scalable certifica-
tion of perturbation invariance for deep neural networks. In: Proceedings of the
32nd International Conference on Neural Information Processing Systems, NIPS
2018, pp. 6542–6551. Curran Associates Inc., Montréal (December 2018)

53. Virmaux, A., Scaman, K.: Lipschitz regularity of deep neural networks:
analysis and efficient estimation. In: Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural
Information Processing Systems, vol. 31, pp. 3835–3844. Curran Associates,
Inc. (2018). http://papers.nips.cc/paper/7640-lipschitz-regularity-of-deep-neural-
networks-analysis-and-efficient-estimation.pdf

54. Wang, D., Hoffmann, J., Reps, T.: PMAF: an algebraic framework for static anal-
ysis of probabilistic programs. In: Proceedings of the 39th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2018, pp.
513–528. Association for Computing Machinery, Philadelphia (June 2018)

55. Webb, S., Rainforth, T., Teh, Y.W., Kumar, M.P.: A statistical approach to assess-
ing neural network robustness. In: International Conference on Learning Represen-
tations (September 2018). https://openreview.net/forum?id=S1xcx3C5FX

56. Weng, L., et al.: PROVEN: verifying robustness of neural networks with a proba-
bilistic approach. In: International Conference on Machine Learning, pp. 6727–6736
(May 2019). http://proceedings.mlr.press/v97/weng19a.html

57. Weng, L., et al.: Towards fast computation of certified robustness for ReLU net-
works. In: International Conference on Machine Learning, pp. 5276–5285 (July
2018). http://proceedings.mlr.press/v80/weng18a.html

58. Weng, T.W., et al.: Evaluating the robustness of neural networks: an extreme
value theory approach. In: International Conference on Learning Representations
(February 2018). https://openreview.net/forum?id=BkUHlMZ0b

59. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for
deep learning. arXiv:1712.07107 (July 2018). http://arxiv.org/abs/1712.07107

http://proceedings.mlr.press/v97/qin19a.html
http://proceedings.mlr.press/v97/qin19a.html
https://github.com/csinva/gan-vae-pretrained-pytorch
https://github.com/csinva/gan-vae-pretrained-pytorch
https://doi.org/10.1007/978-3-642-54833-8_3
http://arxiv.org/abs/1312.6199
http://papers.nips.cc/paper/7640-lipschitz-regularity-of-deep-neural-networks-analysis-and-efficient-estimation.pdf
http://papers.nips.cc/paper/7640-lipschitz-regularity-of-deep-neural-networks-analysis-and-efficient-estimation.pdf
https://openreview.net/forum?id=S1xcx3C5FX
http://proceedings.mlr.press/v97/weng19a.html
http://proceedings.mlr.press/v80/weng18a.html
https://openreview.net/forum?id=BkUHlMZ0b
http://arxiv.org/abs/1712.07107
http://arxiv.org/abs/1712.07107

Probabilistic Lipschitz Analysis of Neural Networks 309

60. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks.
In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 2528–2535 (June 2010)

61. Zhang, H., Zhang, P., Hsieh, C.J.: RecurJac: an efficient recursive algorithm for
bounding Jacobian matrix of neural networks and its applications. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 5757–5764
(2019)

62. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: survey, land-
scapes and horizons. IEEE Trans. Softw. Eng. 1 (2020)

On Multi-language Abstraction
Towards a Static Analysis of Multi-language Programs

Samuele Buro1(B), Roy L. Crole2, and Isabella Mastroeni1

1 Department of Computer Science, University of Verona,
Strada le Grazie 15, 37134 Verona, Italy

{samuele.buro,isabella.mastroeni}@univr.it
2 Department of Computer Science, University of Leicester, University Road,

Leicester LE1 7RH, UK
rlc3@le.ac.uk

Abstract. Modern software development rarely takes place within a sin-
gle programming language. Often, programmers appeal to cross-language
interoperability. Examples are exploitation of novel features of one lan-
guage within another, and cross-language code reuse. Previous works
developed a theory of so-called multi-languages, which arise by combining
existing languages, defining a precise notion of (algebraic) multi-language
semantics. As regards static analysis, the heterogeneity of the multi-
language context opens up new and unexplored scenarios. In this paper,
we provide a general theory for the combination of abstract interpreta-
tions of existing languages, regardless of their inherent nature, in order
to gain an abstract semantics of multi-language programs. As a part of
this general theory, we show that formal properties of interest of multi-
language abstractions (e.g., soundness and completeness) boil down to
the features of the interoperability mechanism that binds the underlying
languages together. We extend many of the standard concepts of abstract
interpretation to the framework of multi-languages.

Keywords: Multi-languages · Abstract interpretation ·
Interoperability · Algebraic semantics

1 Introduction

There is currently a myriad of programming languages, many of which have
extensive library support. With programs becoming larger and increasingly com-
plex, interoperability mechanisms streamline program development by enabling
the interplay between pieces of code written in different languages. Examples are
embedded interpreters [39], consisting of a runtime engine implemented in the
host language (such as Jython [28] that lets Java interoperate with Python), or
the foreign function interface system that allows one language to call routines

Supported by Progetto ricerca di base 2017 (prot. RBVR1772AA), funded by University
of Verona.
c© Springer Nature Switzerland AG 2020
D. Pichardie and M. Sighireanu (Eds.): SAS 2020, LNCS 12389, pp. 310–332, 2020.
https://doi.org/10.1007/978-3-030-65474-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65474-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-65474-0_14

On Multi-language Abstraction 311

written in another (e.g., the Java Native Interface [31] enables Java code to call
C++ functions). On one hand these mechanisms are essential tools, but on the
other hand they hamper our understanding of the resulting programs.

The multi-language framework of [7] provides a theoretical model to formalise
cross-language interoperability from an abstract standpoint. Multi-languages
arise from the combination of already existing languages [1,11,18,25,33,37,38].
Intuitively, terms of multi-languages are obtained by performing cross-language
substitutions (e.g., the multi-language designed in [33] allows programmers to
replace ML expressions with Scheme expressions and vice versa) and the seman-
tics is determined by new constructs able to regulate the flow of values between
the underlying languages, the so-called boundary functions [33].

The Problem. Despite the wide range of frameworks for interoperability, there
is a lack of techniques for combining static analyses of different languages.
Static analysis consists of a range of well-established and widely used techniques
for automatically extracting dynamic (i.e., runtime) behaviours statically (i.e.,
without executing the code). When it comes to multi-languages, two new chal-
lenges need to be tackled. Firstly, single-language analysers are not conceived
for inspecting external code, and secondly the combination of analyses is not
straightforward, since the interoperability mechanism that blends the underly-
ing languages adds a new semantic layer. For instance, consider the following
Java code snippet analysed with SonarQube Scanner [10]:1

The analyser raises a warning of a null pointer exception at the second line.
Instead, if we run the analyser on the next semantically equivalent but multi-
language code the runtime exception goes unnoticed.

The method eval evaluates the JavaScript code null via the Nashorn engine (a
JavaScript interpreter developed by Oracle and included in Java 8) and returns
the equivalent Java value null. This trivial example underlines how easy it is to
deceive an analysis when writing multi-language programs.

Of course, nothing prevents us from redesigning the abstract semantics of
the multi-language from scratch and to implement the corresponding analyser.
However, besides the obvious time-consuming task, we will end up without any
theoretical properties of the abstraction (e.g., soundness or completeness). In
fact, what we would like to achieve is a framework that takes advantage, as far
as possible, of the already existing abstractions of the underlying languages and
at the same time provides theoretical results.

1 A commercial static code analyser for Java (version 3.2.0.1227 for Linux 64 bit).

312 S. Buro et al.

A General Solution. Abstract interpretation [14] has allowed a disparate collec-
tion of (practical) methods and algorithms proposed along the years for static
analysis to evolve into a mature discipline, founded on a robust theoretical frame-
work. This provides a good environment for designing static analysis methods
within a language, semantics, and approximation independent way [15]. It has
broad scope and wide applicability. Our aim is to retain such broad scope, but
to work with multi-language programs: Instead of fixing two programming lan-
guages and combining their respective analyses, we model abstract interpretation
itself, within the algebraic framework of multi-language semantics [7]. Such an
approach allows us to lay down the first steps of a general technique for design-
ing static analyses of multi-language programs, in a way that (1) is independent
of both underlying languages and analyses and (2) preserves the design and
properties of the single-language abstract semantics.

Contributions and Paper Structure. Our main contribution is a general tech-
nique for abstracting multi-language semantics given the interoperation of the
underlying languages and of their abstract semantics. We exploit abstract inter-
pretation theory [14] for retaining independency from the underlying analyses,
and the algebraic framework of multi-languages [7] for generality of the blended
languages. In Sect. 2, we provide background definitions for multi-languages.
In Sect. 3, we give a general, algebraic, and fixpoint construction of the col-
lecting semantics, namely the reference semantics for defining and proving the
correctness of approximated properties. In Sect. 4, we instantiate the abstract
interpretation-based semantics approximation in the algebraic framework, in
order to fill the gap between the algebraic approach to program semantics and
static analysis. Finally, in Sect. 5, we combine all these concepts, obtaining an
algebraic framework for modeling abstract interpretation of multi-language pro-
grams. We assume familiarity with abstract interpretation theory.

Running Example. The whole paper is accompanied by a running example
inspired by a common scenario in the interoperability field: The language binding,
an Application Program Interface (API) that allows one language to call library
functions implemented in another language. Major examples include openGL
library, which is interoperable with Java through the Java OpenGL (JOGL)
wrapper library or from Python via PyOpenGL, and GNU Octave language that
has interoperability with Ruby and Python (e.g., see octave-ruby and oct2py
libraries). Our running example mimics such an interoperability mechanism: We
present the core of an imperative language Imp, and we let it interoperate with
a very simple mathematical language Num (in the spirit of Octave). We refer
to such a multi-language as NImp. We then show how to build multi-language
abstractions of NImp by combining the abstract semantics of Imp and Num.

2 The Multi-language Framework

We summarise the framework of multi-languages [7] based on the theory of order-
sorted algebras [22]. Intuitively, multi-languages result from the combination of

On Multi-language Abstraction 313

Fig. 1. Well-formed terms generated by an order-sorted signature Sg.

two order-sorted specifications defining syntax and semantics of the underlying
languages. Order-sorted algebras provide a simple and yet powerful framework
for modelling formal systems as algebraic structure, and have been widely used
for specifying and prototyping programming languages (see [21] for survey).

Sorted Sets and Functions. Let S be a set of sorts. An S-sorted set is a
family of sets A � (As | s ∈ S). Given two S-sorted sets A and B, an S-sorted
function h : A → B is a family (hs : As → Bs | s ∈ S) of set-theoretic functions.
If f : A → B and g : B → C are two S-sorted functions, clearly their composition
g ◦ f � ((g ◦ f)s � gs ◦ fs | s ∈ S) is an S-sorted function from A to C. We
extend set-theoretic operators and predicates componentwise. For instance, if A
and B are two S-sorted sets, A ⊆ B if As ⊆ Bs for each s ∈ S, and we define the
cartesian product A × B by taking each component (A × B)s � As × Bs. If A is
an S-sorted set and w � s1 . . . sn ∈ S∗, we denote by Aw the cartesian product
As1 ×· · ·×Asn

(when w � ε, then Aw � {•} is the one-point domain). Likewise,
if f is an S-sorted function and ai ∈ Asi

for i � 1, . . . , n, then the function
fw : Aw → Bw is defined by fw(a1, . . . , an) � (fs1(a1), . . . , fsn

(an)). Moreover,
if S is partially ordered by ≤, then S∗ inherits the pointwise order. Finally, we
introduce the product operator × used in Sect. 3. Let A be a family of sets
indexed by I. The product operator × :

∏
i∈I ℘(Ai) → ℘

(∏
i∈I Ai

)
defines the

mapping (X1, . . . , Xn) �→ X1 × · · · × Xn.

2.1 Order-Sorted Algebras

A signature defines the symbols of the language (that is, the syntax), and an
algebra provides them with a meaning.

Definition 1 (Order-Sorted Signature). An order-sorted signature Sg
is specified by

– a poset 〈S,≤〉 of sorts;
– a set of function symbols f : s1, . . . , sn → s each with arity n ≥ 1 and

(w, s) ∈ S∗ × S the rank of f where w � s1 . . . sn;
– a set of constants k : s, each of a unique rank s (just a single sort); and
– a monotonicity requirement that whenever f : w1 → s and f : w2 → r

with w1 ≤ w2, then s ≤ r.

By an operator we mean either a function symbol or a constant.

314 S. Buro et al.

Well-formed (ground) terms generated by a signature Sg are defined by the
inference rules depicted in Fig. 1. A judgement of the form t : s means that t is
a well-formed term of sort s built out of Sg. Note that a term t may have more
than one sort, and we call t polymorphic; see [22] for details on polymorphism
in order-sorted algebras and [7] for the role of polymorphism in multi-languages.

Definition 2 (Order-Sorted Algebra). Given an order-sorted signature Sg,
an Sg-algebra C is specified by

– a carrier set [[s]]C for each sort s and a set [[w]]C � [[s1]]C × · · · × [[sn]]C for
each w � s1 . . . sn ∈ S∗;

– a function [[f : w → s]]C : [[w]]C → [[s]]C for each f : w → s and an element
[[k]]C ∈ [[s]]C for each constant k : s

such that if s ≤ r then [[s]]C ⊆ [[r]]C , and if the function symbol f appears with
more than one rank f : w1 → s and f : w2 → r in Sg with w1 ≤ w2, then
[[f : w1 → s]]C (x) = [[f : w2 → r]]C (x) for each x ∈ [[w1]]C .

We often refer to the carrier set of an Sg-algebra C , meaning the S-sorted
family of carrier sets C � (Cs � [[s]]C | s ∈ S), where S is the set of sorts in Sg.

Example 1. If Sg is the signature of an imperative language, then the loop and
skip operators are likely to be sorted as loop : exp, com → com and skip : com.
Their denotational semantics may be defined by an algebra D , where [[skip]]D �
ρ �→ ρ and [[loop]]D (e, c) � lfpFe,c (assume ρ to be an environment and F the
usual continuous operator [43]).

The term algebra TSg has carrier sets each consisting of terms of a given sort:

Definition 3 (Order-Sorted Term Algebra). The term Sg-algebra TSg

is defined by taking [[s]]TSg
� { t | t : s in Sg } and by syntactically interpreting

each operator, i.e., [[k]]TSg
� k for each k : s and [[f : w → s]]TSg

(t1, . . . , tn) �
f(t1, . . . , tn) for each f : w → s, where w � s1 . . . sn and ti ∈ [[si]]TSg

.

Homomorpisms between algebras are sorted functions between carrier sets
that preserve the meaning of the operators:

Definition 4 (Order-Sorted Homomorpism). Let C and D be two order-
sorted Sg-algebras. An order-sorted Sg-homomorphism h : C → D is an
S-sorted function h : C → D between their carrier sets satisfying the following:

– hs([[k]]C) = [[k]]D for each k : s and hs ◦ [[f : w → s]]C = [[f : w → s]]D ◦ hw for
each f : w → s (recall the sorted function notation); and

– if s ≤ r, then hs(x) = hr(x) for each x ∈ [[s]]C .

When the source of a homomorphism h : TSg → C is the term algebra, it
provides terms of Sg with a meaning in the carrier set C of C . The class of
Sg-algebras and Sg-homomorphisms form a category denoted by Alg(Sg). If
the signature Sg is regular (intuitively, regularity is a natural condition on the
signature which allows each term to have a unique least sort) there is a unique
homomorphism h : TSg → C for each Sg-algebra C :

On Multi-language Abstraction 315

Fig. 2. Syntax of the imperative language Imp.

Definition 5 (Regularity [22]). An order-sorted signature Sg is regular if
for each f : w → s and for each lower bound wl ≤ w the set { (w′, s′) | f : w′ →
s′ ∧ wl ≤ w′ } ⊆ Sn × S has a minimum.

Theorem 1 [22]. If Sg is regular, the term algebra TSg is initial in Alg(Sg),
that is, for every algebra C there is a unique homomorphism h : TSg → C .

We refer to any such h : TSg → C as a semantic function. In the follow-
ing, we write [[t]]C � hls(t)(t) where ls(t) is the least sort of t, which exists by
regularity [22, Prop. 2.10].

We conclude the section by illustrating two simple programming languages.
We provide their order-sorted signatures and algebras. The semantics of the
resulting programs follows by the previous theorem.

Running Example 1. Let Imp be (the syntax of) the imperative programming
language in Fig. 2. Variables x ∈ X and values i ∈ Z⊥ (where Z⊥ � Z ∪ {⊥})
occur in the language as terminal symbols, and for each production defining
the syntax of Imp (on the right), we introduce a corresponding algebraic oper-
ator (on the left), or a family of operators when they are parametric on a sub-
script. The rank of each algebraic operator can be inferred by the non-terminals
appearing in the production rules; for instance, the operator cond is sorted as
cond : exp1, com1, com1 → com1, where com1 and exp1 denote the sort of com-
mands and expressions of Imp. We assume a denotational semantics [[−]]D1 pro-
vided by an Imp-algebra D1 (see, for instance, [43]). As usual, we let Env1 �
X → Z⊥ be the set of environments of Imp, and we set Env⊥1 � Env1 ∪ {⊥}.
The carrier sets of commands and expressions are [[com1]]D1 � Env⊥1 → Env⊥1
and [[exp1]]D1 � Env1 → Z⊥. Moreover, we assume that Imp provides users with
very basic operators, i.e., � ∈ {+, -, <, >, ==, !=}.

We let Num be a mathematical language with more advanced numerical
functions, such as modulo and bitwise operators, rational numbers, trigonometric
functions, etc. Its syntax is depicted in Fig. 3. We consider variables x ∈ X and
values q ∈ Q⊥ � Q ∪ {⊥} as terminal symbols. We denote by fn mathematical
functions of the language with arity n, such as the modulo binary operator
%, the unary sin function, etc. Here too we assume a denotational semantics

316 S. Buro et al.

Fig. 3. Syntax of the mathematical language Num.

[[−]]D2 induced by the Num-algebra D2, where [[exp2]]D2 � Env2 → Q⊥ and
[[com2]]D2 � Env2 → Env2 with Env2 � X → Q⊥.

The reader may want to check Appendix A for the thorough formalisation of
the algebraic semantics provided by D1 and D2.

2.2 Multi-languages and Their Algebras

We next provide an analogue of the previous section for multi-languages. A multi-
language signature, defining a multi-language, is specified by two order-sorted
signatures together with an interoperability relation on sorts:

Definition 6 (Multi-language Signature). A multi-language signature
SG � (Sg1,Sg2, �) is specified by

– a pair of order-sorted signatures Sg1 and Sg2 with posets of sorts 〈S1,≤1〉
and 〈S2,≤2〉, respectively; and

– an interoperability (binary) relation � over S1 ∪ S2 such that s � s′

implies s ∈ Si and s′ ∈ Sj with i, j ∈ {1, 2} and i �= j.

We suppose that S1 and S2 are two disjoint sets (note that such an hypothesis
is non-restrictive: We can always construct a disjoint union).

We shall see that an interoperability constraint s � s′ enables the use of Sgi-
terms of sort s in place of Sgj-terms of sort s′ (as in [33], “ML code can be used in
place of Scheme code”). The multi-language terms are inductively defined by
the rules in Fig. 4. Note that single-language operators, k or f , of Sgi are tagged
as ki and fi in multi-language terms, precisely for avoiding the introduction
of unintended polymorphism (Sg1 and Sg2 may share operators with the same
name). And also note the role of conversion operators ↪→s,s′ that move terms
t of sort s to terms ↪→s,s′(t) of sort s′, for each s�s′. Henceforth, when we write
an order-sorted signature Sgi, we understand its poset of sorts to be denoted by
〈Si,≤i〉, and for each s � s′ we tacitly assume that s in Sgi and s′ in Sgj with
i, j ∈ {1, 2} and i �= j.

A multi-language SG-algebra is a pair of order-sorted algebras together with
a family of boundary functions.

On Multi-language Abstraction 317

Fig. 4. Multi-language terms generated by SG � (Sg1, Sg2, �).

Definition 7 (Multi-language Algebra). Let SG � (Sg1,Sg2, �) be a multi-
language signature. An SG-algebra C is given by

– a pair of order-sorted algebras C1 and C2 on Sg1 and Sg2, respectively; and
– a boundary function [[s � s′]]C : [[s]]C i

→ [[s′]]C j
for each constraint s � s′.

Boundary functions are understood as the semantics of conversion operators,
that is they specify how the underlying languages interoperate.

The multi-language term algebra is defined in a similar way to the order-
sorted one in order to carry multi-language terms.

Definition 8 (Multi-language Term Algebra). Let TSG denote the multi-
language term SG-algebra. The underlying Sgi-algebras (TSG)i are defined by tak-
ing [[s]](TSG)i

� { t | t : s in SG } for each sort s in Sgi and by defining [[k]](TSG)i
�

ki for each k : s in Sgi and [[f : w → s]](TSG)i
(t1, . . . , tn) � fi(t1, . . . , tn) for each

f : s1, . . . , sn → s in Sgi, where tj ∈ [[sj]](TSG)i
. Boundary functions of TSG are

defined as [[s � s′]]TSG
(t) � ↪→s,s′(t), for each s � s′ and t ∈ [[s]](TSG)i

.

Definition 9 (Multi-language Homomorphism). Let SG � (Sg1,Sg2, �)
be a multi-language signature, and let C and D be two SG-algebras. An SG-
homomorphism h : C → D is given by a pair of order-sorted homomorphisms
h1 : C1 → D1 and h2 : C2 → D2 such that they commute with boundary functions,
namely, if s � s′, then (hj)s′ ◦ [[s � s′]]C = [[s � s′]]D ◦ (hi)s.

Given a multi-language algebra C , we can define an S-sorted set C by setting
Csi

� [[s]]C i
; and given any homomorphism h : C → D , there is an S-sorted

homomorphism h : C → D given by hsi
� (hi)s : Csi

→ Dsi
. Note that we will

usually write h for h, thus identifying the two concepts, and regard h : C → D
and h : C → D as inter-changeable throughout the paper.

SG-algebras and SG-homomorphisms form a category denoted by Alg(SG).
[7] provides the multi-language version of Theorem 1, so that for every multi-
language algebra C , there is a unique SG-homomorphism h : TSG → C providing
multi-language terms with a meaning, and we use the same notation [[t]]C for
denoting its semantics.

We now apply the theory of multi-languages to combine the languages intro-
duced in Example 1.

318 S. Buro et al.

Running Example 2. Num provides users with more advanced binary operators
and values than those of Imp. However, the purpose of Num is limited to define
handy mathematical functions (indeed, it is not even Turing-complete). We can
take advantage of such mathematical expressiveness without sacrificing compu-
tational power by allowing the use of Num-expressions (that is, terms with sort
exp2) into Imp-programs, in place of Imp-expression of sort exp1. Therefore, the
interoperability relation shall simply specify exp2 � exp1, and we let NImp to be
formally defined as NImp � (Imp,Num, �). As a result, programmers may write
programs such as the one in Fig. 5, where terms in magenta are Num-expressions
used in place of Imp-expressions (i.e., we use colours rather than applying the
conversion operator ↪→exp2,exp1

for clarity reasons).

Fig. 5. Multi-language exponentiation by squaring algorithm.

We denote by D the multi-language NImp-algebra defined by coupling D1

and D2 with the boundary function [[exp2 � exp1]]D defined below (recall Def-
inition 7). Note that values of Num-expressions range over the set of rational
numbers Q, whereas Imp only handles integer values in Z. A natural choice for
the boundary function [[exp2 � exp1]]D of NImp that converts Num-expressions
to Imp-expressions is to truncate the value of Num-expression to their nearest
integer value. Since expressions only have values with respect to an environment,
we shall specify a conversion from Env2 → Q⊥ to Env1 → Z⊥ (we use ρ1 and ρ2
as metavariables for Env1 and Env2, respectively):

[[exp2 � exp1]]D (e ∈ Env2 → Q⊥) � ρ1 ∈ Env1 �→ ψ(e(φ(ρ1))) ∈ Z⊥

where φ : Env1 → Env2 is the inclusion function and ψ : Q⊥ → Z⊥ truncates
rational values, i.e., ψ(q) � truncate(q) if q �= ⊥ and ψ(⊥) � ⊥. For instance,
the semantics of the Num-expression [[n / 2]]D2 = ρ2 �→ ρ2(n) / 2 is mapped by
[[exp2 � exp1]]D to the function ρ1 �→ ρ1(n)/Z 2, where /Z is the integer division.2

3 Algebraic Perspective on Collecting Semantics

We now give a general construction of collecting semantics. First we set up nota-
tion. We let Sg be a regular order-sorted signature and C an Sg-algebra. Theo-
rem 1 guarantees the existence of a homomorphism [[−]]C : TSg → C providing
Sg-terms P, called programs, with a meaning [[P]]C .
2 We ignore the case where ρ2(n) = ⊥, as it is clearly trivial.

On Multi-language Abstraction 319

Remark 1. Signatures are of course completely general. Sg might specify an
enriched lambda-calculus with [[−]]C its denotational semantics, as in [23,
Sect. 3.2], or Sg might specify the syntax of an imperative language with [[−]]C
its small-step operational semantics.

A property of a set is any subset. By semantic properties of programs, we
mean properties of the (components of) the carrier set C of an algebra C . In
this section, we provide a systematic construction of an algebra C ∗ able to
compute the strongest property of programs, that is [[P]]C ∗ = {[[P]]C } for
each program P (Proposition 1). The induced semantic function [[−]]C ∗ is usually
called the (standard) collecting semantics [16]. Henceforth, we distinguish
the semantics [[−]]C from the collecting semantics [[−]]C ∗ by referring to the
former as the standard semantics, and we shall link them algebraically in the
category of algebras Alg(Sg) via Proposition 2. We conclude this section by
providing a general fixpoint calculation of [[−]]C ∗ whenever [[−]]C is a fixpoint
semantics (Theorem 3).

Definition 10 (Collecting Semantics). Let C be an Sg-algebra. The col-
lecting semantics C ∗ over C is defined as follows:

– the carrier sets are [[s]]C ∗ � ℘[[s]]C for each sort s; and
– the semantics of the operators is [[k]]C ∗ � {[[k]]C } for each constant k : s, and

[[f : w → s]]C ∗ � ℘[[f : w → s]]C ◦ × (see Sect. 2 for the definition of ×)
for each function symbol f : w → s, where for any function θ : A → B the
function ℘(θ) : ℘(A) → ℘(B) computes the image of θ.

The homomorphism [[−]]C ∗ : TSg → C ∗ induced by C ∗ maps programs to
their most precise semantic property, justifying the name of collecting semantics:

Proposition 1. [[−]]C ∗ : TSg → C ∗ computes the strongest program property for
each program P generated from Sg, that is [[P]]C ∗ = {[[P]]C }.
Remark 2. Other forms of collecting semantics found in literature are abstrac-
tions of the collecting semantics provided here. For instance, [2] defines a col-
lecting semantics for functional programs interpreted on D⊥ → D⊥ by taking
f : D⊥ → D⊥ to ℘(f) on the lifted domain ℘(D⊥) →cjm ℘(D⊥) of complete-join
morphisms (cjm). Such a collecting semantics computes all the possible results
of a functional program with respect to a set of input values, and it can be
obtained as an abstraction of the standard collecting semantics:3

α
(
S ∈ ℘(D⊥ → D⊥)

)
� X ∈ ℘(D⊥) �→ { f(x) ∈ D⊥ | x ∈ X ∧ f ∈ S }

γ
(
F ∈ ℘(D⊥) →cjm ℘(D⊥)

)
� {x ∈ D⊥ �→ f(x) ∈ D⊥ | f(x) ∈ F ({x}) }

The (forward) reachability semantics is widely used for invariance analyses
or, in general, for discovering state properties of programs [6,29,41]. For each
3 One can check that α(S) is a cjm and (α, γ) form a Galois connection.

320 S. Buro et al.

program P, it collects the set of states that are reachable by running P from a
set of initial states. It can be shown that it is an abstraction of the standard
collecting semantics over, for instance, a trace semantics.

Standard and collecting semantics are related by the property established
in Proposition 1. Moreover, the singleton function {−} : C → ℘(C) that maps
standard semantics [[P]]C of programs to their strongest property {[[P]]C } is an
Sg-homomorphism {−} : C → C ∗. From the abstract interpretation perspec-
tive, it means that {−} acts as a complete abstraction, hence with no loss of
precision [19].

Proposition 2. The singleton function {−} : C → ℘(C) defined by c �→ {c} is
an Sg-homomorphism {−} : C → C ∗, and therefore {−} ◦ [[−]]C = [[−]]C ∗ .

Remark 3. Readers familiar with category theory may notice that {−} is the
unit of the powerset monad on Alg(Sg). However, we do not pursue this here.

3.1 Fixpoint Calculation of Collecting Semantics

Preliminary Notions. We call [[−]]C a fixpoint semantics if [[P]]C � lfp�
⊥F for

some semantic transformer F : C → C (depending on Sg) on a semantic domain
〈C,�,⊥,�〉. More precisely, we follow [13] and we assume the following:

– The semantic domain 〈C,�,⊥,�〉 is a poset 〈C,�〉 with a smallest element
⊥ and a partially defined least upper bound (lub) operator �.

– The semantic transformer F : C → C is a monotone function such that its
transfinite iterates F 0 � ⊥, F δ+1 � F (F δ) for successor ordinals δ + 1, and
Fλ � �δ<λF δ for limit ordinals λ are well-defined.

Under these assumptions, the fixpoint semantics is exactly [[P]]C � lfp�
⊥F = F ε,

where ε is the least ordinal such that F (F ε) = F ε.

The goal of this section is to provide a fixpoint calculation of the collecting
semantics. We assume the standard semantics [[P]]C � lfp�

⊥F to be a fixpoint
semantics over a generic semantic domain 〈C,�,⊥,�〉, and we define a new
computational order �∗ on ℘(C) that makes the collecting semantics [[P]]C ∗ the
least fixpoint of F ∗ � ℘(F) (Theorem 3).

Remark 4. The problem of finding the right partial order �∗ on ℘(C) for achiev-
ing such a fixpoint definition of the collecting semantics has been recently
addressed in [16, Sect. 7.2], by considering a preorder on ℘(C) that is partial
only along the iterates.4 Here, we show that it can be extended to a fully-fledged
partial order �∗ over the whole set ℘(C).

Definition 11 (Collecting Semantics Domain). Let 〈C,�,⊥,�〉 be
a (non-trivial) semantic domain. The collecting semantics domain
〈℘(C),�∗,⊥∗,�∗〉 with respect to 〈C,�,⊥,�〉 is defined as follows:

4 A similar approach has been previously taken in [32] and in the thesis of Pasqua [36].

On Multi-language Abstraction 321

– Let X,Y ∈ ℘(C). Then,

X �∗ Y iff

⎧
⎪⎨

⎪⎩

X = {x} ∧ Y = {y} ∧ x � y for some x, y ∈ C (1)
X = Y (2)
X = {x} ∧ Y �= {y} for some x ∈ C and for all y ∈ C (3)

Example 2. Let C � N and � � ≤. Then, 〈℘(N),≤∗〉 is

The smallest element of 〈℘(C),�∗〉 is ⊥∗ = {⊥} and the following lemma
characterises the lub operator �∗ on chains of atoms (i.e., singletons):

Lemma 1. Let D ⊆ ℘(C) be a non-empty set of atoms of the form {x} for some
x ∈ C. Then, �∗D exists if and only if � ∪ D exists, and when either one exists
�∗D = {� ∪ D}.

Let us recall that F ∗ � ℘(F) � X ∈ ℘(C) �→ {F (x) ∈ C | x ∈ X }. F ∗ is
trivially monotone, and we shall now prove that its transfinite iterates exist:

Proposition 3. For each ordinal δ, (F ∗)δ = {F δ}.
Proof. By transfinite induction:

– Let δ � 0. Then, (F ∗)0 = ⊥∗ = {⊥} = {F 0}.
– Let δ + 1 be a successor ordinal. Then, (F ∗)δ+1 = F ∗((F ∗)δ) IH= F ∗({F δ}) =

{F (F δ)} = {F δ+1}.
– Let λ be a limit ordinal. Then, (F ∗)λ = �∗

δ<λ(F
∗)δ IH= �∗

δ<λ{F δ}. Since
({F δ} | δ < λ) is a set of atoms, by Lemma 1 we conclude

(F ∗)λ =
�∗

δ<λ
{F δ} = {

�⋃

δ<λ
{F δ}} = {

�

δ<λ
F δ} = {Fλ}

By Proposition 3, F ∗ is a proper semantic transformer over the previously
defined collecting semantics domain. The fixpoint definition of the collecting
semantics now follows from the application of the Kleenian fixpoint transfer
theorem in its most general formulation (that we now recall).

322 S. Buro et al.

Theorem 2 (Kleenian Fixpoint Transfer Theorem [13]). Let (D,≤,⊥,∨)
and (D�,≤�,⊥�,∨�) be two semantic domains and F : D → D and F � : D� → D�

two semantic transformer over them. Let α : D → D� be a function such that (i)
α(⊥) = ⊥�, (ii) F � ◦ α = α ◦ F , and (iii) α preserves the lub of the iterates, that
is α(∨δ<λF δ) = ∨�

δ<λα(F δ) for each limit ordinal λ. Then, α(lfp≤
⊥F) = lfp≤�

⊥�F
�.

The singleton function {−} : C → ℘(C) introduced in Proposition 2
satisfies the hypotheses for α in Theorem 2 for domains 〈C,�,⊥,�〉 and
〈℘(C),�∗,⊥∗,�∗〉 and transformers F and F ∗, respectively. Therefore, given
the above,

Theorem 3 (Fixpoint Collecting Semantics). The function {−} : C →
℘(C) satisfies the hypotheses (i), (ii), and (iii) of Theorem 2, hence

[[P]]C ∗
Proposition 1= {[[P]]C } Hypo.= {lfp�

⊥F} Theorem 2= lfp�∗
⊥∗F ∗

4 Basic Notions of Algebraic Abstract Semantics

We proceed to characterise abstract interpretations of the standard collecting
semantics in the algebraic setting. There are several frameworks in which to
design sound approximations of program semantics [15]. Here, we study both the
ideal case in which a Galois connection (gc) ties the concrete and the abstract
domain, and the more general scenario characterised by the absence of a best
approximation function. Although it is not the most general abstract interpreta-
tion framework to work with, it meets the usual setting in which static analyses
are designed [40].

We still denote by C the Sg-algebra inducing the standard semantics of the
language. We recall that C is the carrier set of C and ℘(C) the carrier set of the
collecting semantics C ∗. An Sg-algebra A is said to be abstract with respect to
C if (1) its carrier set A is a poset 〈A,�〉 and (2) it is equipped with a monotone
concretisation function γ : 〈A,�〉 → 〈℘(C),⊆〉 that maps abstract elements
to concrete properties. We refer to the carrier set A as an abstract domain
and we call the induced semantic function [[−]]A the abstract semantics.

Definition 12 (Soundness). Let A be an abstract Sg-algebra (with carrier
set A) and γ : A → ℘(C) a monotone concretisation function. The algebra A is
sound if its operators soundly approximate the concrete ones, i.e.,

– [[f : w → s]]C ∗ ◦ γ ⊆ γ ◦ [[f : w → s]]A for each f : w → s; and
– [[k]]C ∗ ⊆ γ[[k]]A for each constant k : s.

A straightforward consequence of this definition is that sound algebras induce
sound abstract semantic functions:

Proposition 4. If A is sound, then [[P]]C ∗ ⊆ γ[[P]]A for each program P.

If 〈℘(C),⊆〉 −−−→←−−−
α

γ 〈A,�〉 is a gc between the concrete and the abstract
domain, we can define the most precise (abstract) Sg-algebra A � out of the
best correct approximation provided by (α, γ).

On Multi-language Abstraction 323

Definition 13 (Most Precise Algebra). Let 〈℘(C),⊆〉 −−−→←−−−
α

γ 〈A,�〉 be a gc
between the concrete and the abstract domain. The most precise algebra A �

approximating C with respect to (α, γ) is defined as follows:

– carrier sets are [[s]]A � � As (recall the notation for sorted sets); and
– the semantics of the operators is [[k]]A � � α[[k]]C ∗ for each constant k : s,

[[f : w → s]]A � � α ◦ [[f : w → s]]C ∗ ◦ γ for each function symbol f : w → s.

The abstract semantics [[−]]A � induced by A � enjoys the soundness property
(the reader may want to check that A � is a proper Sg-algebra), and it is the
most precise among all the sound algebras, in the following sense:

Proposition 5. A � soundly approximates the concrete semantics. Moreover,
A � is the most precise abstraction with respect to (α, γ), that is, for any other
sound algebra A , γ ◦ [[f : w → s]]A � ⊆ γ ◦ [[f : w → s]]A and γ[[k]]A � ⊆ γ[[k]]A
for each operator in Sg. Therefore, by Proposition 4, γ[[P]]A � ⊆ γ[[P]]A for each
program P.

In general, abstraction and concretisation functions α and γ are not homo-
morphisms between A and C ∗. However, if they are homomorphisms, then A
is backward and forward complete, respectively (Propositions 6 and 7).

Definition 14 ((Backward) Completeness). Let A be an Sg-algebra and
〈℘(C),⊆〉 −−−→←−−−

α

γ 〈A,�〉 a gc. The left adjoint α encodes concrete properties in
the abstract domain. The algebra A is complete with respect to

– a function symbol f : w → s if α ◦ [[f : w → s]]C ∗ = [[f : w → s]]A ◦ α; and
– a constant k : s if α[[k]]C ∗ = [[k]]A .

Proposition 6. Let α : C ∗ → A be an Sg-homomorphism. Then, A is com-
plete with respect to each operator in Sg, and therefore α[[P]]C ∗ = [[P]]A for each
program P.

Note that, in general, the existence of a best abstract approximation is
not guaranteed (e.g., for convex polyhedra [17] or the final state automata
domain [3]). In such cases, a dual notion of completeness (forward complete-
ness [20]) with respect to the concretisation function is investigated.

Definition 15 (Forward Completeness). Let A be an algebra over Sg and
γ : A → ℘(C) a monotone concretisation function. The algebra A is forward
complete with respect to

– a function symbol f : w → s if [[f : w → s]]C ∗ ◦ γ = γ ◦ [[f : w → s]]A ; and
– a constant k : s if [[k]]C ∗ = γ[[k]]A .

Proposition 7. Let γ : A → C ∗ be an Sg-homomorphism. Then, A is forward
complete with respect to each operator in Sg, and therefore [[P]]C ∗ = γ[[P]]A for
each program P.

324 S. Buro et al.

5 The Multi-language Abstraction

Our aim in this section is to define abstractions of the multi-language semantics
by relying on the abstractions of the single-languages. In the next paragraph we
recall the multi-language construction [7] and we set up the notation. In Sect. 5.1
we define the combination of abstract interpretations of different languages, a
key contribution of our work. By example we apply our theory to two different
sign abstract semantics of Imp and Num, and we show how to derive the sign
semantics for the multi-language NImp obtained by blending Imp and Num.

The Multi-language Construction. Throughout this section, we let Sg1 and Sg2
be two order-sorted signatures defining the syntax of two languages, and let i �
1, 2. We denote by Ci the order-sorted Sgi-algebra inducing the semantics [[−]]C i

of the language. Recall (Definition 6) that the signature of a multi-language,
which we shall refer to as SG, is specified by blending the order-sorted signatures
Sg1 and Sg2 of the single-languages through an interoperability relation � on
sorts. In particular, an interoperability constraint s � s′ implies that Sgi-terms
of sort s can be used in place of Sgj-terms of sort s′ (with i, j ∈ {1, 2} and
i �= j). This determines the terms of the multi-language SG � (Sg1,Sg2, �). The
multi-language SG-semantics C is then obtained by pairing the single-language
algebras C1 and C2 with boundary functions [[s � s′]]C : [[s]]C i

→ [[s′]]C j
that

specify how terms of sort s in Sgi can be interpreted as terms of sort s′ in
Sgj . In other words, boundary functions regulate the flow of values between
the underlying languages [33]. For instance, they can act as a bridge between
different type representations in the underlying languages (e.g., to enable the
interoperability of Java and JavaScript in Nashorn [35] or the interoperability of
Java and Kotlin [27]), or deal between different machine-integers implementation
(e.g., the mapping between Java primitive types and C types in JNI [34]), etc.
An interesting example on object passing between a weakly and a strongly typed
language can be observed in Nashorn: JavaScript objects that need to flow to
Java are encapsulated into the (Java) ScriptObjectMirror class which provides
a Java representation of the underlying JavaScript object.

5.1 Combining Abstractions of Different Languages

The first step towards an abstract interpretation theory for multi-languages is
to find a suitable notion of multi-language collecting semantics.

Definition 16 (Multi-language Collecting Semantics). Let C be a multi-
language SG-algebra over the multi-language signature SG � (Sg1,Sg2, �). The
multi-language collecting semantics C ∗ over C is specified by:

– the collecting Sgi-semantics C ∗
i over Ci, for i = 1, 2; and

– boundary functions [[s � s′]]C ∗ � ℘[[s � s′]]C for each s � s′.

We can then lift Proposition 1 and 2 to the multi-language world in order to
show that C ∗ has the desired properties:

On Multi-language Abstraction 325

Proposition 8. Let C be a multi-language SG-algebra. The collecting semantics
[[−]]C ∗ induced by C ∗ computes the strongest program property for each multi-
language program P generated by SG, that is [[P]]C ∗ = {[[P]]C }. Moreover, the
singleton function {−} : C → C ∗ is a multi-language SG-homomorphism.

Fig. 6. Sign abstract
domain.

Fig. 7. Concretisation functions γ̃i : AV → ℘(Vi).

We are now interested in whether we can obtain a fixpoint definition of the
multi-language collecting semantics [[−]]C ∗ induced by C ∗. At a minimum, a fix-
point definition of the two underlying language semantics is needed, since every
single-language program is also a multi-language one. However, the semantics of
the multi-language does not only depend on these specifications (that is, it is
not a universal property of the underlying semantics) but is determined up to a
family of boundary functions defining the interoperability of Sg1 and Sg2.

Theorem 4. Let C be a multi-language SG-algebra whose boundary functions
admit a constructive definition, that is [[s � s′]]C � lfpFs�s′ for each s � s′ in
SG and for some Fs�s′ : ([[s]]C i

→ [[s′]]C j
) → ([[s]]C i

→ [[s′]]C j
). Then, the multi-

language collecting semantics [[−]]C ∗ induced by C ∗ admits a fixpoint computation
if and only if C1 and C2 does.

Proof (Sketch). Each operator in SG admits a fixpoint definition.

The second step is to combine the already existing abstractions of the under-
lying languages. Let A1 and A2 be the Sgi-algebras providing the abstract
semantics of Sgi, with i � 1, 2, and γi : Ai → ℘(Di) their concretisation func-
tions, respectively. We can blend A1 and A2 into the multi-language SG-algebra
A by defining an abstract semantics of the conversion operators [[s � s′]]A , for
each s � s′. We call such an A an abstract multi-language algebra.

Running Example 3. Let 〈AV ,�V ,�V ,�V ,⊥V ,�V〉 be the standard sign domain
(Fig. 6) and γ̃i : AV → ℘(Vi) (where V1 � Z⊥ and V2 � Q⊥) the corresponding
concretisation function (Fig. 7). We let A1 and A2 be the abstract algebras
defining a sign analysis for languages Imp and Num, respectively (that is, the
computation induced by Ai is carried out using abstract values in AV instead
of concrete ones in Vi). The abstract semantics Ai is the standard one (see, for
instance, [40]), and it is reported in Appendix A for completeness.

326 S. Buro et al.

The concretisation of abstract environments Env� � X → AV is defined by
γ̊i(ρ� ∈ Env�) � { ρi ∈ Envi | ∀x ∈ X . ρi(x) ∈ γ̃i(ρ�(x)) }. The abstract interpre-
tation of an expression E in Imp or Num is a function e� ∈ [[expi]]A i

� Env� → AV
that takes abstract environments to abstract values. Similarly, the abstract inter-
pretation c� ∈ [[comi]]A i

� Env� → Env� of a command C is a transformation of
abstract environments. The concretisations of e� and c� are therefore (sorted)
functions (γi)expi

: [[expi]]A i
→ [[expi]]D ∗

i
and (γi)comi : [[comi]]A i

→ [[comi]]D ∗
i

from the carrier sets of Ai to those of the collecting semantics D∗
i :

(γi)expi
(e�) � { ei ∈ [[expi]]Di

| ∀ρ� ∈ Env� . ∀ρi ∈ γ̊i(ρ�) . ei(ρi) ∈ γ̃i(e�(ρ�)) }
(γi)comi

(c�) � { ci ∈ [[comi]]Di
| ∀ρ� ∈ Env� . ∀ρi ∈ γ̊i(ρ�) . ci(ρi) ∈ γ̊i(c�(ρ�)) }

The following theorems aim to show that all the properties of interest of the
resulting multi-language abstraction rely entirely on the abstract semantics of
the boundary functions. We recall that when we write s�s′ we implicitly assume
that s is a sort of Sgi and s′ one of Sgj for i, j ∈ {1, 2} and i �= j.

Theorem 5 (Soundness). Let A1 and A2 be sound Sgi-algebras with concreti-
sation functions γi : Ai → ℘(Ci), for i � 1, 2. If [[s � s′]]C ∗ ◦ γi ⊆ γj ◦ [[s � s′]]A
for each s � s′, then the multi-language abstract semantics A is sound, that is
[[P]]C ∗ ⊆ γ[[P]]A for each multi-language program P generated by SG.

The derived abstraction A of the multi-language semantics preserves the
completeness of single-language operators.

Theorem 6 (Completeness). Let A be the multi-language abstract seman-
tics. If the order-sorted Sgi-algebra Ai is forward (resp., backward) complete
with respect to k : s and f : w → s in Sgi, then A is forward (resp., backward)
complete with respect to ki : s and fi : w → s in SG, respectively.

Then, complete boundary functions do not alter the completeness of complete
programs as a corollary:

Corollary 1. Let A be the multi-language abstract semantics and [[s � s′]]A a
forward (resp., backward) complete boundary functions. For each multi-language
program P sorted by s, if P is forward (resp., backward) complete, then so too is
the program ↪→s�s′(P).

Equivalent multi-language versions of Propositions 6 and 7 also apply. The
proof boils down to the fact that multi-language homomorphisms are pair of
order-sorted homomorphisms that also commute with boundary functions.

Running Example 4. The multi-language abstract algebra A is obtained by cou-
pling A1 and A2 with an abstraction of the boundary function [[exp2 � exp1]]D
defined in Example 2. Since the underlying algebras share the same abstract
domain for expressions, that is [[exp1]]A1 = [[exp2]]A2 , there is no need to con-
vert abstract values between two identical domains, therefore we set [[exp2 �

exp1]]A = id .

On Multi-language Abstraction 327

Let us show the computation of the abstract semantics of the multi-language
program in Fig. 5, starting from the set of initial states in which both a and n
are greater than 0. The abstract precondition before entering the loop is given
by the abstract environment {a �→ (>0), n �→ (>0), res �→ (>0)}, where res
is positive due to the assignment on line 1. The abstract iterates of the loop
converge in three steps, as shown in Fig. 8. Since the example trivially satisfies
the hypotheses of Theorem 5, the result is sound.

Fig. 8. The abstract iterates of the loop in Fig. 5.

6 Related Works

Cross-language interoperability is a popular field of research which has been
driven more by practical needs than by theoretical questions. Several works
focus on the implementation of runtime mechanisms for interoperability. Non-
exhaustive examples are [24], defining a type system for the Microsoft Inter-
mediate Language (IL) employed by the .NET to interoperate underlying lan-
guages (e.g., C#, Visual Basic, VBScript, etc.). [26] designs a virtual machine
able to interoperate with dynamically typed programming languages (Ruby and
JavaScript) with a statically typed one (C). [4] describes a multi-language run-
time mechanism obtained by blending single-language interpreters of Python
and Prolog. More examples can be found in [33]. On the other hand, various
works [5,25,37,39] focus on specific theoretical problems arising from language
interoperability, such as typing issues and value exchanging techniques. To the
best of our knowledge, the first paper addressing the problem of formal rea-
soning in a multi-language context has been [33]. The authors introduced the
notion of boundary functions as language constructs that move values between
the underlying languages (ML and Scheme), ensuring their interoperability. Buro
and Mastroeni [7–9] generalises such an approach in a language independent way,
extending the construction to the broader class of order-sorted algebras. Finally,
a few works concentrated on analysis-related aspects in a multi-language sce-
nario. In the Java Native Interface context, [42] proposes a specification lan-
guage which extends the Java Virtual Machine Language with primitives that
approximate C code that cannot be compiled into Java. [30] introduces Pungi,
a system that transforms Python/C interface code to affine programs with the
aim of correctly handling Python’s heap when it interoperates with C++.

328 S. Buro et al.

7 Discussion and Concluding Remarks

The lack of static analysis techniques for verifying multi-language programs is
a major issue so long as modern software relies on heterogenous code. Current
state of the art sees relatively few works [30,42] that solve context-specific tasks
in the cross-language interoperability field. However, none of these works address
the problem from a general, theoretical point of view.

In this paper, we applied abstract interpretation theory to the algebraic
framework of multi-languages, providing a general technique for defining the
abstract semantics of the combined language. The taken approach has the advan-
tage of being independent both from the underlying languages and analyses, and,
at the same time, guarantees theoretical properties of interest, e.g., soundness
and completeness of the abstraction. Moreover, we have shown that such prop-
erties rely crucially on the definition of the boundary functions, thus providing
guidelines for defining their abstract semantics.

Fig. 9. Denotational and sign semantics of Imp expressions.

Further research should consider the asymmetrical lifting of a single-language
analysis to a multi-language. In the previous section, we assumed the existence
of two algebras, A1 and A2, providing the abstract semantics of the underlying
languages. Then, the abstract semantics of boundary functions defines the flow
of abstract values during the abstract computations. Even though our framework
is general enough to allow such algebras to be different (e.g., A1 may define a
sign semantics whereas A2 provides an interval analysis), we do not discuss the
case in which there exists only one anlaysis. It may be fruitful to investigate
this asymmetrical situation, for instance in the case where one of the underlying
languages cannot alter the values flowing from the other (see the lump embedding
construction of [33]).

In addition, future studies must focus on practical aspects of implementation.
The proof of Thm. 2 in [7] provides a recursive definition of homomorphisms out
of the multi-language term algebra, i.e., semantic functions, that suggests there
is a straightforward implementation of the multi-language abstract interpreter.

On Multi-language Abstraction 329

A Concrete and Abstract Semantics of Imp and Num

We define the denotational semantics Di and the sign semantics Ai for both
languages Imp and Num (we omit the concrete semantics of commands since it
is the standard one).

Concrete and Abstract Semantics of Expressions Denotational and sign seman-
tics of expressions are defined in Figs. 9 and 10. The carrier sets on which they
are defined are [[expi]]Di

� Envi → Vi and [[expi]]A i
� Env� → AV , respectively.

Note that there is an obvious abstraction function α̃i : ℘(Vi) → AV left adjoint
to γ̃i (Fig. 7) providing 〈℘(Vi),⊆〉 −−−→←−−−

α̃i

γ̃i 〈AV ,�V〉; and also note that we abuse

notation and assume that � and fn are both syntactical symbols and functions
over values, that is � : Z2

⊥ → Z⊥ and fn : Qn
⊥ → Q⊥. We denote by �

� : A2
V → AV

and f �
n : An

V → AV the sign semantics of � and fn, respectively.

Fig. 10. Denotational and sign semantics of Num expressions.

Sign Semantics of Commands. We just provide the sign semantics of Imp-
commands since Num-commands are a subset of those of Imp (Fig. 11). The
carrier set is defined as [[com1]]A1 � Env� → Env�. The poset 〈Env�, �̊V〉, where
ρ�
0 �̊V ρ�

1 if ρ�
0(x) � ρ�

1(x) for each x ∈ X, is trivially a complete lattice
〈Env�, �̊V , �̊V , �̊V , ⊥̊V , �̊V〉. We can then lift such a posetal structure defined
on Env� to the function space Env� → Env�, thus making it a complete lattice
〈Env� → Env�, �̃V , �̃V , �̃V , ⊥̃V , �̃V〉. In particular, the least upper bound opera-
tor is �̃VS = ρ� �→ �̊V{ f �(ρ�) | f � ∈ S }, and the smallest and greatest element
are ⊥̃V = ρ� �→ ⊥̊V and �̃V = ρ� �→ �̊V , respectively. One can check that
F �

e�,c�(f �) is continuous, so that the loop semantics is well-defined.

330 S. Buro et al.

Fig. 11. Sign semantics of Imp commands.

References

1. Ahmed, A., Blume, M.: An equivalence-preserving CPS translation via multi-
language semantics. SIGPLAN Not. 46(9), 431–444 (2011)

2. Amato, G., Meo, M.C., Scozzari, F.: On collecting semantics for program analysis.
Theor. Comput. Sci. 823, 1–25 (2020)

3. Arceri, V., Mastroeni, I.: Static program analysis for string manipulation lan-
guages. Electron. Proc. Theor. Comput. Sci. 299, 19–33 (2019)

4. Barrett, E., Bolz, C.F., Tratt, L.: Approaches to interpreter composition. Comput.
Lang. Syst. Struct. 44, 199–217 (2015)

5. Benton, N.: Embedded interpreters. J. Funct. Program. 15(4), 503–542 (2005)
6. Bjørner, N., Gurfinkel, A.: Property directed polyhedral abstraction. In: D’Souza,

D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 263–281.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46081-8_15

7. Buro, S., Mastroeni, I.: On the multi-language construction. In: Caires, L. (ed.)
ESOP 2019. LNCS, vol. 11423, pp. 293–321. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17184-1_11

8. Buro, S., Mastroeni, I., Crole, R.L.: Equational logic and categorical semantics for
multi-languages. In: In-press (Accepted for Publication at 36th International Con-
ference on Mathematical Foundations of Programming Semantics – MFPS 2020)
(2020)

9. Buro, S., Mastroeni, I., Crole, R.L.: Equational logic and set-theoretic models for
multi-languages. In: In-press (Accepted for Publication at 21st Italian Conference
on Theoretical Computer Science – ICTCS 2020) (2020)

10. Campbell, G., Papapetrou, P.P.: SonarQube in Action. Manning Publications Co.,
New York (2013)

11. Chisnall, D.: The challenge of cross-language interoperability. Commun. ACM
56(12), 50–56 (2013)

12. Cohen, H., et al.: Handbook of Elliptic and Hyperelliptic Curve Cryptography.
CRC Press, Boca Raton (2005)

https://doi.org/10.1007/978-3-662-46081-8_15
https://doi.org/10.1007/978-3-030-17184-1_11
https://doi.org/10.1007/978-3-030-17184-1_11

On Multi-language Abstraction 331

13. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theor. Comput. Sci. 277(1–2), 47–103 (2002)

14. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252 (1977)

15. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4),
511–547 (1992)

16. Cousot, P., Giacobazzi, R., Ranzato, F.: A2i: abstract2 interpretation. Proc. ACM
Program. Lang. 3(POPL), 1–31 (2019)

17. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, pp. 84–96 (1978)

18. Furr, M., Foster, J.S.: Checking type safety of foreign function calls. SIGPLAN
Not. 40(6), 62–72 (2005)

19. Giacobazzi, R., Ranzato, F.: Completeness in abstract interpretation: a domain
perspective. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 231–245.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0000474

20. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations com-
plete. J. ACM (JACM) 47(2), 361–416 (2000)

21. Goguen, J.A., Diaconescu, R.: An Oxford survey of order sorted algebra. Math.
Struct. Comput. Sci. 4(3), 363–392 (1994)

22. Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theor. Comput.
Sci. 105(2), 217–273 (1992)

23. Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial algebra seman-
tics and continuous algebras. J. ACM (JACM) 24(1), 68–95 (1977)

24. Gordon, A.D., Syme, D.: Typing a multi-language intermediate code. In: Con-
ference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, London, UK, January 17–19, 2001, pp.
248–260. ACM, New York (2001)

25. Gray, K.E.: Safe cross-language inheritance. In: Vitek, J. (ed.) ECOOP 2008.
LNCS, vol. 5142, pp. 52–75. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-70592-5_4

26. Grimmer, M., Schatz, R., Seaton, C., Würthinger, T., Luján, M.: Cross-language
interoperability in a multi-language runtime. ACM Trans. Program. Lang. Syst.
40(2), 8:1–8:43 (2018)

27. JetBrains: Calling Java code from Kotlin. https://kotlinlang.org/docs/reference/
java-interop.html

28. Juneau, J., Baker, J., Wierzbicki, F., Soto, L., Ng, V.: The Definitive Guide to
Jython: Python for the Java Platform, 1st edn. Apress, Berkely (2010)

29. Kochems, J., Ong, C.: Improved functional flow and reachability analyses using
indexed linear tree grammars. In: 22nd International Conference on Rewriting
Techniques and Applications (RTA 2011). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2011)

30. Li, S., Tan, G.: Finding reference-counting errors in Python/C programs with affine
analysis. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 80–104. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44202-9_4

31. Liang, S.: Java Native Interface: Programmer’s Guide and Reference, 1st edn.
Addison-Wesley Longman Publishing Co., Inc., Boston (1999)

https://doi.org/10.1007/BFb0000474
https://doi.org/10.1007/978-3-540-70592-5_4
https://doi.org/10.1007/978-3-540-70592-5_4
https://kotlinlang.org/docs/reference/java-interop.html
https://kotlinlang.org/docs/reference/java-interop.html
https://doi.org/10.1007/978-3-662-44202-9_4

332 S. Buro et al.

32. Mastroeni, I., Pasqua, M.: Hyperhierarchy of semantics - a formal framework for
hyperproperties verification. In: Ranzato, F. (ed.) SAS 2017. LNCS, vol. 10422, pp.
232–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66706-5_12

33. Matthews, J., Findler, R.B.: Operational semantics for multi-language programs.
ACM Trans. Program. Lang. Syst. 31(3), 12:1–12:44 (2009)

34. Oracle: JNI types and data structures. https://docs.oracle.com/javase/7/docs/
technotes/guides/jni/spec/types.html

35. Oracle: Nashorn user’s guide. https://docs.oracle.com/en/java/javase/14/
nashorn/introduction.html

36. Pasqua, M.: Hyper static analysis of programs - an abstract interpretation-based
framework for hyperproperties verification. Ph.D. thesis, University of Verona
(2019)

37. Patterson, D., Perconti, J., Dimoulas, C., Ahmed, A.: Funtal: reasonably mixing
a functional language with assembly. In: Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 495–509.
ACM, New York (2017)

38. Perconti, J.T., Ahmed, A.: Verifying an open compiler using multi-language seman-
tics. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 128–148. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-642-54833-8_8

39. Ramsey, N.: ML module mania: a type-safe, separately compiled, extensible inter-
preter. Electron. Notes Theor. Comput. Sci. 148(2), 181–209 (2006)

40. Rival, X., Yi, K.: Introduction to static analysis (2019)
41. Spoto, F., Jensen, T.: Class analyses as abstract interpretations of trace semantics.

ACM Trans. Program. Lang. Syst. (TOPLAS) 25(5), 578–630 (2003)
42. Tan, G., Morrisett, G.: Ilea: inter-language analysis across Java and C. SIGPLAN

Not. 42(10), 39–56 (2007)
43. Tennent, R.D.: The denotational semantics of programming languages. Commun.

ACM 19(8), 437–453 (1976)

https://doi.org/10.1007/978-3-319-66706-5_12
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html
https://docs.oracle.com/en/java/javase/14/nashorn/introduction.html
https://docs.oracle.com/en/java/javase/14/nashorn/introduction.html
https://doi.org/10.1007/978-3-642-54833-8_8

Exact and Linear-Time Gas-Cost Analysis

Ankush Das1(B) and Shaz Qadeer2

1 Carnegie Mellon University, Pittsburgh, PA, USA
ankushd@cs.cmu.edu

2 Novi, Seattle, WA, USA
shaz@fb.com

Abstract. Blockchains support execution of smart contracts: programs
encoding complex transactions between distrusting parties. Due to their
distributed nature, blockchains rely on third-party miners to execute and
validate transactions. Miners are compensated by charging users with gas
based on the execution cost of the transaction. To compute the exact gas
cost, blockchains track gas cost dynamically creating its own overhead.
This paper presents a static exact gas-cost analysis technique that can
be employed to eliminate dynamic gas tracking. This approach presents
further benefits such as providing miners with a trusted gas bound that
can be verified in linear time, and eliminating out-of-gas exceptions. To
handle recursion and unbounded computation, we propose a novel amor-
tization technique that stores gas inside data structures. We have imple-
mented our analysis technique in a tool called GasBoX that takes a con-
tract as input and infers the gas cost of its functions automatically. We
have evaluated GasBoX on 13 standard smart contracts borrowed from
real-world blockchain projects. Our soundness theorem proves that the
gas bound inferred by GasBoX exactly matches the gas cost at runtime
and no dynamic gas tracking is necessary.

Keywords: Blockchains · Smart contracts · Resource analysis

1 Introduction

Blockchains such as Ethereum [43] and Libra [8] allow execution of complex
transactions between distrusting parties through smart contracts. Smart con-
tracts are programs typically written in a high-level language such as Solid-
ity [16], Move [11] or Nomos [17] and compiled down to bytecode for execution
on a distributed virtual machine. Smart contracts offer transactions (functions)
that can be issued (called) by users to enforce such protocols, e.g. bidding in an
auction, voting in an election, etc. Due to the distributed nature of blockchains,
transactions are recorded by a large number of third-party entities, or miners
(aka nodes) who are responsible for its execution. To prevent wastage of miner
resources and compensate miners for their effort, users are charged for the exe-
cution cost of their transaction in the form of gas units.

c© Springer Nature Switzerland AG 2020
D. Pichardie and M. Sighireanu (Eds.): SAS 2020, LNCS 12389, pp. 333–356, 2020.
https://doi.org/10.1007/978-3-030-65474-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65474-0_15&domain=pdf
http://orcid.org/0000-0003-2459-1258
https://doi.org/10.1007/978-3-030-65474-0_15

334 A. Das and S. Qadeer

Gas is the fuel of computation on blockchains. A cost model assigns a fixed gas
cost to each operation. Gas cost of a transaction is the sum of the gas cost of each
operation executed during the transaction. Users are responsible for providing
a sufficient gas limit along with the transaction to cover the execution cost. If
a user fails to provide sufficient gas, the transaction fails after the execution
runs out of gas, but the user is still charged for the gas used. The user then
has to re-issue the transaction with a higher gas limit. Since users need to be
aware of execution cost prior to issuing a transaction, there is a wide variety of
analysis tools [5,6,17,23] to statically compute an upper bound on gas cost of
transactions.

Unfortunately, upper gas bounds are inadequate. At runtime, if a user pro-
vides excess gas units, the leftover gas needs to be returned to the user. Thus,
in existing blockchains such as Ethereum and Libra, a monitor function known
as dynamic gas meter tracks the gas cost during execution. If the execution
runs out of gas, the meter raises an out-of-gas exception, otherwise it returns
the excess gas back to the user. Thus, despite the benefits of static gas analysis,
blockchains still need to meter gas at runtime. Moreover, dynamic gas metering
has its own limitations. First, it creates an execution overhead, inadvertently
increasing the transaction gas cost (for the Libra blockchain, this overhead is
about 20% of execution time!). Second, if the transaction runs out of gas, it does
not provide any feedback to the user for transaction resubmission. Upper gas
bounds can also be inadequate for miners. Blockchains often restrict transaction
blocks using a block gas limit, i.e., the maximum gas consumption of transactions
in a block. To estimate how many transactions a miner can fit in a block, miners
need an exact gas bound; imprecise upper bounds are not sufficient. Thus, there
is a need to provide users and miners with a trusted exact gas bound that can be
verified efficiently before accepting transactions.

In response, this article describes a static analysis technique with two goals:
(i) exact gas analysis to eliminate dynamic metering, and (ii) efficient analysis
that can be employed by miners. These goals pose unique challenges, particularly
in the blockchain domain. The gas cost of a transaction can not only depend on
its arguments, but also on global state, i.e., data structures already published
on the blockchain. This global state can also potentially be modified by other
transactions. Since users and miners have no control over when their transac-
tions are actually mined, they cannot exactly determine the global state during
execution. Verifying exact bounds can further be challenging in the presence of
branching since the gas cost may vary along different branches.

To this end, blockchains recommend implementing contracts and transactions
in a way that the gas cost does not depend on global state. Realizing this, our
analysis tool only verifies gas bounds that are a constant, i.e., do not depend
on either the arguments or the global state. As a result, our analysis is very
efficient, and is linear-time in the size of the program and thus, can be employed
by miners with minimal overhead. This overhead is further compensated since
the virtual machine no longer needs to meter gas at runtime.

To compute exact bounds in the presence of branching, we need to ensure
that branches have equal gas cost. We establish this by introducing a special

Exact and Linear-Time Gas-Cost Analysis 335

operation Gas.deposit(n) which deposits n gas units in the transaction sender’s
account at runtime. We augment the less costly branch with such an expression
with n being the difference in the gas cost of both branches. This mechanism is
sufficient to produce exact gas bounds and eliminates the need for gas metering,
improving the overall hygiene of the virtual machine.

To handle unbounded computation such as recursion and iteration over data
structures like maps, we utilize amortization [12,27,29,40]. We introduce Gas(n)
as a first-class type in the language to represent values with n gas units which
can then be stored inside data structures. During a transaction, this stored gas
can be consumed to pay for the transaction cost. Thus, users pay in advance
while building up such data structures and later, iteration would effectively pay
for itself! Thus, such transactions have a constant static gas bound which are
automatically inferred by our analysis. We demonstrate that this amortization
simplifies our gas analysis, prevents out-of-gas exceptions, and leads to more
equitable gas-distribution schemes.

Although we have focused on constant gas bounds in this work, our analysis
framework is general. Our key innovations of depositing gas in sender’s account
to obtain exact gas bounds and storing gas in data structures for amortization
would still be applicable. The expressivity of the gas bounds can be enhanced
by utilizing more sophisticated underlying logics, such as linear arithmetic [20]
or SMT solvers [34]. However, such logics have a high computational complex-
ity which would make the analysis inefficient, hampering its utility to miners.
Although constant gas analysis precludes transactions that copy unbounded data
structures such as lists and maps, we demonstrate that our tool can still analyze
a large class of smart contracts.

We have implemented our analysis technique in a tool called GasBoX (GAS
BOund eXact).The tool takes a function as input and automatically infers its exact
gas boundby generating linear equalities and solving themvia efficient off-the-shelf
linear programming (LP) solvers. It can further take an initial gas bound as input
and verify that it is exact or return the program location where the virtual machine
would runout of gas.Thus, users canutilizeGasBoXto infer gas bounds,whilemin-
ers canutilizeGasBoXtoverify them in linear time.Our analysis framework is com-
positional, thereby efficiently analyzing functions in isolation. We have designed a
simplistic programming language modeled on Move [11] to illustrate the analysis
technique and tool. We conducted 13 case studies implementing standard smart
contracts such as auctions, elections, bank accounts, tokens, etc. and inferred their
gas bound using GasBoX. To the best of our knowledge, this is the first tool to com-
pute exact gas bounds for smart contracts automatically.

Overall, we make the following technical contributions:

1. design of a linear-time and exact gas-analysis technique for smart contracts
2. introduction of a novel deposit operation to avoid gas metering
3. gas amortization to handle unbounded computation
4. implementation of an analysis tool that automatically infers gas bound using

off-the-shelf LP solvers
5. case studies on standard smart contracts demonstrating its practicability.

336 A. Das and S. Qadeer

2 Overview of Gas Analysis

The static gas-cost analysis is realized using a Hoare logic style reasoning with
an abstract notion of a static gas tank. This gas tank symbolically represents
the amount of gas available to the execution engine at a program location, and
is denoted using a natural number. For a program expression e, we follow the
rule

{tank = φ + C(e)} e {tank = φ | φ ≥ 0}
Here, φ + C(e) represents the initial value of the gas tank, and C(e) denotes
the gas cost of expression e. The rule states that if the gas tank value is
φ + C(e) before execution, then the gas tank value after execution is φ. Our
analysis is naturally compositional since gas cost is additive: the gas cost for
e; e′ is C(e) + C(e′).

2.1 Exact Bound Analysis and Runtime Overhead

We demonstrate our approach for exact gas analysis using an auction contract.
Consider a function addBid which takes two arguments, bidmap: a reference to
a map storing bids indexed by the address of their bidder, and b: a new bid to
be added to the map represented using a Coin type.

fn addBid(bidmap: &Map<address, Coin>, b: Coin) {

1. let bidder = GetTxnSenderAddress();

2. if (Map.exists(copy(bidmap), copy(bidder))) then

3. tick(CMoveToAddr); MoveToAddr(move(bidder), move(b));

4. else

5. tick(CMapInsert); Map.insert(move(bidmap), move(bidder), move(b));}

First, the bidder’s address is computed and stored in the variable bidder (line 1).
If bidder exists in the bidmap dictionary (line 2), then the bid is returned back
to the bidder using the built-in MoveToAddr function (line 3). Otherwise, the
bid is added to bidmap indexed by the bidder’s address (line 5). For brevity, we
allow a bidder to place a bid only once in this auction. Here, move(v) moves the
variable v out of scope by passing it to the callee while copy(v) creates a fresh
deep copy of v. This distinction is necessary from the gas analysis perspective,
since the gas cost of move(v) can be statically determined, while the cost of
copy(v) depends on the size of v (more details at the end of Sect. 2.2).

Gas cost of a function is defined w.r.t. a cost model. A cost model assigns a
gas cost to each primitive operation. We simplify the analysis here by using the
tick metric, which assigns a cost of n to tick(n), and 0 to all other operations.
Statically, our analysis follows the rule

{tank = φ + n} tick(n) {tank = φ | φ ≥ 0}

Exact and Linear-Time Gas-Cost Analysis 337

In the addBid function above, we have only instrumented the MoveToAddr
and Map.insert functions with ticks for simplicity of exposition. In practice,
our implementation takes a cost model as input, and inserts tick for all oper-
ations automatically (explained in Sect. 3.1) so its burden does not fall on the
programmer. With this model, the gas cost of addBid is CMoveToAddr in the then
branch and CMapInsert in the else branch. Since we cannot statically determine
which branch would be taken at runtime, the worst-case gas bound of addBid is
max(CMapInsert, CMoveToAddr).

Since the statically derived gas bound is overapproximate, we need to
dynamically meter the gas at runtime. Therefore, despite the benefits of static
gas analysis, we incur the overhead of metering the gas at runtime. The gas
meter will be responsible for returning the leftover gas back to the user at
the end of execution. For the addBid function, if the initial provided gas is
max(CMapInsert, CMoveToAddr), the leftover gas at the end of execution would be 0
or max(CMapInsert, CMoveToAddr)− min(CMapInsert, CMoveToAddr), depending upon which
branch is executed.

To avoid dynamic metering, we need to compute an exact gas bound. To
achieve this, we mandate that both branches have equal gas cost. To ensure
this, we introduce an expression Gas.deposit(n). Statically, the gas cost of this
expression is n. Dynamically, executing this deposits n units of gas in the account
of the user who issued the transaction. The corresponding analysis rule is

{tank = φ + n} Gas.deposit(n) {tank = φ | φ ≥ 0}
Reimplementing the addBid function,

fn [CMapInsert + CMoveToAddr] addBid(bidmap: &Map<address, Coin>, b: Coin) {

1. let bidder = GetTxnSenderAddress();

2. if (Map.exists(copy(bidmap), copy(bidder))) then

{tank = CMapInsert + CMoveToAddr}
3. tick(CMoveToAddr); MoveToAddr(move(bidder), move(b));

{tank = CMapInsert + CMoveToAddr − CMoveToAddr = CMapInsert}
4. Gas.deposit(CMapInsert);

{tank = CMapInsert − CMapInsert = 0}
5. else

{tank = CMapInsert + CMoveToAddr}
6. tick(CMapInsert); Map.insert(move(bidmap), move(bidder), move(b));

{tank = CMapInsert + CMoveToAddr − CMapInsert = CMoveToAddr}
7. Gas.deposit(CMoveToAddr); }

{tank = CMoveToAddr − CMoveToAddr = 0}

338 A. Das and S. Qadeer

We have added the expression Gas.deposit(CMapInsert) in the then branch
(line 4) and Gas.deposit(CMoveToAddr) in the else branch (line 7). With this
addition, the gas cost of both branches becomes equal to CMapInsert + CMoveToAddr

as verified by the analysis (in blue). Since the gas tank value at the end of
both branches is 0, we know that the exact gas bound of the addBid function is
CMapInsert + CMoveToAddr (described in blue along with the function declaration at
the top).

Our analysis takes the function definition as input and infers its initial gas
bound automatically. If it is already provided with an initial gas bound, it can
further verify that the gas bound is exact or identify the location where the
execution will run out of gas. Intuitively, if φ ≥ 0 at each program location
during the analysis, the gas bound is sufficient. Otherwise, the first location
where φ < 0 is the point where the execution runs out of gas. Moreover, the gas
bound is exact if φ = 0 after the return expression(s) in the function body.

Advantages. Our analysis tool infers the exact gas bound automatically. The
soundness of our analysis proves that if a user supplies this gas bound with a
transaction, there is no need for dynamic metering. The Gas.deposit expression
ensures that the user does not lose any gas units; leftover gas is safely returned
to the user. Our analysis tool automatically instruments the program with the
Gas.deposit operations, so its burden does not fall on the programmer. Further-
more, if the initial gas bound is not sufficient, the analysis identifies the program
location where gas runs out, providing valuable feedback to the programmer.

One caveat here is that a programmer can still provide a high gas limit for a
transaction and return most of the gas back to them using spurious Gas.deposit
operations. To avoid this, we have augmented our analysis tool to detect spurious
deposit operations. Minimally, deposit operations are only required at the join
point of branches and only in one of the branches (the less costly one). Any other
deposit operations are unnecessary and flagged by our analysis tool.

2.2 Handling Unbounded Computation

The auction contract also provides functionality for returning bids back to their
respective bidders at the end of the auction. This is implemented with the recur-
sive function below.

fn [CMoveToAddr · sizeof(bidmap)] returnBids(bidmap : &Map<address, Coin>) {

if (Map.size(copy(bidmap)) > 0) then

{tank = CMoveToAddr · sizeof(bidmap)}
let (bidder, bid) = Map.remove_first(copy(bidmap)) ;

{tank = CMoveToAddr · (sizeof(bidmap) + 1)}
tick(CMoveToAddr) ; MoveToAddr(move(bidder), move(bid)) ;

{tank = CMoveToAddr · sizeof(bidmap)}
returnBids(move(bidmap)) ; }

The function removes the first element from the map (remove first), storing
the key in bidder and value in bid. The function then calls MoveToAddr which

Exact and Linear-Time Gas-Cost Analysis 339

transfers the bid into the bidder’s account. Finally, the function recurses. Since
we incur CMoveToAddr cost for each recursive call (due to the tick(CMoveToAddr)), the
total cost of the returnBids function is CMoveToAddr · sizeof(bidmap).

The analysis initiates with a gas tank value of CMoveToAddr · sizeof(bidmap).
The analysis then needs to verify that, in the else branch, sizeof(bidmap) = 0,
thus the tank value is 0. In the then branch, the analysis needs to track that
the size of bidmap decreases by 1 due to the remove first() function, and the
gas tank value decreases by CMoveToAddr due to tick(CMoveToAddr). Thus, at the
recursive call, we arrive at the invariant {>= CMoveToAddr · sizeof(bidmap)}. To
express and verify such invariants, the analysis would need to track the size
of data structures and their relation to the gas tank value. If the control flow
involves deeper nested loops and recursion, the gas bounds would involve non-
linear expressions and the analysis would require sophisticated techniques to
synthesize such invariants [4,21,25]. Furthermore, blockchains discourage non-
constant gas cost transactions since they are vulnerable to out-of-gas exceptions
and denial-of-service attacks [23].

Gas Amortization. We instead propose a mechanism of amortizing the linear
cost of returnBids over a series of bidding operations by storing gas in data
structures. To pay for the gas cost of MoveToAddr, we store CMoveToAddr units of
gas with the bid in bidmap. This is defined using the type GasBid defined below.

resource GasBid {

gas : Gas(CMoveToAddr), // CMoveToAddr gas units stored inside GasBid

bid : Coin } // stores bid to be placed in auction

Our language allows declaration of two kinds of types: structs and resources.
They are both analogous to classes in object-oriented languages, except that
they differ in their treatment. Objects of struct types represent functional data
structures: they can be moved or copied, whereas objects of resource types rep-
resent assets: they cannot be copied, only moved; they are treated linearly [22].

We introduce a new primitive linear type in the language Gas(n) where n
is a constant natural number. Statically, a variable v : Gas(n) stores n units of
gas. Constructing a variable of type Gas(n) consumes n gas units from the gas
tank, while destructing it produces n gas units that are added to the gas tank.
Formally, the introduction and elimination rules are described as

{tank = φ + n} Gas.construct(n) {tank = φ | φ ≥ 0}
{tank = φ | v : Gas(n)} Gas.destruct(v) {tank = φ + n}

Amortized Auction. We reimplement the auction contract storing CMoveToAddr

gas units in the GasBid resource type. In this version, the bidder pays for the
return of bids in advance.

fn [CMapInsert + 2CMoveToAddr] addBid(bidmap: &Map<address, GasBid>, b: Coin) {

let bidder = GetTxnSenderAddress();

if (Map.exists(copy(bidmap), copy(bidder))) then

340 A. Das and S. Qadeer

{tank = CMapInsert + 2CMoveToAddr}
tick(CMoveToAddr); MoveToAddr(move(bidder), move(b));

{tank = CMapInsert + 2CMoveToAddr − CMoveToAddr = CMapInsert + CMoveToAddr}
Gas.deposit(CMapInsert + CMoveToAddr);

{tank = CMapInsert + CMoveToAddr − CMapInsert − CMoveToAddr = 0}
else

{tank = CMapInsert + 2CMoveToAddr}
let g = Gas.construct(CMoveToAddr);

{tank = CMapInsert + 2CMoveToAddr − CMoveToAddr = CMapInsert + CMoveToAddr}
let gb = pack<GasBid> {gas: move(g), bid: move(b)};

tick(CMapInsert); Map.insert(move(bidmap), move(bidder), move(gb));

{tank = CMapInsert + CMoveToAddr − CMapInsert = CMoveToAddr}
Gas.deposit(CMoveToAddr); }

{tank = CMoveToAddr − CMoveToAddr = 0}

fn [0] returnBids(bidmap : &Map<address, GasBid>) {

if (Map.size(copy(bidmap)) > 0) then

let (bidder, gbid) = Map.remove_first(copy(bidmap)) ;

let (g, bid) = unpack<GasBid>(move(gbid));

{tank = 0 | g : Gas(CMoveToAddr)}
Gas.destruct(g);

{tank = CMoveToAddr}
tick(CMoveToAddr) ; MoveToAddr(move(bidder), move(bid)) ;

{tank = CMoveToAddr − CMoveToAddr = 0}
returnBids(move(bidmap)) ; }

The bidmap argument to addBid now has type &Map〈address, GasBid〉. The
else branch of addBid first constructs g : Gas(CMoveToAddr) and then uses pack to
create gb : GasBid. The pack expression takes the value of each field of a resource
(or struct) and creates an object of that type. The object gb is then inserted
and the remaining gas is deposited. The returnBids function first unpacks
gbid : GasBid, storing the gas and bid in the variables g and bid. The gas
is then destructed to pay for the cost of tick(CMoveToAddr).

The increased gas cost of addBid is CMapInsert + 2CMoveToAddr. Out of this,
CMapInsert + CMoveToAddr gas units are consumed for the cost of function execution,
while CMoveToAddr gas units are stored in bidmap for future use. The gas cost of
returnBids is now 0. It consumes CMoveToAddr gas units in every recursive call,
which is provided by the gas stored inside bidmap.

Advantages. The advantages of amortization by storing gas inside data struc-
tures are manifold. First, it simplifies the analysis that no longer needs to synthe-
size complicated invariants and track data structure sizes. Second, blockchains
such as Libra [8] and Ethereum [43] assign a maximum gas limit to trans-
actions. The gas cost of the unamortized returnBids function is CMoveToAddr ·
sizeof(bidmap). This cost increases as the size of bidmap increases; if the size
of bidmap increases beyond a threshold, the gas cost would exceed the maximum
gas limit allowed for a transaction. The bids would then get stuck in the contract
with no possibility of retrieving them [23]. Thirdly, this distribution of gas cost

Exact and Linear-Time Gas-Cost Analysis 341

is more equitable. The bidders should be responsible for paying for both the cost
of bidding as well as retrieving their bids from the auction. In the unamortized
version, the user who issues returnBids bears the burden of paying for return
of all the bids back to their respective bidders. Finally, the advantage of elimi-
nating gas metering is also enhanced: the overhead of metering is linear in the
execution time, while the overhead of static analysis is linear in the program size.

Move vs Copy. The distinction between move and copy operations is crucial for
our static gas-cost analysis. Semantically, move(v) corresponds to a shallow copy
of v whose gas cost only depends on the type of v. On the other hand, copy(v)
corresponds to a deep copy of v, whose gas cost depends on the size of v. Since
our analysis technique only handles constants, we disallow copy of unbounded
data structures such as maps. Remarkably, we can analyze a large number of
contracts despite this restriction (see Sect. 4) since we allow copy on primitive
types and structs (and resources) containing them. Since we are working on
an intermediate-level language, we require the move and copy operations to be
explicit. However, they can be implicit in a source language, and be automatically
inserted by a compiler, e.g. Move [11].

3 Formal Analysis

This section formalizes our source programming language, the static gas analysis
and the formal gas semantics. We conclude with a soundness theorem connecting
the static analysis with the semantics establishing that the gas bound verified
by the static analysis is exactly matched at runtime.

3.1 A Simplistic Programming Language

Our language is modeled on Move [11], and provides an intuitive intermediate-
level surface syntax on top of Move bytecode.

Types. The language features standard primitive types such as int and bool
representing integers and booleans, respectively. It also provides a built-in map
data type Map〈τ1, τ2〉 where τ1 and τ2 are the key and value types, respectively.
In addition, multiple values (with different types) can be packed together using
struct and resource types. Finally, the language provides basic support for
references, providing type & τ to refer values of type τ . Although Move distin-
guishes mutable and immutable references, we consider all references as mutable
since it is orthogonal to gas analysis. At runtime, references are represented by
constant size addresses and do not pose additional challenges for gas analysis.

We also introduce Gas(n) as a first-class type in our language, where n is a
constant natural number. This is used to store gas in data structures to share
and amortize the gas cost of transactions, as demonstrated in Sect. 2. Thus, the
type grammar for our language is

τ ::= int | bool | Map〈τ, τ〉 | & τ | V | Gas(n)

342 A. Das and S. Qadeer

V represents type names, denoting struct and resource types (e.g. GasBid). The
syntax for declaring structs and resources is described later (end of Sect. 3.1).

Expressions. The expression language is expressed using the following gram-
mar. Below, n is a constant integer, while v is a variable name.

e : := n | true | false | . . . (∗standard expressions for primitive types∗)
| pack〈τ〉{f1 : e, . . . , fn : e} | unpack〈τ〉(e) | &v.f | &v
| move(v) | copy(v) | g(e)
| let v = e | v ← e | if e then e else e | e; e | return e
| tick(n) | Gas.construct(n) | Gas.destruct(v) | Gas.deposit(n)

Our language features standard expressions for integer and boolean opera-
tions. These include binary arithmetic (+,−, ∗, /), comparison (>,≥, <,≤) and
relational (&&, ||) operators. Pack and unpack expressions are used to con-
struct and destruct objects of struct (and resource) types, respectively. The
expression pack〈τ〉{f1 : e1, . . . , fn : en} packs together expressions (e1, . . . , en)
assigned to fields f1, . . . , fn respectively, and creates an object of type τ . Dually,
unpack〈τ〉(e) destructs object e : τ and returns the tuple (e1, . . . , en) corre-
sponding to each field. Additionally, we can reference the field f of a variable
v using &v.f. References of a variable v can be taken using & v. A variable v
can be moved or copied using move(v) and copy(v) respectively. Function calls
have the usual syntax g(e1, . . . , en) calling function g with argument expres-
sions e1, . . . , en. We also provide standard map functions such as insertion,
removal and checking size. Additionally, the function remove first() removes
and returns the first key-value pair in a map and is used to iterate over maps.
The let expression evaluates e and assigns its value to a set of fresh variables v.
We use a set of variables because expressions unpack and remove first return
multiple values. The value of variable v is updated to the value of e using v ← e.
Branches are created with if e then e else e, executing e1 or e2 depending
upon whether e evaluates to true or false respectively. Expressions are com-
posed using e1; e2 and returned using return e. Finally, we provide blockchain-
specific operations and functions (similar to Move), e.g., GetTxnSenderAddress
and MoveToAddr. These blockchain-specific expressions have a constant gas cost,
and do not pose additional challenges w.r.t. gas analysis.

Cost Model and Gas Expressions. Our analysis needs to account for the
gas cost assigned to each operation. We simplify the analysis by adding tick
expressions [19,27] based on a cost model that assigns a constant gas cost to
each primitive operation. Our implementation then automatically instruments
the program by adding ticks for each primitive operation based on the cost
model. We describe the rules of instrumentation with the convention that [[e]]
represents the instrumented version of e (analogous cases skipped for brevity).

Exact and Linear-Time Gas-Cost Analysis 343

The costs Ci’s above represent the cost model which we require the programmer
to provide. The gas cost Cg of function g is determined from the declaration of
g (described in the end of Sect. 3.1). The analysis is then completely parametric
in the cost model, providing full flexibility to the programmer to specify their
own cost model. The gas cost can also depend on size(τ), defined as

size(int) = 4 size(bool) = 2 size(Gas(n)) = 4 size(&τ) = 8
size(Map〈τ1, τ2〉) = size(τ1) + size(τ2) size(V) = Σn

i=1size(τi)

where V denotes a struct or resource type, and τi’s denote the type of its fields.
We provide special syntax for creating and destroying gas variables. A vari-

able v of type Gas(n) (for a constant number n) can be constructed using
Gas.construct(n), while destructed using Gas.destruct(v). We can further
deposit gas in the sender’s account with Gas.deposit(n).

Program. A program is a sequence of (possibly mutually) recursive type and
function declarations. Their grammar is

〈decl〉 :: = resource V {f1 : τ, . . . , fn : τ} | struct V {f1 : τ, . . . , fn : τ}
| fn [G] F (v : τ, . . . , v : τ) → τ{e}

Type declarations are used to define struct and resource types. The syntax
resource V {f1 : τ1, . . . , fn : τn} defines type V with fields f1, . . . , fn (with
corresponding types τ1, . . . , τn respectively). Structs have a similar syntax. Func-
tions are declared using fn [G] F (v1 : τ1, . . . , vn : τn) → τ {e} defines function
F with n arguments v1 : τ1, . . . , vn : τn, return type τ , function body e and gas
bound G as a constant natural number. We store the definition of each type and
function (with initial gas bound) in a global signature Σ. This signature Σ is
referenced during tick instrumentation to obtain the gas cost of each function
call. Our analysis takes a program as input and verifies that G is an exact gas
bound for each function F in the program.

3.2 Static Gas Analysis

The analysis is formalized as a quantitative Hoare triple {G | Γ} e {G′ | Γ ′}.
Here, e denotes the expression that will be gas-analyzed ; Γ and Γ ′ store the
context (type of variables in scope) before and after the execution of e; G and
G′ track the gas tank value as a natural number before and after the execution

344 A. Das and S. Qadeer

of e, respectively. As a convention, we refer to G and Γ as the pre-gas and pre-
context together called pre-state, and G′ and Γ ′ as the post-gas and post-context
of e together called post-state, respectively. In the above judgment, there is an
implicit invariant that G,G′ ≥ 0.

Expressions. We describe selected rules that update the gas tank.

G = G′ + n

{G | Γ} Gas.construct(n) {G′ | Γ} Igas

G′ = G + n

{G | Γ, v : Gas(n)} Gas.destruct(v) {G′ | Γ} Egas

G = G′ + n

{G | Γ} Gas.deposit(n) {G′ | Γ} Dgas

Constructing a variable of type Gas(n) consumes n units of gas from the tank.
Dually, Gas.destruct(v) looks up the type of v : Gas(n) in the context Γ and
adds n gas units to the gas tank. The variable v is then removed from Γ since it
is no longer in scope. Gas.deposit(n) removes n units of gas from the tank and
deposits it in the user’s account.

G = G′ + n

{G | Γ} tick(n) {G′ | Γ} tick

Executing tick(n) consumes n gas units.

{G0 | Γ0} e1 {G1 | Γ1} . . . {Gn−1 | Γn−1} en {Gn | Γn}
{G0 | Γ0} pack〈τ〉{f1 : e1, . . . , fn : en} {Gn | Γn} pack

Packing n expressions e1. . . . , en requires analyzing each expression and com-
posing the gas tanks and contexts together. The post-state of ei becomes the
pre-state for ei+1. Unpacking an expression e corresponds to gas-analyzing it.

{G0 | Γ0} e1 {G1 | Γ1} . . . {Gn−1 | Γn−1} en {Gn | Γn}
{G0 | Γ0} g(e1, . . . , en) {Gn | Γn} call

For function calls, we analyze each argument, composing the gas tanks and
contexts from left to right (similar to pack) since the expressions are evaluated
from left to right at runtime. Note that there is no need to analyze the function
body of g since the cost of calling and evaluating g is already accounted for
by the tick instrumentation that inserts Cg just before the function call. This
observation is crucial to obtain a linear-time gas analysis.

{G | Γ} e {G′ | Γ ′} Γ 	 e : τ

{G | Γ} let v = e {G′ | Γ ′, v : τ} let

Exact and Linear-Time Gas-Cost Analysis 345

For let expressions, we use an auxiliary judgment: Γ 	 e : τ to mean that
expression e has type τ under context Γ . The analysis first analyzes e with post
state {G′ | Γ ′}, determines e’s type τ (second premise) and adds v : τ to Γ ′. Our
analysis relies on a type checker to determine the type of each expression.

{G | Γ} e {G′ | Γ ′}
{G | Γ} v ← e {G′ | Γ ′} asgn

The assignment expression v ← e simply gas-analyzes e.

{G0 | Γ0} e {G1 | Γ1} {G1 | Γ1} e1 {G2 | Γ2} {G1 | Γ1} e2 {G2 | Γ2}
{G0 | Γ0} if e then e1 else e2 {G2 | Γ2}

if

For if expressions, e is analyzed under pre-state {G0 | Γ0} resulting in post-
state {G1 | Γ1}. This state is then copied to both branches e1 and e2, which
both result in post-state {G2 | Γ2}. We mandate that the post-gases G2 after
both branches are equal, thus ensuring that both branches have equal gas cost.
This is exactly where Gas.deposit operation is used to equalize the cost of
both branches. Our tool automatically instruments the cheaper branch with
Gas.deposit(n) where n is the difference in the post-gas of e1 and e2.

{G0 | Γ0} e1 {G1 | Γ1} {G1 | Γ1} e2 {G2 | Γ2}
{G0 | Γ0} e1; e2 {G2 | Γ2}

compose

Expression composition is standard; the intermediate state {G1 | Γ1} is the post-
state for e1 and the pre-state for e2.

{G | Γ} e {G′ | Γ ′} G′ = 0
{G | Γ} return e {G′ | Γ ′} ret

We require that the post-gas of a return expression G′ = 0, thus ensuring the
initial gas tank is completely used up for the function execution and the gas
bound is exact. In case of branches, we require that the post-gas after each
return expression is 0. The analysis rules for all other expressions are analogous
and skipped for brevity.

3.3 Soundness of Analysis

We prove the soundness of the analysis by connecting the static gas analysis with
the gas semantics. We define a program state σ as a mapping from variables to
their values. We formalize the gas semantics as σ 	 e ⇓µ

µ′ (v, σ′) to define that the
expression e evaluates to value v under program state σ with resulting program

346 A. Das and S. Qadeer

state σ′. The annotations μ and μ′ denote the gas tank value (as a natural
number) before and after the evaluation of e.

We describe selected rules that impact the gas cost.

σ 	 tick(n) ⇓µ+n
µ ((), σ)

TICK

Executing tick(n) consumes n gas units from the tank. The value of tick is
uninteresting and we use the convention that it evaluates to ().

σ 	 Gas.construct(n) ⇓µ+n
µ (n, σ)

CONSTRUCT

Semantically, we treat gas values as natural numbers. Thus, a variable of type
Gas(n) evaluates to n. The gas cost of constructing is n, so the difference in the
initial and final gas tanks is n.

{[v �→ n], σ} 	 Gas.destruct(v) ⇓µ
µ+n ((), σ)

DESTRUCT

Destructing a variable with value n (i.e., of type Gas(n)) adds n to the gas tank.
The value of destructing a gas variable is uninteresting and denoted by (). The
variable is also removed from σ since it is no longer available.

σ 	 Gas.deposit(n) ⇓µ+n
µ ((), σ)

DEPOSIT

Depositing gas into the user’s account removes the same from the gas tank.

A function call to g evaluates each argument, then evaluates the body e of g
with the value of each argument vi substituted for the argument variable xi.
The body e of g is looked up in the global signature Σ.

σ0 	 e ⇓µ0
µ1

(v, σ1)
σ0 	 let x = e ⇓µ0

µ1
((), {σ1, [x �→ v]})

LET

The let expression evaluates e to v with resulting state σ1. It then assigns v
to x and continues execution. The return value of the let expression is (). A

Exact and Linear-Time Gas-Cost Analysis 347

similar rule holds for assignments. For if expressions, we consider two cases.

σ0 	 e ⇓µ0
µ1

(true, σ1) σ1 	 e1 ⇓µ1
µ2

(v, σ2)
σ0 	 if e then e1 else e2 ⇓µ0

µ2
(v, σ2)

TT

σ0 	 e ⇓µ0
µ1

(false, σ1) σ1 	 e2 ⇓µ1
µ2

(v, σ2)
σ0 	 if e then e1 else e2 ⇓µ0

µ2
(v, σ2)

FF

If e evaluates to true with final tank μ1, we evaluate e1 with initial tank μ1,
otherwise we evaluate e2 with tank μ1.

σ0 	 e1 ⇓µ0
µ1

(v1, σ1) σ1 	 e2 ⇓µ1
µ2

(v2, σ2)
σ0 	 e1; e2 ⇓µ0

µ2
(v2, σ2)

COMPOSE

Expression composition is standard; σ1 and μ1 are the intermediate program
state and tank value, respectively.

σ 	 e ⇓µ0
µ1

(v, σ′)
σ 	 return e ⇓µ0

µ1
(v, σ′)

RET

Finally, return e evaluates e. The semantics rules for the remaining expressions
are analogous and skipped for brevity.

Theorem 1 (Soundness). Given a function fn [G] g(x1 : τ1, . . . , xn : τn) and
a program state σ, if σ 	 g(v1, . . . , vn) ⇓µ

µ′ (v, σ′), then μ − μ′ = G.

Intuitively, the gas soundness theorem states that if a function call to g executes
under program state σ with initial tank μ and final tank μ′, the difference μ − μ′

is exactly equal to the gas bound G. Thus, the static gas analysis provides an
exact bound on the gas cost at runtime. The theorem is proved by induction on
the gas semantics judgment.

4 Implementation and Evaluation

We have implemented a prototype for GasBoX in OCaml (2101 lines of code).
The prototype contains a lexer and parser (334 lines), tick instrumentation
engine (138 lines), pretty printer (185 lines), an arithmetic solver (258 lines),
LP solver interface (239 lines), inference engine (284 lines) and gas analyzer
(663 lines). The lexer and parser are implemented in Menhir [35], an LR(1)
parser generator for OCaml.

Figure 1 describes the workflow of the GasBoX tool. First, as is standard, the
source program is lexed, parsed, type checked and converted to an typed abstract
syntax tree. We briefly describe the remaining two stages.

348 A. Das and S. Qadeer

Fig. 1. Workflow demonstrating the various stages of GasBoX

– Code Instrumentation: The source code is first instrumented with tick
expressions following Sect. 3.1. Since the tick amounts for pack, unpack and
move depend on the size of the type being operated, we precompute the size
of all types in the program. The instrumentation engine takes the sizes and
the cost model (values of Ci’s) as input and inserts the tick expressions. Pro-
grammers are free to specify their own cost model and the analysis computes
the bound w.r.t. specified cost model. Next, all the join points in branches are
instrumented with Gas.deposit(∗) expressions. The value of these ∗ annota-
tions are inferred in the next stage and described below.

– Gas Analysis: To support inference of gas bounds, the GasBoX tool allows
programmers to use ∗ annotations in place of numerical values. To this end,
we allow function declarations of the form fn [∗] F (v : τ, . . . , v : τ) → τ {e}
and type declarations to use Gas(∗). The gas analyzer first iterates through
the program and replaces ∗ annotations with gas variables. Then, the analy-
sis rules are applied while generating linear constraints for the gas variables.
These linear constraints are then shipped to the inference engine that employs
the Coin-Or LP solver [36]. The linear constraints are then solved while min-
imizing the value of the gas variables to achieve tight bounds. The LP solver
either returns that the constraints are unsatisfiable, or a satisfying assign-
ment, which is then substituted back into the program and pretty printed to
the programmer.
Our analysis tool is flexible in handling numerical values or ∗ for gas anno-
tations. Thus, programmers can use ∗ for only the annotations they want
inferred and numerical values for annotations they would like to fix. This can
be used, for instance, if we want to fix the amount of gas stored in a data
structure. If a programmer chooses to indicate a fixed exact gas bound for a
function, GasBoX can verify if the bound is exact. In this case, we provide
valuable feedback in terms of the exact program location where the execution
would run out of gas.

4.1 Evaluation

We evaluate GasBoX by implementing standard smart contracts in our language,
and inferring their gas bounds. We highlight some interesting examples, particu-
larly the ones that involve amortization to handle unbounded computation. All

Exact and Linear-Time Gas-Cost Analysis 349

our experiments use the cost model assigning Ci = 1 for all i. All gas annotations
in the following examples have been automatically inferred using GasBoX.

Paying Interest on Bank Accounts. We implement a standard bank account
contract, which provides the services of signing up to create an account, with-
drawing and depositing money, and checking balance. The bank provides an
additional facility of paying interest to each account holder periodically. The
bank stores gas inside accounts to pay for the gas cost of paying interest.

resource GasBalance {

balance : Coin,

gas : Gas(65) // utilized to pay interest periodically

}

resource Bank {

nogas_accounts : Map<address, Coin>,

gas_accounts : Map<address, GasBalance>

}

fn [201] recharge(bank : &Bank)

fn [29] payInterest(bank : &Bank)

fn [34] signup(bank : &Bank, amount : Coin)

fn [122] balance(bank : &Bank) -> int

fn [148] deposit(bank : &Bank, amount : Coin)

fn [187] withdraw(bank : &Bank, amount : int) -> Coin

The contract defines the resource type GasBalance for accounts containing gas.
For our cost model, we need 65 gas units in each account for paying inter-
est. The Bank type contains two maps: gas accounts and nogas accounts for
accounts with and without gas respectively indexed by the address of the account
holder. The contract provides a recharge function that replenishes gas in the
sender’s account, effectively removing it from nogas accounts and adding it to
gas accounts. The payInterest function recursively removes an account from
gas accounts, consumes the gas stored in it to pay the interest, and adds it
to nogas accounts. Thus, it is the account holder’s responsibility to periodi-
cally replenish the gas in their account by issuing the recharge function; the
payInterest function only pays interest to accounts stored in gas accounts.
In addition, the contract provides the standard signup, balance, deposit and
withdraw functions to create an account, check balance, deposit and withdraw
money, respectively. The exact gas bound for each function is shown in square
brackets [·] along with the declaration.

Since data structures that store gas inside them have a resource type, they are
destroyed (using unpack) during iteration. Thus, using the same data structure
multiple times would require a recharge function (similar to above) to restore
the gas inside them. Thus, programmers need to be mindful of how often the
contract data is operated upon.

The gas amortization provides the following benefits: (i) mitigating denial-
of-service attacks since the gas bound of payInterest no longer depends on
the number of bank accounts, (ii) equitable gas distribution since each account
holder is responsible for covering the gas cost of paying interest on their account.

350 A. Das and S. Qadeer

Voting. We implement a simple voting contract that provides two functions: a
vote function to allow voters to cast their vote and a count function that counts
the votes and computes the winner. The contract amortizes the cost of counting
votes by storing gas inside the votes cast.

resource Votes {

num_votes : int,

gas : Gas(69) } // utilized to count votes when election ends

fn [114] vote(elec : &Map<address, Votes>, candidate : address)

fn [55] count(elec : &Map<address, Votes>) -> address

The contract defines the resource type Votes used to store the votes for a par-
ticular candidate. The type contains two fields: num votes denotes the number
of votes for the candidate, and gas stores 69 gas units to pay for counting votes
later. The vote function takes two arguments: elec contains the map storing the
votes indexed by the address of the candidate, and candidate is the address of
the candidate the sender wants to vote for. The function increments the number
of votes in candidate’s name by 1. The count function takes elec as argument,
iterates over the map, and consumes the gas stored inside it to compute the
winner of the election. The exact gas bound for both functions is a constant and
described alongside the declaration. This contract also provides the advantages
of mitigating denial-of-service attacks and equitable gas distribution.

Table 1. Evaluation of GasBoX. LOC = lines of code; Defs = #definitions; Vars = #gas
variables introduced; Cons = #linear constraints on gas variables; I (ms) = inference time
in milliseconds V (µs) = verification time in microseconds.

Contract LOC Defs Vars Cons I (ms) V (µs)

auction 44 7 3 44 3.05 12.16

bank 138 14 11 254 3.97 54.12

ERC 20 101 11 8 91 3.45 56.98

escrow 140 7 9 213 3.29 61.03

insurance 43 5 3 43 3.02 9.05

voting 75 7 8 131 3.19 30.99

wallet 74 8 5 158 3.35 52.93

ethereumpot 259 13 13 332 3.94 101.08

puzzle 62 6 6 91 3.13 15.97

amort. auction 70 7 5 62 2.99 15.02

amort. bank 189 17 17 347 4.44 73.19

tether 382 29 30 842 26.14 365.01

libra system 124 12 12 170 3.38 45.06

Total 1701 143 130 2878 67.34 892.59

Exact and Linear-Time Gas-Cost Analysis 351

Other Contracts. We have implemented a total of 13 contracts in our language,
and verified their gas bound with GasBoX. We briefly describe each contract.

1. auction: unamortized version of auction providing support for users to pull
their bids out of the contract.

2. bank: näıve bank account with no functionality to pay interest.
3. ERC 20: technical standard for token implementation on Ethereum defining

a list of rules Ethereum tokens should follow [1].
4. escrow: contract to exchange bonds between two parties.
5. insurance: contract processing flight delay insurance claims after verifying

them with a trusted third party.
6. voting: election contract described earlier in this section.
7. wallet: standard contract allowing users to store money on the blockchain.
8. ethereumpot: standard lottery contract on Ethereum.
9. puzzle: contract rewarding users who solve a computational puzzle and sub-

mit the solution.
10. amort. auction: amortized auction described in Sect. 2.
11. amort. bank: amortized bank account paying interest periodically as

described earlier in this section.
12. tether: stable coin contract allowing exchange of digital tokens pegged to

fiat currencies e.g. dollars, euros, etc. [2].
13. libra system: standard library contract with recursive functions for config-

uration of third-party validators

The first 7 contracts are borrowed from the Nomos project [17], ethereumpot
from the Gastap project [6], puzzle from the Oyente project [32], tether from the
Tether ERC 20 token contract [2] and libra system from the Libra blockchain [8]
and reimplemented in our language.

Table 1 compiles the results of evaluating GasBoX on the implemented con-
tracts. For each contract, we present the lines of code (LOC), number of type and
function definitions (Defs), number of gas variables introduced (Vars) and num-
ber of linear constraints generated during gas analysis (Cons). The gas analysis
time is separated into two components: the first phase of analysis generates the
linear constraints which are then solved to infer the gas annotations (denoted by
I (ms) in milliseconds); once the solutions are substituted back into the program,
the second phase verifies if the bounds generated by the first phase are exact
(denoted by V (μs) in microseconds). The experiments were run on an Intel Core
i5 1.6 GHz dual-core processor with 16 GB DDR3L memory.

The evaluation demonstrates that gas bound verification is highly efficient
with an overhead of less than 0.5 ms for all contracts. This indicates that GasBoX
can be effectively utilized by miners to verify the exact gas bound. Moreover, this
overhead is offset by the elimination of dynamic gas metering from the virtual
machine. Gas inference is an order of magnitude slower but still acceptable, since
it only needs to be performed once and stored in the gas signature for future
verification. The programmer burden is low since they only need to indicate the
data structures where gas is stored using the type Gas(∗) and the remaining
bounds are automatically inferred. Further, since the Gas.deposit operations

352 A. Das and S. Qadeer

were automatically inserted, programmers can remain oblivious of the exact
cost model and difference in gas costs of different branches.

5 Related Work

Traditionally, resource analysis is grounded in deriving and solving recurrence
relations, an approach introduced to analyze simple Lisp programs [42]. Since
then, it has been applied to both imperative [3,7,21] and functional pro-
grams [9,15]. Amortization [40] was first integrated with resource analysis to
automatically analyze heap usage of first-order functional programs [29]. In the
context of functional languages, this technique has been applied to derive poly-
nomial [28] and multivariate bounds [26] for first-order and higher-order pro-
grams [27] as well as programs with lazy evaluation [38]. For imperative pro-
grams, amortization has been utilized to derive bounds based on lexicographic
ranking functions [39] and intervals [13], and has been extended to analyze
object-oriented programs [30]. In contrast to the above works that focus on
upper bounds, GasBoX verifies exact bounds for programs and is applicable to
smart contracts.

Security analysis and safety verification of smart contracts have been exten-
sively studied in prior work [10,24,31,32,41]. MadMax [23] automatically detects
gas-focused vulnerabilities with high confidence. The analysis is based on a
decompiler that extracts control and data flow information from EVM byte-
code, and a logic-based analysis specification that produces a high-level program
model. GASPER [14] is an analysis tool for EVM bytecode that relies on sym-
bolic execution and the Z3 SMT solver [34] to identify 7 gas-costly programming
patterns such as dead code, expensive and repeated computations in a loop, etc.
GasBoX differs from these works by inferring and verifying gas cost, instead of
identifying vulnerabilities related to gas.

Most closely related to GasBoX are languages and analysis tools for estimat-
ing upper gas bounds on contracts. Scilla [37] is an intermediate-level language
which disallows loops and general recursion and infers gas usage of a function
as a polynomial of the size of its parameters and contract fields in linear time.
In contrast, GasBoX allows recursion and bounds are proven sound w.r.t. a
gas semantics. Nomos is a programming language [17] based on resource-aware
session types [18,19] that utilizes LP (linear programming) solving to automat-
ically derive upper gas bounds on implemented contracts. Gastap [6] infers gas
bounds on contracts implemented in Solidity [16] or EVM bytecode in terms
of size of the input parameters, contract state and gas consumption. The infer-
ence procedure requires construction of control-flow graphs, decompilation to
a high-level representation, inferring size relations, generating and solving gas
equations. Gasol [5] is an extension to Gastap which offers a variety of cost
models to measure the cost of, for e.g., only storage opcodes, selected fam-
ily of gas-consumption opcodes, selected program line, etc. It further detects
under-optimized storage patterns and automatic optimization of such patterns.
Marescotti et al. [33] employ symbolic model checking to modularly enumerate

Exact and Linear-Time Gas-Cost Analysis 353

all gas consumption paths based on unwinding loops to a limit. For each path, it
then computes the environment state to force that path and simulates the trans-
action under the state to obtain an exact worst-case gas bound. GasBoX differs
from these tools in its goal of providing miners with a trusted exact gas bound
which can be verified in linear time and eliminating dynamic gas metering.

6 Conclusion

This paper presented a Hoare-logic style gas-analysis framework for smart con-
tracts. This framework verifies exact gas bounds in linear-time and relies on
amortization to handle unbounded computation. The verified gas bounds are
proven sound w.r.t. a gas semantics. The framework has been implemented as
a tool called GasBoX in the context of a simplistic programming language. The
tool has been enhanced by integrating with the Coin-Or LP solver to infer gas
bounds automatically. GasBoX has been evaluated on several standard smart
contracts demonstrating its efficiency and expressivity.

In the future, we plan to use more sophisticated underlying logics such as
SMT solvers, carefully weighing the balance of expressivity and efficiency of
the gas-analysis framework. With more expressive solvers, we can store linear
or polynomial gas in data structures. We would also like to handle copying of
unbounded data structures such as maps. Since our approach requires updates to
the virtual machine, it is most suited to newer blockchains. In the future, we plan
to explore methods to integrate our approach into existing blockchains. Finally,
we would like to extend our approach to traditional smart contract languages
such as Solidity and Move, by transforming programs to our target language.

Acknowledgments. This article is based on research supported by the National Sci-
ence Foundation under SaTC Award 1801369 and CAREER Award 1845514. Any
opinions, findings, and conclusions contained in this document are those of the authors
and do not necessarily reflect the views of the sponsoring organizations.

References

1. Erc20 Token Standard (December 2018). https://theethereum.wiki/w/index.php/
ERC20 Token Standard. Accessed 27 Feb 2018

2. Tether: Digital money for a digital age (Apr 2020). https://tether.to/. Accessed
29 Apr 2020

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
java bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 12

4. Albert, E., Arenas, P., Genaim, S., Herraiz, I., Puebla, G.: Comparing cost func-
tions in resource analysis. In: van Eekelen, M., Shkaravska, O. (eds.) FOPARA
2009. LNCS, vol. 6324, pp. 1–17. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15331-0 1

5. Albert, E., Correas, J., Gordillo, P., Román-Dı́ez, G., Rubio, A.: Gasol: gas analysis
and optimization for Ethereum smart contracts (2019)

https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://tether.to/
https://doi.org/10.1007/978-3-540-71316-6_12
https://doi.org/10.1007/978-3-642-15331-0_1
https://doi.org/10.1007/978-3-642-15331-0_1

354 A. Das and S. Qadeer

6. Albert, E., Gordillo, P., Rubio, A., Sergey, I.: Running on fumes. In: Ganty, P.,
Kaâniche, M. (eds.) VECoS 2019. LNCS, vol. 11847, pp. 63–78. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-35092-5 5

7. Alonso-Blas, D.E., Genaim, S.: On the limits of the classical approach to cost
analysis. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 405–421.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33125-1 27

8. Baudet, M., et al.: State machine replication in the libra blockchain (2019).
https://developers.libra.org/docs/assets/papers/libra-consensus-state-machine-
replication-in-the-libra-blockchain.pdf

9. Benzinger, R.: Automated higher-order complexity analysis. Theor. Comput.
Sci. 318(1), 79–103 (2004). https://doi.org/10.1016/j.tcs.2003.10.022. http://
www.sciencedirect.com/science/article/pii/S0304397503005279. implicit Compu-
tational Complexity

10. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis
for Security, PLAS 2016, pp. 91–96. ACM, New York (2016). https://doi.org/10.
1145/2993600.2993611, http://doi.acm.org/10.1145/2993600.2993611

11. Blackshear, S., et al.: Move: a language with programmable resources (2019)
12. Carbonneaux, Q., Hoffmann, J., Reps, T., Shao, Z.: Automated resource analysis

with Coq proof objects. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 64–85. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63390-9 4

13. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2015, pp. 467–478. Association for Computing
Machinery, New York (2015). https://doi.org/10.1145/2737924.2737955

14. Chen, T., Li, X., Luo, X., Zhang, X.: Under-optimized smart contracts devour
your money. In: 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 442–446 (2017)

15. Danielsson, N.A.: Lightweight semiformal time complexity analysis for purely
functional data structures. In: Proceedings of the 35th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2008, pp.
133–144. Association for Computing Machinery, New York (2008). https://doi.org/
10.1145/1328438.1328457

16. Dannen, C.: Introducing Ethereum and Solidity: Foundations of Cryptocurrency
and Blockchain Programming for Beginners, 1st edn. Apress, USA (2017)

17. Das, A., Balzer, S., Hoffmann, J., Pfenning, F.: Resource-aware session types for
digital contracts. CoRR abs/1902.06056 (2019). http://arxiv.org/abs/1902.06056

18. Das, A., Hoffmann, J., Pfenning, F.: Parallel complexity analysis with temporal
session types. Proc. ACM Program. Lang. 2(ICFP), 1–30 (2018). https://doi.org/
10.1145/3236786

19. Das, A., Hoffmann, J., Pfenning, F.: Work analysis with resource-aware session
types. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, pp. 305–314. ACM, New York (2018). https://doi.
org/10.1145/3209108.3209146

20. Fischer, M.J., Rabin, M.O.: Super-exponential complexity of Presburger arith-
metic. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylin-
drical Algebraic Decomposition. Texts and Monographs in Symbolic Computation
(A Series of the Research Institute for Symbolic Computation, Johannes-Kepler-
University, Linz, Austria). Springer, Vienna (1998). https://doi.org/10.1007/978-
3-7091-9459-1 5

https://doi.org/10.1007/978-3-030-35092-5_5
https://doi.org/10.1007/978-3-642-33125-1_27
https://developers.libra.org/docs/assets/papers/libra-consensus-state-machine-replication-in-the-libra-blockchain.pdf
https://developers.libra.org/docs/assets/papers/libra-consensus-state-machine-replication-in-the-libra-blockchain.pdf
https://doi.org/10.1016/j.tcs.2003.10.022
http://www.sciencedirect.com/science/article/pii/S0304397503005279
http://www.sciencedirect.com/science/article/pii/S0304397503005279
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1145/2993600.2993611
http://doi.acm.org/10.1145/2993600.2993611
https://doi.org/10.1007/978-3-319-63390-9_4
https://doi.org/10.1007/978-3-319-63390-9_4
https://doi.org/10.1145/2737924.2737955
https://doi.org/10.1145/1328438.1328457
https://doi.org/10.1145/1328438.1328457
http://arxiv.org/abs/1902.06056
https://doi.org/10.1145/3236786
https://doi.org/10.1145/3236786
https://doi.org/10.1145/3209108.3209146
https://doi.org/10.1145/3209108.3209146
https://doi.org/10.1007/978-3-7091-9459-1_5
https://doi.org/10.1007/978-3-7091-9459-1_5

Exact and Linear-Time Gas-Cost Analysis 355

21. Flores-Montoya, A., Hähnle, R.: Resource analysis of complex programs with cost
equations. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 275–295.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12736-1 15

22. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987). https://
doi.org/10.1016/0304-3975(87)90045-4. http://www.sciencedirect.com/science/
article/pii/0304397587900454

23. Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., Smaragdakis, Y.: Mad-
Max: surviving out-of-gas conditions in Ethereum smart contracts. Proc. ACM Pro-
gram. Lang. 2(OOPSLA), 116:1–116:27 (2018). https://doi.org/10.1145/3276486.
http://doi.acm.org/10.1145/3276486

24. Grishchenko, I., Maffei, M., Schneidewind, C.: Foundations and tools for the static
analysis of Ethereum smart contracts. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018. LNCS, vol. 10981, pp. 51–78. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96145-3 4

25. Gulwani, S.: SPEED: symbolic complexity bound analysis. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 51–62. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02658-4 7

26. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM Trans. Program. Lang. Syst. 34(3), 1–62 (2012). https://doi.org/10.1145/
2362389.2362393

27. Hoffmann, J., Das, A., Weng, S.C.: Towards automatic resource bound analysis
for OCaml. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, pp. 359–373. Association for Computing
Machinery, New York (2017). https://doi.org/10.1145/3009837.3009842

28. Hoffmann, J., Hofmann, M.: Amortized resource analysis with polynomial poten-
tial. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 287–306. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6 16

29. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. In: Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2003, pp. 185–197. ACM, New
York (2003). https://doi.org/10.1145/604131.604148, http://doi.acm.org/10.1145/
604131.604148

30. Hofmann, M., Jost, S.: Type-based amortised heap-space analysis. In: Sestoft, P.
(ed.) ESOP 2006. LNCS, vol. 3924, pp. 22–37. Springer, Heidelberg (2006). https://
doi.org/10.1007/11693024 3

31. Lahiri, S.K., Chen, S., Wang, Y., Dillig, I.: Formal specification and verification of
smart contracts for azure blockchain. CoRR abs/1812.08829 (2018). http://arxiv.
org/abs/1812.08829

32. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart con-
tracts smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2016, pp. 254–269. ACM, New
York (2016). https://doi.org/10.1145/2976749.2978309, http://doi.acm.org/10.
1145/2976749.2978309

33. Marescotti, M., Blicha, M., Hyvärinen, A.E.J., Asadi, S., Sharygina, N.: Computing
exact worst-case gas consumption for smart contracts. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 450–465. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03427-6 33

34. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

https://doi.org/10.1007/978-3-319-12736-1_15
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
http://www.sciencedirect.com/science/article/pii/0304397587900454
http://www.sciencedirect.com/science/article/pii/0304397587900454
https://doi.org/10.1145/3276486
http://doi.acm.org/10.1145/3276486
https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1007/978-3-642-02658-4_7
https://doi.org/10.1145/2362389.2362393
https://doi.org/10.1145/2362389.2362393
https://doi.org/10.1145/3009837.3009842
https://doi.org/10.1007/978-3-642-11957-6_16
https://doi.org/10.1145/604131.604148
http://doi.acm.org/10.1145/604131.604148
http://doi.acm.org/10.1145/604131.604148
https://doi.org/10.1007/11693024_3
https://doi.org/10.1007/11693024_3
http://arxiv.org/abs/1812.08829
http://arxiv.org/abs/1812.08829
https://doi.org/10.1145/2976749.2978309
http://doi.acm.org/10.1145/2976749.2978309
http://doi.acm.org/10.1145/2976749.2978309
https://doi.org/10.1007/978-3-030-03427-6_33
https://doi.org/10.1007/978-3-540-78800-3_24

356 A. Das and S. Qadeer

35. Pottier, F., Régis-Gianas, Y.: Menhir Reference Manual (2019)
36. Saltzman, M.J.: Coin-or: an open-source library for optimization. In: Nielsen,

S.S. (ed.) Programming Languages and Systems in Computational Economics and
Finance. Advances in Computational Economics, vol. 18. Springer, Boston (2002).
https://doi.org/10.1007/978-1-4615-1049-9 1

37. Sergey, I., Nagaraj, V., Johannsen, J., Kumar, A., Trunov, A., Hao, K.C.G.: Safer
smart contract programming with Scilla. Proc. ACM Program. Lang. 3(OOPSLA),
1–30 (2019). https://doi.org/10.1145/3360611

38. Simões, H., Vasconcelos, P., Florido, M., Jost, S., Hammond, K.: Automatic amor-
tised analysis of dynamic memory allocation for lazy functional programs. In: Pro-
ceedings of the 17th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP 2012, pp. 165–176. Association for Computing Machinery, New
York (2012). https://doi.org/10.1145/2364527.2364575

39. Sinn, M., Zuleger, F., Veith, H.: A simple and scalable static analysis for bound
analysis and amortized complexity analysis. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 745–761. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08867-9 50

40. Tarjan, R.: Amortized computational complexity. SIAM J. Algebr. Discret. Meth-
ods 6(2), 306–318 (1985)

41. Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,
Alexandrov, Y.: Smartcheck: static analysis of Ethereum smart contracts. In: 2018
IEEE/ACM 1st International Workshop on Emerging Trends in Software Engi-
neering for Blockchain (WETSEB), pp. 9–16 (May 2018)

42. Wegbreit, B.: Mechanical program analysis. Commun. ACM 18(9), 528–539 (1975).
https://doi.org/10.1145/361002.361016

43. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger eip-150
revision (759dccd - 2017–08-07) (2017). https://ethereum.github.io/yellowpaper/
paper.pdf. Accessed 03 Jan 2018

https://doi.org/10.1007/978-1-4615-1049-9_1
https://doi.org/10.1145/3360611
https://doi.org/10.1145/2364527.2364575
https://doi.org/10.1007/978-3-319-08867-9_50
https://doi.org/10.1007/978-3-319-08867-9_50
https://doi.org/10.1145/361002.361016
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

Farkas-Based Tree Interpolation

Sepideh Asadi1, Martin Blicha1,2(B), Antti Hyvärinen1(B),
Grigory Fedyukovich3(B), and Natasha Sharygina1(B)

1 Università della Svizzera Italiana (USI), Lugano, Switzerland
{asadis,blicham,hyvaeria,sharygin}@usi.ch

2 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
3 Florida State University, Tallahassee, USA

grigory@cs.fsu.edu

Abstract. Linear arithmetic over reals (LRA) underlies a wide range
of SMT-based modeling approaches, and, strengthened with Craig
interpolation using Farkas’ lemma, is a central tool for efficient over-
approximation. Recent advances in LRA interpolation have resulted in
a range of promising interpolation algorithms with so far poorly under-
stood properties. In this work we study the Farkas-based algorithms with
respect to tree interpolation, a practically important approach where a
set of interpolants is constructed following a given tree structure. We
classify the algorithms based on whether they guarantee the tree inter-
polation property, and present how to lift a recently introduced app-
roach producing conjunctive LRA interpolants to tree interpolation in
the quantifier-free LRA fragment of first-order logic. Our experiments
show that the standard interpolation and the approach using conjunc-
tive interpolants are complementary in tree interpolation, and suggest
that their combination would be very powerful in practice.

Keywords: Craig interpolation · Tree interpolation property · LRA
interpolation systems · SMT solving · Symbolic model checking

1 Introduction

Given an unsatisfiable first-order formula φ partitioned into two sets A and B,
a (binary) Craig interpolant [9] is a formula I that is implied by A, unsatisfiable
with B, and defined on the shared symbols of A and B. For certain applications
it is useful to consider sets of related interpolants obtained by partitioning φ in
different ways into A,B. Often these applications require further properties to
hold for the computed interpolants. For example, consider the following scenario
from upgrade checking of software [15]: a program with function calls is modeled
together with safety properties as an unsatisfiable formula. Once a programmer
introduces changes to the functions, it is often important to know whether the

This work was supported by Swiss National Science Foundation grant 200021 185031
and by Czech Science Foundation grant 20-07487S.

c© Springer Nature Switzerland AG 2020
D. Pichardie and M. Sighireanu (Eds.): SAS 2020, LNCS 12389, pp. 357–379, 2020.
https://doi.org/10.1007/978-3-030-65474-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65474-0_16&domain=pdf
https://doi.org/10.1007/978-3-030-65474-0_16

358 S. Asadi et al.

Table 1. Validity of the tree interpolation property (TI) for the studied interpolation
algorithms. The signs � and × indicate, respectively, that the property holds and fails.

Interpolation algorithm TI Theorem

Farkas ItpF � 1, 2

Dual Farkas ItpF × 7

Decomposing Farkas ItpD � 3, 4, 5

Dual Decomposing Farkas ItpD × Corollary 2

Flexible Farkas Itp(α) × 6

same properties are satisfied by the new program. The key insight in the use of
interpolants in this scenario is as follows. If each function is over-approximated
by an interpolant, it is sufficient, under certain conditions, to check whether each
new function is contained in the corresponding old function’s interpolant in the
logical sense. Such a check might be significantly lighter than re-verification of
the whole program. However, if several functions were changed simultaneously,
the resulting interpolants need to guarantee that no matter how the functions
were changed, as long as the changes stay within the over-approximations, the
program is correct. This requirement places restrictions on interpolants and ulti-
mately on the interpolation algorithms.

It turns out that these conditions are guaranteed to hold if the interpolation
algorithm satisfies the tree interpolation property (TI) (see Sect. 2). The property
is useful not only in the above scenario, but also in many other applications,
including solving constrained Horn clauses [16,27], and synthesis [13].

Many modeling approaches used in verification rely heavily on the use of
linear algebra either by directly encoding arithmetic operations, or as part of an
algorithm for more general arithmetic. As a result, over-approximation in linear
real arithmetic (LRA) through interpolation is an active research area. Farkas
interpolation [23] is a central class of algorithms for LRA interpolation and is
widely used in verification tools. The idea underlying these algorithms is to first
show a linear system unsatisfiable with a decision version of the Simplex algo-
rithm. The Farkas coefficients computed as a side product can then be restricted
to the linear system belonging to the A-part to obtain the interpolant.

Having different algorithms for interpolation is of great practical interest
since the choice of a good interpolation algorithm may well determine whether
an application terminates quickly or diverges. Up to now there have been few
interpolation algorithms that guarantee TI in LRA, and we believe that this
has severely limited their use in practical applications. In this work, we identify
five variants of the Farkas interpolation algorithms and show that only two of
them can be used as a basis for tree interpolation algorithms. Our results are
summarized in Table 1.1

1 The Farkas interpolation algorithm ItpF guarantees TI (see, e.g., [7]). We show this
for a stronger notion of tree interpolants.

Farkas-Based Tree Interpolation 359

The algorithm ItpF , introduced in [23], produces a single inequality, whereas
ItpD [6] is a more recent algorithm based on decomposing the Farkas interpolants
into conjunctions. Applying ItpF in tree interpolation is relatively straightfor-
ward. However, for ItpD, it is important to take the tree structure of the inter-
polation problem into consideration when constructing the decomposition. We
show how the global tree structure can be brought to the binary interpolation
problems through the use of decomposition strategies. A carefully designed strat-
egy guarantees TI while still providing a rich variety of LRA inequalities in the
resulting interpolants.

This work opens the possibility of using efficient proof-based interpolation
portfolios in applications requiring TI. While a thorough study on the use of an
interpolation portfolio in such applications is out of the scope for this theoretical
paper, we verify experimentally that the resulting interpolants can differ in ways
that have practical implications in their use in such applications. We show this
by using two measures that we believe to be practical indicators of semantic
difference on a set of quantifier-free first-order formulas obtained from software
model checking.

Related work. The binary Craig interpolation has been extensively studied (see,
e.g., [11,23,25,28,30]), and its practical success has motivated a line of research
on tree interpolation [5,18,24,27] which we extend here. In particular, we identify
five binary Farkas-based LRA interpolation systems from [1,6,23], classify them
based on whether they can guarantee TI, and describe in detail a novel, non-
trivial approach of adjusting the binary approach from [6] for tree interpolation.
We believe that our approach can be applied in the analysis of other conjunctive
binary interpolation approaches for LRA, such as the one in [8]. Similarly to
us, [7] studies tree interpolation in LRA. Compared to [7], we extend the study
by considering four other algorithms and strengthening the existing result. We
base the propositional part of our results on the studies in [17,26,29], where tree
interpolation is discussed in a purely propositional setting.

We mention here some applications that we believe to be relevant to our
current work. In [13] the authors synthesize winning strategies by exploiting
tree interpolants computed by the Z3 SMT solver [24]. The state-of-the-art Horn
solver Eldarica [19] uses tree interpolation to refine abstraction: it maps each
(spurious) counterexample DAG to a tree interpolation problem. Finally, tree
interpolants are also used in regression verification of evolving software. See,
for example, [2,29], that use tree interpolants to over-approximate functions for
incremental verification of program versions.

The paper is organized as follows. We first introduce in Sect. 2 the necessary
background on tree interpolation and then, in Sect. 3, provide our main result
that the decomposed interpolants guarantee TI. We prove the three smaller,
negative results in Sect. 4. In Sect. 5 we show experimentally that the approach
produces a range of interpolants not available through existing means, and finally
offer conclusions in Sect. 6.

360 S. Asadi et al.

2 Background

Our context is that of SMT (Satisfiability Modulo Theories [3,10]) on quantifier-
free formulas in the theory of linear arithmetic over the reals, LRA. A term in
LRA is either a constant, a variable, or the application of a function symbol in
LRA. An LRA atom is of the form t < c or t ≤ c, where t is a term and c is a
constant. Given an LRA atom At , we denote by symb(At) the set of variables
in At . A literal is either an atom At or its negation At . A clause cl is a finite
disjunction of literals, and a formula in conjunctive normal form (CNF) is a
conjunction of clauses. We interchangeably interpret a clause as a set of literals
and a CNF formula as a set of clauses. We denote by Fla the set of all formulas
in CNF. For a formula φ, we denote by ¬φ its negation. We extend the notation
symb to CNF formulas, writing symb(φ) for the set of atoms in φ.

A CNF formula φ is satisfiable if there exists an assignment to its variables so
that each clause in φ contains a true literal. A resolution refutation (or refutation)
of a CNF formula φ is a tree labeled with clauses. The root of the tree has the
empty clause ⊥, and the leaves have either source clauses appearing directly in
φ, or theory clauses that are tautologies in LRA learned through an unsatisfiable
conjunctive query to the LRA solver. The inner nodes are clauses derived by the
resolution rule

C1 ∨ p C2 ∨ p

C1 ∨ C2

where C1 ∨ p and C2 ∨ p are the antecedents, C1 ∨C2 the resolvent, p is the pivot
of the resolution step.

The notion of interpolant goes back to Craig’s interpolation theorem for
first-order logic [9]. In this work we consider approaches where interpolants are
constructed from proofs of unsatisfiability.

Definition 1 (binary interpolation). Given an unsatisfiable CNF formula φ
partitioned into two disjoint formulas A and B, we denote a binary interpolation
instance by (A |B). An interpolation algorithm Itp is a procedure that maps an
interpolation instance to a formula I = Itp(A |B) such that (i) A =⇒ I, (ii)
I =⇒ ¬B, and (iii) symb(I) ⊆ symb(A) ∩ symb(B).

If I is an interpolant for (A |B), then ¬I is an interpolant for (B |A). This
interpolant is called dual interpolant of (B |A).

Part of our discussion combines Craig interpolation in propositional logic
and LRA. For the propositional part, we use the Pudlák’s interpolation algo-
rithm [25], which we treat as an instance of D’Silva et al.’s labeling interpolation
system [11]. The approach first constructs the refutation using standard SMT
methods. The interpolation works then by labeling each clause with an inter-
polant starting from the leaf clauses towards the empty clause. The leaf theory
clauses are labeled using an LRA interpolation after which the propositional
labeling can be applied in a standard way. For lack of space, we refer the reader
to Appendix A for details.

Farkas-Based Tree Interpolation 361

We in particular concentrate on tree interpolants, generalizations of binary
interpolants, obtained from a single refutation.2

Definition 2 (weak tree-interpolation property). Let X1 ∧ . . . ∧ Xn ∧
Y ∧ Z =⇒ ⊥. Let IX1 , . . . , IXn

and IX1...XnY be interpolants for interpolation
instances (X1 | X2 ∧ . . . ∧ Xn ∧ Y ∧ Z), . . ., (Xn | X1 ∧ . . . ∧ Xn−1 ∧ Y ∧ Z), and
(X1 ∧ . . .∧Xn ∧Y | Z), respectively. The n+2-tuple (IX1 , . . . , IXn

, Y, IX1...XnY)
has the weak tree-interpolation property iff IX1 ∧ . . . ∧ IXn

∧ Y =⇒ IX1...XnY .

We are now ready to define an instance of the tree interpolation problem.

Definition 3 (tree interpolation instance). Let φ be an unsatisfiable SMT
formula in CNF, (V,E) a directed tree with vertices V containing a unique root
vr ∈ V , and directed edges E ⊆ V × V . Let furthermore F be a labeling function
F : V −→ Fla that maps vertices V to sets of clauses of φ such that

∧
v∈V F (v) =

φ and F (v)∩F (w) = ∅ whenever v �= w. We call 〈(V,E), F 〉 a tree interpolation
instance.

Let E∗ denote the reflexive transitive closure of E. We denote the nodes
in the subtree rooted at a node v by subtree(v) = {w | (w, v) ∈ E∗} and the
complement of the subtree as subtree(v) = V \ subtree(v). We also extend the
function F to sets of nodes as F (U) =

∧
v∈U F (v). With this notation we can

define the tree interpolant for a problem 〈(V,E), F 〉 as follows.

Definition 4 (tree interpolant). A tree interpolant for a tree interpolation
instance 〈(V,E), F 〉 is a labeling function τι : V −→ Fla that assigns a formula
to every vertex in V satisfying the following conditions:

1. τι(vr) = ⊥,
2. for all v ∈ V with children c1, . . . , cn, the (n + 2)-tuple (τι(c1), . . . , τ ι(cn),

F (v), τ ι(v)) has the weak tree-interpolation property, i.e.,
∧n

i=1 τι(ci) ∧
F (v) =⇒ τι(v),

3. τι(v) uses only the common language of subtree(v) and subtree(v), i.e.,
symb(τι(v)) ⊆ symb(F (subtree(v))) ∩ symb(F (subtree(v))).

A tree interpolation algorithm TItp is a procedure that maps any tree interpola-
tion instance to a tree interpolant τι = TItp(〈(V,E), F 〉).

We make the following observation that will be central in our discussion in
Sect. 3:

Remark 1. Given a binary interpolation algorithm Itp, we can construct an algo-
rithm TItpItp that computes the labels of nodes v by iteratively applying Itp on
a single resolution refutation for different binary partitionings as

τι(v) = Itp(F (subtree(v)) |F (subtree(v)))

If Itp guarantees that for each node v and its children c1, . . . , cn the tuple
(τι(c1), . . . , τ ι(cn), F (v), τ ι(v)) satisfies the weak tree-interpolation property,
2 For example in [7] this is called the tree interpolation property.

362 S. Asadi et al.

then the algorithm TItpItp is guaranteed to produce a tree interpolant, that
is, TItpItp is a tree interpolation algorithm. As a subtle, important consequence,
a certain interpolation algorithm class, called decomposing Farkas interpolation
algorithms and discussed in Sect. 3.3, needs to be instantiated into actual algo-
rithms using decomposition strategies that make the algorithms aware of the
tree structure before they can be used as a component of a tree interpolation
algorithm.

2.1 Linear Systems

The problem domain in this work is R, the set of real numbers. The (column)
vector of n elements is denoted by v = (v1, . . . , vn)ᵀ. The vector of all zeroes is
denoted by 0.

A linear system S is a conjunction of m inequalities which we treat as a set
S = {li | i = 1, . . . , m} involving the set of n variables X = {x1, . . . , xn} such
that each li is of the form

∑
j cijxj �� bi, where ��∈ {≤, <}, c11, c12, . . . , cmn are

the coefficients of the system, and b1, . . . , bm are constants. We often fix an order
for the system and denote it with the matrix notation Cx �� b, where C is the
m × n matrix of coefficients cij , x = (x1, . . . , xn)ᵀ, and b = (b1, . . . , bm)ᵀ.

For the rest of the paper we use just ≤ instead of ��. This does not affect
the correctness of the proofs presented in this paper but greatly simplifies the
presentation. Throughout the paper by system S we refer to a finite set of linear
inequalities in the form of

l1 ≡ c11x1 + c12x2 + · · · + c1nxn ≤ b1

...
lm ≡ cm1x1 + cm2x2 + · · · + cmnxn ≤ bm

Finally for the matrix C and constants b of system S, and a sub-system
S′ ⊆ S we use the notations CS′ and bS′ to denote the matrix and constants
of the sub-system S′. Intuitively CS′ and bS′ denote the restrictions of C and
b where only the coordinates corresponding to the subsystem S′ are kept. More
formally, let S := Cx ≤ b be a system of m linear inequalities, and S′ :=
((Ci1), . . . , (Cik))ᵀx ≤ (bi1 , . . . , bik)ᵀ be a subsystem of S with k ≤ m linear
inequalities, where Cij is the ij

th row of C, bij the ij
th element of b, and ij < ij+1

for all 1 ≤ j ≤ k − 1. We denote by CS′ the matrix ((Ci1), . . . , (Cik))ᵀ and by
bS′ the vector (bi1 , . . . , bik)ᵀ.

3 Tree Interpolation for Linear Real Arithmetic

In this section we show our main result, that the decomposing Farkas interpola-
tion algorithm ItpD guarantees the tree interpolation property. We first introduce
a stronger version of tree interpolation property than Definition 2 that will be
useful in the proofs and discussion.

Farkas-Based Tree Interpolation 363

Definition 5 (strong tree-interpolation property). 3 Let X1 ∧ . . . ∧ Xn ∧
Z =⇒ ⊥. Let IX1 , . . . , IXn

and IX1...Xn
be interpolants for interpolation

instances (X1 | X2 ∧ . . . ∧ Xn ∧ Z), . . ., (Xn | X1 ∧ . . . ∧ Xn−1 ∧ Z), and
(X1 ∧ . . .∧Xn | Z), respectively. The n+1-tuple (IX1 , . . . , IXn

, IX1...Xn
) has the

strong tree-interpolation property iff (IX1 ∧ . . . ∧ IXn
) =⇒ IX1...Xn

.

It is easy to show that if a binary interpolation algorithm guarantees the
strong tree-interpolation property, it also guarantees the weak tree-interpolation
property because Y =⇒ IY . We use the term tree interpolation property without
qualifiers when we refer to both its weak and strong versions.

Algorithms for solving linear systems in SMT solvers make use of the Simplex
algorithm [12] and are based on the Farkas’ lemma.

Lemma 1 (Farkas’ lemma). Let C ∈ R
m×n. Cx ≤ b is unsatisfiable if and

only if there exists a vector f ≥ 0 such that fᵀC = 0 and fᵀb < 0.

We refer to the vector f as the vector of Farkas coefficients. Given this vector it
is possible to immediately compute two interpolants:

Definition 6 (Farkas and dual Farkas interpolants in LRA [23]). Given
an interpolation instance (A |B) over a linear system S = Cx ≤ b and its Farkas
coefficients f , the Farkas interpolant for (A |B) is the inequality

IF := fᵀ
A(CAx − bA) ≤ 0,

and the dual Farkas interpolant for (A |B) is a negation of the Farkas interpolant
for (B |A):

IF := ¬ (fᵀ
B(CBx − bB) ≤ 0),

where fA and fB are the restrictions of f to the subsystems A and B, respectively.

Recently [6] introduced an algorithm to gain more control over the strength
of LRA interpolants. The underlying idea is to not directly sum the inequalities
in A-part, but instead split the sum into sub-sums. This yields an interpolant
that is a conjunction (decomposition) of possibly more than one component
of the Farkas interpolant. In the following, we formally define what type of
decomposition is suitable for interpolation instances.

Definition 7 (proper decomposition for interpolation [6]). Let S =
Cx ≤ b be a system of linear inequalities over a set of variables X =
{x1, . . . ,xm} and let L ⊆ X. Let w ≥ 0 be a vector such that all variables
from L are eliminated in wᵀCx. We say that a set of vectors Dec(wᵀCx, L) is
a proper decomposition for interpolation if it forms a decomposition of w, i.e.,

w =
∑

v∈Dec(wᵀCx,L)

v;

and for all v ∈ Dec(wᵀCx, L), (i) v ≥ 0 and (ii) all variables from L are
eliminated in vᵀCx.
3 This property appears in the literature under names generalized simultaneous
abstraction [17] and symmetric interpolation [21].

364 S. Asadi et al.

Definition 8 (decomposed interpolants and their duals [6]). Let (A |B)
be an interpolation instance in LRA, LA the local variables of A (those not
appearing in B), and f the vector of Farkas coefficients of the system. Let
{f1, . . . , fk} = Dec(fAᵀCAx, LA) be a proper decomposition. Then

ID =
k∧

i=1

fi
ᵀ(CAx − bA) ≤ 0

is a decomposed interpolant of size k for (A |B).
Similarly, for subsystem B with its local variables LB, if {f ′

1, . . . , f
′
m} =

Dec(fBᵀCBx, LB) then the dual decomposed interpolant for (A |B) is the nega-
tion of the decomposed interpolant for (B |A):

ID ≡ ¬
⎛

⎝
m∧

j=1

f ′
j
ᵀ(CBx − bB) ≤ 0

⎞

⎠

When the set of local variables is clear from the context we omit the second
argument of Dec. Note that trivial proper decomposition of size 1 always exists:
it is the Farkas interpolant.

Next, we illustrate the key difference between Farkas (IF) and decomposed
Farkas (ID) interpolants by an example that will serve as our running example.

Example 1. Consider S as the unsatisfiable conjunction of linear inequalities:

x1 + x2 ≤ 0
−x1 + x3 ≤ 0

}

X1

x1 + x4 ≤ 0
−x1 + x5 ≤ 0

}

X2

−x2 − x5 + x6 ≤ 0
}

Y

−x3 − x4 − x6 ≤ −1
}

Z,

where we will denote the inequalities by l1, . . . , l6, respectively. Consider the
following disjoint sets X1 = {l1, l2}, X2 = {l3, l4}, Y = {l5}, and Z = {l6} as
shown above. The unsatisfiability of S is witnessed by the Farkas coefficients
fᵀ = (1, 1, 1, 1, 1, 1). Let ItpF be the Farkas interpolation algorithm. Consider
interpolation instance (X1 ∧ X2 ∧ Y |Z), with fᵀ

XY = (1, 1, 1, 1, 1) that elim-
inate x1, x2, x5, the local variables of X1 ∧ X2 ∧ Y with respect to the rest
of S. The interpolant ItpF (X1 ∧ X2 ∧ Y |Z) is IFXY = x3 + x4 + x6 ≤ 0.
Let ItpD be the decomposing Farkas interpolation algorithm. The interpo-
lation instance (X1 ∧ X2 ∧ Y |Z) admits a decomposition of fᵀ

XY CXY x as
D = {(1, 0, 0, 1, 1)ᵀ

, (0, 1, 1, 0, 0)ᵀ} that eliminates the local variables x1, x2, x5.
The interpolant ItpD(X1 ∧ X2 ∧ Y |Z) = IDXY = x6 ≤ 0 ∧ x3 + x4 ≤ 0 computed
with respect to this decomposition contains two conjuncts and differs from the
Farkas interpolant.

Farkas-Based Tree Interpolation 365

3.1 Proper Labeling

We rely on resolution refutation that incorporates theory lemmas that are cre-
ated by the theory solver and get propagated to the SAT solver. As theory
solver provides a separate proof for each theory clause, we can compute an LRA
interpolant for the negation of each theory clause. Once these are obtained, the
final interpolant is computed using Pudlák’s propositional interpolation algo-
rithm [25].

The binary interpolation algorithms for linear real arithmetic discussed above
require that the theory atoms be placed into exactly one partition. The origin
of the partition is, however, the CNF partition, where it is common that atoms
(as opposed to clauses) belong to several partitions. This can lead to subtle
problems in the definitions and eventually implementations. We first illustrate
the problem with an example before defining proper labeling in Definition 9 that
we will use for resolving the problem.

Example 2. Consider the sets of clauses X = {a ≤ b, (a ≤ c) ∨ x}, Y = {b ≤ c,
(a ≤ c)∨y}, and Z = {x∨y}, and the theory clause cl := (a ≤ b)∨(b ≤ c)∨a ≤ c
required for the refutation of X ∧ Y ∧ Z. The atom a ≤ c can be considered a
part of both partitions X and Y when computing an interpolant for some binary
partitioning of the theory clause cl . However, the strong TI is not guaranteed if
we change the partition of a ≤ c between different binary interpolation instances.
For example, placing a ≤ c in Y while interpolating (X | Y ∧Z) for cl yields the
Farkas theory interpolant IFX = a ≤ b. Placing a ≤ c in X while interpolating
(Y | X ∧ Z) and (X ∧ Y | Z) for cl gives IFY = b ≤ c, and IFXY = ⊥. Clearly
using these interpolants violates the strong TI since a ≤ b ∧ b ≤ c �=⇒ ⊥.

We define a general version of this proper labeling of the theory clauses and
argue that a fixed proper labeling must be used for a sequence of binary inter-
polation problems if tree interpolation property is to be guaranteed.

Definition 9 (proper labeling). Let X1, . . . , Xn be sets of clauses. We say
that X1 ∧ . . . ∧ Xn is a partitioned CNF formula F and we say that a function
from atoms of F to partitions PL : Atoms(F) → {1, . . . , n} is a proper labeling
if for each atom At it holds that PL(At) = i implies that there is a clause in Xi

containing At (or its negation).

Proper labeling is used in a resolution refutation of a partitioned CNF for-
mula to determine the partitioning of theory clauses and consequently the input
for theory interpolation algorithms. In the rest of the text we are going to assume
that a refutation of a partitioned CNF formula always comes with some fixed
proper labeling and we say that the refutation is properly labeled.

3.2 Tree Interpolation Property in Farkas Interpolation Algorithm

For the Farkas interpolation algorithm we first state and prove a simplified ver-
sion of Definition 5 limited to three partitions and then generalize the result for
an arbitrary number of partitions by an iterative application of Theorem 1.

366 S. Asadi et al.

Theorem 1 (strong TI in Farkas interpolation). Let X ∧ Y ∧ Z be an
unsatisfiable partitioned CNF formula in LRA and let P be its properly labeled
resolution refutation. Let ItpP+F denote the interpolation algorithm that uses
Pudlák’s algorithm for the propositional part and Farkas algorithm for the theory
clauses. Let IX , IY , and IXY be the binary interpolants ItpP+F (X |Y ∧ Z),
ItpP+F (Y |X ∧ Z), and ItpP+F (X ∧ Y |Z), respectively. Then (IX ∧ IY) =⇒
IXY .

Proof. We show using structural induction that for any clause cl in the refutation
P and for all possible partial interpolants, property (IX ∧ IY) =⇒ IXY holds.

Since a leaf in P could either be a source clause or a theory clause, we study
each case separately. The proof has two steps: base case, and inductive step. The
base case itself consists of two steps, depending on the nature of leaf clauses.
Both the inductive step and the base case for source clauses are shown in [29]
and are therefore given here as a sketch. Their full proofs are in Appendix A.

Base case (source clause, sketch). We can show one-by-one for the three cases
cl ∈ X, cl ∈ Y , and cl ∈ Z that the strong tree-interpolation property holds. See
proof of Lemma 2 in Appendix A.

Base case (theory clause). Let cl ≡ �̄1 ∨ · · · ∨ �̄n from P be a theory clause in
LRA, S the system of linear inequalities corresponding to ¬cl, and f the vector
of Farkas coefficients witnessing the unsatisfiability of S.

As refutation P is properly labeled (Definition 9), each literal �i is uniquely
assigned to either X, Y or Z. The LRA interpolants for the theory clause
computed for the binary interpolation instances (X |Y ∧ Z), (Y |X ∧ Z), and
(X ∧ Y |Z) are thus IFX = fᵀ

X(CXx − bX) ≤ 0, IFY = fᵀ
Y (CY x − bY) ≤ 0, and

IFXY = fᵀ
XY (CXY x − bXY) ≤ 0, respectively, where we denote by XY the sub-

system corresponding to X ∧Y . By construction, we have fᵀ
XY (CXY x−bXY) =

fᵀ
X(CXx − bX) + fᵀ

Y (CY x − bY). It follows that if fᵀ
X(CXx − bX) ≤ 0 and

fᵀ
Y (CY x − bY) ≤ 0, then also fᵀ

XY (CXY x − bXY) ≤ 0, which is exactly the
desired result that IFX ∧ IFY =⇒ IFXY .

Inductive step (inner node, sketch). By case analysis on the different binary
interpolations in the nodes of the refutation P it is possible to show that each
partial interpolant associated with the resolvent has TI (see proof of Lemma 3
in Appendix A). �

The result of Theorem 1 can be generalized to prove that ItpP+F guarantees
strong (and consequently weak) TI.

Theorem 2 (generalizing strong TI in Farkas interpolation). Let X1 ∧
. . .∧Xn∧Z, n ≥ 2, be an unsatisfiable partitioned CNF formula in LRA and let P

be its properly labeled resolution refutation. Let ItpP+F denote the interpolation
algorithm that uses Pudlák’s algorithm for the propositional part and Farkas
algorithm for the theory clauses. Let IX1 , . . ., IXn

, and IX1...Xn
be the binary

interpolants ItpP+F (X1 |X2∧. . .∧Xn∧Z), . . ., ItpP+F (Xn |X1∧. . .∧Xn−1∧Z)
and ItpP+F (X1∧ . . .∧Xn |Z), respectively. Then (IX1 ∧ . . .∧IXn

) =⇒ IX1...Xn
,

i.e., the tuple (IX1 , . . . , IXn
, IX1...Xn

) has the strong tree-interpolation property.

Farkas-Based Tree Interpolation 367

Proof. We prove the theorem by induction. For the base case with n = 2 we
may apply Theorem 1. Assume now that n ≥ 3, and the theorem holds for n−1.
Using the induction hypothesis for the tuple (X1, . . . , Xn−1,Xn ∧Z) we get that

IX1 ∧ . . . ∧ IXn−1 =⇒ IX1...Xn−1 .

By applying Theorem 1 again for (X1 ∧ . . . ∧ Xn−1,Xn, Z) we obtain

IX1...Xn−1 ∧ IXn
=⇒ IX1...Xn

.

Combining these two implications yields the desired result IX1 ∧ . . . ∧ IXn
=⇒

IX1...Xn
. �

By Theorem 2, the interpolation algorithm ItpP+F guarantees the strong TI.
We can use the technique described in Remark 1 to obtain a tree interpolation
algorithm TItpItpP+F for computation of tree interpolants.

Corollary 1. TItpItpP+F is a tree interpolation algorithm, that is, it computes
tree interpolants.

Note that while the result that TItpItpP+F is a tree interpolation algorithm is
known from [7], our result that ItpP+F guarantees the strong TI is new to the
best of our knowledge.

3.3 A Tree Interpolation Algorithm Based on Decomposing Farkas
Interpolation

In this section we consider the decomposing Farkas interpolation algorithm of [6],
and show that if the decompositions satisfy a certain property, then the algorithm
guarantees the tree interpolation property. We also show that if the condition is
not satisfied, the tree interpolation property is not guaranteed.

A central difference between decomposing Farkas interpolation algorithm and
Farkas interpolation algorithm is that the former is a template rather than a con-
crete algorithm. In practice this means that the algorithm is parameterized by
the decomposition of the (restricted) vector of Farkas coefficients and can yield
different interpolants for different decompositions. For tree interpolation one
wants to relate interpolants computed by multiple binary interpolation instances
over the same proof. Therefore also the decompositions need to respect this rela-
tion for the binary interpolation instances. We first show that tree interpolation
property is not guaranteed in general for the decomposed interpolants, and then
define a constraint on the decompositions that guarantees the tree interpolation
property.

Example 3. Consider our running example of Example 1 and let X := X1 ∧ X2.
Using the decomposing Farkas interpolation algorithm ItpD, the interpola-
tion instance (X |Y ∧ Z) admits different non-trivial decompositions of the
restricted vector of Farkas coefficients fᵀ

X = (1, 1, 1, 1), for example D1 =

368 S. Asadi et al.

{(1, 0, 0, 1)ᵀ
, (0, 1, 1, 0)ᵀ} and D2 = {(1, 1, 0, 0)ᵀ

, (0, 0, 1, 1)ᵀ}. Both D1 and D2

successfully eliminate the single X-local variable x1, as required. The outcome of
ItpD(X |Y ∧Z) using D1 is I1X = x2 +x5 ≤ 0∧x3 +x4 ≤ 0. When using D2, the
resulting interpolant is I2X = x2+x3 ≤ 0 ∧ x4+x5 ≤ 0. Consider (X∧Y |Z) that
admits only a single non-trivial decomposition of fᵀ

XY = (1, 1, 1, 1, 1) that elim-
inates XY -local variables x1, x2, x5: D3 = {(1, 0, 0, 1, 1)ᵀ

, (0, 1, 1, 0, 0)ᵀ}. The
interpolant computed with respect to this decomposition is ItpD(X ∧ Y |Z) =
IXY = x6 ≤ 0∧x3 +x4 ≤ 0. Consider (Y |X ∧Z) where there is no opportunity
for decomposition since its first part consists of the single inequality l5. The
computed interpolant is ItpD(Y |X ∧ Z) = IY = −x2 − x5 + x6 ≤ 0. We can
easily see that the strong tree-interpolation property ((Definition 5) is satisfied
for I1X : I1X ∧ IY =⇒ IXY . However, the property is not satisfied for I2X , since
I2X ∧ IY � IXY . Since in this example IY = Y , the same is true for the weak
tree-interpolation property (Definition 2).

Intuitively, the tree interpolation property might not hold when the sub-
system’s decomposition (D2) does not agree with its supersystem’s decomposi-
tion (D3) (when restricted to the subsystem). More generally, the inequalities
resulting from (the restriction of) supersystem’s decomposition must be logi-
cally covered by the inequalities of subsystem’s decomposition. The following
monotonicity condition captures this formally.

Definition 10 (monotonic decompositions). Let S = Cx ≤ b be an unsatis-
fiable system of linear inequalities and let (A1 |B1), . . . , (An |Bn) be a set of binary
interpolation problems over S. Let ItpD denote the decomposing Farkas interpo-
lation algorithm ((Definition 8). We say that ItpD uses monotonic decomposi-
tions if whenever Ai ⊆ Aj, then for all vectors w ∈ Dec(fᵀ

Aj
CAj

x, LAj
) there

exists U ⊆ Dec(fᵀ
Ai

CAi
x, LAi

) such that
∑

u∈U uᵀ(CAi
x − bAi

) ≤ 0 =⇒
wᵀ

Ai
(CAi

x − bAi
) ≤ 0, where wAi

is the restriction of w to the subsystem Ai.

Now we can proceed to prove that ItpD can guarantee the tree interpolation
property.

Theorem 3 (strong TI in decomposing Farkas interpolation). Let
X ∧ Y ∧ Z be an unsatisfiable partitioned CNF formula in LRA and let P be
its properly labeled resolution refutation. Let ItpP+D denote the interpolation
algorithm that uses Pudlák’s algorithm for the propositional part and decompos-
ing Farkas algorithm for the theory clauses. Let IX , IY , and IXY be the binary
interpolants ItpP+D(X |Y ∧ Z), ItpP+D(Y |X ∧ Z), and ItpP+D(X ∧ Y |Z),
respectively. If ItpD uses monotonic decompositions for every theory clause in P

then (IX ∧ IY) =⇒ IXY .

Proof (by structural induction). We only show the proof of the implication for
a leaf with a theory clause. In the remaining cases the proof is the same as that
of Theorem 1.

Let cl be a theory clause in LRA and let S = Cx ≤ b be the system of linear
inequalities corresponding to ¬cl. Let f denote the Farkas coefficients witness-

Farkas-Based Tree Interpolation 369

ing the unsatisfiability of S. Note that the proper labeling of P (recall (Defini-
tion 9) partitions cl into three disjoint sets of literals X,Y,Z. Let DecX , DecY

and DecXY denote the decompositions Dec(fᵀ
XCXx, LX), Dec(fᵀ

Y CY x, LY), and
Dec(fᵀ

XY CXY x, LXY), where XY denotes the subsystem X ∧ Y . We need to
prove that

(
∧

p∈DecX

pᵀ(CXx − bX) ≤ 0

)

∧
(

∧

q∈DecY

qᵀ(CY x − bY) ≤ 0

)

=⇒
(

∧

r∈DecXY

rᵀ(CXY x − bXY) ≤ 0

)

It is enough to fix r ∈ DecXY and prove that rᵀ(CXY x−bXY) ≤ 0 is implied
by the antecedent. As the subsystem XY consists of two disjoint subsystems X
and Y , it holds that rᵀ = (rᵀ

X rᵀ
Y), bᵀ

XY = (bᵀ
X bᵀ

Y) , Cᵀ
XY = (Cᵀ

X Cᵀ
Y) and

rᵀ
X(CXx−bX)+rᵀ

Y (CY x−bY) = rᵀ(CXY x−bXY). Consequently, it is enough
to prove that

∧

p∈DecX

pᵀ(CXx − bX) ≤ 0 =⇒ rᵀ
X(CXx − bX) ≤ 0

and
∧

q∈DecY

qᵀ(CY x − bY) ≤ 0 =⇒ rᵀ
Y (CY x − bY) ≤ 0

We only show how to prove the first implication, the second one is analogous.
According to our assumption, ItpD uses monotonic decompositions. Hence for
r ∈ DecXY there exists U ⊆ DecX such that

∑
u∈U uᵀ(CXx − bX) ≤ 0 =⇒

rᵀ
X(CXx − bX) ≤ 0. This is exactly what we need to finish the proof since

∧

p∈DecX

pᵀ(CXx − bX) ≤ 0 =⇒
∧

u∈U

uᵀ(CXx − bX) ≤ 0 =⇒
∑

u∈U

uᵀ(CXx − bX) ≤ 0

=⇒ rᵀ
X(CXx − bX) ≤ 0.

�

We first generalize the result of Theorem 3 to an arbitrary number of parti-
tions, then discuss how monotonic decompositions can be achieved, and finally
show that tree interpolants can be computed using the decomposing Farkas
interpolation algorithm.

Theorem 4 (generalizing strong TI in decomposing Farkas interpo-
lation). Let X1 ∧ . . . ∧ Xn ∧ Z, n ≥ 2, be an unsatisfiable partitioned CNF
formula in LRA and let P be its properly labeled refutation. Let ItpP+D denote
the interpolation algorithm that uses Pudlák’s algorithm for the propositional
part and decomposing Farkas algorithm for the theory clauses. Let IX1 , . . .,

370 S. Asadi et al.

IXn
, and IX1...Xn

be the binary interpolants ItpP+D(X1 |X2 ∧ . . . ∧ Xn ∧ Z),
. . ., ItpP+D(Xn |X1 ∧ . . . ∧ Xn−1 ∧ Z) and ItpP+D(X1 ∧ . . . ∧ Xn |Z), respec-
tively. If ItpD uses monotonic decompositions for every theory clause in P, then
(IX1 ∧ . . . ∧ IXn

) =⇒ IX1...Xn
, i.e., the tuple (IX1 , . . . , IXn

, IX1...Xn
) has the

strong tree-interpolation property.

Proof. The proof is done by induction, the same way as the proof of Theorem 2,
here relying on Theorem 3. �

To show how monotonic decompositions can be achieved, we first introduce
a notion of decomposition strategy that determines the decompositions used for
the related interpolation instances.

Definition 11 (decomposition strategy). Let S be an unsatisfiable set of
inequalities, f its witnessing vector of Farkas coefficients, and 〈(V,E), F 〉 the
related tree interpolation instance. The tree interpolation instance defines a set
of binary interpolation instances (F (subtree(v)) |F (subtree(v))) for each v ∈ V .
A decomposition strategy σ assigns to each vertex v ∈ V some decomposi-
tion Dec(fᵀ

Sv
CSv

x, LSv
), where Sv = F (subtree(v)). We denote the decomposing

Farkas interpolation algorithm using strategy σ as ItpD(σ).

An example of a decomposition strategy that guarantees monotonic decom-
positions is a gradual decomposition. The idea is to first decompose the larger
subsystem and then, instead of computing independent decompositions for its
subsystems, to decompose only elements of the decomposition of the larger sys-
tem.

Definition 12 (gradual decomposition). Given an unsatisfiable set of
inequalities S, its witnessing vector of Farkas coefficients f , and a tree inter-
polation instance 〈(V,E), F 〉, a gradual decomposition GDec is a decomposition
strategy defined inductively on 〈(V,E), F 〉 from root to leaves as

1. GDec(vr) = {f} for root vr,
2. otherwise

GDec(v) =
⋃

w∈GDec(par(v))

Dec(wᵀ
Sv

CSv
x, L(Sv)),

where par(v) is the (unique) parent of v, and Sv = F (subtree(v)).

Intuitively, the gradual decomposition in a given node v decomposes each ele-
ment w of the v’s parent’s decomposition separately, instead of independently
decomposing fSv

, the restriction of the Farkas coefficients to the subsystem of v’s
subtree. Figure 1 compares the gradual decomposition and independent decom-
position on the system from Example 3. It shows the tree structure of the three
partitions X, Y , Z, and possible decompositions of the vector of Farkas coeffi-
cients for the corresponding binary interpolation problems (X |Y ∧Z), (X∧Y |Z)
and (X∧Y ∧Z | �). The solid gray arrows labeled with a subsystem represent the
restriction to that subsystem and the dashed arrows represent decomposition.

Farkas-Based Tree Interpolation 371

Fig. 1. A gradual decomposition (left) versus an independent decomposition (right).

The decompositions corresponding to vertices Z and Y (D0 and D3) are the
same in both cases. The difference manifests when computing the decomposi-
tion corresponding to vertex X. On the left, gradual decomposition ensures that
the decomposition D1 agrees with D3 by trying to decompose each (restricted)
element of D3 separately. In this case no further decomposition is possible, thus
D1 is equal to D3 restricted to the subsystem X. On the right, if gradual decom-
position is not used, then the decomposition corresponding to vertex X does
not take into account what happens at X’s parent Y and independently decom-
poses the restricted vector of Farkas coefficients fX . This can result in a differ-
ent decomposition D2 which, however, violates the monotonicity condition from
(Definition 10 with respect to the decomposition D3.

Theorem 5. The algorithm TItpItpP+D(GDec), where decomposing Farkas inter-
polation algorithm uses gradual decomposition, is a tree interpolation algorithm,
that is, it computes tree interpolants.

Proof. Using the idea described in Remark 1, given a tree interpolation instance
from (Definition 3 and a properly labeled refutation P of

∧
v∈V F (V), we define

τι(v) := ItpP+D(GDec)(F (subtree(v)) |F (subtree(v))).

Note that the proper labeling of P recreates the tree-structured partitioning
of every theory clause in P, which is required by the definition of the gradual
decomposition.

The first and third conditions of tree interpolant automatically follow from
our definition of τι. The second condition follows from Theorem 4 since gradual
decomposition GDec ensures that the decompositions are monotonic. To see
this, recall from the definition of monotonic decomposition ((Definition 10) that
for each v ∈ V , its parent p, and for each w ∈ GDec(p), there must exist
U ⊆ GDec(v) such that

∑
u∈U uᵀ(CSv

x−bSv
) ≤ 0 =⇒ wᵀ

Sv
(CSv

x−bSv
) ≤ 0.

372 S. Asadi et al.

From the definition of GDec it follows that U = Dec(wᵀ
Sv

CSv
x, L(Sv)) is the

witnessing subset of GDec(v). �
Note that gradual decomposition is not a concrete strategy, but rather a

strategy scheme. It leaves freedom for choosing a decomposition in a particular
vertex as long as the decomposition respects the parent’s decomposition. One
particular instance of a gradual decomposition is trivial gradual decomposition
Triv that always uses the trivial decomposition of size 1. Since trivial decomposi-
tions result in Farkas interpolants, it follows that TItpItpP+D(Triv) ≡ TItpItpP+F .

4 Negative Results for the Algorithms for Flexible, Dual
Farkas and Dual Decomposed Interpolation

We prove three smaller, negative results on binary interpolation algorithms that
cannot be used as a basis of a tree interpolation algorithm. In particular, we show
that the binary interpolation algorithms ItpF and ItpD discussed in Sect. 3, and
an algorithm from [1] that we denote by Itp(α), do not guarantee TI.

We first formally define the flexible interpolants from [1] in our notation.

Definition 13 (flexible Farkas interpolant [1]). Let (A |B) be an interpolation
instance from a system Cx ≤ b. Then the interpolants IF and IF are, respec-
tively, fᵀ

A(CAx−bA) ≤ 0 and fᵀ
B(CBx−bB) > 0. The flexible Farkas interpolant

I(α) is defined as fᵀ
ACAx + fᵀ

BbB − αfᵀ
ABbAB ≤ 0 where 0 < α ≤ 1.

Flexible interpolants are useful in practice as they provide a more fine-grained
approach than the Farkas and dual Farkas algorithms.4 However, they cannot
be used in general as a basis for a tree interpolation algorithm:

Theorem 6 The flexible Farkas interpolation algorithm Itp(α) for 0 < α < 1
does not guarantee the strong nor the weak tree-interpolation property.

Proof Consider our running example from Example 1 and four binary interpo-
lation instances (X1 |X2 ∧ Y ∧ Z), (X2 |X1 ∧ Y ∧ Z), (Y |X1 ∧ X2 ∧ Z), and
(X1 ∧ X2 ∧ Y |Z). Let IX1 , IX2 , IY , and IXY denote the interpolants from these
interpolation instances. The strong tree-interpolation property is formulated as

IX1 ∧ IX2 ∧ IY =⇒ IXY (1)

and the weak tree-interpolation property is formulated as

IX1 ∧ IX2 ∧ Y =⇒ IXY . (2)

The flexible Farkas interpolants for the interpolation instance are

I
(α)
X1

= (x2 + x3 ≤ 1 − α) I
(α)
X2

= (x4 + x5 ≤ 1 − α)
I
(α)
Y = (−x2 − x5 + x6 ≤ 1 − α) I

(α)
XY = (x3 + x4 + x6 ≤ 1 − α)

The implications of Eq. (1) and Eq. (2) are both falsified with assignment
x2 �→ 0, x3 �→ 1 − α, x4 �→ 1 − α, x5 �→ 0, x6 �→ 0 for any 0 < α < 1. �
4 Farkas interpolation algorithm can be seen as the special case Itp(1), but dual Farkas

interpolation algorithm is not a special case of the flexible interpolation algorithm.

Farkas-Based Tree Interpolation 373

We next show that also the dual Farkas interpolation algorithm cannot be
used as a basis for a tree interpolation algorithm.

Theorem 7 The dual Farkas interpolation algorithm does not guarantee the
strong nor the weak tree-interpolation property.

Proof Again in Example 1, the dual Farkas interpolants are computed as

IFX1 = (x2 + x3 < 1) IFX2 = (x4 + x5 < 1)
IFY = (−x2 − x5 + x6 < 1) IFXY = (x3 + x4 + x6 < 1)

The implications of Eq. (1) and Eq. (2) are both falsified with assignment x2 �→
0, x3 �→ 0.5, x4 �→ 0.5, x5 �→ 0, x6 �→ 0. �

From Theorem 7 we immediately get the following result.

Corollary 2 The dual decomposing Farkas interpolation algorithm ItpDdoes not
have the strong nor the weak tree-interpolation property.

Proof The interpolants computed by dual Farkas interpolation algorithm ItpF are
special cases of dual decomposed interpolants using trivial decompositions. Since
Eq. (1) and Eq. (2) are not valid for ItpF , they are also invalid for ItpD. �

5 Experimental Evaluation

This section provides experimental evidence on the usefulness of the decom-
posed Farkas tree interpolants obtained using the gradual decomposition algo-
rithm from Sect. 3.3. In the experiments we use the SMT solver OpenSMT[20]
for solving and interpolation. The solver implements a wide range of interpola-
tion algorithms, including in particular both Farkas and decomposing Farkas
algorithms [6]. These implementations allowed us to manually perform the
required experiments also for gradual decomposition. In the following, for con-
venience, we use ID and IF for the tree interpolant resulting from the algorithm
TItpItpP+D(GDec) and TItpItpP+F , respectively.

To obtain benchmarks we used the tool FreqHorn [14] to create bounded
model checking (BMC) [4] formulas from the Horn clauses available at
https://github.com/chc-comp/chc-comp19-benchmarks/tree/master/lra-ts. We
then applied both TItpItpP+D(GDec) and TItpItpP+F to the entire BMC formulas.
In total the benchmarks consist of 514 LRA UNSAT formulas. We chose these
benchmarks since they provide a natural tree structure that can be used by the
gradual decomposition, the interpolants often have many non-trivial decompo-
sitions (up to 965), and are relatively big (up to 12k LoC).

Our goal in the experiments is to study whether the ID are genuinely differ-
ent from the IF . We chose two example measures for difference of interpolants:
(i) the number of top-level conjuncts, and (ii) the number of distinct LRA atoms.
In (i), the number of top-level conjuncts is a measure of generalizability of the

https://github.com/chc-comp/chc-comp19-benchmarks/tree/master/lra-ts

374 S. Asadi et al.

Fig. 2. Comparing decomposed Farkas and Farkas tree interpolants w.r.t the number
of conjuncts (left) and theory atoms (right) in the interpolants.

interpolant. In some applications (see, for example, [14,22]) it is useful to fur-
ther abstract an over-approximation, and in case the interpolant has several
conjuncts, an easy way to achieve this is by dropping some of them. More tech-
nically, for formula f , we define this measure as N∧(f), where N∧(f) := 1 if
f is not a conjunction at the top-level, and N∧(f) := n if f is of the form
A1∧ . . .∧An. In (ii), the number of distinct theory atoms indicates the complex-
ity of the interpolant in the sense that an instance with more atoms represents a
larger Boolean search space. Technically, we define this as the size of the largest
subset of Atoms(f) containing only theory atoms.

Figure 2 (left) shows the number of top-level conjuncts for IF and ID as
a scatter plot. In 53% of the benchmarks ID have strictly more conjuncts in
comparison to IF . Excluding the cases where the number of top-level conjuncts
is the same in IF and ID , 91% of benchmarks (270 vs. 25) have strictly more
conjuncts in ID . While a non-negligible number of instances (219) have the same
number of conjuncts in IF and ID , the majority of the instances are different.

Figure 2 (right) compares the number of unique LRA atoms in IF and ID .
In almost one-third of the cases ID contains fewer atoms, suggesting that the
decompositions identify semantic structure that is shared between the LRA inter-
polation queries. We want to emphasize that this is, to the best or our knowledge,
a new result that we expect to have practical impact. Based on the numerical
results, and contrary to what the figure suggests, there are typically more atoms
in ID . Concretely, out of 514 benchmarks, 63% have fewer theory atoms in IF .
This is in particular because in 57 benchmarks there are two atoms in ID and
one atom in IF , all represented by the single point (2,1) in the plot. This is
somewhat expected, since on a single LRA interpolation query ItpD is guaran-
teed to give at least as many atoms as ItpF . In addition, in no case the number
of theory atoms is the same in IF and ID , giving a strong indication that the
interpolation algorithms differ in practice.

Farkas-Based Tree Interpolation 375

In conclusion, the results imply that a portfolio of the interpolation algo-
rithms TItpItpP+D(GDec) and TItpItpP+F provides a range of interpolants that
are substantially different from those available using only TItpItpP+F .

6 Conclusion

We identified five classes of interpolation systems for LRA based on Farkas’
lemma, and investigated whether and under what conditions they can be used
for tree interpolation. In addition to strengthening a known positive result for
the Farkas algorithm, we showed that also the binary decomposing Farkas inter-
polation algorithm can be used as a basis for tree interpolation by using a novel
method called gradual decomposition. We also showed that TI is not guaranteed
by the dual Farkas, the dual decomposing Farkas, and a flexible variant of the
Farkas interpolation algorithms.

We showed experimentally, based on two different measures, that Farkas and
decomposed Farkas interpolants are often different. In addition, interestingly, it
is not uncommon that the decomposed interpolants have fewer theory atoms
than the Farkas interpolants, and that it is more common that the decomposed
interpolants have more conjuncts also at the top-level of the formulas compared
to Farkas interpolants. The existence of the decomposing Farkas interpolation
algorithm for tree interpolation enables a liberty in the interpolant choice previ-
ously unavailable in the field. We are hopeful that the decomposed interpolants
will become a powerful component of interpolation portfolios resulting in more
scalable and general solving. In a future work we plan to implement the gradual
decomposition in a more automatic way and experiment with the implementa-
tion in a more applied setting.

A Appendix A

In this appendix we give auxiliary material for more formal treatment of the
connection between propositional and theory interpolation. The propositional
resolution rule state that an assignment satisfying the clauses cl+ ∨p and cl− ∨p
also satisfies cl+ ∨ cl−.

Our propositional interpolation works on a refutation of a formula A∧B. We
denote atoms of A and B as Atoms(A,B). Note that each At ∈ Atoms(A,B)
may appear only in A, only in B, or in both conjuncts; Similarly to the notation
in [11], we assign a color among {a, b, ab} independently to each At , depending
on whether At occurs only in A, only in B, or in both, respectively.

376 S. Asadi et al.

Table 2 describes the Pudlák interpolation algorithm, where the notation p:ε
indicates that a literal p has color ε.

Table 2. Pudlák’s interpolation algorithm

Lemma 2 (source clause, base case) The strong tree-interpolation property
holds for Pudlák’s interpolation algorithm ItpP for source clauses.

Proof Let cl be a source clause. There are three cases: cl ∈ X, cl ∈ Y , or
cl ∈ Z. We consider the three interpolation instances (X |Y ∧ Z), (Y |X ∧ Z),
and (X ∧ Y |Z), and check whether TI holds, i.e., whether

ItpP (X |Y ∧ Z) ∧ ItpP (Y |X ∧ Z) =⇒ ItpP (X ∧ Y |Z). (3)

The relevant part in the algorithm is shown in Table 2 (left).

– cl ∈ X: When cl ∈ X, using Pudlák’s interpolation algorithm and substitut-
ing the interpolants in Eq. (3), we have (⊥ ∧ �) =⇒ ⊥, which is valid.

– cl ∈ Y : The case cl ∈ Y is symmetric to the case when cl ∈ X, and thus
valid.

– cl ∈ Z: When cl ∈ Z, we have again by substiting in Eq. (3) (�∧�) =⇒ �,
which is valid.

�

Lemma 3 (inner node) Let p be a variable. In refutation P, if partial inter-
polants for nodes cl+∨p and cl−∨ p̂ satisfy the strong tree-interpolation property,
then the partial interpolant for cl+∨cl− satisfy the strong tree-interpolation prop-
erty.

Proof We show that for all resolvents in refutation P, the implication (IX ∧
IY) =⇒ IXY holds, where IX = (X |Y ∧ Z), IY = (Y |X ∧ Z), and IXY =
(XY |Z).

we consider a node cl+ ∨ cl− representing resolution over a variable p with
parent nodes p∨cl+ and p̄∨cl−. From the inductive hypotheses, we have partial
interpolants I+X , I+Y , and I+XY for the node p∨cl+ so that (I+X ∧I+Y) =⇒ I+XY and
partial interpolants I−

X , I−
Y , and I−

XY for the node p̄∨ cl− so that (I−
X ∧ I−

Y) =⇒
I−
XY .

Farkas-Based Tree Interpolation 377

We consider different cases of coloring of p. Depending on presence of p in the
three partitions, i.e., X, Y , and Z, and also depending on interpolation instances
(X |Y ∧ Z), (Y |X ∧ Z), and (X ∧ Y |Z), p is colored a, b, or ab (Table 3).

Table 3. Coloring of variable p for each partial interpolant.

appearance of p class of p for each partial interpolant

IX IY IXY

X a b a

Y b a a

Z b b b

X ∩ Y ab ab a

X ∩ Z ab b ab

Y ∩ Z b ab ab

X ∩ Y ∩ Z ab ab ab

In case of p ∈ X, based on Pudlák’s algorithm 2, IX ≡ I+X ∨ I−
X , IY ≡

I+Y ∧ I−
Y , IXY ≡ I+XY ∨ I−

XY .
Using the inductive hypothesis, we have ((I+X ∨ I−

X) ∧ I+Y ∧ I−
Y) =⇒ (I+XY ∨

I−
XY), which is the required claim (IX ∧ IY) =⇒ IXY . The case p ∈ Y is

symmetric.
In case of p ∈ Z, we have IX ≡ I+X ∧I−

X , IY ≡ I+Y ∧I−
Y , IXY ≡ I+XY ∧I−

XY .
Using the inductive hypothesis, we have (I+X ∧ I−

X ∧ I+Y ∧ I−
Y) =⇒ (I+XY ∧ I−

XY),
which is the required claim (IX ∧ IY) =⇒ IXY .

In case of p ∈ X ∩ Y ∩ Z, using sel(p, P,Q) as a shortcut for (p ∨ P) ∧ (p̄ ∨ Q),
we get: IX = sel(p, I+X , I−

X), IY = sel(p, I+Y , I−
Y), IXY = sel(p, I+XY , I−

XY).
Using the inductive hypothesis and considering both possible values of p, we have
(sel(p, I+X , I−

X) ∧ sel(p, I+Y , I−
Y)) =⇒ sel(p, I+XY , I−

XY), which is the desired claim
(IX ∧ IY) =⇒ IXY . The other cases where p ∈ X ∩ Y or p ∈ X ∩ Z or p ∈ Y ∩ Z
are subsumed by this case as (P ∧ Q) =⇒ sel(p, P,Q) =⇒ (P ∨ Q). �

References

1. Alt, L., Hyvärinen, A.E.J., Sharygina, N.: LRA interpolants from no man’s land.
HVC 2017. LNCS, vol. 10629, pp. 195–210. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70389-3 13

2. Asadi, S., Blicha, M., Hyvärinen, A., Fedyukovich, G., Sharygina, N.: Incremental
verification by SMT-based summary repair. In: Proceedings FMCAD 2020. IEEE
digital library (2020)

3. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories,
Frontiers in Artificial Intelligence and Applications, (1 edn.) vol. 185, pp. 825–885.
IOS Press(2009)

https://doi.org/10.1007/978-3-319-70389-3_13
https://doi.org/10.1007/978-3-319-70389-3_13

378 S. Asadi et al.

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

5. Blanc, R., Gupta, A., Kovács, L., Kragl, B.: Tree interpolation in vampire. In:
McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol.
8312, pp. 173–181. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-45221-5 13

6. Blicha, M., Hyvärinen, A.E.J., Kofroň, J., Sharygina, N.: Decomposing Farkas
interpolants. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp.
3–20. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0 1

7. Christ, J., Hoenicke, J.: Proof tree preserving tree interpolation. J. Autom. Rea-
soning 57(1), 67–95 (2016)

8. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of Craig interpolants
in satisfiability modulo theories. ACM Trans. Comput. Log. 12(1), 7:1–7:54 (2010)

9. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. In: Journal of Symbolic Logic, pp. 269–285 (1957)

10. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

11. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength.
In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–
145. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11319-2 12

12. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963 11

13. Farzan, A., Kincaid, Z.: Strategy synthesis for linear arithmetic games. PACMPL
2(POPL), 1–61 (2018)

14. Fedyukovich, G., Bod́ık, R.: Accelerating syntax-guided invariant synthesis. In:
Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 251–269.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 14

15. Fedyukovich, G., Sery, O., Sharygina, N.: eVolCheck: incremental upgrade checker
for C. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
292–307. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-
7 21

16. Gupta, A., Popeea, C., Rybalchenko, A.: Solving recursion-free horn clauses over
LI+UIF. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 188–203. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25318-8 16

17. Gurfinkel, A., Rollini, S.F., Sharygina, N.: Interpolation properties and SAT-based
model checking. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172,
pp. 255–271. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-
8 19

18. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: Proceedings
POPL 2010, pp. 471–482. ACM (2010)

19. Hojjat, H., Rümmer, P.: The ELDARICA Horn Solver. In: FMCAD, pp. 158–164.
IEEE (2018)

20. Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2: an SMT
solver for multi-core and cloud computing. In: Creignou, N., Le Berre, D. (eds.)
SAT 2016. LNCS, vol. 9710, pp. 547–553. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-40970-2 35

21. Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 39–51.
Springer, Heidelberg (2005). https://doi.org/10.1007/11513988 6

https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-642-45221-5_13
https://doi.org/10.1007/978-3-642-45221-5_13
https://doi.org/10.1007/978-3-030-17462-0_1
https://doi.org/10.1007/978-3-642-11319-2_12
https://doi.org/10.1007/11817963_11
https://doi.org/10.1007/978-3-319-89960-2_14
https://doi.org/10.1007/978-3-642-36742-7_21
https://doi.org/10.1007/978-3-642-36742-7_21
https://doi.org/10.1007/978-3-642-25318-8_16
https://doi.org/10.1007/978-3-319-02444-8_19
https://doi.org/10.1007/978-3-319-02444-8_19
https://doi.org/10.1007/978-3-319-40970-2_35
https://doi.org/10.1007/978-3-319-40970-2_35
https://doi.org/10.1007/11513988_6

Farkas-Based Tree Interpolation 379

22. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction in
SMT-based unbounded software model checking. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 846–862. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39799-8 59

23. McMillan, K.L.: An interpolating theorem prover. In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, pp. 16–30. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24730-2 2

24. McMillan, K.L., Rybalchenko, A.: Solving constrained Horn clauses using interpo-
lation. Technical Report MSR-TR-2013-6 (2013)

25. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symbolic Logic 62(3), 981–998 (1997)

26. Rollini, S.F., Sery, O., Sharygina, N.: Leveraging interpolant strength in model
checking. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
193–209. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-
7 18

27. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verifi-
cation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–363.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 24

28. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation.
In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69738-1 25

29. Sery, O., Fedyukovich, G., Sharygina, N.: Incremental upgrade checking by means
of interpolation-based function summaries. In: Proceedings FMCAD 2012, pp. 114–
121. IEEE (2012)

30. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7 11

https://doi.org/10.1007/978-3-642-39799-8_59
https://doi.org/10.1007/978-3-642-39799-8_59
https://doi.org/10.1007/978-3-540-24730-2_2
https://doi.org/10.1007/978-3-642-31424-7_18
https://doi.org/10.1007/978-3-642-31424-7_18
https://doi.org/10.1007/978-3-642-39799-8_24
https://doi.org/10.1007/978-3-540-69738-1_25
https://doi.org/10.1007/978-3-642-31424-7_11

Author Index

Asadi, Sepideh 357

Blicha, Martin 357
Bouaziz, Mehdi 3
Buro, Samuele 310

Cho, Sungkeun 3
Çiçek, Ezgi 3
Crole, Roy L. 310

Dalla Preda, Mila 178
Darulova, Eva 156
Das, Ankush 333
Distefano, Dino 3

Fedyukovich, Grigory 357
Frohn, Florian 89

Giacobazzi, Roberto 178
Giesl, Jürgen 89

Hark, Marcel 89
Hermenegildo, Manuel 7
Hyvärinen, Antti 357

Illous, Hugo 248
Iwayama, Naoki 134
Izycheva, Anastasiia 156

Kim, Sung Kook 35
Klemen, Maximiliano 7
Kobayashi, Naoki 134

Lemerre, Matthieu 248
López-García, Pedro 7

Mangal, Ravi 274
Marastoni, Niccoló 178
Mastroeni, Isabella 310
Masud, Abu Naser 200
Miné, Antoine 223
Morales, José Francisco 7
Müller, Christan 113

Nori, Aditya V. 274

Orso, Alessandro 274
Ouadjaout, Abdelraouf 223

Pérez, Víctor 7

Qadeer, Shaz 333

Rival, Xavier 248

Sarangmath, Kartik 274
Seidl, Helmut 113, 156
Sharygina, Natasha 357
Sotoudeh, Matthew 65
Suzuki, Ryota 134

Thakur, Aditya V. 35, 65
Tsukada, Takeshi 134

Venet, Arnaud J. 35

	Preface
	Organization
	Polynomial Invariants for Affine Programs (Invited Talk)
	Contents
	Invited Talks
	Static Resource Analysis at Scale (Extended Abstract)
	1 Introduction
	2 Static Complexity Analysis with Infer
	3 Diff-Time Deployment at Scale
	References

	Cost Analysis of Smart Contracts Via Parametric Resource Analysis
	1 Introduction
	2 The Parametric Resource Analysis Approach
	3 Translating into the CHC IR
	4 Defining Resources and Cost Models
	5 Performing the Resource Analysis
	6 Some Experimental Results
	7 Related Work
	8 Conclusions and Future Work
	A Brief Description of Selected Michelson Contracts
	References

	Regular Papers
	Memory-Efficient Fixpoint Computation
	1 Introduction
	2 Fixpoint Computation Preliminaries
	2.1 Bourdoncle's Recursive Iteration Strategy
	2.2 Memory Management During Fixpoint Computation
	2.3 Problem Statement

	3 Declarative Specification of Optimal Memory Configuration blueMredopt
	3.1 Declarative Specification of blueDpostredopt
	3.2 Declarative Specification of blueAchkredopt
	3.3 Declarative Specification of blueDpostredopt
	3.4 Declarative Specification of blueDpreredopt

	4 Efficient Algorithm to Compute blueMredopt
	5 Implementation
	6 Experimental Evaluation
	6.1 Task T1: Verifying User-Provided Assertions
	6.2 Task T2: Proving Absence of Buffer Overflows

	7 Related Work
	8 Conclusion
	A Proofs
	A.1 Nesting forest (V, maroonN) and total order (V, PineGreen) in Sect. 3
	A.2 Optimality of blueMredopt in Sect. 3
	A.3 Correctness and efficiency of GenerateFMProgram in Sect. 4

	References

	Abstract Neural Networks
	1 Introduction
	2 Motivation
	2.1 Merging Nodes

	3 Preliminaries
	3.1 Deep Neural Networks
	3.2 Common Activation Functions

	4 Abstract Neural Networks
	5 Layer-Wise Abstraction Algorithm
	5.1 Computability
	5.2 Walkthrough Example

	6 Layer-Wise Abstraction: Instantiations and Examples
	6.1 Interval Hull Domain with ReLU Activation Functions
	6.2 Interval Hull Domain with Leaky ReLUs
	6.3 Interval Hull Abstraction with Non-continuous Functions
	6.4 Powerset Abstraction, ReLU, and red"0362redbin

	7 Proof of Sufficient Conditions
	7.1 Vector Representatives
	7.2 Proof of Soundness Theorem

	8 Related Work
	9 Conclusion and Future Directions
	References

	Termination of Polynomial Loops
	1 Introduction
	2 Preliminaries
	3 Transformation to Triangular Weakly Non-linear Form
	3.1 Transforming Loops
	3.2 Finding Automorphisms to Transform Loops into twn-Form

	4 Computing Closed Forms
	5 Reducing Termination of tnn-Loops to `3́9`42`"̇613A``45`47`"603ATh(S, RA)
	6 Complexity Analysis
	7 Related Work and Conclusion
	References

	Stratified Guarded First-Order Transition Systems
	1 Introduction
	2 Basic Definitions
	3 Stratification and Guardedness
	4 Universal So Quantifier Elimination
	5 Stratified Guarded Updates
	6 Allowing Guarded Stratified Resets
	7 Conclusion
	References

	Predicate Abstraction and CEGAR for HFLZ Validity Checking
	1 Introduction
	2 Preliminaries: Higher-Order Fixed-Point Logic HFLZ
	3 Predicate Abstraction
	4 Counterexample-Guided Abstraction Refinement
	4.1 Counterexample
	4.2 Feasibility Check
	4.3 Predicate Discovery and Abstraction Refinement

	5 Implementation and Evaluation
	6 Related Work
	7 Conclusion
	References

	Counterexample- and Simulation-Guided Floating-Point Loop Invariant Synthesis
	1 Introduction
	2 Overview
	3 Problem Definition
	4 Algorithm
	4.1 Simulation
	4.2 Candidate Invariant Conjecture
	4.3 Reducing the Noise
	4.4 Checking a Candidate Invariant
	4.5 Generalizing from Counterexamples
	4.6 Floating-Point Invariant
	4.7 Implementation

	5 Experimental Evaluation
	5.1 State-of-the-Art Techniques
	5.2 Experimental Setup
	5.3 Comparison with State-of-the-Art
	5.4 Efficiency
	5.5 Parameter Sensitivity

	6 Related Work
	7 Conclusion
	References

	Formal Framework for Reasoning About the Precision of Dynamic Analysis
	1 Introduction
	2 Preliminaries
	3 Topological Characterisation of the Precision of Dynamic Analysis
	3.1 Modelling Dynamic Program Analysis
	3.2 Harming Dynamic Analysis

	4 Model Validation
	4.1 Control Flow Analysis
	4.2 Code Coverage
	4.3 Harming Dynamic Data Analysis

	5 Related Works
	6 Discussion and Future Works
	References

	Simple and Efficient Computation of Minimal Weak Control Closure
	1 Introduction
	2 Background
	3 Program Slicing Using WCC and SCC
	4 Efficient Computation of Minimal WCC
	4.1 An Informal Account of Our Approach
	4.2 An Overapproximation of the Weakly Deciding Vertices
	4.3 Generating Minimal Weakly Deciding Vertices
	4.4 Computing Minimal WCC
	4.5 Worst-Case Time Complexity

	5 Experimental Evaluation
	6 Related Work
	7 Conclusion and Future Work
	A Appendix
	References

	A Library Modeling Language for the Static Analysis of C Programs
	1 Introduction
	2 Syntax and Concrete Semantics
	2.1 Syntax
	2.2 Environments
	2.3 Evaluation
	2.4 Relational Semantics

	3 Generic Abstract Semantics
	3.1 Abstract Domain
	3.2 Evaluations
	3.3 Transfer Functions

	4 Specific Abstract Semantics: The Case of C Strings
	5 Experiments
	5.1 Juliet
	5.2 Coreutils

	6 Conclusion
	A Stub Examples
	A.1 Predicates
	A.2 Memory Management
	A.3 File Descriptors
	A.4 Command-Line Arguments

	References

	Interprocedural Shape Analysis Using Separation Logic-Based Transformer Summaries
	1 Introduction
	2 Overview
	3 Abstraction of Sets of States and State Transformations
	4 Procedure Summarization
	5 Intraprocedural Analysis
	6 Abstract Composition
	7 Interprocedural Analysis Based on Function Summaries
	7.1 Analysis of a Call Site Using an Existing Summary
	7.2 Inference of a New Context Summary

	8 Experimental Evaluation
	9 Related Works and Conclusion
	A Raw Experimental Data
	References

	Probabilistic Lipschitz Analysis of Neural Networks
	1 Introduction
	2 Language Definition
	2.1 Language Syntax
	2.2 Language Semantics

	3 Lipschitz Analysis
	3.1 Instrumented cat Semantics
	3.2 Jacobian Analysis
	3.3 Box Analysis

	4 Algorithms
	4.1 PROLIP Algorithmic Primitive
	4.2 Sketch of Proof-Search Algorithm
	4.3 Discussion

	5 Empirical Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Related Work
	7 Conclusion
	A Proof of Lemma 3
	B Proof of Corollary 4
	C Proof of Theorem 6
	D Proof of Corollary 8
	E Proof of Theorem 11
	F Translating Neural Networks into pcat
	G Details of Box Analysis
	References

	On Multi-language Abstraction
	1 Introduction
	2 The Multi-language Framework
	2.1 Order-Sorted Algebras
	2.2 Multi-languages and Their Algebras

	3 Algebraic Perspective on Collecting Semantics
	3.1 Fixpoint Calculation of Collecting Semantics

	4 Basic Notions of Algebraic Abstract Semantics
	5 The Multi-language Abstraction
	5.1 Combining Abstractions of Different Languages

	6 Related Works
	7 Discussion and Concluding Remarks
	A Concrete and Abstract Semantics of Imp and Num
	References

	Exact and Linear-Time Gas-Cost Analysis
	1 Introduction
	2 Overview of Gas Analysis
	2.1 Exact Bound Analysis and Runtime Overhead
	2.2 Handling Unbounded Computation

	3 Formal Analysis
	3.1 A Simplistic Programming Language
	3.2 Static Gas Analysis
	3.3 Soundness of Analysis

	4 Implementation and Evaluation
	4.1 Evaluation

	5 Related Work
	6 Conclusion
	References

	Farkas-Based Tree Interpolation
	1 Introduction
	2 Background
	2.1 Linear Systems

	3 Tree Interpolation for Linear Real Arithmetic
	3.1 Proper Labeling
	3.2 Tree Interpolation Property in Farkas Interpolation Algorithm
	3.3 A Tree Interpolation Algorithm Based on Decomposing Farkas Interpolation

	4 Negative Results for the Algorithms for Flexible, Dual Farkas and Dual Decomposed Interpolation
	5 Experimental Evaluation
	6 Conclusion
	A Appendix A
	References

	Author Index

